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Preface

Geometry is a pervasive mathematical concept that appears in many places
and in many disguises. The representation of geometric entities, of their
unions and intersections, and of their transformations is something that we,
as human beings, can relate to particularly well, since these concepts are
omnipresent in our everyday life. Being able to describe something in terms
of geometric concepts lifts a purely formal description to something we can
relate to. The application of “common geometrical sense” can therefore be ex-
tremely helpful in understanding many mathematical concepts. This is true
not only for elements directly related to geometry such as the fundamen-
tal matrix, but also for polynomial curves such as Pythagorean hodograph
curves, and analysis-related aspects such as the Cauchy–Riemann equations
[127], to mention a few examples.

An algebra for geometry is therefore a desirable mathematical tool, and
indeed many such algebras have been developed. The first ones were prob-
ably Grassmann’s algebra of extensive entities, Hamilton’s quaternions, and
complex numbers, which were all combined by W. K. Clifford into a single
algebraic system, Clifford algebra. The aim of this text is not only to show
that Clifford algebra is the geometric algebra, but also to demonstrate its
advantages for important engineering applications.

This text is split into two main parts: a theoretical and an application
part. In the theoretical part, the mathematical foundations are laid and a
methodology is presented for the representation and numerical implementa-
tion of geometric constraints, with possibly uncertain geometric entities. The
application part demonstrates with a number of examples how this method-
ology can be applied, but also demonstrates that the representative power of
geometric algebra can lead to interesting new results.

This text originates from my work in the Cognitive Systems Group at the
Christian-Albrechts-University in Kiel, Germany, led by Professor Dr. Gerald
Sommer. First and foremost, I am indebted to him for his constant support
of my research in geometric algebra. I would also like to thank Professor Dr.
Wolfgang Förstner from the University of Bonn, Germany, and Professor Dr.
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Rida Farouki from the University of California at Davis (UCD), USA, for
inviting me to work with them. The work on random multivector variables
and the Gauss–Helmert model originated from a collaboration with Professor
Förstner in 2004. The work on Pythagorean hodographs is the result of a two-
month stay at UCD in 2005, where I worked with Professor Farouki.

Of course, in addition to Professor Sommer, my coworkers and students
at the Cognitive Systems Group in Kiel were an invaluable help in form-
ing, discussing, and implementing new ideas. In particular, I would like to
thank Dr. Vladimir Banarer, with whom I had many insightful discussions,
not just about hypersphere neurons; Christian Gebken who I worked with
on an implementation of geometric algebra on an FPGA, on the estimation
of uncertain geometric entities, and on pose estimation with projective and
catadioptric cameras; Anti Tolvanen, for his collaboration on central cata-
dioptric cameras; Dr. Sven Buchholz, for his pure-mathematical assessments;
and Professor Dr. Bodo Rosenhahn, for collaboration on pose estimation and
coupled twists. I am also grateful for the technical assistance of Gerd Diesner
and Henrik Schmidt, and the administrative support provided by Francoise
Maillard.

Last but not least, I thank my wife Susanne and my parents Heide and
Ulrich for their help and encouragement, which made this work possible.

Stuttgart, Christian B. U. Perwaß
September 2008



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Overview of This Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 CLUCalc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.2 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.3 Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.4 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.5 Uncertain Geometric Entities and Operators . . . . . . . . . 13
1.4.6 The Inversion Camera Model . . . . . . . . . . . . . . . . . . . . . . 13
1.4.7 Monocular Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.8 Versor Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.9 Random Variable Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Overview of Geometric Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.1 Basics of the Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.2 General Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.3 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.4 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.5 Outermorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Learning Geometric Algebra with CLUCalc . . . . . . . . . . . . . . 25
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 The Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Editor Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Visualization Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.3 Output Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4 Command Line Parameters . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 The Scripting Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Visualizing Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ix



x Contents

2.3.3 User Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.4 Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.5 Annotating Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.6 Multivector Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Part I Theory

3 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.2 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.3 Algebraic Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.4 Involutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.5 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.6 Inner and Outer Product . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.1 Geometric Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.2 Outer Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.3 Scalar Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.4 Reverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.5 Conjugate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.6 Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.7 Inner Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.8 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2.9 Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2.10 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.11 Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2.12 Meet and Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2.13 Regressive Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3 Versors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4 Linear Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.1 Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.2 Determinant Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.3 Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.5 Reciprocal Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.5.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.6 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.6.1 Vector Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.6.2 Multivector Differentiation . . . . . . . . . . . . . . . . . . . . . . . . 101
3.6.3 Tensor Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



Contents xi

3.7 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.7.1 Basis Orthogonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.7.2 Factorization of Blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.7.3 Evaluation of the Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.7.4 Versor Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.8 Related Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.8.1 Gibbs’s Vector Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.8.2 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.8.3 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.8.4 Grassmann Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.8.5 Grassmann–Cayley Algebra . . . . . . . . . . . . . . . . . . . . . . . . 115

4 Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.1 Euclidean Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.1.1 Outer-Product Representations . . . . . . . . . . . . . . . . . . . . 122
4.1.2 Geometric Interpretation of the Inner Product . . . . . . . 123
4.1.3 Inner Product Representation . . . . . . . . . . . . . . . . . . . . . . 124
4.1.4 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.1.5 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.1.6 Mean Rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.2 Projective Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.2.2 Outer-Product Representations . . . . . . . . . . . . . . . . . . . . 138
4.2.3 Inner-Product Representations . . . . . . . . . . . . . . . . . . . . . 140
4.2.4 Reflections in Projective Space . . . . . . . . . . . . . . . . . . . . . 142
4.2.5 Rotations in Projective Space . . . . . . . . . . . . . . . . . . . . . . 143

4.3 Conformal Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.3.1 Stereographic Embedding of Euclidean Space . . . . . . . . 146
4.3.2 Homogenization of Stereographic Embedding . . . . . . . . 147
4.3.3 Geometric Algebra on Rn+1,1 . . . . . . . . . . . . . . . . . . . . . . 150
4.3.4 Inner-Product Representations in G4,1 . . . . . . . . . . . . . . 152
4.3.5 Outer-Product Representations in G4,1 . . . . . . . . . . . . . . 158
4.3.6 Summary of Representations . . . . . . . . . . . . . . . . . . . . . . . 161
4.3.7 Stratification of Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.3.8 Reflections in Gn+1,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.3.9 Inversions in Gn+1,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.3.10 Translations in Gn+1,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.3.11 Rotations in Gn+1,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.3.12 Dilations in Gn+1,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.3.13 Summary of Operator Representations . . . . . . . . . . . . . . 172
4.3.14 Incidence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.3.15 Analysis of Blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.4 Conic Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
4.4.1 Polynomial Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.4.2 Symmetric-Matrix Vector Space . . . . . . . . . . . . . . . . . . . . 181



xii Contents

4.4.3 The Geometric Algebra G6 . . . . . . . . . . . . . . . . . . . . . . . . 183
4.4.4 Rotation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
4.4.5 Analysis of Conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4.4.6 Intersecting Lines and Conics . . . . . . . . . . . . . . . . . . . . . . 189
4.4.7 Intersection of Conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

4.5 Conformal Conic Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
4.5.1 The Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
4.5.2 The Geometric Algebra G5,3 . . . . . . . . . . . . . . . . . . . . . . . 194

5 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
5.1 Tensor Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.1.1 Component Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.1.2 Example: Geometric Product in G2 . . . . . . . . . . . . . . . . . 200
5.1.3 Subspace Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.1.4 Example: Reduced Geometric Product . . . . . . . . . . . . . . 202
5.1.5 Change of Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.2 Solving Linear Geometric Algebra Equations . . . . . . . . . . . . . . . 203
5.2.1 Inverse of a Multivector . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.2.2 Versor Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.2.3 Example: Inverse of a Multivector in G2 . . . . . . . . . . . . . 207

5.3 Random Multivectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.3.2 First-Order Error Propagation . . . . . . . . . . . . . . . . . . . . . 210
5.3.3 Bilinear Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
5.3.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

5.4 Validity of Error Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.4.1 Non-Gaussivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.4.2 Error Propagation Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
5.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

5.5 Uncertainty in Projective Space . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.5.1 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.5.2 Random Homogeneous Vectors . . . . . . . . . . . . . . . . . . . . . 223
5.5.3 Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

5.6 Uncertainty in Conformal Space . . . . . . . . . . . . . . . . . . . . . . . . . . 228
5.6.1 Blades and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

5.7 Uncertainty in Conic Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
5.8 The Gauss–Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

5.8.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
5.8.2 Constraints on Parameters Alone . . . . . . . . . . . . . . . . . . . 236
5.8.3 Least-Squares Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 236
5.8.4 Numerical Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
5.8.5 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

5.9 The Gauss–Helmert Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
5.9.1 The Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
5.9.2 Least-Squares Minimization . . . . . . . . . . . . . . . . . . . . . . . . 242



Contents xiii

5.9.3 Derivation of the Covariance Matrix Σ∆p,∆p . . . . . . . . . 244
5.9.4 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
5.9.5 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

5.10 Applying the Gauss–Markov and Gauss–Helmert Models . . . . 248
5.10.1 Iterative Application of Gauss–Helmert Method . . . . . . 249

Part II Applications

6 Uncertain Geometric Entities and Operators . . . . . . . . . . . . . 255
6.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

6.1.1 Geometric Entities in Conformal Space . . . . . . . . . . . . . . 256
6.1.2 Geometric Entities in Conic Space . . . . . . . . . . . . . . . . . . 258
6.1.3 Operators in Conformal Space . . . . . . . . . . . . . . . . . . . . . 259

6.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
6.2.1 Estimation of Geometric Entities . . . . . . . . . . . . . . . . . . . 263
6.2.2 Versor Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
6.2.3 Projective Versor Equation . . . . . . . . . . . . . . . . . . . . . . . . 267
6.2.4 Constraint Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
6.2.5 Estimation of a 3D Circle . . . . . . . . . . . . . . . . . . . . . . . . . 272
6.2.6 Estimation of a General Rotor . . . . . . . . . . . . . . . . . . . . . 274

6.3 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

7 The Inversion Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
7.1 The Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
7.2 Definition of the Inversion Camera Model . . . . . . . . . . . . . . . . . . 281
7.3 From Pinhole to Lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

7.3.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 283
7.3.2 Relationship Between Focal Length and Lens Distortion288

7.4 Fisheye Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
7.5 Catadioptric Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
7.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

8 Monocular Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
8.1 Initial Pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
8.2 Formulation of the Problem in CGA . . . . . . . . . . . . . . . . . . . . . . 305
8.3 Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

8.3.1 Tensor Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
8.3.2 Jacobi Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
8.3.3 Constraints on Parameters . . . . . . . . . . . . . . . . . . . . . . . . 311
8.3.4 Iterative Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

8.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
8.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
8.4.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
8.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322



xiv Contents

9 Versor Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
9.1 Coupled Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

9.1.1 Cycloidal Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
9.1.2 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
9.1.3 Space Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

9.2 Pythagorean-Hodograph Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 330
9.2.1 Relation to Versor Equation . . . . . . . . . . . . . . . . . . . . . . . 332
9.2.2 Pythagorean-Hodograph Curves . . . . . . . . . . . . . . . . . . . . 333
9.2.3 Relation Between the Rotation and Reflection Forms . 336
9.2.4 Pythagorean-Hodograph Quintic Hermite Interpolation 339
9.2.5 Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
9.2.6 Curves of Constant Length . . . . . . . . . . . . . . . . . . . . . . . . 342
9.2.7 Pythagorean-Hodograph Curves in Rn . . . . . . . . . . . . . . 347
9.2.8 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
9.2.9 Proof of Lemma 9.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

10 Random-Variable Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
10.1 A Random-Variable Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . 352

10.1.1 Probability Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
10.1.2 Continuous Random Variables . . . . . . . . . . . . . . . . . . . . . 352
10.1.3 Multiple Random Variables . . . . . . . . . . . . . . . . . . . . . . . . 354

10.2 A Hilbert Space of Random Variables . . . . . . . . . . . . . . . . . . . . . 356
10.2.1 The Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
10.2.2 The Scalar Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
10.2.3 The Dirac Delta Distribution . . . . . . . . . . . . . . . . . . . . . . 358

10.3 Geometric Algebra over Random Variables . . . . . . . . . . . . . . . . 360
10.3.1 The Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
10.3.2 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
10.3.3 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
10.3.4 Normal Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 365

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381



Chapter 1

Introduction

Geometric algebra is currently not a widespread mathematical tool in the
fields of computer vision, robot vision, and robotics within the engineer-
ing sciences, where standard vector analysis, matrix algebra, and, at times,
quaternions are mainly used. The prevalent reason for this state of affairs is
probably the fact that geometric algebra is typically not taught at universi-
ties, let alone at high-school level, even though it appears to be the mathe-
matical language for geometry. This unfortunate situation seems to be due to
two main aspects. Firstly, geometric algebra combines many mathematical
tools that were developed separately over the past 200-odd years, such as
the standard vector analysis, Grassmann’s algebra, Hamilton’s quaternions,
complex numbers, and Pauli matrices. To a certain extent, teaching geomet-
ric algebra therefore means teaching all of these concepts at once. Secondly,
most applications in two- and three-dimensional space, which are the most
common spaces in engineering applications, can be dealt with using standard
vector analysis and matrix algebra, without the need for additional tools.
The goal of this text is thus to demonstrate that geometric algebra, which
combines geometric transformations with the construction and intersection
of geometric entities in a single framework, can be used advantageously in
the analysis and solution of engineering applications.

Matrix algebra, or linear algebra in general, probably represents the most
versatile mathematical tool in the engineering sciences. In fact, any geometric
algebra can be represented in matrix form, or, more to the point, geometric
algebra is a particular subalgebra of general tensor algebra (see e.g. [148]).
However, this constraint can be an advantage, as for example in the case of
quaternions, which form a subalgebra of geometric algebra. While rotations
about an axis through the origin in 3D space can be represented by 3 × 3
matrices, it is a popular method to use quaternions instead, because their
components are easier to interpret (direction of rotation axis and rotation
angle) and, with only four parameters, they are a nearly minimal parameter-
ization. Given the four components of a quaternion, the corresponding (scal-
ing) rotation is uniquely determined, whereas the three Euler angles from
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2 1 Introduction

which a rotation matrix can be constructed do not suffice by themselves. It
is also important to define in which order the three rotations about the three
basis axes are executed, in order to obtain the correct rotation matrix. It is
also not particularly intuitive what type of rotation three Euler angles repre-
sent. This is the reason why, in computer graphics software libraries such as
OpenGL [23, 22], rotations are always given in terms of a rotation axis and
a rotation angle. Internally, this is then transformed into the corresponding
rotation matrices.

Apart from the obvious interpretative advantages of quaternions, there are
clear numerical advantages, at the cost that only rotations can be described,
whereas matrices can represent any linear function. For example, two rota-
tions are combined by multiplying two quaternions or two rotation matrices.
The product of two quaternions can be represented by the product of a 4× 4
matrix with a 4 × 1 vector, while in the case of a matrix representation two
3×3 matrices have to be multiplied. That is, the former operation consists of
16 multiplications and 12 additions, while the latter needs 27 multiplications
and 18 additions. Furthermore, when one is solving for a rotation matrix, two
additional constraints need to be imposed on the nine matrix components:
matrix orthogonality and scale. In the case of quaternions, the orthogonality
constraint is implicit in the algebraic structure and thus does not have to be
imposed explicitly. The only remaining constraint is therefore the quaternion
scale.

The quaternion example brings one of the main advantages of geomet-
ric algebra to the fore: by reducing the representable transformations from
all (multi)linear functions to a particular subset, for example rotation, a
more optimal parameterization can be achieved and certain constraints on
the transformations are embedded in the algebraic structure. In other words,
the group structure of a certain set of matrices is made explicit in the algebra.
On the downside, this implies that only a subset of linear transformations is
directly available. Clearly, any type of function, including linear transforma-
tions, can still be defined on algebraic entities, but not all functions profit in
the same way from the algebraic structure.

The above discussion gives an indication of the type of problems where
geometric algebra tends to be particularly beneficial: situations where only
a particular subset of transformations and/or geometric entities are present.
The embedding of appropriate constraints in the algebraic structure can then
lead to descriptive representations and optimized numerical constraints.

One area where the embedding of constraints in the algebraic structure
can be very valuable is the field of artificial neural networks, or classifica-
tion algorithms in general. Any classification algorithm has to make some
assumptions about the structure of the feature space or, rather, the form of
the separation boundaries between areas in the feature space that belong to
different classes. Choosing the best basis functions (kernels) for such a sepa-
ration can improve the classification results considerably. geometric algebra
offers, through its algebraic structure, methods to advantageously implement
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such basis functions, in particular for geometric constraints. This has been
shown, for example, by Buchholz and Sommer [27, 29, 28] and by Bayro-
Corrochano and Buchholz [17]. Banarer, Perwass, and Sommer have shown,
furthermore, that hyperspheres as represented in the geometric algebra of
conformal space are effective basis functions for classifiers [134, 14, 15]. In
this text, however, these aspects will not be detailed further.

1.1 History

Before discussing further aspects of geometric algebra, it is helpful to look
at its roots. Geometric algebra is basically just another name for Clifford
algebra, a name that was introduced by David Hestenes to emphasize the
geometric interpretation of the algebra. He first published his ideas in a re-
fined version of his doctoral thesis in 1966 [87]. A number of books extending
this initial “proof of concept” (as he called it) followed in the mid 1980s and
early 1990s [91, 88, 92]. Additional information on his current projects can
be found on the website [90].

Clifford algebra itself is about 100 years older. It was developed by William
K. Clifford (1845–1879) in 1878 [37, 35]. A collection of all his papers can
be found in [36]. Clifford’s main idea was that the Ausdehnungslehre of Her-
mann G. Grassmann (1809–1877) and the quaternion algebra of William R.
Hamilton (1805–1865) could be combined in a single geometric algebra, which
was later to be known as Clifford algebra. Unfortunately, Clifford died very
young and had no opportunity to develop his algebra further. In around 1881
the physicist Josiah W. Gibbs (1839–1903) developed a method that made it
easier to deal with vector analysis, which advanced work on Maxwell’s elec-
trodynamics considerably. This was probably one of the reasons why Gibbs’s
vector analysis became the standard mathematical tool for physicists and en-
gineers, instead of the more general but also more elaborate Clifford algebra.

Within the mathematics community, the Clifford algebra of a quadratic
module was a well-established theory by the end of the 1970s. See, for ex-
ample, the work of O’Meara [129] on the theory over fields or the work of
Baeza [13] on the theory over rings. The group structure of Clifford algebra
was detailed by, for example, Porteous [148] and Gilbert and Murray [79]
in the 1990s. The latter also discussed the relation between Clifford algebra
and Dirac operators, which is one of the main application areas of Clifford
algebra in physics.

The Dirac equation of quantum mechanics has a natural representation in
Clifford algebra, since the Pauli matrices that appear in it form an algebra
that is isomorphic to a particular Clifford algebra. Some other applications
of Clifford algebra in physics are to Maxwell’s equations of electrodynamics,
which have a very concise representation, and to a flat-space theory of gravity
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[46, 106]. An introduction to geometric algebra for physicists was published
by Doran and Lasenby in 2003 [45].

The applications of Clifford algebra or geometric algebra in engineering
were initially based on the representation of geometric entities in projective
space, as introduced by Hestenes and Ziegler in [92]. These were, for exam-
ple, applications to projective invariants (see e.g. [107, 108]) and multiple-
view geometry (see e.g. [18, 145, 144]). Initial work in the field of robotics
used the representation of rotation operators in geometric algebra (see e.g.
[19, 161]). The first collections of papers discussing applications of geometric
algebra in engineering appeared in the mid 1990s [16, 48, 164, 165]. The first
design of a geometric algebra coprocessor and its implementation in a field-
programmable gate array (FPGA) was developed by Perwass, Gebken, and
Sommer in 2003 [137].

In 2001 Hongbo Li, David Hestenes, and Alyn Rockwood published three
articles in [164] introducing the conformal model [116], spherical conformal
geometry [117], and a universal model for conformal geometries [118]. These
articles laid the foundation for a whole new class of applications that could be
treated with geometric algebra. Incidentally, Pierre Anglés had already devel-
oped this representation of the conformal model independently in the 1980s
[6, 7, 8] but, apparently, it was not registered by the engineering community.
His work on conformal space can also be found in [9].

The conformal model is based on work by Friedrich L. Wachter (1792–
1817), a student of J. Carl F. Gauss (1777–1855), who showed that a certain
surface in hyperbolic geometry was metrically equivalent to Euclidean space.
Forming a geometric algebra over a homogeneous embedding of this space
extends the representation of points, lines, planes, and rotations about axes
through the origin to point pairs, circles, spheres, and conformal transforma-
tions, which include all Euclidean transformations. Note that the representa-
tion of Euclidean transformations in the conformal model is closely related to
biquaternions, which had been investigated by Clifford himself in 1873 [34],
a couple of years before he developed his algebra. The extended set of ba-
sic geometric entities in the conformal model and the additionally available
transformations made geometric algebra applicable to a larger set of appli-
cation areas, for example pose estimation [155, 152], a new type of artificial
neural network [15], and the description of space groups [89].

Although the foundations of the conformal model were laid by Li, Hestenes,
and Rockwood in 2001, its various facets, properties, and extensions are still
a matter of ongoing research (see e.g. [49, 105, 140, 160]). One of the aims
of this text is to present the conformal model in the context of other geo-
metric algebra models and to give a detailed derivation of the model itself,
as well as in-depth discussions of its geometric entities and transformation
operators. Even though the conformal model is particularly powerful, it is
presented as one special case of a general method for representing geometry
and transformations with geometric algebra. One result of this more general
outlook is the geometric algebra of conic space, which is published here in
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all of its details for the first time. In this geometric algebra, the algebraic
entities represent all types of projective conic sections.

1.2 Geometry

One of the novel features of the discussion of geometric algebra in this text
is the explicit separation of the algebra from the representation of geometry
through algebraic entities. In the author’s opinion this is an advantageous
view, since it clarifies the relation between the various geometric models
and indicates how geometric algebra may be developed for new geometric
models. The basic idea that blades represent linear subspaces through their
null space has already been noted by Hestenes. However, the consequent
explicit application of this notion to the discussion of different geometric
models and algebraic operations was first developed in [140] and is extended
in this text. Note that the notion of representing geometry through null spaces
is directly related to affine varieties in algebraic geometry [38].

One conclusion that can be drawn from this view of geometric algebra is
that there exist only three fundamental operations in the algebra, all based on
the same algebraic product: “addition”, “subtraction”, and reflection of linear
subspaces. All geometric entities, such as points, lines, planes, spheres, circles,
and conics, are represented through linear subspaces, and all transformations,
such as rotation, inversion, translation, and dilation, are combinations of re-
flections of linear subspaces. Nonlinear geometric entities such as spheres and
nonlinear transformations such as inversions stem from a particular embed-
ding of Euclidean space in a higher-dimensional embedding space, such that
linear subspaces in the embedding space represent nonlinear subspaces in
the Euclidean space, and combinations of reflections in the embedding space
represent nonlinear transformations in the Euclidean space. This aspect is
detailed further in Chap. 4, where a number of geometries are discussed in
detail.

The fact that all geometric entities and all transformation operations are
constructed through fundamental algebraic operations leads to two key prop-
erties of geometric algebra:

1. Geometric entities and transformation operators are constructed in ex-
actly the same way, independent of the dimension of the space they are
constructed in.

2. The intersection operation and the transformation operators are the same
for all geometric entities in all dimensions.

For example, it is shown in Sect. 4.2 that in the geometric algebra of the
projective space of Euclidean 3D space R3, a vector A represents a point.
The outer product (see Sect. 3.2.2) of two vectors A and B in this space,
denoted by A ∧ B, then represents the line through A and B. If A and B
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are vectors in the projective space of R10, say, they still represent points and
A ∧ B still represents the line through these points.

The intersection operation in geometric algebra is called the meet and is
denoted by ∨. If A and B represent any two geometric entities in any dimen-
sion, then their intersection is always determined with the meet operation as
A ∨ B. Note that even if the geometric entities represented by A and B have
no intersection, the meet operation results in an algebraic entity. Typically
this entity then represents an imaginary geometric object or one that lies at
infinity. This property of the intersection operation has the major advantage
that no additional checks have to be performed before the intersection of two
entities is computed.

The application of transformations is similarly dimension-independent. For
example, if R is an algebraic entity that represents a rotation and A repre-
sents any geometric entity, then R A R−1 represents the rotated geometric
entity, independent of its type and dimension. Note that juxtaposition of two
entities denotes the algebra product, the geometric product.

To a certain extent, it can therefore be said that geometric algebra allows
a coordinate-free representation of geometry. Hestenes emphasized this prop-
erty by developing the algebra with as little reference to a basis as possible in
[87, 91]. However, since in those texts the geometric algebra over real-valued
vector spaces is discussed, a basis can always be found, but it is not essential
for deriving the properties of the algebra. The concept of a basis-independent
geometric algebra was extended even further by Frank Sommen in 1997. He
constructed a Clifford algebra completely without the notion of a vector space
[162, 163]. In this approach abstract basic entities, called vector-variables, are
considered, which are not entities of a particular vector space. Instead, these
vector-variables are characterized purely through their algebraic properties.
An example of an application of this radial algebra is the construction of
Clifford algebra on super-space [21].

The applications considered in this text, however, are all related to par-
ticular vector spaces, which allows a much simpler construction of geometric
algebra. The manipulation of analytic expressions in geometric algebra is still
mostly independent of the dimensionality of the underlying vector space or
any particular coordinates.

1.3 Outlook

From a mathematical point of view, geometric algebra is an elegant and
analytically powerful formalism to describe geometry and geometric trans-
formations. However, the particular aim of the engineering sciences is the
development of solutions to problems in practical applications. The tools
that are used to achieve that aim are only of interest insofar as the execution
speed and the accuracy of solutions are concerned. Nevertheless, this does
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not preclude research into promising mathematical tools, which could lead to
a substantial gain in application speed and accuracy or even new application
areas. At the end of the day, though, a mathematical tool will be judged by
its applicability to practical problems. In this context, the question has to be
asked:

What are the advantages of geometric algebra?

Or, more to the point, when should geometric algebra be used? There appears
to be no simple, generally applicable answer to this question. Earlier in this
introduction, some pointers were given in this context. Basically, geometric
algebra has three main properties:

1. Linear subspaces can be represented in arbitrary dimensions.
2. Subspaces can be added, subtracted, and intersected.
3. Reflections of subspaces in each other can be performed.

Probably the most important effects that these fundamental properties have
are the following:

• With the help of a non-linear embedding of Euclidean space, it is possi-
ble to represent non-linear subspaces and transformations. This allows a
(multi)linear representation of circles and spheres, and non-linear trans-
formations such as inversions.

• The combination of the basic reflection operations results in more complex
transformations, such as rotation, translation, and dilation. The corre-
sponding transformation operators are nearly minimal parameterizations
of the transformation. Additional constraints, such as the orthogonality of
a rotation matrix, are encoded in the algebraic structure.

• Owing to the dimension-independent representation of geometric entities,
only a single intersection operation is needed to determine the intersec-
tions between arbitrary combinations of entities. This can be a powerful
analytical tool for geometrical constructions.

• The dimension-independent representation of geometric entities and re-
flections also has the effect that a transformation operator can be applied
to any element in the algebra in any dimension, be it a geometric entity
or another transformation.

• Since all transformations are represented as multilinear operations, the
uncertainty of Gaussian distributed transformation operators can be ef-
fectively represented by covariance matrices. That is, the uncertainty of
geometric entities and transformations can be represented in a unified fash-
ion.

These properties are used in Chap. 6 to construct and estimate uncer-
tain geometric entities and transformations. In Chap. 7, the availability of
a linearized inversion operator leads to a unifying camera model. Chapter 8
exploits the encoding of transformation constraints in the algebraic structure.
In Chap. 9, the dimension independence of the reflection operation leads to
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an immediate extension of Pythagorean-hodograph curves to arbitrary di-
mensions. And Chap. 10 demonstrates the usefulness of representing linear
subspaces in the Hilbert space of random variables.

It is hoped that the subjects discussed in this text will help researchers to
identify advantageous applications of geometric algebra in their field.

1.4 Overview of This Text

This section gives an overview of the main contributions of this text in the
context of research in geometric algebra and computer vision. The main aim
of this text is to give a detailed presentation of and, especially, to develop
new tools for the three aspects that are necessary to apply geometric algebra
to engineering problems:

1. Algebra, the mathematical formalism.
2. Geometry, the representation of geometry and transformations.
3. Numerics, the implementation of numerical solution methods.

This text gives a thorough description of geometric algebra, presents the
geometry of the geometric algebra of Euclidean, projective, conformal, and a
novel conic space in great detail, and introduces a novel numerical calculation
method for geometric algebra that incorporates the notion of random algebra
variables. The methodology presented combines the representative power of
the algebra and its effective algebraic manipulations with the demands of
real-life applications, where uncertain data is unavoidable.

A number of applications where this methodology is used are presented,
which include the description of uncertain geometric entities and transforma-
tions, a novel camera model, and monocular pose estimation with uncertain
data. In addition, applications of geometric algebra to some special polyno-
mial curves (Pythagorean-hodograph curves), and the geometric algebra over
the Hilbert space of random variables are presented.

In addition to the mathematical contributions, the software tool CLU-

Calc, developed by the author, is introduced. CLUCalc is a stand-alone
software program that implements geometric algebra calculations and, more
importantly, can visualize the geometric content of algebraic entities auto-
matically. It is therefore an ideal tool to help in the learning and teaching of
geometric algebra.

In the remainder of this section, the main aspects of all chapters are de-
tailed.
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1.4.1 CLUCalc

The software tool CLUCalc (Chap. 2) [133] was developed by the author
with the aim of furthering the understanding, supporting the teaching, and
implementing applications of geometric algebra. For this purpose, a whole
new programming language, called CLUScript, was developed, which was
honed for the programming of geometric algebra expressions. For example,
most operator symbols typically used in geometric algebra are available in
CLUScript. However, probably the most useful feature in the context of
geometric algebra is the automatic visualization of the geometric content of
multivectors. That is, the user need not know what a multivector represents
in order to draw it. Instead, the meaning of multivectors and the effect of
algebraic operations can be discovered interactively. Since geometric algebra
is all about geometry, CLUScript offers simple access to powerful visualiza-
tion features, such as transparent objects, lighting effects, texture mapping,
animation, and user interaction. It also supports the annotation of drawings
using LATEX text, which can also be mapped onto arbitrary surfaces. Note
that virtually all of the figures in this text were created with CLUCalc, and
the various applications presented were implemented in CLUScript.

1.4.2 Algebra

One aspect that has been mentioned before is the clear separation of algebraic
entities and their geometric interpretation. The foundation for this view is
laid in Chap. 3 by introducing the inner- and outer-product null spaces. This
concept is extended to the geometric inner- and outer-product null spaces in
Chap. 4 on geometries, to give a general methodology of how to represent
geometry by geometric algebra. Note that this concept is very similar to affine
varieties in algebraic geometry [38].

Another important aspect that is treated explicitly in Chap. 3 is that
of null vectors and null blades, which is something that is often neglected.
Through the definition of an algebra conjugation, a Euclidean scalar product
is introduced, which, together with a corresponding definition of the magni-
tude of an algebraic entity, or multivector, allows the definition of a Hilbert
space over a geometric algebra. While this aspect is not used directly, alge-
bra conjugation is essential in the general definition of subspace addition and
subtraction, which eventually leads to factorization algorithms for blades and
versors that are also valid for null blades and null versors. Furthermore, a
pseudoinverse of null blades is introduced. The relevance of these operations
is very high when working with the conformal model, since geometric entities
are represented by blades of null vectors. In order to determine the meet, i.e.
the general intersection operation, between arbitrary blades of null vectors,
a factorization algorithm for such blades has to be available.
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Independent of the null-blade aspect, a novel set of algorithms that are
essential when implementing geometric algebra on a computer are presented.
This includes, in particular, the evaluation of the join of blades, which is
necessary for the calculation of the meet. In addition, the versor factorization
algorithm is noteworthy. This factorizes a general transformation into a set
of reflections or, in the case of the conformal model, inversions.

1.4.3 Geometries

While the representation of geometric objects and transformations through
algebraic entities is straightforward, extracting the geometric information
from the algebraic entities is not trivial. For example, in the conformal model,
two vectors S1 and S2 can represent two spheres and their outer product
C = S1 ∧ S2 the intersection circle of the two spheres (see Sect. 4.3.4).
Extracting the circle parameters center, normal, and radius from the algebraic
entity C is not straightforward. Nevertheless, a knowledge of how this can
be done is essential if the algebra is to be used in applications.

Therefore, the analysis of the geometric interpretation of algebraic entities
that represent elements of 3D Euclidean space is discussed in some detail.
A somewhat more abstract discussion of the geometric content of algebraic
entities in the conformal model of arbitrary dimension can be found in [116].
Confining the discussion in this text to the conformal model of 3D Euclidean
space simplifies the formulas considerably.

Another important aspect of Chap. 4 is a discussion of how incidence
relations between geometric entities are represented through algebraic opera-
tions. This knowledge is pivotal when one is expressing geometric constraints
in geometric algebra.

A particularly interesting contribution is the introduction of the conic
space, which refers to the geometric algebra over the vector space of re-
duced symmetric matrices. In the geometric algebra of conic space, the outer
product of five vectors represents the conic section that passes through the
corresponding five points. The outer product of four points represents a point
quadruplet, which is also the result of the meet of two five-blades, i.e. the
intersection of two conic sections. The discussion of conic space starts out
with an even more general outlook, whereby the conic and conformal spaces
are particular subspaces of the general polynomial space.

1.4.4 Numerics

The essential difference in the treatment of numerical calculation with ge-
ometric algebra between this text and the standard approach introduced
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by Hestenes is that algebraic operations in geometric algebra are regarded
here as bilinear functions and expressed through tensor contraction. This ap-
proach was first introduced by the author and Sommer in [146]. While the
standard approach has its merits in the analytical description of derivatives
as algebraic entities, the tensorial approach allows the direct application of
(multi)linear optimization algorithms. At times, the tensorial approach also
leads to solution methods that cannot be easily expressed in algebraic terms.

An example of the latter case is the versor equation (see Sect. 5.2.2).
Without delving into all the details, the problem comes down to solving for
the multivector V , given multivectors A and B, the equation

V A − B V = 0 .

The problem is that it is impossible to solve for V through algebraic manip-
ulations, since the various multivectors typically do not commute. However,
in the tensorial representation of this equation, it is straightforward to solve
for the components of V by evaluating the null space of a matrix.

In the standard approach a function C(V ), say, would be defined as

C : V 7→ V A − B V .

The solution to V is then the vector V̂ , that minimizes ∆(V̂ ) := C(V̂ ) ·
C̃(V̂ ). To evaluate V̂ , the derivative of ∆(V̂ ) with respect to V̂ has to be
calculated, which can be done with the multivector derivative introduced by
Hestenes [87, 91] (see Sect. 3.6). Then a standard gradient descent method

or something more effective can be used to find V̂ . For an example of this
approach, see [112]. It is shown in Sect. 5.2.2, however, that the tensorial

approach also minimizes ∆(V̂ ); this method is much easier to apply.
Another advantage of the tensorial approach is that Gaussian distributed

random multivector variables can be treated directly. This use of the tenso-
rial approach was developed by the author in collaboration with W. Förstner
and presented at a Dagstuhl workshop in 2004 [136]. The present text ex-
tends this and additional publications [76, 138, 139] to give a complete and
thorough discussion of the subject area. The two main aspects with respect
to random multivector variables, whose foundations are laid in Chap. 5, are
the construction and estimation of uncertain geometric entities and uncertain
transformations from uncertain data. For example, an uncertain circle can
be constructed from the outer product of three uncertain points, and an un-
certain rotation operator may be constructed through the geometric product
of two uncertain reflection planes.

The representation of uncertain transformation operators is certainly a
major advantage of geometric algebra over a matrix representation. This is
demonstrated in Sect. 5.6.1, where it is shown that the variation of a ran-
dom transformation multivector in the conformal model, such as a rotation
operator, lies (almost) in a linear subspace. A covariance matrix is therefore
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well suited to representing the uncertainty of a Gaussian distributed random
transformation multivector variable. It appears that the representation of
uncertain transformations with matrices is more problematic. Heuel investi-
gated an approach whereby transformation matrices are written as column
vectors and their uncertainty as an associated covariance matrix [93]. He
notes that this method is numerically not very stable.

A particularly convincing example is the representation of rotations about
the origin in 3D Euclidean space. Corresponding transformation operators in
the conformal model lie in a linear subspace, which also forms a subalgebra,
and a subgroup of the Clifford group. Rotation matrices, which are elements
of the orthogonal group, do not form a subalgebra at the same time. That
is, the sum of two rotation matrices does not, in general, result in a rotation
matrix. A covariance matrix on a rotation matrix can therefore only represent
a tangential uncertainty.

Instead of constructing geometric entities and transformation operators
from uncertain data, they can also be estimated from a set of uncertain
data. For this purpose, a linear least-squares estimation method, the Gauss–
Helmert model, is presented (see Sect. 5.9), which accounts for uncertainties
in measured data. Although this is a well-known method, a detailed derivation
is given here, to hone the application of this method to typical geometric-
algebra problems.

In computer vision, the measured data consists typically of the locations
of image points. Owing to the digitalization in CCD chips and/or the point
spread function (PSF) of the imaging system, there exists an unavoidable
uncertainty in the position measurement. Although this uncertainty is usu-
ally small, such small variations can lead to large deviations in a complex
geometric construction. Knowing the final uncertainty of the elements that
constitute the data used in an estimation may be essential to determining
the reliability of the outcome.

One such example is provided by a catadioptric camera, i.e. a camera with
a 360 degree view that uses a standard projective camera which looks at a
parabolic mirror. While it can be assumed that the uncertainties in the posi-
tion of all pixels in the camera are equal, the uncertainty in the corresponding
projection rays reflected at the parabolic mirror varies considerably depend-
ing on where they hit the mirror. Owing to the linearization of the inversion
operation in the conformal model, which can be used to model reflection in
a parabolic mirror (see Sect. 7.2), simple error propagation can be used here
to evaluate the final uncertainty of the projection rays. These uncertain rays
may then form the data that is used to solve a pose estimation problem (see
Chap. 8).
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1.4.5 Uncertain Geometric Entities and Operators

In Chap. 6, the tools developed in Chap. 5 are applied to give examples of
the construction and estimation of uncertain geometric entities and trans-
formation operators. Here the construction of uncertain lines, circles, and
conic sections from uncertain points is visualized, to show that the standard-
deviation envelopes of such geometric entities are not simple surfaces. The use
of a covariance matrix should always be favored over simple approximations
such as a tube representing the uncertainty of a line.

Furthermore, the effect of an uncertain reflection and rotation on an ideal
geometric entity is shown. This has direct practical relevance, for example,
in the evaluation of the uncertainty induced in a light ray which is reflected
off an uncertain plane.

With respect to the estimation of geometric entities and transformation
operators, standard problems that occur in the application of geometric al-
gebra to computer vision problems are presented, and it is shown how the
methods introduced in Chap. 5 can be used to solve them. In addition, the
metrics used implicitly in these problems are investigated. This includes the
first derivation of the point-to-circle metric and the versor equation metric.

The quality of the estimation methods presented is demonstrated in two
experiments: the estimation of a circle and of a rotation operator. Both ex-
periments demonstrate that the Gauss–Helmert method gives better results
than a simple null-space estimation. The estimation of the rotation opera-
tor is also compared with a standard method, where it turns out that the
Gauss–Helmert method gives better and more stable results.

Another interesting aspect is hypothesis testing, where questions such as
“does a point lie on a line?” are answered in a statistical setting. Here, the
first visualization of what this means for the question “does a point lie on a
circle?” in the conformal model is given (see Fig. 6.10).

1.4.6 The Inversion Camera Model

The inversion camera model is a novel camera model that was first published
by Perwass and Sommer in [147]. In Chap. 7 an extended discussion of this
camera model is given, which is applied in Chap. 8 to monocular pose es-
timation. The inversion camera model combines the pinhole camera model,
a lens distortion model, and the catadioptric-camera model for the case of
a parabolic mirror. All these configurations can be obtained by varying the
position of a focal point and an inversion sphere. Since inversion can be rep-
resented through a linear operator in the conformal model, the geometric
algebra of conformal space offers an ideal framework for this camera model.
The unification of three camera models that are usually treated separately
can lead to generalized constraint equations, as is the case for monocular
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pose estimation. Note that the camera model is represented by a transfor-
mation operator in the geometric algebra of conformal space, which implies
that it can be easily associated with a covariance matrix that represents its
uncertainty.

1.4.7 Monocular Pose Estimation

In Chap. 8 an application is presented that uses all aspects of the previ-
ously presented methodology: a geometric setup is translated into geometric-
algebra expressions, algebraic operations are used to express a geometric
constraint, and a solution is found using the tensorial approach, which in-
corporates uncertain data. While the pose estimation problem itself is well
known, a number of novel aspects are introduced in this chapter:

• a simple and robust method to find an initial pose,
• the incorporation of the inversion camera model into the pose constraint,
• a pose constraint equation that is quadratic in the components of the pose

operator without making any approximations, and
• the covariance matrix for the pose operator and the inversion camera model

operator.

The pose estimation method presented is thoroughly tested against ground
truth pose data generated with a robotic arm for a number of different imag-
ing systems.

1.4.8 Versor Functions

In Chap. 9 some instances of versor functions are discussed, that is, functions
of the type F : t 7→ A(t) N Ã(t). One geometric interpretation of this
type of function is that a preimage A(t) scales and rotates a vector N . It is
shown that cycloidal curves generated by coupled motors, Fourier series of
complex-valued functions, and Pythagorean-hodograph (PH) curves are all
related to this form.

In the context of PH curves, a new representation based on the reflection
of vectors is introduced, and it is shown that this is equivalent to the standard
quaternion representation in the case of cubic and quintic PH curves. This
novel representation has the advantage that it can be immediately extended
to arbitrary dimensions, and it gives a geometrically more intuitive repre-
sentation of the degrees of freedom. This also leads to the identification of
parameter subsets that generate PH curves of constant length but of different
shape. The work on PH curves resulted from a collaboration of the author
with R. Farouki [135].
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1.4.9 Random Variable Space

Chap. 10 gives an example of a geometric algebra over a general Hilbert space,
instead of a real-valued vector space. The Hilbert space chosen here is that of
random variables. This demonstrates how the geometric concepts of geomet-
ric algebra can be applied to function spaces. Some fundamental properties
of random variables are presented in this context. This leads to a straight-
forward derivation of the Cauchy–Schwarz inequality and an extension of the
correlation coefficient to an arbitrary number of random variables. The ge-
ometric insight into geometric algebra operations gained for the Euclidean
space can be applied directly to random variables, which gives properties such
as the expectation value, the variance, and the correlation a direct geometric
meaning.

1.5 Overview of Geometric Algebra

In this section, a mathematical overview of some of the most important as-
pects of geometric algebra is presented. The purpose is to give those readers
who are not already familiar with geometric algebra a gentle introduction
to the main concepts before delving into the detailed mathematical analysis.
To keep it simple, only the geometric algebra of Euclidean 3D space is used
in this introduction and formal mathematical proofs are avoided. A detailed
introduction to geometric algebra is given in Chap. 3.

One problem in introducing geometric algebra is that depending on the
reader’s background, different introductions are best suited. For pure mathe-
maticians the texts on Clifford algebra by Porteous [148], Gilbert and Murray
[79], Lounesto [119], Riesz [149], and Ablamowicz et al. [3], to name just a
few, are probably most instructive. In this context, the text by Lounesto pre-
senting counterexamples of theorems in Clifford algebra should be of interest
[120].

The field of Clifford analysis is only touched upon when basic multivector
differentiation is introduced in Sect. 3.6. This is sufficient to deal with the
simple functions of multivectors that are encountered in this text. Thorough
treatments of Clifford analysis can be found in [24, 41, 42].

This text is geared towards the use of geometric algebra in engineering
applications and thus stresses more those aspects that are related to the rep-
resentation of geometry and Euclidean transformations. It may thus not treat
all aspects that the reader is interested in. As always, the best way is to read
a number of different introductions to geometric algebra. After the books
by Hestenes [87, 88, 91], there are a number of papers and books geared to-
wards various areas, in particular physics and engineering. For physics-related
introductions see, for example [45, 83, 110], and for engineering-related in-
troductions [47, 48, 111, 140, 50, 172].
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1.5.1 Basics of the Algebra

The real-valued 3D Euclidean vector space is denoted by R3, with an or-
thonormal basis e1,e2,e3 ∈ R3. That is,

ei ∗ ej = δij , δij :=

{
1 : i = j ,

0 : i 6= j ,

where ∗ denotes the standard scalar product. The geometric algebra of R3 is
denoted by G(R3), or simply G3. Its algebra product is called the geometric
product, and is denoted by the juxtaposition of two elements. This is just as
in matrix algebra, where the matrix product of two matrices is represented
by juxtaposition of two matrix symbols. The effect of the geometric product
on the basis vectors of R3 is

ei ej =

{
ei ∗ ej : i = j ,

eij : i 6= j .
(1.1)

One of the most important points to note for readers who are new to geo-
metric algebra is the case when i 6= j, where eij ≡ ei ej represents a new
algebraic element, sometimes also denoted by eij for brevity. Similarly, if
i, j, k ∈ {1, 2, 3} are three different indices, eijk := ei ej ek is yet another
new algebraic entity. That this process of creating new entities cannot be
continued indefinitely is ensured by defining the geometric product to be
associative and to satisfy ei ei = 1. The latter is also called the defining
equation of the algebra. For example,

(ei ej ek)ek = (ei ej) (ek ek) = (ei ej) 1 = ei ej .

In Chap. 3 it is shown that (1.1) together with the standard axioms of an
associative algebra suffices to show that

ei ej = −ej ei if i 6= j . (1.2)

This implies, for example, that

(ei ej ek) ej = (ei ej) (ek ej) = −(ei ej) (ej ek) = −ei (ej ej)ek = −ei ek .

From these basic rules, the basis of G3 can be found to be

G3 :=
{

1, e1, e2, e3, e12, e13, e23, e123

}
. (1.3)

In general, the dimension of the geometric algebra of an n-dimensional vector
space is 2n.
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1.5.2 General Vectors

The operations introduced in the previous subsection are valid only for a
set of orthonormal basis vectors. For general vectors of R3, the algebraic
operations have somewhat more complex properties, which can be related to
the properties of the basis vectors by noting that any vector a ∈ R3 can be
written as

a := a1 e1 + a2 e2 + a3 e3 .

Note that the scalar components of the vector a, a1, a2, a3, are indexed by
a superscript index. This notation will be particularly helpful when algebra
operations are expressed as tensor contractions. In particular, the Einstein
summation convention can be used, which states that a subscript index re-
peated as a superscript index within a product implies a summation over the
range of the index. That is,

a := ai ei ≡
3∑

i=1

ai ei .

It is instructive to consider the geometric product of two vectors a, b ∈ R3

with a := ai ei and b := bi ei. Using the multiplication rules of the geometric
product between orthonormal basis vectors as introduced in the previous
subsection, it is straightforward to find

a b = (a1 b1 + a2 b2 + a3 b3)

+ (a2 b3 − a3 b2) e23

+ (a3 b1 − a1 b3) e31

+ (a1 b2 − a2 b1) e12 .

(1.4)

Recall that e23, e31 and e12 are new basis elements of the geometric algebra
G3. Because these basis elements contain two basis vectors from the vector
space basis of R3, they are said to be of grade 2. Hence, the expression

(a2 b3 − a3 b2) e23 + (a3 b1 − a1 b3) e31 + (a1 b2 − a2 b1) e12

is said to be a vector of grade 2, because it is a linear combination of the
basis elements of grade 2.

The sum of scalar products in (1.4) is clearly the standard scalar product
of the vectors a and b, i.e. a ∗ b. The grade 2 part can also be evaluated
separately using the outer product. The outer product is denoted by ∧ and
defined as

ei ∧ ej =

{
0 : i = j

ei ej : i 6= j
(1.5)
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Since ei ∧ ej = ei ej if i 6= j, it is clear that ei ∧ ej = −ej ∧ ei. Also, note
that the expression ei ∧ ei = 0 is the defining equation for the Grassmann,
or exterior, algebra (see Sect. 3.8.4). Therefore, by using the outer product,
the Grassmann algebra is recovered in geometric algebra.

Using this definition of the outer product, it is not too difficult to show
that

a ∧ b = (a2 b3 − a3 b2) e23 + (a3 b1 − a1 b3) e31 + (a1 b2 − a2 b1) e12 ,

which is directly related to the standard vector cross product of R3, since

a × b = (a2 b3 − a3 b2) e1 + (a3 b1 − a1 b3) e2 + (a1 b2 − a2 b1) e3 .

To show how one expression can be transformed into the other, the concept
of the dual has to be introduced. To give an example, the dual of e1 is e2 e3,
that is, the geometric product of the remaining two basis vectors. This can
be interpreted in geometric terms by saying that the dual of the subspace
parallel to e1 is the subspace perpendicular to e1, which is spanned by e2

and e3.
A particularly powerful feature of geometric algebra is that this dual op-

eration can be expressed through the geometric product. For this purpose,
the pseudoscalar I of G3 is defined as the basis element of highest grade,
i.e. I := e1 e2 e3. Using again the rules of the geometric product, it fol-
lows that the inverse pseudoscalar is given by I−1 = e3 e2 e1, such that
I I−1 = I−1 I = 1. The dual of some multivector A ∈ G3 is denoted by A∗

and can be evaluated via
A∗ = A I−1 .

It now follows that

(a ∧ b)
∗

= (a ∧ b) I−1 = a × b .

What does this show? First of all, it shows that the important vector cross
product can be recovered in geometric algebra. Even more importantly, it
implies that the vector cross product is only a special case, for a three-
dimensional vector space, of a much more general operation: the outer prod-
uct. Whereas the expression a ∧ b is a valid operation in any dimension
greater than or equal to two, the vector cross product is defined only in three
dimensions.

From the geometric interpretation of the dual, the geometric relation be-
tween the vector cross product and the outer product can be deduced. The
vector cross product of a and b represents a vector perpendicular to those
two vectors. Hence, the outer product a ∧ b represents the plane spanned
by a and b. It may actually be shown that with an appropriate definition
of the magnitude of multivectors, the magnitude ‖a ∧ b‖ is the area of the
parallelogram spanned by a and b, as illustrated in Fig. 1.1 (see Sect. 4.1.1).
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algebraic entities is introduced. The basic idea is to associate an algebraic
entity with the null space that it generates with respect to a particular oper-
ation. One operation that is particularly useful for this purpose is the outer
product; this stems from the fact that

x ∧ a = 0 ⇐⇒ x = u a , ∀ u ∈ R ,

where x,a ∈ R3. Similarly, it can be shown that for x,a, b ∈ R3,

x ∧ a ∧ b = 0 ⇐⇒ x = u a + v b , ∀ u, v ∈ R .

In this way, a can be used to represent the line through the origin in the
direction of a and a ∧ b to represent the plane through the origin spanned
by a and b. Later on in the text, this will be called the outer-product null
space (see Sect. 3.2.2). This concept is extended in Chap. 4 to allow the
representation of arbitrary lines, planes, circles, and spheres.

For example, in the geometric algebra of the projective space of R3, vectors
represent points in Euclidean space and the outer product of two vectors
represents the line passing through the points represented by those vectors.
Similarly, the outer product of three vectors represents the plane through the
three corresponding points (see Sect. 4.2).

In the geometric algebra of conformal space, there exist two special points:
the point at infinity, denoted by e∞, and the origin eo. Vectors in this space
again represent points in Euclidean space. However, the outer product of
two vectors A and B, say, represents the corresponding point pair. The line
through the points A and B is represented by A∧B∧e∞, that is, the entity
that passes through the points A and B and infinity. Furthermore, the outer
product of three vectors represents the circle through the three corresponding
points, and similarly for spheres (see Sect. 4.3).

Another important product that has not been mentioned yet is the in-
ner product, denoted by ·. The inner product of two vectors a, b ∈ R3 is
equivalent to the scalar product, i.e.

a · b = a ∗ b .

However, the inner product of a grade 1 and a grade 2 vector results in a
grade 1 vector and not a scalar. That is, given three vectors a, b, c ∈ R3, then

x := a · (b ∧ c)

is a grade 1 vector. It is shown in Sect. 3.2.7 that this equation can be
expanded into

x = (a · b) c − (a · c) b = (a ∗ b) c − (a ∗ c) b .

Using this expansion, it is easy to verify that
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R = m̂ n̂ = m̂ ∗ n̂ + m̂ ∧ n̂ = cos θ + sin θ
m̂ ∧ n̂

‖m̂ ∧ n̂‖ , (1.7)

because ‖m̂ ∧ n̂‖ = sin θ, if θ = ∠(m̂, n̂) (see Sect. 4.1.1). It was shown
earlier that a bivector e1 e2, for example, squares to −1. The same is true for
any unit bivector such as Û := (m̂ ∧ n̂)/‖m̂ ∧ n̂‖, i.e. Û2 = −1. Identifying

Û ∼= i, where i denotes the imaginary unit i =
√
−1, it is clear that (1.7) can

be written as

cos θ + sin θ Û ∼= cos θ + sin θ i = exp(θ i) .

Extending the definition of the exponential function to geometric algebra, it
may thus be shown that the rotor given in (1.7) can be written as

R = exp(θ Û) .

Just as a rotation operator in Euclidean space is a combination of reflec-
tions, the available transformations in conformal space are combinations of
inversions, which generates the group of conformal transformations. This in-
cludes, for example, dilation and translation. Hence, rotors in the conformal
embedding space can represent dilations and translations in the correspond-
ing Euclidean space.

1.5.5 Outermorphism

The outermorphism property of transformation operators, not to be confused
with an automorphism, plays a particularly important role, and is one of the
reasons why geometric algebra is such a powerful language for the descrip-
tion of geometry. The exact mathematical definition of the outermorphism
of transformation operators is given in Sect. 3.3. The basic idea is as follows:
if R denotes a rotor and a, b ∈ R3 are two vectors, then

R (a ∧ b) R̃ = (R a R̃) ∧ (R b R̃) .

Since geometric entities are represented by the outer product of a number
of vectors, called a blade, the above equation implies that the rotation of
a blade is equivalent to the outer product of the rotation of the constituent
vectors. That is, a rotor rotates any geometric entity, unlike rotation matrices,
which differ for different geometric entities. Of course, all transformation
operators that are constructed from the geometric product of vectors satisfy
the outermorphism property.



Chapter 2

Learning Geometric Algebra with
CLUCalc

Before the theory of geometric algebra is discussed in detail in the following
chapters, the software tool CLUCalc [133] is presented, which can help one
to understand the algebra’s algebraic and geometric properties. CLUCalc

allows the user to enter geometric algebra expressions in much the same
way as they are written in this text, and to investigate and visualize their
outcome. In fact, a whole programming language, called CLUScript, has
been developed by the author that combines structured programming with
an intuitive representation of mathematical operations and simple methods
to generate high-quality visualizations.

In particular, readers who are interested in the geometric representation
of multivectors, as discussed in Chap. 4, will find that CLUCalc facilitates
their understanding considerably; this will lead to a quicker and more in-
tuitive insight into the structure of geometric algebra. However, CLUCalc

can also be used to implement complex algorithms, to generate illustrations
for publications, and to give presentations including animated and user-
interactive embedded 3D visualizations. All drawings shown in this text,
for example, were generated using CLUCalc. Some additional interesting
features of CLUCalc are:

• automatic analysis and visualization of multivectors with respect to their
geometric content;

• user-interactive and animated visualizations;
• rendering of arbitrary LATEX text1 for the annotation of graphics and for

texture mapping onto arbitrary surfaces;
• support for solving (multi)linear multivector equations;
• full support for the tensor representation of multivector equations, as dis-

cussed in Chap. 5;
• support for error propagation in algebraic operations;
• reading, writing, and texture mapping of images;
• control of external hardware through a serial port.

1 This requires LATEX and Ghostscript to be installed on the system.
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These features indicate that CLUCalc is more than a visualization tool
for geometric algebra. In fact, it has been used in various applications. For
example, the monocular pose estimation algorithm presented in Chap. 8 was
implemented and tested with CLUCalc. CLUCalc was also used for the
development and implementation of an inverse kinematic algorithm, which
was used to control a robotic arm [95, 96]. CLUScripts that implement these
algorithms can be found on [94]. Another application is the visualization of
point groups, and wallpaper groups with CLUCalc [97, 142, 99, 98, 143,
100]. The visualizations scripts are freely available from [141]. The Space
Group Visualizer, which is the first tool to visualize all 230 space groups in
3D space, is also based on CLUCalc. There are many CLUScripts available
that visualize physical and geometrical constellations. For example, there are
scripts that simulate the gravitational three-body problem, visualize parts of
the solar system, and demonstrate the constraints of the fundamental matrix.
All of these can be found in the distribution of CLUCalc and on [133]. The
current, freely available versions of CLUCalc for various operating systems,
as well as a complete documentation of all its features, can be found at that
site.

The aim of this chapter is to show the potential that CLUCalc offers for
learning and teaching geometric algebra, but also anything else that has a
geometric representation. In the next section, the motivation for the devel-
opment of CLUCalc and some other software tools are briefly discussed.
Then the basics of CLUCalc and the programming language CLUScript

are introduced, which should help the reader to use CLUCalc alongside this
text as a learning tool.

2.1 Background

Probably the first automatic visualization of elements of geometric algebra
was implemented in a MATLAB toolbox called GABLE, which allowed the
user to visualize such elements in 3D Euclidean space [51]. Unfortunately,
elements in projective or conformal space could not be visualized. Therefore,
the development of a C++ software library was started in 2001 by the author,
which could automatically interpret elements of a geometric algebra in terms
of their geometric representation and visualize them. The visualization was
done using the OpenGL 3D graphics library and worked for 3D Euclidean
space and the corresponding projective and conformal spaces. The software
library, called CLUDraw, was made available in August 2001 under the
GNU Public License agreement as open source software. CLUDraw itself
was based on a C++ implementation of geometric algebra by the author,
which had been under development since 1996.

The drawback of this library was that a user had to know how to program
in C++ in order to use it. Furthermore, every time the program was changed,
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it had to be recompiled in order to visualize the new result. Many people who
might have been interested in geometric algebra could therefore not use this
tool, and even for those who did know how to program in C++, it was quite
tedious to constantly recompile a program when a small change was made
to a variable. This is the context in which the idea was born of developing a
stand-alone program, with an integrated parser, such that formulas could be
typed in and visualized right away. This was the birth of CLUCalc, whose
first version was made available for download in February 2002.

The basic philosophy behind the development of CLUCalc was that the
user had a geometric-algebra formula and would like to know what that
formula implied geometrically. To simplify this process as much as possible,
the programming language CLUScript was developed from scratch. In this
way, the symbols representing the various products in geometric algebra could
be chosen such that they were as close as possible to the ones used on paper.
For example, the formula

Y = (A ∧ B) · X becomes Y = (A ˆ B) . X

in CLUScript.
In addition to CLUCalc a number of programming libraries and stand-

alone programs in a variety of languages are available. Probably the first
implementation of geometric algebra on a computer was produced by a group
from the Helsinki University of Technology, lead by Pertti Lounesto, around
1982. This software tool, called CLICAL, can quickly perform calculations in
non-degenerate algebras Gp,q for any signature with p + q < 10. The latest
version of CLICAL is available from [121].

There are packages for the symbolic computer algebra system Maple [1, 2],
the C++ software library GluCat [114], the C++ software library generator
Gaigen [72], the visualization tool GAViewer [73], and the Java library Cla-
dos [44], to name just a few. A more in-depth overview of current software
implementations of geometric algebra can be found in [4].

2.2 The Software

In this section, the basic usage of the CLUCalc software program is de-
scribed. A detailed description can be found in the online manual at [133].
Figure 2.1 shows a screenshot of CLUCalc after it has been started. There
are three main windows: the editor, the output and the visualization window.
Note that the menus differ somewhat from window to window. If one of the
windows cannot be seen, it can be made active by pressing the following key
combinations:

• SHIFT + CTRL + e activates the editor window.
• SHIFT + CTRL + v activates the visualization window.





2.2 The Software 29

that is currently visualized by selecting from the Code menu the command
Parse Main. Alternatively, the key combination CTRL + m is available.

When the right mouse button is clicked in the editor window, a context
menu pops up that allows the insertion of standard CLUScript constants
into the script text.

2.2.2 Visualization Window

The visualization window displays anything that is drawn by the script. In-
dependently of what has been drawn, the user can rotate and move the visu-
alization using the mouse. This is done by placing the mouse anywhere inside
the visualization window, holding down the left or right mouse button, and
moving the mouse. When the left mouse button is pressed, the visualization
is rotated, whereas holding the right mouse button translates it. Rotations
and translations along different axes can be achieved by holding the SHIFT
button at the same time. Note that selecting Local Rotation in the
Visualization menu allows a different type of rotation, which may be bet-
ter suited for certain visualizations. Another useful feature is available when
Animation and Mouse animation are selected in the Visualization
menu, where the visualization can be given a rotation impulse with the mouse,
and the rotation is then continued.

In addition to rotating and translating the whole visualization, the user can
also interact with the visualization or, rather, the visualization script using
the mouse. This is controlled via Mouse Modes, which can be selected in
a combo box in the visualization window, or by using the keys CTRL + 0

to CTRL + 9. Mouse mode zero is the standard mouse mode, which, when
selected, allows the user to rotate and translate the whole visualization. If one
of the other mouse modes is selected, moving the mouse in the visualization
window with a mouse button pressed varies internal variables and reexecutes
the script at each mouse position change. Within the script, these internal
variables can then be used to influence the visualization. In this way, highly
interactive scripts can be created.

Note that the visualization window can be toggled between full-screen view
and a normal window with the key combination CTRL + f.

2.2.3 Output Window

The output window simply displays the values of variables. Using the View
menu, the variable types can be chosen to be displayed, and it is possible to
toggle between a simple and a more complex display. The Edit menu allows
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the user to copy the content of the output window as HTML code into the
clipboard.

2.2.4 Command Line Parameters

CLUCalc has a number of command line parameters that can be quite
helpful for various purposes. In general, the filename of a CLUScript, when
used as a command line parameter, will automatically load and execute the
script when CLUCalc is started. Furthermore, the following parameters are
available:

• --main-path=[path]. Here, a path can be specified which has as sub-
directories the ExampleScripts and Documentation directories. This
option allows CLUCalc to find the documentation and example scripts,
even if it is started from a different directory.

• --no-intro. This starts CLUCalc with an empty script and tiles the
windows such that all of them can be seen. This is a useful setting when
one is working with CLUCalc.

• --viz-only. This starts CLUCalc with only the visualization window.
That is, the user can neither edit nor see the script or the text output. This
can be useful when one is giving presentations with some other program
and using CLUCalc for visualizations in between.

2.3 The Scripting Language

In this section, an overview of the CLUScript programming language is
given. A detailed programming and reference manual is included in the CLU-

Calc distribution and is also available from [133].

2.3.1 Basics

CLUScript is somewhat similar to the C programming language. Just as
in C, every program line has to be ended by a semicolon. The advantage of
this convention is that a program line can be extended over a number of text
lines. Comments can be included in the script in the same way as in C and
C++. For example,

// This is a single-line comment

/*
and here

is a block comment */
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A = 1 + 2;

// The above line gives the same result as

A =

1

+ 2;

Such a script can be executed with the key combination CTRL + p. The
end of a script does not have to be signaled with a particular keyword. By
the way, a question mark at the beginning of a line prints the result in the
output window after evaluation of the corresponding line.

It was mentioned in the introduction to this chapter that one aim in the
development of the CLUScript language was to map the operator sym-
bols of geometric algebra one-to-one, as far as possible, to the programming
language. The resultant syntax is shown in Table 2.1.

Lists are a very useful feature of CLUCalc. A list is generated using
square brackets [], as in lA = [1,2,3];, or by employing the function
List. For example, lA = List(3); generates a list with three entries and
sets them to zero. An empty list can be generated by writing lA = [];.
Lists can also be nested and they can contain elements of arbitrary type.
For example, lA = [1, "Hello", [2,3]]; is also a valid list, which
contains an integer, a string, and a sublist. Elements in a list can be accessed
using round brackets (). For example, lA(2) returns the second element in
a list lA. The second element in a list can be replaced with a new value via
lA(2) = 1;.

A particularly useful feature of CLUScript is the automatic expansion
of operations on lists to all elements in the list. For example,

lA = [1,2,3] + 1;

adds 1 to all elements in the list and stores the result in lA. This is also possi-
ble between two lists. For example, the expression lA = [1,2] + [1,2];

generates the nested list [[2,3],[3,4]]. By the way, this can be trans-
formed into a matrix variable using the function Matrix. There also exist
“point operators” that expand componentwise between lists. For example,
lA = [1,2] .+ [1,2] results in the list [2,4]. That is, the first and
the second components are added separately. For more details, see the CLU-

Calc reference manual. The following script is a short example, which uses
this expansion of operations on lists to rotate a list of vectors in a single
command line:

R = RotorE3(0,1,0, Pi/4);

lV = R * [ VecE3(1,0,0), VecE3(0,1,0), VecE3(0,0,1) ] * ˜R;
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Table 2.1 Operator symbols in CLUScript

Operation Formula CLUScript

Geometric product A B A * B

Inner product A ·B A . B

Outer product A ∧B A ˆ B

Addition A + B A + B

Subtraction A−B A - B

Join A∧̇B A | B

Meet A ∨B A & B

Inverse A−1 !A

Reverse Ã ˜A

Dual A∗
*A

Grade projection 〈A〉k A◦k

Integer power Ak Aˆˆk

2.3.2 Visualizing Geometry

In order to describe geometry, the geometric algebra of 3D Euclidean space or
the corresponding projective and conformal spaces are typically considered.
In each space, vectors and blades usually represent different geometric entities
and therefore have to be analyzed differently. CLUCalc allows the user to
work in all of these three spaces concurrently and to transfer vectors from
any space to any other.

The basis vectors of each of the spaces can be defined by calling the func-
tions DefVarsE3(), DefVarsP3(), and DefVarsN3(), for the Euclidean
space R3 and for the corresponding projective and conformal spaces, respec-
tively. The variables and their algebraic contents defined by these functions
are listed in table 2.2. Note that in addition to these three spaces, the conic
space discussed in Sect. 4.4 is implemented. See the reference manual for
more details.

Vectors in the various spaces can be generated either through linear com-
bination of the basis vectors or with the functions VecE3(), VecP3(), and
VecN3(). These functions also transform vectors from one space into an-
other. Here is an example script:

?Ae = VecE3(1,2,0); // Create vector in E3 at (1,2,0)

?Ap = VecP3(Ae); // Embed vector Ae in projective space

?An = VecN3(Ap); // Embed proj. vector in conformal space

The question mark at the beginning of each line is an operator that prints
the contents of the element to its right in the output window. The output of
the above script is
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Table 2.2 Variables defined by the functions DefVarsE3(), DefVarsP3(), and
DefVarsN3() and their algebraic meaning

DefVarsE3() DefVarsP3() DefVarsN3()

Entity Var. Entity Var. Entity Var.

1 id 1 id 1 id

e1 e1 e1 e1 e1 e1

e2 e2 e2 e2 e2 e2

e3 e3 e3 e3 e3 e3

e4 e4 e+ ep

e− em

e∞ ≡ e+ + e− einf

eo ≡
1

2
(e− − e+) e0

n ≡ e∞ n

n̄ ≡ eo nb

e1 ∧ e2 ∧ e3 I e1 ∧ e2 ∧ e3 ∧ e4 I e1 ∧ e2 ∧ e3 ∧ e∞ ∧ eo I

Ae = 1 e1 + 2 e2
Ap = 1 e1 + 2 e2 + 1 e4
An = 1 e1 + 2 e2 + 2.5 e + 1 e0

In projective space, the homogeneous dimension is denoted by e4. In con-
formal space, e and einf denote e∞ and e0 denotes eo. Moving between
the different spaces is particularly useful for showing the different geometric
interpretations of blades in the different spaces. However, note that blades
cannot be transferred directly from one space to another. This has to be done
via the constituent vectors. Here is an example:

Ae = VecE3(1,0,0); // Create unit vector along x-dir.

Be = VecE3(0,1,0); // Create unit vector along y-dir.

:Red; // Switch current color to red.

:AeˆBe; // Visualize the outer product of Ae and Be

:Blue; // Switch current color to blue.

:VecP3(Ae)ˆVecP3(Be); // Visualize outer prod. of Ae and Be

// when embedded in projective space

:Green; // Switch current color to green.

:VecN3(Ae)ˆVecN3(Be); // Visualize outer prod. of Ae and Be

// when embedded in conformal space

The colon is an operator that tries to visualize the element to its right. Fig-
ure 2.2(a) shows the resultant visualization of this script. The disk is the
result of AeˆBe, the line is the result of VecP3(Ae)ˆVecP3(Be), and the
two points are the result of VecN3(Ae)ˆVecN3(Be). The disk represents
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(a) Geometric interpretation of the
outer product of two Euclidean vec-
tors (the disk) and the geometric
interpretation of the outer product
when the vectors are embedded in the
corresponding projective space (the
line) and conformal space (the point
pair)

(b) Geometric interpretation of the
outer product of three vectors in the
various spaces. The Euclidean, pro-
jective, and conformal interpretations
are now the whole space, the disk and
the circle, respectively

Fig. 2.2 Geometric interpretation of blades in different spaces

the subspace spanned by Ae and Be, where the area of the disk is the mag-
nitude of the blade AeˆBe. In projective space the outer product of the
embedded points VecP3(Ae) and VecP3(Be) represents the line passing
through the points Ae and Be in Euclidean space. The length of the line
gives the magnitude of the corresponding blade. The outer product of the
two vectors when embedded in conformal space (VecN3(Ae)ˆVecN3(Be))
represents the point pair (Ae, Be) in Euclidean space and is visualized ac-
cordingly. Note that such a point pair is in fact a one-dimensional sphere.

Figure 2.2(b) shows the same for the outer product of three vectors a, b,
and c, when regarded as Euclidean vectors and embedded in the correspond-
ing projective and conformal spaces. The outer product of three Euclidean
vectors in 3D Euclidean space represents the whole space. This is repre-
sented by the cube. The volume of the cube is equal to the magnitude of
the blade. When these three vectors are embedded in projective space, their
outer product represents a plane in Euclidean space, which is represented as
a disk. Again, the area of the disk is the magnitude of the blade. The outer
product of the three vectors, when embedded in conformal space, represents
a circle through these three points in Euclidean space. Hence, the circle is
drawn through the three points. The radius of the circle can be extracted
from the blade, but is not directly related to the magnitude of the blade in
conformal space.
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Note that the script shown above does not automatically generate the
annotations seen in Fig. 2.2. This has to be done with the help of additional
commands, as will be explained later on. Nonetheless, the images in Fig. 2.2
were generated directly with CLUCalc, and it is possible to use arbitrary
LATEX code for the annotations.

Intersections of geometric entities can also be evaluated and visualized
quite easily. In geometric algebra, the meet of two blades gives the blade
representing the largest subspace that the two blades have in common (see
Sect. 3.2.12). Geometrically speaking, this is an intersection. In CLUCalc,
the operator & is used to evaluate the meet of two multivectors. Note that
when & is applied to two integer values, it evaluates their bitwise logical AND.
In the following example script, two spheres represented in conformal space
are intersected and the resulting circle is intersected again with a plane:

SetPointSize(6); // Increase size of points

SetLineWidth(4); // Increase width of lines

DefVarsN3(); // Define standard variables for conformal space

:N3_SOLID; // Display spheres as solid objects

:DRAW_POINT_AS_SPHERE; // Draw points as small spheres

// red green blue alpha = transparency

:Color(1.000, 0.378, 0.378, 0.8); // Use a transparent color

// Make center of first sphere user-interactive

:S1 = SphereN3(VecE3(1), 1);

:MBlue; // Medium blue

:S2 = SphereN3(0.5,0,0, 1); // Another sphere of radius 1

:Green;

:C = S1 & S2; // The intersection of the two spheres

:Orange;

// Create plane, where ’e’ is a predefined variable denoting

// the point at infinity. ’e’ is defined through the function

// DefVarsN3() which was called in the fourth line.

// The scalar factor affects the size

// of the plane visualization.

:P = 10*VecN3(0,0,0) ˆ VecN3(1,0,0) ˆ VecN3(0,0,1) ˆ e;

:Magenta;

:X = P & C; // Evaluate intersection of circle and plane

Figure 2.3 shows the result of the above script. Note that all intersections
were evaluated with the same operation: the meet. The meet operator, as
implemented in CLUCalc, considers only the algebraic properties of the
multivectors and knows nothing about their geometric interpretation. It is,
in fact, a direct implementation of the mathematical definition of the meet.
The center of the sphere S1 in the above script can be changed interactively
by the user with the mouse when mouse mode 1 is selected. This will be
explained in more detail in Sect. 2.3.3. If S1 is moved by the user such that
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// circles.

MyFunc =

{

a = _P(1); // first parameter of function

Plane = _P(2); // second parameter of function

// Generate radius of circle from ’a’

r = pow(cos(1.5*a), 2) + 0.1;

// Generate center of circle from ’a’

d = 0.5*pow(cos(1*a), 2) + 0.1;

// Generate a sphere

S = SphereN3(0,0,d, r);

// Generate circle as intersection of

// sphere ’S’ and plane ’P’.

C = S & Plane;

// Generate a rotor, rotating about angle ’a’.

R = RotorN3(0,1,0, a);

// Generate a color depending on the circle’s radius

Col = Color(r - 0.1, 0, 1.1 - r);

// Evaluate the return value of this function

// as the rotated circle and the color.

// No semicolon here since this is the return value.

[(R * C * ˜R), Col]

}

// Preparations for a loop that generates a list

// of circles by evaluating the function ’MyFunc’

// for consecutive values of its parameter.

phi = 0;

Circle_list = []; //MyFunc(phi);

Color_list = []; //Color(1,0,0);

// Here the loop starts

loop

{

// Check the loop-end criterion

if (phi > 2*Pi)

break;

// Store return values in variables

[Circ, Col] = MyFunc(phi, P);

// Add a circle to the circle list

Circle_list << Circ;

// Add a corresponding color to the color list.

Color_list << Col;

// Increase the counting variable.

phi = phi + Pi / 40;

}
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2.3.3 User Interaction

Although static visualizations of geometric algebra formulas are already quite
useful, some properties can be understood much better with interactive vi-
sualizations. Making a visualization user-interactive is done quite easily with
CLUCalc. For example, a vector whose position can be changed by the user
is generated with VecE3(1). The number passed to the function VecE3 de-
notes the mouse mode mentioned earlier. This mouse mode can be set via a
menu in CLUCalc. If, in this example, the user sets the mouse mode to 1,
and then places the mouse pointer in the visualization window, holds down
the right mouse button and moves the mouse, the return value of VecE3(1)
is changed and the whole script is reexecuted. Therefore, anything that de-
pends on the return value of VecE3(1) will also be changed and redisplayed.
The scripts presented so far may thus be made user-interactive by simply
changing the initial VecE3 functions from fixed values (e.g. VecE3(1,0,0))
to mouse modes (e.g. VecE3(1)).

Apart from generating user-interactive vectors, it is also possible to extract
user-interactive scalar values which are related to certain mouse movements
in given mouse modes. The function which does this is called Mouse. For
example, the return value of the function call Mouse(1,2,1) depends on
the movement of the mouse along its x-axis when mouse mode 1 is selected
and the right mouse button is pressed. The first parameter gives the mouse
mode, the second one the mouse button (1, left; 2, right), and the third
parameter gives the axis (1, x-axis; 2, y-axis; 3, z-axis). By default, moving
the mouse with the right mouse button pressed changes the values for the
x- and z-axes. When the SHIFT key is pressed at the same time, the values
for the x- and y-axes are changed. The Mouse function for the left mouse
button, i.e. when the second parameter is set to 1, works very similarly. The
only difference is that the values returned lie in the range [0, 2π[. This is very
useful when making rotors interactive. Here is an example script:

// Use mouse mode 1 and left mouse button

?a = Mouse(1,1,1); // Value changed by movement in x-dir.

?b = Mouse(1,1,2); // Value changed by pressing "shift"

// and moving in y-dir.

?c = Mouse(1,1,3); // Value changed by NOT pressing "shift"

// and movement in y-dir.

:Red; // Set color to red

:Ry = RotorE3(0,1,0, a); // Rotor about y-axis with angle ’a’

:Color(0.1, 0.2, 0.8); // Set color to given (r,g,b) values

:Rz = RotorE3(0,0,1, b); // Rotor about z-axis with angle ’b’

:Color(0.2, 0.8, 0.1); // Set color to given (r,g,b) values

:Rx = RotorE3(1,0,0, c); // Rotor about x-axis with angle ’c’
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Fig. 2.5 Three rotors about the x-, y- and z-axes

The text output window of CLUCalc will now display the values of
x, y, and z, and the visualization window displays the rotors. Figure 2.5
shows an example visualization. A rotor is always visualized as a rotation
axis with a partial disk perpendicular to it, representing the rotation plane
and the rotation angle. By switching to mouse mode 1, holding down the left
mouse button, and moving the mouse, the user can continually change the
visualization according to the movement of the mouse.

