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Foreword

The textbook Modeling of Curves and Surfaces with MATLAB R© by Professor Vladimir
Rovenski contains interesting geometrical topics with examples and exercises which
illustrate solution techniques in numeric and symbolic computing and visualizing the
objects. Covering many aspects of geometry and algebra, this book exposes readers to
geometrical concepts through the use of a modern computing tool — MATLAB R©.

This work is based on the author’s previous book Geometry of Curves and Surfaces
with MAPLE, but it is a greatly expanded version with new chapters and excellent
chosen themes.

The book is organized in two parts. The first part covers basic topics: graphs of func-
tions and transformations of space, classical polyhedra and non-Euclidean geometries.
The second part treats curves and surfaces from the discrete flavor of the first part to
the area of classical analysis including approximation and fitting problems.

This new edition is aimed at advanced undergraduate and postgraduate students,
and can be recommended to engineers and applied mathematicians who are interested
in mathematical modeling and visualization.

Irina Albinsky, Ph.D.
Computer Sciences and Modeling Specialist
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Preface

This text on geometry modeling is devoted to a number of central geometrical topics —
graphs of functions, transformations, (non-)Euclidean geometries, curves and surfa-
ces — and presents some elementary methods for analytical modeling and visualization
of them.

In 1872 F. Klein proposed his Erlangen Programme in which he suggested that dif-
ferent geometries can be studied by the properties of the groups of transformations act-
ing on the geometry. The following geometries are represented in this way: Euclidean,
affine, projective, inversive, spherical, and hyperbolic.

B. Riemann’s (1868) idea was to represent geometries by a metric (differential) form
in a curvilinear coordinate system. The distance between points is measured as the min-
imum length of curves (calculated using the metric form!) joining them. The intrinsic
geometry of a surface in space and Euclidean, spherical, and hyperbolic geometries are
represented in this way.

We systematically examine such powerful tools of MATLAB R© as transformations
and projections of geometric images using matrices, and then study more complex
geometrical modeling problems related to curves and surfaces. MATLAB R© is becoming
the most popular software package in engineering and mathematical education. The
symbolic capability of the latest version of MATLAB R© uses a part of the MuPAD engine
(MAPLE prior to 2008). The aim of the book is to help the reader to develop experience
in visualization of objects and computations with MATLAB R©. Throughout this book the
latest version of MATLAB R© at the time of writing is assumed — Version 7.8 Release
2009a.

This book with MATLAB is based on the author’s textbook Geometry of Curves
and Surfaces with Maple (Birkhäuser, 2000). The text has been revised throughout and
complemented with new chapters and topics on using complex numbers, quaternions,
matrices and transformations, hyperbolic geometry in the upper half-space, spline sur-
faces, etc. It contains basic theory and more practical material, examples and exercises.

ix



x Preface

The interested reader can find further theory and additional reading on geometry and
using MATLAB in the SUMS series textbooks and other books in the bibliography. The
book is illustrated with a number of figures producible using MATLAB.

Key features:

– Aimed at a broad audience of advanced undergraduate and postgraduate students,
engineers and computer scientists, instructors of applied mathematics, this book will
be an excellent classroom resource or self-study reference.

– The book demonstrates the potential of symbolic/numeric computational tools to
support the development of solutions using MATLAB.

– With a number of stimulating exercises, problems and solutions, Modeling of Curves
and Surfaces with MATLAB integrates traditional and non-Euclidean geometries,
differential and computational geometry with more current computer systems in a
practical and user-friendly format.

Outline:

Part 1 (four chapters) studies functions and their graphs, curves and surfaces in
classical and modern geometries.

Chapter 1 is devoted to functions and their graphs and transformations, and it can
serve as the introduction to MATLAB symbolic/numeric calculations, programming,
and basic graphing as needed in later chapters. Section 1.1 discusses the geometry of
(integer, real, complex, and quaternion) numbers. Sections 1.2–1.4 investigate elemen-
tary, special, and piecewise functions and how to plot their graphs in Cartesian coordi-
nates and (for some curves) in polar coordinates. Sections 1.5–1.7 study basic fitting
of curves and surface graphs. MATLAB commands are used to carry out polynomial
and spline interpolation and to present concrete applications of splines for generating
curves and surfaces. Some optimization problems including the classical method of
least squares are briefly considered.

Chapter 2 is devoted to methods and visualizing of Euclidean geometry based on
coordinate presentation of objects. The following topics are covered: vectors and ma-
trices and their use in analytic geometry (Section 2.1), rigid motions or isometries
(Section 2.2), applications of complex/quaternion numbers, geometry of a sphere in
space (Section 2.3), and polyhedra (Section 2.4). The study of polyhedra is organized in
the sequence of themes: Platonic and Archimedean solids, star-shaped and compound
polyhedra, symmetries, etc.

Chapter 3 takes a look at affine and projective transformations and their presen-
tation using matrices and homogeneous coordinates. Such transformations provide the
reader with basic mathematical means of picture manipulation. The inspiration for pro-
jective geometry is human experience and the artist’s perspective; it has gained added
significance in recent years with the advance of computer graphics.



Preface xi

Chapter 4 investigates non-Euclidean geometry based on inversive and Möbius (i.e.,
fractional linear) transformations. Non-Euclidean geometry fundamentally changes our
views about geometry and mathematics in general, and has a great importance in devel-
oping our imagination. Complex numbers play an essential role in the two-dimensional
case, while the quaternion presentation of transformations is used to operate in three-
dimensional space. We look at reflection (inversion) in a sphere (or a circle) as a tool
for proving results in Euclidean and hyperbolic geometry. We do some calculations in
the upper half-plane with the Poincaré metric and display the resulting curves (lines,
transversals, circles, equidistants, horocycles, fifth lines, etc.). Next we provide some
calculations in hyperbolic space (modeled in the upper half-space) and display the re-
sulting figures.

Part 2 (five chapters) studies differential-geometric models of curves and surfaces
and approximation/interpolation of curves and surfaces. The methods (matrices and
transformations, complex numbers and quaternions, interpolating and approximating)
of Part 1 are also applicable to these specific constructions.

Chapter 5 discusses examples and constructions with curves. Key concepts are il-
lustrated by named curves of historical and scientific significance. We define a regular
curve and study cycloidal and other remarkable parameterized and implicitly given
plane curves. We employ Euler’s equations (calculus of variations) to study elastica.
Next we discuss the basic MATLAB capabilities for plotting space curves using various
coordinate systems and (parallel and perspective) projections, and present the curves
with shadows on planar, cylindrical or spherical displays. We also study fractal curves
(Peano, Koch, Sierpiński, Menger) defined recursively.

Chapter 6 is devoted to the differential geometry of curves. It studies tangents and
normals at regular points, arc length, singular points, mathematical embroidery (curves
appear as envelopes of families of lines or circles), the curvature and the torsion of
a curve, evolutes, caustics and parallel curves (equidistants), and other constructions
with curves. Several programs for detecting singular points on curves, deriving char-
acteristics of space curves, plotting the moving Frenet frame field and the osculating
circle, and reconstructing a plane curve from its curvature function are developed.

In Chapter 7 we study surfaces in space: we define a parametric surface, exam-
ine a regular surface, and produce examples of surfaces using MATLAB commands.
We calculate and plot tangent planes and normal vectors of a surface, the osculating
paraboloid, and the Gaussian and mean curvatures, solve conditional extremum prob-
lems, plot geodesics, study surfaces with singularities, and provide a short program for
investigating the differential geometry of a surface.

Chapter 8 studies three very important and commonly occurring classes of surfaces
(algebraic surfaces, surfaces of revolution, and ruled surfaces) and considers several
interesting constructions with surfaces: translation, parallel, pedal, and podoid surfaces,
tubes, the envelope of a family of surfaces, etc.



xii Preface

Chapter 9 studies approximation and interpolation of curves and surfaces. Sections
9.1 and 9.2 study Bézier curves (an interesting application of them is to font design)
and discuss spline curves and surfaces. Section 9.3 applies the Hermite interpolation
technique to construct piecewise curves. The (geometrical) β -spline curves (studied in
Section 9.4) are based on the geometric Ck-continuity of piecewise curves. The (classi-
cal) B-splines appear as a particular case when the shape parameters are β1 = 1, β2 = 0.
Sections 9.5 and 9.6 extend these ideas to surfaces.

Although many of the chapters can be studied independently, the concepts intro-
duced in earlier chapters are often the underlying tools used in subsequent chapters.

The MATLAB examples and exercises often contain short bits of code that the reader
can apply or modify. In addition, we developed several MATLAB M-files to imple-
ment some solutions and the graphical displays that may be useful in various cases. In
some cases, readers can write larger codes using these M-files. The Appendix collects
these M-files for modeling curves, surfaces and polyhedra in Euclidean and hyperbolic
worlds. Some of them can be downloaded from the Web at http://www.mathworks.com/
matlabcentral/fileexchange/.

Additional programs and remarks will be posted as they are developed on the au-
thor’s Web page http://math.haifa.ac.il/ROVENSKI/rovenski.html.

Readers are encouraged to send comments and suggestions to the author at the e-
mail address rovenski@math.haifa.ac.il.

The materials of the book were used in courses given by the author for the students
of Haifa University.

Acknowledgments. The author would like to thank Professor David Blanc (University
of Haifa) and Professor Robert Wolak (Mathematical Institute of Krakov) for their
helpful corrections concerning the manuscript, and Ann Kostant (Executive Editor) for
support in the publishing process. Finally, I wish to thank the entire staff at Springer,
Brian Treadway at Outer Sum, and the anonymous reviewers whose input significantly
improved the text.

Mathematics Department Vladimir Rovenski
University of Haifa
June 2009
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1

Functions and Graphs

Section 1.1 discusses the geometry of (integer, real, complex, and quaternion) numbers.
In Section 1.2 we plot graphs of some elementary, special, and piecewise functions, and
investigate functions using derivatives. In Section 1.3 we study piecewise functions of
one variable that are defined by several formulae for different values (intervals) of that
variable. Section 1.4 is an excursion into remarkable curves (graphs) in polar coor-
dinates. In Sections 1.5 and 1.6 we use several MATLAB R© functions that implement
various interpolation and approximation algorithms. Chapter 1 can be considered as
the introduction to MATLAB R© symbolic/numeric calculations, programming, and ba-
sic graphing as needed in later chapters.

1.1 Numbers

When MATLAB starts, its desktop opens with the Menu window, the Command window
(where the special >> prompt appears), the Workspace window, the Command History
window, and the Current Directory window.

Throughout this book we usually type/edit the code in the Editor window, then place
it (copy–paste) in the Command window, and execute. To save space, we present code
and MATLAB answers in compact form (not identical to the view on the display).

MATLAB can be used in two distinct modes (see Example, p. 4):

– it offers immediate execution of statements in the Command window, or
– it also offers programming by means of script and function M-files.

A script M-file collects a sequence of commands that constitute a program. It is
executed when one enters the name of the script M-file.

V. Rovenski, Modeling of Curves and Surfaces with MATLAB R© , 3
Springer Undergraduate Texts in Mathematics and Technology 7, DOI 10.1007/978-0-387-71278-9 1,
c© Springer Science+Business Media, LLC 2010



4 1 Functions and Graphs

We type % to designate a group of words (in a line) as a comment. The M-files
created by ourselves we type with a bold font. The reader should place them in the
MATLAB Current Directory, say D:/work; one may choose it manually or type in the
Command window

cd d : / work

1.1.1 Integers, rationals, and reals

Let Z = {0,±1,±2, . . .} be integers, and N = {1,2,3, . . .} ⊂ Z be natural numbers.
The following table contains some scalar and array arithmetic in MATLAB:

N Symbol Operation MATLAB
1 + and − addition/subtraction a + b - c
2 ∗ and .∗ multiplication a * b
3 / and ./ right division a / b
4 \ and .\ left division b\\\\ a
5 ˆ and .ˆ exponentiation aˆ b

Example. Type 2+3 after the >> prompt, followed by Enter (i.e., press the Enter
key). Next try the following:

2*3, 4ˆ2, 1/2, 2\\\\1

Try the commands

x = [1, 2, 3]
x.ˆ2 % a dot in front of *, /, ˆ is used when we work with arrays.
ans = 1 4 9 % next we present MATLAB answers in a compact form.

Compound numbers of the form n2 are called squares for obvious reasons. The
triangular numbers are tn = 1

2n(n +1), etc.
The MATLAB command for allows a statement or a group of statements to be re-

peated. One may type two lines in the Command window:

for n = 1 : 10; x(n) = nˆ2; end; % squares
x % Answer: x = 1 4 9 16 25 36 49 64 81 100

Alternatively, we write a program my squares.m with one line above in the file edit
window. For practice, create an M-file my triangles.m:

for n = 1 : 10; t(n) = n*(n + 1)/2; end; % triangle numbers

To run this script (after saving my triangles.m in the Current Directory), go to the
MATLAB Command window and enter two commands:
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my triangles;
t % Answer: t = 1 3 6 10 15 21 28 36 45 55

(MATLAB executes the instructions in the order in which the commands are stored in
the my triangles.m file).

If i, j ∈ N, j �= 0, and i = k j for some integer k, then we say that j divides i and that j
is a divisor of i. We write j | i. From the Euclidean algorithm for integers there follows:
if i, j are integers that have a greatest common divisor d, then there exist integers s, t
such that si+ t j = d.

Two integers i, j are said to be congruent modulo m if m divides i− j. In that case
we shall write i ≡ j (mod m). For example,

mod(8, 3) % 8 ≡ 2 (mod 3). Answer: 2

Modular arithmetic. A set of all “remainders” of any integer divided by n is denoted
by Zn = {0, . . . ,n − 1}, where n ∈ Z. The operations of addition and multiplication
modulo n, ⊕n, ⊗n: Zn ×Zn → Zn, are defined naturally: a⊕n b = a +b (mod n), a⊗n

b = a ·b (mod n).

For example, 5⊕7 6 = 4, 0⊕n (−1) = n−1, and 3⊗6 7 = 4, 3⊗6 4 = 0.

mod(5 + 6, 7), mod(3 * 7, 6), mod(3 * 4, 6) % Answer: 4, 3 and 0

Note that (Zn,⊕) is a cyclic group Cn (see the definition in Section 2.4).

Definition 1.1. A skew field is a triple (K,+, ·), where
(1) (K,+) is an abelian group (with identity denoted as “0”),
(2) (K \{0}, ·) is a group,
(3) multiplication · is left and right distributive over +.
A skew field in which multiplication is commutative is called a field.

Rational numbers Q form a field. If p is a prime, then Zp is a field.

The fundamental theorem of arithmetic reads that

Every integer n ≥ 2 can be factorized into a product of primes in only one way
apart from the order of the factors.

For example, 2009 = 72 ·41, 2010 = 2 ·3 ·5 ·67,

factor(2009), factor(2010) % Answer: 7 7 41 and 2 3 5 67

If a,b are members of a set A then (instead of a = b) we write a ∼ b and say that this
is an equivalence relation if it satisfies the following three properties: (1) reflexivity:
always a ∼ a; (2) symmetry: if a ∼ b then b ∼ a; (3) transitivity: if a ∼ b and b ∼ c
then a ∼ c.
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The notation n
m (n,m ∈ Z) is a representation of an equivalence class because kn

km is
also the same number.

A continued fraction is an expression of the form a0 + 1
a1+ 1

a2 + ...
.

To write an ordinary fraction as a continued fraction we need to use the Euclidean
algorithm. For example, 43/5 = 8 + 1

1+ 2
3

= 8 + 1
1+ 1

1+1/2
.

We will use If-Else-End structures. The simplest form of this is:

if expression
commands evaluated if expression is True

else % when there are three or more alternatives, elseif is used
commands evaluated if expression is False

end

Example. Real numbers can be presented in MATLAB in decimal form, and also in
scientific notation, e.g.,

1.2345, -.001 % decimal form
1.2345e3 % scientific notation: 1.2345×103 = 1234.5

Define the function M-file for future use:

function f = fract(n)
syms a;
if n > 0; f = a + 1/fract(n - 1); else f = a; % recursion

end;

The number
√

2 can be written as the infinite continued fraction
√

2 = 1 + 1
2+ 1

2+ ···
.

To show this, let the right-hand side be x. Then 1+x = 2+ 1
1+x and hence x =

√
2. Let

us call the program fract.m:

q = fract(5) % symbolic expression
q = a + 1/(a + 1/(a + 1/(a + 1/(a + 1/a) ) ) ) % Answer.
vpa(subs(q, ’a’, 2), 5) % a = 2. Answer: 2.4143 (compare with

√
2)

The function vpa (variable precision arithmetic) converts the expression into a decimal
number of arbitrary precision.

Real numbers R form a field (with respect to addition and multiplication). They
include not only the rational numbers but also the irrational numbers, say

√
5 or 3

√
2,

which cannot be expressed as a ratio of integers. The irrational numbers include the
algebraic numbers (i.e., roots of nonzero polynomials with integer coefficients) and
the transcendental numbers (such as π ≈ 3.14 and e ≈ 2.7, Euler’s constant), which by
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definition are not roots of any polynomials with integer coefficients. However, actually
verifying that any particular number is transcendental seems very hard.

Predefined MATLAB constant values are

pi — the number π = 3.14159 . . . , Inf — infinity, etc.

Examples. π and the golden section τ .

1. The number π is the ratio of the length of the circumference of a circle to its diameter.
We inscribe a polygon ABC . . . whose vertices lie on a circle of unit diameter and
circumscribe a polygon PQR . . . whose edges touch the circle. We would expect the
perimeter of the circle to lie between those of the two polygons. Now if we let the
number of vertices of the polygons increase to infinity and the length of the edges
decrease to zero, their perimeters run (increase or decrease, respectively) to π. The
length of an edge of a regular inscribed octagon is 1

2

√
2−√

2 and the perimeter is

4
√

2−√
2. Similarly the lengths of an edge of a regular inscribed 16-gon, 32-gon,

etc., are 8
√

2−
√

2 +
√

2, 16

√

2−
√

2 +
√

2 +
√

2, . . . . Repeating ad infinitum we

get the following limit: 2n

√

2−
√

2 +
√

2 + · · · +
√

2
︸ ︷︷ ︸

n roots

→ π.

We prepare the M-file

function g = g1(n)
if n > 0; g = sqrt(2 + g1(n - 1)); else g = 0; % recursion

end;

Then we calculate 10 terms (that approximate π):

for n = 1 : 10
f = vpa(2ˆn*sqrt(2 - g1(n - 1)), 9);

end
disp ( [n f] ) % Answer: [ 10, 3.14159142]

2. The golden section τ = 1
2 +

√
5

2 satisfies the equation τ = 1 + 1
τ (verify!). Show

that τ can be written as the infinite continued fraction τ = 1 + 1
1+ 1

1+ ···
. The successive

approximations of τ are

1 + 1
1 = 2

1 , 1 + 1
1+1/1 = 3

2 , 1 +1/(1 + 1
1+1/1) = 5

3 , . . . ,
fn+1

fn
,

where fn = fn−1 + fn−2, f0 = f1 = 1, are the Fibonacci numbers.

q = fract(10); vpa(subs(q, ’a’, 1), 6) % compare with τ ≈ 1.6180.
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The following table lists some commonly used (elementary) functions, where vari-
ables x and y can be numbers, vectors, or matrices:

Function MATLAB Function MATLAB
cosine cos(x) sine sin(x)

arccosine acos(x) arcsine asin(x)
tangent tan(x) arctangent atan(x)

signum function sign(x) absolute value abs(x)
maximum value max(x) minimum value min(x)
natural logarithm log(x) common logarithm log10(x)

exponential exp(x) square root sqrt(x)
remainder after division rem(x) round towards ∞ ceil(x)
round to nearest integer round(x) round towards −∞ floor(x)

In addition, many other specialized functions are available. There are also functions
of linear algebra that find information about matrices, such as eig(A), which finds the
eigenvalues of a matrix A.

Typing help elfun or help specfun calls up full lists of elementary and special func-
tions, respectively.

MATLAB basically has two kinds of functions: numerical functions and symbolic
expressions of functions. A numerical function is really a short program that oper-
ates on numbers to produce numbers. A symbolic expression of a function operates
on symbolic variables to produce symbolic results. These symbolic expressions can be
manipulated with operations like differentiation and integration.

For each simplification procedure we look in turn (see the table in what follows) at
its effect on trigonometric functions, the exponential function and logarithms, powers,
radical expressions, and other functions.

command trig exp and logs powers

expand cos2x → 2cos2 x−1 lg(2x) → lg2 + lgx (2x)y → 2yxy

combine 2cos2 x → cos(2x)+1 2lg3 → lg9
√

x−1
√

x → √
x2 − x

simplify tanx → sinx/cosx exey → ex+y xyxz → xy+z

convert cosx → 1
2(eix + e−ix) eix ↔ cosx + isinx

Example. Symbolic tools. Declare x,y as symbolic variables:

syms x y;

In expand, the factors are first multiplied out, and secondly similar terms are col-
lected.

expand((x + y)ˆ 3) % Answer: x3 +3x2y +3xy2 + y3
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The procedure factor is “inverse” to expand. It computes the factorization over dif-
ferent domains in irreducible factors.

factor(2009) % Answer: 7, 7, 41. (So, 2009 = 72 ·41).

The procedure sort is used to rearrange terms, to sort terms in some suitable order-
ing.

sort([ ’a’ ’c’ ’e’ ’b’ ’d’ ]) % Answer: [ a b c d e ].

The procedure collect is used to group coefficients of like terms in a polynomial.

collect((exp(x) + x)*(x + 2)) % Answer: 2exp(x)+(exp(x)+2)x + x2.

The simple function returns the shortest result by independently applying simplify,
collect, factor, and other simplification functions to an expression and keeping track of
the lengths of the results.

1.1.2 Complex numbers

The complex numbers C arise by denoting the point (or pair of reals) (x,y) by a new
symbol x + yi, and then introducing simple algebraic rules for the numbers z = x + yi
where i2 = −1. For example,

z = complex(2, 3) % Answer: z = 2 +3 i

Addition and multiplication in terms of pairs are given as

(a,b)+(c,d) = (a + c, b +d), (a,b) · (c,d) = (ac−bd, ad +bc). (1.1)

Note that from definition (1.1) follows i2 = (0 +1i)(0+1i) = −1 +0 = −1.

Complex numbers C form a field with respect to the addition and multiplication
defined above (verify!).

Every nonzero complex number has a multiplicative inverse, namely, z−1 = x−yi
x2+y2 .

Hence we define division by z/w = zw−1. The complex conjugate z̄ of z is given by
z̄ = x−yi, where z = x + iy, and geometrically, z and z̄ are mirror images of each other
in the real axis. We call Rez = x the real part, and Im z = y the imaginary part of
z = x + yi. Hence Rez = (z + z̄)/2, Im z = (z− z̄)/2i. One may show that

z +w = z̄+ w̄, zw = z̄ w̄, z z̄ = x2 + y2.

The modulus of z is defined by |z| =
√

x2 + y2. Given z �= 0, the modulus r = |z| is the
length of the line segment from 0 to z.
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The distance between z1 and z2 is defined as |z2 − z1|. Multiplication is distance-
preserving: |z1z2| = |z1| · |z2|, and addition satisfies the triangle inequality: |z1 + z2| ≤
|z1|+ |z2|. Repeating the last inequality we obtain

|z1 + · · ·+ zn| ≤ |z1|+ · · ·+ |zn| for all n > 2.

The argument argz of z is the angle θ between the positive real axis and the segment
from 0 to z measured in the counterclockwise direction. Then (r, θ ) are the polar co-
ordinates of z, and

x = |z|cos θ , y = |z|sin θ where θ = argz.

It is convenient to write cos θ +(sin θ ) i = eθ i. The polar form of the product zw in
terms of the polar forms of z = r1 eθ1 i and w = r2 eθ2 i is zw = (r1r2)e(θ1+θ2) i. From this
follows de Moivre’s formula:

(cos θ + sin θ i)n = cos(nθ )+ sin(nθ ) i ∀n ∈ N.

The following table lists some operations with complex numbers:

N Object Equation MATLAB

1 modulus of z = a + ib |z| = √
a2 +b2 abs(z)

2 real part of z = a + ib Re(z) = a real(z)
3 imaginary part of z = a + ib Im(z) = b imag(z)
4 complex conjugate of z = a + ib conj(z) = a− ib conj(z)
5 exp function of z1 = ib exp(z) = cos(b)+ isin(b) exp(i*b)

The fundamental theorem of algebra. Let p(z) = a0 + a1z + · · · + anzn be a given
polynomial, where n ≥ 1 and an �= 0. Then there are z1, . . . ,zn ∈ C such that, for all z,
p(z) = an(z− z1) · · ·(z− zn).

The problem of finding (exactly) the zeros of a given polynomial of degree n > 4 is
extremely difficult.

From the fundamental theorem of algebra there follows the claim:
Let p and q be polynomials of degree at most n. If p(z) = q(z) at n+1 distinct points

then p(z) = q(z) for all z.

Complex numbers provide an easy way to describe lines and circles. A (straight)
line l in the plane is the set of points that are equidistant from two distinct points u and
v. Hence, the equation of a line l is

|z−u|2 = |z− v|2 ⇐⇒ ā z +a z̄+b = 0, where b ∈ R. (1.2)

syms u v z % Find a,b
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collect(expand((z - u)*conj(z - u) - (z - v)*conj(z - v)), [z, conj(z)])
(conj(v) - conj(u))*z + (v - u)*conj(z) + u*conj(u) - v*conj(v) % Answer

Hence, a = v−u, b = uū− vv̄.
The circle C(a,r) with center a and radius r has equation |z−a| = r, or

(z−a)(z−a) = r2 ⇐⇒ z z̄− ā z−a z̄+ |a|2 − r2 = 0. (1.3)

A regular n-gon is a polygon whose n vertices are evenly spaced around a circle, and
the angle at a vertex of a regular n-gon is (n−2)π/n.

Examples.

1. The angle function can be expressed as arg(z) = arctan(Im(z),Re(z)).

z = 1 + i*3;
t = atan2(imag(z), real(z)) % Answer: θ = 1.25, or use imag(log(z))

2. Find the roots of polynomials.

syms b c z;
solve(zˆ2 + b*z + c) % 2nd degree polynomial
solve(zˆ3 + b*z + c), eval(solve(zˆ3 + 3*z + 1)) % 3rd degree polynomial

% Answer: −0.3222, 0.1611−1.7544i, 0.1611 +1.7544i
solve(zˆ4 + b*z + c), eval(solve(zˆ4 + z + 1)) % 4th degree polynomial

% Answer: −.7271 + .43i,−.7271− .43i, .7271 + .9341i, .7271− .9341i

3. The function f (z) = az + b with a �= 0 preserves the ratio of 3 points, [z1,z2,z3] =
z1−z3
z1−z2

. Namely, [z1,z2,z3] = [ f (z1), f (z2), f (z3)] for all zi ∈ C∪{∞}. To show this, de-
fine the functions rat3 and f (z)

rat3 = @(z1, z2, z3) (z1 - z3)/(z1 - z2) % using @ to create a function
syms a b; f = @(z) a*z + b;

Then verify the property

syms z1 z2 z3;
simplify(rat3(f(z1), f(z2), f(z3))) % Answer: (z1 − z3)/(z1 − z2)

4. Given z1 �= z2 and w1 �= w2 in C, there is a function f (z) = az + b with a �= 0 such
that wi = f (zi) (i = 1,2). To prove this, we solve the equation [z1,z2,z] = [w1,w2, f (z)].

syms z1 z2 z3 w1 w2 w3 z w;
f = solve(rat3(z1, z2, z) - rat3(w1, w2, w), w)

f = (zw1 − zw2 −w1z2 + z1w2)/(z1 − z2) % Answer
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5. The set of unimodular complex numbers S1 = {z ∈ C : |z| = 1} (the unit circle) is a
group with respect to multiplication.

6. The nth roots of 1 are the distinct complex numbers 1,ω ,ω2, . . . ,ωn−1, where ω =
e2πi/n. These points are equally spaced around the circle |z| = 1 starting at 1, and they
form a group with respect to multiplication.

n = 7; % define n
k = 1 : n; Z = exp(2*pi*k*i/n) % n points cos(2πi k

n)+ isin(2πi k
n).

a = 2; b = 4; Z(a)*Z(b) - Z(a + b) % Answer: 0 (define a,b ∈ Z).

7. Let w = reϕ i, z′ = r
1
n ei ϕ

n . The solutions of zn = w are z′, z′ω , . . . ,z′ωn−1.

n = 7; w = 1 + i; % define n and w
syms z; solve(zˆn - w) % Answer: n roots of zn −w.

1.1.3 Quaternions

Let D = {1, i, j,k} be the canonical basis for R
4 over f = R. Define an operation ·

(multiplication) on D by the table

· i j k
i −1 k − j
j −k −1 i
k j −i −1

and extend this operation to R
4 by linearity. The elements of R

4, together with this
operation, are called the real quaternions. They were first defined by Hamilton in 1844
as a generalization of the field C, and earlier studied by Gauss, who did not publish
his results. Quaternions were generalized by Clifford and used in the study of non-Eu-
clidean spaces. Lately, they have also been used in computer graphics and in signal
analysis. Define the quaternionic conjugate q̄ of q = q0 + q1i + q2 j + q3k to be q̄ =
q0 −q1i−q2 j −q3k. The map q → q̄ can be thought of as reflection in the real line R.
For any quaternions q, p, the quaternionic conjugate satisfies

q + p = q̄+ p̄, q · p = p̄ · q̄.

As usual let |q| =
√

q2
0 +q2

1 +q2
2 +q2

3 be the norm of q. Since quaternionic multi-
plication is associative and real numbers commute with quaternions, we can prove
Hamilton’s law of the moduli:

|q · p|2 = (q · p)(q · p) = (q · p)( p̄ · q̄) = q(p · p̄)q̄ = |p|2q · q̄ = |q|2|p|2.
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If q �= 0 then q has an inverse q−1 = q̄/|q|2. We call q a unit quaternion if |q| = 1. The
unit quaternions lie on the unit 3-sphere, S3 ⊂ R

4, and form a group under quaternion
multiplication.

If q = q0 +q1i+q2 j+q3k then q0 is the real (or temporal) part of q and q1i+q2 j+
q3k is the pure (or spatial) part. The decomposition q = (q + q̄)/2 +(q− q̄)/2 exhibits
a quaternion as the sum of its two parts.

Just as we think of a complex number as a pair of reals, we can think of a quaternion
q = q0 + q1i + q2 j + q3k as a pair of complex numbers. So, q = z + w j, where z =
q0 +q1i, w = q2 +q3i.

Multiplication of quaternions in terms of pairs is given as

(z,w) · (z1,w1) = (zz1 −w1w, w1 z +wz1).

(Verify using jw1 = w1 j and jz1 = z1 j).

A pure quaternion can be thought of as an element (vector) of R
3 and has the usual

scalar and vector products; see Section 2.1. Two pure quaternions p, q have an inter-
esting formula for their product:

p ·q = −(p,q)+p×q.

The following table lists some operations with quaternions:

N Object Equation MATLAB

1 modulus of q |q| =
√

∑3
i=0 q2

i quatmod(q)

2 norm of q norm(q) = ∑3
i=0 q2

i quatnorm(q)
3 normalized q normal(q) = q/|q| quatnormalize(q)
4 inverse of q q−1 quatinv(q)
5 q divide by p q/p quatdivide(q, p)
6 q multiply by p q p quatmultiply(q, p)
7 conjugate of q conj(q) = q0 − iq1 − j q2 − k q3 quatconj(q)

The following commands are also implemented in MATLAB:

n = quatrotate(q, v) rotates a vector v by a quaternion q (see Section 2.2),
q = euler2quat(ea) calculates the quaternion q for Euler’s angles ea,
ea = quat2euler(q) is the inverse to the above.

Two quaternions p, q are said to be similar if there is a nonzero quaternion u such
that u−1 pu = q; this is written as p ∼ q.

One may verify that ∼ is an equivalence relation on the quaternions. Two quater-
nions p = p0 + p1i + p2 j + p3k, q = q0 + q1i + q2 j + q3k are similar if and only if
p0 = q0 and p2

1 + p2
2 + p2

3 = q2
1 +q2

2 +q2
3; see Exercises 11, 12, p. 69.



14 1 Functions and Graphs

The fundamental theorem of algebra. Let ai (0 ≤ i ≤ n) be quaternions, n ≥ 1 and
an �= 0. Then the polynomial equation a0 +a1x+ · · ·+anxn = 0 has at least one solution
in H.

We shall pay special attention to the space H0 of pure quaternions which we identify
with R

3. If H ∈ S2 (i.e., a pure unit quaternion), then (H,H) = 1 and so H ·H = −1.
Just as for complex numbers, a quaternion q can be written in a polar form:

q = r(cosθ + sinθ H) where r = |q|, H ·H = −1.

The angle θ is a generalization of the argument of a complex number. A quaternion is
real if and only if θ is 0 or π (verify!).

A non-real quaternion determines a copy of the complex numbers Cq (the two-
dimensional subspace of R

4 spanned by 1,H where H · H = −1). If q = r(cosθ +
H sinθ ) then Cq is isomorphic to C by the correspondence x + yi ↔ x +Hy.

Examples.

1. Let us find the conjugate of q = [q0 q1 q2 q3].

syms q0 q1 q2 q3 real; % q0,q1,q2,q3 are real
cq = quatconj([q0 q1 q2 q3]) % Answer: cq = [q0, −q1, −q2, −q3]

Note that conj([q0 q1 q2 q3]) gives a different result [q0,q1,q2,q3].

2. The commutator of two quaternions is [q, p] = q · p− p ·q.
Show that [q, p] = −[q, p] and that [q, p] is a pure quaternion. Deduce that q and p

commute if and only if either one is real or if p ∈ Cq.

Solution. Use the program

syms q0 q1 q2 q3 p0 p1 p2 p3 real;
q = [ q0 q1 q2 q3 ]; p = [ p0 p1 p2 p3 ]; % quaternions q, p
F1 = quatconj ( quatmultiply(q, p) - quatmultiply(p, q) ) % [q, p]
F2 = - ( quatmultiply(q, p) - quatmultiply(p, q) ) % −[q, p]
F1 - F2 % obtain [0, 0, 0, 0].

1.2 Elementary and Special Functions

MATLAB provides three ways to define functions: (a) using @ to create an anonymous
function, (b) using inline, (c) or using an M-file.

Example. Define a function f (x) by a symbolic expression.
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syms x a % symbolic variables
f = xˆ2 + 3*x -a

Evaluate the function f at x = 2.

subs(f, x, 2) % Answer: 10−a.

Another way to represent a function at the command line is by creating an anonymous
function from a string expression.

g = @(x) xˆ2 + 3*x - a;

One may then evaluate g at 2.0 as

g(2.0) % Answer: 10−a.

To solve the equation f (x) = 0, we use the solve command.

solve(f)

One can differentiate and integrate a function f (x) using the commands

diff(f), diff(f, 2), diff(f, a), int(f), int(f, a), int(f, 0, 2), etc.

The command taylortool computes Taylor’s polynomial of arbitrary degree for a given
function f .

taylortool(’x*cos(x)’) % A Taylor series (and a graph) calculator.

1.2.1 Plotting in two dimensions

This section is a short introduction to MATLAB two-dimensional plots. One can type

help graphics for general graphics commands,
help graph2d for two-dimensional graphics commands,
demo matlab graphics for more examples.

The simplest geometric object is a point in the plane. The location of a point in Carte-
sian coordinates is specified by a pair of numbers called the x- and y-coordinates of
the point and is written as (x,y). Of course, in the space R

3, the vectors and points
(of attachment) have three components. The following commands are used to plot the
points P = (1,2), Q = (3,−4):

plot(1, 2, ’∗’); plot(3, -4, ’o’);

The “*” is used to mark the point that we are plotting. Other authorized symbols for
point displays are presented in the following table:
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Line Color Symbol
solid - red r diamond d ♦

dashed - - green g circle ◦
dotted : blue b x-mark ×

dashdot -. white w star ∗
no line none yellow y plus +

cyan c square s �
magenta m point .

Vectors in space are directed line segments, used to represent velocity, acceleration,
forces, etc. A vector in the plane is given in terms of 2 components, as v = [a,b]. The
norm of the vector is |v| =

√
a2 +b2. The magnitude of a vector v attached to a point

P0 = (x0,y0) can be computed by the command norm:

v = [1 3]; norm(v) % Answer: 3.1623 (the norm of a vector v).
P = [2 5]; arrow(P, v) % vector v attached at P (M-file arrow.m, p. 70)

Once you have created a figure, there are two basic ways to manipulate it:
(a) by typing MATLAB commands in the Command window, such as the commands

title and axis equal, etc., or
(b) with the mouse, using the menus and icons in the figure window itself.

Examples.

1. The dot product can be obtained only by the multiplication of a row on the left and a
column of the same length on the right. The row vector u is turned into a column vector
with the command u′.

u = [1 5 3 7]; v = [2 4 6 8]
u*v’; v’*u; u’*v
u*v % we cannot multiply two rows
u*u’; norm(u)ˆ2 % compare!

Observe that the length of a vector is equal to its dot product with itself.

2. View the right angles of a rectangle using the option axis equal.

x1 = [0 12 16 4 0]; y1 = [0 16 13 -3 0];
plot(x1, y1); axis equal; % rectangle

The same option sometimes does not allow one to see the graph.

x = linspace(0, 10*pi, 2000);
plot(x, sin(x)); axis equal;
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There are many ways to use plot. For example, we can change the style and color
of the line. Using plot(t, y, ’:’) gives a dotted line. To get a green dashdot line, we type
plot(t, x, ’g-.’). The plot command also accepts matrix arguments. If X and Y are both m
by n, plot(X ,Y ) superimposes the plots created by corresponding columns of X and Y .

One can use the command help plot for detailed information.

The following table lists some elementary geometric objects:

N Object Equation MATLAB Commands
1a point P(a,b) P = [2 6]; plot(P)
1b complex number z = a + ib z = 2 + 3*i; plot(z)

2a line Ax +By +C = 0 plot([x0, x1], [y0, y1])
2b plot([x0, x1], [y0, y1], [z0, z1])

3 segment [P,Q] x=[Px Qx]; y=[Py Qy]; plot(x,y)

4 vector P = [2 5]; v = [1 3]; arrow(P, v)

5 polygonal [P1, . . .Pn] x =[x1, ... xn]; y = [y1, ... yn]
line z = [z1, ... zn]; plot(x, y, z)

6 triangle [P1,P2,P3] x = [x1,x2,x3, x1]; y = [y1,y2,y3, y1]
plot(x, y)

Example. A line in the plane is represented as a linear equation of the form Ax +
By +C = 0, where A2 + B2 �= 0; A, B, and C are called the coefficients of the line and
determine its position and direction. One can plot a line l(P;a) in the plane through the
point P = (x0,y0) and parallel to the vector a = [a1,a2] using the command

plot([x0, x0 + a1], [y0, y0 + a2]) % define x0,y0,a1,a2.

A part of a line that has definite starting and ending points is called a line segment and
is represented in MATLAB as

x = [x0, x1]; y = [y0, y1];
plot(x, y);

where P =(x0,y0) and Q =(x1,y1) are the coordinates of the starting and ending points,
respectively, of the line segment.

A very powerful feature of MATLAB is its ability to render an animation. For exam-
ple, suppose that we want to visualize the rotation of a point. The necessary steps to
implement this objective are:

1. Generate a two-dimensional plot of the point at arbitrary time.
2. Use the for ... and pause commands to display consecutively the different frames

obtained in step 1.

Example. The command comet(x) produces an animated, comet-like, x–y plot of a
graph. For example,
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x = 0 : 0.001 : 1; comet(x, sqrt(1 - x.ˆ2), 0);

For more complicated animations, a typical program to use is

X = 0 : 0.01 : 1;
for n = 0 : 50;
plot(X, sin(n*pi/5)*sin(pi*X)), axis([0, 1, -2, 2]);
pause(0.1); % define the value of pause
end;

The axis command here ensures that each frame of the movie is drawn with the same
coordinate axes.

The following table lists some graphing commands:

Command Purpose

plot draw two-dimensional graphs
xlabel, ylabel, zlabel define axis labels

title define graph title axis set various axis
parameters (min, max, etc.)

legend show labels for plot lines
shg bring graphics window to foreground
text place text at selected locations
grid turns grid lines on or off

mesh draw surface using colored lines
surf draw surface using colored patches
hold fix the graph limits between successive plots
view change surface viewing position

drawnow empty graphics buffer immediately
zoom magnify graph or surface plot

clf clear graphics window
contour draw contour plot
ginput read coordinates interactively

1.2.2 Plotting graphs

The graph of a real function y = f (x) (x ∈ I) is the set in the plane R
2 defined by

G f = {(x,y) ∈ R
2 : y = f (x), x ∈ I }.

The graph of f (x) of class C1 (i.e., the derivative f ′(x) exists and is continuous) is
smooth: the tangent line y = f (x0)+ f ′(x0)(x− x0) (see Section 6.1) depends continu-
ously on x0.
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Graphs are visualized using the plot command. The command ezplot is used primar-
ily to graph functions that are defined symbolically. Labels and a title can be attached
to the graph with additional commands. Moreover, we can use plot(x,y,string), where
string combines up to three elements that control the color, marker, and line style. The
reader can try funtool — a visual function calculator that manipulates functions of one
variable.

In stem types of graphs, vertical lines terminating with a symbol such as a circle
are drawn from the zero value point on the y-axis to the values of the elements in the
vector y. The function stairs(x, y) creates a step graph of your data at the level specified
by the elements of y.

Multiple (x,y) pair arguments create multiple graphs with a single call to plot. The
command hold on is used to plot several graphs on the same figure; the hold off turns
off the hold on feature. One can place text over a figure (and names of graphs) using
the command text.

Examples.

1. One can graph a numerical function in this way:

x = linspace(0, pi, 51); f = sin(x);
plot(x, f, ’r’) % f = sinx in red

Alternatively, we may use the symbolic method:

ezplot(’sin(x)’, [0, 2*pi]);
ezplot(’tan(x)’); axis ([-pi, pi, -10, 10]);

To graph quickly the second derivative of f , we add the line

f = ’sin(x)’;
g = diff(f, 2); ezplot(g, [0, 2*pi])

2. Plot the polygon (stem and stairs) passing through 20 points that lie on the parabola
y = x2: {xi = −2 + 4

19 i, 0 ≤ i ≤ 19}.

x = -2 : 0.4 : 2;
stem(x, x.ˆ2, ’.’); stairs(x, x.ˆ2) % x.2, not x2; Figure 1.1(c)

3. MATLAB’s plot command can be used for simple “join-the-dots” x–y plots. Let the
function y = f (x) be given by the table of values (xi,yi), where i = 1,2, . . . ,n. Suppose
that we have measured the air temperature (Celsius) in the morning during 10 days in
April:

Date: 12 13 14 15 16 17 18 19 20 21
Temp.: 15 17 17.5 19 20 19.5 18 17 17 19

We form arrays with x- and y-coordinates of the given points:
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Date = [12 : 21]; TempC = [15 17 17.5 19 20 19.5 18 17 17 19];

We can plot the points, using the command plot with the option ’o’:

plot(Date, TempC, ’o’);

We plot the polygon through these points using the command plot, labeling the coordi-
nate axes, Figure 1.1(a):

plot(Date, TempC); title(’Graph’); xlabel(’Date’); ylabel(’TempC’);

Now we plot the diagrams of vertical or horizontal segments, Figure 1.1(b).

stem(Date, TempC, ’.’); stairs(Date, TempC, ’-’); bar(Date, TempC)

The temperature is transformed from Celsius to Fahrenheit by the formula F = F(C).
Preliminarily we fix the number of significant digits to 4.

format bank; TempF = 9/5*TempC + 32

[59.00, 62.60, 63.50, 66.20, 68.00, 67.10, 64.40, 62.60, 62.60, 64.40]

Now we calculate TempF by a different method:

syms t; F = 9/5*t + 32; TempF = subs(F, t, TempC);

Using loglog instead of plot causes the axes to be scaled logarithmically. Related func-
tions are semilogx and semilogy, for which only the x- or y-axis, respectively, is loga-
rithmically scaled.

semilogy(Date, TempC)

4. We plot several curves on the same graph with the same color (but different types of
lines):

x = -2 : 0.4 : 2;
hold on; plot(sin(x)); plot(cos(x), ’- -’); plot(tan(x), ’:’);

or

syms x; f = sin(x);
hold on; ezplot(f, [0,2*pi]); ezplot(diff(f), [0,2*pi]); ezplot(diff(f,2), [0,2*pi]);

A second way makes the graphs (of the three curves) in different colors:

x = -3*pi : 0.001 : pi;
plot(x, sin(x), x, tan(x), x, exp(x)); axis ([-3*pi pi -5 5]);
legend(’sin’, ’tan’, ’exp’)

5. Using text we plot several lines, see Figure 1.3(a):
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Fig. 1.1 Temperature during 10 days. Points on a parabola. Graphs of the function x2

and its derivative.

x = -2 : 2/500 : 2; hold on; axis([-2 2 -2 2]); axis equal;
plot(x,-2*x, x,-x, x,-x/2, x,x/2, x,x, x,2*x);
text(-0.8, 2, ’y = -2x’); text(-2, 2, ’y = -x’); text(-2, 1, ’y = -x/2’);
text(2, 1, ’y = x/2’); text(2, 2, ’y = x’); text(0.8, 2, ’y = 2x’);

6. Plot the table of graphs.

subplot(1, 3, 1); ezplot(’sin(1*x)’); subplot(1, 3, 2); ezplot(’sin(3*x)’)
subplot(1, 3, 3); ezplot(’sin(6*x)’); % line of three plots
y = 0 : 0.01 : 2*pi;
for i = 1 : 4;
subplot(2, 2, i); plot(y, sin(i*y)); % table of plots
end;

7. The command compose( f ,g) returns f (g(y)) where f = f (x), g = g(y). Using the
composition of functions, visualize iterations of a function.

syms x;
f = sin(x); F = f;
hold on;
for i = 1 : 9;
ezplot(F); axis([0 2*pi -1 1]); F = compose(F, f);
end; % Figure 1.2(a)

8. Taylor decomposition is very useful in studying functions. Compare Taylor polyno-
mials of a function with the given function, Figure 1.2(b).

syms x; f = sin(x);
hold on; axis equal; ezplot(f, ’r’);
for i = 1 : 9;
axis([0 3*pi -3 3]); ezplot(taylor(f, x, 2*i - 1));
end;
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Fig. 1.2 Iterations of y = sin(x) and Taylor polynomials.

When a vector (or matrix) is involved in a logical expression, the comparison is
carried out element by element, the resulting vector, which is called the logical vector
(or 0–1 vector), consisting of units and zeros.

Let a and b be vectors of the same length. The logical expression a = b returns a
0–1 vector:

a = 1 : 4; b = [0, 2, 3, 5];
a == b % no semicolon ! Answer: 0 1 1 0

The reader can also try another logical expression, say a ≤ 2, etc.

a <= 2

A useful application of logical vectors is in plotting graphs of functions:

(i) piecewise continuous functions,
(ii) avoiding division by zero,

(iii) avoiding infinity.

For example,

x = linspace(-4*pi, 4*pi, 501); % for 3 examples below

y = sin(x); plot(x, y.*( y > 0)) % a discontinuous graph
x = x + ( x == 0)*eps; y = sin(x). / x;
plot(x, y) % avoiding “Divide by zero” warning
y = 100*tan(x); z = y.* (abs(y) < 1e3);
plot(x, y, x, z, ’g’, ’LineWidth’, 2) % avoiding infinity (compare 2 graphs)

1.2.3 Elementary functions

Let us consider some further examples.
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Fig. 1.3 Placing text. Solving equations. Rational function.

Examples.

1. Plot graphs of the functions (set a = 1).

(a) Catenary y = acosh(x/a), Figure 1.4(a), is “similar” to a parabola.

x = -5 : 0.01 : 5;
plot(x, cosh(x)), grid on

(b) Witch of Agnesi (versiera) y =
a3

a2 + x2 , Figure 1.4(b).

x = -5 : 0.001 : 5;
plot(x, 1./(1 + x.ˆ2)), grid on; axis equal

(c) Cycloid x = aarccos
a− y

a
−
√

2ay− y2, Figure 5.1.

a = 1; y = 0 : 0.01: 2;
plot(y, acos((a - y)/a) - sqrt(2*a*y - y.ˆ2)); axis equal

(d) Tractrix x = a ln
a−

√
a2 − y2

y
+
√

a2 − y2 (0 < y ≤ a), Figure 1.4(c).

y = 0 : 0.001 : 1; f = log((1 - sqrt(1 - y.ˆ2))/y) + sqrt(1 - y.ˆ2);
plot(y, f, y, -f); axis equal

(e) Dinostratus’ quadratrix y = xcot
(π x

2a

)
(|x| ≤ a), Figure 1.4(d).

x = -.5 : 0.001 : .5;
f = x.*cot(pi*x)/2;
plot(x, f), grid on; axis equal

(f) Beats. A complicated case arises in summing oscillations with different frequen-
cies: y = A(cos(ω1)+ cos(ω2)) = 2Acos

(ω1−ω2
2

)
cos

(ω1+ω2
2

)
.

If ω1 and ω2 have a small difference, then the factor cos
(ω1−ω2

2

)
changes slowly,

and the factor cos
(ω1+ω2

2

)
has almost the same frequency as each of the given os-

cillations. Beats are sometimes presented (approximately but visually) as harmonic
oscillations with slowly changing amplitude.
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Fig. 1.4 Catenary, witch of Agnesi, tractrix, and quadratrix.

x = -pi : 0.001 : 9*pi;
f = 6*sin(x/4); g = f.*sin(4*x);
plot(x, g, x, f, ’- -’, x, -f, ’- -’), grid on; axis equal % Figure 1.5(a)

(g) Curve of damped oscillations y = Aexp(−kx)sin(ωx + a). For k = 0 the oscil-
lations are periodic (without resistance of the medium). Also plot this graph with the
option x=0..infinity.

x = -10 : 0.001 : 10;
f = exp(1).ˆ(-x/2); g = f.*sin(4*x);
plot(x, g, x, f, ’- -’, x, -f, ’- -’), grid on; axis equal % Figure 1.5(b)

(h) A remarkable limit y = sin(x)/x, Figure 1.5(c) (or y = tan(x)/x).

syms x; limit(sin(x)/x, x, 0) % Answer: 1
x = -10 : 0.001 : 10; plot(x, sin(x)./x), grid on

This can also be done in one step with the fplot command. Consider the plotting of the
following function, known as the sinc or sampling function y = tan(πx)/(πx):

fplot(’sinc’, [-10 10]), xlabel(’x’), ylabel(’sinc(x)’)

A sequence f(n) is a function on N. One may calculate the sequence n sin(1/n) for
12 ≤ n ≤ 16 and compare with the previous results.

n = 12 : 16; sin(1./n).*n % Answer: 0.998 0.998 0.998 1.00 1.00

2. Curves of growth are curves that describe the laws of development of events in
time. The process of analytical smoothing of a dynamical line using some functions,
i.e., adjusting it to these functions, is in most cases the best way to represent a set of
empirical data. Plot the following curves of growth (a)–(c) for some values of their
parameters.

(a) Logarithmic parabola y = bxcx2
(b, c > 0). One can write the equation in the

form y = ex lnb+x2 lnc. For c > 1 the branches of the parabola x lnb + x2 lnc are directed
upward, and for 0 < c < 1 they are directed downward. For c > 1 and b > 1 the curve
is displaced to the left, and for c < b < 1 it is displaced to the right.
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Fig. 1.5 Beats, damped oscillations, remarkable limit.

syms b c x;
f = bˆx.*cˆ(x.ˆ2);
f0 = subs(subs(f, b, 2), c, 2), f1 = subs(subs(f, b, 2), c, .5);
ezplot(f0, [-2, 1]); Figure 1.6(a)
ezplot(f1, [-2, 3]) Figure 1.6(b)

(b) Logarithmic curve y =
k

1 +be−ax (k,a,b > 0), Figure 1.6(c).

syms k a b x;
f = k/(1 + b*exp(-a*x)); solve(diff(f, x, 2), x) % Answer: log(b)/a
f0 = subs(subs(subs(f, k, 2), b, .2), a, 1); ezplot(f0, [-7, 3]), grid on

The horizontal asymptote is y = k; x = ln(b)/a is the point of inflection.

Fig. 1.6 Logarithmic growth curves.

(c) Growth curves of Gompertz y = abx
(a,b > 0). One can write the equation in

the form y = ebx lna and consider four cases, Figure 1.7. It happens that y = 1 is the
horizontal asymptote.

syms a b x;
f = aˆ(bˆx);
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f0 = subs(subs(f, a, 1.2), b, .5); ezplot(f0, [-4, 1]); Figure 1.7(a)
f1 = subs(subs(f, a, 1.2), b, 2.1); ezplot(f1, [-1, 4]); Figure 1.7(b)
f2 = subs(subs(f, a, .2), b, .5); ezplot(f2, [-1, 7]); Figure 1.7(c)
f4 = subs(subs(f, a, .2), b, 1.5); ezplot(f4, [-12, 2]); Figure 1.7(d)

Fig. 1.7 Growth curves of Gompertz.

One can investigate functions using derivatives by the following plan (the graphs
that MATLAB plots help us to realize this plan), which is sufficient for most functions
in practice.

1. Find the domain of definition and points of discontinuity; derive the function (or its
limits) at boundary points of the domain of definition.

2. Check whether the function is odd or even, periodic, or not.
3. Find the zeros of the function and the intervals of sign constancy.
4. Find the asymptotes of the graph (see Section 6.1).
5. Calculate extrema of the function and intervals of monotonicity.
6. Find the points of inflection and intervals of convexity and concavity.

While studying zeros, asymptotes, boundary and discontinuity points we calculate
limit behaviour of the function in neighborhoods of these points.

The reader can plot the graph of y = f (x) and the graphs of the derivatives f ′(x) and
f ′′(x) in the same picture.

1.2.4 Special functions

The name special is usually used for functions that generally cannot be represented in
terms of elementary functions. Most of these arise as the solutions of ordinary differ-
ential equations (ODEs) of special forms and can be expressed using integrals. Over
50 of the special functions of classical applied mathematics (among the most important
of which are the beta, gamma, and zeta functions, elliptic functions, Bessel functions,
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theta function, and hypergeometric functions) are available in MATLAB; see the com-
mands mfunlist, mfun.

Examples. Plot graphs of the following six special functions.

1. The incomplete gamma function y =Γ (x,z)=
∫ ∞

z
e−ttx−1 dt, one of the most popular

special functions.

The gamma function y = Γ (x) =
∫ ∞

0
e−ttx−1 dt has vertical asymptotes at the points

of discontinuity x = −n (n = 0,1,2, . . . ).

axis ([-4 5 -10 10]); ezplot(’gamma(x)’), grid on % Figure 1.8(a)

2. Integral of probabilities y = erf(x) =
2√
π

∫ x

0
e−t2

dt (error function):

syms x; ezplot(erf(x), [-2, 2]), grid on; % Figure 1.8(b)

3. The exponential integral function y = Ei(n,x) =
∫ ∞

1

e−xt

tn dt (n ∈ N, x > 0) is related

to the gamma function by Ei(n,x) = xn−1Γ (1−n,x), Figure 1.8(c).

x = .1 : 0.01 : 1; hold on;
for n = 0 : 5; plot(mfun(’Ei’,n, x)); end

Fig. 1.8 Graphs of special functions Γ (x), erf(x), Ei(n,x).

4. The sine integral function y = Si(x) =
∫ x

0

sin(t)
t

dt is derived using Taylor se-

ries; its horizontal asymptote is y = π
2 , Figure 1.9(a). The cosine integral function is

y = Ci(x) = γ + ln(x)+
∫ x

0

cos(t)−1
t

dt. Here γ ≈ 0.57721 is the Euler constant; the

horizontal asymptote is y = 0, Figure 1.9(b).
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x = 0 : 0.05 : 21; plot(mfun(’Si’, x)), grid on
x = 0 : 0.05 : 21; plot(mfun(’Ci’, x)), grid on

5. Elliptic integrals of the first or second kinds are given by the formulae

Elliptic F(z,x)=
∫ z

t=0 1/(
√

(1− t2)
√

(1− x2t2))dt, Figure 1.9(c)
Elliptic E(z,x)=

∫ z
t=0

√
(1− x2t2)/

√
(1− t2)dt, Figure 1.9(d)

Elliptic K(x)=Elliptic F(1,x), Elliptic E(x)=Elliptic E(1,x).
x = 0 : 0.01 : 1; k = 1;
plot(mfun(’EllipticE’, k, x)), grid on
plot(mfun(’EllipticF’, k, x)); plot(mfun(’EllipticK’, x));

Fig. 1.9 Graphs of Si(x), Ci(x), and elliptic integrals.

6. The spherical Bessel function of the first kind (plot by two methods).

x = 0 : 0.01 : 20; n = 0; plot(besselj(n, x)) % 1st method
x = 0 : 0.01 : 20; nu = 0; plot(mfun(’BesselJ’, nu, x)) % 2nd method

1.3 Piecewise Functions

The continuity class of a function is the number of derivatives that are continuous
over the whole domain. It determines how smoothly the pieces of a piecewise-defined
function join together. If a function f has continuity class n this is denoted f ∈ Cn.
Differentiating a function decreases its continuity class by 1, and integrating it may
increase it by 1.

A function f (x) given on the interval I =(a,b) is called piecewise continuous (stair-
case) if one can break this interval into a finite number of intervals of continuity (resp.,
intervals of constancy) on each of which the function f (x) is continuous (resp., con-
stant). Values of a function at the points of discontinuity are not always well-defined.
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A continuous function f (x) given on I = (a,b) is called piecewise differentiable if
I can be broken into a finite number of segments on each of which f (x) is of class C1.
(In other words, f ′(x) is piecewise continuous).

We will define and plot the graphs of piecewise-defined functions,

F(cond1, f1, . . . ,condn, fn, f ) = { fi if condi , where i ≤ n; otherwise f}.

Examples.

1. The function F(x) = {sin(x) if −2π ≤ x ≤ −π; π −|x| if −π ≤ x ≤ π; −sin3(x) if
π ≤ x ≤ 2π} is composed of 3 parts.

x1 = -2*pi : pi/50 : -pi; y1 = sin(x1);
x2 = -pi : pi/50 : pi; y2 = pi - abs(x2);
x3 = pi : pi/50 : 2*pi; y3 = -sin(x3).ˆ3;
x = [x1 x2 x3]; y = [y1 y2 y3];

We plot it:

plot(x, y), grid on; % Method 1: graph with one color
plot(x1, y1, ’r +’, x2, y2, ’g :’, x3, y3, ’b - -’) % Method 2: 3 parts with colors

2. A function is recursive (i.e., is based on recursion) if it contains one or more calls to
itself or to another function that calls the given function.

Plot the graph of the recursively defined function

f (x +1) = 2 f (x) and f (x) = x(1− x) (0 ≤ x ≤ 1).

function f = f1(x) % Create M-file!
if x < 0; f = f1(x + 1)/2;
elseif x < 1; f = x*(x - 1);
else f = 2*f1(x - 1);
end

end
fplot(’f1(x)’, [-2, 3]) % graph, Figure 1.10(a)

1.3.1 Piecewise constant and linear functions

An important discontinuous example is the unit step (Heaviside) function

H(x) = {0 for x < 0, 1 for x > 0, and NaN for x = 0}.

It is convenient for expressing other piecewise (composed) functions. The derivative of
H(x) is the Dirac (delta) function, which is equal to 0 everywhere except the singular
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Fig. 1.10 Recursively defined functions.

point x = 0. Another standard function sign is

y = sign(x) = {−1 for x < 0, 1 for x > 0, 0 for x = 0}.

Examples. 1. Let us plot the graph of H(x), Figure 1.11(a).

ezplot(’heaviside(x)’, [-2, 2]);

Then plot the graph of its derivative

diff(’heaviside(x)’, ’x’), ezplot(dirac(x), [-2, 2])
for i = -2 : 2; dirac(i), end % Answer: dirac(x) 0 0 ∞ 0 0

Fig. 1.11 Graphs of the functions heaviside(x), {x}, {x2}.

2. “Cut out” a real function f (x) (x ∈ R) on a segment [a,b].

syms x;
a = 1; b = 3; f = xˆ2; % define a function
fab = f*(heaviside(x - a) - heaviside(x - b));
ezplot(fab, [-4, 6]) % Figure 1.13(c)

3. Finally, we plot the graph of sign(x)

ezplot(’sign(x)’, [-2, 2])
fplot(’sign(x)’, [-2, 2]) % obtain a polygonal curve.

4. We define and plot the saw-shaped function, Figure 1.12(a):
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Fig. 1.12 Saw and triangular waves.

fplot(’2*mod(x - 1, 2)*heaviside(mod(x, 2) - 1)’, [-4, 14]), axis equal

Then we show that “triangular waves”, Figure 1.12(b), are obtained in a similar way
(the abs function can be presented using heaviside)

fplot(’2*abs(mod(x, 2) - 1)’, [0, 14]), axis equal, grid on

or using one of the formulae y = arccos(cos(x)), y = arcsin(sin(x)):

fplot(’2/pi*acos(cos(pi*x))’, [0, 14]), axis equal, grid on %Figure 1.12(b)

Using heaviside (or sign) we define (and plot the graphs of) the characteristic func-
tions of the segment [a,b], the interval (a,b), and the half-interval.

χ(x, [a,b]) = H(x−a)−H(x−b)= (sign(x−a)+ sign(x−b))/2,

χ(x,(a,b)) = χ(x, [a,b])− χ(x, [a,a])− χ(x, [b,b]),
χ(x, [a,b)) = χ(x, [a,b])− χ(x, [b,b]), χ(x,(a,b]) = χ(x, [a,b])− χ(x, [a,a]).

1.3.2 The functions max and min

The functions max (maximum) and min (minimum) of several differentiable functions
are piecewise differentiable.

Examples.

1. Consider the function g = min(x2,x +3).

g = ’min(xˆ2, x + 3))’; solve(’xˆ2 = x + 3’) % Answer: (1±√
13)/2.

Hence g =
{

x2, (1−√
13)/2 < x < (1 +

√
13)/2,

x +3, otherwise.

fplot(g, [-2, 5]), axis equal % Figure 1.13(a)

2. The graph of max (min) of several linear functions is a convex (concave) polygon.
One may illustrate this using the program
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Fig. 1.13 Graphs of piecewise differentiable functions.

n = 9;
k = round(5*rand(1, n)); b = round(30*rand(1, n));
syms x; F = k.*x + b;
x = -10 : 0.01 : 10;
m = max(eval(F(1)), eval(F(2))); M = min(eval(F(1)), eval(F(2)));
for i = 2 : n;
M = min(M, eval(F(i))); m = max(m, eval(F(i)));
end
hold on; plot(x, M, x, m, ’b’, ’LineWidth’, 2); % Figure 1.13(d),
for i = 1 : n; plot(x, eval(F(i)), ’g’); end % upper/lower green polygons.

1.3.3 Functions containing the operation abs

Example. Given sequences of points {ai} and of weights {bi}, where 1 ≤ i ≤ n, find
the minimum of the function fn(x) = ∑n

i=1 bn |x−ai|. First we plot the graphs:

n = 6; a = @(j)(2 + sqrt(j)); b = @(j)1;
syms x; for i = 1 : n; F(i) = b(i)*abs(x - a(i)); end
f = sum(F); ezplot(f, [a(1) - 1, a(n) + 1]);

An application is the problem of machine tools with weight coefficients: place the ma-
chine tool at the point x such that the sum of the distances from it to machine tools at
the given points −3, −1, 2, and 6 with given weights 2, 1, 3, 1 is minimal.

ezplot(’2*abs(x+3)+abs(x+1)+3*abs(x-2)+abs(x-6)’, [-5, 6]); %Figure 1.13(b)

For unit weights bi = 1 explain the following rule of calculation of the optimum point
x (where the function fn(x) takes its minimum).

Hint. For odd n write down the numbers a(1), . . . ,a(n) in increasing order, then take
the optimum point x equal to the middle number of this sequence. What does the graph
of fn(x) look like, and what is the optimum point x for even n?
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Fig. 1.14 Animation of the limits of functions.

1.3.4 Functions that are defined using limit

One may diversify the plotting of graphs of functions defined in terms of limits by
applying the commands for ... and pause.

Examples. Plot the graphs of the functions (using animation) and find their formulae.

(1) y = lim
n→∞

xn

1 + xn (x ≥ 0). We have

y = {0 for 0 ≤ x < 1, 1 for x > 1, and 1/2 for x = 1}.
x = 0 : 0.02 : 3; for n = 0 : 50;
plot(x, (x.ˆn)./(1 + x.ˆn)), axis([0, 3, -1, 2]); pause(0.1)
end;

(2) y = lim
n→∞

[(x−1)arctanxn] (x > −1). We have

y =
{

0 for −1 ≤ x ≤ 1 and π
2 (x−1) for x > 1

}
.

x = 0 : 0.02 : 3; for n = 0 : 50;

plot(x, (x - 1).*atan(x.ˆn)), axis([-1, 3, -1, 2]); pause(0.2)
end; % Figure 1.14(a)

(3) y = lim
n→∞

|x|n −1
|x|n +1

(x �= 0). We have

y = {1 for |x| > 1, −1 for |x| < 1}.
x = -3 : 0.02 : 3; for n = 0 : 50;

plot(x, (abs(x).ˆn -1)./(abs(x).ˆn +1)), axis([-3, 3, -2, 2]); pause(0.1)
end; %Figure 1.14(b)
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(4) y = lim
n→∞

[xarctan(ncot(x))]. We derive:

syms n x; f = x*atan(n*cot(x));
limit(f, n, inf) % Answer: 1

2 csgn(cot(x))πx

Hence y = {π x for π k ≤ x < π
2 +π k, −π x for π

2 +π k ≤ x < π +π k}.

x = -6 : 0.02 : 7;
for n = 0 : 50;
plot(x, x.*atan(n*cot(x))), axis([-4, 4, -6, 7]); pause(0.1)

end; %Figure 1.14(c)

1.3.5 Statistical functions

The main statistical functions of MATLAB include the density of a probability function
F(x) = P{ξ < x} for various distributions. Using examples of Section 1.3.1, one can
plot the graphs F(x) of some statistical functions.

Example.

1. The Bernoulli distribution with the parameter p ∈ (0,1).

f = @(x, p)(1 - p)*heaviside(x) + p*heaviside(x - 1);
x = -1 : 0.01 : 4; plot(x, f(x, 0.2)), axis equal

2. The binomial distribution P{ξ = k}=Ck
n pk(1− p)n−k (0 ≤ k ≤ n) (density function)

with parameters n, p (0 < p < 1, n ≥ 1).

n = 10; p = 0.4;
x = 0 : n; y = binopdf(x, n, p); stem(x, y, ’.’) % Figure 1.15(a,b)
x = 0 : n; hold on;
for k = 1 : n; plot([x(k), x(k + 1)], [y(k), y(k)]); end

The binomial distribution function is

F(x) =

⎧
⎪⎨

⎪⎩

∑m
k=1Ck

n pk(1− p)n−k, m < x ≤ m+1, m ∈ (0,n],
1, x > n,

0, x ≤ 0.

yy(1) = y(1);
for k = 1 : n; yy(k + 1) = yy(k) + y(k + 1); end; % array F(x)
hold on; for k = 1 : n; plot([x(k), x(k + 1)], [yy(k), yy(k)]); end



1.4 Graphs in Polar Coordinates 35

Fig. 1.15 Binomial and Poisson distributions.

1.4 Graphs in Polar Coordinates

First, we introduce the reader to using polar coordinates with MATLAB. Then we plot
remarkable curves (spirals, roses and crosses, etc.) as polar graphs and use the trans-
formation of inversion.

1.4.1 Basic plots in polar coordinates

The location of a point M in the plane with origin O is uniquely defined by the distance
|OM| = ρ and the angle ϕ ∈ [−π,π] between the segment OM and the polar axis. The
pair (ρ ,ϕ) comprises the polar coordinates of the point M. The relation between polar
coordinates (ρ,ϕ) and rectangular coordinates (x,y), when the axis OX is the polar
axis, is the following (given by Newton in 1670): x = ρ cosϕ , y = ρ sinϕ . If ρ = ρ(ϕ)
is the polar equation of a curve, then its equations in rectangular coordinates are

x = ρ(t)cos(t), y = ρ(t)sin(t).

Hence, the complex parametric equation is z = ρ(t)eit.
The graph of a function ρ = f (t) in polar coordinates is plotted using the command

polar. For plotting the parameterized curve ρ = f (t), ϕ = g(t) (a ≤ t ≤ b) in polar
coordinates one uses the commands polar and ezpolar. Polygons and graphs of func-
tions, see Figure 1.16(a,b), in polar coordinates can be plotted similarly to the case of
rectangular coordinates.

Examples.

1. Plot the circular diagram of Figure 1.16(c).

A = [0, 10, 30, 40, 20]; B = cumsum(A) % enter data A
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hold on; axis equal; ezpolar(’1’);
for i = 1 : length(A);
polar([B(i), B(i)], [i - i, 1 + i - i]);
end

There are also methods using the command compass

A = [0, 10, 30, 40, 20]; B = cumsum(A); C = B.*360/100
compass(cosd(C), sind(C))

and the commands pie or pie3.

data = [10 30 40 20]; parts = [1 0 0 0];
pie(data, parts)
pie3(data, parts)

Fig. 1.16 Polar coordinates: polygon, star n-gon, circular diagram, a stopwatch.

2. The spiral of Archimedes ρ = aϕ was studied by Archimedes in the third century
BC in relation to the problem of the trisection of an angle.

t = 0 : .01 : 4*pi; polar(t, t) % two coils of Archimedes’ spiral
plot(t.*exp(i*t)) % Continue: using complex equation

3. Aside from the regular simple polygons there also exist regular star (or simply star)
polygons: one for n = 5 (Figure 1.18(b), pentagram), none for n = 6 (other cases de-
compose into two triangles), two for n = 7 (Figure 1.17), one for n = 8 (Figure 1.18(d),
other cases decompose into two squares), etc.

A star polygon {n/m}, with n, m positive integers, is a figure formed by connecting
with straight lines every mth point out of n regularly spaced points lying on a circum-
ference. Here n is the number of sides of the polygon, and m is called the density of the
star polygon. Without loss of generality, take m < n/2. If m is not relatively prime to n,
then the star polygon has more than one component. For each natural number n there
exist as many distinct (not similar to each other) connected regular star n-gons as there
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are integers between 1 and n
2 relatively prime to n, i.e., 1

2ϕ(n), where ϕ(n) is Euler’s
ϕ-function.

We plot a regular star (m,n)-gon with relatively prime m and n.

n = 5; m = 2;
i = 0 : n; polar(m*i.*2*pi/n, 1 + i - i, ’-’) % Figure 1.16(b)

Using a similar program, we plot the disconnected star (m,n)-gon.

n = 12; m = 3; i = 0 : n; % m copies (components) of n/m-gon
hold on; for j = 0 : m - 1;
polar((i.*m+j)*2*pi/n, 1 + i - i, ’-’); axis equal;
end

Fig. 1.17 Three regular heptagons.

Fig. 1.18 Pairs of regular pentagons and octagons.

4. If for an arbitrary plane conic section we fix the point O at a focus and if the axis
of the section through the foci plays the role of the polar axis, then the equation of the
conic section in polar coordinates will take the form ρ = p

1−ecosϕ , where 0 ≤ e < 1 for
an ellipse (a circle when e = 0), e = 1 for a parabola, and e > 1 for a hyperbola. To
obtain the second branch of the curve one replaces 1 by −1 in the denominator.

We plot conic sections using the following program, where f(i/15) are ellipses, f(1)
is a parabola, and f(1 + (i - 8)/5) are hyperbolas; Figure 1.19(c).
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syms t;
p = 1; f = @(e)p/(1 - e*cos(t));
hold on; axis equal;
ezpolar(f(1), [pi/2 - 1.1, 3*pi/2 + 1.1]);
for i = 9 : 13;
ezpolar(f(1 + (i - 8)/5), [pi/2 - .4, 3*pi/2 + .4]);
ezpolar(f(i/15), [-pi, pi]);
end % all types of conic sections

5. Plot the butterfly and the cochleoid, Figure 1.19(a,b).

t = linspace(-12*pi,12*pi,1000);
a = .8;
polar(t, exp(1)ˆcos(t) - 2*cos(4*t) + a*sin(t/12).ˆ5) % butterfly
t = linspace(-6*pi, 6*pi, 1001); polar(t, sin(t)./t) % cochleoid

6. The cochleoid ρ = sin ϕ
ϕ (snail, known since the seventeenth century) of Figure

1.19(b) with |ϕ| < 720◦ belongs to a class of quadratrices.

7. Plot Pascal’s limaçon ρ = 2acos(ϕ)−b (a,b > 0) (with a loop for b < 2a, without
a loop for b > 2a, and the cardioid for b = 2a).

a = 1; c = ’r g b’;
t = linspace(-pi, pi, 101);
hold on; axis equal;
for b = 1 : 3;
polar(t, 2*a.*cos(t) + b, c(b));
end % Figure 1.34(c)

Fig. 1.19 Butterfly and cochleoid. Conic sections.
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1.4.2 Remarkable curves

Implicit equations of (algebraic) curves are often simplified when we use polar coordi-
nates instead of rectangular ones.

Examples. Several curves are given by their geometric or kinematic properties. Deter-
mining their equations is more convenient using polar coordinates.

1. Let us fix the circle ω with diameter |OA| = 2a and the tangent line l at the point
A. On the ray r emanating from O and rotating around the point O one places the line
segment OM of length equal to the segment of the ray between the circle and the line
l. The set of all points M (on the ray r as it rotates) is called the cissoid (ivy-shaped). It
was studied by Diocles in the third century BC in relation to the problem of doubling

a cube. Its equation is ρ = 2a sin2 ϕ
cosϕ , Figure 1.20(b).

ezpolar(’2*sin(t).ˆ2/cos(t)’, [-pi/2+.2, pi/2-.2])

Solution. Let K = r ∩ l and L = r ∩ω (different from O). Then |ρM | = ρK −ρL, where
ρK = 2a/cosϕ , ρL = 2acosϕ .

The construction of the cissoid can be applied to two arbitrary curves, given in
polar coordinates by equations ρ = ρ1(ϕ) and ρ = ρ2(ϕ), with the aim of plotting the
curve ρ = ρ1(ϕ)−ρ2(ϕ), which is called the cissoidal transformation. The analogous
transformation in rectangular coordinates is known as the difference of graphs f (x) =
f1(x)− f2(x) of two functions.

2. Fix the line g parallel to the polar axis at distance a from it. On the ray emanating
from O and rotating around the point O place on both sides of the point B of intersection
of the ray with g the segments BM1 and BM2 of length l. The set of all points M1, M2

(called the conchoid; shell-shaped) was studied by Nicomedes in the third century BC
in relation to the problem of the trisection of an angle. Its equation is ρ = a

sin ϕ ± l. For
l > a the conchoid has a loop; for 0 < l < a it has a cuspidal point of the first kind. In
Figure 1.20(c) the curve is rotated by 90◦.

syms t;
a = 5; l = 4*a;
hold on; ezpolar(a./sin(t) + l, [.15, pi - .15]);
ezpolar(a/sin(t) - l, [.07, pi - .07]); axis equal

An obvious generalization of this construction is the conchoid of a plane curve,
which can be obtained by increasing or decreasing the position vector at each point
on the given curve by the constant segment l. If ρ = f (ϕ) is the equation of the given
curve in polar coordinates, then the equation of its conchoid is ρ = f (ϕ)± l. In other
words, Nicomedes studied the conchoid of a line. One can show that the conchoid of a
circle is Pascal’s limaçon, Figure 1.34(c).
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Fig. 1.20 Strophoid, cissoid, and conchoid of line.

3. Fix a point A and a line l at distance a from this point; AC is the perpendicular from
A onto the line l. On a ray rotating around the point A place the segments BM1 and
BM2 from the point B of its intersection with the line l. Moreover, BM1 = BM2 = CB
is assumed. The set of all points M1, M2 is called the strophoid (twisted strip). It was
studied by Torricelli in 1645. Its equation is ρ = a 1±sinϕ

cosϕ , Figure 1.20(a).

hold on; ezpolar(’(1 + sin(t))/cos(t)’, [-pi/2, pi/2-.5])
ezpolar(’(1 + sin(t))/cos(t)’, [pi/2+.5, 3*pi/2]); axis equal

4. The ovals of Cassini are defined to be the sets of points in the plane for which
the product of the distances to two fixed points is constant. It is easy to deduce the
following polynomial equation of the ovals of Cassini: (x2 + y2)2 − 2c2(x2 − y2) =
a4 − c4, or in polar coordinates, ρ2 = c2{cos(2ϕ)±

√
cos(2ϕ)2 +(a4/c4 −1)}. For

0 < a < c the curve consists of two simple closed components (for a = 0 it degenerates
into two points), for c < a < c

√
2 the curve is closed with a waist that disappears for

a ≥ c
√

2. All points on the ovals with the tangent line parallel to the axis OX lie on
the circle x2 + y2 = c2. The problem of plotting these curves on the computer display
is fascinating.

syms t; n = 24;
f1 = @(a) 3*sqrt(abs(cos(2*t) + sqrt(cos(2*t).ˆ2 - cos(2*a).ˆ2)));
f2 = @(a) 3*sqrt(abs(cos(2*t) - sqrt(cos(2*t).ˆ2 - cos(2*a).ˆ2)));
f3 = @(b) 3*sqrt(cos(2*t) + sqrt((cos(2*t).ˆ2 + b)));
hold on; axis equal
for i = 1 : 6; ti = i.*pi/n;
ezpolar( f1(ti), [-ti, ti]); ezpolar(-f1(ti), [-ti, ti]);
ezpolar( f2(ti), [-ti, ti]); ezpolar(-f2(ti), [-ti, ti]);
ezpolar( f3(ti), [-pi, pi]); ezpolar(-f3(ti), [-pi, pi]);
end; % Figure 1.21(c)

For a = c (see the program above) we obtain the lemniscate of Bernoulli

ρ = c
√

2cos(2ϕ)
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(in Latin lemniscate means “adorned with ribbons”), which has a point of self-
intersection.

f = sqrt(abs(cos(2*t))); e = pi/4;
hold on; axis equal; ezpolar( f, [-e, e]); ezpolar(-f, [-e, e]);

5. Kappa is the curve consisting of all points of tangency on tangent lines from the
origin to a circle of fixed radius a with moving center along the axis OX . The shape of
kappa is similar to the Greek letter κ of that name. Its equation is ρ = acotϕ .

syms t; a = 1; e = .4; f = a*cot(t)
hold on; axis equal;
ezpolar(f, [e, pi - e]); ezpolar(-f, [e, pi - e]); % Figure 1.21(a)

The lines y =±a are horizontal asymptotes, the point O is the node. Kappa is a member
of the family of curves ρ = acot(kϕ), called nodal curves. This family includes the
strophoid (k = 1/2) and the windmill, having k = 2.

syms t; a = 1; e = 0.2; f = a*cot(2*t);
hold on; axis equal
ezpolar( f, [e, pi/2 - e]); ezpolar(-f, [e, pi/2 - e]);
ezpolar( f, [-pi/2 + e, -e]); ezpolar(-f, [-pi/2 + e, -e]); % Figure 1.21(b)

Fig. 1.21 Kappa, windmill, ovals of Cassini (and the lemniscate).

1.4.3 Spirals

The spirals ρ = f (ϕ) (where f is a monotone function) have especially simple equa-
tions in polar coordinates. In contrast, their equations in rectangular coordinates are
complicated. The spiral of Archimedes (considered in Example 2, p. 36) is a member of
the family of algebraic spirals, which are given by polynomial equations F(ρ ,ϕ) = 0.
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Examples.

1. Galileo’s spiral ρ = aϕ2 − l has been known since the seventeenth century from the
problem of the trajectory of a point falling near the earth’s equator, starting with initial
velocity from the usual rotation of the earth. The inverse Galileo’s spiral for l = 0 has
the equation ρ = a

ϕ2 .

ezpolar(’0.01*t.ˆ2 - 0.02’, [0, 6*pi]) % Figure 1.22(b)
ezpolar(’100/tˆ2’, [6, 10*pi]) % Figure 1.22(c)

2. Fermat’s spiral ρ = a
√ϕ was discovered only in 1636.

ezpolar(’sqrt(t)’, [0, 6*pi]) % Figure 1.23(a)

Its conchoid is the parabolic spiral ρ = a
√ϕ + l, l > 0, Figure 1.23(b).

hold on; ezpolar(’sqrt(t) + .5’, [0, 4*pi]);
ezpolar(’-sqrt(t) + .5’, [0, 4*pi]), axis equal

Fig. 1.22 Spirals: neoid, Galileo’s and its inversion.

3. The logarithmic spiral ρ = aekϕ (ϕ ∈ R), first studied by Descartes, is the curve for
which the angle between the polar radius and a tangent line at its endpoint is constant.
In view of this property, this curve is intensively used in applications. In the natural
world, some shells look like a logarithmic spiral.

ezpolar(’1.1ˆt’, [-6*pi, 4*pi]) % Figure 1.23(c)

4. The neoid ρ = aϕ + l (the conchoid of Archimedes’ spiral) is used in the construction
of a spinning machine.

ezpolar(’0.2*t + 0.5’, [0, 6*pi]) % Figure 1.22(a)
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Fig. 1.23 Spirals: Fermat’s, parabolic, logarithmic.

1.4.4 Roses and crosses

Since the function sin(kϕ) is periodic, the rose ρ = Rsin(kϕ) consists of equal leaves;
Figure 1.24. If the modulus k ∈ Q (a rational), then the rose is a closed algebraic curve
of even order. For k ∈ Z the curve consists of k leaves for odd k and of 2k leaves for even
k. If k = p/q (q > 0) with p, q relatively prime, then the rose consists of p leaves when
both p and q are odd, and of 2p leaves when one of these integers is even; moreover,
in contrast to the first case, each subsequent leaf partially covers the previous one. If
k �∈ Q, then the rose consists of an infinite number of overlapping leaves.

Fig. 1.24 Table with roses for ρ = sin(kϕ).

Examples.

1. We plot the roses in Figure 1.24 using the program below:

syms t;
h = 1; N = 5; M = 3; n = 1; % second part: N = 10; n = 6;
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hold on; for c = 1 : M;
b = 2*c - 1;
for a = n : N;
subplot(M, N - n + 1, (N - n + 1)*(c - 1) + a - n + 1);
ezpolar(sin(a/b*t), [0 2*b*pi]); axis equal;
end;
end % Figure 1.24

2. Plot the leaf cross by its polar equation f = max{2cos(2t)2,0.3}.

f = ’ max(2*cos(2*t)ˆ2, 0.3) ’;
hold on; ezpolar(’0.25’); ezpolar(’2.05’);
ezpolar(f); axis equal; % Figure 1.25(1)

Fig. 1.25 Crosses: 1, 2, 3, 4 a,b, 5, 6 and the graph of 1/g(t) (see Exercise 2, p. 75).

1.5 Polynomial Interpolation of Functions

In mathematics and its applications one often needs to find a continuous function given
at a finite set of points taken from its domain of definition.

The problem of interpolation is to find a continuous function y = f (x) (x ∈ I) such
that f (xi) = yi for all i = 0,1, . . . ,n. All real, the points x0,x1, . . . ,xn (nodes of a net)
are assumed different and given in increasing order. The choice of a function depends
on additional boundary conditions. For example, by connecting the successive points
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(xi,yi), one obtains a piecewise linear function. Several kinds of interpolants could be
envisaged, such as:

– polynomial interpolant, p(x) = a0 +a1x +a2x2 + · · ·+anxn;
– trigonometric interpolant, p(x) = a−ne−inx + · · ·+a0 + · · ·+aneinx;

– rational interpolant, f (x) =
a0 +a1x + · · ·+anxn

b0 +b1x + · · ·+bn
x

.

1.5.1 Representation of polynomials

MATLAB represents a polynomial Pn(x) = p1xn + p2xn−1 + · · · + pnx + pn+1 in two
forms: a row vector p = [p(1) p(2) ... p(n + 1)] of the coefficients and a symbolic form.
The two forms are equivalent from the algebraic point of view.

Here are three problems related to polynomials:

– given a polynomial’s coefficients, evaluate the polynomial at one or more points;
– given a polynomial’s coefficients, find the roots of the polynomial;
– given a set of data {(xi,yi)}m

i=1, find a polynomial that “fits” the data.

The function polyval carries out Horner’s method, which corresponds to the nested
representation p(x) = (· · ·((p1x + p2)x + p3)x + · · ·+ pn)x + pn+1.

The roots (or zeros) of p(x) are obtained with z = roots(p). The function poly carries
out the converse operation: given a set of roots, it constructs a polynomial. Thus, if z is
an n-vector, p = poly(z) gives the coefficients of the polynomial

p1xn + p2xn−1 + · · ·+ pnx + pn+1 = (x− z1)(x− z2) · · ·(x− zn).

When p(x) is of degree n, then there are exactly n roots, which may be repeated or
complex roots. The function poly2sym converts the result into a symbolic expression.
The function sym2poly provides the inverse operation, i.e., converts the symbolic poly-
nomial into a row vector of its coefficients.

The function conv(p, q) returns the coefficient vector for the polynomial resulting
from the product of polynomials represented by p and q.

The commands polyint(p) and polyder(p) provide, respectively, the coefficients of
the primitive (vanishing at x = 0) and those of the derivative of the polynomial (vector)
p; polyder(p, q) returns the derivative of the product of the polynomials p and q.

Examples.

1. Evaluate and plot P(x) over the interval [−2,2]:

p = [1 4 -7 -10]; % a row vector (polynomial)
x = linspace(-2, 2, 101); P = polyval(p, x); % values over a set x
plot(x, P) % a graph
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The symbolic alternative is the following:

syms x; P = poly2sym(p, x) % Answer: P = x3 +4x2 −7x−10
ezplot(P, [-2, 2]) % a graph

2. Find primitive and derivative:

p = [1 3 5];
dp = polyder(p), ip = polyint(p)

d p = 3 3 ip = 0.3333 1.5000 5.0000 0 % Answer

The symbolic alternative is the following:

syms x; P = poly2sym(p, x)
dp = diff(P), ip = int(P)

d p = 2x +3, ip = (1/3)x3 +(3/2)x2 +5x % Answer

3. MATLAB manipulates ratios of polynomials by considering the numerator and de-
nominator polynomials separately. Verify the following:

n = [1 -5 5]; % a numerator
d = [1 5 25 0]; % a denominator
z = roots(n) % the zeros of n(x)/d(x)
2.5000 + 4.3301 i, 2.5000 − 4.3301 i % Answer

p = roots(d) % the poles of n(x)/d(x)
−2.5000 + 4.3301 i, −2.5000 − 4.3301 i % Answer

Note that the symbolic polynomial fraction can be exhibited by this means:

P = poly2sym(n)/poly2sym(d)

P = (x2 −5x +25)/(x3 +5x2 +25x) % Answer

4. Find the partial-fraction expansion of a rational polynomial:

n = [1 -5 25]; % a numerator
d = [1 5 25 0]; % a denominator
[r, p, k] = residue(n, d) % partial-fraction expansion of n(x)

d(x)

r = 0.0000 +1.1547i 0.0000−1.1547i 1.0000
p = −2.5000 +4.3301i −2.5000−4.3301i 0
k = [ ] % there are no direct terms.

Here, r are the residues of partial-fraction coefficients, p are their poles, and k is the
direct-term polynomial. For this example,

n(x)
d(x)

=
1.1547i

x +2.5000−4.3301i
+

−1.1547i
x +2.5000 +4.3301i

+
1
x
.
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5. Given this information, the original rational polynomial can be reconstructed by
using residue again:

[nd, dd] = residue(r, p, k) % numerator and denominator polynomials

MATLAB is based on the concept of a matrix. To enter the matrix A =
(1 2 3

4 5 6

)
we

use a semicolon to separate the rows:

A = [1 2 3; 4 5 6]

The transpose of a real matrix is formed by the command A′. Elements of a vector or
matrix are viewed by specifying their location:

v(2); A(2, 3)

If there is a formula for the elements, say x j = 0.1 j in [0,2], we use either of these
commands:

x = 0 : .1 : 2; x = linspace(0, 2, 20);

To create a matrix of zeros or ones of the same dimensions as a matrix A, there are
these commands:

B = zeros(size(A)), C = ones(size(A))

The same works for vectors. The n×n identity matrix is produced with the command
eye(n).

There is an obvious way to add/subtract matrices or vectors (having the same di-
mensions). We can also multiply a matrix (or vector) by a scalar:

A + C; 3*A; A / 2

The matrix multiplication A ·F is only defined for an m×n matrix A and an n× l matrix
F . Note that A ·A′ is always defined.

F = [ -2 3; 4 5; 0 1]; A*F, A*A’

Some other commands of linear algebra are:

inv the inverse of a matrix;
det the determinant of a matrix;
expm the matrix exponential;
[V, D] = eig(M) the eigenvalues and eigenvectors of a matrix.

Let f (x) = a0xn + a1xn−1 + · · · + an and g(x) = b0xm + b1xm−1 + · · · + bm (a0,
b0 �= 0) be two polynomials with coefficients in a field k. Their resultant is defined
as Res( f ,g) = detM, where M = M( f ,g) is the (m+n)-by-(m+n) matrix
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M =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

a0 a1 . . . an−1 an . . .
a0 a1 . . . an−1 an . . .

. . .
b0 b1 . . . bm−1 bm . . .

b0 b1 . . . bm−1 bm . . .
. . .

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

.

There are m rows for the coefficients ai of f (x) and n rows for the coefficients b j of
g(x); all the entries other than those shown are assumed to be 0.

It can be proved that Res( f ,g) = 0 if and only if f and g have a nonconstant com-
mon divisor (or root). Hence, Res( f , f ′ ) = 0 when f has a root of multiplicity greater
than 1.

We prepare an M-file to compute the resultant of two polynomials. (Alternatively,
the reader can use a similar procedure from MAPLE). Consider vectors of the coeffi-
cients a = [a0,a1, . . . ,an] and b = [b0,b1, . . . ,bm].

function Rfg = Resfg(a, b)
n = length(a) - 1; m = length(b) - 1;
A(1, :) = cat(2, a, zeros(1, m - 1));
B(1, :) = cat(2, b, zeros(1, n - 1))
for i = 2 : m; A(i, :) = cat(2, 0, A(i - 1, 1 : n + m - 1)); end
for i = 2 : n; B(i, :) = cat(2, 0, B(i - 1, 1 : n + m - 1)); end
Rfg = cat(1, A, B); % matrix M

end

Example. Two polynomials f = x2 − 1 and g = x− 1 have a common root x = 1. We
detect this fact using Resfg.

a = [1, 0, -1]; b = [1, -1];
M1 = Resfg(a, b) % obtain the matrix M1 = [1,0,−1; 1,−1,0; 0,1,−1]
res1 = det(M1) % obtain 0.

Another example: f = x2 +1 and g = x3 + x have a common divisor x2 +1.

a = [1, 0, 1]; b = [1, 0, 1, 0]; res2 = det(Resfg(a, b)) % obtain 0.

The polynomial f = x3 −4x2 +4x has a root x = 2 of multiplicity 2. We detect this
fact using Resfg.

a = [1, -4, 4 0];
b = polyder(a) % Answer: b = [3,−8,4]
r3 = det(Resfg(a, b)) % obtain 0.

Further applications of Resfg are considered in Sections 6.2 and 8.2.
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1.5.2 Lagrange polynomials

We all know that two points determine a first-degree polynomial, P1(x) = p1x + p2

(a line). Given n + 1 points {(x1,y1), . . . ,(xn+1,yn+1)} where xi are n + 1 distinct real
numbers, we wish to find an nth-degree interpolation Lagrange polynomial Pn(x) =
∑n+1

j=1 p jxn+1− j whose coefficients pi satisfy the following linear system of n +1 equa-
tions:

p1xn
i + · · ·+ pnxi + pn+1 = yi, i = 1, . . . ,n +1. (1.4)

When x ∈ (x1,xn+1), we call Pn(x) an interpolated value. If either x < x1 or x > xn+1,
then Pn(x) is called an extrapolated value. The matrix A of the linear system (1.4) is
known as a (nonsingular!) Vandermonde matrix; its elements are {xn+1− j

i }n+1
i, j=1. Hence,

we conclude:

For any set {xi,yi}n+1
i=1 with distinct nodes xi there is a unique Lagrange polynomial

Ln(x) of degree ≤ n such that Ln(xi) = yi (1 ≤ i ≤ n +1).

If {yi}n+1
i=1 represent the values of a continuous function f , Ln is called an interpolant

of f , and is denoted by Ln( f ).

Example. Using vander(x) we build the matrix A, then solve the linear system Ay = a,
see (1.4). For example,

x = (2 : 8); y = [32, 34, 36, 34, 39, 40, 37];
A = vander(x);
p = A\\\\ y’; % the operation A−1y
xi = 1.8 : .01 : 8.2; Y = polyval(p, xi) % Lagrange polynomial L6( f )
plot (xi, Y, x, y, ’ro’) % graph of L6( f ), Figure 1.26(b)

As n increases, it may not be so easy to solve the system Ay = a. Thus we look for
alternatives to recover the coefficients pi. It happens that

Ln(x) = y1
(x− x2) · · ·(x− xn+1)

(x1 − x2) · · ·(x1 − xn+1)
+ y2

(x− x1)(x− x3) · · ·(x− xn+1)
(x2 − x1)(x2 − x3) · · ·(x2 − xn+1)

+ · · ·+ yn+1
(x− x1) · · ·(x− xn−1)(x− xn)

(xn − x1) · · ·(xn − xn−1)(xn+1 − xn))
,

or, in short, Ln(x) = ∑n+1
i=1 yiLn,i(x), where Ln,i(x) = ∏ j �=i

x−x j
xi−x j

. The graph of Ln(x)
matches every data point, Ln(xi) = yi (verify!). The error term when the Lagrange poly-
nomial is used to approximate a continuous function f (x) is similar to the error term
for the Taylor polynomial. Namely, if f (x) ∈ Cn+1 then f (x) = Pn(x)+ εn(x), where

εn(x) = ϕ(x) f (n+1)(ξ )
(n+1)! for some ξ ∈ (x1, xn+1) and ϕ(x) = ∏n+1

i=1 (x−xi) is a polynomial
of degree n +1. For details see a numerical analysis course.
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The coefficients of Ln,i(x) (the Lagrange base) are convenient when one needs to
calculate a large number of interpolation polynomials for different initially given {yi}
at the same nodes {xi} of the net. In this case one needs to calculate the base only once.
The interpolating Lagrange polynomial is calculated using the command p = polyfit(x, y,
n). The first two input arguments, x and y, are vectors of the same length that define the
interpolating points. The third argument, n, is the degree of polynomial to be calculated.
The output, p, is the vector with the n +1 coefficients of the polynomial. Note that the
same command can be used with a smaller third argument, say 1, 2, or 3, for the purpose
of polynomial regression.

Despite the ease of deriving the interpolation Lagrange polynomial, its tendency
towards unlimited growth of the net requires careful attention. It is known (K. Weier-
strass, 1885) that a continuous function defined on a segment can be approximated as
closely as desired on this segment by a polynomial. In particular, given n and f (x), the
sequence of polynomials

B( f ,n) = ∑n
i=0Ci

nxi(1− x)n−i f (i/n)

converges uniformly to f (x) on [0,1]. The interpolation polynomial Ln(x) is not nec-
essarily close to the function f (x) at each point of the segment [a,b]; it can vary from
this function by an arbitrarily large amount.

Fig. 1.26 Lagrange and Hermite polynomials.

One can conclude from examples and the results of exercises below something about
weak approximation properties of interpolation polynomials.

Example. (K. Runge). Show that for an unbounded increase in the number of nodes on
the segment [a,b] for the function f (x) = 1

1+25x2 , we have

lim
n→∞

max
−1≤x≤1

| f (x)−Ln(x)| = ∞.
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n = 6; x = linspace(-1, 1, n); y = 1./(1 + 25*x.ˆ2);
f = polyfit(x, y, n - 1) % f = 0.00, 1.20, −0.00, −1.73, 0.00, 0.57

f (x) ≈ 1.202x4 −1.731x2 +0.567 interpolation polynomial

xi = linspace(-1, 1, 100); p = polyval(f, xi);
plot(xi, p, x, y, ’ro’) % Figures 1.27(a,b)

By increasing the degree n, we do not necessarily obtain a better reconstruction of f .
The problem occurs because the nodes are equally spaced!

Runge’s phenomenon can be avoided if a suitable distribution of nodes is used.
Namely, in an interval [−1,1] we can consider the Chebyshev nodes xi = −cos(πi/n),
where i = 0, . . . ,n.

x = -cos(pi*[0 : n] /n);

For this special distribution of nodes and any C1-regular function f in [−1,1], we have
Ln(x) → f as n → ∞ for all x ∈ [−1,1]. Using

(n +1)!|εn(x)| ≤ |ϕ(x)| max
−1≤x≤1

| f (n+1)(x)|,

our task is to follow Chebyshev’s derivation to select the set of nodes xi in a way that
minimizes max−1≤x≤1 |ϕ(x)|.

It so happens that, for the Lagrange interpolation f (x) = Pn(x) + εn(x) on [−1,1],
the minimum value of the error bound εn(x) is achieved when the nodes {xi} are the
Chebyshev abscissas (1.29) of Tn+1(x). Moreover,

max
−1≤x≤1

|Ln+1(x)| ≥ max
−1≤x≤1

|Tn+1(x)| = 1/2n+1.

Example. (S. Bernstein). Check by calculation that the sequence of interpolation La-
grange polynomials Ln(x) on uniform nets for the continuous function f (x) = |x| on
the segment [−1,1], with an increasing number of nodes n, does not converge to the
function f (x). For plotting using the previous program, we replace the specification of
y with y = abs(x); see Figure 1.27(c,d).

1.5.3 Hermite polynomial

The interpolation Hermite polynomials arise when the derivatives at the given points
are also known in addition to the given values of the function. Since the number of
conditions is doubled, the interpolation polynomial has degree 2n + 1. Given vectors
x = (x1,x2, . . . ,xn+1), y = (y1,y2, . . . ,yn+1) and derivatives y′ = (y′

1,y
′
2, . . . ,y

′
n+1), the

interpolation Hermite polynomial is
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Fig. 1.27 Examples of Runge (n = 6,10) and Bernstein (n = 6,10).

Hn(x) =
n+1

∑
i=1

yi

[
1−2(x− xi)

d
dx

L̄i(xi)
]

L̄i(x)2 +
n+1

∑
i=1

y′
i(x− xi)L̄i(x)2,

where L̄i(x) is the Lagrange polynomial with conditions L̄i(x j) = δi, j.

Examples.

1. Find Hn(x) using polyfit(x, y, n+1). In the M-file hermite interp2d.m the derivatives
at nodes of the net are zero (for simplicity), i.e., tangent lines to the graph at the nodes
are horizontal.

x = [2 : 8]; n = length(x) - 1;
y = [32, 34, 36, 34, 39, 40, 37]; z = [zeros(1, n + 1)];
H = hermite interp2d(x, y, z)

H = 106[0,0,0,0.0001,−0.0010,0.0085,−0.0519,0.2325,
−0.7681,1.8456,−3.1327,3.5553,−2.4165,0.7425] % Answer

xi = linspace(1.9, 8.1, 201); HERM = polyval(H, xi);
plot(xi, HERM, x, y, ’ro’) % Figure 1.26(c)

2. Compare Lagrange and Hermite polynomials of the first half of the unit circle using
only 7 nodes.

t = linspace (0, pi, 7);
x = cos(t); y = sin(t);
xh = linspace (0, 1, 100); yh = pchip(x, y, xh); % 100 points on [0,1]
pL = polyfit(x, y, 6); yl = polyval(pL, xh); % two interpolants
plot(x, y, ’o’, xh, yh, xh, yl, ’–r’), axis equal

The command yh = pchip(x, y, xh) provides the piecewise cubic Hermite polynomial
p(x) (see Example 1, p. 52), which is locally monotone and interpolates the function
as well as its first derivative at the nodes {xi}n+1

i=1 . The first two input arguments, x and
y, are vectors of the same length that define the interpolating points. The third input
argument, xh, is a vector of points where the function is to be evaluated. The output,
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yh, is the same length as xh. The first derivative p′(x) is continuous, p′′(x) may not be
continuous; there may be jumps at the xi.

The command interpft provides the trigonometric interpolant (obtained by a linear
combination of sines and cosines) of a set of data. The Curve Fitting Toolbox provides
a graphical interface for solving (non)linear fitting problems; see also the Optimization
Toolbox.

Summary: Polynomial interpolation is successful only for a small number of points
(not more than 15): if the number of points is increased, then the degree of the polyno-
mial increases too, contributing little to reducing the approximation error (the Runge
phenomenon). Moreover, large oscillations (the polynomial wiggle) take place on in-
tervals between the points.

1.5.4 Least-squares analysis

Instead of exact matching at every data point, we can use an approximate function (not
necessarily a polynomial) that describes the points as a whole with the smallest error
in some sense. This is called curve fitting.

Given points {xi,yi}n+1
i=1 , the method of least squares (LS) consists in finding the

functional form p(x,a1, . . . ,am) (containing several adjustable parameters) that mini-
mizes the value δ 2 = ∑n+1

i=1 (p(xi,a)−yi)2. The graph of obtained function lies near the
given points (xi,yi).

Polynomial regression is a form of LS curve fitting in which the selected function
is a polynomial and the parameters to be chosen are the polynomial coefficients. The
method of LS is often used for smoothing purposes, and it is called by the command
polyfit (the coefficients of a polynomial) and then polyval (the values of a polynomial
on the net).

Given n, we find the optimum coefficients pi of p(x) = ∑n
j=0 p jxn− j. This leads to

the Vandermonde matrix A = {xn− j
i }n

i, j=1 using vander(x) (xi are distinct real numbers),
and to the linear system a = A\y.

Examples.

1. Linear regression y = c1x + c2. We find the best solution (c1,c2) of the over-
determined linear system c1xi +c2 = yi, i = 1,2, . . . ,n. The linear approximation (by a
straight line) is obtained by matrix calculation:

x = (2 : 8)’; y = [32, 34, 36, 34, 39, 40, 37]’; % enter data
A = [x ones(size(x))];
c = A\\\\ y % Answer: c = [1.0714,30.6429], y = 1.0714x +30.6429
Y = c(1)*x + c(2);
plot (x, Y, x, y, ’- -r’) % graph
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r = y - A*c; d2 = r’*r % Answer: estimate the error

2. An nth-order polynomial approximation may be obtained by direct matrix calcula-
tion. We use the program below.

n = 3; x = (2 : 8)’; y = [32, 34, 36, 34, 39, 40, 37]’; % enter data
N = length(x); A = ones(N, 1);
xk = x;
for k = 1 : n, A = [xk A]; xk = x.*xk; end; % matrix A
c = A\\\\ y; % Answer: c = [−0.1111; 1.4762; −4.5794; 36.6429]
xi = linspace(x(1), x(N), 50);
Y = polyval(c, xi); % y = −0.111x3 +1.476x2 −4.579x +36.643]
plot (xi, Y, x, y, ’- -r’) % graph

3. The simple form f (x) = axb is a common solution to many physical problems
and is nonlinear in the parameter b. Taking the logarithm of this equation, log f =
loga + b logx, we apply linear regression. First, we should replace the data (xi,yi) by
(log xi, log yi).

For example, to estimate the parameters a, b from the experimental values f (6) =
15, f (7) = 12, f (8) = 9, f (9) = 6, we write:

x = 6 : 9; f = [15 12 9 6];
p = polyfit(log10(x), log10(f), 1), a = 10ˆp(2) % p = −2.22, 2.93, a = 854.06.

The coefficients are a ≈ 854.06, b ≈ −2.22, and the derived relation is f (x) ≈
854.06x−2.22. The reader is invited to reformulate the previous codes into codes that
use these functions.

Other nonlinear relations that can be linearized to fit the least-squares algorithm are
listed in the following table, where the linearized function is always y′ = a′x′ + b′ for
suitable x′, y′, a′, b′:

N Function to Fit Variable Substitution/Parameter Restoration
1 y = a/x +b x′ = 1/x
2 y = b/(x +a) y′ = 1/y, a = b′/a′, b = 1/a′

3 y = abx y′ = lny, a = eb′
, b = ea′

4 y = beax y′ = lny, b = eb′

5 y = c−be−ax y′ = ln(c− y)
6 y = axb y′ = lny, x′ = lnx
7 y = axebx y′ = ln(y/x)
8 y = c/(1 +beax) y′ = ln(c/y−1), b = eb′

9 y = a lnx +b x′ = ln x

The general form of the least-squares approximation consists of using, in a = A\y,
forms of f and pm that are no longer polynomials, but functions belonging to a space
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Vn obtained by linearly combining n + 1 independent functions ϕ j, j = 0, . . . ,n. The
unknown coefficients of f̃ (x) = ∑n

j=0 a jϕ j(x) can be obtained by solving the system
B′Ba = B′y (verify!), where B is the rectangular (n + 1)× (m + 1) matrix of entries
bi j = ϕ j(xi), a is the vector of the unknown coefficients, and y is the vector of the data.

In general, we find the optimum set of coefficients ai in the linear combination
y(x) = ∑n

j=0 a jϕ j(x) of a set of functions {ϕ1(x), . . . ,ϕn(x)}. This leads to the general-
ized Vandermonde matrix

A =

⎛

⎜⎜
⎜
⎝

ϕ1(x1) ϕ2(x1) . . . ϕn−1(x1) ϕn(x1)
ϕ1(x2) ϕ2(x2) . . . ϕn−1(x2) ϕn(x2)

...
...

. . .
...

...
ϕ1(xN) ϕ2(xN) . . . ϕn−1(xN) ϕn(xN)

⎞

⎟⎟
⎟
⎠

, (1.5)

and we solve the equation a = A\y.

1.6 Spline Interpolation of Functions

If the requirement on the smoothness of an interpolation function is weakened, then
without greatly complicating the calculations one can obtain the nice approximation
properties of the spline. The idea is to derive polynomials (or other standard functions)
independently one from another on each segment [xi,xi+1], then glue them at their
endpoints.

1.6.1 Cubic spline

Before the first work on splines (Shenberg, 1946) there was earlier work of Leibniz and
Euler by direct methods of the calculus of variations (for example, the Euler polygon
for numerical solution of ODEs).

The notion of a spline (“flexible ruler”) came from practice. Splines are used in
various graphical packages and systems of design in industry.

A polynomial cubic spline defined by the vectors x = [x1, . . . ,xn+1] and y = [y1, . . . ,yn+1]
is derived using the command S = spline(x, y). The result is the piecewise function
S(x) ∈ C2 composed of n polynomials Pi = ai,0 +ai,1x +ai,2x2 +ai,3x3 of degree 3:

S =

⎧
⎪⎨

⎪⎩

P1(x), if x ≤ x2,

Pi(x), if xi ≤ x ≤ xi+1 and i = 2, 3, . . . ,n−1,

Pn(x), if xn ≤ x.
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Example. Find a polynomial cubic spline.

pp = spline([0 : 3], [0, 1, 4, 3]); pp.coefs

-1 4 -2 0; -1 1 3 1; -1 2 2 4; % coefficients of p1(x), p2(x), p3(x)

Strategy. We derive 4n coefficients of n polynomials Pi(x). The equalities S(xi) = yi for
1 ≤ i ≤ n+1 give us n+1 equations. The condition S(x) ∈ C2 means that the function
S(x) and its derivatives S′(x) and S′′(x) at all n−1 inner nodes of the net are continu-
ous. This gives an additional 3(n− 1) equations for finding all the coefficients. Thus,
we have obtained a total of 3(n− 1)+ (n + 1) = 4n− 2 equations for the coefficients
ai j. The two missing conditions come from restrictions on values of the spline and/or
its derivatives at the endpoints x1 and xn+1. For example, S′(x1) = S′(xn+1) = 0 (first
kind) or S′′(x1) = S′′(xn+1) = 0 (second kind) or S′(x1) = S′(xn+1), S′′(x1) = S′′(xn+1)
(periodic).

In contrast to interpolation Lagrange polynomials, the sequence of interpolation
cubic splines on a uniform net always converges to a continuous interpolation function.
Moreover, the velocity of convergence increases when the differential properties of the
function are strengthened.

The command spline constructs S(t) in almost the same way that pchip constructs
p(t). However, spline chooses the slopes at the xi differently, namely to make S′′(t) even
continuous. The MATLAB toolbox splines allows one to explore several applications of
spline functions.

The command interp1(x, y, xi) interpolates using alternative methods: ’linear’— linear
interpolation (default); ’spline’— cubic spline interpolation; ’pchip’— piecewise cubic
Hermite interpolation, etc.

Fig. 1.28 Interpolation of data “t◦ over 10 days”.

Example. Compare the behavior of the Lagrange and Hermite polynomial interpola-
tions with that of cubic and quadratic splines derived for the measurements of air tem-
perature given in Example 3, p. 19.
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Date = 12 : 21; T = [15, 17, 17.5, 19, 20, 19.5, 18, 17, 17, 19];
x = linspace(11.8, 21.2, 41); N = 41 points
f1 = interp1(Date, T, x, ’pchip’); % Hermite cubic spline
f2 = polyfit(Date, T, length(T) - 1); p2 = polyval(f2, x); % Lagrange
f3 = interp1(Date, T, x, ’spline’); % cubic spline
f4 = interp1(Date, T, x, ’square’); % quadratic spline
plot(x, [f1; p2; f3; f4], Date, T, ’ro’) % (41 values) Figure 1.28(a,b)

1.6.2 Construction of curves using splines

In the treatment above, we have considered arrays of points whose abscissas form an
increasing sequence of real numbers. With those methods it would not have been pos-
sible to compute a cubic spline for the spiral as a function of x, since there are multiple
y values for each x near the origin. However, it is possible to compute a spline (or in-
terpolating polynomial) for each axis with respect to the variable or parameter t, and
to obtain interpolation or smoothing curves for arbitrary given points in the plane, in
space, or in R

N (N > 3). The class of modeled curves is essentially enlarged: now they
are defined by parametric equations r(t) = [x1(t), . . . ,xN(t)].

We graph the spline (or interpolating polynomial) using the following procedure:

1. For a given segment [a,b] of parameter t’s domain, one defines an auxiliary net
a = t1 < · · · < tn = b, where n coincides with the number of control points.

2. Given an array P = {Pi = (xi1, . . . ,xiN)}n
i=1 of n control points in R

N, one defines
N auxiliary arrays Xj = {(ti,xi j)}n

i=1, j = 1, . . . ,N.
3. For each array Xj ( j = 1, . . . ,N) one derives the corresponding spline function

(or interpolating polynomial) x j(t), where t ∈ [a,b].

Such a parametric curve may not be C1-regular, because one cannot exclude the
possibility of simultaneous vanishing (for some t0) of the derivatives: x′(t0) = y′(t0) =
z′(t0) = 0. In Chapter 9 we study more powerful alternatives for plotting piecewise
curves.

Examples.

1. Let us apply splines to interpolate spiral curves in R
2.

t = linspace(0, 3*pi, 15); % 15 points
x = sqrt(t).*cos(t); y = sqrt(t).*sin(t); % data (Fermat’s spiral, Figure 1.23(a))
ppxy = spline(t, [x; y]);
ti = linspace(0, 3*pi); % total range, 100 points
xy = ppval(ppxy, ti); % evaluate both splines
plot( xy(1, :), xy(2, :), x, y, ’o- -’); % curve and polygonal line
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2. As a concrete application of spline functions to space curves, we tie the following
knot, well known to sailors, Figure 1.29(a).

Fig. 1.29 Knot well known to sailors.

t = [0, 1/3, 2/3, 1, 4/3, 3/2, 5/3, 2, 7/3, 8/3, 3.1];
x = [-6, -4, -2, 0, 4, 4.8, 4, 0, -2, -4, -6];
y = [4, 2, 0, -2, -2, 0, 2, 2, 0, -2, -4];
z = [1, 1, -1, 1, -1, 0, 1, -1, 1, -1, -1];
T = linspace(0, 3.1, 500);
X = spline(t, x, T); Y = spline(t, y, T); Z = spline(t, z, T); % splines
hold on; view(3);
plot3( X, Y, Z, ’LineWidth’, 14); plot3(-X, Y, -Z, ’r’, ’LineWidth’, 14);

Alternatively, the MATLAB function spline can fit any number n of splines simultane-
ously and return a pp-form structure with all fits. In this approach, when n = 3, we
replace the sixth line (in the program above) by these two lines:

S = spline(t, [x; y; z], T); % vector function of three components
X = S(1, :); Y = S(2, :); Z = S(3, :);

To understand the idea of Figure 1.29(a), we plot the projection in the plane:

plot( X, Y, -X, Y, ’r’, x, y, ’o - -’); % Figure 1.29(b)

1.6.3 Extremal property of a cubic spline

The interpolation cubic spline is the unique solution of the following extremal prob-
lem: Derive a function f (x) (x ∈ [a,b]) minimizing the functional J( f ) =

∫ b
a ( f ′′(x))2 dx

among all functions of class C2 whose graphs contain the given points {(xi,yi)}
(i = 1,2, . . . ,n +1).



1.6 Spline Interpolation of Functions 59

Moreover, some additional conditions are required. The choice of the functional
J( f ) is explained by the fact that, according to the Bernoulli–Euler physical law, the
linearized equation of a bent ruler has the form Ei · f ′′(x) = −M(x), where f (x) is a
bend function, M(x) varies linearly from bearing to bearing (the bending moment), and
Ei is the rigidity of the ruler.

Denote by W 2
2 [a,b] the class of all real functions f ∈ C1[a,b] such that

∫ b

a
( f ′′(x))2 dx < ∞.

Note that W 2
2 [a,b] ⊂ C2[a,b].

Theorem 1.1. Assume that f ∈ W 2
2 [a,b] and that S(x) is the unique cubic spline inter-

polant for f (x) that passes through the points {(xi, f (xi))}n+1
i=1 (a = x1 < · · · < xn+1 = b)

and satisfies either of the end conditions

(a) S′′(a) = S′′(b) = 0 if f ′′(a) = f ′′(b) = 0, (1.6)

(b) S′(a) = f ′(a) and S′(b) = f ′(b). (1.7)

Then
∫ b

a
(S′′(x))2 dx ≤

∫ b

a
( f ′′(x))2 dx.

Proof. Integration by parts and either of the end conditions give us

∫ b

a
S′′(x)( f ′′(x)−S′′(x))dx = −

∫ b

a
S′′′(x)( f ′(x)−S′(x))dx.

Since S′′′(x) = const on the subinterval [xi,xi+1], it follows that
∫ xi+1

xi

S′′′(x)( f ′(x)−S′(x))dx = const ·( f (x)−S(x))|xi+1
xi = 0.

Hence,
∫ b

a S′′(x)( f ′′(x)−S′′(x))dx = 0, and it follows that

∫ b

a
S′′(x) f ′′(x)dx =

∫ b

a
(S′′(x))2 dx. (1.8)

Since 0 ≤ ( f ′′(x)−S′′(x))2, we obtain the integral relationship

0 ≤
∫ b

a
[( f ′′(x))2 −2S′′(x) f ′′(x)+(S′′(x))2]dx. (1.9)

Now (1.8) is substituted into (1.9), which completes the proof. ��
The effectiveness of the spline in approximation can be explained to a considerable

extent by its striking convergence properties.
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Now we are ready to construct the cubic spline S(x) directly. Given {(xi, yi)}n+1
i=1 ,

define hi = xi+1 −xi and mi = S′′(xi). We will seek the segments Si(x) in the prescribed
form involving only the unknowns {mi}:

Si(x) =
mi

6hi
(xi+1 − x)3 +

mi+1

6hi
(x− xi)

3

+
(

yi

hi
− mihi

6

)
(xi+1 − x)+

(
yi+1

hi
− mi+1hi

6

)
(x− xi) . (1.10)

One may verify easily that Si(xi) = yi, Si(xi+1) = yi+1, S′′
i (xi) = mi, S′′

i (xi+1) = mi+1.
To find the values {mi}, use the continuity of the derivative of (1.10): S′

i+1(xi) = S′
i(xi),

where clearly

S′
i−1(xi) =

mi

3
hi−1 +

mi−1

6
hi−1 +di−1, S′

i(xi) = −mi

3
hi − mi+1

6
hi +di

with di = (yi+1 − yi)/hi. From this there follow the n−1 linear equations

mi−1

6
hi−1 +

mi

3
(hi +hi−1)+

mi+1

6
hi = di −di−1, i = 2, . . . ,n. (1.11)

The endpoint constraints (see the table in what follows) complete (1.11) with two equa-
tions, and the resulting linear system has a unique solution. For the natural cubic spline,

⎛

⎜
⎜
⎝

2(h1 +h2) h2

h2 2(h2 +h3) h3

· · ·
hn−1 2(hn−1 +hn)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

m2

m3

· · ·
mn

⎞

⎟
⎟
⎠= 6

⎛

⎜
⎜
⎝

d2 −d1

d3 −d2

· · ·
dn −dn−1

⎞

⎟
⎟
⎠ . (1.12)

N Endpoint Constraints Equations

1 Clamped cubic spline: m1 = 3
h1

(d1 −S′(x1))− 1
2 m2

Specify S′(x1), S′(xn+1) mn+1 = 3
hn

(S′(xn+1)−dn)− 1
2mn

2 Natural cubic spline m1 = mn+1 = 0

3 Extrapolate S′′(x) m1 = m2 − h1
h2

(m3 −m2)
to the endpoints mn+1 = mn + hn

hn−1
(mn −mn−1)

4 S′′(x) = const m1 = m2

near the endpoints mn+1 = mn

5 Specify S′′(x) m1 = S′′(x1)
at each endpoint mn+1 = S′′(xn+1)

The disadvantages of the cubic spline are the following:
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1. There is no local control: Modifying the extreme tangent vectors changes (1.12)
and results in a different set of n tangent vectors. The entire function (and its
graph) is changed!

2. Equation (1.12) is a system of n equations that, for large values of n, may be too
slow to solve.

Generalizing the interpolating splines, one comes to the notion of the smoothing
polynomial spline.

A smoothing cubic spline is a function f (x) (x ∈ [a,b]) of class C2 which

• on each segment [xi,xi+1] is a polynomial of degree d = 3, and which
• minimizes the functional

J( f ) = α
∫ b

a
( f ′′(x))2 dx +

n+1

∑
i=1

ρi( f (xi)− yi)2, (1.13)

where yi and α , ρi > 0 are given numbers.
• End conditions have, for example, either of the following forms:

(a) f ′′(a) = f ′′(b) = 0,

(b) f ′(a) = A and f ′(b) = B (for some A, B).
(1.14)

The choice of weight coefficients α , ρi > 0 involved in the functional allows one
in some sense to control the properties of smoothing splines. If all ρi → ∞, then the
spline is actually an interpolation spline, and for small values of ρi the spline is close
to the straight line obtained by the least-squares method. Some generalizations of these
smoothing splines are known for arbitrary degree d > 3.

Theorem 1.2. Among all functions f ∈W 2
2 [a,b], the cubic spline with either of the end

conditions (1.14) is the unique function that minimizes the functional (1.13).

Proof. Let the function f ∈ W 2
2 [a,b] minimize the functional (1.13), and assume f is

not a cubic spline. Then there is a cubic spline S(x) (x ∈ [a,b]) that interpolates f (x)
on the set {xi} and satisfies either of the conditions (1.14). The second term of (1.13)
coincides for S and f , but, by Theorem 1.1, the first term is smaller for S. Hence J(S) <
J( f ), a contradiction. The uniqueness of a spline also follows from Theorem 1.1. ��

1.7 Two-Dimensional Interpolation and Smoothing

Two-dimensional interpolation and smoothing deal with functions of two variables
f (x,y), and are based on the same ideas as the one-dimensional case.
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1.7.1 Two-dimensional interpolation

MATLAB has two functions for two-dimensional interpolation (i.e., values on a surface):
griddata and interp2. The syntax for the first is griddata(x, y, z, X1, Y1). The function
interp2 has a similar argument list, but it requires x and y to be monotonic matrices
in the form produced by meshgrid. The commands interp2(X, Y, Z, XI, YI, method) and
griddata(x, y, z, XI, YI, method) specify an alternative interpolation method:

’nearest’ – nearest-neighbor interpolation (i.e., piecewise constant),
’linear’ – bilinear interpolation (default),
’spline’ or ’cubic’ – bicubic spline interpolation.

Example. Using the commands meshgrid, griddata.

x = rand(100, 1)*4 - 2;
y = rand(100, 1)*4 - 2;
z = x.*exp(-x.ˆ2 - y.ˆ2);
hi = -2 : .1 : 2;
[XI, YI] = meshgrid(hi);
ZI = griddata(x, y, z, XI, YI);
mesh(XI, YI, ZI),
hold on; plot3(x, y, z, ’o’) % Figure 1.31(a)

These concepts extend naturally to higher dimensions where other interpolation
functions interp3, griddata3, interpn (for three-dimensional), and griddatan, ndgrid (for
n-dimensional) interpolation apply.