2.3.4 Animation

Besides user-interactive visualizations, animation can be very helpful. The
two features can also be mixed, such that the user can interact with some
animated features. Again, it is very simple to animate a script with CLU-

Calc. First, CLUCalc has to be told that a script is to be animated. This is
done with the script line EnableAnimate( true );. Once the script has
been parsed, it is executed continually, with a maximum of 25 executions per
second. The number of executions that can be achieved per second depends
on the script to be executed and the computer used.

In order to generate animated visualizations, two variables are now avail-
able: Time and dTime. The former gives the time in seconds that has elapsed
since the start of the animation, and the latter gives the time that has elapsed
since the last execution of the script. Although the time variables give the
time in seconds, their precision lies in the area of one millisecond. Here is an
example script that uses animation:

// Enable animation of this script.
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EnableAnimate( true );

// Output time since start of animation in text output window.

?Time;

DegPerSec = 45; // Rotate with 45 degrees per second

// Evaluate current rotation angle. The variable ’RadPerDeg’

// is predefined and gives radians per degree. The variable

// ’Pi’ is also predefined with the value of pi.

// The operator ’%’ evaluates the modulus.

?angle = (Time * DegPerSec * RadPerDeg) % (2*Pi);

:Black;

// This will become the user-interactive rotation axis with

// initial value (0,1,0), i.e. the y-axis.

:w = VecE3(1) + VecE3(0,1,0);

:Blue;

:R = RotorP3(w, angle); // The actual rotor about axis ’w’

:Red;

// The plane through points (1,0,0), (1,1,0), (1,0,1).

A = VecP3(1,0,0)ˆVecP3(1,1,0)ˆVecP3(1,0,1);

// The plane A rotated by R.

// Note that ˜R denotes the reverse of R.

:B = R * A * ˜R;

The animation feature may also be used to simulate physical effects such
as springs or gravitation. In this case it is usually necessary to initialize a
set of variables during the first run of a script. Subsequent runs should then
only adapt the variables’ current values. This can be done in CLUCalc via
the predefined variable ExecMode. The value of this variable may differ in
each execution of a script and depends on the reason why the script was
executed. To check for a particular execution mode, a bitwise AND operation
of ExecMode with one of a set of predefined variables has to be perfomed.
For example, if the script is executed because the user has changed it, then
ExecMode & EM_CHANGE is non-zero, where & is the operator for a bit-
wise AND. This is used in the following example script, where a mass feels a
gravitational pull towards the origin:

EnableAnimate( true ); // Make this script animated

// Check whether script has just been loaded

// or has been changed.

if (ExecMode & EM_CHANGE)

{

// if true: initialize variables.

TimeFactor = 0.01; // Factor for simulation timestep

G = 6.67e-2; // Gravitational constant (in some units)
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pos = VecP3(0,1,0); // Position vector in proj. space

vel = DirVecP3(6,0,0); // Direction vector in proj. space

Mass = 1; // Mass of object at origin

O = VecP3(0,0,0); // the origin

}

?deltaT = dTime * TimeFactor; // Current time step

dist = abs(pos - O); // Distance of mass to origin

dir = (O - pos) / dist; // Normalized direction to origin

acc = G * Mass / (dist * dist); // Current acceleration

vel = vel + acc * dir; // Adapt velocity

:Red;

:pos = pos + vel * deltaT; // Adapt position and draw it

:Blue;

:O;

2.3.5 Annotating Graphics

It was mentioned before that it is possible to annotate graphics generated
with CLUCalc using arbitrary LATEX code. This is a very useful feature,
because visualizations can become much easier to understand when the vari-
ous elements are labeled. The advantage of using LATEX code is, clearly, that
virtually all mathematical symbols are available. It is also convenient for
producing illustrations for printed texts, since the same symbols can be used
in the text and the illustration. In order for CLUCalc to be able to render
LATEX code, the LATEX software environment and some other helper programs
have to be installed. For the exact details, see [133].

LATEX text can be rendered in CLUCalc using the command DrawLatex.
The text always has to be drawn relative to a point. For example, to draw
the text “Hello World” at position (1, 1, 1), one can write

DrawLatex(1,1,1, "Hello World").

Instead of passing a string containing the LATEX text, it is also possible to
give the filename of a LATEX file, which is rendered instead.

The text is rendered as a bitmap and then drawn with the bottom left
corner at the position given. Since the text is drawn as a bitmap, it is not
changed perspectively when moved around in the visualization space. How-
ever, it is possible to use texture mapping to draw LATEX text on arbitrary
surfaces. This is demonstrated by the following short script. The visualization
generated by this script is shown in Fig. 2.6.

// Set Latex rendering size

SetLatexMagStep( 20 );

// Generate image of Latex text in white.
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overlay, which allows a static foreground or background. The following script
gives an example of this feature. The corresponding visualization is shown in
Fig. 2.7.

_BGColor = White; // Set White as background color

DefVarsE3(); // Define variables for E3

// Set Latex magnification. This is chosen very high here,

// since this script was used to generate the

// corresponding figure for this text.

SetLatexMagStep(20);

SetPointSize(8); // Size in which points are drawn.

:DRAW_POINT_AS_SPHERE; // Draw points as small spheres.

:E3_DRAW_VEC_AS_ARROW; // Draw vectors in E3 as arrows.

:e1 :Red; // Draw basis vector e1 in red.

:e2 :Green; // Draw basis vector e2 in green.

:e3 :Blue; // Draw basis vector e3 in blue.

:Black; // Draw the following text in black

SetImgAlign(0, 0.5); // Align text left/centered

SetImgPos( e1 );

:GetLatexImg("$\\vec{e}_1$", "e1"); // Draw text

SetImgAlign(0.5, 0); // Align text centered/bottom

SetImgPos( e2 );

:GetLatexImg("$\\vec{e}_2$", "e2"); // Draw text

SetImgAlign(1, 0.5); // Align text right/centered

SetImgPos( e3 );

:GetLatexImg("$\\vec{e}_3$", "e3"); // Draw text

:E3_DRAW_VEC_AS_POINT; // Draw vectors as points

:Orange; // Set color to orange

:A = VecE3(1); // Draw user-interactive vector

:Black; // Set color to black

SetImgAlign(-0.05,0); // Align text

SetImgPos( A );

:GetLatexImg( // Draw formula at position of ’A’

"\\[\\oint_{\\mathcal{S}}\\,f(\\vec{x})\\,d\\vec{x}\\]",

"formula");

// Now start an overlay to draw text

// that does not move when the user

// rotates or translates the above visualization.

scTitle = Scene( "Title" );

EnableSceneResetFrame( scTitle, true );

SetSceneOverlay( scTitle, 0, 1, 0, 1, -1, 1, false );

DrawToScene( scTitle );

SetLatexMagStep(26); // Size of Latex textS

SetImgAlign(0,1); // Align text left/top.

SetImgPos( 0, 1, 0 );

// Draw Title of slide

:GetLatexImg("\\sl The Title", "title");
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Constant = M * iM = 1
W = 1 + 1 e1
iW = 0

The inversion of multivectors offers the possibility to solve simple multi-
vector equations of the form A X = B for X if A and B are known. More
complex linear equations can be solved by regarding multivectors as simple
vectors in a higher-dimensional vector space, and geometric-algebra products
as bilinear functions in this space. CLUCalc supports this way of looking
at multivectors. The background to this functionality is discussed in detail
in Chap. 5. The main ideas are presented briefly in the following.

The algebraic basis of a geometric algebra over an n-dimensional vector
space has dimension 2n. Denoting the algebraic basis of Gn by {Ei}, then an
arbitrary multivector A ∈ Gn can be written as

A =
2n∑

i=1

ai Ei,

where the {ai} ⊂ R are scalars. The inner, outer, and geometric products of
geometric algebra between two multivectors may then be written as

A ◦ B =
2n∑

i=1

2n∑

j=1

2n∑

k=1

ai bj Γ k
ij Ek, (2.1)

where B =
∑2n

i=1 bi Ei, ◦ is a placeholder for one of the products, and Γ k
ij

is a tensor whose entries are either 1, −1, or zero. This tensor encodes the
particular properties of the product used. Therefore, this tensor is different for

each product. If a third multivector C ∈ G(Rn) is written as C =
∑2n

i=1 ci Ei

and C = A ◦ B, then the relation between the {ai}, {bj}, and {ck} follows
from (2.1) as

ck =
2n∑

i=1

2n∑

j=1

αi βj Γ k
ij . (2.2)

If A and C are known and B is to be evaluated, the sum over i on the

right-hand is evaluated, which then gives ck =
∑2n

j=1 bj H k
j , where H k

j :=
∑2n

i=1 ai Γ k
ij . By writing the {ck} and {bj} as column vectors c and b,

respectively, and H k
j as a matrix H, the above equation becomes c = H b,

which may be solved for b by inverting H. This is exactly what is done by
CLUCalc internally when the inverse of a multivector is evaluated.

If, instead of A and C, in the above example, B and C are known and A

is to be evaluated, then first the sum over j has to be evaluated. Taking care
of the order of the indices i and j of Γ k

ij is important, since the products
are in general not commutative, i.e. A ◦B 6= B ◦A. In CLUCalc the func-
tion GetMVProductMatrix is used to evaluate the sum of the components
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of a multivector with the tensor Γ k
ij for a given product. The functions

MV2Matrix and Matrix2MV transform multivectors to a vector represen-
tation and vice versa. Here is a simple example script that evaluates the
geometric product of two multivectors using this vector representation:

DefVarsE3(); // Define variables for E3

A = e1; // Define multivector A

B = e2; // Define multivector B

// Evaluate the matrix for the product A * B of the

// components of A summed over index i of the

// tensor gˆk_ij representing the geometric product.

Agp = GetMVProductMatrix(A, MVOP_GP, 1 /* from left */);

// Do the same for product B * A with components of a

gpA = GetMVProductMatrix(A, MVOP_GP, 0 /* from right */);

// Transform multivector B in matrix representation.

// Bm is a column vector.

Bm = MV2Matrix(B);

// The operator ’*’ between two matrices evaluates

// the standard matrix product.

C1m = Agp * Bm; // Evaluate A * B

C2m = gpA * Bm; // Evaluate B * A

?C1 = Matrix2MV(C1m); // Transform C1m back to a multivector

?C2 = Matrix2MV(C2m); // Transform C2m back to a multivector

This script produces the text output

C1 = [ 1 e12 ]
C2 = [ -1 e12 ]

Many more things can be done with these functions. It is, for example, possi-
ble to map not a whole multivector to a vector, but only certain components.
In this way, it is possible to solve for a rotor numerically, while ensuring that
the result can have only scalar and bivector components. This is discussed in
more detail in [133].

Another advanced feature of CLUCalc is the evaluation of products in ge-
ometric algebra with error propagation. This means that for each multivector
a covariance matrix can be defined representing the uncertainty with which
the multivector is known (see Chap. 5). It is then possible to evaluate the ge-
ometric, inner, and outer products of multivectors with associated covariance
matrices and propagate their uncertainties. Since intersections of geometric
objects can in principle be evaluated using the inner, outer, and/or geometric
product, it is possible to perform uncertain geometric reasoning with CLU-

Calc. Furthermore, since circles and spheres are represented in conformal
space in a linear fashion, error propagation extends readily to these objects.
One can, for example, evaluate a circle with an associated covariance matrix
from three uncertain points simply by evaluating their outer product with
error propagation. The mathematical aspects of this are discussed in more
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detail in Chap. 6. How error propagation can be used in CLUCalc is, again,
presented in [133].

There are many more aspects of CLUCalc that would be worth mention-
ing. However, what has been presented so far should suffice to allow the reader
to use CLUCalc as a helpful software tool to facilitate the understanding
of the remainder of this text.

2.4 Summary

The goal of this chapter was to give the reader a first impression of the
features of CLUCalc and CLUScript, and to show how this software may
be used to support the learning and teaching of geometry and other subjects
that profit from geometric visualizations. To summarize, probably the most
important features of CLUCalc are the following:

1. CLUCalc is a tool that analyzes entities of geometric algebra with respect
to their geometric meaning and visualizes them. This can be very useful
when learning about the geometric algebras of Euclidean, projective, and
conformal space, since it is possible to discover what the inner, outer, and
geometric products mean geometrically.

2. CLUCalc can be used to write scripts that evaluate complex algorithms,
and offers a platform to easily visualize results as interactive and/or an-
imated 3D graphics. This is certainly a useful aspect when one is doing
research with geometric algebra.

3. CLUCalc allows the user to produce images for printed publications that
use the same LATEX fonts as the printed text. By allowing transparent
surfaces and user-defined lighting, it allows the user to greatly increase
the visual impact of 3D graphics in a printed medium.

4. All visualizations can be used immediately in presentations. In particular,
the combination of fixed text and interactive and animated 3D graphics in
a slide can further the understanding of complex geometric relations and
is also bound to catch the attention of an audience.



Chapter 3

Algebra

In this chapter, a detailed introduction to the algebraic properties of geo-
metric algebra is given. The aim is to not only give an axiomatic derivation
but also to discuss the calculation rules that are needed to deal effectively
with geometric-algebra equations. The chapter starts with an axiomatic dis-
cussion of geometric algebra in terms of the elements of a canonical vector
space basis. Since, in this text, only geometric algebras over vector spaces are
used and, for any vector space, a basis can be found, this approach does not
constitute a loss of generality.

After the fundamental properties of basis blades are introduced in Sect. 3.1,
these are extended to general blades in Sect. 3.2. The properties derived here
are those that are most often used in later chapters. While blades represent
linear subspaces and thus geometric entities, Sect. 3.3 discusses versors, which
represent transformation operations, such as reflection and rotation. In this
context, the Clifford group and its subgroups the pin and the spin group are
discussed. A more general type of transformation of multivectors is presented
in Sect. 3.4, where general linear functions are considered. These are directly
related to matrix algebra, and certain properties of determinants are easily
derived in this context. Section 3.5 introduces the concept of reciprocal bases,
which play an important role in a number of applications, for example the
representation of pinhole cameras in geometric algebra (see Sect. 7.1). They
are also directly related to linear functions, since they can be used to generate
basis transformation matrices.

After the discussion of various transformations of multivectors, a brief
introduction to multivector differentiation in Sect. 3.6 completes the pic-
ture. In this section, differentiation and integration are also discussed with
respect to the tensor representation of geometric-algebra operations. This
representation, which is described in detail in Sect. 5.1, basically expresses
geometric-algebra operations as bilinear functions, for which differentiation
and integration are well defined.

C. Perwass, Geometric Algebra with Applications in Engineering.
Geometry and Computing.
c© Springer-Verlag Berlin Heidelberg 2009
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Section 3.7 introduces fundamental algorithms operating on multivectors.
In particular, the algorithm to evaluate the join of two blades plays an impor-
tant role, since it is essential to evaluate the meet between arbitrary blades.

This chapter concludes with an overview of related “geometric” algebras
in Sect. 3.8. Here the relation to Gibbs’s vector algebra, complex num-
bers, quaternions, Grassmann algebra, and Grassmann–Cayley algebra is dis-
cussed. Grassmann–Cayley algebra is also used for applications in computer
vision and robotics. Therefore, the principal differences and similarities be-
tween geometric algebra and Grassmann–Cayley algebra are presented here.

3.1 Basics

3.1.1 Axioms

Since only finite-dimensional geometric algebras over the reals are used in
this text, the following axioms are specialized to this case.

Let Rp,q denote a (p + q)-dimensional vector space over the reals R. Fur-
thermore, let a commutative scalar product be defined as ∗ : Rp,q×Rp,q → R.
That is, for a, b ∈ Rp,q,

a ∗ b = b ∗ a ∈ R.

Definition 3.1 (Canonical Vector Basis). The canonical basis of Rp,q,
denoted by R

p,q
, is defined as the totally ordered set

R
p,q

:= {e1, . . . , ep, ep+1, . . . , ep+q} ⊂ R
p,q,

where the {ei} have the property

ei ∗ ej =





+1, 1 ≤ i = j ≤ p ,

−1, p < i = j ≤ p + q ,

0, i 6= j .

(3.1)

The combination of a vector space with a scalar product is called a
quadratic space. Quadratic spaces form the basis for the construction of geo-
metric algebras. While the quadratic space (Rp,q, ∗) plays a central role in ap-
plications, geometric algebras can be constructed over any type of quadratic
space, one example of which is Hilbert spaces. It is therefore possible to
construct a geometric algebra over a finite Fourier basis or a finite random-
variable space (see Sect. 10).

Axiom 3.1 (Geometric Algebra) Let A(Rp,q) denote the associative al-
gebra over the quadratic space (Rp,q, ∗) and let ◦ denote the algebraic product.
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Note that the field R and the vector space Rp,q can both be regarded as sub-
spaces of A(Rp,q). The algebra A(Rp,q) is said to be a geometric algebra if for
a ∈ Rp,q ⊂ A(Rp,q), a ◦ a = a ∗ a.

The geometric algebra over Rp,q is denoted by G(Rp,q) or simply Gp,q and
the algebra product is called the Clifford or geometric product. Although the
geometric product is denoted here by ◦, it is represented later by juxtaposition
for brevity.

In the following, all axioms of a geometric algebra are given explicitly.
First of all, the elements of Gp,q, which are called multivectors, satisfy the
axioms of a vector space over the field R.

Axiom 3.2 The following two operations exist in Gp,q:

1. Multivector addition. For any two elements A, B ∈ Gp,q there exists
an element C = A + B ∈ Gp,q, their sum.

2. Scalar multiplication. For any element A ∈ Gp,q and any scalar α ∈ R,
there exists an element αA ∈ Gp,q, the α-multiple of A.

Axiom 3.3 (Vector Space) Let A, B,C ∈ Gp,q and α, β ∈ R.

1. Associativity of multivector addition:

(A + B) + C = A + (B + C).

2. Commutativity:
A + B = B + A.

3. Identity element of addition. There exists an element 0 ∈ Gp,q, the
zero element, such that

A + 0 = A

.
4. Associativity of scalar multiplication:

α(βA) = (αβ)A.

5. Commutativity of scalar multiplication:

αA = Aα.

6. Identity element of scalar multiplication. The identity element 1 ∈ R

satisfies
1 A = A.

7. Distributivity of multivector sums:

α (A + B) = αA + αB.
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8. Distributivity of scalar sums:

(α + β) A = α A + β A.

It follows from these axioms that for each A ∈ Gp,q there exists an element
−A := (−1)A such that

A − A := A + (−A) = A + (−1)A =
(
1 + (−1)

)
A = 0A = 0.

Axiom 3.4 The axioms related to the algebraic product, i.e. the geometric
product, are as follows. Let A, B,C ∈ Gp,q and α, β ∈ R.

1. The algebra is closed under the geometric product:

A ◦ B ∈ Gp,q.

2. Associativity:
(A ◦ B) ◦ C = A ◦ (B ◦ C).

3. Distributivity:

A ◦ (B + C) = A ◦ B + A ◦ C and (B + C) ◦ A = B ◦ A + C ◦ A.

4. Scalar multiplication:

α ◦ A = A ◦ α = αA.

All axioms given so far define an associative algebra. What actually sepa-
rates Clifford algebra from other algebras is the defining equation.

Axiom 3.5 Let a ∈ Rp,q ⊂ Gp,q; then

a ◦ a = a ∗ a ∈ R. (3.2)

That is, the geometric product of a vector (not a multivector in general) with
itself maps to an element of the field R.

3.1.2 Basic Properties

All properties of the geometric algebra Gp,q can be derived from the axioms
given in the previous subsection. In this subsection, basic observations are
presented, which are extended in later subsections.

The defining equation of geometric algebra states that the geometric prod-
uct of a vector a ∈ Rp,q ⊂ Gp,q with itself results in a scalar in R. From this
property, the representation of the scalar product of different vectors in terms
of the geometric product can be derived. Let a, b ∈ Rp,q ⊂ Gp,q; then
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(a + b) ◦ (a + b) = (a + b) ∗ (a + b)

⇐⇒ a ◦ a + a ◦ b + b ◦ a + b ◦ b = a ∗ a + 2 a ∗ b + b ∗ b

⇐⇒ 1

2
(a ◦ b + b ◦ a) = a ∗ b. (3.3)

The expression
1

2
(a ◦ b + b ◦ a) is called the anticommutator product. In

this text, the operator symbol ×− is used to represent the anticommutator
product, i.e.

a×−b :=
1

2
(a ◦ b + b ◦ a). (3.4)

Similarly, the commutator product is denoted by ×−, such that

a×−b :=
1

2
(a ◦ b − b ◦ a). (3.5)

In the literature, the commutator product of two multivectors A, B ∈ Gp,q

is usually written as [A, B] and the anticommutator product as {A, B}. In
this text, however, the symbols introduced above are used to emphasize the
operator quality of these products. By applying the properties of the geomet-
ric product, it can be seen immediately that the geometric product of two
multivectors can be written as the sum of the commutator and anticommu-
tator products:

A ◦ B = A×−B + A×−B. (3.6)

Two vectors a, b ∈ Rp,q are called orthogonal if a ∗ b = 0, or, in terms

of the geometric product, a×−b = 0. The elements of R
p,q

therefore have the
properties

ei×−ei 6= 0 and ei×−ej = 0 , i 6= j. (3.7)

Hence, for i 6= j,

ei ◦ ej = ei×−ej + ei×−ej = ei×−ej ,

ej ◦ ei = ej×−ei + ej×−ei = ej×−ei , (3.8)

and, since A×−B = −B×−A, by definition,

ei ◦ ej = −ej ◦ ei. (3.9)

Note that the entity ei ◦ ej ∈ Gp,q cannot be reduced to an element of Rp,q.
Instead, it represents an additional basis element of Gp,q.

Consider the geometric product of two vectors a, b ∈ G(R2) defined as a =
a1 e1 + a2 e2 and b = b1 e1 + b2 e2, where { e1, e2 } ⊂ R2 is an orthonormal
basis of R2:
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a ◦ b = (a1e1 + a2e2) (b1e1 + b2e2)

=
(
a1b1 e1 ◦ e1 + a2b2 e2 ◦ e2

)
+
(
a1b2 e1 ◦ e2 + a2b1 e2 ◦ e1

)

=
(
a1b1 + a2b2

)
+
(
a1b2 − a2b1

)
e1 ◦ e2 ,

b ◦ a = (b1e1 + b2e2) (a1e1 + a2e2)

=
(
b1a1 e1 ◦ e1 + b2a2 e2 ◦ e2

)
+
(
b1a2 e1 ◦ e2 + b2a1 e2 ◦ e1

)

=
(
a1b1 + a2b2

)
−
(
a1b2 − a2b1

)
e1 ◦ e2.

(3.10)
It therefore follows that

a×−b =
1

2
(a ◦ b + b ◦ a) = a1b1 + a2b2,

a×−b =
1

2
(a ◦ b − b ◦ a) =

(
a1b2 − a2b1

)
e1 ◦ e2. (3.11)

As previously shown, a×−b ∈ R, and a×−b generates an element of G2 which
is an element neither of R2 nor of R. Thus, the geometric product of two
vectors results in a sum of a scalar and an additional element of the algebra.

If a and b are unit vectors, it follows directly from (3.11), that

a×−b = cos θ and (a×−b) ◦ (e2 ◦ e1) = sin θ, (3.12)

where θ is the angle spanned by a and b. That is, a×−b gives the length of
the projection of one vector onto the other, and a×−b gives the length of the
rejection of the two vectors. Therefore, if a and b are general vectors,

(a×−b) ◦ (e2 ◦ e1) = ‖a‖ ‖b‖ sin θ, (3.13)

which is the area of the parallelogram spanned by a and b. This will be
discussed again later on.

3.1.3 Algebraic Basis

In this subsection it is shown how an algebraic basis of Gp,q can be con-
structed. From now on, the geometric product will be denoted by juxtaposi-
tion of symbols. For example, the geometric product of A, B ∈ Gp,q is now
written as A B.

In the following, let A[i] denote the ith element of an ordered set A. That
is, if A := {2, 3, 1}, then A[2] = 3. Also, if the product operator

∏
is applied

to elements of a geometric algebra, it refers to the geometric product of the
operands. That is,

∏3
i=1 ei = e1 e2 e3, with {ei} ⊂ R

p,q
.
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Definition 3.2 (Basis blade). A basis blade in Gp,q is the geometric

product of a number of different elements of the canonical basis R
p,q

. Let
A ⊂ {1, . . . , p + q}; then eA denotes the basis blade

eA :=

|A|∏

i=1

R
p,q[

A[i]
]
.

For example, if A := {2, 3, 1}, then eA = e2 e3 e1.

Definition 3.3 (Grade). The grade of a basis blade eA ∈ Gp,q, with A ⊂
{1, . . . , p+q}, is denoted by gr(eA) and is defined as gr(eA) := |A|. Note that
e∅ = 1, and thus gr(1) = 0. Furthermore, the following definitions are made:

gr+(eA) := | { a ∈ A : 1 ≤ a ≤ p } |,
gr−(eA) := | { a ∈ A : p < a ≤ p + q } |.

That is, gr+ and gr− give the numbers of basis vectors in a basis blade that
square to +1 and −1, respectively.

Given a vector space Rp,q with a canonical basis

R
p,q

= {e1, . . . , ep, ep+1, . . . , ep+q} ,

there are 2n (n = p+q) ways to combine the { ei } with the geometric product
such that no two of these products are linearly dependent, i.e. there exist 2n

linearly independent basis blades. The collection of 2n linearly independent
basis blades forms an algebraic basis of Gp,q.

Recall that the geometric product is associative. Hence, (ei ej) ek may
be written as ei ej ek. Recall also that ei ej = −ej ei for i 6= j. Therefore,
using a different order for the constituent { ei } in the basis blades can at
most change the signs of the basis blades. While this implies that there exist
a great number of algebra bases for Gp,q, the choice of basis is arbitrary,
because the algebras formed by all of these different bases are isomorphic.
Nevertheless, it is useful to define a canonical algebraic basis of Gp,q, which
is closely related to an ordered power set.

Definition 3.4 (Ordered Power Set). Let I := { 1, . . . , n } ⊂ N with car-
dinality n = |I| and denote by P(I) the power set of I, such that |P(I)| = 2n.
The ordered power set of I, denoted by PO(I), is a totally ordered set of the
following type:

1. The elements of PO(I), which are subsets of I, are ordered by cardinality
in ascending order.

2. The members of each element of PO(I) are ordered in ascending order.
3. The elements of PO(I) of equal cardinality are ordered in lexicographical

order.
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Furthermore, we define Pk
O(I) := {A ∈ PO(I) : |A| = k }, whose elements

are also ordered lexicographically.

For example, if I := { 1, 2, 3 }, then

PO(I) =
{
{ ∅ }, { 1 }, { 2 }, { 3 }, { 1, 2 }, { 1, 3 }, { 2, 3 }, { 1, 2, 3 }

}
.

This index set is then used to construct a canonical algebraic basis.

Definition 3.5 (Canonical Algebraic Basis). The canonical algebraic ba-
sis of Gp,q, denoted by Gp,q, is constructed as follows. Let the canonical vector
basis of Rp,q be given by

R
p,q

= {e1, . . . , ep, ep+1, . . . , ep+q},

and let I := { 1, . . . , p+q }. The canonical algebraic basis of Gp,q is then given
by the ordered set

Gp,q :=
{

eA : A ∈ PO(I)
}

.

The order of the elements of Gp,q is the same as that of PO(I), i.e. if for
A, B ∈ PO(I), A < B, then eA < eB. Furthermore, we define

G
k

p,q :=
{

eA : A ∈ Pk
O(I)

}
.

For example, consider the vector space R3 with a canonical basis R
3

=
{ e1,e2,e3 }. The canonical algebraic basis of G3 is then given by

G3 := {1, e1, e2, e3, e1 e2, e1 e3, e2 e3, e1 e2 e3}. (3.14)

Let Ei := Gp,q[i]; then a general multivector of Gp,q may be written as

A = ai Ei , i ∈ { 1, 2, . . . , 2n }, (3.15)

where { ai } ⊂ R and a summation over the range of i is implied. That is,

ai Ei ≡
2n∑

i=1

ai Ei ; i ∈ { 1, 2, . . . , 2n }. (3.16)

Multivectors that are linear combinations of basis blades of the same grade
play an important role later on. It is therefore useful to have the following
definition.

Definition 3.6 (k-Vector Space). The k-vector space of Gp,q, denoted by

Gk
p,q, is the vector space spanned by G

k

p,q. The dimension of Gk
p,q is

(
p+q

k

)
.
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Note that in Gp,q the highest-dimensional k-vector space has k = p + q,
and is of dimension 1. Since the 0-vector space, i.e. the scalars, is also of

dimension 1, an element of G
(p+q)
p,q is called a pseudoscalar.

Definition 3.7 (Pseudoscalar). The element of highest grade of the canon-
ical basis of Gp,q, i.e. Gp,q[2

p+q], is said to be the pseudoscalar of Gp,q.

3.1.4 Involutions

An involution is, by definition, an operation that maps an operand to it-
self when applied twice. The involution that will be used most often in the
applications of geometric algebra in this book is the reverse.

Definition 3.8 (Reverse). Let A := {i1, i2 . . . , ik} ⊂ {1, . . . , p + q}, such
that eA ∈ Gp,q. Then the reverse of eA, denoted by ẽA, is defined as

ẽA :=

k∏

j=1

R
p,q[

A[k − j + 1]
]
.

For example, if Ei := G3[i], then E8 = e1 e2 e3, and Ẽ8 = e3 e2 e1. It is clear
that the reverse of a reverse is again the initial element. It also follows from
the definition of the reverse that

(Ei Ej )̃ = Ẽj Ẽi. (3.17)

Since a basis blade differs from its reverse only in the order of its constituent
basis vectors, the two can differ only by a sign. It may be shown that for
Ei := Gp,q[i] with grade k = gr(Ei),

Ẽi = (−1)k(k−1)/2 Ei. (3.18)

The reverse operation is distributive, and thus the reverse of a general multi-
vector is obtained by applying the reverse operation to the constituent basis
blades of the multivector. That is, for A ∈ Gp,q with A := ai Ei, Ã = ai Ẽi.

The second important involution in geometric algebra is closely related to
the reverse. In this text, it is called the conjugate of geometric algebra.

Definition 3.9 (Conjugate). Let A ⊂ {1, . . . , p + q}, such that eA ∈ Gp,q.

The conjugate of eA, denoted by e
†
A
, is defined as

e
†
A

:= (−1)r ẽA, r := gr−(eA).

The relation between a basis blade Ei and its conjugate E
†
i is therefore
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E
†
i = (−1)r (−1)k(k−1)/2 Ei, (3.19)

where k = gr(Ei) and r = gr−(Ei). Clearly, the conjugate is equivalent to

the reverse in Gp, since the corresponding R
p

contains no basis vectors that
square to −1. The conjugate has the useful property that for any basis blade
Ei := Gp,q[i],

Ei E
†
i = +1, (3.20)

which is not necessarily the case for Ei Ẽi. Hence, the conjugate of a basis
blade is its inverse, i.e. E−1

i = E
†
i .

3.1.5 Duality

Duality is a simple but also very important concept in geometric algebra. Let
Ei := Gp,q[i]; then the dual of a basis blade Ei is denoted by E∗

i and defined
as

E∗
i := Ei I−1, (3.21)

where I := G
(p+q)

p,q denotes the unit pseudoscalar of Gp,q and I−1 denotes its
inverse. In G3,

I := e1e2e3 and I−1 = e3e2e1. (3.22)

By employing the associativity of the geometric product, it can easily be seen
that II−1 = 1 when the above definitions are used:

II−1 = (e1e2e3)(e3e2e1)

= (e1e2)(e3e3)(e2e1) ; e3e3 = 1

= e1(e2e2)e1 ; e2e2 = 1

= e1e1 ; e1e1 = 1

= 1.

(3.23)

It is also straightforward to see that I−1 = −I in G3. From the associativity
of the geometric product and the property eiej = −ejei for i 6= j, it follows
that

I−1 = e3(e2e1) = −e3(e1e2) = −(e3e1)e2

= (e1e3)e2 = e1(e3e2) = −e1(e2e3)

= −I.

(3.24)

Therefore, II = −II−1 = −1. The meaning of duality from a geometric
point of view can be elucidated by considering the following equation:

EiE
∗
i = EiEiI

−1 ≃ I, (3.25)
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since Ei Ei ∈ R. Here “≃” denotes equality up to a scalar constant. This
shows that a basis blade multiplied by its dual gives the pseudoscalar up to
a scalar constant. For example, when we use the order of basis blades given
in (3.14) for G3, it follows that

E∗
2 = E2I

−1 = −E2I = −e1(e1e2e3) = −e2e3 = −E5. (3.26)

Therefore, E2E
∗
2 = −E2E5 = −I. Note that applying the dual operation

twice does not necessarily result in the original basis blade. For example,

(E∗
2)

∗
= −E∗

5 = −E2. (3.27)

On the other hand, applying the dual operation four times in a row will always
return a basis blade to itself. Whether the dual operation has to be applied
twice or four times to return a basis blade to itself depends on whether the
pseudoscalar squares to +1 or −1.

The dual operation can also be applied to arbitrary multivectors. In this
case the dual is applied to every basis blade contained in the multivector. In
other words, the dual operation is distributive. For example, let A ∈ Gp,q be
defined as A := ai Ei. Then A∗ = ai E∗

i .

3.1.6 Inner and Outer Product

The inner and the outer product are two special operations in Clifford algebra
which are of particular importance. It is important to note at this point that
the inner product referred to here is an algebraic operation that need not
result in a scalar, and is also not positive definite. This differs from typical
definitions of the inner product.

Initially, the inner and the outer product will be defined on basis blades,
and will then be extended to multivectors. These basic definitions form the
basis for the derivation of a number of important identities in the next section.

Before defining the inner and the outer product, the grade projection
bracket has to be introduced.

Definition 3.10 (Grade Projection). Let Ei := Gp,q[i]; then the grade
projection of Ei onto grade k is written as 〈Ei〉k and is defined as

〈Ei〉k =

{
Ei, gr(Ei) = k ,

0, gr(Ei) 6= k .
. (3.28)

The grade projection operator is distributive and, for some a ∈ R and A ∈
Gp,q, 〈aA〉k = a 〈A〉k . Hence, for A ∈ Gp,q with A = ai Ei, it follows that

〈A〉k = ai 〈Ei〉k . (3.29)
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Definition 3.11 (Inner Product). Let Ei := Gp,q[i]; then the inner prod-
uct of two basis blades Ei and Ej , with k = gr(Ei), l = gr(Ej), is defined
as

Ei · Ej :=

{
〈EiEj〉|k−l| , i, j > 0 ,

0 , i = 0 and/or j = 0 .
(3.30)

That is, if the grade of the geometric product of Ei and Ej is |k− l|, then
Ei ·Ej = EiEj . Otherwise, the inner product of the two basis blades is zero.
Note that this definition implies that the inner product of a scalar with any
element of the algebra is identically zero. The outer product is defined as
follows.

Definition 3.12 (Outer Product). Let Ei := Gp,q[i]; then the outer prod-
uct of two basis blades Ei and Ej , with k = gr(Ei), l = gr(Ej), is defined
as

Ei ∧ Ej := 〈EiEj〉k+l . (3.31)

That is, if the grade of the geometric product of Ei and Ej is k + l,
then Ei ∧ Ej = EiEj . Otherwise, the outer product is zero. Note that the
outer product of a scalar with any element of the algebra is equivalent to
the geometric product of the two elements. Here are two examples for the
application of the inner and the outer product:

(e1e2) · e2 = 〈e1e2e2〉|2−1| = 〈e1〉1 = e1, (3.32)

(e1e2) ∧ e3 = 〈e1e2e3〉2+1 = 〈e1e2e3〉3 = e1e2e3. (3.33)

The definitions of the outer and the inner product make it necessary to
be very careful when writing down geometric-algebra equations. Quite often,
people like to write the symbol · to denote the product of a scalar with
anything else. In geometric algebra, this can lead to considerable confusion
and incorrect results, since · denotes the inner product, and the inner product
of a scalar with any other element, and also with another scalar, is zero by
definition.

Lemma 3.1. Let A ⊆ { 1, . . . , p + q } and i ∈ { 1, . . . , p + q }, such that
eA,ei ∈ Gp,q. Then

ei eA =

{
(−1)|A| eA ei, i 6∈ A ,

(−1)|A|+1 eA ei, i ∈ A .

Proof. This follows directly from the associativity of the geometric product, and
the fact that ei ej = −ej ei if i 6= j.

�

Lemma 3.2. Let B ⊆ A ⊆ { 1, . . . , p + q }, such that eA,eB ∈ Gp,q. Then

eA eB = (−1)|B| (|A|−1) eB eA.
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Proof. This follows directly from the associativity of the geometric product and
Lemma 3.1.

�

Lemma 3.3. Let A ⊆ { 1, . . . , p + q } and i ∈ { 1, . . . , p + q }, such that
eA,ei ∈ Gp,q. Then

ei ∧ eA =
1

2

(
ei eA + (−1)|A| eA ei

)
.

Proof. If i ∈ A, then ei ∧ eA = 〈ei eA〉1+|A| = 0 and from Lemma 3.1 ei eA =

(−1)|A|+1 eA ei, whence ei eA + (−1)|A| eA ei = 0. If i 6∈ A, then ei ∧ eA =
〈ei eA〉1+|A| = ei eA and, from Lemma 3.1, ei eA = (−1)|A| eA ei, whence

1

2
(ei eA + (−1)|A| eA ei) = ei eA.

�

Lemma 3.4. Let A ⊆ { 1, . . . , p + q } and i ∈ { 1, . . . , p + q }, such that
eA,ei ∈ Gp,q. Then

ei · eA =
1

2

(
ei eA − (−1)|A| eA ei

)
.

Proof. The proof follows along the same lines as for Lemma 3.3. Note that this
equality also holds if A = ∅.

�

In order to apply the inner and the outer product to general multivectors,
the above definitions have to be extended.

Axiom 3.6 Let a, b ∈ R and A, B,C ∈ Gp,q; then

A · (B + C) = A · B + A · C,

(aA) · (bB) = ab (A · B).

Axiom 3.7 Let a, b ∈ R and A, B,C ∈ Gp,q; then

A ∧ (B + C) = A ∧ B + A ∧ C,

(aA) ∧ (bB) = ab (A ∧ B).

Therefore, the inner and the outer product of two multivectors A, B ∈ Gp,q,
with A := aiEi and B := biEi, can be evaluated as follows:

A · B =
∑

i,j

aibj (Ei · Ej), (3.34)

A ∧ B =
∑

i,j

aibj (Ei ∧ Ej). (3.35)



64 3 Algebra

It may also be shown that the outer product of multivectors is associative.

Lemma 3.5. Let A, B,C ∈ Gp,q; then

A ∧ (B ∧ C) = (A ∧ B) ∧ C.

Proof. Let Ei := Gp,q[i], A = ai Ei, B = bi Ei and C = ci Ei. Consider
initially three basis blades with grades r = gr(Ei), s = gr(Ej), and t = gr(Ek);
then

Ei ∧ (Ej ∧Ek) = 〈Ei Ej Ek〉r+s+t = (Ei ∧Ej) ∧Ek.

Since the outer product is distributive, associativity also holds for A∧(B∧C),
which is a linear combination of basis blades.

�

Although these definitions are sufficient to evaluate the inner and the
outer product of two arbitrary multivectors, the definitions alone are not
particularly helpful when working with geometric-algebra expressions. What
is needed is a set of identities to manipulate expressions without writing
everything in terms of basis blades first.

3.2 Blades

An important concept in Clifford algebra is that of a blade. A blade is defined
to be the outer product of a number of 1-vectors.

Definition 3.13 (Blade). Let {ai } ⊂ Rp,q be a set of n ≥ k linearly inde-
pendent 1-vectors in Gp,q. Then the outer product of these vectors is called
a k-blade or a blade of grade k. A blade of grade k is denoted by A〈k〉. For
example,

A〈k〉 = a1 ∧ a2 ∧ . . . ∧ ak =:
k∧

i=1

ai.

Clearly, a k-blade is a linear combination of basis blades of grade k. How-
ever, not every linear combination of basis blades of grade k is a k-blade.
For example, e1e2 + e1e3 is a 2-vector and a 2-blade, since e1e2 + e1e3 =
e1∧ (e2 +e3). On the other hand, e1e2 +e3e4 is also a 2-vector but it cannot
be expressed as a 2-blade.

3.2.1 Geometric Product

Before the inner and outer products of blades are discussed, consider again the
geometric product. Clearly, the geometric product of blades A〈k〉,B〈l〉 ∈ Gp,q

can be written as



3.2 Blades 65

A〈k〉B〈l〉 =

n∑

r=0

〈
A〈k〉B〈l〉

〉
r

. (3.36)

A〈k〉 and B〈l〉 are linear combinations of basis blades of grade k and l, respec-

tively. If two basis blades E〈k〉,E〈l〉 ∈ Gp,q have m basis vectors in common,
then

E〈k〉E〈l〉 =
〈
E〈k〉E〈l〉

〉
k+l−2m

. (3.37)

For example,
(e1e2)(e2e3) = e1(e2e2)e3 = e1e3. (3.38)

It therefore follows that the sum in (3.36) can be written as follows:

A〈k〉B〈l〉 =
〈
A〈k〉B〈l〉

〉
|k−l|

+
〈
A〈k〉B〈l〉

〉
|k−l|+2

+ . . .

+
〈
A〈k〉B〈l〉

〉
k+l−2

+
〈
A〈k〉B〈l〉

〉
k+l

. (3.39)

The element of lowest grade (|k− l|) is the inner product, and the element of
highest grade (k + l) is the outer product. Note that not all elements of this
sum are necessarily present for any particular choice of blades. Nevertheless,
it can be seen that the inner and the outer product are simply two particularly
interesting products, but not the only ones that could have been defined.

Given two vectors a, b ∈ G1
p,q, it follows from (3.39) that

a b = 〈a b〉|1−1| + 〈a b〉1+1

= a · b + a ∧ b.
(3.40)

Blades of grade 2, or bivectors, are also an interesting special case. For two
bivectors A〈2〉,B〈2〉 ∈ Gp,q, it follows from (3.39) that

A〈2〉B〈2〉 =
〈
A〈2〉B〈2〉

〉
0

+
〈
A〈2〉B〈2〉

〉
2

+
〈
A〈2〉B〈2〉

〉
4

. (3.41)

That is, in addition to the inner and the outer product, there is another
product which returns a bivector. It turns out that this is the commutator
product, which has already been introduced. For example,

(e1e2)×−(e2e3) =
1

2

[
(e1e2e2e3) − (e2e3e1e2)

]

=
1

2

[
(e1e3) − (e3e1)

]

=
1

2

[
(e1e3) + (e1e3)

]

= e1e3.

(3.42)

Clearly, (e1e2)×−(e1e2) = 0 and also (e1e2)×−(e3e4) = 0.
Since the geometric product of two multivectors A, B ∈ Gp,q can be writ-

ten as A B = A×−B + A×−B, for bivectors it follows that
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A〈2〉×−B〈2〉 = A〈2〉 · B〈2〉 + A〈2〉 ∧ B〈2〉. (3.43)

3.2.2 Outer Product

Owing to the distributivity of the outer product, it follows that for A〈k〉,B〈l〉 ∈
Gp,q,

A〈k〉 ∧ B〈l〉 =
〈
A〈k〉 B〈l〉

〉
k+l

. (3.44)

Hence, the outer product of these blades either is zero or results in a blade
of grade k + l. Hence, if k + l > p + q, then A〈k〉 ∧ B〈l〉 ≡ 0.

Consider now the outer product of a 1-vector a ∈ G1
p,q and a k-blade

B〈k〉 ∈ Gk
p,q.

Lemma 3.6. Let a ∈ G1
p,q and B〈k〉 ∈ Gk

p,q; then

a ∧ B〈k〉 =
1

2

(
a B〈k〉 + (−1)k B〈k〉 a

)
.

Proof. Let ei := G
1
p,q[i] and Ei := G

k
p,q[i], and define a := ai ei, B〈k〉 := bi Ei,

where {ai}, {bi} ⊂ R. Then

a ∧B〈k〉 = ai bj (ei ∧Ej).

It follows from Lemma 3.3 that ei∧Ej =
1

2
(ei Ej +(−1)k Ej ei). Hence, the

proposition follows by linearity.
�

Lemma 3.6 implies that given two 1-vectors a, b ∈ G1
p,q,

a ∧ b = −b ∧ a ⇒ a ∧ a = 0. (3.45)

The property a ∧ a = 0 is of pivotal importance. From a geometric point
of view, it states that the outer product of two vectors is zero if they are
parallel. This is in contrast to the scalar product of two vectors, which is zero
if the vectors are perpendicular. The following lemma generalizes this notion.

Lemma 3.7. Let {a1, . . . ,ak} ⊂ G1
p,q define a basis of a k-dimensional vec-

tor space (1 ≤ k ≤ p + q) and let x := ai ai be a vector in this vector space
with {ai} ⊂ R. Then the blade A〈k〉 := a1 ∧ . . . ∧ ak satisfies the equation
A〈k〉 ∧ x = 0.

Proof. The proof is done by construction. It employs the facts that the outer
product is associative and that ai ∧ aj = −aj ∧ ai:
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A〈k〉 ∧ x =
∑

i ai (a1 ∧ a2 ∧ . . . ∧ ak) ∧ ai

=
∑

i (−1)k−i ai
(∧i−1

j=1 aj

)
∧
(∧k

j=i+1 aj

)
∧ ai ∧ ai

= 0,

(3.46)

since ai ∧ ai = 0 ∀i ∈ { 1, . . . , k }.
�

That is, the outer product of a k-blade with a 1-vector which is linearly
dependent on the constituent 1-vectors of the k-blade is zero. In this respect,
it may be said that the k-blade A〈k〉 represents the k-dimensional subspace
spanned by {ai }. In fact, this subspace may be defined using A〈k〉.

Definition 3.14 (Outer-Product Null Space). The outer-product null
space (OPNS) of a blade A〈k〉 ∈ Gk

p,q, denoted by NO(A〈k〉), is defined as

NO(A〈k〉) :=
{

x ∈ G
1
p,q : x ∧ A〈k〉 = 0

}
.

Using this notation, NO(A〈k〉) = span{ai }. Furthermore, it follows that the
outer product of two blades A〈k〉,B〈l〉 ∈ Gp,q is non-zero only if the respective
subspaces spanned by A〈k〉 and B〈l〉 are disjoint. That is,

A〈k〉 ∧ B〈l〉 = 0 ⇐⇒ NO(A〈k〉) ∩ NO(B〈l〉) 6= ∅. (3.47)

Definition 3.15 (Direct Sum). Let A, B ⊆ Rp,q; then their direct sum is
defined as

A ⊕ B :=
{

a + b : a ∈ A, b ∈ B
}
.

With this definition in mind, it follows that for A〈k〉,B〈l〉 ∈ Gp,q with
A〈k〉 ∧ B〈l〉 6= 0,

NO(A〈k〉 ∧ B〈l〉) = NO(A〈k〉) ⊕ NO(B〈l〉). (3.48)

The following important lemma will be used in many proofs later on.

Lemma 3.8. Let A〈k〉 ∈ Gk
p,q; then there exists an orthogonal set of k vectors

{ai } ⊂ G1
p,q, i.e. ai ∧ aj 6= 0 and ai ∗ aj = 0 for i 6= j, such that A〈k〉 =∧k

i=1 ai.

Proof. From the definition of the OPNS of a blade, it follows that all blades
with the same OPNS can differ only by a scalar factor. Furthermore, since
NO(A〈k〉) is a k-dimensional vector space, there exists an orthonormal basis

{ni } ⊂ G1
p,q of NO(A〈k〉). If we define N〈k〉 :=

∧k
i=1 ni, then there must

exist a scalar α ∈ R such that A〈k〉 = α N〈k〉.
�

Note that if {ai } ∈ G1
p,q is an orthogonal set of vectors, then ai aj =

ai ∧ aj , for i 6= j. Hence, the blade A〈k〉 :=
∧k

i=1 ai can also be constructed
by taking the geometric product of the {ai }, i.e.
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A〈k〉 =
k∧

i=1

ai =
k∏

i=1

ai. (3.49)

Lemma 3.6 also implies, for a ∈ G1
p,q and B〈k〉 ∈ Gk

p,q, that

a ∧ B〈k〉 = (−1)k B〈k〉 ∧ a. (3.50)

It follows, for A〈k〉,B〈l〉 ∈ Gp,q, that

A〈k〉 ∧ B〈l〉 = (−1)k l B〈l〉 ∧ A〈k〉. (3.51)

The above analysis suggests that the outer product can be regarded as an
operator that combines disjoint (linear) subspaces. As will be seen next, the
inner product “subtracts” (linear) subspaces.

3.2.3 Scalar Product

So far, the scalar product has been defined only for 1-vectors. This definition
can be extended to blades in the following way. Let A〈k〉,B〈l〉 ∈ Gp,q; then

A〈k〉 ∗ B〈l〉 :=
〈
A〈k〉 B〈l〉

〉
0

. (3.52)

If k = l 6= 0, the scalar product is therefore equal to the inner product, and
if k 6= l, then A〈k〉 ∗ B〈l〉 = 0. From 3.81) it follows for k = l that

A〈k〉 ∗ B〈k〉 = (−1)k (k+1) B〈k〉 ∗ A〈k〉 = B〈k〉 ∗ A〈k〉, (3.53)

since k (k+1) is an even number for all k ∈ N+. An important identity related
to the scalar product is described in the following lemma.

Lemma 3.9. Let A〈r〉,B〈s〉,C〈t〉 ∈ Gp,q; then
〈
A〈r〉 B〈s〉 C〈t〉

〉
0

= 〈C〈t〉 A〈r〉

B〈s〉〉0.

Proof. Since only the scalar component of the geometric product of the three
blades is of interest,

〈
A〈r〉 B〈s〉 C〈t〉

〉
0

=
〈 〈

A〈r〉 B〈s〉

〉
t

C〈t〉

〉
0

=
〈
A〈r〉 B〈s〉

〉
t
∗C〈t〉.

However, because of (3.53),

〈
A〈r〉 B〈s〉

〉
t
∗C〈t〉 = C〈t〉 ∗

〈
A〈r〉 B〈s〉

〉
t

=
〈
C〈t〉 A〈r〉 B〈s〉

〉
0

.

�

Lemma 3.10. Let A〈k〉 ∈ Gk
p,q; then A〈k〉 A〈k〉 = A〈k〉 ∗ A〈k〉.
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Proof. Let A〈k〉 :=
∧k

i=1 ai, with {ai } ⊂ G1
p,q. From Lemma 3.8, it follows

that there exists a set {ni } ⊂ G1
p,q of orthogonal vectors such that A〈k〉 =∏k

i=1 ni. Now,

A〈k〉 A〈k〉 = (−1)k(k−1)/2 A〈k〉 Ã〈k〉

= (−1)k(k−1)/2
(
n1 · · · nk−1 (nk nk) nk−1 · · · n1

)
.

Since (ni)2 ∈ R for all i, A〈k〉 A〈k〉 ∈ R, and thus

A〈k〉 A〈k〉 =
〈
A〈k〉 A〈k〉

〉
0

= A〈k〉 ∗A〈k〉,

which proves the proposition.
�

3.2.4 Reverse

The reverse was introduced in Sect. 3.1.4 for basis blades. The properties
described there carry over to blades. The reverse of a blade A〈k〉 ∈ Gk

p,q,

where A〈k〉 =
∧k

i=1 ai, {ai } ⊂ G1
p,q, is given by

Ã〈k〉 = (a1 ∧ a2 ∧ . . . ∧ ak )̃ = ak ∧ ak−1 ∧ . . . ∧ a1 =

1∧

i=k

ai. (3.54)

Since the reverse changes only the order of the constituent vectors, a blade
and its reverse can differ only by a sign. That is,

Ã〈k〉 = (−1)k(k−1)/2 A〈k〉. (3.55)

Furthermore, for two blades A〈k〉,B〈l〉 ∈ Gp,q,

(A〈k〉 ∧ B〈l〉)̃ = B̃〈l〉 ∧ Ã〈k〉 and (A〈k〉 B〈l〉)̃ = B̃〈l〉 Ã〈k〉. (3.56)

3.2.5 Conjugate

The properties of the conjugate, as discussed in Sect. 3.1.4, can also be
extended to blades. That is, the conjugate of a blade A〈k〉 ∈ Gk

p,q, where

A〈k〉 =
∧k

i=1 ai, {ai } ⊂ G1
p,q, is given by

A
†
〈k〉 = (a1 ∧ a2 ∧ . . . ∧ ak)

†
= a

†
k ∧ a

†
k−1 ∧ . . . ∧ a

†
1 =

1∧

i=k

a
†
i . (3.57)
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Note that while ãi = ai, a
†
i is not necessarily equal to ai. This is because

for ei := G
1

p,q, e
†
i = −ei if p < i ≤ p + q, by definition. Therefore, it is not

possible to give a general relation between A〈k〉 and A
†
〈k〉 as in (3.55) for the

reverse. However, for two blades A〈k〉,B〈l〉 ∈ Gp,q, it also holds that

(A〈k〉 ∧ B〈l〉)
†

= B
†
〈l〉 ∧ A

†
〈k〉 and (A〈k〉 B〈l〉)

†
= B

†
〈l〉 A

†
〈k〉. (3.58)

3.2.6 Norm

In Euclidean space Rp, the magnitude of a vector a ∈ Rp is typically given
by the L2-norm, which is defined in terms of the scalar product as

‖a‖ :=
√

a ∗ a. (3.59)

In order to extend this to multivectors of Gp,q, a product between multi-
vectors is needed such that the product of a multivector with itself results
in a positive scalar. Note that the scalar product as defined in Sect. 3.2.3
does not satisfy this requirement, since it can result also in negative val-

ues and zero. For example, if ei := G
1

p,q[i], then ep+1 ∗ ep+1 = −1 and
(e1 + ep+1) ∗ (e1 + ep+1) = 0. For these reasons, it is useful to introduce yet
another scalar product of blades, which is positive definite.

3.2.6.1 Euclidean Scalar Product

Definition 3.16 (Euclidean Scalar Product). Let A〈k〉,B〈l〉 ∈ Gp,q; we
then define the Euclidean scalar product as

A〈k〉 ⋆ B〈l〉 := A〈k〉 ∗ B
†
〈l〉 =

〈
A〈k〉 B

†
〈l〉

〉
0

.

Let Ei := G
k

p,q[i], A〈k〉 := ai Ei, and B〈k〉 := bi Ei, with { ai }, { bi } ⊂ R.
If k 6= l, then A〈k〉 ⋆ B〈l〉 = 0, but if k = l, then

A〈k〉 ⋆ B〈l〉 = ai bj
〈
Ei E

†
j

〉
0

= ai bj δij =
∑

i

(ai bi), (3.60)

where
〈
Ei E

†
j

〉
0

= δij has been used, which follows from the definition of the

basis blades and (3.20). The symbol δij denotes the Kronecker delta. Hence,
if A〈k〉 6= 0, then

A〈k〉 ⋆ A〈k〉 =
∑

i

(
ai
)2

> 0. (3.61)
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In particular, this is also true for null-blades, which are defined later in Defini-
tion 3.18. In short, null-blades are blades that square to zero. The Euclidean
scalar product, however, treats all basis blades as if they had been constructed
from a Euclidean basis.

Furthermore, for general multivectors A, B ∈ Gp,q defined by A := ai Ei

and B := bi Ei, with Ei := Gp,q[i],

A ⋆ B = ai bj
〈
Ei E

†
j

〉
0

= ai bj δij =
∑

i

(ai bi), (3.62)

just as for blades. Hence, if A 6= 0, then

A ⋆ A =
∑

i

(
ai
)2

> 0. (3.63)

With the help of the Euclidean scalar product, it is possible to dis-
tinguish two different types of orthogonality: geometric orthogonality and
self-orthogonality. Two vectors a, b ∈ G1

p,q are geometrically orthogonal if
a⋆b = 0. In this case a and b are said to be perpendicular. A vector a ∈ G1

p,q

is self-orthogonal if a ∗ a = 0.

3.2.6.2 Magnitude

The magnitude of a multivector is therefore defined as follows.

Definition 3.17. The magnitude of a multivector A ∈ Gp,q is denoted by
‖A‖ and defined as

‖A‖ :=
√

A ⋆ A.

It follows that ‖ · ‖ defines a norm on Gp,q. Note that for a non-null-blade

A〈k〉 ∈ G∅ k
p,q , A

†
〈k〉 = Ã〈k〉 and thus

A〈k〉 ⋆ A〈k〉 = A〈k〉 ∗ Ã〈k〉 = A〈k〉 Ã〈k〉, (3.64)

where the last equality is due to Lemma 3.10.
From Lemma 3.8, it is clear that any blade can be written as the geometric

product of a set of orthogonal vectors. For example, let {ai } ⊂ G∅ 1
p,q denote

a set of orthogonal vectors and define A〈k〉 :=
∏k

i=0 ai ∈ G∅ k
p,q . Then

‖A〈k〉‖ =
√

A〈k〉 ∗ Ã〈k〉

=
√

a1 . . . ak ak . . . a1

=
∏k

i=1 ‖ai‖.
(3.65)

Consider a blade A〈n〉 ∈ Gn
p,q of the highest grade n = p+ q. Such a blade

is always proportional to the pseudoscalar and may thus be written in terms
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of the basis 1-vectors ei := G
1

p,q[i] as

A〈n〉 = α
n∏

i=1

ei = α I,

where I := Gp,q[2
n] is the pseudoscalar and α ∈ R. Therefore, A〈n〉 cannot be

a null-blade. Furthermore, if A〈n〉 ∈ Gn
n is a blade in a Euclidean geometric

algebra, then I Ĩ > 0 and thus A〈n〉 Ã〈n〉 > 0, which also follows from (3.64).
If, as before, {ai } ⊂ G1

n denotes a set of orthogonal vectors such that A〈n〉 =∏n
i=1 ai, then ‖A〈n〉‖ =

∏n
i=1 ‖ai‖.

If the {ai } are written as rows in a square matrix A, the determinant of
this orthogonal matrix is also given by the product of the magnitudes of the
row vectors, i.e.

A〈n〉 = detA I. (3.66)

3.2.7 Inner Product

3.2.7.1 Basics

Just as for the outer product, it follows from the distributivity of the inner
product that for A〈k〉,B〈l〉 ∈ Gp,q,

A〈k〉 · B〈l〉 =
〈
A〈k〉 B〈l〉

〉
|k−l|

. (3.67)

The inner product therefore always reduces the grades of the constituent
blades. An important difference between the inner and the outer product is
that the inner product is not associative. Consider now the inner product of
a 1-vector a ∈ G1

p,q and a k-blade B〈k〉 ∈ Gk
p,q.

Lemma 3.11. Let a ∈ G1
p,q and B〈k〉 ∈ Gk

p,q; then

a · B〈k〉 =
1

2

(
a B〈k〉 − (−1)k B〈k〉 a

)
.

Proof. The proof is similar to that of Lemma 3.6. Let ei := G
1
p,q[i] and Ei :=

G
k
p,q[i], and define a := ai ei, B〈k〉 := bi Ei, where {ai}, {bi} ⊂ R. Then

a ·B〈k〉 = ai bj (ei ·Ej).

It follows from Lemma 3.4 that ei ·Ej =
1

2
(ei Ej − (−1)k Ej ei). Hence, the

proposition follows by linearity.
�

It follows directly that
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a · B〈l〉 = (−1)(l−1) B〈l〉 · a. (3.68)

In particular, for two 1-vectors a, b ∈ G1
p,q, a · b = b · a. Furthermore, if we

let bi := G
1

p,q, a := ai ei, and b := bi ei, then

a · b = ai bj 〈ei ej〉0 = ai bi e2
i , (3.69)

where e2
i is either +1 or −1. That is, a ·b =

∑
i ai bi e2

i = a ∗b. Note that in
spaces with a mixed signature, i.e. Gp,q where p 6= 0 and q 6= 0, there exist
null-vectors a ∈ G1

p,q with a 6= 0 and a ∗ a = 0. More generally, there exist
null-blades, which are defined in the following.

Definition 3.18 (Null Blade). A blade A〈k〉 ∈ Gk
p,q is said to be a null-

blade if A〈k〉 · A〈k〉 = 0. The subset of null-blades in Gk
p,q is denoted by

G◦ k
p,q ⊂ Gk

p,q and the subset of non-null-blades by G∅ k
p,q ⊂ Gk

p,q. That is,

G∅ k
p,q :=

{
A〈k〉 ∈ Gk

p,q : A〈k〉 · A〈k〉 6= 0
}
,

G◦ k
p,q :=

{
A〈k〉 ∈ Gk

p,q : A〈k〉 · A〈k〉 = 0
}
.

Note that the sets G◦ k
p,q and G∅ k

p,q are not vector spaces.

Null-blades exist only in mixed-signature algebras. In Euclidean geometric
algebras (Gp) and anti-Euclidean geometric algebras (G0,q), no null-blades
exist. Many of the properties of blades derived in the following are not valid
for null-blades.

Analogously to the outer-product null space, an inner-product null space
of blades can also be defined.

Definition 3.19 (Inner-Product Null Space). The inner-product null
space (IPNS) of a blade A〈k〉 ∈ Gk

p,q, denoted by NI(A〈k〉), is defined as

NI(A〈k〉) :=
{

x ∈ G
1
p,q : x · A〈k〉 = 0

}
,

irrespective of whether the blade is a null-blade or not.

3.2.7.2 Properties

Using Lemmas 3.6 and 3.11, and some general identities involving the commu-
tator and anticommutator products, the following equation can be derived,
as shown in [130]. Let a, b ∈ Gp,q and A〈k〉 ∈ Gk

p,q; then

(A〈k〉 ∧ a) · b = A〈k〉 (a · b) − (A〈k〉 · b) ∧ a. (3.70)

By applying this equation recursively, the following expression may be ob-
tained. Let { bi } ⊂ G1

p,q be a set of l linearly independent vectors and let
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B〈l〉 =
∧l

i=1 bi; then

a · B〈l〉 =

l∑

i=1

(−1)i+1 (a · bi) [B〈l〉\bi], (3.71)

where

[B〈l〉\bi] :=
( i−1∧

r=1

br

)
∧
( l∧

r=i+1

br

)
. (3.72)

Note that the result of a · B〈l〉 is again a blade, albeit of grade l − 1. That
is, the inner product reduces the grade of the constituent elements.

An example will be helpful for understanding the above equations better.
Let a, b1, b2 ∈ G1

p,q; then

a · (b1 ∧ b2) = (a · b1) b2 − (a · b2) b1. (3.73)

Since the inner product of two vectors is a scalar, and scalars commute with
all elements of Gp,q, (a · b1)b2 = b2(a · b1). By convention, the inner product
takes precedence over the geometric product. Therefore, (3.73) may also be
written as

a · (b1 ∧ b2) = a · b1 b2 − a · b2 b1.

Here is another of equation (3.71). Let a, b1, b2, b3 ∈ G1
p,q; then

a · (b1 ∧ b2 ∧ b3) = (a · b1)(b2 ∧ b3)

− (a · b2)(b1 ∧ b3)

+ (a · b3)(b1 ∧ b2).

(3.74)

The general formula for the inner product of two blades is somewhat more
complicated and will not be derived here. Let A〈k〉,B〈l〉 ∈ Gp,q, 0 < k ≤ l ≤
p + q, and define I := { 1, . . . , l }, A := Pk

O(I), and Ac[i] := I\A[i]. That is, A

is an ordered set of all subsets of k elements of I, and Ac is its complement
with respect to I. Furthermore, define U[i] := A[i]∪O Ac[i], where ∪O denotes
an order-preserving union. If B is a permutation of I, then

ǫB :=

{
+1, B is an even permutation of I ,

−1, B is an odd permutation of I .
. (3.75)

Note that B is an even permutation of I if the elements of B can be brought
into the same order as in I by an even number of swaps of neighboring

elements of B. Finally, if B ⊆ I, then bB :=
∧|B|

i=1 bB[i].
For example, if I := { 1, 2, 3 } and k = 2, then A = { { 1, 2 }, { 1, 3 }, { 2, 3 }},

Ac = { { 3 }, { 2 }, { 1 } }, and U = { { 1, 2, 3 }, { 1, 3, 2 }, { 2, 3, 1 } }. Then
ǫU[1] = +1, ǫU[2] = −1, ǫU[3] = +1, and bU[1] = b1∧b2∧b3. The inner product
of two blades may now be written as
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A〈k〉 · B〈l〉 =

|U|∑

i=1

ǫU[i]

(
A〈k〉 · bA[i]

)
bAc[i]. (3.76)

An example will make this equation more accessible. Let a1,a2, b1, b2, b3 ∈
G1

p,q; then

(a1 ∧ a2) · (b1 ∧ b2 ∧ b3) =
(
(a1 ∧ a2) · (b1 ∧ b2)

)
b3

−
(
(a1 ∧ a2) · (b1 ∧ b3)

)
b2

+
(
(a1 ∧ a2) · (b2 ∧ b3)

)
b1.

(3.77)

The inner product of two blades of equal grade is always a scalar (see (3.39)).
Therefore, the inner product of a 2-blade and a 3-blade results in a 1-blade,
as expected.

There exist two additional important identities, which are proved in the
following. The first important identity is essential in many derivations. It is
a generalization of (3.70).

Lemma 3.12. Let A〈r〉,B〈s〉,C〈t〉 ∈ Gp,q with 1 ≤ r, s, t ≤ n and t ≥ r + s,
then

(A〈r〉 ∧ B〈s〉) · C〈t〉 = A〈r〉 · (B〈s〉 · C〈t〉).

Proof. The proof can be done by construction, using the definitions of the inner
and the outer product. First of all, the outer and the inner product can be
written in terms of grade projections:

(A〈r〉 ∧ B〈s〉) · C〈t〉 =
〈 〈

A〈r〉 B〈s〉

〉
r+s

C〈t〉

〉
|(r+s)−t|

From (3.39), it is clear that

A〈r〉 B〈s〉 =
m∑

i=0

〈
A〈r〉 B〈s〉

〉
|r−s|+2i

, m =
1

2
(r + s− |r − s|),

and thus

〈
A〈r〉 B〈s〉

〉
r+s

= A〈r〉 B〈s〉 −

m−1∑

i=0

〈
A〈r〉 B〈s〉

〉
|r−s|+2i

.

Therefore,

(A〈r〉 ∧ B〈s〉) · C〈t〉

=
〈
A〈r〉 B〈s〉 C〈t〉

〉
|(r+s)−t|

−
〈 m−1∑

i=0

〈
A〈r〉 B〈s〉

〉
|r−s|+2i

C〈t〉

〉
|(r+s)−t|

.

If t ≥ r + s, then the grade projection bracket that is subtracted has to be
zero, since the geometric product

〈
A〈r〉 B〈s〉

〉
|r−s|+2i

C〈t〉 has only a term

of grade t− r − s if i = m. Furthermore,
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〈
A〈r〉 B〈s〉 C〈t〉

〉
t−s−r

=
〈
A〈r〉

n∑

i=0

〈
B〈s〉 C〈t〉

〉
|t−s|+2i

〉
t−s−r

,

where n =
1

2
(t+ s− |t+ s|). The geometric product on the right-hand side has

only terms of grade t− s− r for i = 0. Hence,

〈
A〈r〉

n∑

i=0

〈
B〈s〉 C〈t〉

〉
|s−t|+2i

〉
t−s−r

=
〈
A〈r〉

〈
B〈s〉 C〈t〉

〉
|s−t|

〉
|r−|t−s||

,

which proves the proposition.
�

The second identity is a restricted law of associativity for the inner prod-
uct.

Lemma 3.13. Let A〈r〉,B〈s〉,C〈t〉 ∈ Gp,q with 1 ≤ r, s, t ≤ n and s ≥ r + t,
then

(A〈r〉 · B〈s〉) · C〈t〉 = A〈r〉 · (B〈s〉 · C〈t〉).

Proof. The proof is done in much the same way as for Lemma 3.12, which is why
some of the details are left out here.

(A〈r〉 · B〈s〉) · C〈t〉 =
〈 〈

A〈r〉 B〈s〉

〉
|r−s|

C〈t〉

〉
||r−s|−t|

=
〈
A〈r〉 B〈s〉 C〈t〉

〉
||r−s|−t|

.

This follows since
〈
A〈r〉 B〈s〉

〉
|r−s|

is the only term of A〈r〉 B〈s〉 that con-

tributes to the outer grade projection bracket. If s ≥ r + t, then ||r − s| − t| =
|r − |s− t|| and hence

〈
A〈r〉 B〈s〉 C〈t〉

〉
||r−s|−t|

=
〈
A〈r〉 B〈s〉 C〈t〉

〉
|r−|s−t||

=
〈
A〈r〉

〈
B〈s〉 C〈t〉

〉
|s−t|

〉
|r−|s−t||

.

The second equality follows since
〈
B〈s〉 C〈t〉

〉
|s−t|

is the only component of

B〈s〉 C〈t〉 that contributes to the outer grade projection bracket. Because

〈
A〈r〉

〈
B〈s〉 C〈t〉

〉
|s−t|

〉
|r−|s−t||

= A〈r〉 · (B〈s〉 ·C〈t〉),

the proposition is proven.
�

Lemma 3.14. Let A〈k〉 ∈ Gk
p,q and let I := Gp,q[2

p+q] be the pseudoscalar
of Gp,q. Then A〈k〉 I = A〈k〉 · I.

Proof. We write A〈k〉 = ai Ei, with Ei := G
k
p,q[i] and {ai} ⊂ R. Then A〈k〉I =

ai Ei I. Since I is the geometric product of all basis vectors in G
1
p,q, Ei and

I have k basis vectors in common. Hence, Ei I = 〈Ei I〉|k−p+q| = Ei · I for

all i. The proposition thus follows immediately.
�
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Some examples will clarify the use of these identities. Recall that the dual
of a vector a ∈ G1

p,q is given by a∗ = aI−1, where I := Gp,q[2
p+q] is the

pseudoscalar of Gp,q, with p + q ≥ 2. Then

a∗·b = (a·I−1)·b = a·(I−1·b) = (−1)n+1 a·(b·I−1) = (−1)n+1 a·b∗. (3.78)

Here Lemma 3.13 has been employed, since the grade of the pseudoscalar
is greater than or equal to 2. The sign change when the order of I and b

is changed follows from (3.68). Using the same symbols as in the previous
example, here is an example where Lemma 3.12 is used:

(a ∧ b)∗ = (a ∧ b) · I−1 = a · (b · I−1) = a · b∗. (3.79)

This equation is quite interesting, since it shows that the outer product is in
some sense dual to the inner product. It is often also useful to use Lemma
3.12 in the other direction. Let a ∈ G1

p,q and A〈k〉 ∈ Gk
p,q, 2 ≤ k ≤ p + q;

then
a · (a · A〈k〉) = (a ∧ a) · A〈k〉 = 0. (3.80)

Instead of evaluating the inner product of a and A〈k〉, it can be seen imme-
diately that the whole expression is zero.

Using Lemmas 3.12 and 3.13, it can be shown that

A〈k〉 · B〈l〉 = (−1)k(l+1) B〈l〉 · A〈k〉. (3.81)

With the help of Lemma 3.12, it may be shown that for A〈k〉 := a1 ∧ . . .∧
ak ∈ Gk

p,q and B〈l〉 := bi ∧ . . . ∧ bl ∈ Gl
p,q,

A〈k〉 · B〈l〉 = a1 ·
(
a2 ·

(
· · · (ak · B〈l〉)

))
. (3.82)

Using (3.71), it follows that if there exists just one ai such that ai · bj = 0
for all j ∈ { 1, . . . , l }, then A〈k〉 · B〈l〉 = 0.

3.2.7.3 Subspaces

It was shown in Sect. 3.2.2 that the outer product of two blades represents
the direct sum of the OPNSs of the blades, if it is not zero. In a similar way,
the inner product represents their direct difference.

Definition 3.20 (Direct Difference). Let A, B ⊆ Rp,q; then their direct
difference is defined as

A ⊖ B :=
{

a ∈ A : a ∗ b† = 0 ∀ b ∈ B
}
.

Recall that a ∗ b† ≡ a ⋆ b is zero only if a and b are geometrically orthogonal
(perpendicular) (cf. Sect. 3.2.6).
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Consider first of all the case of an inner product between a vector a ∈ G∅ 1
p,q

and a blade A〈k〉 ∈ G∅ k
p,q , k ≥ 2, such that B〈l〉 := a · A〈k〉, where l = k − 1.

It follows from (3.80) that a ·B〈l〉 = a · (a ·A〈k〉) = 0, which implies that a is
perpendicular to the OPNS of B〈l〉. Furthermore, if k = 1, then a ·A〈1〉 ∈ R

and thus a · (a ·A〈1〉) = 0 by definition. Therefore, if k ≥ 1 and a ·A〈k〉 6= 0,

NO(a · A〈k〉) = NO(A〈k〉) ⊖ NO(a). (3.83)

Note that the OPNS represented by a scalar is the empty space ∅, since the
outer product of a 1-vector with a non-zero scalar is never zero.

Now consider two blades A〈k〉,B〈l〉 ∈ G∅
p,q with k ≤ l and define A〈k〉 :=∧k

i=1 ai, where {ai } ⊂ G1
p,q. It then follows from (3.82) that if A〈k〉·B〈l〉 6= 0,

NO(A〈k〉 · B〈l〉)

=

(((
NO(B〈l〉) ⊖ NO(ak)

)
⊖ NO(ak−1)

)
⊖ . . .

)
⊖ NO(a1),

(3.84)
which is equivalent to

NO(A〈k〉 · B〈l〉) = NO(B〈l〉) ⊖ NO(A〈k〉). (3.85)

This shows that the inner and outer products of blades can be used to add
and subtract subspaces.

3.2.7.4 Null Blades

The existence of null-blades in geometric algebras of mixed signature compli-
cates many properties of blades that relate to the inner product. Consider,
for example, a null-vector a ∈ G◦ 1

p,q, i.e. a a = 0. The geometric product of a

with its conjugate a† is not a scalar, as can be seen in the following way. Let
a := p + q, with p2 > 0, q2 < 0, and p · q = 0, such that a2 = p2 + q2 = 0.
Then a† = p − q, and thus

a a† = p2 − q2 + q p − p q = p2 − q2 + 2 q ∧ p. (3.86)

Similarly, the geometric product of a null-blade U〈k〉 ∈ G◦ k
p,q with its conjugate

does not result in a scalar, i.e. U〈k〉 U
†
〈k〉 6∈ R. This follows since U〈k〉 can be

written as a geometric product of perpendicular vectors, where at least one
vector is a null-vector. That is, U〈k〉 :=

∏k
i=1 ui, where {ui } ∈ G1

p,q is a set
of perpendicular vectors, which may be self-orthogonal. Hence, ui ⋆ uj = 0 if
i 6= j.

Suppose that u2
i = 0; then ui · U〈k〉 = 0, which means that here the

inner product does not return the blade of grade k−1 which is geometrically
orthogonal to ui, as is the case for non-null-blades.
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Lemma 3.15. Let a ∈ G1
p,q and U〈k〉 ∈ Gk

p,q, where a and U〈k〉 may be null
blades; then

NO(a† · U〈k〉) = NO(U〈k〉) ⊖ NO(a).

Proof. From (3.71), it follows that

a† ·U〈k〉 =
k∑

i=1

(−1)i+1 (a† ·ui) [U〈k〉\ui].

Since a† ·ui = ui ⋆a, these terms cannot be zero, because of self-orthogonality.
Hence, the same properties apply as for (3.84).

�

As before, it also follows that for A〈k〉 ∈ Gk
p,q,

NO(A†
〈l〉 · U〈k〉) = NO(U〈k〉) ⊖ NO(A〈l〉). (3.87)

It also follows from the definition of the direct sum that

NO(U〈k〉) = NO
(
A〈l〉 ∧ (A†

〈l〉 · U〈k〉)
)
. (3.88)

Consider, for example, a vector a ∈ G1
p,q with NO(a) ⊂ NO(U〈k〉); then

a ∧ U〈k〉 = 0 and, with the help of (3.70),

(U〈k〉 · a†) ∧ a = U〈k〉 (a† · a)︸ ︷︷ ︸
=‖a‖2

− (U〈k〉 ∧ a)
︸ ︷︷ ︸

=0

·a† = ‖a‖2 U〈k〉. (3.89)

3.2.8 Duality

The effect of the dual operation on blades can best be seen in relation to the
OPNS and IPNS of the blade. Let x ∈ G∅ 1

p,q and A〈k〉 ∈ G∅ k
p,q with k ≥ 1, and

let I := Gp,q[2
p+q] denote the pseudoscalar of Gp,q; then, just as in (3.78),

(x ∧ A〈k〉)
∗

= (x ∧ A〈k〉) · I−1 = x · A∗
〈k〉,

Hence,
x ∧ A〈k〉 = 0 ⇐⇒ x · A∗

〈k〉 = 0,

and thus
NO(A〈k〉) = NI(A∗

〈k〉). (3.90)

This shows that the OPNS and IPNS of a blade are directly related by the
dual operation. Furthermore,

A〈k〉 ∧ A∗
〈k〉 =

〈
A〈k〉 A〈k〉 I−1

〉
k+|n−k|

= (A〈k〉 · A〈k〉) I−1, (3.91)
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where n = p+q and thus k+|n−k| = k−k+n = n. Hence, the outer product
of a blade with its dual results in a scalar multiple of the pseudoscalar. Note
that (3.91) does not hold for k = 0, hence, the initial assumption k ≥ 1. In
terms of the OPNS of the blades,

NO(A〈k〉 ∧ A∗
〈k〉) = NO(A〈k〉) ⊕ NO(A∗

〈k〉) = NO(I−1). (3.92)

Since I−1 is an algebraic basis element of highest grade, NO(I−1) = G1
p,q.

Therefore, the relation between the OPNS of a blade and its dual is

NO(A∗
〈k〉) = G

1
p,q ⊖ NO(A〈k〉); (3.93)

that is, their OPNSs are complementary.

3.2.8.1 Null-Blades

For null-blades, some aspects of the dual are changed. For x ∈ G1
p,q and

A〈k〉 ∈ Gk
p,q, it is still true that (x · A〈k〉)

∗
= x · A∗

〈k〉 and x ∧ A〈k〉 = 0
implies x · A∗

〈k〉 = 0. However, x · A∗
〈k〉 = 0 does not imply x ∧ A〈k〉 = 0,

since x may be a null vector which is also part of A∗
〈k〉. Furthermore,

A〈k〉 ∧ A∗
〈k〉 =

〈
A〈k〉 A〈k〉 I−1

〉
k−|n−k|

(3.94)

is zero if A〈k〉 is a null-blade. Hence, the complement of A〈k〉 is its conjugate.
That is,

A
†
〈k〉 ∧ A∗

〈k〉 =
〈
A

†
〈k〉 A〈k〉 I−1

〉
k−|n−k|

= (A†
〈k〉 · A〈k〉) I−1 = I−1. (3.95)

3.2.8.2 Vector Cross Product

The properties of the dual also lead to a relation between the standard vector
cross product in R3 and the outer product in G3. The vector cross product
of two vectors in R3 results in a vector that is perpendicular to the two
given vectors, whereas the outer product of two vectors results in a blade
whose OPNS is the subspace spanned by the two vectors. Hence, these two
operations result in blades whose OPNSs are complementary to each other.
That is, for two vectors a, b ∈ G1

3,

NO(a ∧ b) = NI
(
(a ∧ b)

∗)
= NI(a × b). (3.96)

It may also be shown by construction that

a × b = (a ∧ b)
∗
. (3.97)
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Note that the vector cross product is defined only in R3, whereas the outer
product of two vectors represents the subspace spanned by the two vectors
in any embedding dimension.

3.2.9 Inverse

In contrast to general multivectors Gp,q, nonnull blades of Gp,q always have
an inverse.

Lemma 3.16. Let A〈k〉 ∈ G∅ k
p,q ; then the inverse of A〈k〉 is given by

A−1
〈k〉 =

Ã〈k〉

A〈k〉 Ã〈k〉

.

Proof. It follows directly from Lemma 3.10 that A〈k〉 Ã〈k〉 = A〈k〉 · Ã〈k〉 ∈ R.

Furthermore, since A〈k〉 · Ã〈k〉 = (−1)k(k+1) Ã〈k〉 ·A〈k〉 and (−1)k(k+1) =
+1, for all k ≥ 0,

A〈k〉 A
−1
〈k〉

= A
−1
〈k〉

A〈k〉 = 1.

�

3.2.9.1 Null Blades

It is easy to see that null-blades do not have an inverse.

Lemma 3.17. Let A〈k〉 ∈ G◦ k
p,q be a null-blade; then there exists no blade

B〈k〉 ∈ Gk
p,q such that A〈k〉 B〈k〉 = 1.

Proof. If A〈k〉 is a null-blade, then A〈k〉 A〈k〉 = 0. Suppose A〈k〉 had an
inverse B〈k〉 such that A〈k〉 B〈k〉 = 1. In this case A〈k〉 A〈k〉 B〈k〉 = 0 and

thus A〈k〉 = 0, which contradicts the assumption that A〈k〉 ∈ Gk
p,q.

�

Even though a null-blade has no inverse with respect to the geometric
product, it is still possible to define an inverse with respect to the inner
product.

Definition 3.21 (Pseudoinverse of Blade). The pseudoinverse of a blade
A〈k〉 ∈ Gk

p,q with 1 ≤ k ≤ p + q, denoted by A+
〈k〉, is defined as

A+
〈k〉 :=

A
†
〈k〉

A〈k〉 · A†
〈k〉

=
A

†
〈k〉

‖A〈k〉‖2
.
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The pseudoinverse of A〈k〉 ∈ Gk
p,q therefore satisfies

A〈k〉 · A+
〈k〉 = A+

〈k〉 · A〈k〉 = +1.

However, the geometric product A〈k〉 A+
〈k〉 results in +1 only if A〈k〉 is not a

null-blade.

3.2.10 Projection

The projection of a vector a ∈ G∅ 1
p,q onto a vector n ∈ G∅ 1

p,q is the component
of a in the direction of n. This projection can be evaluated via

(a · n)n−1 = (a · n̂) n̂ = ‖a‖ cos θ n̂, (3.98)

where n̂ = n/‖n‖ and n̂−1 = n/‖n‖2. This is generalized to blades as
follows.

3.2.10.1 Definitions

Definition 3.22. The projection of a blade A〈k〉 ∈ G∅ k
p,q onto a blade N〈l〉 ∈

G∅ l
p,q, with 1 ≤ k ≤ l ≤ p + q, is defined as

PN〈l〉

(
A〈k〉

)
:= (A〈k〉 · N−1

〈l〉 ) N〈l〉.

Consider the projection of a vector a ∈ G∅ 1
p,q onto a blade N〈l〉 ∈ G∅ l

p,q.

In general, a will have a component a‖ that lies in the subspace represented
by N〈l〉. That is, if {n1, . . . ,nl } ⊂ G∅ 1

p,q and N〈l〉 :=
∧l

i=1 ni, then a‖ ∈
span{n1, . . . ,nl } and thus a‖ ∧N〈l〉 = 0. The remainder of a is denoted by

a⊥, i.e. a = a‖ +a⊥. Since a⊥ 6∈ span{n1, . . . ,nl } by definition, a⊥ ·N〈l〉 =

0. Since N−1
〈l〉 ∝ N〈l〉, it follows that

PN〈l〉
(a) =

(
(a‖ + a⊥) · N−1

〈l〉

)
N〈l〉 = a‖ N−1

〈l〉 N〈l〉 = a‖. (3.99)

Here the fact is used that since a‖ ∧ N〈l〉 = 0, a‖ · N〈l〉 = a‖ N〈l〉. Hence,
PN〈l〉

(a) gives the component of a that lies in the subspace represented by

N〈l〉. Furthermore, it may be shown that, given {a1, . . . ,ak } ⊂ G∅ 1
p,q and

N〈l〉 ∈ G∅ l
p,q,

PN〈l〉

(
k∧

i=1

ai

)
=

k∧

i=1

PN〈l〉
(ai) . (3.100)



3.2 Blades 83

This property of the projection operator is called outermorphism, not to be
confused with automorphism. Note that PN〈l〉

(
A〈k〉

)
results again in a blade

of grade k, or is zero if the subspaces represented by A〈k〉 and N〈l〉 have no
k-dimensional subspace in common.

3.2.10.2 Null Blades

In order to consider the projection of null-blades, the representation of the
direct difference of blades given in Lemma 3.15 has to be used. That is,
instead of removing the linear dependence of a vector a ∈ G1

p,q from a blade

N〈l〉 ∈ Gl
p,q by evaluating the inner product a · N〈l〉, it is necessary to write

a† · N〈l〉. Note that

(
a† · N〈l〉

)†
= N

†
〈l〉 · a = (−1)l+1 a · N †

〈l〉.

Furthermore, the direct difference of the OPNSs of the blades A〈k〉 ∈ Gk
p,q and

N〈l〉 can be evaluated from the inner product A
†
〈k〉 · N〈l〉. The appropriate

representation of the projection operator for general blades is therefore as
follows.

Definition 3.23. Let A〈k〉 ∈ Gk
p,q and N〈l〉 ∈ Gl

p,q be two general blades
with 1 ≤ k ≤ l ≤ p + q; then the projection of A〈k〉 onto N〈l〉, denoted by

PN〈l〉

(
A〈k〉

)
, is defined as

PN〈l〉

(
A〈k〉

)
:= (A〈k〉 · N+

〈l〉) · N〈l〉.

Note that this definition of the projection reduces to the previous definition
if the blades are not null-blades. This is related to the direct difference of the
OPNSs by

(A〈k〉 · N+
〈l〉) · N〈l〉 =

1

‖N〈l〉‖2

(
A〈k〉 · N †

〈l〉

)
· N〈l〉

=
(−1)k(l+1)

‖N〈l〉‖2

(
A

†
〈k〉 · N〈l〉

)† · N〈l〉.

3.2.11 Rejection

The rejection of a vector a ∈ G∅ 1
p,q from a vector n ∈ G∅ 1

p,q is the component
of a that has no component parallel to n. Therefore, the rejection can be
defined in terms of projection. Here is the general definition for blades.
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Definition 3.24. The rejection of a blade A〈k〉 ∈ Gk
p,q from a blade N〈l〉 ∈

Gl
p,q, with 1 ≤ k ≤ l ≤ p + q, is defined as

P⊥
N〈l〉

(
A〈k〉

)
:= A〈k〉 − PN〈l〉

(
A〈k〉

)
.

Note that the rejection of a blade A〈k〉 also results in a blade of grade k. In
contrast to the projection operator, however, there exists no outermorphism
for the rejection operator.

3.2.12 Meet and Join

It was shown in Sects. 3.2.2 and 3.2.7, when we discussed the outer and inner
products, that a blade can be regarded as representing a linear subspace,
through either its outer-product or its inner-product null space. In this re-
spect, the outer and inner products of blades have the effect of adding and
subtracting subspaces, respectively. However, there are some restrictions on
this. The outer product of two blades that represent partially overlapping
subspaces results in zero. Similarly, the inner product of two blades whose
OPNSs have a non-empty intersection also results in zero.

To remove these restrictions, the operations meet and join, which have an
effect similar to the intersection and union of sets, are defined in geometric
algebra. Note that both of these operations are defined only on blades.

3.2.12.1 Definitions

Definition 3.25 (Join). Let A〈k〉,B〈l〉 ∈ Gp,q; then their join is written as
A〈k〉∧̇B〈l〉 and is defined as the blade J〈m〉 such that

NO(J〈m〉) = NO(A〈k〉) ⊕ NO(B〈l〉), ‖J〈m〉‖ = 1.

Hence, if NO(A〈k〉)∩NO(B〈l〉) = ∅, then A〈k〉∧̇B〈l〉 = A〈k〉∧B〈l〉. However,
in general there is no simple algebraic operation that returns the join of
two blades. An algorithm that evaluates the join of two blades is given in
Sect. 3.7.3.

It follows from the definition of the join that if J〈m〉 is a join, then so is
−J〈m〉. This non-uniqueness is typically no problem, since the join of two
blades is only evaluated when a representative blade of the direct sum of the
OPNS of the blades is needed. The actual scalar factor of the join blade is of
no importance in this case.

Definition 3.26. The meet of two blades A〈k〉,B〈l〉 ∈ Gp,q is denoted by
A〈k〉 ∨ B〈l〉 and is defined as
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NO(A〈k〉 ∨ B〈l〉) = NO(A〈k〉) ∩ NO(B〈l〉).

In the following, a closed-form expression is derived that evaluates the
meet of two blades, given their join. This is done by applying de Morgan’s
law for the intersection of subspaces.

Definition 3.27 (De Morgan’s Laws). Let A, B ⊆ J ⊆ Rp,q, and denote
by Ac the complement of A with respect to J. That is, Ac ∩ A = ∅ and
Ac ⊕ A = J. Then de Morgan’s laws can be written as follows:

1. A ⊕ B =
(
Ac ∩ Bc

)c

.

2. A ∩ B =
(
Ac ⊕ Bc

)c

.

It was shown in Sect. 3.2.8, on duality, that the OPNSs of a blade and its
dual are complementary with respect to the whole space. When evaluating
the meet of two blades, it is sufficient to consider the join of the OPNSs of
the blades as the whole space, since the meet has to lie in the OPNS of the
join.

Let A〈k〉,B〈l〉 ∈ G∅
p,q and J〈m〉 := A〈k〉∧̇B〈l〉; then NO(A〈k〉) and

NO(A〈k〉 J−1
〈m〉) have to be complementary spaces with respect to NO(J〈m〉),

since

NO(A〈k〉 J−1
〈m〉) = NO(A〈k〉 · J−1

〈m〉) = NO(J−1
〈m〉) ⊖ NO(A〈k〉).

That is, if we define A := NO(A〈k〉) and B := NO(B〈l〉), their complements
Ac and Bc may be defined as

A
c := NO(A〈k〉 J−1

〈m〉) and B
c := NO(B〈l〉 J−1

〈m〉). (3.101)

Hence, Ac ∩ Bc = ∅, and thus it follows from (3.47) that

A
c ⊕ B

c = NO

(
(A〈k〉 J−1

〈m〉) ∧ (B〈l〉 J−1
〈m〉)

)
.

Therefore,

A〈k〉 ∨ B〈l〉 =
(
(A〈k〉 J−1

〈m〉) ∧ (B〈l〉 J−1
〈m〉)

)
J〈m〉. (3.102)

A right multiplication by J〈m〉 instead of by J−1
〈m〉 is used in order to avoid

an additional sign change. Recall that since, by definition, NO(A〈k〉) ⊆
NO(J〈m〉) and NO(B〈l〉) ⊆ NO(J〈m〉), A〈k〉J〈m〉 = A〈k〉·J〈m〉 and B〈l〉J〈m〉 =
B〈l〉 · J〈m〉, as long as k, l ≥ 1, which is assumed in the following. Further-

more, since the sum of the grades of (A〈k〉 J−1
〈m〉) and (B〈l〉 J−1

〈m〉) is less than

or equal to the grade of J〈m〉, Lemma 3.12 can be used to write (3.102) as
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A〈k〉 ∨ B〈l〉 = (A〈k〉 · J−1
〈m〉) ·

(
(B〈l〉 · J−1

〈m〉) · J〈m〉

)

= (A〈k〉 · J−1
〈m〉) ·

(
B〈l〉(J

−1
〈m〉J〈m〉)

)

= (A〈k〉 · J−1
〈m〉) · B〈l〉 . (3.103)

The meet of two blades can thus be evaluated from their join via

A〈k〉 ∨ B〈l〉 = (A〈k〉 J−1
〈m〉) · B〈l〉. (3.104)

This expression for the meet becomes even simpler if the join of the blades
is the pseudoscalar, since in that case A〈k〉 ∨ B〈l〉 = A∗

〈k〉 · B〈l〉.

3.2.12.2 Example

As a simple example of a join and a meet, let ei := G
1

p,q[i], and let A〈2〉,B〈2〉 ∈
G∅

p,q, p + q ≥ 3, be given by A〈2〉 = e1e2 and B〈2〉 = e2e3. Clearly, the join
of A〈k〉 and B〈l〉 is e1e2e3, which is not unique, since e1e3e2 is as good a
choice. However, if only the subspace represented by the join (i.e. the OPNS
of the join) is of interest, then an overall scalar factor is of no importance.

Applying de Morgan’s law directly to evaluate the meet of A〈k〉 and B〈l〉

gives

A〈2〉 ∨ B〈2〉 =
(
(e1e2 e3e2e1) ∧ (e2e3 e3e2e1)

)
(e1e2e3)

=
(
e3 ∧ e1

)
(e1e2e3)

= −e2, (3.105)

where J−1
〈3〉 = e3e2e1. Hence, the result is the blade that both A〈2〉 and B〈2〉

have in common. Using (3.104) to evaluate the meet gives

A〈2〉 ∨ B〈2〉 = (e1e2 e3e2e1) · (e2e3)

= e3 · (e2e3)

= e3 (e2e3)

= −e2. (3.106)

3.2.12.3 Properties

From the definition of the inner product, it is clear that the grade of A〈k〉·J−1
〈m〉

is m − k and the grade of B〈l〉 · J−1
〈m〉 is m − l. With the help of (3.51), it

therefore follows that
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(A〈k〉 J−1
〈m〉) ∧ (B〈l〉 J−1

〈m〉) = (−1)(m−k)(m−l) (B〈l〉 J−1
〈m〉) ∧ (A〈k〉 J−1

〈m〉),

(3.107)
and thus

A〈k〉 ∨ B〈l〉 = (−1)(m−k)(m−l) B〈l〉 ∨ A〈k〉. (3.108)

Let β ∈ R and A〈k〉 ∈ G∅
p,q, 0 < k ≤ n; then their join is A〈k〉∧̇β = Â〈k〉,

where Â〈k〉 := A〈k〉/|A〈k〉|. Therefore, the meet is

A〈k〉 ∨ β =
(
(A〈k〉Â

−1
〈k〉) ∧ (βÂ−1

〈k〉)
)
Â〈k〉

= ‖A〈k〉‖β Â−1
〈k〉 Â〈k〉

= ‖A〈k〉‖β. (3.109)

This shows that NO(A〈k〉∨β) = ∅. Similarly, the meet of two scalars α, β ∈ R

is α ∨ β = αβ.
Let A〈k〉 ∈ G∅

p,q, and let I denote the pseudoscalar of Gp,q. Then the join
of A〈k〉 and I is I, i.e. A〈k〉∧̇ I = I. Because

A〈k〉 ∨ I = (A〈k〉I
−1) I

= A〈k〉,
(3.110)

the pseudoscalar is the identity element of the meet operation. Furthermore,
the meet is associative; that is, for A〈r〉,B〈s〉,C〈t〉 ∈ G∅

p,q,

(A〈r〉 ∨ B〈s〉) ∨ C〈t〉 = A〈r〉 ∨ (B〈s〉 ∨ C〈t〉). (3.111)

3.2.12.4 Null Blades

The meet of general blades A〈k〉 ∈ Gk
p,q and B〈l〉 ∈ Gl

p,q, which may be
null-blades, can also be evaluated. The only aspect that has to be changed
is the evaluation of the complements of the OPNS of the blades. Since the
join J〈m〉 = A〈k〉∧̇B〈l〉 may be a null-blade in this case, (3.87) can be used
to define the complements of A := NO(A〈k〉) and B := NO(B〈l〉) as

A
c := NO

((
A〈k〉 · J+

〈m〉

)†)
and B

c := NO

((
B〈l〉 · J+

〈m〉

)†)
, (3.112)

if 1 ≤ k, l ≤ p + q. Just as before, Ac ∩ Bc = ∅ and

A
c ⊕ B

c = NO

((
(A〈k〉 · J+

〈m〉) ∧ (B〈l〉 · J+
〈m〉)

)†)
.

Therefore,

A〈k〉 ∨ B〈l〉 =
(
(A〈k〉 · J+

〈m〉) ∧ (B〈l〉 · J+
〈m〉)

)
· J〈m〉. (3.113)
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If 1 ≤ k, l ≤ p + q, A2
〈k〉 6= 0, and B2

〈l〉 6= 0, then this formula reduces

to (3.103). Just as before, this equation can be simplified with the help of
Lemma 3.12:

A〈k〉 ∨ B〈l〉 = (A〈k〉 · J+
〈m〉) ·

(
(B〈l〉 · J+

〈m〉) · J〈m〉

)

= (A〈k〉 · J+
〈m〉) · B〈l〉.

The second step follows since (B〈l〉 · J+
〈m〉) · J〈m〉 is the projection of B〈l〉

onto J〈m〉, as given in Definition 3.23. However, since NO(B〈l〉) ⊆ NO(J〈m〉),

PJ〈m〉

(
B〈l〉

)
= B〈l〉. Therefore, the general expression for the meet of blades

A〈k〉,B〈l〉 ∈ Gp,q, with 1 ≤ k, l ≤ p + q, is

A〈k〉 ∨ B〈l〉 = (A〈k〉 · J+
〈m〉) · B〈l〉. (3.114)

This reduces to (3.104) if neither A〈k〉 nor B〈l〉 is a null blade. If 1 ≤ k ≤
p + q and l = 0, i.e. B〈0〉 ∈ R is a scalar, then J〈m〉 = A〈k〉/‖A〈k〉‖ and

A〈k〉 · J+
〈m〉 = ‖A〈k〉‖, and thus

A〈k〉 ∨ B〈0〉 =
(
(A〈k〉 · J+

〈m〉) ∧ (B〈0〉 J+
〈m〉)

)
· J〈m〉 = ‖A〈k〉‖B〈0〉. (3.115)

3.2.12.5 Summary

To summarize, the meet has the following properties. Let A〈r〉,B〈s〉,C〈t〉 ∈
Gp,q, with 1 ≤ r, s, t ≤ p + q, α ∈ R, and J〈m〉 := A〈r〉∧̇B〈s〉, and let I be
the pseudoscalar of Gp,q; then the meet can in general be evaluated as

A〈k〉 ∨ B〈l〉 = (A〈k〉 · J+
〈m〉) · B〈l〉,

and its properties are the following:

1. A〈r〉 ∨ I = I ∨ A〈r〉 = A〈r〉 .

2. A〈r〉 ∨ 1 = ‖A〈k〉‖ .

3. (αA〈r〉) ∨ B〈s〉 = A〈r〉 ∨ (αB〈s〉) = α (A〈r〉 ∨ B〈s〉) .

4. (A〈r〉 ∨ B〈s〉) ∨ C〈t〉 = A〈r〉 ∨ (B〈s〉 ∨ C〈t〉) .

5. (A〈r〉 + B〈s〉) ∨ C〈t〉 = A〈r〉 ∨ C〈t〉 + B〈s〉 ∨ C〈t〉 .

6. A〈r〉 ∨ B〈s〉 = (−1)(m−r)(m−s) B〈s〉 ∨ A〈r〉 . (3.116)
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3.2.13 Regressive Product

The regressive product is closely related to the meet. It is used to evaluate
intersections in Grassmann–Cayley algebra (see Sect. 3.8.5), but is not as
general as the meet. Basically, the regressive product is the meet where the
join is replaced by the pseudoscalar. Owing to this replacement, the regressive
product is defined for general multivectors and not just for blades.

Definition 3.28 (Regressive Product). The regressive product between
two multivectors A, B ∈ Gp,q is denoted by ▽ and defined as

A ▽ B :=
(
A∗ ∧ B∗

)
I.

The regressive product can be regarded as the dual operation to the outer
product, since for A, B ∈ Gp,q,

(
A∗

▽ B∗
)∗

= A ∧ B. (3.117)

Therefore, for blades A〈k〉,B〈l〉 ∈ Gp,q, the relation NO(A〈k〉 ∧ B〈l〉) =
NI(A∗

〈k〉 ▽ B∗
〈l〉) holds.

From the properties of the inner, outer, and geometric products, the follow-
ing properties of the regressive product follow. Let A, B,C,X〈k〉,Y〈l〉 ∈ Gp,q,
let α ∈ R, and let I ∈ Gp,q be the pseudoscalar of Gp,q. We then have the
following:

1. A ▽ I = I ▽ A = A .

2. A ▽ α = α ▽ A = 0 .

3. (αA) ▽ B = A ▽ (αB) = α (A ▽ B) .

4. (A ▽ B) ▽ C = A ▽ (B ▽ C) .

5. (A + B)▽ C = A ▽ C + B ▽ C .

6. X〈k〉 ▽ Y〈l〉 = (−1)(n−k)(n−l) Y〈l〉 ▽ X〈k〉 . (3.118)

Owing to the associativity of the regressive product, A ▽ (B ▽ C) can also
be written as A ▽ B ▽ C. This is dual to a blade, since

(A∗
▽ B∗

▽ C∗)
∗

= A ∧ B ∧ C.

3.3 Versors

Versors are a generalization of blades. They play an important role in the
applications of geometric algebra because they allow the representation of
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transformations. In this section, the fundamental algebraic properties of ver-
sors are discussed. The term “versor” was coined by David Hestenes.

3.3.1 Definitions

Definition 3.29 (Versor). A versor is a multivector that can be expressed
as the geometric product of a number of non-null 1-vectors. That is, a versor
V can be written as V =

∏k
i=1 ni, where {n1, . . . ,nk } ⊂ G∅ 1

p,q with k ∈ N+,
is a set of not necessarily linearly independent vectors.

Lemma 3.18. For each versor V ∈ Gp,q, there exists an inverse V −1 ∈ Gp,q

such that V V −1 = V −1 V = 1.

Proof. Let the versor V be defined as V =
∏k

i=1 ni, where {n1, . . . , nk } ⊂

G∅ 1
p,q , k ∈ N+. From Lemma 3.16, it follows that every non-null 1-vector ni has

an inverse. Hence, it can easily be seen by construction that V −1 =
∏1

i=k n
−1
i .

�

Lemma 3.19 (Clifford Group). The subset of versors of Gp,q together with
the geometric product, forms a group, the Clifford group, denoted by Gp,q.

Proof. From the properties of the geometric product, it follows immediately that
associativity is satisfied and that a right and left identity element, the algebra
identity element, exists. Furthermore, Lemma 3.18 shows that there exists an
inverse for each element of Gp,q, which can be applied from both left and right.

�

Note that in the literature, the Clifford group is often denoted by Γ (see
e.g. [148]). To keep the notation in this text consistent, a different font is
used. It is important to realize that a Clifford group Gp,q is in general not a
subalgebra of Gp,q. That is, the sum of two versors does not in general result
in a versor.

Definition 3.30 (Unitary Versor). A versor V ∈ Gp,q is called unitary if

V −1 = Ṽ , i.e. V Ṽ = +1.

Lemma 3.20 (Pin Group). The set of unitary versors of Gp,q forms a
subgroup Pp,q of the Clifford group Gp,q, called the pin group.

Proof. Let V1, V2 ∈ Gp,q denote two unitary versors of the Clifford group, that

is V
−1
1 = Ṽ1 and V

−1
2 = Ṽ2. Then U := V1 V2 is a unitary versor, since

Ũ = Ṽ2 Ṽ1 and

U Ũ = V1 V2 Ṽ2 Ṽ1 = V1 V2 V
−1
2 V

−1
1 = 1 .

Hence, Ũ = U−1 is a unitary versor, which proves the assertion.
�
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Definition 3.31 (Spinor). A versor V ∈ Gp,q is called a spinor if it is

unitary (V Ṽ = 1) and can be expressed as the geometric product of an even
number of 1-vectors. This implies that a spinor is a linear combination of
blades of even grade.

Lemma 3.21 (Spin Group). The set of spinors of Gp,q forms a subgroup
of the pin group Pp,q, called the spin group, which is denoted by Sp,q.

Proof. Let V1, V2 ∈ Gp,q denote two spinors. Note that V1 and V2 are linear
combinations of blades of even grade. It therefore follows from (3.39) that the
geometric product U := V1 V2 has to result in a linear combination of blades
of even grade. Since spinors are unitary versors and thus elements of the pin
group Pp,q, U also has to be a unitary versor. Hence, U is a spinor, which
proves the assertion.

�

To summarize, the set of versors of Gp,q, together with the geometric
product, forms a group, called the Clifford group, denoted by Gp,q. The set
of unitary versors forms a subgroup of the Clifford group, called the pin
group, Pp,q. Furthermore, the set of unitary versors that are generated by
the geometric product of an even number of vectors forms a subgroup of the
pin group, called the spin group, Sp,q. For a more detailed discussion, see for
example [148].

Note also that a versor is a linear combination either of blades of even grade
or of blades of odd grade. While the former generate rotations, the latter are
combinations of rotations with a reflection, sometimes called antirotations.

Definition 3.32 (Null Versor). A null-versor is the geometric product of
k ∈ N+ not necessarily linearly independent 1-vectors {ni } ∈ G1

p,q, i.e.

V =
∏k

i=1 ni, such that V Ṽ = 0. Hence, at least one of the {ni } is a
null-vector.

It was shown in (3.49) in Sect. 3.2.2 that any blade may be represented by
a geometric product of perpendicular vectors. Conversely, it can be said that
a versor generated by the geometric product of a set of perpendicular vectors
is a blade. Blades therefore form a subset of the set of versors. However, they
do not form a group.

3.3.2 Properties

Consider the effect of the following operation between vectors a,n ∈ G∅ 1
p,q :

n an−1 = (n ·a + n∧a)n−1 = (n ·a)n−1 + (n∧a) ·n−1 + (n∧a)∧n−1.
(3.119)
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Since n−1 := n/‖n‖2, it is linearly dependent on n and thus n ∧ n−1 = 0.
Also, just as in (3.73),

(n ∧ a) · n−1 = (a · n−1) n − (n · n−1)a.

Hence,
n an−1 = 2 (a · n̂) n̂ − a = 2Pn̂(a) − a, (3.120)

where n̂ := n/‖n‖. Writing a = Pn̂(a) + P⊥
n̂(a), this results in

n an−1 = Pn̂(a) − P⊥
n̂(a) . (3.121)

That is, n an−1 results in a 1-vector, which has the same component as a

parallel to n but whose component perpendicular to n is negated compared
with a. In other words, this operation results in the reflection of a in n.
Note that since a general versor V is the geometric product of a number of
1-vectors, the operation V a V −1 results in consecutive reflections of a in the
constituent vectors of V .

Lemma 3.22 (Grade Preservation). Let V ∈ Gp,q denote a versor and
let a ∈ G1

p,q; then V a V −1 ∈ G1
p,q.

Proof. Let the versor V be defined as V =
∏k

i=1 ni, where {n1, . . . , nk } ⊂

G∅ 1
p,q , k ∈ N+. Then,

V a V −1 = n1 · · · nk−1 (nk a n
−1
k ) n

−1
k−1 · · · n

−1
1 .

From (3.121), it follows that nk a n
−1
k ∈ G1

p,q. Through recursive application
of this property and using the associativity of the geometric product, the propo-
sition is proven.

�

Lemma 3.23 (Versor Outermorphism). Let V ∈ Gp,q denote a versor
and let {a1, . . . ,ak } ⊂ G1

p,q be a set of linearly independent vectors; then

V

(
k∧

i=1

ai

)
V −1 =

k∧

i=1

(
V ai V −1

)
.

Proof. This may be shown by induction. Let A〈k−j〉 :=
∧k−j

i=1 ai, and note that

A〈k−1〉 ∧ ak =
1

2
(A〈k−1〉 ak + (−1)k−1 ak A〈k−1〉).

Hence,
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V (A〈k−1〉 ∧ ak) V −1

=
1

2
(V A〈k−1〉 ak V −1 + (−1)k−1 V ak A〈k−1〉 V −1)

=
1

2
(V A〈k−1〉 V −1 V ak V −1

+(−1)k−1 V ak V −1 V A〈k−1〉 V −1)

= (V A〈k−1〉 V −1) ∧ (V ak V −1).

Through recursive application of this equation, the proposition is proven.
�

3.4 Linear Functions

While versors form a particularly important class of transformation opera-
tions in geometric algebra, they form a subgroup of general linear transforma-
tions. The goal of this section is to introduce linear functions on multivectors
and to present some of their properties. It was noted in Chap. 1 that one
of the advantageous properties of geometric algebra is the representation of
particular transformation subgroups, such as the spin group. Nevertheless,
general linear transformations can still be incorporated, albeit without an
operator representation as for versors. That is, in Euclidean space there exist
no grade-preserving transformation operators that represent general linear
transformations.

Definition 3.33 (Linear Function). Let A, B ∈ Gn be two multivectors
and let a ∈ R. A linear function F on Gn is a map Gn → Gn which satisfies

F(A + B) = F(A) + F(B),

F(a A) = a F(A).

A type of linear function that is particularly interesting is grade-preserving
linear functions, since they retain the algebraic and geometric identity of a
multivector.

Definition 3.34 (Grade-Preserving Linear Function). A grade-
preserving linear function F satisfies the following for all blades A〈k〉 ∈ Gn

of arbitrary grade k:

gr(F(A〈k〉)) = gr(A〈k〉) = k if F(A〈k〉) 6= 0 .

Let F be a grade-preserving linear function defined on vectors. That is,
F is a map Rn → Rn. There then exist two vectors a, b ∈ Rn such that
F(a) = b. Any linear transformation of this type can be described by a
matrix. Let {ei} ≡ R

n
denote the canonical basis of Rn, such that vectors a

and b can be defined as a := ai ei and b := bi ei. There then exists a matrix
T j

i such that
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F(a) := ai T j
i ej = bj ej ,

with bj = ai T j
i and an implicit summation over i. From this definition of

F and the distributivity of linear functions, it follows that

F(ei) = T r
i er .

Therefore, the bivector F(ei) ∧ F(ej) becomes

F(ei) ∧ F(ej) = T r
i T

s
j er ∧ es = U rs

ij er ∧ es,

where U rs
ij := T r

i T
s
j . The tensor U rs

ij now represents a grade-preserving
linear function on bivectors. Since U rs

ij is directly related to the linear func-
tion F , it is useful to extend the definition of F to blades of arbitrary grade
via an outermorphism.

Definition 3.35 (Outermorphism of Linear Functions). Any grade-
preserving linear function on grade 1 vectors in Gn is extended to blades
of arbitrary grade via the outermorphism property. That is, if F is a grade-
preserving linear function that maps G1

n → G1
n, then for a set {ai } ⊂ G1

n of
k grade 1 vectors, the definition of F is extended as follows:

F
( k∧

i=1

ak

)
:=

k∧

i=1

F(ak) .

3.4.1 Determinant

The concept of the determinant of a matrix is directly related to the eval-
uation of a linear function acting on the pseudoscalar. This can easily be
demonstrated in G2. Let F be a grade-preserving linear function on G1

2, that
is represented by the 2 × 2 matrix T j

i. That is, given the canonical ba-

sis { e1, e2 } ≡ R
2
, F(ei) = T j

i ej . The pseudoscalar I ∈ G2 is given by
I = e1 ∧ e2. Therefore, using the extension of F via the outermorphism,

F(I) = F(e1 ∧ e2) = F(e1) ∧ F(e2) = T j
1 T k

2 ej ∧ ek,

with an implicit summation over j, k ∈ { 1, 2 }. Expanding the implicit sums
over j and k gives

F(I) =
(
T 1

1 T 1
2 − T 2

1 T 1
2

)
e1 ∧ e2 = det(T i

j) I =: det(F) I,

where det(F) is defined to denote the determinant of the associated transfor-
mation matrix. In fact, any grade-preserving linear function F on G1

n satisfies
F(I) = det(F) I, where I denotes the pseudoscalar of Gn. This can be seen
as follows.
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Lemma 3.24. Let F denote a grade-preserving linear function G1
n → G1

n

that is defined as F : ei 7→ T j
i ej, where T j

i ∈ Rn×n. If I ∈ Gn
n is the

unit pseudoscalar, then
F(I) = det(T j

i) I .

Proof. By applying a singular-value decomposition (SVD), the matrix T ≡ T j
i ∈

Rn×n can be written as
T = UDV ,

where U, V ∈ Rn×n are unitary matrices and D ∈ Rn×n is a diagonal matrix
(see e.g. [167, 168]). Define the linear functions FU , FD, and FV as

FD : ei 7→ Dj
i ej , FU : ei 7→ U j

i ej , FV : ei 7→ V j
i ej ,

where Dj
i ≡ D, U j

i ≡ U, and V j
i ≡ V. Define ui := U j

i ej as the column
vectors of U j

i. Since U j
i is unitary, the vectors {ui} are orthogonal and have

unit length, i.e. ‖ui‖ = 1. It follows that

FU (I) =
n∧

i=1

FU (ei) =
n∧

i=1

ui =
n∏

i=1

ui ,

where the last step follows since the {ui} are orthogonal. The geometric product
of n orthogonal grade 1 vectors in Gn has to be proportional to the pseudoscalar
of Gn, i.e.

n∏

i=1

ui =
∥∥∥

n∏

i=1

ui

∥∥∥ I =
n∏

i=1

‖ui‖ I = I ,

since ‖ui‖ = 1 for all i ∈ {1, . . . , n} (cf. Sect. 3.2.6). Hence,

FU (I) = FV (I) = I .

If the diagonal entries of Dj
i are denoted by di := Di

i, then FD(ei) = di ei,
with no implicit summation over i. Therefore,

FD(I) =

(
n∏

i=1

di

)
I .

It follows that

F(I) = FU

(
FD

(
FV (I)

) )
=

(
n∏

i=1

di

)
I = FD(I) .

From the properties of determinants, it also follows that

det(T) = det(UDV) = det(U) det(D) det(V) = det(D) ,

since det(U) = det(V) = 1. Furthermore, the determinant of a diagonal matrix
is the product of the diagonal entries, i.e. det(D) =

∏n
i=1 di. Thus,

F(I) = det(D) I = det(T) I .

Note that if T is not of full rank, D will have some zero entries on its diagonal,
and thus det(T) = 0.

�
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3.4.2 Determinant Product

Let F and G be grade-preserving linear functions on G[1]n, with associated
general n × n matrices U j

i and V j
i, respectively.

Applying both functions consecutively to some vector a ∈ G[1]n, with
a = ai ei, gives

(F ◦ G)(a) = F
(
G(a)

)
= ai

(
U k

j V j
i

)
ek = ai W k

i ek,

where W k
i := U k

j V j
i is the matrix product of U k

j and V j
i. If we denote

the linear function represented by W k
i as H, then F ◦G = H, i.e. F(G(a)) =

H(a). Hence,
H(I) = det(H) I .

Expressing H as F ◦ G gives

H(I) = F(G(I)) = F(det(G) I) = det(G)F(I) = det(G) det(F) I .

This demonstrates the determinant identity

det(U V) = det(U) det(V).

3.4.3 Inverse

Let F be an invertible, grade-preserving linear function on G1
n and let F−1

denote its inverse. Then F−1 ◦F = F ◦F−1 = 1, where 1 denotes the identity
function. If I denotes the pseudoscalar of Gn, then

I = F−1(F(I)) = F−1(det(F) I) = det(F) det(F−1) I ,

and thus

det(F−1) =
1

det(F)
.

3.4.4 Summary

In this section, the relations between grade-preserving linear functions in geo-
metric algebra were introduced and their relation to determinants was shown.
Linear functions are the only way to express general linear transformations
of multivectors in geometric algebra. An additional feature of working with
grade-preserving linear functions in geometric algebra, as compared with ma-
trices, is that their definition can be extended to blades of arbitrary grade.
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This means, for example, that geometric entities such as points, lines, and
planes can be transformed with the same linear function, where otherwise a
multilinear function would have to be defined in each case. That is, geometric
algebra allows the representation of multilinear functions as linear functions.

3.5 Reciprocal Bases

Reciprocal bases play an important role in many aspects of geometric algebra.
To introduce the idea behind reciprocal bases, consider first of all a geometric
algebra with a Euclidean signature.

The orthonormal basis { ei } := G
1

n has the nice property that ei ·ej = δij ,
where δij is the Kronecker delta. That is, ei · ei = 1 and ei · ej = 0 if i 6= j.
If a vector x ∈ Gn is given in this basis as x = xi ei, with { xi } ⊂ R, then a
particular component xr can be extracted from x via x · er = xr.

Clearly, x can be expressed in any basis of G1
n. Let {ai } ⊂ G1

n be a basis
of G1

n and let { xi
a } ⊂ R be given such that x = xi

aai. The relation between
{ xi } and { xi

a } can be found by expressing the {ai } in terms of the { ei }.
Suppose that {Aj

i } ⊂ R is such that ai = Aj
i ej . It is then clear that

x = xi
a ai = xi

a Aj
i ej = xj ej . (3.122)

The {Aj
i } can be regarded as the components of a matrix A, the { xi

a } as a
column vector xa, and the { xi } as a column vector x. Equation (3.122) can
then be written as a matrix equation

x = A xa.

Since {ai } and { ei } are both bases of G1
n, the matrix A must be invertible,

and thus xa = A−1x. The components { xi
a } could be found directly, given

a basis {ai } of G1
n such that ai · aj = δij . The basis {ai } is called the

reciprocal basis of {ai }. With its help,

x · aj = xi
a (ai · aj) = xi

a δj
i = xj

a.

On the other hand, x · aj may be expanded as

x · aj = xi (ei · aj) = xj
a.

Therefore, A−1 = ei · aj . The question that remains is how the reciprocal
basis {ai } of some basis {ai } can be evaluated.
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3.5.1 Definition

Definition 3.36 (Reciprocal Basis). Let {ai } ⊂ G1
p,q be a basis of G1

p,q.

By a reciprocal basis a set of vectors denoted by {ai } ⊂ G1
p,q is meant, which

also forms a basis of G1
p,q and satisfies the equation ai · aj = δj

i, where δj
i

is the Kronecker delta. Note that an orthonormal basis is its own reciprocal
basis.

Lemma 3.25. Let {ai } ⊂ G1
p,q be a basis of G1

p,q. The reciprocal basis

{ai } ⊂ G1
p,q of {ai } is then given by

aj := (−1)j−1
[( j−1∧

r=1

ar

)
∧
( n∧

r=j+1

ar

)]
I−1

a ,

where Ia :=
∧n

r=1 ai. Ia is therefore a pseudoscalar of Gp,q.

Proof. First of all, note that even though some or all of the {ai } may be null-
vectors, the pseudoscalar of Gp,q cannot be a null-blade. Initially, we show that

ai · a
i = 1. It follows from the above definitions and Lemma 3.12 that

ai · a
i = (−1)i−1 ai ·

[( ∧i−1
r=1 ar

)
∧
( ∧n

r=i+1 ar

)]
I−1

a

= (−1)i−1
[
ai ∧

( ∧i−1
r=1 ar

)
∧
( ∧n

r=i+1 ar

)]
I−1

a

= (−1)i−1 (−1)i−1
( ∧n

r=1 ar

)
I−1

a

= Ia I−1
a

= 1. (3.123)

Now we show that ai · a
j = 0 if i 6= j. Similarly to the argument above,

ai · a
j = (−1)j−1 ai ·

[( ∧j−1
r=1 ar

)
∧
( ∧n

r=j+1 ar

)]
I−1

a

= (−1)j−1
[
ai ∧

( ∧j−1
r=1 ar

)
∧
( ∧n

r=j+1 ar

)]
I−1

a

= 0, (3.124)

since ai also occurs in the outer product
( ∧j−1

r=1 ar

)
∧
( ∧n

r=j+1 ar

)
if i 6= j.

�

Note that, given a basis of arbitrary k-blades, the corresponding reciprocal
basis of k-blades can be found in much the same way as in the above lemma.

3.5.2 Example

Consider the algebra G1,1, let ei := G
1

1,1[i], and define n1 := e1 + e2 and
n2 := e1 − e2. Clearly, (n1)

2 = (n2)
2 = 0 and n1 · n2 = 2, since e2

1 = +1
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and e2
2 = −1. Furthermore, In := n1 ∧ n2, such that I−1

n =
1

4
I, because

In I−1
n =

1

4
(n1 ∧ n2) · (n1 ∧ n2) =

1

4

(
− (n1)

2 (n2)
2 + (n1 · n2)

2
)

= 1.

It also follows that

n1 I−1
n =

1

4
n1 · (n1 ∧ n2) =

1

4

(
(n1 · n1) n2 − (n1 · n2) n1

)
= −1

2
n1

and, similarly, n2 I−1
n =

1

2
n2. Lemma 3.25 defines the corresponding recip-

rocal basis as

n1 := n2 I−1
n =

1

2
n2 and n2 := −n1 I−1

n =
1

2
n1.

Thus

n1 · n1 =
1

2
n1 · n2 = 1 and n1 · n2 =

1

2
n1 · n1 = 0,

and similarly for n2.

3.6 Differentiation

Differentiation is clearly an important aspect of geometric algebra. This is
particularly true from the point of view of applications, where the optimiza-
tion of functions often necessitates using their derivative. In Chap. 5, the dif-
ferentiation of multivector-valued functions is introduced by regarding mul-
tivectors as column vectors on the algebraic basis. The differentiation of a
multivector then leads to a Jacobi matrix in general. While this is the most
general form of a derivative on multivectors, the resultant Jacobi matrices
cannot be represented directly in geometric-algebra terms. This is an advan-
tageous approach when one is dealing with numerical optimization and error
propagation. However, for analytical calculations, an approach where the dif-
ferentiation operators are elements of geometric algebra is usually preferable.

3.6.1 Vector Derivative

The standard vector derivative in R3 is typically denoted by ∇ (see [126])
and defined as

∇ := e1
∂

∂ x
+ e2

∂

∂ y
+ e3

∂

∂ z
. (3.125)
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To emphasize the function of ∇ as a partial derivative in arbitrary dimensions,
the partial differentiation operator with respect to x ∈ Rp,q, where x := x i ei

and {ei} ≡ R
p,q

is denoted by ∂x and defined as

∂x := ei ∂x i , (3.126)

where ei is the reciprocal vector of ei, ∂x i denotes partial differentiation with
respect to x i, and there is an implicit summation over i.

3.6.1.1 Gradient

Let F : G1
p,q → R denote a scalar-valued, not necessarily linear function;

then
∂x F(x) = ei ∂x i F(x) = ei Fi(x) , (3.127)

where Fi(x) := ∂x i F(x) is the partial derivative of F with respect to x i

evaluated at x. Equation (3.127) is called the gradient of F(x). The derivative
of F in the direction of some unit vector n̂ ∈ G1

p,q, with n̂ := ni ei, is then
given by

(n̂ · ∂x)F(x) = n̂ · (∂x F(x)) = n̂ · (ei Fi(x)) = ni Fi(x) . (3.128)

The expression n̂ · ∂x therefore denotes the directed differentiation operator.

3.6.1.2 Divergence and Curl

Let F : G1
p,q → G1

p,q denote a vector-valued function, with

F : x 7→ F i(x)ei ,

where the F i : G1
p,q → R, for all i, are scalar-valued functions. The divergence

of F is defined as

∂x · F(x) = ∂x i F i(x) =
∑

i

F i
i(x) , (3.129)

where F i
i(x) denotes the derivative of F i with respect to x i evaluated at

x. Note that the set of components F i
j forms the Jacobi matrix of F (cf.

Sect. 5.1). The divergence of F is thus the trace of its Jacobi matrix.
The curl of F is defined only in 3D space. That is, if F : G1

3 → G1
3, the

curl is given in terms of the vector cross product as

∂x ×F(x) =
(
∂x ∧ F(x)

)∗
= ∂x · F∗(x) = ∂∗

x · F(x) . (3.130)
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That is, the curl can be regarded as the divergence of the dual of F in
geometric algebra. In geometric algebra, the definition of the curl can also
be extended to any dimension, by considering the result of the curl to be a
bivector. That is, instead of defining the curl via the vector cross product,
it can be defined in terms of the outer product for arbitrary-dimensional
functions F : G1

p,q → G1
p,q as

∂x ∧ F(x) . (3.131)

In the special case of three dimensions, the standard curl can be recovered
as the dual of the generalized curl.

3.6.2 Multivector Differentiation

A detailed introduction to multivector calculus is given in [91] and a short
overview can be found, for example, in [110]. In the following, the fundamental
ideas of multivector differentiation are presented. Note that this presentation
differs somewhat from the presentation in [91] in that here direct reference is
made to the canonical algebraic basis to simplify the definition of the differ-
entiation operator. In [91], the initial definition is given without reference to
any particular algebraic basis.

Let {Ei } := Gp,q denote the canonical algebraic basis of Gp,q, as defined
in Sect. 3.1.3. A general multivector X ∈ Gp,q can then be defined as

X := x i Ei , (3.132)

with {x i} ⊂ R. The multivector differentiation operator with respect to X

is defined in this context as

∂X := Ei ∂x i , Ei := E
†
i . (3.133)

Note that Ei := E
†
i denotes a reciprocal algebraic basis element only with

respect to the scalar product. That is, Ei ∗Ej = δi
j , as shown in Sect. 3.2.6.

3.6.2.1 Gradient

Let F : Gp,q → R denote a scalar-valued function; then

∂X F(X) = Ei ∂x i F(X) = Ei Fi(X) , (3.134)

where Fi(X) := ∂x i F(X) is the partial derivative of F with respect to x i,
evaluated at X. In analogy to the case of vector-valued functions, this is
the gradient of F . The derivative of F in the “direction” of a multivector
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A ∈ Gp,q, with A := ai Ei, is then given by

(A ∗ ∂X)F(X) = A ∗ (∂X F(X)) = A ∗ (Ei Fi(X)) = ai Fi(X) . (3.135)

The expression A∗∂X therefore represents the directed multivector derivative
operator.

As an example of the gradient, consider the function

F : X 7→ X ∗ A ,

where A ∈ Gp,q. Then

∂X F(X) = Ei ∂x i (x j aj Ej ∗ Ej) =
∑

i

δ(x i) ai (Ei ∗ Ei) Ei ,

where

δ(x i) :=

{
1, x i 6= 0 ,

0, x i = 0 .

Since Ei ∗ Ei = +1, Ei can be written as

Ei =
Ei

Ei ∗ Ei
⇐⇒ Ei = (Ei ∗ Ei)Ei .

Hence,
∂X (X ∗ A) = δ(x i) ai Ei .

That is, only those components i are considered that are also non-zero in X =
x i Ei. This can be regarded as the projection of A onto those components
that are non-zero in X.

3.6.2.2 General Derivative

For multivector-valued functions of the type F : Gp,q → Gp,q, care has to
be taken when applying the multivector derivative. Consider first of all the
trivial function

F : X 7→ X .

Then
∂X F(X) = Ei ∂x i x j Ej = Ei Ei = 2n ,

where n = p + q is the dimension of the algebra. It follows right away from
the associativity of the geometric product that

∂X (X A) = 2n A ,

where A ∈ Gp,q. However,
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∂X (A X) = Ei ∂x i A x j Ej = Ei A Ei =
Ei A Ei

Ei Ei
,

which has the form of a reflection of A. Typically, it suffices to consider the
scalar component of such a derivative, whence

∂X ∗ (A X) = 〈∂X (A X)〉0 =
〈
Ei A Ei

〉
0

=
〈
A Ei Ei

〉
0

= 2n 〈A〉0 .

The third equality follows from Lemma 3.9 (p. 68).

3.6.3 Tensor Representation

This subsection gives a short introduction to the idea that geometric-algebra
operations are essentially bilinear functions. This notion is discussed in de-
tail later on in Sect. 5.1. If we make this identification of geometric-algebra
operations with multilinear functions, differentiation and integration can be
expressed in a straightforward manner.

As before, let {Ei } := Gp,q denote the canonical algebraic basis of Gp,q

(see Sect. 3.1.3). A general multivector X ∈ Gp,q can then be defined as

X := x i Ei, (3.136)

with {x i} ⊂ R. Since the {Ei} form an algebraic basis, it follows that the
geometric product of two basis blades has to result in a basis blade, i.e.

Ei Ej = Γ k
ij Ek, ∀ i, j ∈ {1, . . . , 22}, (3.137)

where Γ k
ij ∈ R2n×2n×2n

is a tensor encoding the geometric product.

If A, B,C ∈ Gp,q are defined as A := ai Ei, B := bi Ei, and C := ci Ei,
then it follows from (3.137) that the components of C in the algebra equation
C = A B can be evaluated via

ck = ai bj Γ k
ij , (3.138)

where a summation over i and j is again implied. Such a summation of
tensor indices is called contraction. Equation (3.138) shows that the geometric
product is simply a bilinear function. In fact, all products in geometric algebra
that are of interest in this text can be expressed in this form, as will be
discussed in some detail in Sect. 5.1.

In the context of (3.138), the components ck of C are functions of the
components ai and bj . The differentiation of ck with respect to ai then
results in the Jacobi matrix of ck, i.e.

∂ ck

∂ ai
= bj Γ k

ij , (3.139)
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which is a matrix with indices k and i. This result cannot be represented in
geometric-algebra terms. Similarly, the Hesse tensor of ck is

∂2 ck

∂ ai ∂ bj
= Γ k

ij . (3.140)

Integration of ck is equally simple:

∫
ck dap = (1 − 1

2
δpi) ap ai bj Γ k

ij , (3.141)

without summation over p.
While the above notions of differentiation and integration are very useful

for solving geometric-algebra equations numerically, they are less well suited
for analytic calculations. The main difference between the multivector differ-
entiation previously discussed and differentiation in the the tensor represen-
tation is that in the former case the differentiation operator is a multivector
itself, i.e. ∂A = ∂ai E

†
i . Therefore,

∂A (A B) ⇐⇒ ∂ap C pq Γ r
qk ai bj Γ k

ij = bj C iq Γ r
qk Γ k

ij ,

where the tensor C pq implements the conjugate operation. Similarly, defining
dA := Ei dai for integration gives

∫
A dA ⇐⇒

∫
ai daj Γ k

ij = (1 − 1

2
δij) ai aj Γ k

ij .

This result can be expressed in geometric-algebra terms as

(1 − 1

2
δij) ai aj Γ k

ij ⇐⇒ A2 − 1

2
(A ∗ A) .

Hence, ∫
A dA = A2 − 1

2
(A ∗ A) .

This shows that the tensor formalism can help to derive some results which
are hard to obtain otherwise.

3.7 Algorithms

In this section, geometric-algebra algorithms are discussed, which use the
basic algebraic operations introduced so far to perform more elaborate calcu-
lations. In particular, the factorization of blades plays an important role in
many calculations. It is, for example, essential in the calculation of the join
of two blades.
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3.7.1 Basis Orthogonalization

The method presented here is basically the Gram–Schmidt method for the
orthogonalization of a set of vectors in a vector space. Let {ai }k

i=1 ⊂ G1
p,q be

a set of k 1-vectors, not necessarily linearly independent. This set of vectors
spans the subspace span{ai } ⊆ G1

p,q. The goal is to find an orthonormal
set of vectors {ni } ⊆ G1

p,q which spans the same subspace, i.e. span{ai } =
span{ni }. Note that the set {ai } may also contain null-vectors and hence
{ni } may contain null-vectors. The set {ni } is therefore assumed to be
orthonormal with respect to the Euclidean scalar product (see Definition
3.16).

The first vector n1 of the orthonormal set may be chosen to be

n1 :=
a1

‖a1‖
. (3.142)

The next vector has to lie in span{ai }, but also has to be perpendicular to
n1. This can be achieved by evaluating the rejection of a2 on n1, for example:

a′
2 := P⊥

n1
(a2) . (3.143)

Recall that the rejection is also defined for null-vectors. If a′
2 6= 0, i.e. if a2

is not parallel to n1, then n2 = a′
2/‖a′

2‖. The next vector of the orthonor-
mal set now has to be perpendicular to n1 and n2. Therefore, it has to be
perpendicular to n1 ∧ n2. Thus the rejection of a3 on n1 ∧ n2 is evaluated:

a′
3 := P⊥

n1∧n2
(a3) . (3.144)

If a′
3 6= 0, then n2 = a′

3/|a′
3|. The complete algorithm for the orthonormal-

ization of a set of vectors is thus given by Algorithm 3.1.

3.7.2 Factorization of Blades

The factorization of a blade into constituent vectors is similar to the orthonor-
malization of a set of vectors. In both cases the goal is to find the basis of a
subspace. Just as for the orthonormalization of a set of vectors, the factor-
ization of a blade into vectors is not unique. For example, let a, b ∈ G1

p,q and
α ∈ R; then (αa)∧b could be factorized into (αa) and b, but also into a and
αb. Since the factorization of a blade is not unique, an arbitrary orthonormal
basis of G1

p,q, with respect to which the factorization is performed, can be
chosen.

The goal of the algorithm is to find, for a given blade A〈k〉 ∈ Gp,q, a

set of k 1-vectors {ni } ⊂ G1
p,q such that NO(A〈k〉) = NO(

∧k
i=1 ni). Since

A〈k〉 may be a null-blade, the set {ni } may also contain null-vectors. The
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Algorithm 3.1 OrthoNorm. Let {ai }k
i=1 ⊂ G1

p,q be a set of k vectors not
necessarily linearly independent. The algorithm OrthoNorm({ai }) returns a
set of orthonormal vectors {ni } such that span{ni } = span{ai }. When
the algorithm is finished, the set {ni } is an orthonormal basis of span{ai },
and N is the unit blade representing this subspace.

1: n1 ← a1/‖a1‖

2: N ← n1

3: j ← 1
4: for all i ∈ { 2, 3, . . . , k } do
5: a′

i ← P
⊥
N(ai)

6: if ‖a′
i‖ 6= 0 then

7: j ← j + 1
8: nj ← a′

i/‖a
′
i‖

9: N ←N ∧nj

10: end if
11: end for
12: return {ni }

method presented here for blade factorization projects the 1-vectors of an
orthonormal basis of G1

p,q onto the blade to find a set of constituent vectors.

We select an orthonormal basis ei := G
1

p,q. The first vector n1 of the
factorization of A〈k〉 is then given by

n1 = PA〈k〉

(
arg max

ei

‖PA〈k〉
(ei) ‖

)
. (3.145)

The next vector of the factorization has to be one which lies in A〈k〉 but is
perpendicular to n1. This is obtained by first removing the linear dependence
on n1 from A〈k〉. Following Lemma 3.15, this is achieved using

A〈k−1〉 := n̂
†
1 · A〈k〉, (3.146)

where n̂1 = n1/‖n1‖. Recall (3.89) in this context, where it is shown that

(A〈k〉 · n†
i ) ∧ ni = ‖ni‖2 A〈k〉.

The next factorization vector n2 can now be found by applying (3.145) to
A〈k−1〉. The whole factorization is obtained by repeated application of (3.145)
and (3.146). The last vector of the factorization is given by nk = A〈1〉. The
whole algorithm is presented as Algorithm 3.2.

3.7.3 Evaluation of the Join

The evaluation of the join of two blades is closely related to the factorization
of blades. Recall that if A〈k〉 ∈ Gk

p,q and B〈l〉 ∈ Gl
p,q, then
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Algorithm 3.2 FactBlade. Let A〈k〉 ∈ Gk
p,q be a blade which is to be

factorized into a set of k orthonormal 1-vectors denoted by {ni } ⊂ G1
p,q.

Furthermore, let ei := G
1

p,q denote the canonical basis of G1
p,q. The algo-

rithm FactBlade(A〈k〉) returns the set of orthonormal vectors { n̂i } such that

NO(A〈k〉) = NO(
∧k

i=1 n̂i).

1: A← A〈k〉

2: for all j ∈ { 1, 2, . . . , k − 1 } do
3: nj ← PA(arg maxei

‖PA(ei) ‖)
4: n̂j ← nj/‖nj‖

5: A← n̂
†
j ·A

6: end for
7: return { n̂j }

NO(A〈k〉∧̇B〈l〉) = NO(A〈k〉) ⊕ NO(B〈l〉).

Therefore, to evaluate the join of A〈k〉 and B〈l〉, a blade J〈m〉 has to be found
such that NO(J〈m〉) = NO(A〈k〉∧̇B〈l〉). This can be achieved by evaluating
the set of m − l orthonormal 1-vectors { n̂i } that lie in NO(A〈k〉) and are
perpendicular to B〈l〉. Note that the orthonormality of { n̂i } relates again to
the Euclidean scalar product, since A〈k〉 and/or B〈l〉 may be null-blades.

The first step is to obtain the factorization of A〈k〉 as { âi } = FactBlade

(A〈k〉), where the { âi } form an orthonormal set of vectors. The first vector
n1 that lies in NO(A〈k〉) and is perpendicular to B〈l〉 is evaluated via

n1 = P⊥
B〈l〉

(
arg max

âi

‖P⊥
B〈l〉

(âi) ‖
)

. (3.147)

If ‖n1‖ = 0, then NO(A〈k〉) ⊆ NO(B〈l〉) and the join is B〈l〉. Otherwise, let
n̂1 = n1/‖n1‖. Now, B〈l〉 is updated to B〈l+1〉 := n̂1 ∧ B〈l〉 and the vector
n2 is evaluated from (3.147) using B〈l+1〉 instead of B〈l〉. The final result
B〈m〉 is normalized to give the join in accordance with its definition. Note
that B〈m〉 may be a null-blade.

3.7.4 Versor Factorization

The goal of the algorithm for versor factorization is, given a versor V ∈
Gp,q, to find a set of k 1-vectors {ni } ⊂ G∅ 1

p,q such that V =
∏k

i=1 ni. In
contrast to a blade, a versor cannot in general be written as a geometric
product of orthogonal vectors, which complicates the factorization.

It was mentioned in Sect. 3.3, on versors, that a versor is either a linear
combination of blades of even grade or a linear combination of blades of odd
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Algorithm 3.3 Join. Let A〈k〉 ∈ Gk
p,q and B〈l〉 ∈ Gl

p,q be two blades
whose join is to be evaluated. The algorithm returns a blade J〈m〉 such that
NO(J〈m〉) = NO(A〈k〉) ⊕ NO(B〈l〉) and ‖J〈m〉‖ = 1.

1: { âi } ← FactBlade(A〈k〉)
2: J ← B〈l〉

3: n← 1
4: repeat
5: J ← J ∧ (n/‖n‖)
6: n← P⊥

J

(
arg maxâi

‖P⊥
J (âi) ‖

)

7: until ‖n‖ = 0
8: J ← J/‖J‖
9: return J

Algorithm 3.4 FactVersor. Let V ∈ Gp,q denote a versor. The algorithm
returns a set of k normalized 1-vectors { n̂i } ⊂ G∅ 1

p,q and a scalar factor ν ∈ R

such that V = ν
∏k

i=1 n̂i.

1: j ← 1
2: while gr

(
〈V 〉max

)
> 0 do

3: A〈l〉 ← 〈V 〉max
4: { âi } ← FactBlade(A〈l〉)
5: i← 1
6: while âi · âi = 0 do
7: i← i + 1
8: end while
9: n̂j ← âi

10: V ← V n̂j

11: j ← j + 1
12: end while
13: ν ← V

14: return ν, { n̂i }

grade. Clearly, the grade of the blade of maximum grade in a versor gives the
minimum number of 1-vectors that are needed to generate the versor.

Let 〈·〉max denote the grade projection bracket that returns the component
blades of maximum grade. For example, if V := A〈0〉 + A〈2〉 + A〈4〉, then
〈V 〉max = A〈4〉. In the following, let A〈k〉 := 〈V 〉max , such that k is the
maximum grade in a versor.

Recall that a vector n ∈ G∅ 1
p,q with NO(n) ⊂ NO(A〈k〉) satisfies n A〈k〉 =

n · A〈k〉. Hence, V ′ := V n−1 reduces the grade of the blade of maximum
grade in V by one, i.e. gr (〈V ′〉max ) = k−1. Furthermore, since the geometric
product is invertible, V ′ n = V . Through repeated application of this grade
reduction process, a set of vectors can be evaluated whose geometric product
results in the initial versor. The complete algorithm is given as Algorithm
3.4. This algorithm does not work for null-versors, i.e. if V Ṽ = 0.
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Note, however, that some of the constituent blades of a non-null versor may
be null-blades. For example, let n ∈ G◦ 1

p,q be a null-vector and let â ∈ G∅ 1
p,q

satisfy â2 = 1, with â · n = 0. Then, b := â + n is not a null-vector, since
b2 = â2 = 1 and thus V := â b is a versor. However,

V = â b = â2 + â n = 1 + â ∧ n.

Hence, 〈V 〉max = â ∧ n, which is a null-blade since

(â ∧ n)2 = â n â n = −â2 n2 = 0.

Nevertheless, not all constituent vectors of 〈V 〉max can be null-vectors, since
otherwise V would be a null-blade.

3.8 Related Algebras

Clearly, geometric algebra is not the only algebra that describes geometry.
In this section, other algebras that relate to geometry and their relation to
geometric algebra are discussed.

3.8.1 Gibbs’s Vector Algebra

Basically, the inner product between vectors in geometric algebra is equiva-
lent to the scalar product of vectors in Gibbs’s vector algebra. Furthermore,
since the dual of the outer product of two vectors a, b ∈ R3 gives a vector
perpendicular to the plane spanned by a and b, it should be no surprise that
the outer product is related to the cross product in the following way.

a × b = (a ∧ b)
∗
. (3.148)

Using this relation, the identities of Gibbs’s vector algebra can be translated
into geometric algebra. For example, the triple scalar product of three vectors
a, b, c ∈ R3 can be translated as follows:

a · (b × c) = a · (b ∧ c)
∗

= a ·
(
(b ∧ c) · I−1

)

= (a ∧ b ∧ c) · I−1

= (a ∧ b ∧ c)
∗

= det([a, b, c]).

(3.149)
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Note that det([a, b, c]) is the volume of the parallelepiped spanned by a,
b, and c. This shows again that the outer product of three vectors spans
a volume element. Another often used identity is the triple vector product
a × (b × c). This is usually expanded as

a × (b × c) = b (a · b) − c (a · b).

Translating this expression into geometric algebra gives

a × (b × c) =
(
a ∧

(
(b ∧ c)I−1

))
I−1

= a ·
((

(b ∧ c)I−1
)
I−1

)

= −a · (b ∧ c)

= b (a · c) − c (a · b).

(3.150)

The expansion in geometric algebra is valid in any dimension, whereas the
vector cross product is defined only in a 3D-vector space.

3.8.2 Complex Numbers

The algebra of complex numbers may also be regarded as a geometric algebra,
where the real and imaginary parts of a complex number are interpreted as
the two coordinates of a point in a 2D space. A complex number z ∈ C can
be expressed in two equivalent ways:

z = a + ib = r exp(i θ),

where i =
√
−1 denotes the imaginary unit, and a, b, r, θ ∈ R. The relation

between a, b and r and θ is r =
√

a2 + b2 and θ = tan−1(b/a). Recall that a
unit bivector in Gn squares to minus one and thus may replace the imaginary
unit i. Accordingly, the definition of the exponential function may be extended
to multivectors, and thus rotors can also be written in exponential form.

The exponential function can indeed be used to write any multivector
A ∈ Gn defined as A = a + U〈2〉 b, as

A = r exp(U〈2〉 θ),

where U〈2〉 ∈ G2
n is a unit bivector (cf. equation (4.10), p. 132). Note that A

is an element of a subalgebra G2 ⊆ Gn, n ≥ 2. More precisely, it is an element
of the even subalgebra G

+
2 ⊂ G2, which consists of the linear combinations

of the even-grade elements of G2. The even subalgebra G
+
2 of G2 has basis

{ 1,U〈2〉 }, where U〈2〉 is also the pseudoscalar of G2 and U2
〈2〉 = −1.

Hence, the complex numbers C and the geometric algebra G
+
2 are isomor-

phic, such that the product between complex numbers becomes the geometric
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product. Note that the complex conjugate becomes the reverse, since the re-
verse of A is

Ã = r exp(Ũ〈2〉 θ) = r exp(−U〈2〉 θ),

which is equivalent to
z∗ = r exp(−i θ).

3.8.3 Quaternions

The interesting aspect of the isomorphism between C and G
+
2 is that Gn has(

n
k

)
bivectors and thus the same number of different even subalgebras G

+
2 .

That is, different complex algebras can be combined in geometric algebra. One
effect of this is that there is an isomorphism between quaternions (H) and
G

+
3 . Before this isomorphism is presented, the basic properties of quaternions

will be recapitulated.
The name “quaternion” literally means a combination of four parts. The

quaternions discussed here consist of a scalar component and three imaginary
components. The imaginary components are typically denoted by i, j, k, and
they satisfy the following relations:

i2 = j2 = k2 = −1,

ij = k, jk = i, ki = j,

ij = −ji, jk = −kj, ki = −ik,

ijk = −1.

(3.151)

A general quaternion is then given by

a = a0 + a1i + a2j + a3k,

with { ai } ⊂ R. A pure quaternion is one with no scalar component, i.e.
ā = a1i + a2j + a3k is a pure quaternion. The square of a pure quaternion
gives

ā2 = (a1i + a2j + a3k)
2 = −

(
(a1)

2 + (a2)
2 + (a3)

2
)
.

The complex conjugate of a quaternion a is denoted by a∗. Taking the con-
jugate negates all imaginary components. Therefore,

aa∗ = (a0 + a1i + a2j + a3k) (a0 − a1i − a2j − a3k)

= (a0)
2 + (a1)

2 + (a2)
2 + (a3)

2.

A unit pure quaternion ˆ̄a satisfies ˆ̄aˆ̄a∗ = 1 and thus ˆ̄aˆ̄a = −1. A quaternion
a may therefore also be written as
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a = (a0 + a1i + a2j + a3k)

= r (cos θ + ˆ̄a sin θ),

where r =
√

aa∗, θ = tan−1(āā∗/a0), ā = a1i + a2j + a3k, and ˆ̄a = ā/
√

āā∗.
Since ˆ̄a squares to minus one, there is again an isomorphism between the
complex numbers C and a subalgebra of H. The definition of the exponential
function can also be extended to quaternions to give

a = (a0 + a1i + a2j + a3k) = r exp(θ ˆ̄a),

where r, θ, and ˆ̄a are given as before. It can be shown that the operation r̂ār̂∗

between a unit quaternion r̂ = exp(
1

2
θˆ̄r) and a pure quaternion ā represents

a rotation of ā. That is, if we regard ā = a1i+a2j+a3k as a vector (a1, a2, a3),
then r̂ār̂∗ rotates this vector by an angle θ about the vector represented by
ˆ̄r.

Consider two simple examples of this. Assuming (i, j, k) to form the basis
of a right-handed coordinate system, the pure quaternion k can be written

in exponential form as k = exp(
1

2
π k). Therefore, it should rotate the pure

quaternion i about 180 degrees, if applied as kik∗:

kik∗ = −ikk∗ = −i.

This example also shows that operators and the elements operated on can be
of the same type.

Here is a more complex example. Consider the rotation operator for a

rotation about the k-axis, r = exp(
1

2
θk). Expand r to read r = cos

1

2
θ +

k sin
1

2
θ. If r is applied to i, it should rotate i in the ij plane by an angle θ:

r i r∗ = (cos
1

2
θ + k sin

1

2
θ) i (cos

1

2
θ − k sin

1

2
θ)

= cos2
1

2
θ i − cos

1

2
θ sin

1

2
θ ik + cos

1

2
θ sin

1

2
θ ki − sin2 1

2
θ kik

= (cos2
1

2
θ − sin2 1

2
θ)i + 2 cos

1

2
θ sin

1

2
θ j

= cos θ i + sin θ j.

This shows that r = exp(
1

2
θ k) is indeed an operator for a rotation by a

mathematically positive angle θ. If this is compared with rotors in geometric
algebra, it can be seen that there is a difference in sign. Recall that a rotor for

a rotation by a mathematically positive angle θ is given by exp(−1

2
θU〈2〉).

This difference in sign stems from the way in which bivectors are interpreted.
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This will become clear once the isomorphism between quaternions and a
geometric algebra is given.

What has been discussed so far about quaternions shows already how
similar they are to rotors, which were discussed earlier. This also gives a hint
for how to find an isomorphism. Basically, a set of multivectors has to be
found which have the same properties as i, j, and k, and together with the
unit scalar, form the basis of an even subalgebra. A possible isomorphism is
given by the following identifications:

i → e2e3, j → e1e2, k → e3e1, (3.152)

where the { e1,e2,e3 } ⊂ R3 are an orthonormal basis of R3. Therefore, the
geometric algebra G

+
3 with basis { 1,e2e3,e1e2,e3e1 } is isomorphic to the

quaternions H if the above identifications are made. Note that this is only
one possible isomorphism. We have

ij → e2e3 e1e2 = e3e1 → k,

jk → e1e2 e3e1 = e2e3 → i,

ki → e3e1 e2e3 = e1e2 → j.

(3.153)

It can now be seen where the sign difference in the rotation operators comes
from. When one is working with vectors, it is usually assumed that the vectors
are defined in a right-handed system and that the coordinates are given in
the order of the x-, y-, and z-axes, for example (a1, a2, a3). When one is
using quaternions, the imaginary units i, j, and k are defined with the three
coordinate axes in this order. In geometric algebra, on the other hand, the
three axes are denoted by e1, e2, and e3. Now, recall that the plane of rotation
is given by a unit bivector, for example U〈2〉 ∈ G

+
3 , and the corresponding

rotation axis is given by U∗
〈2〉. Since

(e2e3)
∗

= e1, (e1e2)
∗

= e3, (e3e1)
∗

= e2,

the rotation axis (a1i + a2j + a3k) corresponds to the rotation axis (a1e1 +
a2e3 + a3e2) in geometric algebra using the above identification for i, j, and
k. That is, the y- and z-axes are exchanged. Therefore, when quaternions are
embedded into geometric algebra, they cannot be applied directly to vectors,
but only to other embedded quaternions. When quaternions are translated
into rotors, the appropriate exchange of axes has to be made, which also
introduces the minus sign into the rotor.

It has been shown that quaternions are isomorphic to the space of rotors
in G3, which is the even subalgebra G

+
3 ⊂ G3. The main advantages of rotors

in geometric algebra over quaternions are that rotors may be defined in any
dimension and that a rotor can rotate blades of any grade. That is, not only
vectors but also lines, planes, and any other geometric objects that can be
represented by a blade may be rotated with a rotor.
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3.8.4 Grassmann Algebra

Today, Grassmann algebra is usually taken as a synonym for exterior al-
gebra. Although Hermann Grassmann also developed exterior algebra, he
looked at the whole subject from a much more general point of view. In fact,
he developed some fundamental results of what is today known as univer-
sal algebra. In his book Die lineale Ausdehnungslehre, ein neuer Zweig der
Mathematik, dargestellt und durch Anwendungen auf die übrigen Zweige der
Mathematik, wie auch auf die Statik, Mechanik, die Lehre vom Magnetismus
und die Krystallonomie erläutert von Hermann Grassmann [81], Grassmann
basically developed linear algebra, with a theory of bases and dimensions for
finite-dimensional linear spaces. He called vectors extensive quantities and
a basis { e1,e2, . . . ,en } a system of units. The vector space spanned by a
basis was called a region. He then introduced a very general product on the
extensive quantities (vectors). Given two vectors a = aiei and b = biei, a
general product of the two is written as

ab = aibj (eiej),

with an implicit summation over i and j. Grassmann made no additional
assumptions at first about the elements (eiej), apart from noting that they
were extensive quantities themselves. The set of products that can be formed
with extensive quantities was called a product structure. For example, for a
vector basis { e1,e2 }, the set of products is

{ e1,e2, (e1e1), (e1e2), (e2e1), (e2e2),e1(e1e1),e1(e1e2), . . . }.

This product structure may then be constrained by a determining equation.
That is, if the elements of the product structure are denoted by {Ei }, a
determining equation is of the form aiEi = 0, ai ∈ R. For example, the
determining equation could be (e1e2) + (e2e1) = 0. In this case (e1e2) is
linearly dependent on (e2e1). Or, more generally, (eiej) + (ejei) = 0 for
all i and j. This also implies that eiei = 0. Assuming that the product is
associative, the basis for the algebra generated by { e1,e2 } becomes

{ e1,e2, (e1e2) }.

Grassmann found that the only determining equations that stay invariant
under a change of basis were, for two vectors a and b, ab = 0, ab − ba = 0,
and ab+ba = 0. He then considered at some length the algebra generated by
the determining equation ab + ba = 0. This algebra is today called exterior
algebra, and the product which satisfies this determining equation is called
the exterior product. In the following, the exterior product is denoted by ∧,
just like the outer product. In fact, “outer product” is just another name for
“exterior product”.
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Today, exterior algebra is described in much the same way, albeit more
generally and rigorously. The general product that Grassmann introduced is
replaced by the tensor product.

Grassmann also introduced an inner product between extensive quantities
of the same grade. He did this in a very interesting way, by first defining what
is essentially the dual. For an extensive quantity E, the dual is denoted by
E∗ and is defined such that E∗ ∧ E is an extensive quantity of the highest
grade, i.e. a pseudoscalar. Since the pseudoscalars span a one-dimensional
subspace, he equated the extensive quantity e1 ∧e2 ∧ . . .∧en with the scalar
1. With this definition, E∗ ∧ E is indeed a scalar. The inner product of two
extensive quantities E,F of same grade is then defined as

< E, F >:= E∗ ∧ F.