The points of the arrays under consideration above are enumerated so that their
abscissas and ordinates generate two strongly increased sequences. This determines
the selection of the approximating class (graphs of functions) and the mode of their
construction. Nevertheless, the method outlined above permits the construction of the
interpolating surface with success in a more general case in which a spline is computed
for each axis with respect to the variables or parameters (u,v), and interpolation or
smoothing surfaces may be obtained for arbitrary given points in the space R

N (N ≥ 3).
The class of modeled surfaces is significantly enlarged by the addition of self-in-

tersecting, self-overlying surfaces, or surfaces which cannot be projected on any of the
coordinate planes. Surfaces from the new class are described by parametric equations
r(u,v) = [x1(u,v), . . . , xN(u,v)].

The plan to visualize the spline surfaces is the following.

1. Given a rectangle D = [a,b]× [c,d] of parameters (u,v), define an auxiliary net
π = {a = u1 < · · · < un = b, c = v1 < · · · < vm = d} where nm coincides with
the number of control vertices.
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Fig. 1.30 Spline interpolation of surfaces: torus, hyperboloid and helicoid.

2. Given an array of nm control vertices in R
N,

P = {Pi j = (x1;i j, . . . ,xN;i j), i = 0,1, . . . ,n; j = 0,1, . . . ,m},

one defines auxiliary arrays Xk = {(ui j,vi j,xk;i j)}i=1,...,n
j=1,...,m , k = 1, . . . ,N.

3. For each array Xk (k = 1, . . . ,N) one derives the corresponding spline function
xk(u,v), where (u,v) ∈ D.

Such a parameterized surface may not be C1-regular, because one cannot ex-
clude the possibility of collinearity (for some value (u0,v0)) of the velocity vectors
r′

u(u0,v0), r′
v(u0,v0). In Section 9.6 we study further useful possibilities for approxi-

mating surfaces.

Example. Let us plot spline surfaces in R
3, using interp2.

First, we prepare the data for a single-sheeted hyperboloid:

n = 4; m = 5; % enter n,m
[uu, vv] = meshgrid(-1 : 2/(n - 1) : 1, 0 : 2*pi/(m - 1) : 2*pi);
X = cosh(uu).*cos(vv); Y = cosh(uu).*sin(vv);
Z = sinh(uu); % enter X ,Y,Z
[UI, VI] = meshgrid(-1 : .1 : 1, 0 : .2 : 2*pi);

Then we calculate splines

SX = interp2(uu, vv, X, UI, VI, ’spline’);
SY = interp2(uu, vv, Y, UI, VI, ’spline’);
SZ = interp2(uu, vv, Z, UI, VI, ’spline’);

and plot the surface (with the control points) by the typical program:

hold on; view(3); grid on; axis equal;
plot3(X, Y, Z, ’o- -k’, ’LineWidth’, 2);
surf(SX, SY, SZ); % Figure 1.30(b)
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1.7.2 Two-dimensional smoothing

The method of least squares (or polynomial regression) is often used for smoothing
purposes. Define x = (x1, . . . ,xk) ∈ R

k. Given a set of data {xi;yi}n+1
i=1 , the method of

least squares consists in finding the functional form p(x,a1, . . . ,am) (containing several
adjustable parameters) that minimizes the value ε2 = ∑n+1

i=1 (p(xi,a1, . . . ,am)− yi)2.
Assuming that the values {yi = f (xi), i = 1, . . . ,n+1} are given up to a certain error,

it is better to use smoothing polynomials (of degree less than n), or spline functions. In
this case the graph of the resulting function y = f̃ (x) lies near the given points (xi,yi).

Note that the command polyfit does not work for R
k, k > 1.

Fig. 1.31 (a) Bicubic spline interpolation. (b) Linear regression.

Example. Linear regression is a form of polynomial regression in which the poly-
nomial is of first degree, i.e., y = c1x1 + · · ·+ ckxk + c0. The linear regression method
minimizes the functional δ 2 = ∑n

i=1(Yi −yi)2, where Yi = c1x1i + · · ·+ckxki +c0. Hence
we find the best solution (c0,c1, . . . ,ck) of the over-defined linear system

c1x1i + · · ·+ ckxki + c0 = yi, i = 1,2, . . . ,n,

or, in matrix form, Ac = y, where A =

⎛

⎜
⎜
⎝

1 x11 . . . x1k

1 x21 . . . x2k

. . . . . . . . . . . .
1 xn1 . . . xnk

⎞

⎟
⎟
⎠.

In MATLAB we use the method “\” (backslash)!
For instance, let k = 2. The graph of a solution is a plane in R

3:

c1x1i + c2x2i + c0 = yi, i = 1,2, . . . ,n.
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The linear approximation may be obtained by direct matrix calculation. (The bilinear
and bicubic approximations are considered in the exercises.)

x1 = rand(50,1)*2 - 1;
x2 = rand(50,1)*2 - 1;
y = x1.*exp(-x1.ˆ2 - x2.ˆ2); % data (k = 2)
A = [ones(size(x1)) x1 x2]; % matrix (k = 2)
c = A\\\\ y % solution coefficients ci

Then we plot, see Figure 1.31(b):

hold on; axis equal; view(3);
syms u v;
ezsurf(u, v, c(1) + c(2)*u + c(3)*v, [-1, 1, -1, 1]); % plane
plot3(x1, x2, y, ’o’); % points

The error δ 2 is estimated as:

Y = A*c;
r = y - Y; d2 = r ’ * r

1.7.3 Extremal property of a bicubic spline

Let D = [a,b]× [c,d] be a given rectangle. The class C2,2(D) contains all functions

on D such that the derivatives f (i, j) def= ∂ i+ j

∂xi∂y j f (x,y) (i, j = 0,1,2) are continuous. Here

f (i,0), f (0, j), and f (0,0) mean ∂ i f
∂xi , ∂ j f

∂y j , and f , respectively.

Denote by W 2,2
2 (D) the class of all real functions f ∈ C1,1(D) such that

∫∫

D

(
f (2,2)(x,y)

)2
dxdy < ∞.

Note that C2,2(D) ⊂ W 2,2
2 (D). The class C1,1(D) consists of all functions on D such

that f (0,1), f (1,0), and f (1,1) are also continuous on D.
We assume that f (x,y) is in W 2,2

2 (D) and that the rectangle D is partitioned into
subrectangles Di j = [xi,xi+1]× [y j,y j+1] by a mesh

π = {a = x1 < · · · < xn+1 = b, c = y1 < · · · < yn+1 = d}.

For simplicity, we use a common n for both coordinates. By analogy with the case of
curves (Section 1.6), consider the extremal problem below.

Problem. Derive a function f (x,y) on a rectangle D minimizing a functional J( f ) =∫
D( f (2,2)(x,y))2 dxdy among all functions of class C2,2(D) whose graphs contain the

given points {(xi, yi, zi j)}n+1
i, j=1.
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The interpolating bicubic splines are solutions of the problem in question in a far
wider class of functions, namely, in the space W 2,2

2 (D).

In order that the solution of the problem be unique, additional requirements are
necessary. Let us describe some of them. The type I and II representations of a spline
S(x,y) include

(I) S(1,0) = f (1,0) at P1 j, Pn+1, j,

S(0,1) = f (0,1) at P1 j, Pn+1, j,

S(1,1) = f (1,1) at P11, P1,n+1, Pn+1,1, Pn+1,n+1, (1.15)

(II) S(2,0) = 0 if f (2,0) = 0 at P1 j, Pn+1, j,

S(0,2) = 0 if f (0,2) = 0 at Pi1, Pi,n+1,

S(2,2) = 0 if f (2,2) = 0 at P11, P1,n+1, Pn+1,1, Pn+1,n+1. (1.16)

The conditions for a periodic double cubic spline are not considered here.

Theorem 1.3. Let f ∈W 2,2
2 (D), and let S(x,y) be the unique bicubic spline interpolant

for f that passes through the points {(xi, yi, zi j)}n+1
i, j=1 and satisfies either of the above

boundary conditions (1.15), (1.16). Then
∫∫

D

(
S(2,2))2

dxdy ≤
∫∫

D

(
f (2,2))2

dxdy. (1.17)

Proof. Denote by δ the difference δ = f −S. We have the obvious identity
∫∫

D
( f (2,2))2dxdy =

∫∫

D
(S(2,2))2dxdy +

∫∫

D
(δ (2,2))2dxdy +2

∫∫

D
δ (2,2)S(2,2)dxdy.

(1.18)
We modify the last term on the right-hand side of (1.18) by integrating twice by parts
with respect to x and using S(4,2) = 0:

∫∫

D
δ (2,2)S(2,2)dxdy =

∫ d

c

[
n

∑
i=1

∫ xi+1

xi

δ (2,2)S(2,2)dx

]

dy

=
∫ d

c

n

∑
i=1

[
δ (1,2)S(2,2) −δ (0,2)S(3,2)

]xi+1

xi
dy,

and after two more integrations by parts with respect to y,

∫∫

D
δ (2,2)S(2,2)dxdy

=
n

∑
j=1

{
n

∑
i=1

[
δ S(3,3) −δ (1,0)S(2,3) −δ (0,1)S(3,2) +δ (1,1)S(2,2)

]xi+1

xi

}y j+1

y j

. (1.19)
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Since S(3,3) is constant on each rectangle Di j, it follows that

n

∑
j=1

[
n

∑
i=1

(
δ ·S(3,3)

)xi+1

xi

]y j+1

y j

= 0. (1.20)

If we substitute (1.20) and (1.19) into (1.18), we are led to the identity

∫∫

D

(
f (2,2)

)2
dxdy =

∫∫

D

(
S(2,2)

)2
dxdy +

∫∫

D

(
δ (2,2)

)2
dxdy

+2
n

∑
j=1

{
n

∑
i=1

[
δ (1,1)S(2,2) −δ (1,0)S(2,3) −δ (0,1)S(3,2)

]xi+1

xi

}y j+1

y j

, (1.21)

in which S(x,y) is a double cubic polynomial in each rectangle Di j. Since S(x,y) is a
double cubic spline in D, the last identity is reduced to

∫∫

D

(
f (2,2)

)2
dxdy =

∫∫

D

(
S(2,2)

)2
dxdy +

∫∫

D

(
δ (2,2)

)2
dxdy

+2

[(
δ (1,1)S(2,2)

)b

a

]d

c
−2

[
n

∑
i=1

(
δ (1,0)S(2,3)

)xi+1

xi

]d

c

−2

[
n

∑
j=1

(
δ (0,1)S(3,2)

)y j+1

y j

]b

a

.

(1.22)

Although we cannot expect S(3,2) to be continuous at a grid line x = xi, both its left-
and right-hand limits are continuous functions of y (and similarly for S(2,3) with the
role of x and y interchanged). Under either of the boundary conditions (1.15), (1.16),
the identity (1.22) reduces to the integral relation

∫∫

D

(
f (2,2)

)2
dxdy =

∫∫

D

(
S(2,2)

)2
dxdy +

∫∫

D

(
δ (2,2)

)2
dxdy. (1.23)

From (1.23) immediately follows the inequality (1.17). ��
Generalizing the interpolating bicubic splines, one arrives at the notion of a smooth-

ing bicubic polynomial spline.

Definition 1.2. A smoothing bicubic spline is a function S(x,y) on D = [a,b]× [c,d] of
class C(2,2) which

• is a bicubic polynomial on each subrectangle Di j = [xi,xi+1] × [y j,y j+1], and
which

• minimizes the functional
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J( f ) = α
∫∫

D

(
f (2,2)

)2
dxdy +

n+1

∑
i, j=1

ρiσ j ( f (xi,yi)− zi j)
2

+
n+1

∑
i=1

ρi

∫ d

c

(
f (0,2)(xi,y)

)2
dy +

n+1

∑
j=1

σ j

∫ b

a

(
f (2,0)(x,y j)

)2
dx, (1.24)

where zi j and α , ρi, σ j > 0 are given numbers.
• Boundary conditions may have either of the following forms:

(I) f (1,0) = A j at P1 j, Pn+1, j,

f (1,1) = Ci j at P11, P1,n+1, Pn+1,1, Pn+1,n+1,

f (0,1) = Bi at P1 j, Pn+1, j, for some Ai, Bj, Ci j; (1.25)

(II) f (2,0) = 0 at P1 j, Pn+1, j, f (0,2) = 0 at Pi1, Pi,n+1,

f (2,2) = 0 at P11, P1,n+1, Pn+1,1, Pn+1,n+1. (1.26)

Theorem 1.4. Among all functions f ∈ W 2,2
2 (D), the bicubic spline with either of the

boundary conditions (1.25) or (1.26) is the unique function that minimizes the func-
tional (1.24).

Proof. Let the function f (x,y)∈W 2,2
2 (D) minimize the functional (1.24), but assume f

is not a bicubic spline. Then there is a bicubic spline S(x,y) on {D,π} that interpolates
f (x,y) on the set π and satisfies either of the boundary conditions (1.15), (1.16). The
second term of (1.24) coincides for S and f , but, by Theorem 1.3, the first term is
smaller for S. Hence J(S) < J( f ), which is a contradiction. The uniqueness of the
smoothing spline also follows from Theorem 1.3. ��

A comparison of interpolating and smoothing splines satisfying the same boundary
conditions shows that the oscillation corresponding to the interpolating spline practi-
cally disappears when we use the smoothing spline.

1.8 Exercises

Section 1.1 1. Verify that a set with 3 elements Z3 = {0,1,2} is a field if we
define addition ⊕3 and scalar multiplication ⊗3 as follows:

⊕3 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

⊗3 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

(1.27)
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2. Let ε := 3
√

2. Then Q + Qε + Qε2 := {a + bε + cε2 : a,b,c ∈ Q} is a field (a
subfield of R). Why is Q+Qε not a field?

3. Find
(a) all solutions of the equation x2 = x in Z12.
(b) integers u,v such that 31u + 17v = 1, and hence find the multiplicative inverse

of 17 in Z31.
4. Find all solutions in positive numbers p,q ∈ Z

(a) of the equation 1/p +1/q = 1/2,
(b) of the inequality 1/p +1/q > 1/2.
(c) Repeat for the two cases given by 1/p +1/q +1/r ≥ 1.
5. Write 187/57 and −19/70 as continued fractions.
6. Let fn be Fibonacci numbers, τ the golden section. Show that
(a) fn = [τn − (−τ)−n]/

√
5 (Binet’s formula).

(b) τ =
√

1 +
√

1 +
√

1 + · · ·.
7. Prove that |z1 ± z2| ≥

∣
∣|z1|− |z2|

∣
∣ for any z1,z2 ∈ C.

8. Plot a regular n-gon (n = 5,6,7) inscribed in the unit circle.
9. Verify the identities cosx = 1

2(eix + e−ix), sinx = 1
2i(e

ix − e−ix).
10. Find the equation of a circle through the points z1,z2,z3 ∈ C.
11. Show that q = q0 + q1i + q2 j + q3k is similar to the complex number q0 ±√
q2

1 +q2
2 +q2

3 i.
12. Show that
(a) all pure quaternions of norm one satisfy the equation x2 +1 = 0;
(b) the equation x2i− ix2 = 1 has no solutions in H (Hint: Note that i(x2i− ix2) i =

x2i− ix2 but i1i = −1);
(c) if a,b,c ∈ H, and a,b are not similar, then the equation xa+bx = x has a unique

solution.
13. Show that (a) real or complex numbers form a field, (b) quaternions form a skew

field.
14. Use MATLAB to solve the system of equations given by

x1 +3x2 = 22, 7x1 +11x2 = −10.

Hint. Edit and execute the following:

M = [1 3; 7 11]; b = [22; -10];
X = inv(M)*b

The vector X can also be obtained using the left slash notation:

X = M \\\\ b % see also Example, p. 49.

15. There is a multiplication rule for R
8, called octonion multiplication,
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i j k l m n o
i −1 k − j m −l −o n
j −k −1 i n o −l −m
k j −i −1 o −n m −l
l −m −n −o −1 i j k
m l −o n −i −1 −k j
n o l −m − j k −1 −i
o −n m l −k − j i −1

(1.28)

Show that it is not associative, so it makes R
8 into something weaker than a skew field.

Show that octonion multiplication preserves a norm. Find the inverse to 2+ i−m+3o.

Section 1.2 1. Plot a triangle with the vertices P = (1,2), Q = (3,−4), R =
(−1,0):

x = [1, 3, -1, 1]; y = [2, -4, 0, 2]; plot(x, y, ’LineWidth’, 2)

2. Check that the M-file arrow.m plots an “arrow” with tail at the point (x0,y0) and
tip at the point (x0 +a,y0 +b). Writing P = [x0,y0] and V = [a,b], the complete call is
arrow(P, V, color). The third argument, color, is optional. If the call is simply arrow(P,
V), the arrow will be blue. To obtain a red arrow, use arrow(P, V, ’r’).

function y = arrow(P, V, color) % see [Cooper]
x0 = P(1); y0 = P(2);
a = V(1); b = V(2);
l = max(norm(V), eps);
u = [x0 x0 + a]; v = [y0 y0 + b];
hchek = ishold;
plot(u, v, color); hold on
h = l - min(.2*l, .2);
v = min(.2*l/sqrt(3), .2/sqrt(3) );
a1 = (a*h - b*v)/l; b1 = (b*h + a*v)/l;
plot([x0 + a1, x0 + a], [y0 + b1, y0 + b], color)
a2 = (a*h + b*v)/l; b2 = (b*h - a*v)/l;
plot([x0 + a2, x0 + a], [y0+b2, y0+b], color)
if hchek == 0, hold off, end

end

3. Solve analytically and graph the equation e−x = sin(x).

x = 0 : pi/1000 : pi;
plot(x, exp(-x), ’- -’, x, sin(x));

Hint. The intersection of the two graphs consists of two points, Figure 1.3(b), corre-
sponding to the roots x1 ≈ 0.59, x2 ≈ 3.1 of the equation exp(−x) = sin(x). Find them
numerically by clicking the mouse. The larger root, 3.10, is returned by the command
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fzero(’exp(-x) - sin(x)’, 3) % Answer: 3.0964.

To obtain the root 0.589, write

fzero(’exp(-x) - sin(x)’, 0)

4. From a piece of cardboard 4 in. × 5in. construct a rectangular box without a lid
having maximal volume.
Hint. Let x be the height of the box. Obviously, x ∈ [0,2]. Calculate the volume by the
formula V (x) = x(4−2x)(5−2x) and plot the graph of the polynomial V .

syms x; V = x*(4 - 2*x)*(5 - 2*x); ezplot(V, [0, 2]);

The highest point of the graph is ≈ (0.74,6.56). For an exact solution we solve the
equation that sets the derivative of the polynomial equal to zero.

Vx = simplify(diff(V)),
x0 = double(solve(Vx)), subs(V, x, x0)

Vx = 12x2 −36x +20, 0.7362, 6.5642 % Answer

5. Find the minimal surface area of a cylinder with radius R if its volume V is 1.
Hint. Show that V (R) = 2

R + 2πR2, Figure 1.3(c). Use the fminbnd function to find a
local minimizer of the function in a given interval.

W = @(R)(2/R + 2*pi*Rˆ2); [R, fval] = fminbnd(W, 0, 5)

R = 0.5419 fval = 5.5358 % Answer

6. Plot the graph of the rational function y = x6−x2+1
x5−6x4+12x3−12x2+11x−6

. Decompose
this function into partial fractions.

syms x;
f = (xˆ6 - xˆ2 + 1)/(xˆ5 - 6*xˆ4 + 12*xˆ3 - 12*xˆ2 + 11*x - 6);
ezplot(f, [0.5, 4]); %Figure 1.3(d)
partfrac(f) % Answer: x +6 + 1

4
1

x−1 − 61
5

1
x−2 + 721

20
1

x−3 − 1
10

x
x2+1

7. Investigate the functions using derivatives and plot their graphs:

(1) y = logx− arctanx (2) y = (x−3)/
√

(4 + x2) (3) y = x3 logx

(4) y = |1 + x|3/2/
√

x (5) y = x2 e1/x (6) y = ex/(4− x2)

(7) y =
√

1− e−x2 (8) y = (1 + x)1/x (9) y = e1/(1−x2)/(1 + x2)

(10) y = 2
√

x2+1−
√

x2−1 (11) y = log2(1− x2)

(12) y = x + log(x2 −1) (13) y = tanx + sinx

(14) y = arcsin((1− x2)/(1 + x2)) (15) y = arctan((x−3)/(x2 +4)).
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Section 1.3 1. Create a step function using the round function, which rounds
numbers to the nearest integer, as follows:

H = sym(pi/3)*sym(’round(x/pi)’);
ezplot(H, [-2, 8])

Show that each step has width π and the jump between steps is π/3.

2. Verify the identity |x| = x(H(x)−H(−x)) using the function abs(x):

fplot(’abs(x)’, [-2, 2])

3. Plot the graph of the integer part of x: y = [x] using the command floor(x) (see
also the command ceil(x) = floor(x) + 1).

ezplot(’floor(x)’, [-5, 5]);

4. Verify that the graph y = {x} = x - floor(x), Figure 1.11(b) (the fractional part), is
similar in form to graphs of y = arccot(cot(x)) and y = arctan(tan(x)).

5. A periodic impulse (“rectangular wave”) y = H(x)−2H(x−T)+2H(x−2T)−
·· · can be defined by various methods. Plot its graph for T = 1 using the command

fplot(’heaviside(x)*sign(sin(pi*x))’, [-2, 15]), axis equal % Figure 1.32(a)

6. Plot infinite stairs y = ∑∞
i=0 H(x− i) using the command

fplot(’heaviside(x)*floor(x)’, [-2, 15]) % Figure 1.32(b)

Then plot steep stairs with the height of steps defined by the items of the sum S =
∑∞

n=0 an. Create a function M-file and then plot:

function f = Hn(x) % M-file function
an = @(n) n/4; if x < 0; f = 1; else f = Hn(x - 1) + an(floor(x)); end

end
fplot(’Hn(x)’, [-2, 8.2]) %Figure 1.32(c)

Fig. 1.32 Impulse, infinite stairs, steep stairs { n
3}.
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7. Plot the graphs of functions containing the operations { }, [ ]:
(1) y = [ f (x)], (2) y = f ([x]), (3) y = { f (x)}, (4) y = f ({x}),

where f = x2,
√

x, 2x, cosx; see Figure 1.11(b,c).
8. The reader is invited to consider some examples and formulate a plan for plotting

the graphs of functions whose analytical expression contains the operation abs: y =
f (|x|), y = | f (x)|, y = | f (|x|)|.

9. The primitive of a function of class Ck, where k ≥ 0, is of class Ck+1. Direct
symbolic integration of piecewise differentiable functions in MATLAB (version 7.8)
does not always give the best result. For example, such symbolic integration of |2−|x| |
gives a discontinuous function:

syms x;
f = abs(2 - abs(x)); g1 = int(f, x)

g1 = −(x−2sign(x))2/(2sign(x)sign(2− x/sign(x))) % wrong answer

The right answer is g = x
2 (|x−2|− |x|+ |x +2|−4)−|x−2|+ |x +2|+4 or

g1 =

⎧
⎪⎪⎨

⎪⎪⎩

−2x− x2/2, x ≤ −2,
2x +4 + x2/2, x ≤ 0,
2x +4− x2/2, x ≤ 2,
−2x +8 + x2/2, 2 < x.

We verify that dg
dx = f and plot the graphs.

g = (abs(x - 2) - abs(x) + abs(2 + x) - 4)*x/2 - abs(x - 2) + abs(2 + x) + 4;
ezplot(g, [-5, 5]); % graph of g
f1 = simplify(diff(g, x)) % f − f1 = 0
ezplot(f - f1, [-25, 5]);

10. Plot the graph of the recursively defined function f (x + π) = f (x)+ sin(x) and
f (x) = 0 (0 ≤ x ≤ π). Hint:

function f = f2(x) % Create M-file!
if x < 0; f = f2(x + pi) + sin(x + pi);
elseif x < pi; f = 0;
else f = f2(x - pi) + sin(x - pi);
end;

end
fplot(’f2(x)’, [-2*pi, 4*pi]) % Figure 1.10(b)

11. Plot the graphs of the functions (using animation) and find their formulae.
(1) y = limn→∞(1− x)2n (|x| ≤ 1) (2) y = limn→∞

n
√

1 + en(x+1)

(3) y = limn→∞
log(2n+xn)

n (x ≥ 0) (4) y = limn→∞
x+x2 enx

1+enx

(5) y = limn→∞
x+enx

1+enx (6) y = limn→∞
x2n sin(πx/2)+x2

1+x2n .
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12. Plot the graphs of the statistical functions:

(1) The Poisson distribution P{ξ = k} = λ k e−λ

k! (k = 0, 1, 2, . . .) (density function)
with parameter λ > 0.

lambda = 5; x = 0 : 15;
y = poisspdf(x, lambda);
stem(x, y, ’.’); stairs(x, y)

Plot the graph of the Poisson distribution function, see Figure 1.15(c),

n = 15; yy(1) = y(1);
for k = 1 : n; yy(k + 1) = yy(k) + y(k + 1); end;

stairs(x, yy)

(2) The uniform distribution f (x) =

{
1/(b−a), x ∈ [a,b],
0, x �∈ [a,b]

on [a,b] has the con-

tinuous distribution F(x). We plot the graphs.

syms a b x;
f = (heaviside(x - a) - heaviside(x - b))/(b - a)
f0 = subs(subs(f, a, 1), b, 3)
ezplot(f0, [-1, 4]) % Figure 1.33(a)
F0 = int(f0, x), ezplot(F0, [-1, 4]) % Figure 1.33(b)

Fig. 1.33 Uniform and Simpson distributions.

(3) The Simpson distribution (triangle) on the segment [a,b].

f (x) =

{
2

b−a − 2
(b−a)2 |a +b−2x|, x ∈ [a,b],

0, x �∈ [a,b].

syms a b x;
f = 2/(b - a) - 2/(b - a)ˆ2*abs(a + b - 2*x);
fab = f*(heaviside(x - a) - heaviside(x - b));
f0 = subs(subs(fab, a, 1), b, 3);
ezplot(f0, [0, 4]), axis equal % Figure 1.33(c)
F0 = simple(int(f0, x))
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ezplot(F0, [0, 4]) % MATLAB gives wrong answer:
% F0 is discontinuous and F0(3) = 5 > 1.

We represent and plot the right F0 using an additional construction:

x2 = 1 : 0.1 : 2; y2 = 1/2*x2.ˆ2 - x2 + 1/2;
x3 = 2 : 0.1 : 3; y3 = -1/2*x3.ˆ2 + 3*x3 - 7/2;
plot([x2 x3], [y2 y3]), grid on; % Figure 1.33(d)

Section 1.4 1. Check that roses belong to the family of cycloidal curves: epitro-
choids for k > 1 and hypotrochoids for k < 1.

Hint. Substitute h = R+mR in the parametric equations of trochoids (see Section 5.1)
and obtain the trochoidal roses ρ = 2R(1 +m)sin(ϕ+π/2

2m+1 ).
2. Plot (approximately) the crosses by their polar equations, Figure 1.25.

(2) St. Andrew’s cross.

f = ’ min(1/(2*abs(cos(2*t))), 2) ’;
hold on; axis equal; ezpolar(’2.05’); ezpolar(f); % Figure 1.25(2)

(3) Catacomb cross.

f = ’ min(2/(3*abs(sin(2*t))), 2) ’;
hold on; axis equal; ezpolar(’2.07’); ezpolar(f, [-.01, 2*pi]); % Figure 1.25(3)

(4) St. George’s cross, two examples.

f1 = ’ min((9/(10*abs(sin(2*t))))ˆ5, 2) ’;
hold on; axis equal; ezpolar(’2.05’); ezpolar(f1, [-.01, 2*pi]);% Figure 1.25(4)
f2 = ’min(4/((2*sin(2*t)))ˆ4, 2)’;
hold on; axis equal; ezpolar(’2.05’); ezpolar(f2, [-.01, 2*pi]); % Figure 1.25(5)

(5) On-Bread cross.

f = ’ min(1/(10*abs(sin(2*t))), 1) ’;
hold on; ezpolar(’1.02’); ezpolar(’1.2’);
ezpolar(f, [-.1, 2*pi]); axis equal; % Figure 1.25(6)

(6) St. George’s cross (sharp). Explain the program. First, calculate t0:

syms t; g = 4/(2*sin(2*t)).ˆ4;

sol = solve(g - 2, t); % −1
2asin( 1

22
1
4 ); 1

2 asin( 1
22

1
4 );−1

2 asin( i
22

1
4 ); 1

2asin( i
2

1
4 )

t1 = sol(1); t0 = double(t1);
hold on; ezplot(’.5’); ezplot(1/g, [-t0, 2*pi - t0]); % Figure 1.25(8)

t1 = (1/2) arcsin(21/4/2) t0 = 0.3184 % Answer

Next, create the function M-file:
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function f = George cross(t, t0)
g = 4/(2*sin(2*t)).ˆ4; h = @(t) 2*(tˆ2 - t0ˆ2) + 2;
f1 = h(t)*(t < t0);
f2 = g*((t < pi/2 - t0) - (t < t0));
f3 = h(t - pi/2)*((t < pi/2 + t0) - (t < pi/2 - t0));
f4 = g*((t < pi - t0) - (t < pi/2 + t0));
f5 = h(t - pi)*((t ¡ pi + t0) - (t < pi - t0));
f6 = g*((t < 3*pi/2 - t0) - (t < pi + t0));
f7 = h(t - 3*pi/2)*((t < 3*pi/2 + t0) - (t < 3*pi/2 - t0));
f8 = g*(1 - (t < 3*pi/2 + t0));
f = f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8;

end

Finally, plot the figure:

t0 = 0.3184; ezpolar(@(t) George cross(t, t0), [-t0, 2*pi - t0])
% Figure 1.25(7)

3. Plot the polygon through some points of Archimedes’ spiral.

i = 0 : 20; polar(i, i) % Figure 1.16(a)

4. Plot the stopwatch with moving arrow using pause.

r1 = @(n) cosd(30*(3 - n)); r2 = @(n) sind(30*(3 - n));
hold on; axis equal; ezpolar(’1’); ezpolar(’.05’);
text(-.1, -.3, ’Cosmos’);
for i = 1 : 12; text(.9*r1(i), .9*r2(i), num2str(i)); end;
for n = 0 : 12;
compass(.8*r1(n), .8*r2(n)); pause(0.2);
compass(.8*r1(n), .8*r2(n), ’w’);
end; % Figure 1.16(d)

5. Plot the sunflower ρ = 3 + |cos(nϕ)|, Figure 1.34(a).

n = 7; t = linspace(-pi, pi, 101);
hold on; axis equal; ezpolar(’3’); polar(t, 3 + abs(cos(n*t)), ’y’)

6. Plot the loop coupling ρ = 2 cos(2ϕ)+1 where ϕ ∈ [0, 2π].

ezpolar(’2*cos(2*t) + 1’) % Figure 1.34(b)

7. Consider a generalization ρ = 2acos(nϕ) − b (a,b > 0) of the cardioid and
limaçon and plot them, for example, for n = 3, a = 0.5, and b = 2.

8. Plot the leaf of a Japanese maple (Acer palmatum) by the equation ρ = (1 +
sin(t))(1 +0.3cos(8 t))(1 +0.1cos(24 t)).

ezpolar(’(1 + sin(t)).*(1 + .3*cos(8*t)).*(1 + .1*cos(24*t))’) % Figure 1.35(a)

Plot another leaf by the following equation in polar coordinates:
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Fig. 1.34 Sunflower, loop coupling, Pascal’s limaçon and cardioid.

Fig. 1.35 A leaf of a Japanese maple and another leaf.

syms t;
g = 100/(100 + (t - pi/2).ˆ8); % For scaling
ezpolar(g.*(2 - sin(7*t) - cos(30*t)/2), [-pi/2, 3*pi/2]) % Figure 1.35(b)

9. The equations ρ = 2acosϕ and ρ = a/cos(ϕ −ϕ0) define in polar coordinates a
circle and a line, respectively.

What is the geometrical sense of the parameters a and ϕ0 ?
Both equations are particular cases of the equation ρm = am cos(mϕ), which defines

in polar coordinates the family of curves called sinusoidal spirals. Check that in addi-
tion to the line and the circle, this family includes the rectangular hyperbola (m = −2),
the parabola (m = −1/2), the cardioid (m = 1/2), the lemniscate of Bernoulli (m = 2),
and the sinusoidal spiral (m = ±4).

10. The hyperbolic spiral ρ = a/ϕ was studied by P. Varignon in 1704. The pole
plays the role of an asymptotic (limit) point. The asymptote is the straight line parallel
to the polar axis at the distance a from it. Plot this curve and its conchoid.

ezpolar(’2/t’, [.5, 6*pi]) % Figures 1.36(a,b)
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11. The lituus is the name given (from 1714) to the spiral curve defined by the
equation ρ = a/

√ϕ. Show that the polar axis is its asymptote.

ezpolar(’2/sqrt(t)’, [.2, 16*pi]) % Figure 1.36(c)

Fig. 1.36 Spirals: hyperbolic and its conchoid, lituus.

Section 1.5
1. Find the product of two polynomials,

a = [1 2]; b = [1 3 ]; c = conv(a, b) % Answer: c = 1 5 6

2. Find the roots of the polynomial p(x) = (x +5)2 = x2 +10x +25.

p = [1 10 25]; rp = roots(p) % Answer: rp = −5, −5
P = poly(rp) % verify

3. Find the derivative of a rational polynomial using polyder:

[nd, dd] = polyder(n, d) % the numerator and denominator of (n/d)′

nd = −1 10 −25 −250 −625,
dd = 1 10 75 250 625 0 0 % Answer

4. Show that
(a) the choice of similar (nonuniform) distribution of nodes

xi = −cos
(2i+1

2n
π
)
, where i = 0, . . . ,n, (1.29)

shares the same convergence properties of the Chebyshev nodes;
(b) the nodes (1.29) are actually zeros of the Chebyshev polynomial

Tn(x) = cos(n arccos x) for |x| ≤ 1. (1.30)

Find Tn(x) for up to n = 7 and plot their graphs. Hint:

syms x; n = 2 : 7; T = simplify(expand(cos(n.*acos(x))))
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(c) One may write (1.30) via the trigonometry in a recursive form as

T0(x) = cos 0 = 1, T1(x) = cos(arccos x) = x,

Tn+1(x) = 2xTn(x)−Tn−1(x). (1.31)

The leading coefficient (of xn) in Tn(x) is 2n−1 when n > 0.
(d) Symmetry: T2n+1(x) is an odd function, T2n(x) is an even function.
5. Verify that L1,0(x) = x−x2

x1−x2
, L1,1(x) = x−x1

x2−x1
. Show that Ln,i(x) = ϕ(x)

(x−xi)ϕ ′(xi)
.

6. Plot L6(x) over the range [1,9] and look at its strange behavior outside of the
segment containing the given nodes, Figure 1.26(a).

x = 2 : 8; y = [32, 34, 36, 34, 39, 40, 37]; n = length(y);
xi = 1 : .01 : 9;
f = polyfit(x, y, n - 1), p = polyval(f, xi);

f = 0.0972 -2.933 35.47 -219.1 725.4 1.214. 831.0 % Answer

Hence f = 7
72 x6 − 44

15 x5 + 1277
36 x4 − 2629

12 x3 + 52231
72 x2 − 72839

60 x +831.

plot(xi, p, x, y, ’ro’); % Figure 1.26(a)

7. Alternatively, you can use symbolic polynomials:

P = poly2sym(f, x)
ezplot(P, [1, 9]);

Conclude from this that interpolation polynomials cannot be used for the extrapolation
of functions.

8. Plot the graph of L6(x) on the segment [1.8,8.2], Figure 1.26(b), and look at its
oscillations. Use the range xi = 1.8 : .01 : 8.2.

9. Find interpolation polynomials for the data from Example, p. 49.

x = 2 : 8; y = [32, 34, 36, 34, 39, 40, 37];
x2 = linspace(0, 10, 25); % extended segment
P1 = polyfit(x, y, 1), f1 = polyval(P1, x2); % linear
P2 = polyfit(x, y, 2), f2 = polyval(P2, x2); % quadratic
P3 = polyfit(x, y, 3), f3 = polyval(P3, x2); % cubic, etc.

P1 = 1.0714 30.6429 P2 = −0.1905 2.9762 26.6429
P3 = −0.1111 1.4762 −4.5794 36.6429 % Answer

In classical notation the polynomials are

P1 = 1.0714x +30.6429, P2 = −0.1905x2 +2.9762x +26.6429,
and P3 = −0.1111x3 +1.4762x2 −4.5794x +36.6429.

Plot polynomials on the extended segment to compare with the data:

plot(x, y, ’o’, x2, f1, x2, f2, x2, f3) % Figure 9.2(a)
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10. Extract 15 values of the function y = sin(x) (|x| ≤ π), approximate these values,
and visualize them on the segment |x| ≤ 4. Hint:

x1= linspace(-pi, pi, 15); y1 = sin(x1); % points
n = 3; f1 = polyfit(x1, y1, n); % polynomial of degree n
x2 = -4 :.4 : 4; y2 = sin(x2); % extended segment
fp = polyval(f1, x2); % values of polynomial
plot(x2, y2, ’ro’, x2, fp);

11. Consider a polynomial h(x) = H3x3 +H2x2 +H1x+H0 matching just two points
(x1,y1), (x2,y2) and having the specified first derivatives y′

1, y′
2 at these points. To

obtain Hi you must solve the linear system

h(x1) = H3x3
1 +H2x2

1 +H1x1 +H0 = y1, h(x2) = H3x3
2 +H2x2

2 +H1x2 +H0 = y2,

h′(x1) = 3H3x2
1 +2H2x1 +H1 = y′

1, h′(x2) = 3H3x2
2 +2H2x2 +H1 = y′

2.

Use the data {(0,0), (1,1), (2,4), (3,5)} and y′
1 = 0, y′

2 = 1. Alternatively, approx-
imate the specified derivatives at the data points by their differences: y′

1 = y2 − y1,
y′

2 = y2 − y4.
12. Compute the Legendre polynomials through the following relations:

L̂0(x) = 1, L̂1(x) = x,

L̂k(x) =
2k−1

k
x L̂k−1(x)− k−1

k
L̂k−2(x), k = 2,3, . . .

Show that (a) every polynomial of degree n can be obtained by a linear combination of
L̂0, . . . , L̂n; (b) L̂n+1 is orthogonal to all the polynomials of degree less than or equal to
n, i.e.,

∫ 1
−1 L̂n+1(x)L̂ j(x)dx = 0 for all j ≤ n. Plot the graphs of the first few Legendre

polynomials for −1 ≤ x ≤ 1.
13. Another series of orthogonal polynomials defined over [−1,1] are the Cheby-

shev polynomials, Ti(x), see (1.30), (1.31). The reader is invited to change the previous
codes, both for least-squares fitting and for the Legendre polynomials, into codes that
use Chebyshev polynomials.

Section 1.6 1. Plot “triangular waves” using a linear spline and then smooth them
by a cubic spline.

x = 0 : 11; y = [-1 1 -1 1 -1 1 -1 1 -1 1 -1 1];
t = linspace(0, 11, 201); v = spline(x, y, t);
plot(x, y, ’-r’, t, v); axis equal, grid; % Figure 1.28(c)

2. Check that for the function f (x) = 1
1+25x2 the cubic spline with n = 6 nodes con-

tains an error of approximation of the same order as that of the interpolation polynomial
L5(x), and on the net with n = 21 nodes this error just cannot be seen on the scale of
usual figures in a book (in this case L20(x) gives a huge error).
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3. Plot spline eight based on 11 points of the lemniscate ρ =
√

2cos(2ϕ), see Figure
1.21(c), given in polar coordinates. Hint:

x = [-45 -40, -33, -20, 0, 20, 33, 40, 45]*pi/180;
r1 = sqrt(cos(2.*x)); r2 = sqrt(cos(2.*(x + pi)));
x1 = linspace(-45, 45, 100); xx = [x1 x1 + 180]*pi/180;
s = spline([x x + pi], [r1 r2], xx)
polar([x x + pi], [r1 r2], ’o’), hold; polar(xx, s)

4. Apply the M-file cubic spline.m for deriving a cubic spline S(x) (say, specifying
S′′(x) at each endpoint):

m in = 0; m fin = 0; % specify end conditions
x = 2 : 8; y = [32, 34, 36, 34, 39, 40, 37];
syms t; S = cubic spline(x, y, m in, m fin)

Then plot a composed curve:

hold on; plot(x, y, ’r o - -’);
for i = 1 : length(x) - 1;

ti = linspace(x(i), x(i + 1), 20); plot(ti, subs(S(i), t, ti));
end

Section 1.7 1. Plot two spline surfaces in R
3, using interp2.

(a) Prepare the data for a torus, Figure 1.30(a):

R = 1; n = 5; m = 5;
[uu, vv] = meshgrid(0 : 2*pi/(n - 1) : 2*pi, 0 : 2*pi/(m - 1) : 2*pi);
X = (3+R*cos(uu)).*cos(vv); Y = (3+R*cos(uu)).*sin(vv); Z = R*sin(uu);
[UI, VI] = meshgrid(0 : .2 : 2*pi, 0 : .2 : 2*pi);

(b) Prepare the data for a helicoid, Figure 1.30(c):

b = .7; n = 2; m = 5;
[uu, vv] = meshgrid(0 : 1/(n - 1) : 3, 0 : 2*pi/(m - 1) : 4*pi);
X = uu.*cos(vv); Y = uu.*sin(vv); Z = b*vv;
[UI, VI] = meshgrid(0 : .3 : 3, 0 : .2 : 4*pi);

Then calculate and plot the surface similarly as in Example, p. 63.

2. Represent the least-squares approximation by a bilinear function y = c0 +c1x1 +
c2x2 +c3x1x2. Let the data be given on a rectangular net by y = sin(x1x2). Estimate the
coefficients using the program below:

i = 0 : 10; j = -1 : 9;
[X1 X2] = meshgrid(i, j);
Y = sin(X1.*X2); % enter your function
[m n] = size(Y);
x1 = reshape(X1, m*n, 1); x2 = reshape(X2, m*n, 1);



82 1 Functions and Graphs

y = reshape(Y, m*n, 1); % reshape of data
A = [ones(size(x1)) x1 x2 x1.*x2];
c = A\\\\ y; % solution
x1 = reshape(x1, m, n); x2 = reshape(x2, m, n);
y = reshape(y, m, n); % output
hold on; view(3); plot3(x1, x2, y, ’o’); % Figure 1.37(a), data and
syms u v;
ezsurf(u, v, c(1) + c(2)*u + c(3)*v + c(4)*u*v, [0, 10, -1, 9]); % surface

Fig. 1.37 Bilinear and bicubic surface approximations.

3. Modify two lines of the program above

A = [ones(size(x1)) x1 x2 x1.*x2 x1.ˆ2 x2.ˆ2 (x1.ˆ2).*x2 (x2.ˆ2).*x1
x1.ˆ3 x2.ˆ3];
. . .
ezsurf(u, v, c(1) + c(2)*u + c(3)*v + c(4)*u*v + c(5)*uˆ2 + c(6)*vˆ2
+ c(7)*uˆ2*v + c(8)*u*vˆ2 + c(9)*uˆ3 + c(10)*vˆ3, [0, 10, -1, 9]);

for the least-squares approximation by a bicubic function, Figure 1.37(b).

y = c0 + c1x1 + c2x2 + c3x1x2 + c4x2
1 + c5x2

2 + c6x2
1x2 + c7x1x2

2 + c9x3
1 + c9x3

2.

Estimate the 10 coefficients of y by a similar procedure.
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Rigid Motions (Isometries)

Section 2.1 discusses vectors and their use in analytic geometry. In Section 2.2 we
study rigid motions of R

n (n ≥ 2), including the complex and quaternionic approaches.
Section 2.3 is devoted to geometry on a sphere (induced by Euclidean geometry of
space), and also introduces stereographic projection. The study of polyhedra is orga-
nized in Section 2.4 into a sequence of themes: the notion of a polyhedron, Platonic
solids, symmetries of geometrical figures, star-shaped polyhedra, and Archimedean
solids. Section 2.5 (Appendix) surveys matrices and groups.

2.1 Vectors

A vector in R
n (as a point of R

n) is an ordered set x = (x1,x2, . . . ,xn) of n real numbers.
The origin O in R

n is the zero vector.

2.1.1 Vectors in R
3

If a1, . . . ,an are vectors, and if λ1, . . . ,λn are real numbers, then the linear combination
λ1a1 + · · ·+λnan of vectors is again a vector. The directed line segment from the point
a to the point b is the set of points

[a,b] = {a + t(b−a) : 0 ≤ t ≤ 1}

with initial point a and final point b.
A nonempty set X ⊂ R

3 is called convex if X contains, with any two points x, y, also
the line segment [x,y].

V. Rovenski, Modeling of Curves and Surfaces with MATLAB R© , 83
Springer Undergraduate Texts in Mathematics and Technology 7, DOI 10.1007/978-0-387-71278-9 2,
c© Springer Science+Business Media, LLC 2010
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Triangles, rectangles, and disks in a plane are examples of convex sets.
Recall that for all x ∈ R

3, x = x1i + x2j + x3k, where i = (1,0,0), j = (0,1,0),
k = (0,0,1) are the unit vectors; these points lie at a unit distance along the three
coordinate axes.

The scalar product of the vectors x and y is x · y := x1y1 + x2y2 + x3y3. We call

‖x‖ =
√

x2
1 + x2

2 + x2
3 the norm (length) of x.

The following properties of the scalar product are immediate:

(1) (λ1x +λ2y) · z = λ1(x · z)+λ2(y · z);
(2) x ·y = y ·x;
(3) ‖x−y‖2 = ‖x‖2 +‖y‖2 −2(x ·y);
(4) i · j = j ·k = k · i = 0, and i · i = j · j = k ·k = 1.

We calculate the angle θ between the vectors x, y by cosθ = x ·y/(‖x‖ · ‖y‖).
The triangle inequality. ‖x− z‖ ≤ ‖x−y‖+‖y− z‖, x, y, z ∈ R

3.

The vector product of the two vectors x and y is

x×y := (x2y3 − x3y2) i+(x3y1 − x1y3) j+(x1y2 − x2y1)k.

The following properties of the vector product are immediate:

(1) x×y is orthogonal to x and to y;
(2) (λ1x +λ2y)× z = λ1(x× z)+λ2(y× z);
(3) x×y = −y×x;
(4) x×y = 0 if and only if x, y are collinear. In particular, x×x = 0.

The scalar triple product of the vectors x, y, and z is (x,y,z) := x · (y× z). Hence,

the scalar triple product is the determinant (x,y,z) =

∣
∣
∣
∣∣
∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣
∣
∣
∣∣
∣
. The vector triple prod-

uct of the vectors x, y, and z is

[x,y,z] := x× (y× z).

Consider two nonzero vectors a and b, in the plane x3 = 0. Let θ ∈ (0,π) be the
angle between a and b, measured in the counterclockwise direction. We can easily see
that Δ(a,b) := u1v2 −u2v1 = ‖a‖ · ‖b‖sinθ .

Following the case of two variables, we now use the determinant Δ(a,b,c) =
(a,b,c) for vectors a, b, and c in R

3.
Two vectors a and b lying in the plane x3 = 0 are positively (negatively) oriented if

Δ(a,b) > 0 (Δ(a,b) < 0).
Three vectors a, b, c in R

3 are said to be positively oriented if Δ(a,b,c) > 0, and
negatively oriented if Δ(a,b,c) < 0.
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Example. Show that [x,y,z] = (x · z)y− (x ·y)z for all x, y, z ∈ R
3.

Solution. Execute the following code:

syms x1 x2 x3 y1 y2 y3 z1 z2 z3 real;
x = [x1 x2 x3]; y = [y1 y2 y3]; z = [z1 z2 z3];
xyz = cross(x, cross(y, z))
F = (x*z’)*y - (x*y’)*z % compare LHS and RHS of the identity
simplify(xyz - F) % Answer: [0,0,0].

2.1.2 Lines and conics

The key principle of analytic geometry is to link algebra to the study of geometry.
There are two main problems studied in two-dimensional analytic geometry:

(1) given the equation of a curve, determine its shape, location, etc.;
(2) given a description of the plot of a curve, determine its equation.

A line in R
2 with the normal n = (A,B) �= 0 is given by the equation

Ax +By +C = 0.

A plane in R
3 with the normal n = (A,B,C) �= 0 is given by the equation

Ax +By +Cz +D = 0.

For example, the equations 2x +3y−4 = 0 and x + y + z−1 = 0 are entered using the
commands:

eq1 = 2*x + 3*y - 4; eq2 = x + y + z - 1 = 0;

The line l(P,a) ⊂ R
3 through a point P = (p1, p2, p3) in the direction of a vector

a = (a1,a2,a3) is given by the parametric equations

rP + t a = (p1 +a1t, p2 +a2t, p3 +a3t), t ∈ R.

The quadratic equation

Ax2 +Bxy +Cy2 +Dx +Ey +F = 0

represents conics (circles, ellipses, hyperbolas, parabolas) and pairs of lines in R
2; see

Section 1.4 and the table in what follows.
The three-dimensional analogs of lines and conics are planes and quadrics.



86 2 Rigid Motions (Isometries)

N Curve Equation MATLAB R© Commands

1a circle (x− xc)2 +(y− yc)2 = R2 syms t; x = 1 + 3*cos(t)
r = (xc,yc)+R(cos t,sin t) y = 2 + 3*sin(t); ezplot(x, y)

1b arc . . . , ϕ ∈ [2,5] ... ezplot(x, y, [2, 5])

2 parabola y2 = p(x− x0) ezplot( ’t’, ’tˆ2/5’, [-2 2] )

3 ellipse (x−xc)2

a2 + (y−yc)2

b2 = 1 x = 1 + 4*cos(t);
r = (xc,yc)+(a cos t,b sin t) y = 2 + 3*sin(t); ezplot(x, y)

4 hyperbola (x−xc)2

a2 − (y−yc)2

b2 = 1 x = 2 + 4*cosh(t);
r = (xc,yc)± (a cosh t,b sinh t) y = 3*sinh(t); ezplot(x, y)

5 helix x = R cos t, y = R sin t, t = linspace(0, 4*pi, 201)
z = vt plot3(cos(t), sin(t), t/(2*pi))

Examples.

1. The generation of the trigonometric circle is immediate:

t = linspace(0, 2*pi, 101); plot(cos(t), sin(t)), axis equal;

In the Argand presentation, the equation of a circle is z = (a + ib)+ρeiϕ.

T = 0, .1 : 2*pi; plot(3 + 5i + 4*exp(i*T))

2. Let P = (1,2,3), Q = (0,1,5). Enter the line l(P,Q) using the commands:

syms t;
P = [1, 2, 3]; Q = [0, 1, 5]; % take a = Q−P.
r = P + t*(Q - P) % obtain r = [1− t, 2− t, 3 +2t]

The plane through the 3 points ri = Pi = (xi,yi,zi) (i ≤ 3) is given by

(r− r1,r2 − r1,r3 − r1) = det

∣
∣
∣
∣
∣∣

x− x1 y− y1 z− z1

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

∣
∣
∣
∣
∣∣
= 0.

syms x y z; r = [x y z];
r1 = [1 4 2]; r2 = [2 1 0]; r3 = [-1 2 3];
det( [ r - r1; r2 - r1; r3 - r1 ] ) % obtain −7x +3y−8z +11

3. The distance d from P to the line through Q and parallel to a is d = ‖(rP − rQ)×
a‖/‖a‖.

p = [0 1 0]; q = [1 1 1]; a = [0 1 1];
b = cross(p - q, a); d = norm(b) / norm(a); % obtain d = 1.2247
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4. The distance d between the parallel lines given by r = r1 + ta and r = r2 + ta (by
taking rP = r2, rQ = r1) is d = ‖(r2 − r1)×a‖/‖a‖.

r1 = [0 1 2]; r2 = [1 0 1]; a = [0 1 3];
b = cross(r2 - r1, a);
d = norm(b) / norm(a); % obtain d = 1.1832

5. The distance d between two skew lines given by r = r1 + ta1 and R = r2 + ta2 is
d = |(r2 − r1,a1,a2)|/‖a1 ×a2‖.

Hence, non-parallel lines given by r = r1 + ta1 and R = r2 + ta2 meet if and only if
a1, a2, and r2 − r1 are coplanar: (a1,a2,r2 − r1) = 0.

r1 = [0 1 0]; a1 = [1 1 1];
r2 = [1 0 0]; a2 = [0 1 1];
f = cross(a1, a2);
g = det( [ r2 - r1; a1; a2 ] );
d = abs(g) / sqrt(f*f’) % obtain d = 0.7071.

2.2 Rigid Motions in R
n

The transformations we are concerned with are changes in the coordinates and shapes
of objects upon the action of geometrical operations. We formulate both the problems
and their solutions in the language of vectors and matrices.

Our next objective is to understand isometries of R
n. A rigid motion (isometry) of

R
n is a function f : R

n → R
n that preserves the distance between points; that is, it

satisfies
‖ f (x)− f (y)‖ = ‖x−y‖ for all x and y.

The most general rigid motion f : R
n → R

n is of the form

f (x) = xA+a, where a = f (0) and A is an orthogonal matrix of order n.

The translation Ta defined by a vector a = (a1, . . . ,an), is a transformation which maps
a point P = (x1, . . . ,xn) to a point P′ = (x′

1, . . . ,x
′
n) by adding a constant amount to each

coordinate so that x′
1 = x1 +a1, . . . ,x′

n = xn +an.

2.2.1 Rigid motions in two dimensions

A rigid motion (isometry) of the plane, f : R
2 → R

2, is given by

f (x,y) = (xcosθ ∓ ysinθ +b1, xsinθ ± ycosθ +b2) (2.1)



88 2 Rigid Motions (Isometries)

for some constant real numbers θ (angle) and b1, b2. Using the matrix

A =
(

cosθ ∓sinθ
sinθ ±cosθ

)

and vector b = (b1,b2), we equivalently write f (x) = xA+b (x ∈ R
2) . For example,

syms t; % rigid motions: A1 direct, A2 indirect.
A1 = [cos(t) -sin(t); sin(t) cos(t)], A2 = [cos(t) sin(t); sin(t) -cos(t)]

Consider particular cases of rigid motions.
A translation Tb is defined by a vector b = (b1,b2). It is a transformation which

maps a point P = (x,y) to a point P′ = (x′,y′) by adding a constant amount to each
coordinate so that x′ = x +b1, y′ = y +b2.

A rotation about the origin through an angle θ has the effect that a point P = (x,y)
is mapped to a point P′ = (x′,y′) so that the initial point P and its image point P′ are
the same distance from the origin, and the angle between lines OP and OP′ is θ :

x′ = x cosθ − y sinθ , y′ = x sinθ + y cosθ . (2.2)

(The new coordinates of a point in the XY -plane rotated by an angle θ around the z-
axis can be directly derived through some elementary trigonometry). The matrix Rθ =(

cosθ sinθ
−sinθ cosθ

)
is called the rotation matrix. The particular case of θ = π (inversion

about the origin) has the matrix Rπ =
(−1 0

0 −1

)
and changes the coordinates as follows:

x′ = −x, y′ = −y. Using complex numbers, we have z′ = zeiθ , hence

x′ + iy′ = (x + iy)(cosθ + isinθ ) = (xcosθ − ysinθ )+ i(xsinθ + ycosθ ).

Equating separately the real parts and the imaginary parts, we also deduce the effect of
a rotation on the coordinates of a point.

Another example of a rigid motion is a reflection in a line. If the line is l : ax +
by = 0 (and at least one of the coefficients is nonzero), the matrix of reflection in l is

Pl =
1

a2 +b2

(
b2 −a2 −2ab
−2ab a2 −b2

)
. From (2.1) we see that a =−sin(θ/2), b = cos(θ/2).

The reflections in the x- and y-axes have the matrices Px =
(

1 0
0 −1

)
(i.e., a = 0) and

Py =
(−1 0

0 1

)
(i.e., b = 0).

t = pi/6; % Example: let ∠(l,OX) = π/6
P l = [cos(2*t) sin(2*t); sin(2*t) -cos(2*t)] % Pl = [0.50,0.87;0.87,−0.50]

A glide reflection ΓΓΓ l,a is a type of indirect isometry of R
2: the combination of a

reflection in a line l and a translation along that line.
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Theorem 2.1. Each nonidentity motion (isometry) of R
2 is exactly one of the following:

translation, rotation, reflection, or glide reflection (see the table in what follows).

translations rotations reflections glides

fixed points no unique a line no

invariant a direction no a line and a unique
lines of lines a direction line

of lines

decomposition two parallel two secant one three
in reflections lines lines line lines

writing in z �→ z +b z �→ az +b z �→ az̄+b z �→ az̄+b
complex |a| = 1 |a| = 1 |a| = 1
numbers a �= 1 ab̄+b = 0 ab̄+b �= 0

Now we look at rigid motions (isometries) using the complex numbers. The direct
and indirect plane isometries of C are given by

f z = az +b (direct), f z = az̄+b (indirect), |a| = 1, b ∈ C. (2.3)

The maps (2.3) are isometries (for example, |(az + b) − (aw + b)| = |a| · |z − w| =
|z−w|), and each isometry of C is of one of these forms:

(a) Let f : z �→ az +b, where |a| = 1. If a = 1 then f is a translation by the vector
b; if a �= 1 then f (z0) = z0 when z0 = b/(a− 1), and f (z)− z0 = a(z− z0), so
clearly f is a rotation about z0 of angle arga.

(b) Let f : z �→ a z̄ + b, where |a| = 1. By Theorem 2.1, f = T ◦ S, where S is a
reflection in a line l, and T is a translation along l. Then f 2 = T 2 ◦ S2 = T 2.
Since f 2z = z +ab̄+b, we define maps T and S as

Tz = z +(ab̄+b)/2, Sz = T−1 f z = az̄+(b−ab̄)/2.

If a b̄+b = 0 then T = 0 and f is a reflection in the line l = { 1
2b + sexp(it/2) :

s ∈ R} where t = arga (for instance, f : z �→ z̄ is a reflection in the x-axis); if
a b̄+b �= 0 then f is a glide reflection (see [Beardon]).

Hence, every isometry of C can be obtained as a rotation (through an angle arga)
followed by a translation (by the vector b), possibly all preceded by a reflection in the
real axis.

Examples. 1. If b �= 0 is real then
a) z �→ z̄ +b is a glide reflection along the x-axis, and
b) z �→ −z̄ + ib is a glide reflection along the y-axis.
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2. If f : z �→ a z̄+b (where a = eit) is a reflection in a line l, then
a) f z = a(z̄− b̄), b) l is given by cz̄− c̄z = c b̄ where c = eit/2.

3. Given f = az̄+b, plot the axis l of the glide and the image of {0,1, i}.

a = 1 + 2i, b = 3 + i % enter your data
aa = a/abs(a) % unit complex number
e = (aa*conj(b) + b)/2, bb = (b - aa*conj(b))/2 % direction of l and b̃ of S
t = atan2(imag(a), real(a)) % arga
syms s real; l = bb/2 + s*exp(i*t/2); % parameterization of l
hold on; ezplot(real(l), imag(l), [-1 5]); % l
plot([0, 1, i], ’o-r’); plot([b, aa+b, -aa*i+b], ’o-g’) % 3 points f (0), f (1), f (i)

2.2.2 Rotations and reflections in planes of R
3

Rotations in R
3 form a very useful collection of mappings. Any rotation about a line

(passing through the origin) can be produced by applying one or more rotations about
the coordinate axes, Rx, Ry, and Rz. Hence, the formulae for Ri (i = x,y,z) are usually
sufficient in practice. These are easily derived from the formula of a rotation in the
plane. Namely,

Rx(θ ) =

⎛

⎝
1 0 0
0 cosθ sinθ
0 −sinθ cosθ

⎞

⎠, Ry(θ ) =

⎛

⎝
cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

⎞

⎠, Rz(θ ) =

⎛

⎝
cosθ sinθ 0
−sinθ cosθ 0

0 0 1

⎞

⎠

where θ is the angle of rotation. The half-turn Hl about line l (i.e., by the angle π) is
the involute rotation about l.

A screw motion in R
3 is a rotation about some line in R

3, followed by a translation
in the direction of that line.

Example. Let A be the matrix
⎛

⎝
cosθ +u2(1− cosθ ) uv(1− cosθ )+wsinθ wu(1− cosθ )− vsinθ

uv(1− cosθ )−wsinθ cosθ + v2(1− cosθ ) vw(1− cosθ )+usinθ
wu(1− cosθ )+ vsinθ vw(1− cosθ )−usinθ cosθ +w2(1− cosθ )

⎞

⎠

where a = (u,v,w) is a unit vector, u2 + v2 + w2 = 1. Show that A is orthogonal and
represents a rotation R(a,θ ) about a through an angle θ .

Solution. It is easy to check that A is orthogonal and a is fixed by A. If b is orthogonal
to a, then a simple calculation shows that

bA = cos θ b+ sin θ (a×b),
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which is the required rotation. We prepare a function M-file:

function A = s rot(u, v, w, t);
A = [ cos(t) + uˆ2*(1-cos(t)) u*v*(1-cos(t)) + w*sin(t) w*u*(1-cos(t)) - v*sin(t);
u*v*(1-cos(t)) - w*sin(t) cos(t) + vˆ2*(1-cos(t)) v*w*(1-cos(t)) + u*sin(t)
w*u*(1-cos(t)) + v*sin(t) v*w*(1-cos(t)) - u*sin(t) cos(t) + wˆ2*(1-cos(t)) ]

end

For example,

syms u v w t real
A = s rot(u, v, w, t)
simplify(subs(factor(det(A)), wˆ2, 1 - uˆ2 - vˆ2)) % det(A) = 1

We verify orthogonality, AA′ = Id3, for particular values of the parameters.

u = 1/sqrt(6); v = -1/sqrt(6); w = 2/sqrt(6); t = pi/6;
eval(A), eval(A*A’)
⎡

⎣
0.8884 0.3859 0.2488

−0.4306 0.8884 0.1595
−0.1595 −0.2488 0.9553

⎤

⎦

⎡

⎣
1.0 0 0

0 1.0 0
0 0 1.0

⎤

⎦ % Answer.

Example. (Euler’s angles.) The orientation of a rigid body is determined by the angles
subtended by a frame on the body relative to a fixed reference frame. A body can
be positioned with any desired orientation by applying a rotation about each of the
axes. Here, we shall adopt the usage of three Euler’s angles φ , θ , ψ that represent
rotations about the x, y, z directions, respectively. A generic orthogonal transformation
is composed of a rotation by the angle ψ about the z-axis, followed by a rotation by
the angle θ about the y-axis (in its new position x′, y′, z′), followed by a rotation by the
angle φ about the x-axis (in its new position x′′, y′′, z′′); see Figure 2.1. Thus, the final
resulting system is x, y, z. Rotations about the x, y, and z axes are referred to as pitch,
yaw, and roll, respectively.

The matrix Ra = Rx(φ )Ry(θ )Rz(ψ) is

⎛

⎝
cosθ cosψ cosθ sinψ −sinθ

sinφ sinθ cosψ − cosφ sinψ sinφ sinθ sinψ + cosφ cosψ sinφ cosθ
cosφ sinθ cosψ + sinφ sinψ cosφ sinθ sinψ − sinφ cosψ cosφ cosθ

⎞

⎠ .

For a given transformation matrix, the transformation angles may be determined as
tanψ = Ra;12/Ra;11, sinθ = −Ra;13, tanφ = Ra;23/Ra;33. Special attention should be
devoted to the sign of the angles in the case where Ra;11 = 0 and/or Ra;33 = 0. We
prepare the M-file e rot.m:

function A = e rot(phi, t, psi) % matrix Ra
A = [ cos(t)*cos(psi) cos(t)*sin(psi) -sin(t);
sin(phi)*sin(t)*cos(psi)-cos(phi)*sin(psi)
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Fig. 2.1 Definition of Euler’s angles.

sin(phi)*sin(t)*sin(psi)+cos(phi)*cos(psi) sin(phi)*cos(t);
cos(phi)*sin(t)*cos(psi)+sin(phi)*sin(psi)
cos(phi)*sin(t)*sin(psi)-sin(phi)*cos(psi) cos(phi)*cos(t) ];

end

For example, we find the rotations about the coordinate axes, Rx, Ry, and Rz:

syms t psi phi;
Rx = e rot(phi, 0, 0), Ry = e rot(0, t, 0), Rz = e rot(0, 0, psi)

Next we verify the identity Ra = Rx(φ )Ry(θ )Rz(ψ):

Ra = Rx*Ry*Rz
Ra - e rot(phi, t, psi) % obtain zero 3×3 matrix

Consider a plane ω given by x · n = d, where n = (a,b,c) �= 0. The reflection in
ω is given by the formula Pω(x) = x + 2 d−x·n

‖n‖2 n (see also Section 3.3). The matrix of
reflection Pω for d = 0 is

Pω =
1

a2 +b2 + c2

⎛

⎝
b2 + c2 −a2 2ab 2ac

2ab a2 + c2 −b2 2bc
2ac 2bc a2 +b2 − c2

⎞

⎠ . (2.4)

It is known that every isometry of R
3 that fixes 0 is the composition of at most three

reflections in planes that contain 0. Hence, every isometry of R
3 is the composition of

at most four reflections. (The proof is based on the results of Exercise 10, p. 128).
Note that Pω = −R(a,π), where the plane ω (passing through the origin) is orthog-

onal to a. Recall that R(a,θ ) is the rotation about a through θ .
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In order to carry out the computation of transformations of R
3 by matrix multiplica-

tion, we increase their order by 1. Let A ∈ O(3) and a = (a1,a2,a3), x = (x1,x2,x3) ∈
R

3. The rigid motion f (x) = RA(x)+a is represented by the matrix

F :=
(

A 0
a 1

)
=

⎛

⎜
⎜
⎝

A11 A12 A13 0
A21 A22 A23 0
A31 A32 A33 0
a1 a2 a3 1

⎞

⎟
⎟
⎠ ∈ GL4(R). (2.5)

Let (x,1) := (x1,x2,x3,1) ∈ R
4. Show that

(x,1)F = (RA(x)+a, 1) ∈ R
4.

In this way, F represents f . One may show that the composition of two isometries, like

the ones represented by F1 =
(

A1 0
a1 1

)
and F2 =

(
A2 0
a2 1

)
, is the isometry represented

by the product: (
A1 0
a1 1

)
·
(

A2 0
a2 1

)
=
(

A1 ·A2 0
RA2(a1)+a2 1

)
. (2.6)

This allows us to see that the isometry x → RA1(x) + a1 followed by the isometry
x → RA2(x)+a2 is the isometry x → RA1·A2(x)+RA2(a1)+a2.

Example. We prepare the symbolic matrix F of (2.5):

syms t psi phi a1 a2 a3;
A = e rot(phi, t, psi);
F1 = cat(2, A, [0; 0; 0]), a = [a1 a2 a3];
F = cat(1, F1, [a 1]) % extended matrix F

We verify (2.6) for numerical matrices:

F1 = double(subs(F, {t, phi, psi, a1, a2, a3}, {0, 1, 2, 5, 0, 0})) % matrix F1

F2 = double(subs(F, {t, phi, psi, a1, a2, a3}, {1, 2, 0, 0, 2, 0})) % matrix F2
F3 = F1*F2;
A1 = double(subs(A, {t, phi, psi}, {0, 1, 2}))
A2 = double(subs(A, {t, phi, psi}, {1, 2, 0}))
A3 = A1*A2; a3 = [5 0 0]*A2 + [0, 2, 0];
G0 = cat(2, A3, [0; 0; 0]); G3 = cat(1, G0, [a3 1]);
F3 - G3 % obtain zero 3×3 matrix !

Examples of transformations in R
4 are:

(1) projection to the line along u �= 0, defined by P(x) = x·u
u·u u;

(2) reflection through the line u �= 0, defined by S(x) = 2P(x)−x;
(3) projection to the hyperplane ⊥ u �= 0, defined by Q(x) = x−P(x);
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(4) projection to the coordinate plane Pi j, defined by Pi j(x) = (xi,x j);
(5) rotation in the x1-x2-plane by the angle θ , defined by

R12
θ (x) = (cosθ x1 − sinθ x2, sinθ x1 + cosθ x2, x3, x4); etc.

Example. Consider the 4-cube K4 with 16 vertices with all coordinates either 1 or −1.
The projection P12 of K4 is the square with the vertices (±1,±1). (Which four vertices
are all sent to (1,1) under P12?).

In order to get more useful pictures, we first rotate K4 before projecting to the 1-2-
coordinate plane. If we rotate K4 by θ = 30◦ in the 1-3-plane, we obtain P12R13

θ (x) =
(cosθ x1 − sinθ x3,x2) and hence P12R13

30(1,1,1,1) = (
√

3/2− 1/2,1). The picture is
somewhat clearer, but we still see only 8 distinct vertex images.

If we first rotate in the 1-3-plane, then in the 2-4-plane, and then in the 1-4-plane,
we obtain a cube in general position. Thus

P12R14
ψ R24

φ R13
θ (x)

= (cosψ(cosθ x1 − sinθ x3)− sinψ(sinφ x2 + cosφ x4), cosφ x2 − sinφ x4).

Then P12R14
30R24

30R13
30(x) =

(
3
4 x1 − 1

4x2 −
√

3
4 x3 −

√
3

4 x4,
√

3
2 x2− 1

2x4
)
. We obtain 16 differ-

ent images for the 16 vertices of the 4-cube. Finally, if we rotate by 30 degrees in the
2-3-plane, we have

P12R23
30R14

30R24
30R13

30(x) =
(

3
4 x1 − 1

4 x2 −
√

3
4 x3 −

√
3

4 x4,−1
4 x1 + 3

4 x2 −
√

3
4 x3 −

√
3

4 x4

)
.

Four pairs of vertices are brought into superposition by the final rotation (which ones?),
and we now obtain only 12 different images for the 16 vertices of the 4-cube.

2.2.3 Rotations and reflections using quaternions

There are two linear transformations of R
4 given by right and left multiplication by q,

namely, Rq(x) = xq and Lq(x) = qx; see Exercise 14, p. 129. The rows of the matrix Rq

are determined by its action on 1, i, j, and k, viz.,

Rq =

⎛

⎜
⎜
⎝

q0 q1 q2 q3

−q1 q0 −q3 q2

−q2 q3 q0 −q1

−q3 −q2 q1 q0

⎞

⎟
⎟
⎠ . (2.7)

We shall see how quaternions provide an alternative algebraic way to express reflec-
tions and rotations.
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Consider the map Cq : H → H given by Cq(p) = −qpq−1, where q = q1i + q2j +
q3k �= 0 is a pure quaternion. (If q is a pure unit quaternion, then Cq(p) = qpq.) Clearly,
Cq is a linear map, that is, Cq(λ1 p1 + λ2 p2) = λ1Cq(p1) + λ2Cq(p2), and Cq(0) = 0,
Cq(q) = −q. These facts suggest that Cq might be related to the reflection across the
plane with normal q. The 4 × 4 matrix Cq of an arbitrary quaternion q = q0 + q1i +
q2 j+q3k is

⎛

⎜
⎜
⎝

|q|2 0 0 0
0 q2

0 +q2
1 −q2

2 −q2
3 2q1q2 +2q0q3 2q1q3 −2q0q2

0 2q1q2 −2q0q3 q2
0 −q2

1 +q2
2 −q2

3 2q2q3 +2q0q1

0 2q1q3 +2q0q2 2q2q3 −2q0q1 q2
0 −q2

1 −q2
2 +q2

3

⎞

⎟
⎟
⎠ .

Theorem 2.2. For a pure quaternion q, Cq maps the set H0 of pure quaternions into
itself. When H0 is identified with R

3 and q with q = q1i + q2j + q3k ∈ R
3, Cq is the

reflection across the plane q1x +q2y +q3z = 0.

We now use quaternions to describe rotations that fix the origin. Consider the
rotation R obtained by the reflection across the plane with unit normal p followed
by the reflection across the plane with unit normal q. According to Theorem 2.2,
R(x) = q(pxp)q = (q p)x(pq), where p = (0,p) and q = (0,q). This yields the fol-
lowing theorem.

Theorem 2.3. Let q = (cos θ
2 ,sin θ

2 n) be a unit quaternion. Then −Cq : x → qxq−1 =
qxq̄ yields a rotation of x by an angle θ about the axis n.

Examples.

1. We create M-files r quat.m and r quat.m with Lq(x) and Rq(x).

function Rq = r quat(q)
q0 = q(1); q1 = q(2); q2 = q(3); q3 = q(4);
Rq = [q0 q1 q2 q3; -q1 q0 -q3 q2; -q2 q3 q0 -q1; -q3 -q2 q1 q0];

end

function Lq = l quat(q)
q0 = q(1); q1 = q(2); q2 = q(3); q3 = q(4);
Lq = [q0 q1 q2 q3; -q1 q0 q3 -q2; -q2 -q3 q0 q1; -q3 q2 -q1 q0];

end

Then we verify the equalities pq = Rq(p) (= pRq) and qp = Lq(p) (= pLq):

syms p0 p1 p2 p3 real; p = [p0 p1 p2 p3]
quatmultiply(p, q) - p*r quat(q) % obtain 0
quatmultiply(q, p) - p*l quat(q) % obtain 0

2. We verify the equality Cq = LqRq−1 = Rq−1Lq.
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Cq1 = simple(l quat(q)*r quat(quatinv(q))) % LqRq−1

Cq2 = simple(r quat(quatinv(q))*l quat(q)) % Rq−1Lq

Cq1 - Cq2 % obtain zero 4×4 matrix.

For future use prepare the function M-file c quat.m:

function Cq = c quat(q)
Cq = -l quat(q)*r quat(quatinv(q));

end % Alternatively the reader can use the quatrotate command

3. The reflection across the plane (x,k) = 0 (i.e., coordinate plane x3 = 0) is given
by (x1,x2,x3) → (x1,x2,−x3) (see Theorem 2.2), or, in terms of quaternions, x →
−kxk−1 = Cq(x), where q = k = [0,0,0,1].

q = [0 0 0 1]; R3 = c quat(q); R3(2 : 4, 2 : 4) % reflection across x3 = 0
[1 0 0; 0 1 0; 0 0 -1] % Answer

We also note (in preparation for what follows) that the map x → kxk−1 is given by
(x1,x2,x3) → (−x1,−x2,x3), and this is a rotation of angle π about the k-axis.

4. One may prove Theorem 2.3 using a program.

syms t r1 r2 r3 real;
r = cos(t/2)*[1 0 0 0] + sin(t/2)*[0 r1 r2 r3]
Rr = -c quat(r) % x → qxq−1 = −Cq(x)
R r = s rot(r1, r2, r3, t) % rotation in R

3 by t about [r1,r2,r3]
Q = Rr(2 : 4, 2 : 4) - R r % next we use r2

1 + r2
2 + r2

3 = 1
D = simplify(subs(Q, r3ˆ2, 1 - r1ˆ2 - r2ˆ2)) % obtain zero 3×3 matrix

5. Rotate P = (3,6,−5) by θ = 2π/3 about the axis r = (−4,2,4).

t = 2*pi/3; r = [-4 2 4]; P = [3 6 -5]; % enter data
r0 = r/norm(r); % normalize: r0 = [−√

3/3,
√

3/6,
√

3/3]
r1 = cos(t/2)*[1 0 0 0] + sin(t/2)*cat(2, 0, r0) % r1≈[0.50,−0.58,0.29,0.58]
R0 = -c quat(r1) % matrix of rotation

[1 0 0 0; 0 0.17 0.24 −0.96; 0 −0.91 −0.33 −0.24; 0 −0.38 0.91 0.17]
P0 = cat(2, 0, P); P0*R0 % Answer: ≈ [0, −3.07,−5.82,−5.16]

An animation of an object can be performed by determining a curve in the unit
sphere of pure quaternions joining the two points (of start and end “orientations” qstart,
qend). Assume that the interpolating curve is an arc of a great circle; see Section 2.3.
Let φ be the angle between qstart and qend in R

4. The expected formula is

q(t) =
sin((1− t)φ )

sinφ
qstart +

sin(tφ )
sinφ

qend, 0 ≤ t ≤ 1. (2.8)

The locus of a point p is a curve parameterized by Cq(t) = q(t)pq(t)−1.
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Example. (Animation of a triangle using quaternions.)
Let qstart = ( 1

5 , 2
5 , 4

5 , 2
5) and qend = ( 2

3 ,0, 1
3 , 2

3) be unit quaternions (verify!). Then
cosφ = qstart ·qend = 2

3 (the scalar product).

qs = [1/5 2/5 4/5 2/5]; qe = [2/3 0 1/3 2/3]; % define two quaternions
phi = acos(qs*qe’); % obtain angle φ ≈ 0.8411
qt = @(t, ps, pe)(sin((1 - t)*phi))/sin(phi)*ps + sin(t*phi)/sin(phi)*pe;
syms t; vpa(qt(t, qs, qe), 3) % obtain (2.8)
qt(2/5, qs, qe) % obtain [0.4250,0.2595,0.6666,0.5547]

Apply the animation to the triangle A = (5,5,0), B = (10,5,0), C = (7,10,0).

A = [5, 5, 0]; B = [10, 5, 0]; C = [7, 10, 0]; % define triangle
Aq = cat(2, 0, A); Bq = cat(2, 0, B); Cq = cat(2, 0, C); % points in R

4

syms t real;
At = quatmultiply(quatmultiply(qt(t, qs, qe), Aq), quatinv(qt(t, qs, qe)));

% Aq(t) = q(t)Aqq(t)−1.
ezplot(At(4), [0,1]) % graph of the z-coordinate of A(t)
ezplot3(At(2), At(3), At(4), [0, 1]) % trajectory of A in R

3, Section 5.3.

To see the whole picture (without animation), we prepare

N = 20; for i = 1 : N;
AT(i, :) = quatmultiply(quatmultiply(qt(i/N,qs,qe),Aq), quatinv(qt(i/N,qs,qe)));
BT(i, :) = quatmultiply(quatmultiply(qt(i/N,qs,qe),Bq), quatinv(qt(i/N,qs,qe)));
CT(i, :) = quatmultiply(quatmultiply(qt(i/N,qs,qe),Cq), quatinv(qt(i/N,qs,qe)));
end

and then plot N triangles with (three) trajectories of their vertices:

hold on; for k = 1 : N ;
patch([AT(k, 2), BT(k, 2), CT(k, 2)], [AT(k, 3), BT(k, 3), CT(k, 3)],
[AT(k,4), BT(k,4), CT(k,4)], ’r’);
end; % N triangles
plot3(AT(:, 2), AT(:, 3), AT(:, 4)); % trajectory of A
plot3(BT(:, 2), BT(:, 3), BT(:, 4)); % trajectory of B
plot3(CT(:, 2), CT(:, 3), CT(:, 4)) % trajectory of C

2.3 Sphere

Spherical geometry is the study of geometry on the surface of a sphere of radius R:
S2(R) = {(x,y,z) ∈ R

3 : x2 + y2 + z2 = R2}. It is simplest to choose this sphere to have
unit radius; we denote S2(1) by S2.
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2.3.1 Spherical transformations

A great circle (or geodesic) is the circle cut out on the sphere S2 by a plane through the
center of the sphere. The curve of intersection of S2 with a plane not through the center
is called a little circle. Any great circle through the North Pole N is called a circle
of longitude. The part of the circle of longitude through A = (1,0,0) that has positive
x-coordinate is called the Greenwich meridian. The curve of intersection of S2 with a
plane parallel to the equator is called a circle of latitude.

Let γ be a great circle on S2 through two points P and Q. Then either arc with
endpoints P, Q is said to be a line PQ. For definiteness, we call the shorter of these two
the strict line segment PQ. A triangle �PQR is defined by three points on S2 that do
not lie on a single great circle, and three lines PQ, QR, and RP. For definiteness, we
call the triangle whose sides are strict line segments the strict triangle.

The length of a line on S2 is the Euclidean length of the corresponding circular arc;
the (spherical) distance between P and Q on S2 is the length of the shorter of the two
lines PQ. The distance d between any two points P = (p1, p2, p3) and Q = (q1,q2,q3)
on S2 is cosd = (P,Q) = p1q1 + p2q2 + p3q3.

Spherical triangles exist with any given angles; see exercises. The angular excess
of a spherical triangle is the difference between the sum of the angles of the triangle
and π . The area of a spherical triangle is equal to its angular excess: S(�ABC) =
α +β + γ −π .

Vector products are useful in studying triangles on a sphere.
Let �ABC be a strict triangle in S2 with the sides a, b, c and the angles α , β , γ .

Then

(a) cosα = (A×B,A×C)
‖A×B‖‖A×C‖ , cosβ = (B×A,B×C)

‖B×A‖‖B×C‖ , cosγ = (C×A,C×B)
‖C×A‖‖C×B‖ ,

(b) cos a = (B,C), cos b = (A,C), cos c = (A,B).

(c) (Sine rule) sinα/sin a = sinβ/sin b = sinγ/sin c.

(d) (Cosine rule) cos c = cos a cos b + sin a sin b cosγ (for sides),
cosγ = sinα sinβ cos c− cosα cosβ (for angles).

An isometry (rigid motion) of S2 is a mapping of the unit sphere to itself that pre-
serves distances between points.

The isometries of S2 form a group. The direct isometries of S2 are simply rotations
of S2 that also form a group. Among them there are three elementary rotations of S2

(i.e., rotations about coordinate axes) Rx(θ ), Ry(θ ), and Rz(θ ) that in general are not
commutative.

A reflection of S2 in a plane through the center of the unit sphere is not a direct
isometry, but every composition of an even number of such reflections is a direct isom-
etry of S2. It follows from (2.4) that a reflection of S2 in the plane α : ax +by + cz = 0
(a2 +b2 + c2 = 1) is given by the mapping x → xA, where



2.3 Sphere 99

A =

⎛

⎝
1−2a2 −2ab −2ac
−2ab 1−2b2 −2bc
−2ac −2bc 1−2c2

⎞

⎠ .

One may show that any isometry (rigid motion) of S2 is

(a) a product of at most three reflections in great circles;
(b) a reflection, a rotation, or a composite of a reflection and a rotation.

Any direct isometry of S2 is a rotation, and vice versa.

Examples.

1. Find the sides of a spherical triangle �ABC with ∠A = ∠B = α and ∠C = π/2.

Solution. First note that a = b.

syms a c; alpha = pi/3;
Eq1 = sin(alpha)/sin(a) - sin(pi/2)/sin(c); % Sine rule
Eq2 = cos(c) - cos(a)ˆ2; % Cosine rule (Pythagoras’ theorem, ∠C = π

2 )
[a c] = solve(Eq1, Eq2, a, c); mod(double([a, c]), pi)
[2.1863 1.9106] % Answer: a = 2.1863, c = 1.9106.

% The second solution is π −a ≈ 0.9553,π − c ≈ 1.2310.

2. Show that a rotation of a sphere that maps A = (1,0,0) to the point P = (cosφ sinθ ,
sinφ sinθ ,cosθ ) is given by the product of Rz(φ ) and Ry(θ −π/2).

syms t s real; P = [cos(t)*sin(s), sin(t)*sin(s), cos(s)]
s1 = pi/2 - s;
Rz = e rot(0, 0, t); Ry = e rot(0, -s1, 0); R = Ry*Rz;
[1, 0, 0]*R - P % obtain (0,0,0). Hence P = (1,0,0)Ry Rz.

Alternatively, one may use the function M-file s rot.m; see p. 91.

2.3.2 Stereographic projection

Identify the plane with R
2 ×{0} in R

3. The stereographic projection π of R
2 onto

S2 \ {e3} is defined by projecting x in R
2 towards (or away from) e3 until it meets

the sphere S2 in the unique point π(x) other than e3. As π(x) is on the line passing
through x in the direction of e3 − x, there is a scalar s such that π(x) = x + s(e3 −x).
The condition ‖π(x)‖2 = 1 leads to the value s = ‖x‖2−1

‖x‖2+1
and the explicit formula

π(x) =
(

2x1

1 +‖x‖2 ,
2x2

1 +‖x‖2 ,
‖x‖2 −1
‖x‖2 +1

)
. (2.9)
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The mapping π is a bijection of C ≈ R
2 onto S2 \ {e3}. The inverse mapping is given

by

π−1(x1,x2,x3) =
x1

1− x3
+

x2

1− x3
i for all (x1,x2,x3) ∈ S2.

We prepare a function M-file ster.m to compute the projection π:

function f = ster(x) % for x = [x1,x2]
f = [ 2*x(1)/(x*x’ + 1) 2*x(2)/(x*x’ + 1) (x*x’ - 1)/(x*x’ + 1) ];

end

Then we compute images of points, lines, circles (see Theorem 2.4), etc.

ster([1 2]) % image of a point: [0.3333, 0.6667, 0.6667]
syms t real;
simplify(ster([2*cos(t) 2*sin(t)])) % image of a circle: [4

5 cost, 4
5 sin t, 3

5 ].
g = simplify(ster([3 t])) % g = [ 6

10+t2 ,
2t

10+t2 ,
8+t2

10+t2 ]
simplify(g(1)/3 + g(3) - 1) % Answer: 0,

% image of a line {x1 = 3} belongs to the plane 1
3x1 + x3 = 1.

We define the chordal distance d on C (as it is the length of the chord of S2 that
joins π(z) and π(w)) by the formula d(z,w) = ‖π(z)−π(w)‖; see Exercise 12, p. 130.
By definition, the map π is an isometry from R

2, with the chordal metric, to S2 with
the Euclidean metric. It is geometrically evident that d(z,w) ≤ 2. A simple calculation
shows that

d(z,w) =
2|z−w|

√
(1 + |z|2)(1+ |w|2) and d(z,∞) =

2
√

1 + |z|2 for z,w ∈ C.

The extended complex plane Ĉ = C∪{∞} (obtained from C by adjoining one point
at infinity, see Section 4.2) is a compact metric space. The one-point compactification
Ĉ of the complex plane C is also called the Riemann sphere. We refer to the point
N = (0,0,1) of a 2-sphere S2 := {x2 +y2 +z2 = 1} as the North Pole and S = (0,0,−1)
as the South Pole.

There are other kinds of compactification; for example, the projective plane RP2,
which we will meet in Chapter 3, is obtained from the standard plane R

2 by adding a
line at infinity (actually a circle).

Theorem 2.4. Under stereographic projection π : Ĉ → S2, generalized circles (i.e., cir-
cles and lines) map onto circles on the sphere. In particular, lines map onto circles on
the sphere that pass through the North Pole N.

Proof. A circle on S2 is the intersection of the sphere with some plane ω : aX +bY +
cZ = d, where a, b, c are not all zero. It follows from substituting the expressions
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X =
2x1

x2
1 + x2

2 +1
, Y =

2x2

x2
1 + x2

2 +1
, Z =

x2
1 + x2

2 −1

x2
1 + x2

2 +1

into the equation of the plane that

2ax1 +2bx2 + c
(
x2

1 + x2
2 −1

)

x2
1 + x2

2 +1
= d ⇐⇒ (c−d)x2

1 +(c−d)x2
2 +2ax1 +2bx2 = c +d.

(2.10)

Hence, the inverse image (under π−1) of the circle on the sphere is a generalized circle
in Ĉ. The circle on the sphere passes through N = (0,0,1) if the plane ω passes through
N, whereupon c = d. In this case the circle’s image in Ĉ has an equation of the form
2ax1 +2bx2 = c +d, and so is an extended line. ��

We deduce (2.10) using a simple program:

syms x1 x2 a b c d real;
f = ster([x1 x2]);
F = a*f(1) + b*f(2) + c*f(3) - d;
G = collect(simple(F*(x1ˆ2 + x2ˆ2 + 1)), [x1, x2])

G = (c−d)x2
1 +2ax1 +(c−d)x2

2 +2bx2 − c−d % Answer.

Remark 2.1. The notions of stereographic projection and chordal metric can be ex-
tended to arbitrary dimension. Let Sn(0,1) = {x ∈ R

n+1 : ‖x‖ = 1}. The stereographic
projection π : R

n → Sn(0,1)\{en+1} ⊂ R
n+1 (where n ≥ 1) is derived by the formula

π(x) =
(

2x1

1 +‖x‖2 , . . . ,
2xn

1 +‖x‖2 ,
‖x‖2 −1
‖x‖2 +1

)
. (2.11)

The chordal distance d(x,y) = ‖π(x)−π(y)‖ on R
n (the length of the chord of Sn that

joins π(x) and π(y)) is derived by the formula

d(x,y) =
2‖x−y‖

√
(1 +‖x‖2)(1+‖y‖2)

, d(x,∞) =
2

√
1 +‖x‖2

. (2.12)

The one-point compactification R̂
n = R

n ∪ {∞} (obtained from R
n by adjoining one

point at infinity) is a compact metric space.

2.4 Polyhedra

We start from basic facts about polyhedra and simple programs for plotting the polyg-
onal curves, prisms and pyramids. A typical program for plotting polyhedra has the
following structure:



102 2 Rigid Motions (Isometries)

(a) the list of vertices with their coordinates,
(b) the lists of vertices in faces,
(c) the computations if required, and
(d) the visualizing command patch.

Next we study and visualize the Platonic solids and star-shaped polyhedra (Poinsot’s
polyhedra and Kepler’s octahedron) in rotation about the coordinate axes. The reader
can play with complicated polyhedra, putting objects through various transformations:
rotation, coloring, various operations (stellate, etc.), change of parameters in coordi-
nates of vertices and faces, intersections and other combinations of solids, projecting,
discovering new polyhedra, and so on.

2.4.1 What is a polyhedron?

An acquaintance with polyhedra leaves a strong impression on the human mind,
sometimes leading to creative work and discoveries. The importance of this theme in
school geometry and for developing spatial imagination is well known. The theory of
polyhedra goes back to antiquity: volume XII of Euclid’s Elements is devoted to the
regular polyhedra. Archimedes, in his work “On polyhedra” described the so-called
semi-regular polyhedra.

A closed polygonal line without self-intersections that bounds a plane domain is
called a simple polygon. A simple polygon is called convex if for each side of the
polygon, all the vertices that do not lie on the side in question belong to one of the
half-planes defined by this side.

Fig. 2.2 Convex and non-convex polygons. Adjacent faces. Solid angle.

A solid angle is a cone-like surface whose directrix is a simple polygon. A polyhe-
dron is a figure in space that consists of a finite number of planar polygons (faces of
the polyhedron) meeting the following conditions.

(1) Each side of any of these faces meets exactly one other face (said to be adjacent
to the first one) along a side.
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(2) For faces α , β one can find a sequence of faces α1, α2, . . . , αn such that face α
is adjacent to α1, face α1 is adjacent to α2, . . . , and face αn is adjacent to β .

(3) Let V be any vertex and let F1, F2, . . . , Fn be the n faces that meet at V . It is
possible to traverse the polygons Fi without passing through V .

A polyhedron is convex if all vertices that do not belong to an arbitrary face of this
polyhedron lie in one of the half-spaces defined by this face.

Simple examples of polyhedra are prisms (in particular, a cube) and pyramids (in
particular, a tetrahedron).

If all faces are simple polygons, then by definition, a polyhedron is a surface (see
Section 7.1) in space. Moreover, condition (1) means that this surface is without a
boundary and has no singular edges, as in Figures 7.1(c), 7.3(c), 8.26(b), and 8.5(b,c).
Condition (2) means that it is connected (i.e., has exactly one component). Condition
(3) excludes singular vertices; see Figures 7.16(a), 7.11, and 8.25(b).

To exclude self-intersecting polyhedra we give the following definition: A polyhe-
dron is simple if

(i) all its faces are simple polygons;
(ii) any two non-adjacent faces have no (interior or boundary) points in common,

except perhaps a single vertex;
(iii) any two adjacent faces have only one edge in common and do not have any

other points in common.

The definition does not exclude polyhedra (solids) with tunnels. A simple poly-
hedron divides space into two regions, a finite one, called inner, and another, which
contains lines, called external.

A closed curve in a surface is non-separating if the surface remains in one piece
when it is cut along the curve. Some polyhedra and surfaces possess non-separating
curves, Figures 7.1(b), 7.3, 8.15(a), and 8.16(d); in others (simply connected), every
curve separates the surface or polyhedron into two pieces, Figures 8.1(b,c) and 8.2(c).

Non-separating curves (consisting of edges) in a polyhedron correspond to tunnels
through a solid. One can define the number of tunnels as the maximum number of cuts
(curves) which leave the polyhedron connected.

Examples. The commands patch(x, y, [r g b]) and patch(x, y, z, [r g b]) create plane and
solid patches colored with the vector [r g b].

Let us plot several figures.

(a) A plane triangle (one may similarly plot a polygon with arbitrary vertices) and a
regular simple n-gon (inscribed in a circle).

patch([0 2 5], [0 4 3], [0 1 1]) % triangle in R
2, Figure 2.3(a)

n = 6; t = 0 : 2*pi/n : 2*pi;
X = sin(t); Y = cos(t);
patch(X, Y, [0 1 1]); axis equal % hexagon
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(b) A regular pyramid of height 2 with vertex S = (0,0,2).

n = 6; t = linspace(0, 2*pi, n); % pyramid, Figure 2.3(d)
X = sin(t); Y = cos(t); Z = 0*t;
V = [X’ Y’ Z’]; V0 = [0 0 1]; V(n + 1, :) = V0;
F = [n 1 n+1];
for i = 1 : n - 1; F = cat(1, F, [i i+1 n+1]); end;
hold on; axis equal; view(3); patch(X, Y, [0 1 1]);
patch(’Vertices’, V, ’Faces’, F, ’FaceColor’, [1 .5 1]);

(c) A regular prism of height 2 with vertical edge [0,0,h].

R = 1; h = 2; n = 6; % prism, Figure 2.3(c)
t = 0 : 2*pi/n : 2*pi;
X = R*sin(t); Y = R*cos(t); Z = 0*t;
X1 = cat(2, X(1 : n), X(1 : n));
Y1 = cat(2, Y(1 : n), Y(1 : n));
Z1 = cat(2, Z(1 : n), Z(1 : n) + h);
V = [X1’ Y1’ Z1’]; F = [n 1 n+1 2*n];
for i = 1 : n - 1; F = cat(1, F, [i i+1 n+i+1 n+i]); end;
hold on; axis equal; view(3);
patch(X, Y, [0 1 1]); patch(X, Y, Z + h, [0 1 1]);
patch(’Vertices’, V, ’Faces’, F, ’FaceColor’, [1 .5 1])

In what follows we plot regular convex polyhedra by different methods.

Fig. 2.3 Planar polygons. Prism and pyramid.

The development of a polyhedron is the union of plane polygons according to a rule
stating how one should glue them together along their sides and vertices to obtain the
desired polyhedron.

Moreover, the following conditions must be satisfied:

(i) Each side of the polygon is attached to at most one side of another polygon.
(ii) Any two glued sides must have the same length.

(iii) One can reach any polygon by starting from any other polygon and moving
along a sequence of glued polygons.



2.4 Polyhedra 105

Fig. 2.4 Developments of 6-faced prism and pyramid.

For example, the development of the side of a cone is a circular sector.
One can apply the notion of development to curved surfaces (for instance, in de-

scriptive geometry and drawing).
The following facts (A. Cauchy, G. Minkowski) are important in the theory of poly-

hedra.

(a) If two convex polyhedra are isometric to each other, then one can be obtained
from the other by a motion in R

3.
(b) There exist convex polyhedra with arbitrary area of the faces and arbitrary

directions of the extrinsic normals to them, but the sum of the vectors in the
directions of these normals with lengths equal to the areas of the corresponding
faces must be zero, and not all the vectors are coplanar.

(c) A convex polyhedron is completely defined by the areas of its faces and the
directions of the extrinsic normals to the faces.

The numbers of faces F , edges E , and vertices V of a convex polyhedron are related
by Euler’s theorem F −E +V = 2. However, this is not the only necessary condition.
For a simple polyhedron M, the expression F −E +V is called the Euler characteristic
and is denoted by χ(M).

Suppose that we cut each edge of the polyhedron at its midpoint and then count
the segments that are formed by this cutting. As each edge produces two segments,
this count is clearly 2E . On the other hand, every vertex has at least three segments
ending there, and each segment ends at only one vertex; thus the count is at least 3V .
We conclude that 2E ≥ 3V . Similarly, imagine that we have separated the polyhedron
into its faces, and that we now count the edges of all of these faces. Clearly this count
is 2E . On the other hand, each face has at least three sides so the count must be at least
3F . We deduce that 2E ≥ 3F .

Theorem 2.5 (Existence). There exists a convex polyhedron with F faces, E edges, and
V vertices if and only if

F −E +V = 2, 2E ≥ 3V, 2E ≥ 3F. (2.13)
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Fig. 2.5 Cube.

Fig. 2.6 Tetrahedron and octahedron.

2.4.2 Platonic solids

A regular polyhedron is a polyhedron whose faces are congruent regular polygons,
with all solid angles equal.

As we can see from calculating the sum of the plane angles at a vertex, there are
at most five regular convex polyhedra. These polyhedra, pictured in Figures 2.5–2.8,
the so-called Platonic solids — the tetrahedron, the cube, the octahedron, the dodeca-
hedron, and the icosahedron — were known in antiquity (Plato, around 400 BC), and
their existence was proved by Euclid. The cube can be treated as a prism with n = 4
and h = a. The other four Platonic solids can be constructed using the cube.

• The cube and octahedron are combinatorially dual, i.e., one is obtained from the
other if the centers of the faces of the first are considered the vertices of the sec-
ond. Analogously, the dodecahedron and icosahedron are combinatorially dual.

• Any four vertices of a cube taken in pairs not adjacent along an edge are the
vertices of a tetrahedron.

• The icosahedron can be inscribed by a special method in a cube if its opposite
edges are fixed in pairs on parallel faces of the cube.

• The dodecahedron is obtained from the cube by building roofs over its faces (the
method of Euclid).

The above polyhedra admit a number of symmetries (self-transformation by a rigid
motion of space): cyclic transposition of vertices on any face and cyclic transposition
of faces that meet at any vertex.
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Fig. 2.7 Icosahedron and dodecahedron.

Fig. 2.8 Developments of tetrahedron, cube, and octahedron.

A polyhedron is denoted by the symbol {p,q}, or p q, if every vertex is surrounded
by q p-gons.

The radii R, r of the circumscribed and inscribed spheres and the volume of each
regular convex polyhedron with edge of length a are given in the following table.

Name Symbol R r V

tetrahedron {3,3} a
√

6/4 a
√

6/12 a3
√

2/12

cube {4,3} a
√

3/2 a/2 a3

octahedron {3,4} a
√

2/2 a
√

6/6 a3
√

2/3

dodecahedron {5,3} a
4

√
18 +6

√
5 a

2

√
1

10(25 +11
√

5) a3

4 (15 +7
√

5)

icosahedron {3,5} a
4

√
10 +2

√
5 a

√
3

12 (3 +
√

5) 5a3

12 (3 +
√

5)

Example. Consider the cube with edge 2c and the vertices

A1 = (c,c,c), A2 = (−c,c,c), A3 = (−c,−c,c), A4 = (c,−c,c),
A5 = (c,c,−c), A6 = (−c,c,−c), A7 = (−c,−c,−c), A8 = (c,−c,−c).

Let us find vertices of other regular convex polyhedra using their relation to the cube.

Tetrahedron. Take diagonals of the six faces of a cube in the role of edges of a
tetrahedron. Then the vertices of the tetrahedron are the following:

A1 = (c,c,c), A3 = (−c,−c,c), A6 = (−c,c,−c), A8 = (c,−c,−c).
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The remaining four vertices of the cube also define a tetrahedron dual to the first one.
Octahedron. We connect the centers of the faces of a cube by line segments and

obtain an octahedron with the following vertices:

O1 = (c,0,0), O2 = (0,c,0), O3 = (−c,0,0),
O4 = (0,−c,0), O5 = (0,0,c), O6 = (0,0,−c).

We plot a cube, tetrahedron, and octahedron for c = 1.

V = [-1 -1 -1; 1 -1 -1; 1 -1 1; -1 -1 1; -1 1 -1; 1 1 -1; 1 1 1; -1 1 1];
F = [1 2 3 4; 1 2 6 5; 2 3 7 6; 1 4 8 5; 3 4 8 7; 5 6 7 8];
patch(’Vertices’, V, ’Faces’, F, ’FaceColor’, [0 1 1])
axis equal; view(3) % cube, Figure 2.5
V = [1 1 1; -1 1 -1; -1 -1 1; 1 -1 -1];
F = [1 2 3; 1 2 4; 2 3 4; 1 3 4];
patch(’Vertices’, V, ’Faces’, F, ’FaceColor’, [0 1 1])
axis equal; view(3) % tetrahedron, Figure 2.6(a,b)
V = [-1 0 0; 0 1 0; 1 0 0; 0 -1 0; 0 0 -1; 0 0 1];
F = [1 2 5; 1 2 6; 2 3 5; 2 3 6; 3 4 5; 3 4 6; 1 4 5; 1 4 6];
patch(’Vertices’, V, ’Faces’, F, ’FaceColor’, [0 1 1])
axis equal; view(3) % octahedron, Figure 2.6(c,d)

Recall that the golden section (or golden ratio), τ =
√

5+1
2 ≈ 1.618, is the division of

a line segment AB by a point C, such that the ratio of the smaller part to the larger one
is equal to the ratio of the larger part to the whole segment: CB : AC = AC : AB. Euclid
made use of the golden section for constructing regular pentagons and hexagons and
also for constructing the icosahedron and dodecahedron.

Icosahedron. We arrange six equal line segments with the ratio of their lengths to
the edge of the cube equal to 1/τ (see exercises) on the faces of a cube in such a way
that each segment is symmetric to itself with respect to the center of a certain face and
parallel to its opposite two sides, and such that the line segments in neighboring faces
are mutually orthogonal. Then we connect the endpoints of these segments in a certain
order and obtain an icosahedron inscribed in the cube. Hence, our icosahedron has the
following vertices (where p = c/τ):

B1 = (p,0,c), B2 = (−p,0,c), B3 = (p,0,−c), B4 = (−p,0,−c),
B5 = (c,−p,0), B6 = (c, p,0), B7 = (−c,−p,0), B8 = (−c, p,0),
B9 = (0,c, p), B10 = (0,c,−p), B11 = (0,−c, p), B12 = (0,−c,−p).

Dodecahedron. As in the case of the icosahedron, we choose six line segments of
length 2 p = 2c/τ on the faces of a cube. Then we make a parallel translation by the
distance p (see exercise) of each of these segments in the direction of the extrinsic nor-
mal to the face. After connecting the twelve endpoints of the line segments so defined
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in a certain order with the eight vertices of the cube, we obtain a regular dodecahedron.
Its vertices, in addition to the eight vertices of the cube, are

D1 = (p,0,c + p), D2 = (−p,0,c + p), D3 = (p,0,−c− p),
D4 = (−p,0,−c− p), D5 = (c + p,−p,0), D6 = (c + p, p,0),
D7 = (−c− p,−p,0), D8 = (−c− p, p,0), D9 = (0,c + p, p),

D10 = (0,c + p,−p), D11 = (0,−c− p, p), D12 = (0,−c− p,−p).

Plot the icosahedron and dodecahedron using the coordinates of their vertices (do some
calculations, see Exercises 5, 6, p. 130). For the icosahedron we directly describe its
faces, but for the dodecahedron, we first describe its vertices, and then write sequences
of vertices for each face.

c = 1; tau = (sqrt(5) + 1)/2; p = c / tau; % use for both polyhedra
V = [p 0 c; -p 0 c; 0 c p; 0 -c p; -c p 0; -c -p 0; c p 0; c -p 0; p 0 -c; 0 c -p;
-p 0 -c; 0 -c -p];
F = [1 2 3; 1 2 4; 2 3 5; 2 5 6; 1 7 3; 1 8 7; 7 8 9; 7 10 3; 7 10 9; 3 10 5; 9 11
10; 1 8 4; 4 2 6; 4 12 6; 9 11 12; 12 11 6; 11 5 6; 8 12 9; 4 12 8; 5, 10, 11];
patch(’Vertices’, V, ’Faces’, F, ’FaceColor’, [0 1 1]);
axis equal; view(3) % Icosahedron, Figure 2.7(a,b).
V = [p 0 c + p; -p 0 c + p; p 0 -c-p; -p 0 -c-p; c + p -p 0; c + p p 0; -c - p -p 0; -c-p
p 0; 0 c + p p; 0 c + p -p; 0 -c - p p; 0 -c - p -p; c c c; c c -c; c -c c; c -c -c; -c c c;
-c c -c; -c -c c; -c -c -c];
F = [1 13 9 17 2; 17 9 10 18 8; 8 18 4 20 7; 7 20 12 11 19; 19 11 15 1 2; 6 5
15 1 13; 6 13 9 10 14; 14 10 18 4 3; 3 4 20 12 16; 16 12 11 15 5; 5 6 14 3 16];
patch(’Vertices’, V, ’Faces’, F, ’FaceColor’, [0 1 1]);
axis equal; view(3) % Dodecahedron, Figure 2.7(c,d).

There are other polyhedra besides the Platonic solids that are bounded by equal
regular faces. In fact they are bounded by triangles, and together with the tetrahedron,
the octahedron, and the icosahedron they form the family of eight (convex) deltahedra.

2.4.3 Symmetries of regular polygons and polyhedra

Symmetries preserve distances, angles, sizes, and shapes.
The symmetry group of a subset X ⊂ R

n is the group of all isometries of R
n which

carry X onto itself: Symm(X) := { f ∈ Isom(X) : f (X) = X}. Further, Symm(X) =
Symm+(X)∪Symm−(X), where the sets

Symm±(X) :=
{

f ∈ Symm(X) : det A = ±1
}
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are respectively called direct and indirect symmetries of X .
For any X ⊂ R

n, Symm+(X) ⊂ Symm(X) is a subgroup.
We now encounter some important finite symmetry groups.
The symmetry group of a regular m-gon (triangle, square, pentagon, hexagon, etc.)

centered at the origin in R
2 is called the dihedral group of order 2m, denoted Dm (see

also the definition in Section 2.5). The elements of Dm with determinant +1 are called
rotations; they form a subgroup of index 2 which is isomorphic to the cyclic group Cm

of order m. The elements of Dm with determinant −1 are called flips.
Symmetry groups of subsets of R

2 are useful for studying objects which are essen-
tially two-dimensional, like snowflakes and certain crystal structures.

Many subsets of R
2, like the wallpaper tilings of R

2 illustrated in some M.C. Escher
prints, have infinite symmetry groups. The classification of such infinite “wallpaper
groups” can be found in the literature. Surprisingly, the only finite symmetry groups in
dimension 2 are Dm and Cm.

The proof involves two steps. First, when Symm(X) is finite, its elements must share
a common fixed point, so it is isomorphic to a subgroup of O(2). Second, Dm and Cm

are the only finite subgroups of O(2).

Examples.

1. Let P be the regular n-gon with vertices at the nth roots of unity. The symmetry
group G of P acts on the complex plane C. Each vertex v of P can mapped by a rotation
in G to any other vertex. Thus G ∗ v = V , where V is the set of vertices of P, and Gv

contains two elements, namely the identity I and the reflection in the line through v
and 0.

Next, consider the origin 0; here, G∗0 = {0} and G0 = G. Finally, if z does not lie
on any line of symmetry of P, then Gz = {I}, and G ∗ z contains 2n points. In every
case, |G∗ z| · |Gz| = |G|.
2. We locate the square with the vertices 1, i,−1 and −i, and relabel these vertices by
the integers 1, 2, 3, and 4, respectively. Now any symmetry of the square can be written
as a permutation of {1,2,3,4}. We have seen that D4 is generated by r and s, where
r(z) = iz and s(z) = z̄. In terms of permutations, r = (1 2 34), and s = (2 4). There are
exactly four reflective symmetries of the square, namely, s, sr, sr2, and sr3; in terms of
permutations, these are (2 4), (1 4)(2 3), (1 3), and (1 2)(3 4), respectively. Of course,
r2 = (1 3)(2 4) and r3 = (1 4 3 2). Although s2 = e and r4 = e, D4 is not isomorphic
to C2 ×C4, as C2 ×C4 is abelian, whereas D4 is not.

3. The command perms(v) returns all the permutations of the vector v.

P = perms([1 3 5]) % all the permutations of the numbers 1, 3, and 5

The command p = randperm(n) returns a random permutation of the integers 1 : n.
The command below rearranges the elements of a vector.
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p = randperm(5); % Answer: p = [2,3,1,5,4] (permutation vector)
a = intrlv(10 : 10 : 50, p) % Answer: a = [20,30,10,50,40].

The command deintrlv(data, elements) acts as an inverse of intrlv.

b = deintrlv(a, p) % Answer: b = [10,20,30,40,50]

Symmetry groups of subsets of R
n (n > 2) are even more interesting than those of

R
2. There are still very few finite symmetry groups in R

3.
Denote by Sm the group of permutations of a set with m elements, and by Am ⊂ Sm

the subgroup of even permutations (the alternating group).

Theorem 2.6. For X ⊂ R
3, if Symm+(X) is finite, then it is isomorphic to Dm, Cm, A4,

S4, or A5.

Like the n = 2 case, the proof involves verifying that all symmetries have a common
fixed point and that the only finite subgroups of SO(3) are Dm, Cm, A4, S4, and A5.

The regular solids (or Platonic solids) provide examples of sets whose direct sym-
metry groups equal A4, S4, and A5. These polyhedra were first listed by Theatus in
about 400 BC, but they are often referred to as the Platonic solids. It turns out that

A4 is the direct symmetry group of a tetrahedron,
S4 is the direct symmetry group of a cube or an octahedron, and
A5 is the direct symmetry group of a dodecahedron or an icosahedron.

Each regular polyhedron is invariant by a reflection Pω across some plane ω passing
through the origin. The group G of isometries that leave the polyhedron invariant has
the coset decomposition PωG + ∪G+ (direct and indirect isometries), so that |G| =
2|G+|. Note that whereas each rotation (in G+) is physically realizable as a rotation of
R

3, the reflections that leave the polyhedron invariant cannot be realized physically.

Computing the symmetry groups of the regular polyhedra may be approached as
follows:

(a) Cube and octahedron. The symmetry group G+ = S4 has 24 elements. Clearly,
the two symmetry groups of the octahedron coincide with those of the cube.
There are three types of symmetry planes, and there are 3 + 6 = 9 plane re-
flection symmetries. There are three types of symmetry axes, and there are
1 + 6 + 8 = 15 rotary reflection symmetries. The 48 symmetries of the cube
form a Coxeter group with presentation

{x,y,z : x2 = y2 = z3 = (xy)4 = (yz)2 = (xz)3 = 1}.

(b) Tetrahedron. The symmetry group G+ = A4 has 12 elements. The symmetry
group G = S4 has 24 elements.
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(c) Dodecahedron and icosahedron. The dodecahedron and the icosahedron are
dual solids; that is, the centroids of the faces of one of these solids are at the
vertices of a solid of the other type. Accordingly, their symmetry groups are
the same. The symmetry group G+ = A5 has 60 elements. The symmetry group
G = A5 ×C2 has 120 elements.

2.4.4 Star-shaped polyhedra

One may represent star-shaped polyhedra (SPs) over Platonic solids using a stellar
construction (“stellar” means “starlike”) with several values of the height parameter
h less or greater than 1. For particular values of h (calculate them) the polyhedra are
regular SPs; see Figure 2.9.

Example. The reader can plot SPs over Platonic solids, see Example, p. 107, using
stellate construction. First define the vertices V and faces F of a polyhedron, and h
(positive or negative small); then call stellate(F, V, h).

function S = stellate(F, V, h) % M-file stellate.m
NF = length(F); NV = size(F, 2);
hold on; axis equal; view(3)
for i = 1 : NF;
C(i, :) = sum(V(F(i, :), :)) / NV; % center of a face
H(i, :) = cross(C(i, :) - V(F(i, 1), :), C(i, :) - V(F(i, 2), :)); % normal
if H(i, :)*C(i, :)’ < 0;
H(i, :) = - H(i, :);
end;
NH = H(i, :)*H(i, :)’;
VH(i, :) = C(i, :) + h*H(i, :) / NH; % vertex
for j = 1 : NV;
if j == NV; j1 = 1; else j1 = j + 1; end;
W(i, j, :, :) = [VH(i, :); V(F(i, j), :); V(F(i, j1), :)]; % triangle
patch(reshape(W(i, j, :, 1), 1, 3), reshape(W(i, j, :, 2), 1, 3),
reshape(W(i, j, :, 3), 1, 3), [i/NF/2 j/NV/2 1 - i/NF/2]);
end;
end;

end

For example, stellate constructions over a tetrahedron:

V = [1 1 1; -1 1 -1; -1 -1 1; 1 -1 -1];
F = [1 2 3; 1 2 4; 2 3 4; 1 3 4]; % define V,H
stellate(F, V, 1) % h = 1
stellate(F, V, -.5) % h = −0.5, etc.
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Fig. 2.9 Stars over Platonic solids.

Aside from the regular convex solid angles there also exist regular star-shaped solid
angles. In both cases their planar angles are equal each to other; the solid angles are
equal as well.

The regular star 5-faced angle is shown in Figure 2.11(c,d). Let O be the center of the
star pentagon A1A2A3A4A5. Plot the line OB perpendicular to the plane of pentagon.
Then the five plane angles A1BA2, A2BA3, A3BA4, A4BA5, and A5BA1 form a stellated
pentagonal solid.

In the 17th century J. Kepler found two regular SPs.
In 1810 L. Poinsot proved the existence of four such SPs, now called Poinsot’s

polyhedra, seen in Figures 2.11 and 2.12:

• The small stellated dodecahedron has 12 faces (regular star pentagons), 30 edges,
12 vertices.

• The great stellated dodecahedron has 12 faces (regular star pentagons), 30 edges,
20 vertices.

• The great icosahedron has 20 triangular faces, 30 edges, 12 vertices.
• The great dodecahedron has 12 faces (regular simple pentagons), 30 edges, 12

vertices.

Fig. 2.10 The stellated octahedron consists of two tetrahedra.

In 1812 A. Cauchy proved that the set of all regular polyhedra contains only the five
Platonic solids, the four Poinsot bodies, and the (stellated) Kepler octahedron, Figure
2.10. The last polyhedron has 8 faces and decomposes into two tetrahedra.



114 2 Rigid Motions (Isometries)

Fig. 2.11 Small stellated and great dodecahedra.

Fig. 2.12 Great stellated dodecahedron and great icosahedron.

The faces of an SP either are star polygons or mutually intersect in space. The
supporting planes of the faces of a regular SP M divide space into some number of
convex domains, one of which, the kernel of the polyhedron M, is a simple regular
polyhedron M0. The polyhedron M0 has the same number of faces as M.

The stellated octahedron is obtained from the octahedron by continuation of each
of its faces until it intersects three non-neighboring non-parallel faces. This polyhedron
decomposes into two tetrahedra, “dual” to each other, inscribed in a cube. The method
of plotting a stellated octahedron is an extension of the method for the tetrahedron; see
Example, p. 107.

Continuing the edges of a dodecahedron, i.e., replacing each face α by a star pen-
tagon with kernel α , leads to the small stellated dodecahedron. The vertices of the new
face are the images of the vertices of the kernel face under homothety from its center
with the coefficient k = −(1 + 2τ−1/

√
3); see Example in what follows. The method

of plotting is a simple extension of the one for the dodecahedron: we assemble each
star-shaped face from five triangles but without including its kernel, which is a simple
pentagon.

Continuing each face of the dodecahedron until its intersection with five non-
neighboring and non-parallel faces leads to two possible cases.

• If the new faces are simple pentagons, then we obtain the great dodecahedron.
The MATLAB program given in Example below is a short continuation of the
program for the dodecahedron on p. 109.

• If the new faces are star pentagons, then we obtain the great stellated do-
decahedron. The MATLAB program is based on results of the program for the
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small stellated dodecahedron, using homothety with negative coefficient k =
−(1 + 2τ−1/

√
3); see exercises. Here we again assemble each star-shaped face

from five triangles.

Examples.

1. Plot the small stellated dodecahedron starting from the coordinates of its vertices
and lists of sequences of vertices in all faces. We complete the program for the regular
dodecahedron; see Example, p. 107. Here C(i, :) is the center of the ith face of the
dodecahedron.

k = 1 + 2*cos(pi/5);
hold on; axis equal; view(3) % small stellated dodecahedron
for i = 1 : 12;
C(i, :) = sum(V(F(i, :), :))/5;
for j = 1 : 5;
VV(j, :, i) = C(i, :) - k*(V(F(i, j), :) - C(i, :));
j2 = mod(j + 2, 5); j3 = mod(j + 3, 5);
if j2 == 0; j2 = 5;
elseif j3 == 0; j3 = 5;
end;
W(i, j, :, :) = [VV(j, :, i); V(F(i, j2), :); V(F(i, j3), :)];
patch(reshape(W(i, j, :, 1), 1, 3), reshape(W(i, j, :, 2), 1, 3),
reshape(W(i, j, :, 3), 1, 3), [i/15 j/15 1 - i/15]);
end;
end

2. Plot the great (stellated) icosahedron by using the coordinates of its vertices and their
order in all the faces. The program is based on the one for the simple icosahedron. Here
C(i, :) is the center of the ith face of the icosahedron. We do not see on the display the
complete picture of the intersections of all 20 of its triangular faces.

The program for plotting the great icosahedron given below is based on data of the
program for the simple icosahedron. We extend the program for the icosahedron to plot
a great stellated icosahedron.

k = (3 + sqrt(5))/(3 - sqrt(5)); % great (stellated) icosahedron
hold on; axis equal; view(3)
for i = 1 : 20;
C(i, :) = sum(V(F(i, :), :))/3;
for j = 1 : 3;
VV(j, :, i) = C(i, :) - k*(V(F(i, j), :) - C(i, :));
j2 = mod(j + 2, 3); j1 = mod(j + 1, 3);
if j2 == 0; j2 = 3;
elseif j1 == 0; j1 = 3;
end;
W(i, j, :, :) = [VV(j, :, i); V(F(i, j1), :); V(F(i, j2), :)];
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patch(reshape(W(i, j, :, 1), 1, 3), reshape(W(i, j, :, 2), 1, 3),
reshape(W(i, j, :, 3), 1, 3), [i/21 j/21 1 - i/21]);
end;
end

A compound polyhedron is a set of distinct polyhedra, called the components of the
compound, which are placed together so that their centers coincide. (Figure 2.10 shows
the compound of two tetrahedra.)

Compounds of Platonic solids in which all components are the same have a high
degree of symmetry which makes them very attractive. The idea of placing one poly-
hedron inside another in different ways is used in plotting compounds. Another method
to plot compounds uses the matrix representation of finite symmetry groups in space.

2.4.5 Archimedean solids

We survey the construction of the Archimedean solids by transformations of the Pla-
tonic solids, and present programs to plot them by coordinates of vertices (in a similar
way to the programs for the Platonic solids but with preparatory work for the lists of
vertices in the faces).

An isohedron (isogon) is a convex polyhedron whose rotation group (of the first and
second orders) moves any of its faces (vertices) to any other of its faces (resp., vertices).

Each isohedron corresponds to a dual isogon, and conversely. There are 13 different
combinatorially special types and two infinite series of isogons. Each of them can be
realized in space in such a way that all its faces are regular polygons, and one obtains
semi-regular polyhedra from the following definition.

A polyhedron whose faces are regular polygons (perhaps of different sizes and
types) and whose solid angles are equal is called a semi-regular polyhedron.

Simple examples of such polyhedra are the regular prisms 42 · n (i.e., each vertex
belongs to two squares and one n-gon; in the following discussion we use this classic
designation for semi-regular polyhedra), whose bottom and top faces are regular simple
n-gons and lateral faces are squares, and antiprisms 33 ·n, whose bottom and top faces
are regular simple n-gons with n ≥ 3 and lateral faces are pairs of regular triangles.
In particular, the 3-antiprism is the octahedron, and the 4-prism is the cube. Note that
the n-antiprism can be obtained from the n-prism by rotating one of its bases about the
center through an angle π/n in the same plane, while at the same time decreasing the
height so that the distance between corresponding vertices is equal to their edges.

Long ago Archimedes proved that except for the two series of prisms and antiprisms,
there exist 13 types of semi-regular convex polyhedra, the so-called Archimedean
solids. The geometer Pappus of Alexandria tells about the work of Archimedes and
gives a short description of the Archimedean solids. The complete theory of semi-
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regular polyhedra was discovered by J. Kepler in his book “Harmonices mundilibri
quinque. . . ” (1619).

Some restrictions on polyhedra follow directly from the definition:

• There are no semi-regular polyhedra bounded by more than three different types
of faces. (In view of the equality of their solid angles, each of them contains at
least one planar angle of each type of face, but the minimum angles come from
polygons with 3, 4, 5 and 6 sides, i.e., we have the inequality 60◦ +90◦ +108◦ +
120◦ > 360◦.)

• There are no semi-regular polyhedra whose vertices contain more than five faces.
(The assumption that a solid angle consists of at least six planar angles of regular
polygons of two types leads to the inequality 5 ·60◦ +90◦ > 360◦.)

The list of possible types of semi-regular convex polyhedra can be obtained by
topological (combinatorial) reasoning using Euler’s formula for a sphere.

The names of the semi-regular convex polyhedra are the following:

(1) snub cube 34 ·4: 32 triangles, 6 squares
(2) cuboctahedron (3 ·4)2: 8 triangles, 6 squares
(3) rhombicuboctahedron 3 ·43: 8 triangles, 18 squares
(4) snub dodecahedron 34 ·5: 80 triangles, 12 pentagons
(5) icosidodecahedron (3 ·5)2: 20 triangles, 12 pentagons
(6) truncated tetrahedron 3 ·62: 4 triangles, 4 hexagons
(7) truncated cube 3 ·82: 8 triangles, 6 octagons
(8) truncated dodecahedron 3 ·102: 20 triangles, 12 decagons
(9) truncated octahedron 4 ·62: 6 squares, 8 hexagons

(10) truncated icosahedron 5 ·62: 12 pentagons, 20 hexagons
(11) rhombicosidodecahedron 3 ·4 ·5 ·4: 20 triangles, 30 squares, 12 pentagons
(12) truncated cuboctahedron 4 ·6 ·8: 12 squares, 8 hexagons, 6 octagons
(13) truncated icosidodecahedron 4 ·6 ·10: 30 squares, 20 hexagons, 12 decagons
(14) Ashkinuze solid 3 ·43: 8 triangles and 18 squares

In the 20th century, V. Ashkinuze (and J. Miller) found the fourteenth semi-regular
polyhedron (of type 3 ·43), which differs from the rhombicuboctahedron, case (3), only
by rotating the whole upper part of the polyhedron, consisting of five squares and four
triangles, through the angle 45◦. For each of the 13 Archimedean solids, prisms, and
antiprisms, any two vertices can be translated one to the other by a symmetry of the
polyhedron, but for the Ashkinuze solid this does not hold.

We now describe a method to plot the Archimedean solids using transformations
of the five Platonic solids by cutting off the neighborhoods of vertices and edges by
planes.

Let us start with the tetrahedron. We plot the planes at a distance 1/3 from each
edge meeting at a common vertex, cut off the resulting pyramid, and obtain the solid
(6), bounded by regular triangles and hexagons.
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Fig. 2.13 (6) Truncated tetrahedron. (7) Truncated cube.

Fig. 2.14 (10) Truncated icosahedron. (8) Truncated dodecahedron.

Fig. 2.15 (2) Cuboctahedron. (5) Icosidodecahedron.

Fig. 2.16 (3) Rhombicuboctahedron. (11) Rhombicosidodecahedron.

An analogous transformation for the octahedron gives us the solid (9), and from the
icosahedron we may obtain the solid (10).

Plotting the planes through the centers of certain edges of the cube or octahedron,
we obtain the solid (2), i.e., the cuboctahedron.

By the same method we obtain (from the icosahedron or dodecahedron) solid (5),
i.e., the icosidodecahedron.
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Fig. 2.17 (13) Truncated icosidodecahedron. (1) Snub cube.

Fig. 2.18 (9) Truncated octahedron. (12) Truncated cuboctahedron.

Fig. 2.19 n-antiprism. (14) Ashkinuze solid.

If we employ such cutting planes in the cube, so that its square faces are trans-
formed into regular octagons, then we obtain the solid (7), i.e., the truncated cube. In
an analogous way we obtain the solid (8) from the dodecahedron.

The transformations that proceed by cutting off neighborhoods of both vertices and
edges are more complicated. If we cut off, one after another, the edges having a com-
mon vertex, by planes that define strips of equal height on the faces, we obtain four new
trihedrals. Drawing this, we see that three of these vertices are located symmetrically
around the fourth one. We cut off this last vertex by a plane that contains the first three
vertices and thus obtain a triangle in the intersection.

Repeating the same procedure with the other edges and vertices, each time we obtain
one triangle in place of a vertex of the cube, and between them, instead of the edges of
the cube, we obtain squares; the faces of the cube also would also be transformed into
new squares of smaller size.
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To construct the semi-regular solid (3), i.e., the rhombicuboctahedron, one should
cut off by a plane the line segments x = a(2−√

2)/2 and y = a(
√

2−1)/2 on the edges
not parallel to it, where a is the length of the edge of the cube. Employing the same
transformation for the dodecahedron, we obtain the solid (11).

Now we will apply to the cube a transformation very similar to the one above. The
difference is that we cut off not one of the four trihedrals, but all of them, and in the
intersection we obtain not a triangle, but a (regular) hexagon. The result will be the
solid (12). Moreover, one can cut off by a plane the line segments x = a(4−√

2)/14
and y = a(2

√
2−1)/7 on non-parallel edges. Applying the same transformation to the

dodecahedron gives us the solid (13).
Further, applying this new transformation to the cube and dodecahedron, we obtain

two more analogous polyhedra. The resulting polyhedron for the cube is shown in
Figure 2.17(c,d); it is the solid (1), a snub cube.

From the dodecahedron we obtain the snub dodecahedron, the solid (4).

Examples.

1. To plot these polyhedra we call M-files (see Section A.6):

p33334; p3434; p3444-1; p3535; p366; p388; p3 10 10;
p466; p566; p3454; p468; p4610; p3444 2; % etc.

2. We plot star-shaped uniform polyhedra (UPs) over Archimedean solids using stellate
construction. One should enter the vertices V and faces F of the base polyhedron (see
Section A.6) and an appropriate h, then call the M-file stellate.m (see Section 2.4.4)
for all types of faces. For example, plot a stellated 3444:

h = 1; % enter h
. . . . . . . . . % enter F3,F4,V of 3444
hold on; stellate(F3, V, h); stellate(F4, V, h)

There also exist 75 stellated semi-regular (uniform) polyhedra (UPs). These are to
the Archimedean solids what the regular SPs are to the Platonic solids. However, the
faces of UPs can intersect each other.

Half-regular polyhedra are defined as semi-regular ones, where we use half-regular
(i.e., equilateral) polygons. Kepler restricted attention to half-regular 4-gons (rhombi)
and found two such polyhedra. The first (rhombic dodecahedron) is bounded by twelve
rhombi whose diagonals are in the ratio of 1:

√
2. The second rhombic polyhedron

(rhombic triacontahedron) is bounded by 30 rhombi whose diagonals are in the golden
ratio.

A generalization of semi-regular polyhedra is the so-called regular-faced polyhedra,
whose faces by definition are regular polygons. The constraints that restrict the number
of such polyhedra are less topological and more metrical. Their classification requires
length calculations.



2.5 Appendix: Matrices and Groups 121

Aside from the two series of prisms and antiprisms, there exist 92 regular-faced
polyhedra, but only 28 of them are indecomposable (i.e., cannot be broken by a plane
into two regular-faced polyhedra).

Examples of decomposable regular-faced polyhedra are the octahedron, icosahe-
dron, Ashkinuze solid, and also among the Archimedean solids, the cuboctahedron,
icosidodecahedron, rhombicuboctahedron, and rhombicosidodecahedron. Hence, only
8 (= 28−(5−2)−(13−4)

2 ) regular-faced polyhedra are not regular or semi-regular polyhe-
dra or parts of them.

2.5 Appendix: Matrices and Groups

2.5.1 Permutations and group actions

We recall the necessary notations from algebra.
The pair (G, · ) is called a group provided that the operation · satisfies

(i) associativity: g1 · (g2 ·g3) = (g1 ·g2) ·g3 for all g1, g2, g3 ∈ G;
(ii) unit: there is e ∈ G (the unit) such that e ·g = g · e = g for every g ∈ G;

(iii) inverse: for every g ∈ G, there is g−1 ∈ G (the inverse of g) such that
g ·g−1 = g−1 ·g = e.

Let H ⊂ G. We say that (H, · ) is a subgroup of (G, · ) if g1 · g−1
2 ∈ H for all g1,

g2 ∈ H .
A group G is called cyclic if there is some g ∈ G such that G = {gm : m ∈ Z}, i.e.,

G is generated by g. The cyclic group of order n > 1 (that is generated by an element
of order n) is denoted by Cn.

The symmetric group Sn is the group of permutations of {1,2, . . . ,n}. The alternat-
ing group An is the group of all even permutations in Sn. The dihedral group Dn (n > 1)
is the group of order 2n that is generated by an element a of order n and an element b
of order two, where aba = b.

The q-cycle (n1 . . .nq) is the permutation that maps n j to n j+1 when 1 ≤ j < q, maps
nq to n1, and fixes all other integers in {1,2, . . . ,n}. A 2-cycle is called a transposition.

Example. For each integer k, kZ = {kn : n ∈ Z} is a subgroup of the group Z (with
respect to addition). But the set {2n : n ∈ Z}∪{5} is not a subgroup of (Z, +).

As every permutation is a product of cycles, every permutation is a product of trans-
positions (2-cycles). If α and β are permutations, then ε(α · β ) = ε(α) · ε(α). The
sign ε(σ) of a permutation σ is −1q, where σ can be expressed as a product of q
transpositions.
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The rest of this section is devoted to the idea of a group acting on a set. We have
applied this idea in Section 2.4.3 above to the study of the symmetry groups of regular
solids, and shall use it later to study hyperbolic geometry (Chapter 4).

An action of a group G (with unit e) on a set X is a mapping ϕ : G×X → X , i.e.,
(g,x) �→ g ∗ x, such that e ∗ x = x and (g1 ·g2) ∗ x = g1 ∗ (g2 ∗ x) for all x ∈ X and all
g1, g2 ∈ G. The mapping ϕg : x → g∗ x is called the transformation of X effected by g.

We consider G as a group of transformations (or symmetries) of a set X , and refer
to this by saying that G acts on X . We express the equation y = g ∗ x by saying that g
moves x to y.

Suppose that G acts on X .

(a) Then x is a fixed point of g in G if g ∗ x = x, and the set of fixed points of g is
denoted by Fix(g). If g∗ x = x for all g ∈ G then x is called a fixed point of the
group action.

(b) Given x in X , the subgroup Gx := {g ∈ G : g ∗ x = x} of elements of G that fix
x is called the stabilizer of x.

(c) Given x in X , the subset G ∗ x := {g ∗ x : g ∈ G} of X is called the orbit (or
trajectory) of x under G.

(d) The group G is said to act transitively on X if there is only one orbit (i.e., every
point of X can be moved to any other point).

Examples. Any group G acts on itself by:

1. Left multiplication (left regular action): There is only one orbit.

2. Conjugation: For g ∈ G, define cg ∈ Aut(G) by cg(x) = gxg−1. The orbits of this
action are called the conjugacy classes of G; two elements x and y are conjugate if
there is a g ∈ G such that gxg−1 = y. For example, two permutations (elements of the
symmetric group Sn) are conjugate if and only if they have the same cycle structure. A
subgroup H of G is called normal (or self-conjugate) if gHg−1 = H for every g ∈ G.
The dihedral group Dn has one conjugacy class of reflections if n is odd, and two
conjugacy classes if n is even.

Proposition 2.1. Suppose that G acts on X.

(a) The relation “x ∼ y ⇐⇒ x can be moved to y” is an equivalence relation. The
equivalence class of x is just the orbit G ∗ x. Consequently, the orbits of the
action form a partition of X.

(b) If x ∈ X then Gx is a subgroup of G, and Gg∗x = gGx g−1.

We come now to a geometric form of Lagrange’s theorem. The number of orbits is
called the index of Gx in G and is denoted by [G : Gx ]. (It can be a finite number or an
infinite cardinal number.)
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The orbit–stabilizer theorem. Suppose that G acts on X. Then, for any x ∈ X, |G∗x|=
[G : Gx ]. In particular, if G is finite then |G∗ x| is a divisor of |G|:

|G∗ x| · |Gx| = |G|. (2.14)

Therefore, a large stabilizer yields a small orbit, and conversely. For a finite G,
(2.14) shows that G∗ x and Gx are reciprocals of each other.

The last result in this section provides a formula for the number of orbits in a group
action and it is proved in this way.

Burnside’s lemma. Let G be a finite group acting on a finite set X. Then there are N
orbits, where

N =
1
|G| ∑

g∈G

|Fix(g)| = 1
|G| ∑

x∈X

|Gx|. (2.15)

Hence, N is the average number of fixed points that an element of G has.

2.5.2 Matrices and linear transformations

Let K be a field, say R or C, or a skew-field of quaternions H. Denote by Mm,n(K)
(or K

m,n) the set of all m× n matrices with entries in K. For example, M1,n(K) = K
n

is the set of n-vectors. If A ∈ Mm,n(K), then Ai j is the element in row i and column
j of A. Denote by Mn(K) = Mn,n(K) the space of square matrices. Addition of same-
dimension matrices is defined component-wise, so that (A+B)i j = Ai j +Bi j. The prod-
uct of A ∈ Mm,n(K) and B ∈ Mn,l(K) is the element AB ∈ Mm,l(K) defined by

(AB)i j = (row i of A) · (column j of B) =
n

∑
s=1

AisBsj.

Use the term diagonal matrix A = diag(λ1, . . . ,λn) for one with Ai j = 0 when i �= j and
Aii = λi. The identity matrix of order n is In = diag(1, . . . ,1).

The transpose of A ∈ Mm,n(K) is the matrix At ∈ Mn,m(K) obtained by interchanging
the rows and columns of A, so that (At)i j = Aji.

When a ∈ K and A ∈ Mn,m(K), we define the left scalar multiplication a · A ∈
Mn,m(K) to be the result of left-multiplying the elements of A by a:

(a ·A)i j := a ·Ai j.

The trace of a square matrix A ∈ Mn(K) is defined as the sum of its diagonal elements:

trace(A) =
n

∑
i=1

Aii.
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Example. If K ∈ {R,C} then the symmetric functions σ j(A) of a quadratic matrix A of
order n are defined by the polynomial equality

det(In + tA) = ∑
j

σ j(A) t j, (2.16)

where In is a unit matrix and t ∈ K. Prove that

σ1(A) = trace A, σn(A) = det A, 2σ2(A) = σ2
1 (A)−σ1(A2),

3σ3(A) =
1
2

trace3(A)− 3
2

trace(A) trace(A2)+ trace(A3). (2.17)

Hint. We prepare an M-file to compute σk(A):

function f = sigma1(A, k)
syms t;
n = length(A); E = eye(n);

if k > n; f = 0;
else f = subs( diff( det(E + t*A), t, k), t, 0 ) / factorial(k);
end;

end

For example,

A = [1 2 2 3; 3 4 1 0; 2 5 0 1; 2 3 6 1] % enter your matrix, n = 4

The following commands return 0:

sigma1(A, 1) - trace(A) % example for k = 1.
sigma1(A, 4) - det(A) % example for k = 4.
sigma1(A, 1)ˆ2 - sigma1(A*A, 1) - 2*sigma1(A, 2) % identity for σ2(A).

The general linear group over K is

GLn(K) := {A ∈ Mn(K) : ∃B ∈ Mn(K) with AB = BA = In}.

A function f : K
n → K

m is called a linear mapping if f (u + v) = f (u)+ f (v) and
f (λ u) = λ f (u) for all u, v ∈ K

n and λ ∈ K. If n = m then f is called a linear isomor-
phism of K

n.
One may show that

GLn(K) = {A ∈ Mn(K) : RA is a linear isomorphism of K
n}.

If K ∈ {R,C} then GLn(K) = {A ∈ Mn(K) : detA �= 0}.

Proposition 2.2. For any A ∈ Mn(K) and any g ∈ GLn(K), the matrix gAg−1 repre-
sents RA in the basis V = {e1g, . . . ,eng}.
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This key result requires only slight modification when representing linear transfor-
mations using left matrix multiplication when K is R or C: for any A ⊂ Mn(K) and
any g ∈ GLn(K), the matrix g−1Ag represents LA in the basis {gel, . . . ,gen} (via left
multiplication).

The standard (Euclidean) inner product on K
n is the function from K

n ×K
n to K

defined by 〈(x1, . . . ,xn),(y1, . . . ,yn)〉K := x1ȳ1 + · · ·+ xnȳn.

The p-norm of x ∈ K
n is defined by ‖x‖p =

(
∑i |xi|p

)1/p. The Euclidean norm

( p = 2) is defined by ‖x‖ :=
√〈x,x〉K =

(
∑i |xi|2

)1/2. For example:

v = [1 -2 3]; w = [i -2 + i 3*i]; % v ∈ R
3, w ∈ C

3

[norm(v, 1) norm(v) norm(v, inf)] % Answer: 6.00, 3.74, 3.00
[norm(w, 1) norm(w) norm(w, inf)] % Answer: 6.24, 3.87, 3.00.

If K = C, H, the standard inner product is called hermitian or symplectic, re-
spectively. It follows that 〈x,x〉K is a real number ≥ 0, which equals 0 only when
x = (0, . . . ,0).

The most important subgroups of the general linear group GLn are O(n), SO(n),
U(n), SU(n), and Sp(n).

Vectors x, y ∈ K
n are called orthogonal if 〈x,y〉K = 0. A basis {x1, . . . ,xn} of K

n

is called orthonormal if 〈xi,x j〉 equals 1 when i = j and equals zero when i �= j (that
is, the vectors have norm 1 and are mutually orthogonal). The standard orthonormal
basis of K

n is e1 = (1,0, . . . ,0), . . . , en = (0, . . . ,0,1). The orthogonal group over K,

On(K) := {A ∈ GLn(K) : 〈xA,yA〉 = 〈x,y〉 for all x,y ∈ K
n},

is denoted by O(n) and called the orthogonal group for K = R;
is denoted by U(n) and called the unitary group for K = C;
is denoted by Sp(n) and called the symplectic group for K = H.

Its elements are called orthogonal, unitary, or symplectic matrices. The subgroups (in
Chapter 4 we denote them by SLn(K))

SOn := {A ∈ On : det(A) = 1}, SUn := {A ∈ Un : det(A) = 1}

are called the special orthogonal group and the special unitary group, respectively.
For A ∈ GLn(K) the following properties are equivalent:

(1) A ∈ On(K).
(2) RA preserves orthonormal bases; i.e., if {x1, . . . ,xn} is an orthonormal basis of

K
n, then so is {RA(x1), . . . ,RA(xn)}.

(3) The rows of A form an orthonormal basis of K
n.

(4) A ·At = In.

O(n) is equal to the group of rigid motions of R
n, U(n) to the group of rigid motions

of C
n that preserve the standard complex structure.
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If A ∈ O(n) then det(A) = ±1; if A ∈ U(n) then det(A) = eiθ for some θ ∈ [0,2π);
if A ∈ Sp(n) then det(A) = 1.

Example. Find an orthogonal basis (and its matrix B) for a set A of vectors. The number
of columns of B is the rank of A.

a = [1 2 3]; b = [2 -1 0]; c = [-1 3 2]; d = [1 0 2]; % four vectors in R
3

A = [a’ b’ c’ d’]; rank(A) % Answer: 0, set of vectors, rank(A) = 3
B = orth(A) % an orthonormal basis for the range of A

[ -0.01 0.83 -0.55; -0.66 -0.42 -0.62; -0.75 0.36 0.56 ]

B’*B % B is orthogonal matrix: B′ B = eye(rank(A))
[ 1 0 0; 0 1 0; 0 0 1 ] % Answer.

The group Isom(Rn) := { f : R
n → R

n : f is an isometry} (under composition of
functions) is equal to the subgroup of GLn+1(R)

Isom(Rn) !
{(

A 0
a 1

)
: A ∈ O(n) and a ∈ R

n
}

.

The subgroup of Isom(Rn) given by

Trans(Rn) :=
{(

In 0
a 1

)
: a ∈ R

n
}

is equal to (Rn,+) (Rn under the group operation of vector addition). The isometries
of Trans(Rn) only translate and do not rotate.

The affine group (under composition of functions)

Affn :=
{

f : R
n → R

n : f is an affine map
}

is equal to the following subgroup of GLn+1(R):

Affn :=
{(

A 0
a 1

)
: detA �= 0 and a ∈ R

n
}

.

2.6 Exercises

Section 2.1 1. Let [0,a], [0,b], [0,c] be segments that are not coplanar. Show that
any x in R

3 can be written as the linear combination of the three
vectors a, b, and c given by

x =
(x,b,c)
(a,b,c)

a +
(a,x,c)
(a,b,c)

b+
(a,b,x)
(a,b,c)

c.
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2. Prove the vector identities

[a,b,c]+ [b,c,a]+ [c,a,b] = 0;

(a×b)× (c×d) = (a,b,d)c− (a,b,c)d;

(a×b) · ((c×d)× (e× f))= (a,b,d)(c,e, f)− (a,b,c)(d,e, f);
(b× c) · (a×d)+ (c×a) · (b×d)+(a×b) · (c×d)= 0.

3. Show that for any vectors a1, b1, c1 and a2, b2, c2 in R
3

(a1,b1,c1)(a2,b2,c2) =

∣∣
∣
∣
∣
∣

a1 ·a2 a1 ·b2 a1 · c2

b1 ·a2 b1 ·b2 b1 · c2

c1 ·a2 c1 ·b2 c1 · c2

∣∣
∣
∣
∣
∣
.

4. Show (and execute examples) that
(a) The line (r−R)× a = 0 and the plane (r− r0) ·n = 0 are parallel if a ·n = 0.

The distance from the point R to the plane (r− r0) ·n = 0 is

‖(R− r0) ·n‖/‖n‖.

(b) The projection of the point R to the plane (r− r0) ·n = 0 is

R1 =
(R− r0) ·n

‖n‖2 n.

(c) The perpendicular from the point R to the line (r− r0)×a = 0 is

r = R+ t [a,R− r0,a].

5. Find the distance between two lines determined by r1 = [0,1,0], a1 = [1,1,1] and
r2 = [1,0,0], a2 = [0,1,1].

Section 2.2 1. Show that
(a) Tb ◦Tb = Ta+b and Rφ ◦Rθ = Rθ+φ .

(b) A reflection in a line other than the coordinate axes is a composition of Px (or
Py), translation and the rotation.

(c) The quantity x2 + y2 is invariant under the action of Px, Py, or Rπ .
(d) If ΓΓΓ l,a is a glide reflection with axis l and f is an isometry, then f ◦ΓΓΓ l,a ◦ f −1 is

a glide reflection with axis f (l).
2. Prove that every rigid motion of R

2 is a composition of at most three reflections.
3. Prove that an affine transformation of C, see (2.3), takes lines to lines and circles

to circles.
4. Show that
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(a) The translation Ta is a composition of two reflections Tl1 and Tl2 where the lines
l1, l2 are parallel, and ‖a‖ = d(l1, l2);

(b) The rotation Rθ is a composition of two reflections Tl1 and Tl2 where the lines
l1, l2 intersect at the origin, and θ = 2∠(l1, l2);

(c) The glide reflection ΓΓΓ l,a is a composition of three reflections Tl1 , Tl2 , Tl3 where
the lines l1, l2 are perpendicular to l with ‖a‖ = d(l1, l2), and l3 = l.

5. Show that the reflections in the XY -, Y Z- and X Z-planes are

Pxy =

⎛

⎝
1 0 0
0 1 0
0 0 −1

⎞

⎠ , Pyz =

⎛

⎝
−1 0 0
0 1 0
0 0 1

⎞

⎠ , Pxz =

⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠ . (2.18)

Each reflection across a plane is an isometry, and every isometry is a composition of
reflections.

6. Prove that every direct isometry of R
3 is a screw motion.

7. Consider the composition of reflections P j in two distinct planes ω1 and ω2 that
intersect in a line l. Prove that P2P1 is a rotation of R

3 about the axis l of twice the
angle between the planes ω j.

8. Consider two parallel planes, x ·n = d1 and x ·n = d2, where ‖n‖ = 1, and let P1

and P2 denote the reflections in these planes. Then

P2P1(x) = x +2(d2 −d1)n,

so that the composition of two reflections in parallel planes is a translation.
9. Show that the reflections of R

3 in the planes ω(a,t) : a ·x = t and ω(b,s) : b ·x = s
commute if and only if either ω(a,t) = ω(b,s) or a ⊥ b.

10. Prove the following three simple results:
(a) Let f be an isometry with f (0) = 0. Then for all x and y, ‖ f (x)‖ = ‖x‖ and

f (x) · f (y) = x ·y (that is, f preserves norms and scalar products).
(b) If an isometry f fixes 0, i, j, and k then f = I3.
(c) Suppose that ‖a‖= ‖b‖ �= 0. Then there is a reflection R across a plane ω through

0 such that R(a) = b and R(b) = a.
11. Let u = (1,1,1,1) in R

4; then
(a) P(x) = 1

4(x1 + x2 + x3 + x4)u,
(b) S(x) = 2P(x)−x = 1

4(x1 + x2 + x3 + x4)u−x.
12. The points u = (1,1,0,1), v = (1,0,1,1), w = (0,1,1,1) in R

4 determine an
equilateral triangle. The image points under P12 are P12(u) = (1,1), P12(v) = (1,0),
P12(w) = (0,1). (The image itself is not equilateral).

13. The same image as in Exercise 12 is seen for the tetrahedron determined by
the vertices u1 = (1,1,0,1), u2 = (1,0,1,1), u3 = (0,1,1,1), u4 = (1,1,1,0) since
P12(u1) = P12(u4) = (1,1). Plot the 2-D image of the tetrahedron determined by the
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vertices v1 = (2,2,1,−1), v2 = (1,−1,0,3), v3 = (−1,1,6,4), v4 = (−1/2,−1/2,7,7)
under R12.

14. Show that Lq =

⎛

⎜
⎜
⎝

q0 q1 q2 q3

−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0

⎞

⎟
⎟
⎠.

15. Show that
(a) Rq : H → H is H-linear for each q ∈ H.
(b) For q ∈ H, Lq : H → H is not necessarily H-linear (find an example).
(c) If q has unit length then both matrices Rq, Lq are orthogonal; each of them has

two mutually orthogonal invariant planes on which they act by rotations.
16. Use Theorem 2.2 to show that if p and q are pure quaternions (p = p and q = q),

and if p ⊥ q, then −qpq−1 = p.
17. Use quaternions to find the image of x under a rotation about the k-axis of angle

π/6. Now verify your result by elementary geometry.
18. Let α be the plane x · n = 0, where n = (1,1,0), and let R be the reflection

across α . Write x = (a,b,c) and y = R(x). Verify, both using elementary geometry and
quaternion algebra, that y = (b,a,c).

19. Find the quaternion q such that Mq is the rotation of R
3 given in coordinate form

by x → xM, where M =
(

0 1 0
0 0 1
1 0 0

)
.

20. Can every orthogonal linear map of R
4 with determinant 1 be realized by x →

pxq for some quaternions q, p?
21. Let Rr and Rs be the rotations associated with the quaternions

r = cos(θ/2)+ sin(θ/2)n, s = cos(ϕ/2)+ sin(ϕ/2)m.

Show (using Theorem 2.3) that the composition RsRr is the map x → s(rxr̄)s̄ = (sr)xsr,
and as sr is also a unit quaternion (which is necessarily of the form cos 1

2ψ + sin 1
2 ψ h

for some unit vector h), hence RsRr = Rsr. By computing sr as a quaternion product,
find the axis and angle of rotation of the composition RsRr.

Section 2.3 1. Prove (visually) that given any three angles α , β , γ with α +β +
γ > π, there exists a spherical triangle with those angles.

2. Find the sides of a spherical triangle �ABC with ∠A = ∠B = ∠C = α .
3. Prove that the product of any two reflections of R

3 in planes through O that meet
in a common line is a rotation about that common line.

4. Given any two great circles on S2, there are two great circles bisecting the angles
between them, each at right angles to the other.

5. Find a spherical triangle of area 3π/4.
6. Prove the Pythagorean theorem for a sphere:
Let �ABC be a triangle in S2 in which the angle at C is a right angle. If a, b, and c

are the lengths of BC, CA, and AB, then
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cos c = cos a · cos b. (2.19)

7. For small a, b, c the classical Pythagorean theorem follows from (2.19). Hint:

cos x ≈ 1− 1
2x2 (x = a,b,c) =⇒ cos c− cos a cos b ≈ −1

2(c2 −a2 −b2).

The useful identities for a right angle triangle also are

sin α = sin a/sin c, tanα = tan a/ tan b.

8. Show that Rx( π
2 )Ry(π

2 ) =
(0 0 −1

1 0 0
0 −1 0

)
and Ry(π

2 )Rx(π
2 ) =

(
0 1 0
0 0 1
1 0 0

)
.

9. Determine the matrix A of a rotation x → xA of S2 that maps Q( 1
2 ,−1

2 ,− 1√
2
) to

P( 1
2
√

2
,

√
3

2
√

2
, 1

2
√

2
).

10. Let a triangle �PQR in S2 have sides QR = RP. Prove (using a reflection) that
the angles at the vertices P and Q coincide.

11. Let a point P in R
2 with polar coordinates (r,θ ) map under stereographic pro-

jection to a point P′ on S2. Then the spherical distance of P′ from the South Pole S is
2 tan−1(r).

12. The coordinates of P ∈ S2\{e3} under stereographic projection can be expressed
in terms of complex numbers

π(z) =
(

z + z̄
1 + |z|2 ,

i(z− z̄)
1 + |z|2 ,

z z̄−1
z z̄+1

)
. (2.20)

Section 2.4 1. Plot the pyramid and the prism each with rotation about its geomet-
rical axis. Use the programs of Example, p. 103, and the following

program:

N = 36; axis off;
for n = 0 : N; view(5*n, 30); % animation

patch(X, Y, [0 1 1]);
patch(’Vertices’, V, ’Faces’, F, ’FaceColor’, [1 .5 1]);
pause(0.2)

end;

2. Plot an oblique pyramid and a prism using the vector [x0,y0,z0], modifying the
program of Example, p. 103. Plot the tetrahedron and the cube as particular cases of a
regular pyramid and a prism whose heights have special values.

3. Prove that the faces of a convex polyhedron are convex polygons.
4. Show that there is no convex polyhedron with F = 4, E = 7, and V = 5. (Use

Theorem 2.5.)
5. Find the length of the line segment on a face of the cube that we use for plotting

the icosahedron.
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6. Find the height and an edge of the roof over the face of the cube that we use for
plotting the dodecahedron. The resulting pentagons must be planar and regular.

7. Prove formulae for the radii of inscribed and circumscribed spheres and for the
volume of Platonic solids as functions of their edges.

8. Plot five non-regular deltahedra. (Two of them are triangular and pentagonal
bipyramids).

9. Show that (a) G acts transitively on X if and only if for each x, y ∈ X there is some
g ∈ G such that g∗ x = y; (b) X is the union of its orbits, and any two orbits are either
equal or disjoint.

10. Let Q be a plane quadrilateral and let G(Q) be its symmetry group (that is, the
group of Euclidean isometries mapping Q onto itself). Show that G(Q) has at most 8
elements (so that Q has the largest symmetry group when it is a square). For each n in
{1,2, . . . ,8} determine whether or not there is a quadrilateral Q with G(Q) of order n.
Is it true that if G(Q) has order eight then Q is a square?

11. Let G = 〈σ〉 be the subgroup of S10 generated by σ = (0)(12)(345) (6789) ∈
S10. Then there are 4 orbits under the canonical action of G on {0,1, . . . ,9}, namely,
the sets {0}, {1,2}, {3,4,5} and {6,7,8,9}.

12. For any matrix A ∈ M2(R) we have an action of (R,+) on R
2 via t ∗ (x,y) =

(x,y)etA. Show that if A equals

(
1 0
0 1

)
,

(−1 0
0 −1

)
,

(
1 0
0 −1

)
,

(
0 −1
1 0

)
,

(
0 1
0 0

)
,

then etA equals

(
et 0
0 et

)
,

(
e−t 0
0 e−t

)
,

(
et 0
0 e−t

)
,

(
cos t sin t
−sin t cos t

)
,

(
0 0
t 1

)
, respectively.

13. Show that
(a) every subgroup G of the symmetric group Sn acts on {1, . . . ,n} via σ ∗n := σ(n),
(b) every matrix group G ⊂ GL(V ) acts on the vector space V via T ∗ v := vT . This

is called the natural action of G on V .
14. Let A ∈ GL(V ) be an invertible matrix. Then (Z,+) acts on V via m∗ v := vAm.
15. The transitive subgroups of S3 are exactly S3 and A3. The transitive subgroups

of S4 are
(a) S4,
(b) A4, which is normal,
(c) D4 (three conjugate copies),
(d) G1 = {e,(12)(34),(13)(24),(14)(23)}, which is normal,
(e) Z4 (three conjugate copies).
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16. Prove that the symmetry group of the sphere Sn ⊂ R
n+1 equals the group of

isometries of R
n+1 with no translational component, which is isomorphic to the or-

thogonal group: Symm(Sn) = O(n +1).
17. Summarize the definition of the dihedral group as follows: Dm is a group of

order 2m that is generated by two elements r and s which are subject to the relations:
rn = e, s2 = e, sr = r−1s. Show that

(a) The element of order n is the rotation by 2π/n degrees, and the element of order
two is the reflection about any symmetry axis of the n-gon.

(b) The direct symmetries of a polygon form a cyclic group Cn.
18. Prove directly that the group of rotations of a regular polyhedron with E edges

has order 2E .
Hint. The vertices of each of these polyhedra lie on a sphere, which one may assume

is centered at the origin in R
3. Recall that, say, q regular p-gons meet at each vertex v,

and we accept (again without proof) that there is a rotation of order q (about an axis
through v and the center of the polyhedron) which fixes v and leaves the polyhedron in-
variant. The stabilizer of each vertex (which cyclically permutes the q edges emanating
from v) is a cyclic group of order q.

Repeating rotations of the polyhedron, we can move any vertex to any other; thus
the orbit of any given vertex v is the set of all V vertices (and G+ acts transitively on
V ). Applying the orbit–stabilizer theorem, p. 123, one may conclude that G+ has order
qV ; thus, |G+| = 4pq

2q+2p−pq = 2E. This makes |G+| equal to 12 for the tetrahedron, 24
for the cube and the octahedron, and 60 for the dodecahedron and the icosahedron.

19. Prove that the vertices of any face of the small stellated dodecahedron are the
images under a homothety from the center of the “kernel” face with coefficient k =
−(1 +2τ−1/

√
3), but with different order.

Analogously, the vertices of the great stellated dodecahedron are the images under
a homothety from the center of mass of the “kernel” face with the same coefficient k,
this time in the same order.

20. Plot SPs over Platonic solids.
21. Some of the most fascinating models to play with are compounds. Plot com-

pounds corresponding to:
(a) An octahedron and a cube coupled together so that their edges bisect each other

at right angles. (The dodecahedron and the icosahedron can also be coupled together
to form a compound polyhedron.)

(b) Five different ways to inscribe a cube in a dodecahedron.
(c) Three different ways to inscribe a cube in an octahedron.
22. Calculate the vertices of the great icosahedron.
Hint. Start from an icosahedron inscribed in a cube. The continuation of the faces of

the icosahedron leads to only one case where the new polyhedron does not decompose.
Each face must be continued until its intersection with the three faces neighboring its
opposite face. By symmetry, each face of the great icosahedron is a triangle homo-
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thetic to the triangular face of the central icosahedron with some negative coefficient
k. For calculating k, consider the cross section of the polyhedron cut by the plane XZ,
which contains the center O1 of the face B1B2B9 and medians of this face, and the face
B3B4B10, which is neighbor to the parallel face B3B4B8. Such medians B9B1,2, B10B3,4,
where B1,2 = (B1 + B2)/2 = (0,0,c), B3,4 = (B3 + B4)/2 = (0,0,−c), intersect at the
point F(0,y,0) on the axis OY , which is the center of an edge of the great icosahe-
dron. Hence, F is the image of the point B1,2 under homothety with the center O1, i.e.,
k = − O1E

O1B1,2
. From similarity of triangles we find the value of y:

y/c = (y− c)/p =⇒ y = c2/(c− p) = 2c/(3−
√

5).

Then express the coefficient of homothety k through the ratio of projections of line
segments: k = − y−c/3

c/3 = − 3y−c
c = − 3+

√
5

3−√
5
≈ −6.854 .

23. Plot a regular icosahedron combining a pentagonal antiprism with two regular
pentagonal pyramids with the same edge length.

24. What regular stellated polyhedra are obtained from the Platonic solids by the
stellate construction? Apply the stellate construction to the Archimedean solids.

25. Write a program for plotting two half-regular Kepler’s polyhedra.
26. Write a program for plotting UP: prisms and antiprisms.
27∗. Complete the programs of Section A.6 with a program for plotting the snub

dodecahedron.
28. Plot prisms and antiprisms with star polygons as bases. Plot a decagon (some-

times called a pentacle) when the base for the prism is a pentagon.

Section 2.5 1. Show that the symmetric group Sn has n! elements, and the alter-
nating group An has n!/2 elements. Hint. Clearly, the dihedral group

Dn is generated by two elements ab and b, both of order two.
2. Let G = {1, i,−1,−i} be a subgroup of C. Show that for each g ∈ G the map

x �→ gx is a permutation of G.
3. Let K = {0,1,2} be the field with 3 elements (defined in Section 1.1) and A =

A(K2) be the affine plane over K. Thus in A there are exactly 9 points and 12 lines,
each line has 3 points, and each point lies on 4 lines.

4. Show that matrix multiplication is not generally commutative.
5. A 3 × 3 matrix {ai j} is called a magic square if the 3 row sums, the 3 column

sums and the 2 diagonal sums are all the same number s.
(a) Show that magic squares form a three-dimensional subspace of M3(R), and A1 =(

1 1 1
1 1 1
1 1 1

)
, A2 =

( 1 −1 0
−1 0 1
0 1 −1

)
, A3 =

( 0 1 −1
−1 0 1
1 −1 0

)
form a basis of this subspace.

(b) Show that a22 = s/3.
6. Check that (A ·B)t = Bt ·At .
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7. When A, B ∈ Mn(K) and K ∈ {R,C}, verify the following property: trace(AB) =
trace(BA). Since multiplication in H is not commutative, the above equality is false
even in M1(H).

8. Show for the matrix B =
(

cosθ sinθ
−sinθ cosθ

)
that RB : R

2 → R
2 is a counterclock-

wise rotation through the angle θ . Compare this to the matrix A = (eiθ) ∈ M1(C). For
this matrix RA : C → C is also a counterclockwise rotation through the angle θ , since
RA(reiφ) = rei(θ+φ ). Thus, A ∈ M1(C) and B ∈ M2(R) “represent the same motion.”

9. Consider the complex matrices (called pure quaternions)

1 =
(

1 0
0 1

)
, I =

(
i 0
0 −i

)
, J =

(
0 −1
1 0

)
, K =

(
0 −i
−i 0

)
. (2.21)

Verify the equations I2 = J2 = K2 = −1, IJ = K, JK = I, KI = J. Hence, the subgroup
G of GL(2,C) that is generated by the four elements (2.21) consists of 8 elements,
G = {±1,±I,±J,±K}.

10. Prove that quaternion multiplication corresponds to matrix multiplication:

M(q)M(q′) = M(q ·q′).

11. Prove the Schwarz inequality |〈x,y〉| ≤ ‖x‖ · ‖y‖ for all x, y ∈ K
n.

12. Verify using sigma1.m the last identity of (2.17).
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Affine and Projective Transformations

In addition to isometries, there are two kinds of mappings that preserve lines: affine
(Section 3.1) and projective (Section 3.2) transformations.

Affine transformations f of R
n have the following property:

If l is a line then f (l) is also a line, and if l ‖ k then f (l) ‖ f (k).

A line in R
n means a set of the form {r0 + r : r ∈ W }, where r0 ∈ R

n and W ⊂ R
n

is a one-dimensional subspace.
Projective transformations f of R

n

map lines to lines, preserving the cross-ratio of four points.

We also use homogeneous coordinates x = (x1 : . . . : xn+1) in R
n+1. Section 3.3

describes transformation matrices in homogeneous coordinates.

3.1 Affine Transformations

An affine transformation f : R
n → R

m is a linear mapping followed by a translation,
i.e., f (v) = A(v)+b, where b ∈ R

m and A : R
n → R

m is an invertible linear mapping.
The set Affn(R) of affine transformations of R

n is a group under the operation of com-
position.

3.1.1 Affine transformations in two and three dimensions

An affine transformation of the plane, f : R
2 → R

2, has the form

f (x,y) = (a11x +a12y +b1, a21x +a22y +b2) (3.1)

V. Rovenski, Modeling of Curves and Surfaces with MATLAB R© , 135
Springer Undergraduate Texts in Mathematics and Technology 7, DOI 10.1007/978-0-387-71278-9 3,
c© Springer Science+Business Media, LLC 2010
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for some real numbers ai j, b j satisfying Δ = a11a22 −a12a21 �= 0.

In matrix form we write f (x) = xA+b (x ∈ R
2), where A =

(
a11 a21

a12 a22

)
is an invert-

ible matrix, and b = (b1,b2) ∈ R
2.

One may use (3.1) to verify the properties of affine transformations:

(1) mapping lines to lines;
(2) mapping parallel lines to parallel lines;
(3) preserving ratios of lengths along a given line.

If A, B, C, D ∈ R
2 are four collinear points (with C �= D), the ratio

−→
AB/

−→
CD is

well defined; this is a scalar λ ∈ R such that
−→
AB = λ

−→
CD. The property (3) means

that
−→
AB/

−→
CD =

−−−−−−→
f (A) f (B)

/−−−−−−→
f (C) f (D).

Fundamental theorem of affine geometry. (For simplicity, consider the two-dimen-
sional case.) Let A, B, C and A′, B′, C′ be two sets of three non-collinear points in
R

2. Then there is a unique affine transformation f that maps A, B, C to A′, B′, C′,
respectively.

Next, we consider particular cases of affine transformations.
A scaling about the origin is a transformation that maps a point P = (x,y) to a point

P′ = (x′,y′) by multiplying the x and y coordinates by positive constant scaling factors

λx and λy, respectively, to give x′ = λxx and y′ = λyy. The matrix S(λx,λy) =
(

λx 0
0 λy

)

is called the scaling transformation matrix. If λx �= 1 and λy = 1, we have a horizontal
scaling Sx(λx), while if λy �= 1 and λx = 1, we have a vertical scaling Sy(λy):

{
x′ = λxx,
y′ = y

and

{
x′ = x,
y′ = λyy.

A scaling transformation is uniform (another name is a dilation about O) whenever
λx = λy = λ . A scaling factor λ is said to be an expansion if λ > 1, and a compression
if λ < 1. If the constant λx is allowed to be negative, a horizontal scaling by the factor
−λx is followed by a mirror reflection in the vertical axis, and similarly for negative
values of the constant λy.

A slightly less obvious transformation of the plane is called shear. The horizontal
shear and vertical shear transformations, Ŝx(r) and Ŝy(r), are given by

{
x′ = x + ry,
y′ = y

and

{
x′ = x,
y′ = rx + y.

(3.2)

In both cases r is a real constant other than zero.
Both scaling and shear can be applied in an arbitrary direction.



3.1 Affine Transformations 137

The directional scaling by a factor λ > 0 in the direction v = (a,b) is given by the

matrix Sv(λ ) =
1

a2 +b2

(
λ a2 +b2 (λ −1)ab
(λ −1)ab a2 +λ b2

)
, i.e.,

x′ =
(λ a2 +b2)x +(λ −1)aby

a2 +b2 , y′ =
(a2 +λ b2)y +(λ −1)abx

a2 +b2 . (3.3)

The directional shear by a factor r > 0 in the direction v = (a,b) is given by the

matrix Ŝv(r) =
1

a2 +b2

(
a2 +b2 − rab −rb2

ra2 a2 +b2 + rab

)
, i.e.,

x′ =
(a2 +b2 − rab)x + ra2y

a2 +b2 , y′ =
(a2 +b2 + rab)y− rb2x

a2 +b2 . (3.4)

Examples.

1. Einstein’s theory of special relativity studies the relationship of the dynamics of a
system, if described in two coordinate systems moving with constant speed v one from
the other. The Lorentz transformation gives the rules for going from one coordinate
system to the other. Einstein, on the basis of two postulates, derived the (affine) trans-
formation Lx relating the coordinates of the two systems: y′ = y, z′ = z, and

⎧
⎨

⎩

x′ = β (x− vt),

t ′ = β
(

t − v
c2 x

) =⇒ Lx =
(

β −βv
−β v

c2 β

)
.

Here c = const > 0 is the velocity of light and β = 1
/√

1− v2/c2.

2. Let P, Q, R be points other than the vertices on the (possibly extended) sides of a
triangle �ABC. One may show that

(a) the points P, Q, R are collinear ⇐⇒ AR
RB

· BP
PC

· CQ
QA

= −1 (Menelaus);

(b) the lines AP, BQ, CR are concurrent ⇐⇒ AR
RB

· BP
PC

· CQ
QA

= 1 (Ceva).

We may use (b) in solving this problem: Let A = (1,3), B = (−1,0), C = (4,0) and
P = (0,0), Q = (8

3 , 4
3), R = (− 2

3 , 1
2) be the points. Determine whether the lines AP, BQ,

and CR are concurrent.

A = [2 4]; B = [-2 0]; C = [1 0]; P = [5/2 0]; Q = [3/2 2]; R = [1 3];

det([A - B; R - B]), det([A - C; Q - C]), det([C - B; P - B]) % Answer: 0,0,0
AR = norm(A - R), BP = norm(B - P), CQ = norm(C - Q) % verify
RB = norm(R - B), PC = norm(P - C), QA = norm(Q - A)
Ceva = (AR*BP*CQ)/(RB*PC*QA) % obtain 1 (Yes!)
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3. How is an affine transformation written in complex numbers? Affine mappings are
of the form f z = az+bz̄+c; the affine transformations are those for which |a|2 �= |b|2.
We confirm this using the determinant:

syms a1 a2 b1 b2 x y real
f = (a1 + i*a2)*(x + i*y) + (b1 + i*b2)*conj(x + i*y); % one may assume c = 0
f1 = collect(real(f), [x, y]), f2 = collect(imag(f), [x, y])
f1 = (a1 +b1)x +(b2 −a2)y f2 = (a2 +b2)x +(a1 −b1)y % Answer
A = [ a1 + b1 b2 - a2; a2 + b2 a1 - b1] % the matrix of the linear system
det(A) % Answer: a2

1 +a2
2 −b2

1 −b2
2

An affine transformation f : R
3 → R

3 of space has the form f (x) = xA + b (x ∈

R
3), where A =

⎛

⎝
a11 a21 a31

a12 a22 a32

a13 a23 a33

⎞

⎠ is an invertible matrix, and b = (b1,b2,b3) ∈ R
3. In

coordinate form we have

f (x) = (a11x +a12y +a13z +b1, a21x +a22y +a23z +b2, a31x +a32y +a33z +b3)

for some real numbers ai j, b j satisfying det A �= 0.

A scaling about the origin is a transformation that maps a point P = (x,y,z) to
a point P′ = (x′,y′,z′), multiplying the x, y, and z coordinates by positive constant
scaling factors λx, λy, and λz, respectively, to give x′ = λxx, y′ = λyy, and z′ = λzz.

The matrix S(λx,λy,λz) =

⎛

⎝
λx 0 0
0 λy 0
0 0 λz

⎞

⎠ is called the scaling transformation matrix. A

scaling transformation is uniform whenever λx = λy = λz = λ . A scaling factor λ is
said to be an expansion if λ > 1, and a compression if λ < 1.

Examples. The command maketform (from the Image Processing Toolbox) creates
spatial transformation structures of the following types:

’affine’ – affine transformation in 2-D or n-D,
’projective’ – projective transformation in 2-D or n-D, etc.

f = maketform(’affine’, A) builds a nonsingular (n + 1)-by-(n + 1) matrix A for an
affine transformation, the last column of A being [zeros(n, 1); 1].

f = maketform(’projective’, A) builds a nonsingular real (n + 1)-by-(n + 1) matrix
A for an n-dimensional projective transformation; the entry A(n + 1,n + 1) cannot be
0. The matrix A defines a forward transformation such that tformfwd(U, f), where U
is a 1-by-n vector, returns a 1-by-n vector x such that x = W(1 : n)/W(n + 1), where
W = [U 1]*A.

1. Make and apply an affine transformation of R
2:
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f = maketform(’affine’, [.5 0 0; .5 2 0; 1 2 1]); % f (x) = x
(

.5 0

.5 2

)
+(1,2)

tformfwd([10 20], f) % Answer: (16,42) (see also Section 3.3).

2. Apply an affine transformation of R
3, f (x) = xA, A =

⎛

⎝
.5 0 0
.5 2 0
0 0 1

⎞

⎠:

F = maketform(’affine’, [.5 0 0 0; .5 2 0 0; 0 0 1 0; 0 0 0 1]); % matrix A
tformfwd([10 20 5], F) % Answer: (15,40,5).

3.1.2 Parallel projections

We will see that a parallel projection (of one plane onto another one) is a special type
of affine transformation.

There are several variants of parallel projections (see also Section 5.3.2), but they are
all based on the following principle: Select a direction d ∈ R

3 and construct a ray that
starts at a general point P in the object, and goes in the direction d. The point P′ where
this ray intercepts the projection plane becomes the projection of P. The rays may be
perpendicular to the projection plane (orthogonal projection), or they may strike at a
different angle. This is why the latter method is called oblique projection.

Because the rays are parallel, we can imagine that they originate at a center of pro-
jection located at infinity. This interpretation unifies parallel and perspective projec-
tions (see also Section 3.2.3) and is in accordance with the general rule of projections
which distinguishes between parallel and perspective projections by the location of the
center of projection.

We create the parallel projection ourselves using calculations with affine maps. As-
sume the vector d = (a,b,c) is not parallel to the plane ω : Ax + By +Cz = 0 (with
normal vector n = (A,B,C)). Then the parallel projection of the point P = (x,y,z) in
the plane ω in the direction d is the point Q = (x′,y′,z′), where rQ = rP− rP·n

d·n d (verify!)
or

x′ =
(bB+ cC)x−aBy−aCz

aA+bB+ cC
,

y′ =
−bAx +(aA+ cC)y−bCz

aA+bB+ cC
, (3.5)

z′ =
−cAx− cBy +(aA+bB)z

aA+bB+ cC
.

If the vector d is perpendicular to the plane ω (i.e., d and n are parallel), the term
orthogonal projection or orthographic projection is used.
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We will now study the relations of parallel projections and affine transformations of
R

n. For concreteness we will restrict ourselves to n = 2, 3.
Let α1 and α2 be two planes of R

3 and let d be a vector not parallel to either plane.
Imagine rays of light shining parallel to d through these planes. Each point P1 ∈ α1 has
a unique ray passing through it that also passes through a point P2, say, in the plane α2.
We call the function π that maps each point P1 in α1 to the corresponding point P2 in
α2 a parallel projection from α1 onto α2. If the roles of the planes are reversed, then
we obtain the inverse function π−1 : α2 → α1, a parallel projection from α2 onto α1.

We can imagine α1 and α2 as copies of R
2, each equipped with Cartesian coordi-

nates (due to isometries fi : R
2 � αi). Hence, a parallel projection π : α1 → α2 be-

comes a transformation of R
2, i.e., f −1

2 ·π · f1 : R
2 �→ R

2.
Note the following properties:

(a) Each parallel projection π : α1 → α2 is an affine transformation.
(b) An affine transformation is not necessarily a parallel projection.
(c) An affine transformation of R

2 can be expressed as the composite of two parallel
projections.

Hence, certain properties of figures, such as length and angle, are not preserved
under a parallel projection. The difference arises because the affine group Aff2 is larger
than the group Isom2 (of isometries).

Examples.

1. A parallel projection is either between two parallel planes, in which case all lengths
are unchanged, or between two intersecting planes, in which case distances along the
line of intersection are unchanged. Hence, the “doubling map” x → 2x is not a paral-
lel projection, but it is possible to realize it by following one parallel projection with
another: the first doubles all horizontal lengths, and the second doubles all vertical
lengths.

2. Consider a parallel projection π : ω2 → ω1 of coordinate plane ω2 : x = 0 onto
ω1 : z = 0 (i.e., A = B = 0, C = 1) in the direction d = (cosφ ,sinφ ,−1). In this view,
(3.5) becomes x′ = x + cosφ z, y′ = x + sinφz, z′ = 0. Let us find the image of the
triangle �PQR ⊂ ω2:

t = pi/3; d = [cos(t) sin(t) -1];
P = [0; 0; 1]; Q = [0; 1; 2]; R = [0; 2; 1];
T = [1 0 cos(t); 0 1 sin(t); 0 0 0] % projection in the direction d
P1 = T*P; Q1 = T*Q; R1 = T*R; % images of P, Q, R
hold on; view(3); arrow3(R, d, ’r’);
patch([P(1) Q(1) R(1)], [P(2) Q(2) R(2)], [P(3) Q(3) R(3)], [0 0 1]);
patch([P1(1) Q1(1) R1(1)], [P1(2) Q1(2) R1(2)], [P1(3) Q1(3) R1(3)], [0 1 0]);
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3.1.3 Convex hull and Delaunay triangulation

Let A1, . . . ,Ak be distinct points in R
n and α1, . . . ,αk be scalars. The set (A1,α1), . . . ,

(Ak,αk) is called a system of weighted points.
If (Ai,αi) (1 ≤ i ≤ k) are weighted points such that ∑αi �= 0, there exists a unique

point P with the property ∑αi
−→
PAi = 0. (Verify!) Moreover, for any point Q, we have(

∑αi
)−→
QP = ∑αi

−−→
QAi.

The unique point P defined by this claim is called the barycenter of the system.
Notice that the barycenter of the system (A1,α1), . . . ,(Ak,αk) is, by definition and for
any nonzero scalar λ , the same as that of the system (A1,λ α1), . . . ,(Ak,λ αk).

A subset S of R
n is convex if for all points A and B of X the segment [A,B] is

contained in S. The intersection of all convex subsets containing X ⊂ R
n is a convex

subset C(X) ⊂ R
n, called the convex hull of X .

A convex polygon bounds a convex plane domain. New convex subsets can be con-
structed using the following properties, whose proofs are easy:

(a) The intersection of convex subsets is convex.
(b) The convex hull of X is the set of barycenters of the points of X endowed with

positive masses.

Several properties of conics are affine invariant. Let f : R
2 → R

2 be an affine trans-
formation, and C a conic.

(a) If R is the center of C, then f (R) is the center of f (C).
(b) If l is the asymptote of C, then f (l) is the asymptote of f (C).
(c) If l is a tangent to C, then f (l) is a tangent to f (C).

The convex hull of a finite planar or spatial set P = {P1,P2, . . . ,Pn} of points is use-
ful in spline constructions; see Chapter 9. The derivation and plotting of the convex
hull, shown in Figure 3.1(a), are the key to a number of problems of computational
geometry, in which algorithms of geometrical problems and their computational com-
plexity are studied. There are many well-known algorithms for the convex hull. We will
consider one of them, based on the gift wrapping method. The idea is the following:

1. Find the Pi1 with the minimal y-coordinate (Pi1 lies on the convex hull).
2. Rotate a ray around Pi1 until the last point, say Pi2 , of the given set lies on it.

(Obviously, Pi2 belongs to the convex hull.)
3. Repeat this rotation for Pi2 and find Pi3 , etc., until we return to the initial point

Pi1 .

Example. We find the convex hull using the command convhulln.

x = randn(1, 35); y = randn(1, 35);
k = convhulln( [x; y] ’, {’Qt’, ’Pp’} )
plot(x, y, ’o’, x(k), y(k), ’+ r’) % The vertices of CH(X) are in red
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Fig. 3.1 The convex hull. The depth (layers) of the planar point set.

Alternatively, we create an M-file CH my:

function [L, m] = CH my(x, y) % first m points of L form CH(P)
n = length(x);
P = cat(1, x, y); L = P; % P array of given points; Pi = (xi,yi)
Y = L(2, 1); a = 1;
for i = 2 : n; if L(2, i) <= Y;
a = i; Y = L(2, i);
end; end
L(:, n + 1) = L(:, a); B = [1; 0];
for j = 1 : (n + 1);
C = -1; T = L(:, a); L(:, a) = L(:, j); L(:, j) = T;
if (a == n + 1) | (j == n + 1) % condition “or”
m = j;
j = n + 1; return
end;
for i = (j + 1) : (n + 1);
r = L(:, i) - L(:, j);
if r’*r > 0
Y = r’*B/(sqrt(r’*r)*sqrt(B’*B));
if Y >= C;
C = Y; a = i;
end; end; end;
B = L(:, a) - L(:, j);
end

end

Now we apply CH my:

N = 35; x = randn(1, N); y = randn(1, N); % random definition of points
[L, m] = CH my(x, y); % compute CH(P)
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plot(L(1, 1 : m), L(2, 1 : m), ’-r’); % plot CH(P), Figure 3.1(a)
hold on; plot(x, y, ’bo’) % plot all points P (inside CH(P))

There are several related problems, for example, finding the intersection of two
given convex polygons. Below we consider a problem having applications in statistics.

The depth of a point A in a finite planar set P is the number of convex hulls (we
will say convex layers) that bound this point and that must be deleted before the point
A can be deleted (Figure 3.1). The depth of a finite planar set is the number of convex
hulls (i.e., convex layers) obtained by the above procedure. For example, the depth of
a triangle and its center (i.e., four points) is equal to two.

The Delaunay triangulation returns a set of triangles connecting the data points in
such a way that no data point is contained within any triangle.

Fig. 3.2 Delaunay triangulation. Lines that separate regions.

Example. Given 2-D data, apply Delaunay triangulation. Obtain the index number of
the triangle containing a given point by using the function tsearch.

x = randn(1, 12); y = randn(1, 12);
T = delaunay(x, y)
tsearch(x, y, T, [.2 .7])

Plot the triangles by using trimesh.

trimesh(T, x, y) % Delaunay triangulation

Compute and plot the lines that separate regions in the plane closest to a particular data
point by using the function voronoi.

voronoi(x, y, T) % lines that separate regions
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3.2 Projective Transformations

3.2.1 Homogeneous coordinates

The space R
3 is used to develop the theory of two-dimensional projective geometry.

A projective point is a line in R
3 through the origin. The real projective plane RP2

is the set of all such points.

The expression (a : b : c), in which the numbers a, b, c are not all zero, represents
the point Q in RP2 corresponding to the line in R

3 through (0,0,0) and (a,b,c). We
refer to (a : b : c) as homogeneous coordinates of Q. The points (1 : 0 : 0), (0 : 1 : 0),
(0 : 0 : 1) are known as the triangle of reference. The point (1 : 1 : 1) is called the unit
point. Projective points in RP2 are collinear if they lie on a projective line. A projective
line is a plane in R

3 that passes through the origin.

Let us investigate a way of associating plane figures with figures in RP2. Suppose
that a plane ω contains a figure F (say, a triangle). We can place ω in R

3 so that it
does not pass through the origin, and then construct a corresponding projective figure
by drawing in all the lines of R

3 that pass through the origin O and the points of F (a
double triangular pyramid). Conversely, we can start with a projective figure F .

Note that any point of RP2 that consists of a line through the origin parallel to ω
does not intersect ω , and so cannot be associated with a point of ω . Such a point is
called an ideal point for ω . All the ideal points for ω lie on a plane through O parallel
to ω . This plane is a projective line known as the ideal line for ω .

An embedding plane is a plane ω that does not pass through the origin, together
with the set of all ideal points for ω . The simplest approach is to designate ω to be the
standard embedding plane z = 1. (Two other possible standard choices are x = 1 and
y = 1.)

A polynomial p(x1, . . . ,xn) in n variables is homogeneous of degree k if

p(λ x1, . . . ,λ xn) = λ k p(x1, . . . ,xn) ∀λ ∈ R.

This means that p is a sum of kth-degree monomials axt1
1 · · ·xtn

n , where t1 + · · ·+ tn = k.

A projective figure is a subset of RP2. Figures in RP2 can be determined by homo-
geneous polynomials in the variables x, y, z.

A homogeneous polynomial of degree k in the variables x, y, z defines a figure
pk(x,y,z) = 0 in RP2, which is called an algebraic set of kth order. The algebraic set
of second order p2(x,y,z) = 0 is called a projective conic in RP2. A projective conic
is nondegenerate if it can be represented by a nondegenerate conic in the standard
embedding plane.
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Example. Show that p = x3y + xy3 is a homogeneous polynomial.

syms x y k;
p = @(x, y) xˆ3*y + x*yˆ3; % enter polynomial
p2 = p(k*x, k*y); simplify(p2/p(x, y)) % obtain k4

3.2.2 Duality and cross-ratio

We define cross-ratio in terms of projective geometry.
Let A, B, C, D be four collinear points in RP2 represented by position vectors a, b,

c, d, and let c = α a +β b and d = γ a +δ b. Then the cross-ratio of A, B, C, D is

(A,B,C,D) = (β/α) : (δ/γ).

Four collinear points A, B, C, D are called harmonic if (A,B,C,D) = −1. In this case,
A, B are harmonically conjugate with respect to C, D.

The following properties are easy to prove:

(a) The cross-ratio (A,B,C,D) is independent of the homogeneous coordinates that
are used to represent the collinear points A, B, C, D.

(b) Projective transformations preserve the cross-ratio.

In affine plane geometry, if two points A, B are given, then the ratio AC/CB uniquely
determines a third point C on the line AB.

We now explore the analogous result for projective geometry.

Unique fourth point. Let A, B, C, X, Y be collinear points in RP2 such that

(A,B,C,X) = (A,B,C,Y ).

Then X = Y .

Hence, the cross-ratio is like a coordinate determining the fourth member from a
given triple. Any number, as well as ∞, can occur.

Example. Let A, B, C, D and A, E , F , G be two sets of collinear points (on different
lines) in RP2 such that (A,B,C,D) = (A,E,F,G). To show that the lines BE , CF , and
DG are concurrent, we will use symbolic arguments. We may assume A = (0,0,1),
B = (1,0,1), C = (c,0,1), and D = (d,0,1).

syms c d f g;
A = [0 0 1]; B = [1 0 1];
C = [c 0 1]; D = [d 0 1];
E = [0 1 1]; F = [0 f 1]; G = [0 g 1];
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CR1 = (A(1)-C(1))*(B(1)-D(1))/(A(1)-B(1))/(C(1)-D(1)); % 1st cross-ratio
CR2 = (A(2)-F(2))*(E(2)-G(2))/(A(2)-E(2))/(F(2)-G(2)); % 2nd cross-ratio
f2 = factor(solve(CR1 - CR2, f)) % condition (A,B,C,D) = (A,E,F,G)
BE = cross(B, E); CF = cross(C, F); DG = cross(D, G);
BE CF = cross(BE, CF);
BE DG = cross(BE, DG);
R1 = factor(subs(BE CF, f, f2));
R2 = factor(subs(BE DG, f, f2));
h = R1(2)/R2(2); simplify(R1/h - R2) % obtain zero vector

Duality is the bijective correspondence between points and lines of RP2 that respects
incidence: a point and a line are incident if the point belongs to the line, or the line
passes through the point. The duality principle of projective geometry states:

If a valid statement is posed only in terms of points, lines, and the incidence
relations, then the dual proposition, obtained from the original statement by in-
terchanging the terms point and line, is also true.

A set of points on a line is called a range and the line itself is called the axis of the
range. The dual of a range is called a pencil of lines. The common point of the lines of
the pencil is called the apex of the pencil. Any line not passing through the apex of a
pencil is called a transversal.

If a range has axis l, then the lines of the dual pencil pass through the point dual to
the line l. Since the dual coordinates of four lines of a pencil are dependent, a cross-
ratio can be defined for a pencil of four lines in the same way one was defined for four
collinear points.

Examples.

1. In homogeneous coordinates, the dual line of the point P = (a : b : c) is the line
l : ax + by + cz = 0. The dual of the line containing two points is the point where the
dual lines meet. If P = (a : b : c) and X = (x : y : z) then ax+by+cz = 0 can be written
as X ·P = 0.

syms x y z;
P = [1 2 5];
l = [x y z] ’*P % obtain l = x +2y +5z

2. Prove that two distinct points in RP2 lie on a unique line.

Solution. An equation for the line in RP2 through the points Q = (a : b : c) and R = (d :

e : f ) is the determinant

∣∣
∣
∣
∣
∣

x y z
a b c
d e f

∣∣
∣
∣
∣
∣
=
∣
∣
∣
∣
b c
e f

∣
∣
∣
∣x−

∣
∣
∣
∣
a c
d f

∣
∣
∣
∣y +

∣
∣
∣
∣
a b
d e

∣
∣
∣
∣z = 0. We compute this

equation for the points Q = (1 : 3 : 5) and R = (−1 : 2 : 0):



3.2 Projective Transformations 147

syms x y z;
S = [x y z]; Q = [1 3 5]; R = [-1 2 0];
det([Q; R; S]) % obtain equation.

3. Show that the four lines

x + y +2z = 0, 3x− y +4z = 0, 5x + y +8z = 0, 2x +3z = 0,

are concurrent and find their cross-ratio. Hint. Use duality and the definition of cross-
ratio.

L1 = [1 1 2]; L2 = [3 -1 4]; L3 = [5 1 8]; L4 = [2 0 3];

M = [L1; L2; L3; L4]; rank(M) % verify that rank(M) = 2
syms a1 a2 b1 b2;
Eq1 = a1*L1 + a2*L2 - L3;
Eq2 = b1*L1 + b2*L2 - L4;
[a1 a2] = solve(Eq1(1), Eq1(2), Eq1(3), a1, a2)
[b1 b2] = solve(Eq2(1), Eq2(2), Eq2(3), b1, b2)
CR = (a2/a1)/(b2/b1) % Answer: the cross-ratio 1/2.

3.2.3 Projective transformations of RP2

A projective transformation of R
n+1 is a function of the form f : (x1 : . . . : xn+1) →

(x1 : . . . : xn+1)A, where A is an invertible (n+1)×(n+1) matrix. We say A is a matrix
associated with f . The set P(n) of projective transformations of RPn is a group under
the operation of composition.

We define the transformations of RP2 algebraically, and then we give their geomet-
rical interpretation using the ideas of perspectivity.

A projective transformation of RP2 is a function of the form f : (x : y : z) → (x : y :
z)A, where A is an invertible 3×3 matrix. We say A is a matrix associated with f .

If R is a (real) eigenvector of the matrix A corresponding to an eigenvalue λ , then
RA = λ R and so R is a fixed point of the corresponding projective transformation.

Strategy:

1. To compose two projective transformations f1 and f2:

(a) write down matrices A1 and A2 associated with f1, f2;
(b) calculate A1A2;
(c) write down the composite f1 ◦ f2 with which A1A2 is associated.

2. To find the inverse of a projective transformation f :

(a) write down a matrix A associated with f ;
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(b) calculate adj(A);
(c) write down the inverse f −1 with which adj(A) is associated.

3. To find the image of a line ax + by + cz = 0 under the projective transformation
f : (x : y : z) → (x : y : z)A:

(a) write the equation of the line (x : y : z)L = 0 where L = (a,b,c);
(b) find a matrix B associated with f −1;
(c) write down the equation of the image (x : y : z)LB = 0.

Example. Find the fixed points of the projective transformation corresponding to the

matrix A =

⎛

⎝
2 1 0
0 1 −1
0 2 4

⎞

⎠.

Solution.

A = [2 1 0; 0 1 -1; 0 2 4];
[V, E] = eig(A)

A projective transformation f : (x : y : z) → (x : y : z)A of RP2 is called a perspective
if there are planes ω1 and ω2 such that the linear transformation f : x → xA maps ω2

rigidly onto ω1 in R
3.

Perspectivity theorem. Every projective transformation of RP2 is the composite of at
most three perspective transformations. Hence, every property preserved by perspec-
tive transformations is also preserved by projective transformations.

For example, the projective transformation associated with the matrix

A = [2 0 0; 0 3 0; 0 0 4]

cannot be a perspective transformation. Because the linear transformation associated
with (any multiple of) A stretches distances in each direction of R

3 by different factors,
it cannot map any plane rigidly onto another.

A quadrilateral is a set of four points A, B, C, D no three of which are collinear. The
four points determine six lines, which fall into three pairs of opposite sides, the lines
{AC,BD}, {AD,BC}, {AB,CD} meeting respectively in three diagonal points X , Y , Z.

Fundamental theorem of projective geometry. (For simplicity, consider the two-di-
mensional case.) Let A, B, C, D and A′, B′, C′, D′ be two quadrilaterals in RP2. Then
there is a unique projective transformation f mapping A, B, C, D to A′, B′, C′, D′.

Strategy. To determine the projective transformation f that maps the vertices of the
quadrilateral ABCD to the corresponding vertices of the quadrilateral A′B′C′D′:
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(a) find the projective transformation f1 that maps the triangle of reference and unit
point to the points A, B, C, D, respectively;

(b) find the projective transformation f2 that maps the triangle of reference and unit
point to the points A′, B′, C′, D′, respectively;

(c) calculate f = f2 ◦ f −1
1 .

Examples. (Using the fundamental theorem.)

1. Desargues’ theorem. Let �ABC and �A′B′C′ be two triangles in R
2 such that the

lines AA′, BB′, and CC′ meet at a point U. Let BC and B′C′ meet at P, CA and C′A′
meet at Q, and AB and A′B′ meet at R. Then P, Q, and R are collinear.

Proof. Let A′, B′ be points that do not lie on the line z = 0. By the fundamental theorem,
one may assume A = (1 : 0 : 0), B = (0 : 1 : 0), C = (0 : 0 : 1), and C′ = (1 : 1 : 1).

syms p1 p2 q1 q2 r1 r2;
A = [1 0 0]; B = [0 1 0]; C = [0 0 1];
A1 = [p1 p2 1]; B1 = [q1 q2 1]; C1 = [1 1 1];
AA1 = cross(A, A1);
BB1 = cross(B, B1);
CC1 = cross(C, C1);
D1 = det([AA1; BB1; CC1]) % obtain D1 = p2 −q1

% D1 = 0 means that the lines AA′, BB′, and CC′ meet at a point U .
BC = cross(B, C);
B1C1 = cross(B1, C1);
P = cross(BC, B1C1);
CA = cross(C, A);
C1A1 = cross(C1, A1);
Q = cross(CA, C1A1);
AB = cross(A, B);
A1B1 = cross(A1, B1);
R = cross(AB, A1B1);
D2 = factor(det([P; Q; R])) % find D1 as a factor
R2 = solve(D1, r2);
D2 = simplify(subs(det([P; Q; R]), r2, R2)) % obtain 0

��
2. Pappus’ theorem. Let A1, A2, A3 and B1, B2, B3 be two sets of collinear points lying
on distinct lines. Let C1 = A2B3 ∩ A3B2, C2 = A3B1 ∩ A1B3, and C3 = A1B2 ∩ A2B1.
Then C1, C2, and C3 are collinear.

Proof. We apply a projective transformation to simplify the algebra. Take A1A2A3 to
be the line y = 0 and B1B2B3 to be the line z = 0. Let A1 = (p : 0 : 1), A2 = (q : 0 : 1),
A3 = (r : 0 : 1), B1 = (l : 1 : 0), B2 = (m : 1 : 0), B3 = (n : 1 : 0). Then the line A2B3

has dual coordinates A2 × B3 = (−1 : n : q), and the line A3B2 has dual coordinates
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A3 ×B2 = (−1 : m : r). These lines meet at c1 = (−1 : n : q)× (−1 : m : r) = (nr−qm :
r−q : n−m). Similarly, c2 = (l p− rn : p− r : l −n) and c3 = (mq− pl : q− p : m− l).

Since [C1,C2,C3] =

∣∣
∣
∣
∣
∣

nr −qm r −q n−m
l p− rn p− r l −n
mq− pl q− p m− l

∣∣
∣
∣
∣
∣
= 0 (the rows sum to zero), it follows that

C1, C2, C3 are collinear. We verify the proof using the program below.

syms p q r l m n;
A1 = [p 0 1]; A2 = [q 0 1]; A3 = [r 0 1];
B1 = [l 1 0]; B2 = [m 1 0]; B3 = [n 1 0];
A2B3 = cross(A2, B3);
A3B2 = cross(A3, B2);
c1 = cross(A2B3, A3B2)
A1B3 = cross(A1, B3);
A3B1 = cross(A3, B1);
c2 = cross(A3B1, A1B3)
A1B2 = cross(A1, B2);
A2B1 = cross(A2, B1);
c3 = cross(A1B2, A2B1)
det([c1; c2; c3]) % obtain 0

��
Note that the vanishing of the determinant depends on the fact that nr = rn,

qm = mq, pl = l p. With more general non-commutative algebraic systems such as
the quaternions, Pappus’ theorem may fail to hold.

3. The Fano plane, Z2P2, is the projective plane defined by 3 homogeneous Z2 coordi-
nates. An element of Z2P2 is a triple (x : y : z), where x, y, z are 0 or 1. Since (0 : 0 : 0)
is excluded, Z2P2 has seven points. By duality there are seven lines. The fundamental
theorem of plane projective geometry is true for Z2P2. The set of all projective trans-
formations of Z2P2 consists of 7 ·6 ·4 = 168 elements.

3.3 Transformations in Homogeneous Coordinates

When Xn+1 �= 0, the homogeneous coordinates (X1 : . . . : Xn+1) represent the Cartesian
point (x1, . . . ,xn) = (X1/Xn+1, . . . ,Xn/Xn+1) in R

n. A point of the form (X1 : . . . : Xn : 0)
does not correspond to a Cartesian point, but represents the point at infinity in the
direction of the vector (X1, . . . ,Xn).
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3.3.1 Transformations in two dimensions

When W �= 0, the homogeneous coordinates (X ,Y,W ) represent the Cartesian point
(x,y) = (X/W,Y/W ) in R

2. A point of the form (X ,Y,0) represents the point at infinity
in the direction of the two-dimensional vector (X ,Y ).

In homogeneous coordinates, as shown in Section 3.2, the composition of transfor-
mations f1 and f2, denoted by f1 ◦ f2, can be performed with matrix multiplications
alone. The homogeneous transformation matrices for translations, scalings, and rota-
tions are presented in what follows.

Examples.

1. A rotation R(θ ) about the origin followed by a translation Ta is denoted by R(θ )◦
Ta, and has the transformation matrix

⎛

⎝
cos θ sin θ 0
−sin θ cos θ 0

0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 0
ax ay 1

⎞

⎠=

⎛

⎝
cos θ sin θ 0
−sin θ cos θ 0

ax ay 1

⎞

⎠ .

syms t ax ay; Rz = e rot(0, 0, t); Ta = [ 1 0 0; 0 1 0; ax ay 1 ];
Rz*Ta % obtain above R(θ )◦Ta

A rotation through an angle θ about an arbitrary point (x0,y0) is obtained by perform-
ing a translation which maps (x0,y0) to the origin, followed by a rotation through the
angle θ about the origin, followed by a translation which maps the origin to (x0,y0).
The rotation matrix is

R(x0,y0)(θ ) = T−(x0,y0)R(θ )T(x0,y0)

=

⎛

⎝
1 0 0
0 1 0

−x0 −y0 1

⎞

⎠

⎛

⎝
cos θ sin θ 0
−sin θ cos θ 0

0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 0
x0 y0 1

⎞

⎠

=

⎛

⎝
cos θ sin θ 0
−sin θ cos θ 0

−x0 cos θ + y0 sin θ + x0 −x0 sin θ − y0 cos θ + y0 1

⎞

⎠ .

syms t ax ay; Rz = e rot(0, 0, t); Ta = [ 1 0 0; 0 1 0; ax ay 1];
Rt = inv(Ta)*Rz*Ta % obtain above R(x0,y0)(θ )

2. A square has vertices A = (1,1), B = (2,1), C = (2,2), D = (1,2). Find the coordi-
nates of the vertices when the figure is rotated about B through the angle π/4.

R1 = e rot(0, 0, pi/4) % obtain ≈ [0.71,0.71,0;−0.71,0.71,0;0,0,1.00]
Tb = [ 1 0 0; 0 1 0; 2 1 1];
Rt = inv(Tb)*R1*Tb % ≈ [0.71,0.71,0;−0.71,0.71,0;1.29,−1.12,1.00]
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S = [1 1 1; 2 1 1; 2 2 1; 1 2 1];
Q = S*Rt % rows of Q are images of A, B, C, D

1.2929 0.2929 1.0000
2.0000 1.0000 1.0000
1.2929 1.7071 1.0000
0.5858 1.0000 1.0000 % Answer: matrix Q.

3. A reflection Pl in an arbitrary line l : ax + by + c = 0 (see Section 2.2) may be
obtained by transforming the line to one of the axes, reflecting in that axis, and then
applying the inverse of the first transformation. Reflections Px and Py correspond to the
x- and y-axes. The general reflection matrix in homogeneous coordinates is

Pl =

⎛

⎝
b2 −a2 −2ab 0
−2ab a2 −b2 0
−2ac −2bc b2 +a2

⎞

⎠ . (3.6)

To show this, let b �= 0. The line l intersects the y-axis in (0,−c/b).

Strategy:

(a) Apply a translation mapping (0,−c/b) to the origin, thus mapping l to a line l′
through the origin with an identical gradient to l.

(b) The gradient of l′ is tan(θ ) = −a/b, where θ is the angle that l makes with the
x-axis. Rotate l′ about the origin through the angle −θ . The line is now mapped
to the x-axis.

(c) Apply a reflection in the x-axis.
(d) Apply the inverse of the rotation of step (b), followed by the inverse of the

translation of step (a).

The composition of the transformations above is

⎛

⎝
1 0 0
0 1 0
0 c/b 1

⎞

⎠

⎛

⎝
cos θ −sin θ 0
sin θ cos θ 0

0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠

⎛

⎝
cos θ sin θ 0
−sin θ cos θ 0

0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1 0
0 −c/b 1

⎞

⎠

=

⎛

⎝
cos 2θ sin 2θ 0
sin 2θ −cos 2θ 0

(c/b)sin 2θ −(c/b)(1+ cos2θ ) 1

⎞

⎠ . (3.7)

syms a b c t;
Rt = e rot(0, 0, t);
T1 = [1 0 0; 0 1 0; 0 c/b 1]; T2 = [1 0 0; 0 -1 0; 0 0 1];
Pl = simple(T1*inv(Rt)*T2*Rt*inv(T1)) % obtain result of (3.7)

Since tan θ = −a/b, it follows that cos 2θ = (b2 − a2)/(b2 + a2) and sin 2θ =
−2ab/(b2 + a2). Finally, substitution for the trigonometric functions in (3.7) gives
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(3.6) with the factor 1/(b2 + a2). (In homogeneous coordinates multiplication by a
factor does not affect the result.)

3.3.2 Transformations in three dimensions

Homogeneous coordinates in three-dimensional space are derived similarly to homo-
geneous coordinates of the plane. A point (x,y,z) in R

3 is represented in the four-
dimensional space R

4 by the vector (x,y,z,1), or by any multiple (rx,ry,rz,r) with
r �= 0.

When W �= 0, the homogeneous coordinates (X : Y : Z : W ) represent the Cartesian
point (x,y,z) = (X/W,Y/W,Z/W ). A point of the form (X ,Y,Z,0) does not correspond
to a Cartesian point, but represents the point at infinity in the direction of the three-
dimensional vector (X ,Y,Z). The set of all homogeneous coordinates (X : Y : Z : W ) is
called three-dimensional projective space and denoted by RP3. An embedding space
in RP3 is defined similarly to an embedding plane in RP2.

A projective transformation of RP3 is a mapping f : RP3 → RP3 of the form f (x :
y : z : w) = (x,y,z,w)A, where A ∈ GL(4,R) (the homogeneous transformation matrix
of f ) is a nondegenerate matrix of order 4.

The homogeneous translation matrix is Ta =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
ax ay az 1

⎞

⎟⎟
⎠, where a=(ax,ay,az).

Then
(x,y,z,1)Ta = (x +ax,y +ay,z +az,1).

The homogeneous scaling matrix is S(sx,sy,sz) =

⎛

⎜
⎜
⎝

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎞

⎟
⎟
⎠. Then

(x,y,z,1)S(sx,sy,sz) = (sxx,syy,szz,1).

The composition of transformations can be performed with matrix multiplications
alone. The rotations about the coordinate axes (see Section 2.2) are called the primary
rotations. Reflections in the XY -, Y Z-, and X Z-planes are derived in (2.18). A reflection
in an arbitrary plane ω : ax +by + cz = 0 is represented by (2.4).

Example. Let m be a line with direction a = (u,v,w) through a point Q = (x0,y0,z0).
A rotation about m through an angle θ can be represented by the product Rm(θ ) =
T−QRa(θ )TQ, where Ra(θ ) is the rotation about the axis a through the angle θ , given
(see also Example, p. 90) by the matrix
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⎛

⎜
⎜
⎝

cosθ +u2(1− cosθ ) uv(1− cosθ )+wsinθ wu(1− cosθ )− vsinθ 0
uv(1− cosθ )−wsinθ cosθ + v2(1− cosθ ) vw(1− cosθ )+usinθ 0
wu(1− cosθ )+ vsinθ vw(1− cosθ )−usinθ cosθ +w2(1− cosθ ) 0

0 0 0 1

⎞

⎟
⎟
⎠ .

To prove the claim, compute Rm(θ ) symbolically (using Q and a).

syms u v w t x0 y0 z0;
Q = [x0 y0 z0]; a = [u v w];
Ra = [cos(t)+uˆ2*(1-cos(t)) u*v*(1-cos(t))+w*sin(t) w*u*(1-cos(t))-v*sin(t) 0;
u*v*(1 - cos(t)) - w*sin(t) cos(t) + vˆ2*(1 - cos(t)) v*w*(1 - cos(t)) + u*sin(t) 0;
w*u*(1 - cos(t)) + v*sin(t) v*w*(1 - cos(t)) - u*sin(t) cos(t) + wˆ2*(1 - cos(t)) 0;
0 0 0 1]
TQ = [1 0 0 0; 0 1 0 0; 0 0 1 0; Q 1]; TQ2 = [1 0 0 0; 0 1 0 0; 0 0 1 0; -Q 1];
Rm = TQ2*Ra*TQ

Compute Rm(θ ) for a = (0,1,1) through a point Q = (1,2,0) with θ = π/4.

a1 = [0 1 1]; Q1 = [1 2 0]; t0 = pi/4;
subs(Rm, {u v w x0 y0 z0 t}, {a1(1) a1(2) a1(3) Q1(1) Q1(2) Q1(3) t0})

[0.71 0.71 -0.71 0; -0.71 1 0.29 0; 0.71 0.29 1 0; 1.71 -0.71 0.12 1] % Answer

A homogeneous polynomial of degree k in x, y, z, t defines an algebraic set of
kth order, pk(x,y,z,t) = 0, in RP3. An algebraic set of order 2, {p2(x,y,z,t) = 0}, is
called a projective quadric in RP3. A projective quadric is nondegenerate if it can be
represented by a nondegenerate quadric in the standard embedding space.

Lagrange theorem. A projective quadric has the form ∑i Aiix2
i +∑i< j Ai jxix j = 0 (1 ≤

i, j ≤ 4), where not all coefficients are zero. By replacing the coordinate system, the
following canonical expression of a quadric in KP3 over a field with char K �= 2 may
be obtained: λ1x2

1 + · · ·+ λrx2
r = 0, where r ≤ 4 is the rank of a quadratic form.

3.4 Exercises

Section 3.1 1. Let a11B−a12A and a21B−a22A be not both zero. Prove that the
transformation f given by (3.1) maps the line Ax+By+C = 0 (A and

B not both zero) to the line

(a22A−a21B)x +(a11B−a12A)y +(a12 f −d1a22)A
− (a11d2 −d1a21)B+(a11a22 −a12a21)C = 0.

2. Prove that the inverse of the affine transformation f (x) = xA + b is given by
f−1(x) = xA−1 −bA−1.
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3. Given n points A1, . . . ,An in the plane, find n points B1, . . . ,Bn such that A1, . . . ,An

are the midpoints, respectively, of B1B2, . . . ,BnB1. Consider, in particular, the cases
n = 3,4.

4. On the three sides of �ABC, put three points A′, B′, C′ in such a way that AC′ =
2
3 AB, BA′ = 2

3BC, CB′ = 2
3CA. The lines AA′, BB′, and CC′ draw a small �A′′B′′C′′.

Compute the ratio of the area of �A′′B′′C′′ to that of �ABC.
5. Prove that all triangles are affine-congruent.
6. Find the inverse matrices for Sx(λx) and Sy(λy).
7. Under what conditions do the two systems of equations

aix +biy + ciz = di, i = 1,2 and a′
ix +b′

iy + c′
iz = d ′

i , i = 1,2

describe (a) (parallel) lines in R
3? (b) the same line in R

3 (for di = d′
i = 0)?

8. Illustrate the fundamental theorem of 3-D affine geometry.
9. Prove that affine mappings preserve barycenters.
10. Let P be the barycenter of (A,α), (B,β ), (C,γ), where α +β +γ �= 0 and β +γ �=

0. Prove that the intersection point A′ of AP and BC is the barycenter of (B,β ), (C,γ).
As a consequence of this, in a triangle, the three medians (lines from the vertices to the
midpoints of the opposite sides) are concurrent at the centroid of the triangle.

11. Let A, B, C ∈ R
2 be non-collinear points. Prove that any point M of R

2 is a
barycenter of A, B, C for some masses α , β , γ . The system (α ,β ,γ) is called a system
of barycentric coordinates of the point M in the frame A, B, C. What points correspond
to nonnegative α , β , γ ?

12. In Example 2(a), p. 137, let A = (2,4), B = (−2,0), C = (1,0) and the points
P = ( 5

2 ,0), Q = ( 3
2 ,2), R = (1,3). Determine whether the points P, Q, R are collinear.

13. Prove that the image of a convex set by an affine mapping is convex.
14. Prove that
(a) any ellipse is affine-congruent to the unit circle x2 + y2 = 1;
(b) any parabola is affine-congruent to the parabola y2 = x;
(c) any hyperbola is affine-congruent to the rectangular hyperbola xy = 1.
15. (Tangents to conics in standard form.) The equation of the tangent to a standard

conic at the point P(x0,y0) is

xx0 + yy0 = 1 (unit circle), xy0 + yx0 = 2 (rectangular hyperbola),

2yy0 = x + x0 (unit parabola).

16. An ellipse touches the sides AB, BC, and CA of �ABC at the points R, P, and
Q, respectively. Prove that AR

RB · BP
PC · CQ

QA = 1 (and hence the lines AP, BQ, and CR are
concurrent).

17. Write a program that uses the procedure convhulln and returns the set of layers
of the finite planar set P, shown in Figure 3.1(b).

18. Write a program to derive the Lorentz transformation (Example 1, p. 137).
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19. Use CH my to plot the set of layers of the planar point set.

Section 3.2 1. Prove that:
(a) A line in RP2 is an algebraic set of 1st order: ax + by + cz = 0,

where a, b, c ∈ R and not all zero. If λ �= 0 then λ ax + λ by + λ cz = 0 is also an
equation of the same line.

(b) Any two distinct lines in RP2 intersect in a unique point.
(c) To determine whether or not three points Q = (a : b : c), R = (d : e : f ), and

S = (g : h : i) are collinear (i.e., belong to a line), one should evaluate the determinant

Δ =

∣∣
∣
∣
∣
∣

a b c
d e f
g h i

∣∣
∣
∣
∣
∣
; the points are collinear if and only if Δ = 0. Determine whether Q = (1 :

2 : −3), R = (1 : 2 : 0), and S = (1 : 1 : 1) are collinear.
Hint:

Q = [1 2 -3]; R = [1 2 0]; S = [1 1 1];
det([Q; R; S])

2. A projective conic has an equation Ax2 +Bxy+Cy2 +Dxz+Eyz+Fz2 = 0, where
not all coefficients are zero; see p. 144. Show (by changing the coordinate system)
that a projective conic over R, C has an equation that may be brought into one of the
canonical forms

x2 + y2 ± z2 = 0, x2 ± y2 = 0, x2 = 0 (RP2),

x2 + y2 + z2 = 0, x2 + y2 = 0, x2 = 0 (CP2).

3. Show that the cross-ratio satisfies the identities of Exercise 8, p. 193.
4. Four distinct points are harmonic (see the definition of cross-ratio) if and only if

(A,B,C,D) = (B,A,C,D).
5. The line through the points A, B ∈ RP2 has dual coordinates A×B. Dually, the

lines A ·X = 0 and B ·X = 0 meet at A×B.
6. Prove that
(a) Three points P, Q, and R are incident with the same line if and only if the deter-

minant of their coordinates vanishes.
(b) Three lines l, m, and n are incident with the same point if and only if the deter-

minant of their coordinates vanishes.
7. Any transversal of a pencil of four lines will meet the pencil in four collinear

points, and their cross-ratio is the same as that of the pencil.
8. Give an alternative proof of Pappus’ theorem (see Example 2, p. 149) from the

properties of the cross-ratio.
9. The set of projective transformations of RP2 forms a group under the operation

of composition of functions.
10. Collinearity and incidence are preserved by projective transformations.
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11. Show that the projective transformation associated with the diagonal matrix A =
[2,3,4] cannot be a perspective transformation.

12. Prove that all quadrilaterals are projectively congruent.
13. What is the maximum number of points in Z2P2, no three of which are collinear?

How many (nondegenerate) triangles, quadrilaterals are there in Z2P2?

Section 3.3 1. Show that the homogeneous translation matrix is Ta =

⎛

⎝
1 0 0
0 1 0
ax ay 1

⎞

⎠,

where a = (ax,ay). Then (x,y,1)Ta = (x +ax,y +ay,1).

2. Show that in homogeneous coordinates the matrix for a rotation R(θ ) about

the origin through an angle θ is R(θ ) =

⎛

⎝
cos θ sin θ 0
−sin θ cos θ 0

0 0 1

⎞

⎠. Hence, (x,y,1)R(θ ) =

(xcos θ − ysin θ , xsin θ + ycos θ , 1).

3. Show that the homogeneous scaling matrix is S(sx,sy) =

⎛

⎝
sx 0 0
0 sy 0
0 0 1

⎞

⎠.

Then (x,y,1)S(sx,sy) = (sxx, syy, 1).

4. Show that the matrix for a rotation Rz(θ ) about the z-axis through an angle θ is

Rz(θ ) =

⎛

⎜
⎜
⎝

cos θ sin θ 0 0
−sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠.

Hence, (x,y,z,1)Rz(θ ) = (xcos θ − ysin θ , xsin θ + ycos θ , z, 1). The matrices for
rotations Rx(θ ) and Ry(θ ) about the x- and y-axes, respectively, through the angle θ

are Rx(θ ) =

⎛

⎜
⎜
⎝

1 0 0 0
0 cos θ sin θ 0
0 −sin θ cos θ 0
0 0 0 1

⎞

⎟
⎟
⎠, Ry(θ ) =

⎛

⎜
⎜
⎝

cos θ 0 −sin θ 0
0 1 0 0

sin θ 0 cos θ 0
0 0 0 1

⎞

⎟
⎟
⎠.

5. Show that the reflection in the plane ω0 : ax +by + cz = 0 is given by

Pω0 = I4 −
( 2

a2+b2+c2 P̃ 0
0 0

)
, where P̃ =

⎛

⎝
a2 ab ac
ab b2 bc
ac bc c2

⎞

⎠ ;

see (2.4).
Hint. Let ω : ax +by + cz = d be a plane with c �= 0. Then a reflection in ω can be

represented by the product Pω(θ ) = T−QPω0TQ, where Q = (0,0,−d/c).
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6. A rotation Ry(θ ) followed by a translation Ta has the homogeneous transforma-
tion matrix

⎛

⎜
⎜
⎝

cos θ 0 sin θ 0
0 1 0 0

−sin θ 0 cos θ 0
0 0 0 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
ax ay az 1

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

cos θ 0 sin θ 0
0 1 0 0

−sin θ 0 cos θ 0
ax ay az 1

⎞

⎟
⎟
⎠ .

7. Show that
(a) A plane in RP3 is an algebraic set of 1st order: ax1 +bx2 +cx3 +dx4 = 0, where

a, b, c, d ∈ R and not all zero. If λ �= 0 then λ ax1 + λ bx2 + λ cx3 + λ dx4 = 0 is also
an equation of the plane.

(b) Any three distinct points in RP3 lie on a unique plane. An equation for the
plane in RP3 through the points Qi = (ai : bi : ci : di) (i = 1, 2, 3) is the determinant∣
∣
∣
∣∣
∣
∣
∣

x1 x2 x3 x4

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

∣
∣
∣
∣∣
∣
∣
∣

= 0.

(c) Any three distinct planes in RP3 intersect. When is the intersection a point, a
line?

(d) To determine whether or not four points Qi = (ai : bi : ci : di) (i = 1, 2, 3, 4) are

coplanar (i.e., belong to a plane) one should evaluate the determinant Δ =

∣
∣
∣
∣
∣∣
∣
∣

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

∣
∣
∣
∣
∣∣
∣
∣

;

the points are coplanar if and only if Δ = 0.

8. Quadrics in a projective 3-space are surfaces ∑i, j≤4 ai jxix j = 0, where not all
coefficients are zero; see p. 154. Show (by changing the coordinate system) that a
projective quadric over K = R, C has one of the following canonical forms:

x2
1 + x2

2 ± x2
3 ± x2

4 = 0, x2
1 + x2

2 ± x2
3 = 0, x2

1 ± x2
2 = 0, x2

1 = 0 (RP3),

x2
1 + x2

2 + x2
3 + x2

4 = 0, x2
1 + x2

2 + x2
3 = 0, x2

1 + x2
2 = 0, x2

1 = 0 (CP3).
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Möbius Transformations

In Section 4.1 we review reflections in a sphere and the inversive geometry of a plane.
Sections 4.2 and 4.3 are devoted to Möbius transformations and their applications in
spherical and hyperbolic geometries. In Section 4.4 we develop several MATLAB R©
procedures to solve problems and visualize solutions in a half-plane and half-space
(the Poincaré model).

4.1 Inversive Geometry

In this section we introduce an inversion, which is a generalization of the reflection in
a plane (or a line for the two-dimensional case); see Section 2.2.

Just as a reflection in a plane (line) maps points on one side of it to points on the
other, so inversion in a sphere (circle) maps points inside of it to points outside, and
vice versa.

4.1.1 Reflection in a sphere

The sphere of radius r centered at Q in R
3 is the set (see Section 2.3)

S2(Q,r) = {x ∈ R
3 : ‖x−Q‖ = r}.

The reflection (or inversion) of R
3 in the sphere S2(Q,r) is the transformation PQ,r

of the space that maps any point M onto the point M ′ on the same ray QM such that the
product of the distances QM and QM ′ is equal to r2, which is called the degree of the
inversion. In other words,

V. Rovenski, Modeling of Curves and Surfaces with MATLAB R© , 159
Springer Undergraduate Texts in Mathematics and Technology 7, DOI 10.1007/978-0-387-71278-9 4,
c© Springer Science+Business Media, LLC 2010
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PQ,r(x) = Q+
r2

‖x−Q‖2 (x−Q). (4.1)

Let f (x) = Q+ rx (r > 0). Observe that PQ,r = f ◦PO,1 ◦ f −1:

PQ,r(x) = f ◦PO,1
(
(x−Q)/r

)
= f ◦PO,1 ◦ f −1(x).

We prepare an M-file to derive the reflection in the unit sphere.

function P = refl3(A) % works for any A ∈ R
n \{0}

P = A / norm(A, 2)ˆ2;
end

For example, let A = (1,3,4) ∈ R
3:

A = [1 3 4]; refl3(A) % Answer: 0.0385 0.1154 0.1538

The angle between two curves at a point of intersection is defined as the angle
between the tangent lines at that point (see Section 6.1). We will show that a reflection
in any sphere preserves the magnitude of angles between curves but reverses their
orientation: the angle between two curves is equal to the angle between the images of
these two curves under inversion.

Let U ⊂ R
3 be an open subset, f : U → R

3 be a differentiable map, and d f (x) =
{ ∂ fi

∂x j
(x)} be the matrix of partial derivatives of f . The function f is said to be conformal

if and only if there is a function μ : U → R+ , called the scale factor of f , such that
μ−1(x)d f (x) is an orthogonal matrix for each x ∈ U .

Note that the scale factor μ of a conformal function f is uniquely determined by f ,
since μ3(x) = det |d f (x)|.
Theorem 4.1. Let U be an open subset of R

3 and let f : U → R
3 be a differentiable

map. Then f is conformal if and only if f preserves angles between differentiable
curves in U.

Proposition 4.1. Every inversion of R
3 in a sphere is conformal and reverses orienta-

tion.

Proof. Let PO,1(x) = x/‖x‖2 be the reflection in the unit sphere S2(0,1). We have
∂

∂x j
(xi/‖x‖2) = δi j/‖x‖2 −2xix j/‖x‖4. Hence,

dPO,1(x) =
{

δi j/‖x‖2 −2xix j/‖x‖4}= (Id−2B)/‖x‖2,

where B is the matrix {xix j/‖x‖2}. One may show that Id−2B is orthogonal, and so
PO,1 is conformal. Let ai be the rows of the matrix Id−2B. Then



4.1 Inversive Geometry 161

ai ·ai = (1−2x2
i )

2 + ∑
k �=i

(−2xixk)2 = (1−2x2
i )

2 +4x2
i (1− x2

i ) = 1,

ai ·a j = (1−2x2
i )(−2xix j)+(1−2x2

i )(−2xix j)+ ∑
k �=i, j

(−2xixk)(−2x jxk)

= 4xix j(1− x2
i x2

j)−4xix j(1− x2
i x2

j) = 0.

Since |dPO,1(x)| = −1/‖x‖6 < 0, PO,1 reverses orientation. ��
The following program verifies the claim:

syms x y z real
A = [xˆ2 x*y x*z; x*y yˆ2 y*z; x*z y*z zˆ2];
Q = eye(3) - 2*A/(xˆ2 + yˆ2 + zˆ2)
simplify(Q’*Q) % identity matrix
det(Q) % Answer: −1 (reverses orientation).

4.1.2 Inversive geometry of a plane

Note that the restriction of PQ,r to a plane α through Q is the reflection in the circle
S1(Q,r) = S2(Q,r)∩α in this plane.

We briefly consider the two-dimensional (2-D) case (the 3-D case is similar). Inver-
sion (symmetry) with respect to the circle of radius R with center O is the transforma-
tion of the plane that maps any point M onto the point M ′ on the same ray OM, such
that the product of distances OM and OM ′ is equal to R2, the degree of the inversion.

Example. Let γ : ρ = f (ϕ) be a curve in R
2 given in polar coordinates. Then the

inverse curve with respect to the circle ω = S1(O,r) of radius r has the equation
γ ′: ρ = r2/ f (ϕ). There are different mechanisms (inversors) that help us avoid long
calculations when plotting the image under inversion of a given plane curve.

The reflections of roses ρ = Rcos(kϕ) with respect to the base circle of radius R
are the ear curves ρ = R

cos(kϕ) outside of this circle (verify!). Show visually that the
inversion of the three-leafed rose ρ = R cos(3ϕ) (see Section 1.4) is the trisectrix of
Longchamps ρ = R

cos(3ϕ) .

syms t;
a = 1; e = .07; f = a/cos(3*t);
for i = 0 : 2;

ezpolar(f, [(2*i - 1)*pi/6 + e, (2*i + 1)*pi/6 - e]);
hold on; axis equal;

end % Figure 4.1(b)
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Fig. 4.1 Trisectrices of Maclaurin and Longchamps, cross-shaped curve.

We will imagine the plane as the union of R
2 ≈ C and one extra point, the point at

infinity, denoted by ∞. The symbol ∞ does not represent a complex number, so it should
not be used in association with arithmetic operations that act on complex numbers.

The extended complex plane is the union Ĉ = C∪{∞}. A line l ∈C may be extended
to l̂ = l ∪{∞}; such a set is called an extended line. A generalized circle in Ĉ is either
a circle or an extended line.

Example. The reciprocal function is defined by T(z) = 1/z. This function may be ex-
panded into the composite T2 ◦ T1, where T1 is the inversion z → 1/z̄ and T2 is the
conjugation z → z̄.

The next theorem (one may reformulate it for space of any dimension) says that an
inversion maps a line or a circle again onto a line or a circle.

Theorem 4.2. Under inversion in a circle ω = S1(O,r):

(a) a line that does not pass through O maps onto a circle punctured at O;
(b) a line that is punctured at O maps onto the same line;
(c) a circle that does not pass through O maps onto a circle;
(d) a circle punctured at O maps onto a line that does not pass through O.

Proof. To determine an equation for the image of a curve under inversion in the unit
circle ω = S1(O,1):

(i) write down an equation of the curve lying in the xy-plane;
(ii) replace x by x

x2+y2 , y by y
x2+y2 , and simplify the resulting equation.

(a) Let a line be given by l : ax + by + c = 0, where a2 + b2 �= 0 and c �= 0; see (i).
Applying (ii), we see that T(l) is a circle given by the equation

a
x

x2 + y2 +b
y

x2 + y2 + c = 0 ⇐⇒ ax +by + c(x2 + y2) = 0.
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The proof of (b)–(d) is similar. ��
syms a b c x y X Y; % use this code for (a) to show the cases (b)–(d)

rr = xˆ2 + yˆ2;
eq = simplify(rr*subs(a*X + b*Y + c, [X Y], [x/rr y/rr]))

One can obviously extend the notions above to the extended complex plane. Hence,
Theorem 4.2 says that inversions of the extended plane map generalized circles onto
generalized circles.

Each geometry is used to study those properties of figures in its space that are pre-
served by its transformations. For example, Euclidean geometry is used to study those
properties of figures in R

2 (Rn), such as angle and distance, that are preserved by the
isometries of R

2. Since each isometry can be decomposed into a composite of reflec-
tions, we think of the group associated with Euclidean geometry as the group of all
possible composites of reflections.

A transformation T : Ĉ → Ĉ is an inversive transformation if it can be expressed
as a composite of (a finite number of) inversions. Inversive geometry studies those
properties of figures (circles, lines, angles, etc.) in Ĉ that are preserved by inversive
transformations.

One may notice that the affine group of transformations contains the Euclidean
group but overlaps the inversive group. Because the Euclidean group is smaller than
the inversive group, it follows that Euclidean geometry has more properties than does
inversive geometry.

Example. There is a nice interpretation of the stereographic projection in terms of
inversive geometry. Let T be the inversion of R

3 in the sphere S2(e3,
√

2). Then T(x) =
e3 + 2(x−e3)

‖x−e3‖2 . If x ∈ R
2, then

T(x) = e3 +
2

1 +‖x‖2 (x1,x2,−1) =
(

2x1

1 +‖x‖2 ,
2x2

1 +‖x‖2 ,
‖x‖2 −1
‖x‖2 +1

)
.

Thus, the restriction of T to R
2 is the stereographic projection. From this and Theorem

4.1 it follows that stereographic projection preserves the magnitude of angles (between
differentiable curves).

4.2 Möbius Transformations

4.2.1 Möbius transformations in two dimensions

A Möbius transformation is a linear-fractional function f (z) = az+b
cz+d (z ∈ Ĉ) depending

on four parameters a, b, c, d ∈ C, satisfying the condition ad −bc �= 0. It is easy to see
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that f (z)− f (w) = (ad−bc)(z−w)
(cz+d)(cw+d) ; hence, f is injective. The domain of this function is

Ĉ = C∪{∞}. If c = 0, f is simply a linear function. One may extend the definition of
f when c �= 0:

f (−d/c) = lim
z→−d/c

f (z) = ∞, f (∞) = lim
z→∞

f (z) = a/c. (4.2)

By Theorem 4.1, Möbius transformations preserve the magnitude and orientation
of angles, and map generalized circles onto generalized circles.

Every inversion of C has the form F(z) = f (z̄), where f is a Möbius transformation
(verify!).

Theorem 4.3. Every inversive transformation of C can be represented in Ĉ by one of
the formulae

f (z) =
az +b
cz +d

(direct) or f (z) =
az̄+b
cz̄+d

(indirect), (4.3)

where a, b, c, d ∈ C and ad −bc �= 0.

We usually represent a Möbius transformation by a 2×2 matrix.

Let f (z) =
az +b
cz +d

, where a, b, c, d ∈ C. Then A =
(

a b
c d

)
is the matrix associated

with f . We will write f = fA. We say that two matrices are equivalent, A ≡ A′, if
fA = fA′ (as functions).

It is easy to show that the composition of Möbius transformations is related to matrix
multiplication by the following result:

fA1A2(z) = fA1( fA2(z)).

The Möbius transformation related to the identity matrix I =
(

1 0
0 1

)
is just the iden-

tity function fI(z) =
z +0

0z +1
= z. Hence, fA ( fA−1(z)) = fI(z) = z. Thus f −1

A = fA−1 . So,

f −1
A is represented by

(
d −b
−c a

)
≡ 1

ad −bc

(
d −b
−c a

)
= A−1.

Strategy. To compose two Möbius transformations f1 and f2:

(i) write down the matrices A1 and A2 associated with f1 and f2;
(ii) calculate A1A2;

(iii) write down the Möbius transformation f1 ◦ f2 with which A1A2 is associated.

An important tool when working with Möbius transformations is the cross-ratio. We
will see that it is invariant under linear-fractional functions.
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Let z1, z2, z3, z4 be elements (numbers) of C ∪ {∞}, at least three of which are
distinct. We define the cross-ratio of z1, z2, z3, z4 to be [z1,z2,z3,z4] = (z1−z3)(z2−z4)

(z1−z2)(z3−z4)
.

The value of the cross-ratio when, say, z j = ∞ is the limiting value of [z1,z2,z3,z4] as
z j tends to ∞.

We are free to permute the indices, but all possible choices of cross-ratio are closely
related. We prepare an M-file to derive the cross-ratio.

function w = prod4(z1, z2, z3, z4)
if z4 == inf; w = simplify((z1- z3) / (z1- z2));

else if z3 == inf; w = simplify(-(z2- z4) / (z1- z2));
else if z2 == inf; w = simplify(-(z1- z3) / (z3- z4));
else if z1 == inf; w = simplify((z2- z4) / (z3- z4));
else w = (z1- z3)*(z2- z4) / (z1- z2) / (z3- z4);

end

The unique Möbius transformation with the property that f (z1) = 1, f (z2) = 0, and
f (z3) = ∞ is f (z) = [z,z1,z2,z3]. This observation can explain the definition of the
cross-ratio.

Examples.

1. Find the Möbius transformation which sends 1, −i, −1 to 1, 0, ∞.

Solution. We obtain w = [1,−i,−1,z] = 2z+2i
(1+i)(z+1) ⇔ w =

(
2 2i

1 + i 1 + i

)
z.

Alternatively, we use the M-file prod4.m:

syms z w;
Z = prod4(1, -i, -1, z); W = prod4(1, 0, inf, w); % enter data
solve(Z - W, w) % compare answers.

2. Show that any Möbius transformation of the form f (z) = k
z− z1

z− z3
maps z1 to 0 and

z3 to ∞. We can choose k so that f (z2) = 1. Hence, k =
z2 − z3

z2 − z1
.

3. Similarly to affine geometry, we obtain the fundamental theorem of inversive ge-
ometry, mapping via auxiliary points 0, 1, and ∞:

Let z1,z2,z3 and w1,w2,w3 be triples of distinct points in Ĉ. Then there is a unique
Möbius transformation f with f (z j) = wj for j = 1,2,3.

We find this f using the M-file prod4.m:

syms z1 z2 z3 w1 w2 w3 z f
Eq = prod4(z1, z2, z3, z) - prod4(w1, w2, w3, f)
solve(Eq, f) % obtain expression for f .
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Hence, if a Möbius transformation has three fixed points, then it is the identity map.

A fixed point of a Möbius transformation f (z) = az+b
cz+d , ad �= bc, is a point z for which

f (z) = z, i.e., cz2 + z(d −a)−b = 0. Since a quadratic equation can have at most two
roots, it follows that a non-trivial Möbius transformation can have at most two fixed
points.

If a Möbius transformation f : Ĉ → Ĉ has exactly

(a) two fixed points, then it is conjugate to a map z → az, where a �= 0;
(b) one fixed point, then it is conjugate to z → z +1.

The points z1, . . . ,zn are called concyclic if they lie on some circle or line in C.

Strategy. To determine the image of a generalized circle ω under an inversive trans-
formation f :

(i) take three points z1, z2, z3 on C;
(ii) determine the images f (z1), f (z2), f (z3);

(iii) the image f (ω) is the generalized circle through f (z1), f (z2), f (z3).

Example. (Apollonian circle.) Let A �= B be two points in the plane, and let k �= 1 be
a positive real number. Then the locus of points P that satisfy PA : PB = k : 1 is a circle
(called the Apollonian circle) whose center lies on the line through A and B. Hint. Two
proofs are possible. The first uses coordinates:

syms a K x y real; % K = k2

P = [x y]; A = [-a 0]; % B = −A
S = simplify( (P - A)*(P - A)’ - K*(P + A)*(P + A)’ )
Eq =collect(simplify( S/(1 - K) ), [x y] ) % equation of a circle

x2 + y2 +2ax(1 + K)/(1 − K)+a2 % Answer.

The second uses inversive geometry (setting up a one-to-one correspondence between
the family of Apollonian circles and a family of concentric circles). Plot Apollonian
circles for several values of k.

syms x y real;
Eq = @(k) xˆ2 + yˆ2 + (4 - 4*k)/(1 - k) + x*(4*k + 4)/(1 - k)
axis equal; hold on; for j = 1 : 5, j = j + .001;
ezplot(Eq(j), [-12, 12, -7, 7]); ezplot(Eq(1/j), [-12, 12, -7, 7]);
end; % see Figure 4.2(1).

The correspondence in the example above enables us to characterize Apollonian
families of circles in terms of inversive transformations.

Theorem 4.4. Let A, B be two distinct points in the plane, and let f be inversion in the
circle of unit radius centered at A. Then the Apollonian family of circles defined by A,
B is mapped by f to the family of all concentric circles centered at f (B).
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A coaxal family of circles in the plane is a family of (generalized) circles of one of
the following types (see Figure 4.2):

(1) an Apollonian family (in which no two circles intersect);
(2) a family that intersect at one particular point;
(3) a family that intersect at two particular points.

The extended line in each family is called the radical axis of the family.

Fig. 4.2 Coaxal families of circles.

Proposition 4.2.

(a) Let A �= B be two points in the plane. Let F be the Apollonian family defined by
A, B, and let F⊥ be the family of all generalized circles through A, B. Then every
member of F is orthogonal to every member of F⊥.

(b) Points A, B ∈ Ĉ are inverse points with respect to a generalized circle ω if and
only if every generalized circle through A, B meets ω at right angle.

(c) Let F be the family of all generalized circles that have A, B as inverse points.
Then F is either a concentric family of circles centered at A or B, or an Apollo-
nian family of circles with point circles A and B.

Obviously, two circles in a coaxal family of type (2) or (3) determine the whole
family. The next proposition shows that the same is true for an Apollonian family:

(a) Let ω1 and ω2 be two disjoint circles in the plane. Then there is a Möbius
transformation that maps ω1, ω2 onto a pair of concentric circles.

(b) Let ω1 and ω2 be two non-concentric circles in the plane. Then there is a unique
Apollonian family of circles that contains ω1 and ω2.
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4.2.2 Möbius transformations in three dimensions

Denote by R̂
3 = R

3 ∪{∞} the one-point compactification of the space; see Section 2.3.
A plane α may be extended by α̂ = α ∪{∞}. A generalized sphere in R̂

3 is either a
sphere or an extended plane. A Möbius transformation of R̂

3 is a finite composition of
reflections of R̂

3 in generalized spheres.
In order to simplify notation, we shall not use a hat to denote the extension of a map

to R̂
3.

The full Möbius group Möb3 (all Möbius transformations) is generated by all sim-
ilarities together with PO,1 = reflection in the unit sphere. The Möbius group Möb+

3
(all orientation-preserving Möbius transformations) is the subgroup whose elements
contain an even number of factors PO,1 and any number of similarities. The group of
similarities of R

3 consists of mappings x → xA + a, where a ∈ R
3 and A = λ B with

λ > 0, B ∈ O(n).

Let a, b, x, y ∈ R
3 be points such that a �= b, x �= y. The absolute cross-ratio of

these points is defined to be the real number

[a,b,x,y] :=
d(a,x)d(b,y)
d(a,b)d(x,y)

.

The absolute cross-ratio is a continuous function of four variables, since the distance
d : R̂

3 × R̂
3 → R is a continuous function (verify!).

Theorem 4.5. A function f : R
3 → R

3 belongs to Möb3 if and only if it preserves ab-
solute cross-ratios.

Proof. Indeed, d(x,y) = ‖x−y‖. We may assume that f is a reflection in S2(Q,r). We
have ‖ f (x)− f (y)‖= ‖x−y‖/(‖x‖ ·‖y‖) (see exercises). From this the claim follows.

��
Example. To illustrate Theorem 4.5, prepare an M-file. (It can be easily extended for
the ∞ cases similarly to the way this was done in prod4.m.)

function f = prod43(A1, A2, A3, A4) % the absolute cross-ratio
f = norm(A1 - A3, 2)*norm(A2 - A4, 2)/norm(A1 - A2, 2)/norm(A3 - A4, 2);

end

For instance,

A1 = [1 3 4]; A2 = [0 1 0]; A3 = [1 0 0]; A4 = [0 0 1];
prod43(A1, A2, A3, A4) % absolute cross-ratio of A1,A2,A3,A4

1.0911 % Answer.

Then we verify the property using the M-file refl3 (Section 4.1):
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prod43(refl3(A1), refl3(A2), refl3(A3), refl3(A4)) - prod43(A1, A2, A3, A4)

2.2204e-016 % Answer: 0.

4.2.3 The sphere and Möbius transformations

Stereographic projection enables us to interpret the theory of coaxal circles on the
sphere S2. We now study the correspondence between rotations of S2 and Möbius trans-
formations of C.

Proposition 4.3. Two points z, w map to diametrically opposite points on the sphere S2

under the stereographic projection π if and only if w = −1/z̄.

Proof. The points π(z) and π(w) are diametrically opposite on S2 if and only if π(z) =
−π(w). One may check from (2.20) that this is so if and only if w = −1/z̄ = −z/|z|2.
One may show this using the M-file ster.m.

syms x1 x2 y1 y2 real;
Eq = ster([x1 x2]) + ster([y1 y2]);
S = solve(Eq(1), Eq(2), Eq(3), y1, y2)
S.y1, S.y2 % Answer: −x1/(x2

2 + x2
1), −x2/(x2

2 + x2
1)

z = x1 + i*x2; w = S.y1 + i*S.y2;
simplify(w + 1/conj(z)) % Answer: 0. Hence w+1/z̄ = 0.

��
Every map f : Ĉ → Ĉ corresponds to a map f̃ : S2 → S2 defined by f̃ = π ◦ f ◦π−1,

and vice versa.

Let R be a rotation of S2. The transformation π−1Rπ of Ĉ is called the conjugate
transformation of the rotation R. One may show that

Every Möbius transformation T of the form

T(z) =
az +b

−b̄z + ā
, where a, b ∈ C and |a|2 + |b|2 = 1, (4.4)

is conjugate to a rotation of S2, and every rotation of S2 arises in this way.

The Möbius transformations of the form (4.4) form a group, which we denote by
Möb0

2. The same argument leads to the following result:

The set U(2) =
{(

a b
−b̄ ā

)
: |a|2 + |b|2 = 1

}
of 2×2 complex matrices is a group,

called the unitary group.
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Example. To show the above claim, we verify that the product L = M ·N of matrices
keeps the property.

syms a b c d;
M = [a b; -conj(b) conj(a)]; N = [c d; -conj(d) conj(c)];
L = simple(expand(M*N)) % product of matrices

[ac−bconj(d), ad +bconj(c);
−conj(b)c− conj(ad), conj(ac)− conj(b)d] % Answer

r = simple(expand(L(2, 1) + conj(L(1, 2)))) % Answer: 0, i.e., L21 = −L12

s = simple(expand(L(2, 2) - conj(L(1, 1)))) % Answer: 0, i.e., L22 = L11
t = expand(L(1,1)*conj(L(1,1)) + L(1,2)*conj(L(1,2)))
t2 = expand(simple(subs(t, a*conj(a), 1 - b*conj(b))))
simple(subs(t2, abs(b)ˆ2, 1-abs(a)ˆ2)) % hence |L11|2 + |L12|2 = 1

abs(c)2 + abs(d)2 % we assume |a|2 + |b|2 = |c|2 + |d|2 = 1.

4.3 Hyperbolic Geometry

Non-Euclidean geometry has had great methodological importance in the development
of mathematics. The Cayley–Klein (in a disk or a ball) and Poincaré (in a half-plane or
a half-space) models of hyperbolic geometry are studied in the foundations of geometry
and have various applications.

The geometry induced on the half-space R
n
+ = {x ∈ R

n : xn > 0} by the Poincaré

metric ds2 = k2

x2
n
(dx2

1 + · · ·+dx2
n), see (4.7), is the hyperbolic geometry of Lobachevsky.

In this section we study the distance, the volume (area), and the hyperbolic rigid
motions (isometries) of the Poincaré model.

4.3.1 The hyperbolic length

First, recall necessary facts about metric spaces and path metric spaces.
A metric (distance) on a set X is a function ρ : X ×X → R satisfying three condi-

tions:

(1) ρ(x,y) ≥ 0 for all x, y ∈ X , and ρ(x,y) = 0 if and only if x = y;
(2) ρ(x,y) = ρ(y,x) for all x, y ∈ X ;
(3) ρ(x,z) ≤ ρ(x,y)+ρ(y,z) for all x, y, z ∈ X (the triangle inequality).

If ρ is a metric on X , we often refer to the metric space (X ,ρ).
An isometry of a metric space (X ,ρ) is a homeomorphism f of X that preserves

distance: ρ(x,y) = ρ( f (x), f (y)) for all x, y ∈ X .
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In a metric space (X ,ρ), we define the open disc of radius ε > 0 centered at a point
x to be Uε(x) = {y ∈ X : ρ(x,y) < ε}. A subset A of X is open if for every x ∈ A there
exists an ε > 0 such that Uε(x) ⊂ A. A subset B of X is closed if its complement X \B
is open.

A sequence {xn} of points of X converges to a point x of X if for every ε > 0 there
exists some N > 0 such that xn ∈ Uε(x) for all n > N.

If (X ,ρX) and (Y,ρY ) are two metric spaces and if f : X → Y is a function,
then f is continuous at a point x ∈ X if, given ε > 0, there exists δ > 0 such that
f (Uδ (x)) ⊂ Uε( f (x)). We say that f is continuous if it is continuous at every point of
X . For example, the function fz : X → R given by fz(x) = ρ(z,x) is continuous.

Consider the relations between the length of a path and distance.

A path ϕ : [a,b] → R
n is piecewise C1 if ϕ is continuous and there is a parti-

tion of [a,b] into subintervals [a = a0,a1], [a1,a2], . . . , [am,am+1 = b] such that ϕ is
a C1 path when restricted to each subinterval [ak,ak+1]. In coordinates, we can write
ϕ(t) = (x1(t), . . . ,xn(t)), where xi(t) have piecewise continuous derivative on (a,b).
The image of each subinterval (ak,ak+1) under ϕ is a C1 curve in R

n.

Unless otherwise stated, we assume that all paths are piecewise C1.

The Euclidean length of ϕ is given by (see also Section 6.3)

l(ϕ) =
∫ b

a
dl =

∫ b

a

√
(x′

1(t))2 + · · ·+(x′
n(t))2 dt, (4.5)

and dl =
√

(x′
1(t))2 + · · ·+(x′

n(t))2 dt is the element of arc length in R
n.

Let μ > 0 be a continuous function on a domain U ⊂ R
n. The element of arc length

dlμ = μ(x)dl on U is a conformal distortion of the Euclidean element of arc length dl,
for which the length of a piecewise C1 path ϕ : [a,b] → U is given by the integral

lμ(ϕ) =
∫ b

a
dlμ =

∫ b

a
μ(ϕ(t))

√
(x′

1(t))2 + · · ·+(x′
n(t))2 dt. (4.6)

In particular, μ(x) = 1/xn is a continuous function on R
n
+ = {x ∈ R

n : xn > 0}. The
hyperbolic length of a piecewise C1 path ϕ : [a,b] → R

n
+ is

lH(ϕ) =
∫ b

a
(1/xn(t))

√
(x′

1(t))2 + · · ·+(x′
n(t))2 dt. (4.7)

Examples.

1. The Euclidean distance on K
n is given by

ρ(x,y) =
√

|x1 − y1|2 + · · ·+ |xn − yn|2.
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The distance on the Riemann sphere Ĉ (see Section 2.3) is given by

s(z,w) =
2 |z−w|

√
(1 + |z|2)(1+ |w|2) , s(z,∞) =

2
√

1 + |z|2 for z,w ∈ C.

2. A natural example of a piecewise C1 path that is not a C1 path comes from consider-
ing absolute value. Specifically, let f : [−1,1] → C be defined by ϕ(t) = t + i|t|. Since
|t| is not differentiable at t = 0, this is not a C1 path. However, on [−1,0] ([0,1]), we
have that |t| = −t (resp., |t| = t) and hence that ϕ(t) = t − it (resp., ϕ(t) = t + it), which
is a C1 path. So, ϕ is a piecewise C1 path on [−1,1].