3.8.5 Grassmann–Cayley Algebra

The main difference between Grassmann and Grassmann–Cayley algebra is
that there is also a grade-reducing inner product defined between blades
of different grade in Grassmann–Cayley algebra. This product may also be
called the shuffle product or the regressive product. Sometimes this prod-
uct is also called the meet, and the exterior product is called the join. These
should not be confused with the meet and join defined previously in this text.
Another source of confusion is the meaning of the symbols ∧ and ∨, which
is exactly the opposite of what they mean in geometric algebra. The symbol
∧ usually stands for the meet (inner product) and the ∨ stands for the join
(outer product). This is actually somewhat more logical than the usage in
geometric algebra, since it is comparable to the use of the symbols for union
(∪) and intersection (∩). Unfortunately, not all authors who use Grassmann–
Cayley algebra follow this convention. Sometimes Grassmann algebra is also
taken to mean Grassmann–Cayley algebra. At times, even completely differ-
ent symbols (▽ and △) are used for the meet and join.

Despite these notational differences, Grassmann–Cayley algebra and geo-
metric algebra are equivalent in the sense that anything expressed in one of
them can also be expressed in the other.

The shuffle product is defined with respect to the bracket operator []. The
bracket operator is defined for elements of the highest grade in an algebra
(pseudoscalars), for which it evaluates their magnitude. In the following, the
geometric-algebra notation is used. If A〈k〉,B〈l〉 ∈ Gn are given by A〈k〉 =∧k

i=1 ai and B〈l〉 =
∧l

i=1 bi, with k + l ≥ n and k ≥ l, then the shuffle
product of A〈k〉 and B〈l〉, which is temporarily denoted here by ⊙, is defined
as
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A〈k〉 ⊙ B〈l〉 :=
∑

σ

sgn(σ)
[
aσ(1)aσ(2) . . .aσ(n−l) b1 ∧ . . . bl

]

×aσ(n−l+1) ∧ . . .aσ(k). (3.154)

The sum is taken over all permutations σ of { 1, . . . , k }, such that σ(1) <
σ(2) < . . . σ(n − l) and σ(n − l + 1) < σ(n − l + 2) < . . . σ(n). These types
of permutations are called shuffles of the (n − l, k − (n − l)) split of A〈k〉.
If σ is an even permutation of { 1, . . . , k }, then sgn(σ) = +1; otherwise,
sgn(σ) = −1. For example, the shuffles of a (2, 1) split of { 1, 2, 3 } are

(
{ 1, 2 }, { 3 }

)
,
(
{ 1, 3 }, { 2 }

)
,
(
{ 2, 3 }, { 1 }

)
,

where

sgn({ 1, 2, 3 }) = +1, sgn({ 1, 3, 2 }) = −1, sgn({ 2, 3, 1 }) = +1.

Therefore, for {a1,a2,a3 } ⊂ R3 and b ∈ R3, it follows that

(a1 ∧ a2 ∧ a3) ⊙ b = [a1a2b]a3 − [a1a3b]a2 + [a2a3b]a1.

If { e1,e2,e3 } is an orthonormal basis of R3, and b = biei, then

(e1 ∧ e2 ∧ e3) ⊙ b = [e1e2b] e3 − [e1e3b]e2 + [e2e3b] e1

= [e1e2 b3e3]e3 − [e1e3 b2e2]e2 + [e2e3 b1e1]e1

= b,

since [e1e2e3] = 1. This shows that the pseudoscalar is the unit element with
respect to the shuffle product. This property appeared earlier in this book
when the regressive product was introduced (see Sect. 3.2.13). In fact, it can
be shown that the regressive product as defined earlier is the shuffle product.
That is,

A〈k〉 ⊙ B〈l〉 ≡ A〈k〉 ▽ B〈l〉 =
(
A∗

〈k〉 ∧ B∗
〈l〉

)
I.

The shuffle product is usually used to evaluate the intersection of sub-
spaces. As was shown in the discussion of the meet and join, this can be done
only in the case where the join of the two subspaces is the whole space. The
shuffle product also cannot fully replace the inner product of geometric alge-
bra, since it is defined to be zero for two blades A〈k〉,B〈l〉 ∈ Gn if k+l < n. It
is nonetheless possible to recover the inner product from the shuffle product
through the definition of the Hodge dual. This is basically the same as the
dual defined in geometric algebra. The only difference is that the Hodge dual
of the Hodge dual of a blade is again that blade in any space. The dual of
the dual of a blade in geometric algebra is either the blade or the negated
blade. The geometric-algebra inner product may then be expressed in terms
of the shuffle product as

A〈k〉 · B〈l〉 ⇐⇒ A∗
〈k〉 ⊙ B〈l〉.
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This follows immediately from the definition of the regressive product. Trans-
lating the Hodge dual of A〈k〉 as A〈k〉I, we then obtain

A∗
〈k〉 ⊙ B〈l〉 ⇒ (A〈k〉I) ▽ B〈l〉 = (A〈k〉 ∧ B∗

〈l〉)I = A〈k〉 · B〈l〉.

Grassmann–Cayley algebra is probably used most widely in the areas of
computer vision [68, 69] and robotics [174, 175]. There is still a lively, ongoing
discussion within the research community about whether Grassmann–Cayley
or geometric algebra is better suited for these fields. This is probably a matter
of personal preference to a large extent and therefore this decision is left to
the reader’s intuition.



Chapter 4

Geometries

The goal of this chapter is to show how geometric algebra can be used to
represent geometry. This includes the representation of geometric entities,
incidence relations, and transformations. The algebraic entities by themselves
have no a priori geometric interpretation. They are simply mathematical
objects that have particular algebraic properties. In order to associate the
algebra with geometry, a particular representation has to be defined. The
goal is, of course, to define a representation where the standard algebraic
operations relate to geometrically meaningful and useful operations. Given
such a representation, geometric problems can be translated into algebraic
expressions, whence they can be solved using algebraic operations. In this
sense, the algebra is then an algebra of geometry, a geometric algebra.

There are many examples of these types of algebras, some of which we de-
scribed in Sect. 3.8. The geometric algebra discussed in this text encompasses
all the algebras described in Sect. 3.8, which is the justification for calling it
the geometric algebra.

Note that the field of algebraic geometry is closely related to this method
of representing geometry. In algebraic geometry, geometric entities are repre-
sented through the null space of a set of polynomials, an affine variety (see
e.g. [38]). The representations of geometric entities discussed in this chapter
can all be regarded as affine varieties or as intersections of affine varieties. In
this context, geometric algebra offers a convenient way to work with certain
types of affine varieties.

The representation of geometry by algebraic entities chosen for geometric
algebra can be formulated quite generally and is closely related to the outer-
and inner-product null spaces of blades. Recall the definition of the OPNS of
a blade A〈k〉 ∈ Gk

p,q:

NO(A〈k〉) :=
{

x ∈ G
1
p,q : x ∧ A〈k〉 = 0

}
.

This definition implies that if A〈k〉 :=
∧k

i=1 ai with {ai } ⊂ G1
p,q, then

NO(A〈k〉) = span{ai }. That is, NO(A〈k〉) ⊂ Rp,q is a linear subspace of

C. Perwass, Geometric Algebra with Applications in Engineering.
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Rp,q, which may be interpreted as an infinitely extended geometric entity.
This is indeed the simplest choice of representation that can be made. A
point is an element of a vector space, and thus a vector space represents the
geometric entity that consists of all points that have a representation in it. A
blade can then be taken to represent the geometric entity that is represented
by its OPNS or IPNS.

However, this representation is somewhat limiting, because only linear
subspaces that include the origin can be represented. For example, using this
representation, a vector a ∈ G1

p,q represents a line through the origin in the
direction of a, since

NO(a) :=
{

x ∈ G
1
p,q : x ∧ a = 0

}
=
{

α a : α ∈ R
}
.

More general representations can be achieved if the initial space in which
geometry is to be represented is embedded in a higher-dimensional space
in a possibly non-linear manner. A linear subspace in this embedding space
may then represent a non-linear subspace in the initial space. This may be
formulated mathematically as follows. Let Rr,s denote the initial vector space
in which geometric entities are to be represented. A point is thus represented
by a vector in Rr,s. Now define a possibly non-linear embedding X of Rr,s

into a higher-dimensional vector space Rp,q with r + s ≤ p + q, such that
X (Rr,s) ⊂ Rp,q. That is, X (Rr,s) need not be a vector space anymore. For
example, X could map the 1D Euclidean space R1 onto the unit circle in R2.
In this case, not every vector in R2 can be mapped back to R1.

A blade in Gp,q may now represent the geometric entity that consists of
those points in Rr,s whose embedding by use of X results in a vector in the
OPNS or IPNS of the blade. This will be called the geometric OPNS or IPNS.

Definition 4.1. Let Rr,s denote the vector space in which geometric entities
are to be represented, and denote by X a bijective mapping G1

r,s → X, where
X ⊂ G1

p,q, with r + s ≤ p + q. Then the geometric outer- and inner-product

null spaces (GOPNS and GIPNS, respectively) of a blade A〈k〉 ∈ Gk
p,q are

defined as

NOG(A〈k〉) :=
{

x ∈ G1
r,s : X (x) ∧ A〈k〉 = 0

}
,

NIG(A〈k〉) :=
{

x ∈ G1
r,s : X (x) · A〈k〉 = 0

}
.

If X−1 : X → Rr,q denotes the inverse of X , then these geometric null spaces
can also be written as

NOG(A〈k〉) = X−1
(
X∩NO(A〈k〉)

)
and NIG(A〈k〉) = X−1

(
X∩NI(A〈k〉)

)
.

If X is the identity, then NOG(A〈k〉) = NO(A〈k〉) and NIG(A〈k〉) = NI(A〈k〉).
These geometric null spaces form the basis for the representation of ge-

ometry with geometric algebra. In the literature, many authors call the
representation of a geometric entity through the GOPNS the “standard”
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representation and, accordingly, they call the representation through the
GIPNS the “dual” representation. This stems from the fact that NOG(A〈k〉) =
NIG(A∗

〈k〉). The terms “standard” and “direct” can also be found in use for
the two types of representation. The problem with these terminologies is that
the names do not describe what they relate to. While the representations in
NOG and NIG are dual to each other, there is no a priori preferred “stan-
dard” representation, since NIG(A〈k〉) = NOG(A∗

〈k〉) also. Different authors
do indeed define what is “standard” differently.

On the other hand, the terms “GOPNS” and “GIPNS” are somewhat
cumbersome when used in spoken language. In this text, the two different
representations are also referred to as the outer-product or OP representation,
and the inner-product or IP representation. For example, if the GOPNS of
a blade A〈k〉 represents a line, then this is described as “A〈k〉 is an outer-
product representation of a line”, or, even shorter, “A〈k〉 is an outer-product
line”.

In the remainder of this chapter, this representation of geometry by geo-
metric algebra is discussed in a number of settings, the most important of
which is conformal space. The geometric algebra over this conformal space is
used extensively in the application chapters later on. Note that the geometric
algebras over conic space and conformal conic space were developed by the
author and are published here for the first time in full detail.

4.1 Euclidean Space

In this section, the representation of geometry in Euclidean space is discussed.
In terms of Definition 4.1, the space in which geometric entities are to be rep-
resented is Rn and the transformation X is the identity. Hence, the geometric
inner- and outer-product null spaces of blades are equivalent to the algebraic
inner- and outer-product null spaces.

In the following, the 3D Euclidean space R3 and the corresponding geo-
metric algebra G3 are of particular interest. The algebraic basis of G3 is given
in Table 4.1. Throughout this section, the symbols { ei } are used to denote
the algebraic basis of G3, as shown in this table.

Table 4.1 Algebra basis of G3, where the geometric product of basis vectors ei :=

G
1
3[i] is denoted by combining their indices, i.e. e1 e2 ≡ e12

Type No. Basis Elements

Scalar 1 1

1-Vector 3 e1, e2, e3

2-Vector 3 e12, e13, e23

3-Vector 1 e123
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The remainder of this section is structured as follows. First, the geometric
entities that can be represented in G3 are discussed. Then the effect of algebra
operations on the geometric representations is looked at in more detail. This is
followed by a presentation of the transformation operators that are available
in G3.

4.1.1 Outer-Product Representations

The geometric entities of R3 that can be represented in G3 are only lines and
planes through the origin. Consider first the GOPNSs of blades. Clearly, the
GOPNS of a 1-vector a ∈ G1

3 is

NOG(a) =
{

x ∈ G
1
3 : x ∧ a = 0

}
=
{

α a : α ∈ R
}
, (4.1)

which is a line through the origin with its orientation given by a. Similarly,
given a second vector b ∈ G1

3 with a ∧ b 6= 0,

NOG(a ∧ b) =
{

x ∈ G
1
3 : x ∧ a ∧ b = 0

}
=
{

α a + β b : (α, β) ∈ R
2
}
,

(4.2)
which is the plane spanned by a and b. Note that points cannot be represented
through null spaces in G3. This is only possible in projective spaces, which
are discussed later on. The GOPNS of the outer product of three linearly
independent vectors a, b, c ∈ G1

3 is the whole space:

NOG(a ∧ b ∧ c) =
{

x ∈ G1
3 : x ∧ a ∧ b ∧ c = 0

}

=
{

α a + β b + γ c : (α, β, γ) ∈ R3
}
.

(4.3)

Since blades of grade 3 are blades of the highest grade in G3, a ∧ b ∧ c ∝
I, where I := G3[8] is the unit pseudoscalar of G3. In Sect. 3.2.6, it was
shown that the magnitude of a ∧ b ∧ c is the product of the magnitudes of
a set of orthogonal vectors {a′, b′, c′ }, say, which is also equivalent to the
determinant of a matrix where the {a′, b′, c′ } form the rows or columns.
Geometrically, this means that the magnitude of the blade a ∧ b ∧ c is the
volume of the parallelepiped spanned by a, b, and c. The pseudoscalar I may
thus also be understood as the unit volume element.

Similarly, the magnitude of the blade a ∧ b relates to the area of the
parallelogram spanned by a and b. To see this, we write b = b‖ + b⊥, where
b‖ := Pa(b) and b⊥ := P⊥

a(b). See Sects. 3.2.10 and 3.2.11 for the definitions
of Pa(b) and P⊥

a(b). Then a ∧ b = a ∧ b⊥, because the outer product of two
parallel vectors is zero. As discussed in Sect. 3.2.6, the norm of the blade is
given by

‖a ∧ b‖2 = (a ∧ b) (b ∧ a) = a b⊥ b⊥ a = a2 (b⊥)2.
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shows again that
NOG(n∗

▽ m∗) = NIG(n ∧ m).

The intersection line also has an orientation, which in this case is given by
the vector −(n ∧ m)

∗
.

Note that in R3, two parallel but not identical planes cannot be represented
by null spaces, since all planes that can be represented in this way pass
through the origin.

4.1.3.3 Points

The last type of blade whose GIPNS representation can be discussed in R3 is
a 3-blade, or trivector. It has been shown earlier that a trivector A〈3〉 ∈ G3

is a pseudoscalar and thus A〈3〉 = ‖A〈3〉‖ I, where I is the unit pseudoscalar
of G3. Suppose A〈3〉 is defined as

A〈3〉 := a ∧ b ∧ c.

If A〈3〉 6= 0, then a, b, and c are linearly independent. In order to find the
GIPNS of A〈3〉, the set of vectors {x } that satisfies x · A〈3〉 = 0 has to be
found. Using (3.73) again, it follows that

x · A〈3〉 = (x · a) (b ∧ c)

− (x · b) (a ∧ c)

+ (x · c) (a ∧ b).

The bivectors (b∧ c), (a∧ c), and (a∧ b) are linearly independent, and thus
x · A〈3〉 = 0 if and only if

x · a = 0 and x · b = 0 and x · c = 0.

Geometrically, this means that x · A〈3〉 = 0 if and only if x lies on the
intersection of the three inner-product planes represented by a, b, and c.
Since all planes represented through the GIPNSs of vectors pass through
the origin, the only point that all three planes can meet in is the origin.
Hence, the only solution for x that satisfies x ·A〈3〉 = 0 is the trivial solution
x = 0 ∈ R3, as shown in Fig. 4.4(b).

4.1.4 Reflections

So far, it has been shown how to construct linear subspaces using the outer
product and to subtract linear subspaces from one another using the inner
product. It is also clear how to intersect linear subspaces using the meet and
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That is, if A〈2〉 = a1 ∧ a2 with a1,a2 ∈ G1
3, then

n̂ A〈2〉 n̂ =
(
n̂ a1 n̂

)
∧
(
n̂ a2 n̂

)
.

This type of reflection is visualized in Fig. 4.5(b).
A blade may also be reflected in another blade, which follows directly from

the fact that a blade is a special case of a versor (see Sect. 3.3.1). Fig. 4.5(c)
shows the reflection of a vector a ∈ G1

3 in a unit bivector N〈2〉 ∈ G2
3 obtained

by evaluating −N〈2〉aÑ〈2〉. This operation again results in

−N〈2〉 a Ñ〈2〉 = a‖ − a⊥,

where a‖ := PN〈2〉
(a) and a⊥ := P⊥

N〈2〉
(a) are, respectively, this time, the

parallel and perpendicular components of a with respect to N〈2〉. The general

formula for the reflection of a vector a ∈ G1
n in a blade N〈k〉 ∈ Gk

n is given
by

(−1)k+1 N〈k〉 a N−1
〈k〉 = PN〈k〉

(a) − P⊥
N〈k〉

(a) . (4.7)

Later on, it will be useful to have an explicit notation to represent the
reflection operator that reflects one vector into another, including a possible
scaling. This idea is captured in the following lemma.

Lemma 4.1. Let x,y ∈ G1
n with n ≥ 2; then the vector that reflects x into

y, which we denote by ref(x, y), is given by

ref(x, y) :=

√
‖y‖
‖x‖

x̂ + ŷ

‖x̂ + ŷ‖ ,

where x̂ := x/‖x‖ and ŷ := y/‖y‖.

Proof. First of all, it is clear that (x̂ + ŷ)/‖x̂ + ŷ‖ is the unit vector bisecting x

and y. This implies right away that the proposition should be true. However,
this can also be shown algebraically. It has to be shown that

y = ref(x, y) x ref(x, y)

=
‖y‖

‖x‖

‖x‖

‖x̂ + ŷ‖2
(x̂ + ŷ) x̂ (x̂ + ŷ). (4.8)

Consider first the second part:

(x̂ + ŷ) x̂ (x̂ + ŷ) = x̂ + ŷ x̂ ŷ + 2 ŷ

= x̂ + x̂‖ − x̂⊥ + 2ŷ

= 2 (x̂‖ + ŷ)

= 2 (x̂ · ŷ + 1) ŷ,

where x̂‖ := Pŷ(x̂) and x̂⊥ := P⊥
ŷ (x̂). The second step follows from the

properties of the reflection operation, that is, ŷ x̂ ŷ = x̂‖ − x̂⊥. Furthermore,
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b := m̂ n̂ a n̂ m̂. (4.9)

Defining R := m̂ n̂, and noting that R̃ = n̂ m̂ by definition, this equation
becomes b = R a R̃. The multivector R is usually called a rotor, because it
has the effect of rotating blades. In order for R to be a proper rotor, it must
not scale the entities that it rotates. Hence, it is demanded that R R̃ = 1. In
the current example, this is clearly the case, since R R̃ = m̂ n̂ n̂ m̂ = n̂2 m̂2.
We now provide a formal proof that a rotor such as R does indeed rotate
entities.

Lemma 4.2 (Rotor). A rotation operator in geometric algebra is called a
rotor. A rotor that rotates by an angle θ in a mathematically positive sense,
in the plane spanned by unit vectors n̂, m̂ ∈ G1

n, is denoted by rot(θ, n̂∧ m̂)
and is given by

rot(θ, n̂ ∧ m̂) = cos θ/2 − sin θ/2
n̂ ∧ m̂

‖n̂ ∧ m̂‖ .

Proof. Let the angle between n̂ and m̂ be half the rotation angle θ, i.e.
∠(n̂, m̂) = θ/2, and let N〈2〉 := (n̂ ∧ m̂)/‖n̂ ∧ m̂‖ be the unit bivector
representing the rotation plane. Also, let R := m̂ n̂; then

R = m̂ · n̂ + m̂ ∧ n̂ = cos θ/2− sin θ/2 N〈2〉,

and, accordingly, R̃ = cos θ/2 + sin θ/2 N〈2〉. Now consider a vector x ∈ G1
n

and define x‖ := PN〈2〉
(x) and x⊥ := P⊥

N〈2〉
(x), such that x ·N〈2〉 = x‖ ·N〈2〉

and x ∧N〈2〉 = x⊥ ∧N〈2〉. From the properties of the inner and the outer

product, it follows that N〈2〉 x‖ = −x‖ N〈2〉 and N〈2〉 x⊥ = x⊥ N〈2〉, and
thus

N〈2〉 x = (−x‖ + x⊥) N〈2〉.

Therefore,

R x = (cos θ/2− sin θ/2 N〈2〉) (x‖ + x⊥)

= x‖ (cos θ/2 + sin θ/2 N〈2〉) + x⊥ (cos θ/2− sin θ/2 N〈2〉)

= x‖ R̃ + x⊥ R.

Hence,

R x R̃ = x‖ R̃2 + x⊥,

which shows, as expected, that the component of x that is perpendicular to
the rotation plane is not changed. Now,

R̃2 = cos2 θ/2− sin2 θ/2 + 2 cos θ/2 sin θ/2 N〈2〉 = cos θ + sin θ N〈2〉,

where N2
〈2〉 = −1 and standard trigonometric identities have been used. There-

fore,
R x R̃ = cos θ x‖ + sin θ x‖ ·N〈2〉 + x⊥.

In G3, the normal r̂ of the rotation plane N〈2〉, i.e. the rotation axis, is given
by r̂ = N∗

〈2〉. Note that it makes sense to talk about a rotation axis in R3

only. In higher-dimensional spaces, rotation planes have to be used directly. If
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I denotes the pseudoscalar of G3, then N〈2〉 = r̂ I. Furthermore,

x‖ ·N〈2〉 = x‖ · (r̂ I) = (x‖ ∧ r̂) I = −(x‖ ∧ r̂)
∗

= −x‖ × r̂.

It therefore follows that in G3,

R x R̃ = cos θ x‖ − sin θ (x‖ × r̂) + x⊥.

Since the vectors x‖, r̂, and x‖ × r̂ form an orthogonal coordinate system of
R3 in a right-handed sense, R x R̃ rotates x about r̂ anticlockwise by an angle
θ.

�

Note that in G3, a rotor may also be defined using the rotation axis instead
of the rotation plane. If r̂ denotes the rotation axis, then the rotor that rotates
about r̂ by an angle θ is written as rot(θ, r̂).

In the above proof, the fact that N2
〈2〉 = −1 was used. This stems from

the definition of N〈2〉 as a unit blade; that is, N〈2〉 ⋆N〈2〉 = 1. However, since

N〈2〉 ∈ G2
n, it cannot be a null-blade, and thus N〈2〉 ⋆ N〈2〉 = N〈2〉 · Ñ〈2〉.

From the definition of the reverse, it follows that Ñ〈2〉 = −N〈2〉 and thus

N2
〈2〉 = −N〈2〉 Ñ〈2〉 = −1.
Since N〈2〉 squares to −1, the expression for a rotor in Lemma 4.2 is similar

to that of a complex number z in the polar representation

z = r (cos θ + i sin θ),

where i :=
√
−1 represents the imaginary unit and r ∈ R is the radius. For

complex numbers, it is well known that the above expression can also be
written as

z = r exp(i θ).

The definition of the exponential function can be extended to geometric
algebra, and it can be shown that the Taylor series of exp(θ N〈2〉) does indeed
converge to

exp
(
θ N〈2〉

)
= cos θ + sin θ N〈2〉. (4.10)

Therefore, a rotor that rotates in an outer-product plane N〈2〉 ∈ G2
n by an

angle θ can be expressed in polar form as

rot(θ,N〈2〉) = exp
(
− θ/2 N〈2〉

)
. (4.11)

Note that this offers a very concise and clear form for defining a rotor in any
dimension n ≥ 2.

Since a rotor is a versor and versors satisfy an outermorphism, a rotor can
rotate any blade. That is, with the same rotor it is possible to rotate vectors,
bivectors, etc., and even other versors. For blades, this means that given a
blade A〈k〉 =

∧k
i=1 ai ∈ Gk

n, with {ai} ⊂ G1
n, and a rotor R, the expression
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RA〈k〉R̃ can be expanded as

R A〈k〉 R̃ =
(
R a1 R̃

)
∧
(
R a2 R̃

)
∧ . . . ∧

(
R ak R̃

)
. (4.12)

Hence, the rotation of the outer product of a number of vectors is the same
as the outer product of a number of rotated vectors.

4.1.6 Mean Rotor

A standard problem is to evaluate the mean of a set of rotors. While it
is straight forward to evaluate the mean of a set of blades in G3, simply
by summing them and dividing by the number of blades, it is not obvious
that this is also the correct approach for evaluating the mean of a set of
rotors in G3. The problem here is that the space of rotors in G3, i.e. G

+
3 , is

isomorphic to S4. Hence, the sum of two rotors does not in general result in
a rotor. The appropriate operation for evaluating the “sum” of rotors is to
take their geometric product. Similarly, since rotors are unitary versors, the
appropriate distance measure between rotors R1 and R2 is R12 = R̃1 R2,
such that R1 R12 = R2. The “difference” between a rotor and itself therefore
results in unity, i.e. R̃1 R1 = 1.

An appropriate evaluation procedure for the mean of a set of rotors has to
account for this particular metric. Note that this problem has been treated
more generally for Clifford groups by Buchholz and Sommer in [30].

Let {Ri} ⊂ G
+
3 denote a set of N known rotors, and let RM ∈ G

+
3

denote the unknown mean rotor. If we define Di := R̃i RM −1, one approach
to evaluating the mean rotor is to minimize the measure

∑
i D̃i Di. Let

R∆i
:= R̃i RM and R∆i

= cos θi − sin θi Ui, where Ui is a unit bivector that
represents the respective rotation plane. Then

D̃i Di = (R̃∆i
− 1) (R∆i

− 1)

= 2 − R∆i − R̃∆i

= 2 (1 − cos θi)

= 4 sin2(θi/2). (4.13)

Minimizing
∑

i D̃i Di therefore minimizes
∑

i 4 sin2(θi/2). If θi ≪ 1 for all
i, then ∑

i

4 sin2(θi/2) ≈
∑

i

θ2
i ,

which is the measure that should ideally be minimized. This shows that the
rotor RM that minimizes

∑
i D̃i Di approximates the “true” mean rotor

quite well if the {Ri} are “fairly” similar.



134 4 Geometries

It remains to be shown how the RM that minimizes
∑

i D̃i Di can be
evaluated. From (4.13), it follows that

∆ :=
1

N

N∑

i=1

(
D̃i D

)
= 2 −

( 1

N

N∑

i=1

R̃i

)
RM − R̃M

( 1

N

N∑

i=1

Ri

)
. (4.14)

Let us denote the arithmetic mean of {Ri} by R̄i, i.e. R̄i = (1/N)
∑N

i=1 Ri.

Since
∑

i R̃i = (
∑

i Ri)̃ , it follows that ∆ = 2− ˜̄R RM − R̃M R̄. In general

R̄ is not a unitary versor, but ˜̄R R̄ = ρ2, ρ ∈ R. Replacing RM by ρ−1 R̄ in
the expression for ∆ results in ∆ = 0, i.e. it minimizes ∆. However, ρ−2 R̄ is
not a unitary versor. Hence, the rotor that minimizes ∆ has to be the unitary
versor closest to ρ−2 R̄, that is RM = ρ−1 R̄. Substituting this expression for
RM into (4.14) gives ∆ = 2 (1 − ρ).

In summary, a good approximation to the mean rotor of a set of N rotors
{Ri} is given by

RM =

∑N
i=1 Ri√(∑N

i=1 R̃i

) (∑N
i=1 Ri

) . (4.15)

4.2 Projective Space

Projective space is given its name by the fact that it consists of equivalence
classes of points which form projection rays. The idea of projective space
is derived from a camera obscura or pinhole camera, where one light ray
generates exactly one image point. This means that an image point may be
generated by any point along the path of a light ray, or projective ray. Pro-
jective spaces can be defined in a rather abstract manner without reference
to coordinates (see e.g. [25]). In this text, however, the more applied view in
terms of coordinates will be introduced right away.

4.2.1 Definition

4.2.1.1 Basics

In the above spirit, a projective space, also called a homogeneous space, is
generated from a vector space Rn by regarding the elements of Rn as repre-
sentatives of equivalence classes. In particular, a vector a ∈ Rn represents an
equivalence class often denoted by [a], which is defined as

[a] :=
{

α a : α ∈ R\0
}
. (4.16)
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The equivalence class of a is thus the set of points that lie on the line through
the origin of Rn and through a, without the origin itself. The set of these
equivalence classes of all vectors of Rn form the projective space of Rn, often
denoted by RPn−1:

RP
n−1 :=

{
[a] : a ∈ R

n\0
}
. (4.17)

Note that RPn−1 is not a vector space anymore. The transformation from
an element of RPn−1 back to a Euclidean space is basically the selection of
appropriate representatives for the equivalence classes. This can be achieved
by choosing a (hyper)plane in Rn that does not pass through the origin and
using the intersections of the equivalence classes (or projective rays) with this
(hyper)plane as the representatives. This set of representatives then forms
again a vector space, of dimension n − 1. However, the equivalence classes
that are parallel to the chosen (hyper)plane have no representatives on that
plane; instead, they map to infinity. This shows one of the advantages of
working in projective space: points at infinity in Rn−1 can be represented by
equivalence classes in Rn.

4.2.1.2 Geometric Algebra

From the discussion of the geometric algebra of Euclidean space in Sect. 4.1
and in particular the definitions of the IPNS and OPNS, it is clear that the
null space representations in geometric algebra are ideally suited to repre-
senting equivalence classes in a projective space. The equivalence class of a
vector a ∈ Rn as defined in (4.16) is the same as the OPNS of a apart from
the exclusion of the origin.

To generate representatives of equivalence classes of projective space from
vectors in Euclidean space, Euclidean vectors are first embedded in an affine
space. For a detailed discussion of affine space, see for example [25, 75]. Here it
should suffice to say that the affine space of Rn is represented by the following
embedding of a vector a ∈ Rn in Rn+1:

H : a ∈ R
n 7→ a + en+1 ∈ R

n+1, (4.18)

where the ei := R
n+1

[i] are the canonical basis of Rn+1. This embedding
is also called homogenization of a, and hence 1-vectors in Rn+1 are called
homogeneous vectors. If a ∈ Rn, then the corresponding homogenized vector
H(a) is denoted by capitalizing the vector symbol, i.e. A := H(a).

The OPNS of A = H(a) without the origin is then the equivalence class
of H(a). The geometric algebra of Rn+1 can be used in this way to represent
entities in Rn.

In terms of the discussion at the beginning of this chapter, H is the bijective
embedding operator that maps Rn to a subspace of Rn+1. In this case, it is
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4.2.1.3 Conclusions

Three important conclusions can be drawn from what has been presented so
far:

1. A zero-dimensional subspace (a point) in Rn is represented by a one-
dimensional subspace in Rn+1. In this way, the concept of a null space
in geometric algebra can be used also to represent zero-dimensional enti-
ties, i.e points.

2. Scaling a homogeneous vector has no effect on the geometric entity that
it represents.

3. Points at infinity in Rn can be represented by homogeneous vectors in
Rn+1. These points at infinity can also be understood as direction vectors,
which allows a differentiation between points and directions.

4.2.2 Outer-Product Representations

In the previous subsection, it was shown how the concept of the geometric
inner- and outer-product null spaces can be used to represent a point in
Euclidean space Rn by the GOPNS of a vector in Rn+1. In this subsection, the
other geometric entities that can be represented in this way are presented. Of
particular interest later on is the space R3 and its homogeneous embedding.
However, for better visualization, initially the space R2 and its homogeneous
embedding in R3 are treated.

4.2.2.1 Lines

Using the concept of the geometric OPNS, a bivector A〈2〉 ∈ G2
3 represents

the set of those points in G1
2 whose embedding in G1

3 lies in NO(A〈2〉), i.e.

NOG(A〈2〉) :=
{

x ∈ G
1
2 : H(x) ∧ A〈2〉 = 0

}
. (4.22)

The set of points that lie in NOG(A〈2〉) can be expressed in parametric form.
To show this, let A〈2〉 = A ∧ B, with A, B ∈ G1

3 being homogeneous em-
beddings of a, b ∈ G1

2, respectively, i.e A := H(a) and B := H(b). In this
case

NO(A〈2〉) =
{

α A + β B : (α, β) ∈ R
2
}
.

First of all, we evaluate the intersection of NO(A〈2〉) with A2. That is,

X := NO(A〈2〉) ∩ A
2 =

α A + β B

(α A + β B) · e3
.
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it may be shown that NOG(A∧B∧C) is the plane in R3 that passes through
the points a, b, and c.

4.2.2.3 Summary

To summarize, the following outer-product representations of geometric enti-
ties of R3 are available in G4. In the following, a, b, c ∈ G1

3 and A, B,C ∈ G1
4,

whereby A = H(a), B = H(b), and C = H(c):

NOG(A) Point a .

NOG(A ∧ B) Line through a and b .

NOG(A ∧ B ∧ C) Plane through a, b, and c . (4.23)

4.2.3 Inner-Product Representations

Just as for Euclidean space, the duality of the GOPNS and the GIPNS also
holds for projective space. In the following, the GIPNS of blades in G4 is
investigated.

4.2.3.1 Planes

It was noted in the previous subsection that a plane in R3 can be represented
by the GOPNS of the outer product of three 1-vectors in G4. Since the dual
of a 3-blade is a 1-blade, i.e. a 1-vector, the GIPNS of a 1-vector has to
represent a plane. Let A ∈ G1

4 be given by

A = â − α e4,

where â ∈ G1
3 and ‖â‖ = 1, and, furthermore, α ∈ R and e4 denotes the

homogeneous dimension. Recall that the GIPNS of A is given by

NIG(A) :=
{

x ∈ G
1
3 : H(x) · A = 0

}
.

Let X ∈ G1
4 be defined by X := H(x) = x + e4 with x ∈ G1

3; then

A · X = 0 ⇐⇒ (â − α e4) · (x + e4) = 0

⇐⇒ â · x − α = 0

⇐⇒ â · x‖ − α = 0

⇐⇒ x‖ = α â,



4.2 Projective Space 141

where x‖ := Pâ(x) is the component of x parallel to â. If we define x⊥ :=
P⊥

â(x) such that x = x‖ + x⊥, then it follows that for all α ∈ R,

x = α â + x⊥

lies in the GIPNS of A. Hence, A represents a plane with a normal â and a
distance α from the origin in R3.

4.2.3.2 Lines

A line in R3 may be represented by the GIPNS of a bivector. In contrast
to the GOPNS of a bivector, which also represents a line, the GIPNS of a
bivector can be interpreted as the intersection of two planes. Recall that we
have encountered the same construction in Euclidean space.

If A, B ∈ G1
4 are defined as A := H(a) and B := H(b) with a, b ∈ G1

3,
then the GIPNS of A ∧ B is given by

NIG(A ∧ B) :=
{

x ∈ G
1
3 : H(x) · (A ∧ B) = 0

}
.

Let X := H(x), and assume that A ∧ B 6= 0; then

X · (A ∧ B) = (X · A) B − (X B) A,

which can be zero only if X ·A = 0 and X ·B = 0. Therefore, X ·(A∧B) = 0
if and only if x lies on both of the planes represented by the GIPNSs of A

and B, which means that it lies on the intersection line of those planes.
This shows that in terms of the GIPNS, the outer product represents the
intersection of geometric entities.

The parametric representation of the line NIG(A∧B) is more easily eval-
uated from the equivalent representation NOG

(
(A ∧ B)

∗)
.

4.2.3.3 Points

Just as a line is represented by a 2-blade, a point can be represented by
the GIPNS of a 3-blade. This corresponds to the intersection point of three
planes.

4.2.3.4 Summary

Given homogeneous vectors A, B,C ∈ G1
4 defined as A = H(a), B = H(b),

and C = H(c), where a, b, c ∈ G1
3, the following geometric entities in R3 can

be represented:
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NIG(A) Plane

NIG(A ∧ B) Line NIG(A) ∩ NIG(B)

NIG(A ∧ B ∧ C) Point NIG(A) ∩ NIG(B) ∩ NIG(C)

4.2.4 Reflections in Projective Space

By going from Euclidean to projective space, an additional dimension, the
homogeneous dimension, is introduced. The question is what effect this has
when the reflection operator introduced earlier is used.

First of all, consider a vector a ∈ G1
2 and its homogeneous representation

A := H(a) = a + e3,

where e3 is the homogeneous dimension. A reflection in e3 gives

e3 A e3 = e3 a e3 + e3 e3 e3

= −a e3 e3 + e3

= −a + e3,

where the fact that e3 is perpendicular to all vectors in G1
2 has been used.

Therefore,
e3 a = e3 ∧ a = −a ∧ e3 = −ae3.

It therefore follows that

NOG

(
e3 H

(
a
)
e3

)
= −a,

which shows that a reflection of A in e3 represents a reflection of a in the
origin in R2.

Next, consider a vector N ∈ G1
3, with ‖N‖ = 1 and N · e3 = 0, i.e. N is

a point at infinity, or direction vector. Let A ∈ G1
3 be a homogeneous vector

as before; then

N A N = N (a + e3)N

= N a N + N e3 N

= N a N − e3 N2

= N a N − e3.

Using the projection operator A that maps a homogeneous vector to the
affine hyperplane, it follows that
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Euclidean space, the same representation of a rotor can be used in both Eu-
clidean and projective space.

4.3 Conformal Space

In this introduction to conformal space, many of the concepts introduced in
the discussion of projective space will reappear. Again, Euclidean space is
embedded in a higher-dimensional space, where the extra dimensions have
particular properties such that linear subspaces in conformal space represent
geometric entities in Euclidean space that are of interest. In projective space,
the addition of one dimension allows the representation of null-dimensional
spaces, i.e. points, in Euclidean space by one-dimensional subspaces in pro-
jective space. This allows points to be distinguished from directions.

Conformal space is introduced here in two steps where, each time, we
extend the dimensionality of the space by one. In the first step, Euclidean
space is embedded in a non-linear way in a higher-dimensional space. The
actual conformal space that is used later on is a special homogenization of
the initial non-linear embedding of Euclidean space.

What is meant by conformal space is therefore the projective space of a
conformal embedding of Euclidean space. The geometric algebra over this
conformal space is called conformal geometric algebra (CGA), even though
this terminology is not completely exact.

Before the conformal embedding of Euclidean space is discussed, it is help-
ful to first know what “conformal” actually means. A conformal transforma-
tion is one that preserves angles locally. For example, a conformal transfor-
mation of two intersecting straight lines in Euclidean space may result in
two intersecting circles on a sphere. However, the angle at which the circles
intersect is the same as the intersection angle of the lines.

It turns out that all conformal transformations can be expressed by means
of combinations of inversions. In a 1D Euclidean space R1 ≡ R, the inversion
of a vector x ∈ R1 in the unit one-dimensional sphere centered on the origin
is simply x−1. In R3, the inversion of a plane in the unit sphere centered on
the origin is a sphere, as shown in Fig. 4.12.

Note that inversions are closely related to reflections, in that a reflection
is a special case of an inversion. In fact, an inversion in a sphere with an
infinite radius, i.e. a plane, is a reflection. All Euclidean transformations can
be represented by combinations of reflections. This has already been seen
for rotations, which are combinations of two reflections. A translation may
be represented by the reflections in two parallel reflection planes. Since all
Euclidean transformations can be represented by combinations of reflections
and all conformal transformations by combinations of inversions, it follows
that the Euclidean transformations form a subset of the conformal transfor-
mations.
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Let SAn
M ⊂ A

n+1
M denote the embedding of Sn in the affine space A

n+1
M , i.e.

SAn
M = A

n+1
M ∩ Kn+1 = HM (S(Rn)). The inverse transformation H−1

M :
SAn

M → Sn is given by

H−1
M : X 7→ X − e−. (4.29)

This implies that the only elements of Rn+1,1 that can be mapped back
to Rn are those in SAn

M . All other vectors are given a geometric meaning
through their geometric OPNS or IPNS. That is, for A ∈ Rn+1,1,

NOG(A) :=
{

x ∈ Rn : HM (S(x)) ∧ A = 0
}
,

NIG(A) :=
{

x ∈ Rn : HM (S(x)) · A = 0
}
. (4.30)

The geometric OPNS of a vector X ∈ Rn+1,1 is thus independent of the
vector’s scale. This is indicated in Fig. 4.14(b) by the line passing through
the origin and HM (S(x)).

To summarize, the embedding of a Euclidean vector x ∈ Rn in the (ho-
mogeneous) conformal space Rn+1,1 is given by

HM

(
K(x)

)
=

2

x2 + 1
x +

x2 − 1

x2 + 1
e+ + e− . (4.31)

Since this is an element of a projective space, an overall scale does not in-
fluence the representation in the corresponding Euclidean space. The vector
may therefore be scaled without changing its representation in Euclidean

space. A convenient scaling is a multiplication by
1

2
(x2 + 1), which cannot

be zero:

1

2
(x2 + 1) HM

(
S(x)

)
= x +

1

2
(x2 − 1) e+ +

1

2
(x2 + 1) e−

= x +
1

2
x2 (e− + e+) +

1

2
(e− − e+)

= x +
1

2
x2 e∞ + eo,

(4.32)

where

e∞ := e− + e+ and eo :=
1

2
(e− − e+). (4.33)

The properties of e∞ and eo are easily derived from the properties of e+ and
e−:

e2
∞ = e2

o = 0 and e∞ · eo = −1. (4.34)

Even though such a basis is rather uncommon, using e∞ and eo instead of
e− and e+ is simply a basis transformation. In the null basis formed by eo

and e∞, eo is now regarded as the homogeneous dimension. Therefore, the
following embedding of Euclidean vectors into conformal space is defined,
which is also the embedding that will be used throughout the rest of this
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4.3.4 Inner-Product Representations in G4,1

In contrast to the cases of Euclidean and projective space, it is initially easier
to look at the geometric IPNS of blades in G4,1. Before specific geometric
entities are treated, some general properties will be presented.

Consider Euclidean vectors a, b ∈ R3 with conformal embeddings A :=
C(a) and B := C(b); that is,

A = a +
1

2
a2 e∞ + eo and B = b +

1

2
b2 e∞ + eo.

Using the properties of e∞ and eo, it follows that

A · B = (a +
1

2
a2 e∞ + eo) · (b +

1

2
b2 e∞ + eo)

= a · b − 1

2
a2 − 1

2
b2

= −1

2
(a − b)2

= −1

2
‖a − b‖2. (4.39)

Thus, the inner product of two conformal vectors gives a measure of the
Euclidean distance between their corresponding Euclidean vectors. This fun-
damental feature of conformal space plays an important role in the following.

4.3.4.1 Points

The geometric IPNS of a vector A ∈ K4 ⊂ G1
4,1 on the null-cone is given by

NIG(A) = C−1
(
NI(A)

)
.

Because vectors on the null cone are null-vectors,

NI(A) =
{

α A : α ∈ R
}
,

and thus
NIG(A) = C−1(A).

Just as for projective space, a null-dimensional entity in Euclidean space (a
point) can be represented by a one-dimensional subspace in (homogeneous)
conformal space.
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4.3.4.2 Spheres

While vectors on the null-cone represent points in Euclidean space in terms
of their geometric IPNS, this is only a subset of all vectors G1

4,1, and it is
not immediately clear what vectors off the null-cone represent. Consider the
vector a ∈ R3 and define A := C(a), which lies on the null cone. Furthermore,
define a vector S ∈ G1

4,1 off the null-cone by

S := A − 1

2
ρ2 e∞, (4.40)

where ρ ∈ R. To evaluate the geometric IPNS of S, consider the inner product
of a vector X ∈ K4 with S:

S · X = A · X − 1

2
ρ2 e∞ · X

= −1

2
(a − x)2 +

1

2
ρ2.

(4.41)

Hence,
S · X = 0 ⇐⇒ (a − x)2 = ρ2.

That is, the inner product of S and X is zero if and only if x = C−1(X) lies
on a sphere centered on a = C−1(A) with radius ρ. Therefore, the geometric
IPNS of S is a sphere:

NIG(S) =
{

x ∈ R
3 : ‖x − a‖2 = ρ2

}
. (4.42)

Note that, as for points, every scaled version of S represents the same sphere.
The “normalized” form of S as given in (4.40) has the added advantage that
the sphere’s radius can be evaluated via

S2 = A2 − ρ2 A · e∞ = ρ2. (4.43)

Given an arbitrarily scaled version of S, the radius can be evaluated via

(
S

−S · e∞

)2

= ρ2. (4.44)

Whether a point X := C(x), with x ∈ R3, lies inside, on, or outside a
sphere represented by S can be evaluated quite easily. From (4.41), it follows
that

S · X
(S · e∞) (X · e∞)





> 0 : x inside sphere,

= 0 : x on sphere,

< 0 : x outside sphere.

(4.45)

This feature also forms the basic idea behind the hypersphere neuron [14, 15].
This may be represented as a perceptron with two “bias” components, and
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allows the separation of the input space of a multilayer perceptron in terms
of hyperspheres, not hyperplanes.

4.3.4.3 Imaginary Spheres

Consider now a vector S ∈ G1
4,1 defined by

S := A +
1

2
ρ2 e∞. (4.46)

The inner product of S with X := C(x), x ∈ R3, gives

S · X = −1

2
(a − x)2 − 1

2
ρ2,

such that
S · X = 0 ⇐⇒ (a − x)2 = −ρ2.

Since x ∈ R3, this condition is never satisfied for ρ 6= 0. However, if x ∈ C3

were an element of a complex vector space, then, together with an appropriate
definition of the norm, the solution would be

‖a − x‖ = i ρ,

where i =
√
−1 is the imaginary unit. In this context, S as defined in (4.46)

represents a sphere with an imaginary radius ρ.
A nice way to construct an imaginary sphere is by the addition of two null

vectors. For example, given a, b ∈ R3, and defining A := C(a) and B := C(b),
then S = A + B represents an imaginary sphere, whose center lies at the
midpoint between a and b, and whose radius is ρ = i ‖a − b‖/2.

Note that any vector in G1
4,1 may be brought into the form

S = A ± 1

2
ρ2 e∞,

where A := C(a) and a ∈ R3. From a visual point of view, it can be said that

vectors of the type S = A − 1

2
ρ2 e∞ lie outside the null cone and vectors of

the type S = A +
1

2
ρ2 e∞ lie inside the null cone. It follows that any vector

in G1
4,1 represents a sphere with either a positive, zero, or imaginary radius.

In terms of the geometric IPNS, the basic “building blocks” of homogeneous
conformal space are therefore spheres.
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4.3.4.4 Planes

It was mentioned earlier that a plane can be regarded as a sphere with an
infinite radius. Since we are working in a homogeneous space, infinity can be
represented by setting the homogeneous component of a vector to zero. And
this is also all that it takes to make a sphere into a plane, which becomes
clear from (4.44). Consider a vector P ∈ G1

4,1 defined by

P := A − eo −
1

2
ρ2 e∞ = a +

1

2
a2 e∞ − 1

2
ρ2 e∞

that has no eo component, i.e. it is zero in the homogeneous dimension. The
inner product of P with some vector X := C(x), x ∈ R3, gives

P · X = a · x − 1

2
a2 +

1

2
ρ2

= ‖a‖ ‖x‖‖ − 1

2
(a2 − ρ2),

where x‖ := Pa(x) is the component of x parallel to a. Therefore,

P · X = 0 ⇐⇒ ‖x‖‖ =
a2 − ρ2

2 ‖a‖ .

Hence, all vectors x whose component parallel to a has a fixed length lie in
the geometric IPNS of P , which thus represents a plane with an orthogonal
distance (a2 − ρ2)/(2‖a‖) from the origin and a normal a.

In general, a plane with a normal â := a/‖a‖ and an orthogonal distance
α ∈ R from the origin is represented by

P = â + α e∞ . (4.47)

Another nice representation of planes is provided by the difference of two
vectors from the null cone. That is, for A, B ∈ K4, we define P := A − B.
The inner product of P with a vector X then gives

P · X = A · X − B · X
= −1

2
(a − x)2 +

1

2
(b − x)2.

It follows that

P · X = 0 ⇐⇒ 1

2
(a − x)2 =

1

2
(b − x)2.

This is the case if x lies on the plane halfway between a and b, with normal
a − b.
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4.3.4.5 Circles

In the inner-product representation, circles are constructed by intersecting
two spheres. Let S1,S2 ∈ G1

4,1 represent two spheres as described before;
then C := S1 ∧ S2 represents the spheres’ intersection circle, because

NIG(C) =
{

x ∈ R
3 : C(x) · C = 0

}
(4.48)

and
X · (S1 ∧ S2) = (X · S1) S2 − (X · S2) S1,

where X := C(x). If S1 and S2 are linearly independent, i.e. they represent
different spheres, then X · (S1 ∧ S2) is zero if and only if X · S1 = 0 and
X ·S2 = 0. Thus, NIG(C) is the set of those points that lie on both spheres,
which is the spheres’ intersection circle.

If the two spheres intersect only in a single point, then C represents that
point. If the spheres do not intersect, then NIG(C) = ∅. However, in all
cases the algebraic element C is of the same grade, and contains geometric
information about the intersection. In fact, if S1 and S2 intersect in a single
point, then C represents their intersection point, but the algebraic entity
also contains the normal to the plane that is tangential to the spheres at
the intersection point. Furthermore, if the spheres do not intersect, then C

represents an imaginary circle.
It is quite instructive to consider the case of two spheres intersecting in

a point, in some more detail. Note, that a sphere centered on some vector
a ∈ R3, that passes through the origin, must have radius ‖a‖. Hence, the
representation of such a sphere in G4,1 is given by

S = a +
1

2
a2 e∞ + eo −

1

2
a2 e∞ = a + eo .

Without loss of generality, we can consider the case of two spheres intersecting
only in the origin. We define

S1 := α a + eo , S2 := β a + eo , α, β ∈ R \ {0} , α 6= β .

The intersection circle C is then given by

C = S1 ∧ S2 = α a ∧ eo + β eo ∧ a = (α − β) a ∧ eo .

Clearly, C · eo = 0, and, thus, C represents the origin. However, C also
contains the vector a, which is normal to the plane that is tangential to the
spheres at the intersection point. In fact, a is the inner-product representation
of just that plane (see (4.47)).

An entity of the type n∧ C(x), with n,x ∈ R3, can be regarded as repre-
senting a tangential plane with normal n at the point x.
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4.3.4.6 Lines

The inner-product representation of lines is constructed in much the same
way as the inner-product representation of circles: a line is the intersection
of two planes. Let P1,P2 ∈ G1

4,1 represent two inner-product planes; then
L := P1 ∧P2 represents the planes’ intersection line. This follows, as before,
because

NIG(L) =
{

x ∈ R
3 : C(x) · L = 0

}
(4.49)

and
X · (P1 ∧ P2) = (X · P1) P2 − (X · P2) P1,

where X := C(x). If P1 and P2 are linearly independent vectors, i.e. they
represent different planes, then X · L = 0 if and only if X · P1 = 0 and
X · P2 = 0, which implies that NIG(L) is the planes’ intersection line.

As an example, consider the case of two parallel planes, with P1 := â +
α e∞ and P2 := â + β e∞, where â ∈ R3 is a unit vector that gives the
normal of the planes, and α, β ∈ R. Then

P1 ∧ P2 = (â + α e∞) ∧ (â + β e∞) = (β − α) â ∧ e∞,

which should represent the planes’ intersection line at infinity. Using X :=
C(x) again as before, then

X · (â ∧ e∞) = (x · â)e∞ + â.

This is zero only if â = 0, and thus NIG(P1 ∧ P2) = ∅; that is, the parallel
planes have no intersection that is representable in R3, as expected. How-
ever, â ∧ e∞ can be regarded as representing a line at infinity, which is the
intersection of two planes with a normal â.

4.3.4.7 Point Pairs

An algebraic entity that represents a point pair has to exist in G4,1 because
all intersections of a circle and a plane or of three spheres have to be repre-
sentable. Consider the case of three spheres represented by S1,S2,S3 ∈ G1

4,1

that intersect in two points; then A := S1 ∧ S2 ∧ S3 is an inner-product
representation of this point pair. This follows immediately, using the same
method as before. First of all,

NIG(A) =
{

x ∈ R
3 : C(x) · A = 0

}
(4.50)

and

X · A = (X · S1) (S2 ∧ S3) − (X · S2) (S1 ∧ S3) + (X · S3) (S1 ∧ S2),
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where X := C(x). Because S1, S2, and S3 represent different spheres they
are linearly independent vectors, and thus X ·A = 0 if and only if X ·Si = 0
for all i ∈ { 1, 2, 3 }. Hence, NIG(A) is the intersection of all three spheres,
which in this case is a point pair, by definition. Note that a point pair is more
easily represented in the GOPNS, where it is simply the outer product of the
two points.

4.3.5 Outer-Product Representations in G4,1

The outer-product representation is dual to the inner-product representation,
as has been shown in Sect. 3.2.8. This property is used below to verify some
of the representations.

4.3.5.1 Points

It was shown earlier that a point a ∈ R3 is represented in G4,1 by A := C(a).
Since A2 = 0, A is an inner-product representation of the point a. It is also
an outer-product representation of a, since A ∧ A = 0 by the definition of
the outer product. That is,

NOG(A) =
{

x ∈ R
3 : C(x) ∧ A = 0

}
= {a }. (4.51)

The main difference between the GIPNS and the GOPNS is that the GIPNS
depends on the metric of the space, whereas the GOPNS depends only on
the algebraic properties.

4.3.5.2 Point Pairs

It has been mentioned before that the outer product of two vectors A, B ∈
G1

4,1, defined as A := C(a) and B := C(b) with a, b ∈ R3, represents the
point pair a, b. This can be seen as follows. First of all,

NO(A∧B) =
{

X ∈ G
1
4,1 : X∧A∧B = 0

}
=
{

α A+β B : (α, β) ∈ R
2
}
.

The GOPNS of A∧B is the subset of NO(A∧B) whose constituent vectors
square to zero, because these are the vectors that lie on the null cone and
thus represent points in R3. Let X := α A + β B; then

X2 = 2α β A · B,

because A2 = B2 = 0. Hence, X2 = 0 has the non-trivial solutions that
either α = 0 or β = 0. Thus,
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NOG(A ∧ B) =
{

x ∈ R
3 : C(x) ∧ A ∧ B = 0

}
= {a, b }. (4.52)

4.3.5.3 Homogeneous Points

A homogeneous point is a point pair consisting of a Euclidean point and the
point at infinity. That is, if a ∈ R3 and A := C(a), then H := A ∧ e∞

represents a homogeneous point. Clearly,

NOG(H) =
{

x ∈ R
3 : C(x) ∧ H = 0

}
= {a }, (4.53)

since the point at infinity has no representation in R3. That is, H and A are
both outer-product representations of a. However,

A = a +
1

2
a2 e∞ + eo and H = a ∧ e∞ + eo ∧ e∞,

so that the latter can be regarded as a homogeneous point, whereby eo ∧ e∞

takes on the function of the homogeneous dimension. This is discussed in
more detail in Sect. 4.3.7.

4.3.5.4 Lines

The outer-product representation of lines in G4,1 is very similar to that in
projective space. Let a, b ∈ R3 and A := C(a), B := C(b); then the line that
passes through a and b is represented by L := A∧B ∧e∞. This can be seen
as follows:

NOG(L) =
{

x ∈ R
3 : C(x) ∧ L = 0

}
. (4.54)

Define X := C(x); then

X ∧ L = 0

⇐⇒ x ∧ a ∧ b ∧ e∞ +
(
x ∧ (b − a) − a ∧ b

)
∧ e∞ ∧ eo = 0.

The two terms in the sum have to be separately zero, because they are linearly
independent. The first term, x ∧ a ∧ b ∧ e∞ = 0, implies that x = α a + β b,
with α, β ∈ R. The second term is zero if and only if

x ∧ (b − a) = a ∧ b

⇐⇒ (α a + β b) ∧ (b − a) = a ∧ b

⇐⇒ (α + β) a ∧ b = a ∧ b

⇐⇒ α + β = 1.



160 4 Geometries

Therefore,
x = α a + β b + α b − α b = α (a − b) + b,

which is a parametric representation of the line passing through a and b.
Thus,

NOG(A ∧ B ∧ e∞) =
{

α (a − b) + b : α ∈ R
}
. (4.55)

4.3.5.5 Planes

The outer-product representation of planes is very similar to that of lines.
Let a, b, c ∈ R3 and A := C(a), B := C(b), and C := C(c); then the outer-
product representation of the plane passing through a, b, and c is given by
P := A ∧ B ∧ C ∧ e∞. In much the same way as for lines, it may be shown
that

NOG(P ) =
{

x ∈ R3 : C(x) ∧ P = 0
}

=
{

α (a − c) + β (b − c) + c : (α, β) ∈ R2
}

. (4.56)

4.3.5.6 Circles

The outer-product representation of a circle that passes through points
a, b, c ∈ R3 is given by K := A ∧ B ∧ C, where A := C(a), B := C(b),
and C := C(c). It is not easy to show this directly, but this result can be
argued indirectly as follows. First of all, because

NOG(K) =
{

x ∈ R
3 : C(x) ∧ K = 0

}
, (4.57)

the points a, b, and c lie on the entity represented by K. Secondly,
NOG(K) = NIG(K∗), and because K ∈ G3

4,1 is a 3-blade it follows that
K∗ ∈ G2

4,1 is a 2-blade. As was shown in Sect. 4.3.4, the GIPNS of a 2-blade
is a line, a line at infinity, a circle, or an imaginary circle. However, because
the points a, b, and c lie on the entity, it has to be a finite entity, i.e. a line
or a circle. Thus K represents either a line or a circle through the points a,
b, and c. In fact, K represents a line only if the three Euclidean vectors are
collinear.

4.3.5.7 Spheres

Just as the outer-product representation of a circle is the outer product of
three vectors representing points, the outer-product representation of a sphere
is given by the outer product of four vectors representing points. That is, if
a, b, c, d ∈ R3 and A := C(a), B := C(b), C := C(c), and D := C(d), the
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outer-product representation of the sphere passing through a, b, c, and d is
given by S := A ∧ B ∧ C ∧ D.

As in the case of the representation of a circle, this is most easily shown
indirectly. First of all, because

NOG(S) =
{

x ∈ R
3 : C(x) ∧ S = 0

}
, (4.58)

the points a, b, c, and d lie on the entity represented by S. Secondly,
NOG(S) = NIG(S∗), where S∗ ∈ G1

4,1 is a 1-blade, since S ∈ G4
4,1 is a

4-blade. The inner-product representation of a 1-blade is either a point, a
sphere, or an imaginary sphere. It follows that because the points a, b, c,
and d, which are different points, have to lie on S, S represents a sphere
through the four Euclidean points.

4.3.6 Summary of Representations

In this subsection, the various geometric entities and their representations
in the CGA G4,1 are summarized. These representations are also related to
the algebra basis elements of the subspace that they lie in. For this purpose,
the algebra basis of G4,1 is given in Table 4.2. This table assumes that ei :=

G
1

4,1[i] and eijk := ei ej ek. Instead of e+ and e−, the null-basis vectors

e∞ := e+ + e− and eo :=
1

2
(e− − e+) are used. The order of the elements

of the algebra basis is not the same as that of the canonical algebra basis.
Instead, the algebra basis-blades are ordered in an easily readable fashion.

Table 4.3 summarizes the geometric entities that can be represented in
G4,1, their algebraic outer-product representation, and their algebra basis. In
this table, A, B,C,D ∈ G1

4,1 represent points in R3.
Table 4.4 does the same for the inner-product representation of geometric

entities. In this table, the {Si } ⊂ G1
4,1 are inner-product representations of

spheres and the {Pi } ⊂ G1
4,1 are inner-product representations of planes.

Furthermore, the spheres represented by S1 and S2 intersect in a circle, the
spheres represented by S1, S2, and S3 intersect in a point pair, and the
spheres represented by S1, S2, S3, and S4 intersect in a point. Similarly, the
planes represented by P1 and P2 intersect in a line, and the planes represented
by P1, P2, and P3 intersect in a point.

4.3.7 Stratification of Spaces

With respect to Table 4.3, it is interesting to see that those geometric entities
that can also be represented in projective space are represented by the outer
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Table 4.2 Algebra basis of the CGA G4,1

Type No. Basis elements

Scalar 1 1

Vector 5 e1, e2, e3, e∞, eo

2-Vector 10 e23, e31, e12, e1o, e2o, e3o, e1∞, e2∞, e3∞, eo∞

3-Vector 10 e23∞, e31∞, e12∞, e23o, e31o, e12o, e1∞o, e2∞o, e3∞o, e123

4-Vector 5 e123∞, e123o, e23∞o, e31∞o, e12∞o

5-Vector 1 e123∞o

Table 4.3 Geometric entities, their GOPNS representation in G4,1, and their alge-
bra basis

Entity Grade No. Basis elements

Point A 1 5 e1, e2, e3, e∞, eo

Homogeneous point A ∧ e∞ 2 4 e1∞, e2∞, e3∞, eo∞

Point Pair A ∧B 2 10
e23, e31, e12, e1o, e2o, e3o,

e1∞, e2∞, e3∞, eo∞

Line A ∧B ∧ e∞ 3 6
e23∞, e31∞, e12∞,
e1o∞, e2o∞, e3o∞

Circle A ∧B ∧C 3 10
e23∞, e31∞, e12∞, e23o, e31o, e12o,

e1o∞, e2o∞, e3o∞, e123

Plane A ∧B ∧C ∧ e∞ 4 4 e123∞, e23o∞, e31o∞, e12o∞

Sphere A ∧B ∧C ∧D 4 5 e123∞, e123o, e23o∞, e31o∞, e12o∞

product of a blade of null vectors and e∞. Consider, for example, a vector
a ∈ R3 and define

A := C(a) = a +
1

2
a2 e∞ + eo.

Taking the outer product of A with e∞ results in

A ∧ e∞ = a ∧ e∞ + eo ∧ e∞.

If we identify eo ∧ e∞ with the homogeneous dimension and the bivectors
{ei ∧ e∞} for i ∈ { 1, 2, 3 } with the orthonormal basis vectors of a vector
space, then A ∧ e∞ can be regarded as the element of the projective space
of R3. This also carries over to blades of the type A〈k〉 ∧ e∞, where A〈k〉 is
a blade of null vectors excluding e∞.

In a similar way, the geometric entities that are representable in the ge-
ometric algebra of Euclidean space can be expressed in G4,1. This time, the
outer product of a vector A with e∞ ∧ eo is taken to give

A ∧ e∞ ∧ eo = a ∧ e∞ ∧ eo.
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Table 4.4 Geometric entities, their GIPNS representation in G4,1, and their algebra
basis

Entity GradeNo. Basis Elements

Sphere, Point S1 1 5 e1, e2, e3, e∞, eo

Plane P1 1 4 e1, e2, e3, e∞

Line P1 ∧P2 2 6 e23, e31, e12, e1∞, e2∞, e3∞

Circle S1 ∧ S2 2 10
e23, e31, e12, e1o, e2o, e3o,

e1∞, e2∞, e3∞, eo∞

Point Pair S1 ∧ S2 ∧ S3 3 10
e23∞, e31∞, e12∞, e23o, e31o, e12o,

e1o∞, e2o∞, e3o∞, e123

Homogeneous Point P1 ∧P2 ∧P3 3 4 e23∞, e31∞, e12∞, e123

Point S1 ∧ S2 ∧ S3 ∧ S4 4 5 e123∞, e123o, e23o∞, e31o∞, e12o∞

The {ei ∧ e∞ ∧ eo} for i ∈ { 1, 2, 3 } may now be identified with the or-
thonormal basis of a Euclidean space R3. In fact, NOG(a∧ e∞ ∧ eo) is a line
through the origin in the direction of a, that is, exactly the same as NOG(a).
Similarly, NOG(a ∧ b ∧ e∞ ∧ eo) is the same plane through the origin as
NOG(a ∧ b), where b ∈ R3.

This analysis shows that conformal space combines the features of Eu-
clidean and projective space. This also carries over to the operators, as will be
seen in the following subsections. This embedding of Euclidean and projective
space in a single framework immediately offers the possibility to implement
the ideas of Faugeras regarding the stratification of three-dimensional vision
[67], without changing spaces or representations. This has been used quite
successfully in, for example, [150, 158].

4.3.8 Reflections in G
n+1,1

Reflections are represented by planes in conformal space. This is most easily
shown with inner-product planes. Let a ∈ Rn, define â := a/‖a‖, and let
α ∈ R. A plane with a normal â and an orthogonal separation α from the
origin can then be represented in Gn+1,1 through the GIPNS of P := â +
α e∞ ∈ G1

n+1,1. Given a vector x ∈ Rn and its representation X := C(x) in
G4,1, it may be shown that

P X P = (â + α e∞) (x +
1

2
x2 e∞ + eo) (â + α e∞)

≃ x + 2 (α − â · x) â +
1

2
(x2 + 4 α2 − 4 α â · x) e∞ + eo,

(4.59)
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combination of inversions. However, so far it has not been shown how an
inversion may be expressed in Gn+1,1.

Before general inversions in Gn+1,1 are discussed, it is helpful to take a look
at the initial stereographic embedding (see Sect. 4.3.1), which was defined for
a Euclidean vector x ∈ Rn by

S(x) =
2

x2 + 1
x +

x2 − 1

x2 + 1
e+.

The inverse of x can be written as

x−1 =
x

x2
,

which is the same as the inversion of x in the unit sphere centered at the
origin. The embedding of x−1 in Rn+1,1 gives

S(x−1) =
2

x2

x4
+ 1

x

x2
+

x2

x4
− 1

x2

x4
+ 1

e+

=
2

1

x2
+ 1

x

x2
+

1

x2
− 1

1

x2
+ 1

e+

= x2 2

1 + x2

x

x2
+

1

x2

1

x2

1 − x2

1 + x2
e+

=
2

x2 + 1
x − x2 − 1

x2 + 1
e+.

This shows that in order to invert a vector in Rn, only its e+ component
in its stereographic embedding has to be negated, which is equivalent to a
reflection in the Euclidean subspace. Consider, for example, the stereographic
embedding of R1 in R2. A vector x ∈ R1 defined as x := α e1, with α ∈ R,
becomes

S(x) =
2α

α2 + 1
e1 +

α2 − 1

α2 + 1
e+.

The inverse of x is then given by
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which means that the inversion of the point at infinity (e∞) in the unit sphere
is the origin (eo). Therefore,

S (A ∧ B ∧ e∞) S ≃ (S AS) ∧ (S B S) ∧ eo,

where “≃” denotes equality up to a scalar factor, which does not influence
the geometric representation. This analysis shows that the inversion of a line
is a circle that passes through the origin eo.

4.3.10 Translations in G
n+1,1

At the end of Sect. 4.3.8 it was mentioned that translations, as well as ro-
tations, can be constructed by use of two consecutive reflections. In the fol-
lowing, it is shown that a translation can be represented by two consecutive
reflections in parallel planes.

Let PA,PB ∈ G1
n+1,1 represent two parallel planes with respect to their

GIPNS. Given a normalized vector â ∈ R3 and α, β ∈ R, the two planes
may be defined by PA := â + α e∞ and PB := â + β e∞, such that â is the
normal of the planes and α and β give the orthogonal distances of the planes
from the origin. A point x ∈ R3 represented by X := C(x) behaves as follows
under consecutive reflections in PA and PB :

y := C−1(PA X PA) = x + 2 (α − â · x) â, (4.61)

as shown in (4.60). The second reflection then results in

z := C−1(PB PA X PA PB)

= y + 2 (β − â · y) â

= x + 2 (β − α) â.

(4.62)

The transformation of x due to both reflections therefore depends only on
the planes’ normal â and their separation β−α. In fact, the double reflection
results in a translation of x in the direction of the planes’ normal by an
amount equal to twice the separation of the planes.

The multivector that results from the product PB PA may thus be re-
garded as a translation operator, a translator :

PB PA = (â + β e∞) (â + α e∞)

= 1 − (β − α) â e∞

= 1 − 1

2
t e∞,

(4.63)
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where t := 2 (β − α) â is the translation vector. That is, the translator T for

a translation by t is given by T = 1 − 1

2
t e∞.

A translator has a scalar and a bivector part, just like a rotor. In fact,
in the space Rn+1,1 itself, a translator expresses a rotation. However, the
rotation plane lies not in the Euclidean subspace but in a mixed subspace,
and the effect of the rotation in Rn+1,1 is a translation in Rn.

4.3.10.1 Properties

A translator may also be given in exponential form as

T = exp
(
− 1

2
t e∞

)
, (4.64)

which follows from the Taylor expansion of the exponential function and the
fact that

(t e∞)2 = t e∞ t e∞ = −t t e∞ e∞ = 0.

A translator is a unitary versor, since T T̃ = 1, which also follows from the
above equation. Applying T to the origin eo results in

T eoT̃ = t +
1

2
t2 e∞ + eo,

and the translation of the point at infinity, e∞, gives

T e∞ T̃ = e∞.

4.3.10.2 Example

With the help of a translator, it becomes sufficient to prove many properties
at the origin. By applying the translation operator, it is then possible to show
that the property in question holds everywhere in space. A simple example
may elucidate this. It was shown earlier that a sphere of radius ρ centered at
the origin can be expressed by

S = e0 −
1

2
ρ2 e∞,

and thus
S · S = ρ2.

This raises the question of whether this true for any sphere. Suppose now
that S′ is a sphere with center t and radius ρ, and let T denote a translator
representing a translation by t; then S′ = T̃ S T . It follows that
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S′ S′ = T S T̃ T S T̃ = T S S T̃ = ρ2 T T̃ = ρ2.

Thus, the property that S2 = ρ2, which was shown first to hold for a sphere
centered at the origin, can easily be shown to hold for any sphere.

4.3.11 Rotations in G
n+1,1

It was stated previously that the group of Euclidean transformations is a sub-
group of the conformal group. Whereas the conformal transformation group is
generated by combinations of inversions, the Euclidean transformation group
is generated by combinations of reflections. In previous sections, it was shown
that reflections are represented by planes and inversions by spheres. There-
fore, it is possible to represent all conformal and Euclidean transformations
in Gn+1,1.

It is interesting to note that just as planes are special cases of spheres
(with infinite radius), Euclidean transformations are special cases of confor-
mal transformations.

In Sect. 4.1.5, it was shown that a rotation in R3 about an axis that passes
through the origin is given by two consecutive reflections in planes that pass
through the origin. In conformal space, a plane that passes through the origin
can be represented in terms of the GIPNS as the plane’s normal. That is, if
â, b̂ ∈ R3 are two normalized vectors, then the planes with normals â and
b̂ can be represented by vectors PA,PB ∈ G1

4,1 as PA = â and PB = b̂,
respectively. Hence,

PB PA = b̂ â = b̂ · â + b̂ ∧ â = cos θ − sin θ U〈2〉 = rot(2θ, U〈2〉), (4.65)

where U〈2〉 := (â ∧ b̂)/‖â ∧ b̂‖ is the unit bivector representing the rotation

plane in 3D Euclidean space and θ := ∠(â, b̂) is the angle between â and b̂.
The rotation axis is U∗

〈2〉, which is the direction of the intersection line of the
planes PA and PB . Thus, the intersection line of the reflection planes gives
the rotation axis.

A rotor for a rotation about an axis through the origin is therefore the
same in conformal and Euclidean space. However, in conformal space a rotor
may be translated with a translator. Such a general rotation operator may
be given simply by

G = T R T̃ , (4.66)

where T is a translator and R a rotor. The effect of applying G to a vector
X ∈ G1

4,1 representing a point x ∈ R3, i.e. X = C(x), is
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G X G = T

rotation︷ ︸︸ ︷
R T̃ X T︸ ︷︷ ︸

translation by −t

R̃ T̃

︸ ︷︷ ︸
translation by t

.

If the rotor R := PB PA, as above, then

T R T̃ = (T PB T̃ ) (T PA T̃ ).

It therefore follows that two consecutive reflections in arbitrary planes result
in a rotation about the intersection line of the two planes by twice the angle
between the planes. In the special case where the planes are parallel, the
consecutive reflections in the planes result in a rotation about an axis at
infinity, i.e. a translation. This shows very clearly that a translation is just a
special case of a rotation.

The transformations that can be represented by operators of the form
T R T̃ are not the most general transformations, because a translation along
the rotation axis cannot be represented in this way. A general Euclidean
transformation can be represented by

M := T2 T1 R T̃1, (4.67)

where T1 translates the rotor R in the rotation plane and T2 is a translation
along the rotation axis. Such a general transformation operator is called a
motor or a screw. Note that M can also be parameterized as

M := T ′ R′, (4.68)

where T ′ is an appropriate translator and R′ an appropriate rotor.
The multivector M is a unitary versor and thus has the same effect for

all blades. That is, M can be used to transform points, lines, planes, circles,
spheres, and any operators.

4.3.12 Dilations in G
n+1,1

A dilation is an isotropic scaling; that is, an equal scaling in all dimensions. A
dilation can be achieved by two consecutive inversions in concentric spheres
of different radii, which is how a dilation is constructed in CGA.

Let S1,S2 ∈ G1
4,1 be outer-product representations of two spheres centered

at the origin, with radii r1, r2 ∈ R; that is, Si := eo −
1

2
r2
i e∞. If x ∈ R3 and

X := C(x), then
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S1 X S1 ≃ r2
1

x2
x +

1

2

r4
1

x2
e∞ + eo,

where “≃” denotes equality up to a scalar factor. Therefore,

S2 S1 X S1 S2 ≃ r2
2

r2
1

x +
1

2

r4
2

r4
1

x2 e∞ + eo.

Hence, the operator D := S2 S1 scales the vector x by a factor r2
2/r2

1. The
dilation operator, or dilator, D is therefore given by

D = S2 S1

=
1

2
(r2

1 + r2
2) +

1

2
(r2

1 − r2
2) e∞ ∧ eo

≃ 1 +
r2
1 − r2

2

r2
1 + r2

2

e∞ ∧ eo

≃ 1 +
1 − d

1 + d
e∞ ∧ eo,

where d := r2
2/r2

1 is the dilation factor. That is, a dilation operator that
represents a dilation by a factor d about the origin is defined as

D := 1 +
1 − d

1 + d
e∞ ∧ eo. (4.69)

A dilation centered at a point t ∈ R3 can be constructed from the above

dilator and an appropriate translator. We define T := 1 − 1

2
t e∞, which is

the translation operator for a translation by t. If x ∈ R3 and X := C(x),
then

T D T̃ X T D T̃

is a dilation of x centered on t. Thus,

Dt := T D T̃ , (4.70)

is the dilation operator for a dilation about t.

4.3.13 Summary of Operator Representations

Table 4.5 summarizes the operators available in G4,1 and lists their algebraic
bases. The basis blades relate again to the algebra basis of G4,1 listed in
Table 4.2.
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Table 4.5 Operators in G4,1 and their algebraic basis. Note that the operators are
mostly multivectors of mixed grade

Entity Grades No. Basis Elements

Reflection 1 4 e1, e2, e3, e∞

Inversion 1 5 e1, e2, e3, e∞, eo

Rotor R 0,2 4 1, e23, e31, e12

Translator T 0,2 4 1, e1∞, e2∞, e3∞

Dilator D 0,2 2 1, e∞o

General Dilator T D T̃ 0,2 2 1, e1∞, e2∞, e3∞, e∞o

Motor RT 0,2,4 8 1, e23, e31, e12, e1∞, e2∞, e3∞, e123∞

General Rotor T RT̃ 0,2 7 1, e23, e31, e12, e1∞, e2∞, e3∞

4.3.14 Incidence Relations

Various types of incidence relations exist. In this section, algebraic operations
between blades are presented that result in zero if a particular incidence rela-
tion is satisfied. The most common such relation between a geometric entity
with an outer-product representation A〈k〉 and a point with a representation
X is that A〈k〉 ∧ X = 0 if the point represented by X lies on the geometric
entity represented by A〈k〉. This follows immediately from the definition of
the GOPNS.

4.3.14.1 Containment Relations

Table 4.6 lists the containment relations between geometric entities in the
outer-product representation. For example, two outer-product line represen-
tations L and K represent lines that are contained in one another, i.e. they
represent the same line, if and only if L×−K = 0, where ×− denotes the com-
mutator product.

Table 4.6 Constraints between outer-product representations of geometric entities
that are zero if the corresponding geometric entities are contained in one another

Point X Line L Plane P Circle C Sphere S

Point Y X ∧ Y L ∧ Y P ∧ Y C ∧ Y S ∧ Y

Line K L×−K P×
−

K

Plane O P×−O

Circle B C×−B S×
−

B

Sphere R S×−R
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This result is valid only if S1 and S2 do indeed intersect.
Using this result, it can be easily demonstrated that the inversion opera-

tion is locally angle-preserving, as is to be expected, since it is a conformal
mapping. For this purpose, consider two planes Pa and Pb with inner-product
representations

Pa := â + α e∞ , Pb := b̂ + β e∞ ,

where â and b̂ are unit vectors giving the normals of the planes, and α, β ∈ R

are the orthogonal separations of the planes from the origin. The angle φ
between the two planes is the angle between their normals, that is, â · b̂ =
cos φ. Clearly,

Pa · Pb = â · b̂ = cos φ .