3. Consider the C1 path ϕ : [0,2] → R
2 given by ϕ(t) = (2+ t,1+ t2/2). The length of

ϕ is l(ϕ) =
∫ 2

0

√
1 + t2 dt =

√
5− 1

2 ln(
√

5−2).

syms t;
f = [2 + t 1 + tˆ2/2];
df = diff(f, t); v = sqrt(df(1)ˆ2 + df(2)ˆ2)
s = int(v, t, 0, 2), eval(s); % Answer: s =

√
5− 1

2 log(
√

5−2), 2.9579.

4. Let the C1 path ϕh : [0,2] → R
2 be given by ϕh(t) = (1 + t,h + t2/2) for h >

0. One may show that l(ϕh) → ∞ for h → 0. For h = 0.01 we obtain l(ϕ0.01) =∫ 2
0

√
1 + t2/(0.01 + t2/2)dt = 22.6611.

h = 0.01 % define h > 0
syms t;
f = [1 + t h + tˆ2/2]; df = diff(f, t); v = sqrt(df(1)ˆ2 + df(2)ˆ2)
s = int(v/f(2), t, 0, 2), eval(s)
s = 14atan(14/

√
5)−2log(

√
5−2), 22.6611 % Answer.

The problem we are interested in is how the hyperbolic length determines the hy-
perbolic distance.

Let X be a set in which we know how to measure the lengths of paths. Specifi-
cally, for each pair x, y ∈ X , suppose there is a nonempty collection Γ [x,y] of paths
ϕ : [a,b] → X satisfying ϕ(a) = x and ϕ(b) = y, and assume that to each path ϕ in
Γ [x,y] we can associate in a “reasonable way” a nonnegative real number length(ϕ),
which we refer to as the length of ϕ . Consider the function ρl : X ×X → R defined by
taking the infimum

ρl(x,y) = inf{length(ϕ) : ϕ ∈ Γ [x,y]}.

For X = R
n, because the shortest Euclidean distance between two points is along

a Euclidean line, which can be parameterized by a C1 path, we see that ρl(x,y) =
‖x−y‖ = ρ(x,y).

Here is an example that illustrates one of the difficulties that can arise.
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Let X = C \ {0} be the punctured plane, and for each pair of points x, y ∈ X , let
Γ [x,y] be the set of all piecewise C1 paths ϕ : [a,b] → X with ϕ(a) = x and ϕ(b) = y.
The construction of a function on X ×X by taking the infimum of the lengths of paths
gives rise to the metric ρ(x,y) = |x− y| on X . However, it is no longer true that there
necessarily exists a path in Γ [x,y] realizing the Euclidean distance between x and y.
Specifically, consider the two points 1 and −1: The Euclidean line segment in C joining
1 to −1 passes through 0, and so it is not a path in X . Every other path joining 1 to −1
has length strictly greater than ρ(1,−1) = 2.

Definition 4.1. A metric space (X ,d) is a path metric space if

ρ(x,y) = inf{length(ϕ) : ϕ ∈ Γ [x,y]}

for each pair of points x, y ∈ X , and if there exists a distance-realizing path ϕ in Γ [x,y]
satisfying ρ(x,y) = length(ϕ).

A minimizing geodesic in a path metric space (X ,d) is any curve ϕ : I → X such
that ρ(ϕ(t),ϕ(t ′)) = |t − t ′| for each t, t ′ ∈ I. A geodesic in X is any curve ϕ : I → X
whose restriction to any sufficiently small subinterval in I is a minimizing geodesic.

The “reasonable way” in the above discussion means the following.
A length structure on a set X consists of a family C(I) of mappings ϕ : I → X for

each interval I and a map l of C =
⋃

C(I) into R having the following four properties:
Positivity. l(ϕ) ≥ 0 for each ϕ ∈ C, and l(ϕ) = 0 if and only if ϕ is constant (we

assume of course that the constant functions belong to C).
Restriction, composition. If I ⊂ J, then the restriction to I of any member of C(J)

is contained in C(I). If ϕ ∈ C([a,b]) and ψ ∈ C([b,c]), then the function h obtained by
composition (or juxtaposition) of ϕ and ψ lies in C([a,c]) and l(h) = l(ϕ)+ l(ψ).

Invariance under change of parameter. If ϕ is a homeomorphism from I onto J and
if ψ ∈ C(J), then ψ ◦ϕ ∈ C(I) and l(ψ ◦ϕ) = l(ψ).

Continuity. For each I = [a,b] and ϕ ∈ C(I), the map t → l(ϕ|[a,t]) is continuous.

4.3.2 The hyperbolic distance

For simplicity, we restrict ourselves to the two-dimensional case, the hyperbolic plane
R

2
+ = {(x,y) ∈ R

2 : y > 0}, where ds2 = k2

y2 (dx2 +dy2).
Since the Gaussian curvature of the metric ds2 = f (x,y)(dx2 +dy2) is given by the

formula K = − 1
2 f Δ ln f , the curvature of the Poincaré metric is a negative constant

K = −k2.

Lemma 4.1. Each of the following maps ψ is an isometry of R
2
+ onto itself (a motion

of the metric).
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(1) ψ(x,y) = (x +a, y) are parallel translations along the axis OX,
(2) ψ(x,y) = (λx, λy) are dilations (with center at O),
(3) ψ(x,y) = (−x, y) is a symmetry with respect to the axis OY ,
(4) ψ(x,y) = (x/(x2 + y2), y/(x2 + y2)) is an inversion with respect to the unit circle

with center at O.

Proof. We check that (a,b)L := k2

y2 (a,b) is a scalar product. In turn,

(1), (3): (dψ(a),dψ(b))L = k2

y2 (dψ(a),dψ(b))= k2

y2 (a,b) = (a,b)L;

(2): (dψ(a),dψ(b))L = k2

(λy)2 (dψ(a),dψ(b))= k2

λ 2y2 (λ a,λb) = (a,b)L;

(4): for the basic vectors i, j at the point (x,y), dψ(i)=
(

y2−x2

(x2+y2)2 , −2xy
(x2+y2)2

)
, dψ(j)=

(
−2xy

(x2+y2)2 ,
x2−y2

(x2+y2)2

)
. Thus (dψ(i),dψ(i))L = k2

(x2+y2)2

/ (
y

x2+y2

)2
= k2

y2 = (i, i)L, and

analogously for j. Moreover, (dψ(i),dψ(j))L = 0 = (i, j)L holds. ��
The group generated by all motions (1)–(4) is Möb(R2

+).

Theorem 4.6. The lines (geodesics) of the Poincaré metric on the half-plane R
2
+ are

Euclidean vertical rays and Euclidean half-circles with centers on the x-axis, with cor-
responding parameterization.

Proof. Let A1, A2 ∈ R
2
+ be arbitrary points. The circle ω that passes through both

points and whose center lies on the x-axis intersects the x-axis at B1 and B2. Let ϕ
be the composition of horizontal translation by −B1 followed by inversion in the unit
circle. This map is an isometry since it is a composition of isometries. Note that B1

is first sent to the origin O and then to ∞ by the inversion. Thus, the image of ω is
a vertical Euclidean line. Since vertical rays are lines in the model, and isometries
preserve arc length, it follows that half of ω is a line (geodesic) through A1 and A2. ��

Notice that any of the curves in Theorem 4.6 coincides with a set of fixed points of
some transformation from Möb(R2

+). But the curve of fixed points of an isometry (in
the Riemannian metric) is always a geodesic.

One may define the hyperbolic distance by the rule

ρH(A1,A2) = | ln([A2,A1,B1,B2])|.

For every element γ of Möb(R2
+) and for any pair of points A1, A2 ∈ R

2
+ we have that

ρH(γ(A1),γ(A2)) = ρH(A1,A2).
Alternatively, one may derive the distance between the points A1 = (x1,y1) and

A2 = (x2,y2) by integrating the hyperbolic arc length dlH , see (4.6), along the segment
(of the hyperbolic line):
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ρH(A1,A2) =

⎧
⎪⎪⎨

⎪⎪⎩

k

∣
∣∣
∣ln

y2

y1

∣
∣∣
∣ if x2 = x1,

k

∣
∣
∣∣ln

tan(t1/2)
tan(t2/2)

∣
∣
∣∣ if x2 �= x1.

(4.8)

Here ti are the angles between the vectors O′Ai and the x-axis, and O′ is the center of
the Euclidean circle through the points A1 and A2 which represents the line A1A2. If the
points are given in the form z1, z2 (of complex numbers z = x + iy), then the formula
(4.8) takes the form

ρH(z1,z2) = k ln
1 +Z
1−Z

, where Z =
z1 − z2

z1 − z2
.

4.3.3 The hyperbolic area

The area element for the Poincaré upper half-plane is derived by taking a small Eu-
clidean rectangle with sides oriented horizontally and vertically. The sides approximate
hyperbolic line segments, since the rectangle is small. The area is therefore the product
of the height and width (measured with the Euclidean arc-length element). The vertical
sides have Euclidean length Δy, and since y is essentially unchanged, the hyperbolic
length is 1

y Δy. The horizontal sides have Euclidean length Δx, and hence hyperbolic

length 1
y Δx. Thus, the area element is given by dS = 1

y2 dxdy.

The hyperbolic volume (area, when n = 2) of a set X in R
n
+ is given by the integral

S(X) =
∫

X
(1/x2

n)dx1 · · ·dxn.

The hyperbolic volume is invariant under the action of Möb(Rn
+). That is, S( f (X)) =

S(X) for any element f of Möb(Rn
+).

Example. First, look at the doubly asymptotic triangle with one vertex at P = ei(π−t)

in R
2
+ , and vertices at infinity of 1 and ∞, as in Figure 4.3(a).

The area of a doubly asymptotic triangle �PMN with M, N at infinity and with
∠MPN = P (measured in radians) is S(�PMN) = π −P.

To prove this, let the angle at P have measure t ∈ (0,π). Then �PMN in Figure
4.3(b) is similar to the doubly asymptotic triangle in Figure 4.3(a) and hence is con-
gruent to it. But the area of that triangle is given by

S(t) =
∫ 1

−cost

∫ ∞
√

1−x2

dxdy
y2 =

∫ 1

−cost

dx√
1− x2

= π − t.
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Fig. 4.3 The area of asymptotic triangles.

syms t x y;
int( int(1/yˆ2, y, sqrt(1 - xˆ2), inf), x, -cos(t), 1) % Answer: π − acos(cost).

Note that in Euclidean geometry a triangle with one infinite vertex can be repre-
sented as the half-strip between two parallel lines, a triangle with two infinite vertices
— as the angle between two rays, and a triangle with three infinite vertices has no
analogous Euclidean figure.

Theorem 4.7. Let �ABC be a triangle in R
2
+ , with angles A,B, and C. Then the area

of �ABC is S(�ABC) = π −A−B−C.

Proof. Continue the edges of the triangle indefinitely as rays AB, BC, and CA. Let the
points at infinity on these rays be, respectively, L, M, and N. Find the common parallels
LM, MN, and NL, as in Figure 4.4. These lines form a triply asymptotic triangle, whose
area is π. Thus

S(�ABC) = π −S(�ALN)−S(�BLM)−S(�MCN)
= π − (π − (π −A))− (π − (π −B))− (π − (π −C))
= π −A−B−C. ��

In the exercises we will show that the area of an asymptotic triangle is finite. We
will also show that all triply asymptotic triangles are congruent; hence, their area is
constant.

One can generalize Theorem 4.7 to all reasonable hyperbolic polygons. By hyper-
bolic polygon in R

2
+ we mean an ordered set of vertices P1, . . . ,Pm (some of them may

be ideal) and a set of segments (of hyperbolic lines) connecting neighbor vertices in
such a way that they bound a connected (one-component) domain. (For a more precise
definition see [Anderson].)

Let Q be a hyperbolic polygon in R
2
+ , with interior angles αk. Then the area of Q is

S(Q) = (n−2)π −∑n
k=1 αk.
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Fig. 4.4 The area of a triangle.

(To prove the claim, decompose Q into hyperbolic triangles, use Theorem 4.7 to cal-
culate the hyperbolic area of each triangle in this decomposition, and then by summing
get the hyperbolic area of Q.)

The following facts from hyperbolic trigonometry help us to solve problems with
triangles.

Sine theorem:
sinh(a)
sin(α)

=
sinh(b)
sin(β )

=
sinh(c)
sin(γ)

.

Cosine theorem: cosh(c) = cosh(a)cosh(b)− sinh(a)sinh(b)cos(γ).

4.3.4 Hyperbolic motions in two dimensions

The group of direct isometries of the hyperbolic half-plane (i.e., preserving orientation)
is easy to describe — they are all Möbius transformations of a particular type. Recall
notations for various sets of matrices:

M2(K) = M2×2(K) =
{(

a b
c d

)
: a,b,c,d ∈ K

}
,

GL2(K) = {A ∈ M2(K) : det A �= 0},
SL2(K) = {A ∈ M2(K) : det A = 1}

(see Section 2.5), where K can be any of the sets Z (integers), Q (rationals), R (reals),
C (complex numbers), H (quaternions), etc.

The set GL2(K) is called the general linear group over K, and the set SL2(K) is
called the special linear group over K, both in dimension two.

Note that the group GL2(K)/≡ (the group GL2(K) modulo the equivalence rela-
tion λ A ≡ A), called the projective special linear group, is isomorphic to the group of
Möbius transformations.
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The horizontal translation by a ∈ R, Tr(z) = z + r, and the map

ϕ(x,y) =
( −x

x2 + y2 ,
y

x2 + y2

)

(inversion in the unit circle followed by reflection through x = 0), are Möbius transfor-

mations which are represented by elements τr =
(

1 r
0 1

)
and σ =

(
0 −1
1 0

)
of SL2(R).

To show the claim, note that Tr(x,y) = (x+ r,y) is generated by τr. As a function of
complex numbers, the map ϕ is just

ϕ(z) =
−x + iy
x2 + y2 =

−(x− iy)
(x + iy)(x− iy)

=
−1
z

.

This map is represented by σ .

Example. We create the M-file taur.m to compute the matrix τr:

function f = taur(r)
f = [1 r; 0 1];

end

For instance, we compute

στr =
(

0 −1
1 0

)(
1 r
0 1

)
=
(

0 −1
1 r

)
and στs στr =

(
0 −1
1 s

)(
0 −1
1 r

)
=
(−1 −r

s rs−1

)
.

syms r s;
sigma = [0 -1; 1 0] % we define the matrix σ
sigma*taur(r)
sigma*taur(s)*sigma*taur(r) % Answer: [ 0, -1; 1, r] [ -1, -r; s, sr - 1]

Theorem 4.8. The group SL2(R) is generated by σ and τr, for r ∈ R.

Hence, SL2(R), when thought of as a subgroup of the Möbius transformations, is a
subgroup of the isometries of the Poincaré model in a half-plane. To prove this corol-
lary, consider A ∈ SL2(R) with det A > 0. Note that 1√

det A
A ∈ SL2(R), and (kA)z = Az.

Hence, A is an isometry of the Poincaré half-plane.

As with inversions, the image of a circle or a line in C under the action of a Möbius
transformation A ∈ SL2(R) is again a circle or line (verify!).

The model of hyperbolic geometry must satisfy the following axiom:

For any two points P, Q, there is an isometry f such that f (P) = Q.
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Let P = a + ib and Q = c + id. One may verify that Q = f (P), where

f (z) =
d(z−a)

b
+ c =

(
d bc−ad
0 b

)
z. (4.9)

Since this matrix has real coefficients and positive determinant (b > 0 and d > 0), it is
an isometry of the Poincaré upper half-plane.

Recall that translations are direct isometries that have no fixed points (and rotations
are direct isometries that have exactly one fixed point). We call z0 a fixed point of a
map A if Az0 = z0.

To see that the map (4.9) is a translation, we solve for z and get

dz0 +bc−ad
b

= z0 ⇐⇒ z0 =
ad −bc
d −b

.

Note that a, b, c, d are all real so if b �= d, then z0 is real and hence is not in the
upper half-plane. If b = d, then z0 = ∞, and again there are no solutions in the upper
half-plane. So the map is a translation.

In hyperbolic geometry we classify translations according to how many fixed points
there are on the line at infinity (that is, in R∪{∞}).

Let A =
(

a b
c d

)
. Then A(z) = z if cz2 + (d − a)z − b = 0. If c �= 0 then this is a

quadratic with discriminant Δ = (d − a)2 + 4bc. Hence, A has a fixed point in R
2
+ if

Δ < 0, and no fixed points if Δ > 0. If Δ > 0, we call A a hyperbolic translation. If
Δ = 0, then A has exactly one fixed point on the line at infinity; we call A a parabolic
translation.

One can find a Möbius transformation that fixes P = a + ib and rotates counter-
clockwise through an angle t (see exercises). The set of isometries that do not preserve
orientation in R

2
+ also has a nice description.

Theorem 4.9. Every isometry f of R
2
+ that is not direct can be written in the form

f (z) = A(−z) for some A ∈ SL2(R). Furthermore, if A =
(

a b
c d

)
, then f (z) is a reflec-

tion if and only if a = d.

4.3.5 Hyperbolic motions in three dimensions

Under the identification of R
2 with the plane R

2 ×{0} in R
3, a point x = (x,y) of R

2

corresponds to the point x̃ = (x,y,0) of R
3. Similarly to the two-dimensional case (see

Theorem 4.6), the lines of the Poincaré half-space R
3
+ = {(x,y,t) : t > 0} are Euclidean
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vertical rays and Euclidean vertical half-circles with centers on the xy-plane, with cor-
responding parameterization. The planes of R

3
+ are Euclidean vertical half-planes and

Euclidean upper half-spheres with centers on the xy-plane. Hence, a hyperbolic plane
ω̂ (upper half-sphere) or l̂ (vertical half-plane) “intersects” the xy-plane in a circle ω
or a line l.

We will show that the action of Möb2 can be lifted to R
3
+ (or if one prefers, to all

R
3). In fact, any f ∈ Möb2 is a product of reflections in circles (or lines), the circle

(line) determines a hemisphere (or half-plane) orthogonal to t = 0, and the reflection
in a circle extends to a reflection in the hemisphere. It remains to show that the result
does not depend on the particular decomposition of f into a product.

Let f be a Möbius transformation of R
2. We shall extend f to a Möbius transforma-

tion f̃ of R
3 (called the Poincaré extension of f ) as follows:

(i) If f is the reflection of R
2 in ω (a circle) or l (a line), then f̃ is the reflection of

R
3 in ω̂ or l̂, respectively. In both these cases f̃ (x,0) = ( f (x),0) for all x ∈ R

2.
Thus f̃ extends f and leaves R

3
+ invariant.

(ii) If f = f1 ◦ · · · ◦ fm is the composition of m ≥ 2 reflections, set f̃ = f̃1 ◦ · · · ◦ f̃m.
Then f̃ extends f and leaves R

3
+ invariant.

Let f̃1 and f̃2 be two such extensions of f . Then f̃1 f̃−1
2 fixes each point of R

2 and
leaves R

3
+ invariant. By Exercise 13, p. 194, we have that f̃1 f̃−1

2 = Id and so f̃1 = f̃2.
Thus f̃ depends only on f and not on the decomposition f = f1 ◦ · · · ◦ fm.

One may show that a Möbius transformation f of R
3 leaves the upper half-space

R
3
+ invariant if and only if f is the Poincaré extension of a Möbius transformation

of R
2.

We shall pay special attention to the group Möb(R3
+) of Möbius transformations

acting on the upper half-space.
In the special case of R

3
+ one can make use of quaternions. It is convenient to iden-

tify the point (x,y,t) ∈ R
3
+ with the quaternion q = x + yi+ t j, and also to identify the

quaternion i with the complex number i. Thus we can write (x,y,t) as q = z+ t j, where
z = x + iy is a complex number. In this notation we have the formula

zj = (x + yi)j = xj+ yij = xj− yji = j(x− yi) = jz̄.

The conjugate of a quaternion q = z + t j is q̄ = z̄ − t j, and the absolute value |q| is
given by |q|2 = qq̄ = |z|2 + |t|2.

Suppose that f (z) = (az+b)/(cz+d), where ad −bc �= 0, is a Möbius transforma-
tion of Ĉ. We can let f act on R

3
+ by the rule

f : z + t j → [a(z + t j)+b] [c(z + t j)+d]−1, (4.10)

where this computation is to be carried out in the algebra of quaternions.
The following equality holds:
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f (z + t j) =
(az +b)(c̄z̄+ d̄)+ac̄t2 + |ad −bc|t j

|cz +d|2 + |c|2t2 . (4.11)

If we put t = 0 in (4.11), we obtain the formula for the action of f on C.
Consider the important particular cases of (4.11).

(a) f (z) = z +b is a translation. We find that f (z + t j) = (z +b)+ t j; thus f is just
the horizontal translation of R

3
+ by b.

(b) f (z) = az. We find that f (z + t j) = az + |a|t j.

If |a| = 1, so that f (z) is a rotation of a complex plane, then f acts on R
3
+ as a

rotation about a vertical axis through the origin.

If a > 0 (a positive real), so that f (z) is a dilation (a scale change by positive a)
from the origin in C, then f also acts as a dilation (from the origin and with the
same factor) in R

3
+.

(c) The more interesting case is when f (z) = 1/z; here f (z + t j) =
z̄+ t j

|z|2 + t2 .

The cross-ratio for quaternions is defined by

[q1,q2,q3,q4] = (q1 −q3)(q1 −q4)−1(q2 −q4)(q2 −q3)−1.

Proposition 4.4. Four pairwise distinct points q1, q2, q3, q4 ∈ H lie on the same (one-
dimensional) circle if and only if their cross-ratio is real. The two pairs of points q1,
q2, q3, q4 lying on the same circle separate each other if and only if [q1,q2,q3,q4] < 0.

One may show that every Möbius map acts on R
3
+ by (4.10) as a hyperbolic motion,

and every hyperbolic motion of R
3
+ that preserves orientation is a Möbius map.

Example. We prepare the M-file prod4q.m. (It can be easily extended for the ∞ cases
as in prod4.m.)

function w = prod4q(q1, q2, q3, q4) % the cross-ratio for quaternions
w = simplify( quatmultiply( quatmultiply(q1 - q3, quatinv(q1 - q4)),

quatmultiply(q2 - q4, quatinv(q2 - q3)) ) );
end

Then we apply it.

q1 = [0 0 3 0]; q2 = [2 1 2 0]; q3 = [2 -1 3 0]; q4 = [-1 -2 4 0];
prod4q(q1, q2, q3, q4) % define four points in R

3
+

1.2333 1.3000 -0.5667 0.3667 % Answer
p1 = [0 0 3 0]; p2 = [0 0 9 0]; p3 = [0 0 2 0]; p4 = [0 0 6 0];

prod4q(p1, p2, p3, p4) % points on a hyperbolic line, see Proposition 4.4

-0.1429 0 0 0 % Answer
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4.4 Examples of Visualization

Hyperbolic geometry in the half-plane R
2
+ can be thought of as the negative-curvature

analogue of the geometry in the 2-sphere S2.
We plot basic objects of R

2
+ using the procedures of Section A.7: segment, dis-

tance, triangle, perimeter, angle, lambert, parallel, perpendicular, biorthogonal,
transversal, equidistant, horocycle, fifth, etc.

In some visualizations the reader should add the axis equal option.

Examples. (Lines, polygons, circles.)

1. We plot the line segment through two given points A, B.

A = [2, 3]; B = [3, 2]; segment(A, B); % segment ([2, 3], [2, 2])
for ii = -4 : 4

segment([0, 1], [ii/4, 0]); hold on; % sheaf of lines, Figure 4.5(a)
end

Fig. 4.5 Sheaf of lines. Triangle.

2. Find the distance between two points on the basis of the formula (4.8) and using the
procedure distance.

distance([0, 20], [0, .05]); % Answer: 5.99146

3. Plot a triangle with given vertices using the statements

A = [1, 1]; B = [5,2]; C = [4, 4]; % Input three vertices
hold on; segment(A,B); segment(B,C); segment(A,C);

or create a new M-file triangle.m.

triangle([1, 1], [5, 2], [4, 4]) % Figure 4.5(b)
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Calculate its perimeter using the M-file perimeter.m.

perimeter([1, 1], [2, 1], [5, 4]); % Answer: 1.21036

4. Calculate the angles of a triangle using the M-file angle.m.

angle([1, 1], [1, 2], [2, 3]); % Answer: 0.588003

Use sum angles to compute the sum of its angles and the area.

sum angles([1, 1], [3, 1], [2, 1]); % Answer: 1.24905

5. Next we visualize a square (right quadrilateral) with edge a. The Lambert quadri-
lateral (with angles π

2 , π
2 , π

2 , ϕ and edges a1, a2 between right angles) has the property
sinh(a1)sinh(a2) = cos(ϕ).

If we reflect this quadrilateral with respect to an edge that connects the right angles,
then we obtain the Saccheri quadrilateral with angles π

2 , π
2 , ϕ , ϕ . One may plot the

quadrilaterals using the following procedure.

lambert(0.7, 1); % Lambert, Figure 4.6(a)
lambert(0.7,1); hold on; lambert(-0.7,1)); % Saccheri, Figure 4.6(b)

Fig. 4.6 Quadrilaterals of Lambert and Saccheri.

Example. Let us deduce the formula for the angle of parallelism (i.e., the angle be-
tween two rays with a common vertex that are left and right parallel to a given line),
using Figure 4.7(a).

syms t k d;
F = k*log(tan(t/2)); alpha = solve(subs(F, t, pi/2) - F - d)
α = 2 arctan(exp(−d/k))

We plot right and left parallels to a given line through a given point using the proce-
dure parallel. We also calculate the angle between them and the angle of parallelism.
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parallel([3, 5], [5, 2], [2, 4]); % Figure 4.7(b)

Using the program, one can check that the limit angle as the point approaches the
given line is equal to π

2 , and the limit angle as the point moves away from the given
line decreases to zero.

Fig. 4.7 The angle of parallelism. Left and right parallel lines.

Example. Let us plot the common perpendicular to given “super-parallel” (non-
parallel and non-intersecting) lines. Then calculate its length (i.e., the distance between
these lines).

Idea of solution. We plot the common tangent line EF to the Euclidean circles
ω(AB) and ω(CD); then find its midpoint and plot the perpendicular from this point to
the axis OX (i.e., obtain the radical axis of the two Euclidean circles). From the above
point (x3,0) as a center, we plot the Euclidean circle with radius equal to the length of
the tangent line segment to both given circles. The points H and K are the feet of the
common perpendicular.

Fig. 4.8 Perpendicular to a line. The common perpendicular.

In the program biorthogonal.m we assume that the lines AB and CD are “super-
parallel.”
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biorthogonal([1,1], [5,3], [11,1], [14,3]); % Figure 4.8(b)

The following generalizes the notion of a common perpendicular.
The line L is called a θ -transversal for L1 and L2 if it makes the same angle θ with

each of these lines. The common perpendicular L to L1, L2 is the unique π
2 -transversal.

For every other value of θ there are four θ -transversals (two alternate and two adja-
cent). The length tθ of the segment of the transversal is equal to

sinh

(
1
2

d(L1,L2)
)

= sinh

(
1
2

tθ

)
sinθ , the alternate transversal,

cosh

(
1
2

d(L1,L2)
)

= cosh

(
1
2

tθ

)
sinθ , the adjacent transversal.

Examples.

1. Plot the perpendicular to a given line l(P,Q) through a given point A and calculate
its length (i.e., the distance from the point to the line), using the procedure perpendic-
ular.m.

perpendicular([-7, 1], [5, 2], [2, 4]); % Figure 4.8(a)

Idea of the program. Let P1 = Q1 = x1. Then the perpendicular is represented by the

Euclidean half-circle (x − x1)+ y2 = R2, where R =
√

(A1 − x1)2 +A2
2. Now let P1 �=

Q1. Then l(P,Q) is represented by the Euclidean half-circle ω of radius R1 centered at

C1 = (x1,0), where R1 =
√

(P1 − x1)2 +P2
2 and x1 is such that (P−C1)2 = (Q−C1)2.

If x1 = A1, then the perpendicular is represented by the vertical ray through A. If
x1 �= A1, the perpendicular is represented by the Euclidean half-circle of radius R2

centered at C2 = (x2,0), where R2 =
√

(A1 − x2)2 +A2
2 and x2 is such that (A−C2)2 =

(C1 −C2)2 −R2
1.

2. Plot the θ -transversals to lines L1, L2, using the statements

transversal([-4,0], [-1,0], [1,0], [3,1], pi/3);
transversal([2,2], [5,1], [7,5], [7,1], pi/3); % Figure 4.9

3. Pencil of lines and its orthogonal trajectories. Plot a family of circles:

for i = 1 : 5;
circle([3, 1], i / 5); hold on;

end % Figure 4.10(a)

Next, plot two families of circles:

n = 15; hold on;
for i = 1 : n;

circle([ .3, 1], i / n); circle([-.3, 1], i / n);
end % Figure 4.10(b)
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Fig. 4.9 Four θ -transversals to “super-parallel” lines.

The pencil (sheaf) of

(1) lines through a given point,
(2) lines orthogonal to a given line, or
(3) parallel lines (in some direction)

is called, respectively, an elliptic, a hyperbolic, or a parabolic pencil of circles.
The curves (in the hyperbolic plane) that are orthogonal to these sheaves are called

a circle, an equidistant, and a horocycle; they are analytic curves.

(1) The circle is drawn as a Euclidean circle that does not intersect the axis OX .
The pencil of lines is represented by a family of Euclidean circles through the given
point and its symmetric point with respect to the axis OX . The orthogonal trajectories
of this elliptic pencil are seen to be the family of Euclidean circles from the problem of
Apollonius of Perga (with constant ratio of distances from given points).

If we throw a pebble in a pool of water, concentric circular waves (ripples) appear.
In “hyperbolic water” the circles (ripples) are not concentric (in the Euclidean sense);
they are orthogonal to a pencil of “hyperbolic lines” of type (1), through a given point.
The figure is similar to the net of bipolar coordinates.

One can prove this using calculations. The area of the circle of radius R and the
circumference of the circle are given by the formulae S(R)= 4π sinh2(R/2) and L(R) =
S(R)′ = 2π sinh2(R). One can check that the angle subtended by the diameter of the
circle is less than 90◦.

Idea of the program. Let the circle of radius R with center at A = (a1,a2) intersect
the vertical ray {x = a1} at (diametric) points y1 < y2. Then by the formula of distance
we have R = ln a2

y1
= ln y2

a2
. From this it follows that y2 = a2 exp(R) and y1 = a2 exp(−R).

The Euclidean center of the circle lies at the altitude yE = (y1 +y2)/2 = a2 coshR, and
its Euclidean radius is equal to R1 = (y2 − y1)/2 = a2 sinhR.

(2) The equidistant is represented on the half-plane as an arc of a Euclidean cir-
cle that intersects the axis OX at two points in a manner improper for the given line
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Fig. 4.10 Circles on non-Euclidean water.

through those points. It is a simple non-closed curve. The pencil of lines orthogonal
to the given line when the given line is the axis OY is represented as the family of
Euclidean concentric half-circles with center at O. The orthogonal trajectories of this
pencil are the Euclidean rays through the point O. The figure is similar to the net of
polar coordinates.

Fig. 4.11 Equidistant (2 cases).

Using inversion with respect to the Euclidean circle of radius R that is tangent to
the axis OY , one maps the family of given rays (equidistants of OY ) to the arcs of
the hyperbolic pencil of Euclidean circles through the points (0,0) and (R,0). One can
prove this using calculations.

equidistant([1,1], [1,3], 1, 4); equidistant([1,1], [2,3], 1.6, 4);% Figure 4.11(a)
equidistant([1,1], [2,3], 2, 4); equidistant([1,1], [2,3], -2, 4); % Figure 4.11(b)

(3) The horocycle is represented on the half-plane by a Euclidean circle that is tan-
gent to the axis OX . It is a simple non-closed curve. A family of lines parallel to a
given line is either represented by the parabolic pencil of Euclidean circles through the
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point on the axis OX , or by the family of rays parallel to the axis OY . In the first case,
their orthogonal trajectories form the set of Euclidean circles tangent to the axis OX at
the point.

Fig. 4.12 Horocycle through A in the direction AB (3 cases).

In the second case, obviously, their orthogonal trajectories form the family of Eu-
clidean lines parallel to the axis OX . Try to prove this by calculation. The broken
horocycle (obtained as the union of two parts of a mutually tangent pair of horocycles)
is only a C1-regular curve. See Figure 4.12.

horocycle([2, 3], [2, 1], 1); horocycle([6, 3], [1, 2], 1); % 1 horocycle
horocycle([4, 3], [1, 2], 5); horocycle([1, 2], [4, 3], 5); % 5 horocycles

There is an interesting generalization of the equidistant construction. Let S be the
family of all lines intersecting a given line in a given angle α ∈ (0, π

2 ). The orthogonal
trajectory to the family S is called a fifth line. (Indeed, a line, a circle, a horocycle,
and an equidistant are the first four.) In the limiting case α = π

2 we obviously have the
equidistant.

Example. Let us deduce the equations of a fifth line (it is a simple non-closed curve in
the hyperbolic plane) and plot it.

Solution (implemented in the M-file fifth.m). We deduce the ordinary differential equa-
tions (ODEs) of the fifth line in the case where the basic line coincides with the axis
OY . The general case is obtained using inversion and translation of the hyperbolic
plane.

A Euclidean circle intersecting the axis OY at the point (0,t) with angle a ∈ (0,π)
has radius R = t/sin a and center at C = (t cot a,0). The equation of the circle is

(x− t cot a)2 + y2 = t2/sin2 a ⇐⇒ x2 −2xt cot a + y2 = t2. (4.12)

The parameter t of such a circle ω passing through the point (x,y) is the positive solu-
tion of the quadratic equation (4.12),

t1 =
(
−xcos a +

√
x2 + y2 sin2 a

)/
sin a.
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We calculate the normal vector n(x,y) = [x− t cot a, y] to ω at (x,y),

n(x,y) =

⎡

⎣
x− cos a

√
x2 + y2 sin2 a

sin2 a
, y

⎤

⎦ .

Hence, the differential equations of a fifth line with the basic line OY are [x′(s), y′(s)]=
n(x,y). A numerical solution of this system is possible; see the M-file fifth.m. One
may also solve this system analytically. Assume x to be a function of y and obtain a
homogeneous ODE

x′ =
dx
dy

=
x/y− cos a

√
(x/y)2 + sin2 a

sin2 a
. (4.13)

The geometric reason for the homogeneity is that the family of a-lines relative to the
y-axis is invariant under the dilation (x,y) → (λx,λy) for all λ > 0. Hence, orthogonal
trajectories are also invariant under these direct isometries. One can build one fifth line
of the family, say, through the point (0,1), and then produce the others by dilations. To
solve (4.13), one uses the standard substitution x = u(y)y, and hence x′ = u′y + u and
one obtains u′y = A2u−A

√
(1 +A2)u2 +1, where A = cot a ∈ R. Using separation of

variables, one gets ∫
du

A2u−A
√

(1 +A2)u2 +1
= lny + c.

Denote the integral on the left-hand side by F(u) for short. Then y = CeF(x/y).

fifth([5, 0], [5, 5], pi/2 - 0.4, 8); % 8 fifth lines, Figure 4.13(a)

Fig. 4.13 Families of fifth lines (two cases).

A partition of a metric space by a family of congruent and mutually equidistant
sets is called a metric fibration. Examples are parallel lines in the Euclidean plane,
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and generators or parallels on a circular cylinder. What are all the metric fibrations (by
congruent and mutually equidistant curves) of the hyperbolic plane?

The metric fibrations of R
2
+. There are exactly three non-trivial metric fibrations of

the hyperbolic plane: (1) the fibration into horocycles, (2) the fibration into broken
horocycles, and (3) the fibration into fifth lines.

Hyperbolic geometry in R
3
+ can be thought of as the negative-curvature analogue

of the positive-curvature geometry in the 3-sphere. We develop several procedures (see
Section A.7) and plot the basic objects of R

3
+.

Examples.

1. Plot the line segment through the points A, B ∈ R
3
+:

A = [1, 4, 1]; B = [2, 3, 2];
% A = [1, 4, 1]; B = [1, 4, 2]; % vertical segment
H3segment(A, B); % segment ([1,4,1], [2,3,2])
for j = -4 : 4;
H3segment([0, 1, 1], [j/4, 0, 2]); hold on; % Sheaf of lines, Figure 4.14(a)
end

2. Compute the distance between the points A1 = (x1,y1,z1) and A2 = (x2,y2,z2):

A = [1, 4, 1]; B = [1, 4, 2]; % z1,z2 > 0
H3distance(A, B) % Answer: 0.6931.

3. Plot a triangle with given vertices using the M-file H3triangle.m:

A = [1, 1, 2]; B = [5, 2, 1]; C = [4, 4, 3]; % Input three vertices
H3triangle(A, B, C); % Figure 4.14(b)

4. Plot a plane through 3 given points using the M-file H3plane.m:

A = [1, 4, 1]; B = [2, 3, 2]; C = [2, 6, 1];
H3plane(A, B, C); % Figure 4.14(c)

Fig. 4.14 Lines, triangle and plane in hyperbolic space.



4.5 Exercises 191

5. Complute the distance between a point P and a plane α(A,B,C), and the projection,
then plot its image, using the M-file H3perp02.m:

P = [4, 4, 2]; A = [1, 4, 1]; B = [2, 3, 2]; C = [2, 6, 1];
H3perp02(P, A, B, C); % obtain a Figure.

6. Plot two lines (through a point A) parallel to a given one l(P,Q) in three dimensions
using the M-file H3parallel.m:

P = [0, 1, 1]; Q = [-1, 0, 2]; A = [2, 4, 1];
H3parallel(A, P, Q); % obtain a Figure.

4.5 Exercises

Section 4.1 1. Let A be a real 3×3 matrix. Then there is a μ ∈ R+ such that μ−1A
is an orthogonal matrix if and only if either of the following holds:

(a) A preserves angles between nonzero vectors;
(b) ‖xA‖ = μ‖x‖ for all x ∈ R

3.

2. The reflection in the sphere S2(O,1) ⊂ R
3 is given by PO,1(x) = x/‖x‖2.

3. Show that f (x) = a + rx (r > 0) is a conformal map.
4. Show that if PQ,r is the inversion of R

3 in the sphere S2(Q,r), then

(i) PQ,r(x) = x if and only if x ∈ S2(Q,r);
(ii) P2

Q,r(x) = x for all x �= Q (a self-inverse transformation);

(iii) ‖PQ,r(x)−PQ,r(y)‖ = r2

‖x−Q‖·‖y−Q‖ ‖x−y‖ for all x, y �= Q.

5. The equation ρ = R
cos(ϕ/3) defines the trisectrix of Maclaurin, shown in Figure

4.1(a); it is useful for the problem of the trisection of an angle.

e = .5; f = cos(t/3);
t = -3*pi/2 + e : .01 : 3*pi/2 - e;
hold on; axis equal
polar(t, 1./f); polar(t, f, ’: g’);

6. Inversion of the four-leafed rose ρ = R cos(2ϕ) leads to the cross-shaped curve
ρ = R

cos(2ϕ) (see other crosses in Section 1.4).

syms t;
a = 1; k = 2; e = .15; f = sin(k*t);
for i = 0 : 2*k;

s = pi/2/k;
hold on; axis equal;
ezpolar(1/f, [(2*i)*s + e, (2*i+2)*s - e]);
ezpolar(’1’); ezpolar(f);

end; % Figure 4.1(c)
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7. Check that these pairs of curves are mutually inverse: Archimedes’ and hyper-
bolic spirals, the rectangular hyperbola and the lemniscate of Bernoulli, the parabola
and the cardioid, the cochleoid and the quadratrix.

8. Show that
(a) the extended reciprocal function and the extended affine function are composites

of inversions;
(b) all inversive transformations form a group under the operation of composition

of functions;
(c) inversive transformations preserve the magnitude of angles and map generalized

circles to generalized circles.
9. Show that

(a) the reflection of R
2 ≈ C in the unit circle ω = S1(O,1) is the function

T : z → 1/z̄ or, equivalently, T : (x,y) →
(

x
x2+y2 ,

y
x2+y2

)
;

(b) the reflection in a circle ω = S1(c,r) may be represented in C by

T(z) = r2/(z̄− c̄)+ c, z ∈ C\{c}. (4.14)

10. Steiner’s porism. Let the circle ω ′ be inside the circle ω . Insert a circle c1

externally tangent to ω ′ and internally tangent to ω . Insert another circle c2 tangent to
c1, ω , and ω ′, and so on, continuing around ω ′. Suppose that for some n we have cn

tangent to c1. Prove that if this happens for some n and some pair of circles ω ′ and ω ,
then no matter where we first draw c1, we will always have cn tangent to c1.

Section 4.2 1. Prove that:
(a) The map f −1(z) = dz−b

−cz+a is the Möbius transformation inverse to

f = az+b
cz+d . Hint. To verify directly, set g = fA(z) and isolate z:

(cz +d)g = az +b ⇐⇒ czg−az = b−dg ⇐⇒ z = (dg−b)/(−cg +a).

(b) Every Möbius transformation of C can be expressed as the composition of at
most four maps, each of which is of one of the forms z → eitz, z → λ z, z → z +b, z →
1/z, where t, λ ∈ R (i.e., rotations, dilations, translations, and the reciprocal function).

2. Show that:
(i) Every matrix associated with a Möbius transformation is invertible because ad −

bc �= 0. Moreover,

(
d −b
−c a

)
is associated with f −1.

(ii) The matrix representation for f is not unique because f is also represented by

kA =
(

ka kb
kc kd

)
for any k �= 0.

3. Find the image of the circle ω = S1(0,1) under the inversive transformation f =
z̄+i
z̄−1 . Hint. The image is an extended line through the origin.
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4. Determine whether or not the four points i, 1 + 4i, 3, 4 + 3i lie on a generalized
circle. Hint. First we determine the Möbius transformation that maps i, 1 + 4i, 3 to 0,
1, ∞, namely: f (z) = k z−i

z−3 where k = 1 + i. It follows that f (4 +3i) = 2. Since this is
real, it follows that i, 1 +4i, 3, 4 +3i lie on a generalized circle.

5. Let ω1 and ω2 be generalized circles in Ĉ. Prove that there is a Möbius transfor-
mation that maps ω1 to ω2.

6. Show that

[∞,z2,z3,z4] =
z2 − z4

z3 − z4
, [z1,∞,z3,z4] = −z1 − z3

z3 − z4
,

[z1,z2,∞,z4] = −z2 − z4

z1 − z2
, [z1,z2,z3,∞] = −z1 − z3

z1 − z2
.

7. Prove that
(a) the linear maps z → az +b preserve the ratio λ = z2−z1

z4−z3
;

(b) the ratio λ = z2−z1
z4−z2

is real if and only if the three points are collinear.
8. Prove that:
(a) Exchanging any two pairs of points preserves the cross-ratio:

[z1,z2,z3,z4] = [z2,z1,z4,z3] = [z3,z4,z1,z2] = [z4,z3,z2,z1].

(b) There are 6 possible values of the cross-ratio, depending on the order in which
the points are given. These are:

[z1,z2,z3,z4] = λ , [z1,z2,z4,z3] =
1
λ

, [z1,z3,z4,z2] =
1

1−λ
,

[z1,z3,z2,z4] = 1−λ , [z1,z4,z3,z2] =
λ

1−λ
, [z1,z4,z2,z3] =

λ −1
λ

.

9. Show that the non-constant linear-fractional function f (z) = az+b
cz+d preserves the

cross-ratio. Namely,

[z1,z2,z3,z4] = [ f (z1), f (z2), f (z3), f (z4)] for all zi ∈ C.

10. Given two triples of distinct points z1, z2, z3 and w1, w2, w3 in C, there is a
linear-fractional function f (z) = az+b

cz+d such that wi = f (zi) (i = 1, 2, 3). Hint. Use the
relation [z1,z2,z3,z] = [w1,w2,w3, f (z)].

11. Show that
(a) the distinct points z1, z2, z3, z4 are concyclic if and only if their cross-ratio

[z1,z2,z3,z4] is real. Hint. Use Exercise 5 when z1, z2, z3, z are real.
(b) P(4 +3i) belongs to the circle ω(i,1 +4i,3). Hint. Use the cross-ratio.

prod4(i, 1 + 4*i, 3, 4 + 3*i) % obtain −1 ∈ R, hence P ∈ ω .
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12. A Möbius transformation f : R
3 → R

3

(a) preserves extended spheres;
(b) fixes ∞ if and only if f is a similarity.
13. A Möbius transformation which fixes each point of a sphere S2 is either the

identity map of R
3 or the inversion in S2.

14. Show that

[∞,b,x,y] = d(b,y)/d(x,y), [a,∞,x,y] = d(a,x)/d(x,y),
[a,b,∞,y] = d(b,y)/d(a,b), [a,b,x,∞] = d(a,x)/d(a,b).

15. Use Theorem 4.5 to verify that if a direct Möbius transformation f : R̂
3 → R̂

3

has three fixed points, then it is the identity map.
16. Prove that a Möbius transformation T that is conjugate
(a) to a rotation Ry(θ ) of S2 is of the form T(z) = az−b

bz+a ,

(b) to a rotation Rx(θ ) of S2 is of the form T(z) = az+ib
ib z+a ,

where a, b ∈ R are not both zero.
17. Show that:
(a) The map f (z) = e2iθ z, θ ∈ R, can be written in the form (4.4).

(b) The projected map f̃ = π( f (z)) =
(

2xcos 2θ−2y sin 2θ
|z|2+1

, 2x sin 2θ+2ycos 2θ
|z|2+1

,
|z|2−1
|z|2+1

)
for

z = x + iy, and f̃ is a rotation of the sphere by the angle 2θ about the vertical axis.
(c) If f (z) = zcos θ+i sin θ

izsin θ+cos θ , then f̃ is a rotation of the sphere about the real axis. What
is the angle of rotation of f̃ ? Hint. Consider π(i) and π( f (i)).

18. Show that for any complex number k �= 0:
(a) the Möbius transformation f (z) = (k−2)z−2(k−1)

(k−1)z−(2k−1) fixes the points 1 and 2;

(b) the matrix A =
(

k−2 k−1
2−2k 1−2k

)
represents f so that A has eigenvectors (1,1)

and (2,1), and the corresponding eigenvalues are −k and −1.
19. Prove that a circle in R

2 with equation x2 +y2 +2αx+2βy+γ = 0 corresponds
under stereographic projection to the circle cut out on S2 by the plane with equation
2αX +2βY +(1− γ)Z +(1 + γ) = 0.

Section 4.3 1. Show that the hyperbolic distance ρH(A1,A2) (below Theorem 4.6)
does not depend on which endpoint we call B1 and which we call B2:

| ln([A2,A1,B1,B2])| = | ln([A2,A1,B2,B1])|. Show also that ρH(A1,A2) = ρH(A2,A1).
2. Find the area in R

2
+ of the doubly asymptotic triangle with vertices i, 1, and

1 +
√

2.
3. Show that the area of a triply asymptotic triangle is π. Hint. See Figure 4.3(b):

S(�LMN) = S(�PLM)+S(�PMN)+S(�PNL)
= (π −∠MPL)+(π −∠MPN)+(π −∠NPL) = 3π −2π = π.
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4. Show that for each n ≥ 3 and α ∈ (0, n−2
n π), there is a regular hyperbolic n-gon

whose interior angle is α . Plot examples.
5. Show that the dilation Tλ (z) = λ z by λ > 0 can be thought of as a Möbius trans-

formation which is represented by δλ =
(

λ 0
0 0

)
of SL2(R).

6. Find a map A ∈ SL2(R) which sends 1+ i to i and ∞ to 1. Prove that A represents
a rotation of R

2
+.

Hint. An isometry A sends the line l(1,∞) to a Euclidean circle ω(i,1). Hence, A
sends 1 to −1. Thus

(z, i+1;1,∞) = (w, i;−1,1) ⇐⇒ z−1
z−∞

:
i+1−1
i+1−∞

=
w+1
w−1

:
i+1
i−1

⇐⇒
(−1 1

0 1

)
z =

(
1 1
1 −1

)
w ⇐⇒ w =

(−1 −1
−1 1

)
·
(−1 1

0 1

)
z =

(
1 −2
1 0

)
z.

To see whether A =
(

1 −2
1 0

)
has a fixed point, solve

Az = z ⇐⇒ (z−2)/z = z ⇐⇒ z2 − z +2 = 0 ⇐⇒ z = (1± i
√

7)/2.

syms z w;
S = solve(prod4(z, i + 1, 1, inf) - prod4(w, i, -1, 1), w) % Answer: S = z−2

z

solve(S - z, z) % Answer: 1/2− (i/2)
√

7, 1/2 +(i/2)
√

7

Since z = 1
2(1 + i

√
7) ∈ R

2
+ , this map has a fixed point. Thus A is a rotation.

7. Prove Theorem 4.8. Hint. Using results of Example, p. 178, we obtain

στt στs στr =
(

0 −1
1 t

)(−1 −r
s rs−1

)
=
( −s 1− rs

st −1 rst − r − t

)
.

syms r s t a b c d;
sigma = [0 -1; 1 0]
B = sigma*taur(t)*sigma*taur(s)*sigma*taur(r)

B = [−s, −sr +1; ts−1, (ts−1)r − t] % Answer
A = [a b; c d]; S = A - B
Sol = solve(S(1, 1), S(2, 1), S(1, 2), s, r, t);
Sol.r, Sol.s, Sol.t

(b−1)/a, −a, −(c +1)/a % Answer

simplify(subs(S(2, 2), {r, s, t, d}, {Sol.r, Sol.s, Sol.t, (1 + b*c)/a} ) ) % check d

0 % Answer



196 4 Möbius Transformations

Thus, if A =
(

a b
c d

)
∈ SL2(R) and a �= 0, then set s = −a and solve b = 1 − rs =

1 + ra and c = st − 1 = −at − 1. This gives r = (b − 1)/a, t = −(1 + c)/a. Since
det A = 1, this forces d = rst − r − t. Thus, if a �= 0, then A can be written as a product
involving only σ and translations. If a = 0, then c �= 0, since ad − bc �= 0, and hence

σA =
(−c −d

a b

)
, which can be written as a suitable product. So, SL2(R) is generated

by translations and σ .
8. Find a Möbius transformation which fixes P = a+ ib and rotates counterclockwise

through an angle t.
Hint. Find the Euclidean line through A1 which makes an angle t with the verti-

cal line. Find the perpendicular to this line and its intersection with the x-axis. The
circle centered at this intersection and through A1 is the image of the vertical line
under the rotation. Let this circle intersect the x-axis at B1 and B2. The rotation is
given by [w,A1,B2,B1] = [z,A1,a,∞]. Let, for instance, A1 = i. Let the center of a half-
circle be −x, and the Euclidean radius of the circle be r. Then r cos t = x, r sin t = 1
and B1 = −r − x, B2 = r − x. After algebraic manipulation, find w = ρt z, where

ρt =
(

cos t
2 sin t

2
−sin t

2 cos t
2

)
. To find the rotation by an angle t about A1, one should trans-

late A1 to i, then rotate, and translate back.
9. Prove (4.11). Hint. Use

(aq+b)(cq+d)−1 = (aq+b)(cq+d)(cq+d)−1(cq+d)−1 =
(aq+b)(cq+d)

|cq+d|2 .

10. Show that the group Möb(R3
+) is transitive, and that T =

(
v1/2 0

uv−1/2 v−1/2

)
trans-

forms j to u + vj.

Section 4.4 1. Find the Poincaré distance between A1 = 12+5i and A2 = 5+12i.
Answer in the form log(a/b), where a, b are positive integers.

2. Find the image of i under reflection through the line whose endpoints are 1 and 3.
3. What is the radius of the largest circle that can be inscribed in (a) a triangle, (b) a

quadrilateral, and (c) a pentagon?
4. Plot the triangle
(a) with 1, 2 or 3 infinite vertices;
(b) symmetric to a given one with respect to (1) an axis, (2) a point.
5. With the help of the procedure distance, plot
(a) the central point of a segment,
(b) a doubling of a given segment,
(c) a given segment on a given ray.
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6. Use the above programs to show that for “small” triangles the sum of their angles
is close to π. Plot the bisector of an angle, and double an angle.

7. Plot the perpendicular to a segment through its midpoint using the procedure
perpendicular.m.

8. Calculate the edge of, and then plot, the regular 2n-polygon the sum of whose
angles is equal to 2π. (Gluing pairs of its edges will create a model for a surface of
constant negative curvature.)

9. Plot the circumcircle for a given triangle. Note that a circumcircle does not always
exist (for a given triangle), because through three points (in the hyperbolic half-plane)
that do not belong to the same line, we can plot one of three curves: a circle, an equidis-
tant, or a horocycle.

10. Plot the inscribed circle for a given triangle. This triangle always exists; its
center lies on the intersection of the three angle bisectors.

11. Prove the Pythagorean theorem: Let T be a triangle with angles α , β , π/2.
Then cosh(c) = cosh(a)cosh(b).

12. Let T be a triangle with angles α , 0, π
2 . Show that

(1) sinh(b) tan(α) = 1,
(2) cosh(b)sin(α) = 1,
(3) tanh(b)sec(α) = 1.

13. Let T be a triangle with angles α , β , 0. Show that

(4) cosh(c) =
1 + cos(α)cos(β )

sin(α)sin(β )
,

(5) sinh(c) =
cos(α)+ cos(β )

sin(α)sin(β )
.

14. Plot several lines of each of the metric fibrations, discussed on p. 190.
15. Calculate the angles in a triangle by developing an elementary geometry ap-

proach, by the method in angle.m, or by using the cosine theorem.
16. Verify the geometric constructions in the programs of Section A.7.
17*. Develop M-files to plot spheres, horospheres, equidistant surfaces, and tetra-

hedra in R
3
+ .
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Curves and Surfaces





5

Examples of Curves

Section 5.1 starts from the basic notion of a regular curve. Then we investigate cycloidal
curves and other remarkable parametric curves, as well as curves given implicitly as
level curves of functions in two variables. The level sets are useful in solving prob-
lems with conditional extrema. We study the variational calculus for functions of one
variable and employ it to derive Euler’s spiral. In Section 5.2 we study some frac-
tal curves. Section 5.3 discusses the basic MATLAB R© capabilities for plotting space
curves, surveys the parallel and perspective projections, and presents curves with shad-
ows on planar, cylindrical, or spherical displays. Section 5.4 introduces helix-type
curves on surfaces of revolution and studies curves obtained by the intersection of
pairs of surfaces.

5.1 Plane Curves

Intuitively, according to Euclid, a curve is the trajectory of a moving point, a boundary
of a surface, a one-dimensional figure.

The mathematically correct definition of a curve is based on notions from topology,
but it starts from the key notion of an elementary curve, which can be imagined as an
interval I = (a,b) (or a segment Ī = [a,b]) of the line after continuous deformation.

A set γ in R
n is called a curve if it can be covered by a finite or countable number

of elementary curves.
One can distinguish self-intersecting, simple (i.e., without self-intersections; for ex-

ample, graphs), closed, and connected curves.

There are many methods of classifying curves. One method is to divide them into
algebraic and transcendental curves. An algebraic (plane) curve is given by a polyno-
mial equation P(x,y) = 0. Its degree n = degP is called the order of the curve. Curves
of order n = 2 are studied in analytical geometry. The first classification of curves of

V. Rovenski, Modeling of Curves and Surfaces with MATLAB R© , 201
Springer Undergraduate Texts in Mathematics and Technology 7, DOI 10.1007/978-0-387-71278-9 5,
c© Springer Science+Business Media, LLC 2010
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order n = 3 was obtained by Newton. The case n > 3 is more difficult. But among
easily obtained curves there are many that are nonalgebraic, for example, the cycloid
and the spiral of Archimedes; we study them by using parametric or implicit equations
or by plotting them in polar coordinates (see Section 1.4).

The names of curves, like geographical names, contain much interesting informa-
tion. We may group curves according to the meaning of their names:

By the name of a scientist — Dinostratus’ quadratrix, conchoid of Nicomedes,
Pascal’s limaçon, lemniscate of Bernoulli, cissoid of Diocles, etc.

By the method of construction — caustics, equidistant (parallel) curves, pedal curves,
evolutes, evolvents, etc.

By an important property — trisectrices, quadratrices, tractrices, etc.
By an essential property of their shape — astroid (star-shaped), deltoid (Greek letter

Δ ), cardioid (heart-shaped), nephroid (kidney-shaped), etc.
By historical factors — ellipse, parabola, hyperbola.
By the structure of the formula — (semi)cubical parabola, logarithmic spiral, expo-

nential and logarithmic curves, sine (cosine) integral, etc.

5.1.1 Parametric plane curves

Let us fix rectangular coordinates (with the orthonormal basis {i, j}) in the plane with
origin O. The coordinates x, y of a point P on the elementary curve γ are functions
x = x(t), y = y(t) of t ∈ I. In other words, the position vector r =

−→
OP of the point

P = (x,y) on the curve γ is the vector-valued function (the parameterization)

r(t) = x(t) i+ y(t) j, t ∈ I.

Example. A line in the plane is given by a linear vector-valued function in the variable
t: r(t) = [a1t +b1, a2t +b2], or, in complex form, z(t) = (a1 + ia2)t +(b1 + ib2).

We define functions x(t), y(t) and then introduce r(t) and z(t).

x = @(t) 2*t + 3; y = @(t) t - 1; % define functions x(t),y(t)
r = [x(t), y(t)]; % vector-function
z = x(t) + i*y(t) % complex parametric equation

One may derive in MATLAB some operations of calculus on vector-valued functions
r(t) = [x(t), y(t)] of class Ck (k ≥ 0).

The limit r(t0) = limt→t0 r(t) and the derivative r′(t) = limΔt→0
r(t+Δ t)−r(t)

Δ t :

r0 = subs(r, t, 1), z0 = subs(z, t, 1) % t0 = 1
rt = diff(r, t); zt = diff(z, t)
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Similarly, we compute the derivatives r (k) and Taylor series (Section 1.2).

A point P on a simple curve γ ∈ R
n is called regular of class Ck (C∞ or Cω ) if some

neighborhood of P admits a parameterization r(t) = [x1(t), . . . ,xn(t)], t ∈ I (r(t) =
[x(t),y(t)] for n = 2), where the functions xi(t) belong to class Ck (C∞ or Cω ) and
the vector r′(t) is nonzero at P. For the opposite case, a point P is called a singular
point (see Figure 1.4(c) with a tractrix). A curve consisting of regular points is called a
regular curve of class Ck (C∞, Cω ) (smooth when k = 1).

Next we consider some remarkable parametric curves.
The trajectory of a point on the circle of radius R traveling (without sliding) along

another circle of radius R′ (or along a line) is a cycloidal curve (circle-shaped). Its
parametric equations are

x = Rt −hRsin(t), y = R−hRcos(t). (5.1)

If a circle drives along and inside of the motionless circle, then such a curve is a hypocy-
cloid; if outside, then the curve is an epicycloid. If we follow a point not on the border
of the wheel but on a spoke or on its continuation, then we obtain a curtate or pro-
late trochoid (wheel-shaped). Parametric equations of trochoids (prolate for h > 1 and
curtate for 0 < h < 1), with modulus m = R/R′, are the following:

{
x = (R+mR)cos(mt)−hmRcos(t +mt),
y = (R+mR)sin(mt)−hmRsin(t +mt).

(5.2)

If m is represented in the form of an irreducible fraction a/b, then the cycloidal curve is
closed with b branches; its period with respect to the parameter t is 2π b. If the modulus
m is irrational, then the curve consists of an infinite number of branches.

In the case h = 1 we have cycloidal curves: epicycloids for m > 0 and hypocycloids
for m < 0. See Figures 5.1–5.3 for some tables of cycloidal curves.

Fig. 5.1 Common cycloid, curtate and prolate cycloids.

Examples.

1. Let us plot the cycloid for h = 1 and its trochoids: prolate for h > 1 and curtate for
0 < h < 1 (Figure 5.1).
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hold on; for i = 1 : 3; h = 1 + (i - 2).*8/10;
ezplot(t - h*sin(t), 1 - h*cos(t), [0 5*pi]);
end % Figure 5.1(a)
syms t;
hold on; for i = 1 : 3;
h = 1 + (i - 2).*8/10;
subplot(1, 3, i); ezplot(t - h*sin(t), 1 - h*cos(t), [0 5*pi]);
end % Figure 5.1(b)

2. One may generate tables of cycloidal curves (Figures 5.2, 5.3) with varying param-
eters a, b in the modulus. For an epicycloid the program is:

syms t; h = 1; hold on; axis equal;
for a = 1 : 3; for b = 3 : 5;
x = (1 + a/b)*cos(a/b*t) - h*a/b*cos(t + a/b*t);
y = (1 + a/b)*sin(a/b*t) - h*a/b*sin(t + a/b*t);
subplot(3, 3, 3*(a - 1) + b - 2); ezplot(x, y, [0 2*b*pi]);
end; end

Fig. 5.2 Epicycloids. Prolate epicycloids. Curtate epicycloids.

Among them, a/b = 1 is the cardioid, a/b = 1/2 is the nephroid, a/b = −1/3 is the
deltoid, a/b = −1/4 is the astroid, etc.

3. The Lissajous curves (Figure 8.17(b)) are the family of curves described by the
parametric equations r(t) = [Asin(at + ϕ), Bsin(bt)] (see also Section 8.5) and show
a complex harmonic motion (Lissajous figure on an oscilloscope). Their appearance
is highly sensitive to the ratio a/b (for a ratio of 1, the figure is an ellipse). Lissajous
figures are sometimes used in graphic design as logos.

a = 2; b = 1; phi = 0; A = 1; B = 1; % enter your data
syms t; ezplot(A*sin(a*t + phi), B*sin(t), [0 4*pi]);
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Fig. 5.3 Hypocycloids. Curtate hypocycloids. Prolate hypocycloids.

Fig. 5.4 Experiment with polar coordinates: k = 5.

4. Plot a number of interesting figures by inserting into the formulae relating polar and
rectangular coordinates [ρ cos(t), ρ sin(t)] (see Section 1.4) two additional parameters
A, B.

Now substituting in the equations [ρ cos(At), ρ sin(Bt)] the relationship ρ = sin(kt)
(for roses, see Section 1.4) for k = 5, and then changing A and B, you will obtain a
splendid view: see Figure 5.4.

N = 4; k = 5; % define parameters
hold on; axis equal;
for a = 1 : 4; for b = 1 : N;
x = sin(k*t)*cos(a*t); y = sin(k*t)*sin(b*t);
subplot(4, N, 4*(a - 1) + b); ezplot(x, y, [0 2*pi]);
end; end

5. The clothoid (Cornu spiral) is the curve whose curvature (see Section 6.4) is pro-
portional to its arc length: k(s) = s/a, and hence the angle between the tangent line
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and the axis OX is given by α(s) = s2

2a +C. Let us fix rectangular coordinates in such
a way that the curve is tangent to the axis OX at the origin O and start from this
point reading the arc length (the constant C = 0). We deduce from the above formu-
lae x′(s) = cos(s2/(2a)), y′(s) = sin(s2/(2a)). Integration leads to the equations of the
clothoid: x(s) =

∫ s
0 cos(s2/(2a))ds, y(s) =

∫ s
0 sin(s2/(2a))ds. The clothoid rotates an

infinite number of revolutions around the points M = (±x0,±y0), where

x0 =
∫ ∞

0
cos(s2/(2a))ds =

1
2

√
πa, y0 =

∫ ∞

0
sin(cs2/(2a))ds =

1
2

√
πa.

The first clothoid was investigated by the physician Cornu in 1874 in relation to the
diffraction of light. The clothoid is also used in railway design, since it is the ideal
transitional curve.

syms s; x = int(cos(s*s/2), s), y = int(sin(s*s/2), s) % symbolic approach

[
√

π · fresnelC(s/
√

π),
√

π · fresnelS(s/
√

π)] % Answer
s = -7 : 0.01 : 7;
X = pi (1/2)*mfun(’FresnelC’, s/piˆ(1/2));
Y = piˆ(1/2)*mfun(’FresnelS’, s/piˆ(1/2));
plot(X, Y); axis equal; % Figure 5.6(a)

6. The natural equations (see Section 6.3) of both the logarithmic spiral and the clothoid
are particular cases of k(s)= sm/a, which defines the family of curves called pseudospi-
rals. (Aside from the clothoid, for m = 1, and the logarithmic spiral, for m = −1, they
include the evolvent of the circle, for m = −1/2; see Section 6.1.) Evolutes of pseu-
dospirals again belong to this class of curves; for example, the evolute of the clothoid
for m = 3.

One can study a more general relationship k(s) = f (s). The curves having natural
equations k(s) = 1

a cos s are called patterned curves. These curves have a similar shape
to elastica (Example, p. 215) studied in mechanics.

We plot the patterned curves when a = π
2 , π , 2π (Figure 5.5).

syms s t n; n = 25;
X = @(t)int(cos(2*pi*sin(s)), 0, t); Y = @(t)int(sin(2*pi*sin(s)), 0, t);
tt = -2*pi : 2*pi/n : 2*pi;
hold on; for m = 1 : n;
x(m) = double(X(tt(m))); y(m) = double(Y(tt(m)));
plot(x(m), y(m), ’.’);
end

5.1.2 Level lines and extremal problems

An implicitly given curve f (x,y) = c can be plotted using ezplot.
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Fig. 5.5 Patterned curves (pseudospirals): a = π
2 , π, 2π.

The command contour allows one to obtain several implicitly given curves f (x,y) =
c for the values c = c1, . . . ,cn.

Example. Plot some implicitly given curves by using ezplot

ezplot( ’x.ˆ3 + y.ˆ3 - 3*x.*y’ ), axis equal % 0-level line of f = x3 + y3 −3xy

or by using meshgrid and then contour.

x = -pi : .01 : pi; [X, Y] = meshgrid(x); % f = sin(xy)
contour(X, Y, sin(X.*Y), [-0.8, -1/2, 0, 1/2, 0.8]) % Figure 5.7(a).
xy = -2 : .01 : 2; [X, Y] = meshgrid(xy); % folium of Descartes,
contour(X, Y, X.ˆ3 + Y.ˆ3 - 3*X.*Y, [0 0]) % Figure 5.6(c).

Plot a perturbed folium of Descartes with equation x3 + y3 −3xy±0.01.
Let us find parametric equations for the folium of Descartes.
Set t = y/x and substitute in the implicit equation:

x3 + t3x3 −3x(tx) = 0 ⇐⇒ x = 3t/(1 + t3), where t �= −1.

Hence y = 3t2/(1 + t3). Then we plot (two parts of) the curve:

syms t; x = 3*t/(1 + tˆ3); y = t*x;
hold on; ezplot(x, y, [-50, -1.3]); ezplot(x, y, [-.8, 50]);

Fig. 5.6 Clothoid. SICI spiral. Folium of Descartes.
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For implicit plotting of given algebraic curves, the following practical method is
sometimes used. One can solve equations (of degree 2–4), then enter the command
plot to obtain the graph of each branch of the function, and finally enter the com-
mand hold on to collect the pieces into the whole curve. The expressions for roots
are often complicated, but their graphs are plotted exactly, and the obtained curve is
glued together from different colored branches. We recommend that the reader use
both methods to plot some curves of third and fourth degree: folium of Descartes, cis-
soid, strophoid, trisectrix of Maclaurin, cardioid, Nicomedian conchoid, lemniscate
of Bernoulli, and kappa. Some of these curves are also successfully plotted in polar
coordinates, as shown in Section 1.4.

Level sets of functions are useful in problems with extrema. The problem of relative
extrema is formulated as follows: What is the maximum (minimum) of the function f
defined in the plane along the given curve γ?

Theorem 5.1. Let the differentiable function F be given in the domain G ⊂ R
2 and

assume the gradient ∇F is nonzero along γc : F(x,y) = c (i.e., the curve γc of level c
for F is a regular curve). Assume also that g(x,y) is a smooth function on G and that
P ∈ γc is an extremal point of g on γc. Then the tangent line (see Section 6.1) to γc at
the point P is orthogonal to the gradient ∇g(P); i.e., there exists a real number λ such
that ∇g(P) = λ ∇F(P) (λ is called a Lagrange multiplier).

The equation ∇g = λ ∇F is equivalent to the system

F(x,y) = c, F ′
x(x,y) = λ g′

x(x,y), F ′
y(x,y) = λ g′

y(x,y).

Example. An excursion bus travels along a highway (the line l). There is a castle (the
line segment P1P2 of length d) at some distance and elevated at some angle from the
highway. What is the optimal stopping point of the bus on the highway (the point P ∈ l)
from which the front of the castle can be viewed from P under the maximal angle?

Let us use this problem to study and compare different possibilities of MATLAB for
solving problems of conditional extremum.

1. Experimental: we plot some level curves of the objective function G = cos(∠P1PP2)
and choose visually the best from among them.

v = -2 : .01 : 3; [x, y] = meshgrid(v);
d = 1; f = sqrt(x.ˆ2 + y.ˆ2); g = sqrt((x - d).ˆ2 + y.ˆ2);
contour(x, y, (f.ˆ2 + g.ˆ2 - d.ˆ2)./(2*f.*g), [0 : .1 : 1]), axis equal %Figure 5.8(c)

2. Geometrical: we analyze the configuration of level curves together with the given
curve and use elementary geometry to find the solution.

3. Analytical:

(a) we reduce the problem to the case of an unconditional extremum; or
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(b) we apply the method of Lagrange multipliers.

Hint. Method 2. Let the function f (P) = ∠P1PP2 reach its maximum at P ∈ l. The
value of the angle of view ϕ of the segment P1P2 is constant on arcs of circles through
the endpoints of the segment, i.e., level curves of the function f (P). A local maximum
is reached at a point on the line l that is tangent to one of arcs of the family of level
curves.

The problem has two solutions. Let us fix orthogonal coordinates in the plane
such that P1 = (−d/2,0) and P2 = (d/2,0); then write down the equation of the line
l : ax + by = 1. Find the center O′ = (0,y) of the arc tangent to l from the equation
|O′P1| = d(O′, l):

√
y2 +d2/4 = |by−1|√

a2+b2
(the second root corresponds to the best

view of the back side of the castle). We find the optimal angle ϕ from the equation
tan ϕ = d/(2|y|).

a = 1/2; b = -1/2; d = 1; % Answers in what follows are for symbolic a,b,d
syms y;
f1 = sqrt(yˆ2 + dˆ2/4); f2 = (b*y - 1)/sqrt(aˆ2 + bˆ2);
solve(f1ˆ2 - f2ˆ2, y)

−4b+2
√

4b2−a4d2−a2d2b2+4a2

4a2 , −4b−2
√

4b2−a4d2−a2d2b2+4a2

4a2 % Answer.

Method 3a. Let us fix orthogonal coordinates such that P1 = (0,0), P2 = (d,0), and
write down the equation of the highway l : ax+by = 1. Represent the point on the line l
in the form P = (x = 1−bt

a , y = t). Let us find F = cos(∠P1PP2) by the cosine theorem
and substitute, in place of the variables f , g, h, the sides of �(P1PP2) expressed in
terms of coordinates. We differentiate the function F(t) and find three roots.

f = sqrt(tˆ2 + ((1 - b*t)/a)ˆ2): g = sqrt(tˆ2 + (d - (1 - b*t)/a)ˆ2):
F = simple((fˆ2 + gˆ2 - dˆ2)/(2*f*g))

F = t2a2+b2t2−2bt+1+dabt−da

a2

√
t2a2+b2t2−2bt+1

a2

√
t2a2+d2a2+2dabt−2da+b2t2−2bt+1

a2

% Answer.

dF = simple(diff(F, t))

dF = d2a2t(b2t2+t2a2+da−1)
(t2a2+b2t2−2bt+1)

√
(t2a2+b2t2−2bt+1)/a2

×
× 1

(t2a2+d2a2+2dabt−2da+b2t2−2bt+1)
√

t2a2+d2a2+2dabt−2da+b2t2−2bt+1
a2

% Answer.

T = [solve(dF, t)]; P = simple([(b*T(2) - 1)/a, T(2)])

T = [0,

√
(b2+a2)(1−da)

b2+a2 , −
√

(b2+a2)(1−da)
b2+a2 ]

P = [−−b
√

(a2+b2)(1−da)+a2+b2

(a2+b2)a ,

√
(a2+b2)(1−da)

a2+b2 ] % Answer.

Method 3b. For deriving the maximum of the function

G = cos(∠P1PP2) = ( f 2 +g2 −d2)/(2 f g),
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where f =
√

x2 + y2, g =
√

(x−d)2 + y2 with the restriction F = ax+by−1 = 0, it is
sufficient to solve the system grad G = λ grad F with respect to x, y, and λ under the
given restriction. Since the line segment [P1, P2] does not intersect l, the function F has
the same sign at the points P1 and P2, that is, ad < 1.

a = 1/2; b = -1/2; d = 1;
syms x y lambda;
f = sqrt(xˆ2+yˆ2); g = sqrt((x - d)ˆ2 + yˆ2);
F = a*x + b*y - 1; G = simplify((fˆ2 + gˆ2 - dˆ2)/(2*f*g));
GradG = [diff(G, x), diff(G, y)]; GradF = [diff(F, x), diff(F, y)];
Eq1 = simplify(GradG(1) - lambda*GradF(1));
Eq2 = simplify(GradG(2) - lambda*GradF(2));
[X Y Lambda] = solve(F, Eq1, Eq2, x, y, lambda);
x0 = X(1), y0 = Y(1), lambda0 = Lambda(1)

x0 =
(

b
√

−(b2+a2)(−1+da)

b2+a2 −1

)
a−1, y0 =

√
−(b2+a2)(−1+da)

b2+a2 % Answer.

G0 = subs(G, [x y lambda], [x0 y0 lambda0])

Conclusion: The point of the best view with y > 0 has coordinates

x0 =

(
b
√

(b2 +a2)(1−da)
b2 +a2 −1

)

a−1, y0 =

√
(b2 +a2)(1−da)

b2 +a2 .

5.1.3 Trajectories of a vector field and ODEs

The trajectories of a vector field V = (x,F(x,y)) and solutions of the ordinary differen-
tial equation (ODE) y′ = F(x,y) are the same. They can be approximated by the Euler
or tangent line method. If the step size has a uniform value, this method is expressed
by the equation

yi+1 = yi +F(xi,yi)h, i = 0,1, . . . . (5.3)

Euler’s method consists of repeatedly evaluating (5.3), using the result of each step to
execute the next step. We create a short M-file with an ODE solver for dy

dx = F(x,y)
with y(x0) = y0 on the interval x0 ≤ x ≤ x1.

function ode1(F, x0, x1, y0) % illustrative program uses Euler’s method
global Y; % to solve dy/dx = F(x,y) with y(x0) = y0 on x0 ≤ x ≤ x1.
h = (x1 - x0)/50; x = x0; y = y0; Y = y0; % number of steps N = 50
while x < x1
y = y + h*F(x, y); x = x + h;
Y = cat(2, Y, y);
end;
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plot(x0 : h : x1, Y)
end

To obtain the integral curves for the vector field V = ( f1(x,y), f2(x,y)), we solve an
ODE using the command dsolve and then plot the graphs of the solutions. Several
procedures in MATLAB help us to study vector fields.

Examples.

1. Find the trajectory of a vector field V = (x, x2 + y2) through the point (0,1) using
ode1.

F = @ (x, y) xˆ2 + yˆ2; ode1(F, 0, 1, 1); % Obtain a trajectory of V
Y % the values {yi}

2. The numerical gradient of a function is derived by using the command gradient. The
graph of the gradient vector field is obtained in Figure 5.7(b) by using the command
quiver.

v = -pi : .3 : pi; [x, y] = meshgrid(v); z = sin(x.*y);
[fx, fy] = gradient(z, .2, .2); quiver(v, v, fx, fy)

3. Symbolic solutions to ODEs.

dsolve(’Dx = -x/a’, ’x(0) = 1’) % Answer 1/exp(t/a)
dsolve(’D2x + 5*Dx + 6*x = 10*sin(t)’, ’x(0) = 0’, ’Dx(0) = 0’)

2/exp(2t)−1/exp(3t)− cos(t)+ sin(t) % Answer
[x, y] = dsolve(’Dx = xˆ2’, ’Dy = yˆ2’, ’x(0) = 1, y(0) = 1’) % 2-D system

x = −1/(t −1), y = −1/(t −1) % Answer

Numerical solutions to ODEs.

ODE1 = inline(’x(1)*(.1 - .01*x(1))’, ’t’, ’x’); % enter ODE
[t, x1] = ode45(ODE1, [0 100], 50);
plot(t, x1(:, 1)) % graph of a solution, Figure 5.8(a)
ODE2 = inline(’[.1*x(1) + x(2); -x(1) + .1*x(2)]’, ’t’, ’x’); % enter ODEs
[t, x2] = ode45(ODE2, [0 50], [.01, 0]); % 2-D system
plot(x2(:, 1), x2(:, 2)) % Figure 5.8(b)

4. Let us study the effect of the interaction coefficients, A and B, in the Lotka–Volterra
predator–prey model. We create an M-file, lotka.m.

function yp = lotka(t, y)
global A B;
yp = [y(1) - A*y(1)*y(2); -y(2) + B*y(1)*y(2)];

end
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Fig. 5.7 Level curves, and vector fields.

Fig. 5.8 Trajectories of ODEs in the plane. Level curves and extremum.

We plot two integral curves and also the direction field for the following system of
ODEs (Figure 5.7(c)):

global A B; A = 1; B = 0.3;
[t, y1] = ode23(@lotka, [0,7], [1; 1]); % 1st curve
[t, y2] = ode23(@lotka, [0,7], [1; 0.7]); % 2nd curve
vx = 1 : .3 : 8.5; vy = 0 : .2 : 2.5; [xx, yy] = meshgrid(vx, vy);
fx = xx - A*xx.*yy; fy = -yy + B*xx.*yy;

hold on; plot(y1(:, 1), y1(:, 2)); plot(y2(:, 1), y2(:, 2), ’r’);
quiver(vx, vy, fx, fy);
title(’Lotka-Volterra Predator-Prey Population Model’, ’FontWeight’, ’bold’)

The command quiver3(X, Y, Z, U, V, W) (the 3-D analog of quiver) draws arrows to
indicate a gradient or arbitrary 3-D vector field. Here X, Y, Z are matrices that describe
some surface in R

3 (Chapters 7, 8). U, V, W are the matrices of the components of
vectors that are to be attached at each of the points (x,y,z) that lie on the surface.

Examples.

1. We plot the vector field V = [zy,zx,xy] given for −1 ≤ x,y,z ≤ 1.
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v = -1 : .3 : 1; [X, Y, Z] = meshgrid(v);
quiver3(X, Y, Z, Z.*Y, Z.*X, X.*Y); % Figure 5.9(a)

The gradient of a scalar function f (x,y,z) is ∇ f =
[

∂ f
∂x , ∂ f

∂y , ∂ f
∂z

]
. The command gradient

computes the gradient of a vector field. For example,

v = -2: .5 : 2; vz = -8 : 2 : 0; [X, Y, Z] = meshgrid(v, v, vz);
V = X.ˆ2 + Y.ˆ2 + Z; % enter function
[fx, fy, fz] = gradient(V, .5, .5, 2); quiver3(X, Y, Z, fx, fy, fz);

2. Plot the space curve r(t) = (x1(t),x2(t),x3(t)) that is the solution of a system of
three ODEs (Figure 5.9(c)).

ODE3 = inline(’[x(2) - x(3); x(3) - x(1); x(1) - 2*x(2)]’, ’t’, ’x’);
[t, x3] = ode45(ODE3, [-2 2], [1, 2, 2]); % 3-D system, 1st curve
[t, x4] = ode45(ODE3, [-2 2], [1, 2, 0]); % 3-D system, 2nd curve
hold on; grid on; view(20, 70);
plot3(x3(:, 1), x3(:, 2), x3(:, 3)); plot3(x4(:, 1), x4(:, 2), x4(:, 3))

Fig. 5.9 Vector fields and trajectories in space.

5.1.4 Euler’s equations

In this section we shall employ techniques of the calculus of variations, which deals
with minimization of functionals. A functional is a quantity that depends on a set of
functions. A fundamental result of the calculus of variations is that the extreme values
of a functional must satisfy an associated differential equation (or a set of differential
equations) over the discussed domain. These are generally termed the Euler equations.
The notion “extreme values” stands for local minima, maxima, or inflection points. The
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calculus of variations is a fundamental analytical tool in many areas of general physics
and engineering.

Functional with functions of one variable. We find extreme values of an integral
functional J whose integrand F contains one or several functions associated with the
admissible function y(x) ∈ C2, x ∈ [x0,x1].

Example. Consider the problem

J(y) =
∫ x1

x0

F(x,y,y′)dx → min, (5.4)

where F is a continuous function of three arguments (the problem of determining a
maximum may be dealt with by replacing F with −F). The boundary values of y(x)
are generally given as

y(x0) = y0, y(x1) = y1. (5.5)

The minimization of the functional J(y) leads to the Euler equation for its integrand (a
necessary condition that J(y) possess a stationary value)

F,y − d
dx

(F,y′) = 0, (5.6)

where F,y, F,y′ are partial derivatives. Obviously,

d
dx

(F,y′) = F,y′ y′y′′ +F,y′ yy′ +F,y′ x. (5.7)

Note that the differential equations of geodesics on a surface (see Section A.8) can
be obtained by a similar technique.

Example. We compute the Euler equation (5.6) for a given function.

F = xˆ2 + yˆ2 + dyˆ2; % define F (Here F = (y′(x))2 + x2 +(y(x))2).
syms x y dy;
part1 = subs(diff(F, y), {y, dy}, {’y(x)’, diff(’y(x)’, x)});
dFdy = diff(F, dy);
dFddy = subs(dFdy, {y, dy}, {’y(x)’, ’dy(x)’});
p2 = diff(dFddy, x);
part2 = subs(p2, ’dy(x)’, diff(’y(x)’,x));

simplify(part1 - part2) % Euler’s equation 2y(x)−2 d2

dx2 y(x).

Variational problems with constraints. Consider a case where Lagrange multipliers
should be employed within a variational problem (5.4) with the isoperimeter conditions

Jk(y) =
∫ x1

x0

Fk(x,y,y′)dx = gk, 1 ≤ k ≤ n, (5.8)



5.1 Plane Curves 215

where gk are constants and Fk are continuous functions of three arguments. The corre-
sponding Lagrange functional has the form

JL(y) =
∫ x1

x0

[
F(x,y,y′)+

n

∑
k=1

λkFk(x,y,y′)
]

dx. (5.9)

In this case we solve the variational problem JL(y) → min by considering the Lagrange
multipliers λk to be constants.

Example. (Elastica.) The analysis described in this example deals with large defor-
mations of an elastic rod. Problems of this kind are traditionally termed “elastica.”

–0.1

–0.05
0
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0.1

0.15
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x

Fig. 5.10 Euler’s spiral for l = 1, θe = 3
2 π, g̃ = 1.

The bending energy of an elastic rod of length l that is deformed along a plane curve
r(s) = [x(s), y(s)] is assumed, for simplicity, to be proportional to the integral of the
squared curvature over the length of the curve, i.e.,

∫ l
0 κ2(s)ds. Here s ∈ [0, l] is the

natural length parameter (see Section 6.3). The curvature κ(s) of a plane curve is dθ
ds

(see Section 6.4), where θ (s) is the angle between the local tangent line and the x-axis.
One may therefore ask the following question: what shape will the curve take if the
total turning of its tangent is given and the turning is zero at one endpoint and θe at
the other? As a constrained variational problem, we write

J =
∫ l

0
(θ ′)2 ds → min, J1 =

∫ l

0
θ ds = g̃ with θ (0) = 0, θ (l) = θe.

The Lagrange functional of (5.9) takes the form JL(y) =
∫ l

0 [(θ ′)2 + λθ ]ds, and F de-
pends on two of the three variables s, θ , θ ′ and on the parameter λ . The Euler equation
for the constrained problem is of the form of (5.6),

λ −2θ ′′ = 0. (5.10)

Using the boundary conditions, one may find the solution θ = λ
4 s2 − λ l2−4θe

4l s depend-
ing on the parameter λ , which with the constraint J1 = g̃ gives
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g̃ =
(

λ
12

s3 − λ l2 −4θe

8l
s2
)∣∣
∣∣

l

0
=

l
24

(
12θe −λ l2) .

Hence,

λ = 12(θel −2g̃)/l3, θ = (3θe −6g̃/l)(s/l)2 +(−2θe +6g̃/l)(s/l).

The resulting curve is known as Euler’s spiral (or the spiral of Cornu), and an example
of it is shown in Figure 5.10.

5.2 Fractal Curves

Fractals have a natural self-similar structure, and so are best computed by using re-
cursive procedures. A procedure is called recursive if it calls itself, either directly or
indirectly.

We will study geometrical properties of fractal curves (Peano, Sierpiński, Koch,
and Menger curves) and plot them. Programs are based on two methods of deriving
and plotting self-similar (fractal) objects:

(1) symmetry and periodicity, and (2) recursion.

Example. The Cantor set is well known from analysis. The following program plots
“Cantor stairs” (i.e., the graph of a continuous function on [0,1]) by recursion.

function [x, y] = cantor stairs(n)
[x0, y0] = cantor stairs(n - 1); % recursion
x = (1/3)*[x0 x0+2]; y = .5*[y0 1+y0];
axis square; plot(x, y, ’-’);

end
[x, y] = cantor stairs(3); % example: n = 3, Figure 5.11

A geometrical figure (set) that can be broken into a finite number of equal figures
similar to the given one is called a self-similar figure.

Simple examples are the segment, the triangle, the square, and the cube, as shown
in Figure 5.13. Other self-similar figures in Figures 5.11–5.15 look more complicated,
but they can be plotted easily.

5.2.1 Peano curves

If one starts from parametric equations of the curve in the form of a continuous vector-
valued function r(t), where t ranges over the segment [a,b], but considers only the
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Fig. 5.11 Cantor stairs (n = 3).

image, i.e., the set of points without taking account of their order, then one arrives at
the notion of a curve formed in the nineteenth century by C. Jordan. Moreover, such
continuous images of the segment can fill the square, the cube, etc. On other hand,
there exist objects similar to curves that are not continuous images of the segment.

Example.

Plot the graph of the function sin 1
x (0 < x ≤ 1) and the segment {(0,y) : −1 ≤ y ≤ 1}.

T = -1 : 0.1 : 1;
hold on; plot(T - T, T, ’- r’); ezplot(’sin(1/x)’, [-1 1])

The Peano curve (discovered by G. Peano in 1890) is a continuous image of the
segment filling the interior of a square (or triangle). The Peano curve is related to the
existence of simple curves in space whose projection onto the plane is in the form of
filled areas, such as, for example, the curve [ f1(t), f2(t), t] where the first two functions
define the Peano curve. Although this curve would serve nicely as a roof to keep out
the rain, it cannot be identified with any continuous surface.

Example. We use recursion for plotting Hilbert’s curve. This polygon H1 is shaped
like the letter Π , plotted in the form of three edges of a square. The polygon H2 can
be considered as a letter Π four parts of which are replaced by the same letters Π of
one-third size, etc. The coefficient of similarity of the curve Hn is equal to 2n −1.

function [x,y] = hilbert(n)
if n <= 0
x = 0; y = 0;
else
[x0, y0] = hilbert(n - 1); % recursion
x = .5*[-.5+y0 -.5+x0 .5+x0 .5-y0]; y = .5*[-.5+x0 .5+y0 .5+y0 -.5-x0];

end
[x, y] = hilbert(3); line(x, y); % example: n = 3; Figure 5.12(a–c)
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Fig. 5.12 Hilbert’s curve. Pythagorean triangle.

5.2.2 Koch snowflake

Starting from an equilateral triangle with edge a, one may repeat (recursively) the fol-
lowing process. Divide each segment connecting the vertices of the polygon into three
parts and replace the middle part by two segments of length a1/3, where a1 is the length
of the given segment. For the nth step, we obtain a polygon similar to a snowflake,
which is called Koch’s snowflake (in honor of its discoverer, the Swedish mathemati-
cian Helge von Koch.)

Fig. 5.13 The simplest self-similar objects.

Example. One may use a program koch(n) with recursion to plot the Koch curve after
n iterations.

koch(4); % example: n = 4

The kline local function generates the curve using recursive calls, while the plotline
local function is used to plot the curve.

function koch(n)
global X1, Y1, X5, Y5, i
if (n == 0)
x = [0; 1]; y = [0; 0];
line(x, y, ’Color’, ’b’); axis equal;
else
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lc = 10ˆn; L = lc/(3ˆn); l = ceil(L);
kline(0, 0, lc, 0, l);
axis equal; set(gcf, ’Name’, ’Koch Curve’)
end
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function kline(x1, y1, x5, y5, lm)
global X1, Y1, X5, Y5, i
length = sqrt((x5 - x1)ˆ2 + (y5 - y1)ˆ2);
if (length > lm)
x2 = (2*x1 + x5)/3; y2 = (2*y1 + y5)/3;
x3 = (x1 + x5)/2 - (y5 - y1)/(2.0*sqrt(3.0));
y3 = (y1 + y5)/2 + (x5 - x1)/(2.0*sqrt(3.0));
x4 = (2*x5 + x1)/3; y4 = (2*y5 + y1)/3;
kline(x1, y1, x2, y2, lm); kline(x2, y2, x3, y3, lm);
kline(x3, y3, x4, y4, lm); kline(x4, y4, x5, y5, lm); % recursion

else plotline(x1, y1, x5, y5);
end
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function plotline(a1,b1,a2,b2)
global X1, Y1, X5, Y5, i
x = [a1; a2]; y = [b1; b2];
X1(i) = a1; Y1(i) = b1; X5(i) = a2; Y5(i) = b2;
i = i + 1; line(x, y);

Fig. 5.14 Koch curves.

There exist several definitions of dimension leading to essentially different math-
ematical results. The first definition is related to the minimal number of coordinates
necessary for uniquely specifying the location of points in a figure. In this case the
dimension is an integer.

In the second definition of the (topological) dimension, a figure’s dimension is
taken to be one more than the dimension of a section dividing the figure into two
separate parts. A set consisting of a finite (or countable) number of points is said to
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be null-dimensional. By this definition a smooth curve is one-dimensional, a plane
(divided by a one-dimensional line) is two-dimensional, and a ball in space is three-
dimensional. The topological dimension is also an integer.

The third definition of dimension is most closely related to our theme.
The dimension of self-similarity D is defined by the formula D = logN

logn , where N

is the number of n-times-smaller equal parts into which a self-similar figure can be
broken.

We plot sections dividing the square into N = 4 squares with edge n = 2 times
smaller than the initial edge (Figure 5.13(c)), since the dimension of self-similarity of
a square is D = log4

log2 = 2. Analogously, for a segment D = log2
log2 = 1, and for a cube

(Figure 5.13(d)) D = log8
log2 = 3, as desired.

Attempts at measuring the lengths of other self-similar curves lead to analogous
results. When the scale of measuring is decreased, the length of the curve grows to
infinity. This explains, for example, the difference of 20% in the length of the border
between Portugal and Spain given (possibly) in reference books of these countries;
different scales were probably used to measure the border. One may write down the
formula for the length of the Koch curve in the form

L = Aλ−β , where A = 3alog4/ log3, β = log4/log3−1.

The coefficient β in the formula is related to the dimension of the object.
In deriving the dimensions of the polygon in Figures 5.14, 5.15, and 5.23, we find

that the dimension of each part (and hence the whole) of the Koch curve is equal to
log4/log3 ≈ 1.2618; Sierpiński’s triangular curve has dimension log3/log2 ≈ 1.5849;
Sierpiński’s carpet has dimension log8/log3 ≈ 1.8727. These strange curves do not
have integer dimension. Moreover, the dimension of the Peano curve is equal to
log4/log2 = 2.

5.2.3 Sierpiński’s carpet

A square with edge a (the square of zero rank) is broken by four lines into nine equal
squares with edge 1

3 a, and the interior of the middle square is removed. For each of
the other eight closed squares (of first rank), which form the set C1, the above process
is repeated. We then obtain 64 squares of the second rank, whose union is C2, and so
on. Denote by Cn the union of all 8n squares of nth rank with edges a/3n. This set is
connected and compact. Moreover, Cn+1 ⊂ Cn holds.

The intersection C of all the Cn is called Sierpiński’s carpet or the Sierpiński (uni-
versal plane) curve. The curve is a two-dimensional generalization of the Cantor set.
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Example. Plot Sierpiński’s carpet, Figures 5.15(a,b). Derive the common area of all
the removed squares.

Hint. Find the area of all removed squares as the following sum:

a2
(

1
32 +

8
34 +

82

36 + · · ·
)

=
a2

8

∞

∑
i=1

(
8
9

)i

=
a2

8

(
1

1−8/9
−1

)
=

a2

8
·8 = a2,

which coincides with the area of the given square. Hence, Sierpiński’s carpet (the com-
plement to all the removed squares) has zero area, which explains its status as a curve.

function sierpinski(n)
S = 0;
for k = 1 : n
S = [S, S, S; S, ones(3ˆ(k - 1)), S; S, S, S];
end
imagesc(S); colormap(gray), axis equal, axis off;

end
sierpinski(3); % example: n = 3

Fig. 5.15 Sierpiński’s carpet. Menger cube.

5.2.4 Menger cube

A 3-D analogue of Sierpiński’s carpet is obtained as follows; Figures 5.15(c,d). Divide
a cube (of zero rank) with edge a by six planes, parallel to its faces, into 27 equal
cubes with edge a/3. Then we remove the central cube and all its neighbors along
two-dimensional faces of this division. We obtain the set K1 consisting of 20 cubes
of the first rank. Repeating the same with each of the other closed cubes of first rank,
obtain the set K2 of 400 cubes of the second rank. Continuing this process we obtain the
sequence of polyhedra K1 ⊃ K2 ⊃ K3 ⊃ ·· · , whose intersection M is called the Menger
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cube (or universal Menger curve). Its universal property means that any space curve
can be embedded into the set M.

Example. We plot the polyhedron Kn.

function menger(n);
M = 0;
for k = 1 : n
A = zeros([3ˆk, 3ˆk, 3ˆk]);
A(:, :, 1 : 3ˆ(k - 1)) = [M, M, M; M, ones(size(M)), M; M, M, M];
A(:, :, 3ˆ(k - v1) + 1 : 2*3ˆ(k - 1)) = ...
[M, ones(size(M)), M; ones(size(M)), ones(size(M)), ones(size(M));
M, ones(size(M)), M];
A(:, :, 2*3ˆ(k - 1) + 1 : 3ˆk) = [M, M, M; M, ones(size(M)), M; M, M, M];
M = A;
end
hold on; d = 1;
for i = 1 : 3ˆn; for j = 1 : 3ˆn; for k = 1 : 3ˆn
if M(i, j, k) == 0; cube(i, j, k, d, n); end; % sub-program cube

end; end; end
axis equal; axis off; view(3);

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function cube(i, j, k, d, n); % draws a small cube;
% d is the proportion of the size of the small cube to the big cube,

% i, j,k are the coordinates of the small cube, n is the level of iteration.
X = [0 0 0 0 0 1; 1 0 1 1 1 1; 1 0 1 1 1 1; 0 0 0 0 0 1];
Y = [0 0 0 0 1 0; 0 1 0 0 1 1; 0 1 1 1 1 1; 0 0 1 1 1 0];
Z = [0 0 1 0 0 0; 0 0 1 0 0 0; 1 1 1 0 1 1; 1 1 1 0 1 1];
C = [0.1 0.84 1.1 1.1 0.1 0.84; 0.2 0.86 1.2 1.2 0.2 0.86; % colour scales
0.3 0.88 1.3 1.3 0.3 0.88; 0.4 0.90 1.4 1.4 0.4 0.90 ]; % for each cube
X = (d*(X - 0.5) + i)/3ˆn; Y = (d*(Y - 0.5) + j)/3ˆn; Z = (d*(Z - 0.5) + k)/3ˆn;
fill3(X, Y, Z, C); % draw cube

end
menger(2); % example: n = 2

5.3 Space Curves and Projections

5.3.1 Intuitive projection

How is a space curve r(t) = [x(t),y(t),z(t)] (or more generally, any space figure) plot-
ted on a planar computer display? Sometimes one creates the image by intuition, as in
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the following method of plotting the hyperboloid of one sheet, using our knowledge of
a star-shaped polygon.

Example. The vertices of the star-shaped (n,m) polygon are Pk = [Rcos(2πkm/n),
Rsin(2πkm/n)], 1 ≤ k ≤ n (see Section 1.4). We transform the circumscribed circle
of this polygon into an ellipse and raise and lower it (in the plane) a distance of ±1
and to obtain two star-shaped polygons. Now we connect the ith vertex of one of them
with the (i + 1)st vertex of another, and obtain a part of the hyperboloid of one sheet.
One may realize this plan by two methods. We plot the “intuitive projection” of the
hyperboloid of one sheet by both methods. The first one is applicable when the greatest
common divisor of m and n, gcd(m, n), is 1.

m = 11; n = 50; % first method, Figure 5.16(b)
k = 1 : m*n; T = k.*2*m*pi/n;
hold on; axis equal; plot(cos(T(k)), .5*sin(T(k)) + (-1).ˆk, ’r-’);
t = 0 : .01 : 2*pi; plot(cos(t), .5*sin(t) + 1, cos(t), .5*sin(t) - 1);

The second method is applicable for all n, m.

m = 8; n = 3*m; T = @(j) j*2*pi/n; % second method, Figure 5.16(c)
hold on; axis equal;
t = 0 : .01 : 2*pi; plot(cos(t), .5*sin(t) + 1, cos(t), .5*sin(t) - 1);
for k = 1 : n;
plot([cos(T(k)), cos(T(k+ m))], [0.5*sin(T(k)) - 1, 0.5*sin(T(k + m)) + 1], ’r-’);
end;

A two-dimensional (2-D) projection of a space curve r(t) = [x(t), y(t), z(t)] in
Cartesian coordinates is plotted using either plot3 or ezplot3.

Examples. (2-D in 3-D.)

1. Show that the curve r(t) = [1 + 3t + 2t2, 2 − 2t − 4t2, 1 − t2] lies in a plane and
describe it.

Solution. Note that the curve r(t) = r1 + tr2 + t2r3 lies in a plane if the three vectors r1,
r2, r3 are coplanar, i.e., the determinant consisting of their coordinates vanishes. Any
two (linearly independent) vectors from among them define the plane. In our case:

r1 = [1, 2, 1]; r2 = [3, -2, 0]; r3 = [2, -4, -1];
det([r1; r2; r3]) % Answer: 0
syms t U V;
r = r1 + r2*t + r3*tˆ2; R = r1.*U + r2.*V; % a curve and a plane
ezplot3(r(1), r(2), r(3), [-1, 2]); hold on; ezsurf(R(1), R(2), R(3))% Figure 5.16(a)

2. Plot closed curves in R
3 using cycloidal curves (plane curves): astroid (m = −1/4),

deltoid (m = −1/3), nephroid (m = 1/2), and roses, etc.
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Fig. 5.16 (a) Plane curve in space. (b,c) Hyperboloid. (d,e) Spiraling helix.

m = -1/4; h = 1; % “3-dimensional” astroid (enter your data)
syms t;
r = [(1+m)*cos(m*t)-h*m*cos(t+m*t), (1+m)*sin(m*t)-h*m*sin(t+m*t), cos(t)];
ezplot3(r(1), r(2), r(3), [0, 2*pi/abs(m)]);

3. Plot two engaged circles (tori).

hold on; axis equal; view(65, 25);
plot3(cos(t), sin(t), t - t, ’r’, ’LineWidth’, 5);
plot3(t - t, cos(t) + .8, sin(t), ’g’, ’LineWidth’, 5); % Figure 5.17(a)

Fig. 5.17 Two engaged circles. Short chain. Chain armor.

4. Plot the perspective projection of a parallelepiped. The position of the eye is at
(0,0,10), so d = 10.

x = [-2, -2, 0, 2, 2, 0, 0, 0, -2, 0, 2];
y = [0, -2, -2, 0, 2, 0, -2, 0, 0, 2, 2];
z = [3, 3, 3, 1, 1, 3, 3, 3, 3, 1, 1];
d = 10; s = d* ones(1, length(x));
x1 = d*x./(s - z); y1 = d*y./(s - z);
w = zeros(1, length(x));
plot3(x1, y1, w); view(0, 90); axis equal; % parallelepiped
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To contrast, we simply project our box on the xy-plane. We use x, y, and w from the
previous program, and add these statements:

plot3(x, y, w); view(0, 90); axis equal; axis off % parallelepiped

Other than Cartesian coordinates, there are two popular methods for fixing the loca-
tion of a point P in space.

(a) Consider the height z, being the projection of the segment OP onto the axis OZ;
the distance |OP′| = ρ , where P′ is the projection of the point P onto the plane XY ; and
the angle ϕ ∈ [−π,π] between the segment OP′ and the axis OX . The triple (ρ, ϕ , z)
is called the cylindrical coordinates of the point P. Their relation with the rectangular
coordinates (x,y,z) is analogous to the case of polar coordinates:

x = ρ cosϕ , y = ρ sinϕ , z = z.

The coordinate surfaces are the following: cylinders ρ = const, half-planes ϕ = const
through the axis OZ, and also horizontal planes z = const.

(b) Consider the distance |OP| = ρ , the (vertical) angle φ ∈ [−π,π] between the
segment OP and the axis OZ, and the (horizontal) angle θ ∈ [0,π] between the segment
OP′ and the axis OX . The triple (ρ , θ , φ ) is called the spherical coordinates of the
point P. Their relation with rectangular coordinates is given by

x = ρ cosθ sinφ , y = ρ sinθ sinφ , z = ρ cosφ .

The coordinate surfaces are spheres ρ = const with centers at O, half-planes θ = const
through the axis OZ, and circular cones φ = const with the common axis OZ. We plot
figures in cylindrical/spherical coordinates by transforming the data,

[X,Y,Z] = pol2cart(rho, theta, z)
[X,Y,Z] = sph2cart(phi, theta, z)

and then applying the appropriate plot command (see examples in Section 5.4).
There is a variety of systems of curvilinear coordinates in R

3 (in addition to the
above three), and we can define a number of new ones in MATLAB.

In addition to the space coordinates of an object, an important role is also played
by the coordinates of the viewer. Typing view(a, b) points the direction (in spherical
coordinates) from which we look at the object with respect to the coordinate system of
the object. The default is view(-37.5, 30), while view(2) is equivalent to view(0, 90) and
gives a two-dimensional view of a surface looking down from above; view(3) sets the
default three-dimensional view, a = −37.5, b = 30.
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5.3.2 Oblique and axonometric projections

An orthographic projection of an object shows the details of only one of its main faces,
which is why at least three projections are needed.

Axonometric projections show more of the object in each projection, at the price of
having the wrong dimensions and angles.

Here is a summary of the properties of axonometric projections:

– Axonometric projections are parallel, so parallel lines on the object will appear
parallel in the projection.

– There are no vanishing points. Thus, a wide image can be scrolled slowly while
different parts of it are observed.

– Distant objects retain their size regardless of their distance from the observer. If
the parameters of the projection are known, then the dimensions of any object can
be computed from measurements taken on the projection.

– There are standards for axonometric projections. A standard may specify the ori-
entation of the object relative to the observer, making it easy to compute distances
directly from the projection.

Fig. 5.18 Comparing parallel projections.

For a clearer understanding of how to plot images using parallel projection, consider
a simplified model that reduces the problem to the basic two-dimensional command
plot. We also project the coordinate system {O; i, j, k} of space. Let O′ be the origin
of rectangular coordinates {O′; e1,e2} of the two-dimensional window, and let O′X ′,
O′Y ′ be the horizontal and vertical axes.

We consider two examples of projections p : R
3 → R

2 that are similar to the stan-
dard isometric and dimetric axonometric projections (studied in greater detail in de-
scriptive geometry). By the Pohlke–Schwarz theorem, the system {O; i, j,k} can be
projected (within the transformation of similarity in the plane of the image) onto an
arbitrary triple of vectors through the point O′.
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Assume that the projections of the axes OX , OY form the angles

±(90◦ + arctan(1/2)) ≈ ±117◦

with the axis O′Y ′, and the projection of OZ coincides with the axis O′X ′: p(O) = O′,
p(i) = −e1 − 1

2 e2, p(j) = e1 − 1
2 e2, p(k) = e2. In view of the linearity of projections,

we obtain

x′e1 + y′e2 = p(xi+ yj+ zk) = xp(i)+ yp(j)+ zp(k)

= x

(
−e1 − 1

2
e2

)
+ y

(
e1 − 1

2
e2

)
+ ze2 = (y− x)e1 +

(
z− x + y

2

)
e2.

Hence,

x′ = y− x, y′ = z− (x + y)/2.

The point P = (x,y,z) projects onto the point P′ = (y−x, z− (x +y)/2) of the display.
Let us call this projection isometric.

Dimetric projection is defined analogously: the axes OY , OZ are projected onto the
axes O′X ′, O′Z ′ of the two-dimensional window, and the projection of the axis OX is
parallel to the bisector of the three-dimensional coordinate angle, namely,

x′ = y− x/2, y′ = z− x/2.

Example. (Simplified axonometric projection.) Let us plot the isometric projection
of a spiraling helix on the catenoid (the surface of revolution for the catenary); Figure
5.16(d).

s = 4; v1 = [-s -s/2]; v2 = [s -s/2]; v3 = [0 s];
t = linspace(-3, 3, 600); f = cosh(t); g = 4*t; % enter f ,g
a = 20; X = f.*cos(a*t); Y = f.*sin(a*t); Z = g;
hold on; axis equal; plot(Y - X, Z - (X + Y)/2, ’r-’); % isometric
arrow([0 0], v1); arrow([0 0], v2); arrow([0 0], v3); % see p. 70

This program is illustrative only, but the basic approach can be implemented in var-
ious computer programs. For plotting images of space objects below, the appropriate
commands in MATLAB are used.
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5.4 More Examples of Space Curves

5.4.1 Springs on surfaces

There are well-known surfaces obtained by revolving a plane curve γ (the meridian)
around a line (the axis of revolution) in space.

Trajectories of points of the curve γ (parallels) are circles contained in planes or-
thogonal to the axis of revolution. Let the curve γ lie in the plane XOZ and be given
by parametric equations γ : x = f (t), y = 0, z = g(t). Substituting u = t and denoting
by v ∈ [0, 2π] the angle of revolution of the initial meridian, we obtain the following
equations of the surface of revolution:

r(u,v) = f (u)cos(v)i+ f (u)sin(v)j+g(u)k
= [ f (u)cos(v), f (u)sin(v), g(u) ]; see also Section 8.1. (5.11)

The idea of knitting on the surface of revolution on the display is as follows. If one were
to wind a thread on a transparent surface of revolution, then the shape of the surface
would be visible. This effect exists for a dense winding of a surface of revolution, i.e.,
when the coils almost lie along parallels. To realize this idea, substitute t for u and at
for v in (5.11), where the real parameter a is sufficiently large (say, a = 27):

r(t) = [ f (t)cos(at), f (t)sin(at),g(t) ], or

r(t) = [ f (t), at, g(t) ] in cylindrical coordinates.

We plot springs on surfaces of revolution, taking

f = R, g = t for the helix on a circular cylinder,
f = t, g = bt for the circular conic helix,
f = Rcos(t), g = Rsin(t) for the spring on a sphere,
f = a +bcos(t), g = bsin(t) (with a > b) for the torus knot,
f = asin(t), g = a

(
cos(t)+ ln(tan t

2)
)

for the pseudosphere, etc.

Fig. 5.19 Springs (curves) on algebraic surfaces of second order.
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Examples.

1. Plot the following springs on surfaces of revolution using cylindrical and spherical
coordinates:

(a) The curve r(t) =
[
at cos t, at sin t, a2t2

2p

]
lies on the paraboloid of revolution, and

projects onto the plane XY as Archimedes’ spiral.

a = 1; t = 0 : .01 : 24*pi;
[X, Y, Z] = pol2cart(t, a*t, t.ˆ2/2); % cylindrical → Cartesian
plot3(X, Y, Z); % Figure 5.19(d)

(b) The curve r(t)= [cosh(at)cos(t), cosh(at)sin(t), sinh(at)] lies on a hyperboloid
of revolution (Figure 5.19(e)).

a = .06; t = -12*pi : .01 : 12*pi;
[X, Y, Z] = pol2cart(t, cosh(a*t), sinh(a*t));
plot3(X, Y, Z), axis equal;

(c) The curve r(t) = [acos t cos(kt), bcos t sin(kt), csin t] lies on an ellipsoid (on a
sphere if a = b = c, Figure 5.19(f)).

R = 1; a = 28; t = 0 : .01 : 2*pi;
[X, Y, Z] = sph2cart(a*t, t, R); % spherical → Cartesian
plot3(X, Y, Z), axis equal;

2. Plot several complicated curves on a sphere (similar to macrame).

m = 7; n = 10; t = -pi : .01 : pi; [X, Y, Z] = sph2cart(m*t, n*t, 1);
plot3(X, Y, Z, ’LineWidth’, 6), axis equal % Figure 5.20(b)

For m = 1, n = 17 and |t| ≤ π
2 the curve consists of 17 meridians, Figure 5.20(a).

Fig. 5.20 Closed curves on a sphere and knots on a torus.

3. Tie a torus knot of arbitrary type on the torus of revolution and also plot a part of
the irrational winding. For the torus knot K8,27, one may assume R1 = 3, R2 = 1 and
u = 27t, v = 8t.
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m = 27; n = 8; t = -pi : .01 : pi; % take n = 1 to obtain Figure 5.20(c).
X = (3 + cos(m*t)).*cos(n*t); Y = (3 + cos(m*t)).*sin(n*t); Z = sin(m*t);
plot3(X, Y, Z, ’LineWidth’, 5), axis equal % Figure 5.20(d).

5.4.2 Curves as intersections of surfaces

We deduce explicit and parametric equations of several curves given as intersections of
pairs of surfaces, and plot them.

Bi-cylindrical curve. The axes (OX and OZ) of two circular cylinders of radii R ≥
r > 0 intersect at a right angle, and at the intersection of the cylinders we obtain the
curve bicylinder, which for R �= r consists of two closed curves (Figure 5.21(d)), and
for R = r breaks up into two intersecting ellipses that lie in the planes x = y and x = −y.
The implicit and parametric equations of the curve are the following:

{
x2 + z2 − r2 = 0,

y2 + z2 −R2 = 0
⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x = r cost,

y = ±
√

R2 − r2 sin2 t,

z = r sint,

t ∈ [0,2π].

First, plot two intersecting cylinders.

r = .5; u = 0 : .15 : 2*pi + .15; v = -2 : .15 : 2;
[U, V] = meshgrid(u, v);
surf(cos(U), sin(U), V); hold on; axis equal; % bigger cylinder
surf(r*cos(U), V, r*sin(U)) % smaller cylinder

Then plot the family of the bicylinders under a change in the radius of one of the
cylinders.

R = 2; m = 9; t = 0 : .01 : 2*pi; [x, y, z] = cylinder;
hold on; axis equal; view(40, 20);
surf(R*x, R*y, R*(2*z - 1)); shading(’interp’);
for i = 1 : m;
r = R*((2*m + i)/(3*m));
[X, Y, Z] = pol2cart(t, R, sqrt(Rˆ2 - r.ˆ2*sin(t).ˆ2));
plot3(X, Y, Z); plot3(X, Y, -Z);
end; % cylindrical → Cartesian

Viviani window. The sphere of radius R (with center O) intersects the cylinder of
diameter R, one of whose rulings (parallel to the axis OZ) contains the center of the
sphere. The intersection is the Viviani curve (Figures 5.21(b) and 8.9(a)). The equations
of the curve are
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{
x2 + y2 + z2 = R2,

x2 + y2 −Rx = 0
⇐⇒ r(t) = (Rcos2 t, Rcos t sin t, Rsin t),

where t ∈ [0, 2π] is the longitude of points on a sphere. A point of self-intersection
(R,0,0) on a Viviani curve breaks it into two loops.

First, plot a sphere and a cylinder (Figure 8.9(b)).

r = .5; % try r < 1
hold on; axis equal;
[X, Y, Z] = sphere(20); surf(X + r, Y, Z); % a sphere
[x, y, z] = cylinder; surf(r*x, r*y, 2*z - 1); % a cylinder

Show that the projections of a Viviani curve onto the coordinate planes Y Z, XZ, and
XY look like a figure eight, a parabola, and a circle, respectively (Figure 5.21(c)).

syms t;
ezplot3(cos(t)ˆ2, cos(t)*sin(t), sin(t), [0, 2*pi]), axis equal;

Sphere intersects ellipsoid. The sphere of radius R (with center O) intersects the stan-
dard ellipsoid with the axes a > b > c. The best method to parameterize these curves
comes from mechanics, namely, from solutions of Euler’s differential equations of the
rotation of a rigid body about a fixed point in space:

l′1 +
(

1
J2

− 1
J3

)
l2l3 = 0, l′2 +

(
1
J3

− 1
J1

)
l3l1 = 0, l′3 +

(
1
J1

− 1
J2

)
l1l2 = 0. (5.12)

Here Ji are the moments of inertia of a rotating body about the principal axes at time
t, ωi are the angular velocities about these axes, and li = Jiωi are the corresponding
components of the angular momentum. We assume that J1 < J2 < J3 and l2 > 2EJ2.
Euler’s equations (5.12) have two integrals, and the (periodic) trajectory of the motion
lies at the intersection of the sphere and the ellipsoid:

⎧
⎪⎨

⎪⎩

l2
1 + l2

2 + l2
3 = l2,

l2
1

J1
+

l2
2

J2
+

l2
3

J3
= 2E

⇐⇒

⎧
⎪⎨

⎪⎩

l1 = J1ω0
1 cn(z,k),

l2 = J2ω0
2 sn(z,k),

l3 = J3ω0
3 dn(z,k).

Here cn(z,k), sn(z,k), and dn(z,k) are the Jacobi elliptic functions (with period 4K,
where K = Elliptic K(k), see Section 1.2); we call them CN(z,k), SN(z,k), and DN(z,k) in
MATLAB, and
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ω0
1 =

√
2EJ3 − l2

J1(J3 − J1)
, ω0

2 =

√
2EJ3 − l2

J2(J3 − J2)
, ω0

3 =

√
l2 −2EJ1

J3(J3 − J1)
,

z =

√
(J3 − J2)(l2 −2EJ1)

J1J2J3
t, k =

√
(J2 − J1)(2EJ3 − l2)
(J3 − J2)(l2 −2EJ1)

.

Plot the curve r(t) = [X ,Y,Z] (solution of Euler’s equations (5.12) for Y (0) = 0) with
the corresponding intersecting ellipsoid and sphere, varying the radius R of the sphere.

J1 = 1; J2 = 2; J3 = 16; L = 2.1; E = 1.1; % enter data
Lˆ2 - 2*E*J2 % check that the expression > 0
omega01 = sqrt(( 2*E*J3 - Lˆ2) / (J1*(J3 - J1)));
omega02 = sqrt(( 2*E*J3 - Lˆ2) / (J2*(J3 - J2)));
omega03 = sqrt((-2*E*J1 + Lˆ2) / (J3*(J3 - J1)));
k = sqrt((J2 - J1)*(2*E*J3 - Lˆ2) / ((J3 - J2)*(Lˆ2 - 2*E*J1)));
K = mfun(’EllipticK’, k);
t = 0 : .01 : 4*K + 1.7; z = sqrt((J3 - J2)*(Lˆ2 - 2*E*J1)/(J1*J2*J3))*t;
[SN, CN, DN] = ellipj(z, k);
X = J1*omega01*CN; Y = J2*omega02*SN; Z = J3*omega03*DN;
hold on; axis equal; view(0, 30);
plot3([X’ X’], [Y’ Y’], [Z’ -Z’], ’LineWidth’, 2); % a curve
ellipsoid(0, 0, 0, L, L, L); % a sphere
ellipsoid(0, 0, 0, sqrt(2*E*J1), sqrt(2*E*J2), sqrt(2*E*J3)); % an ellipsoid

Fig. 5.21 A circular helix and Viviani curve with shadows. Bicylindric.

5.4.3 Curves with shadows

Unfortunately, in MATLAB figures of three-dimensional objects have no shadows. The
shadow of the point P = (x,y,z) in the plane ω under parallel lighting in the direction d
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is the point Q = (x′,y′,z′) of (3.5). Methods to obtain shadows on a cylinder or a sphere
are also presented in what follows.

We plot the shadow (as a plane curve) of a space curve, the circular helix X = Rcos t,
Y = Rsin t, Z = V t, on a given plane.

(a) The parallel projections of the circular helix onto the plane orthogonal to its
axis, depending on the correlation of angles among the axis, the direction of projec-
tion, and the tangent lines to the curve, are the usual curtate or prolate cycloids; see
Figure 5.22(a). Let ω : Ax + By +Cz = 0 be the plane of shadow and d = (a,b,c) be
the (unit) direction of light, which is not parallel to the plane. The formula for the
shadow transformation is shown in (3.5). If d ⊥ ω , i.e., d ‖ n = (A,B,C), the projec-
tion associates to a point in space the closest point in ω , and so the projection is called
orthogonal.

In the program we define d by two angles (φ ,ψ) in spherical coordinates. Hence,
a = sinφ cosψ , b = sinφ sinψ , c = cosψ .

A = 0; B = 0; C = 1; R = 5; V = .8; phi = 45; psi = 50; % enter data
a = sind(phi)*cosd(psi); b = sind(phi)*sind(psi); c = cosd(psi);
t = 0: .01 : 7*pi; X = R*cos(t); Y = R*sin(t); Z = V*t;
Xs = ((b*B + c*C)*X - a*B*Y - a*C*Z) / (a*A + b*B + c*C);
Ys = (-b*A*X + (a*A + c*C)*Y - b*C*Z) / (a*A + b*B + c*C);
Zs = (-c*A*X - c*B*Y + (a*A + b*B)*Z) / (a*A + b*B + c*C);
hold on; axis equal; view(40, 25);
plot3(X, Y, Z, ’LineWidth’, 2); % a curve
plot3(Xs, Ys, Zs, ’LineWidth’, 3); % a shadow
plane([1 2 -.1], [0 0 1], 20, 20); % a tray

(b) The central projection (shadow) of a circular helix onto the plane orthogonal to
its axis from a point on the helix is a cochleoid; see Figure 5.21(a).

Let S = (0,0,h) be the center of projection, so the shadow P′ = (Xs,Ys,Zs) of a point
P = (X ,Y,Z) is an intersection of ω : {Z = 0} with the ray SP. The formulae for the
shadow transform (X ,Y,Z) → (Xs,Ys,Zs) are easy:

Xs =
h

h−Z
X , Ys =

h
h−Z

Y, Zs = 0.

R = .8; h = .2*8*pi;
t = 0 : .01 : 16*pi; X = R*(cos(t) - 1); Y = R*sin(t); Z = .2*t;
Xs = h. / (h - Z).*X; Ys = h. / (h - Z).*Y; Zs = X - X;
hold on; axis equal; view(40, 25);
plot3(X, Y, Z, ’LineWidth’, 2); % a helix
plot3(Xs, Ys, Zs, ’m’, ’LineWidth’, 2); % a shadow (cochleoid)
plane([1 -10 -.1], [0 0 1], 20, 20); % a tray

Our next task is to plot the shadows (radial projections) of the circular helix (curve)
onto the simple surfaces (a) cylinder and (b) sphere.
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Fig. 5.22 Circular helix with a shadow in the plane, sphere, and cylinder.

(a) The standard helix is translated a distance of 8R in the x-direction; its radial
projection (shadow when the curve is inside of the cylinder) lies on the cylinder X2 +
Y 2 = R2 (Figure 5.22(c)). We suppose that the centers of projection lie on the axis, OZ,
of the cylinder. The formulae for the radial projection (shadow) (X ,Y,Z) → (Xs,Ys,Zs)
are easy:

Xs =
RX√

X2 +Y 2
, Ys =

RY√
X2 +Y 2

, Zs = Z.

R = .2;
t = 0 : .01 : 6*pi; X = R*cos(t) + 8*R; Y = R*sin(t); Z = R*t/2;
Xp = X. / sqrt(X.ˆ2+Y.ˆ2); Yp = Y. / sqrt(X.ˆ2+Y.ˆ2); Zp = Z;
hold on; axis equal; view(40, 25);
plot3(X, Y, Z, ’LineWidth’, 2); % a curve (helix)
[x, y, z] = cylinder; surf(x, y, 2.5*z); % a cylinder (wall)
plot3(Xp, Yp, Zp, ’m’, ’LineWidth’, 2); % a shadow
plane([0 0 -.1], [0 0 1], 3, 2); % a tray

(b) The radial projection of the helix (shadow when the curve is inside of the sphere)
lies on the sphere X 2 +Y 2 + Z2 = R2. Suppose that the origin is the center of the
projection, Figure 5.22(b). The formulae for the radial projection (shadow) (X ,Y,Z) →
(Xs,Ys,Zs) are similar to the case of the cylinder:

Xs =
RX√

X2 +Y 2 +Z2
, Ys =

RY√
X2 +Y 2 +Z2

, Zs =
RZ√

X2 +Y 2 +Z2
.