Now we define two spheres Sa and Sb as the inversions of Pa and Pb, respec-
tively. That is,

Sa := S Pa S , Sb := S Pb S ,

where S := eo − 1

2
e∞ is the unit sphere centered at the origin. If a plane

passes through the origin, than an inversion of this plane in S results again
in a plane. To avoid this case, we assume in the following that α, β 6= 0; that
is, the planes Pa and Pb do not pass through the origin. By a straightforward
calculation, it may be shown that

Sa = S Pa S = −â − 2 α eo = − 1

ρa

(
a +

1

2
a2 e∞ + eo −

1

2
ρ2

a e∞

)
,

where ρa := 1/(2α) and a := ρa â. If the planes Pa and Pb are not parallel,
they intersect in a line. The inversion of this line in the unit sphere gives
a real circle, which is the intersection of the inversions of the planes. If the
planes are parallel, they intersect in the line at infinity, which maps under
inversion to the origin of the inversion sphere. Therefore, the spheres Sa and
Sb always intersect, which implies that (4.71) is applicable. Hence,

Sa · Sb =
1

ρa ρb
ρa ρb cos θ = cos θ,

where θ is the intersection angle of the spheres Sa and Sb. The relation
between the the inner product of the spheres Sa, Sb and the planes Pa, Pb

can be found as follows:

Sa · Sb = (S Pa S) · (S Pb S)

=
1

2
(S Pa S S Pb S + S Pb S S Pa S)

= S (Pa · Pb) S

= Pa · Pb ,

(4.73)

where S S = 1. Hence,
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Sa · Sb = Pa · Pb ⇐⇒ cos θ = cos φ ,

which shows that the intersection angle of two planes is preserved under
inversion.

4.3.15 Analysis of Blades

The goal of this subsection is to show how, given a blade that represents some
geometric entity, the parameters describing that entity can be extracted. For
example, given an outer-product representation of a circle, the question is how
the center, normal, and radius of the circle can be extracted. The analysis
methods presented here are user, for example, in the software CLUCalc to
automatically analyze multivectors for their geometric content.

4.3.15.1 Planes

Let P ∈ G4
4,1 be an outer-product representation of a plane; then P ∗ is of

the form
P ∗ = α (â + d e∞),

where â ∈ R3 is the normal of the plane, d ∈ R is the orthogonal separation
of the plane from the origin, and α ∈ R is some general scale. The parameters
of the plane can be extracted via

a = Pe123
(P ∗) , α = ‖a‖, d = −P ∗ · eo

α
. (4.74)

4.3.15.2 Spheres

Let S ∈ G4
4,1 be an outer-product representation of a sphere; then S∗ is of

the form

S∗ = α (A − 1

2
r2 e∞),

where A := C(a), a ∈ R3 is the center of the sphere, r ∈ R is its radius, and
α ∈ R is some scale. The parameters of the sphere can be extracted via

r2 =
(S∗)2

(S∗ · e∞)2
, a =

Pe123
(S∗)

−S∗ · e∞
. (4.75)
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4.3.15.3 Lines

The outer-product representation of a line that passes through a, b ∈ R3 is
given by

L := A ∧ B ∧ e∞ = a ∧ b ∧ e∞ − (b − a) ∧ e∞ ∧ eo,

where A := C(a) and B := C(b). Since (e∞ ∧ eo)
2 = 1,

L · (e∞ ∧ eo) = b − a,

which is the direction of the line. On the other hand, d := b − a can be
interpreted as the inner-product representation of a plane that passes through
the origin with normal d. This plane intersects the line L at a right angle in
the point on the line that is closest to the origin. This point can be found by
calculating the intersection of the line and the plane.

If we define P ∗ := d, then P is the outer-product representation of the
plane, and the intersection point X of L and P is given by

X = P ∨ L = P ∗ · L,

since the join of P and L is the whole space, represented by the pseudoscalar.
Estimating X gives

X = P ∗ · L
= (d · a) b ∧ e∞ − (d · b) a ∧ e∞ + d2 e∞ ∧ eo

≃ (b · d−1) a ∧ e∞ − (a · d−1) b ∧ e∞ + eo ∧ e∞,

where “≃” denotes equality up to a scalar factor, and d−1 = d/d2. Hence,
X is a homogeneous point.

To summarize, the direction d of the line and the point X on the line that
is closest to the origin can be estimated via

d = L · (e∞ ∧ eo) and X = d · L. (4.76)

Note that X can also be written as

X = d · L ≃
(
(e∞ ∧ eo) · L

)
· L ≃ PL(e∞ ∧ eo) .

4.3.15.4 Point Pairs

Let Q ∈ G2
4,1 be the outer-product representation of a point pair a, b ∈ R3,

i.e. Q := A ∧ B, where A := C(a) and B := C(b). Clearly,

L := Q ∧ e∞ = A ∧ B ∧ e∞
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is the outer-product representation of the line that passes through a and b.
The results of the remaining calculations that are necessary to extract the
parameters of the point pair are stated without proof.

The outer-product representation of the plane that is perpendicular to L

and lies halfway between the points is given by

P := Q∗ ∧ e∞ or P ∗ = Q · e∞ .

The point X on L that lies halfway between the two points a and b is thus
given by

X = P ∨ L = P ∗ · L.

Finally, the normalized inner-product representation of the sphere centered
on X with a radius equal to half the distance between a and b is given by

S∗ := Q · L−1.

The distance d ∈ R between the points a and b is therefore

d = 2
√

S∗ · S∗ = 2

√
Q · Q
L · L .

The center of the point pair is therefore X, its direction can be extracted
from L, and the separation of the points is d.

As an aside, note that Q∗ is an outer-product representation of an imagi-
nary circle in a plane P centered on X with an imaginary radius i d/2.

4.3.15.5 Circles

Let C ∈ G3
4,1 be an outer-product representation of the circle that passes

through x,y,z ∈ R3, i.e. C := X ∧ Y ∧ Z, where X := C(x), Y := C(y),
and Z := C(z). Obviously, the plane in which the circle lies has an outer-
product representation

P := C ∧ e∞ = A ∧ B ∧ C ∧ e∞.

If S∗
1 ,S∗

2 ∈ G1
4,1 are the inner-product representations of two spheres that

intersect in the circle C, then the inner-product representation of C is

C∗ = S∗
1 ∧ S∗

2 .

The line L that passes through the centers of the spheres S1 and S2 therefore
has an outer-product representation

L := C∗ ∧ e∞ = S∗
1 ∧ S∗

2 ∧ e∞.



4.4 Conic Space 179

Line L has to pass through the center of the circle, which implies that the
center of the circle is the intersection of L and P , which can be estimated
via

U := P ∨ L = P ∗ · L.

Finally, the normalized inner-product representation of a sphere centered on
U with the same radius as the circle is

S∗ := C · P−1,

so that the radius r of the circle is given by

r =
√

S∗ · S∗ =

√
C · C
P · P .

The center of the circle is thus given by U , its plane is P , and its radius is
r. Note that the radius may be imaginary.

As an aside, note that C∗ is an outer-product representation of an imagi-
nary point pair on the line L, centered on X with an imaginary separation
2 i r.

4.4 Conic Space

The geometric algebra of conformal space is a very potent representation of
geometry and geometric transformations, but it is limited to the represen-
tation of spheres in all dimensions, with all radii, and conformal transfor-
mations. For example, a 1D sphere is a point pair, and a 2D sphere with
an infinite radius is a line. The transformations most often employed are the
Euclidean transformations. A scaling is also available in the form of a dilator,
which scales isotropically. It is not, however, possible to represent conic sec-
tions, often referred to simply as conics, in terms of a geometric null space.
Nor is a scaling with a preferred direction available, which implies that there
exist no versors that represent affine transformation operators.

There are many applications where non-isotropic scaling plays an impor-
tant role. One example is the calibration of cameras with non-square pixels.
The projection of entities onto planes is also limited in G4,1 to those entities
that are also representable in projective space, i.e. points and lines. The pro-
jection of a circle in 3D space onto a plane, which would result in an ellipse,
cannot be represented in G4,1.

This provides a motivation to look for other vector spaces on which a
geometric algebra can be constructed, such that the list of representable geo-
metric entities and transformations is extended. A first step in this direction
is presented in this section, where it shown how a geometric algebra can be
constructed such that 2D conics are representable through geometric null
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spaces. A drawback of this space, however, is that no translation versors ex-
ist. It is, instead, comparable to projective space with the extended feature
of a representation of conics.

It is shown later that when vectors represent conic sections in the geomet-
ric IPNS, the outer product of two vectors represents the intersection of the
two corresponding conics. While investigating the properties of such bivec-
tors when fitting them to data points, the author discovered an interesting
property that led to a corner and junction detection algorithm [131, 132].
However, this will not be discussed further in this text.

4.4.1 Polynomial Embedding

Before the details of conic space are discussed, it is helpful to look at what
needs to be achieved from a more general point of view. In terms of the
geometric IPNS, a 1-blade A ∈ G1

p,q represents

NIG(A) =
{

x ∈ R
n : X (x) · A = 0

}
,

where X : Rn → X ⊆ Rp,q is some bijective mapping. A particularly useful
type of embedding is a polynomial embedding. That is, if x := xi ei, then

X : x 7→
[
1, x1, . . . , xn, (x1)2, . . . , (xn)2, . . . , (x1)r, . . . , (xn)r

]
∈ R

p,q.

(4.77)
Defining A := [a1, . . . , anr+1] ∈ Rp,q gives

X (x) · A = a1 +
r∑

j=1

n∑

i=1

(
λk ak (xi)j

)
, k := i + (j − 1)n + 1, (4.78)

where λi := ei ·ei, and ei := R
p,q

[i] is the signature of the ith basis vector of
Rp,q. Note that ai denotes the ith component of a, whereas (ai)j denotes the
jth power of the ith component. Therefore, the geometric IPNS of A is the
set of roots of the polynomial given in (4.78). More generally, a polynomial
with positive and negative powers could be considered.

With respect to G4,1, the embedding of a vector x ∈ R3 with x := xi ei is
defined as

C(x) := x +
1

2
x2 e∞ + eo.

A general vector A ∈ G1
4,1 may be written as

A := a1 e1 + a2 e2 + a3 e3 + a4 e∞ + a5 eo,

such that
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C(x) · A = a1 x1 + a2 x2 + a3 x3 − 1

2
a5 x2 − a4, (4.79)

where x2 =
∑3

i=1 (xi)2. Therefore, the geometric IPNS is the set of roots of
the polynomial of (4.79). Here, the relation of geometric algebra to algebraic
geometry becomes particularly clear, since this is exactly the definition of an
affine variety in algebraic geometry (see [38]). The basic geometric entities
that are representable in G4,1 are therefore those that can be expressed as
the roots of this polynomial. Given these basic geometric entities, the other
entities can be constructed by intersection, i.e. by taking the outer product
of the basic entities.

The polynomial in (4.79) can also be written in terms of matrix products
as

C(x) · A =
[
x1 x2 x3 1

] 1

2




−a5 0 0 a1

0 −a5 0 a2

0 0 −a5 a3

a1 a2 a3 −2 a4







x1

x2

x3

1




, (4.80)

which is a special case of the representation of a projective conic. If we de-
note the column vector of the { xi } by x and the symmetric matrix of the
components { ai } by A, then (4.80) can be written as xT A x. In general, it is
also possible to write this expression in terms of a matrix inner product,

xT A x = (x xT) · A. (4.81)

The matrix inner product is defined as follows. Let ai
j denote the components

of the matrix A ∈ Rn×m and bi
j the components of the matrix B ∈ Rn×m;

then
A · B :=

∑

i,j

ai
j bi

j .

Thus, everything required present to construct a geometric algebra is present.
The set of matrices in Rn×m forms a vector space, and an inner product is
defined such that A · A ∈ R. The geometric algebra over the vector space
of symmetric matrices in R4×4 is thus a generalization of G4,1. As shown in
(4.80), G4,1 is simply a special case of such an embedding.

4.4.2 Symmetric-Matrix Vector Space

Using the ideas of the previous subsection, the geometric algebra over the
vector space of symmetric 3 × 3 matrices will be introduced here. Owing to
the symmetry of the matrices, only the upper triangular part of a matrix is
needed to define it uniquely.
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Let A ∈ R3×3 be a symmetric matrix, and denote by aji the component of
A in row j and column i. The notation aji is here used instead of the correct
notation Aj

i to increase the readability of the equations. We then define a
mapping M : R3×3 → R6 by

M : A 7→ a13 e1 + a23 e2 +
1√
2

a33 e3 +
1√
2

a11 e4 +
1√
2

a22 e5 + a12 e6.

(4.82)
Given a second symmetric matrix B ∈ R3×3, it follows that

A · B = 2M(A) · M(B).

Thus the embedding M of symmetric 3×3 matrices in R6 is an isomorphism
between R3×3 and R6.

It is well known that a symmetric 3 × 3 matrix A ∈ R3×3 is a projec-
tive representation of a conic section, i.e. a quadratic polynomial. This can
be seen quite easily as follows. We embed a 2D vector [x y]T ∈ R2×1 as
[x y 1]T ∈ R3×1, which is just a homogenization of the 2D vector, as dis-
cussed in Sect. 4.2. Now

xT A x = (x xT) · A

=




x2 x y x

y x y2 y

x y 1


 ·




a11 a12 a13

a21 a22 a23

a31 a32 a33




= a11 x2 + a22 y2 + 2 a12 x y + 2 a13 x + 2 a23 y + a33.

(4.83)

Therefore,

xT A x = 0

⇐⇒ a11 x2 + a22 y2 + 2 a12 x y + 2 a13 x + 2 a23 y = −a33.

For example, if a11 = a22 = 1, a33 = −1, and all other matrix components
are zero, then

xT A x = 0 ⇐⇒ x2 + y2 = 1,

which is satisfied for all points in R2 that lie on the unit circle. A complete
analysis of all representable conic sections will be given later on.

A point in [x y] ∈ R2 is therefore represented in the vector space of sym-
metric 3 × 3 matrices as x xT, where x := [x y 1]T. This is the embedding
of points that is used for the construction of the geometric algebra G6. We
define the mapping D : R2 → D ⊂ R6 as

D : x 7→ x +
1√
2

e3 +
1√
2

x2 e4 +
1√
2

y2 e5 + x y e6, (4.84)



4.4 Conic Space 183

where x := xe1 + y e2. Then, if A := M(A), where A ∈ R3×3 is a symmetric
matrix, D(x) ·A = 0 if and only if x lies on the conic section represented by
A. Hence,

NIG(A) =
{

x ∈ R
2 : D(x) · A = 0

}
(4.85)

is a conic section.

4.4.3 The Geometric Algebra G6

The geometric algebra over the vector space of symmetric matrices R6 al-
lows the representation of not just conic sections but also their intersections.
Furthermore, conic sections can be constructed from a number of points.

4.4.3.1 Outer-Product Representation

Let a1, . . . ,a5 ∈ R2 be five different points, and let Ai := D(ai) be their

embedding in G6. Then the GOPNS of A〈5〉 :=
∧5

i=1 Ai is the conic section
that passes through the points {ai }. This can be seen as follows. Since

NOG(A〈5〉) =
{

x ∈ R
2 : D(x) ∧ A〈5〉 = 0

}
, (4.86)

each of the points {ai } lies on the entity represented by A〈5〉. Furthermore,
NOG(A〈5〉) = NIG(A∗

〈5〉), and A∗
〈5〉 ∈ G1

6 is a 1-blade. However, the GIPNS

of a 1-blade is a conic section. Therefore, NOG(A〈5〉) has to be the conic
section that passes through the {ai }.

The conic sections that can be constructed in this way are circles, ellipses,
hyperbolas, parabolas, lines, parallel line pairs, and intersecting line pairs.
All of these, apart from the parabola, are illustrated in Fig. 4.21. The main
difference from G4,1 is that all of these entities are represented by the GOPNS
of a 5-blade. Note, however, that the outer-product representation of a line
passing through points a, b ∈ R2 is D(a) ∧ D(b) ∧ e4 ∧ e5 ∧ e6. This is how
the line in Fig. 4.21(f) is represented.

The outer-product representations of blades of lower grade represent point
sets. For example, the GOPNS of a 4-blade is a point quadruplet. This entity
has to exist, since two 2D conics can intersect in at most four points. Accord-
ingly, the GOPNS of a 3-blade is a point triplet, and that of a 2-blade is a
point pair. How the point positions are extracted from a blade is not trivial.
Later on it will be shown how the intersection points of two conic sections
can be evaluated.

The construction of a conic section by use of the outer product of five
points that lie on that conic section is also a very convenient way to evaluate
the symmetric matrix that represents this conic. The symmetric matrix A

that represents the conic that passes through {ai } is given by
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A = M−1

(( 5∧

i=1

D(ai)

)∗ )
. (4.87)

This also demonstrates again that a conic section is uniquely defined by five
points.

Note that the GOPNSs of 5-blades and 4-blades are automatically visual-
ized by CLUCalc.

4.4.3.2 Inner-Product Representation

In the inner-product representation, a 1-blade represents a conic section,
as shown earlier. Given two 1-blades A, B ∈ G1

6, the GIPNS of their outer
product is the intersection of the corresponding blades. This follows in exactly
the same way as for conformal, projective, and Euclidean space. Because

NIG(A ∧ B) =
{

x ∈ R
2 : D(x) · (A ∧ B) = 0

}

and
X · (A ∧ B) = (X · A) B − (X · B) A,

where X := D(x), the inner product of X and A ∧ B is zero if and only if
X · A = 0 and X · B = 0. This is only the case if x lies on both conics, and
thus NIG(A ∧ B) is the intersection of the conics represented by A and B.
This follows analogously for the outer product of more than two vectors.

Even though the representation of the intersection of two conics is very
simple, the evaluation of the actual intersection points is not. This is therefore
the subject of a later section.

4.4.4 Rotation Operator

There does not seem to be a simple way to derive the rotation operator for
conics represented in G6. The rotation operator is therefore simply stated
here. Let A ∈ G1

6 be an inner-product representation of a conic. The rotation
operator for a rotation of the conic represented by A by an angle θ in an
anticlockwise direction about the origin is given by

R = R2 R1 , (4.88)

where

R1 := cos θ − 1√
2

sin θ (e4 − e5) ∧ e6 ,

R2 := cos θ/2 − sin θ/2 e1 ∧ e2 .
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The derivation of this rotor can be done by reproducing the effect that a
rotation of a symmetric matrix has on its representation in G6. Since there
exists a rotation operator, a reflection operator should also exist for a reflec-
tion in a line through the origin. However, this has not yet been derived.

It appears that a translation operator does not exist in G6, which is rem-
iniscent of the situation for projective space. For a translation operator to
exist, the additional step to conformal space had to be made. This is the
subject of Sect. 4.5, where a proposal is made for a space that allows the
representation of conics but also contains operators for translation, rotation,
and inversion.

4.4.5 Analysis of Conics

A 2D conic centered at the origin can be represented by a 2× 2 matrix A as
follows:

xT A x = ρ, (4.89)

where x := [x1, x2]
T ∈ R2, and ρ ∈ R is a scale (radius). The set of points

x that satisfy this equation lie on the conic represented by A. Note that this
representation of 2D conics does not include the representation of parabolas.
Parabolas are representable in G6 but their analysis will not be discussed
here.

The above equation can be made homogeneous by embedding x and A in
a projective space. For this purpose, the following definitions are made:

xH := [x1, x2, 1]T, AH :=

(
A 0

0 −ρ

)
, (4.90)

such that
xT A x = ρ ⇐⇒ xT

H AH xH = 0. (4.91)

Similarly, for a given 2 × 2 rotation matrix R, a homogeneous counterpart is
defined by

RH :=

(
R 0

0 1

)
. (4.92)

A conic rotated about the origin by R can be represented by rotating the vec-
tor that is multiplied from left and right by the conic matrix in the opposite
direction. That is, a conic rotated by R is represented by those vectors xH

that satisfy

xT
H RH AH RT

H xH = xT
H

(
R ART 0

0 −ρ

)
= 0. (4.93)

Diagonalizing A results in
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A = U ΛUT, (4.94)

where U is a unitary matrix containing the eigenvectors of A in its columns,
and Λ is a diagonal matrix with the eigenvalues of A on its diagonal. Since A

is a real, symmetric matrix, the eigenvalues are real and the eigenvectors are
orthogonal, and hence U is unitary. Therefore, U gives the rotation matrix
by which the conic has been rotated, and Λ describes what type of conic
A represents. The eigenvectors of A are denoted by u1 and u2 such that
U = [u1, u2]. Let

UH :=

(
U 0

0 1

)
; (4.95)

then the following relation holds:

UT
H AH UH = ΛH :=




λ1 0 0

0 λ2 0

0 0 −ρ


 , (4.96)

where λ1 and λ2 are the eigenvalues of A.
However, a conic need not be centered on the origin. Its origin may be

translated to a point t ∈ R2, by applying the inverse translation to the points
that are multiplied by the conic. If we define a homogeneous translation
matrix TH by

TH :=

(
I −t

−tT 1

)
, (4.97)

then those points xH that satisfy

xT
H TT

H AH TH xH = 0 (4.98)

lie on the conic represented by AH , translated by the vector t.
Given an arbitrary, symmetric 3 × 3 matrix QH , how can the parameters

of the conics be extracted? Using the above definitions, it is clear that QH

may be written as
QH = TT

H AH TH . (4.99)

Since the top left 2×2 submatrix of TH is the identity matrix, the eigenvector
matrix U of A can be evaluated from that part of QH . That is, QH has the
form

QH =

(
A q

qT p

)
, (4.100)

where q ∈ R2 is some vector and p ∈ R is a scalar. Now ΛH and the translation
vector t have to be extracted from QH . From

LH := UT
H QH UH = UT

H TT
H UH Λ UT

H TH UH , (4.101)
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it follows that

SH := UT
H TH UH =




1 0 −tT u1

0 1 −tT u2

0 0 1


 =




1 0 s1

0 1 s2

0 0 1


 , (4.102)

where s1 := −tT u1 and s2 := −tT u2. Hence,

LH = ST
H ΛH SH =




λ1 0 λ1 s1

0 λ2 λ2 s2

λ1 s1 λ2 s2 λ1 s2
1 + λ2 s2

2 − ρ


 . (4.103)

U and, thus, UH can be evaluated from the upper left 2×2 submatrix of QH .
The translation vector t can be evaluated from LH via

t = −s1 u1 − s2 u2. (4.104)

Furthermore, ρ can be evaluated from LH by first evaluating λ1, λ2, s1, and
s2. Note also that if ρ = 0, the matrix QH is of rank two at most. This can
be seen from the form of the matrix LH , since the two matrices are related
via a similarity transformation. If we multiply the first row of LH by s1 and
the second row with s2, the sum of these two rows is equal to the third row
if ρ = 0.

The type of conic represented by QH can now be deduced from λ1, λ2, and
ρ, which can all be evaluated from LH . The following types of conics can be
distinguished. Note that any scalar multiple of QH represents the same conic
as QH . In particular, −QH represents the same conic as QH . Therefore, the
following signatures of λ1, λ2, and ρ may also be inverted:

• Point. λ1, λ2 > 0 and ρ = 0.
• Ellipse. λ1, λ2 > 0 and ρ > 0.
• Hyperbola. λ1 > 0 and λ2 < 0 or vice versa, and ρ > 0.
• Two intersecting lines. λ1 > 0 and λ2 < 0 or vice versa, and ρ = 0.
• Two parallel lines. λ1 > 0 and λ2 = 0 or vice versa, and ρ > 0.
• Line. λ1 > 0 and λ2 = 0 or vice versa, and ρ = 0.

The axes or directions of the various entities are given by the eigenvectors u1

and u2, and the scales of the axes by the corresponding eigenvalues.
Note again that the above analysis does not take account of parabolas,

which have to be treated separately. In fact, the case of a single line can be
interpreted as a degenerate parabola.
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4.4.5.1 Example

For example, in the case of two intersecting lines with λ1 > 0, λ2 < 0, and
ρ = 0, the set of vectors x that satisfy the following equation lie on the conic:

xT (u1, u2)

(
|λ1| 0

0 −|λ2|

)
(u1, u2)

T x = 0

⇐⇒ |λ1|
(
xT u1 uT

1 x
)
− |λ2|

(
xT u2 uT

2 x
)

= 0.

(4.105)

Since u1 and u2 are normalized and orthogonal, the solutions for x to the
above equation are simply

x = ± 1√
|λ1|

u1 ±
1√
|λ2|

u2. (4.106)

These solutions give the directions of the two lines. Their intersection point
is given by t, which can be evaluated from the corresponding LH .

4.4.6 Intersecting Lines and Conics

Intersecting a line with an arbitrary conic is quite simple. Suppose a line is
given in parametric form as

x(α) := p + α r, (4.107)

where p ∈ R3 gives the offset of the line from the origin and r ∈ R3 is the
direction of the line in homogeneous coordinates, i.e. the third component
of p is unity and the third component of r is zero. Let A ∈ R3×3 represent
a projective conic as defined in the previous sections. Now, x(α) lies on the
conic if xT(α) A x(α) = 0. Expanding this equation gives

xT(α) A x(α) = (pT + α rT) A (p + α r)

= rT A r α2 +
(
pT A r + rT A p

)
α + pT A p

= 0.

(4.108)

If we define

a := rT A r, b := pT A r + rT A p, c := pT A p, (4.109)

(4.108) becomes
a α2 + b α + c = 0, (4.110)
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which has the well-known solutions

α(1,2) =
−b ±

√
b2 − 4ac

2a
. (4.111)

If the term in the square root is negative, then the line does not intersect
with the conic; if it is zero, the line intersects the conic in a single point; and
if it is positive, the line intersects the conic in two points.

4.4.7 Intersection of Conics

In this subsection the following problem is considered: given two 1-blades
C1,C2 ∈ G1

6 that are inner product representations of conics, what are the
intersection points of the conics, of which there are at most four? We denote
the space of intersection points by W, which may be defined as

W := { X = D(x) : x ∈ R
2, C1 · X = 0, C2 · X = 0 }. (4.112)

Note that W is in fact a vector space, since any linear combination of elements
of W again lies in W. That is, if X,Y ∈ W, then C1 · (αX + βY ) = 0,
∀α, β ∈ R. It is also useful to define the set of Euclidean points in R2 that,
when embedded with D, lie in W. This set is denoted by WE and is defined
as

WE := { x ∈ R
2 : C1 · D(x) = 0, C2 · D(x) = 0 }. (4.113)

The expressions C1 · X and C2 · X are both polynomials of order two in
the components of x. By combining both expressions, it is possible to obtain
a polynomial of order four whose roots are the intersection points of the two
conics. The roots of a polynomial of order four can be found by evaluating
the roots of a polynomial of order three and one of order two (see e.g. [26]).
However, note that here there are two coupled polynomials of order four,
and so the polynomial components will be rather complex. See [20] for a
discussion of such an evaluation method.

The idea used in this book is to develop a method of evaluating the in-
tersection of two conics that uses standard matrix algorithms, which can be
applied directly to the matrices representing the conics.

4.4.7.1 Evaluating Degenerate Conics

A degenerate conic is a parallel line pair, an intersecting line pair, or a single
line, for example as shown in Fig. 4.21. In this subsection, degenerate conics
are analyzed, because they are the key to the evaluation of the intersection
of two conics.
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Lemma 4.3. Let C1,C2 ∈ G1
6 be linearly independent inner-product repre-

sentations of two conics that intersect in four points. That is, their Euclidean
intersection set WE, as defined above, contains four elements and the inter-
section space W has dimension four. A conic C ∈ G1

6 passes through these
four intersection points if and only if it is a linear combination of C1 and
C2. This is not necessarily the case if |WE | < 4.

Proof. First of all, if C is a linear combination of C1 and C2, i.e. C = α C1 +
β C2, α, β ∈ R, then for any X ∈W it follows that

C ·X = (α C1 + β C2) ·X = α (C1 ·X) + β (C2 ·X) = 0. (4.114)

Now for the other direction: that is, if C ·X = 0, it has to be shown that C is
a linear combination of C1 and C2. This is done via a dimensional argument.

First of all, G1
6 is a 6-dimensional vector space. Since C1 and C2 are linearly

independent, they span a 2D subspace of G1
6. If C1 and C2 intersect in four

points, then dim(W) = 4, W ⊂ G1
6, and span{C1, C2} ⊥ W. Since C ⊥ W,

C has to lie in span{C1, C2}. Hence, C has to be a linear combination of C1

and C2.

If dim(W) < 4, this argument does not hold anymore. That is, there do exist
conics that pass through the same intersection points as C1 and C2, but cannot
be written as a linear combination of C1 and C2.

�

This lemma gives the motivation for the following idea. If two conics
C1,C2 ∈ D2 intersect in four points, then all conics that pass through these
four points can be represented as linear combinations of C1 and C2. This also
has to include degenerate conics, in particular those representing line pairs
(2D cones). Given four points, there are three unique line pairs that contain
these four points. If it is possible to evaluate the particular linear combina-
tions of C1 and C2 that generate these degenerate conics, the evaluation of
the intersection of two conics can be reduced to the intersection of line pairs.
As will be seen later, if the two conics intersect in only two or three points,
at least one degenerate conic can still be found, and the intersection points
can be found by intersecting a conic with a degenerate one.

Lemma 4.4. Let C1,C2 ∈ G1
6 denote two conics, and let A = M−1(C1) and

B = M−1(C2) be their matrix representations. The 3 × 3 matrices A and B

are of full rank if the conics are non-degenerate. Let B be of full rank; then
M := B−1 A exists. If λ is a real eigenvalue of M, then A − λ B represents a
degenerate conic.

Proof. Let C = α A + β B, α, β ∈ R. C represents a degenerate conic if and only
if det(C) = 0. The goal is to find those α and β for which this is the case:
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det(α A + β B) = 0

⇐⇒ α3 det
(
BB−1 (A +

β

α
B)
)

= 0

⇐⇒ det(B) det(B−1A +
β

α
I) = 0

⇐⇒ det(M− λ I) = 0,

(4.115)

where M := B−1A and λ = −β/α. The values of λ that satisfy the last equation
are just the eigenvalues of M. If λ is a real eigenvalue of M, then C = A − λ B

represents a real, degenerate conic.
�

Clearly, the degenerate conics found in this way pass through the inter-
section points of C1 and C2, independently of how many intersection points
these conics have.

Corollary 4.1. Let C1,C2 ∈ G1
6 be the inner-product representations of two

non-degenerate conics. There then exists at least one linear combination of
C1 and C2 which represents a degenerate conic.

Proof. Let A = M−1(C1) and B = M−1(C2) be the matrix representations
of C1 and C2. Since the conics are non-degenerate, A and B are of full rank.
Hence, M = B−1 A also has to be of full rank. Therefore, M has three non-zero
eigenvalues. Furthermore, since complex eigenvalues of real matrices always
appear in conjugate pairs, M must always have at least one real, non-zero
eigenvalue. It thus follows from Lemma 4.4 that there always exists a linear
combination of C1 and C2 that represents a degenerate conic.

�

It follows from Corollary 4.1 that if two conics intersect in at least two
points, the degenerate conic will have to represent a line pair, or at least a
line. Intersecting a line with a conic is quite simple, since this comes down to
finding the roots of a quadratic equation. Therefore, in order to evaluate the
intersection of the two conics, the line components of the lines represented
by the degenerate conic have to be extracted, whence the intersection points
can be easily evaluated.

4.4.7.2 Summary

The method developed here for evaluating the intersection of two non-
degenerate conics represented by two symmetric 3 × 3 matrices A and B

can be summarized as follows:

1. Find a degenerate conic as a linear combination of A and B that repre-
sents two lines by evaluating the eigenvalues of M = B−1A. If λ is a real
eigenvalue of M, then C = A − λ B is a degenerate conic passing through
the intersection points of A and B.
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2. Analyze the degenerate conic C. If it represents two lines, extract the line
parameters.

3. Intersect the lines found in the previous step with the conic represented
by either A or B.

Good features of this method are that the only numerically sensitive cal-
culation is the evaluation of eigenvectors and eigenvalues. However, many
numerically stable algorithms already exist for such calculations. Further-
more, the matrices representing the conics are used directly, which makes the
method fairly simple to apply.

4.5 Conformal Conic Space

In this section, a proposal for the extension of conic space is presented. Not
all aspects of this new space are developed in detail. The discussion here is
to be regarded, rather, as an initial idea for future research. The geometric
algebra over this extended conic space contains versors for the translation
of conics, which are not available in the standard conic space. The newly
introduced space combines the ideas of conformal and conic space in a rather
straight forward manner. Whether this is the only space that combines the
representation of conics with translation versors is not clear.

When one is “designing” a new space, the goal is not only to represent
a new type of geometric entity, but to construct a system that seamlessly
integrates this representation with useful operators acting on the entities. In
the case of conformal space, this is achieved in an ideal way:

1. Geometric entities are constructed from the outer products of points that
lie on the relevant entities.

2. The algebraic representations of geometric entities are, at the same time,
operators directly related to those entities. For example, a plane is also an
operator for a reflection in just that plane.

3. Combinations of basic operators generate the Euclidean group.

To construct a space where the first point is satisfied is not too difficult, as
was shown in the case of conic space. However, to ensure that the second point
is satisfied, or at least that all operators necessary to generate the Euclidean
group exist, is not trivial and not always possible. In the following, a space
is constructed where the first point is satisfied, and the translation operation
has an operator representation.

4.5.1 The Vector Space

Consider the vector space R5,3 with a canonical basis ei := R
5,3

[i], i.e.
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ei · ei =

{
+1, 1 ≤ i ≤ 5

−1, 6 ≤ i ≤ 8 .
.

The following pairs of null basis vectors are defined:

n1 := e3 + e6 , n̄1 :=
1

2
(e6 − e3),

n2 := e4 + e7 , n̄2 :=
1

2
(e7 − e4),

n3 := e5 + e8 , n̄3 :=
1

2
(e8 − e5).

(4.116)

These are basically three independent null bases of the same type as the e∞,
eo of conformal space. Their properties are

ni · nj = 0, n̄i · n̄j = 0, ni · n̄j = −δij . (4.117)

In fact, three linearly independent one-dimensional conformal spaces are con-
structed in this way. A point x ∈ R2 defined by x := xe1 + y e2 is then
embedded using the operator W : R2 → W ⊂ R5,3, which is defined by

W : x 7→ x e1 + y e2 +
1

2
x2 n1 + n̄1

+
1

2
y2 n2 + n̄2

+ x y n3.

(4.118)

This embedding generates null vectors, since W(x) · W(x) = 0 just as in
conformal space. Given a general vector

A := a1 e1 + a2 e2 + a3 n1 + a4 n̄1 + a5 n2 + a6 n̄2 + a7 n3 + a8 n̄3,

the inner product of an embedded point x ∈ R2 and A gives

W(x) · A = −1

2
a4 x2 − 1

2
a6 y2 − a8 x y + a1 x + a2 y − a3 − a5. (4.119)

The geometric IPNS of x is therefore the same as the roots of this polynomial.
This implies that the GIPNSs of vectors in R5,3 are conic sections.

4.5.2 The Geometric Algebra G5,3

The geometric algebra over R5,3 again allows the construction of conic sec-
tions by use of the outer product of points that lie on the conic section. It
turns out that the conic section that passes through points a1, . . . ,a5 ∈ R2

is the GOPNS of
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C :=

(
5∧

i=1

W(ai)

)
∧ (n̄1 − n̄2) ∧ n̄3.

Furthermore, the line passing through a1,a2 ∈ R2 is the GOPNS of

L := W(a1) ∧W(a2) ∧ n1 ∧ n2 ∧ n3 ∧ (n̄1 − n̄2) ∧ n̄3.

Representing conic sections in such a way was already possible in the
conic space treated earlier. The reason for this rather complex embedding is
to obtain a translation operator. The translation operator for a translation
by a vector t := tx e1 + ty e2 is split into four parts. Two of these simply
represent 1D translations parallel to the basis vectors e1 and e2 using the
definition of translators for conformal space. The other two parts ensure that
the x y component of an embedded point is transformed correctly under a
translation. The individual parts of the translation operator are

TX1
:= 1 − 1

2
tx e1 n1,

TX2
:= 1 − 1

2
tx e2 n3,

TY1
:= 1 − 1

2
ty e2 n2,

TY2 := 1 − 1

2
ty e1 n3. (4.120)

The complete translation operator is then given by

T := TY2 TY1 TX2 TX1 . (4.121)

It is not too difficult to verify that this translation operator does indeed
translate points and conic sections in general. However, knowing the reflection
operator for a reflection in an arbitrary line would be even more helpful,
since then all translators and rotors could be generated right away. So far,
the reflection operator of this space has not been found.

Note that the algebra G5,3 has an algebraic dimension 28 = 256. In order
to work with an algebra of this size efficiently on a computer, a highly op-
timized implementation is necessary. It is possible, though, that the entities
and operators that are of actual interest in a particular application may lie
in a much smaller subalgebra of G5,3. This would allow one to combine a
general analytic treatment in a high-dimensional algebra with fast numerical
calculations.



Chapter 5

Numerics

So far, it has been shown how geometric algebra can be used to describe ge-
ometry elegantly and succinctly. The goal of this chapter is to show how nu-
merical evaluation methods can be applied to geometric-algebra expressions.
It will be seen that such expressions have a straightforward representation
as tensor contractions, to which standard linear-algebra evaluation methods
may be applied. This chapter therefore starts with a discussion of the map-
ping from geometric-algebra expressions to tensor operations in Sect. 5.1.
Next it is shown, in Sect. 5.2, how linear multivector equations can be solved
using the tensor representation. The representation of uncertain multivectors
is then introduced in Sect. 5.3, and its limits are investigated in Sect. 5.4,
where an expression for the bias term in the error propagation of general bilin-
ear functions is derived. Uncertain multivectors are particularly useful in the
representation of uncertain geometric entities and uncertain transformations.
Geometric algebra is ideally suited for the latter in particular. Sections 5.5,
5.6, and 5.7 give details of the representation of uncertain geometric entities
in projective, conformal, and conic space, respectively.

Two linear least-squares estimation methods, the Gauss–Markov and the
Gauss–Helmert method, are discussed in some detail in Sects. 5.8 and 5.9.
The Gauss–Helmert method is particularly interesting, since it incorporates
the uncertainty of the data into the optimization process. While the Gauss–
Markov and Gauss–Helmert estimation methods are well known, it is a long
way from the definition of a stochastic model to the corresponding estimation
algorithm, which is why these estimation methods, which are used later on,
are described here in some detail. In this way, the notation necessary for later
chapters is introduced. The chapter concludes with a discussion, in Sect. 5.10,
of how the Gauss–Helmert and Gauss–Markov methods may be applied to
practical problems.

The foundations for this approach to solving general multivector equations
were laid by the author and Sommer in [146], and were extended to uncertain
algebraic entities in collaboration with W. Förstner [136].

C. Perwass, Geometric Algebra with Applications in Engineering.
Geometry and Computing.
c© Springer-Verlag Berlin Heidelberg 2009
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5.1 Tensor Representation

This section introduces the idea that geometric-algebra operations are essen-
tially bilinear functions and makes this notion explicit. In later chapters, this
representation forms the foundation for the description of random multivector
variables and statistical optimizations. Using this form, differentiation and
integration in geometric algebra can be related right away to these operations
in linear algebra.

Recall that the geometric algebra Gp,q has dimension 2n. Let {Ei} := Gp,q

denote the canonical algebraic basis, whereby E1 ≡ 1. For example, the
algebraic basis of G3 is given in Table 5.1.

Table 5.1 Algebra basis of G3, where the geometric product of basis vectors is
denoted by combining their indices, i.e. e1 e2 ≡ e12

Type No. Basis Elements

Scalar 1 1

Vector 3 e1, e2, e3

2-Vector 3 e23, e31, e12

3-Vector 1 e123

A multivector A ∈ Gp,q can then be written as A = ai Ei, where ai

denotes the ith component of a vector a ∈ R2n

and a sum over the repeated
index i is implied. Since the {Ei} form an algebraic basis, it follows that the
geometric product of two basis blades has to result in a basis blade, i.e.

Ei Ej = Γ k
ij Ek, ∀ i, j ∈ {1, . . . , 22}, (5.1)

where Γ k
ij ∈ R2n×2n×2n

is a tensor encoding the geometric product. Here,

the following notation is being used. The expression Γ k
ij denotes either the

element of the tensor at the location (k, i, j) or the ordered set of all elements
of the tensor. Which form is meant should be clear from the context in which
the symbol is used. All indices in an expression that appear only once and are
also not otherwise defined to take on a particular value indicate the ordered
set over all values of this index. If an element has one undefined index, it
denotes a column vector, and if it has two undefined indices it denotes a
matrix, where the first index gives the row and the second index the column.

For example, the expression bj Γ k
ij has two undefined indices k and i and

thus represents a matrix with indices k and i. Since k is the first index, it
denotes the row and i denotes the column of the resultant matrix. Similarly,
ai bj Γ k

ij denotes a column vector with the index k.
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Table 5.2 Tensor symbols for algebraic operations, and the corresponding Jacobi
matrices. For tensors with two indices (i.e. matrices), the first index denotes the
matrix row and the second index the matrix column

Operation Tensor symbol Jacobi matrices

Geometric Product Γ k
ij

ΓR (a) := ai Γ k
ij

ΓL (b) := bj Γ k
ij

Outer Product Λk
ij

ΛR (a) := ai Λk
ij

ΛL (b) := bj Λk
ij

Inner Product Θk
ij

ΘR (a) := ai Θk
ij

ΘL (b) := bj Θk
ij

Reverse Rj
i R := Rj

i

Dual Dj
i D := Dj

i

5.1.1 Component Vectors

If A, B,C ∈ Gp,q are defined as A := ai Ei, B := bi Ei, and C := ci Ei,
then it follows from (5.1) that the components of C in the algebraic equation
C = A B can be evaluated via

ck = ai bj Γ k
ij , (5.2)

where a summation over i and j is again implied. Such a summation of tensor
indices is called contraction. Equation (5.2) shows that the geometric product
is simply a bilinear function. In fact, all products in geometric algebra that
are of interest in this text can be expressed in this form, as will be discussed
later on.

The geometric product can also be written purely in matrix notation, by
defining the matrices

ΓR (a) := ai Γ k
ij and ΓL (b) := bj Γ k

ij . (5.3)

The geometric product A B can now be written as

ai bj Γ k
ij = ΓR (a) b = ΓL (b) a. (5.4)

Note that the matrices ΓR (a) and ΓL (b) are the two Jacobi matrices of
the expression ck := ai bj Γ k

ij . That is,

∂ ck

∂ ai
= bj Γ k

ij = ΓL (b) and
∂ ck

∂ bj
= ai Γ k

ij = ΓR (a) . (5.5)
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At this point it is useful to introduce a notation that describes the mapping
between multivectors and their corresponding component vectors. For this
purpose, the operator K is introduced. For the algebra Gp,q, K is the bijective
mapping

K : Gp,q −→ R
2p+q

and K−1 : R
2p+q −→ Gp,q. (5.6)

For a multivector A ∈ Gp,q with A := ai Ei, the operator is defined as

K : A 7→ a and K−1 : a 7→ A. (5.7)

It follows that

K(A B) = ΓR (K(A)) K(B) = ΓL (K(B)) K(A) (5.8)

and
K−1

(
ΓR (a) b

)
= K−1

(
ΓL (b) a

)
= K−1(a)K−1(b). (5.9)

The mapping K is therefore an isomorphism between Gp,q and R2(p+q)

.
In addition to the geometric product, the inner and outer products and

the reverse and dual are important operations in geometric algebra. The
corresponding operation tensors are therefore given specific symbols, which
are listed in Table 5.2.

5.1.2 Example: Geometric Product in G2

A simple example of a product tensor is the geometric-product tensor of G2.
The algebraic basis may be defined as

E1 := 1, E2 := e1, E3 := e2, E4 := e12. (5.10)

The geometric-product tensor Γ k
ij ∈ R4×4×4 of G2 then takes on the form

Γ 1
ij =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


, Γ 2

ij =




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


,

Γ 3
ij =




0 0 1 0

0 0 0 1

1 0 0 0

0 −1 0 0


, Γ 4

ij =




0 0 0 1

0 0 1 0

0 −1 0 0

1 0 0 0


,

(5.11)

where i is the row index and j is the column index. Let A = e1 and B = e2;
then a = [ 0 , 1 , 0 , 0 ]

T
and b = [ 0 , 0 , 1 , 0 ]

T
. Thus



5.1 Tensor Representation 201

bj Γ 1
ij = [ 0 , 0 , 1 , 0 ]

T

bj Γ 2
ij = [ 0 , 0 , 0 , 1 ]

T

bj Γ 3
ij = [ 1 , 0 , 0 , 0 ]

T

bj Γ 4
ij = [ 0 , 1 , 0 , 0 ]

T





=⇒ bj Γ k
ij =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




. (5.12)

In the resultant matrix, k is the row index and i is the column index. It
follows from (5.12) that

ai bj Γ k
ij = [ 0 , 0 , 0 , 1 ]

T ∼= e12 = E4, (5.13)

where ∼= denotes isomorphism.

5.1.3 Subspace Projection

Depending on the particular algebra, the corresponding product tensor can
become very large. For example, in the algebra G4,1 of conformal space, the
geometric-product tensor Γ k

ij ∈ R32×32×32 has 32 768 components, most of
which are zero. When one is performing actual computations with such a ten-
sor on a computer, it can reduce the computational load considerably if the
tensor is reduced to only those components that are actually needed. Further-
more, such a projection process can also be used to implement constraints,
as will be seen later.

Let m ∈ {1, . . . , 2(p+q)}r denote a vector of r indices that index those basis
elements {Ei} ⊂ Gp,q which are needed in a calculation. Also, let us define
eu := K(Eu) such that ei

u = δi
u, where δi

u denotes the Kronecker delta,
defined as

δi
u :=

{
1 : i = u ,

0 : i 6= u .

A corresponding projection matrix M is then defined as

M j
i := K

(
Emj

)i
= ei

mj , M j
i ∈ R

r×2(p+q)

, (5.14)

where mj denotes the jth element of m. A multivector A ∈ Gp,q with a =
K(A) may be mapped to an r-dimensional component vector aM ∈ Rr related
to those basis blades which are indexed by m, via

aj
M = ai M j

i. (5.15)

The reduced vector aj
M can be mapped back to a component vector on the

full basis through
aj = ai

M M̃ j
i, (5.16)
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where M̃ j
i denotes the transpose of M j

i.
Suppose A, B,C ∈ Gp,q are related by C = A B. In terms of component

vectors a = K(A), b = K(B), and c = K(C), this can be written as ck =
ai bj Γ k

ij . If it can be assumed that only a subset of the elements of ai and

bj are non-zero, the evaluation of this operation can be reduced as follows.
Let M j

a i and M j
b i denote the projection matrices for a and b that map only

the non-zero components to the reduced component vectors aM and bM ,
respectively. Clearly, only a subset of the components of the resultant vector
c will be non-zero. The appropriate projection matrix and reduced component
vector are denoted by M j

c i and cM . The geometric-product operation for the
reduced component vectors then becomes

cw
M = au

M bv
M M w

c k M̃ i
au M̃ j

b v Γ k
ij . (5.17)

This can be written equivalently as

cw
M = au

M bv
M Γw

M uv, Γw
M uv := M w

c k M̃ i
au M̃ j

b v Γ k
ij . (5.18)

That is, Γw
M uv encodes the geometric product for the reduced component

vectors. In applications, it is usually known which components of the con-
stituent multivectors in an equation are non-zero. Therefore, reduced product
tensors can be precalculated.

5.1.4 Example: Reduced Geometric Product

Consider again the algebra G2 with basis

E1 := 1, E2 := e1, E3 := e2, E4 := e12.

The geometric-product tensor Γ k
ij ∈ R4×4×4 of G2 is given by (5.11). Sup-

pose A, B ∈ G1
2; that is, they are linear combinations of E2 and E3. It is clear

that the result of the geometric product of A and B is a linear combination
of E1 and E4, i.e. C = A B ∈ G

+
2 . Therefore,

M j
a i = M j

b i =

[
0 1 0 0

0 0 1 0

]
, M j

c i =

[
1 0 0 0

0 0 0 1

]
. (5.19)

The reduced geometric-product tensor is thus given by

Γw
M uv := M w

c k M̃ i
au M̃ j

b v Γ k
ij , (5.20)

where

Γ 1
M uv =

[
1 0

0 1

]
, Γ 2

M uv =

[
0 1

−1 0

]
. (5.21)
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If A = e2 = E3 and B = e1 = E2, the reduced component vectors are
aM = [ 0 , 1 ]

T
and bM = [ 1 , 0 ]

T
. Thus

bv
M Γ 1

M uv = [ 1 , 0 ]
T

bv
M Γ 2

M uv = [ 0 , −1 ]
T

}
=⇒ bv

M Γw
M uv =

[
1 0

0 −1

]
. (5.22)

It follows from this that

cw
M = au

M bv
M Γw

M uv = [ 0 , −1 ]
T

. (5.23)

Mapping cw
M back to the non-reduced form gives

ck = cw
M M̃ k

c w = [ 0 , 0 , 0 , −1 ]
T ∼= −e12 = −E4. (5.24)

5.1.5 Change of Basis

Let {Fi} ⊂ Gp,q denote an algebraic basis of Gp,q which is different from
the canonical algebraic basis {Ei} of Gp,q. Given a multivector A ∈ Gp,q, its
component vectors in the E-basis and F -basis are denoted by aE = KE(A)
and aF = KF (A), respectively. The tensor that transforms aE into aF is
given by

T j
i := KE(Fj)

i ⇒ aj
F = ai

E T j
i. (5.25)

The inverse of T j
i is denoted by T̄ j

i, i.e. aj
E = ai

F T̄ j
i. If the geometric-

product tensor in the E-basis is given by Γ k
E ij , the corresponding product

tensor in the F -basis can be evaluated via

Γw
F uv = Tw

k T̄ i
u T̄ j

v Γ k
E ij . (5.26)

Such a change of basis finds an application, for example, if an implementation
of G4,1 is given where the canonical basis blades are geometric products of
the Minkowski basis {e1,e2,e3,e+,e−}. Here e1, e2, e3, and e+ square to
+1 and e− squares to −1. In many problem settings, however, it is essential

to express constraints that involve e∞ = e+ + e− and eo =
1

2
(e− − e+).

Therefore, component vectors and the product tensors have to be transformed
into the algebraic basis constructed from {e1,e2,e3,e∞,eo}.

5.2 Solving Linear Geometric Algebra Equations

In this section, it is shown how geometric-algebra equations of the form
A ◦X = B can be solved for X numerically, where ◦ stands for any bilinear
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operation. Since the operation ◦ need not be invertible, there may exist a
solution subspace. Furthermore, if ◦ is neither commutative nor anticom-
mutative, there exists another important form of linear equation, namely
A ◦ X + X ◦ B = C. This form occurs when one is solving for versors, for
example rotation and translation operators.

5.2.1 Inverse of a Multivector

Recall that not every multivector has an inverse. Consider, for example, the

pair A, B ∈ Gn, n ≥ 1, defined as A :=
1

2
(1 + e1) and B :=

1

2
(1 − e1).

Clearly,
A A = A, B B = B, A B = 0. (5.27)

That is, A and B are idempotent. If A had an inverse A−1 such that
A−1 A = 1, then

A B = 0 ⇐⇒ A−1 A B = 0 ⇐⇒ B = 0, (5.28)

which contradicts the initial definition of B. Hence, A cannot have an inverse,
and the same is true for B.

Given an arbitrary multivector, it is often necessary to test whether it has
an inverse and, if it does, to evaluate the inverse. Evaluating the inverse of
a multivector A is equivalent to solving the linear equation A X = 1 for X.
This is straightforward after this equation has been mapped to the tensor
form. Let a := K(A), x := K(X), and e1 := K(1); then

A X = 1 ⇐⇒ ai xj Γ k
ij = ek

1 ⇐⇒ ΓR (a) x = e1. (5.29)

Solving for x is now possible by inverting ΓR (a), if such an inverse exists.
If ΓR (a) has no inverse, then A has no inverse. However, the pseudoinverse

of ΓR (a) can still be used to find the pseudoinverse of A. If ΓR (a)
−1

exists,
then

A−1 = K−1
(
ΓR (a)

−1
e1

)
. (5.30)

The general equation A X = B can be solved for X in very much the same
way. If a := K(A) and b = K(B), then

X = K−1
(
ΓR (a)

−1
b
)
. (5.31)
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5.2.2 Versor Equation

Recall that a versor is an element of the Clifford group and, hence, every
versor has an inverse. Every versor can be expressed as the geometric product
of a set of (grade 1) vectors. As has been shown earlier, versors can be used to
represent all kinds of transformations. In G3, versors can represent reflections
and rotations, and in G4,1, reflections, inversions, rotations, translations, and
dilations. In order to perform a transformation, a versor V ∈ Gp,q is applied
to a multivector A ∈ Gp,q in the form

V A V −1 = B, (5.32)

where B ∈ Gp,q. A versor is called unitary if V Ṽ = 1, i.e. V −1 = Ṽ .
A typical problem is to solve for the versor V given A and B. This is in

fact a linear problem, as can be seen by right-multiplying (5.32) by V ; that
is,

V A V −1 = B ⇐⇒ V A − B V = 0. (5.33)

Now, let a = K(A), b = K(B), and v = K(V ); then (5.33) can be written as

vi aj Γ k
ij − br vs Γ k

rs = ΓL (a) v − ΓR (b) v = Q(a, b) v = 0, (5.34)

where Q(a, b) := ΓL (a) − ΓR (b). Therefore, the null space of Q(a, b) gives
the solution for v. This null-space may, for example, be evaluated with the
use of a singular-value decomposition (SVD) [167].

The SVD of Q ∈ Rm×n factorizes the matrix into two unitary matrices
U ∈ Rm×n and V ∈ Rn×n, and a diagonal matrix W ∈ Rn×n, such that Q =
U W VT. Typically, the diagonal elements in W are ordered from the largest
to the smallest entry and the columns of U and V are ordered accordingly.
The number of zero entries on the diagonal of W gives the dimension of the
null-space of Q and the corresponding columns of V give an orthonormal
basis of the right null-space of Q. If there is exactly one zero entry in W, then
the corresponding column of V is the solution for v. If the dimension of the
null-space is larger than one, then there is no unique solution for v.

If, on the other hand, the smallest diagonal entry of W is non-zero, the
corresponding column vector of V is the best solution for v in a least-squares
sense. In this case, the question of which measure has been minimized still
has to be answered. For this purpose, (5.32) is written as

V A V −1 − B = C ⇐⇒ V A − B V = C V . (5.35)

If we define D := C V and d := K(D), the SVD method described above
evaluates the V that minimizes dT d. Assuming that A and B are both versors
or blades, then C, which has to be of the same type, satisfies C C̃ ∈ R. Recall
that blades are a special type of versor. Furthermore, D has to be a versor,
and thus D D† ∈ R and D D† = dT d. However, from (5.35) it follows that
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D D† = C V V † C† = ρ C C†, ρ := V V † ∈ R. (5.36)

Therefore, minimizing dT d, minimizes C C†. Note that ρ = 1, since the
column vectors of the matrix V are unit vectors and thus, also, the solution
for V is a unit vector.

If A, B ∈ G1
3 are grade 1 vectors in Euclidean space, then C ∈ G1

3, and
C C† is the Euclidean distance between V A V −1 and B squared. Hence, the
SVD method estimates the versor that minimizes the squared Euclidean dis-
tance between V A V −1 and B, which is typically the metric that is desired
to be used.

When one is evaluating versors, there is typically not just a single pair
of multivectors that are related by the versor as in (5.32). If the goal is, for
example, to evaluate a rotor, then a single pair of points that are related by
the rotor is not enough to evaluate the rotor uniquely. In general, two sets of
multivectors are given, {Ai} and {Bi}, say, and the goal is to find the versor
V such that

V Ai V −1 = Bi ⇐⇒ Q(ai, bi) v = 0, ∀ i, (5.37)

where Q is defined as in (5.34). This may be achieved by evaluating the
right null-space of the matrix constructed by stacking all matrices Q(ai, bi)
on top of each other. Alternatively, the right null-space of the matrix∑

i QT(ai, bi) Q(ai, bi) can be evaluated.
If {Ai}, {Bi} ⊂ G1

3 are Euclidean vectors, then evaluating V in this way
results in the versor that minimizes the sum of the squared Euclidean dis-
tances between V Ai V −1 and Bi for all i.

It is very important to note at this point that even if we can evaluate
a versor that relates two sets of multivectors, the solution versor will not
necessarily be unique, independent of the number of multivector pairs used.
This is the case if there exists a multivector J , say, that commutes with the
{Ai} ⊂ Gp,q, i.e. J Ai = Ai J for all i, because then

V Ai V −1 = Bi

⇐⇒ V Ai J J−1 V −1 = Bi

⇐⇒ V J Ai J−1 V −1 = Bi.

(5.38)

Therefore, if V is a solution versor, then so is V J . This problem occurs,
for example, when one is evaluating a rotor in G3 that relates two sets of
multivectors {Ai}, {Bi} ⊂ G3. In G3, the pseudoscalar I ∈ G3 commutes
with all multivectors of G3. Hence, when one is solving for the versor that
best relates the two sets of multivectors, two solutions will be found: the
actual rotor R, and R I. In order to make the solution unique, an appropriate
subspace projection, as described in Sect. 5.1.3 has to be employed.

For this purpose, (5.34) is modified as follows. Let M+
i
j ∈ R4×8 denote the

matrix that extracts the four components of the even subalgebra G
+
3 from
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the full component vector v := K(V ), i.e. v+
i := vj M+

i
j or v+ = M+ v.

Then, the expression V A − B V = 0 with the additional constraint that
V ∈ G

+
3 can be written in tensor form as

0 = v+
i aj M+i

u Γ k
uj − br vs M+s

v Γ k
rv

= ΓL (a) MT
+ v+ − ΓR (b) MT

+ v+

= Q+(a, b) v+,

(5.39)

where
Q+(a, b) := (ΓL (a) − ΓR (b)) MT

+ = Q(a, b) MT
+. (5.40)

The right multiplication of Q(a, b) by MT
+ basically picks out those columns

of Q that are related to the even subalgebra G
+
3 . In this way, the additional

constraint on the versor can easily be implemented.

5.2.3 Example: Inverse of a Multivector in G2

As an example of the evaluation of the inverse of a multivector, consider
again G2, with the algebraic basis

E1 := 1, E2 := e1, E3 := e2, E4 := e12.

The geometric-product tensor Γ k
ij ∈ R4×4×4 of G2 is given by (5.11). Let

A = 1 + e12 = E1 + E4, a = K(A) = (1 0 0 1)T, and e1 = K(1) = (1 0 0 0)T.
Then

ΓR (a) =




1 0 0 −1

0 1 1 0

0 −1 1 0

1 0 0 1


 , ΓR (a)

−1
=




0.5 0 0 0.5

0 0.5 −0.5 0

0 0.5 0.5 0

−0.5 0 0 0.5


 . (5.41)

Thus

ΓR (a)
−1

e1 = (
1

2
0 0 − 1

2
) ⇐⇒ K−1(ΓR (a)

−1
e1) =

1

2
(1 − e12). (5.42)

On the other hand, if A =
1

2
(1 + e1), then a = K(A) = (

1

2

1

2
0 0)T and

ΓR (a) =




0.5 0.5 0 0

0.5 0.5 0 0

0 0 0.5 0.5

0 0 0.5 0.5


 , (5.43)

which is clearly not of full rank, and thus A has no inverse.
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5.3 Random Multivectors

The application of geometric algebra to “real-life” problems in computer
vision or other areas of engineering invariably implies the necessity to deal
with uncertain data. The goal of this section is to show how calculations with
uncertain multivectors can be performed in geometric algebra. When we are
talking about uncertain multivectors, it is always assumed in this text that
the uncertainty is Gaussian; that is, a multivector’s probability distribution
is fully determined by its mean value and covariance matrix.

The first step is to express the operations between multivectors in tensor
form, as described in Sect. 5.1. It is then straightforward to define appropri-
ate covariance matrices and to apply error propagation to operations between
uncertain multivectors. In the following, uncertain multivectors are first in-
troduced and then error propagation for algebraic products is discussed.

5.3.1 Definition

Let x and y denote two vector-valued random variables with a joint proba-
bility distribution function (joint PDF) fx,y. The marginal PDFs are then
given by

fx(x = x) =

∫

Dy

fx,y(x = x, y = y) dy

and

fy(y = y) =

∫

Dx

fx,y(x = x, y = y) dx,

where Dx and Dy denote the domains of x and y, respectively. The random
vector variables x and y can be given in terms of scalar random variables

{ x i } and { y i } as

x =
[
x 1 , x 2 , . . . , xn

]T
, y =

[
y1 , y2 , . . . , yn

]T
.

The PDF fx(x = x) is therefore also a joint PDF of the set {x i}, which may
be written as

fx(x = x) = fx1,x2,...,xn(x 1 = x 1, x 2 = x 2, . . . , xn = xn).

Therefore, also,

fx1(x 1 = x 1)

=

∫

D
x2

· · ·
∫

Dxn

fx1,x2,...,xn(x 1 = x 1, x 2 = x 2, . . . , xn = xn) dx 2 . . . dxn.
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The expectation value of x is denoted by E (x) and defined as

E (x) :=

∫

Dx

x fx(x) dx. (5.44)

The expectation of x is also called its mean and is written as x̄ for brevity.
Similarly, each individual distribution x i of x has an expectation

x̄ i := E
(
x i
)

=

∫

D
xi

x i fx i(x i) dx i.

The covariance matrix of x is written as Σx,x, with components Σij
x,x, where,

as before, the first index gives the row and the second index the column of
the matrix. In this text, the symbol V will be used to denote the covariance
operator. The components of Σx,x are then given by

Σij
x,x = V

(
x i, x j

)
,

where

V
(
x i, x j

)
:=

∫

D
xi

∫

D
xj

(x i − x̄i) (x j − x̄j) fx ixj (x i, x j) dx i dx j . (5.45)

The variance of some x i is then given by V
(
x i, x i

)
. Similarly, the cross-

covariance between x i and yj is defined as

Σij
x,y := V

(
x i, yj

)
. (5.46)

The cross-covariance matrix of x and y is therefore denoted by Σx,y and

has components Σij
x,y. If Σij

x,y = 0, the random variables x i and yj are said
to be uncorrelated. Note that this does not necessarily imply that they are
independent.

Another important formula is that for the expectation value of a function
of a number of random variables. Let h : Rn → R; then

E
(
h(x 1 = x 1, . . . , xn = xn)

)

=

∫

D
x1

· · ·
∫

Dxn

h(x 1, . . . , xn) fx1, ..., xn(x 1, . . . , xn) dx 1 . . . dxn.
(5.47)

Because the main application of this analysis is error propagation for algebraic
products of Gaussian-distributed random multivector variables, which are
bilinear functions, it suffices to consider an approximation for E (h(x)). For
this purpose, the Taylor expansion up to order two of h(x) about the mean
(x̄) is evaluated:



210 5 Numerics

h(x) ≈ h(x̄)

+
n∑

i=1

∆x i hx i(x̄)

+
1

2

n∑

i,j=1

∆x i ∆x j hx i,xj (x̄),

(5.48)

where ∆x i := x i − x̄ i,

hx i(x̄) :=
(
∂x i h

)
(x̄), and hx i,xj (x̄) :=

(
∂x i∂xj h

)
(x̄).

5.3.2 First-Order Error Propagation

Using the approximation for a function h(x) given above, it is possible to give
approximations for the expectation value and variance of h(x). The expecta-
tion of h(x) can be approximated as follows:

E (h(x)) =

∫

Dx

h(x) fx(x) dx

≈ h(x̄)

∫

Dx

fx(x) dx

+
n∑

i=1

hx i(x̄)

∫

D
xi

∆x i fx i(x i) dx i

+
1

2

n∑

i,j=1

hx i,xj (x̄)

∫

D
xi

∫

D
xj

∆x i ∆x j fx i,xj (x i, x j) dx i dx j .

(5.49)
By definition,

∫
Dx

fx(x) dx = 1 and, because ∆x i = x i − x̄ i,

∫

D
xi

∆x i fx i(x i) dx i = 0.

Furthermore, by the definition of the covariance,

∫

D
xi

∫

D
xj

∆x i ∆x j fx i,xj (x i, x j) dx i dx j = Σij
x,x.

Substituting all the above equalities into (5.49) gives

E (h(x)) ≈ h(x̄) +
1

2

n∑

i,j=1

hx i,xj (x̄) Σij
x,x. (5.50)
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This shows that up to order two, the expectation value of a function of a
random variable x depends only on the expectation values and the covariance
matrix of x. Up to first order, the expectation of h(x) is h(x̄), the value of the
function for the expectation of x.

The variance of h(x) may be evaluated following the general relation be-
tween the variance and the expectation, i.e.

ΣA,B = V (A, B) = E (AB) − E (A) E (B) . (5.51)

An approximation for the expectation of h(x) is given in (5.50), and thus

E2
(
h(x)

)
≈ h2(x̄) + h(x̄)

n∑

i,j=1

hx i,xj (x̄) Σi,j
x,x +

1

4




n∑

i,j=1

hx i,xj (x̄) Σi,j
x,x




2

︸ ︷︷ ︸
> order 2

.

(5.52)
The term of order greater than two will be neglected in the following. Next,
the expectation of h2(x) has to be derived. Clearly,

(
∂x ih2

)
(x) = 2 h(x) hx i(x),

and (
∂x i ∂xjh2

)
(x) = 2 hx i(x) hxj (x) + 2 h(x) hx i, xj (x).

It therefore follows that

E
(
h2(x)

)
≈ h2(x̄) +

n∑

i,j=1

(
hx i(x) hxj (x) + h(x) hx i, xj (x)

)
Σi,j

x,x. (5.53)

The variance of h(x) is thus

V
(
h(x)

)
= E

(
h2(x)

)
− E2

(
h(x)

)
≈

n∑

i,j=1

hx i(x̄) hxj (x̄) Σi,j
x,x. (5.54)

For a vector valued function h : Rn → Rn it may be shown analogously that

V
(
hr(x), hs(x)

)
= Σr,s

h,h

= E
(
hr(x) hs(x)

)
− E

(
hr(x)

)
E
(
hs(x)

)

≈∑n
i,j=1 hr

x i(x̄) hs
xj (x̄) Σi,j

x,x.

(5.55)

The terms hr
x i(x̄) are simply the components of the Jacobi matrix of h(x̄). If

H denotes the Jacobi matrix of h(x), i.e. H r
i = hr

x i(x̄), where r denotes the
row and i the column, then (5.55) can be written as

Σh,h ≈ H Σx,x HT. (5.56)
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Let h : R2 n → Rn, which may be written as h(z) with z ∈ R2 n or h(x, y)
with x, y ∈ Rn. The relation between the respective covariance matrices is
simply

Σz,z =

[
Σx,x Σx,y

Σy,x Σy,y

]
. (5.57)

The Jacobi matrix H of h(z) is related to the Jacobi matrices Hx := ∂x h(x, y)
and Hy := ∂y h(x, y) via

H = [Hx , Hy ] . (5.58)

Substituting (5.57) and (5.58) into (5.56) therefore results in

Σh,h ≈ [Hx , Hy ]

[
Σx,x Σx,y

Σy,x Σy,y

] [
HT

x

HT
y

]

= Hx Σx,x HT
x + Hy Σy,y HT

y + Hx Σx,y HT
y + Hy Σy,x HT

x .

(5.59)

5.3.3 Bilinear Functions

In the previous subsection, general expressions for the expectation value and
covariance matrix of a function of a random vector variable were derived. The
main interest of this text lies in bilinear functions, since that is exactly what
algebraic products are. Therefore, let the h(x, y) used above be replaced by
gk(x, y) = x iyj Γ k

ij . The Jacobi matrices of g(x, y) are then given by

∂x g(x, y) = ΓL (y) and ∂y g(x, y) = ΓR (x) , (5.60)

where

ΓL (y) =




yj Γ 1
1j · · · yj Γ 1

nj

...
. . .

...

yj Γn
1j · · · yj Γn

nj


 , ΓR (x) =




x i Γ 1
i1 · · · x i Γ 1

in

...
. . .

...

x i Γn
i1 · · · x i Γn

in


 .

Furthermore, because

∂x ∂x g(x, y) = ∂y ∂y g(x, y) = 0

and ∂x ∂y g(x, y) = ∂y ∂x g(x, y) = Γ k
ij , (5.61)

a Taylor expansion of g(x, y) up to order two is sufficient to represent the
function exactly.
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5.3.3.1 Expectation

It follows from (5.50) that

E
(
gk(x, y)

)
= gk(x̄, ȳ) + Σij

x,y Gk
ij , (5.62)

with an implicit sum over i and j. This equation is in fact exact, since any
derivative of gk(x, y) of order higher than two is zero. If x and y are also
assumed to be uncorrelated, then

E
(
gk(x, y)

)
= gk(x̄, ȳ).

The function gk(x, y) is itself a random variable with a particular PDF. If

we define uk := gk(x, y) and u := g(x, y), ideal error propagation would mean
that we evaluate fu, the PDF of u. It is, however, in general, not possible to
give fu easily in terms of fx,y. However, an approximation is typically suffi-
cient, where the expectation and covariance of u, i.e. the first two moments,
are given in terms of the expectation and (cross-)covariances of x and y.

5.3.3.2 Covariance Matrix Σu,u

The covariance V (ur, us) follows directly from (5.55) as

V (ur, us) = E (ur us) − E (ur) E (us)

≈ ȳp ȳq Σij
x,x Γ r

ip Γ s
jq + x̄p x̄ q Σij

y,y Γ r
pi Γ s

qj

+ȳp x̄ q Σij
x,y Γ r

ip Γ s
qj + x̄p ȳq Σij

y,x Γ r
pi Γ s

jq .

(5.63)

In matrix notation, Σu,u := V (u, u) can be written analogously to (5.59) as

Σu,u ≈ ΓR (ȳ) Σx,x ΓR (ȳ)
T

+ ΓL (x̄) Σy,y ΓL (x̄)
T

+ ΓL (x̄) Σy,x ΓR (ȳ)
T

+ ΓR (ȳ) Σx,y ΓL (x̄)
T

.
(5.64)

5.3.3.3 Covariance Matrix Σu,x

From (5.51), it follows that the components of Σu,x = V (u, x) can be evaluated
via

Σrs
u,x = V

(
gr(x, y), x s

)
= E

(
gr(x, y) x s

)
− E

(
gr(x, y)

)
E (x s) . (5.65)

The necessary derivatives are the following:

∂xj

(
gr(x, y) x s

)
= yp Γ r

jp x s + gr(x, y) δs
j , (5.66)
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where δs
j is the Kronecker delta, (i.e. unity if j = s and zero otherwise);

∂yj

(
gr(x, y) x s

)
= xp Γ r

pj x s ; (5.67)

∂x i ∂xj

(
gr(x, y) x s

)
= yp

(
Γ r

jp δs
i + Γ r

ip δs
j

)
; (5.68)

∂yi ∂yj

(
gr(x, y) x s

)
= 0 ; (5.69)

∂x i ∂yj

(
gr(x, y) x s

)
= Γ r

ij x s + xp Γ r
pj δs

i . (5.70)

Therefore,

E (gr(x, y) x s) = gr(x̄, ȳ) x̄ s

+
1

2
Σij

x,x

(
ȳp Γ r

jp δs
i + ȳp Γ r

ip δs
j

)

+Σij
x,y

(
Γ r

ij x̄ s + x̄p Γ r
jp δs

i

)

= gr(x̄, ȳ) x̄ s

+ȳp Σis
x,x Γ r

ip + x̄p Σis
y,x Γ r

pi + x̄ s Σij
x,y Γ r

ij . (5.71)

By substituting these results into (5.65), it may then be shown that

Σrs
u,x = ȳp Σis

x,x Γ p
ri + x̄p Σis

y,x Γ r
pi . (5.72)

In matrix notation, this becomes

Σu,x = ΓR (ȳ) Σx,x + ΓL (x̄) Σy,x . (5.73)

Similarly, it can be shown that

Σu,y = ΓR (ȳ) Σx,y + ΓL (x̄) Σy,y , (5.74)

and also
Σu,z = ΓR (ȳ) Σx,z + ΓL (x̄) Σy,z . (5.75)

5.3.4 Summary

The goal of this section was to show how error propagation can be applied to
geometric-algebra products, which have been shown to be bilinear functions.
It was shown first how the expectation value and the covariance matrices of a
bilinear function of two random variables are related to the original random
variables. The resultant equations are summarized in the following.
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Let x, y, and z be three random variables with covariance matrices Σx,x,
Σy,y, Σz,z, Σx,y, Σy,z, and Σz,x. The bilinear function g(x, y) is again a random
variable, which is denoted by u. In order to perform calculations with u, the
covariance matrices Σu,u, Σu,x, Σu,y, and Σu,z have to be evaluated. The last
three of these covariance matrices are of importance if, for example, g(u, x)
or g(u, z) has to be evaluated:

Σu,u ≈ ΓR (ȳ) Σx,x ΓR (ȳ)
T

+ ΓL (x̄) Σy,y ΓL (x̄)
T

+ ΓL (x̄) Σy,x ΓR (ȳ)
T

+ ΓR (ȳ) Σx,y ΓL (x̄)
T

.

Σu,x = ΓR (ȳ) Σx,x + ΓL (x̄) Σy,x .

Σu,y = ΓR (ȳ) Σx,y + ΓL (x̄) Σy,y .

Σu,z = ΓR (ȳ) Σx,z + ΓL (x̄) Σy,z . (5.76)

5.4 Validity of Error Propagation

There are two main problems in first-order error propagation of Gaussian
distributed random variables:

1. A function of a Gaussian distributed random variable is not necessarily
Gaussian, which implies that a characterization of the resultant random
variable by its mean value and covariance may not be sufficient anymore.

2. First-order error propagation is an approximation even for Gaussian dis-
tributed random variables.

These two problems are discussed in some detail in the following.

5.4.1 Non-Gaussivity

In general, it is quite difficult to give an expression for the probability dis-
tribution function of a function of a number of Gaussian distributed random
variables. An example of a simple algebraic operation is therefore analyzed
numerically in this section to show the non-Gaussivity of the resultant ran-
dom variable.

In [84], it was shown that bilinear functions of Gaussian distributed ran-
dom variables are not Gaussian in general. In fact, the resultant distributions
may even be bimodal. Because geometric-algebra products are bilinear func-
tions, it is necessary to investigate this effect in algebraic products.

Consider for this purpose G2, with the algebraic basis G2 = { 1, e1, e2,
e12 }, and a function h : G1

2 × G1
2 → G1

2 defined as
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the geometric product of two Gaussian distributed 1-blades is not Gaussian
distributed. First-order error propagation of products in geometric algebra
is therefore only a good approximation if the covariances of the respective
multivectors are “small”. What amount of error is tolerable depends on the
actual application.

5.4.2 Error Propagation Bias

Consider again the bilinear function g(x, y) of Sect. 5.3.3, which is defined
as gk(x, y) = x i yj Γ k

ij . Recall that the error propagation equation for the
covariance matrix of g as given in (5.64) is an approximation. The correct
error propagation equation may be written as

Σg,g = ΓR (ȳ) Σx,x ΓR (ȳ)
T

+ ΓL (x̄) Σy,y ΓL (x̄)
T

+ ΓL (x̄) Σy,x ΓR (ȳ)
T

+ ΓR (ȳ) Σx,y ΓL (x̄)
T

+ B(x, y),

(5.78)

where B(x, y) is an appropriate bias term. This bias term plays a particularly
important role for distributions centered at the origin; this can be seen as
follows.

The Jacobi matrices of g(x, y) are given by ΓR (ȳ) = ȳj Γ k
ij and ΓL (x̄) =

x̄ i Γ k
ij . Hence, if x̄ = ȳ = 0, then ΓR (ȳ) = ΓL (x̄) = 0 and thus Σg,g = 0,

according to (5.64), independent of Σx,x and Σy,y. However, geometrically
speaking, only the relative positions of x̄ and ȳ should influence Σg,g, and the
origin should play no special role. This has to be recovered by the bias term.
In Sect. 5.5, error propagation in projective spaces is discussed, where the
origin is not part of the space, which remedies the situation to some extent,
even without the bias term.

The bias term B(x, y) consists of two main parts. The first part is the term
of order higher than two in (5.52) that previously neglected. The second part
has not been discussed yet. It stems from an evaluation of E

(
gr(x, y) gs(x, y)

)

that is needed for the calculation of Σr,s
g,g, as in

Σr,s
g,g = E

(
gr(x, y) gs(x, y)

)
− E

(
gr(x, y)

)
E
(
gs(x, y)

)
. (5.79)

The approximation to E
(
gr(x, y) gs(x, y)

)
used in (5.64) considered only the

derivatives of gr(x, y) gs(x, y) up to order two. However, to obtain an exact
result, all derivatives up to order four have to be considered. Derivatives of
order higher than four have no effect, since they are identically zero.