R = .2; t = -2/R : .01 : 6*pi;
X = R*cos(t) + 8*R; Y = R*sin(t); Z = R*t/2;
M = sqrt(X.ˆ2 + Y.ˆ2 + Z.ˆ2); Xp = X. / M; Yp = Y. / M; Zp = Z. / M;

hold on; axis equal; view(40, 25);
plot3(X, Y, Z, ’LineWidth’, 2); % a curve (helix)
[x, y, z] = sphere; surf(x, y, z); % a sphere
plot3(Xp, Yp, Zp, ’m’, ’LineWidth’, 2); % a shadow
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plane([0 0 -1.1], [0 0 1], 3, 2); % a tray.

5.4.4 Construction of curves using polynomials

Parametric curves used in computer graphics are often based on polynomials. A poly-
nomial of degree one has the form r1(t) = a1t + a0 and is, therefore, a line in R

N . A
polynomial of degree 2 (quadratic) has the form r2(t) = a2t2 + a1t + a0 and is always
a parabola (see Example 1, p. 235). A polynomial of degree 3 (cubic) has the form
r3(t) = a3t3 + a2t2 + a1t + a0 and is the simplest curve that can have complex shapes
and can also be a space curve (see exercises).

Indeed, one can try the interpolating polynomials for an arbitrary number of points.
Namely, given the n+1 data points P = P1, P2, . . . ,Pn+1, the problem is to find a vector
function L(t) that will pass through all of them. We try an expression of the form of
the Lagrange polynomial (see Section 1.5),

Ln(t) =
n+1

∑
i=1

Ln,i(t)Pi where Ln,i(t) = ∏
j �=i

t − t j

ti − t j
. (5.13)

The following barycentric form of (5.13) is more attractive:

Ln(t) = ϕ(t)
n+1

∑
i=1

wi

t − ti
Pi, where wi = 1

/ n+1

∏
j �=i

(ti − t j),

The weights wi no longer depend on t, and consequently have to be computed just once.
The only quantity that depends on t is ϕ(t) = ∏n+1

i=1 (t − ti).
The MATLAB command polyfit does not work with several Lagrange polynomials

simultaneously. The M-file polyinterp.m (Section A.1) can fit Ln(t); see exercises in
what follows.

Example.

1. We are looking for a quadratic polynomial that passes through three points P =
(P1, P2, P3) of R

N and has the form

r(t) = a2t2 +a1t +a0 = (a2, a1, a0)T (t),

where T (t) = [t2; t; 1] is a column vector. Since the three points may be located any-
where, we make only the general assumption that r(t0) = P1, r(t2) = P2 (the endpoints),
and r(t1) = P2 (the interior point) for some t0 < t1 < t2. We therefore write down three
equations and solve them symbolically:

syms a0 a1 a2 t P1 P2 P3;
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t0 = 0; t1 = 1/2; t2 = 1; % enter data
r = @(t) a0 + a1*t + a2*tˆ2;
Eq1 = r(0) - P1; Eq2 = r(t1) - P2; Eq3 = r(t2) - P3;
[a0, a1, a2] = solve(Eq1, Eq2, Eq3)

a0 = P1 a1 = −3P1 +4P2 −P3 a2 = 2P1 −4P2 +2P3 % Answer

r2 = collect(a0 + a1*t + a2*tˆ2, [P1, P2, P3])

r2 = (1−3 t +2 t2)P1 +(4 t −4 t2)P2 +(−t +2 t2)P3 % Answer
g1 = subs(r2, [P1 P2 P3], [1 0 0]),
g2 = subs(r2, [P1 P2 P3], [0 1 0]),
g3 = subs(r2, [P1 P2 P3], [0 0 1]) % coefficients of r2(t)

Hence, for t0 = 0, t1 = 1/2, t2 = 1, the solution is r(t) = g1(t)P1 +g2(t)P2 +g3(t)P3,
where the Lagrange polynomial weights are g1(t) = 2t2 − 3t + 1, g2(t) = −4t2 + 4t,
g3(t) = 2t2 − t. Its matrix presentation is

r(t) = (P1 P2 P3)

⎛

⎝
2 −3 1

−4 4 0
2 −1 0

⎞

⎠

⎛

⎝
t2

t
1

⎞

⎠ . (5.14)

2. The algebraic presentation of a cubic vector polynomial, in which the four coeffi-
cients (vectors a0, a1, a2, a3 ∈ R

N) are unknown, is

r(t) = a3t3 +a2t2 +a1t +a0. (5.15)

The velocity (tangent vector) to a curve r(t) is the derivative r′(t) = 3a3t2 +2a2t +a1.
The desired equations r(0) = P1, r(1) = P2, r′(0) = Q1, r′(1) = Q2 are

a0 = P1, a3 +a2 +a1 +a0 = P2, a1 = Q1, 3a3 +2a2 +a1 = Q2.

They are easy to solve

[a3 a2 a1 a0] = solve(’a0 = P1’, ’a3 + a2 + a1 + a0 = P2’, ’a1 = Q1’,
’3*a3 + 2*a2 + a1 = Q2’)

and the solution is

a3 = 2(P1 −P2)+Q1 +Q2, a2 = 3(P2 −P1)−2Q1 −Q2, a1 = Q1, a0 = P1.

Substituting this into (5.15) gives the Hermite curve (note that n1 +n2 = 1)

r(t) = n1(t)P1 +n2(t)P2 +n3(t)Q1 +n4(t)Q2, (5.16)

n1 = (1−3t2 +2t3), n2 = t2(3−2t), n3 = t(t −1)2, n4 = t2(t −1).

r = collect(a0 + a1*t + a2*tˆ2 + a3*tˆ3, [P1 P2 Q1 Q2])
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3. The Newton polynomial offers an alternative approach to the problem of polynomial
interpolation: it is identical to the Lagrange polynomial, but the derivation is different.
The Newton polynomial allows the user to easily add more points and thereby provide
fine control over the shape of the curve.

Assume that n+1 data points P1,P2, . . . ,Pn+1 are given and are assigned knot values
t1 = 0 < t2 < · · · < tn < tn+1 = 1. We are looking for a curve expressed by the degree-
n parametric polynomial r(t) = ∑n+1

i=1 Ni(t)Ai. This definition (originally proposed by
Newton) is useful because each coefficient Ai depends only on points P1 through Pi. If
we decide to add a point Pn+2, then only one coefficient, An+2, and one basis function,
Nn+1(t), need to be recomputed. The definition of the basis functions is

N1(t) = 1,

Ni(t) = (t − t1)(t − t2) · · ·(t − ti−1), i > 1.

To calculate the unknown coefficients, we write the equations

P1 = P(t1) = A1,

P2 = P(t2) = A1 +A2(t2 − t1),
P3 = P(t3) = A1 +A2(t2 − t1)+A3(t3 − t1)(t3 − t2), (5.17)

. . .

Pn+1 = P(tn+1) = A1 + · · ·

We use the method of divided differences to express all solutions in compact notation.
The divided difference of the knots ti, tk is denoted by [ti tk] and is defined as [ti tk] =
(Pi −Pk)/(ti − tk). The solutions of (5.17) are

A1 = P1,

A2 = (P2 −P1)/(t2 − t1) = [t2 t1],
A3 = [t3 t2 t1] = ([t3 t2]− [t2 t1])/(t3 − t1),

. . .

An+1 = [tn+1 . . . t2 t1] = ([tn+1 . . . t2]− [tn . . . t1])/(tn+1 − t1).

We prepare the function M-file dd newt to compute Ai.

function A = dd newt(T, P)
N = length(T);
for i = 1 : N;
B(:, i, 1) = P(i, :);
end;
for k = 1 : N; for i = 1 : N - k;
B(:, i, k + 1) = (B(:, i + 1, k) - B(:, i, k))/(T(k+ i) - T(i));
end; end
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A(:, :) = B(:, 1, :);
end

The program works for R
n (n ≥ 1).

Let T = [1,2,3,4,5], P1 = (0,2), P2 = (1,0), P3 = (2,3), P4 = (3,5), P5 = (5,2).
Then A1 = (0,2), A2 = (1,−2), A3 = (0,5/2), A4 = (0,−1), A5 = (1/24,1/12).

T = [1 2 3 4 5]; P = [0 2; 1 0; 2 3; 3 5; 5 2];
A = dd newt(T, P) % the columns of A are points Ai

4. We apply Lagrange polynomials to plane curves. For spirals we obtain a sufficiently
good visualization! (Compare with Example 1, p. 57.)

t = linspace(0, 3*pi, 12);
x = sqrt(t).*cos(t); y = sqrt(t).*sin(t); % Fermat’s spiral ρ =

√
t

xy = [x; y];
syms u; L2 = polyinterp(t, xy, u);

Then plot:

hold on; plot(x, y, ’o - - r’); ezplot(L2(1, :), L2(2, :), [t(1), t(end)])

Lagrange interpolation for more complicated data is not quite as good:

x = [.016, .287, .655, .716, .228, .269, .666, .979]; t = 0 : length(x) - 1;
y = [.820, .202, .202, .521, .521, .820, .820, .227];

5. We also apply Lagrange polynomials to space curves. For the helix

r(t) = [cos t, sin t, t], |t| ≤ 2π

(see Figure 5.22), we obtain a good view!

t = linspace(-2*pi, 2*pi, 12);
x = cos(t); y = sin(t); z = t; % 12 points of helix
xyz = [x; y; z];
syms u; L3 = polyinterp(t, xyz, u);

Then plot:

ezplot3(L3(1), L3(2), L3(3), [t(1), t(end)]); hold on;
plot3(x, y, z, ’o - - r’, ’Linewidth’, 2);

5.5 Exercises

Section 5.1 1. For modeling hypocycloids (Figure 5.3), put a = -3 : -1 and b = 6 : 8
in the program in Example 2, p. 204 above. For modeling prolate and

curtate trochoids, assume h = 1.5 and then h = 0.5.
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2. Study each of the following interesting cycloidal curves.
(a) The cardioid (heart-shaped), the epicycloid with modulus m = 1 (Figures 5.2(a),

6.10(b)) and a curve of fourth degree with the equation (x2 +y2+2Rx)2 = 4R2(x2 +y2).
Let us substitute x2 + y2 = ρ2, x = ρ cosϕ in the polynomial equation and reduce the
fraction by ρ2 to obtain the equation in polar coordinates ρ = 2R(1− cosϕ). Slightly
changing the equation of the cardioid, we obtain Pascal’s limaçon, ρ = l − 2Rcosϕ ,
with the loop and self-intersection for l < 2R; without a loop, but with the singular
point O for l > 2R (Figures 1.34(c), 6.10(a)).

(b) The nephroid (nephros means kidney-shaped; Proctor, 1878), the epicycloid with
modulus m = 1/2. In Figure 5.2(a) of epicycloids above, it is the entry for a = 3, b = 6.
This curve has two cuspidal points.

(c) The astroid (star-shaped), the hypocycloid with modulus m = -1/4. It is the sixth-
degree curve (x2 +y2 −R2)3 +27R2x2y2 = 0. Its implicit (2nd method of plotting) and
parameterized equations are

x
2
3 + y

2
3 = R

2
3 ⇐⇒ r(t) = [Rcos3(t/4), Rsin3(t/4)] (see Figure 5.3(a)).

(d) The deltoid (delta-shaped curve of Steiner), the hypocycloid with m = − 1
3 . It is

the fourth-degree curve (x2 + y2)2 +8Rx(3y2 − x2)+18R2(x2 + y2)−27R4 = 0.
For plotting individual cycloidal curves, fix h = 1 and, for example, R = 1. Plot by a

dotted line the stationary circle. Then, changing the values of the modulus m = 1, 1/2,
1/3, etc., plot the epicycloids: the cardioid, the nephroid, etc.

For plotting hypocycloids, use negative values of the variable m =−1/3, −1/4, etc.,
and plot the deltoid, astroid, etc.

In both cases, do not forget, for m = 1/b, to extend the domain of the parameter t to
the segment [−bπ, bπ].

3. Continue the experiment (with polar coordinates) up and down, around and near
for other values k = 6, 7, . . . or another relationship ρ = f (t).

4. Plot Lissajous curves for several values of n = a/b while ϕ changes. Deduce that
the curve is closed and algebraic when n is a rational number. What figure is filled by
the Lissajous curve with n irrational? For n = 2 find values of ϕ for which the Lissajous
curve is the parabola and the figure eight (Figure 8.16(a)). Show that for n = 1 it is an
ellipse (a line segment when ϕ = 0).

5. Plot the SICI spiral, r(t) = [Ci(t), Si(t)], where Ci is the cosine integral and Si is
the sine integral. Check that the arc length of the curve from the point t = 0 to the point
t is equal to ln(t), and that the curvature is k(t) = t (see Section 6.4).

s = 1.5 : 0.05 : 30;
X = mfun(’Ci’, s); Y = mfun(’Si’, s);
plot(X, Y); axis equal; % Figure 5.6(b)

6. Given a circle with center O and a point A inside it, find the point P on the circle
such that the angle ∠APO is maximal.
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7. Plot the graph of an arbitrary 2-D vector field (similarly to the gradient of a
function); see Figure 5.7(b).

v = -pi : .3 : pi; [x, y] = meshgrid(v);
fx = y.*cos(x*y); fy = x.*cos(x*y); quiver(v, v, fx, fy)

8. Plot the space curve r(t) = (t,x1(t),x2(t)) that is the solution of a system of two
ODEs.

ODE2 = inline(’[.1*x(1) + x(2); -x(1) + .1*x(2)]’, ’t’, ’x’);
[t, x2] = ode45(ODE2, [0 55], [.01, 0]); % 2-D system
plot3(t, x2(:, 1), x2(:, 2)) % Figure 5.9(b)

9. Carry out a similar derivation (see Example, p. 214) for the problem

J(y) =
∫ x1

x0

F(x,y,y′, y′′, . . . ,y(m))dx → min, (5.18)

where m ≥ 1, and the admissible function y(x) belongs to class Cm+1 on the interval
[x0,x1] and satisfies the boundary conditions

y(x0) = y0, y′(x0) = y′
0, . . . , y(m)(x0) = y0, (5.19)

y(x1) = y1, y′(x1) = y′
1, . . . , y(m)(x1) = y1.

Hint. The minimization in this case leads to the following Euler equation:

F,y − d
dx

(F,y′)+
d2

dx2 (F,y′′)−·· ·+(−1)m dm

dxm (F,y(m)) = 0, (5.20)

while di

dxi F,y(i) are derived analogously to (5.7).
10. To generalize the previous case of (5.4), consider the problem defined in a dif-

ferent way by the functional

J(y) =
∫ x1

x0

F(x,y1, . . . ,yn,y
′
1, . . . ,y

′
n)dx → min, (5.21)

where n ≥ 1, and F is a continuous function of 2n + 1 arguments. Suppose that the
admissible functions yi(x) of one variable belong to class C2 on the interval [x0,x1],
and that the boundary values are

yi(x0) = yi0, yi(x1) = yi1, 1 ≤ i ≤ n. (5.22)

Show that the minimization leads to a system of Euler equations

F,yi −
d
dx

(F,y′
i
) = 0, 1 ≤ i ≤ n. (5.23)
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11. To generalize the case of (5.21) still further, show that similar calculations per-
formed on the extreme problem

J(y) =
∫ x1

x0

F
(

x, y1, . . . ,yn, y1
′, . . . ,yn

′, . . . ,y(m)
1 , . . . ,y(m)

n

)
dx → min (5.24)

lead to the following system of Euler equations:

F,yi −
d
dx

(
F,y′

i

)
+

d2

dx2

(
F,y′′

i

)
−·· ·+(−1)m dm

dxm

(
F,y(m)

i

)
= 0, 1 ≤ i ≤ n. (5.25)

12. Write down the Euler equations (5.20), for m = 2, and (5.23), for n = 2, for
given functions using MATLAB (see Example, p. 214). Verify for the functions:

F = (y′′)2 −2(y′)2 +4yy′ + y2 −2ysin(x), F = (y′)2 +(z′)2 +2yz, etc.

13. Deduce Euler’s equation (5.10) using MATLAB (see Example, p. 214).

Section 5.2 1. Plot a Pythagorean triangle (Figure 5.12(d)), using transformations
and the program hilbert(n).

2. Plot the Peano curve in the triangle (Figure 5.23).

Fig. 5.23 Triangular Peano curve.

3. Plot Koch curves which are inside the triangle and the square. For obtaining new
Koch curves, replace the equilateral triangle in the original Koch curve by an isosceles
triangle, or try to find your own “generators.”

4. Plot a Sierpiński triangular curve and its analogue in a pyramid.
5. Compute the dimension of the Koch curve, Sierpiński’s triangular curve, Sierpiń-

ski’s carpet, and the Peano curve. What is the length of a Koch curve? Find the area
of the triangle- and square-shaped snowflakes and plot them. Hint. For the nth step of
plotting, we obtain the polygon Ln consisting of 3 ·4n segments each of length a

3n . Its
total length is Ln = 3( 4

3)na. Fixing the scale λn = a
3n , we find that the length of the

Koch curve is equal to the length of the polygon corresponding to the nth stage of its
plotting, Ln = 3( 4

3)na. For n → ∞ we have λn → 0, but the length of Ln runs to infinity.
Meanwhile, the area bounded by the Koch curve is finite. Let the area of the initial



242 5 Examples of Curves

triangle be equal to S0. Then the common area of the snowflake can be expressed by
the geometrical series S0(1 + 1

3 + 1
3 · 4

9 + 1
3( 4

9)2 + · · ·) = S0(1 + 1
3 · 1

1−4/9) = 1.6S0.

6. Plot the Menger polyhedron Kn, and find the volume of the deleted cubes.

Section 5.3 1. Plot the coordinate surfaces for cylindrical and spherical coordi-
nates.

2. Generalize Example 3, p. 224, and plot the chain containing 2n circles.

n = 3;
hold on; axis equal; view(65, 25);
for i = 0 : n - 1;
plot3(2*cos(t), 2*sin(t) + 6*i, t - t, ’r’, ’LineWidth’, 5);
plot3(t - t, 2*cos(t) + 3 + 6*i, 2*sin(t), ’g’, ’LineWidth’, 5);
end; % Figure 5.17(b).

3. Plot the chain armor with m lines (Figure 5.17(c)).

n = 4; m = 4;
hold on; axis equal; view(65, 45);
for j = 0 : m - 1; for i = 0 : n - 1;
plot3(2*cos(t) + 6*j, 2*sin(t) + 6*i, t - t, ’r’, ’LineWidth’, 5);
plot3(t - t + 6*j, 2*cos(t) + 3 + 6*i, 2*sin(t), ’g’, ’LineWidth’, 5);
plot3(2*cos(t) - 3+6*i, t - t + 6*j, 2*sin(t), ’b’, ’LineWidth’, 5);
end; end;

4. If the planes α1 and α2 are parallel to each other, then any parallel projection π
from α1 onto α2 is an isometry.

5. Given an ellipse, there is a parallel projection which maps it onto a circle.
6. Let l be a chord of an ellipse. Show that the midpoints of the chords parallel to l

lie on a diameter of the ellipse.
Hint. Use Exercise 5 and the properties of a circle.
7. Let l be a diameter of an ellipse. Then there is another diameter m of the ellipse

such that:
(a) the midpoints of all chords parallel to l lie on m;
(b) the midpoints of all chords parallel to m lie on l.
8. Plot the perspective projection of a tetrahedron, and an octahedron (use Exam-

ple 4, p. 224).
9. Plot the dimetric projection of a spiraling helix on the catenoid.

s = 4; a = 20;
v1 = [-s/2 -s/2]; v2 = [s 0]; v3 = [0 s]
t = linspace(-3, 3, 600); f = cosh(t); g = 4*t; % enter f ,g
X = f.*cos(a*t); Y = f.*sin(a*t); Z = g;
hold on; axis equal; plot(Y - X/2, Z - X/2, ’r-’); % dimetric, Figure 5.16(e)
arrow([0 0], v1); arrow([0 0], v2); arrow([0 0], v3); % see p. 70
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10. Plot the Viviani curve with shadow and revolution about the axis OZ (Figure
5.21(b)).

Section 5.4 1. Deduce the equations of a spring lying on a cylinder (helix) and
then plot it: The point P rotates uniformly about a line l (that is par-

allel to the axis OZ) and does so at a distance R from l. At the same time, P moves with
constant velocity parallel to l.

Hint. The circular helix r(t) = [Rcos t, Rsin t, bt] (Figure 5.19(a)). A generalization
is a “spring” r(t) = [acos t, bsin t, ct] on an elliptic cylinder.

R = 1; a = 1;
t = 0 : .01 : 16*pi; plot3(R*cos(t), R*sin(t), a*t)

A circular helix can be obtained as the image of the line (oblique to the ruling) on the
development of the circular cylinder.

2. Deduce equations of the “springs” on a cone and then plot them:
The line OL not orthogonal to OZ rotates uniformly around O with the angular

velocity ω = 1, and the point P moves along OL:
(a) with velocity proportional to the length OP, Figure 5.19(b).
Hint. r(t) = [Reat cost, Reat sin t, beat] is a conic helix.

R = 1; a = .05; t = 0 : .01 : 16*pi; b = exp(a*t);
plot3(R*b.*cos(t), R*b.*sin(t), b)

(b) with constant velocity; Figure 5.19(c).
Hint. r(t) = [at cost,at sint,bt] is the circular conic helix.

R = 1; a = .05; t = 0 : .01 : 16*pi;
plot3(R*a*t.*cos(t), R*a*t.*sin(t), a*t)

Plot a more general curve r(t) = [at cost,bt sin t,ct] on the elliptic cone.
3. Show that a cubic polynomial passing through four points P1, P2, P3, and P4

in R
N so that r(0) = P1, r(1/3) = P2, r(2/3) = P3, r(1) = P4 has the form r(t) =

g1(t)P1 +g2(t)P2 +g3(t)P3 +g4(t)P4, where the Lagrange polynomial weights for the
four points are

g1(t) = −4.5t3 +9t2 −5.5t +1, g2(t) = 13.5t3 −22.5t2 +9t,

g3(t) = −13.5t3 +18t2 −4.5t, g4(t) = 4.5t3 −4.5t2 + t.

(For computations modify the program of Example 1, p. 235). Its matrix presentation
is r(t) = PM T (t) (0 ≤ t ≤ 1), where T (t) = [t3; t2; t; 1] is a column vector and

P = (P1 P2 P3 P4), M =

⎛

⎜
⎜
⎝

−9/2 9 −11/2 1
27/2 −45/2 9 0
−27/2 18 −9/2 0

9/2 −9/2 1 0

⎞

⎟
⎟
⎠ . (5.26)
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4. The polynomial L2(t) is easy calculate once t0, t1, t2 have been determined (see
Example 1, p. 235). Show that

(a) the Lagrange polynomial weights for three points P1, P2, and P3 are

L2,0(t) =
(t − t1)(t − t2)

(t0 − t1)(t0 − t2)
, L2,1(t) =

(t − t0)(t − t2)
(t1 − t0)(t1 − t2)

, L2,2(t) =
(t − t0)(t − t1)

(t2 − t0)(t2 − t1)
;

(b) its matrix presentation (see (5.14)) is

L2(t) = (P1 P2 P3)

⎛

⎜
⎜
⎝

1
(t1−t0)t2

−1
t2

− 1
t1−t0

1

− 1
(t2−t1)(t1−t0)

1
t1−t0

+ 1
t2−t1

0

1
(t2−t1)t2

− 1
t2−t1

+ 1
t2

0

⎞

⎟
⎟
⎠

⎛

⎜
⎝

t2

t

1

⎞

⎟
⎠ . (5.27)

5. Create the matrix M of (5.14) using the following program:

% enter polynomials gi(t) of Example 1, p. 236.
M = [sym2poly(g1); sym2poly(g2); sym2poly(g3)]

6. Calculate Ln(x), and then plot the data and the graph.

x = 2 : 8; y = [32, 34, 36, 34, 39, 40, 37]; % enter data
xi = linspace(2, 8, 100); yi = polyinterp(x, y, xi);
plot(x, y, ’o - -’, xi, yi, ’-’) % see Figure 1.26(a).

The polyinterp function works correctly with symbolic variables:

symt = sym( ’ t ’ )
P = polyinterp(x, y, symt); pretty(P)

P = 7
72 t6 − 44

15 t5 + 1277
36 t4 − 2629

12 t3 + 52231
72 t2 − 72839

60 t +831 % Answer.

This is a canonical form of the interpolating Lagrange polynomial L6(t).
7. Apply splines and Lagrange polynomials to interpolate the spring on the parabo-

loid r(t) = [t cos t, t sin t, t2] for 0 ≤ t ≤ 4π. Compare results.
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Geometry of Curves

We will study some constructions and visualizations of the differential geometry of
curves: the tangent line and Frenet frame (Section 6.1), the singular points (Section 6.2),
the length and center of mass (Section 6.3), and the curvature and torsion (Section 6.4).

6.1 Tangent Lines

We will plot the (moving) tangent line and Frenet frame for various types of presen-
tations of a curve. Then we will study some applications of tangent and normal lines
to a curve. Curves can appear as envelopes of families of lines, circles, etc. Using
MATLAB R©, we will realize some methods of “mathematical embroidery” from the lit-
erature, and study evolutes, caustics, and parallel curves.

6.1.1 Tangent lines, normals, and the Frenet frame

The tangent line to the curve γ of class C1 at the point P ∈ γ is the limit position of
the secant PQ as the second point of intersection Q approaches P along the curve.
Semi-tangent lines from the right and from the left are defined analogously.

Since the secant through the points at t and t + Δt is parallel to the vector Δr =
r(t + Δ t) − r(t), and by the definition of the derivative r′(t) = limΔ t→0

Δr
Δ t , the line

through the point of the regular curve r(t) ∈ γ in the direction of the velocity vector
r′(t) = [x′(t), y′(t), z′(t)] is the tangent line (Figure 6.1). The unit tangent and normal
vectors of the plane curve r(t) are derived as follows:

V. Rovenski, Modeling of Curves and Surfaces with MATLAB R© , 245
Springer Undergraduate Texts in Mathematics and Technology 7, DOI 10.1007/978-0-387-71278-9 6,
c© Springer Science+Business Media, LLC 2010
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τ =
(

x′
√

x ′2 + y ′2 ,
y′

√
x ′2 + y ′2

)
, ν =

( −y′
√

x ′2 + y ′2 ,
x′

√
x ′2 + y ′2

)
.

The tangent line at the point t of the parametric curve r(t) ⊂ R
3 has the following

equation:

r̃(s) = r(t)+ sr′(t) (s ∈ R)

⇐⇒

⎧
⎪⎨

⎪⎩

x = x(t)+ sx′(t),
y = y(t)+ sy′(t),
z = z(t)+ sz′(t).

Fig. 6.1 Derivative of a vector-valued function and a tangent line.

Equations of the tangent line to a plane curve of class C1 (for various types of
equations of the curve) are the following (here X , Y are coordinates of points on the
tangent line, and s ∈ R):

graph Y = y + f ′(x)(X − x),
parametric X = x(t)+ sx′(t), Y = y(t)+ sy′(t),
implicit ∂F

∂x (x,y)(X − x)+ ∂F
∂y (x,y)(Y − y) = 0.

Equations of the normal vector to the plane curve are the following:

graph X = x− s f ′(x), Y = y + s,

parametric X = x(t)− sy′(t), Y = y(t)+ sx′(t),
implicit X = x + s ∂F

∂x (x,y), Y = y + s ∂F
∂y (x,y).

For an implicitly defined plane curve, F(x,y) = 0, the vector gradient ∇F =
[

∂F
∂x , ∂F

∂y

]

is parallel to its normal vector.

Examples.

1. A dog runs along the axis OY starting from O = (0,0), and its owner (initially
staying on the axis OX) follows the dog, pulling on the leash of a length a. What is the
trajectory of the owner?

The curve is called the tractrix (Figure 6.3(c)). We deduce its equation using the
tangent line (see also Exercise 1, p. 279, with MATLAB).

Solution. From a right triangle with the tangent line as the hypotenuse, deduce x =
asin t, where t ∈ [0,π) is the angle between the tangent line and the axis OY . Thus
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dx = acos t dt. In view of the equality dx = tan t dy (from the geometrical interpreta-
tion of the tangent line), one obtains dy = a cos2 t

sint dt. After integrating dx and dy, one
deduces that r(t) = [asint,a(ln tan( t

2) + cost)], which can be simplified to the form

y = a ln( a−
√

a2−x2

x )−√
a2 − x2. The following construction of the tractrix of an arbi-

trary curve generalizes the previous problem: The dog runs along the curve γ , and his
owner follows the dog along the tractrix of this curve.

For example, the circular tractrix in polar coordinates has the equation

ϕ = −arcsin(ρ/(2a))+
√

4a2 −ρ2/ρ (0 < ρ ≤ 2a).

2. Find the equation of a parabola y = x2 +ax+b that is tangent to the circle x2 +y2 = 2
at the point P=̧(1,1), and plot the curves.

Solution.

syms x y a b;
f = y - (xˆ2 + a*x + b); g = xˆ2 + yˆ2 - 2;
df = [diff(f, x), diff(f, y)]; dg = [diff(g, x), diff(g, y)];
t = pi/4; % enter your t for P(cost,sin t)
P = [sqrt(2)*cos(t), sqrt(2)*sin(t)];
a0 = solve(subs(det([df; dg]), {x, y}, {P(1), P(2)}), a)
b0 = solve(subs(f, {x, y, a}, {P(1), P(2), a0}))
f0 = subs(f, {a, b}, {a0, b0})

a0 = −3 b0 = 3 f0 = y− x2 +3x−3 % Answer (parabola).

Finally, plot the curves:

hold on; axis equal; ezplot(f0, [-2, 3, -2, 3]);
ezplot(g, [-2, 3, -2, 3]);

3. Let us plot the tangent lines and the normals to some curves. We consider three
typical programs that are useful in solving exercises.

(a) The graph of a function y = f (x). Start with the parabola. First prepare the data
and calculate.

syms x t; m = 20;
f = ’xˆ2/2’; x1 = -2; x2 = 2; % enter your function
fx = diff(f, x);
N = [x, f] + t*[-fx, 1]/sqrt(1 + fxˆ2);

Then plot:

hold on; h = ezplot(f, [x1, x2]); set(h, ’Color’, ’r’, ’LineWidth’, 3);
m = 20; for i = 0 : m;
X = x1 + i*(x2 - x1)/m;
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Fig. 6.2 Tangent lines and normals to a graph. Tangent lines to space curves.

p = subs(f + fx*(t - x), x, X); ezplot(p, [x1, x2]);
end; % Figure 6.2(a), tangent lines

hold on; axis equal; h = ezplot(f, [x1, x2]); set(h, ’Color’, ’r’);
for i = 0 : m;
Ni = subs(N, x, x1 + i*(x2 - x1)/m);
ezplot(Ni(1), Ni(2), [0, 1]);
end; % Figure 6.2(b), normals

(b) A parametric plane curve. Start with a cycloid.

r = [t - sin(t), 1 - cos(t)]; t1 = 0; t2 = 4*pi; % enter data
rt = diff(r, t); N = [-rt(2), rt(1)]; % velocity and normal
h = ezplot( r(1), r(2), [t1, t2]); set(h, ’Color’, ’r’, ’LineWidth’, 3); hold on;
m = 15; for i = 0 : m;
T = t1 + i*(t2 - t1)/m;
rT = subs(r + s*rt, t, T);
rN = subs(r + s*N, t, T);
ezplot(rT(1), rT(2), [-2, 2]); % tangent line
hn = ezplot(rN(1), rN(2), [-1, 1]); set(hn, ’Color’, ’g’); % normal

end;

(c) A parametric space curve. Start with a circular helix (Figure 6.2(c)). First pre-
pare the data.

syms s t;
m = 19; R = 1; v = 1; t1 = 0; t2 = 6*pi; % enter data
r = [R*cos(t), R*sin(t), v*t]; rt = diff(r, t);

Then plot the helix with tangent lines:

ezplot3(r(1), r(2), r(3), [t1, t2]); hold on; axis equal;
S = linspace(-1, 1, 2);
for j = 0 : m;
T = subs(r + s*rt, t, t1 + j*(t2 - t1)/m);
plot3(subs(T(1), s, S) + S-S, subs(T(2), s, S) + S-S, subs(T(3), s, S) + S-S, ’r’);
end;
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Fig. 6.3 Frenet frame field of cycloid and ellipse. Tangent lines to tractrix.

4. Plot the moving normal along the graph (Figure 6.2(b)).

for n = 0 : m;
ezplot(f, [x1, x2]); hold on; axis equal;
X = x1 + n*(x2 - x1)/m;
p = [X, subs(f, x, X)];
d = 2*sqrt(1 + fxˆ2);
p1 = subs([x - fx/d, f + 1/d], x, X);
arrow(p, p1 - p, ’r’); pause(0.2); hold off;
end;

5. Plot the moving tangent and normal vectors along the cycloid.

syms s t;
r = [t - sin(t), 1 - cos(t)]; t1 = 0; t2 = 4*pi;
rt = diff(r, t);
N = [-rt(2), rt(1)];

m = 30; for n = 0 : m;
ezplot(r(1), r(2), [t1, t2]); hold on; axis equal;
T = t1 + n*(t2 - t1)/m;
rT = subs(r + s*rt, t, T);
rN = subs(r + s*N, t, T);
hn = ezplot(rN(1), rN(2), [0, 1]); set(hn, ’Color’, ’r’);
ht = ezplot(rT(1), rT(2), [0, 1]); set(ht, ’Color’, ’g’);
pause(0.1); hold off;
end; % Figure 6.3(a)

For a regular curve (say, an ellipse r = [a*sin(t), b*cos(t)] with t2 = 2*pi), use its unit
tangent and normal vectors, i.e., the Frenet frame (Figure 6.3(b)).

d = 2*sqrt(rt*rt’); rt1 = rt/d;
N = [-rt1(1), rt1(2)];

6. Plot the moving tangent line to the Viviani window (Figure 6.2(d)).

syms s t; m = 19; R = 1; v = 1;
r = [R*cos(t)ˆ2, R*cos(t)*sin(t), R*sin(t)]; t1 = 0; t2 = 2*pi;
rt = diff(r, t); % parametric equations and tangent line
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Then plot:

for n = 0 : m;
ezplot3(r(1), r(2), r(3), [t1, t2]);
hold on; axis equal; grid off; view(135, 70)
T = subs(r + s*rt, t, t1 + n*(t2 - t1)/m);
plot3(subs(T(1), s, S) + S-S, subs(T(2), s, S) + S-S, subs(T(3), s, S) + S-S, ’r’);
pause(0.2); hold off;
end;

6.1.2 Asymptotes of curves

Asymptotes can be thought of as tangent lines at “infinite points” of a curve. One can
distinguish vertical, horizontal, and oblique asymptotes of plane curves with respect
to rectangular coordinates (see Figure 6.4(a)). An oblique asymptote to a graph can be
left (if x → −∞), right (if x → ∞), or two-sided (if the graph approaches the asymptote
for both x → −∞ and x → ∞). Some curves, such as the circular tractrix and various
spirals (Section 1.4), etc., have asymptotic points.

We will consider four situations where asymptotes appear, and plot them: curves
graphed in Cartesian and in polar coordinates, and parametric curves in the plane and
in space.

Strategy.

1. We derive the coefficients in the equation y = kx + b of the asymptote of the graph
of y = f (x) for x → ±∞ as follows:

k+ = lim
x→∞

f (x)
x

, b+ = lim
x→∞

[ f (x)− k+x],

and analogously for the coefficients k− and b− when x → −∞.

Example. Calculate and plot the asymptotes of the graphs

(a) y = 3
√

x3 +2, (b) y =
x3

2(x +1)2 .

(a) Answer: A two-sided asymptote y = x (Figure 6.4(b)).

syms x; f = (xˆ3 + 2).ˆ(1/3);
k = limit(f/x, inf), b = limit(f - k*x, inf) % Answer: k = 1, b = 0.
f1 = ’sign(x.ˆ3 + 2)*abs(xˆ3 + 2)ˆ(1/3)’;
hold on; ezplot(f1, [-2 2]); ezplot(k*x + b, [-2 2]);
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Fig. 6.4 Asymptotes of the graphs.

(b) Answer: Vertical and oblique asymptotes are the following:

x +1 = 0, x−2y−2 = 0.

syms x; f = xˆ3/(2*(x+1)ˆ2);
k = limit(f/x, inf), b = limit(f - k*x, inf) % Answer: k = 1/2, b = −1
hold on; ezplot(f, [-12 2.8]); ezplot(k*x + b, [-12 2.8]) % Figure 6.5(a)

2. We plot the asymptotes of the curve ρ = ρ(ϕ) in polar coordinates (see Section 1.4)
as follows:

(a) Derive the values ϕi for which limϕ→ϕi |ρ(ϕ)| = ∞.
(b) Let pi = limϕ→ϕi ρ2(ϕ)/|ρ ′(ϕ)|. If this limit exists, then the infinite branch of

the curve has the asymptote ρi = pi/cos(ϕ −ϕi), and if the limit does not exist,
then the infinite branch has no asymptotes.

If pi > 0, then the asymptote lies on the right of the position vector of the curve as
it runs to infinity. If pi < 0, then the asymptote lies on the left side.

3. We calculate and plot the asymptotes of the parametric plane curve [x(t), y(t)] by
the following plan:

(a) Find points {ai} where the curve runs to ∞, i.e., lim
t→ai

[x2(t)+ y2(t)] = ∞.

(b) For each t = ai, derive the coefficient of inclination ki = lim
t→ai

y(t)/x(t).

(c) For each finite ki, derive bi = lim
t→ai

[y(t)−kix(t)] and plot the oblique asymptote.

(d) For each infinite ki, derive xi = lim
t→ai

x(t) and plot the vertical asymptote x = xi.

Example. Calculate and plot the asymptotes of the curve
[

t2

1−t ,
t3

1−t2

]
.

Answer: The curve has four points running to infinity. Its three asymptotes are x = 1
2 ,

y = 1
2 x− 1

4 , and y = x +1 (Figure 6.5(b)).
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Fig. 6.5 Curves with asymptotes.

syms t;
X = tˆ2/(1 - t); Y = tˆ3/(1 - tˆ2); A = [-inf, -1, 1, inf];
for i = 1 : 4;
k(i) = limit(Y/X, t, A(i));
b(i) = limit(Y - k(i)*X, t, A(i));
end; % Answer: k = [1 NaN 1/2 1], b = [1 NaN −1/4 1].

hold on; ezplot(X, Y, [-6 -1.15]); ezplot(X, Y, [-0.9 0.9]);
ezplot(X, Y, [1.15 5]);
ezplot(k(1)*’x’ + b(1)); ezplot(k(3)*’x’ + b(3));

4. We plot the asymptotes y = B + Mx, z = C + Nx of the parametric space curve
r(t) = [x(t), y(t), z(t)] as follows:

(a) Find points {ai} where the curve runs to ∞, i.e.,

lim
t→ai

[x2(t)+ y2(t)+ z2(t)] = ∞.

(b) For each t = ai, derive the coefficients of inclination

Mi = lim
t→ai

y(t)
x(t)

, Ni = lim
t→ai

z(t)
x(t)

.

(c) For each finite {Mi, Ni}, derive

Bi = lim
t→ai

[y(t)−Mix(t)], Ci = lim
t→ai

[z(t)−Nix(t)];

then plot the oblique asymptote.
(d) For each infinite Mi, derive xi = limt→ai x(t); for each infinite Ni, derive xi =

limt→ai x(t); and then plot the vertical asymptotes.
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6.1.3 Envelope of a family of curves

In Chapter 5, various curves appeared as sets of points satisfying certain geometri-
cal conditions or equations. In this section, the curves appear in a different guise, as
envelopes of families of lines, circles, etc.

We assume the function ϕ(x,y,t) belongs to class C1.
The envelope of a family of curves {γt : ϕ(x,y,t) = 0}, where t is the parameter of

the family, is the curve γ : {x(t),y(t)} that is tangent at each of its points γ(t) to the
corresponding curve γt .

One derives the envelope of a family {γt : ϕ(x,y,t) = 0} of curves from the system
of equations (for instance, by elimination of t)

ϕ(x,y,t) = 0, ϕ ′
t (x,y,t) = 0. (6.1)

Notice that this system (6.1) defines the discriminant set, sometimes containing extra-
neous solutions (just as points of inflection appear in the problem of deriving extrema
of the function f (x) using the condition f ′(x) = 0).

Examples. Find the envelope of the family of segments that cut out:

(a) triangles with area S from the coordinate angle XOY .

Solution. The equation of the family is γt : x
t + yt

2S −1 = 0 or ϕ = yt2 −2St +2Sx = 0.
From ϕ ′

t = 2yt −2S = 0 we obtain t = S/y. Then, substituting in the first equation, we
obtain xy = S/2: a hyperbola.

N = 10; t = linspace(0, 1, 20); hold on;
for n = 1 : N;
x = t*n/N; y = (1 - t)*N/n;
plot(x, y); plot(x, -y); plot(-x, -y); plot(-x, y);
end % Figure 6.6(a)

(b) triangles with hypotenuse a from the coordinate angle XY .

Solution. The equation of the family is γt : x
acost + y

a sint = 1, the astroid. Recall that
the line segment PQ between the points P = (x1, y1) and Q = (x2, y2) has equations
x = tx2 +(1− t)x1, y = ty2 +(1− t)y1, where t ∈ [0,1].

N = 19; t = linspace(0, 1, 20); hold on;
for n = -N : N;
s = pi*n/N;
plot(t*cos(s), (1 - t)*sin(s)); plot(t*cos(s), -(1 - t)*sin(s));
end % Figure 6.6(b)

(c) segments with sum of lengths from the coordinate axes OX and OY equal to a.
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Answer: The equation of the family is γt : x
t + y

a−t = 1.

N = 9; t = linspace(0, 1, 20); hold on;
for n = -N : N;
x = t*n/10; y = (1 - t)*(1 - abs(n)/10);
plot(x, y); plot(x, -y);
end % Figure 6.6(c)

Figure 6.6 contains only families of curves, but each family creates the illusion that
the figure also contains its envelope.

Fig. 6.6 Embroidery of the hyperbola xy = 1, the astroid, and similarly the curve x3/2 +
y3/2 = 1. Parabola of safety.

Parabola of safety. The following problem is useful in ballistics.
Prove that trajectories of points (shells), leaving the origin (a high-angle gun) with

constant velocity v at different angles t (0 < t < π) to the axis OX (the horizon) have a
parabola in the role of envelope.

Solution. We have the equation of a trajectory (parabola): x = vscost, y = vssint − 1
2 gs2,

where s is the time. Eliminating s, we derive the equation of the family ϕ(x,y,t) =
y − x tan t + gx2

2v2 cos2 t
. From the second equation ϕ ′

t (x,y,t) = 0 we obtain tan t = v2

gx .

Then 1
cos2 t

= 1 + tan2 t = 1 + v4/(g2x2). Substituting in the first equation ϕ(x,y,t) = 0

with the aim of eliminating t, after simple transformations we obtain the equation

y = v2

2g − g
2v2 x2 of the parabola of safety (Figure 6.6(d)).

syms x t;
g = 9.8; v = 10;
X = @(s) v*t*cos(pi/18*s); Y = @(s) v*t*sin(pi/18*s)-g*tˆ2/2;

Then we plot (using animation):

for s = 0 : 17;
h = ezplot(vˆ2/(2*g) - g/(2*vˆ2)*xˆ2, [-vˆ2/g, vˆ2/g]);
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set(h, ’Color’, ’r’, ’LineWidth’, 2); hold on;
T = 2*v*sin(pi/18*s)/g;
ezplot(X(s), Y(s), [0, T]);
pause(0.2); hold off;
end;

6.1.4 Mathematical embroidery

Mathematical embroidery is a method of plotting curves as envelopes of certain fam-
ilies of lines (segments) or circles. MATLAB allows us to realize on the display the
algorithms of mathematical embroidery, and to find new examples.

Mathematical embroidery using line segments.

1. For the embroidery of the deltoid, divide the circle of radius R with center O, starting
with the point A = (R,0◦), into arcs of 5◦ and number the points of partition counter-
clockwise. Then, starting from the point A′ = (R,180◦), divide the circle into arcs of
10◦ and number the points of partition clockwise. Join by line segments the points of
the partition with matching numbers for A and A′. Next, continue the segments to their
intersection with the larger circle of radius 3R (Figure 6.7(a)).

Hint. First, plot the base circle of radius R = 1 and the boundary circle of radius R = 3.
Then use integers −36 ≤ n ≤ 35 and plot lines from the family y = y2−y1

x2−x1
(x− x1)+ y1,

where x1 = cos(T ), y1 = sin(T ), x2 = cos(π −T m), and y2 = sin(π −T m).

m = 2; % deltoid, Figure 6.7(a)
syms x;
t = linspace(-pi, pi, 40); hold on; axis equal
for i = -35 : 35;
if mod(i, 6) = 0; T = pi/18*i;
ezplot((sin(pi-T*m) - sin(T))/(cos(pi-T*m) - cos(T))*(x-cos(T)) + sin(T));
axis([-3 3 -3 3]);
plot(cos(t), sin(t), ’–g’); % the base circle
plot(3*cos(t), 3*sin(t), ’r’, ’LineWidth’, 2); % the boundary circle
end;
end

2. The embroidery of the astroid is similar to that of the deltoid. The only difference
is that arcs are taken from the point A′ = (R,180◦) by 15◦, and segments are continued
till their intersection with the larger circle of radius 2R (Figure 6.7(b)).

m = 3; % astroid, Figure 6.7(b)
syms x;
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t = linspace(-pi, pi, 40); hold on; axis equal
for i = -36 : 35;
if mod(i + 27, 18) = 0; T = pi/18*i;
. . . % [ as several lines of the program above ]

end

Fig. 6.7 Embroidery of the astroid and the deltoid.

3. The embroidery of the cardioid needs only one (base) circle of radius R: the arcs
from points A = (R,0◦) and A′ = (R,180◦) are equal, for example, 10◦, and are fixed in
the same direction (say, counterclockwise). The segments are chords of the base circle;
they join points from A with points from A′ having index twice as large (Figure 6.8).

The embroidery of the nephroid is similar to that of the cardioid. The only difference
is that the chords of the base circle join points from A with points from A′ having index
three times as large (Figure 6.9).

m = 2; % m = 2 cardioid; m = 3 nephroid, Figures 6.8(a,b), 6.9(a,b)
syms t;
hold on; axis equal;
for i = -35 : 35;
T = pi/36*(18 + i*m); S = pi/36*(-18 + i);
ezplot(t*cos(T) + (1 - t)*cos(S), t*sin(T) + (1 - t)*sin(S)); axis([-1 1 -1 1]);
end;
h = ezplot(cos(t), sin(t)); set(h, ’Color’, ’r’, ’LineWidth’, 2);
syms t;
M = 1; % envelope: M = 1 – cardioid, M = 0.5 – nephroid.
ezplot((1 + M)*sin(M*t) - M*sin(t + M*t), -(1 + M)*cos(M*t) + M*cos(t + M*t),
[0, 2*pi/M]); % Figures 6.8(c), 6.9(c)

One may plot the cardioid by using its complex equation z(t) = 2eit + e2it :

t = 0 : .1 : 2*pi; plot(2*exp(i*t) + exp(2*i*t))
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Fig. 6.8 Embroidery of the cardioid.

Fig. 6.9 Embroidery of the nephroid.

Mathematical embroidery using circles.

1. Starting with the point A = (R,0◦), break the basic circle of radius R with center
O into arcs (of 10◦, for example). Then plot a circle of radius Ri = |PiA| about each
division point Pi. The heart-shaped envelope of all these circles is the cardioid. In other
words, the union of circles through the point A ∈ ω whose centers lie on the given
circle ω is the plane domain bounded by the cardioid (Figure 6.10(b)).

2. The embroidery of Pascal’s limaçon by circles generalizes that of the cardioid. The
only difference is that the fixed point A = (kR, 0◦) does not belong to the base circle.
For k > 1, Pascal’s limaçon has a loop, and for 0 < k < 1 it does not (Figure 6.10(a)).
The complex equation of Pascal’s limaçon is z(t) = eit(a +bcost) (a,b > 0) (Verify!).

plot(exp(i*t).*(3 + 4.*cos(t)))

3. The embroidery of the nephroid by circles is similar to that of the cardioid. The only
difference is that the radii of the circles Ri are assumed equal to the distances from
the points Pi to the diameter through the point A (the axis OX ), i.e., Ri = d(Pi, |OA|)
(Figure 6.10(c)).

syms t;
m = 1;
hold on; axis equal; axis([-3 3 -3.5 2]);
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h = ezplot(cos(t), sin(t)); set(h, ’Color’, ’r’, ’LineWidth’, 2);
for i = -18 : 17;
T = pi/18*i;
b = sqrt(cos(T)ˆ2 + (m - sin(T))ˆ2);
ezplot(cos(T) + b*cos(t), sin(T) + b*sin(t));
end; % cardioid, for m �= 1 Pascal’s limaçon, Figure 6.10(a,b)
syms t;
m = 1;
hold on; axis equal; axis([-2 2 -2 2]);
h = ezplot(cos(t), sin(t)); set(h, ’Color’, ’r’, ’LineWidth’, 2);
for i = -18 : 17;
T = pi/18*i;
c = abs(cos(T));
ezplot(cos(T) + c*cos(t), sin(T) + c*sin(t));
end; % nephroid, Figure 6.10(c).

Fig. 6.10 Embroidery using circles: Pascal’s limaçon, cardioid, and nephroid.

6.1.5 Evolutes and evolvents, and parallel curves

The normal vectors at points of the given curve of class C1 can be chosen as the family
of lines for plotting the envelope.

The envelope γ2 of a family of normals to the given curve γ1 is called the evolute.
The curve γ1 is called the evolvent (involute) of the curve γ2, if γ2 is the evolute of γ1.

In fact, the evolute is related to the evolvent in the same way that differentiation
is related to indefinite integration. The evolute of the plane curve r(t) coincides with
the curve of centers of curvature (see Section 6.4). In particular, the evolute of a circle
is a single point. The evolute is defined by the equation rev(t) = r(t)+ 1

k(t) ν(t), or in
coordinate form
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xev(t) = x(t)− y′(t)
k(t)

√
x ′2 + y ′2 = x(t)− y′(t)

x ′2 + y ′2

x′y′′ − x′′y′ ,

yev(t) = y(t)+
x′(t)

k(t)
√

x ′2 + y ′2 = y(t)+ x′(t)
x ′2 + y ′2

x′y′′ − x′′y′ .

Various evolvents of the unit-speed plane curve r(s) are given by

rEV (s) = r(s)− (s− s0)τ(s),

where r, τ , s are related to the given curve, but the constant s0 depends on the choice
of the evolvent.

Examples.

1. The evolute of the parabola y = x2 (with parametric equations x = t, y = t2) is the
half-cubic parabola

xev = t − 1 +(2t)2

1 ·2− (2t) ·0
2t = −4t3, yev = t2 − 1 +(2t)2

(2t) ·0−1 ·2
= 3t2 +

1
2
.

To show this we develop a program that can be used for various curves.

syms t;
x = t; y = tˆ2; t1 = -2; t2 = 2; t3 = t2 - 1; % enter data
xt = diff(x, t); yt = diff(y, t);
xtt = diff(xt, t); ytt = diff(yt, t);
x1 = simplify(x - yt*(xtˆ2 + ytˆ2)/(xt*ytt - xtt*yt))
y1 = simplify(y + xt*(xtˆ2 + ytˆ2)/(xt*ytt - xtt*yt))

x1 := −4t3 y1 := 3t2 +0.5 % Answer

Then obtain the curves with their normals (Figure 6.11(a)):

m = 16;
hold on; axis equal;
h = ezplot(x, y, [t1, t2]); set(h, ’Color’, ’r’, ’LineWidth’, 2);
g = ezplot(x1, y1, [t1 + 1, t3]); set(g, ’Color’, ’g’, ’LineWidth’, 2);
for i = m/4 : 3*m/4;
T = t1 + i*(t2 - t1)/m;
N = [x, y] + ’s’*[x1 - x, y1 - y];
ezplot(subs(N, t, T), [0, 1]);
end

2. The evolvent of a circle belongs, as does the cycloid, to the category of cycloidal
curves. Namely, it is the trajectory of a point on a line rolling without slipping along
the circle.
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Fig. 6.11 Evolutes of a parabola, an ellipse, and a tractrix.

Show that the evolvents of the unit-speed circle r(s) = [Rcos(s/R), Rsin(s/R)] are
the curves

rEV (s) = [Rcos(s/R)+(s− s0)sin(s/R), Rsin(s/R)− (s− s0)cos(s/R)]

(Figure 6.12(a)). Plot them with the following program:

syms s;
R = 1; x = R*cos(s/R); y = R*sin(s/R); % enter data (equations)
hold on; axis equal;
h = ezplot(x, y); set(h, ’Color’, ’g’, ’LineWidth’, 2);
for c = 0 : 5;
X = x - (s - c)*diff(x, s); Y = y - (s - c)*diff(y, s);
ezplot(X, Y, [c, c + 1.5*pi]);
end

Fig. 6.12 Evolvents of a circle. Parallel curves of a parabola.

The envelope of the pencil of rays emanating from a given point or direction and
(a) reflected or (b) refracted by the given curve is called (a) the catacaustic or (b) the
diacaustic (or caustic, for short) of this curve with respect to the given point.
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Let γ be the graph y = y(x), and consider a pencil of rays parallel to the unit vector
e = [a,b]. The caustic [X ,Y ] has the following equations:

X(x) = x− (b−ay′)2

2y′′ y′ − (b−ay′)(a+by′)
2y′′ ,

Y (x) = y +
(b−ay′)2

2y′′ − (b−ay′)(a+by′)
2y′′ y′.

Let r = r(s) be the natural parameterization of γ . The equation of the caustic r̃ is

r̃ =

⎧
⎪⎪⎨

⎪⎪⎩

r +
(e, n)
2k(s)

[(e, n)n− (e, τ)τ] the rays are parallel to e,

r +
(r, n)

2k(s)r2 +(r, n)
[(r,n)n− (r,τ)τ] the rays run from the origin O.

Using normal segments to the curve of constant length d (on one side or the other),
we obtain parallel curves (equidistants). Equations of equidistants γd of the curve
γ : x = x(t), y = y(t) are the following:

rd(t) = r(t)+d ·ν(t) ⇐⇒
{

xd(t) = x(t)−dy′ /√x′2 + y′2,

yd(t) = y(t)+dx′ /√x′2 + y′2.

If |d| is less than the radius of curvature of the smooth curve γ , the equidistant γd is
smooth; otherwise, γd may contain singular points. The difference between the perime-
ters of two closed smooth parallel curves is 2πd.

A parallel curve of an ellipse (a toroid) appears as the boundary curve of a parallel
projection of the torus of revolution. The circular axis of the torus projects into the
ellipse.

Fig. 6.13 Parallel curves to astroid and ellipse.
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Example. Plot equidistants for several curves using the program below.

xt = diff(x, t); yt = diff(y, t);
S = sqrt(xtˆ2 + ytˆ2);
xd = @(d) x - d*yt/S; yd = @(d) y + d*xt/S;
hold on; axis equal;
h = ezplot(x, y, [t1, t2]); set(h, ’Color’, ’g’, ’LineWidth’, 2);
for i = -3 : 3;
ezplot(xd(i), yd(i), [t1, t2]);
end

First prepare the data:

syms t;
a = 8; x = a*cos(t)ˆ3; y = a*sin(t)ˆ3; t1 = -pi; t2 = pi; % Figure 6.13(b).
a = 8; b = 7; x = a*cos(t); y = b*sin(t); t1 = 0; t2 = 2*pi; % Figure 6.13(c).
x = t; y = tˆ2; t1 = -2; t2 = 2; % parabola, Figure 6.12(b).

6.2 Singular Points

In this section we study singular points for different types of equations of a curve. The
last subsection contains more advanced examples.

The definitions of singular and regular points of curves (see Section 5.1.1) depend
on the class of parameterization. Figure 6.14 presents several types of singular points
of plane curves.

Fig. 6.14 Types of singular points of plane curves.

How does a curve look in a neighborhood of a singular point? It may appear as

(a) an isolated point, if a neighborhood of the singular point does not contain other
points of a curve;
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(b) a double point (or node), if two branches of the curve intersect at the point but
are not tangent;

(c) a cuspidal point of the first kind, if two branches of the curve lie on different
sides of the common semi-tangent line at the point;

(d) a cuspidal point of the second kind, if two branches of the curve lie on the same
side of the common semi-tangent line at the point;

(e) a point of self-tangency, if two branches of the curve are tangent at the singular
point.

6.2.1 Singular points of parametric curves

There is a useful sufficient condition for the point t0 of the plane curve r(t) of class C∞

with the property r′(t0) = 0 to be singular.

Theorem 6.1. Let a curve γ of class C∞ be given by the equations x = x(t) and y = y(t).
Then the point (x0,y0) ∈ γ (for t = t0) is

(a) a regular point if the first nonzero derivative of the functions x(t) and y(t) at this
point is odd,

(b) a singular (cuspidal) point if for t = t0 the first nonzero derivative (in series) of
the functions x(t) and y(t) is even.

Examples.

1. Let r(t) = [t2, t3]. Show that (0,0) is a cuspidal point of the 1st kind.

ezplot(’tˆ2’, ’tˆ3’, [-1, 1]), grid on; % Figure 6.15(a)

2. Show that (0,0) is a cuspidal point of the 2nd kind of r(t) = [t2,t4 + t5].

ezplot(’tˆ2’, ’tˆ4 + tˆ5’, [-1.2, 0.8]), grid on; % Figure 6.15(b)

3. Plot the curve r(t) = [2t −t2, 3t −t3] and semi-tangent lines to it at its singular points
(Figure 6.15(c)).

Hint. Show that t0 = 1 is a singular point. Find the coefficient of inclination of a semi-
tangent line by the formula limt→−t0 x′(t)/y′(t) (or t → t0).

syms t;
r = [2*t - tˆ2, 3*t - tˆ3];
rt = diff(r, t) % Answer: rt = [2−2 t, 3−3 t2 ]

t1 = solve(rt(1), rt(2), t), pp = subs(r, t1) % Answer: t1 = 1, pp = [1, 2].
k = limit(rt(2)/rt(1), t1), Tp = pp + [t, k*t] % Answer: k = 3,Tp = [t +1,3t +2]
ezplot(rt(1), rt(2), [-1.9, 2.2]); hold on;
h = ezplot(Tp, [-2.3, 0]); set(h, ’Color’, ’r’); % Figure 6.15(c).
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Fig. 6.15 Cuspidal points. Semi-tangent line. Family of curves.

6.2.2 Singular points of implicitly defined curves

What are sufficient conditions for the point (x0,y0) of the implicitly defined plane curve
F(x,y) = 0 to be singular?

Denote by Fx, Fy, Fxx, Fxy, Fyy, Fxxx, Fxxy, Fxyy, Fyyy the partial derivatives at the given
point. Assume that not all partial derivatives of second order at this point (x0,y0) are
zero, and let Δ = FxxFyy −F2

xy.
Let Res( f ,g) be the resultant (see Section 1.5) of the following two polynomials:

f (t) = Fxxt2 +Fxyt +Fyy and g(t) = Fxxxt3 +Fxxyt2 +Fxyyt +Fyyy. In other words,

Res( f ,g) is the determinant of R =

∣
∣
∣∣
∣
∣
∣
∣∣
∣

Fxx Fxy Fyy 0 0
0 Fxx Fxy Fyy 0
0 0 Fxx Fxy Fyy

Fxxx Fxxy Fxyy Fyyy 0
0 Fxxx Fxxy Fxyy Fyyy

∣
∣
∣∣
∣
∣
∣
∣∣
∣

.

One may test the program Resfg (see Section 1.5):

syms Fxx Fxy Fyy Fxxx Fxxy Fxyy Fyyy;
a = [Fxx, Fxy, Fyy];
b = [Fxxx, Fxxy, Fxyy, Fyyy];
Resfg(a, b) % obtain the structure of the matrix R.

The cochleoid, a transcendental curve (see Figure 1.19(b)), has an infinite number
of branches through the pole and tangent to the polar axis; hence, the pole is a singular
point of infinite order. If the Taylor series of the function F(x,y) at the point (x0,y0)
starts from some number k > 2, then we obtain by definition a singular point of order
k. The case k = 2 is treated in the following theorem.

Theorem 6.2. Three cases are possible for the point (x0,y0) on the curve γ : F(x,y)= 0
with conditions Fx(x0,y0) = 0, Fy(x0,y0) = 0:
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Δ

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

> 0, an isolated point of the level set F = 0, type (a),

< 0, the intersection of two branches of the curve F = 0, type (b),

= 0,

{
detR(x0,y0) �= 0, cuspidal point of the first kind, type (c),

detR(x0,y0) = 0, further investigation is required.

Now (using Resfg) we prepare M-file singDR to detect singular points.

function DR = singDR(F, x0, y0) % based on Theorem 6.2
syms x y;
a = [diff(F, x, 2), diff(diff(F, x), y), diff(F, y, 2)];
b = [diff(F, x, 3), diff(diff(F, x, x), y), diff(diff(F, x), y, 2), diff(F, y, 3)];
dF = subs([diff(F, x), diff(F, y)], {x, y}, {x0, y0});
if dF == 0; dF, disp( ’the point is singular’ );
if a == [0 0 0]; warning(’ddF = 0; further investigation is required’);
D = subs(a(1)*a(3) - a(2)ˆ2, {x, y}, {x0, y0});
if D > 0; D, disp( ’D > 0; an isolated point of the level set F = 0’ );
elseif D < 0; D, disp( ’D < 0; intersection of two branches’ );
else
detR = det(subs(Resfg(a, b), {x, y}, {x0, y0}));

if detR == 0; D, detR,
warning( ’D = 0, detR = 0; further investigation is required’ );

else D, detR, disp( ’D = 0, detR �= 0; cuspidal point of the first kind’ );
end end end
else dF, warning(’dF �= 0; the point is regular’);
end

end

Examples.

1. We detect the type of singular point (0,0) on F = 0 using singDR.

(a) The equation (x2 +y2)(x−1) = 0 defines the line x = 1 together with an isolated
point (0,0) at which Fxx = Fyy = −1, Fxy = 0, and Δ > 0.

syms x y; F = (xˆ2 + yˆ2)*(x - 1); % obtain D = 4 > 0;
singDR(F, 0, 0) % isolated point of the level set F = 0.

(b) The equation (x2 + y2)2 − 2a2(x2 − y2) = 0 defines the lemniscate of Bernoulli
(Figure 1.21(c)), with an additional node singular point (0,0) at which Fxx = −2a2,
Fyy = 2a2, Fxy = 0, and Δ < 0. In a neighborhood of the point (0,0) this curve consists
of two elementary curves.

syms x y; F = (xˆ2 + yˆ2 - 2*x)ˆ2 - (xˆ2 + yˆ2); % obtain D = −12;
singDR(F, 0, 0) % intersection of two branches.

(c) The equation y2 − x3 = 0 defines the half-cubic parabola (Figure 6.11(a)), with
a cuspidal point of the first kind (0,0) at which Fxx = Fxy = 0, Fyy = 1, and Δ = 0.
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syms x y; F = yˆ2 - xˆ3; % obtain D = 0; detR = 288;
singDR(F, 0, 0) % cuspidal point of the first kind.

(d) The equation y(y − x2) = 0 defines the parabola y = x2, with the line y = 0
osculating at the singular point (0,0), where Fxx = Fxy = 0, Fyy = 1, and Δ = 0.

syms x y; F = y*(y - xˆ2); % obtain D = −12;
singDR(F, 0, 0) % intersection of two branches.

2. What are the relations between a and b when the curve y2 = x3 +ax+b has a double
point? Plot some of these curves. Answer: 16a3 = −27b2.

syms a b x y t;
F = yˆ2 - xˆ3 - a*x - b;
Fx = diff(F, x); Fy = diff(F, y);
s = solve(F, Fx, Fy, y, a, b) % Answer: s = {b = 2x3, a = −3x2, y = 0}
F1 = subs(F, {a, b}, {-3*tˆ2, 2*tˆ3}) % Answer: F1 = y2 − x3 +3t2x−2t3

S = solve(F1, y) % Answer: S = (2t + x)1/2 (t − x), −(2 t + x)1/2(t − x)
hold on; for i = 0 : 2;
Y = subs(S, t, 2*i);
ezplot(Y(1), [-9, 9]); ezplot(Y(2), [-9, 9]);
end % Figure 6.15(d).

6.2.3 Unusual singular points of plane curves

Some transcendental curves have singular points of more complicated types, for exam-
ple, when the derivative of a function (in the equation of the curve) is not continuous
(see Figure 6.16).

Examples.

1. The right derivative of the function y = e1/x has a discontinuity at x = 0. At the
origin, the graph of the function is interrupted. Such points are called stopping points.

f = @ (x) exp(1).ˆ(1./x);
x1 = -5 : .01 : 0; y1 = f(x1);
x2 = .5 : .01 : 5; y2 = f(x2);
plot(x1, y1, ’r’, x2, y2), grid on; % Figure 6.16(a)

2. The left derivative of the function y = x
1+e1/x has a discontinuity at the point x = 0.

At the origin, the graph of the function is broken: two branches of the curve form the
angle ϕ ∈ (0,π) at this point. Such points are called angular points.
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f = @ (x) x./(1 + exp(1).ˆ(1./x));
X = -1 : .01 : 2;
plot(f(X), ’r’, ’LineWidth’, 3); hold on; grid on;
plot(X); plot(X - X); % Figure 6.16(b)

3. Why is (0,0) a singular point of order 3 of the implicitly given curve x6 −2a2x3y−
b3y3 = 0 (a, b �= 0)?

Solution. Three branches of the curve are tangent to the line y = 0 at (0,0). For x ≈ 0
neglect the term x6 in the equation and then divide it by y: the curve is similar to the
half-cubic parabola 2a2x3 + b3y2 = 0. For y ≈ 0 neglect the term b3y3 and divide the
equation by x3: the curve is similar to the cubic parabola x3 −2a2y = 0.

v = -0.5 : .002 : 0.5; [x, y] = meshgrid(v);
f = ’x.ˆ6 - 2*x.ˆ3.*y - y.ˆ3’;
contour(x, y, f, [0 0]); % Figure 6.16(c)

Fig. 6.16 Unusual singular points of plane curves.

6.3 Length and Center of Mass

We start from basic formulae for calculating the length and center of mass of a curve.
Then we find these characteristics for a regularly inscribed polygon (that approximates
the curve) and compare them with the results obtained by integrating velocity along the
curve.

A polygon σ with vertices P1, P2, . . . ,Pn, is called regularly inscribed in the curve
γ = r(t) (a ≤ t ≤ b) if there exists a partition a = t1 < · · · < tn = b of the segment [a,b]
such that Pi = r(ti).

The length of the polygon is equal to l(σ) = ∑n−1
i=1 |Pi+1Pi|.
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The length of the polygon P1(ρ1,t1), . . . ,Pn(ρn,tn) in polar coordinates is given by
the formula

l(σ) =
n−1

∑
i=1

√
ρ2

i+1 +ρ2
i −2ρi+1 ρi cos(ti+1 − ti),

derived with the help of the cosine theorem.

The length l(γ) < ∞ of the rectifiable curve γ is the least upper bound of the lengths
of all regularly inscribed polygons.

Fig. 6.17 A curve and its regularly inscribed polygon.

Examples of non-rectifiable curves (l(γ) = ∞) appear in Section 5.2. The length of
the C1-regular curve r(t) is the integral of its velocity:

l(γ) =
∫ b

a
|r′(t)|dt. (6.2)

The natural parameterization of the regular curve r(t) is the vector function r̃(s) =
r(t(s)), where t(s) is the inverse function to s(t) =

∫ t
t0
|r′(t)|dt +s0.

The formulae for calculating the length of a curve γ:

1. γ : r(t) = [x(t), y(t), z(t)] ⊂ R
3 : l(γ) =

∫ b
a

√
x ′2 + y ′2 + z ′2 dt,

2. γ : y = f1(x), z = f2(x) in R
3 : l(γ) =

∫ b
a

√
1 + f ′2

1 + f ′2
2 dx,

3. γ : r(t) = [x(t), y(t)] ⊂ R
2 : l(γ) =

∫ b
a

√
x ′2 + y ′2 dt,

4. γ : y = f (x) in R
2 : l(γ) =

∫ b
a

√
1 + f ′2 dx,

5. γ : ρ = ρ(ϕ) in polar coordinates: l(γ) =
∫ b

a

√
ρ2 +ρ ′2 dϕ .

The formula m(γ) =
∫ b

a μ(t)|r′(t)|dt for the mass of the curve r(t) constructed from
thin wire with density μ(t) generalizes (6.2). The center of mass of the plane curve
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r(t) = [x(t),y(t)] (a ≤ t ≤ b) has the coordinates xc(γ) = My/m(γ), yc(γ) = Mx/m(γ),
where

Mx =
∫ b

a
μ(t)y(t)

√
x ′2 + y ′2 dt, My =

∫ b

a
μ(t)x(t)

√
x ′2 + y ′2 dt

are moments of the first order of the curve with respect to OX and OY .

Example. The metric form of curvilinear coordinates in the plane r : R
2 → R

2 (i.e.,
r(u,v) = [x(u,v),y(u,v)]) is the quadratic form

ds2 = E(u,v)du2 +2F(u,v)dudv +G(u,v)dv2,

where E = r2
u = x2

u +y2
u, F = ru ·rv = xuxv +yuyv, and G = r2

v = x2
v +y2

v ; see Section 4.3
and the M-file EFG.m in Section 7.5. For affine coordinates x = a1u + a2v + a0, y =
b1u +b2v +b0 the functions E , F , and G are constant.

The length of the curve γ : u = u(t), v = v(t) (t1 ≤ t ≤ t2) in curvilinear coordinates
in R

2 is given by the formula

l(γ) =
∫ t2

t1

√
E(u(t),v(t))u′(t)2 +2F(u(t),v(t))u′(t)v′(t)+G(u(t),v(t))v′(t)2 dt.

The notation

g11 = E, g12 = F, g22 = G

is often used. There are analogous formulae ds2, gi j(u1,u2,u3), and l(γ) for curvilinear
coordinates r(u1,u2,u3) = [x(u1,u2,u3), y(u1,u2,u3), z(u1,u2,u3)] in space:

ds2 =
3

∑
i, j=1

gi j(u1,u2,u3)dui duj where gi j = ruiruj ,

l(γ) =
∫ t2

t1

√

∑3
i, j=1 gi j(u1,u2,u3)dui duj dt.

We use two methods (integrals, and a regularly inscribed polygon) and compare
results, to solve the problem: find the length and center of mass of a given curve (see
examples and exercises below).

Strategy:

(1) Enter the data for the curve and plot it.
(2) Derive the length and center of mass of the curve, using an integral.
(3) Enter the number of edges n of the inscribed polygon and plot it.
(4) Derive the length and the center of mass of the polygon.
(5) Compare numeric results of steps (2) and (4) for some values of n.
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Examples. Consider four typical situations and programs.

(a) Curves plotted as graphs of functions y = f (x). See Exercise 2(a)–(c), p. 282.

syms x;
a = -2; b = 2; f = xˆ2: % define your function
fx = diff(f, x); nf = sqrt(1 + fxˆ2);
L1 = double(int(nf, x, a, b)) % Answer: L1 = 9.2936 (the length)
My = double(int(x*nf, x, a, b)); Mx = double(int(f*nf, x, a, b));
rc1 = [My, Mx]/L1 % Answer: rc1 = [0,1.823]
n = 6; X = @(i) a + i*(b - a)/n;
F = @(i) subs(f, x, X(i));
for i = 0 : (n - 1);
D(i + 1) = sqrt((F(i + 1) - F(i))ˆ2 + (X(i + 1) - X(i))ˆ2);
Cx(i + 1) = (X(i + 1) + X(i))/2*D(i + 1);
Cy(i + 1) = (F(i + 1) + F(i))/2*D(i + 1); % the center of mass
end
L2 = sum(D), d = abs(L1 - L2)/L1 % Answer: L2 = 9.2936, d = 0.0075
rc2 = [sum(Cx) sum(Cy)]/L2, rc2 - rc1 % Answer: rc2 = [0,1.85], [0,0.03]

Then plot a graph and the regularly inscribed polygon.

hold on; axis equal; ezplot(f, [a, b]); % a graph, Figure 6.18(a)
plot( X(0 : n), F(0 : n), ’- - or’ ); % a polygon

(b) Parametric plane curves. See Exercise 2(d)–(f), p. 282.

syms t;
a = 0; b = 2*pi; x = t - sin(t); y = 1 - cos(t); % cycloid, Figure 6.18(b)
xt = diff(x, t); yt = diff(y, t);
vt = simplify(sqrt(xtˆ2 + ytˆ2));
L1 = double(int(vt, t, a, b)); % Answer: L1 = 8.0000

Mx = double(int(y*vt, t, a, b)); My = double(int(x*vt, t, a, b));
rc1 = [My/L1, Mx/L1] % rc1 = [3.14,1.33]
n = 10; T = @(i) a + i*(b - a)/n;
X = @(i) subs(x, t, T(i));
Y = @(i) subs(y, t, T(i));
for i = 0 : (n - 1);
D(i + 1) = sqrt((Y(i + 1) - Y(i))ˆ2 + (X(i + 1) - X(i))ˆ2);
Cx(i + 1) = (X(i + 1) + X(i))/2*D(i + 1);
Cy(i + 1) = (Y(i + 1) + Y(i))/2*D(i + 1);
end:
L2 = sum(D), d = abs(L1 - L2)/L1 % Answer: L2 := 7.9680, d := 0.0040
rc2 = [sum(Cx) sum(Cy)]/L2, rc2 - rc1; % rc2 = [3.14,1.3], [0,0.034]

Then plot a curve with the regularly inscribed polygon.
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hold on; axis equal;
ezplot(X, Y, [a, b]); % parameterized plane curve, Figure 6.18(b)
plot(X(0 : n), Y(0 : n), ’ - - or’); % a polygon

(c) Curves in polar coordinates. See Exercise 2(g)–(h), p. 282.

syms t; a = 0; b = 2*pi; rho = .2*t; % Archimedes’ spiral, Figure 6.18(c)
rt = diff(rho, t); nr = sqrt(rhoˆ2 + rtˆ2);
L1 = double(int(nr, t, a, b)) % Answer: L1 = 4.2513
n = 12;
T = @(i) a + i*(b - a)/n; R = @(i) subs(rho, t, T(i));
for i = 0 : (n - 1);
D(i + 1) = sqrt(R(i + 1)ˆ2 + R(i)ˆ2 - 2*R(i + 1)*R(i)*cos(T(i + 1) - T(i)));
end
L2 = sum(D), d = abs(L2 - L1)/L1 % Answer: L2 = 4.1892, d = 0.0146

Then plot a curve with the regularly inscribed polygon.

ezpolar(rho, [a, b]); hold on; % a curve in polar coordinates, Figure 6.18(c)
polar(T(0 : n), R(0 : n), ’ - - ro’); % a polygon

Fig. 6.18 Length of a plane curve.

(d) Parametric space curves. See Exercise 2(i)–(k), p. 282, and Figure 6.19.

syms t; a = 0; b = 2*pi; % enter data
x = cos(t)ˆ2; y = cos(t)*sin(t); z = t - sin(t); % Viviani window
xt = diff(x, t); yt = diff(y, t); zt = diff(z, t);
vt = sqrt(xtˆ2 + ytˆ2 + ztˆ2); % velocity
L1 = double(int(vt, t, a, b)) % Answer: L1 = 9.5076 (length)
Myz = double(int(x*vt, t, a, b));
Mxz = double(int(y*vt, t, a, b));
Mxy = double(int(z*vt, t, a, b));
rc1 = [Myz, Mxz, Mxy]/L1; % Answer: rc1 = [0.5169, 0, 3.1416]
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n = 8; T = @(i) a + i*(b - a)/n
X = @(i) subs(x, t, T(i));
Y = @(i) subs(y, t, T(i));
Z = @(i) subs(z, t, T(i));
for i = 0 : (n - 1);
D(i + 1) = sqrt((Z(i + 1)-Z(i))ˆ2 + (Y(i + 1) - Y(i))ˆ2 + (X(i + 1) - X(i))ˆ2);
Cx(i + 1) = (X(i+1) + X(i))/2*D(i + 1);
Cy(i + 1) = (Y(i+1) + Y(i))/2*D(i + 1);
Cz(i + 1) = (Z(i+1) + Z(i))/2*D(i + 1);
end
L2 = sum(D); d = abs(L2 - L1)/L1 % Answer: L2 = 9.0283, d = 0.0504
rc2 = [sum(Cx) sum(Cy) sum(Cz)]/L2 % rc2 = [0.51, 0, 3.14]
rc1 - rc2 % Answer: [0.0051, 0, 0]

Finally, plot a curve with the regularly inscribed polygon.

ezplot3(x, y, z, [a, b]); % a space curve
hold on; axis equal; view(3);
plot3(X(0 : n), Y(0 : n), Z(0 : n), ’ - - or’); % a polygon

Fig. 6.19 Length of a space curve.

6.4 Curvature and Torsion

Using the formulae for curvature and torsion, we will calculate and plot the moving
Frenet frame and the osculating circle of plane and space curves, and illustrate the
fundamental theorem of algebra. Then we will discuss the natural equations (the main
theorem in the theory) of curves.
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6.4.1 Basic formulae

The curvature of a curve γ at a point P is the real number k(P) = limP ′→P Δϕ/Δs =
limΔs→0 Δϕ/Δs (if the limit exists), where Δs is arc length of γ between points P and
P′, and Δϕ is the angle formed by tangent lines at these points. The radius of curvature
of γ at the point P is the real number R(P) = 1/k(P).

In other words, the curvature of a curve is the measure of its deviation from a straight
line in a neighborhood of a given point, and the curvature becomes greater as this
deviation becomes greater.

If r(s) is a natural parameterization of a C2-regular curve in R
3, then the curvature

is k(s) = |r′′(s)| (acceleration).

For an arbitrary C2-regular parameterization r(t) (of this curve), the curvature is

given by the formula k(t) = |r′×r′′|
|r′|3 . Hence,

1. γ : r = [x(t), y(t), z(t)] ⊂ R
3: k(t) =

√
(x′y′′−x′′y′)2+(x′z′′−x′′z′)2+(y′z′′−y′′z′)2

(x ′2+y ′2+z ′2)3/2 .

2. γ : r = [x(t), y(t)] (i.e., z(t) = 0): k(t) = |x′y′′−x′′y′|
(x ′2+y ′2)3/2 .

3. γ : y = y(x), a graph in R
2: k(x) = |y′′|

(1+y ′2)3/2 .

4. γ : F(x,y) = 0 at a point (x,y) ∈ γ : k(x,y) =
|FxxF2

y −2FxyFxFy+FyyF2
x |

(F2
x +F2

y )3/2 .

5. γ : ρ = ρ(ϕ), a graph in polar coordinates: k(ϕ) = |ρ2+2ρ ′2−ρρ ′′|
(ρ2+ρ ′2)3/2 .

6. γ : z = x(t)+ iy(t), in complex plane C: k(t) = − Im(z′ z′′)
|z′|3 .

The curvature κ(s) of a plane curve is given as dθ
ds , where θ (s) is the angle between

the local tangent line and the x-axis. Here s ∈ [0, l] is the natural length parameter of
the curve (see Section 6.3).

A plane curve r(s) = [x(s), y(s)] with a given curvature function κ(s) = θ ′ may be
reconstructed, in view of x ′(s) = cosθ , y′(s) = sinθ , by the formulae

x(s) = x0 +
∫ s

0
cosθ ds, y(s) = y0 +

∫ s

0
sinθ ds, θ =

∫ s

0
κ ds. (6.3)

The osculating circle at the point t of a curve r(t) lies in the osculating plane (which
by definition contains the vectors r′(t) and r′′(t) at the point r(t)); its center coincides
with the curvature center of the curve at the given point, i.e., the endpoint of the vector

1
k(t)ν(t) whose initial point is r(t); and its radius is equal to R(t) = 1/k(t). This circle
is characterized as the “nearest” to the given curve among all circles through the point
on the curve. The set γ̃ of all curvature centers of the plane curve γ is its evolute.

The torsion τ of a C3-regular curve in R
3 is the rotating velocity of the osculating

plane (or the binormal vector) along the curve with natural parameterization. Hence,
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the torsion of a plane curve is identically zero. If r(s) is a C3-regular curve in R
3

with a natural parameter s, the torsion at points with k �= 0 is given by the formula

τ(s) = (r′,r′′,r′′′)
k2 .

For arbitrary C3-regular parameterization r(t) of this curve, the torsion at points

with k �= 0 is given by the formula τ(t) = (r′,r′′,r′′′)
(r′×r′′)2 .

We will illustrate some global theorems regarding the curvature of curves. A prop-
erty of a curve (or of a geometrical object) is called global if it describes the object as a
whole (for example, length, area, closing of the curve, connectedness, or boundedness).
A property is called local if it can be checked in an arbitrarily small part of the object
or neighborhoods of its points (for example, the value of the curvature or torsion, or the
presence of singular points). In a global theorem, a global property is essential either
in the conditions or in its claim. In a local theorem, all conditions and claims are local.

6.4.2 Curvature of a plane curve

For the closed curve r(t) one defines the coefficient of engagement with the point Q,
which shows how many times a point on r(t) under monotone change of t ∈ I rotates
about Q. Check that the coefficient of engagement keeps its (integer) value when the
curve is continuously deformed in the plane without intersecting the point Q.

The winding number m of a closed curve r(t) (i.e., the number of its loops taking
into account their orientation ±) is equal to the coefficient of engagement of its unit
tangent vector τ(t) with respect to the origin O.

The surprising fact is that the integral curvature IC=
∫

γ k of the plane curve equals
2π (m + 1). In particular, the IC of a simple closed plane curve equals 2π . The coeffi-
cient of engagement of a plane curve (used in the proof of the fundamental theorem of
algebra) asserts the existence of a complex root of any polynomial w = fn(z) of degree
n > 0.

Examples.

1. Integral curvature. The IC of an ellipse (a simple closed curve) is equal to 2π.
Show that for Pascal’s limaçon (it has one loop), IC = 4π .

% derive curvature of the limaçon using Program 6.1, p. 276
int(k, t, 0, 2*pi)/(2*pi); % Answer: 2
tt = linspace(0, 2*pi, 41);
plot(tt, subs(k, t, tt), tt, subs(diff(k, t), t, tt)), grid on; % Figure 6.20(b)

2. The curvature of the equiangular spiral z(t) = e(a+i)t is k = e−at/
√

a2 +1.
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Fig. 6.20 Vertices of Pascal’s limaçon. Existence of complex roots.

syms a t real;
z = exp((a + i)*t);
zt = diff(z, t), ztt = diff(zt, t) % z′ = e(a+i)t(a + i), z′′ = e(a+i)t(a + i)2

P = simplify(zt*conj(ztt)) % e2at(a2 +1)(a− i)
imP = factor(imag(expand(P))) % −e2at(a2 +1)
k = simplify(-imP/abs(zt)ˆ3) % (a2 +1)/(eat|a + i|3) = e−at/

√
a2 +1.

3. Fundamental theorem of algebra. Experiment using the next program, which,
along with Figure 6.20(c), illustrates this theorem. The idea of the program is as fol-
lows. Let fn(0) �= 0. The values of fn along the circle |z| = R belong to the curve
γR : fn(R(cos(t)+ isin(t))) (t ∈ [0,2π]), which for “small” R lies near the point fn(0);
i.e., its coefficient of engagement with O is zero. For “large” R the curve γR almost
coincides with the circle taken n times, ω = S1(R,n) : Rn(cos(nt) + isin(nt)); i.e., its
coefficient of engagement with O is equal to n. (In the program, the curve γR under
increasing R will pass through the origin n = 5 times.) Hence, there exists R0 > 0 such
that the curve γR0 passes through the origin. In other words, the polynomial has a root
of the form z0 = R0(cos(t0)+ isin(t0)).

syms z R t y;
n = 5;
p = round(100*(rand(1, n + 1) - .5));
Z = 1;
for j = 1 : n; Z = [ Z zˆj ]; end;
pz = sum(Z*p’) + 10000 % Answer: p = [−37, −35, 0, 0, 97, 98]

Hence, the polynomial p gives us p(z)=−37z5−35z4+97z+10098. Then we restrict
p(z) to a circle of radius R:

f = subs(pz, z, ’R*(cos(t) + i*sin(t))’)
fy = simplify( real(f) ), fx = simplify( imag(f) )

fy := −592R5 cos(t)4 sin(t)+ . . .+140R4 cos(t)sin(t)
fx := −592R5 cos(t)5 + . . .−35R4 % Answer.
N = 20; T = linspace(0, 2*pi, 51);
for n = 0 : N;
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plot(subs(subs(fx, R, 3/N*n), t, T), subs(subs(fy, R, 3/N*n), t, T), ’r’);
axis([-6000 6000 -6000 6000]); pause(.1) % animation

end

4. Reconstruction of a plane curve. We recover a plane curve from its curvature func-
tion k(s) > 0. See (6.3).

a = 0; b = pi; % enter data
sys2 = inline(’[2; cos(X(1)); sin(X(1))]’, ’s’, ’X’); % replace 2 by your k(s)

% For k(s) = s you obtain a clothoid, Figure 5.6(a).
[s, Xs] = ode45(sys2, [a b], [0,0,0]); % Answer: θ = Xs1, x = Xs2, y = Xs3

plot(Xs(:, 2), Xs(:, 3)); axis equal % a circle for k = const (a plane curve)

5. Osculating circle. We plot the moving osculating circle of a plane curve (ellipse,
logarithmic spiral, etc.).

a = 2; b = 1; t1 = 0; t2 = 2*pi;
r = [a*cos(t), b*sin(t)]; % ellipse
r1 = diff(r, t); r2 = diff(r1, t); d = sqrt(r1*r1’);
T = simplify(r1/d); N = [-T(2), T(1)]; % unit tangent and normal vectors
k = simplify((r1(1)*r2(2) - r1(2)*r2(1))/dˆ2) % the curvature k = 2

3sin2 t+1
Circ = r + N/k + (N*cos(2*pi*s) + T*sin(2*pi*s))/k; % the osculating circle
m = 18; for n = 0 : m; % prepare animation
ezplot(r, [t1, t2]); hold on; axis equal;
tn = t1 + n*(t2 - t1)/m; C = subs(Circ, t, tn);
rT = subs(r + s*T, t, tn); rN = subs(r + s*N, t, tn);
hn = ezplot(rN(1), rN(2), [0, 1]); set(hn, ’Color’, ’r’);
ht = ezplot(rT(1), rT(2), [0, 1]); set(ht, ’Color’, ’r’);
hc = ezplot(C(1), C(2), [0, 1]); set(hc, ’Color’, ’g’);
pause(0.1); hold off;
end; % Figure 6.21(a).

6.4.3 Curvature and torsion of a space curve

We compute the characteristics of a C3-regular space curve at an arbitrary and given
point (starting with the circular helix).

Program 6.1 (Investigation of a space curve).

syms t x1 y1 z1 real;
syms a R real; x = R*cos(t); y = R*sin(t); z = a*t; t0 = 1; % enter data
% x = cos(t); y = sin(t); z = tˆ2; t0 = pi/4; % another example
r = [x, y, z];
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r1 = diff(r, t); r2 = diff(r1, t); r3 = diff(r2, t); % derivatives of r(t)
Tp = [(x1 - x)/r1(1), (y1 - y)/r1(2), (z1 - z)/r1(3)]; % tangent line
p1 = simplify(det([[ x1 - x, y1 - y, z1 - z]’, r1’, r2’ ])); % osculating plane (T,N)
b1 = cross(r1, r2); B = simplify(b1/sqrt(b1*b1’)); % binormal
d = sqrt(r1*r1’); T = simplify(r1/d); % unit tangent vector
N = cross(B, T); % the main normal
p2 = collect(T*[x1 - x, y1 - y, z1 - z]’, [x1, y1, z1]); % normal plane (N,B)
p3 = collect(N*[x1 - x, y1 - y, z1 - z]’, [x1, y1, z1]); % rectifying plane (T,B)
k = simplify((r1(1)*r2(2) - r1(2)*r2(1))/dˆ3);
tau = -simplify(det([r1’, r2’, r3’])/(b1*b1’)); % Ans.: k = R

a2+R2 , τ = a
a2+R2

For economy of space only the two results k(t) and τ(t) are given.

x0 = limit(x, t, t0); z0 = limit(z, t, t0); % Compute the point t0.
Tp0 = simplify(subs(Tp, t, t0))
T0 = subs(T, t, t0), B0 = subs(B, t, t0), N0 = subs(N, t, t0)
p10 = subs(p1, t, t0), p20 = subs(p2, t, t0), p30 = subs(p3, t, t0)
k0 = subs(k, t, t0)
tau0 = subs(tau, t, t0)

The absolute integral curvature AIC =
∫

γ |k| of a closed space curve γ is not less
than 2π, and equality holds exactly for plane convex curves. If for a closed space curve
AIC < 4π holds, then the curve is not engaged.

Examples.

1. One may use Program 6.1 to find the AIC of the Viviani window.

R = 1; r = [R*cos(t)ˆ2, R*cos(t)*sin(t), R*sin(t)]; t1 = 0; t2 = 2*pi;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . % compute k(t)
AIC = int(k, t1, t2)

2. Plot the moving Frenet frame and osculating circle of a space curve, using the test
example of the Viviani curve.

syms t s;
R = 2; t1 = 0; t2 = 2*pi;
r = [R*cos(t).ˆ2, R*cos(t).*sin(t), R*sin(t)];
r1 = diff(r, t); r2 = diff(r1, t); r3 = diff(r2, t);
d = simplify(sqrt(r1*r1’));
T = simplify(r1/d);
b1 = cross(r1, r2); B = simplify(b1/sqrt(b1*b1’));
N = cross(B, T);
k = simplify(sqrt(b1*b1’)/dˆ3);
C = r + N/k + (N*cos(2*pi*s) + T*sin(2*pi*s))/k;
S = linspace(0, 1, 2); K = linspace(0, 1, 20);
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Then plot the animation:

m = 32;
for n = 0 : m;
tn = t1 + n*(t2 - t1)/m;
Tn = subs(r + s*T, t, tn);
Nn = subs(r + s*N, t, tn);
Bn = subs(r + s*B, t, tn);
Cn = subs(C, t, tn);
ezplot3(r(1), r(2), r(3), [t1, t2]); hold on; axis equal;
plot3(subs(Tn(1), s, S)+S-S, subs(Tn(2), s, S)+S-S, subs(Tn(3), s, S)+S-S);
plot3(subs(Nn(1), s, S)+S-S, subs(Nn(2), s, S)+S-S, subs(Nn(3), s, S)+S-S);
plot3(subs(Bn(1), s, S)+S-S, subs(Bn(2), s, S)+S-S, subs(Bn(3), s,vS)+S-S);
plot3(subs(Cn(1), s, K)+K-K, subs(Cn(2), s, K)+K-K, subs(Cn(3), s, K)+K-K);
pause(0.1); hold off;
end; % Figures 6.21(b,c).

Fig. 6.21 Frenet frame field and osculating circles.

Natural equations of a curve. The theorem on the existence and uniqueness up to
congruence of naturally parameterized curves in space with given continuous curvature
and torsion (i.e., rotating velocity of the binormal) is the culmination of the classical
theory of curves. The condition of continuity imposed on the curvature and the torsion
allows us to apply theorems of ordinary differential equations to the Frenet formulae,
but this a priori condition narrows the class of curves for which the theorem holds. The
following result, where continuity of functions is replaced by the rather weak condition
(b), removes this gap in the classical theory of curves, and completes it.

Theorem 6.3. Let fi : I → R (i = 1,2) be two functions.

1. If the following conditions are satisfied,
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(a) f1(t) > 0, f2(t) ≥ 0 on all of I, and

(b) each of the functions fi has a primitive function,

then there exists a unit-speed curve γ : I → R
3 with curvature k = f1 and torsion τ = f2

that has a differentiable Frenet frame.

2. For the existence of the unit-speed curve γ : I → R
3 with curvature k = f1 and tor-

sion τ = f2, up to congruence, it is necessary and sufficient that conditions (a), (b) be
satisfied together with the following property:

(c) The set {t ∈ I : f2(t) > 0} is connected.

Example. Plot a space curve r(t)⊂ R
3 of class C3 composed of two copies of the plane

curve y = x4 for x ≥ 0 (Figure 6.22(c)), and find its curvature and torsion.

Solution. Obviously, y′′ = 12x2 and k(0) = 0. Rotate the branch for x ≤ 0 about OY
through the angle 90◦ and obtain the required curve r(t). The curvature k(t) of r(t)
vanishes at only one point, but with torsion τ(t) ≡ 0 except one point,

x(t) = t, y(t) = {0 if t < 0 else t4}, z(t) = {t4 if t < 0 else 0}.

Finally we check that the torsion τ ≡ 0 (both branches are plane curves) and the curva-
ture vanish only at the point (0,0,0).

t1 = linspace(-1.3, 0, 21); t2 = linspace( 0, 1.3, 21);
z1 = t1.ˆ4;
y2 = t2.ˆ4;
r1 = [t1, t1 - t1, z1];
r2 = [t2, y2, t2 - t2];
hold on; view(3); grid on;
plot3(t1, t1-t1, z1, ’g’, ’LineWidth’, 2);
plot3(t2, y2, t1-t1, ’r’, ’LineWidth’, 2); % Figure 6.22(c)

6.5 Exercises

Section 6.1 1. Using symbolic manipulations in MATLAB, deduce the equation of
the tractrix and then plot it.

Hint:

syms t a Dx Dy Dt;
X = a*sin(t);
q1 = diff(X, t)*Dt; q2 = tan(t)*Dy;
eq1 = Dx - q1, eq2 = Dx - q2 % eq1 = Dx−acostDt, eq2 = Dx− tantDy
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Fig. 6.22 No regular curve with k = |ψ ′|. Curve with τ(t) ≡ 0.

eq3 = subs(eq2, Dx, q1) % Answer: eq3 = acos t Dt − tan t Dy
D = simple(solve(eq3, Dy)/Dt) % Answer: D = acos t/tan t
Y = simplify(int(D, t)) % Answer: Y = acos t +a ln( sin t

cos t+1)
ezplot([X/a, Y/a], [.2, pi - .1]);

Continuation: Now derive and plot the tangent line to the tractrix. Try to animate the
tangent line.

y0 = simplify(Y - X*diff(Y, t)/diff(X, t));
h = ezplot([X/a, Y/a], [.17, pi-.17]); hold on; set(h, ’Color’, ’r’); % a curve
for i = 1 : 10;
tt = pi/2 + i/9;
Y0 = subs(y0, t, tt)/a;
X1 = subs(X, t, tt)/a;
Y1 = subs(Y, t, tt)/a;
ezplot((1 - t)*[X1, Y1] + t*[0, Y0], [0, 1]); % tangent lines (segments)

end; % Figure 6.3(c)

2. Calculate and plot the asymptotes of the graph y = 3
√

6x2 − x3.
Answer: the two-sided asymptote y = −x +2 (Figure 6.4(c)).

syms x;
f = (6*xˆ2 - xˆ3).ˆ(1/3);
k = limit(f/x, -inf); b = limit(f - k*x, -inf); % Answer: k = −1 b = 2
f1 = ’sign(6*xˆ2 - xˆ3)*abs(6*xˆ2 - xˆ3)ˆ(1/3)’;
hold on; ezplot(f1, [-6 10]);
ezplot(k*x + b, [-6 10]);

3. Plot the following space curve and find its three asymptotes.
Hint: coordinate axes.

f = exp(-tˆ2);
r = [f*(t - 2)*(t - 1)/t, f*(t -v2)*t/(t - 1), f*t*(t - 1)/(t - 2)];
ezplot3(r(1), r(2), r(3), [-.5, .5])
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4. Check that the discriminant y = 0 of the family ϕ = y3 − (x − t)2 consists of
singular points of members of the family.

u = linspace(-1.1, 1.1, 41); hold on;
for t = 1 : 7;

plot(u.ˆ3 + 2*t, u.ˆ2/10);
end

5. Plot a parabola, an ellipse, and a hyperbola, using the following algorithms:
(a) Fix a line l and a point S that does not belong to this line. Start to plot from

points Pt ∈ l lines lt that are orthogonal to the segment PtS. After plotting sufficiently
many lines lt , note that they envelop a curve γ , which is symmetric with respect to the
perpendicular SA from the point S onto the line l. The line l itself also is tangent to this
curve (when the point Pt coincides with A). Prove that γ is a parabola.

(b) Fix a circle with center at O and a point S inside of the circle. Join S by a line
with any point Pt of the circle and push through Pt the line orthogonal to SPt . Show that
all these lines are tangent to an ellipse.

(c) Fix a circle with center C and a point S outside the circle. Join S with points Pt

on the circle, and plot perpendiculars to the segments SPt from the points Pt . Prove that
the two branches of the envelope form a hyperbola.

6. Show that the evolute of an ellipse r(t) = [acos(t), bsin(t)] is the prolate astroid

xev =
a2 −b2

a
cos3(t), yev =

b2 −a2

b
sin3(t) (Figure 6.11(b)).

Assume (in the program of Example 1, p. 259):

a = 3; b = 2;
x = t; y = tˆ2;
t1 = -2; t2 = 2; t3 = t2 - 1;

7. Prove that the catenary is the evolute of the tractrix (Figure 6.11(c)). In the pro-
gram of Example 1, p. 259, assume a = 1; t1 = .25; t2 = pi - .25; etc.

8. Check that the evolute of the epicycloid (the hypocycloid) is again the epicycloid
(resp., the hypocycloid), similar to the given curve with coefficient of similarity 1

2m+1 ,
and rotated with respect to it through the angle mπ.

9. Plot the evolvents of the figure eight curve r(t) = [sin(t), sin(2t)].
10. Write programs to illustrate the following problems:
(a) A pencil of parallel rays is reflected by the inner side of a half-circle; plot the

caustic of reflecting rays. Answer: a nephroid.
(b) The catacaustic of the logarithmic curve y = a log(x/a) for rays parallel to OX

is the catenary x = acosh((y +a)/2).
(c) The catacaustic of a deltoid is an astroid.
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Section 6.2 1. Show that the point t = 0 of the curve x(t) = t3, y(t) = t5 is regular
with respect to parameterizations of class C1 (the curve is the graph

of the function y = x5/3 of class C1), but t = 0 is singular with respect to analytic
parameterizations.

2. Find the connected curve whose singular points belong to k branches of the curve.
Hint. Consider the roses ρ = sin(nϕ) in rectangular coordinates, where n = k for odd
k, and n = 1

2k for even k.
3. Show that
(a) Pascal’s limaçon (x2 + y2 −2ax)2 −b2(x2 + y2) = 0 for b > 2a > 0 has a singu-

larity at (0,0) with analogous properties to that of the curve a2y2 + x4 − y4 = 0;
(b) an analogous situation to (b) of Example 1, p. 265, appears for Pascal’s limaçon

for 0 < b < 2a (Figure 1.34(c)), and for the folium of Descartes (Figure 5.6(c));
(c) an analogous situation to (c) of Example 1, p. 265, appears for the cycloid and

the cycloidal curves (astroid, deltoid, etc.);
(d) the point (0,0) on the curve 4x2(x2 − a2)+ m2y4 = 0 has analogous properties

to (d) of Example 1, p. 265.
4. Find the singular points of the following curves, and explain their type:
(a) the cycloid Rt −Rsin(t), y = R−Rcos(t),
(b) the cissoid y2 = x3/(2a− x) ⇐⇒ r(t) =

[
2a/(1 + t2), 2a/(t(1 + t2))

]
,

(c) the trisectrix of Maclaurin x(x2 + y2) = a(3x2 − y2),
(d) the astroid x = Rcos3(t/4), y = Rsin3(t/4),
(e) y3 = ax2 + x3,
(f) the trefoil or cloverleaf 27

4 a2(x2 + y2 −a2)+ax3 −3axy2 − (x2 + y2)2 = 0,
(g) the rosette, given by the polar equation ρ = asin(ϕ

2 ), or by the equation in rect-
angular coordinates 4(x2 + y2)3 −4a2(x2 + y2)2 +a4y2 = 0.

Answer for (g): the curve has a double point of self-tangency at the origin and two
nodes at the points (0, ±a/

√
2).

Section 6.3 1. Show that the natural parameterization has unit speed: | r̃′(s)| = 1.
2. Find the lengths and centers of mass (for μ ≡ 1) of the following

curves by two methods (integrals, and a inscribed polygon), and compare the results:
(a) parabola y = x2 and (b) half-cubic parabola y = x3/2, 0 ≤ x ≤ 4,
(c) catenary y = acosh(x/a), 0 ≤ x ≤ x0,
(d) arc of a cycloid r(t) = [a(t − sint), a(1− cost)], 0 ≤ t ≤ 2π ,
(e) ellipse r(t) = [acost, bsint], 0 ≤ t ≤ 2π ,
(f) astroid r(t) = [acos3 t, asin3 t], 0 ≤ t ≤ π

2 ,
(g) Archimedes’ spiral ρ(t) = at, 0 ≤ t ≤ 2π,
(h) cardioid ρ(t) = a(1 + cost), 0 ≤ t ≤ 2π,
(i) circular helix r(t) = [a cost, a sint, vt], 0 ≤ t ≤ 4π,
(j) conic circular helix r(t) = [t cost, t sin t, vt], 0 ≤ t ≤ 6π ,
(k) Viviani curve r(t) = [cos2 t, cost sint, sin t], 0 ≤ t ≤ 2π.
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3. Find the center of mass of the arc of a circle with angle ϕ and density μ(x) = 1.
4. The arc length of the ellipse r = [acost, bsint] is expressed by the elliptic integral

of the second kind l(t) = a
∫ t

0

√
1− ε2 sin2 t dt = aE(ε,t) (see Section 1.2), where ε =√

1− (b/a)2 is its eccentricity. The integral E(ε) = E(ε , π/2) related to one-fourth of
the length of the ellipse is called the full elliptic integral. Show that the length of the
Viviani curve r = [cos2 t, cost sin t, sin t] is equal to 4E(

√
2/2).

5. Find the natural parameterization of
(a) a circle, (b) a circular helix, (c) a catenary, (d) an ellipse, (e) a conic helix.

Hint. (a) For the circle r(t) = [Rcost, Rsint], we have s′ = R ⇒ s = Rt ⇒ t = s/R,
where t is the angle of the vector r(t) with the axis OX . Its natural parameterization is
r̃(s) = r(s/R) = [Rcos(s/R), Rsin(s/R)].

6. Find the length of the torus knot K(m,n); see Section 5.4.
7. Derive the lengths of the edges of a triangle and its area through the coordinates

of its vertices.

Section 6.4 1. Check that Pascal’s limaçon, ρ = acos(ϕ)−b, has positive curva-
ture k(t) (Figure 6.20(a,b)), but it is not a convex curve.

a = 1; b = .2;
t1 = 0; t2 = 2*pi;
r = [(a*cos(t) - b)*cos(t), (a*cos(t) - b)*sin(t)];
ezplot(r), grid on; % see Figure 6.20(a)

The function k ′(t) has two extrema (Figure 6.20(b)), and hence the curve has two ver-
tices; see the program. Also the curvature of the lemniscate has only one maximum and
one minimum.

This means that the “convex” property of the curve in the theorem on the existence
of at least four vertices on an oval is not superfluous.

2. Plot any oval (convex closed curve) with 2n > 4 vertices.
Hint. Such an oval intersects some circle in 2n points.

3. Calculate the IC for the lemniscate of Bernoulli and the roses ρ = sin(5ϕ). Check
that the IC of a prolate epicycloid with modulus m = a

b , where a, b are relatively prime,
equals 2π b.

4. At the point t0 of the curve r = r(t) ⊂ R
3 derive the tangent line, binormal vector,

main normal vector, osculating plane, normal plane, rectifying plane, Frenet frame,
curvature, and torsion.

(1) r(t) = [et , e−t , t
√

2], t0 = 0, (2) r(t) = [ t2

2 , 2t3

3 , t4

2 ], t0 = 1,

(3) r(t) = [t, t2/2, t3/6], t0 = 1, (4) r(t) = [t, t2

3 , 1
2t ], t0 = 1,

(5) r(t) = [sin(t), cos(t), t2], t0 = π
4 , (6) r(t) = [2t, ln t, t2], t0 = 1,

(7) r(t) = [cos(t), sin(t), t3 −9t], t0 = 0, (8) r(t) = [t, t2, et ], t0 = 0,
(9) r(t) = [t, t3, t2 +4], t0 = 1, (10) r(t) = [t, t2 +2, t3 +3], t0 = 1.
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5. Let a sphere have contact of order ≥ 3 with a curve γ at p, and let r(t) be a
C3-regular parameterization of γ , with r(t0) = p. Then the center of the sphere is C =
r(t0)+ 1

k N + k′
k2τ B, where N is the main normal and B the binormal at p. Such a sphere

is called the osculating sphere of γ at p.
(a) Compute and plot the osculating spheres of the curves r = r(t) ⊂ R

3 given in
Exercise 4 at the point t0.

(b) Show that the osculating sphere is the limit of a variable sphere passing through
four points of γ as these points approach p.

6. Calculate the absolute integral curvature AIC =
∫

γ |k| of the torus knot K(m,n):
r(t) = [(3+cos(mt))cos(nt), (3+cos(mt))sin(nt), sin(mt)] for small m, n (see Figure
5.20, Section 5.4).

7. Plot a unit-speed curve γ in R
2 with curvature k that has no primitive function.

In view of the theorem above, there does not exist a naturally parametric curve with
curvature k.
Hint. Define the function ψ(t) by the formulae ψ(0) = 0 and ψ(t) = t2 sin(2π/t2)
(t �= 0), and set e1(t) = cos(ψ)i + sin(ψ)j. Obviously, the derivative ψ ′(t) exists, and
e′

1 = ψ ′e2 holds, where e2(t) = −sin(ψ)i+ cos(ψ)j. Deduce that there exists a curve
r(t) ⊂ R

2 such that r′ = e1 is naturally parametric and k(t) = |ψ ′(t)| is its curvature.
Assume that ϕ : R → R is a primitive function of k(t). Then ϕ is non-decreasing, but

since the segments In = [ 1√
n+.5

, 1√
n+.25

] do not intersect, the sequence an = ϕ( 1√
n+.5

−
1√

n+.25
) converges. At the same time, ϕ ′ ≥ 0 on each segment In (check this). Thus for

In we have ϕ ′ = k = |ψ ′| = ψ , and an = ψ( 1√
n+0.5

− 1√
n+0.25

) = 1
n+0.25 holds, contrary

to the convergence of the sequence {an}. Hence, by Theorem 6.3 the curve r(t) is not
regular.

syms t;
f = tˆ2*sin(2*pi/tˆ2);
grid on; ezplot( f, [.2, 2.5]),
ezplot(diff(f, t), [.45, 2.5]); % Figures 6.22(a,b).

8. Write a program to solve the Frenet natural equations for space curves. Then use
it for drawing a curve with given curvature and torsion.

9. Write a program showing how a circle through three points on a curve tends to
the osculating circle at P as the three points approach P.
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Geometry of Surfaces

In Section 7.1 we consider the basic notions of a parametric surface and a regular
surface, and use a number of MATLAB R© commands to produce surfaces by various
methods. (Similar definitions for curves were studied in Section 5.1). In Section 7.2 we
calculate and plot the tangent planes and normal vectors of a surface. As an application
we solve conditional extremum problems in space. In Section 7.3 we consider para-
metric and implicitly defined surfaces with singularities. In Section 7.4 we use changes
in coordinates and linear transformations in space to calculate and plot the osculating
paraboloid at a point of a surface. This elementary approach is given only for method-
ical reasons. In Section 7.5 we calculate characteristics related to the first and second
fundamental forms, the Gaussian and mean curvatures, write down the equations of
geodesics using the M-file (program) of Section A.8, and plot geodesics on surfaces.

7.1 Regular Surface

7.1.1 What is a surface?

Euclid defines a surface intuitively, as a two-dimensional figure either swept by the
path of a moving curve, or bounding a solid body. Planes, some polyhedra, and curved
surfaces, each defined in some practical way, are studied in school. The mathematically
correct definition of a surface is based on notions from topology, but it starts from the
key notion of an elementary surface, which can be imagined as an elementary domain
of the plane after continuous deformation that is stretched in and out in space.

We call G ⊂ R
n (n = 2,3) an open set if for each point P ∈ G there exists ε > 0

such that the ball B(P,ε) of radius ε with center P (the disk, when n = 2) lies inside
of G. The complement F = R

3 \ G of an open set G is called a closed set. Open sets

V. Rovenski, Modeling of Curves and Surfaces with MATLAB R© , 285
Springer Undergraduate Texts in Mathematics and Technology 7, DOI 10.1007/978-0-387-71278-9 7,
c© Springer Science+Business Media, LLC 2010
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(or domains) are convenient for working with continuous and differentiable functions
defined on such sets. An arbitrary open set is the union of a finite or countable number
of disjoint domains.

Recall that a homeomorphism is a one-to-one correspondence between points in two
geometric figures that is continuous in both directions.

As in the definition of an elementary curve, we use the notion of a homeomorphism
from one geometric figure to another, i.e., a one-to-one map that is continuous and has
a continuous inverse.

A set M in space is called an elementary surface if it is the image of a planar el-
ementary domain G under the homeomorphism r : G → R

3. An open set in the plane
(in space) that is homeomorphic to a disk (respectively, a ball) is called an elementary
domain.

The following two elementary domains in the plane with coordinates u, v are often
used: the disc u2 + v2 < R2 of radius R and the rectangle with sides a, b parallel to the
coordinate axes.

Since we will also be interested in self-intersecting surfaces, we give the following
definition:

A set M in R
3 is called a surface if it can be covered by a finite or countable number

of elementary surfaces. A surface M is called a simple surface if it has no points of
self-intersection.

The notion of an elementary surface is sufficient for local study of surfaces (i.e., in
a neighborhood of some point). An elementary surface is a simple one. The following
surfaces are simple but not elementary: a sphere, Figure 8.1(b) (which can be covered
by two disks); a circular cylinder, Figure 7.3(a) (covered by two cylindrical strips, each
homeomorphic to a rectangle); a torus, Figure 7.1(b) (covered by four rectangles).

The following surfaces are not simple: the Klein bottle, Figure 7.3(c) (whose points
of self-intersection form a circle); a cone, Figure 7.16(a) (whose vertex is a singular
point); a pair of intersecting planes (whose self-intersection points form a line); the
pinched torus, Figure 7.1(c) (whose self-intersection points form two line segments).
A more complicated example is the union of a countable number of cylinders with the
common generatrix OZ: M =

⋃
n∈N{x2 + (y − n)2 = n2}. It cannot be covered by a

finite number of elementary surfaces.

If we fix rectangular coordinates (with the orthonormal basis {i, j, k}) with origin O
in R

3, then the coordinates x, y, z of a point on an elementary surface given by the map
r are scalar functions of the coordinates u, v of a point in the elementary domain G:

x = x(u,v), y = y(u,v), z = z(u,v). (7.1)

So, r =
−→
OP (the position vector of P = (x,y,z) ∈ M) is the vector function
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Fig. 7.1 An elementary surface, the torus, and the pinched torus.

r = r(u,v) = x(u,v) i+ y(u,v) j+ z(u,v)k, (u,v) ∈ G. (7.2)

If the starting point of a continuous vector r(u,v) coincides with the origin O, then its
endpoint, as a rule, moves along a surface in R

3 called the hodograph of the vector-
valued function. For example, a plane in space is the hodograph of a linear vector-
valued function

r(u,v) = [a1u +b1v + c1, a2u +b2v + c2, a3u +b3v + c3].

Example. We can derive some calculus-type operations on vector-valued functions
r(u,v) = [x(u,v), y(u,v), z(u,v)] of class Ck.

syms u v;
x = uˆ2; y = vˆ2; z = u*v; % define your functions
r = [x, y, z];

The limit lim(u,v)→(u1,v1) r(u,v), and the partial derivatives ∂
∂u r = ru, ∂

∂v r = rv:

u1 = 2; v1 = 1; % define values
r1 = subs([x, y, z], {u, v}, {u1, v1}) % Answer: r1 = [4,1,2]

ru = diff(r, u), rv = diff(r, v) % Answer: ru = [2u,0,v], rv = [0,2v,u]

Similarly, we calculate the second partial derivatives ruu, rvv, ruv, the Taylor expansion
(see Section 7.4), etc.

taylor(sin(u*vˆ2), 11) % Answer: uv2 − (u3v6)/6 +(u5v10)/120.

We call (7.1) or (7.2), representing a map r : G → R
3 from the planar open set G

into R
3, the parametric equations of the surface M = r(G): the pair of real numbers

(u,v) constitutes the curvilinear coordinates of the point P = (x,y,z) on the surface.
Taking v = v0 as a constant and u = t as varying, we obtain the coordinate u-curve on
the surface M, which also is the space curve r(t,v0). Similarly, for a constant u = u0

and v = t varying, we obtain the v-curve on the surface M, that is, the space curve
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Fig. 7.2 Parameterized (elementary) surface.

r(u0,t). These two families of curves (v-curves and u-curves) form the coordinate net
of the surface, Figure 7.2.

A curve γ on the surface M is defined by equations in the curvilinear coordinates
u = u(t), v = v(t) (t ∈ I). The equations of γ(t) in space are

x̃(t) = x(u(t),v(t)), ỹ(t) = y(u(t),v(t)), z̃(t) = z(u(t),v(t)).

subs(r, {u, v}, {u(t), v(t)});

Sometimes we consider surfaces with a boundary: the boundary of an elementary
surface is homeomorphic to a circle (the image of the boundary of an elementary do-
main); the boundary of the half-plane is a line; the boundary of a cylinder (between its
parallels) is a pair of circles, Figure 7.3(a); the boundary of the Möbius band, Figure
7.3(b), is a circle.

The Möbius band is obtained when we twist a thin strip (of paper) through a 180◦
angle and then glue its lateral sides. A remarkable property of the Möbius band is that
it has only one side. Moreover, a surface that “contains” a Möbius band is called one-
sided (or non-orientable). Another example of a one-sided surface is the Klein bottle,
Figure 7.3(c).

Fig. 7.3 Circular cylinder, Möbius band, and Klein bottle.
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A simple surface M is called complete if the limit point of any sequence of its points
which converges in R

3 belongs to M. If a complete surface does not have a boundary,
it is called closed. A closed and bounded surface is called compact.

Paraboloids, hyperboloids and cylinders are examples of closed surfaces. The
sphere, the torus, and Klein bottle are compact surfaces. Omitting a closed set from
a complete surface, we obtain a non-complete surface.

7.1.2 Regular surfaces

By definition, a simple surface can be defined (locally) by parametric equations: see
(7.1), (7.2). Suppose that the coordinate functions x(u,v), y(u,v), z(u,v) are defined on
some planar elementary domain G and are of class Ck. In this case the u- and v-curves
(space curves) are of class Ck, and we find their velocity vectors

ru = x′
u(u,v)i+ y′

u(u,v)j+ z′u(u,v)k (of the u-curve),

rv = x′
v(u,v)i+ y′

v(u,v)j+ z′v(u,v)k (of the v-curve).

Definition 7.1. A surface M is called regular of class Ck (resp. C∞ or Cω ) if each of its
points has a neighborhood with the parametric equations

r(u,v) = [x(u,v), y(u,v), z(u,v)],

where the functions x(u,v), y(u,v), z(u,v), defined on the elementary domain G ∈ R
2,

are of class Ck (resp. C∞ or Cω ); moreover, the vectors ru(u,v) and rv(u,v) should be
linearly independent at every point (u,v) ∈ G. A surface is smooth when k = 1.

A point P on a simple surface M is called a regular (smooth) point if some neigh-
borhood of P admits a Ck-parametric equations r(u,v) such that the vectors ru and rv

are linearly independent at P; otherwise, P is called a singular point (for example, the
vertex on the top of a circular cone or the bottom fold of such a cone). A curve on a
surface all of whose points are singular is called a singular curve (for example, two
line segments on the pinched torus, Figure 7.1(c)).

A surface without singular points is smooth. Its small open sets look like plane disks
slightly deformed in space.

Although a regular surface admits a number of parametric equations locally, there
does not exist a “natural” way to parameterize it. We consider the transition from one
set of parametric equations to another.

Example. Show that r(u,v) =
[

a(uv+1)
u+v , b(u−v)

u+v , uv−1
u+v

]
is a C∞-regular parameterization

of part of a hyperboloid of one sheet.
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What are the coordinate curves of these parameterizations?

Solution. (i) First check the regularity condition (b) of Exercise 1, p. 314.

syms u v; r = [u + v, u - v, uˆ2 + vˆ2];
ru = diff(r, u); rv = diff(r, v); cross(ru, rv)

[2u +2v, 2u−2v, −2] % obtain a nonzero vector.

Then substitute the vector-valued function into the explicit equation:

syms x y z u v;
simplify(subs(z - (xˆ2 + yˆ2)/2, {x, y, z}, {u + v, u - v, uˆ2 + vˆ2})) % obtain 0

We plot graphs by two methods:

ezsurf(r); ezsurf((xˆ2 + yˆ2)/2);

The command ezmesh returns the same surface

ezmesh(u + v, u - v, uˆ2 + vˆ2);

Lemma 7.1. Let f : G → M be Ck-regular parametric equations of a surface M and
let h : G1 → G be an injective map of class Ck of the elementary domain G1 into the
elementary domain G with nonzero jacobian Jh. Then the composition f1 = f◦h : G1 →
M is also a Ck-regular parametric patch on M (Figure 7.4).

Proof. Define f by the vector-valued function r = [x(u,v), y(u,v), z(u,v)]. Let h be
given by u = ϕ(α ,β ), v = ψ(α ,β ). The composition f1 is

r̃(α ,β ) = [x(u(α ,β ),v(α ,β )), y(u(α ,β ),v(α ,β )), z(u(α ,β ),v(α ,β ))].

By standard theorems from calculus, the map f1 : r̃ = r(ϕ(α ,β ), ψ(α ,β )) is of class
Ck. To prove the regularity of the map f1 we start with r̃α = ruϕα +rvψα , r̃β = ruϕβ +
rvψβ . Moreover, |ru×rv| �= 0, in view of the regularity of the parameterization f. Hence

|r̃α × r̃β | = |ru × rv| · |ϕαψβ −ϕβ ψα | = |ru × rv| · Jh �= 0. ��

7.1.3 Methods of generating surfaces

The graph of a function f : G ⊂ R
2 → R in two real variables (x, y) is the set Γf =

{(x,y,z) ∈ R
3 : z = f (x,y), (x,y) ∈ G}. The level line with height c of f is the set

f−1(c) = { f (x,y) = c}; for example, isobars and isotherms on geographical maps.
For a function F(x,y,z) defined on the open set G ⊂ R

3, the similar set F−1(c) =
{F(x,y,z) = c} is called the level surface of height c of F . In this notation, the real
number c is called the height of the level set.
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Fig. 7.4 A change of variables on a surface.

Among surfaces of the second order, the paraboloids z = x2/p ± y2/q, and the
parabolic cylinders z = x2, can be viewed as graphs.

A function in several variables has associated to it a number of level sets (forming
the contours of the function), which are useful for studying the qualitative properties of
the functions.

Intersecting the graph Γf with the horizontal plane z = c and projecting the inter-
section onto the plane XY , we obtain the level line f −1(c); see Figure 7.5. Instead of
graphs of complicated functions, it is often more convenient to draw their contours
{ f −1(c)} (c ∈ R). Fixing level lines through equal intervals of values 0, ±d, ±2d, . . . ,
we can judge the steepness of the graph by the density of level lines. Level lines lie
closer together where the slope of the graph to the horizontal plane is larger. Projec-
tions with real marks are used in the construction of earthworks and in drawing. Level
sets are also useful in problems with extrema; see Section 7.2.

In addition to parametric equations of the surface M ⊂ R
3, there are other analytic

methods to represent it by formulae:

(1) as the graph of a function in two variables: z = f (x,y),
(2) in implicit form, as the level set of a function in three variables: F(x,y,z) = c.

Similar formulae are used for surfaces in the cases of cylindrical, spherical, and other
curvilinear coordinates in space. These three analytical methods of generating simple
surfaces are equivalent to one another in a local sense (i.e., considering neighborhoods
of points), but they are not equivalent for surfaces in the large. For example, the sphere
x2 + y2 + z2 = R2 intersects a number of lines of any direction at two points and hence
is not a graph.
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Example. Plot graphs of functions f (x,y) using the ezsurf command.

ezsurf(’sin(x)*cos(y)’, [-pi, pi]); % Figure 7.5(b)
ezsurf(’xˆ2 - yˆ2’, [-3, 3]) % Figure 7.5(c)

Fig. 7.5 Graphs of x2 + y2, sin(x) cos(y), x2 − y2 and their contours.