To keep the following analysis legible, we concatenate column vectors

x, y ∈ Rn into a single vector z ∈ R2n as z :=
[
xT , yT

]T
and define the covari-

ance matrix Σz,z accordingly. Furthermore, we define h(z) := gr(x, y) gs(x, y),
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which can be written exactly in terms of a Taylor series about the expectation
value of z as

h(z) = h(z̄) +
n∑

i=1

hz i(z̄) ∆z i +
n∑

i,j=1

hz i,z j (z̄) ∆z i ∆z j

+
n∑

i,j,k=1

hz i,z j ,zk(z̄) ∆z i ∆z j ∆zk

+
n∑

i,j,k,l=1

hz i,z j ,zk,z l(z̄) ∆z i ∆z j ∆zk ∆z l, (5.80)

where ∆z i := z i−z̄ i. Analogously to (5.49), the expectation E
(
h(z)

)
therefore

becomes

E (h(z)) =

∫

Dz

h(z) fz(z) dz

≈ h(z̄)

∫
fz(z) dx +

2 n∑

i=1

hz i(z̄)

∫
∆z i fz i(z i) dz i

+
1

2!

2 n∑

i,j=1

hz i,z j (z̄)

∫ ∫
∆z i ∆z j fz i,z j (z i, z j) dz i dz j .

+
1

3!

2 n∑

i,j,k=1

hz i,z j ,zk(z̄)

∫ ∫ ∫
∆z i ∆z j ∆zk fz i,z j ,zk(z i, z j , zk) dz i dz j dzk

+
1

4!

2 n∑

i,j,k,l=1

hz i,z j ,zk,z l(z̄)

∫ ∫ ∫ ∫
∆z i ∆z j ∆zk ∆z l fz i,z j ,zk,z l(z i, z j , zk, z l) dz i dz j dzk dz l.

(5.81)
It was shown earlier that

∫
fz(z) dz = 1,

∫
∆z i fz i(z i) dz i = 0, and

Σi,j
z,z =

∫ ∫
∆z i ∆z j fz i,z j (z i, z j) dz i dz j .

In [104], p. 120, Koch noted that

∫ ∫ ∫
∆z i ∆z j ∆zk fz i,z j ,zk(z i, z j , zk) dz i dz j dzk = 0

and
∫ ∫ ∫ ∫

∆z i ∆z j ∆zk ∆z l fz i,z j ,zk,z l(z i, z j , zk, z l) dz i dz j dzk dz l

= Σi,j
z,z Σk,l

z,z + Σi,k
z,z Σj,l

z,z + Σj,k
z,z Σi,l

z,z.
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What is left is the evaluation of hz i,z j ,zk,z l(z̄). In order to do this, the z i have
to be expressed using x i and y i again. By definition, x i = z i and y i = zn+i,
for i ∈ { 1, . . . , n }. Because hx i,xj ,xk(z̄) = 0 and hyi,yj ,yk(z̄) = 0, the evalua-
tion of hz i,z j ,zk,z l(z̄) with i, j, k, l ∈ { 1, . . . , 2 n } reduces to the evaluation of
hx i,xj ,yk,yl(x̄, ȳ) with i, j, k, l ∈ { 1, . . . , n }. It may be shown by a straightfor-
ward calculation that

hr s
x i,xj ,yk,yl(x̄, ȳ) = Γ r

jl Γ
s
ik + Γ r

ik Γ s
jl

+ Γ r
il Γ

s
jk + Γ r

jk Γ s
il.

(5.82)

In the last term of (5.81), the sum goes over hz i,z j ,zk,z l(z̄) for i, j, k, l ∈
{ 1, . . . , 2 n }. However, for a given i, j, k, and l, all permutations of the four
derivatives of h(z) result in the same derivative. In the sum

n∑

i,j,k,l=1

hr s
x i,xj ,yk,yl(x̄, ȳ),

the interchanges of x i with x j and yk with y l have already been accounted
for. The remaining interchanges of derivatives that have to be considered are
all combinations (not permutations) of two derivatives from the ordered set
{ ∂x i , ∂xj , ∂yk , ∂yl }, of which there are six. That is,

hr s
x i,xj ,yk,yl(x̄, ȳ) = hr s

x i,yk,xj ,yl(x̄, ȳ) = hr s
x i,yk,yl,xj (x̄, ȳ)

= hr s
yk,x i,xj ,yl(x̄, ȳ) = hr s

yk,x i,yl,xj (x̄, ȳ) = hr s
yk,yl,x i,xj (x̄, ȳ).

The factor of the last term of (5.81) therefore becomes 6 (1/4!) = 1/4. The
whole term becomes

1

4!

2 n∑

i,j,k,l=1

hz i,z j ,zk,z l(z̄)

∫ ∫ ∫ ∫
∆z i ∆z j ∆zk ∆z l fz i,z j ,zk,z l(z i, z j , zk, z l) dz i dz j dzk dz l

=
1

4

n∑

i,j,k,l=1

((
Γ r

jl Γ
s
ik + Γ r

ik Γ s
jl + Γ r

il Γ
s
jk + Γ r

jk Γ s
il

)

×
(
Σi j

x,x Σk l
y,y + Σi k

x,y Σj l
x,y + Σj k

x,y Σi l
x,y

))
.

(5.83)
The complete bias term B(x, y) for a bilinear function is therefore given by
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Br s(x, y) =
1

4

n∑

i,j,k,l=1

((
Γ r

jl Γ
s
ik + Γ r

ik Γ s
jl + Γ r

il Γ
s
jk + Γ r

jk Γ s
il

)

×
(
Σi j

x,x Σk l
y,y + Σi k

x,y Σj l
x,y + Σj k

x,y Σi l
x,y

))

−
n∑

i,j=1

((
Gr

ij Σi j
x,y

)(
Gs

ij Σi j
x,y

))
.

(5.84)
Clearly, B(x, y) does not actually depend on x̄ and ȳ, but only on their co-
variance matrices. Hence, the bias term does not vanish if x̄ = ȳ = 0.

5.4.2.1 Example

As a very simple example, consider the scalar multiplication of two stochas-
tically independent scalar random variables x and y , i.e. z = x y . The corre-

sponding bilinear product tensor Gk
ij ∈ R1×1×1 is given simply by Gk

ij = 1.
The covariance matrices Σx,x and Σy,y each consist of a single scalar value
and may be denoted by σx and σy , respectively. The cross-covariance Σx,y is
equal to zero, by definition. If x̄ = ȳ = 0, then

σz = B(x , y) = σx σy ,

which is what is expected.

5.4.3 Conclusions

It has been shown in this section that there are two main problems when
error propagation of bilinear functions of Gaussian distributed random vari-
ables is considered: the distribution of the resultant random variable may
not be Gaussian, and first-order error propagation neglects a bias term that
cannot always be neglected even for small variances. The first problem can-
not be remedied. For each bilinear function considered, it should be checked
whether the resultant distribution can be approximated well by a Gaussian
distribution for the expected magnitudes of the variances. The second prob-
lem, on the other hand, can be remedied easily using the bias term given in
(5.84), if the problem at hand can be split into separate bilinear functions.
The resultant error propagation is then exact. However, in the estimation
methods presented later on, the inclusion of the bias term would make an
analytic solution intractable.
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5.5 Uncertainty in Projective Space

In the preceding parts of this book, we have introduced the representation of
multivectors by component vectors, which leads to a representation of Gaus-
sian distributed random multivector variables by a mean component vector
and a corresponding covariance matrix. In this section, this is made more
specific by a discussion of uncertain multivectors in the various geometries
introduced in Chap. 4.

In Sect. 4.2 projective space was introduced. The homogenization of a
vector x ∈ Rn was defined there as

H : x ∈ R
n 7→ u =

[
x

1

]
∈ R

n+1. (5.85)

A vector H(x) is therefore an element of the affine plane denoted by An ⊂
Rn+1. The inverse mapping H−1 is defined only for elements on the affine
plane, as

H−1 : u =

[
x

1

]
∈ A

n 7→ x ∈ R
n. (5.86)

An affine projection operator A that projects elements in Rn+1 into An was
also defined in Sect. 4.2:

A : u =

[
x

un+1

]
∈ R

n+1 7→




x

un+1

1


 ∈ A

n. (5.87)

5.5.1 Mapping

The projective space that is of particular interest in this text is the projective
space of R3, which is represented in R4. First, the mapping of uncertain
vectors between Euclidean and projective space is discussed.

5.5.1.1 The Embedding H

Given a Gaussian distributed random vector variable x with a mean x̄ ∈ R3

and a covariance matrix Σx,x ∈ R3×3, the question is what the mean and the
covariance matrix of u := H(x) are. Since ∂2

x H(x) = 0, it follows from (5.50)
that

ū = E
(
H(x)

)
= H(x̄).



222 5 Numerics

The covariance matrix Σu,u can be evaluated with the help of (5.56). In
order to apply this equation, the Jacobi matrix JH(x) := ∂x H(x) has to be
evaluated. This is given by

JH(x) = ∂x u =




∂u1

∂x 1
· · · ∂u1

∂x 3

...
. . .

...

∂u4

∂x 1
· · · ∂u4

∂x 3




=




1 0 0

0 1 0

0 0 1

0 0 0




. (5.88)

If I ∈ R3×3 denotes the identity matrix and 0 ∈ R3 the zero column vector,
then this may also be written as JH(x) = [ I , 0 ]

T
. Because ∂2

x H(x) = 0, the
covariance matrix Σu,u ∈ R4×4 is given exactly by

Σu,u = JH(x) Σx,x JH(x)T =

[
Σx,x 0

0T 0

]
. (5.89)

The Jacobi matrix of the inverse mapping x = H−1(u) is given simply by

JH−(u) = ∂u x =




1 0 0 0

0 1 0 0

0 0 1 0


 . (5.90)

5.5.1.2 The Projection A

The projection of a vector u ∈ R4 into A3 is more problematic, because a
division by an element of u is present. This implies that the Taylor series of
the projection operator A has an infinite number of terms, so that first-order
error propagation cannot be exact. Let u ∈ R4, with a covariance matrix
Σu,u ∈ R4×4, and define

v := A(u) =

[
u1

u4
,

u2

u4
,

u3

u4
, 1

]T

.

The expectation v̄ = E
(
A(u)

)
follows from (5.50) as v̄ =

[
v̄1 , v̄2 , v̄3 , v̄4

]
,

with v̄4 = 1 and, for i ∈ { 1, 2, 3 },

v̄ i =

(
ūi

ū4
−
(

1

ū4

)2

Σi 4
u,u

)
. (5.91)

If the covariances Σi 4
u,u are sufficiently small, these terms may be neglected.

The Jacobi matrix of A, JA(u), is
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JA(u) = ∂u v =




∂v1

∂u1
· · · ∂v1

∂u4

...
. . .

...

∂v4

∂u1
· · · ∂v4

∂u4




=
1

u4




1 0 0 −u1

u4

0 1 0 −u2

u4

0 0 1 −u3

u4

0 0 0 0




. (5.92)

If I ∈ R4×4 denotes the identity matrix, then this can also be written as

JA(u) =
1

u4
I −
(

1

u4

)2

u (∂u4 u)T .

5.5.2 Random Homogeneous Vectors

The embedding of the covariance matrix Σx,x ∈ R3×3 of a Euclidean vector
x ∈ R3 in projective space as given in (5.89) shows that the variance along the
homogeneous dimension is zero. When the error-propagated covariance matri-
ces of bilinear functions of such homogeneous vectors are evaluated, however,
the variance of the homogeneous dimension need not be zero anymore. The
question, therefore, is what a variance for the homogeneous dimension means.
Because homogeneous vectors are representations of Euclidean vectors, it has
to be shown what the covariance matrix of a homogeneous vector represents
in Euclidean space.

It can be seen quite easily that only that part of the covariance of a
homogeneous vector u that is perpendicular to u is of importance:

JA(u) u =

(
1

u4
I −
(

1

u4

)2

u (∂u4 u)T

)
u =

1

u4
u−
(

1

u4

)2

u4 u = 0. (5.93)

When u is projected onto the affine plane via v := A(u), the covariance matrix
Σu,u is mapped via

Σv,v = JA(u) Σu,u JA(u)T.

Hence, any component of Σu,u along u is mapped to zero and does not influ-
ence Σv,v. Mapping Σv,v to the corresponding Euclidean covariance matrix is
then simply an extraction of the top left 3 × 3 submatrix.

5.5.2.1 Example

As a simple example, consider a homogeneous vector u with a covariance
matrix Σu,u defined by
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Σu,u :=




σ1

σ2

σ3

σ4


 .

The covariance matrix of v = A(u) may then be shown to be

Σv,v = JA(u) Σu,u JA(u)T

=

(
1

u4

)2




σ1

σ2

σ3

0




+ σ4

(
1

u4

)4




u1

u2

u3

0



[
u1 , u2 , u3 , 0

]
.

That is, only the top left 3× 3 submatrix of Σv,v is non-zero. This submatrix
is also equivalent to the covariance matrix of the corresponding projection of
v into Euclidean space.

5.5.3 Conditioning

In [93], Heuel argued that covariance matrices of homogeneous vectors should
always be projected onto the subspace perpendicular to their corresponding
homogeneous vector, since any part parallel to the homogeneous vector has
no relevance in the corresponding Euclidean space. In this text, it is argued
not only that this is not necessary but also that an additional bias may be
introduced when the procedure suggested by Heuel is followed.

To show this, the matrix forms of the projection and rejection operators
will be given. In matrix notation, the projection operator Pu(x) is expressed
as

Pu(x) =
(
u (uT u)−1 uT

)
x = Pu x, (5.94)

where
Pu := u (uT u)−1 uT .

This is equivalent to the projection operator in Definition 3.22. Similarly, the
rejection operator P⊥

u (x) takes the following form in matrix notation:

P⊥
u (x) =

(
I − u (uT u)−1 uT

)
x = P⊥

u x, (5.95)

where I is the identity matrix and

P⊥
u := I − u (uT u)−1 uT .

Because JA(u) u = 0, it follows that
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JA(u)P⊥
u = JA(u) − JA(u) u (uT u)−1 uT = JA(u). (5.96)

This implies, for the covariance matrix Σu,u of a homogeneous vector u, that

JA(u)Σu,u JA(u)T = JA(u)P⊥
u Σu,u (P⊥

u )T JA(u)T. (5.97)

That is, it does not matter whether a covariance matrix is projected onto the
subspace perpendicular to its corresponding homogeneous vector or not – in
both cases, it represents the same covariance matrix in Euclidean space.

5.5.3.1 Bilinear Functions

The same is true for error propagation in the case of bilinear functions. Let
g(u, v) denote a bilinear function of two homogeneous vectors u, v ∈ R4, with
corresponding covariance matrices Σu,u and Σv,v, respectively. The Jacobi
matrices of g(u, v) are ΓL (v) = ∂u g(u, v) and ΓR (u) = ∂v g(u, v), so that the
covariance matrix of w := g(u, v) is given by

Σw,w = ΓL (v) Σu,u ΓL (v)
T

+ ΓR (u) Σv,v ΓR (u)
T

.

Since g(u, v) is a bilinear function, it follows that

ΓL (v) u = ΓR (u) v = w .

Therefore,

ΓL (v) P⊥
u = ΓL (v) − ΓL (v)

u uT

uT u
= ΓL (v) − w uT

uT u

and

ΓR (u) P⊥
v = ΓR (u) − ΓR (u)

v vT

vT v
= ΓR (u) − w vT

vT v
.

Because JA(w) w = 0,

JA(w) ΓL (v) P⊥
u = JA(w) ΓL (v) and JA(w) ΓR (u) P⊥

v = JA(w) ΓR (u) .

It therefore follows that

JA(w) Σw,w JA(w)T = JA(w) ΓL (v) P⊥
u Σu,u (P⊥

u )T ΓL (v)
T

JA(w)T

+ JA(w) ΓR (u) P⊥
v Σv,v (P⊥

v )T ΓR (u)
T

JA(w)T

= JA(w) ΓL (v) Σu,u ΓL (v)
T

JA(w)T

+ JA(w)ΓR (u) Σv,v ΓR (u)
T

JA(w)T .

(5.98)
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Hence, the covariance matrix Σw,w represents the same covariance matrix in
Euclidean space, independent of whether the covariance matrices Σu,u and
Σv,v are projected onto the subspaces perpendicular to u and v, respectively,
or not. This shows that it is not necessary to project covariance matrices
of homogeneous vectors onto the subspaces perpendicular to their respective
homogeneous vectors prior to any calculations.

5.5.3.2 Scaling

Apart from the projection of the covariance matrices discussed above, Heuel
also suggested in [93] that the Euclidean parts of homogeneous vectors should
be scaled such that their magnitudes were much smaller than the homoge-
neous components and the covariance matrices should be scaled accordingly.
After this scaling, the projection of the covariance matrices should be per-
formed as discussed above. Heuel argued that this conditioning reduced the
magnitude of the error propagation bias. In the following, it is shown that
this procedure can lead to incorrect error propagation results.

Generally speaking, it is not desirable that a scaling of the Euclidean parts
of homogeneous vectors can change the relative magnitude of the error prop-
agation bias, because this would imply that the homogenization of Euclidean
vectors at different scales leads to different results. Such a property would
make error propagation unusable for practical applications, where an overall
scale should have no effect.

A simple example that demonstrates the scale invariance of error propa-
gation if the covariance matrices are not projected is given in the following.
For this purpose, consider two vectors x,y ∈ R1 with associated covariance
matrices Σx,x and Σy,y, which are homogenized as u := H(x) ∈ G1

2 and
v := H(y) ∈ G1

2, with u = u1 e1 +u2 e2 and v = v1 e1 +v2 e2. Note that sub-
script indices have been used here for the components of the vectors in order
to increase the readability of the following equations. The outer product of
u and v therefore results in

w := u ∧ v = (u1 v2 − u2 v1) e12 = w e12 ,

where w := u1 v2 − u2 v1. In terms of component vectors, this outer-product
operation can be regarded as a bilinear function that maps vectors u :=
[ u1 , u2 ] and v := [ v1 , v2 ] to the scalar value w . The Jacobi vectors of this
function are therefore

∂u w = [ v2 , −v1 ] and ∂v w = [−u2 , u1 ] . (5.99)

Let the covariance matrices of u and v be given by
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Σu,u :=

[
α1

α2

]
and Σv,v :=

[
β1

β2

]
.

Assuming that u and v are independent, the variance of w , denoted by σ2
w

,
is given by first-order error propagation as

σ2
w

= (∂u w) Σu,u (∂u w)T + (∂v w) Σv,v (∂v w)T

= α1 v2
2 + α2 v2

1 + β1 u2
2 + β2 u2

1 .
(5.100)

Now, suppose the Euclidean parts of u and v are uniformly scaled by a scalar
factor τ ∈ R, i.e. u′ := [ τ u1 , u2 ] and v′ := [ τ v1 , v2 ]. The corresponding
covariance matrices are

Σu′,u′ :=

[
τ2 α1

α2

]
and Σv′,v′ :=

[
τ2 β1

β2

]
.

Then
w ′ = u ′

1 v ′
2 − u ′

2 v ′
1 = τ u1 v2 − u2 τ v1 = τ w ,

and the corresponding variance σ2
w ′ is

σ2
w ′ = τ2 α1 v2

2 + α2 τ2 v2
1 + τ2 β1 u2

2 + β2 τ2 u2
1 = τ2 σ2

w
, (5.101)

as would be expected. That is, the ratio σw/w is scale-invariant:

σw ′

w ′
=

σw

w
.

Hence, when the Euclidean vectors are scaled, the relative standard deviation
of w stays constant.

If the covariance matrices are projected, this scale invariance is not pre-
served. The rejection matrices are

P⊥
u = I − u uT

uT u
and P⊥

v = I − v vT

vT v
.

If we apply these rejections, σ2
w

is evaluated as

σ2
w

= (∂u w)P⊥
u Σu,u (P⊥

u )T (∂u w)T

+(∂v w)P⊥
v Σv,v (P⊥

v )T (∂v w)T .
(5.102)

One component of this expression is
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(∂u w)
u uT

uT u
Σu,u

u uT

uT u
(∂u w)T

=

(
1

uT u

)2 (
v2
2 a1 + v2

1 a3 − 2 v1 v2 a2

)
,

where

a1 := α1 u4
1 + α2 u2

1 u2
2 , a2 := α1 u3

1 u2 + α2 u1 u3
2 , a3 := α1 u2

1 u2
2 + α2 u4

2 .

If the Euclidean components of u and v are again scaled by τ , then

a ′
1 = τ2 α1 τ4 u4

1 + α2 τ2 u2
1 u2

2 .

That is a ′
1 cannot be written as a scaled version of a1, which implies also

that σ2
w ′ is not a scaled version of σ2

w
. Hence, the ratio σw/w is not scale-

invariant. Therefore, if the covariance matrices are projected, the relative
standard deviation depends on the overall scale of the Euclidean vectors.

5.6 Uncertainty in Conformal Space

A Euclidean vector x ∈ R3 defined as x := x i ei is embedded in the geometric
algebra of conformal space G4,1 (see Sect. 4.3) as

u := C(x) = x +
1

2
x2 e∞ + eo.

Given a Gaussian distributed random vector variable x with a mean x̄ ∈ R3

and a covariance matrix Σx,x ∈ R3×3, the mean and the covariance matrix
of C(x) have to be evaluated. From (5.50), it follows that

ū = E
(
C(x)

)
= C(x̄) +

3∑

i=1

Σi i
x,x e∞ = C(x̄) + tr(Σx,x) e∞ , (5.103)

where tr(Σx,x) denotes the trace of Σx,x. The IPNS of the vector ū is there-
fore a sphere with an imaginary radius equal to the trace of Σx,x (see (4.46)).
Depending on the actual application, the trace of Σx,x may be negligible
compared with x̄2, in which case the trace term may be neglected.

To evaluate the covariance matrix of C(x), the Jacobi matrix of u = C(x)
has to be known. For this purpose, the component vector representation of
u is used, i.e.

u := K(u) =

[
x 1 , x 2 , x 3 ,

1

2
x2 , 1

]
. (5.104)
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Note that the basis of u is not Euclidean. The operator K used here implicitly
does not map u to a vector of dimension 2n, but only maps those components
that may be non-zero. This is equivalent to a mapping of the kind described
in Sect. 5.1.3.

The Jacobi matrix of u := C(x) is then given by

JC(x) := ∂x C(x) =




1 0 0

0 1 0

0 0 1

x 1 x 2 x 3

0 0 0




, (5.105)

and thus
Σu,u = JC(x) Σx,x JC(x)T . (5.106)

The inverse mapping is defined only for null vectors, i.e. 1-vectors in G4,1 that
actually do represent a point in Euclidean space. For these types of vectors,
the inverse mapping is basically the same as that for projective space. That
is, given a vector u ∈ G1

4,1 with u2 = 0 and u = u1 e1 + u2 e2 + u3 e3 +
u4 e∞ + u5 eo, the corresponding Euclidean vector x is given by

x = C−1(u) =
u1

u5
e1 +

u2

u5
e2 +

u3

u5
e3.

The expectation of C−1(u) follows from (5.50) as

x̄ =
3∑

i=1

(
ūi

ū5
−
(

1

ū5

)2

Σi 5
u,u

)
ei . (5.107)

If the covariances Σi 5
u,u are sufficiently small, these terms may be neglected.

The Jacobi matrix JC−(u) := ∂u C(u) is given by

JC−(u) = ∂u C−1(u) =
1

u5




1 0 0 0 − 1

u5

0 1 0 0 − 1

u5

0 0 1 0 − 1

u5




, (5.108)

so that
Σx,x = JC−(u) Σu,u JC−(u)T . (5.109)
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5.6.1 Blades and Operators

The goal of this subsection is to show that covariance matrices are an appro-
priate representation of the uncertainty of blades and operators in geometric
algebra. The fundamental problem is, that although covariance matrices de-
scribe the uncertainty of an entity through a linear subspace, the subspace
spanned by entities of the same type may not be linear.

For example, Heuel [93] described the evaluation of general homographies
by writing the homography matrix H as a vector h and solving for it, given ap-
propriate constraints. It is then also possible to evaluate a covariance matrix
Σh,h for h. While this is fine for general homographies, Heuel also noted that
it is problematic for constrained transformations such as rotations, since the
necessary constraints on h are non-linear. The basic problem here is that the
subspace of vectors h that represent rotation matrices is not linear. Hence, a
covariance matrix for h is not well suited to describing the uncertainty of the
corresponding rotation matrix. The question, therefore, is whether the rep-
resentation of geometric entities and operators in geometric algebra allows a
description of uncertainty via covariance matrices.

5.6.1.1 Points

The description of the uncertainty of a point via a covariance matrix in
conformal space is not exact. This is due to the squared term in the embedding
of a Euclidean point. That is, if x ∈ R3, then the embedding in conformal
space is

X = C(x) = x +
1

2
x2 e∞ + eo .

As shown in Sect. 4.3.1, the embedded points lie on a cone, which implies
that the embedded covariance matrices can represent only the tangential
uncertainty at the embedded point. However, a homogeneous point of the
form X ∧ e∞ does not contain a squared term anymore, since

X ∧ e∞ = x ∧ e∞ + eo ∧ e∞ ,

and the corresponding covariance matrix describes the uncertainty exactly.

5.6.1.2 Blades

Because a covariance matrix only approximates the uncertainty of a point in
conformal space, this is also the case for point pairs, circles, and spheres. In
all these cases, the covariance matrix is tangential to the actual subspace that
the entity lies in. The situation is different for those blades that represent
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homogeneous points, lines, and planes, since in these instances the squared
terms are canceled.

As shown earlier, the uncertainty of homogeneous points can be appropri-
ately represented by a covariance matrix. The same is true for planes, as can
be seen by considering the inner-product representation of a plane P , defined
by

P := a + α e∞ ,

where a is the normal of the plane, and α is the plane’s orthogonal separation
from the origin. A random plane variable may therefore be written as

P := (ā + ᾱ e∞) + (n + ν e∞),

where n and ν are zero-mean random variables. The uncertainty of P is
therefore linear in the zero-mean random variables, and, thus, a covariance
matrix is an appropriate representation of the uncertainty of the plane.

Next, consider a line L, which may be represented in conformal space as
L = X∧Y ∧e∞ (see Table 4.3). The six components of L are the well-known
Plücker coordinates, which have to satisfy the Plücker condition in order to
describe a line. In geometric algebra, the Plücker condition is equivalent to
demanding that L is a blade, i.e. that it can be factorized into the outer
product of three vectors. This is equivalent to demanding that LL̃ ∈ R.

To describe the uncertainty of a line L with a covariance matrix, the sum of
the component vector of L with any component vector in the linear subspace
spanned by the covariance matrix should satisfy the Plücker condition. We
will show in the following that this is not the case, in general. A covariance
matrix can therefore only approximate the uncertainty of a line.

Consider two random vector variables x := x̄ + n and y := ȳ + m. Here,

x̄, ȳ ∈ R3 are the expectation values of x and y, respectively, and n and m

are Gaussian distributed, zero-mean, random vector variables. If we define
X := C(x) and Y := C(y), it follows that

X ∧ e∞ = (x̄ + n) ∧ e∞ + eo ∧ e∞ , Y ∧ e∞ = (ȳ + m) ∧ e∞ + eo ∧ e∞ .

Hence, L := X ∧ Y ∧ e∞ can be expressed as

L = (x̄ + n) ∧ (ȳ + m) ∧ e∞ +
(
(x̄ + n) − (ȳ + m)

)
∧ eo ∧ e∞

=
(
x̄ ∧ ȳ ∧ e∞ + (x̄ − ȳ) ∧ eo ∧ e∞

)

+ (ȳ ∧ e∞ + eo ∧ e∞) ∧ n

− (x̄ ∧ e∞ + eo ∧ e∞) ∧ m

+ n ∧ m ∧ e∞ .

This shows that the random line variable, L, can be written as the sum of
an expectation part and a zero-mean random-variable part. However, the
random variable part is not linear in the random variables n and m, because
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of the term n∧m∧e∞. A covariance matrix can therefore only approximate
the uncertainty of a line, in general. In the special case, where L is constructed
from one random variable and one constant vector, i.e. L := X ∧ Y ∧ e∞, a
covariance matrix is an exact representation of the uncertainty of the line.

5.6.1.3 Versors

The operators that are of main interest in geometric algebra are versors.
By definition, versors are geometric products of a number of 1-vectors (see
Sect. 3.3). For example, a general rotation may be constructed from the
geometric product of two vectors in conformal space that are inner-product
representations of planes (see Sect. 4.3.4). The rotation axis, in this case, is
the intersection line of the two planes.

Let P = P̄ + N and Q = Q̄ + M denote two random plane variables,

where P̄ , Q̄ ∈ G1
4,1 are the expectation values of P and Q, respectively,

and N ,M are Gaussian distributed, zero-mean, random plane variables. A
random general rotor variable R is given by

R := P Q = (P̄ + N) (Q̄ + M) = P̄ Q̄ + P̄ M + N Q̄ + N M .

Just as for lines, a general random rotor variable can be written as the sum of
a constant general rotor and a random variable. However, the random variable
part is not linear in the random variables N and M , due to the term N M .
Hence, a covariance matrix is only an approximation of the uncertainty of a
general rotor.

Nevertheless, it is quite instructive to visualize the uncertainty of a general
rotor, as approximated by its covariance matrix. We constructed an uncertain
general rotor by evaluating the geometric product of two uncertain planes,
and obtained the rotor’s covariance matrix by error propagation. It turns
out that the covariance matrix of the rotor can be of rank six at most. The
effect on the rotation operation when such an uncertain rotor is transformed
separately along the six eigenvectors of its covariance matrix is shown in
Fig. 5.2.

Despite the fact, that covariance matrices are only approximations of the
uncertainty of random rotor variables, this method of representing uncertain
rotations appears to be more robust than using rotation matrices. This was
found in synthetic experiments in Sect. 6.2.6, as well as in the pose estimation
procedure, that will be presented in Chap. 8.

Furthermore, note that the subalgebra of rotors for rotations about the
origin is isomorphic to quaternion algebra (see Sect. 3.8.3) and the subalgebra
of motors is isomorphic to the algebra of dual quaternions [34, 40]. Compared
with quaternions and dual quaternions, not only does the geometric algebra
of conformal space allow the description of the operators themselves, but the
operators can also be applied to any geometric entity that can be expressed
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To evaluate the covariance matrix Σu,u of u := D(x), the Jacobi matrix
JD(x) := ∂x D(x) of D(x) has to be evaluated. This is given by

JD(x) =




1 0

0 1

0 0√
2 x 1 0

0
√

2 x 2

x 2 x 1




, (5.111)

so that
Σu,u = JD(x) Σx,x JD(x) . (5.112)

The inverse mapping D−1(u) is defined only for vectors in R6 that represent

points in their IPNS in R2. Given a vector u=
[
u1 , u2 , u3 , u4 , u5 , u6

]T
that satisfies this condition, the inverse mapping D−1(u) is given by

x = D−1(u) =

[
u1

u3
,

u2

u3

]T

. (5.113)

The expectation x̄ = E
(
D−1(u)

)
is then given by

x̄ = E
(
D−1(u)

)
=




ū1

ū3

ū2

ū3


−

(
1

ū3

)2
[

Σ1 3
u,u

Σ2 3
u,u

]
. (5.114)

The covariance matrix Σx,x of x := D−1(u) is evaluated with the help of the
Jacobi matrix of D−1(u), which is given by

JD−(u) := ∂u D−1(u) =
1

u3




1 0 − 1

u3
0 0

0 1 − 1

u3
0 0


 , (5.115)

so that
Σx,x = JD−(u) Σu,u JD−(u)T . (5.116)

5.8 The Gauss–Markov Model

The Gauss–Markov model is a standard linear stochastic model for least-
squares estimation (see e.g. [104]). In this section, a least-squares estimation
method based on this model is presented.
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The fundamental setup of the problem is as follows. Let { bi } ⊂ RNbi

denote a set of M observations or data vectors, and let p ∈ RNp denote a
parameter vector. In addition, let qi : RNbi × RNp → RNgi be a constraint
or query function that satisfies qi(bi, p) = 0 if and only if the parameter
vector p is chosen such that it satisfies the given constraint. For example,
qi could be a function that results in zero if a line represented by p passes
through a point represented by bi. Note that different data vectors may be
of different dimensions and have different corresponding constraint functions
qi. This could, for example, be the case if we are seeking a line represented
by p that passes through some given points and intersects some given lines.
The two constraints need different constraint functions and data vectors.

Given a set of constraint equations qi and corresponding data points { bi },
the goal is to find the parameter vector p such that all constraints are satisfied,
or at least minimized.

5.8.1 Linearization

Suppose an initial estimate p̂ of the true parameter vector p is given, so that
p = p̂ + ∆p. The goal then becomes to estimate the correct ∆p.

The Gauss-Markov model is a linear stochastic model and thus the first
step is to linearize the constraint functions qi(bi, p), which can be achieved
via a Taylor expansion about p̂ up to order one:

qi(bi, p) = qi(bi, p̂ + ∆p) ≈ qi(bi, p̂) + (∂p qi)(bi, p̂) ∆p. (5.117)

For brevity, the following definitions are made:

cqi
:= −qi(bi, p̂) and Ui := (∂p qi)(bi, p̂) . (5.118)

Note that the Jacobi matrix Ui depends on bi and p̂ in general. All of the cqi

and Ui can be combined into

A :=




U1

...

UM


 and cq :=




cq1

...

cqM


 , (5.119)

so that all linearized constraint equations can be combined into the equation

A∆p = cq . (5.120)

The immediate least-squares solution to this equation is

∆p =
(
AT A

)−1
AT cq. (5.121)
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However, in general, the problem is somewhat more complicated.

5.8.2 Constraints on Parameters Alone

In many problems there is, in addition to the constraint functions qi between
the data vectors and the parameter vector, also a constraint function h :
RNp → RNh on the parameter vector p alone. For example, this occurs if
p contains the six Plücker coordinates of a line in 3D space. A 6D vector
represents a line in this way only if it also satisfies the Plücker condition.
This constraint may then be modeled by a function h(p), such that h(p) = 0

if and only if p satisfies the Plücker condition.
To include this additional constraint on the parameters alone, h has to be

linearized as well:

h(p) = h(p̂ + ∆p) ≈ h(p̂) + (∂p h)(p̂) ∆p . (5.122)

If we define
ch := −h(p̂) and H := (∂p h)(p̂)T , (5.123)

the constraint h(p) = 0 can be approximated by

HT ∆p = ch . (5.124)

5.8.3 Least-Squares Estimation

The constraint equations qi(bi, p) = 0 and h(p) = 0 could now be combined
into a single equation system,

[
A

H

]
∆p =

[
cq

ch

]
, (5.125)

which could be solved as before. The problem with this approach is that
while it suffices that the expression A∆p − cq is minimized, the constraint
HT ∆p = ch must be satisfied exactly. For example, if p is a 6D vector of
Plücker coordinates, it has to be ensured that the Plücker condition is satis-
fied exactly, whereas the line need not pass exactly through all data points.
Therefore, the method of Lagrange multipliers is employed.

Instead of minimizing ‖A∆p − cq‖2, a new function Φ is defined, which
takes its minimum if ‖A∆p − cq‖2 is minimal and HT ∆p − ch = 0:

Φ(∆p, m) :=
1

2
(A∆p − cq)

T (A∆p − cq) + (HT ∆p − ch)T m , (5.126)
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where m ∈ RNh is a vector of Lagrange multipliers, which are regarded as ad-
ditional parameters. The function Φ(∆p, m) attains a minimum if its deriva-
tives with respect to ∆p and m are zero. Its derivative with respect to m is
zero if the constraint on the parameters is satisfied, i.e. HT ∆p− ch = 0. The
derivatives are, explicitly,

(∂∆p Φ)(∆p, m) = AT A ∆p + H m − AT cq ,

(∂m Φ)(∆p, m) = HT ∆p − ch .
(5.127)

Both of these equations have to be zero when Φ(∆p, m) is minimal (or max-
imal). This can be written in a single equation system,

[
AT A H

HT 0

] [
∆p

m

]
=

[
AT cq

ch

]
. (5.128)

If we define N := AT A and cn := AT cq, this can be written in the standard
form [

N H

HT 0

] [
∆p

m

]
=

[
cn

ch

]
. (5.129)

This equation system is often called the normal equations. If the matrix on the
left is invertible, then this equation can be solved directly for ∆p. Otherwise,
the pseudoinverse may be used.

Similarly to the derivation of the covariance matrix Σp,p in Sect. 5.9.3, it
may be shown that for the Gauss–Markov model also,

[
Σp,p ·
· ·

]
=

[
N H

HT 0

]−1

, (5.130)

where the dots indicate non-zero parts of the matrix.
Often, a weighting of the least-squares constraint is known. That is, the

term to be minimized is given by

‖(A∆p − cq)
T W (A∆p − cq)‖2 , (5.131)

where W is a weight matrix, which may be interpreted as the inverse covari-
ance matrix of the residual of the Taylor expansion in (5.117). In this case,
the matrix N and the vector cn become

N = AT W A and cn = AT W cq . (5.132)
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5.8.4 Numerical Calculation

To solve the normal equation system given in (5.129), the matrix N = AT A

and the vector cn = AT cq have to be evaluated. From (5.119), it follows that

N =
[
UT

1 , · · · , UT
M

]



U1

· · ·
UM


 =

M∑

i=1

UT
i Ui (5.133)

and

cn =
[
UT

1 , · · · , UT
M

]



cq1

...

cqM


 =

M∑

i=1

UT
i cqi

. (5.134)

If the initial constraint functions qi are linear, then the solution for ∆p in
(5.129) is provably its best linear unbiased estimator (BLUE). However, in
most problems the constraint functions qi are multilinear or, more generally,
non-linear. In this case a solution may be obtained by updating the initial
estimate p̂ with the estimated ∆p and using the result as a new starting value
for a new iteration step.

5.8.5 Generalization

Instead of regarding the parameter vector p as completely free, it may also be
regarded as a random vector variable with an associated covariance matrix
Σp,p. In this case, the problem is to find the parameter vector p that minimizes
‖A∆p − cq‖2, satisfies HT ∆p − ch = 0 but only differs minimally from an
initial estimate p̂ according to its covariance matrix. The function Φ(∆p, m)
therefore becomes

Φ(∆p, m) =
1

2
∆pT Σ−1

p,p ∆p

+
1

2
(A∆p − cq)

T (A∆p − cq)

+(HT ∆p − ch)T m .

(5.135)

Components of ∆p that have a large variance may therefore vary by a larger
amount than components with a small variance. The term ∆pT Σ−1

p,p ∆p may
therefore be regarded as a regularization term. If Σp,p is a diagonal matrix,
then zero entries on the diagonal of Σ−1

p,p relate to free parameters in ∆p,
and entries with very large values relate to fixed parameters. This offers a
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very convenient method to dynamically select which parameters should be
estimated without changing the actual minimization equations.

For example, p may contain parameters that describe various properties
of a camera, such as its focal length and orientation. Then, by simply chang-
ing the appropriate values in Σp,p, one can use the minimization method to
estimate the focal length, or regard it as fixed.

By calculating the derivatives of Φ(∆p, m) from (5.135), we find the matrix
N and vector cn of the normal equation system of (5.129) to be

N = Σ−1
p,p + AT A and cn = AT cq . (5.136)

5.9 The Gauss–Helmert Model

The Gauss–Helmert model was introduced by Helmert in 1872 ([86], p.215),
as the general case of least-squares adjustment. It is also called the mixed
model [104]. The Gauss–Helmert model is a linear, stochastic model, which
will not itself be discussed here. Rather, a least-squares estimation technique
which is based on this model will be described.

The Gauss–Helmert model extends the Gauss–Markov model described
in the previous section by adjusting not only the parameters but also the
data vectors. The constraints between parameters and data vectors are again
given by functions qi(bi, p) that are zero if the constraint is satisfied. The
idea is now not to minimize ‖qi(bi, p)‖2 but to minimally vary the { bi }
such that all qi(bi, p) are exactly zero. The advantage of this approach is
that the covariance matrices of the data vectors can be taken into account.
That is, the data vectors can be varied more in directions of high variance
than in directions of low variance. This method also allows the estimation
of a covariance matrix for the parameter vector, which reflects not only the
uncertainties of the separate data points but also the distribution of the data.

5.9.1 The Constraints

5.9.1.1 Constraints on the Observations

We denote the vector of parameters by p ∈ RNp . It is assumed that there are
M observations. The ith observation is represented by the vector bi ∈ RNbi .
Note that the observation vectors for different observations can be of different
dimensions. For each observation, there exists a constraint of the form

qi(bi, p) = 0 ∈ R
Nqi ; (5.137)
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that is, the dimension of qi can also differ for different observations. Let

bi = b̂i + ∆bi , p = p̂ + ∆p, (5.138)

where b̂i is the measured data vector, bi is the true data vector, and ∆bi gives
the error in the estimate. Similarly, p̂ is an estimate of the true p, and ∆p

is the sought adjustment of p̂. The constraint functions qi are now linearized
by means of a Taylor expansion up to order one about (b̂i, p̂),

qi(bi, p) = qi(b̂i + ∆bi, p̂ + ∆p)

≈ qi(b̂, p̂)

+(∂bi
qi)(b̂i, p̂)∆bi

+(∂p qi)(b̂i, p̂)∆p . (5.139)

The Jacobi matrices of qi are written as

Vi(p̂)

Nqi
×Nbi

:= (∂bi
qi)(b̂i, p̂),

Ui(b̂i)

Nqi
×Np

:= (∂p qi)(b̂i, p̂),

cqi
:= −qi(b̂i, p̂).

(5.140)

The linearized constraint equation then becomes

Ui(b̂i)

Nqi
×Np

∆p

Np×1

+ Vi(p̂)

Nqi
×Nbi

∆bi

Nbi
×1

= cqi

Nqi
×1

. (5.141)

All these linearized constraint equations may be combined into a single equa-
tion system as follows:




U1(b̂1)
...

UM (b̂M )




(
∑

i Nqi
)×Np

∆p

Np×1

+




V1(p̂) 0

. . .

0 VM (p̂)




(
∑

i Nqi
)×(

∑
i Nbi

)




∆b1

...

∆bM




(
∑

i Nbi
)×1

=




cg1

...

cgM




(
∑

i Nqi
)×1

. (5.142)

For brevity, the following definitions are made:

Nq :=
M∑

i=1

Nqi
, Nb :=

M∑

i=1

Nbi
, (5.143)
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A :=




U1(b̂1)
...

UM (b̂M )




Nq×Np

, BT :=




V1(p̂) 0

. . .

0 VM (p̂)




Nq×Nb

, (5.144)

∆b :=




∆b1

...

∆bM




Nb×1

, cq :=




cg1

...

cgM




Nq×1

. (5.145)

By substituting these definitions in (5.142), the combination of all constraint
equations can be written as

A

Nq×Np

∆p

Np×1

+ BT

Nq×Nb

∆b

Nb×1

= cq

Nq×1

. (5.146)

5.9.1.2 Constraints on the Parameters Alone

In many applications, there also exists a constraint on the parameters alone.
As mentioned in the discussion of the Gauss-Markov model, an example is
provided by a parameter vector that represents a line through 6D Plücker
coordinates. In order to represent a line, a 6D vector has to satisfy the Plücker
condition, which can be modeled as a constraint function h on the parameters
alone. A correct parameter vector p then satisfies

h(p) = 0 ∈ R
Nh . (5.147)

Just as before, this constraint function may be linearized by means of a Taylor
expansion up to order one:

h(p) = h(p̂ + ∆p)

= h(p̂) + (∂p h)(p̂)∆p .
(5.148)

If we define
HT(p̂) := (∂p h)(p̂) , ch = −h(p̂), (5.149)

(5.148) becomes

HT(p̂)

Nh×Np

∆p

Np×1

= ch

Nh×1

. (5.150)
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5.9.1.3 Summary of Constraints

The constraint equations are

A

Nq×Np

∆p

Np×1

+ BT

Nq×Nb

∆b

Nb×1

= cq

Nq×1

,

HT(p̂)

Nh×Np

∆p

Np×1

= ch

Nh×1

.
(5.151)

These can be written in a single matrix equation,

[
A BT

HT 0

] [
∆p

∆b

]
=

[
cq

ch

]
. (5.152)

This equation system could be solved directly, but this would not ensure
that the constraint equation on the parameters alone was satisfied exactly.
Instead, the method of Lagrange multipliers is applied, as for the Gauss–
Markov model.

5.9.2 Least-Squares Minimization

For each observation vector bi, it is assumed that a covariance matrix Σbi,bi

is given. The covariance matrix for the total observation vector b is therefore

Σb,b :=




Σb1,b1 0

. . .

0 ΣbM ,bM


 . (5.153)

For brevity, we define
W := Σb,b. (5.154)

The goal is to find the optimal values for ∆p and ∆b in a least-squares sense,
which is done by minimizing

∆bT W ∆b

subject to the constraints described in the previous subsection. This can
be formulated mathematically by using the method of Lagrange multipliers.
For this purpose, we define a new function Φ, which takes its minimum if
∆bT W ∆b is minimal and the constraint functions qi and h are satisfied:
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Φ(∆p, ∆b, m, n) :=
1

2
∆bT W−1 ∆b

−
(
A∆p + BT ∆b − cq

)T
m

+
(
HT ∆p − ch

)T
n,

(5.155)

where m ∈ RNq and n ∈ RNh . The function Φ attains a minimum or maximum
value if all of its partial derivatives are zero. That is,

∂Φ

∂∆b
= 0 ⇐⇒ W−1 ∆b − B m = 0, (5.156)

∂Φ

∂∆p
= 0 ⇐⇒ −AT m + H n = 0, (5.157)

∂Φ

∂m
= 0 ⇐⇒ A∆p + BT ∆b − cq = 0, (5.158)

∂Φ

∂n
= 0 ⇐⇒ HT ∆p − ch = 0, (5.159)

From (5.156), it follows that

∆b = W B m. (5.160)

Substituting this result into (5.158) gives

A∆p + BT W B m − cq = 0. (5.161)

If we define
Dbb := BT W B,

(5.161) can be rewritten as

m = −D−1
bb A∆p + D−1

bb cq. (5.162)

Substituting this equation into (5.157) results in

AT D−1
bb A ∆p − AT D−1

bb cq + H n = 0, (5.163)

which can also be written as

AT D−1
bb A ∆p + H n = AT D−1

bb cq. (5.164)

Equations (5.164) and (5.159) can now be combined into a single equation
system as [

AT D−1
bb A H

HT 0

] [
∆p

n

]
=

[
AT D−1

bb cq

ch

]
. (5.165)

If we define
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N

Np×Np

:= AT

Np×Nq

D−1
bb

Nq×Nq

A

Nq×Np

and
cn

Np×1

:= AT

Np×Nq

D−1
bb

Nq×Nq

cq

Nq×1

,

(5.165) becomes

[
N H

HT 0

]

(Np+Nh)×(Np+Nh)

[
∆p

n

]

(Np+Nh)×1

=

[
cn

ch

]

(Np+Nh)×1

. (5.166)

5.9.3 Derivation of the Covariance Matrix Σ∆p,∆p

One useful property of the Gauss-Helmert model is that the covariance matrix
of the parameter vector can be estimated. In this subsection, it is shown that
the covariance matrix of p, which is equivalent to that of ∆p, is given by

Σ∆p,∆p = N−1
(
I − H (HT N−1 H

)−1
HT N−1

)
. (5.167)

Σ∆p,∆p may be calculated more easily via

[
N H

HT 0

]−1

=

[
Σ∆p,∆p ·

· ·

]
, (5.168)

where the dots are placeholders for other parts of the matrix. First of all, we
give a formula for the inverse of a square matrix

[
N H

HT 0

]−1

=

[
N−1 − N−1 H (HT N−1 H)−1 HT N−1 N−1 H (HT N−1 H)−1

(HT N−1 H)−1 HT N−1 (HT N−1 H)−1

]
.

(5.169)
By writing (5.166) as

[
∆p

n

]
=

[
N H

HT 0

]−1 [
cn

ch

]
, (5.170)

it follows with the help of (5.169) that
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∆p =
(
N−1 − N−1 H (HT N−1 H)−1 HT N−1

)
cn

+
(
N−1 H (HT N−1 H)−1

)
ch .

(5.171)

Equation (5.149) has defined ch := −h(p̂). Since p̂ is a constant vector, it does

not have an associated covariance matrix. However, cn depends on ∆b = b−b̂

and thus on b, which has an associated covariance matrix Σb,b. It therefore
follows from the rules of error propagation that

Σ∆p,∆p

Np×Np

=

(
∂∆p

∂b

)

Np×Nb

Σb,b

Nb×Nb

(
∂∆p

∂b

)T

Nb×Np

. (5.172)

Using the chain rule for differentiation, this can be written as

Σ∆p,∆p

Np×Np

=

(
∂∆p

∂cn

)

Np×Ncn

(
∂cn

∂b

)

Ncn×Nb

Σb,b

Nb×Nb

(
∂cn

∂b

)T

Nb×Ncn

(
∂∆p

∂cn

)T

Ncn×Np

=

(
∂∆p

∂cn

)

Np×Ncn

Σcn,cn

Ncn×Ncn

(
∂∆p

∂cn

)T

Ncn×Np

.

(5.173)

From (5.171), it follows that

(
∂∆p

∂cn

)
= N−1 − N−1 H (HT N−1 H)−1 HT N−1 . (5.174)

Now an expression for Σcn,cn
has to be found. From (5.173), it is clear that

Σcn,cn

Ncn×Ncn

=

(
∂cn

∂b

)

Ncn×Nb

Σb,b

Nb×Nb

(
∂cn

∂b

)T

Nb×Ncn

. (5.175)

Furthermore,
cn = AT D−1

bb cq, (5.176)

where
cq = A∆p + BT ∆b

= A∆p + BT (b − b̂).
(5.177)

It therefore follows that
(

∂cn

∂b

)
= AT D−1

bb BT. (5.178)
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Substituting this expression into (5.175), it is found after some calculation
that

Σcn,cn
= N. (5.179)

Substituting this result into (5.173) gives

Σ∆p,∆p =
(
N−1 − N−1 H (HT N−1 H)−1 HT N−1

)
N

×
(
N−1 − N−1 H (HT N−1 H)−1 HT N−1

)

= N−1 + N−1 H (HT N−1 H)−1 HT N−1 H (HT N−1 H)−1 HT N−1

−2N−1 H (HT N−1 H)−1 HTN−1

= N−1 − N−1 H (HT N−1 H)−1 HT N−1.

(5.180)
If we compare this result with (5.169), it is clear that

[
N H

HT 0

]−1

=

[
Σ∆p,∆p ·

· ·

]
, (5.181)

where the dots represent some other non-zero parts of the matrix.

5.9.4 Numerical Evaluation

In the first step, (5.166) has to be solved for ∆p and n. Then n can be used
to evaluate the residue ∆b and thus b. The assumption is that a fairly good
estimate for p and b, denoted by p̂ and b̂, already exists. In order to solve for
∆p and n, the following matrix has to be inverted:

[
N H

HT 0

]

(Np+Nh)×(Np+Nh)

. (5.182)

Therefore, the first step is to construct this matrix from the various obser-
vations. However, there are a number of block-diagonal matrices here which
can become very large for a large number of observations. It will therefore
be shown how N may be evaluated without generating huge matrices at in-
termediate steps. After all, N is only an Np × Np matrix. That is, its size
depends only on the number of parameters that have to be evaluated.
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5.9.4.1 Construction of Equations

Clearly, Dbb is a block-diagonal matrix, since the matrices that it is calculated
from, B and W, are block-diagonal matrices. Each block on its diagonal gives
the constraints for one observation. If we define

Wi := Σbi,bi , (5.183)

it follows that

N =
M∑

i=1

UT
i

(
Vi Wi VT

i

)−1
Ui (5.184)

and

cn =
M∑

i=1

UT
i

(
Vi Wi VT

i

)−1
cqi

. (5.185)

The linear system of equations that has to be solved may therefore be written
as

[∑M
i=1 UT

i

(
Vi Wi VT

i

)−1
Ui H

HT 0

] [
∆p

n

]

=

[∑M
i=1 UT

i

(
Vi Wi VT

i

)−1
cqi

ch

]
.

(5.186)

Hence, N and cn can be calculated from

N :=

M∑

i=1

UT
i

(
Vi Wi VT

i

)−1
Ui , cn :=

M∑

i=1

UT
i

(
Vi Wi VT

i

)−1
cqi

. (5.187)

5.9.4.2 Back-Substitution

Suppose now that ∆p and n have been calculated from (5.186). By substi-
tuting (5.162) into (5.156), an expression for ∆b in terms of ∆p is obtained:

∆b = W BD−1
bb

(
cq − A ∆p

)

⇐⇒ ∆bi = Wi VT
i (Vi Wi VT

i )−1
(
cqi

− Ui ∆p
)
.

(5.188)

The estimates for p (p̂) and b (b̂) can now be updated via

p̂′ = p̂ + ∆p , b̂′i = b̂i + ∆bi. (5.189)
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If the constraint functions qi and h are linear, then this gives the BLUE for p

and bi. However, in general the constraint functions are non-linear, in which
case these estimates have to be regarded as an iteration step.

5.9.5 Generalization

In addition to regarding the data vectors as random variables with associated
covariance matrices, the parameter vector can also be regarded as a random
variable with a covariance matrix. Just as for the Gauss–Markov model, this
extends the function Φ by a term ∆pT Σ−1

p,p ∆p, i.e.

Φ(∆p, ∆b, m, n) :=
1

2
∆bT W−1 ∆b +

1

2
∆pT Σ−1

p,p ∆p

−
(
A∆p + BT ∆b − cq

)T
m

+
(
HT ∆p − ch

)T
n ,

(5.190)

The added term acts as a regularization, which can be used to selectively solve
for only a subset of parameters. This can be achieved if Σ−1

p,p is a diagonal
matrix with zero entries on the diagonal for those parameters that can vary
freely, and large entries for fixed parameters.

The only effect of the additional term in Φ on the normal equations is that
there is a different matrix N, which is now

N = Σ−1
p,p + AT D−1

bb A . (5.191)

5.10 Applying the Gauss–Markov and Gauss–Helmert

Models

The initial estimate p̂ has to be close to the true parameter vector p for the
Gauss–Helmert model to converge, if the constraint equations qi are non-
linear. The Gauss–Markov model, on the other hand, shows a more robust
behavior. However, it does not take account of the uncertainties in the data
vectors. The best results can therefore be achieved by a combined application
of both methods. First, the Gauss–Markov method is used to robustly obtain
a good estimate of the starting parameters for use with the Gauss–Helmert
method, which then takes account of the uncertainties in the data vectors
and returns a covariance matrix for the parameter vector.

In the remainder of this section, problems that can occur with an iterative
application of the Gauss–Helmert model are discussed, which should clarify
the reason why a good initial parameter estimate is necessary.
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5.10.1 Iterative Application of Gauss–Helmert Method

An iterative application of the Gauss–Helmert model is necessary only if the
constraint functions qi and h are non-linear. In the applications discussed
later in this section, the constraint functions are typically multilinear. Be-
cause the Gauss–Helmert method adapts not only the parameter vector but
also the data vectors in each iteration step, it is easy to imagine that this
method might not converge for non-linear constraint functions. This will be
demonstrated with a simple example in the following.

Consider the problem of fitting a line to a set of points in R2. The data vec-
tors bi ∈ R3 are 2D vectors embedded in a projective space R3, representing
the positions of the points, with associated covariance matrices Σbi,bi

∈ R3×3,
which are assumed to be diagonal for simplicity. That is, the bi and Σbi,bi

are of the form

bi =
[
b1
i , b2

i , 1
]

and Σbi,bi =




σ2
1

σ2
2

0


 .

The parameter vector p ∈ R3 represents a line in projective space by its

normal and its orthogonal separation from the origin, i.e. p =
[
uT , −d

]T
,

where u ∈ R2 is the normal of the line and d ∈ R is the orthogonal separation
from the origin.

The constraint function q between the data and parameter vectors is there-
fore

q(bi, p) := bT
i p ,

which results in zero if bi represents a point that lies on the line represented
by p. Note that this is equivalent to the IPNS representation of a line given
in Sect. 4.2.3. The Jacobi matrices of q are

Vi(p̂) := p̂T and Ui(b̂i) := b̂T
i ,

and cqi := −b̂T
i p̂.

The constraint equation h on the parameters ensures that ‖p‖2 = 1, since
otherwise the scale of p would be another degree of freedom. That is,

h(p) :=
1

2
pT p − 1 ,

with a Jacobi matrix
HT := pT ,

and ch :=
1

2
p̂T p̂ − 1. The matrix N and vector cn of the normal equations

therefore become
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N =

M∑

i=1

b̂i (p̂T Σbi,bi p̂)−1 b̂T
i and cn = −

M∑

i=1

b̂i (p̂T Σbi,bi p̂)−1 b̂T
i p̂ .

If a solution for ∆p has been evaluated, ∆bi can be found by back-substitution
using (5.188), which gives

∆bi = Σbi,bi p̂ (p̂T Σbi,bi p̂)−1 (−b̂T
i p̂ − b̂T

i ∆p)

= −Σbi,bi p̂ (p̂T Σbi,bi p̂)−1 b̂T
i (p̂ + ∆p) .

From (5.141), it follows that

cqi
− Ui(b̂i) ∆p = Vi(p̂)∆bi ⇐⇒ −b̂T

i (p̂ + ∆p) = p̂T ∆bi .

Hence,
∆bi = −Σbi,bi p̂ (p̂T Σbi,bi p̂)−1 p̂T ∆bi .

If Σbi,bi is a scaled identity matrix, then the term p̂ (p̂T Σbi,bi p̂)−1 p̂T is a

projection matrix that projects onto the subspace spanned by p̂. Thus, b̂i is
adjusted along the direction of p̂. In this particular example, only the Eu-
clidean part, i.e. the first two dimensions of b̂i, is adjusted along the normal of
the initial estimate of the line. That is, the data points are adjusted perpen-
dicular to the initial line. The data point adjustments can differ considerably
depending on the initial line, which, in fact, can also result in different line
solutions that the iterations converge to.

Figure 5.3 shows several different results for the estimation of a line using
the Gauss–Helmert method for several different initial estimates p̂ of the line.
The true line is indicated by p, and the initial data points are the green points
distributed about the true line. The adjustments of the data points are drawn
as red lines away from the initial data points. After a single application of
the Gauss–Helmert method, the adjusted data points (red) come to lie on a
line, which implies that further iteration steps will not change the result.

In Fig. 5.3(a), the initial estimate of the line is perpendicular to the true
line, which is the worst possible initial estimate. The data points have been
adjusted along the normal of the initial estimate such that they all lie along a
line. This is exactly what the Gauss–Helmert method should do; however, in
this setup it results in a completely wrong solution for the line. If the initial
line is only slightly tilted, as in Figs. 5.3(b) and 5.3(d), the final estimate is
much better. If the initial estimate is close to the true line, as in Fig. 5.3(c),
the final solution is quite close to the true one.

The first iteration step of the Gauss–Markov method does in fact result in
the same estimate for the line as in the case of the Gauss–Helmert method. To
obtain a good estimate of the line with either method, the estimation has to be
iterated. In the case of the Gauss–Helmert method, it is essential that the data
vectors are not updated after each iteration, since, otherwise, the method





Chapter 6

Uncertain Geometric Entities and
Operators

In computer vision, one has to deal almost invariably with uncertain data
and thus also with uncertain geometric entities. Appropriate methods to deal
with this uncertainty therefore play an important role. Building mainly on
the results presented in Chap. 5, the construction and estimation of geometric
entities and transformation operators are discussed in the following.

A particular advantage of the approach presented here stems from the
linear representation of geometric entities and transformations and from the
fact that algebraic operations are simply bilinear functions. This allows the
simple construction of geometric constraints using the symbolic power of the
algebra, which can be expressed equivalently as multi-linear functions, such
that the whole body of linear algebra can be applied. The solutions to many
problems, such as the estimation of the best fit of a line, plane, circle, or
sphere through a set of points, or the best rotation between two point sets (in
a least-squares sense), reduce to the evaluation of the null space of a matrix.
By applying the Gauss–Helmert model (see Sect. 5.9), it is also possible to
evaluate the uncertainty of the estimated entity.

This chapter builds on previous work by Förstner et al. [74] and Heuel
[93], where uncertain points, lines, and planes were treated in a unified man-
ner. The linear estimation of rotation operators in geometric algebra was first
discussed in [146], albeit without taking account of uncertainty. The descrip-
tion of uncertain circles and 2D conics in geometric algebra was introduced
in [136], and the estimation of uncertain general operators was introduced
in [138]. Applications and extensions of these initial developments were pre-
sented in [139].

6.1 Construction

The first application of the combination of uncertainty with geometric algebra
is the construction of uncertain geometric entities and operators. The basic

C. Perwass, Geometric Algebra with Applications in Engineering.
Geometry and Computing.
c© Springer-Verlag Berlin Heidelberg 2009
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the rotation angle is not visualized. Rotating the ideal line L with this un-
certain motor M results in an uncertain line H, as shown in the figure. This
construction is a good example for showing how error propagation is applied.

We denote the component vectors of X, Y , Z, and W by x, y, z, and w,
respectively. The corresponding covariance matrices are denoted by Σx,x, Σy,y,
Σz,z, and Σw,w. First, the line that both planes have in common is calculated,
i.e. K := X ∧ Y ∧ e∞. This contains the outer product A := X ∧ Y , which
is written in terms of the component vectors as

ak = x i yj Λk
ij , ΛL (y) = yj Λk

ij , ΛR (x) = x i Λk
ij ,

where ΛL (y) and ΛR (x) are the left and right Jacobi matrices of the outer-
product operation. Since vectors X and Y statistically independent, the
covariance matrix Σa,a of a is given by

Σa,a = ΛL (y) Σx,x ΛL (y)
T

+ ΛR (x) Σy,y ΛR (x)
T

.

The line K, with component vector k, is evaluated via

kr = ai ej
∞ Λr

ij , ΛL (e∞) = ej
∞ Λr

ij ,

where e∞ := K(e∞) is the component vector of e∞ and ΛL (e∞) is the left
Jacobi matrix of the outer-product operation. The covariance matrix of k is
then given by

Σk,k = ΛL (e∞) Σa,a ΛL (e∞)
T

,

because e∞ has zero covariance. The planes P and Q are then given by
P = Z ∧ K and Q = W ∧ K. Hence,

pr = z i k j Λr
ij and qr = w i k j Λr

ij ,

with covariance matrices

Σp,p = ΛL (k) Σz,z ΛL (k)
T

+ ΛR (z) Σk,k ΛR (z)
T

,

Σq,q = ΛL (k) Σw,w ΛL (k)
T

+ ΛR (w) Σk,k ΛR (w)
T

.

Because P and Q both depend on K, they are no longer statistically
independent. The covariance matrix Σp,q capturing this relationship is needed
later on and can be estimated as follows. The covariance between P and K

is given by
Σp,k = ΛR (z) Σk,k

and thus
Σp,q = Σp,k ΛR (w)

T
,

which can be written in a single equation as

Σp,q = ΛR (z) Σk,k ΛR (w)
T

.
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Σh,h = GL(m) Σb,b GL(m)T + GR(b)Σm,m GR(b)T

+ GL(m) Σb,m GR(b)T + GR(b)ΣT
b,m GL(m)T .

6.2 Estimation

A fundamental problem that often occurs is the evaluation of a geometric en-
tity based on the measurement of a number of geometric entities of a different
type. One of the simplest examples of this problem is probably to find the
line L that best fits a given set of points {Xn}. Additionally, the covariance
matrix of the estimated line is to be evaluated. This can be achieved using the
Gauss–Helmert model as described in Sect. 5.9. The Gauss–Helmert model
has been used in the context of projective geometry for the estimation of ge-
ometric entities by Heuel [93]. Its application to the estimation of geometric
entities in geometric algebra was introduced by Perwass and Förstner in [136]
and was extended further to the estimation of operators in geometric algebra
in [138, 139].

The Gauss–Helmert model allows the estimation of a parameter vector
with an associated covariance matrix, given a set of data vectors with covari-
ance matrices, a constraint function between the data and parameter vectors,
and possibly a constraint function on the parameters alone. The resultant pa-
rameter vector is the solution to a system of linear equations that depends
on the Jacobi matrices of the constraint functions and on the data and the
covariance matrices, as discussed in Sect. 5.9.

6.2.1 Estimation of Geometric Entities

Consider again the example of fitting a line L through a set of points {Xn }.
In terms of the Gauss–Helmert model, the parameter vector is the component
vector ℓ of L that is to be estimated, and the data vectors {xn} are the
component vectors of the points {Xn}. The constraint function Q(Xn, L)
between the data and the parameters has to be zero if a point lies on the
line. The constraint function on the parameters alone H(L) has to be zero
if L represents a normalized line, i.e. ℓ satisfies the Plücker condition and
ℓT ℓ = 1.

The appropriate constraint between the data and parameter vectors can
be read off from Table 4.6, i.e.

Q(Xn, L) = Xn ∧ L , or qk(xn, ℓ) = x i
n ℓj Λk

ij .

The Plücker and normalization conditions on L can be combined into the
function
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H(L) = LL̃ − 1 , or hk(ℓ) = ℓi1 ℓj Ri2
j Γ k

i1i2
− δk

1 ,

where δk
j is the Kronecker delta, and the index 1 is assumed to be the index

of the scalar component of the corresponding multivector. In fact, this type of
constraint is applicable to all blades that represent geometric entities and to
all operators that represent Euclidean transformations. That is, a multivector
A ∈ G4,1 represents a geometric entity or Euclidean transformation operator

if and only if A Ã ∈ G0
4,1, i.e. it is a scalar. The free scale can be fixed by

enforcing A Ã = 1.
The Jacobi matrices of q are

Qk
nj = x i

n Λk
ij and Q̄k

i = ℓj Λk
ij

and the Jacobi matrix of h is

Hk
j = ℓi1 (Ri2

i1 Γ k
ji2

+ Ri2
j Γ k

i1i2
) .

These results can be substituted directly into the normal-equation formulas
of the Gauss–Markov model (see Sect. 5.8.4) or the Gauss–Helmert model
(see Sect. 5.9.4) to estimate the best line through the set of points in a least-
squares sense.

Table 6.1, which is based on Table 4.6, lists the constraint functions Q

between geometric entities that result in a zero vector if one geometric entity
is completely contained within the other. For example, the constraint between
two lines is zero only if the multivectors describe the same line up to a scale.
The constraint function H remains the same for all parameter types.

Note that the constraints Q between two entity types can be used in
two directions: instead of fitting a line to a set of points, a point can be
fitted to a set of lines using the same constraint. This particular example can
be used for triangulation, where the best intersection of a set of projection
rays has to be evaluated. Similarly, the best intersection line of a set of

projective planes can found. In Table 6.1, the symbols ×− and ×− denote the
commutator and the anticommutator product, respectively, which are defined

as A×−B =
1

2
(A B −B A) and A×−B =

1

2
(A B + B A) for A, B ∈ Gp,q. In

terms of the component vectors, this becomes

A×−B ⇐⇒ 1

2
ai bj (Γ k

ij − Γ k
ji), A×−B ⇐⇒ 1

2
ai bj (Γ k

ij + Γ k
ji).

(6.1)
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Table 6.1 Constraints between data and parameters that are zero if the correspond-
ing geometric entities are contained in one another

Data Parameter

Point X Line L Plane P Circle C Sphere S

Points {Yn} X ∧ Yn L ∧ Yn P ∧ Yn C ∧ Yn S ∧ Yn

Lines {Kn} X ∧Kn L×−Kn P×
−

Kn

Planes {On} X ∧On L×
−

On P×−On

Circles {Bn} X ∧Bn C×−Bn S×
−

Bn

Spheres {Rn} X ∧Rn C×
−

Rn S×−Rn

6.2.2 Versor Equation

There are many possibilities to define constraint equations that depend on
transformation operators. The most common one is the versor equation that
was introduced in Sect. 3.3 and whose numerical solution was treated in
Sect. 5.2.2. Another important example arises in the case of monocular pose
estimation, which is treated in Chap. 8. In this subsection, the estimation of
a general Euclidean transformation that relates two point sets is discussed as
an example of the versor equation.

Let M ∈ G4,1 denote a motor (a general Euclidean transformation) and
let {Xn } ⊂ G1

4,1 and {Yn } ⊂ G1
4,1 denote two sets of points, such that

Yn = M Xn M̃ ∀ n . (6.2)

Hence, the constraint function between the data vectors and the parameter
vector M can be written as

Q(Xn, Yn, M) = M Xn − Yn M . (6.3)

Note that this implies that Xn and Yn are not scaled, or at least they are
scaled by the same factor. Typically, this can be safely assumed for points,
since they are embedded from Euclidean space, in which the data has been
measured. For other geometric entities such as lines this is generally not the
case; this situation will be treated later.

Let m := K(M), xn := K(Xn), and yn := K(Yn) denote the respective
component vectors; then (6.3) can be written as

qk(xn, yn, m) = mi x j
n Γ k

ij − y i
n mj Γ k

ij

⇐⇒ qk(xn, yn, m) = mi
(
x j
n Γ k

ij − yj
n Γ k

ji

)
.

(6.4)

In matrix notation, this becomes
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q(xn, yn, m) = Qn m , Qn := x j
n Γ k

ij − yj
n Γ k

ji . (6.5)

Therefore, the solution for m lies in the right null space of Qn. If the algebraic
product tensors are reduced to the minimal number of components necessary
for the specific calculation, then Qn ∈ R16×8 has a 4-dimensional right null
space.

Given at least three point pairs, the motor components m can be evaluated
by finding the combined right null space of the corresponding {Qn }. If M

is known to represent only a rotation about some axis and not a general Eu-
clidean transformation (which also contains a translation along the rotation
axis), then m has only seven components (see Table 4.5), and two pairs of
points suffice to calculate m. The solution for m is given by the right null
space of

Q =




Q1

...

QN


 , or Q =

N∑

n=1

QT
n Qn .

When a singular-value decomposition is used to find the right null space, no
additional constraints on m are necessary, since the SVD algorithm already
ensures that the resultant null space vector is normalized. The remaining

constraint that M M̃ ∈ G0
4,1 is a scalar is already implicit in the constraint

equation, since (6.2) and (6.3) are equivalent only if M M̃ = 1. Note again
that this approach works for all combinations of operators and geometric
entities, if the geometric entities have the same scale. It can even be used to
estimate an operator that relates two sets of operators.

6.2.2.1 Gauss–Helmert Estimation

Given covariance matrices Σxn,xn
and Σyn,yn

for the { xn } and { yn }, the
initial solution for m given by the right null space of Q is a good starting
value for the Gauss–Helmert estimation method (see Sect. 5.9). To apply
Gauss–Helmert estimation, the Jacobi matrices of the constraint functions Q

and H have to be known. The constraint function H(M) on the parameters
alone is again given by

H(M) = M M̃ − 1 . (6.6)

To bring the constraint function Q into the form in which it is needed
for the Gauss–Helmert estimation, the data vector pairs xn, yn are combined
into single vectors

zn :=

[
xn

yn

]
, Σzn,zn

:=

[
Σxn,xn

Σyn,yn

]
.
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The Jacobi matrices of q(zn, m) are then

Un := (∂m q)(zn, m) = Qn ,

Vn := (∂zn
q)(zn, m) =

[
mi Γ k

ij , −mi Γ k
ji

]
. (6.7)

The constraint function H(M) can be expressed in terms of component
vectors as

hr(m) = mi mj Rk
j Γ r

ik − δr
1 ,

where δk
j is the Kronecker delta, and the index 1 is assumed to be the index

of the scalar component of the corresponding multivector. This is equivalent
to the Plücker condition mentioned in Sect. 6.2.1. The corresponding Jacobi
matrix is

Hr
k = mi (Rj

i Γ r
kj + Rj

k Γ r
ij) .

These Jacobi matrices can be substituted directly into the normal equations
as given in Sect. 5.9.4.

6.2.3 Projective Versor Equation

The projective versor equation relates two multivectors up to a scale. For
example, given A, B ∈ Gp,q and a versor V ∈ Gp,q, then A, B satisfy the
projective-versor-equation constraint if

B ≃ V A Ṽ ,

where “≃” denotes equality up to a scalar factor. This type of equation
often occurs in projective spaces, such as, for example, conformal space. This
is because a multivector in conformal space represents the same geometric
entity independent of its scale. This versor equation can be made into a
constraint equation by writing it as

Q(A, B, V ) = B×− (V A Ṽ ) . (6.8)

This is directly related to the diagonal entries of the containment relations
listed in Table 6.1. If A, B ∈ G1

p,q are 1-vectors, then the commutator product
is equivalent to the outer product.

More generally, all of the containment relations in Table 6.1 can be used
in this way to generate constraints on versors. For example, one relation that
is of particular importance for monocular pose estimation,is the point–line
constraint. Let X ∈ G1

4,1 represent a point, L ∈ G3
4,1 a line, and M ∈ G4,1 a

motor (a general Euclidean transformation). If the goal is to find the versor
V that maps the point X onto the line L, then the corresponding constraint
equation is
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Q(X, L, M) = L ∧ (M X M̃) . (6.9)

The main difference from the standard versor equation is that this con-
straint equation cannot be made linear in M . In terms of the component
vectors ℓ = K(L), x = K(X), and m = K(M), the constraint equation
becomes

qr(ℓ, x, m) := ℓi x j mr ms V p
ijrs , (6.10)

where
V p

ijrs := Λp
iu Γ k

rj Γu
kt Rt

s .

Let Σℓ,ℓ and Σx,x denote the covariance matrices of the data vectors ℓ and
x. These quantities can be combined into a single vector z with a covariance
matrix Σz,z as

z :=

[
ℓ

x

]
, Σz,z :=

[
Σℓ,ℓ

Σx,x

]
.

The Jacobi matrices of q(z, m) are then given by

U := (∂m q)(z, m) = ℓi x j mr (V p
ijrs + V p

ijsr) ,

V := (∂z q)(z, m) =
[
x j mr ms V p

ijrs , ℓi mr ms V p
ijrs

]
. (6.11)

Because the constraint equation q(z, m) is quadratic in m, an initial esti-
mate for m cannot be obtained by evaluating the null space of some matrix.
Instead, the Gauss–Markov estimation (see Sect. 5.8) may be used for this
purpose. The result of the Gauss–Markov estimation may then be used as
an initial estimate for the Gauss–Helmert estimation. The Gauss–Helmert
estimation then takes account of the covariances of the data vectors.

6.2.4 Constraint Metrics

The only requirement on the constraint function Q between the data and
parameter vectors noted so far is that it results in zero if the corresponding
constraint is satisfied. However, this requirement alone is not sufficient to
ensure a successful minimization. It is also important that Q is at least convex
and has a linear relation to the true ideal constraint. For example, when one
is fitting a geometric entity through a set of points, the constraint function
should ideally represent the Euclidean distance between the points and the
geometric entity. Whether a constraint function satisfies these requirements
has to be checked in each case. In the following, some of the most common
cases are discussed in some detail.
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6.2.4.1 Point–Line Metric

The point–line metric is the metric of the point–line constraint, which is given
by

X ∧ L = 0 ,

where X ∈ G1
4,1 represents a point and L ∈ G3

4,1 a line. In the following, it
is shown that ∆ := ‖X ∧L‖ is proportional to the Euclidean distance of the
point represented by X from the line represented by L.

For this purpose, consider three points a, b,x ∈ R3 in 3D Euclidean space.
The line passes through the points a and b, while x is the test point, whose
distance from the line is to be calculated. Let b = a+α r and c = a+β r+d,
where α, β ∈ R, r := (b − a)/‖b − a‖ is the unit direction vector of the line,
and d is the orthogonal distance vector of x from the line, and hence d·r = 0.

We define A := C(a) = a +
1

2
a2 e∞ + eo, B := C(b), and X := C(x). The

line L through A and B is the given by L := A ∧ B ∧ e∞. To calculate the
distance measure ∆ = ‖X∧L‖, the outer product X∧L has to be evaluated:

X ∧ L = A ∧ B ∧ X ∧ e∞

= a ∧ b ∧ c ∧ e∞ + (a ∧ b + b ∧ c + c ∧ a) ∧ eo ∧ e∞

= α r ∧ d ∧ (a + eo) ∧ e∞ , (6.12)

which is independent of β, the translation of the test point x parallel to the
direction of the line. Thus,

∆ = ‖X ∧ L‖ = ‖d‖ ‖α‖ ‖r ∧ d̂ ∧ (a + eo) ∧ e∞‖ ∝ ‖d‖ , (6.13)

where d̂ := d/‖d‖. That is, for fixed points a and b, the value of ∆ = ‖X∧L‖
depends linearly on the Euclidean distance ‖d‖ of the point X from the line
L. Hence, when the best line L that passes through a set of points {Xn }
is estimated by minimizing ‖Xn ∧ L‖, the Euclidean distance between the
points and the line is minimized.