A graph is a particular case of a parametric surface, because the equation z = f (x,y)
is equal to r(u,v) = ui+ vj+ f (u,v)k:

r = [u, v, f(u,v)];

Note that graf3d demonstrates various surface plots in MATLAB: one can adjust the
type of plot, the type of shading, the color map, and so on.

Sufficient conditions for the smoothness of a surface graph are analogous to those
for a smooth plane curve.

The notion of an implicitly defined surface also has its difficulty. The equation for a
continuous function in (x,y,z) without additional requirements can define an arbitrary
closed set in space (for example, a ball). However, there are obvious sufficient condi-
tions for the implicit equation F(x,y,z) = c to define a surface, analogous to the case
of an implicitly defined planar curve. Recall that the gradient of a function F(x,y,z) is

the vector field ∇F =
[

∂F
∂x , ∂F

∂y , ∂F
∂z

]
.

Using the implicit function theorem, one can prove the following result.
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Theorem 7.1. Let F(x,y,z) be a function of class Ck on the open set G ⊂ R
3, and

suppose that the gradient ∇F is nonzero on the level set Mc = {(x,y,z)∈ G : F(x,y,z) =
c} of height c. Then Mc is a Ck-regular surface.

In addition to analytical methods, there are other ways to represent a surface: for
example, using a table with coordinates of an array of points. Also, one may use spline
surfaces (see Section 9.6) that are continuously glued from patches parameterized by
vector polynomials.

Examples.

1. For the function F = x2 +y2 − z2, the gradient ∇F = [2x, 2y, −2z] is zero only at the
point O = (0,0,0),

f = xˆ2 + yˆ2 + zˆ2;
df = [diff(f, x), diff(f, y), diff(f, z)]

which is a singular point (the vertex) on the cone M0. Other level sets Mc (c �= 0) are
smooth surfaces: hyperboloids (of one sheet when c > 0 and of two sheets when c < 0).
See Figure 7.16. In a similar way, we see that the ellipsoid is a smooth surface.

2. Let f (x,y) be a function of class Ck in the open set G. Then the equation z = f (x,y)
defines a Ck-regular surface graph. To show this, take x = u, y = v as the parameters
of the vector-valued function r(u,v) = [u, v, f (u,v)]. We obtain linearly independent
vectors ru = [1, 0, f ′

u(u,v)] and rv = [0, 1, f ′
v(u,v)].

3. One may use surf to plot a surface by a table of points.

w\t 35 30 25 20 15 10 5 0 − 5 −10
5 32 27 22 16 11 6 0 −5 −10 −15
10 22 16 10 3 −3 −9 −15 −22 −27 −34
15 16 9 2 −5 −11 −18 −25 −31 −38 −45
20 12 4 −3 −10 −17 −24 −31 −39 −46 −53
25 8 1 −7 −15 −22 −29 −36 −44 −51 −59
30 6 −2 −10 −18 −25 −33 −41 −49 −56 −64
35 4 −4 −12 −20 −27 −35 −43 −52 −58 −67
40 3 −5 −13 −21 −29 −37 −45 −53 −60 −69
45 2 −6 −14 −22 −30 −38 −46 −54 −62 −70

The function wind chill factor is defined as how cold it feels (for example, WC = 32◦ F)
for a given wind speed W (5 miles per hour) and a given air temperature (T = 35◦ F).

L = [ 32 22 16 12 8 6 4 3 2; 27 16 9 4 1 -2 -4 -5 -6; 22 10 2 -3 -7 -10 -12 -13
-14; 16 3 -5 -10 -15 -18 -20 -21 -22; 11 -3 -11 -17 -22 -25 -27 -29 -30; 6 -9
-18 -24 -29 -33 -35 -37 -38; 0 -15 -25 -31 -36 -41 -43 -45 -46; -5 -22 -31 -39
-44 -49 -52 -53 -54; -10 -27 -38 -46 -51 -56 -58 -60 -62; -15 -34 -45 -53 -59
-64 -67 -69 -70];
surf(L);
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Here L is a 9 × 10 matrix. The intersection of the surface with the horizontal plane
WC = −20 (Figure 7.6(a)) is the level line where one feels the coldness at −20◦ F.

We plot a surface and a plane:

i = 1 : 10; j = 1 : 9;
[x, y] = meshgrid(-10 + 5*(j - 1), 5 + 5*(i - 1));
z = L(i, j);
hold on; view(3); xlabel(’W’); ylabel(’T’); zlabel(’WC’);
surf(x, y, z); surf(x, y, -20 + 0*z);

Fig. 7.6 The wind chill factor and the level WC = −20◦ F. Command bar3.

7.2 Tangent Planes and Normal Vectors

7.2.1 Basic formulae and properties

A tangent line of a smooth surface M is defined as a line that is tangent to some smooth
curve on M. The plane containing all tangent lines to the smooth surface M at the point
P is called the tangent plane to M at P. It is denoted by TPM.

Let r(u,v) be a smooth parameterization of a surface M and let γ : u = u(t), v = v(t),
t ∈ I, be a smooth curve on M through the point P = γ(t0). The equation of γ as a
space curve is r̃(t) = r(u(t),v(t)) (t ∈ I). Hence, the velocity vector of γ is a linear
combination of the vectors ru, rv:

r̃′(t) = ru ·u′(t)+ rv · v′(t).

In fact, the linearly independent vectors ru, rv define the plane that is tangent to the
surface M at the point P.
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Fig. 7.7 Tangent plane at a point of a surface.

Let M ⊂ R
3 be a surface, P ∈ M a point, σ any plane through P, Q ∈ M any point

near P, d = |PQ| the length of the segment between P and Q, and h = ρ(Q,σ) the
distance between Q and the plane σ .

Notice that the tangent plane TpM of a smooth surface M is characterized among
all planes containing P by the condition limQ→P h/d = 0.

Let r(u,v) = [x(u,v), y(u,v), z(u,v)] be a smooth parameterization of the surface,
where (u,v) ∈ G ⊂ R

2. Consider points P = (u,v) and A = (X ,Y,Z) on the tangent
plane σ . The vector equation of σ is

r = r(u,v)+aru(u,v)+brv(u,v) (a,b ∈ R). (7.3)

We rewrite the equation of σ using a point and two vectors:

(
−→
AP,ru,rv) =

∣∣
∣
∣
∣
∣

X − x(u,v) Y − y(u,v) Z − z(u,v)
xu(u,v) yu(u,v) zu(u,v)
xv(u,v) yv(u,v) zv(u,v)

∣∣
∣
∣
∣
∣
= 0. (7.4)

In particular, when M is the graph z = f (x,y), we obtain

∣
∣∣
∣
∣
∣

x− x0 y− y0 z− f (x0,y0)
1 0 − f ′

x
0 1 − f ′

y

∣
∣∣
∣
∣
∣
= z− f (x0,y0) f ′

x(x0,y0)(x− x0)− f ′
y(x0,y0)(y− y0) = 0,

i.e., the tangent plane at P = (x0,y0, f (x0,y0)) is given by

z = f (x0,y0)+ f ′
x(x0,y0)(x− x0)− f ′

y(x0,y0)(y− y0). (7.5)

The vector n = ru×rv
|ru×rv| is called the unit normal to the surface M2 at P = (u,v). A line

through a point of the surface orthogonal to the tangent plane is called a normal line.
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Examples.

1. We plot the tangent plane to the graph using the program below.

syms x y u v; f = xˆ2 + yˆ2; % define a function f (x,y)
fx = diff(f, x); fy = diff(f, y); TM = f + fx*(u - x) + fy*(v - y); % tangent plane

TM = x2 + y2 +2x(u− x)+2y(v− y) % Answer
TMP = subs(TM, {x, y}, {1, 2}); % 2u +4v−5 = 0 tangent plane at P
hold on; view(3); ezsurf(f); ezsurf(TMP); % Figure 7.8(a)

Fig. 7.8 Tangent planes to a paraboloid, a sphere, and a cone.

2. Check that the unit normal n = ru×rv
|ru×rv| does not depend on the parameterization of

the surface, and that n changes direction only when the jacobian changes sign under
coordinate displacement (see Lemma 7.1).

For the implicitly defined smooth surface M2 : F(x,y,z) = 0, the gradient ∇F =
(F ′

x , F ′
y , F ′

z ) is orthogonal to the surface. Thus, the tangent plane at P = (x0,y0,z0) ∈ M
has the following equation:

F ′
x(x0,y0,z0)(x− x0)+F ′

y(x0,y0,z0)(y− y0)+Fz(x0,y0,z0)(z− z0) = 0. (7.6)

If a surface bounds a body in space, then it has exterior and interior sides. If a
surface is the graph of a function z = f (x,y), one can define its top and bottom sides.
Moreover, a surface has two sides if and only if there is a continuous field of unit
normals on the whole surface. A surface that does not admit a continuous field of unit
normals is one-sided.

Equations of the normal to the surface:

(a) r(u,v)+ ru×rv
|ru×rv| t at the point (u,v) of the parametric surface,

(b) x−x0
F ′

x(x0,y0,z0) = y−y0
F ′

y(x0,y0,z0) = z−z0
F ′

z (x0,y0,z0)
implicitly given surface F(x,y,z) = 0,
at the point (x0,y0,z0) of the

(c) x−x0
f ′
x(x0,y0) = y−y0

f ′
y(x0,y0)

= z− f (x0,y0)
−1 at the point (x0,y0) of the graph z = f (x,y).



7.2 Tangent Planes and Normal Vectors 297

7.2.2 Extrema of functions defined on surfaces

An extremum is a value of a continuous function that is a local maximum or local min-
imum. Extrema of a function defined on a surface are related by notions of the tangent
plane and the normal vector. It is known from calculus that a necessary condition for
an extremum of a smooth function z = f (x,y) in the open set G is the vanishing of all
partial derivatives of f at the point or, equivalently, that the gradient ∇ f is zero at this
point:

{ f ′x(x0,y0) = 0, f ′y(x0,y0) = 0} ⇐⇒ ∇ f (x0,y0) = 0. (7.7)

The meaning of (7.7) is that the tangent plane (7.4) of the graph of f at (x0,y0, f (x0,y0))
is parallel to the coordinate plane XY .

For the function f (x,y) of class C2, we use the notations

a11 = f ′′xx(x0,y0), a12 = f ′′xy(x0,y0), a22 = f ′′yy(x0,y0), D = a11a22 −a2
12.

We have the following:

• If D > 0, then at the point (x0,y0) the function f has a local extremum (maximum
when a11 < 0 and minimum when a11 > 0).

• If D < 0, then at the saddle point (x0,y0) the function f does not have a local
extremum.

• If D = 0, then the point (x0,y0) might be an extremum of f .

The general form of the conditional extremum problem is the following: what is the
maximal or minimal value of the continuous function g : R

3 → R on a given surface
M? As a rule, the maximum (minimum) is reached at points where the surface M is
tangent to some level surface of g.

Theorem 7.2. Let F(x,y,z) be a smooth function on an open set G ⊂ R
3, and let Mc =

F−1(c) be the level surface (of height c). Assume that Mc is smooth, i.e., ∇F �= 0 holds
along Mc. Suppose that g : G → R is a smooth function and P ∈ Mc is an extremal point
for g on Mc. Then the tangent plane of Mc at P is orthogonal to the gradient ∇g(P),
i.e., there is λ ∈ R such that ∇g(P) = λ ∇F(P).

The real λ in Theorem 7.2 is called the Lagrange multiplier. The condition in The-
orem 7.2 is equivalent to the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(x, y, z) = c,

F ′
x(x,y,z) = λg′

x(x,y,z),
F ′

y(x,y,z) = λg′
y(x,y,z),

F ′
z (x,y,z) = λg′

z(x,y,z).
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If the surface Mc is compact, then any continuous function g takes its maximum and
minimum on Mc. Hence, Theorem 7.2 can be used for the selection of possible candi-
dates (among all critical points of g) for these extremal points. There is an analogous
theorem for extrema of the function g(x,y) along a plane curve γ ; see Section 5.1.

Examples.

1. The height function g(x,y,z) = z on the torus defined by revolution of the circle
γ : {y = 0, x2 +(z− 2)2 = 1} about the x-axis has four critical points (Figure 7.9): in

Fig. 7.9 Critical points of the height function on the torus.

addition to two extrema (maximum at P1 = (0,0,3) and minimum at P2 = (0,0,−3))
there are also two saddle points P3 = (0,0,1) and P4 = (0,0,−1). If Mc is not compact,
there may be no extrema (for instance, the height function g(x,y,z) = z on the cylinder
M1 : x2 + y2 = 1).

2. Find the local extrema of the function z = 3x2y− x3 − y4.

Solution. First plot the graph and the level lines of f :

syms x y; f = 3*xˆ2*y - xˆ3 - yˆ4;
ezsurf(f, [-6 10 -4 5])

Then calculate the partial derivatives f ′x, f ′y,

fx = diff(f, x), fy = diff(f, y) % Answer: fx = −3x2 +6xy, fy = 3x2 −4y3

and finally solve the system { f ′x = 0, f ′y = 0}:

S = solve(fx, fy, x, y); S.x(2), S.y(2) % Answer: 6, 3.
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Two points are possibly extrema: P1 = (0,0) and P2 = (6,3). Calculate the second
partial derivatives of f and the term D:

fxx = diff(fx, x), fxy = diff(fx, y), fyy = diff(fy, y)
fxx = −6x−6y, fxy = 6x, fyy = −12y2 % Answer
Delta = fxx*fyy - fxyˆ2; % Answer: Δ = 72xy2 +36y3 −36x2

At the point P1 we have:

subs([fxx, fxy, fyy, Delta], {x, y}, {0, 0})
f0 = subs(f, {x, y}, {S.x(2), S.y(2)}) % Answer: [0,0,0,0], 27.

Since a11 = 0, a12 = 0, a22 = 0 hold, then D = 0 and the point P1 requires additional
investigation. The value of f at this point is zero: f (0,0) = 0. Further, for x < 0, y = 0,
we have f (x,y) = −x3 > 0, and for x = 0, y �= 0, we have f (x,y) = −y4 < 0. Conse-
quently, in any neighborhood of P1 the function f (x,y) has values larger than f (P1)
and smaller than f (P1). Hence, f (x,y) does not have an extremum at P1. Analogous
calculations at P2 yield a11 = −18, a12 = 36, a22 = −108, and hence D = 648 > 0.
Since a11 < 0, the function has a local maximum at P2. ��

Fig. 7.10 Extrema of z = 3x2y− x3 − y4: the graph and the level lines.

7.3 Singular Points on Surfaces

7.3.1 Parametric surfaces

We give a test for singular points on a parametric surface.
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A point (u0,v0) on a surface M is singular if the vector function n = ru×rv
|ru×rv| does not

tend to some limit value as (u,v) → (u0,v0).

The structure of a parametric surface r(u,v) of class Ck, k ≥ 2, near a singular point
P = (u0,v0) is usually investigated using a Taylor expansion of second or third order.
Starting with zero values of parameters u0, v0 from the given point P, we have

r(u,v) = r(p)+ ru(p)u + rv(p)v +
1
2
(ruu(p)u2 + rvv(p)v2 +2ruv(p)uv)

+
1
6
(ruuu(p)u3 +3ruuv(p)u2v +3ruvv(p)uv2 + rvvv(p)v3)+ · · ·+ ε̄εεk(u2 + v2)

k
2 .

From the definition of a singular point it follows that ru × rv = 0.
The following simple cases are possible:
(i) ru = 0, rv = 0. If, in addition, ruuruvrvv �= 0, the point is edged. The case

ruuruvrvv = 0 requires further consideration. Tangent rays at a singular point form a
dihedral angle. The edge of this angle is directed along the vector ruv, and its half-
planes contain the vectors ruu and rvv whose starting points coincide with O.

(ii) ru �= 0, rv = 0. If, in addition, ru ×rvv �= 0, the tangent rays at the singular point
form a half-plane. The boundary straight line of this half-plane is directed along the
vector ru, and the vector rvv with starting point at O lies in this half-plane. The case
ru × rvv = 0 requires further consideration.

(iii) ru �= 0, rv �= 0, rv = aru. Changing the variables u, v to U , V by the formulae
u = U − aV , v = V reduces this case to case (ii) above. If, in addition, ru × (a2ruu −
2aruv + rvv) �= 0, the point is edged. The case ru × (a2ruu − 2aruv + rvv) = 0 requires
further consideration.

Examples.

1. The points on the cylindrical surface r(u,v) = [u2,u3,v] lying on the z-axis (u = 0)
are singular and form a cuspidal edge.

syms u v;
r = [uˆ2, uˆ3, v];
ru = diff(r,u); rv = diff(r,v);
subs(cross(ru, rv), {u, v}, {0, 0}) % Answer: 0, 0, 0.
ruu = diff(r, u, 2); ruv = diff(r,u, v); rvv = diff(r, v, 2);
det([ ruu; ruv; rvv ] % Answer: 0 (requires further consideration).
ezsurf( r(1), r(2), r(3), [-1, 1, 0, 2] ); % Figure 7.11(b)

Each plane orthogonal to the cuspidal edge intersects the surface along a curve for
which the point of the cuspidal edge is a singular point of the same type.

2. Check that the point u = v = 0 of each of the following parametric surfaces is a
singular point of a certain type:



7.3 Singular Points on Surfaces 301

(a) The surface r(u,v) = [u2,uv,v2]; Figure 7.11(c).

syms u v; r = [uˆ2, u*v, vˆ2];
ru = diff(r, u), rv = diff(r,v) % Answer: ru = [2u,v,0], rv = [0,u,2v]
subs(cross(ru, rv), {u, v}, {0, 0}); % Answer: [0,0,0]

ruu = diff(r, u, 2), ruv = diff(r,u, v), rvv = diff(r, v, 2)
% Answer: ruu = [2,0,0], ruv = [0,1,0], rvv = [0,0,2]

det([ruu; ruv; rvv]) % Answer: 4
ezsurf( r(1), r(2), r(3), [-1, 1, 0, 2] ); % Figure 7.11(c)

(b) The Whitney umbrella r(u,v) = [uv,u,v2]; Figure 8.26(b).

r = [u*v, u, vˆ2]; ezsurf(r, [-1, 1, -1, 1]);
ru = diff(r, u); rv = diff(r, v); rvv = diff(r, v, 2);

% Answer: ru = [v,1,0], rv = [u,0,2v], rvv = [0,0,2]
subs(cross(ru, rv), {u, v}, {0, 0}); % Answer: [2,0,0]

Fig. 7.11 Singular points and curves on surfaces.

7.3.2 Implicitly given surfaces

In studying an implicitly given surface F(x,y,z) = 0, where F ∈ Ck, k ≤ 2, the notion
of a singular point must be modified. In particular, self-intersections also must be kept
in mind. If the necessary conditions F ′

x = F ′
y = F ′

z = 0 at a given point are satisfied, one
applies Taylor’s expansion to obtain information. It is convenient to assume our point
is at the origin. Then
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F(x,y,z) =
1
2
(Fxxx2 +Fyyy2 +Fzzz2 +2Fxyxy +2Fyzyz +2Fxzxz)

+
1
6
(Fxxxx3 +Fyyyy3 +Fzzz z3 +3Fxxyx2y +3Fyyxy2x +3Fyyzy2z

+3Fzzyz2y +3Fzzxz2x +3Fxxzx2z +6Fxyzxyz)+ · · ·+ εk(x2 + y2 + z2)k/2.

For a clearer picture of the shape of the surface F = 0 in a neighborhood of a singular
point, one first determines the type of the surface

Fxxx2 +Fyyy2 +Fzzz2 +2Fxyxy +2Fyzyz +2Fxzxz = 0. (7.8)

This surface is a cone and is one of of five types. To calculate the type of the cone (7.8)
we need to consider the real invariants

I1 = Fxx +Fyy +Fzz, I2 =
∣
∣∣
∣
Fxx Fxy

Fxy Fyy

∣
∣∣
∣+

∣
∣∣
∣
Fxx Fxz

Fxz Fzz

∣
∣∣
∣+

∣
∣∣
∣
Fyy Fyz

Fyz Fzz

∣
∣∣
∣ , I3 =

∣
∣
∣∣
∣
∣

Fxx Fxy Fxz

Fxy Fyy Fyz

Fxz Fyz Fzz

∣
∣
∣∣
∣
∣
.

syms x y z; F = sin(xˆ2 + 2*yˆ2 + 3*zˆ2); % define a function
Fxx = diff(F, x, 2); Fxy = diff(F, x, y); Fyy = diff(F, y, 2);
Fxz = diff(F, x, z); Fyz = diff(F, y, z); Fzz = diff(F, z, 2);
I1 = Fxx + Fyy + Fzz;
I2 = det([Fxx Fxy; Fxy Fyy]) + det([Fxx Fxz; Fxz Fzz])
+ det([Fyy Fyz; Fyz Fzz]) % symbolic expressions
I3 = det([Fxx Fxy Fxz; Fxy Fyy Fyz; Fxz Fyz Fzz]) % with x,y,z

We list the five possible types of cones (7.8) and corresponding possible structures
of the implicitly given surface F = 0 near a singular point.

(a) I3 �= 0, I2 > 0, I1I3 > 0. The cone consists of one singular point. This singular
point of the surface F = 0 is isolated.

(b) I3 �= 0, I2 ≤ 0 or I1I3 < 0. The cone has the shape of an (oblique) circular cone.
The surface near the singular point looks like a deformed neighborhood of the vertex
of the above cone.

(c) I3 = 0, I2 > 0. The cone degenerates into a line. Rotating the coordinate system,
we obtain the case where the z-axis coincides with the above line. The equation of the
surface in the new coordinates takes the form F̃(x,y,z) = 0. Moreover,

F̃(x,y,z) = a2x2 +b2y2 +
1
6

(
F̃xxxx3 + · · ·)+ · · ·+ εk

(
x2 + y2 + z2)k/2

.

In this case if F̃zzz �= 0 holds, then a neighborhood of the singular point has the shape of
a spike. All tangent rays of the surface at the singular point coincide. The case F̃zzz = 0
requires further consideration.
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(d) I3 = 0, I2 < 0. The cone consists of two intersecting planes, and the surface F = 0
consists of two intersecting sheets (their intersection being along a smooth curve).

(e) I3 = 0, I2 = 0. The cone consists of the doubly covered plane. Rotating the
coordinate system, we obtain the case where the z-axis is orthogonal to the above plane.
The equation of the surface in the new coordinates takes the form F̃(x,y,z) = 0 for

F̃(x,y,z) = az2 +
1
6

(
F̃xxxx3 + · · ·+ F̃yyy

)
+ · · ·+ εk

(
x2 + y2 + z2)k/2

.

If the following equation of third order in u,

F̃xxx +3F̃xxyu +3F̃xyyu2 + F̃yyyu3 = 0, (7.9)

has a unique real root, then the tangent rays at a singular point form a half-plane,
which is one half of the cone. If (7.9) has three different real roots, then tangent rays
at the singular point form three separate sectors in the plane xy, and the surface can
be imagined as three funnels converging to the vertex, flattening to the plane (x,y) as
they come near to the vertex. The case where (7.9) has one real root with multiplicity
3 requires further consideration.

Example. Check that the point x = y = z = 0 of each of the following implicitly given
surfaces is a singular point of a certain type:

(a) F(x,y,z) = (x2 + y2 + z2)(z−1) is the union of a plane and a point.

(b) The surface of revolution of the lemniscate of Bernoulli, (x2 + y2 + z2)2 −
2a2(z2 − x2 − y2), Figure 8.25(b), and “a figure eight,” Figure 8.16(a,b).

f = inline(’(x.ˆ2 + y.ˆ2 + z.ˆ2).ˆ2 - 2.*(z.ˆ2 - x.ˆ2 - y.ˆ2)’, ’x’, ’y’, ’z’);
impl(f, [-1, 1, -1, 1, -2, 2], 0), axis equal

(c) The surface x2 + y2 − z3 = 0 from Exercise 2, p. 319.

f = inline(’x.ˆ2 + y.ˆ2 - z.ˆ3’, ’x’, ’y’, ’z’);
impl(f, [-2, 2, -2, 2, -.01, 2], 0), axis equal % Figure 7.11(a).

(d) The pair of intersecting planes x2 − y2 = 0.

(e) Consider the surface z2 −x2y+y3 = 0 (see Figure 7.11(d)). We plot it by gluing
together six pieces (graphs):

N = 41; X = meshgrid(-2 : 4/N : 2);
[X2, Y2] = meshgrid(0 : 2/N : 2);
Z = sqrt(Y2.ˆ3 - X.ˆ2.*Y2); Z2 = sqrt(-Y2.ˆ3 + X2.ˆ2.*Y2);

hold on; axis equal; view(3);
surf(-X2, -Y2, (Y2 < X2).*Z2); surf(-X2, -Y2, -(Y2 < X2).*Z2);
surf( X2, -Y2, (Y2 < X2).*Z2); surf( X2, -Y2, -(Y2 < X2).*Z2);
surf(X, Y2, (Y2 > abs(X)).*Z); surf(X, Y2, -(Y2 > abs(X)).*Z);
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The resulting graph contains an additional part of the plane z = 0. To remove this part,
we replace zeros by NaNs in arrays Z, Z2 (see the program), inserting the following
commands (before the line starting with hold on):

for i = 1 : N;
for j = 1 : abs((N + 1) - 2*i)-2; Z(j, i) = NaN; end;
for j = 2 : i - 2; Z2(i, j) = NaN; end;

end

If (7.9) has three real roots, and one of them is of multiplicity two, then the surface near
a singular point looks like the Whitney umbrella, Figure 8.26(b).

7.4 Osculating Paraboloid

An osculating paraboloid helps us visualize the shape of a surface near an arbitrary
point. We derive and plot it by the “elementary” method. An application of parallel
transport and rotation (composition of two rotations about coordinate axes) leads to
the simple standard situation where the tangent plane at the given point, the origin,
is horizontal; using the second-order Taylor formula, we then derive the osculating
paraboloid, and finally return to the initial coordinates and plot its image.

7.4.1 Properties of the osculating paraboloid

Let M be a regular surface and P a point of M. Let F be a paraboloid with vertex at P
and axis parallel to the normal of the surface at P. Take a point Q on the surface close
to P, and denote by d = |PQ| the distance between them; let h = dist(Q,F) denote the
(vertical) distance from the point Q to the paraboloid F .

A paraboloid F through a point P on a surface M tangent to the plane TpM and lying
“closest” to the surface in a small neighborhood of P (i.e., limQ→P

h
d2 = 0) is called an

osculating paraboloid at P.
An osculating paraboloid gives the best second-order approximation of the shape

of the surface near the point P, with respect to the distance to P. Its shape helps us to
classify points on the C2-regular surface.

We fix rectangular coordinates in R
3 such that the origin coincides with P, the z-

axis is parallel to the normal n to the surface at P, and the coordinate plane XY co-
incides with the tangent plane of the surface at P. Now, the surface near O = P is
the graph of z = f (x,y). Moreover, f (0,0) = 0 because O belongs to the surface, and
fx(0,0) = 0 and fy(0,0) = 0 hold because XY is the tangent plane to the surface at O.
Using the Taylor expansion of f (x,y) at (0,0), we obtain the equation of the surface
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Fig. 7.12 Osculating paraboloid at a point on a surface.

as z = 1
2(rx2 +2sxy+ ty2)+o(x2 +y2), where r = fxx(0,0), s = fxy(0,0), t = fyy(0,0).

The osculating paraboloid F at P is defined by the equation z = 1
2(rx2 + 2sxy + ty2),

or in canonical form (with coordinate axes directed along the symmetry axes of the
paraboloid) by z = k1x2 + k2y2, where k1, k2 are eigenvalues of the quadratic form
rx2 + 2sxy + ty2 at P. This differs from the surface near P by an infinitesimal mag-
nitude of the second order. The square of the distance of the point Q from P is
d2 = x2 + y2 + ϕ2(x,y) with ϕ2 = (x2 + y2)o(x2 + y2). Hence, we have limQ→P

h
d2 =

lim(x,y)→0
|o(x2+y2)|

x2+y2+ϕ2(x,y) = 0.

Thus the following claim has been proved: For any point of a C2-regular surface
there is a unique osculating paraboloid that can degenerate in special cases to a
parabolic cylinder or a plane.

Example. The second-order equation

z = a11x2 +2a12xy +a22y2 (7.10)

defines a paraboloid in R
3(x,y,z), excluding the degenerate cases of the parabolic

cylinder and the plane. Rotation of the coordinate system in the plane XY by a suit-
able angle leads to the canonical form of (7.10)

z = k1x2 + k2y2. (7.11)

We can find k1 and k2 as roots of the characteristic polynomial:

syms a11 a12 a22; k = solve((a11 - t)*(a22 - t) - a12*a12, t)

Depending on the coefficients k1, k2, the paraboloid (7.11) is of one of the following
types:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

elliptic for k1 k2 > 0,

hyperbolic for k1 k2 < 0,

parabolic cylinder for k1 = 0, k2 �= 0,

planar for k1 = k2 = 0.

Depending on the shape of the osculating paraboloid, the point P of the surface has
one of the following types:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

elliptic for k1k2 > 0,

hyperbolic for k1k2 < 0,

parabolic for k1 = 0, k2 �= 0 or k1 �= 0, k2 = 0,

spherical for k1 = k2 �= 0,

planar for k1 = k2 = 0.

The first three cases are general. In the last two cases F is a paraboloid of revolution or
a plane. The elliptical and the hyperbolic points for an arbitrary surface are separated
by curves consisting of parabolic points.

Example. Surfaces with P = O of 5 types (see definition):

syms x y;
ezsurf((xˆ2 + 9*yˆ2)/2, [-1 1 -1 1]) % Figure 7.13(a)
ezsurf((xˆ2 - yˆ2)/2, [-1 1 -1 1]) % Figure 7.13(b)
ezsurf((-xˆ2 + yˆ7)/2, [-1 1 -1 1]) % Figure 7.13(c)
ezsurf((xˆ2 + yˆ2)/2, [-1 1 -1 1]) % Figure 7.13(d)
ezsurf((-xˆ7 - yˆ6)/2, [-1 1 -1 1]) % Figure 7.13(e)

Fig. 7.13 The five types of smooth points on surfaces.

One can define asymptotic and principal directions at a point of a surface coincid-
ing respectively with the asymptotic directions of the osculating paraboloid and with
its symmetry axes. At each non-spherical or non-planar point there are exactly two
mutually orthogonal principal directions. Based on the osculating paraboloid, one can
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also define the normal curvature at a point on a surface in a given direction, and the
Gaussian and mean curvatures of a surface. We note only the basic properties:

(a) There exist two asymptotic directions at a hyperbolic point, one at a parabolic
point, and none at an elliptical point.

(b) All directions at a planar point are asymptotic and also principal.

7.4.2 Plotting an osculating paraboloid

We will write a program for deriving the coefficients k1 and k2 and the equations of
an osculating paraboloid. Recall that parallel translations and rotations about axes, and
also their compositions, are rigid motions of space, i.e., they preserve the shape and the
relative position of figures. We use 3×3 matrices to represent rotations about the axes
OX and OY :

Rx(ψ) =

∣∣
∣
∣
∣
∣

1 0 0
0 cosψ sinψ
0 −sinψ cosψ

∣∣
∣
∣
∣
∣
, Ry(ϕ) =

∣∣
∣
∣
∣
∣

cosϕ 0 −sinϕ
0 1 0

sinϕ 0 cosϕ

∣∣
∣
∣
∣
∣

(see p. 90).

Let z = f (x,y) be the equation of the surface M, and S the osculating paraboloid for M
at P = (x0,y0,z0). The program is divided into four steps and is tested for the following
data: z = ax2 +by2 (a,b > 0) with a = 1, b = 2 at the point x0 = 1, y0 = 0.

(1) Parallel translation along the vector
−→
PO congruently moves the surface M and

the paraboloid S into a surface M1, with the osculating paraboloid S1 at the origin.

syms x y z x1 y1 z1 t real;
a = 1; b = 2; f = a*xˆ2 + b*yˆ2;
x0 = 1; y0 = 0; z0 = subs(f, {x, y}, {x0, y0}) % Answer: z0 = 1
f1 = simplify(subs(f, {x, y}, {x + x0, y + y0}) - z0) % f1 = x2 +2x +2y2

(2) Assume that the common normal n = [a1,b1,c1] to M1 and S1 at O is not par-
allel to the plane XY . Denote by n1 = [0,b1,c1] the projection of this vector onto
the coordinate plane Y Z, and by ψ the angle between n1 and the z-axis. Obviously,

cosψ = c1
/√

b2
1 + c2

1, sinψ = b1
/√

b2
1 + c2

1. Below we set d = |n|, d1 = |n1|.
n = subs([-diff(f1, x), -diff(f1,y), 1], {x, y}, {0, 0}); % Answer: n = [−2,0,1]
d1 = sqrt(n(2)ˆ2 + n(3)ˆ2); % Answer: d1 = 1

d = sqrt(n*n’); % Answer: d = 2.2361 .

Denote by R the composition of the following two rotations Rx and Ry in space:
(a) The rotation Rx through the angle ψ about the axis OX transposes M1 and S1

into the tangent pair M2 and S2 with common normal n2 at O; note that n2 =
[

a1
d ,0, d1

d

]

lies in the plane XZ, but in view of our assumption it is not parallel to the axis OX .
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Rx = [1, 0, 0; 0, n(3)/d1, n(2)/d1; 0, -n(2)/d1, n(3)/d1]

(b) The rotation Ry through the angle ϕ = ∠(n2,OZ) around the axis OY translates
M2 and S2 into the tangent pair M3 and S3 with common normal n3 at O, directed along
OZ.

Ry = [d1/d, 0, n(1)/d; 0, 1, 0; -n(1)/d, 0, d1/d]

Find the rotation R and formulae for change of the coordinates:

R = Rx*Ry; n3 = n*R % checking n3 ‖OZ. Answer: n3 = [0,0,2.24].

coor = [x1, y1, z1]*R’ % Answer: [1
5

√
5x1 − 2

5

√
5z1,y1,

2
5

√
5x1 + 1

5

√
5z1]

If the common normal n = [a1,b1,c1] to M1 and S1 at the point O is parallel to the
plane XY , use the rotation in the plane XY about the point O through the angle ψ ′ =
∠(n1,OY ). The pair M and S are then translated into the tangent pair M′

2 and S′
2, and

their common normal n′
2 at O is directed along the axis OY . Finally, change the names

of the variables: y → z and z → y.
(3) The surface M3 and its osculating paraboloid S3 at the point O are in an optimal

position, and we can start the calculation of the equation of S3. Let g(x,y,z) = 0 be the
equation of M3.

g = collect(coor(3) - subs(f1, {x y}, {coor(1), coor(2)}), [x1, y1, z1])
gg = [diff(g, x1), diff(g, y1), diff(g, z1)]

g = − 1
5x2

1 + 4
5 z1x1 + z151/2 − 4

5 z2
1 −2y2

1 % Answer
subs(gg, {x1, y1, z1}, {0, 0, 0}) % checking n3 ‖OZ. Answer: [0,0,2.24].

Although the explicit equation z = z3(x,y) of the surface M3 in a neighborhood of O is
unknown, techniques of calculus allow us to find all derivatives of the implicitly given
function z3(x,y) and then derive the coefficients a11, a12, a22. Obviously, g′

x(0,0) =
g′

y(0,0) = z′3|x(0,0) = z′3|y(0,0) = 0,

a11 =
1
2

z′′3|xx(0,0) =
g′′

xx

−2g′
z
(0,0), a12 =

1
2

z′′3|xy(0,0) =
g′′

xy

−2g′
z
(0,0),

a22 =
1
2

z′′3|yy(0,0) =
g′′

yy

−2g′
z
(0,0).

gz = subs(diff(g, z1), {x1, y1, z1}, {0, 0, 0}) % Answer: gz =
√

5
gxx = subs(diff(g, x1, 2), {x1, y1, z1}, {0, 0, 0})/2
gyy = subs(diff(g, y1, 2), {x1, y1, z1}, {0, 0, 0})/2
gxy = subs(diff(diff(g, x1), y1), {x1, y1, z1}, {0, 0, 0})

gxx = − 1
5 gyy = −2 gxy = 0 % Answer

a11 = -gxx./(2*gz), a12 = -gxy./(2*gz), a22 = -gyy./(2*gz)

a11 = .04472 a12 = 0 a22 = .4472 % Answer
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Write the final equation (7.10) of S3:

S3 = a11*x1ˆ2 + 2*a12*x1*y1 + a22*y1ˆ2 % Answer: S3 = .045x2
1 + .447y2

1

Solve the characteristic (quadratic) equation (a11 − k)(a22 − k)− a2
12 = 0 and find the

coefficients k1 and k2

k = solve((a11 - t)*(a22 - t) - a12*a12, t) % Answer: k = [0.0447, 0.4472]
Scan = k(1)*xˆ2 + k(2)*yˆ2 % canonical equation Scan = .0447x2 + .447y2

We plot M3 and S3 (in the new coordinates).

hold on; axis equal; view(3);
ezsurf(S3, [-2, 1.4, -1, 1]);
gg = inline(’-1/5*x1.ˆ2 + 4/5*z1.*x1 + z1.*5ˆ(1/2) - 4/5*z1.ˆ2 - 2*y1.ˆ2’,
’x1’, ’y1’, ’z1’);
impl(gg, [-2, 1.4, -1, 1, -.2, 1], 0); % Figure 7.14(a)

(4) The rotation R−1 is given by the inverse matrix, which in the case of an orthog-
onal matrix coincides with its transpose R∗. It transforms M3 and S3 into the pair M1

and S1 and helps us to find the equation of S1.

co1 = [x, y, z]*R % Answer: co1 = [1
5 51/2x + 2

551/2z, y, −2
5 51/2x + 1

5 51/2z]
S1 = simplify(subs(z1 - S3, {x1, y1, z1}, {co1(1), co1(2), co1(3)})) % Answer

S1 = −0.894x +0.447z−0.00894x2−0.0358xz−0.0358z2−0.447y2

We plot M1 and S1 (in the old coordinates).

hold on; axis equal; view(3);
ezsurf(f1, [-.6, .6, -1, 1]);
ff1 = inline(’-2/5*x*5ˆ(1/2)+1/5*z*5ˆ(1/2)-1/250*x.ˆ2*5ˆ(1/2)
-2/125*x.*z*5ˆ(1/2)-2/125*z.ˆ2*5ˆ(1/2)-1/5*5ˆ(1/2)*y.ˆ2’, ’x’, ’y’, ’z’);
impl(ff1, [-2, 1, -1, 1, -1, 2], 0); % Figure 7.14(b),

Using the formulae for parallel translation along the vector
−→
OP, deduce from the

equation for S1 the equation of the osculating paraboloid S. The figure with M and S is
analogous to Figure 7.14(b).

S = simplify(subs(S1 + z0, {x, y, z}, {x - x0, y - y0, z - z0}))

S = −0.8408x +0.3667 +0.5545z−0.008944x2

−0.03578xz−0.03578z2−0.4472y2 % Answer.
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Fig. 7.14 Osculating paraboloids at O: (a) S3 for M3, (b) S1 for M1.

7.5 Curvature and Geodesics

7.5.1 Gaussian and mean curvatures

Let r(u,v) (|u| ≤ a, |v| ≤ b) be a (surface) patch M2 in R
3.

The expression I = E du2 +2F dudv +Gdv2, where

E = 〈ru,ru〉, F = 〈ru,rv〉, G = 〈rv,rv〉,

is called the first fundamental form of M2.
The expression II = Ldu2 +2Mdudv +Ndv2, where

L =
(r,uu, r,u, r,v)

|r,u × r,v| , M =
(r,uv, r,u, r,v)
|r,u × r,v| , N =

(r,vv, r,u, r,v)
|r,u × r,v| ,

is called the second fundamental form of M2.
For the plane R

2(x,y) ⊂ R
3, I = dx2 +dy2 and II = 0.

We create an M-file EFG.m to compute the first fundamental form:

function f1 = EFG(r)
syms u v real;
ru = diff(r, u); rv = diff(r, v);
E = ru*ru’; F = ru*rv’; G = rv*rv’;
f1 = simplify([E, F, G]);

end

For example:

syms u v R real;
Rsphere = [R*cos(u)*cos(v) R*sin(u)*cos(v) R*sin(v)];
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EFG(Rsphere) % Answer: [R2 cos2 v, 0, R2]

The length of a curve γ : u = φ(t), v = ψ(t) (t ∈ [t1,t2]) on a surface r(u,v) is given by
the integral l(γ) =

∫ √
I (see Example, p. 269),

l(γ) =
∫ t2

t1

√
E(u(t),v(t))u ′2+2F(u(t),v(t))u′v′ +G(u(t),v(t))v ′2 dt.

For example, the length of a great circle ω : u = t, v = 0 on a unit sphere is

l(ω) =
∫ 2π

0

√
cos2(v(t))u ′2(t)+1 dt =

∫ 2π

0

√
cos2(0) ·1 +0 dt = 2π.

The area of a domain D ⊂ M2 is Area(D) =
∫∫

D

√
EG−F2 dudv. Hence, the area of a

unit sphere is Area(S2(1)) =
∫ 2π

0

∫ π
0

√
cos2(v)dudv = 4π.

Next we create an M-file LMN.m to compute the second fundamental form:

function f2 = LMN(X)
syms u v real;
ru = diff(r, u); rv = diff(r, v);
ruu = diff(ru, u); ruv = diff(ru, v); rvv = diff(rv, v);
n = cross(ru, rv); UN = n/simple(sqrt(n*n’));
L = UN*ruu’; M = UN*ruv’; N = UN*rvv’;
f2 = simplify([L, M, N]);

end

For example:

catenoid = [u, cosh(u)*cos(v), cosh(u)*sin(v)];
LMN(catenoid) % Answer: [−1,0,1]

The normal curvature of M2 at P in the direction v = rudu + rvdv is kn(P,v) =
II/I(P,v). Let k1 ≤ k2 be the principal curvatures of a surface,

k1(P) = min{II/I(P,v) : v �= 0} and k2(P) = max{II/I(P,v) : v �= 0}.

Then, the Gaussian curvature of the surface patch is K = k1k2 and its mean curvature
is H = 1

2(k1 + k2). The explicit formulae for H and K are:

K =
LM −N2

EG−F2 , H =
LG−2MF +NE

2(EG−F2)
. (7.12)

The principal curvatures of M2 are k1,2 = H ±√
H2 −K.

Finally, we create an M-file GK.m to calculate the Gaussian curvature K. (A func-
tion HK.m for computing the mean curvature H differs from GK.m by one line, with
f = simplify((G*L + E*N - 2*F*M)/(2*E*G - 2*Fˆ2)).)



312 7 Geometry of Surfaces

function f = GK(r)
syms u v real;
S = EFG(r); T = LMN(r);
E = S(1); F = S(2); G = S(3);
L = T(1); M = T(2); N = T(3);
f = simplify((L*N - Mˆ2)/(E*G - Fˆ2));

end

For example:

helicoid = [u*cos(v), u*sin(v), v];
GK(helicoid) % Answer: −1/cosh4 u
enneper = [u - uˆ3/3 + u*vˆ2, -v + vˆ3/3 - v*uˆ2, uˆ2-vˆ2];
GK(enneper) % Answer: −4/(u2 + v2 +1)4

7.5.2 Geodesics

A curve γ on a surface M2 ⊂ R
3 is called a geodesic if γ ′′(t) is zero or perpendicular

to the surface at the point γ(t), i.e., parallel to its unit normal, for all values of the
parameter t. There is an interesting mechanical interpretation of geodesics: a particle
moving on the surface, and subject to no forces except a force acting perpendicular to
the surface that keeps the particle on the surface, would move along a geodesic.

Any geodesic has constant speed: d
dt ‖γ ′‖2 = 2〈γ ′, γ ′′〉 = 0. The simplest examples

of geodesics are lines on the plane and the following:

(1) If a (segment of a) line belongs to M2, then it is a geodesic.
(In fact, a line γ(t) = a + tb has zero acceleration γ ′′(t) everywhere.)

(2) Meridians on a surface of revolution. Great circles on a sphere.

A normal section of a surface M2 is the intersection C = M2 ∩α (with a plane α)
such that α is perpendicular to the surface at each point of C. One may show that any
normal section of a surface is a geodesic.

The geodesic equations (see, for example, [Pressley])

(Eu′ +Fv′)′ =
1
2
(Eu(u′)2 +2Fuu′v′ +Gu(v′)2),

(Fu′ +Gv′)′ =
1
2
(Ev(u′)2 +2Fvu

′v′ +Gv(v′)2)
(7.13)

are nonlinear differential equations, and are usually difficult or impossible to solve
explicitly. The geodesic equations can be reduced to the form

u′′ = f1(u,v,u′,v′), v′′ = f2(u,v,u′,v′), (7.14)
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where fi are smooth functions of the four variables u, v, u′, and v′ (see the formulae for
x′

3 and x′
4 in the program sgeod.m).

From the theory of ordinary differential equations, for any value of t = t0 and given
initial values u(t0), v(t0), u′(t0), v′(t0), there is a unique solution u(t) and v(t) to (7.14),
defined and smooth for all t ∈ [t0 − ε , t0 + ε ], where ε is some positive number. Hence,
there is a unique (unit-speed) geodesic through any given point of a surface in any
given direction. An isometry between two surfaces takes the geodesics of one surface
to the geodesics of the other.

The following well-known theorem allows us to describe the qualitative behavior of
the geodesics on M2.

Clairaut’s theorem . Let γ be a geodesic on a surface of revolution M2, let ρ be the
distance of a point of M2 from the axis of rotation, and let ψ be the angle between γ
and the meridians of M2. Then, ρ sinψ is constant along γ .

We can change (7.14) into a system of first-order equations. First we set x1 = u,
x2 = v, x3 = u′, and x4 = v′. Hence

x′
1 = x3, x′

2 = x4, x′
3 = f1(x1,x2,x3,x4), x′

4 = f2(x1,x2,x3,x4). (7.15)

Now we create a function to implement this system:

function f = sgeod(r)
syms u v;
ru = diff(r, u); rv = diff(r, v); % these 2 lines
E = ru*ru’; F = ru*rv’; G = rv*rv’; % can be replaced by
% S = EFG(r); E = S(1); F = S(2); G = S(3); % the following line:
g = E*G - F*F;
Eu = diff(E, u); Ev = diff(E, v);
Fu = diff(F, u); Fv = diff(F, v);
Gu = diff(G, u); Gv = diff(G, v);
f(1)= simplify(-subs((G*Eu - F*(2*Fu - Ev))/(2*g)*’x(3)*x(3)’+ (G*Ev - F*Gu)/
g*’x(3)*x(4)’ +G*(2*Fv - Gu) - F*Gv)/(2*g)*’x(4)*x(4)’, {u v}, {’x(1)’, ’x(2)’}));

f(2) = simplify(-subs((E*(2*Fu - Ev) -F*Eu)/(2*g)*’x(3)*x(3)’+ (E*Gu - F*Ev)/
g*’x(3)*x(4)’+(E*Gv - F*(2*Fv - Gu))/(2*g)*’x(4)*x(4)’, {u v}, {’x(1)’, ’x(2)’}));

end

For example:

syms u v real;
r = [u*cos(v), u*sin(v), u]; % cone
r = [(5 + cos(u))*cos(v), (5 + cos(u))*sin(v), sin(u)]; % torus

We run the M-file sgeod.m to obtain the equations of the geodesics on a surface.
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sgeod(r) % Answer: [ f1(x1,x2,x3,x4), f2(x1,x2,x3,x4)] of (7.15)

[2x3x4 tanx2, −1
2 sin(2x2)x2

3] % f1, f2 for a sphere
[0, 0] % f1, f2 for a cylinder
[−x2

4 sinx1(cosx1 +5), 2x3x4 sinx1/(cosx1 +5)] % f1, f2 for a torus
[x1x2

4, −2x1x3x4/(x2
1 +1)] % f1, f2 for a helicoid

[1
2 x1x2

4, −2x3x4/x1] % f1, f2 for a cone

Then we copy–paste f1, f2 from the above answer (replace “,” by “;”), create an inline
function with [x3; x4; f1; f2], and call ode45 to get a solution (see also examples of
numerical solutions in Section 5.1.3).

Eqs = inline(’[x(3); x(4); x(1)*x(4)ˆ2/2; -2*x(3)*x(4)/x(1)]’, ’t’, ’x’) % for a cone
x0 = [1, 10, 1, 3]; t1 = 6; % enter initial data and t1
[t, X] = ode45(Eqs, [0, t1], x0); % numeric solution of Cauchy’s problem

Finally, we find a curve γ̃ : r(u(t),v(t)) ⊂ R
3 and plot it on the surface:

r1 = subs(r, {u v}, {X(: , 1), X(: , 2)});
hold on; plot3(r1(: , 1), r1(: , 2), r1(: , 3));
ezmesh(r(1), r(2), r(3), [0, 1.4, 0, 2*pi]); view(3); % Figure 7.15(c)

Fig. 7.15 Geodesics on surfaces: (a) helicoid, (b) torus, (c) cone.

7.6 Exercises

Section 7.1 1. Prove that each of the following conditions is equivalent to the
property of linear independence of the vectors ru(u,v) and rv(u,v):

(a) The matrix

(
xu yu zu

xv yv zv

)
at the point (u,v) has rank 2.

(b) The cross product n = ru × rv is nonzero at the point (u,v).
2. Prove that the vector-valued function
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(i) r(u,v) = [u + v,u− v,u2 + v2] is a C∞-regular parameterization of the paraboloid
z = 1

2(x2 + y2),
(ii) r(u,v) = [u2,uv,v2], where u > 0, v > 0, defines a C∞-regular coordinate system

on part of the hyperbolic paraboloid y2 = xz.
3. Find which of the following surfaces are compact, and plot them using the com-

mand impl of Section A.8.

(a) x2 − y4 + z6 = 1, (b) x2 −2x + y2 + z4 = 1,

(c) x2 + y2z2 = 1, (d) x2 + y4 + z6 = 1.

f = inline(’x.ˆ2 - y.ˆ4 + z.ˆ6 - 1’, ’x’, ’y’, ’z’); % (a)
f = inline(’x.ˆ2 - 2*x + y.ˆ2 + z.ˆ4 - 1’, ’x’, ’y’, ’z’); % (b)
f = inline(’x.ˆ2 + y.ˆ2.*z.ˆ2 - 1’, ’x’, ’y’, ’z’); % (c)
f = inline(’x.ˆ2 + y.ˆ4 + z.ˆ6’ - 1, ’x’, ’y’, ’z’); % (d)
impl(f, [-2, 2, -2, 2, -2, 2], 0)

4. Find a singular curve (generatrix) on a cylinder over a plane curve with one
singular point, Figure 7.11(b).

5. Show that the level set of height c for the function f (x) consists of roots of the
equation f (x) = c. In such a way, R

3 (or the plane) is fibered by level surfaces (or
level lines) of F . The graph of f (x,y) is the level surface of height 0 for the function
z− f (x,y) in three real variables.

6. One component of the hyperboloid of two sheets x2

a2 + y2

b2 − z2

c2 = −1 is defined as

the graph z = c
√

1 + x2

a2 + y2

b2 , and hence admits a parameterized form. On the whole,
the hyperboloid of two sheets intersects “almost every” line at two points and hence
cannot be a graph. Also, the following simple surfaces are not graphs: the circular
cylinder, the hyperboloid of one sheet, the Möbius band.

7. Plot graphs of functions over the disk using the command cylinder:

z = 0 : 1/21 : 1;
[X, Y, Z] = cylinder(sqrt(z)); surf(X, Y, Z); % Figure 7.5(a)

Plot level lines of these functions using the command contour:

v = linspace(-pi, pi, 21);
[X, Y] = meshgrid(v);
contour(X.ˆ2 + Y.ˆ2)
contour(sin(X).*cos(Y))
contour(X.ˆ2 + Y.ˆ2) % Figures 7.5(d–f)

8. Plot an implicitly given surface using impl. The method is coarse, as can be seen
from the example of the cone x2 + y2 − z2 = 0.

f = inline(’x.ˆ2 + y.ˆ2 - z.ˆ2’, ’x’, ’y’, ’z’);
impl(f, [-2, 2, -2, 2, -2, 2], 0), axis equal
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9. Plot both (up and down) sheets of a cone using the command ezsurf, starting with
parametric equations.

x = ’u*cos(v)’; y = ’u*sin(v)’; z = ’u’;
ezsurf(x, y, z); % Figure 7.16(a)

Plot the hyperboloid of one sheet:

ezsurf(’sqrt(u.ˆ2+1)*cos(v)’, ’sqrt(u.ˆ2+1)*sin(v)’, ’u’) % Figure 7.16(c)

Fig. 7.16 The cone and hyperboloids.

10. Plot the graphs of the following complex expressions using the cplxmap com-
mand, namely, plot the magnitude of the function while coloring the resulting surface
using the argument of the function. For example:

cplxroot(3), title(’zˆ(1/3)’); % the Riemann surface for the cube root
cplxmap(z, mfun(’gamma’, z)), title(’gamma(z)’) % the gamma function

11. Verify that the command bar3 produces diagrams or surfaces defined by finite
lists or matrices.

A = hilb(6)
B = toeplitz([1, 2, 3, -3, -2, -1])
bar3(A + B) % Figure 7.6(b).

Section 7.2 1. Write the equations of the tangent plane and the normal vector of

the ellipsoid x2

a2 + y2

b2 + z2

c2 = 1 at the point P = (x0,y0,z0), and plot
the surface with the tangent plane and the normal vector at some P.

2. Prove that if the smooth surface M and the plane α have only one common point
P, then α is the tangent plane to the surface at P.

3. Write equations of the tangent plane and the normal vector of surfaces satisfying
(a) r(u,v) = [u + v, u− v, uv] at the point M = (2,1),
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(b) r(u,v) = [ucosv, usinv, av] at an arbitrary point,
(c) x2 +2y2 −3z2 −4 = 0 at the point M = (3,1,−1).
4. Prove that all tangent planes of the surface z = x · f (y/x) pass through the coor-

dinate center. Plot an example.
5. Prove (using symbolic calculations) that the tangent planes of the surface xyz = a3

form tetrahedra of constant volume with the three coordinate planes. Which property
of tangent lines of the hyperbola does this problem generalize?

Hint. Denote by TM the tangent plane at the point (x,y,z) on the surface. Let
x1, y1, z1 be the segments of the intersection of T M with the coordinate axes:

syms x y z a X Y Z real; F = x*y*z - aˆ3;
gr = [diff(F, x), diff(F, y), diff(F, z)];
TM = gr*[X - x, Y - y, Z - z]’;
x1 = solve(subs(TM, {Y, Z}, {0, 0}), X); % Answer: x1 = 3x
y1 = solve(subs(TM, {X, Z}, {0, 0}), Y); % Answer: y1 = 3y
z1 = solve(subs(TM, {Y, X}, {0, 0}), Z); % Answer: z1 = 3z
V = subs(x1*y1*z1, z, aˆ3/(x*y)) % Answer: V = 27a3.

The volume V = 27a3 does not depend on the point on the surface.
6. Prove that if all normals on a surface pass through the same point, then this surface

is a region on the sphere.
7. Prove that a one-sided surface cannot be represented as a graph z = f (x,y) or in

implicit form by F(x,y,z) = 0.
8. A curve on a surface z = f (x,y) that forms the maximal angle with the plane XY

at an arbitrary point is called a maximal sloping curve. Prove that a tangent line to such
curve and a normal vector of the surface belong to the same plane that passes through
the given point and is parallel to the z-axis.

9. Let f (x,y) ∈ C1, ∇ f �= 0, be a function. Prove that:
(a) maximal sloping curves of the surface z = f (x,y) (see Exercise 8) and the curve

of the intersection of this surface with the planes {z = const} form an orthogonal net;
(b) these curves project onto an orthogonal net of the plane XY .
10. Solve the following conditional extremum problem: Find the dimensions of the

cuboid of largest volume that can be fitted inside the ellipsoid x2

a2 + y2

b2 + z2

c2 = 1, assum-
ing that each edge is parallel to a coordinate axis.

Hint. Let P = (x,y,z) be the vertex of the cuboid in the first octant, so the edges of
the rectangular parallelepiped are 2x, 2y, 2z. We therefore wish to optimize the volume

function V = 8xyz under the constraint F(x,y,z) = 1, where F(x,y,z) = x2

a2 + y2

b2 + z2

c2 =
1. It is sufficient to solve the system grad(V ) = λ ·grad(F) in the variables x, y, z, and
λ under the above constraint.

syms x y z a b c lambda;
V = 8*x*y*z;
F = xˆ2/aˆ2 + yˆ2/bˆ2 + zˆ2/cˆ2;
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GradV = [diff(V, x), diff(V, y), diff(V, z)];
GradF = [diff(F, x), diff(F, y), diff(F, z)];
i = 1 : 3; Eq = GradV(i) - lambda*GradF(i);
S = solve(F - 1, Eq(1), Eq(2), Eq(3), x, y, z, lambda);
S.x(4), S.y(4), S.z(4), S.lambda(4)

x0 = 1
3 31/2a, y0 = −1

3 31/2b, z0 = − 1
331/2c, λ0 = 4

331/2abc % Answer

V0 = subs(V, {x, y, z}, {x0, y0, z0}) % Answer: V0 = 8
931/2abc

subs(F, {x, y, z}, {x0, y0, z0}) % Answer: 1.

Conclusion: Taking the positive roots, find that the maximal cuboid has edges x0 =
y0 = z0 = 1√

3
and volume V0 = 8

√
3

9 abc.

11. Find extrema of the function z = 1
3x3 +9y3 −4xy.

Conclusion: The function has the minimum fmin = −64
81 at P1 = ( 4

3 , 4
9); the point

P2 = (0, 0) is a saddle.

Fig. 7.17 Extrema of z = 1
3 x3 +9y3 −4xy: graph and the level lines.

12. Find extrema of the functions:

(a) xy +2x− log(x2y), (b) xy + 1
2x+2y ,

(c) expx +2y(x2 − y2), (d) xy log(x2 + y2),
(e) x

y + 1
x + y.

13. Let M ⊂ R
3 be a smooth surface and P0 a point that does not belong to M.

Prove that the shortest segment from P0 to M (if it exists) is orthogonal to M. Hint. Use
Theorem 7.2 about Lagrange multipliers for the distance function gp0 : Q → ρ(P0,Q).

Section 7.3 1. Check that u = v = 0 is a singular point of a certain type of the
transformed Whitney umbrella r(u,v) = [(u +av)v,u +av,v2].
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2. Show that the point (0,0) on the surface r(u,v) = [u,v,(u2 + v2)1/3], Figure
7.11(a), is a singular point:

r = 0 : 1/21 : 1; t = -pi : 2*pi/41 : pi;
[R, T] = meshgrid(r, t);
X = R.*cos(T); Y = R.*sin(T); Z = R.ˆ(2./3);
surf(X, Y, Z);

One may also obtain X , Y , Z by the command

[X, Y, Z] = pol2cart(T, R, R.ˆ(2./3));

Hint. Use the program :

syms u v real;
r = [u, v, (uˆ2 + vˆ2)ˆ(1/3)];
ru = diff(r, u); rv = diff(r, v);
ruv = cross(ru, rv);
n1 = ruv/sqrt(ruv*ruv’);
limit(limit(n1, u, 0), v, 0) % Answer: [0 NaN 0]

3. Write two programs (M-files similar to singDR, Section 6.2) to detect singular
points on parametric and implicitly given surfaces.

4. Plot the surface z2 − (x − y)2(x + y) = 0 and determine the type of the singular
point x = y = z = 0.

Fig. 7.18 Wings and the curve γ̃ .

5. Prove that O = (0,0) is a singular point of the surface (Figure 7.18(a))

r(u,v) = [u2 − v2, 2uv, u5].

r = linspace(0, 1, 41);
t = linspace(0, 2*pi, 61);
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[R, T] = meshgrid(r, t);
[X, Y, Z] = pol2cart(R.ˆ2.*cos(2.*T), R.ˆ2.*sin(2.*T), (R.*sin(T)).ˆ5);
surf(X, Y, Z);

Prove that while moving along the circle γ : u = ρ cos t, v = ρ sin t, the projection of a
point of the curve (see Figure 7.18(b))

γ̃ : r(ρ cos t, ρ sin t) = [ρ2 cos(2t), ρ2 sin(2t), (ρ sin t)5]

onto the plane XY wraps twice about the origin O.

Section 7.4 1. Show that all points (a) in the plane are of planar type; (b) on the
cylinder or cone are of parabolic type; (c) on the ellipsoid (sphere)

are of elliptical (spherical) type. This explains the terminology.
2. Show that a torus of revolution (with the z-axis) has points of the three main types.

The parabolic points fill two parallels (with maximal and minimal height z) and divide
the torus into two open sets: one with elliptical and another with hyperbolic points.

3. Study the types of points on a second-order surface.
4. Deduce the equation of the osculating paraboloid for the following surfaces at

given points and plot them:

(a) For the ellipsoid x2

a2 + y2

b2 + z2

c2 = 1 at the point P = (0,0,c).
Answer: z

c =
(
1− 1

2

(
x2/a2 + y2/b2

))
.

(b) For the hyperboloid x2 + y2 − z2 = 1 at the point P = (0,1,0).
(c) For the monkey saddle z = 3xy2 − x3 at the origin (Figure 8.26(a)).
5. Prove that
(a) if a surface is tangent to a plane along some curve, then each point on this curve

is of parabolic or planar type;
(b) elliptical and hyperbolic points on a torus of revolution form two open sets with

two boundary parallels of parabolic points.
6. Let α be the tangent plane of a surface M at P. Prove the following:
(a) If P is of elliptical (or spherical) type, then all points of M close enough to P lie

on the same half-space with respect to α .
(b) If the point P is hyperbolic, there exist points on M arbitrarily close to P on

either side of the plane α .
(c) If the point P is parabolic or planar, both of the above cases can occur (find

examples).
7. Show that
(a) if the boundary of a surface belongs to some plane, then either this surface be-

longs to a plane or the surface has elliptical points.
(b) every compact surface has elliptical points.
8. Plot the results of the program (Section A.8) for several surfaces.
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Section 7.5 1. Find the first/second fundamental forms of each surface (using
EFG.m, LMN.m): sphere, cone, helicoid, catenoid, pseudosphere,

torus.
2. Calculate the Gaussian, the mean, and the principal curvatures of
(a) a surface-graph z = f (x,y), where f ∈ C2,
(b) a surface of revolution of γ : x = f (u), y = 0, z = g(u) about the z-axis,
(c) a ruled surface r(u,v) = a(u)+ vb(u).
3. For the pseudosphere:
(i) calculate the length of a parallel;
(ii) calculate its total area;
(iii) calculate the principal curvatures;
(iv) show that the Gaussian curvature is a negative constant.
4. Surfaces with H = 0 are called minimal. Show that
(a) the only minimal surfaces of revolution are a plane and a catenoid;
(b) among all ruled surfaces, only a plane and a helicoid are minimal.
5. Plot geodesics on a sphere, a torus, a helicoid, and a Möbius strip using sgeod.m

(see Figure 7.15(a,b)).
6. Describe and plot four different geodesics on the hyperboloid of one sheet x2 +

y2 − z2 = 1 passing through the point (1,0,0).
7. Show that geodesics on a circular cylinder are
(a) parallels (circles),
(b) meridians (straight lines),
(c) helices.

Plot geodesics of each type. If P and Q are distinct points of a circular cylinder, there
are either two or infinitely many geodesics joining P and Q. Which pairs P, Q have the
former property?

8. Describe the geodesics on a circular cone.
9. What kind of a surface of revolution has the property that every parallel is a

geodesic?
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Examples of Surfaces

In this chapter we will study three very important and commonly occurring classes of
surfaces (algebraic surfaces, surfaces of revolution, and ruled surfaces) and envelopes
of surfaces. In Section 8.1 we will study surfaces of revolutions and plot the Möbius
band and a map on a torus that cannot be colored with six colors. In Section 8.2 we
will develop an M-file (the resultant) to deduce the polynomial equations of surfaces.
In Section 8.3 we will study ruled surfaces of various types and calculate their striction
curves and the distribution parameter. In Section 8.4, using the notion of a tangent
plane (see Section 7.2), we will plot some envelopes of families of surfaces (see also
Section 6.1 for curves).

8.1 Surfaces of Revolution

The cylinder, cone, sphere, torus, paraboloid, hyperboloids, and ellipsoid with two
equal axes are simple examples of surfaces of revolution. Many examples occur in
the real world.

Let α be a plane in R
3, g a line in α , and γ a curve in α . If α rotates in R

3 about
g, the set M obtained from γ is called the surface of revolution with axis g generated
from the profile curve γ . The curve of intersection of M with any plane through the
axis of revolution (in particular, the profile curve) is called a meridian, and the curve of
intersection of M with any plane orthogonal to the axis of revolution (a circle, a point,
or the empty set) is called a parallel.

Note that all normals to a surface of revolution intersect the same line (the axis of
revolution); in fact, surfaces of revolution (and their parts) are characterized by this
property.

V. Rovenski, Modeling of Curves and Surfaces with MATLAB R© , 323
Springer Undergraduate Texts in Mathematics and Technology 7, DOI 10.1007/978-0-387-71278-9 8,
c© Springer Science+Business Media, LLC 2010



324 8 Examples of Surfaces

Deleting any meridian from a surface of revolution of an elementary curve that
does not intersect the axis yields an elementary surface. For convenience we choose
rectangular coordinates such that α coincides with the plane XZ and such that the line
g coincides with the z-axis, and we denote the angle of rotation by u ∈ [0,2π). Suppose
that the curve γ is given in the parametric form x = f (u) ≥ 0, z = g(u), where u ∈ I.
If the point P = (x0,0,z0) belongs to the profile curve, a parallel through it is given by
the equations [x0 cosv, x0 sinv, z0]. Thus the surface of revolution M can be defined by
the equations

r(u,v) = [ f (u)cosv, f (u)sinv, g(u)], 0 ≤ v < 2π, (8.1)

which are called the standard parametric equations of a surface of revolution. The
coordinate net consists of two families of curves: parallels and meridians. Substituting
functions f (u), g(u) into (8.1) yields various examples of surfaces of revolution about
the z-axis.

Example. The surface of revolution of the curve γ : r(u) = [u, 0, 4+ sin(2u)] about the
z-axis is given in Figure 8.1(a) together with its parallels and meridians.

syms u v;
ezsurf((4 + sin(2*u))*cos(v), (4 + sin(2*u))*sin(v), u, [0, 4*pi, 0, 2*pi])

A single command cylinder graphs a surface of revolution of a curve x = f (z), 0 ≤ z ≤ 1,
in the xz-plane.

Z = linspace(0, 1, 41);
cylinder(4 + sin((4*pi)*2*Z)) % Figure 8.1(a)

Fig. 8.1 (a) Revolving [t, 0, 4 + sin(2t)], (b) sphere, (c) astroidal sphere.

The reader can use the following program to plot various surfaces of revolution and
their profile curves in rotation.
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f = @(t) cos(t); g = @(t) sin(t); u0 = -pi/2; u1 = pi/2; % data (half-circle)

u = linspace(u0, u1, 41); v = linspace(0, 2*pi, 41);
plot(f(u), g(u)), axis equal % plane curve
[U, V] = meshgrid(u, v);
X = f(U).*cos(V); Y = f(U).*sin(V); Z = g(U);
N = 24; for n = 0 : N; % preparing animation
mesh(X, Y, Z); hold on; axis equal;
plot3(f(u)*cos(n*2*pi/N), f(u)*sin(n*2*pi/N), g(u));
hold off; pause(0.2);
end % surface with rotating profile curve

M f (u) g(u) Domain G(u, v)
1 cylinder R u v ∈ [0,2π), u ∈ R

2 cone u ku (k �= 0) v ∈ [0,2π), u ∈ R

3 sphere Rsinu Rcosu v ∈ [0,2π), u ∈ [0,π]
4 2-hyperboloid Rsinhu Rcoshu v ∈ [0,2π), u ∈ R

5 1-hyperboloid Rcoshu Rsinhu v ∈ [0,2π), u ∈ R

6 catenoid acosh( u
a) u v ∈ [0,2π), u ∈ R

7 pseudospere asinu a(cosu + logtan( u
2)) v ∈ [0,2π), u ∈ (0,π)

8 torus R+ r cosu r sinu (R > r) u,v ∈ [0,2π)

1. Revolving a line which is parallel to the axis yields the circular cylinder:

f = @(t) 1 + t - t; g = @ (t) t; u0 = 0; u1 = 2; % r = [Rcosv,Rsinv,u], Figure 8.1(b)

2. Revolving a line which intersects the axis yields the cone:

f = @(t) t; g = @ (t) t; u0 = -1; u1 = 1; % r = [ucosv,usinv,ku], Figure 7.16(a)

3. Revolving a half-circle about its diameter yields the sphere:

r = [Rsinucosv, Rsinusinv, Rcosu] (Figure 8.1(b)).

The coordinates u and v on this sphere are the geographic coordinates longitude and
latitude. By deleting one meridian (say, the “date line”), we obtain an elementary sur-
face.

4. Revolving a hyperbola yields a hyperboloid of two sheets (considered as a sphere of
imaginary radius in a pseudo-Euclidean space R

3
1):

r = [Rsinhucosv,Rsinhusinv,±Rcoshu] (Figure 7.16(b)).

5. Revolving one branch of a hyperbola yields a hyperboloid of one sheet:

r = [Rcoshucosv, Rcoshusinv, Rsinhu] (Figure 7.16(c)).
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6. Revolving a catenary yields a catenoid:

r = [acosh(u/a)cosv, acosh(u/a)sinv, u] (Figure 8.2(b)).

7. Revolving a tractrix about its asymptote yields a pseudosphere:

r = [asin ucosv, asin usinv, a(cos u + log(tan(u/2)))] (Figure 8.2(a)).

8. Revolving a circle yields a torus:

r = [(R+ r cosu)cosv, (R+ r cosu)sinv, r sinu] (Figure 7.1(b)).

f = @(t) 2 + cos(t); g = @(t) sin(t); u0 = -pi; u1 = pi; % torus

This table of surfaces of revolution (above) can be extended.

If the profile γ is given implicitly by F(x,z) = 0, then the surface of revolution about
the z-axis has the equation, in rectangular or cylindrical coordinates,

F
(√

x2 + y2,z
)

= 0, F(ρ,z) = 0. (8.2)

In particular, if the profile curve is the graph z = h(x), then the surface of revolution is
also the graph in rectangular or cylindrical coordinates:

z = h
(√

x2 + y2
)

, z = h(ρ). (8.3)

In the case of parametric equations r = [ucos v, usin v, h(
√

u2 + v2)], the coordinate net
consists of parallels and meridians. The whole parallel through a singular point of γ
consists of singular points (see Figure 8.2(a,c)). If the profile curve γ has no singular
points and does not intersect the axis, then the surface of revolution also has no singular
points (see Figure 8.2(b)).

Fig. 8.2 Pseudosphere, catenoid, and revolving astroid.
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A screw motion of space is the composition of a revolution about some axis and
a parallel displacement along the same axis. Using this map, we obtain the following
generalization of a surface of revolution.

If a plane curve γ(u) rotates about some axis in its plane and at the same time moves
uniformly in the direction of this axis, then we obtain the screw surface with generatrix
γ(u). If the generatrix is a straight line, then the screw surface is called a helicoid,
which is also a particular case of a ruled surface (see Section 8.3). A screw surface
with generatrix γ : [ f (u), g(u)] is defined by the equation (where h = const)

r(u,v) = [ f (u)cos v, f (u)sin v, g(u)+hv] (0 ≤ v < 2π, u ∈ I).

Examples.

1. An example of a screw surface is the twisted sphere, Figure 8.25(c),

r(u,v) = [Rsinucosv, Rsinusinv, Rcosu +hv] (|v| ≤ π, |u| ≤ π).

2. Möbius band. Turn the line segment I0 = [R,0,u], where |u| ≤ 1, R = const > 1,
about its center (R,0,0) through the angle v

2 ∈ [0,π] in the plane XZ: Iv/2 = [R +
usin(v/2), 0, ucos(v/2)], and then rotate the line segment Iv/2 about the z-axis through
the angle v ∈ [0,2π]. We obtain a wonderful surface, Figure 7.3(b):

r(u,v) = [(R+usin(v/2))cos v, (R+usin(v/2))sin v, ucos(v/2)].

u = linspace(-1, 1, 11); v = linspace(0, 2*pi, 31);
[U, V] = meshgrid(u, v);
X = (5 + sin(V/2).*U).*cos(V); Y = (5 + sin(V/2).*U).*sin(V); Z = cos(V/2).*U;
surf(X, Y, Z), axis equal;

The n-times-turned (through 180◦) twisted strip has the similar equations

r(u,v) = [(R+usin(nv/2))cos v, (R+usin(nv/2))sin v, ucos(nv/2)] .

n = 3; u = linspace(-1, 1, 11); v = linspace(0, 2*pi, 31);
[U, V] = meshgrid(u, v);
X = (5 + sin(n*V/2).*U).*cos(V); Y = (5 + sin(n*V/2).*U).*sin(V);
Z = cos(n*V/2).*U;
surf(X, Y, Z), axis equal;

The surface is homeomorphic to the cylinder for even n, and it is homeomorphic to the
Möbius band and has one side for odd n.

3. The four color map theorem states that, given a plane separated into regions, the
regions may be colored using no more than four colors in such a way that no two
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adjacent regions receive the same color. One can also consider the coloring problem on
surfaces other than the plane. One may show that

(a) the problem for a sphere is equivalent to that of the plane;
(b) seven colors are sufficient to color a map on a torus.

Let us plot the torus divided into the seven regions, each one of which touches every
other (Figure 8.3).

r1 = 3; r2 = 1; a = 1;
syms u v uk vk;
x = (r1 + r2*cos(u))*cos(v); y = (r1 + r2*cos(u))*sin(v); z = r2*sin(u);
xk = (r1 + r2*cos(uk))*cos(vk+a*uk); yk = (r1 + r2*cos(uk))*sin(vk+a*uk);
zk = r2*sin(uk);
r = subs([xk, yk, zk], vk, 2*pi/7*(7-1));
ezplot3(r(1), r(2), r(3)); % boundary between 6 and 7 regions
hold on; axis equal; view(3); ezmesh(x, y, z) % torus
for k = [1 3 5]; ezsurf(xk, yk, zk, [0, 2*pi 2*pi/7*(k-1), 2*pi/7*k]) end;

The two-dimensional map (scheme) is the following:

u = linspace(0, 5, 41);
hold on; axis equal; axis([0 14 0 5]);
plot([0, 14, 14, 0, 0], [0, 0, 5, 5, 0], ’r’, ’LineWidth’, 3); % rectangle
for i = 1 : 9; plot(u + 2*i - 6, u); end;

Fig. 8.3 Seven countries on the torus and the two-dimensional scheme.

4. Slowly changing the equations of a torus (using periodic flattening of the circle to a
line segment) leads to a pinched torus (Figure 7.1(c)):

X = ’(1 + .2*sin(u))*cos(v)’; Y = ’(1 + .2*sin(u))*sin(v)’; Z = ’.2*sin(v)*cos(u)’;
ezsurf(X, Y, Z, [0, 2*pi, 0, 2*pi]), axis equal;
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8.2 Algebraic Surfaces

A large class of surfaces is obtained by using polynomials in three variables.
A surface is called algebraic if it can be given by an equation F(x,y,z) = 0, where F

is a polynomial in variables x, y, z. The degree of F is called the order of the surface. If
F is the product of nonconstant polynomials, then the surface is called decomposable.
A surface that is not algebraic is called a transcendental surface.

We will show that if a profile curve is algebraic, then the surface of revolution is
also algebraic.

Indeed, if fn(x,z) = 0, where fn is a polynomial of order n, is the equation of
the profile curve γ , then the surface of revolution (about the z-axis) has the equation
fn(r,z) = 0, where r2 − x2 − y2 = 0.

Using the M-file Resfg (the resultant — see Sections 1.5, 6.2), we eliminate r from
the system fn(r,z) = 0, r2 − x2 − y2 = 0 and obtain the polynomial equation of the
surface Fm(x,y,z) = 0, where the degree m ≤ n +2.

Examples.

1. Any line intersects an algebraic surface of order n at no more than n distinct points,
unless it is completely contained in the surface.

Hint. Substituting parametric equations of an arbitrary line x = a1 + tb1, y = a2 + tb2,
z = a3 + tb3 in the equation of the surface, we obtain the polynomial F(a1 + tb1, a2 +
tb2, a3 + tb3) = ∑0≤i≤n diti in t of order not more than n. If all coefficients of this
polynomial are zero, then the line belongs to the surface. Otherwise, the polynomial
has at most n real roots, which correspond to the points of intersection of the line with
the surface. (Multiple roots correspond to points of tangency or singular points.)

2. The cylinder over (or revolving of) a sine curve is a transcendental surface. A plane
in space is defined by the linear equation ax +by + cz +d = 0, hence it is an algebraic
surface of the first order. Surfaces of the second order (the sphere and the ellipsoid,
elliptic and hyperbolic paraboloids, hyperboloids of one and two sheets, the elliptic
cone, cylinders over curves of second order) are studied in analytical geometry.

3. The swallow-tail surface r = [u,−4v3 − 2uv,3v4 + uv2], Figure 8.4, is a fifth-order
algebraic surface.

syms u v;
ezsurf(u, -4*vˆ3 - 2*u*v, 3*vˆ4 + u*vˆ2, [-4, 4, -1, 1]), axis equal;

Using Resfg (the resultant of two polynomials — see Section 6.2) and setting x = u,
eliminate the variable v from the system of equations 4v3 +2xv+y = 0, 3v4 +xv2−z =
0 and obtain a polynomial in x, y, z of the fifth order:
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syms u v x y z;
u = x;
f = 4*vˆ3+2*u*v+y, g = 3*vˆ4+u*vˆ2-z % f = 4v3 +2xv + y, g = 3v4 + xv2 − z
a = [ 4, 0, 2*x, y ]; b = [ 3, 0, x, 0, -z ]; % coefficients of polynomials in v
F = det(Resfg(a, b)) % implicit equation is F = 0

F = 4x3y2 +27y4 −16x4z +128x2z2 −144xzy2 −256z3 % Answer.

Next, show that the swallow-tail surface divides the space of polynomials R
3(x,y,z) =

{t4 + xt2 + yt + z} into three domains, in one of which the polynomials (looking like a
pyramid) have four real roots, in the next, two roots, and in the last domain, non-real
roots.

Solution. If the polynomial F(t;x,y,z) has a multiple root t, then the system F = 0,
F ′

t = 0 has a solution. Computing F ′
t = 4t3 +2xt +y and eliminating t from the system

is equivalent to applying the command Resfg (resultant) for F and F ′
t as polynomials

in t.

syms x t;
at = [ 1, 0, x, y, z ]; % coefficients of ft = t4 + xt2 + yt + z
bt = [ 4, 0, 2*x, y ]; % coefficients of gt = 4t3 +2xt + y
d = det(Resfg(a1, b1)) % We obtain that d = −F

d = −4x3y2 −27y4 +16x4z−128x2z2 +144xzy2 +256z3 % Answer
simplify(subs(d, {’y’, ’z’}, {’-4*tˆ3 - 2*x*t’, ’3*tˆ4 + x*tˆ2’})) % obtain 0.

Fig. 8.4 Swallow-tail surface, its cuspidal edge, sections by the planes x = c.

4. In the revolving of an astroid (an algebraic curve of the sixth order), eliminate r
from the system of equations (r2 + z2 − a2)3 + 27a2z2r2 = 0, r2 − x2 − y2 = 0 and
obtain ((x2 + y2)+ z2 −a2)3 +27a2z2(x2 + y2) = 0, i.e., a surface of the sixth order.

syms x y z r a;
fr = rˆ 2 - xˆ 2 - yˆ 2; ar = [1, - xˆ 2 - yˆ 2]; % polynomial in r2

gr1 = collect(expand(gr), r)
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gr1 = r6 − r4(3a2 −3z2)+ r2(3a4 + 21a2z2 + 3z4)−3a2z4 + 3a4z2 −a6 + z6

br = [1, - 3*aˆ 2 + 3*zˆ 2, 3*aˆ 4 + 21*aˆ 2*zˆ 2 + 3*zˆ 4,
- 3*aˆ 2*zˆ 4 + 3*aˆ 4*zˆ 2 - aˆ 6 + zˆ 6];

d1 = simple(det(Resfg(ar, br)))

d1 = 3y2z4 + 3y4z2 + x4(3y2 −3a2 + 3z2)+ x2(3a4 −6a2y2 + 21a2z2 + 3y4+
6y2z2 + 3z4)−a6 + x6 + y6 + z6 −3a2y4 + 3a4y2 −3a2z4 + 3a4z2 + 21a2y2z2

d2 = ((xˆ 2 + yˆ 2) + zˆ 2 - aˆ 2)ˆ 3 + 27*aˆ 2*zˆ 2*(xˆ 2 + yˆ 2);
simplify(d1 - d2) % obtain 0.

((x2 + y2)+ z2 −a2)3 +27a2z2(x2 + y2) = 0 % Answer

5. In the revolving of a circle, eliminate r from the system (r −a)2 + z2 −b2 = 0, r2 −
z2 −y2 = 0 (with a > b > 0) and obtain a polynomial that defines a torus of revolution:

syms r a b x y z;
fr = (r - a)ˆ2 + zˆ2 - bˆ2; gr = rˆ2 - xˆ2 - yˆ2;
fr1 = collect(expand(fr), r) % f r1 = a2 −2ar −b2 + r2 + z2

ar = [1, -2*a, aˆ 2 - bˆ 2 + zˆ 2]; br = [1, 0, - xˆ2 - yˆ2]; % polynomials in r
F = simple(det(Resfg(ar, br)))
F = 2y2z2 − x2(2a2 +2b2 −2y2 −2z2)+a4 +b4 + x4 + y4 + z4

−2a2b2 −2a2y2 +2a2z2 −2b2y2 −2b2z2

It has the short form F1 = (a2 −b2 + x2 + y2 + z2)2 −4a2(x2 + y2).

F1 = (aˆ2 - bˆ2 + xˆ2 + yˆ2 + zˆ2)ˆ2 - 4*aˆ2*(xˆ2 + yˆ2);
simplify(F - F1) % obtain 0

8.3 Ruled Surfaces

We consider some important classes of surfaces that can be constructed by moving one
curve in space, the ruling, along another curve, the directrix.

A surface M is called ruled if it is generated by a one-parameter family of lines
(rulings). A space curve on a ruled surface that intersects each ruling at one point is
called a directrix curve. For each point of some directrix ρ(u) (u ∈ I), we define the
unit vector a(u) that is parallel to the ruling gu through this point. As a result, we obtain
the standard parametric equations of a ruled surface

r(u,v) = ρ(u)+ va(u) (u ∈ I, v ∈ R), (8.4)

where the v-curves coincide with the rulings, and the parameter v is equal (up to sign)
to the segment of the ruling between the point r(u,v) and the directrix ρ(u); see Figure
8.5(a).

Particular cases of ruled surfaces are the following:
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• the cylindrical surface r(u,v) = ρ(u)+va0: the vector-valued function a(u) = a0

is constant and represents the direction of the axis;
• the conic surface r(u,v) = ρ0 + va(u): the vector-valued function ρ(u) = ρ0 is

constant and represents the vertex (the singular point);
• the tangent developable surface r(u,v) = ρ(u)+vρ ′(u): all rulings are tangent to

the directrix curve, i.e., a(u) = ρ ′(u).

Fig. 8.5 Ruled surface. Cylinder and cone over a four-leafed rose.

A ruled surface with the condition a′(u) �= 0 is called non-cylindrical. A non-
cylindrical ruled surface whose rulings are parallel to some fixed directrix plane is
a Catalan surface. A Catalan surface is called a conoid if all its rulings intersect a
constant line (the axis of the conoid). A conoid is right if its axis is orthogonal to the
directix plane.

A conoid is generated by a line that moves along a fixed line orthogonal to it (the
axis of the conoid), and at the same time rotates about this line. If the velocity of
rotation is proportional to the lifting velocity of the ruling, then the conoid is called a
helicoid. One can distinguish a right-side and a left-side helicoid. The simplest conoid
is the hyperbolic paraboloid. It is defined by moving a line that is parallel to a fixed
plane and is guided by two fixed helices (has two axes!).

Examples.

1. The swallow-tail algebraic surface, Figure 8.4, is at the same time a ruled surface:
r = [0,−4v3,3v4]+u[1,−2v,v2] (replace u ↔ v to obtain the standard representation).

2. The Catalan surfaces are characterized among all ruled surfaces by the conditions
(a, a′,a′′) = 0, a′′ �= 0.

Hint. Observe that the three vectors a, a′, a′′ are parallel to the directrix plane.

3. One can construct a right helicoid as a particular case of the following surface. A
helicoid is a surface obtained from a line that rotates about a fixed axis with constant
angular velocity, intersects the axis at the constant angle θ , and at the same time has
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translational motion (with constant velocity) along the axis. If θ = 90◦, then the heli-
coid is right (Figure 8.8(a)), and if θ �= 90◦, then it is skew:

r(u,v) = [0,0,cu]+av[cos u,sin u,0] = [avcos u,avsin u,cu].

A visual demonstration of separate rays on this surface gives the steps of a spiral
staircase. A generalization of the right helicoid is the elliptical helicoid r(u,v) =
[avcos u,bvsin u,cu]. The following surface (the conoid), of Figure 8.10(c), looks like
the helicoid when a = 1, c = 0.1, but the velocity of rotation of the ruling is exponential:

r(u,v) = [0,0, exp(cu)]+av[cosu, sinu,0] = [avcosu, avsinu, exp(cu)].

ezsurf(’v*cos(u)’, ’v*sin(u)’, ’2*u’) % Figure 8.8(a)

4. The conoid of Wallis (for example, with u ∈ [0,1], v ∈ [0,π], shown in Figure 8.6(b))
is given by r(u,v) = [vcos u, vsin u, c

√
a2 −b2 cos2(u)].

syms u v; r = [v*cos(u), v*sin(u), sqrt(1 - 3*cos(u)ˆ2)];
ezsurf(r(1), r(2), r(3), [-.99 .99], [0, pi]) % a = c = 1, b =

√
3, Figure 8.6(b)

5. Plücker’s conoid has the simple equation z = 2xy
x2+y2 ⇐⇒ r(x,y) = [x,y, 2xy

x2+y2 ], but
in this case we do not see the rulings in the picture.

syms x y; r = [x, y, 2*x*y/(xˆ2+yˆ2)]; ezsurf(r(1), r(2), r(3), [-1, 1], [-1 1])

Using cylindrical coordinates x = ucosv, y = usinv, z = z allows us to write other
parametric equations of this surface

r(u,v) = [0,0,sin(2u)]+ v[cos u,sin u,0] = [vcos u,vsin u,sin(2u)],

where the rulings are the v-curves,

syms u v; n = 2; r = [ v*cos(u/n), v*sin(u/n), sin(u) ]; % define n = 2,3, . . .
ezsurf(r(1), r(2), r(3), [0 1], [0, 2*pi*n]) % n = 2, Figure 8.6(a)

We see that the surface is given by the rotation of the ray about the z-axis with si-
multaneous 2π-periodic oscillatory motion along the segment [−1,1] of the z-axis.
Generalized Plücker’s conoids (having n folds instead of two) are obtained by the rota-
tion of a ray about the z-axis, with simultaneous oscillatory motion (with period 2πn)
along the segment [−1,1] of the z-axis (see Figure 8.7(a,b) for the cases of n = 5, 8):

r(u,v) = [0,0,sin(nu)]+ v[cos u,sin u,0] = [vcos u,vsin u,sin(nu)].

A ruled surface is called developable if its tangent plane is the same at all points of
any ruling, or equivalently, if the normal n preserves its direction (is stationary) along
each ruling.
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Fig. 8.6 Conoids of (a) Plücker and (b) Wallis.

Fig. 8.7 Generalized Plücker’s conoids for n = 5,8 and saddle-3.

Simple examples of developable ruled surfaces are cylinders and cones. A more
complicated example is a tangent developable surface. To show this, find ru = ρ ′(u)+
vρ ′′(u) and rv = ρ ′(u). Hence, the normal n1 ‖ ru × rv = vρ ′′(u)× ρ ′(u) ‖ ρ ′′(u)×
ρ ′(u) preserves its direction as v varies.

For example, the tangent developable surface to the helix:

syms u v; rho = [cos(u) sin(u) u]; r = rho + v*diff(rho, u);
n = simple(cross(diff(r, u), diff(r, v)))/v % obtain n = [−sin(u),cos(u),−1]

The inverse statement also holds: A developable ruled surface consists of cylindri-
cal, conical, and tangent developable surfaces.

Fig. 8.8 Helicoid, tangent developable surface, a tube.
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Fig. 8.9 Viviani curve and its normal, binormal, and tangent developable ruled sur-
faces.

Fig. 8.10 Binormal ruled surface and rπ/6 for a helicoid and exponential helicoid.

Example. Plot the normal and the binormal surfaces

r1(u,v) = ρ(u)+ vν(u), r2(u,v) = ρ(u)+ vβ(u)

generated by the main normals ν(u) and binormals β (u), respectively, to the given
space curve ρ(u). Plot the surfaces r1(u,v) and r2(u,v) for the helicoid (see the right
conoid and Figure 8.10(a)) and for the Viviani curve (see Figure 8.9(c,d)). Plot the
intermediate surfaces for some values of θ (see Figure 8.10(b)):

rθ (u,v) = ρ(u)+ vcos(θ )ν(u)+ vsin(θ )β(u).

Hint. Use the program

syms u v; r = [cos(u)ˆ2, cos(u)*sin(u), sin(u)];
ezplot3(r(1), r(2), r(3), [-pi, pi]); % Viviani curve, Figure 8.9(a)
ru = diff(r, u); ruu = diff(ru, u);
tt = ru./sqrt(ru*ru’);
b = cross(ru, ruu); bb = b./sqrt(b*b’);
nn = cross(bb, tt);
rn = r + v*nn; rt = r + v*tt; rb = r + v*bb;
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rth = simplify(r + v*cos(pi/6)*nn + v*sin(pi/6)*bb);
ezsurf(rn(1), rn(2), rn(3), [-pi, pi, 0, .3], 31); % Figure 8.9(c)
ezsurf(rb(1), rb(2), rb(3), [-pi, pi, 0, .3], 31); % Figure 8.9(d)
ezsurf(rt(1), rt(2), rt(3), [-pi, pi, 0, .3], 31); % Figure 8.9(e)
ezsurf(rth(1), rth(2), rth(3), [0, .3, -pi, pi], 31); % Figure 8.10(c)

Consider the relative positions of two rulings gu and gu+Δu on a ruled surface
r(u,v) = ρ(u)+ va(u), where |a(u)| = 1. If the surface is non-cylindrical, these rul-
ings are skew lines in space. Let PP′ be the shortest segment between rulings, where
P = (u,v), P′ = (u+Δu,v+Δv), and u, v are unknown (Figure 8.11). The bottom P of

Fig. 8.11 Striction point on a ruling.

the perpendicular PP′ tends along the ruling gu to the limit value P0 as Δu → 0; P0 is
called the point of striction on the ruling gu. It shows the narrowest (striction) place on
the ruled surface near this ruling. The position vector of the striction point is

r(u) = ρ(u)− ρ ′(u) ·a′(u)
(a′(u))2 a(u),

and so we have a striction curve. It encircles the ruled surface at its narrowest, and is
independent of the choice of the directrix curve ρ(u).

The ruling gu comes into the new position gu+Δu, with rotation through some angle
Δϕ and with a deviation from the initial position at the distance Δλ = |PP′|. For a
non-cylindrical ruled surface we have

p(u) = lim
Δu→0

(Δλ)/(Δϕ) = (a, a ′,ρ ′)/|a′|2. (8.5)

The function (8.5) is called the distribution parameter p(u) of the non-cylindrical ruled
surface (8.4).
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Examples.

1. The hyperboloid of revolution of one sheet x2+y2

a2 − z2

c2 = 1 is a doubly ruled non-
cylindrical surface. The striction curve of each of its families is the circle of its inter-
section with the plane XY . From the example we see that the striction curve does not
intersect the rulings at right angles.

2. Find the striction curve and the distribution parameter of the hyperbolic paraboloid.

Solution. The parametric equations of the hyperbolic paraboloid z = xy are ru =
[u,0,0] + v[0,1,u]. We calculate the striction curve ρ(u) = [u,0,0] and the function
a(u) = [0,1,bu]/

√
b2 +u2.

syms b u v real;
d = [0, 1, b*u]/sqrt(1+(b*u)ˆ2);
r = [u, 0, 0];
ru = diff(r, u); du = diff(d, u);
A = [d; du; ru];
p = factor(det(A)/(du*du’)) % obtain p = (1 +b2u2)/b

8.4 Envelope of a One-Parameter Family of Surfaces

Previously, surfaces have been defined as figures satisfying certain geometrical con-
ditions or equations. In this section, surfaces appear as envelopes of one-parameter
families of spheres, planes, and other surfaces.

A set of surfaces {Mt} that depend on the parameter t is called a one-parameter
family of surfaces. A smooth surface M is called an envelope of the family {Mt}
if it is tangent at each of its points to at least one surface from the family, and in
each of its domains is tangent to an infinite number of surfaces from the family. Let
F(x,y,z; t) be a function of class C1. One derives the envelope of a family of surfaces
{Mt : F(x,y,z; t) = 0} from the system of equations

F(x,y,z; t) = 0, F ′
t (x,y,z; t) = 0 (8.6)

by elimination of t, similarly to (6.1). In fact, (8.6) defines the discriminant set, which
includes extraneous solutions (analogous to the inflection points in a solution of the
problem of extrema of a function f (x) using the condition f ′(x) = 0).

Examples.

1. It is known that the envelope of a one-parameter family of planes has the structure
of a ruled developable surface.
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2. The envelope of the family of spheres Mt : (x−t)2+y2 +z2−R2 = 0 (Figure 8.14(a))
is the circular cylinder with axis OX (Figure 8.14(b)).

3. It is easy to check that the envelope of the family of spheres of radius R with centers
on the circle r(t) = [acost,asin t,0], where a > R, is a torus of revolution (Figure 8.12).
This family Mt is defined by the equation (x−acost)2 +(y−asint)2 + z2 −R2 = 0.

4. Find the envelope of spheres ϕ(x,y,t) = (x− t)2 + y2 + z2 −R2 = 0 from Example
2, p. 338. First calculate F ′

t = 2(x− t) = 0. From this obtain t = x, and then substitute
into the equation F = 0 and obtain y2 + z2 = R2. Hence, the envelope is the cylinder of
radius R with axis OX (Figure 8.14(b)).

syms u v;
[X, Y, Z] = sphere;
hold on; axis equal; view(3);
ezmesh(v, cos(u), sin(u), [-pi - 1, 0, -.5, 6]);
for i = 1 : 6;
surf( .8*i + X, Y, Z);
end;

Fig. 8.12 The torus is the envelope of a family of spheres.

5. Plot the envelope from Example 3, p. 338 (Figure 8.12(b)):

syms u v;
[X, Y, Z] = sphere;
hold on; axis equal; view(3)
ezmesh((3 + cos(u))*cos(v), (3 + cos(u))*sin(v), sin(u), [-pi - 1, .7, pi/3, 2*pi])
for i = 1 : 12;
surf(3*cosd(i*30) + X, 3*sind(i*30) + Y, Z)
end;

6. The discriminant set of the family F(x,y,z;t) = y3 − (x− t)2 of cylindrical surfaces
with the z-axis coincides with a plane {y = 0} that is not tangent to the given surfaces
but is the union of their singular points; see Figure 8.13(b) (and Figure 8.13(a) with a
similar 2-D case).
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syms u v;
hold on; view(3);
for i = 0 : 7;
ezsurf([uˆ3 + 2*i, uˆ2/10, v], [-1.6, 1.6], 20);
end; % surface
hold on; for i = 1 : 7;
ezplot(uˆ3 + 2*i, uˆ2/.5, [-1.1, 1.1]);
end; % curves

Fig. 8.13 Discriminant set (envelope is empty).

A curve along which the envelope is tangent to some surface from a given family
is called a characteristic. Equations (8.6) for the envelope are at the same time the
equations of a characteristic for fixed t. For an envelope of planes, the characteristics
are lines; for spheres, they are circles.

Fig. 8.14 The cylinder is the envelope of a family of spheres.

The envelope of the family of spheres Mt : (x− a(t))2 +(y− b(t))2 +(z− c(t))2 −
R(t)2 = 0 of radii R(t), with a curve of centers r(t) = [a(t), b(t), c(t)] with nonzero
curvature, is a canal surface (see Section 8.5)

r(u,v) = r(t)+R(t)(−R′(t)τ(t)±
√

1− (R′(t))2 (cos(θ )ν(t)+ sin(θ )β(t))),
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where τ , ν , β is a Frenet frame field of the curve r(t). If the radius is constant, R(t) =
R > 0, this surface is a tube (see Section 8.5). Moreover, the characteristics will be the
generators (circles).

8.5 More Examples of Surfaces

Any surface gives rise to other surfaces through a variety of general constructions.
In addition to the surfaces of Sections 8.2–8.4, we now study some other interesting
classes of surfaces and constructions.

8.5.1 Canal surfaces and tubes

A surface M is called a canal surface if it can be represented as the union of a one-
parameter family of circles whose supporting planes are orthogonal to the curve of
centers of these circles. By definition, a canal surface with a C3-regular curve of centers
α(u) and a function of radius R(u) admits regular parametric equations of the form

r(u,v) = α(u)+R(u)(cos vν(u)+ sin vβ (u)),

where the (unit) main normal ν(u) and the binormal β (u) are orthogonal to the tangent
vector τττ(u) of the curve α(u). For every u the function R(u)(cos vν(u)+ sin vβ (u)),
where v ∈ [0,2π), defines a circle (the generator) of radius R(u) that belongs to M. If
the radius is constant, R(u) = R, such a surface is called a tube over the curve α(u)
with radius R.

Examples.

1. Plot the tube over the torus knot (Figure 8.15(c)).

syms t s real;
x = cos(t)*(10 + 4*sin(9*t)); y = sin(t)*(10 + 4*sin(9*t)); z = 4*cos(9*t);
r = [x, y, z]; dr = diff(r, t); ddr = diff(r, t, 2);
T = dr/sqrt(dr*dr’);
b = cross(dr, ddr); B = b/sqrt(b*b’);
N = cross(B, T);
rs = r + N*cos(s) + B*sin(s);
hold on; axis equal; view(3);
ezmesh((10 + 4*cos(t))*cos(s), (10 + 4*cos(t))*sin(s), sin(t), [0, 2*pi]);
ezsurf(rs(1), rs(2), rs(3), [0, 2*pi], 121); two surfaces
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2. A surface of revolution (see Section 8.1) is a canal surface with the curve of centers
on the axis of revolution. The circular cylinder is a tube over a line; the torus is a tube
over a circle. A tube generated by a circular helix can be seen in Figure 8.8(c).

The program for a canal surface over an arbitrary curve is:

r = [x, y, z]; dr = diff(r, u); ddr = diff(r, u, 2);
T = dr/sqrt(dr*dr’);
b = cross(dr, ddr); B = b/sqrt(b*b’);
N = cross(B, T);
rs = r + N*R*cos(v) + B*R*sin(v);
ezsurf(rs(1), rs(2), rs(3), [u0, u1, 0, 2*pi]), axis equal;

Before using this program one should define the following functions:

syms u v real;
x = u; y = uˆ2; z = u/2; % define x(u),y(u),z(u)
R = u/5; u0 = 0; u1 = 2; % define R(u), u0,u1

Fig. 8.15 Canal surfaces and tubes.

8.5.2 Translation surfaces

A surface M that admits parametric equations of the form r(u,v) = r1(u)+ r2(v) is
called a translation surface. In other words, a translation surface is obtained by moving
some curve (generator) that is always parallel to its initial position and is guided with
one of its points on another curve, the directrix. The simplest translation surface is a
cylindrical surface. It can be obtained by parallel displacement of the directrix, which
intersects every generator.
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Examples.

1. The Bohemian dome is obtained by translation of an ellipse along a circle: r(u,v) =
[acos u,asin u +bcos v,csin v] (Figure 8.17(a)).

syms u v;
ezsurf(8*cos(u), 8*sin(u) + 3*cos(v), -3*sin(v), [0 2*pi 0 pi]); axis equal;

2. Plot eight different figure eights.

Solution. We plot the surface defined by moving the figure eight along a circle
[R cos(v),0,R sin(v)] (Figure 8.16(c)):

syms u v; R = .5;
ezsurf(sin(2*u) + R*cos(v), sin(u), R*sin(v), [0, 2*pi]);

The Lissajous curve r(u) = [sin(nu), sin u] for n = 2 has the shape of the number 8
(Figure 8.16(a)). We revolve the figure eight about the z-axis (Figure 8.16(b)):

syms u v;
ezsurf(sin(2*u)*cos(v), sin(2*u)*sin(v), sin(u), [0, 2*pi]); axis equal;

Plot also the tube over an eight, Figure 8.16(d), using the program of Example 2,
p. 341 with R = const. Four more figure eights can be constructed using a lemniscate,
ρ =

√
2cos(2ϕ) (see Section 1.4).

One can continue this experiment with figure eights by using the curve y2 = x2 −x4,
similar to the lemniscate, which is related to the motion of a material point in an energy
field with two symmetric potential holes,

ezplot(’yˆ2 - (xˆ2 - xˆ4)’, [-1.1, 1.1, -0.5, 0.5]);

or by using the spiral curve, i.e., the intersection of the torus with the plane parallel to
its axis. (The points P on a spiral curve satisfy the equality |PA|2 · |PB|2 = c · |PO|2 +c1,
where A, B are fixed points, O is the midpoint of AB, and c, c1 are real numbers. Hence,
these curves generalize the ovals of Cassini. See Section 1.4.)

Fig. 8.16 Figure eights.
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8.5.3 Twisted surfaces

Consider a generalization of the Möbius band and the Klein bottle: let γ : r(t) =
[ϕ(t),ψ(t)] be a plane curve with the condition r(−t) = −r(t). Then the twisted sur-
face with profile curve γ is defined by the equations

r1(u,v) = (a + cos(bu)ϕ(v)− sin(bu)ψ(v)) [cosu,sinu,0]
+ (sin(bu)ϕ(v)+ cos(bu)ψ(v)) [0,0,1].

Example. Plot the Lissajous curve r(u) = [sin(nu),sin u], |u| ≤ π , with n = 4, Figure
8.17(b), and its twisted surface, Figure 8.17(c).

ezplot(’sin(4*t)’, ’sin(t)’, [0, 2*pi]); % a curve
syms u v;
ezsurf((2 + cos(u/2)*sin(4*v) - sin(u/2)*sin(v))*cos(u),
(2 + cos(u/2)*sin(4*v) - sin(u/2)*sin(v))*sin(u),
sin(u/2)*sin(4*v) + cos(u/2)*sin(v), [-pi/8, 3*pi/2, 0, pi]); % surface

Fig. 8.17 Bohemian dome. The Lissajous curve and its twisted surface.

8.5.4 Parallel surfaces

Let M : r(u,v) be a smooth surface of class C1 and n(p) its normal vector field. For an
arbitrary real h plot the surface M(h), placing from each point P ∈ M the line segment
of length |h| in the direction of the normal n(P) when h > 0, and the line segment of
length |h| in the direction −n(P) when h < 0. The surface M(h) is called a parallel (or
equidistant) surface for M and is given by the equations r(u,v;h) = r(u,v)+hn(u,v).

A parallel surface for a plane is again a plane. The parallel surfaces for the sphere
and the cylinder of radius R, for |h| < R, are spheres and cylinders of radius R±h.
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Obviously, the properties of the parallel surface M(h) are defined by the properties
of M and the value of h. For small h the surface M(h) is regular; its normal n(P,h)
coincides with n(P), and its tangent planes at corresponding points are parallel to one
another. Parallelness of two surfaces is a symmetric property: M is also a parallel sur-
face for M(h).

Examples. Plot parallel surfaces to several surfaces.

(a) Plot some parallel surfaces to (part of) an ellipsoid (Figure 8.18(a)):

syms u v;
r = [cos(u)*cos(v), cos(u)*sin(v), 2*sin(u)];
ru = diff(r, u); rv = diff(r, v);
nn = cross(ru, rv);
n = nn/sqrt(nn*nn’);
hold on; axis auto; view(40, 50);
for i = [-1.5, -1, -.6, .2];
ri = r + i*n;
ezsurf(ri(1), ri(2), ri(3), [-pi/3, pi/3, pi/8, 2*pi - pi/8]);
end;

(b) Plot parallel surfaces for the hyperboloid of one sheet (Figure 8.18(b)), setting, in
the above program, the following:

r = [cosh(u)*cos(v), cosh(u)*sin(v), sinh(u)];

(c) Plot a parallel surface to the Möbius band (Figure 8.18(c)):

syms u v;
r = [(5 + cos(v/2)*u)*cos(v), (5 + cos(v/2)*u)*sin(v), sin(v/2)*u];
ru = diff(r, u); rv = diff(r, v);
nn = cross(ru, rv);
n = nn/sqrt(nn*nn’);
hold on; axis auto; view(40, 50);
ezmesh(r(1), r(2), r(3), [-1 1 0 2*pi]);
h = 1;
rh = r + h*n;
ezsurf(rh(1), rh(2), rh(3), [-1 1 0 4*pi]);

Since the Möbius band is one-sided, one cannot select a continuous unit normal field
along the whole surface. Thus we move twice (in the parameter u) along the Möbius
band; see the formulae in the program. Moreover, the unit normal takes both possible
values at each point of the surface. Note that a parallel surface for the Möbius band has
two sides (is orientable).
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Fig. 8.18 Parallel surfaces for (a) ellipsoid, (b) hyperboloid of 1 sheet, (c) Möbius
band.

8.5.5 Pedal and podoid surfaces

Consider the construction of a surface analogous to pedal curves.
A pedal surface (French padaire) M(P) consists of the bottoms of perpendiculars

from the fixed point P ∈ R
3 onto various tangent planes of the given surface M. If

r(u,v) are the parametric equations of M, then the pedal surface with respect to P is
given by

r1(u,v) = rp +
((r(u,v)− rp),ru,rv)

|ru × rv|2 (ru × rv).

The pedal surface for a plane, obviously, coincides with a point. The following con-
struction of surfaces is in a simple relation to the pedal surface. The locus of points
M(P) that are symmetric to P with respect to all possible tangent planes of the surface
M is called a podoid surface.

Example. Plot the pedal surfaces of the ellipsoid with respect to its center, one of its
vertices, and any external point.

syms u v; p = [3 0 0];
r = ([cos(u)*cos(v), 2*cos(u)*sin(v), 3*sin(u)]);
ru = diff(r, u); rv = diff(r, v);
nn = cross(ru, rv);
coef = (r - p)*nn’/(nn*nn’);
rr = p + nn*coef;
ezsurf(rr(1), rr(2), rr(3), [-pi/2 pi/2 pi/2 2*pi]); view(120, 20);
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Fig. 8.19 Pedal surfaces (with a cut) for an ellipsoid.

8.5.6 Cissoidal and conchoidal maps

The following construction of surfaces is analogous to the difference of graphs f (x,y) =
f1(x,y)− f2(x,y) of two functions in rectangular coordinates. The cissoidal map is ap-
plied to any two surfaces (for curves see Section 1.4), whose equations in spherical
coordinates are ρ = ρ1(ϕ,θ ) and ρ = ρ2(ϕ,θ ), with the aim of constructing the sur-
face ρ = ρ1(ϕ,θ )−ρ2(ϕ ,θ ). In other words, on each ray from the point O we set the
line segment OM equal to the segment on the ray between the two given surfaces.

The following construction of surfaces is analogous to the known conchoidal trans-
formation on plane curves. A conchoidal surface for a given surface (for a curve see
Section 1.4) is obtained by increasing (or decreasing) the position vector of each point
of the surface by a fixed line segment l. If the equation of a surface is ρ = ρ1(ϕ,θ ) in
spherical coordinates, then the equations of its conchoidal surface are ρ = ρ1(ϕ ,θ )± l.

Examples.

1. Write down the equations and plot the cissoidal surface of a sphere with diameter
|OA| = 2a and tangent plane α at the point A = (2a,0,0).

Solution. The cissoid of a line x = 2a in the plane XZ, Figure 8.20(a), has the equation

ρ = 2a
sin2 ϕ
cosϕ

⇐⇒ z2 = x3/(2a− x).

x = linspace(0, 1.8, 41); f = sqrt(x.ˆ3./(2 - x)); plot(x, f, x, -f); % a=1

We need the surface of revolution about the axis OX of the part of the cissoid with z ≥ 0,
which has the equation z2 +y2 = x3/(2a−x). Since impl.m gives only an approximate
image, we use the parametric equations of part of the cissoid x = t, z =

√
t3/(2a− t)

(0 ≤ t < 2a) and plot the surface of revolution, Figure 8.20(c), by the formula (8.7):
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r(u,v) =

⎡

⎣u,

√
u3

2a−u
cos v,

√
u3

2a−u
sin v

⎤

⎦ (0 ≤ u < 2a, 0 ≤ v < 2π).

u = linspace(0, 1.9, 41); v = linspace(0, 2*pi);
[U, V] = meshgrid(u, v);
f = sqrt(U.ˆ3./(2 - U));
surf(U, f.*cos(V), f.*sin(V));

2. Write down the equation and plot the conchoidal surface of the plane {z = a} with
l = 1.

Hint. The conchoid of the line z = a in XZ,

ρ =
a

sin ϕ
± l ⇐⇒ (z2 + x2)(z−a)2 − l2 z2 = 0 (Figure 8.20(b)),

for l > a has a loop, for l = a has a cuspidal point, and for 0 < l < a has an isolated
point. Using rotation about the z-axis, we obtain the conchoid of the plane z = a: (z2 +
x2 + y2)(z−a)2 − l2z2 = 0. Since impl.m gives a coarse image, we use the parametric
equations of part of the conchoid x = a

sin t ± l cos t, z = a
sin t ± l sin t (0 ≤ t < π/2)

and plot, using (8.1), the surface of revolution that we need with a = 2, l = 1 (Figure
8.20(d)),

r(u,v) = [(2/sinu±1)cosucos v,(2/sinu±1)cosusin v,(2/sinu±1)sinu].

ezpolar(’2/sin(t)-1’, [.2, pi - .2]); % profile curve
t = linspace(.1, pi - .1, 41); s = linspace(-pi, pi, 41);
[U, V] = meshgrid(t, s);
h = 2./sin(U) - 1;
surf(h.*cos(U).*cos(V), h.*cos(U).*sin(V), h.*sin(U)); % surface

Fig. 8.20 Cissoid of the sphere, conchoid of the plane, and their profile curves.
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8.5.7 Inversion of a surface

Inversion is the simplest (nonlinear) transformation of space after rigid motions and
affine maps. Inversion with respect to a sphere is a generalization of symmetry with
respect to a plane, but in our case the points near the center (lying inside the sphere)
are mapped far from the center (outside the sphere) and conversely (see Section 4.1;
inversion of the plane is treated in Section 4.1.2).

Inversion is an involutive map, i.e., (iO,R)2 = Id (identity map). The sphere S(O,R)
is the set of fixed points of the inversion.

Example. Inversion with center O and radius 1 of the circular helix, Figure 8.21(a),
r(t) = [3 + cos t,sin t,0.1t] is the curve in Figure 8.21(b).

r = [3 + cos(u), sin(u), .1*u]; ezplot3(r(1), r(2), r(3), [0, 8*pi]); % curve
ri = r/(r*r’); ezplot3(ri(1), ri(2), ri(3), [-25*pi, 25*pi]); % inversion of a curve

Fig. 8.21 The circular helix (4 turns) and its inversion image (30 turns).

We recall some elementary properties of inversion (see Section 4.1).

• Inversion maps a plane (or a line) that does not contain the center of the inversion
onto a sphere (respectively, circle) passing through the center of the inversion.
Conversely, a sphere (or a circle) that contains the center of the inversion is trans-
formed by inversion into a plane (respectively, a line) that does not pass through
the center.

• Inversion maps a sphere (or circle) that does not contain the center into a sphere
(respectively, circle) that also does not contain the center of the inversion.

• Inversion preserves angles between vectors, and hence preserves angles between
intersecting curves.
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Using inversion, one can compare the behavior of very similar non-compact surfaces
(and curves) at infinity.

Fig. 8.22 Paraboloid of revolution and its inversion (outside x2 + y2 ≤ 1).

Fig. 8.23 Hyperboloid of one sheet and its inversion (outside x2 + y2 ≤ 1).

Fig. 8.24 Cyclides of Dupin.
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Examples.

1. Plot an inversion image of a paraboloid of revolution (Figure 8.22(a,b)) a hyper-
boloid of one sheet (Figure 8.23(a,b)), and the inversion images of their profiles (Figure
8.22(c,d) and Figure 8.23(c,d)):

syms u v;
r = [u*cos(v), u*sin(v), uˆ2+1]; ri = r/(r*r’);
ezsurf(r(1), r(2), r(3), [1 7 -pi (3/4)*pi]); % paraboloid
ezsurf(ri(1), ri(2), ri(3), [1 7 -pi pi]); % inversion of a paraboloid
r = [sinh(u)*cos(v), sinh(u)*sin(v), cosh(u)+1];
ri = r/(r*r’);
ezsurf(r(1), r(2), r(3), [1 7 -pi (3/4)*pi]); % hyperboloid
ezsurf(ri(1), ri(2), ri(3), [1 7 -pi pi]); % inversion of hyperboloid
r2 = [u, uˆ2 + 1]; % parabola
r2 = [sinh(u), cosh(u)+1]; % hyperbola
ezplot(r2(1), r2(2), r2(3), [-2 2]); % a curve
r2i = 2/(r2*r2’);
ezplot(r2i(1), r2i(2), r2i(3), [-6 6]);

2. The image of a torus under inversion is called the cyclide of Dupin. Show that this
class of surfaces includes cones and cylinders. Prove that the cyclide of Dupin is a
particular case of a canal surface that can be generated by each of two families of
circles (images of parallels and meridians on a torus) forming an orthogonal net. Write
down the equation and plot some cyclides of Dupin.

Hint. Plot two images, Figure 8.24, of the torus r(u,v) = [b +(a + cos u)cos v, (a +
cos u)sin v, sin u] under inversion with center O and radius 1: a = 2, b = 8, and a = 1,
b = 4.

syms u v;
r = [8 + (2 + cos(u))*cos(v), (2 + cos(u))*sin(v), sin(u)]; % 1st case
r = [4 + (1 + cos(u))*cos(v), (1 + cos(u))*sin(v), sin(u)]; % 2nd case
R = r/(r*r’); ezsurf(R(1), R(2), R(3), [-pi pi]);

8.6 Exercises

Section 8.1 1. Prove that the surface of revolution of the curve γ : x = f (u), z =
g(u) ≥ 0, where u ∈ I, about the axis OX is given by

r(u,v) = [ f (u), g(u)cos v, g(u)sin v] (0 ≤ v < 2π). (8.7)

2. Write down the equation and plot the surface of revolution of the astroid about
one of its axes of symmetry (Figure 8.2(c), which looks like a top), the revolution of
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the lemniscate about each of its axes of symmetry, and the revolution of the four-leafed
rose about an axis of symmetry.

Fig. 8.25 Revolution of a four-leafed rose and lemniscate. Twisted sphere.

3. The construction of a surface of revolution can be generalized if the points of
a curve γ(u) are moving not along circles (parallels), but along plane curves that are
homothetic to a given curve γ1(v). Write down the equations of generalized surfaces of
revolution in the cases where γ1(v) is an ellipse, a parabola, a four-leafed rose, etc.

4. Complete the program of Example 3, p. 327 to obtain each region colored differ-
ently.

5. Find the singular points on the surface of revolution of the astroid about its axis
of symmetry (Figure 8.2(c)).

6. The cubes of the coordinate functions in the equations of the sphere define para-
metric equations of the astroidal sphere r = [(Rsinucosv)3, (Rsinusinv)3, (Rcosu)3].
It looks like an octahedron with concave faces and edges, Figure 8.1(c). Check that the
equation x2/3 + y2/3 + z2/3 = R2/3 defines an astroidal sphere.

Section 8.2 1. Show that the following surfaces r(u,v) are algebraic:
(a) The monkey saddle r = [u,v,u3 − 3uv2], Figure 8.26(a) (third

order).
(b) The Whitney umbrella r = [uv,u,v2], Figure 8.26(b) (third order).
(c) The wings r(u,v) = [u2 − v2,2uv,u5], Figure 7.18(a) (tenth order).
Then explain why the surface r(u,v) = [ f1(u,v), f2(u,v), f3(u,v)], where fi(u,v) are

polynomials, is an algebraic surface.
Hint. (a) Consider an explicit equation of this surface.
(b) Consider the function x2 − y2z.
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Fig. 8.26 Monkey saddle and Whitney umbrella.

(c) Using the resultant Resfg twice, eliminate the variables u, v from the system of
polynomial equations u2 −v2 −x = 0, 2uv−y = 0, u5 − z = 0, and obtain a polynomial
F in x, y, z of the tenth order:

syms x y z u v;
a = [-1, 0, uˆ2 - x]; b = [2*u, -y]; % polynomials in v
r1 = det(Resfg(a, b)) % Answer: r1 = 4u4 −4u2x− y2

a1 = [4, 0, -4*x, 0, -yˆ2]; b1 = [1, 0, 0, 0, 0, -z] % polynomials in u
F = det(Resfg(a1, b1))

F = −y10 −320y4z2x−1280z2x3y2 +1024z4 −1024x5z2 % Answer.

2. The swallow-tail surface has a cuspidal edge (Figures 8.4(a,b)) and a curve of
self-intersection.

(a) To imagine this surface better, consider its intersections with parallel planes
x = c, Figure 8.4(c).

(b) Show that the points (x,y,z), where the polynomial F(t;x,y,z) = t4 +xt2 +yt +z
has the multiple root t, form the swallow-tail surface (see Example 3, p. 329) given by
equations y = −4t3 −2xt, z = 3t4 + xt2.

(c) The cuspidal edge on the swallow-tail surface is given by the condition that t is
a triple root of the equation F = 0, i.e., F ′′

tt = 0. Show that this singular curve is defined
by the parametric equations r(t) = [−6t2,8t3,−3t4], Figure 8.4(b).

Hint. Eliminate x, y, z from the system of 3 equations, then plot:

syms t x y z;
F = tˆ4 + x*tˆ2 + y*t + z;
r = solve(F, diff(F, t), diff(F, t, 2), x, y, z);
[r.x r.y r.z] % [−6t2, 8t3, −3t4]
ezplot3(r.x, r.y, r.z, [-1, 1])

(d) Show that the swallow-tail surface is the union of all tangent lines to the space
curve r(t) = [t2,t3,t4].
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Section 8.3 1. Plot the following surfaces and verify their ruled structure:
(a) The hyperboloid of one sheet x2/a2 + y2/b2 − z2/c2 = 1:

r(u,v) = ρ(u)± v(ρ ′(u)+ [0,0,c]),

where ρ(u) = [acos u,bsin u,0] is an ellipse, and ± are two ways to fix the rulings.
(b) The hyperbolic paraboloid z = x2/a2 − y2/b2:

r(u,v) = [au,0,u2]+ v[a,±b,2u] = [a(u + v), ±bv, u2 +2uv],

where ± are two ways to fix the rulings. There are other convenient parametric equa-
tions when this surface (after rotation) is given by z = axy,

r(u,v) = [u,0,0]+ v[0,1,au] = [u,v,avu].

(c) The elliptical cone x2/a2 + y2/b2 − z2/c2 = 0. It can be parameterized with
rulings in the role of the v-curves,

r(u,v) = v[acos u, bsin u, c] (v ∈ R, u ∈ [0,2π)).

(d) The conical surface with vertex S = (a,b,0) and a four-leafed rose ρ = cos(2ϕ)
as its section by the plane α : z = 1 (see Figure 8.5(c)):

r(u,v) = [a,b,0]+ v[cos(2u)cos u, cos(2u)sin u, 1] (0 ≤ v ≤ 2, 0 ≤ u ≤ 2π).

(e) The cylinder with the z-axis and a four-leafed rose as its directrix:

r(u,v) = c[cos(2u)cos u,cos(2u)sin u,0]+ v[0,0,1], Figure 8.5(b).

(f) The tangent developable surface with the helix as the directrix curve:

r(u,v) = [cos u,sin u,au]+ v[−sin u,cos u,a], Figure 8.8(b).

2. Prove that:
(a) A cylinder over a smooth plane curve is also a smooth surface.
(b) The unique singular point on a cone over a smooth curve that differs from a part

of the plane is its vertex.
(c) The singular points of a tangent developable surface form its directrix curve,

which is called the cuspidal edge.
3. Plot the tangent developable surface over the Viviani curve:

r(u) = [Rcos u2, Rcos usin u, Rsin u] (u ∈ [−π,π]), Figure 8.9(b).
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4. Find conditions for when the surface z = f (x,y) is a ruled developable surface.
Compute using MATLAB R© and give examples.