6.2.4.2 Point–Circle Metric

The metric of the point–circle constraint is somewhat more complex. The
point–circle constraint is given by X ∧C, where X ∈ G1

4,1 represents a point
and C ∈ G3

4,1 represents a circle. If the point X lies on the circle C, then
X ∧ C = 0. The question to be discussed here is the form of the distance
measure

∆ := ‖X ∧ C‖ ,

if X does not lie on the circle. Figure 6.9 shows the contours of equal ∆ in a
plane perpendicular to the plane of the circle that passes through the circle’s
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If we define X := a e1 + b e2 +
1

2
(a2 + b2)e∞ + eo, it follows that

X · C∗ =
(
(a2 + b2) y + y (y2 − r2)

)
e2 + b y (y2 − r2)e∞ + 2 b y eo .

Straightforward calculation then gives

∆2 = ‖X · C∗‖2

= p2 A + q2 A + 2 p q A + p B + q C + D ,

where p := a2, q := b2, and

A := y2 ,

B := 2 y2 (y2 − r2) ,

C := 2 y2
(
(y2 − r2)2 + (y2 − r2) + 1

)
,

D := y2 (y2 − r2)2 .

The isometric contour for a distance d is therefore a root of the polynomial
∆2 − d2, which is quadratic in p and q . A parameterized expression for p in
terms of q or vice versa can thus be easily found.

6.2.4.3 Versor Equation Metric

Here, the metric of the versor constraint equation given in Sect. 6.2.2 is
discussed for points. That is, let X,Y ∈ G1

4,1 represent two points such

that Y = V X Ṽ , where V ∈ G4,1 is a unitary versor, i.e. V Ṽ = 1. The
constraint equation for V is then

Q(X, Y , V ) = V X − Y V .

If V does not satisfy the equation Q(X, Y , V ) = 0, then the distance mea-
sure is

∆ := ‖V X − Y V ‖ = ‖(V X Ṽ − Y ) V ‖ .

What is minimized is ∆2, which can be written as

∆2 = (V X Ṽ − Y ) V V † (V X Ṽ − Y )
†

= (V X Ṽ − Y ) (V X Ṽ − Y )
†

= ‖V X Ṽ − Y ‖2 .

We define Z := V X Ṽ to be the transformed vector X, which can be written

as Z = z +
1

2
z2 e∞ + eo. Since X and Y are assumed to be of the same
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scale, Y may be written as Y = y +
1

2
y2 e∞ + eo. Thus,

V X Ṽ − Y = (z − y) +
1

2
(z2 − y2) e∞ ,

from which it follows that

∆2 =

(
(z − y) +

1

2
(z2 − y2) e∞

) (
(z − y) − (z2 − y2)eo

)

= (z − y)2 + (z2 − y2)2 ,

because e†
∞ = −2eo. The Euclidean metric is (z − y)2, which shows that

∆2 approximates the Euclidean metric if z ≈ y. If X and Y are related
by a rotation about the origin, then ‖x‖ = ‖y‖. Hence, if V is constrained
to be some rotation about the origin, then ‖z‖ = ‖x‖ = ‖y‖ and thus
∆2 = (z − y)2, the Euclidean metric.

In Sect. 4.3.4 it was shown that X ·Y = (x− y)2, the Euclidean distance
between x and y if X and Y are scaled appropriately. Therefore, if the versor
that minimizes the Euclidean distance between two points X and Y is to be
found, then the constraint function should be

Q(X, Y , V ) = (V X Ṽ ) · Y .

However, this constraint equation cannot be made linear in V .

6.2.5 Estimation of a 3D Circle

To demonstrate the applicability of the approach discussed above for the
estimation of geometric entities, a synthetic experiment on fitting a 3D circle
to a set of uncertain data points is presented here.

The uncertain data to which a circle was to be fitted were generated as
follows. Let C denote a “true” circle of radius one, oriented arbitrarily in 3D
space. A set of N = 10 points {an ∈ R3} on the true circle within a given
angle range was selected randomly. For each of these points, a covariance
matrix Σan,an was generated randomly, within a certain range. For each of
the an, Σan,an was used to generate a Gaussian-distributed random error
vector rn. The data points {bn} ⊂ R3, with corresponding covariance matrices
Σbn,bn

, were then defined as bn = an + rn and Σbn,bn
= Σan,an

. The standard
deviation of the set {‖rn‖} is denoted by σr. For each angle range, 30 sets of
true points {an} and, for each of these sets, 40 sets of data points {bn} were
generated.

A circle was then fitted to each of the data point sets. A circle estimate is
denoted by Ĉ, and the shortest vector between a true point an and Ĉ by dn.
For each Ĉ, two quality measures were evaluated: the Euclidean root mean
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Table 6.2 Results of circle estimation for SVD method (SVD) and Gauss–Helmert
method (GH)

σr
Angle
range

∆̄Σ ( σ̄Σ) ∆̄E (σ̄E)

SVD GH SVD GH

10◦ 2.13 (0.90) 1.26 (0.52) 0.047 (0.015) 0.030 (0.009)

0.07 60◦ 1.20 (0.44) 0.92 (0.31) 0.033 (0.010) 0.028 (0.009)

180◦ 1.38 (0.56) 0.97 (0.36) 0.030 (0.009) 0.025 (0.008)

10◦ 2.17 (0.90) 1.15 (0.51) 0.100 (0.032) 0.057 (0.019)

0.15 60◦ 1.91 (0.99) 1.35 (0.68) 0.083 (0.033) 0.069 (0.028)

180◦ 1.21 (0.44) 0.90 (0.30) 0.070 (0.022) 0.058 (0.018)

squared (RMS) distance δE and the Mahalanobis RMS distance δΣ :

δE :=

√
1

N

∑

n

dT
n dn , δΣ :=

√
1

N

∑

n

dT
n Σ−1

an,an dn .

The latter measure uses the covariance matrices as local metrics for the dis-
tance measure; δΣ is a unitless value that is > 1, = 1, or < 1 if dn lies
outside, on, or inside the standard-deviation error ellipsoid represented by
Σan,an

, respectively.
For each true point set, the mean and standard deviation of δE and δΣ over

all data point sets is denoted by ∆E , σE and ∆Σ , σΣ , respectively. Finally,
the means of ∆E , σE and ∆Σ , σΣ over all true point sets are denoted by
∆̄E , σ̄E and ∆̄Σ , σ̄Σ . These quality measures were evaluated for the circle
estimates by the SVD and the Gauss–Helmert method. The results for two
different values of σr and three different angle ranges are given in Table 6.2.
In all cases, 10 data points were used.

It can be seen that for both levels of noise (σr), the Gauss–Helmert method
always performs better in terms of the mean quality and the mean standard
deviation than the SVD method. It is also interesting to note that the Eu-
clidean measure ∆̄E is approximately doubled when σr is doubled, while the
“stochastic” measure ∆̄Σ increases only slightly. This is to be expected, since
an increase in σr implies larger values in the Σan,an . Note that ∆̄Σ < 1 implies
that the estimated circle lies mostly inside the standard-deviation ellipsoids
of the true points.



274 6 Uncertain Geometric Entities and Operators

6.2.6 Estimation of a General Rotor

As an example of the estimation of an operator, a synthetic experiment on the
estimation of a general rotor is presented here. This implements the versor
equation as discussed in Sect. 6.2.2.

For the evaluation of a general rotor, the “true” points {an} ⊂ R3 were a
cloud of Gaussian-distributed points about the origin with standard deviation
0.8. These points were then transformed by a “true” general rotation R ∈
G4,1, i.e. a rotation about an arbitrary axis. Given the set {a′n} of rotated
true points, noise was added to generate the data points {bn} in just the
same way as for the circle experiment of Sect. 6.2.5. For each of 40 sets of
true points, 40 data point sets were generated and a general rotor R̂ was
estimated. Using R̂, the true points were rotated to give {â′n}. The distance
vectors {dn} were then defined as dn := a′n − â′n. From the {dn}, the same
quality measures as for the circle experiment were evaluated.

Table 6.3 Results of estimation of a general rotor for a standard method (Std), the
SVD method (SVD), and the Gauss–Helmert method (GH)

σr
∆̄Σ ( σ̄Σ) ∆̄E (σ̄E)

Std SVD GH Std SVD GH

0.09 1.44 (0.59) 1.47 (0.63) 0.68 (0.22) 0.037 (0.011) 0.037 (0.012) 0.024 (0.009)

0.18 1.47 (0.62) 1.53 (0.67) 0.72 (0.25) 0.078 (0.024) 0.079 (0.026) 0.052 (0.019)

The results of the Gauss–Helmert method, the initial SVD estimate, and
the results of a standard approach described in [12] are compared in Ta-
ble 6.3. Since the quality measures did not give significantly different results
for rotation angles between 3 and 160 degrees, the means of the respective
values over all rotation angles are shown in the table. The rotation axis al-
ways pointed parallel to the z-axis and was moved one unit away from the
origin parallel to the x-axis. In all experiments, 10 points were used.

It can be seen that for both levels of noise (σr), the Gauss–Helmert method
always performs significantly better in terms of the mean quality and the
mean standard deviation than the other two methods. Just as for the circle,
the Euclidean measure ∆̄E is approximately doubled when σr is doubled,
while the “stochastic” measure ∆̄Σ increases only slightly. Note that ∆̄Σ < 1
implies that the points {â′n} lie mostly inside the standard-deviation ellipsoids
of the {a′n}.
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Σq,q = QL Σx,x QT
L + QR Σℓ,ℓ QT

R ,

where Σx,x and Σℓ,ℓ are the covariance matrices of x and ℓ, respectively.
Figure 6.10(a) visualizes the value of qT Σ−1

q,q q for different positions of X.
The line L is drawn in black in the center, and the contour lines of the plot
are simply scaled versions of the standard-deviation envelope of the line.

The same construction may be done for a point and a circle, which results
in Fig. 6.10(b). Here the mean circle is drawn in black, and the standard-
deviation envelope of the circle in white. The contours of qT Σ−1

q,q q in this
plot are not scaled versions of the standard-deviation envelope.



Chapter 7

The Inversion Camera Model

In this chapter, a camera model is discussed which encompasses the standard
pinhole camera model, a lens distortion model, and catadioptric cameras with
parabolic mirrors. This generalized camera model is particularly well suited
to being represented in conformal geometric algebra (CGA), since it is based
on an inversion operation.

The pinhole camera model is the oldest perspective model which realisti-
cally represents a 3D scene on a 2D plane, where “realistically” means appear-
ing to human perception as the original scene would. According to [25], “fo-
cused perspective was discovered around 1425 by the sculptor and architect
Brunelleschi (1377–1446), developed by the painter and architect Leone Bat-
tista (1404–1472), and finally perfected by Leonardo da Vinci (1452–1519).”
This concept of focused perspective also lies at the heart of projective space,
which becomes apparent in Fig. 4.8, for example. In Sect. 7.1, the pinhole
camera model and its representation in geometric algebra are briefly dis-
cussed. Figure 7.2 shows the mathematical construction of a pinhole camera.
The point A4 in that figure is called the optical center, and P represents the
image plane. If a point X is to be projected onto the image plane, the line
through X and A4, the projective ray, is intersected with the image plane P .
The intersection point is the resultant projection. Owing to its mathematical
simplicity and its good approximation to real cameras in many cases, the
pinhole camera model is widely used in computer vision.

However, the pinhole camera model is only an idealized model of a real
camera. Depending on the application, it may therefore be necessary to take
account of distortion in the imaging process due to the particular form of
the imaging system used. This is typically the case if high accuracy is needed
or if wide-angle lens systems are employed, or both. The problem is that all
real lens systems differ and their distortion cannot be modeled easily mathe-
matically. The best approximations are the thin-lens and thick-lens models.
However, even those are only approximations to a real lens system. Therefore,
for an exact rectification of an image taken with a distorting lens system, the
individual lens system has to be measured. This process is time-consuming

C. Perwass, Geometric Algebra with Applications in Engineering.
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order to project a homogeneous vector X ∈ R4 onto the image plane, the
intersection of the image plane P with the line L := X ∧ A4 connecting X

with the optical center A4 has to be evaluated. This can be done with the
meet operation,

XA = L ∨ P = (X ∧ A4) ∨ (A1 ∧ A2 ∧ A3) .

Since the join of L and P is the whole space R4, the meet operation can be
expressed as

XA = (X ∧ A4)
∗ · (A1 ∧ A2 ∧ A3) . (7.1)

In this way, a closed algebraic expression for the projection of a point onto
the image plane is constructed. The inner and outer camera calibration is
contained in the vectors {Ai }. The relation of this expression to the camera
matrix can be derived quite easily.

From the rules for the inner product (cf. section 3.2.7), it follows that

XA = (X ∧ A4)
∗ · (A1 ∧ A2 ∧ A3)

= (X ∧ A2 ∧ A3 ∧ A4)
∗

A1

+ (X ∧ A3 ∧ A1 ∧ A4)
∗

A2

+ (X ∧ A1 ∧ A2 ∧ A4)
∗

A3 .

(7.2)

Each of the dualized 4-vector expressions can also be written as

(X ∧ A2 ∧ A3 ∧ A4)
∗

= X · (A2 ∧ A3 ∧ A4)
∗

.

The expression (A2 ∧ A3 ∧ A4)
∗

is simply the reciprocal vector A1 of A1, as
follows from the definition of reciprocal vectors in Sect. 3.5. Therefore, (7.2)
can also be written as

XA =

3∑

i=1

(
X · Ai

)
Ai . (7.3)

Suppose X is given in some basis {Zi } ⊂ R4 as X = x i Zi; then

XA =
3∑

i=1

4∑

j=1

x j
(
Zj · Ai

)
Ai . (7.4)

This can be expressed as the matrix equation

xA = K x , Ki
j := Zj · Ai , (7.5)

where K ∈ R3×4 is the camera matrix and xA is the component vector of
XA in the bases {A1, A2, A3 }.
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points and points on an object are assumed to be given and the corresponding
projection rays have to be evaluated in order to estimate the object’s pose,
i.e. position and orientation.

If the pinhole camera’s internal calibration is given, the projection ray
L can immediately be evaluated in the camera’s coordinate frame. In the
inversion camera model, this pinhole camera setup is represented as shown in
Fig. 7.3(b). The sphere Sinv, with center Cinv, is used to perform an inversion
of the image plane Pimg, which results in the sphere Simg. In particular, the
image point Y is mapped to point Z. In Fig. 7.3(b), the center Cinv of
the inversion sphere Sinv coincides with the focal point F . In this case the
inversion of Y in Sinv results again in a point on the projection ray L.
Therefore, this setup is equivalent to the standard pinhole camera setup.

Figure 7.3(c) demonstrates what happens when the inversion sphere is
moved below the focal point. Now the image point Y is mapped to Z under
an inversion in Sinv. The corresponding projection ray L is constructed by F

and Z and thus does not pass through Y anymore. It will be shown later that
this results in a lens distortion model similar to the division model proposed
by Fitzgibbon [71].

Simply by moving the inversion sphere Sinv and the image plane Pimg,
catadioptric cameras with a parabolic mirror can be modeled. This construc-
tion is shown in Fig. 7.3(d), and is based on work by Geyer and Daniilidis
[78]. An inversion of the image point Y in sphere Sinv generates the point
Z. In this case, this is equivalent to an inverse stereographic projection of Y

onto the image sphere Simg, which is how this mapping is described in [78].
The corresponding projection ray L is again the line through F and Z.

The image Y of a world point X generated in this way is equivalent to
the image generated by a parabolic mirror whose focal point lies in F , as
was shown in [78]. That is, a light ray emitted from point X that would pass
through the focal point F of the parabolic mirror is reflected down, parallel to
the central axis of the parabolic mirror. This is also indicated in Fig. 7.3(d).
The reflected light ray intersects the image plane Pimg exactly in the point
Y .

Whereas the construction for the parabolic mirror in terms of a stere-
ographic projection has been known for some while, replacing the stereo-
graphic projection by an inversion is the key contribution introduced here,
which makes this model readily representable in the geometric algebra of
conformal space. In the following, the mathematical details of the inversion
camera model will be discussed.

7.3 From Pinhole to Lens

In this section, the mathematical details of the inversion camera model with
respect to lens distortion are discussed. In all calculations, a right-handed
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camera model will be represented by a versor K ∈ G4,1. That is, if Y ∈ G1
4,1

represents an image point, then Z := K Y K̃ is the transformed image point.
As can be seen in Fig. 7.3, the point Z will in general not lie on the image
plane; however, the goal is to find a K such that Z lies on the “correct”
projection ray. The transformed image point in the image plane can then be
found by intersecting the projection ray with the image plane.

One of the simplest forms that K can take is

K = Ts S T̃s D, (7.6)

where S is a sphere centered on the origin, Ts is a translator, and D a
dilator (an isotropic scaling operator). This form has also been found to
behave well numerically. The dilator scales the image, which has the same
effect as varying the focal length if the inversion sphere Sinv := Ts S T̃s is
centered on the focal point (see Fig. 7.3(b)). If the inversion sphere is not
centered on the focal point, the dilator also influences the distortion. In the

following, the transformation K Y K̃ is analyzed in some detail.
To simplify matters, it is assumed that Ts translates the inversion sphere

along only the e3 axis, and that S is a sphere of radius r centered on the
origin. Hence,

S := eo −
1

2
r2 e∞, Ts := 1 − 1

2
τs e3 e∞. (7.7)

It is then straight forward to show that

Sinv = Ts S T̃s

= τs e3 +
1

2
(τ2

s − r2) e∞ + eo

= s1 e3 +
1

2
s2 e∞ + eo, (7.8)

where s1 := τs and s2 := τ2
s − r2. The inversion sphere Sinv can thus be

regarded as a vector with two free parameters, that influence the sphere’s
position along e3 and its radius.

Recall that the dilation operator D for a scaling by a factor d ∈ R is given
by

D = 1 +
1 − d

1 + d
E , (7.9)

where E := e∞ ∧ eo. For brevity, we define τd := −(1 − d)/(1 + d), so that
D = 1 − τd E. The image point transformation operator K is then given by

K = Sinv D

= s1 e3 +
1

2
s2 (1 − τd) e∞(1 + τd) eo − τd s1 e3 E

= k1 e3 + k2 e∞ + k3 eo + k4 e3 E, (7.10)
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where

k1 := s1, k2 :=
1

2
s2 (1 − τd), k3 := 1 + τd, k4 := −τd s1. (7.11)

In the model setup, the image plane Pimg passes through the origin and
is perpendicular to e3. That is, the image points lie in the e1–e2 plane. An
image point is denoted in Euclidean space by y ∈ R3 and its embedding in
conformal space by Y := C(y) ∈ G1

4,1; that is,

Y = y +
1

2
y2 e∞ + eo. (7.12)

After a straightforward, if tedious, calculation, it may be shown that

K Y K̃ = (k2
4 − k2

1 + 2k2k3) y

− 2
[
(k1 + k4) k2 + (k1 − k4) k3 y∞

]
e3

−
[
2 (k2 + k3 y∞) k2 − (k1 − k4)

2 y∞
]

e∞

−
[
(k1 + k4)

2 + 2k2
3y∞

]
eo , (7.13)

where y∞ :=
1

2
y2. Substituting the definitions of the {ki} given in (7.11)

into (7.13) results in

K Y K̃ = − (1 − τ2
d ) (s2

1 − s2) y

− (1 − τd)
2
[
s1 s2 + 2 s1 d2 y∞

]
e3

− (1 − τd)
2
[
1
2 s2

2 + (s2 − s1 d) s2 d y∞
]

e∞

− (1 − τd)
2
[
s2
1 + 2 d2 y∞

]
eo, (7.14)

where the identity d = (1 + τd)/(1 − τd) has been used. Since the dilation
operator D and the inversion operator Sinv map points into points, the vector

Z = K Y K̃ has to represent a point. Z can be mapped into its normal
form by dividing it by its eo component. Recall that this does not change
the Euclidean point that Z represents. However, in the normal form, the
Euclidean point that Z represents can be read off directly:

Z = K Y K̃

≃ d (s2
1 − s2)

s2
1 + 2 d2 y∞

y +
s1 s2 + 2 s1 d2 y∞

s2
1 + 2 d2 y∞

e3

+
1
2 s2

2 + (s2 − s1 d) s2 d y∞

s2
1 + 2 d2 y∞

e∞ + eo, (7.15)
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where “≃” denotes equality up to a scalar factor. Hence, the Euclidean point
z ∈ R3 represented by Z is

z =
d (s2

1 − s2)

s2
1 + d2 y2

y +
s1 s2 + s1 d2 y2

s2
1 + d2 y2

e3, (7.16)

where y∞ =
1

2
y2 has been used. The point z will, in general, not lie in

the image plane, but on the sphere which results from the inversion of the
image plane in the inversion sphere. Examples of this mapping are shown in
Fig. 7.6 for various types of distortion. In these examples, the dilator was set
to unity (d = 1). The circles drawn on the images give the location of the unit
transformation, that is, the location of those image points whose location is
not changed under the transformation.

To calculate the corresponding transformation of the image points in the
image plane, the intersection point v of the projection ray through z with
the image plane has to be evaluated. The result of this calculation is shown
in Fig. 7.6 for various locations of the inversion sphere Sinv.

Assuming the focal point f ∈ R3 to be defined as f := e3, the intersection
point yd is given by

yd = f − f − z

(f − z) · e3
. (7.17)

This results in

yd =
−(s2

1 − s2) d

s1 (s2 − s1) + (s1 − 1) d2 y2
y =

β

1 + α y2
y, (7.18)

where

α :=
(s1 − 1) d2

s1 (s2 − s1)
, β :=

−(s2
1 − s2) d

s1 (s2 − s1)
. (7.19)

Note that v/β corresponds to the division model proposed by Fitzgibbon
in [71]. Typically, lens distortion models are used to remove the distortion
in an image independently of the focal length or field of view (FOV) of the
imaging system that generated the image. This is usually done either by
requiring that lines which appear curved in the image have to be straight,
or by enforcing multiview constraints given a number of images of the same
scene. The rectified image can then be used for any other type of application.
For this purpose, and for lenses with an FOV of at most 180◦, the inversion
model is equivalent to the division model.

However, here the applicability of the inversion model as a camera model
is being investigated. That is to say, the lens distortion of a camera system is
modeled directly in the context of a constraint equation. For example, in the
monocular pose estimation problem, the transformation operator M has to
be evaluated such that a model point X comes to lie on the projection ray
of a corresponding image point Y . If F denotes the focal point, this can be
formulated in CGA as





















296 7 The Inversion Camera Model

One approach to finding the relation between µ and d is to project p(y)
onto the unit sphere Simg, since z(y) lies on this sphere and thus z(y) =
p(y)/‖p(y)‖. It is not too difficult to show that

p(y)2 = µ2

(
y2

4 µ2
+ 1

)2

⇐⇒ ‖p(y)‖ = µ

(
y2

4 µ2
+ 1

)
. (7.33)

Therefore,

p(y)

‖p(y)‖ =
1

µ

(
y2

4 µ2
+ 1

) y +

y2

4 µ2
− 1

y2

4 µ2
+ 1

e3. (7.34)

If we compare (7.31) with (7.34), it can easily be seen that

z(y) =
p(y)

‖p(y)‖ ⇐⇒ d =
1

2 µ
. (7.35)

To summarize, the imaging process of a parabolic catadioptric camera
as shown in Fig. 7.14, whose parabolic mirror has a focal length µ, can be
represented by the transformation operator K = Sinv D in CGA, where

Sinv = e3 −
1

2
e∞ + eo, D = 1 +

2 µ − 1

2 µ + 1
E. (7.36)

7.6 Extensions

The inversion camera model was presented in its most basic form in the pre-
vious sections. In this section, extensions of this basic model are presented.
However, a detailed analysis of these extensions is a subject for future re-
search.

In the previous sections it was always assumed that the optical axis passes
through the image center. For real cameras, this is in general not the case.
The basic inversion camera model can be extended as follows to incorporate
such deviations:

K = TS S TS D TC , (7.37)

where S is a sphere of radius r centered at the origin, TS is a translator along
e3, D is a dilator, and TC is a translator in the image plane. That is, TC

translates the image points in the image plane before they are transformed.
The effect of this additional translation is shown in Fig. 7.15(b); the initial
image is shown in Fig. 7.15(a).

In addition to translation of the image plane, the inversion sphere can also
be translated parallel to the image plane. That is, TS translates not only





Chapter 8

Monocular Pose Estimation

Monocular pose estimation is a more or less well-known subject area, which
was first treated in the 1980s, for example by Lowe [122, 123]. Overviews of
the various approaches to pose estimation can be found in [115, 150]. The
various algorithms differ in the type of information that is known about the
object whose pose is to be estimated and in the mathematical formalism that
is used to represent the pose itself.

The data that is assumed to be given in all monocular pose estimation
algorithms is some geometrical information about the object and the corre-
sponding appearance of the object in the image taken. For example, some
typical approaches are to assume knowledge of the location of points and/or
lines on an object, and the location of their appearance in an image. Find-
ing these correspondences is known as the correspondence problem, which is
by no means trivial. It is usually only tractable if either unique markers are
placed on an object or a tracking assumption is made. In the latter case it
is assumed that the pose of the object is roughly known and only has to
be adapted slightly. Such an assumption is particularly necessary if only a
contour model of the object is given [155].

The mathematical framework used for pose estimation is typically matrix
algebra. However, there have been approaches using dual quaternions [39,
173], which are isomorphic to motors in conformal geometric algebra. The
drawback of using dual quaternions is that within this framework the only
representable geometric entities are lines. In the geometric-algebra framework
used in this text, any representable geometric entity can be used.

The work most closely related to this text is that by Rosenhahn et al.
on pose estimation, they also employed geometric algebra. Their work treats
many aspects of pose estimation, such as pose estimation with point and
line correspondences [153], pose estimation with free-form contours in 2D
[155, 156] and 3D [158, 159], pose estimation of kinematic chains [152, 157],
and combinations thereof for estimation of human motion [151].

The aim of this chapter is to revisit the constraint equation of geometric
algebra that lies at the foundation of all of the above applications, and to

C. Perwass, Geometric Algebra with Applications in Engineering.
Geometry and Computing.
c© Springer-Verlag Berlin Heidelberg 2009

299















306 8 Monocular Pose Estimation

(
Yi ∧ F ∧ e∞

)
∧
(
M Xi M̃

)
= 0. (8.11)

This assumes that the internal camera parameters are known and the im-
age has been rectified accordingly. Alternatively the inversion camera model
described in Sect. 7.2 can be used directly in (8.11). That is,

((
K Yi K̃

)
∧ F ∧ e∞

)
∧
(
M Xi M̃

)
= 0, (8.12)

where K is the inversion camera model operator. Recall that K is an operator
that combines variations in the focal length and lens distortion, and it can
also represent parabolic catadioptric cameras. As was shown in Sect. 7.6,
the inversion camera model can also be extended to adjust the position of
the image center. However, non-square pixels and skewed image plane axes
cannot be represented in this model. It is therefore assumed in the following
that these types of distortion have already been rectified before the pose
estimation is applied.

Estimating the pose from correspondences between model points and im-
age points is not the only possibility. Correspondences between model lines
and image points can also be used. In this case, typically a number of image
points are selected that correspond to the model line. Let Ui denote a model
line and Yi a corresponding image point; then the constraint equation for M

becomes ((
K Yi K̃

)
∧ F

)
∧
(
M Ui M̃

)
= 0. (8.13)

Note that the left bracket does not contain the ∧e∞ anymore since Ui is
already a line (cf. section 4.3.5). An example of the application of this type
of constraint to robot navigation can be found in [76].

If the inversion camera model is not used, there are even more constraints
that can be used in addition. The two most interesting additional constraints
are correspondences between model points and image lines, and between
model and image lines. The inversion camera model cannot be applied in
these cases, since the operator K maps a line into a circle. It would then be
necessary to represent an ellipsoidal cone that passes through the focal point
and this circle, which is not possible in CGA.

These two additional constraints have the following mathematical formu-
lation. Let Vi denote an image line and Xi a model point that lies on the
corresponding model line. The constraint equation is then given by

(
Vi ∧ F

)
∧
(
M Xi M̃

)
= 0 . (8.14)

Note that the expression Vi∧F represents a projection plane. If Ui denotes a
model line that corresponds to the image line Vi, then the constraint becomes

(
Vi ∧ F

)
×−
(
M Ui M̃

)
= 0 . (8.15)
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linear in the rotation axis and angle. Owing to this linearization, an iterative
approach is needed to estimate the motor components.

In the approach presented here, a general motor, i.e. a full Euclidean trans-
formation, is estimated. Furthermore, the motor itself is not linearized. In-
stead, the derivatives of the constraint equation are implicitly assumed to
be independent of the components of the motor. That is, the Gauss–Markov
and Gauss–Helmert estimations find the best motor under the assumption
that the constraint equation is linear in the components of the motor. Since
this is not the case, these methods also have to be iterated. However, in this
way, no small-angle assumption is made and a general motor can be treated
in much the same way as a constrained motor.

8.3.1 Tensor Form

We recall the constraint equation (8.12),

((
K Yn K̃

)
∧ F ∧ e∞

)
∧
(
M Xn M̃

)
= 0 .

To apply Gauss–Markov and Gauss–Helmert estimation, this constraint equa-
tion has to be expressed in tensor form, which is done in a number of steps.

We define the necessary component vectors as k := K(K) ∈ R4, xn :=
K(Xn) ∈ R5, yn := K(Yn) ∈ R5, zn := K(Zn) ∈ R5, f := K(F ) ∈ R5,
m := K(M) ∈ R8, and e∞ := K(e∞) ∈ R5. The camera model component
vector k may be regarded as a component vector. However, it is advantageous
to use the multivectors that generate K as parameter vectors. From (7.10),
it follows that K can be written as K = Sinv D, where

Sinv = τs e3 +
1

2
(τ2

s − r2) e∞ + eo and D = 1 − τd E ,

with E := e∞ ∧ eo. If we defining the component vectors s := K(Sinv) ∈ R3

and d := K(D) ∈ R2, the component vector k is given by

kr = si d j Γ r
ij . (8.16)

The transformation of the image point Yn by the camera model operator K

becomes

Zn := K Yn K̃ ⇐⇒ zr
n = y i1

n k i2 k i3 K r
i1 i2 i3 , (8.17)

where K r
i1 i2 i3 ∈ R5×5×4×4 is defined as

K r
i1 i2 i3 := Γ j1

i2i1
Γ r

j1j2
Rj2

i3 .
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Note that the algebraic product and operator tensors are assumed to be
reduced to the minimal dimensions necessary. When implementing the tensor
form of (8.17), it is advantageous not to calculate the tensor K r

i1 i2 i3 in
advance, but to contract the constituent product tensors as soon as possible
with the data vectors. In this way, the computational load is considerably
reduced. However, the analytic presentation of the formulas is much clearer
if the product tensors are combined.

The expression for the transformed model point Xn is very similar:

Wn := M Xm M̃ ⇐⇒ wr
n = x i1

n mi2 mi3 M r
i1 i2 i3 , (8.18)

where wn := K(Wn), and M r
i1 i2 i3 ∈ R5×5×8×8 is defined as

M r
i1 i2 i3 := Γ j1

i2i1
Γ r

j1j2
Rj2

i3 .

The projection ray Ln := Zn ∧ F ∧ e∞ is expressed in tensor form as

Ln := Zn ∧ F ∧ e∞ ⇐⇒ ℓr
n = z i1

n f i2 Lr
i1 i2 , (8.19)

where Lr
i1 i2 ∈ R6×5×5 is defined as

Lr
i1 i2 = ej2

∞ Λj1
i1i2 Λr

j1j2 .

The complete constraint is therefore given by

Q :=
((

K Yn K̃
)
∧ F ∧ e∞

)
∧
(
M Xn M̃

)

⇐⇒ qr
n = ℓi1

n w i2
n Λr

i1i2 ,
(8.20)

where q ∈ R4, because Q represents a plane (see Table 4.3). Substituting the
expressions for ℓi1

n and w i2
n into (8.20) gives

qr
n = y i1

n k i2 k i3 xp1
n mp2 mp3 f j2

× K j1
i1 i2 i3 Lq1

j1 j2 M q2
p1 p2 p3

Λr
q1q2

.

(8.21)

This may also be written as

qr
n = y i1

n k i2 k i3 mp2 mp3 Qr
n i1 i2 i3 p2 p3

, (8.22)

where Qr
n i1 i2 i3 p2 p3

is defined as

Qr
n i1 i2 i3 p2 p3

:= xp1
n f j2 K j1

i1 i2 i3 Lq1
j1 j2 M q2

p1 p2 p3
Λr

q1q2
.

Here xn and f are assumed to be known exactly and are thus multiplied
into the tensor Qr

n i1 i2 i3 p2 p3
. If they also have associated covariance matri-

ces, they have to be regarded as data vectors and as part of the constraint
function.
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Note again that it is computationally much less expensive to calculate qr
n

step by step and not to precalculate the tensor Qr
n i1 i2 i3 p2 p3

. The form of
(8.22) is merely helpful for seeing that the constraint function that is to be
satisfied is quadratic in the parameter vectors k and m. That is, the pose
estimation problem can be expressed as a set of coupled quadratic equations.

8.3.2 Jacobi Matrices

To apply the Gauss–Markov and Gauss–Helmert estimation methods, the
Jacobi matrices of (8.22) have to be evaluated. In the estimation procedure,
the vectors s, d and m are regarded as the parameter vectors and the { yn }
as the data vectors. To apply the formulas for the construction of the nor-
mal equations of the Gauss–Markov and Gauss–Helmert estimation meth-
ods, the three parameter vectors have to be combined into a single vector

p :=
[
mT , sT , dT

]T
. The Jacobi matrix ∂p qn is then given by

Un := ∂p qn = [ ∂m qn , ∂s qn , ∂d qn ] . (8.23)

The evaluation of the separate Jacobi matrices in this expression is most
easily done step by step. First of all, from (8.16) it follows that

∂ kr

∂ sp
= d j Γ r

pj and
∂ kr

∂ dp
= si Γ r

ip , (8.24)

where r indicates the row and p the column of the Jacobi matrices. The
Jacobi matrices of zn can be derived from (8.17) as follows:

∂ z r
n

∂ yp
n

= k i2 k i3 K r
p i2 i3 ,

∂ z r
n

∂ sp
= y i1

n

∂ k i2

∂ sp
k i3 (K r

i1 i2 i3 + K r
i1 i3 i2) ,

∂ z r
n

∂ dp
= y i1

n

∂ k i2

∂ dp
k i3 (K r

i1 i2 i3 + K r
i1 i3 i2) . (8.25)

The Jacobi matrices of ℓn then follow directly from (8.19):

∂ ℓr
n

∂ yp
n

=
∂ z i1

n

∂ yp
n

f i2 Lr
i1 i2 ,

∂ ℓr
n

∂ sp
=

∂ z i1
n

∂ sp
f i2 Lr

i1 i2 ,

∂ ℓr
n

∂ dp
=

∂ z i1
n

∂ dp
f i2 Lr

i1 i2 . (8.26)

The Jacobi matrices of wn are similar to those of zn and are given by
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∂ wr
n

∂ mp
= x i1

n mi2 (M r
i1 i2 p + M r

i1 p i2) . (8.27)

Finally, the Jacobi matrices of qr
n with respect to the parameter vectors are

given by
∂ qr

n

∂ mp
= ℓi1

n

∂ w i2
n

∂ mp
Λr

i1i2 ,

∂ qr
n

∂ sp
=

∂ ℓi1
n

∂ sp
w i2

n Λr
i1i2 ,

∂ qr
n

∂ dp
=

∂ ℓi1
n

∂ dp
w i2

n Λr
i1i2 . (8.28)

For the Gauss–Helmert estimation method, the Jacobi matrix of qn with
respect to the data vector yn also has to be known. This is given by

Vn := ∂yn
qn =

∂ qr
n

∂ yp
n

=
∂ ℓi1

n

∂ yp
n

w i2
n Λr

i1i2 . (8.29)

8.3.3 Constraints on Parameters

Two different types of constraints on the parameter vectors are employed
here. There are two constraints of the first type:

1. A constraint function H(M), which ensures that M is a motor.
2. A constraint function G(Sinv), which fixes the radius of Sinv at unity.

The second type of constraint is a regularization term that fixes part of the
parameter vectors Sinv and D. This regularization term is expressed as a
covariance matrix for the parameters as discussed in Sects. 5.8.5 and 5.9.5.

The constraint on M is given by

H(M) = M M̃ − 1 , (8.30)

which ensures that M is a motor and removes the degree of freedom associ-
ated with the arbitrary scale of M . In tensor form, this constraint reads

hr = mi1 mi2 Γ r
i1j Rj

i2 − δr
1 (8.31)

where δr
1 is the Kronecker delta, and it is assumed that the first parameter

refers to the scalar component. The corresponding Jacobi matrix is

Hr
p :=

∂ hr

∂ mp
= mi1 (Rj

i1 Γ r
pj + Rj

p Γ r
i1j) . (8.32)

The first constraint on Sinv, given by

G(S) = Sinv Sinv − 1 , (8.33)
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ensures, together with the second constraint on Sinv discussed below, that
the radius of Sinv is unity. This follows directly from (4.44), p. 153. In tensor
form, this constraint reads

gr = si1 si2 Γ r
i1i2

− δr
1 , (8.34)

where δr
1 is defined as before. The corresponding Jacobi matrix is

Gr
p :=

∂ gr

∂ sp
= si (Γ r

pi + Γ r
ip) . (8.35)

The second type of constraint on Sinv and D ensures that their constant
components stay constant. That is, in

Sinv = τs e3 +
1

2
(τ2

s − r2) e∞ + eo and D = 1 − τd E ,

the eo component of Sinv and the scalar component of D are constant. This
is enforced by introducing a diagonal covariance matrix for the parameter
vector p, whose inverse has zeros on the diagonal at those places that relate
to free parameters. Diagonal entries that relate to fixed parameters are set
to high values, for example 1× 108. In this way, it is also possible to fix Sinv

completely and vary only D, which is equivalent to estimating only the focal
length. Similarly, M can be constrained further if it is known, for example,
that the Euclidean transformations have to lie in one of the planes of the
coordinate axes.

Let νi
m, νi

s , and νi
d denote the inverse variances (regularization values) of

mi, si, and d i, respectively. Since the full parameter vector p is given by

p =
[
mT , sT , dT

]T
, the corresponding inverse covariance (regularization)

matrix Σ−1
p,p is given by

Σ−1
p,p =




ν1
m

. . .

ν8
m

ν1
s

ν2
s

ν3
s

ν1
d

ν2
d




. (8.36)

Free parameters have a corresponding inverse variance that is zero, i.e. the
variance is infinite, and fixed parameters have a large corresponding inverse
variance, i.e. a small variance.
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8.3.4 Iterative Estimation

The estimation of the parameter vector p is done in two main steps. In the first
step, the Gauss-Markov estimation is iterated until it converges. In the second
step, the Gauss-Helmert estimation, which takes account of the covariances
of the data vectors is applied once. The idea here is that the Gauss-Markov
estimation finds the minimum under the assumption that the data vectors
are certain. If the data covariances are not too large, this minimum should
be close to the minimum when the data covariances are taken into account.
One step with the Gauss–Helmert method should then suffice to estimate the
appropriate minimum.

8.3.4.1 Setup

The image is assumed to lie in the e1–e2 plane, where the image center lies
at the origin. The horizontal image axis pointing to the right from the image
center is e1, and the vertical image axis pointing upwards from the image
center is e2. Therefore, the optical axis pointing away from the camera has
a direction −e3.

It is assumed that the image resolution in pixels and the size of the CCD
chip in millimeters are known. The image points Yn that correspond to the
model points Xn are then expressed in terms of millimeter positions relative
to the image center. Furthermore, the image point coordinates are scaled
isotropically, such that the extent of the CCD chip away from the image
center is of order 1. The model points are typically not scaled accordingly,
since this would result in very large differences in magnitude between the
image and model points, which would lead to numerical problems in the
estimation procedure. Instead, the model points are scaled isotropically such
that the extent of the model is not more than one order of magnitude larger
than the chip size.

The model itself is placed at the origin, where one model point is chosen
as the model’s origin. Alternatively, the model’s center may be placed at the
origin.

8.3.4.2 Initial Values

The initial estimate of the parameter vector m of the motor M is obtained
from the initial pose estimation described in Sect. 8.1. The initial parameter
vectors s and d of the inversion sphere Sinv and the dilator D are set either to
the values of the pinhole setup for images with lens distortion (cf. Sect. 7.3)
or to the values for the catadioptric setup for a parabolic mirror with unit
focal length (cf. Sect. 7.5).
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• Lens distortion. Sinv represents a sphere of radius 1 centered on the optical
center and D is a unit dilator. The optical center or focal point F is placed
at the point e3. This implies an initial focal length of 1, which relates to
an initial angular field of view of approximately 45 degrees, because of the
scaling of the CCD chip. Hence,

F = e3 +
1

2
e∞ + eo ⇐⇒ f =

[
0 , 0 , 1 , 1

2 , 1
]T

,

Sinv = e3 + e0 ⇐⇒ s = [ 1 , 0 , 1 ]
T

,

D = 1 ⇐⇒ d = [ 1 , 0 ]
T

.

• Parabolic mirror. The focal point F is now placed at the origin, i.e. the
same point as the image center. Sinv represents a sphere of radius

√
2

centered on e3, and D is a unit dilator. This represents the setup shown in
Fig. 7.14. Note that only Sinv is kept fixed in the minimization procedure.
Hence,

F = eo ⇐⇒ f = [ 0 , 0 , 0 , 0 , 1 ]
T

,

Sinv = e3 −
1

2
e∞ + e0 ⇐⇒ s =

[
1 , −1

2
, 1

]T

,

D = 1 ⇐⇒ d = [ 1 , 0 ]
T

.

If the camera model parameters are known, for example if rectified images
are used, then these can be set, and the corresponding parameter vectors are
fixed by setting the corresponding entries on the diagonal of Σ−1

p,p to large
values.

In the following, λI and λM denote the image and model point scales,
respectively. If the focal length τf of a standard camera is known and the
image is rectified, then the focal-point parameter vector f is set to

f =

[
0 , 0 , λI τf ,

1

2
λ2

I τ2
f , 1

]
,

and s and d are regarded as fixed parameters.
If the focal length τf of a parabolic mirror is known, then the dilator

parameter vector d is set to

d =

[
1 ,

2 λM τf − 1

2 λM τf + 1

]T

.

The parameter vectors s and d are then both kept fixed in the minimization.
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8.3.4.3 Iteration

Given the Jacobi matrices and parameter covariance Σp,p as derived in
Sects. 8.3.2 and 8.3.3, the normal equations of the generalized Gauss–Markov
method (cf. Sect. 5.8.5) can be generated and solved for the adjustment vec-

tor ∆p of the parameter vector p. If p(i) and ∆p(i) denote the parameter and
adjustment vectors of the ith iteration, then

p(i+1) = p(i) + ∆p(i) .

The Jacobi matrices are then reevaluated with the updated parameter vec-
tor p(i+1), and a new adjustment vector ∆p(i+1) is estimated. This iterative
procedure is stopped when the magnitude of the adjustment vector ‖∆p(i)‖
is sufficiently small.

Note that this procedure is very similar to the Levenberg–Marquardt
method, with the main difference that the adjustment vector is not scaled
before adding it to the current estimate. The update direction is, however,
evaluated in exactly the same way.

A problem in minimizing the given constraint function for the motor and
camera model parameters is that the parameters are of different scales. That
is, an adjustment that is small in terms of the motor parameters can have a
very large effect when applied to the camera model parameters. This has the
effect that the adjustment of the camera model parameters is often overesti-
mated, which can lead to an oscillation or a convergence to a local minimum
in the minimization procedure. The situation can be remedied by setting the
components in Σ−1

p,p that correspond to the camera model parameters not to
zero but to small values. The exact magnitude that these components should
have is difficult to find, however. Instead, the following approach has been
implemented, which leads to good results.

With respect to (8.36), the regularization values for m and { νi
m }, are set

to zero. The motor parameters are therefore treated as free parameters. The
regularization values { νi

s } and { νi
d } are initially set to a large value such

as 107. In the lens distortion setup, the only camera model parameters that
have to be adjusted are s1, s2, and d2. Keeping the remaining camera model
parameters constant also fixes the scale of s and d.

Owing to this initialization, the camera model parameters are not adjusted
in the first iteration step, which helps to guide the motor update in the right
“direction”. From now on, the regularization terms are set depending on the
corresponding parameter adjustment of the previous step as follows:

ν1
s = 2 ‖s1‖ , ν2

s = 2 ‖s2‖ , ν2
d = 2 ‖d2‖ . (8.37)

The idea is that if a large adjustment step is made in one iteration, then in
the next iteration only a small step is made. For example, suppose that in
one step a parameter is adjusted by too much, such that the derivative at
the adjusted position is even larger in magnitude in the opposite direction.
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8.4.2 Execution

A number of different types of pose estimation experiments were performed
on the same data by varying the parameters in the following ways:

1. The simultaneous estimation of the camera parameters and the object pose
is only well conditioned if the appearance of the object in an image is large
enough. Therefore, the pose estimation quality was evaluated for the six
closest object positions and for all object positions separately.

2. The estimation method presented here can easily be varied to estimate
only the pose when values for the camera model parameters are given.
The camera model parameters were estimated with a separate calibration
object, and pose estimation was performed with a camera model calibrated
in this way and also without fixed camera model parameters.

3. The Gauss–Helmert estimation uses the results of the Gauss–Markov es-
timation as input, to take account of the uncertainty in the data. Results
are therefore given for the Gauss–Markov estimation alone and the Gauss–
Helmert estimation.

The pose estimation quality was evaluated as follows. Since no external
camera calibration was available, the estimated object poses and positions
could not be compared with the robot positions directly. Instead, all pairs of
pose estimates were compared with the corresponding pair of robot positions.

Let Mn denote the estimated motor representing the house pose for robot
position n, and define

Wn i := Mn Xi M̃n ,

where Xi is the ith model point. The {Wn i } are thus the transformed model
points. The center of these transformed model points was evaluated as

wn :=
1

M

M∑

i=1

C−1(Wn i) ,

where C−1(Wn i) maps Wn i to Euclidean space and M is the number of
model points. The difference between the estimated transformed model cen-
ters for robot positions i and j, namely wi and wj , is denoted by

∆wij := wi − wj .

Similarly, the difference vector between the true robot positions i and j,
namely ri and rj , is given by

∆rij := ri − rj .

These difference vectors were calculated for all pairs of pose estimates. From
the pairs ∆wij and ∆rij , the best rotor (rotation operator) R can be es-
timated that rotates the {∆wij } into the corresponding {∆rij }, which is
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part of the external calibration. The RMS error of the pose estimate is then
given by

∆ :=

√√√√ 1

N

∑

(i,j)

∥∥∥∆rij − R ∆wij R̃

∥∥∥
2

, (8.38)

where the sum goes over all pairs (i, j) and N is the number of these pairs.
For example, for the six closest robot positions, N = 15, and if all 21 robot
positions are considered, then N = 210.

Additionally, a relative RMS error was calculated as the ratio of the RMS
error given by (8.38) and the mean distance of the estimated model positions
relative to the camera origin. That is,

∆Rel :=
∆

1

N

N∑

n=1

‖wn‖
. (8.39)

8.4.3 Results

The results of the experiments when the six closest object positions were con-
sidered are shown in Table 8.2, and the results when all 21 object positions
were considered are shown in Table 8.3. In these tables, ∆ is given in units of
millimeters, ∆Rel in percent, the number of iterations (Iter.) without units,
and the total execution time (Time) in seconds. Note again that the uncal-
ibrated results were obtained with only a knowledge of the size of the CCD
chip and its resolution. No additional calibration information was given. A
number of conclusions can be drawn from this data.

In Table 8.2, it may be surprising that the pose estimation for the 8 mm and
10.5 mm lenses is more accurate in the uncalibrated than in the calibrated
case. The reason is that the inversion camera model cannot represent the
distortion of these fisheye lenses correctly. Therefore, in the calibrated case
the best mean calibration was used for all images. In the uncalibrated, case
the best calibration for the current position of the house object in the image
was used, which was much better. However, it is also apparent from Table 8.3
that the simultaneous calibration and pose estimation fails or at least contains
a large error if the object is too far away from the camera. Here the pose
estimated using a calibrated camera model is better.

It is also interesting to see in Table 8.2 that, apparently, the pose estimates
in the uncalibrated case are better for the 8mm and 10.5 mm lenses than for
the 18mm lens. The reason seems to be that the images taken with the 18mm
lens do not constrain the camera model as well as those taken with the 8mm
and 10.5 mm lenses. Also, the camera was placed further away from the robot
arm, such that the relative RMS error ∆Rel stayed approximately the same.
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For the 50 mm lens, a simultaneous estimation of the pose and camera
model parameters was too badly conditioned to give stable results, which is
why no results are listed. The main reason is that in this case variations in
focal length and lens distortion hardly change the appearance of the object in
the image and can also be partly recovered by a different pose. In particular,
as the projection of the object becomes more orthographic, variations in the
focal length and in the depth position result in virtually the same image. In
other words, with increasing focal length, the object dimensions also have to
increase to allow a stable estimation of the camera parameters.

In the comparison between the two catadioptric imaging systems, the
LogLux camera gave much better results than did the Sony camera; this
was due to the higher resolution of the former. For the six closest object po-
sitions, the LogLux camera gave equally good results in the calibrated and
the uncalibrated case, even though more iterations were necessary in the lat-
ter case. This shows that the camera model parameters were estimated stably
and a good calibration could be achieved for the close object positions. When
all object positions are considered, though, the calibrated pose estimation is
much better. Again, if the object is too far away, its extension in space does
not suffice to generate well-conditioned constraint equations.

The additional use of the Gauss–Helmert method after the initial Gauss–
Markov estimation leads partly to slightly better and partly to slightly worse
results. In all cases a standard deviation of two pixels was assumed for the
image points. It is not necessarily to be expected that the Gauss–Helmert
estimation will give better results in the Euclidean sense, since it regards the
data covariance matrices as local metrics instead of using the standard Eu-
clidean metric. The result of the Gauss–Helmert method is thus optimal with
respect to these metrics. This should be of particular importance if different
image points can be associated with different covariance matrices, reflecting
the uncertainty of the correspondence. For example, if an image-processing
algorithm that detects markers on the object also returns a covariance matrix
reflecting the spatial precision of the detection, this could be used advanta-
geously in the Gauss–Helmert estimation.

8.5 Conclusions

In this chapter, a monocular pose estimation algorithm was presented that
incorporates the inversion camera model. In this way, the same constraint
equation can be used for a pinhole camera, a camera with lens distortion,
and a catadioptric camera with a parabolic mirror. It was shown that when
the extension of the object whose pose is to be estimated is large enough
in the image, camera calibration is possible and leads to good results. In
particular, it is easy to change the estimation method from a calibration
method to a pure pose estimation method by varying the covariance matrix
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Table 8.2 Experimental results for pose estimation using the six closest positions
of the house model to the camera. ∆ is given in millimeters, ∆Rel in percent, and the
execution time in seconds. GM, Gauss–Markov method; GH, Gauss–Helmert method;
Iter., number of interations

Calibrated Uncalibrated

GM & GH GM GM & GH GM

Camera

Lens

∆

∆Rel

Iter.

Time

∆

∆Rel

Iter.

Time

∆

∆Rel

Iter.

Time

∆

∆Rel

Iter.

Time

D70

8 mm

7.19

2.61

4 .67

0.41

7.48

2.72

3 .67

0.30

2.64

0.96

7 .83

0.63

2.65

0.96

6 .83

0.53

D70

10.5 mm

7.74

2.80

4 .00

0.34

8.19

2.96

3 .00

0.24

2.36

0.85

6 .50

0.53

2.37

0.85

5 .50

0.43

D70

18 mm

5.56

0.87

5 .50

0.47

5.30

0.83

3 .50

0.26

6.28

0.87

6 .50

0.53

6.28

0.87

5 .50

0.43

D70

50 mm

12.88

0.74

5 .00

0.41

12.86

0.74

4 .00

0.30

LogLux

Parabolic

8.06

1.81

6 .00

0.48

7.98

1.79

5 .00

0.37

8.00

1.82

10 .83

0.83

7.89

1.80

9 .83

0.72

Sony

Parabolic

13.63

3.73

6 .83

0.58

14.26

3.92

5 .17

0.41

31.12

8.48

10 .67

0.86

31.49

8.81

9 .00

0.69

of the parameters, which acts as a regularization matrix. Furthermore, the
pose estimation algorithm has the following advantageous aspects:

1. No initial pose estimate is needed.
2. No approximations of the Euclidean transformation operator, the motor,

are made, such as a small-angle approximation or an assumption that the
transformation is a general rotation, which excludes pure translations.

3. The constraint equation is quadratic in the components of the motor and
the camera model that are to be estimated.

4. Covariance matrices can be obtained for the motor and the camera model
operator.

For pose estimation alone, the approach presented is certainly very useful;
it is also useful because it can be extended to estimating the pose from
line matches as well. When the camera model is included, it is well suited
for catadioptric cameras with a parabolic mirror, lens systems with a slight
distortion, and pinhole cameras, i.e. rectified images. For fisheye lenses, the
pose estimation quality is limited, because fisheye lenses cannot be modeled
to a high accuracy.



324 8 Monocular Pose Estimation

Table 8.3 Experimental results for pose estimation using all 21 positions of the
house model. ∆ is given in millimeters, ∆Rel in percent, and the execution time in
seconds. GM, Gauss–Markov method; GH, Gauss–Helmert method; Iter., number of
interations

Calibrated Uncalibrated

GM & GH GM GM & GH GM

Camera

Lens

∆

∆Rel

Iter.

Time

∆

∆Rel

Iter.

Time

∆

∆Rel

Iter.

Time

∆

∆Rel

Iter.

Time

D70

8 mm

18.87

4.29

4 .90

0.42

17.83

4.06

3 .76

0.30

40.97

9.36

12 .57

1.01

40.50

9.23

11 .43

0.89

D70

10.5 mm

20.12

4.55

4 .33

0.36

19.06

4.32

3 .33

0.26

36.62

7.30

11 .91

0.95

31.88

7.13

10 .86

0.85

D70

18 mm

10.23

1.35

5 .62

0.50

10.10

1.33

3 .67

0.30

27.67

3.19

7 .00

0.57

27.59

3.19

6 .00

0.47

D70

50 mm

23.32

1.26

5 .00

0.42

23.18

1.25

4 .00

0.32

LogLux

Parabolic

13.75

2.22

6 .05

0.49

13.64

2.20

4 .95

0.38

39.42

6.57

12 .48

0.96

39.44

6.57

11 .43

0.86

Sony

Parabolic

18.15

3.36

6 .52

0.55

18.10

3.35

5 .00

0.40

85.42

16.35

12 .76

1.03

85.35

16.38

11 .24

0.88



Chapter 9

Versor Functions

In this chapter, several different types of versor functions are discussed, which
demonstrate interesting relationships between Fourier series of complex-
valued functions, coupled twists, space curves in n dimensions, and a special
type of polynomial curve, Pythagorean-hodograph (PH) curves. All of these
stem from a fundamental versor function F : R → Gp,q defined as

F : t 7→ A(t) N Ã(t) , N ∈ Gp,q , A : R → Gp,q , (9.1)

where Gp,q denotes the Clifford group of Gp,q (cf. Sect. 3.3).
The chapter consists of two main parts: a discussion of coupled motors

and a discussion of PH curves. Coupled motors occur quite naturally in the
treatment of robotic arms and kinematic chains in general [150, 161]. It is
shown how this is related to cycloidal curves and Fourier descriptors of planar
curves. The discussion of coupled motors is concluded with a brief discussion
of space curves in higher dimensions generated through coupled motors.

The second main part of this chapter is a discussion of PH curves. PH
curves were introduced by Farouki and Sakkalis for R2 [64] and R3 [65], and
are now well-known polynomial functions. Nevertheless, this section intro-
duces some new aspects of spatial PH curves, which were developed by the
author in collaboration with Farouki [135]. The main result is that cubic and
quintic PH curves, which are typically represented in terms of quaternions,
can be represented equivalently in a vector form in geometric algebra. This
form has the advantages that it is dimension-independent, it gives the free
parameters a geometric meaning, and it lends itself well to further analysis.
Another interesting new result is the analysis of PH curves of constant length
in the setting of Hermite interpolation. This could be interesting for applica-
tions, since the PH curves vary in shape while keeping their length constant.
The section ends with a brief discussion of PH curves in Rn and a summary
of the results.

C. Perwass, Geometric Algebra with Applications in Engineering.
Geometry and Computing.
c© Springer-Verlag Berlin Heidelberg 2009
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9.1 Coupled Motors

A coupled motor system describes the curve that is generated by coupling
together a number of general Euclidean transformations, which are called
motors or screws (cf. Sect. 4.3.11). A motor describes a rotation about an
arbitrary axis with a simultaneous translation along that axis. In conformal
space G4,1, such an operator can be represented as follows. Let R,TR,TA ∈
S4,1 denote a rotor about an axis through the origin and two translators,
respectively, where S4,1 denotes the spin group of G4,1. A motor M can
then be written as

M := TA TR R T̃R , (9.2)

where TR translates the rotation axis of R and TA is a translation in the
direction of the rotation axis. If we define a motor function M : R → S4,1,
then a curve can be generated by the function F : R → G1

p,q, where

F : t 7→ M(t)N M̃(t) , (9.3)

and where N := C(n) ∈ G1
4,1 represents a point in conformal space and

n ∈ G1
3 (see (4.36), p. 150). A coupled motor curve is generated by the

combination of a number of motor functions Mi : R → S4,1, as

F : t 7→ Mk(t) · · · M1(t) N M̃1(t) · · · M̃k(t) . (9.4)

9.1.1 Cycloidal Curves

A particular subset of coupled motor functions in R2 generates the well-known
cycloidal curves. An overview of these curves can be found in [113, 128, 150,
166]. They are of particular interest here because they have a direct relation to
Fourier series of complex-valued functions, which was first shown in [154, 155].
Before the connection to the Fourier series is shown, the representation of
cycloidal curves in the conformal space G3,1 of R2 will be discussed.

A rotor function R : R → S3,1 representing a rotation about the origin
can be defined as

R : t 7→ exp(−π µ t U) , (9.5)

where µ ∈ R is the rotation frequency and U := e1 e2 is the unit bivector

representing the rotation plane. The {ei} := R
3,1

denote the canonical basis
of R3,1.

A rotation about an arbitrary point in R2 can be represented by a motor
function M : R → S3,1, defined in terms of the above rotor function R(t)
as

M : t 7→ T R(t) T̃ , (9.6)
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where T := 1 − 1

2
d e∞ ∈ S3,1 is a constant translator.

If N := C(n) ∈ G1
3,1 represents the point n ∈ R2 in conformal space, then

a function F : R → G1
3,1, defined as

F : t 7→ M(t) N M̃(t) , (9.7)

represents a curve in R2. In this case, this curve will simply be a circle, because
the point N is rotated about the point T eo T̃ , i.e. the origin translated by
T .

Suppose a set of motor functions Mi : R → S3,1 are defined as

Mi : t 7→ Ti Ri(t) T̃i , (9.8)

with

Ti := 1 − 1

2
di e∞ , Ri : t 7→ exp(−π µi t U) . (9.9)

The {di } ⊂ R2 ⊂ G1
3,1 define a set of 2D translation vectors, and the {µi } ⊂

R a set of rotation frequencies. The curve generated by the coupling of these
motor functions is represented by a function F : R → G1

3,1, defined as

F : t 7→ Mk(t) · · · M1(t) N M̃1(t) · · · M̃k(t) . (9.10)

Various sets of rotation axis positions {di } and rotation frequencies {µi }
generate the well-known cycloidal curves.

9.1.2 Fourier Series

The connection of (9.10) to a Fourier series of a complex-valued function can
be most easily shown by expressing (9.10) in G2, the geometric algebra of
R2.

The rotor R(t) ∈ S2 has the form

R : t 7→ exp(−π µ t U) , (9.11)

where U := e1 e2 is in this case the pseudoscalar of G2. However, there
exists no translation operator. Instead, the translations are generated by
addition. The function F (t) in (9.7) can therefore be expressed as a function
f : R → G1

2 as follows:

f : t 7→ R (n − d) R̃ + d . (9.12)

Since n − d ∈ G1
2 is a grade 1 vector and the rotation plane U ∈ G2

2 is the
pseudoscalar, it follows from the rules of the inner product that
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U (n − d) = U · (n − d) = −(n − d) · U = −(n − d)U .

Since
R = exp(−π µ t U) = cos(πµ t) − sin(πµ t) U ,

it follows that R (n − d) = (n − d) R̃. Hence, f(t) can be written as

f(t) = (n − d) R̃2(t) + d ,

where R̃2(t) = exp(2π µ tU).
The function F (t) in (9.10) may thus be written in G2 as a function

f : R → G1
2 defined as

f : t 7→ · · · R2(t)
(
R1(t) (d0−d1) R̃1(t)+d1−d2

)
R̃2(t)+d2−· · · , (9.13)

where d0 := n is the initial vector mentioned earlier. This can also be written
as

f(t) =

k∏

i=1

(
(d0 − d1) R̃2

i (t)
)

+

k∏

i=2

(
(d1 − d2) R̃2

i (t)
)

+ . . .

+(dk−1 − dk) R̃2
k(t) + dk .

(9.14)

If we define pi := dk−i − dk−i+1 for i ∈ {1, . . . , k}, p0 := dk, and

Ṽj(t) :=

k∏

i=k−j+1

R̃2
i (t) ,

(9.13) can be written as

f(t) = p0 +

k∑

i=1

pi Ṽi(t) = p0 +

k∑

i=1

pi exp(2π νi t U) . (9.15)

The definition of the { Ṽj } implies that the frequencies {νi} are given in

terms of the {µi} as νj :=
∑k

i=k−j+1 µi. If µi = 1 for all i ∈ { 1, . . . , k }, then
νi = i, and (9.15) represents a finite Fourier series

f(t) =

k∑

i=0

pi exp(2π i t U) . (9.16)

The relation to a complex-valued Fourier series becomes clear when
we note that the even subalgebra G

+
2 ⊂ G2 is isomorphic to the com-

plex numbers, as shown in Sect. 3.8.2. Consider a vector x ∈ G1
2, where

x := x 1 e1 + x 2 e2; then
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Z := e1 x = x 1 + x 2 e1 e2 = x 1 + x 2 U .

Since U2 = −1, Z is isomorphic to a complex number, where x 1 is the
real part and x 2 the imaginary part. Therefore, e1 f(t) is isomorphic to a
complex-valued function f : R → C defined as

f : t 7→
k∑

i=0

pi exp(2π i t i) , (9.17)

where i :=
√
−1 is the imaginary unit and the { pi } ∈ C are complex numbers

isomorphic to { e1pi } ∈ G
+
2 . Equation (9.17) is the standard definition of a

finite Fourier series. The discrete Fourier transform of f(t) is defined as

Fj :=

∫ 1

0

f(t) exp(−2π j t i) dt . (9.18)

When applied to (9.17), this results in

Fj =

k∑

i=0

pi

∫ 1

0

exp(2π (i − j) t i) dt = pj . (9.19)

In geometric-algebra terms, the discrete Fourier transform of a 1-vector-
valued function f : R → G1

2 is defined as

Fj :=

∫ 1

0

f(t) exp(−2π j t U) dt . (9.20)

Applied to (9.16), this results in

Fj =

k∑

i=0

pi

∫ 1

0

exp(2π (i − j) t U) dt = pj . (9.21)

The amplitude spectrum of f(t) is therefore given by the magnitudes { ‖pi‖ }
of the phase vectors {pi }, and the phase angles are given by { arctan(pi ·
e2/pi · e1) }. The phase vectors are called Fourier descriptors. It is also pos-
sible to construct affine-invariant Fourier descriptors [10, 80] from the phase
vectors. These are elements that stay invariant under affine transformations
of the closed, planar curve that they describe; such descriptord have been
used extensively for object recognition (see e.g. [11, 70, 169]).
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9.1.3 Space Curves

The representation of a curve generated by coupled motors as a Fourier series
was only possible because all rotors {Ri(t) } represented rotations in the same
plane U . The {Ri(t) } therefore commute, i.e. Ri(t) Rj(t) = Rj(t) Ri(t).
This means that any cycloidal curve that lies in some plane in a higher-
dimensional embedding space can be represented as a Fourier series. The
only element that changes is the bivector U representing the plane.

Another interesting type of cycloidal curve is those that do not lie in a
plane. In this case the rotors {Ri(t) } in the coupled-motor representation of
(9.13) do not all share the same rotation plane. One effect of this is that the
rotors do not commute, in general, and thus the equation cannot be reduced
to the form of (9.15). An interesting subject for future research would be to
find a transformation that extracts the rotation frequencies and axes from a
given space curve function in this case.

9.2 Pythagorean-Hodograph Curves

PH curves are a particularly interesting type of polynomial curve. Their name
describes their distinguishing property, namely that their hodograph satisfies
the Pythagorean condition. The hodograph of a parametric curve r : R →
Rn is the locus defined by its derivative r′(t) := (∂t r)(t), considered as a
parametric curve in its own right. The Pythagorean condition refers to the
fundamental equation c2 = a2 + b2. In terms of the polynomial curve r(t),
its hodograph is Pythagorean if there exists a polynomial σ : R 7→ R such
that (

σ(t)
)2

=
(
r′(t)

)2

⇐⇒ σ(t) = ‖r′(t)‖ .

The main effect of this constraint is that the cumulative arc length s(t) of
the curve r(t) is given by a polynomial, since

s(t) =

∫ t

0

‖r′(u)‖ du =

∫ t

0

σ(u) du .

Owing to this particular structure, PH curves offer significant computa-
tional advantages over “ordinary” polynomial parametric curves. They find
application in computer graphics, computer-aided design, motion control,
robotics, and related fields [55].

PH curves in the Euclidean spaces R2 and R3 have been thoroughly in-
vestigated. Planar PH curves [64] can be conveniently expressed in terms
of a complex-variable formulation [53], which facilitates key construction
and analysis algorithms [5, 60, 63, 66, 101, 125]. Spatial PH curves were
first studied in [65], although the characterization used there constitutes
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only a sufficient condition for a polynomial hodograph r′(t) ∈ R3 to be
Pythagorean. A sufficient-and-necessary condition for the sum of squares of
three polynomials to yield the perfect square of a polynomial was presented
in a different context in [43], and this was subsequently interpreted in terms
of a quaternion formulation [32, 59] for spatial PH curves. PH curves have
also been constructed under the Minkowski metric, facilitating exact bound-
ary recovery of a planar region from its medial axis transform [124]. Choi et
al. [32] have thoroughly investigated, from a Clifford algebra perspective, the
diverse algebraic structures that are evident among Pythagorean hodographs
residing in Euclidean and Minkowski spaces. For a thorough discussion of the
various aspects of PH curves, see [56].

Among the useful features that distinguish a (Euclidean) PH curve r(t)
from an “ordinary” polynomial curve are the following:

• The cumulative arc-length function s(t) is a polynomial in the parameter t,
and the total arc length S can be computed exactly – i.e. without numerical
quadrature – by rational arithmetic on the coefficients of the curve [52].

• Shape measures such as the elastic energy (the integral of the squared
curvature with respect to arc length) are amenable to exact closed-form
evaluation [66].

• PH curves admit real-time CNC interpolator algorithms that allow
computer-numerical-control machines to accurately traverse curved paths
with speeds dependent on time, arc length, or curvature [61, 66, 171].

• The offsets (or parallels) of planar PH curves admit rational parameteri-
zations – and likewise for the “tubular” canal surfaces that have a given
spatial PH curve as their “spine” curve [52, 64, 65].

• Spatial PH curves allow exact derivation of rotation-minimizing frames,
which avoid the “unnecessary” rotation of the Frenet frame in the curve
normal plane [54]. These frames incur logarithmic terms; efficient rational
approximations are available [57, 102] as alternatives.

• PH curves typically yield “fair” interpolants of discrete data, exhibiting
more even curvature distributions, compared with “ordinary” polynomial
splines or Hermite interpolants [5, 63, 65, 66, 125].

The focus in this section is on elucidating further the intrinsic struc-
ture of spatial PH curves, and their construction by interpolation of dis-
crete data. Although the quaternion representation is rotation-invariant
[59] and proves useful in a variety of construction and analysis algorithms
[31, 54, 58, 57, 62], it nevertheless entails certain open problems. The quater-
nion form amounts to generating a hodograph r′(t) by a continuous sequence
of scalings/rotations of a fixed unit “reference” vector n̂, and the significance
of the choice of n̂ needs clarification. Also, for any prescribed n̂, two free pa-
rameters arise in constructing spatial PH quintic interpolants to first-order
Hermite data [58], whose meaning and proper choice remain to be under-
stood.
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The plan of this section is as follows. First, the relation to the general
versor equation is discussed in Sect. 9.2.1. Then, the vector form of spatial
Pythagorean hodographs is discussed in Sect. 9.2.2. A thorough analysis of
the relation between the vector and the quaternion form of spatial PH curves
is presented in Sect. 9.2.3. The first-order Hermite interpolation problem for
spatial PH quintics is then addressed in Sect. 9.2.4, in terms of both the vector
and the quaternion formulation, and some novel aspects of the interpolants
are identified in Sects. 9.2.5 and 9.2.6. The generalization to Pythagorean
hodographs in Rn is briefly discussed in Sect. 9.2.7.

9.2.1 Relation to Versor Equation

To recognize the relation of PH curves to the general versor equation (9.1),
it is helpful to consider the Pythagorean condition from a more general point
of view. Consider first of all a general, not necessarily polynomial, function
F : R → R3 with a hodograph f : R → R3. Then there always exists a
function φ : R → R such that

f2(t) = φ2(t) ⇐⇒ ‖f(t)‖ = φ(t) . (9.22)

If the goal is, given a function φ(t), to find the set of functions f(t) that
satisfy this equation (9.22), the trivial solution is clearly

f : t 7→ φ(t) n̂ , n̂ ∈ S
2 ⊂ R

3 ,

where S2 denotes the unit sphere. However, this solution is not unique. In
fact, at a particular time t0, the sphere of radius φ(t0) is the solution set for
f(t0) that satisfies the equation f2(t0) = φ2(t0).

Hence, the set of functions f(t) that satisfy (9.22) is generated by

f : t 7→ R(t) (φ(t) n̂) R̃(t) , (9.23)

where R : R → S3 is an arbitrary rotor function that satisfies R(t) R̃(t) =
1, i.e. it represents a rotation. Rotating n̂ does not change its magnitude.
Therefore, independent of the function R(t), it follows that

f2(t) = φ2(t) R(t) n̂ R̃(t) R(t) n̂ R̃(t) = φ2(t) .

PH curves are just those polynomial curves whose hodograph satisfies
(9.22), where φ(t) is also a polynomial. If the general functions f(t) and
φ(t) are constrained to be polynomial functions r(t) and σ(t), then the r(t)
and σ(t) that satisfy (9.22) have to form a subset of the set of functions
generated by (9.23). Hence, the necessary and sufficient condition for r(t) to
be the hodograph of a PH curve is that
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r : t 7→ A(t) (ν(t) n̂) Ã(t) , (9.24)

where A : R → G
+
3
∼= H and ν : R → R are polynomials. A(t) represents

a scaling–rotation polynomial function, which can be expressed in terms of a
general rotor function R : R → S3 and a general scaling function α : R → R

as

A(t) = α(t) R(t) , R : t 7→ A(t)√
A(t) Ã(t)

, α : t 7→
√

A(t) Ã(t) .

Therefore,
r(t) = α2(t) ν(t) R(t) n̂ R̃(t) ,

such that
r2(t) = α4(t) ν2(t) .

The condition expressed in (9.22) is therefore satisfied if

α2(t) ν(t) = σ(t) .

Since α2(t) and ν(t) are polynomial, σ(t) is polynomial as desired.
Note that for PH curves in R2, the rotors in (9.23) are isomorphic to

complex numbers, and in R3 they are isomorphic to quaternions. In higher
dimensions, the rotors represent the appropriate rotation operators to rotate
n̂ ∈ Rn to any position on Sn−1. In geometric algebra, these rotors can still
be generated by the geometric product of two vectors. However, there is an
added complication in dimensions higher than three. Whereas the sum of
two quaternions still represents a scaling–rotation, this is not necessarily the
case for scaling–rotation operators in higher dimensions. In other words, the
Clifford group Gn is only a subalgebra of Gn for 1 ≤ n ≤ 3. A possible method
to generate polynomials of the type A : R → Gn for n > 3 is through the
geometric product of a number of polynomials of the type ai : R → G1

n. For
example,

A : t 7→ a1(t) · · · an(t)

is a Clifford-group-valued polynomial in any dimension n.

9.2.2 Pythagorean-Hodograph Curves

The distinguishing property of a PH curve r(t) is that ‖r′(t)‖ = σ(t), where
σ(t) is a polynomial in t. For brevity, only regular PH curves, which satisfy
r′(t) 6= 0 for all t, are considered here, and the phrase “PH curve” is used to
mean a regular PH curve.

The standard way of expressing spatial PH curves is by writing them in
terms of quaternion-valued polynomials, as follows. Let A : R → H be a
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quaternion-valued polynomial, and let n̂ ∈ H be a unit pure quaternion (i.e.
n̂ has no scalar part). The hodograph r′ : R → H of a PH curve r : R → H

is then given by
r′(t) = A(t) n̂ A∗(t) , (9.25)

whence r′(t) is always a pure quaternion. Identifying pure quaternions with
vectors in R3 then gives a spatial Pythagorean hodograph. It can be shown
[32, 43, 59] that the form (9.25) is necessary and sufficient for r(t) =

∫
r′(t) dt

to be a spatial PH curve.
Equation (9.25) can be expressed equivalently in geometric algebra by

invoking the isomorphism between H and G
+
3 . Let A : R → G

+
3 again denote

a polynomial, and let n̂ ∈ R3 be a unit vector. The hodograph r′ : R → R3

of a PH curve r : R → R3 is then given by

r′(t) = A(t) n̂ Ã(t) . (9.26)

The difference from (9.25) is that here the isomorphic embedding of quater-
nions in geometric algebra is used and, instead of using pure quaternions
to represent points in R3, vectors of R3 are used. The product between the
entities is, of course, the geometric product. It may be shown [32] that (9.26)
is also a necessary and sufficient condition for generating a PH curve.

The magnitude ‖r′(t)‖ can be evaluated from (9.26) as follows. First,

note that A(t) defines a scaling rotation, which means that A(t) Ã(t) =

Ã(t) A(t) = ‖A(t)‖2. Therefore,

[
r′(t)

]2
= A(t) n̂ Ã(t) A(t) n̂ Ã(t) =

[
A(t) Ã(t)

]2
= ‖A(t)‖4 ,

and hence ‖r′(t)‖ = A(t) Ã(t), which is polynomial if A(t) is polynomial.
Spatial Pythagorean hodographs can also be generated using scaling re-

flections, rather than scaling rotations. Let a : R → R3 be a vector-valued
polynomial, let n̂ ∈ R3 be a unit vector, and let a hodograph r′ : R → R3 be
given by

r′(t) = a(t) n̂ a(t) . (9.27)

It then follows immediately that [r′(t)]2 = [a(t)]4, and thus ‖r′(t)‖ = [a(t)]2,

which is a polynomial. If A(t) := a(t) n̂ rot(φ, n̂), then A(t) n̂ Ã(t) ≡
a(t) n̂ a(t) for all φ ∈ [0, 2π), since rot(φ, n̂) n̂ = n̂ rot(φ, n̂) and n̂2 = 1.

In the rotation representation (9.26), the choice of n̂ is immaterial, as can

be seen by choosing n̂ = S m̂ S̃, where S is a rotor, and observing that

r′(t) = A(t) n̂ Ã(t) = A(t) S m̂ S̃ Ã(t) = B(t) m̂ B̃(t) ,

where B(t) := A(t) S also defines a scaling rotation. Hence, for any unit
vector m̂, it is always possible to find a corresponding B(t) such that

B(t) m̂ B̃(t) defines exactly the same Pythagorean hodograph as A(t) n̂ Ã(t).
However, for the reflection representation (9.27) this is not, in general, true.
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Instead,
r′(t) = a(t) n̂ a(t) = a(t)S m̂ S̃ a(t) ,

and the quantity a(t)S is vector-valued only if a(t) lies in the rotation plane
of S. Hence, it is not always possible to find a vector-valued polynomial b(t)
to replace a(t) so that b(t) m̂ b(t) defines exactly the same hodograph as
a(t) n̂ a(t).