5. Show that the saddle type surface, Figure 8.7(c), generalizes both the Plücker
conoid and the monkey saddle: r(u,v) = [vcos u, vsin u, vm sin(vu)].

6. Show that:
(a) The striction curve of a tangent developable surface coincides with its cuspidal

edge.

(b) For the hyperboloid of one sheet, x2

a2 + y2

b2 − z2

c2 = 1, the striction curve is a space
curve of the fourth order, singular for each system of rulings.

(c) The axis of a right conoid is its striction curve.
7. Show that the striction curve of the helicoid coincides with its axis and that its

distribution parameter is a constant function.
8. Show that the distribution parameter of a developable (non-cylindrical) ruled sur-

face is identically zero.

Section 8.4 1. Find a family of surfaces whose discriminant is (a) a line, (b) a
point.

Answer: (a) (x− t)2 + y2 = t2, t �= 0, (b) (x− t)2 + y2 + z2 = t2, t �= 0.
2. Find the envelope of the family of planes that cut from the coordinate octant

x,y,z ≥ 0 tetrahedra of constant volume V .
Answer: xyz = 2

9V ; see also Exercise 5, p. 317.
3. Write down the equation of the family of spheres for which the envelope is the

cone x2 + y2 = a2z2,(z �= 0) without its vertex.
Answer: x2 + y2 +(z− t)2 = a2t2/(a2 +1).
4. Let r(s) be a space curve with the natural parameter s and with nonzero curvature,

let {τ,ν ,β} be its Frenet frame field, and let r̃ be a point in space. Prove that:
(a) The envelope of the family of osculating planes (r̃ − r(s)) · β (s) = 0 is a tan-

gent developable surface for which the given curve is the cuspidal edge; for each t the
characteristic coincides with the tangent line.

(b) The envelope of the family of normal planes (r̃− r(s)) · τ(s) = 0 is a tangent
developable surface that is the locus of centers of osculating spheres (for a given curve).

(c) The envelope of the family of rectifying planes (r̃− r(s)) ·ν(s) = 0 contains the
given curve (as its geodesic); the characteristics coincide with the momentary axis of
revolution of the Frenet frame field {τ,ν ,β}. (This developable ruled surface is called
rectifying, because after unrolling onto the plane, the given curve becomes a straight
line.)

5. Prove that the family of surfaces given by F(x,y,z) = t, where F is an arbitrary
regular function in three variables x,y,z, has no envelope.

Section 8.5 1. Write down equations of the canal surface with R(u) = ku and the
tube over the circular/conic helix. Plot the surfaces (sea shell, Figure

8.15(b)).
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2. Show that the following surfaces are translation surfaces:
(a) The elliptical and hyperbolic paraboloids.
(b) The part of the helicoid r(u,v) = [ucos v,usin v,av] with u ≤ c.
Hint. Replace the coordinate system by u = ccos ϕ−ψ

2 , v = ϕ+ψ
2 , where 0 ≤ ϕ −

ψ < π
2 ; assume r1(t) = 2[ccos t,csin t,at]; and deduce the equation of the helicoid

r(ϕ ,ψ) = r1(ϕ)+ r1(ψ).
(c) The surface that is the locus of centers of segments whose endpoints belong to

two given space curves.
3. Show that the Möbius band (see Example 2, p. 327) is twisted for b = 1

2 , using
the line segment γ : r(t) = [t,0] (|t| ≤ 1).

4. Plot the canal surface defined by moving the circle of radius 4 + sin(k t) (k =
3,4, . . . ) along the circle r(t) = [10cos t, 10sin t, 0] (Figure 8.15(a)):

syms u v;
k = 4; f = 4 + sin(k*v); % enter your data
ezsurf((12 + f*sin(u))*cos(v), (12 + f*sin(u))*sin(v), f*cos(u), [0, 2*pi]);

5. Show that the Figure Eight immersion of the Klein bottle, Figure 7.3(c), has
simple parametric equations: it is twisted for b = 1

2 using the Lissajous curve γ : r(t) =
[sin t, sin(2t)] (|t| ≤ π), and is given by the equations

r1(u,v) = (a + cos(u/2)sin v− sin(u/2)sin(2v))[cosu,sinu,0]
+ (sin(u/2)sin v + cos(u/2)sin(2v))[0,0,1].

(8.8)

In this immersion, the self-intersection circle is a geometric circle in the XY -plane. The
positive constant a = 3 is the radius of this circle. The parameter u gives the angle in
the XY -plane, and v specifies the position around the 8-shaped cross section.

6. Show that the parallel surface for a tube of radius R over a space curve with small
h is again a tube of radius R±h over the same curve.

7. Show that a parallel surface for a developable ruled surface is again a developable
ruled surface.

8. Prove that a pedal surface of the sphere is the surface of revolution of a cardioid
if the point P belongs to the sphere. Plot this surface.

9. Plot the pedal surfaces of
(a) a torus with respect to its center;
(b) a parabola with respect to its vertex (a cissoid).
Then plot the analogous pedal surface of a paraboloid.
10. Write down the equations for the podoid surface of a given surface.
Show that the podoid surface
(a) of a developable ruled surface degenerates to a curve;
(b) of a surface can be obtained from a pedal surface using similarity with center at

P and with coefficient 2;
(c) of a sphere is again a sphere.
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11. Show that the conchoidal surface of the sphere is the surface of revolution of
Pascal’s limaçon. Plot these surfaces.

12. Study the analogous cissoidal and conchoidal mappings of surfaces using a line
(the z-axis) instead of the point O, and cylindrical coordinates. Plot examples of such
surfaces.
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Piecewise Curves and Surfaces

After an introductory section, in Section 9.2 we will consider Bézier curves. Then
we will discuss the important notions of parametric Ck-continuity and geometric Ck-
continuity of piecewise curves. Section 9.3 is devoted to (parametrically Ck-continuous)
Hermite interpolation and its applications to spline curves. In Section 9.4 we will study
β -splines, which are geometrically Ck-continuous. We will also briefly survey their
particular case, B-splines, which are parametrically Ck-continuous. In Sections 9.5 and
9.6 we will study similar problems for piecewise surfaces. Along the way we will create
and apply several M-files that are given in Section A.4.

9.1 Introduction

The main problem discussed in this chapter is this: given points (control vertices)
P = {P1, P2, . . . ,Pn} arbitrarily placed in the plane or in space, construct a smooth
curve passing near or through these points and satisfying some additional conditions.
A polygon that joins neighboring points from P is called a control polygon; P1 and Pn

are called boundary points, and P2, . . . ,Pn−1 are called inner points. The equation of
the curve will be written in the form of weighted sum r(t) = ∑n

i=1 ai(t)Pi (t ∈ [a,b]),
where the functions ai(t) must be derived.

Spline curves are obtained by using a similar scheme to that in Section 1.6. We fix
the net a = t1 < t2 < · · · < tm = b and build the vector function r(t) with the following
two conditions:

(i) r restricted to [ti,ti+1] is a polynomial of degree at most d,
(ii) r ∈ Cd−1[a,b].

We call r a spline of degree d ≥ 1 with respect to the {ti}, the knots. For interpolating
splines the nodes {r(ti)} coincide with the control vertices. For smoothing splines the

V. Rovenski, Modeling of Curves and Surfaces with MATLAB R© , 357
Springer Undergraduate Texts in Mathematics and Technology 7, DOI 10.1007/978-0-387-71278-9 9,
c© Springer Science+Business Media, LLC 2010
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nodes need not coincide with the control vertices. Each control vertex participates in
at most d +1 curve segments, so the curve features local control: moving one control
vertex affects only those segments and not the entire curve.

A spline may also be defined on an infinite interval. From the above definition, we
see that a linear spline r(t) (with d = 1) is just a continuous polygonal arc. The most
common case is that of cubic splines (d = 3).

Similarly to curves, a piecewise (spline) surface can be obtained by constructing a
number of patches and connecting them. The method used to construct the patch should
allow for smooth connection of the patches. A surface patch can be displayed either as
a wire frame or as a solid surface.

Recall that a regular curve γ can be generated by a regular parameterization r(t);
i.e., r′(t) �= 0 for all t ∈ I. A curve γ is called parametrically Ck-continuous if it can
be generated by a regular parameterization r(t) of class Ck (i.e., r(k)(t) is a continuous
vector function).

One may consider a Ck-regular change of parameter t ′ = ϕ(t).
If r(t) is a Ck-regular parameterization of γ , then the natural parameterization r(s)

of the curve is also regular Ck.
The examples of piecewise plane curves illustrate the fact that the continuity of the

vector r′ (depending on the choice of parameterization of the curve) does not imply the
continuity of the tangent line.

Example.

Verify the condition of continuity r1(1) = r2(0) for the curves composed of two seg-
ments: r1(t) (called “arriving”) and r2(t) (called “departing”), 0 ≤ t ≤ 1. Find charac-
teristics of the curve at its node, and then plot it using the statements:

hold on; ezplot(r1, [t1, t2]);
h = ezplot(r2, [t3, t4]); set(h, ’Color’, ’r’);
plot(subs(r1(1), t, t2), subs(r1(2), t, t2), ’o’);

(a) r1(t) = [4t, 4t], r2(t) = [t + 1, t + 1] are two segments (Figure 9.1(a)). The first
derivatives at the node (1,1) are not equal: r′

1(1) = [4,4], r′
2(0) = [1,1], but the curve

has continuous tangent line.

r1 = [4*t, 4*t]; t1 = 0; t2 = 1/4;
r2 = [1+t, 1+t]; t3 = 0; t4 = 1; % data

(b) r1(t) = [−(1 − t)2, (1 − t)2], r2(t) = [t2, t2] are two segments (Figure 9.1(b)).
Although the first derivatives at (0,0) are equal, r′

1(1) = r′
2(0) = [0,0], and the curve

r′(t) is continuous, it is not C1-continuous.

r1 = [-(1 - t)ˆ2, (1 - t)ˆ2]; t1 = 0; t2 = 1;
r2 = [tˆ2, tˆ2]; t3 = 0; t4 = 1;
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Fig. 9.1 Two-component curves.

9.2 Bézier Curves

An alternative for least-squares smoothing is provided by Bézier curves. An interest-
ing application of Bézier-curves is to font design. The boundary of each character in a
font is specified by Bézier curves. Different font sizes are obtained by applying scal-
ing transformations to the control points, and making use of the property of invariance
under affine transformations. Italic fonts may be obtained by applying a shear transfor-
mation or a projection.

9.2.1 Bézier curves of degree n

The Bézier curve defined by control points P = P1, . . . ,Pn+1 of R
N is the nth-degree

polynomial given by r(t) = ∑n
i=0 Bn,i(t)Pi+1 for t ∈ [0,1]. The multipliers at the points

in the above equation are called Bernstein polynomials and are defined as Bn, i(t) =(n
i

)
ti(1 − t)n−i. When Pi ∈ R

2 (i = 1, . . . ,n + 1), then the curve is planar, and when
Pi ∈ R

3, the curve is spatial. Equivalently, the Bézier curve is represented in matrix
form as

r(t) = G[Bn,n(t); Bn,n−1(t); . . . ;Bn,1(t); Bn,0(t)], (9.1)

where G = (P1, P2, . . . , Pn+1) is the geometric matrix. If N = 3, the geometric matrix

has the form G =

⎛

⎝
x1 x2 . . . xn+1

y1 y2 . . . yn+1

z1 z2 . . . zn+1

⎞

⎠ .

The difference of two points, P2 − P1 = (Δx1, . . . ,ΔxN), is the vector from P1 to
P2. The sum of a point P0 and a vector v is well defined and is a point P0 + v. The
sum of points, in general, is not well defined. There is, however, one important special
case where the sum of points is well defined, the so-called barycentric sum. If we
multiply each point Pi by a weight wi and if ∑n

i=0 wi = 1, then the sum ∑n
i=0 wiPi is
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affine invariant, i.e., it is a valid point. Actually, this is the sum of the point P0 and the
vector ∑n

i=0 wi(Pi −P0), and we already know that the sum of a point and a vector is a
point. The result does not depend on P0 (verify).

The Bézier curve is affine invariant, i.e.,

f

(
n

∑
i=0

Bn,i(t)Pi+1

)

=
n

∑
i=0

Bn,i(t) f (Pi+1)

for any affine transformation f , because ∑n
i=0 Bn,i(t) = 1. It has the form ∑n

i=0 wi(t)Pi,
where the weights wi(t) are barycentric. The Bézier curve is a result of blending several
points with the Bernstein polynomials.

Example. For n = 2, the Bernstein polynomials (weights) are

B2,0(t) = (1− t)2, B2,1(t) = 2t(1− t), B2,2(t) = t2,

and the quadratic Bézier curve is r(t) = (1 − t)2P1 + 2t(1 − t)P2 + t2P3. The matrix
presentation of the curve (in R

3) takes the form r(t) = GM T (t) (0 ≤ t ≤ 1), where
r(t) = [x(t); y(t); z(t)] and T (t) = [t2; t; 1] are column vectors, and

G = (P1 P2 P3), M =

⎛

⎝
1 −2 1

−2 2 0
1 0 0

⎞

⎠ . (9.2)

Given P1, P2, P3, one can evaluate and plot the quadratic Bézier curve.

P = [0 0; 2 -1; 3 3];
syms t; r = (1 - t)ˆ2*P(1, :) + 2*t*(1 - t)*P(2, :) + tˆ2*P(3, :)
hold on; ezplot(r(1), r(2), [0, 1]); % Bézier curve (parabola)
plot(P(:, 1), P(:, 2), ’o - - r’); % 3 points

Fig. 9.2 (a) Least-squares method. (b, c) Bézier curves.
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One may prove by induction that the (n + 1)-point Bézier curve is represented by
r(t) = GM T (t) (0 ≤ t ≤ 1), where T (t) = [tn; tn−1; . . . ;t;1] is a column vector and M
is a symmetric matrix with zero elements below the second diagonal. The ith row of M
consists of the coefficients of Bn,i(t):

[Bn,n(t); Bn,n−1(t); . . . ;Bn,1(t); Bn,0(t)] = M[tn; tn−1; . . . ;t;1].

Its determinant therefore equals (up to sign) the product of the diagonal elements,
which are all nonzero. Hence, M is nonsingular. M can also be written as the prod-
uct M̄D, where D = diag((n

0),(
n
1), . . . ,(

n
n)) is the diagonal matrix, and

M̄ =

⎛

⎜⎜
⎜
⎝

(n
n)(−1)n (n−1

n−1)(−1)n−1 . . . (n−n
n−n)(−1)0

(n
n−1)(−1)n−1 (n−1

n−2)(−1)n−2 . . . 0
...

... . . . 0
(n

0)(−1)0 0 0 0

⎞

⎟⎟
⎟
⎠

(9.3)

A Bézier curve goes through initial/end control points. Its nice approximation prop-
erties are explained by the Weierstrass theorem. Note that the addition of a point in-
creases the degree of a Bézier curve. Another defect is that the whole Bézier curve
changes when one of the control points moves.

Examples.

1. Compute the symmetric matrix (9.3) for arbitrary n.

n = 4; % enter data
for i = 1 : n + 1; for j = 1 : n + 1;

M(i, j) = gamma(n + 1)./gamma(j)./gamma(n - j + 2).*
gamma(n + 2 - j)./gamma(n + 3 - i - j)./gamma(i).*(-1).ˆ(n + 2 - i - j);

end; end

M % matrix (9.3) for a given n.

2. Calculate and plot the plane Bézier curve using the M-file bezier.

x = 2 : 8; y = [32, 34, 36, 34, 39, 40, 37]; % enter data
r = bezier(x, y)
hold on; ezplot(r(1), r(2), [0, 1]);
plot(x, y, ’o - - r’); % Figure 9.2(b)

The first component of r(t) is linear when the step of the x-net is constant:

r = bezier(x, y); r(1); % Answer: 2 +6 t

Figures 9.2(b,c) illustrate some standard properties of Bézier curves. For instance, these
curves always lie in the convex hulls of their control points, since base Bernstein func-
tions are nonnegative with sum equal to 1. Thus, the curve is said to have the convex
hull property.
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simplify(sum(B)) % obtain 1 (B contains Bn,i(t), see M-file bezier.m)

3. Calculate and plot the Bézier curve in R
3 using the M-file bezier.

x = 2 : 8;
yz = [32, 34, 36, 34, 39, 40, 37; 33, 32, 34, 32, 37, 38, 36]; % enter data
r = bezier(x, yz)

r = [6t +2, 70t6 −222t5 +225t4 −80t3 +12t +32,
74t6 −240t5 +270t4 −140t3 +45t2 −6t +33] % Answer r(t) ⊂ R

3

ezplot3(f(1), f(2), f(3), [0, 1]); hold on;
plot3(x, yz(1, :), yz(2, :), ’o - - r’); % Figure 9.2(c).

9.2.2 Piecewise cubic Bézier curves

The cubic (elementary) Bézier curve is determined by four control points P1, P2, P3, P4

and the base Bernstein polynomials

B3,0(t) = (1− t)3, B3,1(t) = 3t(1− t)2, B3,2(t) = 3t2(1− t), B3,3(t) = t3.

Its equation is r(t) = B3,0(t)P1 +B3,1(t)P2 +B3,2(t)P3 +B3,3(t)P4.
Obviously, r′(t) = −3(1− t)2P1 +3(1− t)(1−7t)P2 +3t(2−3t)P3 +3t2P4; hence,

r(0) = P1, r(1) = P4, r′(0) = 3(P2 −P1), r′(1) = 3(P4 −P3).

Fig. 9.3 Elementary and closed Bézier curves.

The definition of elementary Bézier curve is equivalent to

r(t) = (((1− t)P1 +3tP2)(1− t)+3t2P3)(1− t)+ t3P4, 0 ≤ t ≤ 1. (9.4)

The matrix presentation of (9.4) has the form r(t) = GM T (t) (0 ≤ t ≤ 1), where r(t) =
[x(t); y(t); z(t)] and T (t) = [t3; t2; t; 1] are column vectors and
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G = (P1 P2 P3 P4), M =

⎛

⎜
⎜
⎝

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

⎞

⎟
⎟
⎠ . (9.5)

Here M is called the basic matrix of the cubic Bézier curve, and P is its geometric
matrix. The derivatives of the Bézier curve are

r′(t) = GM T ′(t), r′′(t) = GM T ′′(t), r′′′(t) = GM T ′′′(t), (9.6)

where T ′(t) = [0; 1; 2 t; 3 t2], T ′′(t) = [0; 0; 2; 6 t], T ′′′(t) = [0; 0; 0; 6].
The gluing of many elementary Bézier segments leads to a piecewise (long) Bézier

curve.
The piecewise cubic Bézier curve defined by the array P = P1, . . . ,P3m+1 (m ≥ 1) is

a curve γ(t) (0 ≤ t ≤ m) represented as the union of m elementary cubic Bézier curves
γ (1) ∪ ·· · ∪ γ (m); the section γ (i)(t) corresponds to the points P3i−2, P3i−1, P3i, P3i+1 for
i−1 ≤ t ≤ i and i = 1, . . . ,m.

For simplicity, assume the condition P3i = 1
2(P3i−1+P3i+1) and do not include points

P3i in the array P. Thus in the procedure bezier2d (for the plane curve), P contains
2m+2 points, and γ(t) (0 ≤ t ≤ m) consists of m segments, defined as follows: γ (1) by
the points P1, P2, P3; γ (i) (2 ≤ i ≤ m−1) by the points P2i−1, P2i; and γ (m) by the points
P2m−1, P2m, P2m+1.

The result of B = bezier2d(x, y) is the matrix with parametric equations of the curve
components [xi(t),yi(t)], where i = 1, . . . ,m−1.

Examples.

1. Calculate and plot three cubic (elementary) Bézier curves of different shapes using
the program bezier(x, y).

x = [0, 1, 2, 3]; y = [0, 2, 2, 0]; % Figure 9.3(a)
x = [0, 1, 2, 3]; y = [0, 2, 0, 2]; % zigzag, Figure 9.3(b)
x = [2, 4, 1, 3]; y = [0, 2, 2, 0]; % loop, Figure 9.3(c)
r = bezier(x, y) % use one of x,y
hold on; ezplot(r(1), r(2), [0, 1]); plot(x, y, ’o - - r’);

2. Plot the plane piecewise cubic Bézier curve, Figure 9.4(a), using the command
bezier 2d(x, y).

x = [.056, .287, .655, .716, .228, .269, .666, .929];
y = [.820, .202, .202, .521, .521, .820, .820, .227];
r = bezier2d(x, y) % matrix (the equations of the curve components)
hold on; plot(x, y, ’o - - r’);
for i = 1 : (length(x)/2 - 1);
ezplot(r(1, i), r(2, i), [i - 1, i]);
end
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Fig. 9.4 Woven (piecewise) Bézier curve.

3. Continuation of 2. Plot the self-repeating piecewise cubic Bézier curve, where the
circled points are derived using the program

n = length(x);
x1 = [x, x(3 : n) + .61, x(3:n) + 2*.61, x(3:n) + 3*.61];
y1 = [y, y(3 : n), y(3 : n), y(3 : n)];
B = bezier2d(x1, y1);
hold on; plot(x1, y1, ’o - - r’);
for i = 1 : (length(x1)/2 - 1),
ezplot(B(1, i), B(2, i), [i - 1, i]);
end; % Figure 9.4(b)

4. Plot closed Bézier curves of two types:

(a) with the loop having a singular point, k ∈ N.

k = 3; % enter k
i = 1 : 2*k; x = sin(2*pi*i/(2*k - 1)); y = cos(2*pi*i/(2*k - 1));
B = bezier2d(x, y); % Figure 9.3(d)

(b) C1-continuous closed curve, k ∈ N.

k = 3; % enter k
i = 1 : 2*k + 2; x = sin(2*pi*i/(2*k)); y = cos(2*pi*i/(2*k));
x(1) = (x(2) + x(2*k + 1))/2; y(1) = (y(2) + y(2*k + 1))/2;
x(2*k + 2) = x(1); y(2*k + 2) = y(1);
B = bezier2d(x, y); % Figure 9.3(e).

9.2.3 Rational Bézier curves

We can extend our field of view if we do not restrict ourself to polynomials.
The rational Bézier curve associated to control points P1, . . . ,Pn+1 of R

N and corre-
sponding weights w1,w2, . . . ,wn+1 is given by
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B(t) =
∑n

i=0 wi+1 Bn, i(t)Pi+1

∑n
i=0 wi+1 Bn, i(t)

=
n

∑
i=0

wi+1 Bn, i(t)
∑n

j=0 wj+1 Bn, j(t)
Pi+1.

The rational Bézier curve is projective invariant, i.e.,

f

( n

∑
i=0

wi+1 Bn, i(t)
∑n

j=0 w j+1 Bn, j(t)
Pi+1

)
=

n

∑
i=0

wi+1 Bn, i(t)
∑n

j=0 wj+1 Bn, j(t)
f (Pi+1)

for any projective transformation f .
We extend the program for Bézier curves (change its last four lines) to the case of

a rational curve (w4 = w6 = 5, and other weights are equal to 1, Figure 9.2(b)). The
result of f = rbezier(x, y, w) is the parametric polynomial curve [ f1(t), f2(t)]. We derive
and plot the plane curve

x = 2 : 8; y = [32, 34, 36, 34, 39, 40, 37]; w = [1, 1, 5, 1, 5, 1, 1];
r = rbezier(x, y, w) % Answer:

r = [ 3(2t−1)(20t4−40t3+20t2+1)
120t6−360t5+420t4−240t3+60t2+1

+5, 4570t6−13542t5+15525t4−8720t3+2160t2+12t+32
120t6−360t5+420t4−240t3+60t2+1

]
hold on; ezplot(r(1), r(2), [0, 1]);
plot(x, y, ’o - - r’); % Figure 9.2(b).

If all wi are the same, then we obtain the usual Bézier curve.
One application of rational Bézier curves is the possibility of plotting all conic sec-

tions (circle, ellipse, hyperbola, parabola) without using trigonometric and hyperbolic
functions.

Example. Given the three points P1 = (1,0), P2 = (1,1), P3 = (0,1), the corresponding
Bézier curve is quadratic (see Example, p. 360) and is therefore a parabola r(t) =
(1− t)2P1 +2t(1− t)P2 + t2P3 = [1− t2, 2t(1− t)].

The quadratic rational Bézier curve with the same control points and weights w1 = 1,
w2 = 1, w3 = 2 is r(t) =

[
1−t2

1+t2 , 2t
1+t2

]
(0 ≤ t ≤ 1), which is the familiar parameterization

of the unit quarter circle. In general, quadratic rational Bézier curves are conics:
parabola when w2

2 −w1w3 = 0;

ellipse r(t) =
[
a 1−t2

1+t2 , b 2t
1+t2

]
when w2

2 −w1w3 < 0;

hyperbola r(t) =
[
a 1+t2

1−t2 , b 2t
1−t2

]
when w2

2 −w1w3 > 0.

A rational Bézier curve with m = 3 is an elementary one. The gluing of many of
these segments leads to a piecewise (long) rational Bézier curve.

A piecewise rational Bézier curve defined by P0, . . . ,P3m (m ≥ 1) is represented as
the union of elementary rational Bézier curves γ = γ (1) ∪·· ·∪γ (m) (0 ≤ t ≤ m−1); the
section γ (i) corresponds to the points P3i−3, P3i−2, P3i−1, P3i for i−1 ≤ t ≤ i and i ≤ m.
By a special choice of weights on each segment, one obtains a C2-continuous piecewise
rational Bézier curve; see exercises. This property allows one to insert an elementary
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rational Bézier curve in the gap between any two just plotted C2-continuous piecewise
curves in such a way that the resulting curve is C2-continuous.

9.3 Hermite Interpolation Curves

9.3.1 Cubic Hermite curves

Hermite cubic interpolation is based on two points P1 and P2 and two tangent vectors
Q1 and Q2. It computes a curve segment that starts at P1, moving with velocity Q1, and
ends at P2, moving with velocity Q2.

Given points P1 and P2 and nonzero vectors Q1 and Q2, the elementary cubic Her-
mite curve is defined by (5.16),

r(t) = (1−3t2 +2t3)P1 + t2(3−2t)P2 + t(t −1)2Q1 + t2(t −1)Q2, (9.7)

where 0 ≤ t ≤ 1. The matrix presentation of (9.7) is r(t) = GMT (t) (0 ≤ t ≤ 1),
where r(t) = [x(t); y(t); z(t)] and T (t) = [t3; t2; t; 1] are column vectors, G =
(P1; P2; Q1; Q2) is the geometric matrix, and

M =

⎛

⎜⎜
⎝

2 −3 0 1
−2 3 0 0

1 −2 1 0
1 −1 0 0

⎞

⎟⎟
⎠ (9.8)

is the basic matrix of an elementary cubic Hermite curve.

Examples.

1. We call hermite my to calculate the curve

xp = [.056, .287]; yp = [.820, .202];
xq = [2 -2]; yq = [1 -1]; % enter data
B = hermite my(xp, yp, xq, yq);

and then plot the curve and the data:

hold on; plot(xp, yp, ’o - -r’);
arrow([xp(1), yp(1)], [xq(1), yq(1)]/10, ’g’);
arrow([xp(2), yp(2)], [xq(2), yq(2)]/10, ’g’); % M-file arrow.m
ezplot(B(1), B(2), [0, 1]);

2. Varying the magnitudes of both tangent vectors has an important geometric inter-
pretation: it changes the tension of the curve segment. The matrix presentation of the
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Hermite segment with the tension parameter s > 0 is r(t) = GM T (t) (0 ≤ t ≤ 1), where
G = (P1; P2; sQ1; sQ2). The reader can play with the above program, replacing the
data line by

s = 1.5; xq = [2 -2]*s; yq = [1 -1]*s; % enter data

3. Hermite interpolation provides a simple way to construct approximate circular
arcs. Assume that an arc spanning an angle 2θ is needed and we place its endpoints
P1 and P2 at locations (cosθ ,sinθ ) and (cosθ ,sinθ ), respectively. Since a circle is
always perpendicular to its radius, we select as our start/end tangents two vectors
Q1 = a(sinθ ,cosθ ) and Q2 = a(−sinθ ,cosθ ) that are perpendicular to P1 and P2.
To determine a we require that the curve r(t) pass through the circular arc at its center,
i.e., r(.5) = (1,0). This produces the equation

(1,0) = (cosθ +(a/4)sinθ , 0)

whose solution is a = 4(1 − cosθ )/sinθ . The plane curve can now be written in the
matrix form r(t) = GM T (t) (0 ≤ t ≤ 1), where

G =
(

cosθ cosθ 4(1− cosθ ) −4(1− cosθ )
sinθ sinθ 4(1− cosθ )/ tanθ 4(1− cosθ )/ tanθ

)
.

This curve provides an excellent approximation to a circular arc, even for angles θ as
large as 90◦. You can verify this using the program below:

theta = 89/180*pi; % enter data
xp = [1, 1]*cos(theta); yp = [1, -1]*4*(1-cos(theta));
xq = [1 -1]*4*(1-cos(theta)); yq = [1, 1]*4*(1-cos(theta))/tan(theta);
B = hermite my(xp, yp, xq, yq); % approximation to a circular arc
t = linspace(-pi, pi, 200); plot(cos(t), sin(t), ’–r’);
arrow([xp(1), yp(1)], [xq(1), yq(1)]/3, ’g’);
arrow([xp(2), yp(2)], [xq(2), yq(2)]/3, ’g’); % M-file arrow.m
hold on; ezplot(B(1), B(2), [0, 1]);

9.3.2 Piecewise Hermite curves

Using elementary cubic Hermite curves, the piecewise curve is determined by the
points P1, . . . ,Pn (n ≥ 2) and nonzero vectors Q1, . . . ,Qn. Each quadruple Pi, Qi, Pi+1,
Qi+1 determines an elementary Hermite curve in the interval ti−1 ≤ t ≤ ti. However, we
obtain only a C1-continuous piecewise curve. A C2-continuous piecewise curve is also
obtained in this way.

Example. We call hermite2d to derive a piecewise plane curve:
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syms t;
xp = [.056, .287, .655, .716, .228, .269, .666, .929];
yp = [.820, .202, .202, .521, .521, .820, .820, .227];
xq = [.25, .25, -.25, -.25, .25, .25, -.25, -.25];
yq = [-.25, .25, -.25, .25, -.25, .25, -.25, .25]; % enter data
B = hermite2d(xp, yp, xq, yq);

Then we plot the curve and the data (points and arrows), Figure 9.5(a).

hold on; plot(x, y, ’o - -r’);
for i = 1 : length(x), ezplot(B(1, i), B(2, i), [i - 1, i]); end
arrow([xp(i), yp(i)], [xq(i), yq(i)], ’g’);

The first two lines of this typical program will be referred to as splot2(x, y, B).

A C2-continuous piecewise Hermite curve contains all control vertices, and at the
endpoints has tangent vectors Q1 and Qn. Its curvature (at the vertices P2, . . . ,Pn−1) is
continuous.

Namely, a piecewise (cubic) Hermite curve, determined by the points P = P1, . . . ,Pn

(n ≥ 2) and a pair of nonzero velocity vectors Q1 and Qn at the endpoints P1 and Pn,
is defined as a C2-continuous curve that can be represented as a union of elementary
Hermite curves γ = γ (1)∪·· ·∪γ (n−1); the segment γ (i) corresponds to the points Pi, Qi,
Pi+1, Qi+1 for i−1 ≤ t ≤ i, and the vectors Q2, . . . ,Qn−1 are derived as follows.

Changing a point in the array P, adding a point, or changing one tangent vector at
the endpoints leads to changing the whole Hermite curve. Let

ri(t) = (1−3t2 +2t3)Pi + t2(3−2t)Pi+1 + t(1−2t + t2)Qi − t2(1− t)Qi+1.

The end conditions, continuity, and C1-smoothness are satisfied:

r1(0) = P1, rn−1(1) = Pn, r′
1(0) = Q1, r′

n−1(1) = Qn,

ri−1(1) = ri(0) = Pi, r′
i−1(1) = r′

i(0) = Qi (2 ≤ i ≤ n−1).

The continuity of the second derivative r′′
i−1(1) = r′′

i (0) (2 ≤ i ≤ n − 1) gives n − 2
vector equations

6Pi−1 −6Pi +2Qi−1 +4Qi = −6Pi +6Pi+1 −4Qi −2Qi+1

or, equivalently,

Qi−1 +4Qi +Qi+1 = −3Pi−1 +3Pi+1 (2 ≤ i ≤ n−1). (9.9)

Hence, the vectors Q2, . . . ,Qn−1 are derived from the matrix equation
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⎛

⎜
⎜
⎝

1 4 1
1 4 1

· · ·
1 4 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

Q1

Q2

· · ·
Qn

⎞

⎟
⎟
⎠=

⎛

⎜
⎜
⎝

−3 0 3
−3 0 3

· · ·
−3 0 3

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

P1

P2

· · ·
Pn

⎞

⎟
⎟
⎠ (9.10)

involving two (n−2)×n matrices. The linear system (9.10) is solved in the procedure
hermite cubic2d.

Example. We call hermite cubic2d to derive a piecewise plane curve:

xp = [.056, .287, .655, .716, .228, .269, .666, .929];
yp = [.820, .202, .202, .521, .521, .820, .820, .227];
xq = [.1, -.1]; yq = [.1, -.1]; % can be modified
B = hermite cubic2d(xp, yp, xq, yq);

Then we plot the curve with the data (points and arrows), using splot2(x, y, B), Figure
9.5(b), and additional lines.

arrow([xp(1), yp(1)], [xq(1), yq(1)], ’g’);
arrow([xp(end), yp(end)], [xq(2), yq(2)], ’g’);

The reader can play with a tension parameter s > 0 of Hermite curve, replacing one
line in the above program:

s = 1.5; xq = [.1, -.1]*s; yq = [.1, -.1]*s; % enter s

Fig. 9.5 Interpolated and piecewise Hermite curves. Catmull–Rom curve.

Practical curve methods that create a spline curve out of individual Hermite seg-
ments can add a tension parameter to the spline, thereby making the method more
interactive (see the cardinal splines method).
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9.3.3 The cubic spline interpolation

Based on a prescribed form of the common segment Si(x), we derived a spline interpo-
lation of functions (see Section 1.6), used in the construction of spline curves.

Now we consider an alternative approach to applying the Hermite interpolant to
deriving the cubic spline curve. The idea is to divide the set of n points into n − 1
overlapping pairs of two points each, and to fit a Hermite segment (9.7), specified by
two points and two tangents, to each pair.

We start with three adjacent points, Pi, Pi+1, Pi+2, of which Pi+1 must be an interior
point. The velocity vectors at these points are Qi, Qi+1, Qi+2. The Hermite segments
from Pi to Pi+1 and from Pi+1 to Pi+2 are, respectively,

ri(t) = n1(t)Pi +n2(t)Pi+1 +n3(t)Qi +n4(t)Qi+1,

ri+1(t) = n1(t)Pi+1 +n2(t)Pi+2 +n3(t)Qi+1 +n4(t)Qi+2, (9.11)

where n1 = 1−3t2 +2t3, n2 = 3t2 −2t3, n3 = t −2t2 + t3, and n4 = t3 − t2.
Next, we require that the second derivatives of the two segments (linear functions

of t) be equal at the interior points: r′′
i (1) = r′′

i+1(0). Using n′′
1 = 12t −6, n′′

2 = 6−12t,
n′′

3 = 6t −4, n′′
4 = 6t −2, we obtain

[6(2t −1)Pi −6(2t −1)Pi+1 +2(3t −2)Qi +2(3t −1)Qi+1] t=1

= [6(2t −1)Pi+1 −6(2t −1)Pi+2 +2(3t −2)Qi+1 +2(3t −1)Qi+2] t=0,

which, after algebraic simplification, becomes

Qi +4Qi+1 +Qi+2 = 3(Pi+2 −Pi). (9.12)

The three quantities Qi, Qi+1, Qi+2 on the left-hand side of (9.12) are unknown, while
the two quantities Pi, Pi+2 on the right hand side are known. Repeating n − 2 times
for the interior points Pi+1 = P2, . . . ,Pn, we obtain a system of n − 2 linear algebraic
equations, expressed in matrix form as

⎛

⎜
⎜
⎝

1 4 1
1 4 1

· · ·
1 4 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

Q1

Q2

· · ·
Qn

⎞

⎟
⎟
⎠= 3

⎛

⎜
⎜
⎝

P3 −P1

P4 −P2

· · ·
Pn −Pn−2

⎞

⎟
⎟
⎠ (9.13)

involving two (n − 2)× n matrices. A practical approach to the solution is to let the
reader specify the values of the two extreme tangents Q1 and Qn.

Since a cubic spline is based on Hermite segments, its tension can also be con-
trolled in the same way. So a user-friendly algorithm inputs a parameter T ∈ [0,1] and
multiplies each tangent vector by s = α(1−T) for some predetermined α .
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It turns out that splines of degrees higher than 3 are useful only for special applica-
tions because they are more computation-intensive and tend to have many undesirable
inflection points (i.e., they tend to wiggle excessively). Splines of degree 1 are, of
course, just segments connected to form a polygon, but quadratic splines can be useful
in some applications.

As with the cubic spline, there are more unknowns than equations, and the standard
technique is to ask the reader to provide a value for one of the unknown tangent vectors,
normally Q1.

9.3.4 Application: Cardinal spline curves

The cardinal spline is another example of how Hermite interpolation is applied to con-
struct a spline curve.

Given points P1, P2, P3, and P4, the elementary cardinal spline curve r(t) (0 ≤ t ≤ 1)
is defined by the property that the velocity at the endpoint r(0)= P2 is the vector s ·−−→P1P3;
the velocity at the endpoint r(1) = P3 is the vector s · −−→P2P4, where s is a real number
(Figure 9.5(c)). The tension parameter is defined as T = 1 − 2s. (The Catmull–Rom
spline is defined as the curve having tension zero in this case, i.e., s = 1/2).

To deduce the vector equation of the elementary cardinal spline curve, we substitute
in (9.7) Q1 = s(P3 −P1), Q2 = s(P4 −P2) and obtain

r(t) = (2t2 − t − t3)sP1 +[1 +(2− s)t3 +(s−3)t2]P2

+[(s−2)t3 +(3−2s)t2 + ts]P3 +(t3 − t2)sP4. (9.14)

For s = 1/2 we obtain r(t) = n1(t)P1 +n2(t)P2 +n3(t)P3 +n4(t)P4, where the blending
functions are

n1 =− t
2
(1−t)2, n2 =

1
2
(2−5t2 +3t3), n3 =

t
2
(1+4t −3t2), n4 =− t2

2
(1−t). (9.15)

The matrix presentation of (9.15) is easily calculated by applying Hermite interpolation
(9.8), starting from Ph = (P2 P3 s(P3 −P1) s(P4 −P2)) and the basic geometric matrix
(9.8) of the Hermite spline. Hence, in the particular case of s = 1/2 we obtain the
matrix equations r(t) = PM T (t) (0 ≤ t ≤ 1), where r(t) = [x(t); y(t); z(t)] and T (t) =
[t3; t2; t; 1] are column vectors, P = (P1 P2 P3 P4) is the basic geometric matrix, and

M =
1
2

⎛

⎜
⎜
⎝

−1 2 −1 0
3 −5 0 2

−3 4 1 0
1 −1 0 0

⎞

⎟
⎟
⎠ (9.16)
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is the basic matrix (also termed the parabolic blending matrix).

A piecewise cardinal spline curve determined by the array P = P1, . . . ,Pn (n ≥ 2)
is a curve γ(t) (0 ≤ t ≤ n − 1) represented as a union of elementary cardinal curves
γ (1) ∪ ·· · ∪ γ (n−1); the segment γ (i)(t) (i− 1 ≤ t ≤ i) corresponds to the four points Pi,
Pi+1, Pi+2, Pi+3, and 1 ≤ i ≤ n−1.

The curve obtained is C1-continuous, and it interpolates the points r(0) = P2, . . . ,
r(n−1) = Pn−1. The tangent vectors at these points are: r′(i) = s(Pi+2−Pi) for 0 ≤ i ≤
n−1 and some s > 0. Changing one point in P or adding one point changes only part
of the cardinal curve: we need to recalculate the equations of the four segments γ (i−1),
γ (i), γ (i+1), γ (i+2).

Examples.

1. Use card my to derive the elementary curve.

s = 1/2; x = 2 : 5; y = [33.5, 34.8, 35, 33.5]; % enter data
B = card my(x, y, s);

Then plot the curve and the data:

hold on; plot(x, y, ’r’);
arrow([x(2), y(2)], [(x(3) - x(1))/2, (y(3) - y(1))/2]/3, ’g’);
arrow([x(3), y(3)], [(x(4) - x(2))/2, (y(4) - y(2))/2]/3, ’g’);
ezplot(B(1), B(2), [0, 1]);

2. Call card2d to derive a plane curve.

s = 1/2; x = [.056, .287, .655, .716, .228, .269, .666, .929];
y = [.820, .202, .202, .521, .521, .820, .820, .227]; % enter data
B = card2d(x, y, s);

Plot the curve and play with the parameter s:

hold on; axis equal; plot(x, y, ’- - r’);
for i = 1 : length(x) - 3;
arrow([x(i + 1), y(i + 1)], [(x(i + 2) - x(i))/2, (y(i + 2) - y(i))/2], ’g’);
arrow([x(i + 2), y(i + 2)], [(x(i + 3) - x(i + 1))/2, (y(i + 3) - y(i + 1))/2], ’g’);
ezplot(B(1, i), B(2, i), [i - 1, i]);
end % Figure 9.5(b)

9.4 β -Spline Curves

Ideally, we would like a measure of continuity that is parameterization-independent.
This can be done by using parameterizations to describe the point set comprising the
piecewise curve, and then using an arc-length parameterization to determine smooth-
ness.
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9.4.1 Geometrical continuity of curves

An elementary curve γ : r(t) is called geometrically Ck-continuous if the natural pa-
rameterization is regular Ck-continuous.

It is not necessary to check the natural parameterization for continuity. Any regular
Ck-equivalent parameterization will do. Consider more carefully the cases k = 1,2 in
R

3.

Definition 9.1. A curve γ : r(t) in R
3 is called geometrically

(a) C1-continuous if its tangent line (i.e., the unit vector τ = r′/|r′|) changes con-
tinuously;

(b) C2-continuous, if its main normal vector and the vector of curvature

k =
(r′ × r′′)× r′

|r′|4

(derived by the formula of the double product) change continuously.

1. A C2-continuous curve is characterized by the geometrically visible property that
the osculating circle continuously varies in t.

2. C2-continuity of a curve is a stronger condition than C2-regularity, meaning C1-
continuity together with the continuity of r′′(t).

Example. The piecewise plane curves, Figure 9.6, illustrate the fact that the continuity
of the vectors r′ and r′′ (depending on the choice of parameterization of the curve) does
not imply the continuity of the vectors τ and k (which do not depend on the choice of
parameterization of the curve), and hence does not always lead to a curve with nice
geometry. Each curve in this example is composed of two segments: r1(t) and r2(t)
(0 ≤ t ≤ 1), and the condition of continuity r1(1) = r2(0) holds.

(a) r1(t) = [sin(π t2/2), cos(π t2/2)], r2(t) = [cos(π t2/2), −sin(π t2/2)] are two
arcs of a circle; the curve is C2-continuous.

Fig. 9.6 Two-component curves.
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(b) r1(t) = [cos(π
2 (1 − t)3),sin(π

2 (1 − t)3)], r2(t) = [2 − cos(π
2 t3),−sin(π

2 t3)] are
arcs of two circles, The curve is C1-continuous but is not C2-continuous.

(c) r1(t) = [t2 + 1
2(t −3), −t2 +2t], r2(t) = [−t2 + 5

2 t, −t2 +1]. The second deriva-
tives at the node are not equal, but the curve is C2-continuous.

Each curve in this example (composed of two segments) is continuous: r1(1) =
r2(0). We will find the characteristics of the curve at its node, and then plot it.

(a) r1(t) = [sin(π t2/2), cos(π t2/2)], r2(t) = [cos(π t2/2), −sin(π t2/2)] are two
arcs of a circle (Figure 9.6(a)). The derivatives at (1,0) differ:

r′
1(1) = [0,−π], r′

2(0) = [0,0],

r′′
1 (1) = [−π2, −π], r′′

2 (0) = [0, −π].

However, the curvature vector k is continuous, because the whole curve coincides with
the half-circle. The curve is C2-continuous.

r1 = [sin(pi/2*tˆ2), cos(pi/2*tˆ2)]; t1 = 0; t2 = 1;
r2 = [cos(pi/2*tˆ2), - sin(pi/2*tˆ2)]; t3 = 0; t4 = 1;

(b) r1(t) = [cos(π
2 (1 − t)3),sin(π

2 (1 − t)3)], r2(t) = [2 − cos(π
2 t3),−sin(π

2 t3)] are
arcs of two circles (Figure 9.6(b)). Although both derivatives at the node (1,0) are
equal, r′

1(1) = [0,0] = r′
2(0), r′′

1 (1) = [0,0] = r′′
2(0), i.e., the vectors r′ and r′′ are con-

tinuous, the main normal vectors n1(1) and n2(0) at the common point of the two half-
circles are oppositely directed. The curve is C1-continuous but is not C2-continuous.

r1 = [cos(pi/2*(1 - t)ˆ3), sin(pi/2*(1 - t)ˆ3)]; t1 = 0; t2 = 1;
r2 = [2-cos(pi/2*tˆ3), -sin(pi/2*tˆ3)]; t3 = 0; t4 = 1;

(c) r1(t) = [t2 + 1
2(t − 3), −t2 + 2t], r2(t) = [−t2 + 5

2 t, −t2 + 1] (Figure 9.6(c)).
The tangent lines at the node (1,0) coincide, i.e., the first derivatives are equal and
nonzero: r′

1(1) = [5/2, 0] = r′
2(0). The second derivatives at the node are not equal,

r′′
1 (1) = [2, −2], r′′

2 (0) = [−2, −2], but the curve is C2-continuous because its curva-
ture is continuous: k1(1) = k2(0) = 8/25.

r1 = [tˆ2+t/2-3/2, -tˆ2+2*t]; t1 = 0; t2 = 1;
r2 = [-tˆ2+5*t/2, -tˆ2+1]; t3 = 0; t4 = 1;

The following proposition states directly the constraints that ensure the geometrical
Ck-continuity of a piecewise curve.

Proposition 9.1. Let ri(t), ri+1(t) (t ∈ [0,1]) be regular parameterizations (segments)
such that ri(1) = ri+1(0) = P̂i, where P̂i is a simple point of the piecewise curve. They
meet with geometric Ck-continuity at P̂i if and only if there exist real numbers β1 >

0, and β2, . . . ,βk such that r( j)
i (1) = g j, 1 ≤ j ≤ k, where g j is a vector differential

expression which depends on ri(t) and β1, . . . ,βk, and is computed using the following
rules:
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1. Expand d jri
du j (t(u)) using the chain rule, treating t : [ū,1] → [0,1] as a regular Ck

change of parameter. The expression should involve only derivatives of r( j)
i (1)

and derivatives of t(u) with respect to u.

2. Evaluate at P̂i and make substitutions β j = d j t
du j (1), 1 ≤ j ≤ k.

The process generates the following set of constraints:

r′
i+1(0) = β1r′

i(1),

r′′
i+1(0) = β 2

1 r′′
i (1)+β2r′

i(1),

r′′′
i+1(0) = β 3

1 r′′′
i (1)+2β1β2r′′

i (1)+β3r′
i(1),

r(4)
i+1(0) = β 4

1 r(4)
i (1)+6β 2

1 β2r′′′
i (1)+(4β1β3 +3β 2

1 )r′′
i (1)+β4r′

i(1),

. . .

r(k)
i+1(0) = β k

1 r(k)
i (1)+ · · ·+βkr′

i(1). (9.17)

The idea is to construct splines that satisfy Ck constraints with matching paramet-
ric derivatives. The resulting spline will have the quantities β1, . . . ,βk as parameters.
Changing one of the β ’s will, in general, change the shape of the piecewise curve, but
always in such a way that geometric smoothness is maintained; thus we refer to the β ’s
as shape parameters.

Note that the shape parameter β j is introduced in the constraint relating the jth
derivatives in the parameterizations. For example, β1, in the first equation of (9.17),
controls the difference between the first parametric derivatives, but in such a way
that the piecewise curve is geometrically smooth. If β1 = 1 and β2 = 0, the first two
constraints of (9.17) reduce to parametric C2-continuity. In general, if β1 = 1 and
β2 = · · · = βk = 0, then Ck-continuity reduces to Ck, showing that geometric continuity
is a strict generalization of parametric continuity. Using the β -constraints instead of re-
quiring continuous parametric derivatives introduces n degrees of freedom (i.e., shape
parameters). The shape parameters can be made available to a designer as a convenient
method for changing the shape of the curve without altering the control polygon.

It is important to realize that the shape parameters are local at a joint. Thus, for a
spline of n segments (n−1 joints) generated by Ck parameterizations, a total of (n−1)k
shape parameters are introduced. In what follows, for simplicity, we associate the same
values of the k shape parameters with each of the joints, thereby making the assignment
of shape parameters global to the piecewise curve.

Example. A quadratic β -spline is defined as a weighted sum of arbitrary control ver-
tices P = P1, . . . ,Pn; the segments are

ri(t) =
3

∑
j=1

b j(t)Pi+ j−1 = b1(t)Pi +b2(t)Pi+1 +b3(t)Pi+2 (1 ≤ i ≤ n−1). (9.18)
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We will determine the functions b j(t) in such a way that ri(t) and ri+1(t) will meet with
geometric C1-continuity. The quadratic β -spline basis functions are of the form b j(t) =
c j,1 + c j,2 t + c j,3t2. The continuity condition ri+1(0) = ri(1) gives us four equations:

0 = c1,1 +c1,2 +c1,3, c1,1 = c2,1 +c2,2 +c2,3, c2,1 = c3,1 +c3,2 +c3,3, c3,1 = 0. (9.19)

We will use the first derivative constraint of (9.17); for simplicity, assume a global
assignment of the shape parameter β1. We obtain four equations:

0 = b′
1(1), b′

1(0) = β1 b′
2(1), b′

2(0) = β1 b′
3(1), b′

3(0) = 0,

or, using b′
i(t) = ci,2 +2ci,3 t,

0 = c1,2 +2c1,3, c1,2 = β1 (c2,2 +2c2,3), c2,2 = β1 (c3,2 +2c3,3), c3,2 = 0. (9.20)

The system (9.19)–(9.20) of 8 linear equations contains 9 coefficients ci, j. The addi-
tional constraint is a normalization, which is chosen to be

b1(0)+b2(0)+b3(0) = 1 ⇒ c1,1 + c2,1 + c3,1 = 1. (9.21)

The solution can be shown to be

c1,1 = β1/(β1 +1), c1,2 = −2β1/(β1 +1), c1,3 = β1/(β1 +1),
c2,1 = 1/(β1 +1), c2,2 = 2β1/(β1 +1), c2,3 = −1, (9.22)

c3,1 = c3,2 = 0, c3,3 = 1/(β1 +1).

Hence,

b1(t) = β1
(t −1)2

β1 +1
, b2(t) =

2β1t +1
β1 +1

− t2, b3(t) =
t2

β1 +1
. (9.23)

This spline is of type C1. When β1 = 1, it reduces to the uniform quadratic B-spline
(see Example 1, p. 384). A quadratic β -spline is called an approximating technique
because the curve is not guaranteed to interpolate through the control vertices.

Given points P1, P2, P3, an (elementary) quadratic β -spline curve is defined by the
equation (9.18), where the three functional coefficients are given by (9.23). We plot the
quadratic β -spline using the M-file beta s21d.

syms t; beta = 1;
x = [.056, .287, .655, .716, .228, .269, .666, .929];
y = [.820, .202, .202, .521, .521, .820, .820, .227];
B = beta s21d(x, y, beta); % the quadratic β -spline
hold on; plot(x, y, ’r’);
for i = 1 : (length(x) - 2);
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ezplot(B(1, i), B(2, i), [i - 1, i]);
end;

Compare it with a C1 interpolating spline (cubic Catmull–Rom spline).

Example. Consider a quadratic β -spline in R
2 (Example, p. 375), without a global

assumption on β1. Here β1i (1 ≤ i ≤ n) corresponds to the joint of the segments ri(t)
and ri+1(t). Denote for simplicity βi = β1i. Given β1, we wish to find the remaining βi

(2 ≤ i ≤ n), subject to the condition that the curvature of r(t) is continuous at the joints.
For the first step we write down and solve the linear system for geometrical C1-

continuity of the curve. The basis functions depend on i and are of the form b j,i(t) =
ci

j,1 + ci
j,2 t + ci

j,3t2. The continuity condition ri+1(0) = ri(1) gives us four equations
(see Example, p. 375):

0 = b1,i(1), b1,i+1(0) = b2,i(1),
b2,i+1(0) = b3,i(1), b3,i+1(0) = 0,

or
0 = ci

1,1 + ci
1,2 + ci

1,3, ci+1
1,1 = ci

2,1 + ci
2,2 + ci

2,3,

ci+1
2,1 = ci

3,1 + ci
3,2 + ci

3,3, ci+1
3,1 = 0.

(9.24)

We will use the first derivative constraint of (9.17) and obtain four equations:

0 = b′
1,i(1), b′

1,i+1(0) = βi b′
2,i(1),

b′
2,i+1(0) = βi b′

3,i(1), b′
3,i+1(0) = 0,

or, using b′
j,i(t) = c j,2 +2c j,3 t,

0 = ci
1,2 +2ci

1,3, ci+1
1,2 = βi (ci

2,2 +2ci
2,3),

ci+1
2,2 = βi (ci

3,2 +2ci
3,3), ci+1

3,2 = 0.
(9.25)

The additional constraint is a normalization, which is chosen to be

b1,i+1(0)+b2,i+1(0)+b3,i+1(0) = 1 ⇒ ci+1
1,1 + ci+1

2,1 + ci+1
3,1 = 1. (9.26)

From (9.24)(a,d) and (9.25)(a,d) it follows that

ci
1,1 = ci

1,3, ci
1,2 = −2ci

1,3 ⇒ b1,i(t) = ci
1,3 (1− t)2,

ci+1
3,1 = ci+1

3,2 = 0 ⇒ b3,i+1(t) = ci+1
3,3 t2.

From (9.24)(c), (9.25)(c) and (9.26) it follows that

ci+1
2,1 = 1− ci+1

1,3 , ci+1
2,2 = 2βi(1− ci+1

1,3 ), ci
3,3 = 1− ci+1

1,3 . (9.27)
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From (9.24)(b) and (9.25)(b) (after excluding ci
23) follows that

ci+1
1,3 (1 +1/βi) = ci

2,1 +(1/2)ci
2,2. (9.28)

Substituting (9.27)(b,c) into (9.28), we obtain the recursive formula

ci+1
1,3 =

βi

1 +βi
(1 +βi−1)(1− ci

1,3). (9.29)

We do not use the solution of (9.29). From the above, it follows that

ci+1
2,3 = −βi−1(βi +2)+1

1 +βi
(1− ci

1,3). (9.30)

Hence, the functional coefficients of a quadratic β -spline curve are

b1,i(t) = ci
1,3 (1− t)2,

b3,i(t) = (1− ci+1
1,3 ) t2,

b2,i(t) = (1− ci
1,3)(1+2βi−1 t)− βi−2(βi−1 +2)+1

1 +βi−1
(1− ci−1

1,3 ) t2.

For the second step, one may find shape parameters such that the curvature is continu-
ous at the joints.

9.4.2 Cubic β -spline curve

Consider a cubic β -spline defined as a weighted sum of arbitrary control vertices P =
P1, . . . ,Pn; the segments are ri(t) = ∑4

j=1 b j(t)Pi+ j−1 (1 ≤ i ≤ n−2). We will determine
functions b j(t) such that ri(t) and ri+1(t) will meet with C2-continuity. The vectors τ
(tangent) and k (curvature) are the main geometrical invariants using in the cubic β -
spline curve construction.

Here β1 > 0 and β2 ≥ 0 are called the parameters of the shape (β1 is the parameter
of slant or displacement; β2 is the parameter of tension). For simplicity, we assume a
global assignment of the shape parameters β1,β2.

Proposition 9.2. Given points P1, P2, P3, and P4, the (elementary) cubic β -spline curve
is defined by the equation

r(t) = b1(t)P1 +b2(t)P2 +b3(t)P3 +b4(t)P4 (0 ≤ t ≤ 1), (9.31)

where the four functional coefficients are defined by the formulae
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b1(t) = β 3
1 (1− t)3/δ3,

b2(t) =
1
δ3

[2β 3
1 t(t2 −3t +3)+2β 2

1 (t3 −3t2 +2)

+2β1(t3 −3t +2)+β2(2t3 −3t2 +1)],

b3(t) =
1
δ3

[2β 2
1 t2(3− t)+2β1t(3− t2)+β2t2(3−2t)+2(1− t3)],

b4(t) = 2t3/δ3,

and δ3 = 2β 3
1 +4β 2

1 +4β1 +β2 +2.

Proof. The proof is similar to the case of the quadratic β -spline in Example, p. 377. ��
A (piecewise) cubic β -spline curve defined by the array P = P1, . . . ,Pn (n ≥ 4) is

a curve γ̃(t) (0 ≤ t ≤ n − 3) which is the union of n − 3 elementary β -spline curves
γ̃ (1) ∪ ·· · ∪ γ̃ (n−3); the segment γ̃ (i)(t) (i − 1 ≤ t ≤ i) corresponds to the elementary
β -spline determined by the points Pi, Pi+1, Pi+2, Pi+3.

The ends of the curve lie in the triangles P1,P2,P3 and Pn−2,Pn−1,Pn. In order that
the β -spline smoothly ends at P1 and Pn, with tangency of the segments [P1,P2] and
[Pn−1,Pn], one should complete the resulting set of segments (vector-valued functions
ri(t)) with four additional ones (two at each side), for example, by the method of mul-
tiple points. The extended set of n + 4 control vertices becomes P̄ = P1, P1, P, Pn,
Pn. Namely, we complete a curve with four segments γ (1), γ (2) and γ (n), γ (n+1), setting
γ (i+2) = γ̃ (i) for 1 ≤ i ≤ n−3, and obtain a smooth B-spline curve γ = γ (1)∪·· ·∪γ (n+1)

(0 ≤ t ≤ n + 1) with endpoints P1 and Pn and segments γ (1), γ (n+1) tangent to the line
segments [P1,P2] and [Pn−1,Pn].

For β1, β2 �= 0 the piecewise curve is C2-continuous. This is the main advantage
of these curves over B-spline curves. Parameters of the form β1 and β2 can differ on
different segments of the piecewise curve.

Changing one point Pi0 in P changes only part of the spline-curve: we recalculate
the four segments γ (i0−1), γ (i0), γ (i0+1), γ (i0+2) (see exercises).

If we do not require nonnegativity of the parameters β1 and β2, then some self-
intersections and oscillations of the curve can appear: see Figure 9.7.

Fig. 9.7 Influence of β1 and β2 on the shape of β -spline.
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Examples.

1. We call beta s2d to derive the test curve in R
2.

beta = [1, 7]; x = [.056, .287, .655, .716, .228, .269, .666, .929];
y = [.820, .202, .202, .521, .521, .820, .820, .227]; % enter data
B = beta s2d(x, y, beta);

Then plot the plane curve, using the statement splot2(x, y, B) (Figure 9.8(b)).

2. We use beta s2d and betaspl2d change to recalculate four components of the β -
spline

x = [.056, .287, .655, .716, .228, .269, .666, .929];
y = [.820, .202, .202, .521, .521, .820, .820, .227];
beta = [1, 7]; % enter data
B1 = beta s2d(x, y, beta);
i0 = length(x) - 2; % enter data i0 ∈ [2, length(x)−1]
delta = [rand - .5, rand - .5]/2; % or enter data
xi = x; xi(i0) = xi(i0) + delta(1);
yi = y; yi(i0) = yi(i0) + delta(2);
B2 = bspline2d change(x, y, beta, B1, i0, delta);

Then plot the old curve, its new part and the control polygon.

hold on; plot(x, y, ’–r’);
plot(xi(i0 - 1 : i0 + 1), yi(i0 - 1 : i0 + 1), ’–b’);
for i = 1 :
length(x), ezplot(B1(1, i), B1(2, i), [i - 1, i]);
end
for i = i0-1 : i0+2;
h = ezplot(B2(1, i), B2(2, i), [i - 1, i]); set(h, ’Color’, ’g’, ’LineWidth’, 2);
end % Figure 9.8(c)

Fig. 9.8 B-spline. β -spline. Changing one point.
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Given points Pi and weights wi, define homogeneous control vertices P̄i by

P̄i =

{
(wixi,wiyi,wizi,wi) if wi �= 0,

(xi,yi,zi,0) if wi = 0.
(9.32)

The (elementary) rational cubic β -spline curve is defined by the equation r(t) =(
∑4

i=1 wibi(t)Pi
) / (

∑4
i=1 wibi(t)

)
. In homogeneous coordinates it is given by

r̄(t) = ∑4
i=1 b̄i(t) P̄i, t ∈ [0,1],

where b̄i(t) = bi(t)
/ (

∑4
j=1 wj b j(t)

)
, which takes the form of a polynomial elementary

β -spline curve, but with homogeneous control vertices (9.32).
The piecewise rational (cubic) β -spline curve is defined similarly to the piecewise

cubic β -spline curve.

Example. We call rbetas my (see Section A.4) to compute elementary rational cubic
β -spline curve.

x = 2 : 5; y = [32, 38, 40, 33];
beta = [1, 2]; w = [1 2 3 1]; % enter data
w1 = w/norm(w); B = rbetas my(x, y, w1, beta);

Then we plot it.

hold on; plot(x, y, ’- -r’); ezplot(B(1), B(2), [0, 1]);

9.4.3 β -Spline curves in space

One can use cubic β -splines in R
3. We develop similar programs (as in the 2-D case)

for deriving and plotting in R
3.

Example. We call beta s3d to derive the curve

beta = [1, 7];
x = [.056, .287, .655, .716, .228, .269, .666, .929];
y = [.820, .202, .202, .521, .521, .820, .820, .227];
z = [1/4, 1/4, 0, 0, 0, 0, -1/4, -1/4]; % enter data
B = beta s3d(x, y, z, beta);

Then we plot the space curve, Figure 9.9(b), using splot3(x, y, z, B).

The torsion (an important invariant of space curves) may be discontinuous along
cubic β -splines in R

3. To improve the situation we develop quartic β -splines. The β -
splines of order d ≥ 3 may be useful for modeling of curves in R

d−1. (For the case
d = 5 see the exercises.)
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Example. As our next example of the use of the Ck constraints, we will construct
the geometric continuous quartic β -spline. The segment is represented by ri(t) =
∑5

j=1 b j(t)Pi+ j−1, where bi(t) = (1/δ4)∑4
j=0 ci, jt j. As for quadratic or cubic β -splines,

we use the first three derivative constraints of (9.17), and obtain the linear system
of 25 = 5 × 5 equations with 25 unknown coefficients ci, j. The determinant of the
system is

δ4 = (1−β 2
1 )β3 +2β1β 2

2

+6(β1 +1)[β2(β1 +1)2 −β1β2 +(β1 +1)(β 2
1 +1)(β 2

1 +β1 +1)].

For simplicity, we assume a global assignment of the shape parameters β1, β2, β3.
Given points P1, P2, P3, P4, and P5, the (elementary) quartic β -spline curve is defined
by the equation

r(t) = b1(t)P1 +b2(t)P2 +b3(t)P3 +b4(t)P4 +b5(t)P5 (0 ≤ t ≤ 1), (9.33)

where the five functional coefficients are defined by the formulae

b1(t) = −6β 6
1 (1− t)4/δ4,

b2(t) =
[
β1(18β 4

1 +30β 3
1 +18β 2

1 +6β 2
1 β2 +12β1β2 −β3β1 +2β 2

2 )−24β 2
1 (β 4

1

−2β 2
1 −2β1 −β2) t +6β1(6β 5

1 +4β 2
1 β2 −β3β1 +2β 2

2 +6β 4
1 −6β 2

1 ) t2

−8β1(3β 5
1 +3β 2

1 β2 −β3β1 +2β 2
2 +3β1β2 +3β 3

1 +3β 4
1 ) t3

+3β1(2β 5
1 +2β 4

1 +2β 3
1 +2β 2

1 +2β 2
1 β2 +4β1β2 −β3β1 +2β 2

2 ) t4] / δ4,

b3(t) =
[−6β2 −β3 −18β 3

1 −30β 2
1 −12β1β2 −18β1 −24β1(2β 3

1

+2β 2
1 +β1β2 −1) t +6(6β 3

1 −6β 5
1 −2β1β 2

2 +β3β 2
1 +2β2 −4β 3

1 β2 +6β 2
1 ) t2

+4(6β1β2 +6β 3
1 +6β 5

1 +6β 2
1 β2 +4β1β 2

2 −2β3β 2
1 +6β 3

1 β2 +4β 4
1 +4β3) t3

+3(β3β 2
1 −2β1 −4β1β2 −4β 3

1 −2β 5
1 −4β 2

1 β2 −2β1β 2
2 −2β2 −2β 3

1 β2

−2β 4
1 −β3 −2β 2

1 ) t4] / δ4,

b4(t) =
[−6−24β1 t −12(β2 +3β 2

1 ) t2 −4(β3 +6β1β2 +6β 3
1 ) t3

+3(β3 +2β2 +6 +2β 3
1 +2β 2

1 +4β1β2 +2β1) t4] / δ4,

b5(t) = −6 t4/δ4.

The matrix presentation of (9.33) is r(t) = PM T (t) (0 ≤ t ≤ 1), where r(t) =
[x(t); y(t); z(t)] and T (t) = [t4; t3; t2; t; 1] are column vectors, P = (P1; P2; P3; P4; P5)
is the geometric matrix (see B-spline case), and M (too long to place here) is the basic
matrix of the β -spline curve.

We apply beta s4d to derive the space curve:
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Fig. 9.9 B-spline and β -spline in space. Knot (trefoil).

beta = [1, 2, 7];
x = [.056, .287, .655, .716, .228, .269, .666, .929];
y = [.820, .202, .202, .521, .521, .820, .820, .227];
z = [1/4, 1/4, 0, 0, 0, 0, -1/4, -1/4]; % enter data
B = beta s4d(x, y, z, beta);

Plot the space curve using the typical program (see splot3(x, y, z, B)):

hold on; plot3(x, y, z, ’r’, ’LineWidth’, 2);
for i = 1 : (length(x) + 2);
ti = linspace(i - 1, i, 20);
S = [subs(B(1, i), t, ti) + ti - ti; subs(B(2, i), t, ti) + ti - ti; subs(B(3, i), t, ti) + ti - ti];
plot3(S(1, :), S(2, :), S(3, :), ’LineWidth’, 2);
end; % see Figure 9.9(b)

9.4.4 B-spline curves

We briefly survey the cubic B-spline (“B” stands for basic) that coincides with the case
β1 = 1, β2 = 0 of the cubic β -spline. (We will not discuss the fundamental recursive
definition or certain practical aspects such as the relation with least-squares fitting).

Let ri(t), ri+1(t) (t ∈ [0,1]) be regular parametric segments such that ri(1) =
ri+1(0) = P̂i, where P̂i is a simple point of the piecewise curve. They meet with para-
metric Ck-continuity at P̂i if and only if

r( j)
i+1(0) = r( j)

i (1), 1 ≤ j ≤ k. (9.34)

Given points P1,P2, . . . ,Pk+1, the (elementary) B-spline curve of order k is defined
by the equation
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r(t) = b1(t)P1 +b2(t)P2 + · · ·+bk+1(t)Pk+1 (0 ≤ t ≤ 1), (9.35)

where the functions bi(t) are presented (for n = 2,3) in what follows.
A (piecewise) B-spline curve of order k defined by P = P1, . . . ,Pn, where n ≥ k +1,

is a curve γ̃(t) (0 ≤ t ≤ n − k) represented as a union of n − k elementary B-spline
curves of order k, γ̃ (1) ∪ ·· · ∪ γ̃ (n−k) that meet with parametric Ck-continuity; the
segment γ̃ (i)(t) (i − 1 ≤ t ≤ i) is the elementary B-spline determined by the points
Pi,Pi+1, . . . ,Pi+k−1,Pi+k.

The B-spline is a smoothing curve. Its shape is determined by the control vertices,
but the curve itself does not pass through those points.

A (piecewise) cubic B-spline is defined as a weighted sum of arbitrary control ver-
tices P = P1, . . . ,Pn (n ≥ 4); the segments are

ri(t) = b1(t)Pi +b2(t)Pi+1 +b3(t)Pi+2 +b4(t)Pi+3 (i ≤ n−3, 0 ≤ t ≤ 1).

The basis functions are

b1(t) =
(1− t)3

6
, b2(t) =

3t3 −6t2 +4
6

,

b3(t) =
−3t3 +3t2 +3t +1

6
, b4(t) =

t3

6
. (9.36)

It is the union of n−3 elementary cubic B-spline curves γ̃ (1)∪·· ·∪ γ̃ (n−3). The segment
γ̃ (i)(t) (i−1 ≤ t ≤ i) corresponds to the elementary B-spline determined by the points
Pi, Pi+1, Pi+2, Pi+3. In order that the B-spline ends smoothly at P1 and Pn, with tangency
of the segments [P1,P2] and [Pn−1,Pn], we complete the set of segments by the method
of multiple (or phantom) points. The extended set P̄ of n +4 control vertices becomes
P1, P1, P, Pn, Pn. The resulting curve is C2-regular, but only C1-continuous.

Examples.

1. A quadratic B-spline is defined as a weighted sum of arbitrary control vertices P =
P1, . . . ,Pn; the segments are

ri(t) = b1(t)Pi +b2(t)Pi+1 +b3(t)Pi+2 (1 ≤ i ≤ n−2, 0 ≤ t ≤ 1),

where b1(t) = (t −1)2/2, b2(t) = −t2 + t +1/2, and b3(t) = t2/2.
We determine b j(t) such that ri(t) and ri+1(t) meet with parametric C1-continuity.

(See Example, p. 375 with β1 = 1, β2 = 0.)

2. We derive and plot the cubic B-spline segment.

x = 2 : 5; y = [32, 38, 40, 33]; % enter data
B = betas my(x, y, [1 0]) % i.e., β1 = 1,β2 = 0.
hold on; plot(x, y, ’r’); ezplot(B(1), B(2), [0, 1]);
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3. One may show that the degree-d (uniform) B-spline segment is given by r(t) =
PM T (t) (0 ≤ t ≤ 1), where T (t) = [td ; . . . ;t2;t;1], P = (P1 P2 . . . Pd+1), and the ele-
ments mi j of the basic matrix M are

mi j = (n !)−1(n
j

) n

∑
k=i

(n− k) j(−1)k−i(n+1
k− j

)
.

For example,

M4 =
1
4!

⎛

⎜⎜
⎜
⎜
⎝

1 −4 6 −4 1
−4 12 −6 −12 11
6 −12 −6 12 11

−4 4 6 4 1
1 0 0 0 0

⎞

⎟⎟
⎟
⎟
⎠

, M5 =
1
5!

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

−1 5 −10 10 −5 1
5 −20 20 20 −50 26

−10 30 0 −60 0 66
10 −20 −20 20 50 26
−5 5 10 10 5 1
1 0 0 0 0 0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

.

4. We call beta s2d to derive the plane cubic B-spline.

x = [.056, .287, .655, .716, .228, .269, .666, .929];
y = [.820, .202, .202, .521, .521, .820, .820, .227]; % enter data
B = beta s2d(x, y, [1 0]);

Then we plot the curve and the data using splot2(x, y, B).
5. One may experiment with the B-spline as a function of its knots, using the spline

toolbox bspligui. The MATLAB R© command bspline can also be used.
6. We show how to use B-splines to construct an interpolating cubic spline curve

that passes through a set of n + 1 given data points P1, . . . ,Pn+1. The curve consists of
n segments, and the idea is to use the Pi points to calculate a new set of points P̄i, and
then use the new points as the control vertices of a cubic uniform B-spline curve.

Using P̄i as our control vertices, (9.36) shows that the general segment ri(t) termi-
nates at ri(1) = (P̄i−2 + 4P̄i−1 + P̄i)/6. We require that the segment end at point Pi−1,
which yields the equation:

Pi−1 = (P̄i−2 +4P̄i−1 + P̄i)/6 (9.37)

When this equation is repeated for 0 ≤ i ≤ n, we get a system of n + 1 equations with
the P̄i s as the unknowns. However, there are n+3 unknowns (P−1 through Pn+1), so we
need two more equations. Consider the tangent vectors T1, Tn of the interpolating curve
at its two ends. They are given that by T1 = (P1 − P−1)/2 and Tn = (Pn+1 − Pn−1)/2.
After these two relations are included, the resulting system of n +3 equations is
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1
6

⎛

⎜
⎜
⎜
⎜
⎝

−3 0 3
1 4 1

· · ·
1 4 1

−3 0 3

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

P̄1

P̄2

· · ·
P̄n−1

P̄n

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

T1

P1

· · ·
Pn

Tn

⎞

⎟
⎟
⎟
⎟
⎠

, (9.38)

where the first and last equations are modified. Since the matrix is columnwise diag-
onally dominant, it is invertible. Thus the system of equations has a unique solution.
The same construction can be developed for β -splines.

Let P1 = (1/6,5/6), P2 = (1,1), P3 = (11/6,5/6), and the two extreme tangents
T1 = (1/2,1/2) and T2 = (1/2,−1/2). Set up the linear system

1
6

⎛

⎜
⎜
⎜
⎜
⎝

−3 0 3 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 −3 0 3

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

P̄1

P̄2

P̄3

P̄4

P̄5

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

T1

P1

P2

P3

T2

⎞

⎟
⎟
⎟
⎟
⎠

. (9.39)

The solution is P̄1 = (0,0), P̄2 = (0,1), P̄3 = (1,1), P̄4 = (2,1), and P̄5 = (2,0).

Given points P1, P2, P3, P4 and weights w1, w2, w3, w4, define homogeneous con-
trol vertices P̄i by (9.32). The (elementary) rational B-spline curve is defined by the
equation

r(t) =
4

∑
i=1

wini(t)Pi

/ 4

∑
i=1

wini(t) =
4

∑
i=1

N̄4,i(t) P̄i, t ∈ [0,1],

where N̄4,i(t) = ni(t)
/

∑4
j=1 wj n j(t), which takes the form of a polynomial elementary

B-spline curve, but with homogeneous control vertices (modify Example, p. 381, for
β1 = 1, β2 = 0).

The nonuniform rational cubic B-spline (NURBS for short) determined by points
P1, . . . ,Pn and the weights w1, . . . ,wn can take many shapes. Because of this, NURBS
is today the de facto standard for curve design.

Remark 9.1. The knot vector approach to the B-spline curve of order k assumes that
the curve is a weighted sum, r(t) = ∑n

i=0 Nk+1,i(t)Pi of the control vertices with the
weight (or blending) functions Nk+1,i(t) to be determined. The method is similar to
that used in deriving Bézier curves (Section 9.2). The “gluing principle” is that each
weight function (a piecewise kth-order polynomial) should have a bell shape, with
maximum at its control vertex and support over the interval [1 + k, i+ k]. To derive
such a function, Nk+1,i(t), we represent it as the union of k +1 parts,

n̄1(t) = b1(t − i+ k), n̄2(t) = b2(t − i+ k−1), . . . , n̄k+1(t) = bk+1(t − i),
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each defined over one unit of t. The following considerations are employed to set up
equations to calculate the n̄i(t) functions:

1. they should be barycentric;
2. they should provide Ck−1-continuity at the k points where they meet;
3. n̄1(t) and its first k −1 derivatives should be zero at the point n̄1(0);
4. n̄k+1(t) and its first k −1 derivatives should be zero at the point n̄k+1(1).

The support of Nk+1,i(t) is the interval [i− k, i + 1]. The weights all look the same
and are shifted with respect to each other by using different ranges of t. The use of a
knot vector is one reason why the B-spline curve is more general than the Bézier curve.
The knots can be used as parameters and can be varied to obtain the desired shape of
the curve.

9.5 The Cartesian Product Surface Patch

The concept of blending (introduced in Section 9.2) is important and useful in many
curve and surface algorithms. The technique of blending quantities Pi j into a surface
by means of weights taken from two curves is called the Cartesian product, although
the term tensor product is also sometimes used. This section shows how blending can
be used in surface design. Now examine the function

r(u,v) =
n

∑
i=1

m

∑
j=1

fi(u)gj(v)Pi j =
n

∑
i=1

m

∑
j=1

hi j(u,v)Pi j, (9.40)

where hi j(u,v) = fi(u)g j(v). The function (9.40) describes a surface; for any value of
the pair (u,v), it computes a weighted sum of the points Pi j.

If ∑n
i=1 fi(u) = ∑m

j=1 g j(v) = 1, the surface r(u,v) is independent of the particular
coordinate axes used, because

n

∑
i=1

m

∑
j=1

hi j(u,v) =
n

∑
i=1

fi(u) ·
m

∑
j=1

g j(v) = 1.

The substitutions u = 0, 1 and v = 0, 1 reduce the expression to the four corner points.
The four curves r(u,0), r(u,1), r(0,v), and r(1,v) are the boundary curves of the
surface. Since there are four such curves, our surface is a patch that has a (roughly)
rectangular shape. Given u0, v0, we call r(u,v0) and r(u0,v) the u-curve and v-curve,
respectively. Two more special curves, the surface diagonals, are r(u,1−u) and r(u,u).

The particular case of (9.40) is n = m and fi(t) = gi(t), i.e.,
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r(u,v) = ( f1(u), . . . , fn(u))

⎛

⎜
⎝

P11 P12 . . . P1n
...

...
...

...
Pn1 Pn2 . . . Pnn

⎞

⎟
⎠

⎛

⎜
⎝

f1(v)
...

fn(v)

⎞

⎟
⎠ . (9.41)

If fi(t) are polynomials of degree n, then the last formula can be rewritten in the form

r(u,v) = (un−1, . . . ,u,1)M∗ Pn M (vn−1, . . . ,v,1)′, (9.42)

where Pn = {Pi j}n
i, j=1, and the basic matrix M can be found from

( f1(t), . . . , fn(t))′ = M (tn, . . . ,t,1)′. (9.43)

The rational surface patch corresponding to (9.40) and nonnegative weights {wi j}
with positive sum is given by

r(u,v) =
∑n

i, j=1 wi j fi(u) f j(v)Pi j

∑n
i, j=1 wi j fi(u) f j(v)

. (9.44)

The following examples illustrate the importance of the Cartesian product.

Example. The parameterization of the line segment from P1 to P2 is

r(t) = (1− t)P1 + tP2 = (B10(t), B11(t))
(

P1

P2

)
, (9.45)

where B1i are the Bernstein polynomials of degree 1. The Cartesian product of (9.45)
with itself is the bilinear surface patch, see (9.40) for m = n = 2,

r(u,v) = (1−u, u)P2 (1− v, v) (9.46)

= (1−u)(1− v)P11+(1−u)vP12 +u(1− v)P21 +uvP22.

syms u v P11 P12 P21 P22;
P = [P11 P12; P21 P22]; r = [1 - u u] * P * [1 - v; v]

A simple particular case of a bilinear surface (different from a plane) is defined by
points P11 = (0,0,1), P21 = (1,0,0), P12 = (1,1,1), P22 = (0,1,0) ∈ R

3:

r(u,v) = [u + v−2uv, v, 1−u] .

rr = subs(r, {P11, P12, P21, P22}, {[0 0 1], [1 1 1], [1 0 0], [0 1 0]})
ezsurf(rr(1), rr(2), rr(3), [0, 1, 0, 1], 12) % bilinear surface, Figure 9.10(a).

The tangent vectors and normal vector of the surface are easily calculated:
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∂ur(u,v) = [1−2v, 0, −1], ∂vr(u,v) = [1−2u, 1, 0],
n(u,v) = ∂ur×∂vr = [1, −1 +2u, 1−2v].

ru = diff(rr, u), rv = diff(rr, v), n = cross(ru, rv)

The vector ∂ur(u,v) lies in the xz-plane, and ∂vr(u,v) lies in the xy-plane. The twist
vector of a bilinear surface is P11 − P12 − P21 + P22. (The twist vector of a regular
surface r(u,v) is the mixed derivative ∂ 2

uvr(u,v).) It measures the deviation of P22 from
the tangent plane to the surface at P11.

ruv = diff(rr, u, v) % obtain twist.

In what follows we compute and visualize surface patches. We base our investiga-
tions on the procedure surf patch(P, M) (Section A.5), where P is an array of given
points, and M is the basic matrix.

Examples.

1. The parametric cubic polynomial passing through four given points is r(t) =
GM T (t); see (5.26). The Cartesian product of the curve with itself is a bicubic surface
patch r(u,v) (0 ≤ u,v ≤ 1) (see (9.42)),

r(u,v) = (u3,u2,u,1)M∗ P4 M (v3,v2,v,1)′, (9.47)

where u,v ∈ {0, 1/3, 2/3, 1}, that passes through 16 points.
Given 16 points, we evaluate and plot the surface patch:

M = [-9/2 9 -11/2 1; 27/2 -45/2 9 0; -27/2 18 -9/2 0; 9/2 -9/2 1 0];
P = [ [0 0 0]; [1 0 0]; [2 0 0]; [3 0 0]; [0 1 0]; [1 1 1]; [2 1 -1/2]; [3 1 0];
[0 2 -1/2]; [1 2 0]; [2 2 -1/2]; [3 2 0]; [0 3 0]; [1 3 0]; [2 3 0]; [3 3 0] ];
r = surf patch(P, M) % bicubic surface patch
ezsurf(r(1), r(2), r(3), [0, 1, 0, 1], 30); % Figure 9.10(c).

The surface and the 16 points on it may be exhibited using the program view patch.

2. We use the Cartesian product for plotting Bézier patches.

(a) The cubic Bézier curve determined by four given points is r(t) = GM T (t); see
(9.5). Applying the principle of the Cartesian product, we multiply this curve by itself
in order to obtain a Bézier bicubic surface patch r(u,v) (0 ≤ u,v ≤ 1), determined
by 16 given points. Once the points are given, we evaluate and plot the surface patch
replacing M and P in the program of Example 1, p. 389:

M = [-1 3 -3 1; 3 -6 3 0; -3 3 0 0; 1 0 0 0]; % enter data: M and P.
P = [ [0 0 0]; [1 0 -1/2]; [2 0 -1/2]; [3 0 0]; [0 1 0]; [1 1 3/2]; [2 1 1]; [3 1 0];
[0 2 0]; [1 2 1]; [2 2 3/2]; [3 2 0]; [0 3 0]; [1 3 1]; [2 3 1]; [3 3 0] ];
r = surf patch(P, M) % bicubic Bézier patch
ezsurf(r(1), r(2), r(3), [0, 1, 0, 1], 30); % Figure 9.11(b).
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Fig. 9.10 Bilinear, biquadratic and bicubic Lagrange patches.

The surface and the 16 points may be shown using the program view patch.

(b) The initial matrix representation of the nth-order Bézier curve determined by n+
1 given points is (9.1). For various depictions of its, we use this matrix representation
to obtain the nth-order Bézier patch r(u,v) (0 ≤ u,v ≤ 1), determined by (n+1)2 given
points,

r(u,v) = [Bn,n(u), . . . , Bn,1(u), Bn,0(u)]Pn+1[Bn,n(v), . . . , Bn,1(v), Bn,0(v)]′.

N = 5; % N = n +1
P = [ [0 0 0]; [1 0 -1/2]; [2 0 -1/2]; [3 0 0]; [4 0 0]; [0 1 0]; [1 1 2]; [2 1 1];
[3 1 0]; [4 1 0]; [0 2 0]; [1 2 1]; [2 2 3]; [3 2 0]; [4 2 0]; [0 3 0]; [1 3 1]; [2 3 1];
[3 3 0]; [4 3 0]; [0 4 0]; [1 4 1/2]; [2 4 1/2]; [3 4 0]; [4 4 0] ]; % enter N2 points
syms t u v;
j = 0 : (N - 1);
B = gamma(N). / gamma(j + 1). / gamma(N - j).*t.ˆj.*(1 - t).ˆ(N - j - 1);
X = P(:, 1); Y = P(:, 2); Z = P(:, 3);
rx = subs(B, t, u)*reshape(X, N, N)*subs(B, t, v)’;
ry = subs(B, t, u)*reshape(Y, N, N)*subs(B, t, v)’;
rz = subs(B, t, u)*reshape(Z, N, N)*subs(B, t, v)’;
r = [rx, ry, rz]; % biquartic Bézier patch
ezsurf(r(1), r(2), r(3), [0, 1, 0, 1], 20) % Figure 9.11(c).

The surface and the (n +1)2 points may be depicted using view patch.

3. The following three examples illustrate the use of the Cartesian product for plotting
Hermite patches.

(a) The quadratic Hermite curve is r(t) = GM T (t), where (9.61) presents M. Thus,
the biquadratic Hermite patch

r(u,v) = (u2,u,1)M∗ P̂3 M (v2,v,1)′, where P̂3 =

⎛

⎝
P11 P12 Q11

P21 P22 Q12

Q21 Q22 T11

⎞

⎠,
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Fig. 9.11 Bézier patches: biquadratic, bicubic and biquartic.

is defined by the following nine quantities (Figure 9.12(a)):

– the four corner points P11, P12, P21, and P22;
– the two tangents Q11 and Q12 in the u direction at P11 and P12;
– the two tangents Q21 and Q22 in the v direction at P11 and P21;
– the second derivative T11 (i.e. twist) at P11.

Several methods exist to estimate the twist vectors of biquadratic and bicubic surface
patches (we omit the details).

M = [ -1 0 1; 1 0 0; -1 1 0 ] % enter data: M and PQ.
PQ = [ [0 0 0]; [1 0 0]; [1 1/2 1]; [0 1 0]; [1 1 0]; [2 0 0]; [1 1 0]; [1 0 1]; [1 0 0] ];
rr = surf patch(PQ, M)

The surface, 4 points, and 5 arrows (Figure 9.13(a)) are shown by the program below.

P11 = [0 0 0]; P12 = [1 0 0]; Q21 = [1 1/2 1];
P21 = [0 1 0]; P22 = [1 1 0]; Q22 = [2 0 0];
Q11 = [1 1 0]; Q12 = [1 0 1]; T11 = [1 0 0];
PP = [P11; P12; P21; P22];
hold on; view(3); grid on;
plot3(PQ(:, 1), PQ(:, 2), PQ(:, 3), ’o’);
arrow3(P11, Q21/3); arrow3(P21, Q22); % M-file arrow3.m
arrow3(P11, Q11/2); arrow3(P12, Q12/3);
arrow3(P11, T11/2, ’r’);
ezsurf(rr(1), rr(2), rr(3), [0, 1, 0, 1], 20) % biquadratic Hermite patch.

(b) A Ferguson surface patch is an extension of the Hermite cubic curve segment.
The patch is specified by its four corner points Pi j and by two tangent vectors Qi j and
Ri j in the u and v directions at each point, for a total of 12 three-dimensional quantities
(Figure 9.12(b)). Here Qi j = ∂ur(Pi j) and Ri j = ∂vr(Pi j). The patch has the following
matrix representation:

r(u,v) = (n1(t),n2(t),n3(t),n4(t)) P̂4 (n1(t),n2(t),n3(t),n4(t))′, (9.48)
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where the blending functions ni(t) are given in (9.7), and

P̂4 =

⎛

⎜⎜
⎝

P11 P12 R11 R12

P21 P22 R21 R22

Q11 Q12 0 0
Q21 Q22 0 0

⎞

⎟⎟
⎠ .

Using the matrix M of (9.8), we rewrite (9.48) in equivalent form, as

r(u,v) = (u3,u2,u,1)M∗ P̂4 M (v3,v2,v,1)′. (9.49)

Notice that the Ferguson surface is very similar to the bicubic Hermite patch, but is less
flexible because it has zeros instead of the more general twist vectors. The Ferguson
surface patch is easy to connect smoothly with other patches of the same type.

M = [2 -3 0 1; -2 3 0 0; 1 -2 1 0; 1 -1 0 0] % enter data: M and PQ.
PQ = [ [0 0 0]; [1 0 0]; [2 0 -1/2]; [3 0 0]; [0 1 0]; [1 1 0]; [2 1 1]; [3 1 0];

[0 2 0]; [1 2 1]; [0 0 0]; [0 0 0]; [0 3 0]; [1 3 1]; [0 0 0]; [0 0 0] ];
r = surf patch(PQ, M)
ezsurf(r(1), r(2), r(3), [0, 1, 0, 1], 20) % Ferguson surface patch.

The surface, 4 points, and 8 tangent vectors may be depicted using the program below.

P11 = [0 0 0]; P12 = [1 0 0]; P21 = [0 1 0]; P22 = [1 1 0];
R11 = [2 0 -1/2]; R12 = [3 0 0]; R21 = [2 1 1]; R22 = [3 1 0];
Q11 = [0 2 0]; Q12 = [1 2 1]; Q21 = [0 3 0]; Q22 = [1 3 1];
PP = [P11; P12; P21; P22];
hold on; view(3); grid on;
plot3(PQ(:, 1), PQ(:, 2), PQ(:, 3), ’o’);
arrow3(P11, Q11/5); arrow3(P11, R11/5);
arrow3(P12, Q12/5); arrow3(P12, R12/5);
arrow3(P21, Q21/5); arrow3(P21, R21/5);
arrow3(P22, Q22/5); arrow3(P22, R22/5); % see M-file arrow3.m
ezsurf(r(1), r(2), r(3), [0, 1, 0, 1], 20) % Ferguson patch, Figure 9.13(b).

Fig. 9.12 Hermite type patches schemes: biquadratic, Ferguson.
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(c) The cardinal spline (or the Catmull–Rom curve) can easily be extended to a sur-
face that is fully defined by a rectangular grid of data points. A single bicubic Catmull–
Rom patch is specified by 16 points, and is anchored at the four middle points. It is
given in the form of (9.47) as

r(u,v) = (u3,u2,u,1)M∗ P4 M (v3,v2,v,1)′, (9.50)

where M is the parabolic blending matrix of (9.8). Tension can be added to a Catmull–
Rom surface patch in the same way that it is added to a Catmull–Rom curve in the
construction of a cardinal spline.

M = [-1 2 -1 0; 3 -5 0 2; -3 4 1 0; 1 -1 0 0] / 2; % enter data: M and P.
P = [ [0 0 0]; [1 0 0]; [2 0 0]; [3 0 0]; [0 1 0]; [.5 .5 1]; [2.5 .5 0]; [3 1 0];
[0 2 0]; [.5 2.5 0]; [2.5 2.5 1]; [3 2 0]; [0 3 0]; [1 3 0]; [2 3 0]; [3 3 0] ];
r = surf patch(P, M) % see Figure 9.13(c)
ezsurf(r(1), r(2), r(3), [0, 1, 0, 1], 20) % bicubic patch.

Plot the surface and the 16 points by means of the program view patch.

Fig. 9.13 Hermite type patches: biquadratic, Ferguson, cardinal.

4. We illustrate the use of the Cartesian product for the derivation and plotting of bicu-
bic spline patches.

(a) The cubic B-spline curve determined by four given points is r(t) = GM T (t);
see (9.65). We calculate the bicubic B-spline patch.

M = [-1 3 -3 1; 3 -6 0 4; -3 3 3 1; 1 0 0 0]/6; % enter data: M and P.
P = [ [0 0 0]; [1 0 -1/2]; [2 0 -1/2]; [3 0 0]; [0 1 0]; [1 1 3/2]; [2 1 1];
[3 1 0]; [0 2 0]; [1 2 1]; [2 2 3/2]; [3 2 0]; [0 3 0]; [1 3 1]; [2 3 1]; [3 3 0] ];
r = surf patch(P, M) % bicubic B-spline patch
ezsurf(r(1), r(2), r(3), [0, 1, 0, 1], 20) % Figure 9.14(a).

(b) The cubic β -spline curve determined by four given points is r(t) = GM T (t);
see (9.64). We compute and plot the bicubic β -spline patch.
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b1 = 2; b2 = 1/2; % enter data: β1 and β2. Then M and P.
xi = b1ˆ2 + b1 + b2;
d3 = b2 + 2*b1ˆ3 + 4*b1ˆ2 + 4*b1 + 2;
M = [-2*b1ˆ3 6*b1ˆ3 -6*b1ˆ3 2*b1ˆ3;
2*(b1ˆ3 + xi) -3*(2*b1ˆ3 + 2*b1ˆ2 + b2) 6*(b1ˆ3 - b1) 4*(b1ˆ2+b1) + b2;
-2*(xi + 1) 3*(2*b1ˆ2+b2) 6*b1 2; 2 0 0 0] / d3;
P = [ [0 0 0]; [1 0 -1/2]; [2 0 -1/2]; [3 0 0]; [0 1 0]; [1 1 3/2]; [2 1 1];
[3 1 0]; [0 2 0]; [1 2 1]; [2 2 3/2]; [3 2 0]; [0 3 0]; [1 3 1]; [2 3 1]; [3 3 0] ];
r = surf patch(P, M) % bicubic β -spline patch
ezsurf(r(1), r(2), r(3), [0, 1, 0, 1], 20) % Figure 9.14(b).

The surfaces and 16 points may be shown by the program view patch.

Fig. 9.14 Bicubic B-spline and β -spline surface patches.

9.6 Bicubic Spline Surfaces

Like a spline curve, a spline surface is specified by a set of control vertices.
A continuous surface S is called a bicubic (B- or β -) spline surface defined by a set

of (m+1)(n+1) vertices, called the control graph,

P = {Pi j, i = l, . . . ,m+1, j = 1, . . . ,n +1}, m ≥ 4, n ≥ 4

(Figure 9.15). The surface is a union S = S(1,1) ∪·· ·∪S(m−2,n−2) of (m−2)(n−2) ele-
mentary bicubic (B- or β -spline) patches {S(i, j)}i=1,...,m−2

j=1,...,n−2 , where the (i, j)th fragment,

S(i, j), is specified by the parametric equations
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r(i, j)(u,v) =
4

∑
k,l=1

nk(u)nl(v)Pk−1+i, l−1+ j , 0 ≤ u,v ≤ 1. (9.51)

Equivalently, (9.51) is represented in matrix form as

r(i, j) = (n1(u), . . . ,n4(u))

⎛

⎜
⎜
⎝

Pi, j Pi, j+1 Pi, j+2 Pi, j+3

Pi+1, j Pi+1, j+1 Pi+1, j+2 Pi+1, j+3

Pi+2, j Pi+2, j+1 Pi+2, j+2 Pi+2, j+3

Pi+3, j Pi+3, j+1 Pi+3, j+2 Pi+3, j+3

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

n1(v)
n2(v)
n3(v)
n4(v)

⎞

⎟
⎟
⎠

=
(
u3, u2, u, 1

)
M∗ P(i, j) M

(
v3, v2, v, 1

)∗
, (9.52)

where M is the basic matrix (9.65) or (9.64) of the bicubic B- or β -spline surface (in
the β -spline case, for simplicity assume a global assignment of the shape parameters
β1, β2).

Fig. 9.15 Control graph for B- and β -spline surfaces.

The mutual placement of the vertices in the array P may be arbitrary (in particular,
some of them may coincide). Some simple cases of vertex coincidence arise in relation
to boundary or corner multiple vertices. As a rule, the vertices of the generated array
do not belong to a bicubic (B- or β -spline) surface. It is natural to complete the control
graph by a choice of auxiliary vertices such that the boundary curves of a new piecewise
surface are close to or coincide with the boundary and corner vertices. It is common to
use multiple vertices and phantom vertices for this purpose.

9.6.1 Double vertices

Additional surface patches are defined around the periphery of the interior ones nat-
urally defined by the control vertices, by repeating boundary vertices in the spline
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surface formulation. The interior patches are then surrounded by additional patches.
Define the (m+3)× (n +3) array P∗ = {P∗

i j}i=1,...,m+3
j=1,...,n+3 , setting

P∗
i, j = Pi−1, j−1, 2 ≤ i ≤ m+2, 2 ≤ j ≤ n +2,

P∗
1, j = P1, j−1, P∗

m+3, j = Pm+1, j, 2 ≤ j ≤ m+2,

P∗
i,1 = Pi−1,1, P∗

i,m+3 = Pi,n+1, 2 ≤ i ≤ m+2, (9.53)

P∗
1,1 = P1,1, P∗

1,n+3 = P1,n+1, P∗
m+3,1 = Pm+1,1, P∗

m+3,n+3 = Pm+1,n+1.

The 2m+2n+8 new vertices “border” the given array P and, combined with the array,
form a new array P∗ consisting of (m+3)(n+3) vertices. Note that the arrays P∗ and
P coincide as sets of points (geometrically we have no new vertices). The bicubic (B-
or β -spline) surface S∗ defined by the array P∗ consists of mn fragments {Si j}i=1,...,m

j=1,...,n
with radius vectors calculated by the formulae

r(i, j)(u,v) =
4

∑
k,l=1

nk(u)nl(v)P∗
k−1+i, l−1+ j, 0 ≤ u,v ≤ 1. (9.54)

Only 2m+2n−4 of these elementary surfaces (patches) are new:

S∗
1, j, 1 ≤ j ≤ n−1, S∗

m−1, j, 2 ≤ j ≤ n,

S∗
i,n−1, 1 ≤ i ≤ m−1, S∗

i,1, 2 ≤ i ≤ m.

The mutual placement of the bicubic (B- or β -spline) surfaces, old S and new S∗, is
schematically shown in Figure 9.16(b).

Fig. 9.16 Piecewise surfaces.
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Fig. 9.17 Double vertices condition: additional and interior patches.

9.6.2 Triple vertices

This technique extends the double vertices technique by defining another set of addi-
tional surface patches around the periphery of those defined by P∗. Define the third
array P∗∗ = {P∗∗

i j }i=1,...,m+3
j=1,...,n+3 by the same algorithm as that for the second array (see

(9.53)), setting:

P∗∗
i, j = P∗

i−1, j−1, 2 ≤ i ≤ m+4, 2 ≤ j ≤ n +4,

P∗∗
1, j = P∗

1, j−1, P∗∗
m+5, j = P∗

m+3, j, 2 ≤ j ≤ m+4,

P∗∗
i,1 = P∗

i−1,1, P∗∗
i,m+5 = P∗

i,n+3, 2 ≤ i ≤ m+4,

P∗∗
1,1 = P∗

1,1, P∗∗
1,n+5 = P∗

1,n+3, P∗∗
m+5,1 = P∗

m+3,1, P∗∗
m+5,n+5 = P∗

m+3,n+3.

The 2m + 2n + 16 new vertices “border” the array P∗ and, combined with the array,
form a new array P∗∗ consisting of (m+5)(n+5) vertices. Note that the arrays P∗∗ and
P coincide as sets of points (geometrically we have no new vertices). The bicubic (B-
or β -spline) surface S∗∗ defined by the array P∗∗ consists of (m+2)(n+2) fragments
{Si j}i=1,...,m+2

j=1,...,n+2 with radius vectors calculated by the formulae

r(i, j)(u,v) =
4

∑
k,l=1

nk(u)nl(v)P∗
k−1+i, l−1+ j, 0 ≤ u,v ≤ 1. (9.55)

Only 2m+2n +4 of these elementary surfaces (patches) are new:

S∗∗
1, j, 1 ≤ j ≤ n +1, S∗∗

m+1, j, 2 ≤ j ≤ n +2,

S∗∗
i,n+1, 1 ≤ i ≤ m+1, S∗∗

i,1, 2 ≤ i ≤ m+2.
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The mutual placement of the bicubic (B- or β -spline) surfaces (old S, S∗ and new S∗∗)
is schematically shown in Figure 9.16(b).

9.6.3 Phantom vertices

By a suitable choice of vertices for the array P = {Pi j}i=1,...,m+1
j=1,...,n+1 , one can satisfy the

various conditions on the boundary of the piecewise surface. Usually the new (phan-
tom) vertices are given in the form of linear combinations of the given vertices. The
phantom vertices technique creates a set of phantom vertices around the boundary of
the original control graph which defines additional surface patches. These patches are
of normal size, and the complete surface consists of mn patches.

Consider a bicubic β -spline surface S∗ generated by the array P∗ = {P∗
i j}i=1,...,m+3

j=1,...,n+3 ,
whose 2m+2n +8 vertices are defined by means of the following formulae:

P∗
i, j = Pi−1, j−1, 2 ≤ i ≤ m+2, 2 ≤ j ≤ n +2,

P∗
1, j = A1(P1, j−1 −P2, j−1)+P1, j−1,

P∗
m+3, j = A1(Pm+1, j−1 −Pm, j−1)+Pm+1, j−1, 2 ≤ j ≤ n +2,

P∗
i,1 = A2(Pi−1,1 −Pi−1,2)+Pi−1,1,

P∗
i,n+3 = A2(Pi−1,n+1 −Pi−1,n)+Pi−1,n+1, 2 ≤ i ≤ m+2,

P∗
1,1 = A1(P∗

1,2 −P∗
1,3)+P∗

1,2,

P∗
1,n+3 = A2(P∗

1,n+2 −P∗
1,n+1)+P∗

1,n+2,

P∗
m+3,1 = A2(P∗

m+1,2 −P∗
m+1,3)+P∗

m+1,2,

P∗
m+3,n+3 = A1(P∗

m+1,n+2 −P∗
m+1,n+1)+P∗

m+1,n+2, (9.56)

where A1 = 2β 2
1 +β2

2β 3
1

, A2 = 1
2(2β1 +β2). Note that a solution (9.56) defines each of the

four corner phantom vertices in terms of other phantom vertices and expresses them
explicitly in terms of the original control vertices. For β1 = 1, β2 = 0 these formulae
reduce to the B-spline phantom vertices:

P∗
i, j = Pi−1, j−1, 2 ≤ i ≤ m+2, 2 ≤ j ≤ n +2,

P∗
1, j = 2P1, j−1 −P2, j−1, P∗

m+3, j = 2Pm+1, j−1 −Pm, j−1, 2 ≤ j ≤ n +2,

P∗
i,1 = 2Pi−1,1 −Pi−1,2, P∗

i,n+3 = 2Pi−1,n+1 −Pi−1,n, 2 ≤ i ≤ m+2,

P∗
1,1 = 2P∗

1,2 −P∗
1,3, P∗

1,n+3 = 2P∗
1,n+2 −P∗

1,n+1,

P∗
m+3,1 = 2P∗

m+1,2 −P∗
m+1,3, P∗

m+3,n+3 = 2P∗
m+1,n+2 −P∗

m+1,n+1. (9.57)
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The bicubic (B- or β -spline) surface S∗ defined by P∗ has the following property: the
curvature of the common curve of the neighboring patches at a point lying on the
boundary curve of the surface is zero.

In the case of phantom vertices, the twist vectors at the corner points of the surface
S∗ are equal to the twist vectors of the corresponding bilinear surfaces constructed on
the edges adjacent to the vertices.

9.6.4 Examples

We now compute and visualize spline surfaces. We base our investigations on the pro-
cedure surf spline(X, Y, Z, ’ method ’) (see Section A.5), where X, Y, Z are coordinate
arrays of given points, and ’ method ’ is either ’ BB ’ or ’ BT ’.

The reader can alternatively fit surfaces to data and view plots with the Surface
Fitting Tool interface.

Examples.

1. Approximate the graph of a function z = x2 + y2 on the rectangle Π = {−1 ≤ x ≤
2, |y| ≤ 3}. First, prepare the data.

a = -1; b = 2; c = -3; d = 3; n = 6; m = 5; % enter data
[uu, vv] = meshgrid(0 : 1/(n - 1) : 1, 0 : 1/(m - 1) : 1);
X = a + uu.*(b - a);
Y = c + vv.*(d - c);
Z = (a + uu.*(b - a)).ˆ2 + (c + vv.*(d - c)).ˆ2 % enter function

Then call surf spline using either of two lines:

S = surf spline(X, Y, Z, ’ BB ’); % B-spline,

S = surf spline(X, Y, Z, ’ BT ’); % β -spline.

Finally, plot the piecewise surface (see Figure 9.18) with a typical program, called
view surf in what follows.

syms u v;
[ui, vi] = meshgrid(0 : . 2 : 1);
hold on; view(3); grid on; plot3(X, Y, Z, ’ o - - ’); % control graph
for i = 1 : (n + 1)*(m + 1);
SX = double(subs(S(i, 1), {u v}, { ui vi }));
SY = double(subs(S(i, 2), {u v}, { ui vi }));
SZ = double(subs(S(i, 3), {u v}, {ui vi }));
c = i/(n + 1)/(m + 1)*ones(size(SX, 1)); % coloring
surf(SX, SY, SZ, c); % ith patch of a piecewise surface

end;
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Fig. 9.18 (a) Control graph. (b,c) B-spline and β -spline surfaces, β = [1,7].

2. The “Figure Eight” shape of the Klein bottle is obtained by rotating a figure eight
about an axis while placing a twist in it, and is given by equations (8.8). The illustrative
Figure 9.19(a) is obtained by the program below

syms u v;
ezsurf((R + cos(u/2)*sin(v) - sin(u/2)*sin(2*v))*cos(u), (R + cos(u/2)*sin(v) -
sin(u/2)*sin(2*v))*sin(u), sin(u/2)*sin(v) + cos(u/2)*sin(2*v), [-pi, pi*3/4, -pi, pi]);

Fig. 9.19 Immersed Klein bottle and its β -spline approximation, β = [1,1].

9.7 Exercises

Section 9.2 1. Given three points P1, P2, P3, calculate the parabola that goes from
P1 to P3 and whose start and end tangent vectors point in directions

P2 −P1 and P3 −P2, respectively.
2. Represent the Bézier curve recursively by r(n)

n (t), where
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r(0)
i (t) = Pi, r( j)

i (t) = (1− t)r( j−1)
i−1 (t)+ t r( j−1)

i (t) for j > 0. (9.58)

3. Represent the Bézier curve also in a very compact form as

r(t) = (1− t + tE)nP1, (9.59)

where E is the shift operator defined by EPi = Pi+1 (i.e., applying E to Pi produces
Pi+1). To prove (9.59), show

r(t) =
n

∑
i=0

Bn,i(t)Pi+1 =
n

∑
i=0

(
n
i

)
ti(1− t)n−i EiP1

=
n

∑
i=0

(
n
i

)
(tE)i(1− t)n−i P1 = ((1− t)+ tE)nP1

where the last step follows from the binomial theorem.
4. Show that (for any n) the result of the procedure r = bezier(x, y) (Section A.2) is

the polynomial curve [ f1(t), . . . , fN(t)] ⊂ R
N . Try N = 2, 3.

5. Show that a Bézier curve is invariant under affine transformations.
6. Show that the elementary Bézier curve is equivalently defined by (9.4).
7. Verify that a piecewise Bézier curve is C1-continuous if the triples of vertices

P3i−1, P3i, P3i+1 are collinear (lie on the same line).
8. For C2-continuity of a Bézier curve in R

3 it is necessary that all five points P3i−2,
P3i−1, P3i, P3i+1, P3i+2 are coplanar (lie in the same plane).

9. Plot 3 elementary Bézier curves using the procedure bezier2d(x, y).
10. Find conditions for a closed piecewise Bézier curve to be continuous.
Answer: If P0 = P3m and the triples P3m−1P3m = P0P1 are collinear, a closed piece-

wise Bézier curve is C1-continuous.
11. Let Pi = (xi,yi,zi). Define homogeneous control points P̄i by

P̄i =

{
(wixi,wiyi,wizi,wi) if wi �= 0,

(xi,yi,zi,0) if wi = 0.

Show that in homogeneous coordinates the rational Bézier curve is given by r̄(t) =

∑n
i=0 B̄n,i(t) P̄i+1, t ∈ [0,1] where B̄n,i(t) = Bn, i(t)

/
∑n

j=0 wj+1 Bn, j(t). This is a poly-

nomial Bézier curve, but with homogeneous control points.
12. Given the array P0, P1, P2, P3, and nonnegative real numbers k0 and k3, find

weights w0, w1, w2, w3 such that the values of the curvature of the rational elementary
Bézier curve at the boundary control points coincide with the given real number (k0 at
the point P0 and k3 at P3).
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Hint. w0 = 1, w1 = 4
3( c0

2c3
k0

2k3
)1/3, w2 = 4

3( c3
2c0

k3
2k0

)1/3, w3 = 1, c0 = |(P1−P0)×(P2−P0)|
2|P1−P0|3 ,

c3 = |(P2−P1)×(P2−P0)|
2|P3−P2|3 .

13. Develop an M-file rbezier2d(x, y) for deriving piecewise rational Bézier curves
in analogy to bezier2d(x, y).

Section 9.3 1. Plot the four Hermite blending functions of (9.7):

t = linspace(0, 1, 50);
n1 = 1 - 3*t.ˆ2 + 2*t.ˆ3; n2 = 1 - n1;
n3 = t - 2*t.ˆ2 + t.ˆ3; n4 = t.ˆ2.*(t - 1);
plot(t, [n1; n2; n3; n4])

Show that the weights n1(t) and n2(t) = 1−n1(t) assigned to the points P1 and P2 are
monotonic for t ∈ [0,1] functions. The function n3(t) is a bit trickier. It starts at zero,
has a maximum at t = 1/3, then drops slowly back to zero (verify!). The function n4(t)
behaves similarly.

2. Given the endpoints P1 = (0,0) and P2 = (1,0) and the velocity vectors Q1 =
α(cosθ ,sinθ ) and Q1 = α(cosθ ,sinθ ), calculate the value of θ for which the Hermite
segment from P1 to P2 has a cusp.

3. Given endpoints P1 and P2, unit tangent vectors T1 and T2, and a third point P3,
find scale factors α and β such that the Hermite segment r(t) determined by P1, P2 and
velocities α T1, β T2, respectively, will pass through P3. Also find t0 for which r(t0) = P3.

4. Hermite interpolation can be applied to compute (approximate) conic sections.
Given three points P1, P2, and P3 and a scalar a, we take the 4-tuple P1, P2, a(P3 −P1),
a(P2−P3) as our two points and two extreme tangent vectors, and compute the Hermite
segment that approximates a conic section. Show that we obtain an ellipse when 0 ≤
a < 0.5, a parabola when a = 0.5, and a hyperbola when 0.5 < a ≤ 1.

5. A variation of the Hermite method is the case where two points and just one
tangent are given. Each segment ri(t) is therefore a quadratic polynomial defined by its
two endpoints P1 and P2 and by its beginning tangent vector Q1. Let r(t) = a t2 +b t +c
be a quadratic polynomial satisfying the conditions r(0) = P1, r(1) = P2, r′(0) = Q1.
Show that a = P2 −P1 −Q1, b = Q1, c = P1, and hence

r(t) = (1− t2)P1 + t2P2 +(t − t2)Q1 (0 ≤ t ≤ 1). (9.60)

6. What are the conditions for closed C1-continuous and C2-continuous piecewise
Hermite curves?

7. Show that the matrix presentation of (9.60) is r(t) = GM T (t) (0 ≤ t ≤ 1), where
T (t) = [t2; t; 1] is a column vector, G = (P1 P2 Q1) is the geometric matrix and
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M =

⎛

⎝
−1 0 1

1 0 0
−1 1 0

⎞

⎠ (9.61)

is the basic matrix of a quadratic Hermite curve.
8. Show that the Bézier curve determined by four points P1, P2, P3, and P4 is a

Hermite curve (having identical shape) determined by the points P1, P4, 3(P2−P1), and
3(P4−P3). Hence, one can add a tension parameter to a (cubic) Bézier curve by the rule
P1, P4, 3s(P2 −P1), 3s(P4 −P3). Find the parameterization of this curve and its matrix
representation.

9. The quadratic spline is based on the Hermite segment of (9.60).
(a) Compute the quadratic spline curve. Show that the neighboring segments

ri(t) = (1− t2)Pi + t2Pi+1 +(t − t2)Qi,

ri+1(t) = (1− t2)Pi+1 + t2Pi+2 +(t − t2)Qi+1 (9.62)

have the velocity vectors 2(Pi+1 − Pi)− Qi and Qi+1 at the node Pi+1. Requiring C1-
continuity, deduce the system of n−1 linear equations

⎛

⎜
⎜
⎝

1 1
1 1

· · ·
1 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

Q1

Q2

· · ·
Qn

⎞

⎟
⎟
⎠= 2

⎛

⎜
⎜
⎝

P2 −P1

P3 −P2

· · ·
Pn −Pn−1

⎞

⎟
⎟
⎠ . (9.63)

(b) Create an M-file to calculate the quadratic spline, and then plot it.
10. Find explicitly the matrix presentation of the elementary cardinal spline curve

(generalization of (9.16)).

Section 9.4 1. Show that the matrix presentation of (9.18) is r(t) = PM T (t) (0 ≤
t ≤ 1), where r(t) = [x(t);y(t);z(t)] and T (t) = [t2;t;1] are column

vectors, P = (P1 P2 P3), and

M =
1

β1 +1

⎛

⎝
β1 −2β1 β1

−β1 −1 2β1 1
β1 0 0

⎞

⎠ .

2. Find the shape parameters {β1i} such that the curvature of a quadratic β -spline
(see Example, p. 377) is continuous at the joints.

3. Verify particular cases of cubic β -splines related to the cubic B-spline:
(a) the equality β1 = 1 is equivalent to the continuity of r′;
(b) the system β1 = 1, β2 = 0 is equivalent to the continuity of r′ and r′′.
4. Verify that:
(a) For β1 = 1 and β2 = 0 one obtains an elementary cubic B-spline.
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(b) The bi(t) are nonnegative for 0 ≤ t ≤ 1, and their sum is equal to 1.
(c) The elementary β -spline lies in the convex hull of its control vertices.
(d) The β -spline curve is invariant under affine transformations.
5. Show that the matrix presentation of (9.31) is r(t) = PM T (t) (0 ≤ t ≤ 1), where

r(t) = [x(t); y(t); z(t)] and T (t) = [t3; t2; t; 1] are column vectors, P = (P1, P2, P3, P4)
is the geometric matrix, and

M =
1
δ 3

⎛

⎜
⎜
⎝

−2β 3
1 6β 3

1 −6β 3
1 2β 3

1
2(β 3

1 +ξ ) −3(2β 3
1 +2β 2

1 +β2) 6(β 3
1 −β1) 4(β 2

1 +β1)+β2

−2(ξ +1) 3(2β 2
1 +β2) 6β1 2

2 0 0 0

⎞

⎟
⎟
⎠ (9.64)

(where ξ = β 2
1 +β1 +β2) is the basic matrix of the β -spline curve.

6. Calculate and plot the self-repeating plane β -spline by the same method used for
the Bézier curves, only replacing one line by:

B = beta s2d(x1, y1, beta); % Figure 9.4

7. Play with beta s2d using the data in (a) and (b) below.
(a) Plot your hand (see [Moler] for realistic input using the mouse):

x = [6.5 6 5.8 4.5 3 3.5 4.5 5.7 7.5 7 6.8 7.2 8 8.8 9.8 10 10 10.5 11.8 12
11.8 12.8 13.2 14 14.8 14.7 14.1 13.9 14.2 16 17 18.4 19.1 19.3 17.8 15.9
14.6 14.6 6.5];
y = [1 5 8.5 11 14.2 15.2 15 13 10.5 14.8 18.8 19.5 19 15.7 12 16 20 21
20.2 16.3 11.8 15.8 19 19.8 18.6 15 11.5 9 7.8 8 9.5 10 9.6 8.5 6.4 4 1 1 1];

In order to use polar coordinates, the data must be centered so that it lies on a curve
that is starlike with respect to the origin (that is, every ray emanating from the origin
meets the data only once). This means that you must be able to find values x0 and y0 so
that the MATLAB statements

xp = x - x0; yp= y - y0;
theta = atan2(yp, xp); r = sqrt(xp.ˆ2 + yp.ˆ2)
plot(theta, r)

produce a set of points that can be interpolated with a single-valued function, r = r(θ ).
For the data obtained by sampling the outline of your hand, the point (x0,y0) is located
near the base of your palm. Furthermore, in order to use interp1, it is also necessary to
order the data so that theta is monotonically increasing.

ti = linspace(theta(1), theta(n - 2), 102);
B = interp1(theta(1 : n - 2), r(1 : n - 2), ti, ’cubic’);
hold on; polar(theta, r); polar(ti, B, ’r’);

(b) Data for a car profile; Figure 9.20.
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x = [226 348 356 400 410 452 470 452 438 496 416 412 430 428 394
344 232 164 58 38 36 98 100 148 158 228 226];
y = [21 17 5 4 18 24 55 62 82 89 83 79 79 63 68 94 87 62 53 34 21 16 2 1
13 21 21];

Fig. 9.20 Modeling of a car profile: β1 = 1, β2 = 9.

8. What are the conditions for a closed (piecewise) cubic β -spline curve?
Hint. Similar to those for a cubic B-spline curve; see Section 9.4.4.
9. Check that a cubic β -spline curve lies in the union of the convex hulls of four

consecutive control vertices Pi−1, Pi, Pi+1, Pi+2.
10. Do the following experiments with test data given after the procedure beta 2d(x,

y, beta):
(a) Change β1 > 0 for fixed β2 ≥ 0 (for β1 = 0 we get the polygon).
(b) Change β2 > 0 for fixed β1 > 0 (for β2 → ∞ each node of the spline runs to the

corresponding control vertex; Figure 9.7(a–c)).
(c) For variety, consider β2 < 0 for fixed β1 > 0 (the convexity condition does not

hold; Figure 9.7(d–f)).
Conclude that if we do not require nonnegativity of the parameters β1 and β2, then

some self-intersections and oscillations of the curve can appear.
11*. Develop M-files for deriving rational cubic β -splines similar to beta s2d(x, y, z,

beta) and beta s3d(x, y, z, beta). Use rbetas my for elementary rational curves. Study
the properties of these curves.

12*. Using MATLAB, construct the quintic β -spline in R
4. Verify that for β1 = 1,

β2 = β3 = β4 = 0 it coincides with quintic B-spline. Plot (for various β ’s) projections
of the curve onto coordinate 2-planes and coordinate 3-spaces.

Hint. The segment is

ri(t) =
6

∑
j=1

b j(t)Pi+ j−1, where bi(t) = (1/δ5)
5

∑
j=0

ci, jt
j.

Similarly to quadratic, cubic, or quartic β -splines, use the first four derivative con-
straints of (9.17), and obtain a linear system of 36 = 6×6 equations with 36 unknown
coefficients ci, j. Assume a global assignment of the shape parameters β1, β2, β3, β4.
The determinant is
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δ5 = 72 +288β1 +72β1β 2
2 +3β4 +96β1β3 +1440β 4

1 +36β2β1β3 +1188β 3
1

+108β2 −30β 4
1 β2β3 −9β4β 2

1 +1764β 4
1 β2 +432β 2

1 β 2
2 +72β 1

1 0

+1023β 5
1 β2 +432β 3

1 β 2
2 −108β 4

1 β3 −9β4β 3
1 +4β1β 2

3 +24β3 +336β1β2

+1764β 3
1 β2 +111β3β 2

1 +1080β 7
1 +336β 6

1 β2 −96β 5
1 β3 +288β 4

1 β 2
2

+1059β 2
1 β2 +1368β 6

1 +288β 9
1 +54β 2

1 β2β3 −2β4β1β2 +48β 5
1 β 2

2

+36β 3
1 β 3

2 +720β 2
1 +1476β 5

1 +648β 8
1 +3β 5

1 β4 −24β 6
1 β3 +108β 7

1 β2.

Section 9.4.4 1. Verify that the matrix form of the quadratic B-spline is r(t) =
PM T (t) (0 ≤ t ≤ 1), where r(t) = [x(t); y(t); z(t)] and T (t) =

[t2; t; 1] are column vectors, P = (P1 P2 P3), and

M =
1
2

⎛

⎝
1 −2 1
1 2 −2
0 0 1

⎞

⎠ .

2. Show that, given the 4 control vertices P1 = (−1,0), P2 = (−1,2), P3 = (1,2),
and P4 = (1,0), the first quadratic spline segment is

r1(t) =
1
2
(P1,P2,P3)

⎛

⎝
1 −2 1
−2 2 1
1 0 0

⎞

⎠

⎛

⎝
t2

t
1

⎞

⎠

=
1
2

(t −1)2(−1,0)+(−t2 + t +1/2)(−1,2)+ t2/2(1,2) = (t2 −1, 1 +2t − t2).

Deduce from this that the first segment starts with velocity r1(0) = (0,2) and ends with
velocity r1(1) = (2,0). Calculate the second segment, its velocity, and the joint point
r2(1).