Nevertheless, both of these representations of a hodograph are rotation-
invariant. If we note that S S̃ = S̃ S = 1 for any rotor S, upon rotating the
hodograph (9.26), we obtain

S A(t) n̂ Ã(t) S̃ = (S A(t) S̃) (S n̂ S̃) (S Ã(t) S̃) ,

and similarly, for (9.27),

S a(t) n̂ a(t) S̃ = (S a(t) S̃) (S n̂ S̃) (S a(t) S̃) .

Hence, the rotated hodograph is obtained by applying the same rotor S to
both n̂ and either A(t) or a(t), as appropriate.

In terms of component functions, the relationship between the repre-
sentations (9.26) and (9.27) is as follows. Since n̂ can be chosen freely in
the rotation form (9.26), let us choose n̂ = e1. Furthermore, let A(t) :=
A0(t) + A1(t) e23 + A2(t)e31 + A3(t) e12, where eij ≡ ei ej . It can then be
shown that

r′(t) = A(t) e1 Ã(t)=
[
A2

0(t) + A2
1(t) − A2

2(t) − A2
3(t)

]
e1

+2
[
A1(t) A2(t) − A0(t) A3(t)

]
e2

+2
[
A0(t) A2(t) + A1(t) A3(t)

]
e3 . (9.28)

Using the same n̂ for the reflection form (9.27) and writing a(t) := a1(t) e1 +
a2(t)e2 + a3(t) e3, it follows that

r′(t) = a(t)e1 a(t)=
[
a2
1(t) − a2

2(t) − a2
3(t)

]
e1

+2 a1(t) a2(t) e2

+2 a1(t) a3(t) e3 .

The reflection representation is thus equivalent to the initial formulation of
spatial PH curves given in [65], which is sufficient but not necessary for a
hodograph to be Pythagorean. The rotor representation introduced in [32,
59], which is equivalent to (9.28), on the other hand, is a sufficient-and-
necessary form.

The relation between the representations can be elucidated further by
noting that

A(t) I = A0(t) I + A1(t) e1 + A2(t) e2 + A3(t) e3 .
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Therefore, if ai(t) = Ai(t) for i ∈ {1, 2, 3}, then

A(t) I = A0(t) I + a(t) ⇐⇒ A(t) = A0(t) + a∗(t) ,

where a∗(t) denotes the dual of a(t), namely a∗(t) = a(t) I−1. Note that the
dual of a vector in R3 is isomorphic to a pure quaternion.

9.2.3 Relation Between the Rotation and Reflection

Forms

In this subsection the relation between the rotation and the reflection form of
a PH curve is investigated in more detail. The main result is that cubic and
quintic PH curves can be represented equivalently in rotation and reflection
form.

In general, the preimage of a Pythagorean hodograph in R3 can be written
as

A(t) =
N∑

i=0

fi(t)Ai , (9.29)

where {Ai} ⊂ G
+
3 , and {fi((t)} is a polynomial basis. The hodographs of

all PH curves of odd degree M in R3 can be expressed [32, 43, 59] in the

form r′(t) = A(t) n̂ Ã(t), where n̂ ∈ S2 and the preimage A(t) ∈ G
+
3 is a

polynomial of degree N =
1

2
(M − 1). The corresponding hodograph r′(t) is

then given by

r′(t) = A(t) n̂ Ã(t) =

N∑

i=0

N∑

j=0

fij(t) rij ,

where fij(t) := fi(t) fj(t) and

rij := Ai n̂ Ãj . (9.30)

For any given basis {fi(t)}, the hodograph r′(t) depends only on the coeffi-
cients {rij}. The rotor representation can be transformed into the reflection
representation if there exists a rotor S ∈ G

+
3 such that

A(t) = a(t) I−1 S , a : R → R
3 . (9.31)

Recall that a∗(t) = a(t) I−1 is the dual of a(t), which is isomorphic to a pure
quaternion. The hodograph then becomes

r′(t) = A(t) n̂ Ã(t) = a(t) I−1 S n̂ S̃ Ĩ−1 a(t) = a(t) m̂ a(t) , (9.32)
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where m̂ := S n̂ S̃. Furthermore, since Ĩ−1 = I and I commutes with all
elements of G3,

I−1 m̂ Ĩ−1 = m̂ I−1 I = m̂ .

Writing a(t) in terms of the {fi(t)} as

a(t) =
N∑

i=0

fi(t)ai , {ai} ⊂ R
3 , (9.33)

implies that the components {rij} of the hodograph r′(t) are given by

rij = Ai n̂ Aj = ai m̂ aj , (9.34)

if A(t) = a(t) I−1 S. The rotor representation can therefore be replaced by
the reflection representation if there exists a rotor S ∈ G

+
3 together with a

set {ai} ⊂ R3 such that
Ai = ai I−1 S . (9.35)

In the following, the conditions when such a relation can be found are derived.

Lemma 9.1. Given two elements Ai, Aj ∈ G
+
3 , there then exist three vectors

ai,aj , b ∈ R3 such that

Ai = ai b and Aj = aj b .

Proof. Since Ai and Aj represent scaling rotations about the origin in R3,
their rotation planes have to intersect in at least a line. We choose b ∈ R3 to
lie in the intersection of the rotation planes. Since all scaling rotations can be
represented by two consecutive scaling reflections, there have to exist vectors
ai,aj ∈ R3 such that the proposition is satisfied. ⊓⊔

Lemma 9.2. Given three elements Ai, Aj , Ak ∈ G
+
3 , then in general there

do not exist four vectors ai,aj ,ak, b ∈ R3 such that

Ai = ai b , and Aj = aj b , and Ak = ak b .

Proof. Since Ai, Aj , and Ak represent scaling rotations about the origin in
R3, their rotation planes need not intersect in a single line, and thus they
need not share a reflection about some vector b ∈ R3. ⊓⊔

Lemma 9.3. Let A0 A1 ∈ G
+
3 ; there then exist a rotor S ∈ G

+
3 and a0,a1 ∈

R3 such that
Ai = ai I−1 S , ∀ i ∈ {0, 1} .

Proof. From Lemma 9.1, it follows that there exist vectors a0,a1, b ∈ R3

such that Ai = ai b, for i ∈ {0, 1}. Hence, we choose S = I b, whence

Ai = ai I−1 I b = ai b .



338 9 Versor Functions

⊓⊔

Lemma 9.4. Given A0,A1,A2 ∈ G
+
3 , there then exist a rotor S ∈ G

+
3 and

vectors a0,a1,a2 ∈ R3 such that

Ai = ai I−1 S , ∀ i ∈ {0, 1, 2} .

Proof. Without loss of generality, we choose S = I a−1
0 A0. The proposition

is satisfied if there exist vectors a0,a1,a2 ∈ R3 such that

Ai = ai I−1 S = ai I−1 I a−1
0 A0 = ai a−1

0 A0 , i ∈ {1, 2} .

For i ∈ {1, 2},

Ai = ai a−1
0 A0 ⇐⇒ Ai A−1

0 = ai a−1
0 .

The elements Ai0 := Ai A−1
0 again represent scaling rotations. Therefore, it

follows from Lemma 9.1 that vectors a0, a1 and a2 have to exist for arbitrary
elements A10 and A20 and thus for arbitrary A0, A1, and A2. The vector
a−1

0 can be found from A10 and A20 by intersecting their rotation planes.
Once a−1

0 is known, the vectors a1 and a2 can be found. ⊓⊔
The proof of Lemma 9.4 implies that given A0,A1, . . . ,AN ∈ G

+
3 , with

N > 2, there exist a rotor S ∈ G
+
3 and vectors a0,a1, . . . ,aN ∈ R3, such

that Ai = ai I−1 S for i ∈ {0, . . . , N}, only if the rotation planes of the
{A1, . . . ,AN} intersect in a single line, i.e. Ai = ai a−1

0 A0 for i ∈ {1, . . . , k}.

Theorem 9.1. Given the preimage A : R → G
+
3 of a hodograph in the form

A(t) =

N∑

i=0

fi(t) Ai ,

with 0 ≤ N ≤ 2 and {Ai} ⊂ G
+
3 , and where {fi(t)} is a polynomial basis,

then there exist a function a : R → R3 defined by

a(t) =

N∑

i=0

fi(t) ai ,

with {ai} ⊂ R3, and vectors n̂, m̂ ∈ S2 such that

A(t) n̂ Ã(t) = a(t) m̂ a(t) .

Proof. Since the polynomial bases of the functions A(t) and a(t) are identical,
the proposition is proven if it can be shown that

Ai n̂ Aj = ai m̂ aj , ∀ i, j ∈ {0, . . . , N} .
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This condition is satisfied if there exist a rotor S ∈ G
+
3 and a set {ai} ⊂ R3

such that Ai = ai I−1 S. Furthermore, m̂ has to be defined in terms of n̂ as
m̂ := S n̂ S̃. From Lemmas 9.3 and 9.4, it follows that such a rotor S and
set {ai} exist for 0 ≤ N ≤ 2. ⊓⊔

Theorem 9.1 implies that cubic and quintic PH curves can be represented
equivalently in rotation and reflection form.

9.2.4 Pythagorean-Hodograph Quintic Hermite

Interpolation

We desire a spatial PH quintic r(t), t ∈ [ 0, 1 ], with prescribed points r(0) =
p0 and r(1) = p2 and end derivatives r′(0) = d0 and r′(1) = d2. Beginning
with the rotation representation, the hodograph is written as

r′(t) = A(t) n̂ Ã(t) ,

where A : R → G
+
3 is a quadratic polynomial, and n̂ ∈ R3 is a unit vector.

We express A(t) in Bernstein–Bézier form as

A(t) =

2∑

i=0

fi(t) Ai , f0(t) := (1 − t)2, f1(t) := 2 (1 − t) t, f2(t) := t2 ,

(9.36)
with A0,A1,A2 ∈ G

+
3 . The hodograph is thus given by

r′(t) =
∑

i,j

fij(t) rij , fij(t) := fi(t) fj(t), rij := Ai n̂ Ãj .

Now, rij is not necessarily a vector for i 6= j, but one can verify that (rij +
rji) ∈ R3. A0 and A2 can be evaluated immediately from the end derivatives
d0 and d2 as

A0 = ref(n̂, d0) n̂ rot(φ0, n̂) , A2 = ref(n̂, d2) n̂ rot(φ2, n̂) ,

where φ0 and φ2 are free parameters. To evaluate A1, a constraint involving
the end points is invoked:

∆p =

∫ 1

0

r′(t) dt =
∑

i,j

Fij rij , Fij :=

∫ 1

0

fij(t) dt ,

where ∆p := p2 − p0. To determine A1 from this constraint, the following
approach is used. Let V :=

∑
i vi Ai, where the {vi} are scalars. Then
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V n̂ Ṽ =
∑

i,j

Vij rij =
∑

i,j

(
Vij − Fij

)
rij +

∑

i,j

Fij rij ,

where Vij := vi vj . If the {vi} can be chosen so that the sum
∑

i,j (Vij−Fij) rij

is independent of A1, the right-hand side

u :=
∑

i,j

(
Vij − Fij

)
rij +

∑

i,j

Fij rij

of the above equation can be evaluated, since
∑

i,j Fij rij = ∆p and
A0 and A2 are known. Furthermore, if u can be evaluated, then V =
ref(n̂, u) n̂ rot(φ1, n̂), where φ1 is a free parameter, and A1 = (V − v0 A0 −
v2 A2)/v1. A real solution for the {vi} can be found if F11 > 0, and is given
by

v1 =
√

F11 , v0 = F01/v1 , v2 = F02/v1 ,

since the Fij define a symmetric matrix. Using the specific form (9.36) of the
basis functions {fi(t)}, it is found, in accordance with [63], that

A1 =
1

4
(V − 3 A0 − 3 A2) , V = ref(n̂, u) n̂ rot(φ1, n̂) ,

where
u = 120 ∆p − 15 (d0 + d2) + 5 (r02 + r20) . (9.37)

The same derivation can also be done for the reflection representation of
the hodograph. In this case

r′(t) = a(t) n̂ a(t) ,

where a : R → R3 is given by a(t) :=
∑3

i=1 fi(t) ai with a1,a2,a3 ∈ R3.
Given the same data as before and setting v = ref(n̂, u), we obtain the result

a0 = ref(n̂, d0) , a2 = ref(n̂, d2) , a1 =
1

4
(v − 3 a0 − 3 a2) .

9.2.5 Degrees of Freedom

While both the rotation and the reflection representation give solutions to
the Hermite interpolation problem, the degrees of freedom are encoded dif-
ferently. In the case of the rotation form, the set of PH curves is generated by
varying the parameters φ0, φ1, and φ2, whereas in the case of the reflection
form, varying n̂ generates most of the possible PH curves. Why not all PH
curves can be generated by varying n̂ is discussed later on. First of all, the
rotation form will be investigated in some more detail.
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To simplify the formulas somewhat, the following definitions are made.
The reflectors and rotors are written as functions of n̂, i.e.

bi(n̂) := ref(n̂,di) and Ri(n̂) := rot(φi, n̂) .

The preimage components can be brought into a consistent form by defining
B0 := A0, B1 := V , B2 := A2, d1 := u and g0(t) := f0(t) − 3

4 f1(t),
g1(t) := f1(t), g2(t) := f2(t) − 3

4 f1(t), whence

A(t) ≡ B(t) :=

2∑

i=0

gi(t)Bi , Bi = bi(n̂) n̂ Ri(n̂) .

Hence, B0 n̂ B0 = d0, B2 n̂ B2 = d2 and B1 n̂ B1 = d1. In this parameteri-
zation, the hodograph r′(t) takes the form

r′(t) =
2∑

i=0

2∑

j=0

gij(t) rij ,

where gij(t) := gi(t) gj(t) and rij = Bi n̂ B̃j . Expanding the rij gives

rij = bi(n̂) n̂ Ri(n̂) n̂ R̃j(n̂) n̂ bj(n̂) = bi(n̂) n̂ Rij(n̂) bj(n̂) ,

where Rij(n̂) := rot(φi − φj , n̂). This implies that

rii = bi(n̂) n̂ bi(n̂) = di .

Whereas d0 and d2 are constants, d1 = u depends on r02 + r20 (see (9.37))
and thus on φ2−φ0. Hence, the {rij} depend only on the differences between
the {φi}, which means that the hodograph r′(t) has only two degrees of
freedom. Different choices of n̂ do not generate new sets of hodographs in
this case.

Theorem 9.1 guarantees that every hodograph in the rotation form can
also be expressed in the reflection form. However, some care has to be taken
when using the reflection form directly. The two degrees of freedom of the
hodograph in the reflection form are contained in the choice of n̂ ∈ S2. The
hodograph is given in this case by

r′(t) = b(t) n̂ b(t) , b(t) :=
2∑

i=0

gi(t) bi(n̂) , bi(n̂) := ref(n̂, di) . (9.38)

A restriction of the parameterization in terms of n̂ is that the {bi(n̂)} are

not well defined if n̂ = −d̂i for i ∈ {0, 1, 2}. In this case, there does not exist
a unique reflector. Instead, all unit vectors in the plane perpendicular to di

are valid reflectors. Hence, for each n̂ = −d̂i there is a one-parameter family
of reflectors that generate different hodographs.
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9.2.6 Curves of Constant Length

In the previous subsection, the degrees of freedom of PH curves that satisfy
a given Hermite interpolation were discussed. In this subsection, it is shown
that there exist subsets of PH curves that are of equal length but different
shape.

Using the definitions of the previous subsection, the arc length L of the
PH curve

r(t) = p0 +

∫ t

0

2∑

i=0

2∑

j=0

gij(s) rij ds

is given by

L =

∫ 1

0

‖r′(t)‖dt =

∫ 1

0

b2(t) dt =

2∑

i=0

2∑

j=0

Gij bi(n̂) bj(n̂) ,

where Gij :=
∫ 1

0
gij(t) dt. For the particular functions gi(t) used above, it

may be shown that

Gij =
1

120




15 0 −5

0 1 0

−5 0 15


 .

From the definitions of the bi(n̂), it is clear that b2
i (n̂) = ‖di‖, where d1 = u

as defined in (9.37). Hence,

120 L = 15 (‖d0‖ + ‖d2‖) + ‖u‖ − 10 b0(n̂) · b2(n̂), (9.39)

where the identity

bi(n̂) bj(n̂) + bj(n̂) bi(n̂) = 2 bi(n̂) · bj(n̂) ,

which follows from Lemma 3.11 has been used. For given p0, p2, d0, d2, it
follows that L is a function of n̂. Note that u is also a function of n̂, since it
depends on b0(n̂) and b2(n̂). In the following it is shown that two different
families of PH curves of constant length can be generated by rotating n̂ in
the plane spanned by b0(n̂) and b2(n̂). The first step is the following lemma.

Lemma 9.5. Let b̂i(n̂) := ref(n̂, d̂i) for some n̂ 6= −d̂i. Also, let Q =

rot(α, q̂), α ∈ [0, π), be a rotor, such that b̂i(n̂) lies in its rotation plane.

There then exists an angle β ∈ (0, 2π) such that rot(β, q̂) rotates n̂ into −d̂i,
and

(a) if 2α < β, then b̂i(Q
2 n̂ Q̃2) = Q b̂i(n̂) Q̃;

(b) if 2α > β, then b̂i(Q
2 n̂ Q̃2) = −Qb̂i(n̂) Q̃.











9.2 Pythagorean-Hodograph Curves 347

9.2.7 Pythagorean-Hodograph Curves in Rn

The reflection representation of a hodograph can easily be extended to dimen-
sions higher than three, in which case it always provides a sufficient condition
for a hodograph to be Pythagorean – i.e., for a polynomial a : R → Rn and
a unit vector n̂ ∈ Rn, integration of the hodograph r′ : R → Rn given by
r′(t) = a(t) n̂ a(t) yields a PH curve in Rn. With the rotation representation,
on the other hand, elements of G+

n for n > 3 are not always grade-preserving,

which means that if A ∈ G+
n and n̂ ∈ Rn, A n̂ Ã is not necessarily a vector.

Equivalently, one can say that A Ã is not always a scalar.
In fact, the set of algebraic entities that have to be considered are not the

elements of the even subalgebra G+
n of Gn, but the elements of the Clifford

group. The Clifford group is defined as the set of those multivectors that can
be generated by the geometric product of a number of grade 1 vectors [148],
i.e. by the concatenation of reflections. The elements of the Clifford group
are also called versors. For a set of vector-valued polynomials {ai} : R →
Rn, it therefore follows that A(t) := a1(t) a2(t) . . . ak(t) is a polynomial
in the Clifford group. However, whether the complete set of versor-valued
polynomials can be generated in this way remains to be seen.

9.2.8 Summary

The main result of this section is the proposal of a novel formulation for
spatial PH curves, based on the geometric product of vectors in geometric
algebra. This formulation encompasses the initial (sufficient) characterization
[65] of spatial Pythagorean hodographs as a special case, and is equivalent
to the sufficient-and-necessary quaternion form [32, 59] for cubic and quintic
PH curves. Whereas the quaternion form corresponds to generating a hodo-
graph by a continuous sequence of scalings/rotations of a fixed unit vector
n̂, the vector form amounts to a sequence of scalings/reflections of n̂. The
quaternion form entails “hidden” angular variables in the coefficients of the
preimage curve A(t), but the preimage curve a(t) of the vector form con-
tains no free variables in addition to n̂ – instead, maintaining flexibility in
the choice of n̂ ensures coverage of the complete space of spatial PH curves,
modulo exceptional cases.

Variation of the unit vector n̂ offers a geometrically more intuitive access
to the intrinsic freedoms of the shape of spatial PH curves than manipulating
the free angular variables of the quaternion coefficients. As an illustration of
this, the vector form reveals a decomposition of the two-dimensional space
of spatial PH quintics that interpolate given first-order Hermite data into
a product of two one-parameter spaces: one of the parameters controls the
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total arc length of the interpolants, while the other alters the shape of the
interpolants of given total arc length.

The simpler and more intuitive nature of the vector formulation suggests
that it could be fruitfully employed in other PH curve construction and anal-
ysis problems. One interesting subject for future research is to use the vector
representation for defining PH curves in RN , and for extending existing PH
spline algorithms [5, 60] from planar to spatial PH curves.

9.2.9 Proof of Lemma 9.5

Since b̂i(n̂) lies in the rotation plane of Q, it follows that Q b̂i(n̂) = b̂i(n̂) Q̃

(see Lemma 4.2, p. 131). Hence,

d̂i=b̂i(n̂) n̂ b̂i(n̂)

=b̂i(n̂) Q̃2 Q2 n̂ Q̃2 Q2 b̂i(n̂)

=Q b̂i(n̂) Q̃ Q2 n̂ Q̃2 Q b̂i(n̂) Q̃ .

Therefore, Q b̂i(n̂) Q̃ must be either the positive or the negative reflector of

d̂i, and m̂ := Q2 n̂ Q̃2. Furthermore, the rotation plane of Q has to inter-
sect the plane perpendicular to d̂i, which implies that there exists an angle
α0 ∈ [ 0, π ) such that Q0 := rot(α0, q̂) rotates b̂i(n̂) into this plane. Since

Q0 b̂i(n̂) Q̃0 is perpendicular to di, it is a bisector of di and −di. Thus,

Q2
0 n̂ Q̃2

0 = −d̂i and β = 2α0.
In order to investigate the other parts of the lemma, we need to express

reflectors in a particular form. Let x̂ and ŷ be two perpendicular unit vectors
in the rotation plane of some rotor R(α) = rot(α, (x̂ ∧ ŷ)∗), where α is the
rotation angle. Since

R(α) x̂ R̃(α) = cos α x̂ + sinα ŷ , R̃(α) x̂ R(α) = cos α x̂ − sinα ŷ ,

it follows that

R(α) x̂ R̃(α) − R̃(α) x̂ R(α) = 2 sinα ŷ .

Hence,

ref
(
R(α) x̂ R̃(α), −R̃(α) x̂ R(α)

)
=

{
ŷ, α ∈ (0, π) ,

−ŷ, α ∈ (−π, 0) .
(9.43)

Conversely, this also implies that for any vector x̂ in the rotation plane of
R(α), ref

(
R(α) x̂ R̃(α), −R̃(α) x̂ R(α)

)
is perpendicular to x̂.
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We now return to the initial problem. Let Q0 := rot(
1

2
β, q̂), such that

Q2
0 n̂ Q̃2

0 = −d̂i, and let Q∆ := rot(∆α, q̂), such that Q2 = Q2
0 Q2

∆, whence

∆α = α − 1

2
β. Note that Q2

0 Q2
∆ = Q2

∆ Q2
0, since the two rotors have the

same rotation plane. It may be shown by straightforward calculation that

Q b̂(n̂) Q̃ = Q ref
(
Q0 x̂i Q̃0, −Q̃0 x̂i Q0

)
Q̃,

where x̂i := Q̃0 d̂i Q0. Similarly, we find that

b̂i(Q
2 n̂ Q̃2) = −Q ref

(
Q∆ x̂i Q̃∆, −Q̃∆ x̂i Q∆

)
Q̃.

Thus, if we define ŷ := ref
(
Q0 x̂i Q̃0, −Q̃0 x̂i Q0

)
, it follows from (9.43),

that

−ref
(
Q∆ x̂i Q̃∆, −Q̃∆ x̂i Q∆

)
=

{
ŷ, ∆α ∈ [−α0, 0)

−ŷ, ∆α ∈ (0, π − α0).

Since
1

2
β = α0 ∈ [0, π), we have ∆α ∈ [−α0, 0) if α ∈ [0, α0) and ∆α ∈

(0, π − α0) if α ∈ (α0, π), and therefore

Q b̂i(n̂)Q̃ =

{
b̂i(Q

2 n̂ Q2), α ∈ [0, β/2) ,

−b̂i(Q
2 n̂ Q2), α ∈ (β/2, π) .

⊓⊔



Chapter 10

Random-Variable Space

The purpose of this chapter is to give an example of a geometric algebra over a
space other than a real vector space. From Axiom 3.1 of geometric algebra, it
follows that a geometric algebra can also be formed over a finite-dimensional
Hilbert space. The particular example considered here is the Hilbert space of
random variables. Another example could be the Hilbert space of the basis
functions of a finite Fourier series. In all cases, the concepts of blades, null
spaces, intersections, and combinations of subspaces are still valid in the
geometric algebra over the Hilbert space, even though they may not have
the same geometric meaning. However, a geometric meaning may be given to
otherwise abstract operations in this way. This may help us to gain additional
insights into various fields and to draw parallels between different fields.

While the Hilbert space of random variables is well known, the geomet-
ric algebra over this Hilbert space has not so far been treated. The main
results of this chapter are about how the variance, the co-variance, and the
the Cauchy–Schwarz inequality follow directly from operations on blades of
random variables. Furthermore, an equation for the correlation coefficient
between an arbitrary number of random variables is derived.

The plan of this chapter is as follows. In Sect. 10.1, some basic properties
of random variables are introduced and operations between random vari-
ables and their corresponding density functions are defined. In Sect. 10.2, the
Hilbert space of random variables is developed using the previously defined
notation. Here, also, the Dirac delta random variable is defined, and it is
shown that it can be interpreted as the “direction” of the expectation value
of a random variable. In this way, a homogeneous random-variable Hilbert
space can be developed. After this initial work, the geometric algebra over
the homogeneous random-variable space is introduced in Sect. 10.3. Note that
Sects. 10.1 and 10.2 give a formal treatment of the Hilbert space of random
variables. Readers who are interested mainly in the treatment of the geo-
metric algebra over the Hilbert space of random variables may go straight to
Sect. 10.3, with a quick look at Sect. 10.2.3.

C. Perwass, Geometric Algebra with Applications in Engineering.
Geometry and Computing.
c© Springer-Verlag Berlin Heidelberg 2009
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10.1 A Random-Variable Vector Space

10.1.1 Probability Space

Without rederiving the basics of statistics, some fundamental definitions are
given in the following, mainly to introduce the nomenclature used and also to
stress some concepts that not every reader may be familiar with. A probability
space consists of three things:

1. A sample space S.
2. A collection A of subsets of S which form a σ-algebra.
3. A probability measure P with P : A → [0, 1].

A definition of a σ-algebra, or Borel algebra, can be found, for example, in
[82]. What is important to know at this point is that S contains all funda-
mental events and A contains all those events of interest. The probability
measure P then gives a measure of how likely an event in A is. A probability
space is therefore denoted by (S, A,P).

10.1.2 Continuous Random Variables

It is important to understand that a random variable is a function that maps
elements of the space A to values in the reals R. That is, a random variable
X is a map A → R. A random variable is therefore a special type of the more
general class of functions that map S → R and is thus specifically called an
“A-measurable function”.

Since, for each element of A, the measure P gives the likelihood that it
occurs, one can also evaluate the likelihood that a random variable takes a
particular value. For every random variable X, one can therefore evaluate a
cumulative distribution function (cdf) FX , which is a map R → [0, 1] and is
defined as

FX : x 7→ P
(
{a ∈ A : X(a) < x}

)
. (10.1)

Note that one property of the measure P on the σ-algebra is that if

{A1, A2, . . . , An} ⊆ A

are disjoint subsets of A, then

P
( n⋃

i=1

Ai

)
=

n∑

i=1

P(Ai).

FX(x) gives the probability that X takes a value smaller than x. A cdf has
to satisfy the conditions
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lim
x→−∞

FX(x) = 0 and lim
x→∞

FX(x) = 1 ,

which implies that ∫ ∞

−∞

dFX = 1.

We now define fX(x) :=
d

dx
FX(x). Then the above integral can also be

written as ∫ ∞

−∞

dFX =

∫ ∞

−∞

fX(x) dx = 1.

The function fX is called the probability density function (pdf) of X. This
is the function that will be used most often here to discuss properties of a
random variable. Note that from the definition of FX , it follows that fX is a
map R → [0,∞).

A particularly important measure on random variables is the expectation
value. The expectation value operator will be written as E and is defined as

E(X) :=

∫ ∞

−∞

X dFX =

∫ ∞

−∞

x fX(x) dx. (10.2)

More generally, one can define the moment operator M. The kth moment of
a random variable X is defined as

Mk(X) := E(Xk) =

∫ ∞

−∞

Xk dFX =

∫ ∞

−∞

xk fX(x) dx, k ∈ N ≥ 0.

Since random variables are functions, it would be interesting to define a
norm on them such that they formed a Banach space. One general norm that
may be useful is the following:

‖X‖k :=

(∫ ∞

−∞

|x|k fX(x) dx

)1

k
, k ∈ N > 0. (10.3)

If k is even, it clearly follows that

Mk(X) =
(
‖X‖k

)k

, k ∈ N, k > 0, k even, (10.4)

and, in particular,

‖X‖2 =

√
E(X2).

Random variables which have a finite second moment are of particular
interest here. The space of all random variables defined on (S, A, P) with a
finite second moment will be denoted by L2(S, A, P). It may be shown that
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L2(S, A, P) (using the norm ‖.‖2) is a Banach space. In the following, L2

will be used as a shorthand to mean L2(S, A, P).

10.1.3 Multiple Random Variables

Let Ln ⊂ L2 be a finite-dimensional set of random variables with a finite sec-
ond moment. Also, let {X1, X2, . . . , Xn} ≡ Ln denote the separate random
variables. Each random variable has associated with it a cumulative distribu-
tion function denoted by FXi

. Since the various random variables may have
a functional dependence on each other, there will in general be a joint cdf

for all random variables. That is,

FX1,X2,...,Xn
: (x1, x2, . . . , xn) 7→ P

(
{a ∈ A : X1(a) < x1}, . . . ,

{a ∈ A : Xn(a) < xn}
)

.

(10.5)

This joint cdf is directly related to the separate cdfs via

FXk
(xk) = lim

x1→∞
. . . lim

xk−1→∞
lim

xk+1→∞
. . . lim

xn→∞

(
FX1,X2,...,Xn

(x1, . . . , xn)
)
.

(10.6)
In terms of the joint pdf, this becomes

fXk
(xk) =

∫ ∞

−∞

. . .

∫ ∞

−∞

fX1,...,Xn
(x1, . . . , xn) dx1 . . . dxk−1 dxk+1 . . . dxn.

(10.7)
Note that two random variables Xi and Xj are said to be statistically inde-
pendent if FX1,X2

= FX1
FX2

.
With the above definitions, the joint cdf FX1,X2,...,Xn

may also be written
as FLn . We denote by Fn(Ln) the set of cdfs of Ln. Furthermore, we denote
by Fn(Ln) the set of all cdfs of the power set of Ln. For example, given
L3 := {X1, X2, X3}, then

F3(L
3) =

{
F∅, FX1

, FX2
, FX3

, FX1,X2
, FX1,X3

, FX2,X3
, FX1,X2,X3

}
,

where F∅ = 1. Note that a cdf is independent of the order of its indices;
for example, FX1,X3

= FX3,X1
. In the following, Fn and Fn will be written

instead of Fn(Ln) and Fn(Ln) if it is clear which set Ln is meant. Let ⊗
denote a product on Fn that maps Fn × Fn → Fn. For two sets U ⊆ Ln and
V ⊆ Ln, this product is defined as

FU ⊗ FV := FU∪V. (10.8)

For example,
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FX1
⊗ FX1

= FX1
and FX1

⊗ FX2
= FX2

⊗ FX1
= FX1,X2

.

Furthermore, for some U ⊆ Ln, let F c
U

denote the complement of FU, which
is defined as

F c
U := FV, V := L

n \ U, (10.9)

where Ln \ U denotes the set Ln without the elements of U. Together with
the definition of the complement, (Fn, ⊗) forms a σ-algebra.

One may also define a product, denoted by ⊗, and a sum, denoted by ⊕,
on the set Ln which are simply the standard product, and sum, respectively,
in R of two random variables. That is, for Xi, Xj ∈ Ln,

(
Xi ⊗ Xj

)
(a) := Xi(a)Xj(a), ∀a ∈ A, (10.10)

and (
Xi ⊕ Xj

)
(a) := Xi(a) + Xj(a), ∀a ∈ A. (10.11)

We denote by (Ln, Fn) the set of corresponding pairs of random variables
and cdfs. That is,

(Ln, F
n) =

{
(X1, FX1

), (X2, FX2
), . . . , (Xn, FXn

)
}

. (10.12)

This set can be regarded as the basis of a vector space over the reals by first
defining the ⊕-sum on elements of (Ln, Fn). Let (X, FX), (Y , FY ) ∈ (Ln, Fn);
then

(X, FX) ⊕ (Y , FY ) := (X ⊕ Y , FX ⊗ FY ). (10.13)

For example, for (X1, FX1
), (X2, FX2

) ∈ (Ln, Fn),

(X1, FX1
) ⊕ (X2, FX2

) = (X1 ⊕ X2, FX1,X2
).

Furthermore, a product between elements of R and elements of (Ln, Fn) is
defined as follows. Let α, β ∈ R and (X, FX) ∈ (Ln, Fn); then

1. α (X, FX) = (X, FX) α = (α X, FX).

2. (α + β) (X, FX) = α (X, FX) ⊕ β (X, FX).

3. 1 (X, FX) = (X, FX) 1 = (X, FX).

Distributivity of scalars with respect to ⊕ follows immediately. If we combine
the above definitions, it is clear that, for example,

(X1, FX1
) ⊕ (X1, FX1

) = (X1 ⊕ X1, FX1
) = 2 (X1, FX1

).

It may thus be shown that the set (Ln, Fn), together with the above prod-
uct with elements of R and the ⊕-sum, forms a vector space over R. This
vector space will be denoted by (Ln, Fn,⊕).
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10.2 A Hilbert Space of Random Variables

In order to define a Hilbert space on the vector space (Ln, Fn,⊕), the vector
space has to be shown to be a Banach space and a scalar product has to be
defined. The first step therefore is to define a norm on (Ln, Fn,⊕). This is
done in the same spirit as before. Then the expectation operator is introduced,
which leads to the definition of a scalar product.

10.2.1 The Norm

Let (X, FX) ∈ (Ln, Fn); then

‖(X, FX)‖k :=

(∫ ∞

−∞

|x|k fX(x) dx

)1

k
, k ∈ N, k > 0. (10.14)

Since X ∈ Ln ⊂ L2, this norm exists for k = 2 by definition. This is in fact
the same definition as before, with the only difference being that instead of
writing ‖X‖k and keeping in mind that there is a cdf associated with X, this
dependence is made algebraically explicit. Using the algebraic properties of
(Ln, Fn), it follows that for (X, FX), (Y , FY ) ∈ (Ln, Fn),

‖(X, FX) ⊕ (Y , FY )‖k = ‖(X ⊕ Y , FX,Y )‖k

=

(∫ ∞

−∞

∫ ∞

−∞

|x + y|k fX,Y (x, y) dx dy

)1

k
.

(10.15)

Since (Ln, Fn) is a basis of (Ln, Fn,⊕), it may be shown that (Ln, Fn,⊕),
together with the norm ‖.‖2, is a Banach space.

In order to introduce a scalar product, the expectation operator is used.
The expectation operator is again denoted by E and is defined by

E
(
(X, FX)

)
:=

∫ ∞

−∞

x fX(x) dx, (10.16)

where (X, FX) ∈ (Ln, Fn). This definition can be extended to the whole of
(Ln, Fn,⊕). For (X, FX), (Y , FY ) ∈ (Ln, Fn) and α, β ∈ R,
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E
(
α(X, FX) ⊕ β(Y , FY )

)

= E
(
(αX ⊕ βY , FX,Y )

)

:=

∫ ∞

−∞

∫ ∞

−∞

(αx + βy) fX,Y (x, y) dx dy

=

∫ ∞

−∞

α x fX(x) dx +

∫ ∞

−∞

β y fY (y) dy

= α E
(
(X, FX)

)
+ β E

(
(Y , FY )

)
.

(10.17)

That is, E is a linear operator on (Ln, Fn,⊕).

10.2.2 The Scalar Product

A scalar product is now introduced in terms of the expectation operator. In
order to do this, first a product operator ⊗ on elements of (Ln, Fn) has to be
introduced. Let (X, FX), (Y , FY ) ∈ (Ln, Fn); then

(X, FX) ⊗ (Y , FY ) := (X ⊗ Y , FX ⊗ FY ). (10.18)

This definition implies that

(X, FX) ⊗ (Y , FY ) = (Y , FY ) ⊗ (X, FX).

For example,
(X, FX) ⊗ (Y , FY ) = (X ⊗ Y , FX,Y )

and
(X, FX) ⊗ (X, FX) = (X ⊗ X, FX).

The definition of ⊗ can be extended to the whole of (Ln, Fn,⊕) as follows. Let
α ∈ R and (X, FX), (Y , FY ), (Z, FZ) ∈ (Ln, Fn). We then make the following
definitions:

1. (X, FX) ⊗
(
(Y , FY ) ⊕ (Z, FZ)

)

=
(
(X, FX) ⊗ (Y , FY )

)
⊕
(
(X, FX) ⊗ (Z, FZ)

)

=
(
(Y , FY ) ⊕ (Z, FZ)

)
⊗ (X, FX) .
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2. α
(
(X, FX) ⊗ (Y , FY )

)

=
(
α (X, FX)

)
⊗ (Y , FY )

= (X, FX) ⊗
(
α (Y , FY )

)

=
(
(X, FX) ⊗ (Y , FY )

)
α .

After these preliminaries, a scalar product denoted by ∗ is defined for two
elements (X, FX), (Y , FY ) ∈ (Ln, Fn) by

(X, FX) ∗ (Y , FY ) := E
(
(X, FX) ⊗ (Y , FY )

)

= E
(
(X ⊗ Y , FX,Y )

)

=

∫ ∞

−∞

∫ ∞

−∞

x y fX,Y (x, y) dx dy.

(10.19)

Using the properties of the respective operators, this definition can be ex-
tended directly to the whole of (Ln, Fn,⊕). This scalar product is also related
to the norm, as required for a Hilbert space. That is,

(X, FX) ∗ (X, FX) = E
(
(X, FX) ⊗ (X, FX)

)

= E
(
(X ⊗ X, FX)

)

=

∫ ∞

−∞

x2 fX(x) dx

= ‖(X, FX)‖2
2.

(10.20)

This may also be written as

‖(X, FX)‖2 =
√

(X, FX) ∗ (X, FX). (10.21)

Therefore, the vector space (Ln, Fn,⊕) together with the norm ‖.‖2 and
the scalar product ∗ is a Hilbert space. This Hilbert space will be denoted by
Hn := (Ln, Fn,⊕, ∗).

10.2.3 The Dirac Delta Distribution

Since Hn is a Hilbert space, elements of Hn can be treated just like the vectors
in Rn. One particularly useful operation is the orthogonalization of a set of
elements of Hn. As in Rn, two elements of Hn are said to be orthogonal if their
scalar product is zero. For the sake of brevity, elements of Hn will no longer
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be denoted by a pair (X, FX) in this chapter but simply by the respective
random variable. That is, X will be written instead of (X, FX). Furthermore,
the ⊕-sum of elements of Hn will now be denoted by the standard plus sign
“+”.

The (Dirac) delta distribution plays an important role in the context of
the Hilbert space of random variables, since it allows the evaluation of the
expectation value of a random variable via the scalar product. The delta
random variable of expectation α ∈ R will be denoted by Dα and is defined
on (S, A, P) as

Dα : a 7→ α. (10.22)

That is, for all events in A, Dα has the same result, α. The cdf of Dα is
therefore

FDα
: x 7→

{
0 : x ≤ α ,

1 : x > α .
(10.23)

Since the pdf fDα
of Dα is the derivative of FDα

, fDα
is the Dirac delta

distribution at the position α, i.e.

fDα
: x 7→ δ(x − α).

Recall that the Dirac delta distribution has the following properties.

1.

∫ ∞

−∞

δ(x − α) dx = 1 .

2.

∫ ∞

−∞

g(x) δ(x − α) dx = g(α),

where g : R → R is some function. The expectation value of Dα is

E(Dα) =

∫ ∞

−∞

x δ(x − α) dx = α,

as was assumed initially. In the following, the identification D ≡ D1 will be
made. Suppose now that D, X ∈ Hn are statistically independent. Recall
that this implies that FX,D(x, y) = FX(x) FD(y). It therefore follows that

X ∗ D =

∫ ∞

−∞

∫ ∞

−∞

x y fX(x) δ(y − 1) dx dy

=

∫ ∞

−∞

x fX(x) dx

= E(X).

This can be interpreted by saying that D “points in the direction” of the
expectation of a random variable. In fact, D may be called the expectation
dimension.
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The expectation value is an important feature of a random variable. By ex-
tending the random-variable space Hn by the statistically independent delta
distribution random variable, expectation values, as well as (co)variances of
random variables, can be evaluated with the scalar product. For normally
distributed random variables, this can be regarded as representing the ex-
pectation values and variances in a single matrix. This is much like the
homogeneous representation of ellipses described in Sect. 4.4.5, where the
translation of the origin can be identified with the expectation value.

The process of extending Hn by the delta distribution D will be called
the homogenization of Hn, and the corresponding homogeneous random-
variable space will be denoted by Hn

h . If {X1, . . . , Xn} is a basis of Hn,
then {X1, . . . , Xn, D} is a basis of Hn

h .

10.3 Geometric Algebra over Random Variables

As noted in the previous section, expectation values of random variables in the
homogeneous random-variable space Hn

h are represented by an “expectation
dimension”, spanned by the delta distribution. Therefore, the expectation
value of a random variable can be evaluated by means of the scalar product
with the delta distribution. Since the norm and the scalar product are the
only operations that allow the evaluation of scalar features of random vari-
ables in Hn

h , the homogeneous representation of the random-variable space
is essential. The geometric algebra will therefore be constructed over Hn

h .
A geometric algebra may be defined over any vector space on which a

quadratic form is defined. Since the Hilbert space Hn
h already defines a scalar

product, and thus a quadratic form, on the elements of the vector space, a
geometric algebra can also be defined over Hn

h . Everything that has been
shown for geometric algebras over real-valued vector spaces in Chap. 3 is
therefore also valid for G(Hn

h ), which justifies the simpler notation Gn for
G(Hn

h ).
The confinement to the scalar product and the norm when one is evaluating

scalar features of random variables implies that, at most, moments of order
two can be evaluated. This makes the algebra well suited for spaces of nor-
mally distributed random variables, since the first two moments completely
describe their probability density functions. In addition, orthogonality (i.e.
uncorrelatedness) of normally distributed random variables with zero mean
in Hn

h implies statistical independence, which is not necessarily the case for
other probability distributions. Any basis of normally distributed random
variables can therefore be transformed into a basis of statistically indepen-
dent random variables using an orthogonalization scheme. Only when this
is possible can all statistical properties of and between random variables be
captured by the vector components on such an orthogonal basis.
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The algebra G(Hn
h ) allows more than the evaluation of the first two mo-

ments of random variables, since subspaces of random variables and operators
on random variables can also be represented. It is important to note here that
this treatment of random variables is quite different from that of uncertain
multivectors in Sect. 5.3. Whereas in Sect. 5.3 the normally distributed ran-
dom variables are the scalar-valued components of multivectors, here the
basis elements themselves are random variables.

In the following, first some properties of G(Hn
h ) for random variables with

arbitrary pdfs will be presented. Later, the algebra over normally distributed
random variables will be treated in some more detail.

10.3.1 The Norm

Before we treat some general properties of G(Hn
h ), the norm of Hn

h has to
be extended to the whole algebra. This is done in just the same way as for
G(Rn). For any A ∈ Gn, the norm of A is defined as

‖A‖2 :=

√
A ∗ Ã .

To simplify the notation somewhat, the symbol ‖ · ‖ will be used to denote
‖ · ‖2 in the following.

Consider the geometric product of two random variables A := X Y , with
X, Y ∈ G1

n. The norm of A is

‖A‖2 = (X Y )∗(Y X) = 〈(X Y ) (Y X)〉0 = 〈X (Y Y ) X〉0 = (X∗X) (Y ∗Y ) ,

where the last step follows from X X = X ∗ X, which is the defining axiom
of the algebra. Similarly, the norm of the blade X ∧ Y ∈ G2

n is given by

‖X ∧ Y ‖2 = (X ∧ Y ) · (Y ∧ X) = X2 Y 2 − (X · Y )2 .

Just as was shown in Lemma 3.8 for the geometric algebra over a vector
space Rp,q, the blade X ∧ Y can be replaced by X ∧ Y ′, where X and Y ′ are
orthogonal. That is,

‖X ∧ Y ‖2 = ‖X ∧ Y ′‖2 = ‖X Y ′‖2 = (X ∗ X) (Y ′ ∗ Y ′) .

Since X ∗X ≥ 0 and Y ′ ∗ Y ′ ≥ 0 by definition, it follows that the magnitude
of the blade X ∧ Y is positive semidefinite, i.e. ‖X ∧ Y ‖2 ≥ 0. In general, it
holds that for X1, . . . , Xk ∈ G1

n, k ≤ n, the magnitude obeys the inequality
‖X1 ∧ . . . ∧ Xk‖ ≥ 0. From ‖X ∧ Y ‖ ≥ 0, it follows that

(X · Y )2 ≤ X2 Y 2 .
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In standard notation, this is usually written as

E(XY )2 ≤ E(Y 2) E(X2) , (10.24)

and is known as the Cauchy–Schwarz inequality (see [82]). Just as in a stan-
dard proof, the inequality follows here from the fact that ‖X‖2 ≥ 0 and
‖Y ‖2 ≥ 0. Inequalities for k random variables can be derived in exactly the
same way, using ‖X1 ∧ X2 ∧ · · · ∧ Xk‖ ≥ 0.

10.3.2 General Properties

Recall that two random variables X and Y are statistically independent if
their pdfs satisfy fX,Y (x, y) = fX(x) fY (y). Statistical independence there-
fore implies that X ∗ Y = E(X) E(Y ). The converse, however, is not true in
general. If X ∗Y = E(X) E(Y ), the random variables X and Y are said to be
uncorrelated, but they are not necessarily statistically independent.

The important feature of the homogeneous random-variable space Hn
h in

contrast to the corresponding Hn is that it contains the delta distribution D,
which is assumed to be statistically independent of all elements of Hn. The
expectation value of X ∈ Hn

h can then be evaluated as

E(X) = D ∗ X = D · X .

Recall that in Gn, the scalar product of vectors (grade 1) is equivalent to
their inner product. The delta distribution D may therefore be regarded as
the expectation direction. To measure the variance of a random variable, the
“linear dependence” on the expectation dimension has to be removed, i.e.

X̌ := X − E(X)D .

Clearly, X̌ is the expectation-free version of X, since X̌ ∗ D = 0. The norm
squared of X̌ is then the variance V(X) of X,

X̌ · X̌ = X · X − E(X)2 =: V(X).

Given two random variables X, Y ∈ Hn
h , with corresponding expectation-free

variables X̌ and Y̌ , their covariance C(X, Y ) can be evaluated as

X̌ · Y̌ = X · Y − E(X) E(Y ) =: C(X, Y ) .

If X and Y are statistically independent (or even only uncorrelated), then
X · Y = E(X) E(Y ) and thus C(X, Y ) = 0.

The variance and covariance can also be recovered from the magnitudes
of appropriate blades. Consider the blade X ∧ D ∈ G2

n, with a magnitude
squared equal to
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‖X ∧ D‖2 = (X ∧ D) · (D ∧ X) = X2 − E(X)2 = V(X) .

This is not too surprising, since D ∧ D = 0 and thus

X ∧ D = (X̌ + E(X) D) ∧ D = X̌ ∧ D = X̌ D .

The covariance of X, Y ∈ G1
n is given by

(X ∧ D) · (D ∧ Y ) = X · Y − E(X) E(Y ) = C(X, Y ) .

10.3.3 Correlation

Consider a blade X̌∧ Y̌ of two expectation-free random variables X̌, Y̌ ∈ G1
n.

Its magnitude squared is given by

(X̌ ∧ Y̌ ) · (Y̌ ∧ X̌) = X̌
2
Y̌

2 − (X̌ · Y̌ )2 = V(X̌)V(Y̌ ) − C(X̌, Y̌ )2 ,

which is equivalent to the determinant of the covariance matrix of X̌ and Y̌
if these variables are normally distributed. The lower bound on ‖X̌ ∧ Y̌ ‖2 is
zero; the upper bound is obtained if X̌ and Y̌ are orthogonal. In this case

‖X̌ ∧ Y̌ ‖ = ‖X̌ Y̌ ‖ = ‖X̌‖ ‖Y̌ ‖ .

Thus,
0 ≤ ‖X̌ ∧ Y̌ ‖2 ≤ V(X̌)V(Y̌ ) .

If V(X̌) > 0 and V(Y̌ ) > 0, it follows that

0 ≤ C(X̌, Y̌ )2

V(X̌)V(Y̌ )
≤ 1 .

This ratio describes the correlation between X̌ and Y̌ : it is zero if they are
uncorrelated and unity if they are completely dependent. The correlation
coefficient ρ(X, Y ) for random variables X, Y ∈ G1

n is defined as

ρ(X, Y ) :=
C(X, Y )√
V(X)V(Y )

.

This concept can be extended to more than two random variables using
the same approach. For example, for X̌, Y̌ , Ž ∈ G1

n,

‖X̌ ∧ Y̌ ∧ Ž‖2 = (X̌ ∧ Y̌ ∧ Ž) · (Ž ∧ Y̌ ∧ X̌)

= X̌
2
Y̌

2
Ž

2
+ 2 (X̌ · Y̌ ) (Y̌ · Ž) (Ž · X̌)

−X̌
2

(Y̌ · Ž)2 − Y̌
2

(Ž · X̌)2 − Ž
2

(X̌ · Y̌ )2.

(10.25)



364 10 Random-Variable Space

Just as before,

0 ≤ ‖X̌ ∧ Y̌ ∧ Ž‖2 ≤ V(X̌)V(Y̌ )V(Ž) .

Hence,

0 ≤ V(X̌) C(Y̌ , Ž)2 + V(Y̌ ) C(Ž, X̌)2 + V(Ž) C(X̌, Y̌ )2

− 2 C(X̌, Y̌ ) C(Y̌ , Ž) C(Ž, X̌) ≤ V(X̌)V(Y̌ )V(Ž) .
(10.26)

Dividing by the expression on the right-hand side gives

0 ≤ ρ(X̌, Y̌ )2 + ρ(Y̌ , Ž)2 + ρ(Ž, X̌)2 − 2 ρ(X̌, Y̌ ) ρ(Y̌ , Ž) ρ(Ž, X̌) ≤ 1 .

The correlation coefficient for three random variables X, Y , Z ∈ G1
n is there-

fore defined as

ρ(X, Y , Z)2 := ρ(X, Y )2 + ρ(Y , Z)2 + ρ(Z, X)2 − 2 ρ(X, Y ) ρ(Y , Z) ρ(Z, X) .

Recall that the magnitude of a blade is the determinant of the matrix
constructed from the constituent vectors (see 3.66). Geometrically, this mag-
nitude gives the (hyper)volume of the parallelepiped spanned by the vectors
(see Fig. 1.1). The smaller the components that are mutually perpendicular,
the smaller this volume is. Since correlation is directly related to the concept
of orthogonality, the “volume” spanned by a set of random variables is related
to the correlation coefficient.

The relation between the correlation coefficient of a number of random
variables X1, . . . , Xk ∈ G1

n, k ≤ n, and the magnitude of the blade X̌1∧· · ·∧
X̌k is given by

1 − ρ(X1, . . . , Xk)2 :=

∥∥(X1 − E(X1) D
)
∧ · · · ∧

(
Xk − E(Xk)D

)∥∥2

V(X1) · · · V(Xk)
.

The correlation between two random variables can also be expressed as an
angle, which follows directly from the relation between vectors in Euclidean
space. That is,

X̌ · Y̌ = ‖X̌‖ ‖Y̌ ‖ cos(γ)

⇐⇒ cos(γ) =
C(X̌, Y̌ )√
V(X̌)V(Y̌ )

= ρ(X̌, Y̌ ) . (10.27)

The magnitude of the blade X̌ ∧ Y̌ is also related to the angle γ (cf. section
4.1.1):
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‖X̌ ∧ Y̌ ‖ = ‖X̌‖ ‖Y̌ ‖ sin(γ)

⇐⇒ sin(γ) =
‖X̌ ∧ Y̌ ‖√
V(X̌)V(Y̌ )

=

√
1 − ρ(X̌, Y̌ )2 .

(10.28)

The geometric product of two random variables X̌, Y̌ ∈ G1
n can therefore be

written as

X̌ Y̌ =

√
V(X̌)V(Y̌ )

(
cos(γ) + sin(γ) Û 〈2〉

)
=

√
V(X̌)V(Y̌ ) eγ Û〈2〉 ,

where Û 〈2〉 := (X̌ ∧ Y̌ )/‖X̌ ∧ Y̌ ‖ is a unit bivector.

10.3.4 Normal Random Variables

As mentioned before, normally distributed random variables are particularly
well suited for a representation in Hn

h . Their pdfs are completely described
by the first two moments, which can be evaluated with the use of the scalar
product. This also implies that if two normally distributed random variables
are uncorrelated, they are also statistically independent. Orthogonalization
of a basis {D, X1, . . . , Xn } of Hn

h thus results in a basis of statistically inde-
pendent distributions. Variances and correlations between random variables
can then be represented by the components of linear combinations of this
orthogonal basis.

10.3.4.1 Canonical Basis

The equivalence of uncorrelatedness and statistical independence can be
derived directly from the normal distribution. Let X := (X1, . . . , Xn) de-
note a multivariate random variable with a multivariate normal distribution
N(m, V), where m is the expectation vector and V is the covariance matrix.
N(m, V) is the joint density function of the set {X1, . . . , Xn }, given by

f(x) =
1√

(2π)n |V|
exp

(
−1

2
(x − m)T V−1 (x − m)

)
.

The expectation dimension is already statistically independent of all other
distributions in Hn

h by definition. The important orthogonalization is
therefore that of the corresponding set of zero-mean random variables
{ X̌1, . . . , X̌n }. The joint density function of this set is N(0,V), given by

f(x) =
1√

(2π)n |V|
exp

(
−1

2
xT V−1 x

)
.
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The covariance matrix V is a positive definite symmetric matrix of full rank,
and may thus be orthogonalized. Let D denote the matrix that orthogonalizes
V; that is, DTVD = Λ, where Λ is a diagonal matrix. We define y := D x, such
that x = D−1 y; it may then be shown (see [82]) that the joint density function
of Y = D X is given by

f(y) =
1√

(2π)n |Λ|
exp

(
−1

2
yT Λ−1 y

)
=

n∏

i=1

1√
2π σ2

i

exp

(
−1

2

(
yi

σi

)2
)

,

where yi is the ith component of y and σ2
i is the corresponding component

in the diagonal matrix Λ. This can also be written as f(y) =
∏n

i=1 fY i
(yi),

which is the condition for statistical independence.
From this it follows that for any Hn

h of normally distributed random vari-
ables, an orthonormal basis of n statistically independent random variables
of unit variance can be found, which we call a canonical basis of Hn

h . Given
an arbitrary basis of Hn

h , a canonical basis can also be constructed using the
Gram–Schmidt orthogonalization.

The canonical basis of Hn
h is denoted by { e0,e1, . . . ,en }, where the

{ e1, . . . ,en } represent statistically independent, zero-mean, unit-variance
random variables. The basis element e0 represents the Dirac delta distribu-
tion, which is statistically independent of all other random variables. Hence,
{ e0,e1, . . . ,en } is an orthonormal basis of Hn

h ; that is, ei ∗ ej = δij .

10.3.4.2 Representation of Random Variables

A general random variable X ∈ Hn
h can be written as X =

∑n
i=1 x i ei or

simply X = x i ei, using the Einstein summation convention. This is possible
because a sum of normally distributed random variables is also normally
distributed. The component x 0 gives the expectation value of X, while the
{ x 1, . . . , xn } give the standard deviations along the corresponding statistical
dependencies. Consider for example two random variables X̌, Y̌ ∈ H2

h defined
as X̌ := x 1 e1 + x 2 e2 and Y̌ := y1 e1 + y2 e2, where x 1, x 2, y1, y2 ∈ R. All
statistical properties of these two random variables are now captured in the
components { x i } and { y i }. Their variances are

V(X̌) = X̌ · X̌ = (x 1)2 + (x 2)2 , V(Y̌ ) = Y̌ · Y̌ = (y1)2 + (y2)2 ,

and their covariance is

C(X̌, Y̌ ) = X̌ · Y̌ = x 1 y1 + x 2 y2 .

Typically, for a set of random variables {X1, . . . , Xn } that form a basis of
Hn

h , the expectation values and the covariance matrix V are given. To perform
numerical calculations in this space with the random variables {Xi }, a repre-
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sentation of them in terms of the canonical basis is needed. This can be eval-
uated as follows. First, the expectation values give the corresponding depen-
dencies on e0. The dependencies on the remaining dimensions can be derived
from the covariance matrix V. For this purpose, the matrix D which diagonal-
izes the covariance matrix V, such that DT V D is diagonal, has to be found.
Then the relation between the multivariate distribution X̌ := (X̌1, . . . , X̌n)
and the canonical multivariate distribution Ě := (e1, . . . ,en) is X̌ = D−1 Ě.
That is, the rows of D−1 give the components of the { X̌i } in terms of the
canonical basis elements.

10.3.4.3 Further Properties

In general, the sum X̌ + Y̌ and the difference X̌ − Y̌ have variances

V(X̌ + Y̌ ) = (X̌ + Y̌ )2

= X̌
2

+ Y̌
2

+ 2 X̌ · Y̌

= V(X̌) + V(Y̌ ) + 2 C(X̌, Y̌ ) ,

and, similarly,

V(X̌ − Y̌ ) = V(X̌) + V(Y̌ ) − 2 C(X̌, Y̌ ) .

The sum and difference are statistically independent if

(X̌ + Y̌ ) · (X̌ − Y̌ ) = 0 ⇐⇒ X̌
2

= Y̌
2 ⇐⇒ V(X̌) = V(Y̌ ) .

For random variables of Hn
h that are not expectation-free, the split between

the expectation dimension and the “variance dimensions” can be made ex-
plicit through the projection on and rejection from (cf. section 3.2.10) the
expectation dimension e0. That is, for X ∈ Hn

h with X = x i ei,

X = Pe0
(X) + P⊥

e0
(X) = E(X) e0 + X̌ ,

where X̌ = P⊥
e0

(X) is the zero-mean version of X. The second moment of X
is thus

X ∗ X = E(X)2 + X̌ ∗ X̌ = (x 0)2 +

n∑

i=1

(x i)2 = E(X)2 + V(X) ,

where E(X) = x 0 and V(X) = X̌ ∗ X̌ =
∑n

i=1 (x i)2.
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10.3.4.4 Geometric Algebra

The algebraic basis of G(Hn
h ) has dimension 2(n+1) and can be constructed by

the appropriate algebraic products of the basis elements { ei } (cf. section 3.1).
For example, given H2+1 with a basis { e0,e1,e2 }, the canonical algebraic
basis of G(H2+1) is given by

{ 1, e0, e1, e2, e0 e1, e0 e2, e1 e2, e0 e1 e2 } .

While e1 and e2 represent statistically independent random variables, the ba-
sis element e12 ≡ e1 e2 can be regarded as representing the random-variable
subspace spanned by e1 and e2. All operations that are possible in the geo-
metric algebra of Euclidean space, such as projection, reflection, and rotation,
can now also be applied to normally distributed random variables.

Another example is the treatment of random-variable subspaces in much
the same way as random variables. That is, if Ǎ, B̌, Č, Ď ∈ G1

n, then Ǎ ∧ B̌
and Č ∧ Ď are elements of the vector space G2

n. The variance of the subspace
Ǎ ∧ B̌ may now be defined as

‖Ǎ ∧ B̌‖2 = Ǎ
2
B̌

2 − (Ǎ · B̌)2 .

The covariance between the subspaces Ǎ ∧ B̌ and Č ∧ Ď may be defined as

(Ǎ ∧ B̌) · (Ď ∧ Č) = (Ǎ · Č) (B̌ · Ď) − (Ǎ · Ď) (B̌ · Č) .

The meet and join operators can also be used to intersect and combine
random-variable subspaces.

Although we can easily apply all operations defined in geometric algebra,
such as reflection and rotation, to elements of random-variable spaces, the sig-
nificance of these operations, in the context of random variables, is currently
not clear. However, as demonstrated in the derivation of the Cauchy–Schwartz
inequality, and the derivation of the generalized correlation coefficient, the
geometric concepts of geometric algebra can lead to new insights. Future
research in this field, may therefore be quite fruitful.
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The aim of the notation chosen was to allow a distinction between different
types of elements through their fonts. Here is a list of the most important
elements of the notation:

A A general set of arbitrary entities

R The real numbers

Sn The unit sphere in Rn+1

C The complex numbers

H The quaternions

Rn A vector space of dimension n over the field R with a Eu-
clidean signature

Rp,q A vector space of dimension n = p+ q over the field R with
signature (p, q)

Rm×n The direct product Rm ⊗ Rn

Gn The geometric algebra over Rn

Gp,q The geometric algebra over Rp,q

Gk
p,q The k-vector space of Gp,q

G◦ k
p,q The set of grade-k null-blades of Gp,q

G∅ k
p,q The set of grade-k non-null-blades of Gp,q

Gp,q The Clifford group of Gp,q
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a,A Scalar elements

a,A Multivectors of geometric algebra

a,A A column vector and a matrix in matrix algebra

Ak
ij A 3-valence tensor in Rp×q×r

F A general function

A〈k〉 A blade of grade k

a,A Random multivector variables

a,A Random matrix variables

ā, Ā The expectation value of a random multivector variable

ā, Ā The expectation value of a random matrix variable

The following is a list of the various operator symbols used in this text:

A B Geometric product of A and B

A ∗ B Scalar product of A and B

A ⋆ B Euclidean scalar product of A and B

A · B Inner product of A and B

A ∧ B Outer product of A and B

A ∨ B Meet of A and B

A∧̇B Join of A and B

A ▽ B Regressive product of A and B

A−1 Inverse of A

〈A〉k Projection of A onto grade k

A∗ Dual of A

Ã Reverse of A

A† Conjugate of A

‖A‖ Norm of A

PB〈l〉

(
A〈k〉

)
Projection of A〈k〉 onto B〈l〉

P⊥
B〈l〉

(
A〈k〉

)
Rejection of A〈k〉 from B〈l〉

∂A Multivector differentiation operator with respect to A



References

1. Ablamowicz, R.: Clifford algebra computations with Maple. In: W.E. Baylis
(ed.) Clifford (Geometric) Algebras with Applications in Physics, Mathematics
and Engineering, pp. 463–501. Birkhäuser, Boston (1996)
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E.: A computational basis for conic arcs and boolean operations on conic poly-
gons. In: 10th European Symposium on Algorithms, Lecture Notes in Computer

Science, vol. 2461, pp. 174–186. Springer, Heidelberg (2002)
21. Bie, H.D., Sommen, F.: Correct rules for Clifford calculus on superspace. Ad-

vances in Applied Clifford Algebras 17(3) (2007)
22. Board, O.A.R.: OpenGL Programming Guide, 2nd edn. Addison-Wesley Devel-

opers Press (1997)
23. Board, O.A.R.: OpenGL Reference Manual, 2nd edn. Addison-Wesley Develop-

ers Press (1997)
24. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis, Research Notes in

Mathematics, vol. 76. Pitman, London (1982)
25. Brannan, D.A., Esplen, M.F., Gray, J.J.: Geometry. Cambridge University Press

(1999)
26. Bronstein, I.N., Semendjajew, K.A., Musiol, G., Mühlig, H.: Taschenbuch der

Mathematik, 4th edn. Verlag Harri Deutsch (1999)
27. Buchholz, S.: A theory of neural computation with Clifford algebra. Ph.D.

thesis, Christian-Albrechts-Universität zu Kiel (2005)
28. Buchholz, S., Bihan, N.L.: Optimal separation of polarized signals by quater-

nionic neural networks. In: 14th European Signal Processing Conference, EU-
SIPCO 2006, September 4–8, Florence, Italy (2006)

29. Buchholz, S., Sommer, G.: Introduction to Neural Computation in Clifford Al-
gebra, pp. 291–314. Springer, Heidelberg (2001)

30. Buchholz, S., Sommer, G.: On averaging in Clifford groups. In: H. Li, P.J. Olver,
G. Sommer (eds.) Computer Algebra and Geometric Algebra with Applications,
Lecture Notes in Computer Science, vol. 3519, pp. 229–238. Springer, Berlin,
Heidelberg (2005)

31. Choi, H.I., Han, C.Y.: Euler–Rodrigues frames on spatial Pythagorean-
hodograph curves. Comput. Aided Geom. Design 19, 603–620 (2002)

32. Choi, H.I., Lee, D.S., Moon, H.P.: Clifford algebra, spin representation, and
rational parameterization of curves and surfaces. Adv. Comp. Math. 17, 5–48
(2002)

33. Claus, D., Fitzgibbon, A.W.: A rational function lens distortion model for gen-
eral cameras. In: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 1, pp. 213–219 (2005)



References 373

34. Clifford, W.K.: Preliminary sketch of bi-quaternions. In: Proc. Lond. Math.
Soc., vol. 4, pp. 381–395 (1873)

35. Clifford, W.K.: Applications of Grassmann’s Extensive Algebra, pp. 266–276.
Macmillan, London (1882)

36. Clifford, W.K.: Mathematical Papers. Macmillan, London (1882)
37. Clifford, W.K.: On the Classification of Geometric Algebras, pp. 397–401.

Macmillan, London (1882)
38. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Springer, New

York (1998)
39. Daniilidis, K.: Hand–eye calibration using dual quaternions. Int. J. Robot. Res.

18, 286–298 (1999)
40. Daniilidis, K.: Using the algebra of dual quaternions for motion alignment. In:

G. Sommer (ed.) Geometric Computing with Clifford Algebras, pp. 489–500.
Springer, Berlin, Heidelberg (2001)

41. Delanghe, R.: Clifford analysis: History and perspective. In: Computational
Methods and Function Theory, vol. 1, pp. 107–153. Heldermann (2001)

42. Delanghe, R., Sommen, F., Soucek, V.: Clifford Algebra and Spinor-Valued
Functions. Kluwer, Dordrecht (1992)
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affine transformation, 136
algebraic basis, 58
algorithm

basis orthogonalization, 106
blade factorization into 1-vectors, 107
join of blades, 108
versor factorization, 108

anticommutator product, 55
of vectors, 56
tensor representation, 264

basis
orthogonalization of, 106
reciprocal, 98

basis blade, 56
bias

error propagation bilinear function,
219

bilinear function, error propagation bias,
219

bivector, 65
oriented plane, 125

blade, 64
factorization into 1-vectors, 107
projection of, 82
pseudoinverse, 81
rejection from, 83
relation to spinor, 91
relation to versor, 91

canonical algebraic basis, 58
canonical vector basis, 52
Cauchy–Schwarz inequality, 362
Clifford group, 90
CLUCalc, 25
CLUScript, 25
commutator product, 55

of vectors, 56
tensor representation, 264

component vectors, 199
conformal conic space, 193

GOPNS, 194
conformal space

analysis of circle representation, 178
analysis of line representation, 177
analysis of plane representation, 176
analysis of point pair representation,

177
analysis of sphere representation, 176
dilation operator, 172
embedding of Euclidean vector, 149
general rotation operator, 170
geometric algebra of, 150
GIPNS, 152
GOPNS, 158
inner product of spheres, 174
inner-product circles, 156
inner-product imaginary sphere, 154
inner-product lines, 157
inner-product planes, 155
inner-product point pairs, 157
inner-product points, 152
inner-product sphere, 153
inversion operator, 166
motor operator, 171
outer-product circles, 160
outer-product homogeneous points,

159
outer-product lines, 159
outer-product planes, 160
outer-product point pairs, 158
outer-product points, 158
outer-product spheres, 160
polynomial representation, 181

381
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pose estimation, 305
reflection operator, 163
rotation operator, 170
stratification of spaces, 161
translation operator, 168
uncertain circle, 256
uncertain line, 256
uncertain reflection, 259
uncertain rotor, 261

conformal transformation, 145
conic space, 179

analysis of conic representation, 186
degenerate conic, 190
GIPNS, 184
GOPNS, 183
intersection of conics, 190
intersection of lines and conics, 189
representation of conic, 183
rotation operator, 184
types of conics, 188
uncertain conic, 258

conjugate, 59
of blades, 69

containment relations, 173
correlation coefficient, 363
covariance matrix, 209

inverse conformal mapping, 229
of bilinear function, 213
of conformal embedding, 228
of conic space embedding, 234
of function of random variable, 212
of inverse conic space mapping, 234
of projective embedding, 222
relation to blades, 230
relation to versors, 232

curl of vector-valued function, 100
cycloidal curve, 327

relation to Fourier series, 328

De Morgan’s laws, 85
degenerate conic, 190
determinant

of linear function, 94
product of, 96

differentiation operator
multivector, 101
vector, 100

Dirac delta distribution, 359
direct difference, 77
direct sum, 67
divergence of vector-valued function, 100
dual

geometric meaning, 124
duality, 60

Einstein summation convention, 58
equivalence class, 134
error propagation, 210

conditioning in projective space, 224
construction of circle, 256
construction of conic, 258
construction of line, 256
construction of reflection, 259
construction of rotor, 261
non-Gaussivity, 215
summary of equations, 215

estimation
catadioptric camera, 314
Gauss–Helmert model, 239
Gauss–Markov model, 234
initial monocular pose, 302
lens distortion, 314
monocular pose, 299
of circle, 272
of general rotor, 274
of line, 263
of versor equation, 265
Plücker condition, 263
pose, 306
projective versor equation, 267

Euclidean scalar product, 70
expectation dimension, 359
expectation value, 209

inverse conformal mapping, 229
inverse projective mapping, 222
of bilinear function, 213
of conformal embedding, 228
of conic space embedding, 233
of function of random variable, 209
of inverse conic space mapping, 234
of projective embedding, 221

factorization
of blades, 107
of versors, 108

Fourier series, 328
relation to cycloidal curve, 328

fundamental matrix, 280
future research

conformal conic space, 194
Fourier series of space curves, 330
geometric algebra of random variables,

368

Gauss–Helmert model, 239
covariance matrix of estimation, 246
generalized normal equations, 248
iterative application, 249
normal equations, 242, 244
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Gauss–Markov model, 234
generalized normal equations, 239
normal equations, 237
numerical estimation, 238

general multivector derivative, 102
general multivector integration, 104
geometric algebra

axiom, 52
basis of G(R3), 58
defining equation, 54
isomorphism to C, 110
isomorphism to quaternions, 113
norm of random variables, 361
of conformal conic space, 194
of conformal space, 150
of conic space, 183
of Euclidean space, 121
of projective space, 135
of symmetric matrices, 183
relation to complex numbers, 110
relation to Gibbs’s vector algebra, 109
relation to Grassmann algebra, 114
relation to Grassmann–Cayley

algebra, 115
relation to quaternions, 111

geometric IPNS, see GIPNS
geometric OPNS, see GOPNS
geometric orthogonality, 71
geometric product

axioms, 54
Jacobi matrix, 199
matrix representation, 199
of 1-vectors, 65
of bivectors, 65
of random variables, 365
relation to inner product, 72
relation to outer product, 66
relation to scalar product, 54
tensor representation, 198, 199

GIPNS, 120
conformal circles, 156
conformal imaginary sphere, 154
conformal lines, 157
conformal planes, 155
conformal point, 152
conformal point pairs, 157
conformal sphere, 153
Euclidean line, 125
Euclidean plane, 124
Euclidean point, 127
in conformal space, 151
in conic space, 184
of polynomial, 180
projective line, 141

projective plane, 140
projective point, 141

GOPNS, 120
conformal circles, 160
conformal homogeneous points, 159
conformal lines, 159
conformal planes, 160
conformal point pairs, 158
conformal points, 158
conformal spheres, 160
Euclidean line, 122
Euclidean plane, 122
in conformal space, 151
in conic space, 183
projective line, 138
projective plane, 139

grade, 57
grade projection bracket, 61
grade-preserving function, 93
grade-preserving operator, 92
gradient

of multivector-valued function, 101
of vector-valued function, 100

Grassmann algebra, relation to
geometric algebra, 114

Grassmann–Cayley algebra, relation to
geometric algebra, 115

Hesse tensor, 103
Hilbert space of random variables, 356
homogeneous space, 134
homogeneous vector, 135

random variable of, 223
hypothesis testing, 275

idempotent
multivector example, 204

inner product, 62
of 1-vector and blade, 73
of blades, 72
of matrices, 181
of multivectors, 63
of spheres, 174
relation to geometric product, 72
relation to shuffle product, 117
tensor representation, 199

inner-product null space, see IPNS
integration

multivector, 104
inverse

linear function, 96
multivector, 204
of blade, 81
versor, 90
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inversion camera model, 281
lens distortion, 287
mathematical formulation of

catadioptric camera, 295
mathematical representation, 284
relation to fisheye lens, 294

inversion in conformal space, 166
IPNS, 73

geometric, 120
intersection of, 126
relation to OPNS, 79

Jacobi matrix, 100, 103
of product tensor, 199
pose estimation, 310

join, 84
of blades algorithm, 108

k-vector space, 58

linear function, 93
grade preservation, 93
inverse, 96

magnitude
of multivectors, 71

matrix inner product, 181
meet, 84
metric

point–circle, 271
point–line, 269
versor equation, 272

monocular pose estimation, 300
representation in conformal space, 305
tensor representation, 309

multivector, 58
component vector representation, 199
inverse, 204
random variable, 208
tensor representation, 198

norm
of multivectors, 71

null blade, 73
properties of, 78

null versor, 91

operator
dilator in conformal space, 172
general rotation in conformal space,

170
grade preservation, 92
inversion in conformal space, 166
motor in conformal space, 171

reflection in conformal space, 163
reflection in Euclidean space, 128
reflection in projective space, 143
rotor in conformal space, 170
rotor in conic space, 184
rotor in Euclidean space, 131
rotor in projective space, 144
screw in conformal space, 171
translator, 168

OPNS, 67
geometric, 120
relation to IPNS, 79

ordered power set, 57
orthogonality

geometric, 71
self-, 71

outer product, 62
of blades, 66
of multivectors, 63
relation to geometric product, 66
relation to vector cross product, 80
tensor representation, 199

outer-product null space, see OPNS
outermorphism

linear function, 94
of projection, 82
of reflection, 128
of rotor, 132
of versor, 92

PDF, 208
pin group, 90
pinhole camera model, 279

camera matrix, 280
fundamental matrix, 280
trifocal tensor, 280

Plücker condition in geometric algebra,
263

plane
orientation, 125

polynomial space, 180
probability distribution function, see

PDF
probability space, 352
product

anticommutator, 55
commutator, 55
Euclidean scalar, 70
geometric, 54
inner, 62
join, 84
meet, 84
outer, 62
regressive, 89
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scalar, 52
shuffle, 115
tensor representation, 199
triple scalar product, 109
triple vector cross product, 110

product tensor, 199
change of basis, 203
example in G2, 200
subspace projection, 201
versor equation, 205

projection
of blade, 82
of general blades, 83
outermorphism of, 82

projective space, 134
projective transformation, 136
pseudoinverse

of blade, 81
pseudoscalar, 59
Pythagorean-hodograph

Hermite interpolation, 340
Pythagorean-hodograph curve, 330

in any dimension, 333, 347
necessary and sufficient condition, 332
of constant length, 342
of maximally different length, 346
preimage, 336
reflection representation, 334
relation between reflection and

rotation form, 335

quadratic space, 52
quaternions, isomorphism to geometric

algebra, 113

random multivector variable, 208
random variables, 352

canonical basis, 366
correlation coefficient, 363
correlation coefficient of n, 364
correlation coefficient of three, 364
correlation of, 363
Dirac delta distribution, 359
expectation dimension, 359
expectation operator, 356
Hilbert space, 356
norm, 356
scalar product, 358
statistical independence of, 362

reciprocal basis, 98
of null vector basis, 98

reflection
in Euclidean space, 128
in projective space, 143
outermorphism, 128
versor operation, 91

regressive product, 89
relation to shuffle product, 116

rejection
from blade, 83

reverse, 59
of blades, 69

rotor, 131
exponential form, 132
in conformal space, 170
in conic space, 184
in projective space, 144
mean, 133
outermorphism, 132

scalar product, 52
of blades, 68
relation to geometric product, 54

self-orthogonality, 71
shuffle product, 115

relation to inner product, 117
relation to regressive product, 116

spin group, 91
spinor, 91
stereographic projection, 146

inverse of, 147
stratification of spaces in conformal

space, 161
symmetric-matrix vector space, 181

transformation
affine, 136
projective, 136

translator, 168
trifocal tensor, 280

unitary versor, 90

vector basis, 52
vector cross product

relation to outer product, 80
triple, 110

vector space
axioms, 53

versor, 90
coupled motors, 326
evaluation from data, 206
factorization, 108
function, 325
grade preservation, 92
inverse, 90
null, 91
outermophism of, 92
reflection, 91
relation to blade, 91
relation to spinor, 91
unitary, 90