3. Show that the functional weight multipliers of the cubic B-spline

n1(t) =
(1− t)3

6
, n2(t) =

3t3 −6t2 +4
6

, n3(t) =
−3t3 +3t2 +3t +1

6
, n4(t) =

t3

6

(see (9.36)) are nonnegative for 0 ≤ t ≤ 1 and their sum is equal to 1.

t = linspace(0, 1, 50);
n1 = (1 - t).ˆ3/6; n2 = (3*t.ˆ3 - 6*t.ˆ2 + 4)/6;
n3 = (-3*t.ˆ3 + 3*t.ˆ2 + 3*t + 1)/6; n4 = t.ˆ3/6;
plot(t, [n1; n2; n3; n4])

4. Verify that the matrix presentation of (9.36) is r(t) = PM T (t) (0 ≤ t ≤ 1), where
r(t) = [x(t); y(t); z(t)] and T (t) = [t3; t2; t; 1] are column vectors, P = (P1 P2 P3 P4)
is the geometric matrix, and
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M =
1
6

⎛

⎜
⎜
⎝

−1 3 −3 1
3 −6 0 4
−3 3 3 1
1 0 0 0

⎞

⎟
⎟
⎠ (9.65)

is the basic matrix of an elementary B-spline curve.
5. Given a cubic B-spline segment r(t) based on the four control vertices P1, P2, P3,

and P4, find four control vertices Q1, Q2, Q3, and Q4 such that the Bézier curve r̃(t)
they define will have the same shape as r(t).

Hint. This can be done by equating the matrices of (9.65) that define r(t) and those
of (5.26) that define r̃(t), i.e., PM = QM̃. The answer is Q1 = (P1 +4P2 +P3)/6, Q2 =
(4P2 +2P3)/6, Q3 = (2P2 +4P3)/6, Q4 = (P2 +4P3 +P4)/6.

6. Compute M ·n! for n = 3,4,5, . . . . See Example 3, p. 385.

n = 2; % enter data
for i = 0 : n; for j = 0 : n;
Q = 0;
for k = j : n;
Q = Q + (n-k).ˆi*(-1).ˆ(k-j).*gamma(n+2)./gamma(k-j+1)./gamma(n-k+j+2);
end;
M(j + 1, i + 1) = gamma(n + 1)./gamma(i + 1)./gamma(n - i + 1).*Q;
end; end
M % matrix M multiplied by n!

7. Call beta s3d to calculate the test piecewise curve in R
3.

x = [.056, .287, .655, .716, .228, .269, .666, .929];

y = [.820, .202, .202, .521, .521, .820, .820, .227];
z = [1/4, 1/4, 0, 0, 0, 0, -1/4, -1/4]; % enter data
B = beta s3d(x, y, z, [1 0]);

Then plot the curve in space (again one may use the + ti - ti trick to avoid a one-element
zero array), Figure 9.9(a).

syms t real;
hold on; plot3(x, y, z, ’o - - r’);
for i = 1 : (length(x) + 1);
ti = linspace(i - 1, i, 20);
S = [subs(B(1, i), t, ti) + ti - ti; subs(B(2, i), t, ti) + ti - ti; subs(B(3, i), t, ti) + ti - ti];
plot3(S(1, :), S(2, :), S(3, :), ’LineWidth’, 2);
end

This typical program will be referred to as splot3(x, y, z, B).
8. As a simple application, we plot the knot trefolium using coordinates of vertices

of the triangle A = (−2,0), B = (0,4), C = (2,0) and midpoints of its edges. The arrays
x, y and z below contain the data.
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x = [2, 0, -1, 0, 1, 0, -2, -1, 1, 2, 2]; y = [0, 0, 2, 4, 2, 0, 0, 2, 2, 0, 0];
z = [0, 1, 2, 2, 0, 2, 2, 1, 2, 1, 0]; % enter data
B = beta s3d(x, y, z, [1 0]);
splot3(x, y, z, B) % Figure 9.9(c)

9. Calculate and plot the self-repeating plane B-spline by the same method used for
the Bézier curve (Figure 9.4), only replacing one line by the line below.

B = beta s2d(x1, y1, [1 0]);

10. Show that the B-spline curve is invariant under affine transformations.
11. What are the conditions for a closed (piecewise) cubic B-spline curve?
Hint. For closing a C2-regular B-spline curve, one should complete the array

P1, . . . ,Pn with three points Pn+1 = P1, Pn+2 = P2, Pn+3 = P3.
12. Check that a B-spline curve lies in the union of the convex hulls of the four

points {Pi−1, Pi, Pi+1, Pi+2} for i > 1.

Section 9.5 1. Verify that (9.40) can also be written in the matrix form

r(u,v) = ( f1(u), . . . fn(u))

⎛

⎜
⎝

P11 P12 . . . P1m
...

...
...

Pn1 Pn2 . . . Pnm

⎞

⎟
⎠

⎛

⎜
⎝

g1(v)
...

gm(v)

⎞

⎟
⎠ . (9.66)

2. Show that if fi(t) are polynomials of degree n, then (9.41) can be rewritten in the
form (9.42), where Pn = {Pi j}n

i, j=1, and the basic matrix M can be found from (9.43).
3. The quadratic B-spline and β -spline curves determined by three given points are

studied in Section 9.4. Use the Cartesian product for plotting biquadratic B-spline and
β -spline surface patches.

4. Represent the parametric quadratic polynomial that passes through three given
points in the form r(t) = GM T (t); see (5.14). Apply the principle of the Cartesian
product to multiply this curve by itself. Obtain a biquadratic surface patch r(u,v) (0 ≤
u,v ≤ 1; see (9.42) for n = 3)

r(u,v) = (u2,u,1)M∗ P3 M (v2,v,1)′ (9.67)

that passes through 9 given points {Pi j}3
i, j=1, corresponding to u,v ∈ {0, 1/2, 1}. They

should be roughly equally spaced over the surface.
Evaluate and plot the surface patch given by the 9 points:

M = [2 -3 1; -4 4 0; 2 -1 0];
P = [ [0 0 0]; [1 0 0]; [2 0 0]; [0 1 0]; [1 1 1]; [2 1 -1/2]; [0 2 0]; [1 2 0]; [2 2 0] ];
r = surf patch(P, M) % biquadratic surface patch
ezsurf(r(1), r(2), r(3), [0, 1, 0, 1], 20); % Figure 9.10(b)
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Plot the surface and the 9 points using view patch; see Section A.5.
5. The quadratic Bézier curve determined by three given points is r(t) = GM T (t);

see (9.2). Apply the principle of the Cartesian product to multiply this curve by itself in
order to obtain a Bézier biquadratic surface patch r(u,v) = (u2,u,1)M P3 M (v2,v,1)′
(0 ≤ u,v ≤ 1), determined by 9 given points. Once the points are given, evaluate and
plot the surface patch:

M = [1 -2 1; -2 2 0; 1 0 0]; % symmetric matrix
P = [ [0 0 0]; [1 0 1]; [0 0 2]; [1 1 0]; [4 1 1]; [1 1 2]; [0 2 0]; [1 2 1]; [0 2 2] ];
r = surf patch(P, M) % biquadratic Bézier patch
ezsurf(r(1), r(2), r(3), [0, 1, 0, 1], 20); % Figure 9.11(a).

Plot the surface and the 9 points using the program view patch.
6. Verify that the rational patch (9.44) in homogeneous coordinates is

r̄(u,v) =
n

∑
i, j=1

h̄i j(u,v) P̄i j, h̄i j(u,v) =
fi(u) f j(v)

∑n
i, j=1 wi j fi(u) f j(v)

, u,v ∈ [0,1],

and plot this patch using MATLAB.

Section 9.6 1. Show that the twist vector at the corner point of the B-spline patch
S(1,1) is equal to P11 −P12 +P22 −P21.

2. Show that the twist vectors at the corner vertices of four corner patches S(1,1),
S(1,n−1), S(m−1,1), S(m−1,n−1) of the β -spline surface S∗ are

r(1,1)
uv (0,0) = (36/δ 2)(P1,1 −P1,2 +P2,2 −P2,1),

r(1,n)
uv (0,1) = (36/δ 2)(P1,n −P1,n+1 +P2,n+1 −P2,n),

r(m,n)
uv (1,1) = (36/δ 2)(Pm,n −Pm,n+1 +Pm+1,n+1 −Pm+1,n),

r(m,1)
uv (1,0) = (36/δ 2)(Pm,1 −Pm,2 +Pm+1,2 −Pm+1,1), (9.68)

where δ = β2 + 2β 3
1 + 4β 2

1 + 4β1 + 2; see Proposition 9.2. These are equal (up to a
coefficient) to the twist vectors of the bilinear surfaces defined by the quadruples of
vertices

P1,1,P1,2,P2,2,P2,1; P1,n,P1,n+1,P2,n+1,P2,n;

Pm,n,Pm,n+1,Pm+1,n+1,Pm+1,n; Pm,1,Pm,2,Pm+1,2,Pm+1,1.

For δ = 12, (9.68) reduce to the twist vectors at B-spline patches.
3. Show that:
(a) The corner patches, S(1,1), S(1,n+1), S(m+1,1), S(m+1,n+1) of the bicubic (B- or β -

spline) surface S∗∗ are bilinear surfaces. The twist vectors at these β -spline patches
are, respectively,
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r(1,1)
uv (u,v) = (36/δ )u2v2(P1,1 −P1,2 +P2,2 −P2,1),

r(1,n)
uv (u,v) = (36/δ )u2v2(P1,n −P1,n+1 +P2,n+1 −P2,n),

r(m,n)
uv (u,v) = (36/δ )u2v2(Pm,n −Pm,n+1 +Pm+1,n+1 −Pm+1,n),

r(m,1)
uv (u,v) = (36/δ )u2v2(Pm,1 −Pm,2 +Pm+1,2 −Pm+1,1).

For δ = 12 these formulae reduce to the twist vectors at B-spline patches.
Hint. Show, for instance, that

r(1,1) = (1− ũ)(1− ṽ)P1,1 + ũ(1− ṽ)P2,1 +(1− ũ)ṽP1,2 + ũ ṽP2,2,

where the new parameters are defined by ũ = n4(u) and ṽ = n4(v).
(b) All four corner vertices lie at the corners of the bicubic B- or β -spline surface

S∗∗ constructed using the triple vertices:

r(1,1)(0,0) = P1,1, r(1,n+2)(0,1) = P1,n+1,

r(m+2,1)(1,0) = Pm+1,1, r(m+2,n+2)(1,1) = Pm+1,n+1.

4. Approximate the following parametric surfaces and plot the results.
(a) Prepare the data for the single-sheeted hyperboloid of revolution, and then call

surf spline.

n = 4; m = 5; % enter n > 2, m > 3
[uu, vv] = meshgrid(-1 : 2/(n - 1) : 1, 0 : 2*pi/(m - 1) : 2*pi);
X = cosh(uu).*cos(vv);
Y = cosh(uu).*sin(vv);
Z = sinh(uu);

S = surf spline(X, Y, Z, ’ BT ’); % β -spline

Plot the piecewise surface, Figure 9.21(b), using the program view surf.
(b) Prepare the data for the torus of revolution, and then call surf spline:

R = 1; n = 5; m = 5; % enter R ∈ (0,3/2), n > 3, m > 3
[uu, vv] = meshgrid(0:2*pi/(n-1):2*pi+2*pi/(n-1), 0:2*pi/(m-1):2*pi+2*pi/(m-1));
X = (3 + R*cos(uu)).*cos(vv);
Y = (3 + R*cos(uu)).*sin(vv);
Z = R*sin(uu);
S = surf spline(X, Y, Z, ’ BT ’); % β -spline

Plot the piecewise surface, Figure 9.21(a), using the program view surf.
(c) Prepare the data for the immersed Klein bottle, and then call surf spline:

n = 5; m = 6;
[uu, vv] = meshgrid(-pi : 2*pi/(n - 1) : pi, -pi : 2*pi/(m - 1) : pi);
X = (R + cos(uu/2).*sin(vv) - sin(uu/2).*sin(2*vv)).*cos(uu);
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Fig. 9.21 Spline surfaces for torus and single-sheeted hyperboloid, β = [1,1].

Y = (R + cos(uu/2).*sin(vv) - sin(uu/2).*sin(2*vv)).*sin(uu);
Z = sin(uu/2).*sin(vv) + cos(uu/2).*sin(2*vv);
S = surf spline(X, Y, Z, ’ BT ’); % β -spline

Plot the surface, Figure 9.19(b), by a typical program view surf.
5. Prepare the control graph and plot the following spline surfaces: sphere or ellip-

soid, Möbius band, helicoid, and monkey saddle.
6. Show that β - (B-) spline surfaces are affine invariant, i.e.,

f

(
n

∑
i, j=0

Nn,i(u)Nn, j(v)Pi+1, j+1

)

=
n

∑
i=0

Nn,i(u)Nn, j(v) f (Pi+1, j+1)

for any affine transformation f .





Appendix

M-Files

This chapter contains our procedures in the form of M-files.

A.1 Polynomial Interpolation

function v = polyinterp(x, y, u) % several Lagrange polynomials
n = length(x); d = size(y, 1); v = zeros(length(u), d)’;
for k = 1 : n;
w = ones(size(u));
for j = [1 : k-1 k + 1 : n];
w = (u - x(j)). / (x(k) - x(j)).*w;
end
if d == 1; v = v + w*y(k);
else v = v + w*y(:, k);
end; end
v = simplify(v);

end

function H = hermite interp2d(x, y, z) % Hermite polynomial
syms t real;
n = length(x) - 1; H = zeros(1, 2*(n + 1));
for i = 1: (n + 1);
yi = 1 - sign(abs([1 : n + 1] - i));
L = polyfit(x, yi, n);
Lx = polyder(L);
H = H + conv(y(i)*([0 1] - 2*polyval(Lx, x(i))*[1-x(i)]) + z(i)*[1-x(i)], conv(L, L));
end;

end

413
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function S = cubic spline(x, y, m in, m fin) % cubic spline
syms t real;
n = length(x) - 1;
h = x(2 : n+1) - x(1 : n); d = (y(2 : n+1) - y(1 : n))./h;
B = [ [zeros(n - 2, 1), diag(h(2 : end - 1))]; zeros(1, n - 1)];
C = B’;
A = 2*diag(h(1 : n - 1) + h(2 : n)) + B + C;
u = 6*(d(2 : n) - d(1 : n-1));
u(1) = u(1) - h(1)*m in; u(end) = u(end) - h(end)*m fin;
m = A\\\\ u’;
m = [m in m’ m fin];
for k = 1 : n;
S(k) = m(k)/(6*h(k))*(x(k+1) - t)ˆ3 + m(k+1)/(6*h(k))*(t - x(k))ˆ3 +
(y(k)/h(k) - m(k)*h(k)/6)*(x(k+1) - t) + (y(k+1)/h(k) - m(k+1)*h(k)/6)*(t - x(k));
end

end

A.2 Bézier Curves

function bez = bezier(x, y) % Bézier curve
syms t real;
n = length(x) - 1; j = 0 : n;
B = gamma(n + 1)./gamma(j + 1)./gamma(n - j + 1).*t.ˆj.*(1 - t).ˆ(n - j);
bez = simplify([x; y]*B’);

end

function rbez = rbezier(x, y, w) % rational Bézier curve
syms t real;
n = length(x) - 1; j = 0 : n;
RB = gamma(n+1)./gamma(j+1)./gamma(n - j + 1).*t.ˆj.*(1-t).ˆ(n-j).*w(j+1);
rbez = simplify([x; y]*RB’ / sum(RB));

end

function bez2 = bezier2d(x, y) % piecewise Bézier curve, calls bezier.m
syms t real;
m = length(x)/2; p = [x’, y’];
p(1, :) = 2*p(1, :) - p(2, :); p(2*m, :) = 2*p(2*m, :) - p(2*m-1, :);
bez2 = [ ];
for i = 1 : m - 1;
pi = [(p(2*i-1, :) + p(2*i, :))/2; p(2*i, :); p(2*i+1, :); (p(2*i+1, :) + p(2*i+2, :))/2];
yi = bezier(pi(:, 1)’, pi(:, 2)’);
bez2 = [bez2, simplify(subs(yi, t, t - i + 1))];
end;

end
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A.3 Hermite Curves

function hspl = hermite my(xp, yp, xq, yq) % elementary cubic curve
syms t real;
n1 = 1 - 3*t.ˆ2 + 2*t.ˆ3;
n2 = 3*t.ˆ2 - 2*t.ˆ3;
n3 = t - 2*t.ˆ2 + t.ˆ3;
n4 = -t.ˆ2.*(1 - t);
hspl = [xp; yp]*[n1 n2]’ + [xq; yq]*[n3 n4]’;

end

function hspl2 = hermite2d(xp, yp, xq, yq) % C1-continuous curve
syms t real;
hspl2 = [ ];
for i = 1 : length(xp) - 1;
yi = hermite my(xp(i : i + 1), yp(i : i + 1), xq(i : i + 1), yq(i : i + 1));
hspl2 = [hspl2, simplify(subs(yi, t, t - i + 1))];
end

end

function hcub2 = hermite cubic2d(xp, yp, xq, yq) % C2-continuous curve
syms t real;
n = length(xp);
A1 = eye(n) + 4*diag(ones(1, n - 1), 1) + diag(ones(1, n - 2), 2);
A2 = -3*eye(n) + 3*diag(ones(1, n - 2), 2);
Qsol = A2(1 : n - 2, :)*[xp; yp]’\\\\A1(1 : n - 2, :)
Xq = [xq(1) Qsol(1, :) xq(2)]; Yq = [yq(1) Qsol(2, :) yq(2)];
hcub2 = [ ];
for i = 1 : n-1;
yi = hermite my(xp(i : i + 1), yp(i : i + 1), Xq(i : i + 1), Yq(i : i + 1));
hcub2 = [hcub2, simplify(subs(yi, t, t - i + 1))];
end

end

function cardspl = card my(x, y, s) % elementary cardinal spline curve
syms t real;
n1 = (2*t.ˆ2 - t - t.ˆ3)*s;
n2 = 1 + (2 - s)*t.ˆ3 + (s - 3)*t.ˆ2;
n3 = (s - 2)*t.ˆ3 + v(3 - 2*s)*t.ˆ2 + t*s;
n4 = (t.ˆ3 - t.ˆ2)*s;
cardspl = simplify([x; y]*[n1 n2 n3 n4]’);

end

function cardspl2 = card2d(x, y, s) % piecewise cardinal spline
syms t real;
cardspl2 = [ ];
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for i = 1 : length(x) - 3;
yi = card my(x(i : i + 3), y(i : i + 3), s);
cardspl2 = [cardspl2, simplify(subs(yi, t, t - i + 1))];
end

end

A.4 β -Spline Curves

function betas1 = betas1 my(x, y, beta) % elementary
syms t real; % quadratic β -spline in R

2

n1 = beta*(t - 1).ˆ2;
n2 = -(beta + 1)*t.ˆ2 + 2*beta*t + 1;
n3 = beta*t.ˆ2;
betas1 = ([x; y]*[n1, n2, n3]’/(beta + 1));

end

function beta s1 = beta s1d(x, y, beta) % quadratic β -spline in R
2

syms t real;
n = length(x);
p = [x; y];
beta s1 = [ ];
for i = 1 : n - 2;
yi = betas1 my(p(1, i : i + 2), p(2, i : i + 2), beta);
beta s1 = [beta s1, simplify(subs(yi, t, t - i + 1))];
end

end

function betas = betas my(x, y, beta) % elementary cubic β -spline in R
2

syms t real;
b1 = beta(1); b2 = beta(2);
n1 = 2*b1ˆ3*(1-t).ˆ3;
n2 = 2*b1ˆ3*t.*(t.ˆ2 - 3*t + 3) + 2*b1ˆ2*(t.ˆ3 - 3*t.ˆ2 + 2)

+ 2*b1*(t.ˆ3 - 3*t + 2) + b2*(2*t.ˆ3 - 3*t.ˆ2 + 1);
n3 = 2*b1ˆ2*t.ˆ2*(-t+3) + 2*b1*t*(-t.ˆ2+3) + b2*t.ˆ2*(-2*t+3) + 2*(-t.ˆ3+1);
n4 = 2*t.ˆ3;
d = 2*b1ˆ3 + 4*b1ˆ2 + 4*b1 + b2 + 2;
betas = ([x; y]*[n1, n2, n3, n4]’/d);

end

function beta s2 = beta s2d(x, y, beta) % piecewise cubic β -spline in R
2

syms t real;
n = length(x);
p = [x(1) x(1) x x(n) x(n); y(1) y(1) y y(n) y(n)];
beta s2 = [ ];
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for i = 1 : n;
yi = betas my(p(1, i : i + 3), p(2, i : i + 3), beta);
beta s2 = [beta s2, simplify(subs(yi, t, t - i + 1))];

end
end

To change one vertex we create an M-file function (a similar program was developed
for B-splines) that calls betas my:

function beta2c = betaspl2d change(x, y, beta, B, i0, delta)
syms t real;
n = length(x);
p = [x(1) x(1) x x(n) x(n); y(1) y(1) y y(n) y(n)];
p(:, i0 + 2) = p(:, i0 + 2) + delta’;
beta2c = B;
for i = i0 - 1 : i0 +v2;
yi = betas my(p(1, i : i + 3), p(2, i : i + 3), beta);
beta2c(:, i) = simplify(subs(yi, t, t - i + 1));
end

end

function rbetas = rbetas my(x, y, w, beta) % elementary rational
% cubic β -spline in R

2

syms t real; b1 = beta(1); b2 = beta(2);
n1 = 2*b1ˆ3*(1 - t).ˆ3;
n2 = 2*b1ˆ3*t.*(t.ˆ2 - 3*t + 3) + 2*b1ˆ2*(t.ˆ3 - 3*t.ˆ2 + 2)
+ 2*b1*(t.ˆ3 - 3*t + 2) + b2*(2*t.ˆ3 - 3*t.ˆ2 + 1);
n3 = 2*b1ˆ2*t.ˆ2*(3 - t) + 2*b1*t*(3 - t.ˆ2) + b2*t.ˆ2*(3 - 2*t) + 2*(1 - t.ˆ3);
n4 = 2*t.ˆ3;
W = w*[n1, n2, n3, n4]’;
rbetas = [x; y]*[w(1)*n1, w(2)*n2, w(3)*n3, w(4)*n4]’/W;

end

function betas3 = betas3 my(x, y, z, beta) % elementary cubic β -spline in R
3

syms t real;
b1 = beta(1); b2 = beta(2);
n1 = 2*b1ˆ3*(1 - t).ˆ3;
n2 = 2*b1ˆ3*t.*(t.ˆ2-3*t+3) + 2*b1ˆ2*(t.ˆ3 - 3*t.ˆ2+2) + 2*b1*(t.ˆ3-3*t+2)

+ b2*(2*t.ˆ3 - 3*t.ˆ2+1);
n3 = 2*b1ˆ2*t.ˆ2*(3-t) + 2*b1*t*(3-t.ˆ2) + b2*t.ˆ2*(3-2*t) + 2*(1-t.ˆ3);
n4 = 2*t.ˆ3;
d = b2 + 2*b1ˆ3 + 4*b1ˆ2 + 4*b1 + 2;
betas3 = simplify(([x; y; z]*[n1, n2, n3, n4]’/d));

end
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function betas3 = beta s3d(x, y, z, beta) % piecewise cubic β -spline in R
3

syms t real;
n = length(x);
p = [x(1) x(1) x x(n) x(n); y(1) y(1) y y(n) y(n); z(1) z(1) z z(n) z(n)];
betas3 = [ ];
for i = 1 : n + 1;
yi = betas3 my(p(1, i : i + 3), p(2, i : i + 3), p(3, i : i + 3), beta);
betas3 = [betas3, simplify(subs(yi, t, t - i + 1))];
end

end

function betas4 = betas4 my(x, y, z, beta) % elementary quartic β -spline
syms t real;
b1 = beta(1); b2 = beta(2); b3 = beta(3);
d = (1-b1ˆ2)*b3+6*b1*b2-6*b1ˆ2*b2+2*b1*b2ˆ2+6*b2*(1+b1)ˆ3
+6*(1+b1)ˆ2*(1+b1ˆ2)*(1+b1+b1ˆ2);

n1 = -6*b1ˆ6+24*b1ˆ6*t-36*b1ˆ6*t.ˆ2+24*b1ˆ6*t.ˆ3-6*b1ˆ6*t.ˆ4;
n2 = -(18*b1ˆ2+30*b1ˆ3+12*b1*b2+2*b2ˆ2-b1*b3+6*b1ˆ2*b2

+18*b1ˆ4)*b1 -24*b1ˆ2*(-2*b1-2*b1ˆ2-b2+b1ˆ4)*t
+6*b1*(6*b1ˆ5-6*b1ˆ2+2*b2ˆ2-b1*b3+4*b1ˆ2*b2+6*b1ˆ4)*t.ˆ2
-8*b1*(3*b1ˆ5+2*b2ˆ2-b1*b3+3*b1ˆ2*b2+3*b1ˆ3+3*b1*b2+3*b1ˆ4)*t.ˆ3
+3*b1*(2*b1ˆ5+2*b1ˆ2+2*b1ˆ3+4*b1*b2+2*b2ˆ2-b1*b3
+2*b1ˆ2*b2+2*b1ˆ4)*t.ˆ4;

n3 = -18*b1ˆ3-30*b1ˆ2-18*b1-12*b1*b2-6*b2-b3-24*b1*(2*b1ˆ2+2*b1ˆ3
+b1*b2-1)*t +(36*b1ˆ2+36*b1ˆ3+12*b2-12*b1*b2ˆ2+6*b1ˆ2*b3
-24*b1ˆ3*b2-36*b1ˆ5)*t.ˆ2
+(24*b1ˆ3+24*b1ˆ4+4*b3+24*b1*b2 + 24*b1ˆ2*b2+16*b1*b2ˆ2
-8*b1ˆ2*b3+24*b1ˆ3*b2+24*b1ˆ5)*t.ˆ3
+(-12*b1ˆ3-6*b1ˆ4-12*b1ˆ2*b2-6*b1*b2ˆ2+3*b1ˆ2*b3-6*b1ˆ3*b2
-6*b1ˆ5-6*b1ˆ2-6*b1-12*b1*b2-6*b2-3*b3)*t.ˆ4;

n4 = -6-24*b1*t-(12*b2+36*b1ˆ2)*t.ˆ2-(24*b1ˆ3+24*b1*b2+4*b3)*t.ˆ3
+(6*b1ˆ3+6*b1ˆ2+12*b1*b2+6*b1+6+3*b3+6*b2)*t.ˆ4;

n5 = -6*t.ˆ4;
betas4 = simplify(([x; y; z]*[n1, n2, n3, n4, n5]’/ d));

end

function beta4 = beta s4d(x, y, z, beta) % piecewise quartic β -spline in R
3

syms t real;
n = length(x);
p = [x(1) x(1) x(1) x x(n) x(n) x(n); y(1) y(1) y(1) y y(n) y(n) y(n);

z(1) z(1) z(1) z z(n) z(n) z(n)];
beta4 = [ ];
for i = 1 : n + 2;
yi = betas4 my(p(1, i : i + 4), p(2, i : i + 4), p(3, i : i + 4), beta);
beta4 = [beta4, simplify(subs(yi, t, t - i + 1))];
end;

end
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function surf = surf patch(P, M) % for n = 3,4,5
n = length(M); if length(P) = nˆ2; disp(’verify dimension of P ’);
else

syms u v real;
X = P(:, 1); Y = P(:, 2); Z = P(:, 3);
if n == 3; U = [uˆ2 u 1]; V = [vˆ2; v; 1];
elseif n == 4; U = [uˆ3 uˆ2 u 1]; V = [vˆ3; vˆ2; v; 1];
elseif n == 5; U = [uˆ4 uˆ3 uˆ2 u 1]; V = [vˆ4; vˆ3; vˆ2; v; 1];
end;
XX = reshape(X, n, n); YY = reshape(Y, n, n); ZZ = reshape(Z, n, n);
rx = U*M’*XX*M*V; ry = U*M’*YY*M*V; rz = U*M’*ZZ*M*V;

surf = [rx, ry, rz];
end

end

function surfs = surf spline(X, Y, Z, method) % ’method’ can be BB, BT
syms u v real; % cubic surface spline
[m n] = size(X);
X2 = cat(2, X(:, 1), X(:, 1), X, X(:, n), X(:, n));
XX = cat(1, X2(1, :), X2(1, :), X2, X2(m, :), X2(m, :));
Y2 = cat(2, Y(:, 1), Y(:, 1), Y, Y(:, n), Y(:, n));
YY = cat(1, Y2(1, :), Y2(1, :), Y2, Y2(m, :), Y2(m, :));
Z2 = cat(2, Z(:, 1), Z(:, 1), Z, Z(:, n), Z(:, n));
ZZ = cat(1, Z2(1, :), Z2(1, :), Z2, Z2(m, :), Z2(m, :)); % building P∗∗
if method(2) == ’B’;

M = [-1 3 -3 1; 3 -6 0 4; -3 3 3 1; 1 0 0 0]/ 6;
elseif method(2) == ’T’;

beta1 = 1; beta2 = 7; % define β1, β2
xi = beta1ˆ2 + beta1 + beta2;
delta3 = beta2 + 2*beta1ˆ3 + 4*beta1ˆ2 + 4*beta1 + 2;
M = [-2*beta1ˆ3 6*beta1ˆ3 -6*beta1ˆ3 2*beta1ˆ3;
2*(beta1ˆ3 + xi) -3*(2*beta1ˆ3+2*beta1ˆ2 + beta2) 6*(beta1ˆ3 - beta1)
4*(beta1ˆ2 + beta1) + beta2; -2*(xi + 1) 3*(2*beta1ˆ2 + beta2) 6*beta1 2;
2 0 0 0] / delta3;

else
error([method, ’ is an invalid method.’]);

end;
U = [uˆ3 uˆ2 u 1]; V = [vˆ3; vˆ2; v; 1];
surfs = [ ];

for j = 1 : n + 1; for i = 1 : m + 1;
Xij = XX(i : i + 3, j : j + 3); Yij = YY(i : i + 3, j : j + 3); Zij = ZZ(i : i + 3, j : j + 3);
rx = U*M’*Xij*M*V; ry = U*M’*Yij*M*V; rz = U*M’*Zij*M*V;
surfs = [surfs; [rx, ry, rz] ];
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end; end
end

hold on; view(3); grid on; % the program view patch
plot3(P(:, 1), P(:, 2), P(:, 3), ’o’); % P – control vertices
ezsurf(r(1), r(2), r(3), [0, 1, 0, 1], 20) % r – parameterization of a surface

A.6 Semi-Regular Polyhedra

1) p33334

c = 1; v = 0.7044022*c; u = 0.4524646*c;
V = [-c+u c -c+v; -c+v c c-u; c-u c c-v; c-v c -c+u; c c-u -c+v; c -c+v -c+u; c -c+u
c-v; c c-v c-u; c-v c-u c; c-u -c+v c; -c+v -c+u c; -c+u c-v c; -c+v c-u -c; -c+u
-c+v -c; c-v -c+u -c; c-u c-v -c; -c c-v -c+u; -c c-u c-v; -c -c+v c-u; -c -c+u -c+v;
c-u -c -c+v; -c+v -c -c+u; -c+u -c c-v; c-v -c c-u];
F4 = [ ]; j = 1 : 4; for i = 1 : 6; F4 = [F4; 4*(i-1)+j]; end;
F3 = [4 5 3; 3 9 2; 2 18 1; 4 1 13; 8 3 5; 7 10 8; 6 21 7; 5 16 6; 9 8 10; 12 2 9;
11 19 12; 11 10 24; 13 17 14; 13 16 4; 16 15 6; 15 14 22; 24 23 11; 23 22 20;
21 15 22; 21 24 7; 19 18 12; 17 1 18; 17 20 14; 20 19 23; 9 3 8; 10 7 24; 11
23 19; 18 2 12; 4 16 5; 13 1 17; 22 14 20; 6 15 21];
hold on; axis equal; view(3)
patch(’Vertices’, V, ’Faces’, F4, ’FaceColor’, [0 1 1])
patch(’Vertices’, V, ’Faces’, F3, ’FaceColor’, [0 .5 1])

2) p3434

c = 1;
V = [c c 0; c 0 -c; 0 c -c; -c 0 -c; -c c 0; -c 0 c; -c -c 0; 0 c c; 0 -c c; c -c 0; c 0 c;
0 -c -c];
F3 = [1 2 3; 5 3 4; 7 4 12; 10 12 2; 8 11 1; 8 5 6; 9 6 7; 11 9 10];
F4 = [1 8 5 3; 3 4 12 2; 12 7 9 10; 9 6 8 11; 2 10 11 1; 5 6 7 4];
hold on; axis equal; view(3)
patch(’Vertices’, V, ’Faces’, F4, ’FaceColor’, [0 1 1])
patch(’Vertices’, V, ’Faces’, F3, ’FaceColor’, [0 .5 1])

3) p3444 1

c = 1; d = c*sqrt(2)/(2+sqrt(2));
V = [d d c; -d d c; -d -d c; d -d c; c d d; c d -d; c -d -d; c -d d; -d c d; -d c -d; d c
-d; d c d; d -c d; d -c -d; -d -c -d; -d -c d; -c -d d; -c -d -d; -c d -d; -c d d; d d -c;
-d d -c; -d -d -c; d -d -c];
F4 = [ ]; j = 1 : 4; for i = 1 : 6; F4 = [F4; 4*(i-1)+j]; end;
F4b = [1 4 8 5; 4 13 16 3; 3 17 20 2; 2 9 12 1; 12 5 6 11; 8 13 14 7; 16 17 18
15; 20 9 10 19; 6 7 24 21; 14 15 23 24; 18 23 22 19; 10 11 21 22];
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F3 = [1 12 5; 4 8 13; 3 16 17; 2 20 9; 6 11 21; 7 24 14; 15 23 18; 19 22 10];
hold on; axis equal; view(3)
patch(’Vertices’, V, ’Faces’, F4, ’FaceColor’, [0 1 1])
patch(’Vertices’, V, ’Faces’, F4b, ’FaceColor’, [0 .5 1])
patch(’Vertices’, V, ’Faces’, F3, ’FaceColor’, [0 .2 .5])

4) p3535

c = 1; p = c*(sqrt(5)-1)/2; v = p/2;
V = [c/2 c+v c/2+v; 0 c+p 0; c/2 c+v -c/2-v; c+v c/2+v -c/2; c+v c/2+v c/2; c/2+v
c/2 c+v; c/2+v -c/2 c+v; c+v -c/2-v c/2; c+p 0 0; c/2+v -c/2 -c-v; c/2 -c-v -c/2-v;
0 -c-p 0; c/2 -c-v c/2+v; -c/2 -c-v c/2+v; -c/2-v -c/2 c+v; 0 0 c+p; -c/2-v c/2 c+v;
-c/2 c+v c/2+v; -c-v c/2+v c/2; -c-v c/2+v -c/2; -c/2 c+v -c/2-v; -c/2-v c/2 -c-v; 0
0 -c-p; c/2+v c/2 -c-v; -c/2-v -c/2 -c-v; -c/2 -c-v -c/2-v; -c-v -c/2-v -c/2; -c-p 0 0;
-c-v -c/2-v c/2; c+v -c/2-v -c/2];
F3 = [1 2 18; 2 3 21; 1 6 5; 17 18 19; 7 6 16; 16 17 15; 7 13 8; 14 15 29; 4 24
3; 20 21 22; 14 12 13; 26 11 12; 5 9 4; 9 8 30; 19 20 28; 28 27 29; 23 24 10;
22 23 25; 25 26 27; 30 11 10];
F5 = [6 1 18 17 16; 7 16 15 14 13; 3 24 23 22 21; 23 10 11 26 25; 3 2 1 5 4; 2
21 20 19 18; 27 26 12 14 29; 12 11 30 8 13; 8 9 5 6 7; 4 9 30 10 24; 20 22 25
27 28; 19 28 29 15 17];
hold on; axis equal; view(3)
patch(’Vertices’, V, ’Faces’, F5, ’FaceColor’, [0 .5 1])
patch(’Vertices’, V, ’Faces’, F3, ’FaceColor’, [0 .2 .5])

5) p366

c = 1; d = c/3;
V = [d c -d; c d -d; d d -c; -d d c; -d c d; -c d d; c -d d; d -d c; d -c d; -d -d -c;
-c -d -d; -d -c -d];
F3 = [1 2 3; 4 5 6; 7 8 9; 10 11 12];
F6 = [2 7 8 4 5 1; 2 7 9 12 10 3; 8 9 12 11 6 4; 10 11 6 5 1 3];
hold on; axis equal; view(3)
patch(’Vertices’, V, ’Faces’, F6, ’FaceColor’, [0 .5 1])
patch(’Vertices’, V, ’Faces’, F3, ’FaceColor’, [0 .2 .5])

6) p388

c = 1; d = (2*c)/(2 + sqrt(2));
V = [c c c-d; c c d-c; -c c c-d; -c c d-c; c -c c-d; c -c d-c; -c -c c-d; -c -c d-c;
c c-d c; c d-c c; c c-d -c; c d-c -c; -c d-c -c; -c c-d -c; -c d-c c; -c c-d c;
c-d c -c; d-c c -c; c-d c c; d-c c c; c-d -c c; d-c -c c; c-d -c -c; d-c -c -c];
F3 = [17 2 11; 9 19 1; 12 23 6; 5 10 21; 8 13 24; 7 22 15; 4 14 18; 3 20 16];
F8 = [13 8 7 15 16 3 4 14; 23 6 5 21 22 7 8 24; 12 6 5 10 9 1 2 11;
17 2 1 19 20 3 4 18; 11 12 23 24 13 14 18 17; 10 9 19 20 16 15 22 21];
hold on; axis equal; view(3)
patch(’Vertices’, V, ’Faces’, F8, ’FaceColor’, [0 .5 1])
patch(’Vertices’, V, ’Faces’, F3, ’FaceColor’, [0 .2 .5])
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7) p3 10 10

c = 1; p = (sqrt(5)-1)*c/2; m = c*(sqrt(5)-1)/(2+2*sin(54*pi/180));
k = c*(sqrt(5)-1)-2*m; d = p*(c*(sqrt(5)-1)-m)/(c*(sqrt(5)-1));
t = m*p/(c*(sqrt(5)-1)); r = m*cos(72*pi/180);
a(1, :) = [c-k/2; c-r; c+t]; a(2, :) = [k/2; p+r; c+d]; a(3, :) = [0; p-m; c+p];
a(4, :) = [0; -p+m; c+p]; a(5, :) = [k/2; -p-r; c+d]; a(6, :) = [c-k/2; r-c; c+t];
a(7, :) = [c+t; -c+k/2; c-r]; a(8, :) = [c+d; -k/2; p+r]; a(9, :) = [c+d; k/2; p+r];
a(10, :) = [c+t; c-k/2; c-r]; a(11, :) = [c-r; c+t; c-k/2]; a(12, :) = [p+r; c+d; k/2];
a(13, :) = [p+r; c+d; -k/2]; a(14, :) = [c-r; c+t; -c+k/2]; a(15, :) = [c+t; c-k/2; r-c];
a(16, :) = [c+d; k/2; -p-r]; a(17, :) = [c+p; 0; -p+m]; a(18, :) = [c+p; 0; p-m];
a(19, :) = [c+d; -k/2; -p-r]; a(20, :) = [c+t; -c+k/2; r-c]; a(21, :) = [c-r; -c-t; -c+k/2];
a(22, :) = [p+r; -c-d; -k/2]; a(23, :) = [p+r; -c-d; k/2]; a(24, :) =[ c-r; -c-t; c-k/2];
a(25, :) = [p-m; -c-p; 0]; a(26, :) = [-p+m; -c-p; 0]; a(27, :) = [-p-r; -c-d; -k/2];
a(28,:) = [-c+r; -c-t; -c+k/2]; a(29,:) = [-c+k/2; r-c; -c-t]; a(30,:) = [-k/2; -p-r; -c-d];
a(31, :) = [k/2; -p-r; -c-d]; a(32, :) = [c-k/2; r-c; -c-t]; a(33, :) = [c-k/2; c-r; -c-t];
a(34, :) = [k/2; p+r; -c-d]; a(35, :) = [-k/2; p+r; -c-d]; a(36, :) = [-c+k/2; c-r; -c-t];
a(37, :) = [-c+r; c+t; -c+k/2]; a(38, :) = [-p-r; c+d; -k/2]; a(39, :) = [-p+m; c+p; 0];
a(40, :) = [p-m; c+p; 0]; a(41, :) = [0; p-m; -c-p]; a(42, :) = [0; -p+m; -c-p];
a(43, :) = [-p-r; c+d; k/2]; a(44, :) = [-c+r; c+t; c-k/2]; a(45, :) = [-c-t; c-k/2; c-r];
a(46, :) = [-c-d; k/2; p+r]; a(47, :) = [-c-d; -k/2; p+r]; a(48, :) = [-c-t; -c+k/2; c-r];
a(49, :) = [-c+k/2; r-c; c+t]; a(50, :) = [-k/2; -p-r; c+d]; a(51, :) = [-k/2; p+r; c+d];
a(52, :) = [-c-p; 0; p-m]; a(53, :) = [-c-p; 0; -p+m]; a(54, :) = [-c-d; -k/2; -p-r];
a(55, :) = [-c-t; -c+k/2; r-c]; a(56, :) = [-p-r; -c-d; k/2]; a(57, :) =[-c+r; -c-t; c-k/2];
a(58, :) = [-c+k/2; c-r; c+t]; a(59, :) = [-c-t; c-k/2; r-c]; a(60, :) = [-c-d; k/2; -p-r];
V = [ ]; for i = 1 : 60; V = [V; a(i, :)]; end;
F10 = [1 2 3 4 5 6 7 8 9 10; 3 4 50 49 48 47 46 45 58 51; 15 16 19 20 32 31
42 41 34 33; 41 42 30 29 55 54 60 59 36 35; 7 8 18 17 19 20 21 22 23 24; 9
18 17 16 15 14 13 12 11 10; 59 60 53 52 46 45 44 43 38 37; 53 54 55 28 27
56 57 48 47 52; 14 33 34 35 36 37 38 39 40 13; 11 12 40 39 43 44 58 51 2 1;
29 30 31 32 21 22 25 26 27 28; 25 23 24 6 5 50 49 57 56 26];
F3 = [1 10 11; 2 51 3; 58 44 45; 46 52 47; 48 57 49; 4 50 5; 6 24 7; 8 18 9; 12
13 40; 43 39 38; 27 26 56; 22 23 25; 19 16 17; 15 33 14; 34 41 35; 36 59 37;
60 54 53; 55 29 28; 31 30 42; 21 32 20];
hold on; axis equal; view(3)
patch(’Vertices’, V, ’Faces’, F3, ’FaceColor’, [0 1 1])
patch(’Vertices’, V, ’Faces’, F10, ’FaceColor’, [0 .5 1])

8) p466

c = 1; t = c/3; u = c-t;
V = [0 u t; -t u 0; 0 u -t; t u 0; u 0 t; u t 0; u 0 -t; u -t 0; 0 -u t; t -u 0; 0 -u -t; -t -u 0;
-u 0 t; -u -t 0; -u 0 -t; -u t 0; t 0 u; 0 t u; -t 0 u; 0 -t u; t 0 -u; 0 t -u; -t 0 -u; 0 -t -u];
F4 = [ ]; j = 1 : 4; for i = 1 : 6; F4 = [F4; 4*(i - 1) + j]; end;
F6 = [5 17 18 1 4 6; 10 9 20 17 5 8; 11 24 23 15 14 12; 23 15 16 2 3 22; 1 2
16 13 19 18; 9 20 19 13 14 12; 7 21 24 11 10 8; 6 7 21 22 3 4];
hold on; axis equal; view(3)
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patch(’Vertices’, V, ’Faces’, F4, ’FaceColor’, [0 1 1])
patch(’Vertices’, V, ’Faces’, F6, ’FaceColor’, [0 .5 1])

9) p566

c = 1; t = c/3; p = c*(sqrt(5)-1)/2; d = p/3; v = (c+2*p)/3; m = (2*c+p)/3;
V = [d 0 c; 2*d t m; v d c-t; v -d c-t; 2*d -t m; d 0 -c; 2*d t -m; v d t-c; v -d t-c;
2*d -t -m; -d 0 c; -2*d t m; -v d c-t; -v -d c-t; -2*d -t m; -d 0 -c; -2*d t -m; -v d t-c;
-v -d t-c; -2*d -t -m; -t m 2*d; -d c-t v; d c-t v; t m 2*d; 0 c d; -t m -2*d; -d c-t -v;
d c-t -v; t m -2*d; 0 c -d; -t -m 2*d; -d t-c v; d t-c v; t -m 2*d; 0 -c d; -t -m -2*d; -d
t-c -v; d t-c -v; t -m -2*d; 0 -c -d; c-t v d; m 2*d t; c d 0; m 2*d -t; c-t v -d; t-c v d;
-m 2*d t; -c d 0; -m 2*d -t; t-c v -d; c-t -v d; m -2*d t; c -d 0; m -2*d -t; c-t -v -d;
t-c -v d; -m -2*d t; -c -d 0; -m -2*d -t; t-c -v -d];
F5 = [ ]; j = 1 : 5; for i = 1 : 12; F5 = [F5; 5*(i-1)+j]; end;
F6 = [11 12 22 23 2 1; 5 33 32 15 11 1; 23 24 41 42 3 2; 42 43 53 52 4 3; 52
51 34 33 5 4; 51 55 39 40 35 34; 60 56 31 35 40 36; 56 57 14 15 32 31; 14 57
58 48 47 13; 12 13 47 46 21 22; 21 46 50 26 30 25; 24 25 30 29 45 41; 28 7 8
44 45 29; 44 8 9 54 53 43; 9 10 38 39 55 54; 10 6 16 20 37 38; 36 37 20 19
59 60; 58 59 19 18 49 48; 50 49 18 17 27 26; 28 27 17 16 6 7];
hold on; axis equal; view(3)
patch(’Vertices’, V, ’Faces’, F5, ’FaceColor’, [0 1 1]);
patch(’Vertices’, V, ’Faces’, F6, ’FaceColor’, [0 .5 1]);

10) p3454

c = 1; p = c*(sqrt(5)-1)/2;
a(1, :) = [c/3,c/3,c+2*p/3]; a(2, :) = [(p+c)/3,(2*c+p)/3,2*(c+p)/3];
a(3, :) = [0,c+p/3,(2*c+p)/3]; a(4, :) = [-(p+c)/3,(c*2+p)/3,(2*p+2*c)/3];
a(5, :) = [-c/3,c/3,c+2*p/3]; a(6, :) = [-(2*c+p)/3,0,c+p/3];
a(7, :) = [-(2*c+2*p)/3,(p+c)/3,(2*c+p)/3]; a(8, :) = [-c-2*p/3,c/3,c/3];
a(9, :) = [-c-2*p/3,-c/3,c/3]; a(10, :) = [-(2*c+2*p)/3,-(c+p)/3,(2*c+p)/3];
a(11, :) = [-(2*c+p)/3,(2*c+2*p)/3,(c+p)/3]; a(12, :) = [-c/3,c+2*p/3,c/3];
a(13, :) = [-c/3,c+2*p/3,-c/3]; a(14, :) = [-(2*c+p)/3,(2*c+2*p)/3,-(c+p)/3];
a(15, :) = [-c-p/3,(2*c+p)/3,0]; a(16, :) = [(2*c+p)/3,(2*c+2*p)/3,(c+p)/3];
a(17, :) = [ c+p/3,(2*c+p)/3,0]; a(18, :) = [(2*c+p)/3,(2*c+2*p)/3,-(c+p)/3];
a(19, :) = [c/3,c+2*p/3,-c/3]; a(20, :) = [c/3,c+2*p/3,c/3];
a(21, :) = [-(c+p)/3,(2*c+p)/3,-(2*c+2*p)/3]; a(22, :) = [0,c+p/3,-(2*c+p)/3];
a(23, :) = [(c+p)/3,(2*c+p)/3,-(2*c+2*p)/3]; a(24, :) = [c/3,c/3,-c-2*p/3];
a(25, :) = [-c/3,c/3,-c-2*p/3]; a(26, :) = [-(2*c+p)/3,0,-c-p/3];
a(27, :) = [-(2*c+2*p)/3,-(c+p)/3,-(2*c+p)/3]; a(28, :) = [-c-2*p/3,-c/3,-c/3];
a(29, :) = [-c-2*p/3,c/3,-c/3]; a(30, :) = [-(2*c+2*p)/3,(c+p)/3,-(2*c+p)/3];
a(31, :) = [-c/3,-c/3,c+2*p/3]; a(32, :) = [-(c+p)/3,-(2*c+p)/3,(2*c+2*p)/3];
a(33, :) = [0,-c-p/3,(2*c+p)/3]; a(34, :) = [(c+p)/3,-(2*c+p)/3,(2*c+2*p)/3];
a(35, :) = [c/3,-c/3,c+2*p/3]; a(36, :) = [(2*c+p)/3,0,c+p/3];
a(37, :) = [(2*c+2*p)/3,-(c+p)/3,(2*c+p)/3]; a(38, :) = [c+2*p/3,-c/3,c/3];
a(39, :) = [c+2*p/3,c/3,c/3]; a(40, :) = [(2*c+2*p)/3,(c+p)/3,(2*c+p)/3];
a(41, :) = [(2*c+p)/3,-(2*c+2*p)/3,(c+p)/3]; a(42, :) = [ c/3,-c-2*p/3,c/3];
a(43, :) = [c/3,-c-2*p/3,-c/3]; a(44, :) = [(2*c+p)/3,-(2*c+2*p)/3,-(c+p)/3];
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a(45, :) = [c+p/3,-(2*c+p)/3,0]; a(46, :) = [c+2*p/3,-c/3,-c/3];
a(47, :) = [(2*c+2*p)/3,-(c+p)/3,-(2*c+p)/3]; a(48, :) = [(2*c+p)/3,0,-c-p/3];
a(49, :) = [(2*c+2*p)/3,(c+p)/3,-(2*c+p)/3]; a(50, :) = [c+2*p/3,c/3,-c/3];
a(51, :) = [-(c+p)/3,-(2*c+p)/3,-(2*c+2*p)/3]; a(52, :) = [-c/3,-c/3,-c-2*p/3];
a(53, :) = [c/3,-c/3,-c-2*p/3]; a(54, :) = [(c+p)/3,-(2*c+p)/3,-(2*c+2*p)/3];
a(55, :) = [0,-c-p/3,-(2*c+p)/3]; a(56, :) = [-c/3,-c-2*p/3,-c/3];
a(57, :) = [-c/3,-c-2*p/3,c/3]; a(58, :) = [-(2*c+p)/3,-(2*c+2*p)/3,(c+p)/3];
a(59, :) = [-c-p/3,-(2*c+p)/3,0]; a(60, :) = [-(2*c+p)/3,-(2*c+2*p)/3,-(p+c)/3];
V = [ ]; for i = 1 : 60; V = [V; a(i, :)]; end;
F3 = [4 11 7; 3 20 12; 19 22 13; 14 21 30; 8 15 29; 34 41 37; 33 57 42; 38 45
46; 44 54 47; 43 56 55; 1 35 36; 16 2 40; 50 17 39; 49 23 18; 24 48 53; 52 26
25; 51 60 27; 59 9 28; 31 5 6; 58 32 10; 30 11 10];
F4 = [2 16 20 3; 3 12 11 4; 4 7 6 5; 7 11 15 8; 15 14 30 29; 14 13 22 21; 13 12
20 19; 19 18 23 22; 21 25 26 30; 29 28 9 8; 35 34 37 36; 34 33 42 41; 33 32
58 57; 57 56 43 42; 43 55 54 44; 44 47 46 45; 45 38 37 41; 38 46 50 39; 47 54
53 48; 55 56 60 51; 1 36 40 2; 16 40 39 17; 17 50 49 18; 23 49 48 24; 24 53
52 25; 26 52 51 27; 27 60 59 28; 9 59 58 10; 10 32 31 6; 5 31 35 1];
F5 = [1 2 3 4 5; 6 7 8 9 10; 11 12 13 14 15; 16 17 18 19 20; 21 22 23 24 25;
26 27 28 29 30; 31 32 33 34 35; 36 37 38 39 40; 41 42 43 44 45; 46 47 48 49
50; 51 52 53 54 55; 56 57 58 59 60];
hold on; axis equal; view(3); grid
patch(’Vertices’, V, ’Faces’, F3, ’FaceColor’, [0 1 1])
patch(’Vertices’, V, ’Faces’, F4, ’FaceColor’, [0 .2 1])
patch(’Vertices’, V, ’Faces’, F5, ’FaceColor’, [0 1 .3])

11) p468

c = 1; d = 2*c*(3*sqrt(2)+2)/7; m = d*(3*sqrt(2)-4)/4;
l = m+d*(2-sqrt(2))/4; t = d*(2-sqrt(2))/4;
V = [c-l -t c; t -c+l c; -t -c+l c; -c+l -t c; -c+l t c; -t c-l c; t c-l c; c-l t c; c t c-l; c -t
c-l; c -c+l t; c -c+l -t; c -t -c+l; c t -c+l; c c-l -t; c c-l t; c-l c t; c-l c -t; t c -c+l; -t c
-c+l; -t c-l -c; t c-l -c; c-l t -c; -c+l t -c; -c+l c -t; -c c-l -t; -c t -c+l; -c -t -c+l; -c+l -t
-c; -t c c-l; t c c-l; -c+l c t; -c c-l t; -c t c-l; -c -t c-l; -c -c+l t; -c+l -c t; -c+l -c -t; -c
-c+l -t; -t -c -c+l; -t -c+l -c; t -c+l -c; t -c -c+l; c-l -c -t; c-l -t -c; t -c c-l; -t -c c-l; c-l
-c t];
F8 = [1 2 3 4 5 6 7 8; 17 18 19 20 25 32 30 31; 22 23 45 42 41 29 24 21; 37
38 40 43 44 48 46 47; 9 10 11 12 13 14 15 16; 26 27 28 39 36 35 34 33];
F6 = [5 6 30 32 33 34; 3 4 35 36 37 47; 1 2 46 48 11 10; 7 8 9 16 17 31; 20 25
26 27 24 21; 28 39 38 40 41 29; 14 23 22 19 18 15; 12 13 45 42 43 44];
F4 = [6 7 31 30; 1 10 9 8; 2 3 47 46; 4 5 34 35; 32 25 26 33; 36 37 38 39; 11
12 44 48; 15 16 17 18; 19 20 21 22; 27 24 29 28; 40 41 42 43; 13 14 23 45];
hold on; axis equal; view(3)
patch(’Vertices’, V, ’Faces’, F4, ’FaceColor’, [0 1 1])
patch(’Vertices’, V, ’Faces’, F6, ’FaceColor’, [0 .2 1])
patch(’Vertices’, V, ’Faces’, F8, ’FaceColor’, [0 .5 .5])

12) p4610
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c = 1; p = (sqrt(5)-1)*c/2; m = c*(sqrt(5)-1)/(2+2*sin(54*pi/180));
k = c*(sqrt(5)-1)-2*m; d = (2*p-m)/2; t = m/2; r = m*cos(72*pi/180);
tau = (sqrt(5)-1)/2; l = tau/(sqrt(3+tau)*(1+tau)+2*tau);
a(1, :) = [c-k/2; c-r+2*l*(r-c); c+t];
a(2, :) = [k/2+l*(c+t-k/2); p+r+l*(k/2-c-p-r); c+d-l*(r+d)];
a(3, :) = [l*(c+d); p-m+l*(m-p-k/2); c+p+l*(r-c)];
a(4, :) = [l*(c+d); -p+m-l*(m-p-k/2); c+p+l*(r-c)];
a(5, :) = [k/2+l*(c+t-k/2); -p-r-l*(k/2-c-p-r); c+d-l*(r+d)];
a(6, :) = [c-k/2; -c+r-2*l*(r-c); c+t];
a(7, :) = [c+t+l*(k/2-c-t); k/2-c+l*(p+r-k/2+c); c-r+l*(d+r)];
a(8, :) = [c+d-l*(c+d); -k/2+l*(p-m+k/2); p+r+l*(c-r)];
a(9, :) = [c+d-l*(c+d); k/2-l*(p-m+k/2); p+r+l*(c-r)];
a(10, :) = [c+t+l*(k/2-c-t); -k/2+c-l*(p+r-k/2+c); c-r+l*(d+r)];
a(11, :) = [c-r+l*(d+r); c+t+l*(k/2-c-t); -k/2+c-l*(p+r-k/2+c)];
a(12, :) = [c+t; c-k/2; c-r+2*l*(r-c)];
a(13, :) = [c+d-l*(r+d); k/2+l*(c+t-k/2); p+r+l*(k/2-c-p-r)];
a(14, :) = [c+p+l*(r-c); l*(c+d); p-m+l*(m-p-k/2)];
a(15, :) = [c+p+l*(r-c); l*(c+d); -p+m-l*(m-p-k/2)];
a(16, :) = [c+d-l*(r+d); k/2+l*(c+t-k/2); -p-r-l*(k/2-c-p-r)];
a(17, :) = [c+t; c-k/2; -c+r-2*l*(r-c)];
a(18, :) = [c-r+l*(d+r); c+t+l*(k/2-c-t); k/2-c+l*(p+r-k/2+c)];
a(19, :) = [p+r+l*(c-r); c+d-l*(c+d); -k/2+l*(p-m+k/2)];
a(20, :) = [p+r+l*(c-r); c+d-l*(c+d); k/2-l*(p-m+k/2)];
a(21, :) = [p+r+l*(k/2-c-p-r); c+d-l*(r+d); k/2+l*(c+t-k/2)];
a(22, :) = [p-m+l*(m-p-k/2); c+p+l*(r-c); l*(c+d)];
a(23, :) = [-p+m-l*(m-p-k/2); c+p+l*(r-c); l*(c+d)];
a(24, :) = [-p-r-l*(k/2-c-p-r); c+d-l*(r+d); k/2+l*(c+t-k/2)];
a(25, :) = [-c+r-2*l*(r-c); c+t; c-k/2];
a(26, :) = [k/2-c+l*(p+r-k/2+c); c-r+l*(d+r); c+t+l*(k/2-c-t)];
a(27, :) = [-k/2+l*(p-m+k/2); p+r+l*(c-r); c+d-l*(c+d)];
a(28, :) = [k/2-l*(p-m+k/2); p+r+l*(c-r); c+d-l*(c+d)];
a(29, :) = [-k/2+c-l*(p+r-k/2+c); c-r+l*(d+r); c+t+l*(k/2-c-t)];
a(30, :) = [c-r+2*l*(r-c); c+t; c-k/2];
a(31, :) = [-k/2+l*(p-m+k/2); p+r+l*(c-r); -c-d+l*(c+d)];
a(32, :) = [k/2-c+l*(p+r-k/2+c); c-r+l*(d+r); -c-t-l*(k/2-c-t)];
a(33, :) = [-c+r-2*l*(r-c); c+t; -c+k/2];
a(34, :) = [-p-r-l*(k/2-c-p-r); c+d-l*(r+d); -k/2-l*(c+t-k/2)];
a(35, :) = [-p+m-l*(m-p-k/2); c+p+l*(r-c); -l*(c+d)];
a(36, :) = [p-m+l*(m-p-k/2); c+p+l*(r-c); -l*(c+d)];
a(37, :) = [p+r+l*(k/2-c-p-r); c+d-l*(r+d); -k/2-l*(c+t-k/2)];
a(38, :) = [c-r+2*l*(r-c); c+t; -c+k/2];
a(39, :) = [-k/2+c-l*(p+r-k/2+c); c-r+l*(d+r); -c-t-l*(k/2-c-t)];
a(40, :) = [k/2-l*(p-m+k/2); p+r+l*(c-r); -c-d+l*(c+d)];
a(41, :) = [l*(c+d); p-m+l*(m-p-k/2); -c-p-l*(r-c)];
a(42, :) = [k/2+l*(c+t-k/2); p+r+l*(k/2-c-p-r); -c-d+l*(r+d)];
a(43, :) = [c-k/2; c-r+2*l*(r-c); -c-t];
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a(44, :) = [c+t+l*(k/2-c-t); -k/2+c-l*(p+r-k/2+c); -c+r-l*(d+r)];
a(45, :) = [c+d-l*(c+d); k/2-l*(p-m+k/2); -p-r-l*(c-r)];
a(46, :) = [c+d-l*(c+d); -k/2+l*(p-m+k/2); -p-r-l*(c-r)];
a(47, :) = [c+t+l*(k/2-c-t); k/2-c+l*(p+r-k/2+c); -c+r-l*(d+r)];
a(48, :) = [c-k/2; -c+r-2*l*(r-c); -c-t];
a(49, :) = [k/2+l*(c+t-k/2); -p-r-l*(k/2-c-p-r); -c-d+l*(r+d)];
a(50, :) = [l*(c+d); -p+m-l*(m-p-k/2); -c-p-l*(r-c)];
a(51, :) = [c-r+l*(d+r); -c-t-l*(k/2-c-t); k/2-c+l*(p+r-k/2+c)];
a(52, :) = [c+t; -c+k/2; -c+r-2*l*(r-c)];
a(53, :) = [c+d-l*(r+d); -k/2-l*(c+t-k/2); -p-r-l*(k/2-c-p-r)];
a(54, :) = [c+p+l*(r-c); -l*(c+d); -p+m-l*(m-p-k/2)];
a(55, :) = [c+p+l*(r-c); -l*(c+d); p-m+l*(m-p-k/2)];
a(56, :) = [c+d-l*(r+d); -k/2-l*(c+t-k/2); p+r+l*(k/2-c-p-r)];
a(57, :) = [c+t; -c+k/2; c-r+2*l*(r-c)];
a(58, :) = [c-r+l*(d+r); -c-t-l*(k/2-c-t); -k/2+c-l*(p+r-k/2+c)];
a(59, :) = [p+r+l*(c-r); -c-d+l*(c+d); k/2-l*(p-m+k/2)];
a(60, :) = [p+r+l*(c-r); -c-d+l*(c+d); -k/2+l*(p-m+k/2)];
a(61, :) = [-p+m-l*(m-p-k/2); -c-p-l*(r-c); -l*(c+d)];
a(62, :) = [-p-r-l*(k/2-c-p-r); -c-d+l*(r+d); -k/2-l*(c+t-k/2)];
a(63, :) = [-c+r-2*l*(r-c); -c-t; -c+k/2];
a(64, :) = [k/2-c+l*(p+r-k/2+c); -c+r-l*(d+r); -c-t-l*(k/2-c-t)];
a(65, :) = [-k/2+l*(p-m+k/2); -p-r-l*(c-r) ; -c-d+l*(c+d)];
a(66, :) = [k/2-l*(p-m+k/2); -p-r-l*(c-r); -c-d+l*(c+d)];
a(67, :) = [-k/2+c-l*(p+r-k/2+c); -c+r-l*(d+r); -c-t-l*(k/2-c-t)];
a(68, :) = [c-r+2*l*(r-c); -c-t; -c+k/2];
a(69, :) = [p+r+l*(k/2-c-p-r); -c-d+l*(r+d); -k/2-l*(c+t-k/2)];
a(70, :) = [p-m+l*(m-p-k/2); -c-p-l*(r-c); -l*(c+d)];
a(71, :) = [p-m+l*(m-p-k/2); -c-p-l*(r-c); l*(c+d)];
a(72, :) = [p+r+l*(k/2-c-p-r); -c-d+l*(r+d); k/2+l*(c+t-k/2)];
a(73, :) = [c-r+2*l*(r-c); -c-t; c-k/2];
a(74, :) = [-k/2+c-l*(p+r-k/2+c); -c+r-l*(d+r); c+t+l*(k/2-c-t)];
a(75, :) = [k/2-l*(p-m+k/2); -p-r-l*(c-r); c+d-l*(c+d)];
a(76, :) = [-k/2+l*(p-m+k/2); -p-r-l*(c-r); c+d-l*(c+d)];
a(77, :) = [k/2-c+l*(p+r-k/2+c); -c+r-l*(d+r); c+t+l*(k/2-c-t)];
a(78, :) = [-c+r-2*l*(r-c); -c-t; c-k/2];
a(79, :) = [-p-r-l*(k/2-c-p-r); -c-d+l*(r+d); k/2+l*(c+t-k/2)];
a(80, :) = [-p+m-l*(m-p-k/2); -c-p-l*(r-c); l*(c+d)];
a(81, :) = [-c+r-l*(d+r); -c-t-l*(k/2-c-t); k/2-c+l*(p+r-k/2+c)];
a(82, :) = [-p-r-l*(c-r); -c-d+l*(c+d); -k/2+l*(p-m+k/2)];
a(83, :) = [-p-r-l*(c-r); -c-d+l*(c+d); k/2-l*(p-m+k/2)];
a(84, :) = [-c+r-l*(d+r); -c-t-l*(k/2-c-t); -k/2+c-l*(p+r-k/2+c)];
a(85, :) = [-c-t; -c+k/2; c-r+2*l*(r-c)];
a(86, :) = [-c-d+l*(r+d); -k/2-l*(c+t-k/2); p+r+l*(k/2-c-p-r)];
a(87, :) = [-c-p-l*(r-c); -l*(c+d); p-m+l*(m-p-k/2)];
a(88, :) = [-c-p-l*(r-c); -l*(c+d); -p+m-l*(m-p-k/2)];
a(89, :) = [-c-d+l*(r+d); -k/2-l*(c+t-k/2); -p-r-l*(k/2-c-p-r)];
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a(90, :) = [-c-t; -c+k/2; -c+r-2*l*(r-c)];
a(91, :) = [-c-t-l*(k/2-c-t); k/2-c+l*(p+r-k/2+c); -c+r-l*(d+r)];
a(92, :) = [-c-d+l*(c+d); -k/2+l*(p-m+k/2); -p-r-l*(c-r)];
a(93, :) = [-c-d+l*(c+d); k/2-l*(p-m+k/2); -p-r-l*(c-r)];
a(94, :) = [-c-t-l*(k/2-c-t); -k/2+c-l*(p+r-k/2+c); -c+r-l*(d+r)];
a(95, :) = [-c+k/2; c-r+2*l*(r-c); -c-t];
a(96, :) = [-k/2-l*(c+t-k/2); p+r+l*(k/2-c-p-r); -c-d+l*(r+d)];
a(97, :) = [-l*(c+d); p-m+l*(m-p-k/2); -c-p-l*(r-c)];
a(98, :) = [-l*(c+d); -p+m-l*(m-p-k/2); -c-p-l*(r-c)];
a(99, :) = [-k/2-l*(c+t-k/2); -p-r-l*(k/2-c-p-r); -c-d+l*(r+d)];
a(100, :) = [-c+k/2; -c+r-2*l*(r-c); -c-t];
a(101, :) = [-c-t; c-k/2; c-r+2*l*(r-c)];
a(102, :) = [-c+r-l*(d+r); c+t+l*(k/2-c-t); -k/2+c-l*(p+r-k/2+c)];
a(103, :) = [-p-r-l*(c-r); c+d-l*(c+d); k/2-l*(p-m+k/2)];
a(104, :) = [-p-r-l*(c-r); c+d-l*(c+d); -k/2+l*(p-m+k/2)];
a(105, :) = [-c+r-l*(d+r); c+t+l*(k/2-c-t); k/2-c+l*(p+r-k/2+c)];
a(106, :) = [-c-t; c-k/2; -c+r-2*l*(r-c)];
a(107, :) = [-c-d+l*(r+d); k/2+l*(c+t-k/2); -p-r-l*(k/2-c-p-r)];
a(108, :) = [-c-p-l*(r-c); l*(c+d); -p+m-l*(m-p-k/2)];
a(109, :) = [-c-p-l*(r-c); l*(c+d); p-m+l*(m-p-k/2)];
a(110, :) = [-c-d+l*(r+d); k/2+l*(c+t-k/2); p+r+l*(k/2-c-p-r)];
a(111, :) = [-c-d+l*(c+d); k/2-l*(p-m+k/2); p+r+l*(c-r)];
a(112, :) = [-c-d+l*(c+d); -k/2+l*(p-m+k/2); p+r+l*(c-r)];
a(113, :) = [-c-t-l*(k/2-c-t); k/2-c+l*(p+r-k/2+c); c-r+l*(d+r)];
a(114, :) = [-c+k/2; -c+r-2*l*(r-c); c+t];
a(115, :) = [-k/2-l*(c+t-k/2); -p-r-l*(k/2-c-p-r); c+d-l*(r+d)];
a(116, :) = [-l*(c+d); -p+m-l*(m-p-k/2); c+p+l*(r-c)];
a(117, :) = [-l*(c+d); p-m+l*(m-p-k/2); c+p+l*(r-c)];
a(118, :) = [-k/2-l*(c+t-k/2); p+r+l*(k/2-c-p-r); c+d-l*(r+d)];
a(119, :) = [-c+k/2; c-r+2*l*(r-c); c+t];
a(120, :) = [-c-t-l*(k/2-c-t); -k/2+c-l*(p+r-k/2+c); c-r+l*(d+r)];
V = [ ]; for i = 1 : 120; V = [V; a(i, :)]; end;
F10 = [ ]; j = 1 : 10; for i = 1 : 12; F10 = [F10; 10*(i-1)+j]; end;

F4 = [1 29 28 2; 3 117 116 4; 5 75 74 6; 7 57 56 8; 9 13 12 10; 14 55 54 15; 16
45 44 17; 18 38 37 19; 11 20 21 30; 22 36 35 23; 24 103 102 25; 26 119 118
27; 58 73 72 59; 51 60 69 68; 52 47 46 53; 48 67 66 49; 41 50 98 97; 42 40 39
43; 31 96 95 32; 33 105 104 34; 61 70 71 80; 62 82 81 63; 64 100 99 65; 76
115 114 77; 78 84 83 79; 85 113 112 86; 87 109 108 88; 90 89 92 91; 93 107
106 94; 101 110 111 120];
F6 = [1 10 12 11 30 29; 8 56 55 14 13 9; 6 74 73 58 57 7; 4 116 115 76 75 5;
2 28 27 118 117 3; 15 54 53 46 45 16; 17 44 43 39 38 18; 19 37 36 22 21 20;
23 35 34 104 103 24; 25 102 101 120 119 26; 32 95 94 106 105 33; 31 40 42
41 97 96; 47 52 51 68 67 48; 49 66 65 99 98 50; 59 72 71 70 69 60; 61 80 79
83 82 62; 63 81 90 91 100 64; 77 114 113 85 84 78; 86 112 111 110 109 87;
88 108 107 93 92 89];
hold on; axis equal; view(3)
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patch(’Vertices’, V, ’Faces’, F4, ’FaceColor’, [0 1 1])
patch(’Vertices’, V, ’Faces’, F6, ’FaceColor’, [0 .2 1])
patch(’Vertices’, V, ’Faces’, F10, ’FaceColor’, [0 .5 .5])

13) p3444 2 (Ashkinuze)

c = 1; d = c*sqrt(2)/(2+sqrt(2));
a(1, :) = [d; d; c]; a(2, :) = [-d; d; c]; a(3, :) = [-d; -d; c]; a(4, :) = [d; -d; c];
a(5, :) = [c; d; d]; a(6, :) = [c; d; -d]; a(7, :) = [c; -d; -d]; a(8, :) = [c; -d; d];
a(9, :) = [-d; c; d]; a(10, :) = [-d; c; -d]; a(11, :) = [d; c; -d]; a(12, :) = [d; c; d];
a(13, :) = [d; -c; d]; a(14, :) = [d; -c; -d]; a(15, :) = [-d; -c; -d]; a(16, :) = [-d; -c; d];
a(17, :) = [-c; -d; d]; a(18, :) = [-c; -d; -d]; a(19, :) = [-c; d; -d]; a(20, :) = [-c; d; d];
a(21, :) = [d*sqrt(2); 0; -c]; a(22, :) = [0; d*sqrt(2); -c];
a(23, :) = [-d*sqrt(2); 0; -c]; a(24, :) = [0; -d*sqrt(2); -c];
V = [ ]; for i = 1 : 24; V = [V; a(i)]; end;
F4 = [ ]; j = 1 : 4; for i = 1 : 6; F4 = [F4; 4*(i-1)+j]; end;
F4b = [1 4 8 5; 4 13 16 3; 3 17 20 2; 2 9 12 1; 12 5 6 11; 8 13 14 7; 16 17 18
15; 20 9 10 19; 11 22 21 6; 7 21 24 14; 15 24 23 18; 10 19 23 22];
F3 = [1 12 5; 4 8 13; 3 16 17; 2 20 9; 6 21 7; 14 24 15; 18 23 19; 10 22 11];
hold on; axis equal; view(3)
patch(’Vertices’, V, ’Faces’, F4, ’FaceColor’, [0 1 1])
patch(’Vertices’, V, ’Faces’, F4b, ’FaceColor’, [0 .2 1])
patch(’Vertices’, V, ’Faces’, F3, ’FaceColor’, [0 .5 .5])
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function f = segment(A, B) % M-file segment.m
hold on;
if A(1) == B(1)
f = plot([A(1), B(1)], [A(2), B(2)], ’LineWidth’,2);
plot([A(1), B(1)], [0, 2*max(A(2), B(2))], ’r:’);
else syms x t;

%% x0 = solve((B(1)-x)ˆ2 + B(2)ˆ2 - (A(1)-x)ˆ2 - A(2)ˆ2);
x0 = (B(1)ˆ2 + B(2)ˆ2 - A(1)ˆ2 - A(1)ˆ2)/(B(1) - A(1))/2;
R = sqrt((B(1) - x0)ˆ2 + B(2)ˆ2);
t1 = acos((B(1) - x0)/R); t2 = acos((A(1) - x0)/R);
X = x0 + R*cos(t); Y = R*sin(t);
t = linspace(t1, t2, 101);
f = plot(x0 + R*cos(t), R*sin(t), ’LineWidth’,3);
tt = linspace(0,pi,101); plot(x0 + R*cos(tt), R*sin(tt), ’r:’);

end

function f = distance(A, B) % M-file distance.m
if A(1) == B(1)
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f = abs(log(B(2)/A(2)))
else syms x;
x0 = solve((B(1) - x)ˆ2 + B(2)ˆ2 - (A(1) - x)ˆ2 - A(2)ˆ2);
R = sqrt((B(1) - x0)ˆ2 + B(2)ˆ2);
t1 = acos((B(1) - x0)/R); t2 = acos((A(1) - x0)/R);
f = abs(log( tan(t2/2)/tan(t1/2) ));
end

end

function f = triangle(A, B, C) % M-file triangle.m
hold on; axis equal; title(’Triangle’);
segment(A, B); segment(B, C); segment(A, C);
text(A(1), A(2), ’A’); text(B(1), B(2), ’B’); text(C(1), C(2), ’C’);

end

function f = perimeter(A, B, C) % M-file perimeter.m
distance(A, B) + distance(C, B) + distance(A, C);

end

function f = angle(B, A, C) % M-file angle.m
a = distance(C, B); b = distance(A, C); c = distance(A, B);
f = acos((cosh(c)*cosh(b) - cosh(a))/(sinh(c)*sinh(b)))

end

function f = sum angles(A, B, C) % M-file sum of angles.m
f = angle(A, B, C) + angle(C, A, B) + angle(B, C, A);

end

function f = lambert(a1, a2) % M-file lambert.m
if abs(sinh(a1)*sinh(a2)) >= 1; disp ( ’No solutions’)
else
hold on; title(’Quadrangle of Lambert’); axis equal;
A = [0, 1]; B = [0, exp(a2)];
t1 = 2*atan(exp(-a1)); C = [cos(t1), sin(t1)];
R1 = tan(t1); x1 = 1/cos(t1);
F(1) = (exp(2*a2) - R1ˆ2 + x1ˆ2)/(2*x1); F(2) = sqrt(exp(2*a2) - F(1)ˆ2);
phi = angle(B, [F(1), F(2)], C);
f = segment(A, B); segment(A, C); segment(B, F); segment(C, F);
text(A(1), A(2), ’A’); text(B(1), B(2), ’B’);
text(C(1), C(2), ’C’); text(F(1), F(2), ’F’);
end

end

function f = deduce angle( ) % M-file deduce angle.m
T = pi/6; f = segment([0, 1], [cos(T), sin(T)]); axis equal;
segment([cos(T), sin(T)], [cos(T), sin(T) + 1]); segment([0, 0], [0, 2]);
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plot([0, cos(T)], [0, sin(T)], ’r:’); title(’The angle of parallelism (proof)’);
text(cos(T) - .1, sin(T) + .3, ’t’); text(0.4, .1, ’t’); text(.3, 1.1, ’d’);

end

function f = parallel(A, P, Q) % M-file parallel.m
if P(1) == Q(1)
B1 = [P(1), 0]; B2 = [A(1), A(2) + 1];
else syms x;
x1 = eval(solve((P(1) - x)ˆ2+P(2)ˆ2 - (Q(1) - x)ˆ2-Q(2)ˆ2));
R1 = sqrt((P(1) - x1)ˆ2 + P(2)ˆ2);
B1 = [x1 - R1, 0]; B2 = [x1 + R1, 0];
phi = angle(B1, A, B2)/2
f = segment(A, B1); segment(A, B2); segment(P, Q);
title(’The angle of parallelism’);
text(A(1), A(2)+.2, ’A’); text(P(1)-.2, P(2), ’P’); text(Q(1), Q(2)+.2, ’Q’);
end;

end

function f = perpendicular(A, P, Q) % M-file perpendicular.m
if P(1) == Q(1);
B = [P(1), sqrt((A(1) - P(1))ˆ2 + A(2)ˆ2)];
else syms x X xx;
x1 = eval(solve((P(1) - x)ˆ2 + P(2)ˆ2 - (Q(1) - x)ˆ2 - Q(2)ˆ2));
R1 = sqrt((P(1) - x1)ˆ2 + P(2)ˆ2);
if x1 == A(1);
B = [x1, R1];
else
x2 = eval(solve((A(1) - X)ˆ2 + A(2)ˆ2 - (X - x1)ˆ2 + R1ˆ2));
R2 = sqrt((A(1) - x2)ˆ2 + A(2)ˆ2);
B(1) = eval(solve(R1ˆ2 - (x1 - xx)ˆ2 - R2ˆ2 + (x2 - xx)ˆ2));
B(2) = sqrt(R1ˆ2 - (x1 - B(1))ˆ2); B = [B(1), B(2)];
end;
end;
d = distance(A, B), title(’The distance from a point to a line’);
hold on; f = segment(P, Q); segment(A, B);
text(A(1), A(2), ’A’); text(B(1), B(2), ’B’);
text(P(1), P(2), ’P’); text(Q(1), Q(2), ’Q’);

end

function f = biorthogonal(A, B, C, D) % M-file biorthogonal.m
syms x xx;
if A(1) ˜ = B(1)
x1 = eval(solve((A(1)-x)ˆ2 + A(2)ˆ2 - (B(1)-x)ˆ2 - B(2)ˆ2));
R1 = sqrt((A(1) - x1)ˆ2 + A(2)ˆ2);
end;
if C(1) ˜ = D(1)
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x2 = eval(solve((C(1)-x)ˆ2 + C(2)ˆ2 - (D(1)-x)ˆ2 - D(2)ˆ2));
R2 = sqrt((C(1) - x2)ˆ2 + C(2)ˆ2);
end;
if A(1) == B(1)
x3 = A(1); R3 = sqrt((x3 - x2)ˆ2 - R2ˆ2);
K(1) = x3; K(2) = R3;
H(1) = -(- x2ˆ2 + x3ˆ2 - R3ˆ2 + R2ˆ2)/(x2 - x3)/2;
H(2) = sqrt(R3ˆ2 - (H(1) - x3)ˆ2);
elseif C(1) == D(1);
x3 = C(1); R3 = sqrt((x3 - x1)ˆ2 - R1ˆ2);
H(1) = x3; H(2) = R3;
K(1) = -(- x1ˆ2 + x3ˆ2 - R3ˆ2 + R1ˆ2)/(x1 - x3)/2;
K(2) = sqrt(R3ˆ2 - (K(1) - x3)ˆ2)
else if R1 == R2
x3 = (x1 + x2)/2;
else x0 = eval(solve((x1 - xx)/R1 - (x2 - xx)/R2));
xE = x1 - R1ˆ2/(x1 - x0); xF = x2 - R2ˆ2/(x2 - x0);
x3 = (xE + xF)/2;
end;
R3 = sqrt((x3 - x1)ˆ2 - R1ˆ2);
K(1) = -(- x1ˆ2 + x3ˆ2 - R3ˆ2 + R1ˆ2)/(x1 - x3)/2;
H(1) = -(- x2ˆ2 + x3ˆ2 - R3ˆ2 + R2ˆ2)/(x2 - x3)/2;
K(2) = sqrt(R3ˆ2 - (K(1) - x3)ˆ2);
H(2) = sqrt(R3ˆ2 - (H(1) - x3)ˆ2);
end;
H = [H(1), H(2)]; K = [K(1), K(2)];
d = distance(H, K)
f = segment(A, B); segment(C, D); segment(H, K);
title(’The distance between two super-parallel lines’)
text(A(1), A(2), ’A’); text(B(1), B(2), ’B’); text(C(1), C(2), ’C’);
text(D(1), D(2), ’D’); text(H(1), H(2), ’H’); text(K(1), K(2), ’K’);

end

function f = transversal(A, B, P, Q, theta) % M-file transversal.m
tt = cos(theta); syms x xx x33 R33;
if A(1) ˜ = B(1)
x1 = solve((A(1) - x)ˆ2 + A(2ˆ2 - (B(1) - x)ˆ2 - B(2)ˆ2));
R1 = sqrt((A(1) - x1)ˆ2 + A(2)ˆ2);
end;
if P(1) ˜ = Q(1)
x2 = solve((P(1) - x)ˆ2 + P(2)ˆ2 - (Q(1) - x)ˆ2 - Q(2)ˆ2);
R2 = sqrt((P(1) - x2)ˆ2 + P(2)ˆ2);
end;
for ii = 1 : 2; for jj = 1 : 2
if A(1) == B(1)
[RR3 xx3] = solve((A(1) - x33) / R33 - (-1)ˆii*tt,
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(R2ˆ2 + R33ˆ2 - (x2 - x33)ˆ2)/(2*R2*R33) - (-1)ˆjj*tt, x33, R33);
if eval(RR3(1)) < 0
R3 = eval(RR3(2)); x3 = eval(xx3(2));
else R3 = eval(RR3(1)); x3 = eval(xx3(1));
end
H1 = A(1); H2 = sqrt(R3ˆ2 - (H1 - x3)ˆ2);
K1 = solve(R3ˆ2 - (x3 - x)ˆ2 - R2ˆ2 + (x2 - x)ˆ2);
K2 = sqrt(R2ˆ2 - (x2 - K1)ˆ2);
elseif P(1) == Q(1)
[RR3 xx3] = solve((P(1) - x33)/R33 - (-1)ˆii*tt,
(R1ˆ2 + R33ˆ2 - (x1 - x33)ˆ2)/(2*R1*R33) - (-1)ˆjj*tt, x33, R33);
if eval(RR3(1)) < 0
R3 = eval(RR3(2)); x3 = eval(xx3(2));
else R3 = eval(RR3(1)); x3 = eval(xx3(1));
end
K1 = P(1); K2 = sqrt(R3ˆ2 - (K1 - x3)ˆ2);
H1 = eval(solve(R3ˆ2 - (x3 - x)ˆ2 - R1ˆ2 + (x1 - x)ˆ2));
H2 = eval(sqrt(R1ˆ2 - (x1 - H1)ˆ2));
else
[RR3 xx3] = solve((R1ˆ2 + R33ˆ2 - (x1 - x33)ˆ2)/(2*R1*R33) - (-1)ˆii*tt,
(R2ˆ2 + R33ˆ2-(x2 - x33)ˆ2)/(2*R2*R33) - (-1)ˆjj*tt, x33, R33);
if eval(RR3(1)) < 0
R3 = eval(RR3(2)); x3 = eval(xx3(2));
else
R3 = eval(RR3(1)); x3 = eval(xx3(1));
end
H1 = eval(solve(R3ˆ2 - (x3 - x)ˆ2 - R1ˆ2 + (x1 - x)ˆ2));
H2 = eval(sqrt(R1ˆ2 - (x1 - H1)ˆ2));
K1 = eval(solve(R3ˆ2 - (x3 - xx)ˆ2 - R2ˆ2 + (x2 - xx)ˆ2, xx));
K2 = eval(sqrt(R2ˆ2 - (x2 - K1)ˆ2));
end;
K(:, :, ii + 2*(jj - 1)) = [K1, K2]; H(:, :, ii + 2*(jj - 1)) = [H1, H2];
d(ii + 2*(jj - 1)) = distance(H(:, :, ii + 2*(jj - 1)), K(:, :, ii + 2*(jj - 1)));
end; end
disp(’The four distances are’); d
f = segment(A, B); segment(P, Q);
for ii = 1 : 4; segment(H(:, :, ii), K(:, :, ii)); end
title(’The four transversal between two lines’);
text(A(1), A(2), ’A’); text(B(1), B(2), ’B’);
text(P(1), P(2), ’P’); text(Q(1), Q(2), ’Q’);

end

function f = circle(A, R) % M-file circle.m
yE = A(2)*cosh(R); R1 = A(2)*sinh(R);
t = linspace(-pi, pi, 101);
hold on; axis equal;
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f = segment([A(1) - A(2), 0], [A(1) + A(2), 0]);
plot(A(1) + R1*cos(t), yE + R1*sin(t), ’r’, ’LineWidth’, 2);
plot(A(1), A(2), ’o’); text(A(1), A(2), ’A’);

end

function f = equidistant(A, B, d, n) % M-file equidistant.m
syms x t; t = linspace(0, pi, 101);
hold on; axis equal; title(’Equidistant (of a line)’);
text(A(1), A(2), ’A’); text(B(1), B(2), ’B’);
if A(1) == B(1)
x1 = A(1); y1 = max(A(2), B(2)) + 1;
y2 = 2*atan(exp(-d));
tt = linspace(x1, x1 + y1, 101);
f = plot(x1, t, ’LineWidth’, 2); plot(tt, tan(y2)*(tt - x1), ’LineWidth’, 2);
for ii = 1 : n - 1;
plot(x1 + (y1*ii/n)*cos(t), (y1*ii/n)*sin(t), ’g :’);

end
else
x1 = solve((B(1) - x)ˆ2 + B(2)ˆ2 - (A(1) - x)ˆ2 - A(2)ˆ2);
R = eval(sqrt((B(1) - x1)ˆ2 + B(2)ˆ2));
y1 = R*exp(d); y2 = (y1ˆ2 - Rˆ2)/(2*y1); R2 = y1 - y2;
for ii = 1 : n-1
ti = pi*ii/(2*n); xi(ii) = eval(x1 + R*cos(ti) + R*sin(ti)*tan(ti));
Ri(ii) = eval(sqrt((x1 + R*cos(ti) - xi(ii))ˆ2 + (R*sin(ti))ˆ2));
end;
Y3 = asin(y2/R2); tt = linspace(-Y3, pi + Y3, 101);
f = plot(eval(x1 + R*cos(t)), R*sin(t),’LineWidth’,2);
plot(eval(x1) + R2*cos(tt), y2 + R2*sin(tt), ’LineWidth’,2);
for ii = 1 : n - 1
plot(xi(ii) + Ri(ii)*cos(t), Ri(ii)*sin(t), ’r’);
plot(eval(2*x1) - xi(ii) + Ri(ii)*cos(t), Ri(ii)*sin(t), ’r :’);
end;

end

function f = horocycle(A, B, n) % M-file horocycle.m
syms x y t tt ttt;
hold on; axis equal;
if A(1) == B(1)
x1 = A(1); R = max(A(2), B(2)) + 1 R2 = A(2)/2;
else
x0 = solve((B(1) - x)ˆ2 + B(2)ˆ2 - (A(1) - x)ˆ2 - A(2)ˆ2);
R = eval(sqrt((B(1) - x0)ˆ2 + B(2)ˆ2)); x1 = eval(x0 + R);
R2 = eval(solve(yˆ2 - (A(1) - x1)ˆ2 - (A(2) - y)ˆ2));
end;
t = linspace(0, pi, 101);
tt = linspace(0, R, 101);
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ttt = linspace(-pi, pi, 101);
f = plot(x1 + R2*cos(ttt), R2*(1 + sin(ttt)), ’LineWidth’, 2);
if A(1) == B(1);
plot(x1, tt, ’g -’,’LineWidth’, 2);
else
plot(eval(x0) + R*cos(t), R*sin(t), ’LineWidth’, 2);
end
for ii = 1 : n-1
plot(x1 + (R*ii/n) + (R*ii/n)*cos(t), (R*ii/n)*sin(t));
plot(x1 - (R*ii/n) + (R*ii/n)*cos(t), (R*ii/n)*sin(t));
end;
title(’The horocycle’); text(A(1), A(2), ’A’); text(B(1), B(2), ’B’);

end

function f = fifth(A, B, a, n) % Program fifth.m (case of vertical base line)
tt = linspace(0, pi, 101); hold on;
if A(1) ˜ = B(1); disp(’A1 is not equal B1’)
else
for ii = 1 : n
[t, y] = ode45(@ f1, [0 4/(ii + 1)], [0, ii]); % see subprogram
p(:, ii) = y(:, 1); q(:, ii) = y(:, 2);
end
f = plot(p + A(1), q, ’r’, ’LineWidth’, 2); title(’The fifth line’);
for ii = 1 : n;
plot(A(1) + ii*cot(a) + ii*cos(tt)/sin(a), ii*sin(tt)/sin(a), ’:’);
end;
end
segment(A, B); axis equal;
text(A(1), A(2), ’A’); text(B(1), B(2), ’B’);

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function dy1 = f1(t, y); % Subprogram: function f1
global a; T = (-cos(a)*y(1)+sqrt(y(1)ˆ2+y(2)ˆ2*sin(a)ˆ2))/sin(a);
dy1 = zeros(2, 1); dy1 = [y(1) - T*cot(a); y(2)];

function f = H3segment(A, B)
D = [A; B];
if A(1) == B(1) & A(2) == B(2)
plot3([A(1), B(1)], [A(2), B(2)], [0, 2*max(A(3), B(3))], ’r:’);
hold on; view(3); grid; axis equal;
plot3([A(1), B(1)], [A(2), B(2)], [A(3), B(3)], ’LineWidth’, 2);
plot3(D(:, 1), D(:, 2), D(:, 3), ’o’)
else
x0 = 1/2*(B(2)ˆ2*B(1)+B(2)ˆ2*A(1)-2*B(2)*A(1)*A(2)-2*A(2)*B(1)*B(2)
+A(1)ˆ3-B(3)ˆ2*A(1)-A(1)ˆ2*B(1)-B(1)ˆ2*A(1)+A(2)ˆ2*B(1)+B(3)ˆ2*B(1)
+B(1)ˆ3-A(3)ˆ2*B(1)+A(2)ˆ2*A(1)+A(3)ˆ2*A(1))/(B(1)ˆ2
-2*B(1)*A(1)+A(1)ˆ2+B(2)ˆ2-2*B(2)*A(2)+A(2)ˆ2);
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y0 = 1/2*(-2*B(1)*A(1)*B(2)+A(2)*B(1)ˆ2+A(1)ˆ2*B(2)-2*A(1)*A(2)*B(1)
+B(1)ˆ2*B(2)+B(2)ˆ3-B(2)ˆ2*A(2)+B(3)ˆ2*B(2)-B(3)ˆ2*A(2)+A(1)ˆ2*A(2)
-A(2)ˆ2*B(2)+A(2)ˆ3-A(3)ˆ2*B(2)+A(3)ˆ2*A(2))/(B(1)ˆ2-2*B(1)*A(1)
+A(1)ˆ2+B(2)ˆ2-2*B(2)*A(2)+A(2)ˆ2);

R = sqrt((B(1) - x0)ˆ2 + (B(2) - y0)ˆ2 + B(3)ˆ2);
C = [x0, y0, 0];
tb = R/sqrt((B(1) - A(1))ˆ2 + (B(2) - A(2))ˆ2);
N = R*[0, 0, 1]; e = tb*[B(1) - A(1), B(2) - A(2) 0];
if [B(1) - x0, B(2) - y0]*[B(1) - A(1), B(2) - A(2)]’ > 0;
t1 = asin(B(3)/R);
else t1 = pi - asin(B(3)/R);
end
if [A(1) - x0, A(2) - y0]*[B(1) - A(1), B(2) - A(2)]’ > 0;
t2 = asin(A(3)/R);
else t2 = pi - asin(A(3)/R);
end
syms t;
Ct = C + e*cos(t) + N*sin(t);
T = linspace(t1, t2, 21); T0 = linspace(0, pi, 21);
plot3(subs(Ct(1), t, T)+T-T, subs(Ct(2), t, T)+T-T, subs(Ct(3), t, T));
hold on; view(3); grid; axis equal;
plot3(subs(Ct(1), t, T0)+T-T, subs(Ct(2), t, T0)+T-T, subs(Ct(3), t, T0), ’r:’);
plot3(D(:, 1), D(:, 2), D(:, 3), ’o’)
end

end

function f = H3distance(A, B)
if A(1) == B(1) & A(2) == B(2)
f = abs(log(B(3)/A(3)));
else
syms x;
x0 = 1/2*(B(2)ˆ2*B(1)+B(2)ˆ2*A(1)-2*B(2)*A(1)*A(2)-2*A(2)*B(1)*B(2)
+A(1)ˆ3-B(3)ˆ2*A(1)-A(1)ˆ2*B(1)-B(1)ˆ2*A(1)+A(2)ˆ2*B(1)+B(3)ˆ2*B(1)
+B(1)ˆ3-A(3)ˆ2*B(1)+A(2)ˆ2*A(1)+A(3)ˆ2*A(1)) / (B(1)ˆ2-2*B(1)*A(1)
+A(1)ˆ2+B(2)ˆ2-2*B(2)*A(2)+A(2)ˆ2);

y0 = 1/2*(-2*B(1)*A(1)*B(2)+A(2)*B(1)ˆ2+A(1)ˆ2*B(2)-2*A(1)*A(2)*B(1)
+B(1)ˆ2*B(2)+B(2)ˆ3-B(2)ˆ2*A(2)+B(3)ˆ2*B(2)-B(3)ˆ2*A(2)
+A(1)ˆ2*A(2)-A(2)ˆ2*B(2)+A(2)ˆ3-A(3)ˆ2*B(2)
+A(3)ˆ2*A(2)) / (B(1)ˆ2-2*B(1)*A(1)+A(1)ˆ2+B(2)ˆ2-2*B(2)*A(2)+A(2)ˆ2);
R = sqrt((B(1) - x0)ˆ2 + (B(2) - y0)ˆ2 + B(3)ˆ2);
t1 = asin(B(3)/R); t2 = asin(A(3)/R);
f = abs(log( tan(t2 / 2) / tan(t1 / 2) ));
end

end
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function f = H3triangle(A, B, C)
hold on; title(’Triangle’); axis equal;
H3segment(A, B); H3segment(B, C); H3segment(A, C);
text(A(1), A(2), A(3)+.3, ’A’); text(B(1), B(2), B(3)+.3, ’B’);
text(C(1), C(2), C(3)+.3, ’C’); D = [A; B; C]; plot3(D(:, 1), D(:, 2), D(:, 3), ’o’)

end

function f = H3plane(A, B, C)
syms u v;
D = [A; B; C];
DD = det([1 A(1) A(2); 1 B(1) B(2); 1 C(1) C(2)]);
if DD == 0
F0 = [A(1) + u*(C(1) - A(1)) + eps*u, A(2) + u*(C(2) - A(2)) + eps*v];
else
x0 = 1/2*(-B(1)ˆ 2*C(2)+B(1)ˆ 2*A(2)-B(3)ˆ 2*C(2)+A(3)ˆ 2*C(2)-B(2)*A(2)ˆ 2
-A(2)*C(3)ˆ2-A(2)*C(1)ˆ2-B(2)*A(1)ˆ2-A(2)*C(2)ˆ2+B(2)ˆ2*A(2)
+B(2)*C(3)ˆ2-B(2)ˆ2*C(2)+A(2)ˆ2*C(2)+B(3)ˆ2*A(2)-B(2)*A(3)ˆ2
+B(2)*C(1)ˆ2+B(2)*C(2)ˆ2+A(1)ˆ2*C(2))/(C(1)*B(2)-C(1)*A(2)-A(1)*B(2)
-C(2)*B(1)+C(2)*A(1)+A(2)*B(1));

y0 = -1/2*(-C(1)*B(1)ˆ 2-C(1)*B(2)ˆ 2-C(1)*B(3)ˆ 2+C(1)*A(1)ˆ 2+C(1)*A(2)ˆ 2
+C(1)*A(3)ˆ2+A(1)*B(1)ˆ2+A(1)*B(2)ˆ2+A(1)*B(3)ˆ2+C(1)ˆ2*B(1)
-C(1)ˆ2*A(1)+C(2)ˆ2*B(1)-C(2)ˆ2*A(1)+C(3)ˆ2*B(1)-C(3)ˆ2*A(1)
-A(1)ˆ2*B(1)-A(2)ˆ2*B(1)-A(3)ˆ2*B(1))/(C(1)*B(2)-C(1)*A(2)-A(1)*B(2)
-C(2)*B(1)+C(2)*A(1)+A(2)*B(1));

R = sqrt((B(1) - x0)ˆ2 + (B(2) - y0)ˆ2 + B(3)ˆ2);
end
plot3(D(:, 1), D(:, 2), D(:, 3), ’o’, ’LineWidth’, 2)
hold on; grid; axis equal;
if DD == 0;
ezmesh(F0(1), F0(2), v, [0, 1, 0, 2], 10);
else
ezmesh(x0+R*sin(u)*cos(v), y0+R*sin(u)*sin(v), R*cos(u), [0, pi/2, 0, 2*pi],
20);
end

end

function f = H3perp02(P, A, B, C)
D = [P; A; B; C];
if det([1 A(1) A(2); 1 B(1) B(2); 1 C(1) C(2)]) == 0
A0 = [A(1) A(2)]; B0 = [B(1) B(2)]; C0 = [C(1) C(2)];
P0 = [P(1) P(2)]; t0 = ((A0 - P0)*(C0 - A0)’)/((C0 - A0)*(C0 - A0)’);
Q0 = A0 + t0*(C0 - A0); Q = [Q0’; sqrt(P(3)ˆ2 + (Q0 - P0)*(Q0 - P0)’)]’;
else
x0 = 1/2*(-B(1)ˆ2*C(2)+B(1)ˆ2*A(2)-B(3)ˆ2*C(2)+A(3)ˆ2*C(2)
-B(2)*A(2)ˆ2-A(2)*C(3)ˆ2-A(2)*C(1)ˆ2-B(2)*A(1)ˆ2-A(2)*C(2)ˆ2
+B(2)ˆ2*A(2)+B(2)*C(3)ˆ2-B(2)ˆ2*C(2)+A(2)ˆ2*C(2)+B(3)ˆ2*A(2)
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-B(2)*A(3)ˆ2+B(2)*C(1)ˆ2+B(2)*C(2)ˆ2+A(1)ˆ2*C(2))/(C(1)*B(2)
-C(1)*A(2)-A(1)*B(2)-C(2)*B(1)+C(2)*A(1)+A(2)*B(1));

y0 = -1/2*(-C(1)*B(1)ˆ2-C(1)*B(2)ˆ2-C(1)*B(3)ˆ2+C(1)*A(1)ˆ2
+C(1)*A(2)ˆ2+C(1)*A(3)ˆ2+A(1)*B(1)ˆ2+A(1)*B(2)ˆ2+A(1)*B(3)ˆ2
+C(1)ˆ2*B(1)-C(1)ˆ2*A(1)+C(2)ˆ2*B(1)-C(2)ˆ2*A(1)+C(3)ˆ2*B(1)
-C(3)ˆ2*A(1)-A(1)ˆ2*B(1)-A(2)ˆ2*B(1)-A(3)ˆ2*B(1))/(C(1)*B(2)
-C(1)*A(2)-A(1)*B(2)-C(2)*B(1)+C(2)*A(1)+A(2)*B(1));

R = sqrt((B(1) - x0)ˆ2 + (B(2) - y0)ˆ2 + B(3)ˆ2);
t1 = 1/2*(Rˆ2+P(1)ˆ2-2*P(1)*x0+x0ˆ2+P(2)ˆ2-2*P(2)*y0+y0ˆ2
+P(3)ˆ2)/(P(1)ˆ2-2*P(1)*x0+x0ˆ2+P(2)ˆ2-2*P(2)*y0+y0ˆ2);
C1 = [x0 + t1*(A(1) - x0), y0 + t1*(A(2) - y0) 0];
tq = Rˆ2/((A(1) - x0)ˆ2 + (A(2) - y0)ˆ2)/t1;
h = sqrt(Rˆ2 - tqˆ2*((A(1) - x0)ˆ2 + (A(2) - y0)ˆ2));
Q = [tq*(A(1) - x0), tq*(A(2) - y0), h];
end;
d = H3distance(P, Q);
hold on; grid; axis equal; title(’Distance’);
H3segment(P, Q); H3plane(A, B, C);
plot3(D(:, 1), D(:, 2), D(:, 3), ’o’, ’LineWidth’, 2)
text(A(1), A(2), A(3), ’A’); text(B(1), B(2), B(3), ’B’); text(C(1), C(2), C(3), ’C’);
text(P(1), P(2), P(3), ’P’); text(Q(1), Q(2), Q(3), ’Q’);

end

function f = H3parallel(A, P, Q)
if P(1) == Q(1) & P(2) == Q(2)
B1 = [P(1), P(2), 0]; B2 = [A(1), A(2), A(3) + 1];
else
x1 = 1/2*(Q(2)ˆ2*Q(1)+Q(2)ˆ2*P(1)-2*Q(2)*P(1)*P(2)-2*P(2)*Q(1)*Q(2)
+P(1)ˆ3 - Q(3)ˆ2*P(1) - P(1)ˆ2*Q(1) - Q(1)ˆ2*P(1) + P(2)ˆ2*Q(1)
+Q(3)ˆ2*Q(1) + Q(1)ˆ3 - P(3)ˆ2*Q(1) + P(2)ˆ2*P(1) + P(3)ˆ2*P(1)) /
(Q(1)ˆ2 - 2*Q(1)*P(1) + P(1)ˆ2 + Q(2)ˆ2 - 2*Q(2)*P(2) + P(2)ˆ2);

y1 = 1/2*(-2*Q(1)*P(1)*Q(2)+P(2)*Q(1)ˆ2+P(1)ˆ2*Q(2)-2*P(1)*P(2)*Q(1)
+Q(1)ˆ2*Q(2) + Q(2)ˆ3 - Q(2)ˆ2*P(2) + Q(3)ˆ2*Q(2) - Q(3)ˆ2*P(2)
+P(1)ˆ2*P(2) - P(2)ˆ2*Q(2) + P(2)ˆ3 - P(3)ˆ2*Q(2) + P(3)ˆ2*P(2)) /
(Q(1)ˆ2 - 2*Q(1)*P(1) + P(1)ˆ2 + Q(2)ˆ2 - 2*Q(2)*P(2) + P(2)ˆ2);

R = sqrt((Q(1) - x1)ˆ2 + (Q(2) - y1)ˆ2 + Q(3)ˆ2);
C = [x1, y1, 0];
tb = R/sqrt((Q(1) - P(1))ˆ2 + (Q(2) - P(2))ˆ2);
B2 = [x1, y1, 0] + tb*[Q(1) - P(1), Q(2) - P(2), 0];
B1 = [x1, y1, 0] - tb*[Q(1) - P(1), Q(2) - P(2), 0];
end;
hold on; axis equal;
title(’Angle of parallelism’);
H3segment(A, B1); H3segment(A, B2); H3segment(P, Q);

end
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A.8 Investigation of a Surface in R
3

The program will help you to compute the characteristics of a surface.

syms u v positive; syms x y z real;
% Input (two types of surfaces)
% (a) Graph of a function f (x,y)

X = u; Y = v; Z = (uˆ2 - vˆ2)/5; % define functions
u1 = -1; u2 = 1; v1 = -1; v2 = 1; P = [1, 0]; % define initial data

% (b) Parametric surface r(u,v)

X = u*cos(v); Y = u*sin(v); Z = u; % define functions
u1 = -pi; u2 = pi; v1 = 0; v2 = 2*pi; P = [2, 3]; % define initial data

% Coordinate System

r = [X, Y, Z]; r p = subs(r, [u v], P); % parametric equations and P
u curve = subs(r, v, P(2)); v curve = subs(r, u, P(1)); % coordinate curves

% Tangent plane

ru = diff(r, u); rv = diff(r, v); % velocity vectors of u-curve and v-curve
n1 = cross(ru, rv); n = simplify(n1/sqrt(n1*n1’)); % normal vector
ru p = subs(ru, [u v], [P(1), P(2)]); rv p = subs(rv, [u v], [P(1), P(2)]);
n p = subs(n, [u v], [P(1), P(2)]);
TM = simplify(dot(n, [x,y,z] - r)); % 1st method: implicit equation
TpM = eval(r p + ru p*u + rv p*v); % 2nd method: parametric eq-s

% First fundamental form and related problems

E = simplify(dot(ru, ru)); F = simplify(dot(ru, rv)); G = simplify(dot(rv, rv));
E p = subs(E, [u v], P); F p = subs(F, [u v], P); G p = subs(G, [u v], P);

% coefficients E,F,G
g = simplify(E*G - Fˆ2); g p = subs(g, [u v], P); % determinant g
syms du dv t;
I f = E*duˆ2 + 2*F*du*dv + G*dvˆ2;
I p = E p*duˆ2 + 2*F p*du*dv + G p*dvˆ2; % first fundamental form
theta uv = acos(F/sqrt(E*G)); % angle between u- and v- curves
theta uvP = subs(theta uv, [u v], P);
length u = double(int(subs(sqrt(E), [u v], [t,P(2)]), t, u1, u2)); % lengths

% of u- and v- curves
length v = double(int(subs(sqrt(G), [u v], [P(1), t]), t, v1, v2));
U = t; V = t; % equations of a curve on a M2 (insert data)!
t1 = 0; t2 = pi; ut = diff(U, t); vt = diff(V, t);
c gamma = subs(r, [u v], [U, V]); % a curve and its length
l = double(int(sqrt(subs(E*utˆ2 + F*ut*vt + G*vtˆ2, [u v], [U V])), t, t1, t2));
area M = double(int(int(sqrt(g), u, 0, u2), v, 0, v2)); % surface area
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% Second fundamental form and related problems

ruu = diff(ru, u); ruv = diff(ru, v); rvv = diff(rv, v);
ruu p = subs(ruu, [u v], P); ruv p = subs(ruv, [u v], P);
rvv p = subs(rvv, [u v], P); % second derivatives for further use
L = simplify(dot(ruu, n)); M = simplify(dot(ruv, n)); N = simplify(dot(rvv, n));
L p = subs(L, [u v], P); M p = subs(M, [u v], P); N p = subs(N, [u v], P);

% coefficients of the second fundamental form
II = L*duˆ2 + 2*M*du*dv + N*dvˆ2;
II p = L p*duˆ2 + 2*M p*du*dv + N p*dvˆ2; % second fundamental form
GK = simplify((L*N - Mˆ2)/g);
GK p = subs(GK, [u v], P); % Gaussian curvature
H = simplify((L*G + N*E - 2*M*F)/g/2);
H p = subs(H, [u v], P); % mean curvature
syms k; ki = solve(kˆ2*g - k*(L*G + N*E - 2*M*F) + (L*N - Mˆ2), k);
ki p = subs(ki, [u v], P); % principal curvatures
kv = simplify(N/G); kv p = subs(kv, [u v], P); % normal curvatures
ku = simplify(L/E); ku p = subs(ku, [u v], P); % of coordinate lines
syms w1 w2;
eq1 = simplify(det([-w2ˆ2, w1*w2, -w1ˆ2; E, F, G; L, M, N]));
solve(eq1, w1); % principal directions

eq1 p = simplify(det([-w2ˆ2, w1*w2, -w1ˆ2; E p, F p, G p; L p, M p, N p]));
solve(eq1 p, w1);
solve(L p*w1ˆ2 + 2*M p*w1*w2 + N p*w2ˆ2); % asymptotic directions

% Differential equations of geodesics

Eu = diff(E, u); Ev = diff(E, v);
Fu = diff(F, u); Fv = diff(F, v);
Gu = diff(G, u); Gv = diff(G, v);
eq1 = diff(’u(t)’, t, 2) + subs((G*Eu - F*(2*Fu - Ev))/(2*g)*diff(’u(t)’, t)ˆ2

+ (G*Ev - F*Gu) / g*diff(’u(t)’, t)*diff(’v(t)’, t)
+ (G*(2*Fv - Gu) - F*Gv)/(2*g)*diff(’v(t)’, t)ˆ2, {u v}, {’u(t)’, ’v(t)’});

eq2 = diff(’v(t)’,t,2) + subs((E*(2*Fu - Ev) - F*Eu)/(2*g)*diff(’u(t)’, t)ˆ2
+ (E*Gu - F*Ev) / g*diff(’u(t)’, t)*diff(’v(t)’, t)
+ (E*Gv - F*(2*Fv - Gu))/(2*g)*diff(’u(t)’, t)ˆ2, {u v}, {’u(t)’, ’v(t)’});

The function M-file displays a level surface f (x,y,z) = c.

function out = impl(f, corners, c) % see impl.m in [Cooper]
xmin = corners(1); ymin = corners(3); zmin = corners(5);
xmax = corners(2); ymax = corners(4); zmax = corners(6);
x = linspace(xmin, xmax ,21); y = linspace(ymin, ymax, 21);
z = linspace(zmin, zmax, 21); [XX, YY, ZZ] = meshgrid(x, y, z);
W = feval(f, XX, YY, ZZ);
m = min(min(min(W))); M = max(max(max(W)));
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sprintf( ’The max over this domain is % 5.5f %’, M)
sprintf( ’The min over this domain is % 5.5f %’, m)
if c < m | c > M
sprintf( ’In this domain, the function does not take on the value % 5.5f %’, c)
else
[X, Y] = meshgrid(x, y);
dz = (zmax - zmin)/40;
for zz = zmin : dz : zmax
Z = feval(f, X, Y, zz);
con = contours(X, Y, Z, [c,c]);
nn = size(con, 2);
if nn > 0
j = 1; while j < nn
npairs = con(2, j);
xdata = con(1, j + 1: j + npairs);
ydata = con(2, j + 1: j + npairs);
plot3(xdata, ydata, zz + 0*xdata)
j = j + npairs + 1; hold on
end;
end;
end;
end
axis(corners);
xlabel(’x’); ylabel(’y’); zlabel(’z’); hold off
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Index

affine invariance, 360, 411
angle, 84

of parallelism, 183
angular excess, 98

asymptote, 250
left, right, two-sided, 250
vertical, horizontal, oblique, 250

centroid, 155
of a curve, 268
barycenter, 141

circle, 11
Apollonian, 166
coaxal, 169
generalized, 162
osculating, 273, 373

coordinates, 225
of an object, 225
of the viewer, 225
affine, 269
barycentric, 155
cylindrical, 225
homogeneous, 144
net, 288
polar, 10, 35
spherical, 225

curvature
center of a curve, 273
Gaussian, 311
mean, 311
of a curve, 273
of a curve (absolute integral), 274, 277
principal, 311

curve, 201

θ -transversal, 185
u-curve, v-curve on a surface, 288
algebraic, 208
analytic (Cω), 282
caustic, 260
characteristic (of envelope), 339
conic, 85
cuspidal edge, 300
directrix, 331
envelope, 253
evolute, 258, 273
evolvent (involute), 258
geodesic, 173, 312
geometrically Ck-continuous, 373
great circle, 96, 98
little circle, 98
maximal sloping, 317
meridian, 323
natural parameterization, 268, 283
normal section, 312
of class Ck, 282
parallel, 261, 323
parametrically Ck-continuous, 358, 375, 383
profile, 323
projective conic, 144
regular, 57, 63, 203, 208, 358
singular (on a surface), 289
striction (on a surface), 336
transcendental, 266
winding number, 274

curve name
SICI spiral, 239
(broken) horocycle, 186–188
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(inverse) Galileo’s spiral, 42
Dinostratus’ quadratrix, 23
of growth, 24
Acer palmatum, 76
astroid, 239
beats, 23
bicylinder, 230
butterfly, 38
cardioid, 38, 239
catenary, 23
circular helix, 243
cissoid of Diocles, 39, 346
clothoid (Cornu spiral), 205
cochleoid, 38
conic helix, 243
conic section, 37
cross, 44, 75
cross-shaped, 191
cycloid, 23, 203
damped oscillations, 24
deltoid (Steiner), 239
ear, 161
elastica, 215
ellipse, 37
epicycloid, 203
equidistant, 186
Fermat’s spiral, 42
fifth line, 188
folium of Descartes, 207
Gompertz, 25
half-cubic parabola, 259
hyperbola, 37
hyperbolic spiral, 77
hypocycloid, 203
kappa, 41
Koch’s snowflake, 218
lemniscate of Bernoulli, 40
Lissajous, 204, 342, 343
lituus, 78
logarithmic curve, 25
logarithmic parabola, 24
logarithmic spiral, 42
loop coupling, 76
Menger (in cube), 222
neoid, 42
nephroid, 239
Nicomedian conchoid, 39
oval of Cassini, 40
parabola, 37
parabolic spiral, 42
Pascal’s limaçon, 38, 239

patterned, 206
Peano, 217, 241
pseudospiral, 206
rose (trochoidal), 43, 75
Sierpiński’s carpet, 220
sinusoidal spiral, 77
spiral of Archimedes, 36, 229
strophoid, 40
sunflower, 76
torus knot, 229
tractrix, 23
trefolium, 407
trisectrix of Longchamps, 161
trisectrix of Maclaurin, 191
trochoid, 203
Viviani, 230
windmill, 41
witch of Agnesi, 23

distance, 10, 86, 318

Euler’s
equations, 213
rotation angles, 91

extremum, 297
conditional, 208, 297

field (skew), 5
Frenet frame, 249, 277
function

Bernstein polynomial, 359
bicubic, 82
bilinear, 81
Chebyshev polynomial, 51
conformal, 160
continuous, 171
contours, 291
cross-ratio, 145, 165, 181
Heaviside, 29
height, 298
Hermite polynomial, 51
homogeneous polynomial, 144
Lagrange polynomial, 49
Newton polynomial, 237
piecewise (spline), 55, 61, 171
piecewise (surface spline), 62
piecewise differentiable, 29
reciprocal, 162
recursive, 29, 73
symbolic expression, 8

fundamental form
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first, 310
second, 310

geometry
affine, 136
hyperbolic, 170
inversive, 163
projective, 144, 148

duality, 146
spherical, 97

graph of a function, 18, 290
cosine integral, 27
elliptic integral, 28
exponential integral, 27
gamma, 27
integral of probabilities, 27
remarkable limit, 24
sine integral, 27
spherical Bessel, 28

group, 121
action, 122
affine, 126
alternating, 121
cyclic, 121
dihedral, 110, 121
general linear, 124
index, 122
normal, 122
orbit, 122
orthogonal, 125
projective, 177
stabilizer, 122
symmetric, 121
symmetry, 109
symplectic, 125
unitary, 125

Lagrange multiplier, 208, 297
length, 98

of a curve, 171, 268
structure, 173

line, 17, 85
segment, 17
extended, 162
ideal, 144
level, 208, 290
perpendicular, 127
tangent, 245

mathematical embroidery, 255
matrix, 47

addition, 123
basic, 366, 388
diagonal, 123
mean curvatures, 124
product, 123
rotation, 88, 153, 157
scaling, 136, 138, 153, 157
square, 123
trace, 123
translation, 153, 157
transpose, 123

method of least squares, 53, 64
metric, 170, 269

number
algebraic, 6
complex, 9
congruent modulo m, 5
conjugate, 9, 12
continued fraction, 6
Euler’s constant, 6
Fibonacci, 7
golden section, 7, 108
integer, 4
inverse, 13
irrational, 6
modulus, 9
natural, 4
octonion, 69
quaternion, 12
rational, 5
real, 6
squares, 4
transcendental, 6
triangular, 4
unimodular, 12

pencil (of lines), 146
plane, 85

complex extended, 162
directrix, 332
embedding, 144
extended, 168
Fano, 150
projective, 144
punctured, 173
tangent, 294

Poincaré metric, 170
point, 15

asymptotic, 77
concyclic, 166
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fixed, 122, 147
harmonically conjugate, 145
ideal, 144
projective, 144
regular (smooth) on a surface, 289
regular on a curve, 203
singular on a curve, 203, 262
singular on a surface, 286, 289
striction on a ruled surface, 336

polygon
control, 357
inscribed in a curve, 267
regular star, 37
regular star-shaped, 223
simple, 102

polyhedron, 102
antiprism, 116
Archimedean solid, 116

Ashkinuze solid, 117
cuboctahedron, 117
icosidodecahedron, 117
rhombicosidodecahedron, 117
rhombicuboctahedron, 117
snub cube, 117
snub dodecahedron, 117, 133
truncated cube, 117
truncated cuboctahedron, 117
truncated dodecahedron, 117
truncated icosahedron, 117
truncated icosidodecahedron, 117
truncated octahedron, 117
truncated tetrahedron, 117

development, 104
faces, 102
isohedron (isogon), 116
Kepler’s stellated octahedron, 113
Platonic solids, 111

dodecahedron, icosahedron, 106
tetrahedron, cube, octahedron, 106

Poinsot’s solids, 113
great dodecahedron, 113
great icosahedron, 113
great star dodecahedron, 113
small star dodecahedron, 113

prism, 103, 116
pyramid, 103
regular, 106
semi-regular, 116
simple, 103
solid angle, 102
star-shaped, 112

projection
axonometric, 226
onto a cylinder, 233
onto a sphere, 233

projective invariance, 365

Schwarz inequality, 134
set

(open) disc, 171
algebraic, 144, 154
area, 175
Cantor, 216
convex, 83, 141
convex hull, 141
Delaunay triangulation, 143
dimension of self-similarity, 220
discriminant, 253, 337
elementary domain, 286
open, 285
projective, 144
self-similar, 216

space
embedding, 153
metric, 170
origin, 83
path metric, 173
projective, 153

sphere
osculating, 284

spline curve, 357
β -spline, 376, 378, 379, 381, 382
B-spline, 383, 384, 386
Bézier, 359, 362–365, 401
cardinal, 371, 372
control vertices, 357, 394
Hermite, 366, 368
shape parameters (β1,β2), 378

spline surface
β -spline, 393, 408
B-spline, 393, 408
Bézier, 389, 390, 409
bicubic, 394
cardinal, 393
Ferguson, 391
Hermite, 390
smoothing bicubic, 67

surface, 103, 286
(non-)cylindrical, 332
algebraic, 329
bicubic, 389
bilinear, 388
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binormal, 335
boundary curves, 387
canal, 340
Cartesian product, 387
closed, 289
compact, 289
complete, 289
conchoidal, 346
conic, 332, 353
conoid, 332
coordinate curve, 387
developable, 332, 333
elementary, 286
envelope, 337
generalized sphere, 168
hodograph, 287
level, 290
normal, 335
of revolution, 323
one-sided, 288
osculating paraboloid, 304
parallel (equidistant), 343
patch, 387
pedal, 345
podoid, 345
quadric, 154
rectifying, 354
regular, 289
Riemann sphere, 100
ruled, 331
screw, 327
self-intersecting, 286
simple, 286
smooth, 289
transcendental, 329
translation, 341
tube (over a curve), 340
twist vector, 389
twisted, 343

surface name
astroidal sphere, 351
Bohemian dome, 342
catenoid, 311, 326
circular cylinder, 286, 325
cone, 286, 325
conoid of Wallis, 333
cyclide of Dupin, 350
elliptical cone, 353
Enneper, 312
helicoid, 81, 312, 327, 332
hyperbolic paraboloid, 353

hyperboloid, 325, 353
Klein bottle, 286, 355, 410
Möbius band, 288, 327, 355
monkey saddle, 351
paraboloid, 305
pinched torus, 286, 328
Plücker’s conoid, 333
pseudosphere, 326
revolution of the astroid, 350
sphere, 286, 325
swallow-tail, 329, 332
torus, 81, 286, 326, 410
twisted sphere, 327
Whitney umbrella, 301, 351
wings, 319, 351

torsion of a space curve, 278
transformation

affine, 135
cissoidal, 39, 346
compression, 136
dilation, 181
expansion, 136
glide, 88
half-turn, 90
hyperbolic translation, 179
inversion, 159, 161
inversive, 163
isometry, 170
linear, 124
Lorentz, 137
Möbius, 163, 177
parabolic translation, 179
perspective, 148
Poincaré extension, 180
projection, 127
projective, 147, 148, 153
reflection, 88, 98, 153, 159, 161
rigid motion (isometry), 87, 98
rotation, 88
scaling, 136, 138
screw motion, 90
shear, 136
stereographic projection, 99
translation, 87, 88, 126
transposition, 121

triangle, 70, 98
inequality, 10, 170

vector, 16
binormal, 283
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main normal, 373
normal, 139, 245, 296
scalar product, 84
scalar triple product, 84

tangent, 274

triple vector product, 84

vector product, 84
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