
http://www.cambridge.org/9780521815130

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

ii

This page intentionally left blank

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

Geometric Spanner Networks

Aimed at an audience of researchers and graduate students in computational geometry and
algorithm design, this book uses the Geometric Spanner Network Problem to showcase a
number of useful algorithmic techniques, data structure strategies, and geometric analysis
techniques with many applications, practical and theoretical.

The authors present rigorous descriptions of the main algorithms and their analyses for
different variations of the Geometric Spanner Network Problem. Although the basic ideas
behind most of these algorithms are intuitive, very few are easy to describe and analyze. For
most of the algorithms, nontrivial data structures need to be designed, and nontrivial techniques
need to be developed in order for analysis to take place. Still, there are several basic principles
and results that are used throughout the book. One of the most important is the powerful
well-separated pair decomposition. This decomposition is used as a starting point for several
of the spanner constructions.

Giri Narasimhan earned a B. Tech. in Electrical Engineering from the Indian Institute of
Technology in Mumbai, and a Ph.D. in Computer Science from the University of Wisconsin
in Madison. He was a member of the faculty at the University of Memphis, Tennessee, and
is currently a professor in the School of Computing and Information Sciences at Florida
International University in Miami.

Michiel Smid received an M.Sc. degree in Mathematics from the University of Technology
in Eindhoven, The Netherlands, and a Ph.D. degree in Computer Science from the University
of Amsterdam. He has held teaching positions at the Max-Planck-Institut für Informatik in
Saarbrücken, Germany, King’s College in London, and the Otto-von-Guericke-Universität in
Magdeburg, Germany. Since 2001, he has been at Carleton University, Ottawa, where he is
currently a professor of Computer Science.

i

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

ii

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

Geometric Spanner Networks

Giri Narasimhan
Florida International University

Michiel Smid
Carleton University

iii

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-81513-0

ISBN-13 978-0-511-26926-4

© Giri Narasimhan, Michiel Smid 2007

2007

Information on this title: www.cambridge.org/9780521815130

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

ISBN-10 0-511-26926-9

ISBN-10 0-521-81513-4

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (EBL)

eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521815130

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

To my parents, Kalyani and Narasimhan, who taught me the fundamentals of

life and the pursuit of knowledge and excellence, and to Kalai Mathee, with

whom I collaborate on the advanced concepts. (G.N.)

To my parents, Nell and Giel, who (unknowingly) convinced me to become a

mathematician and theoretical computer scientist. (M.S.)

v

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

vi

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

Contents

Preface p age xiii

I Preliminaries

1 Introduction 3

1.1 What is this book about? 3
1.2 The topic of this book: Spanners 9
1.3 Using spanners to approximate minimum spanning trees 11
1.4 A simple greedy spanner algorithm 12
Exercises 13
Bibliographic notes 15

2 Algorithms and Graphs 18

2.1 Algorithms and data structures 18
2.2 Some notions from graph theory 19
2.3 Some algorithms on trees 21
2.4 Coloring graphs of bounded degree 30
2.5 Dijkstra’s shortest paths algorithm 31
2.6 Minimum spanning trees 35
Exercises 38
Bibliographic notes 39

3 The Algebraic Computation-Tree Model 41

3.1 Algebraic computation-trees 41
3.2 Algebraic decision trees 43
3.3 Lower bounds for algebraic decision tree algorithms 43
3.4 A lower bound for constructing spanners 51
Exercises 57
Bibliographic notes 58

II Spanners Based on Simplicial Cones

4 Spanners Based on the �-Graph 63

4.1 The �-graph 63
4.2 A spanner of bounded degree 73
4.3 Generalizing skip lists: A spanner with logarithmic spanner diameter 78
Exercises 89
Bibliographic notes 90

vii

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

viii CONTENTS

5 Cones in Higher Dimensional Space and �-Graphs 92

5.1 Simplicial cones and frames 92
5.2 Constructing a θ -frame 93
5.3 Applications of θ -frames 98
5.4 Range trees 99
5.5 Higher-dimensional �-graphs 103
Exercises 106
Bibliographic notes 106

6 Geometric Analysis: The Gap Property 108

6.1 The gap property 109
6.2 A lower bound 111
6.3 An upper bound for points in the unit cube 112
6.4 A useful geometric lemma 114
6.5 Worst-case analysis of the 2-Opt algorithm for the traveling

salesperson problem 116
Exercises 118
Bibliographic notes 118

7 The Gap-Greedy Algorithm 120

7.1 A sufficient condition for “spannerhood” 120
7.2 The gap-greedy algorithm 121
7.3 Toward an efficient implementation 124
7.4 An efficient implementation of the gap-greedy algorithm 128
7.5 Generalization to higher dimensions 137
Exercises 137
Bibliographic notes 138

8 Enumerating Distances Using Spanners of Bounded Degree 139

8.1 Approximate distance enumeration 139
8.2 Exact distance enumeration 142
8.3 Using the gap-greedy spanner 144
Exercises 145
Bibliographic notes 146

III The Well-Separated Pair Decomposition and Its Applications

9 The Well-Separated Pair Decomposition 151

9.1 Definition of the well-separated pair decomposition 151
9.2 Spanners based on the well-separated pair decomposition 154
9.3 The split tree 155
9.4 Computing the well-separated pair decomposition 162
9.5 Finding the pair that separates two points 168
9.6 Extension to other metrics 172
Exercises 174
Bibliographic notes 175

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

CONTENTS ix

10 Applications of Well-Separated Pairs 178

10.1 Spanners of bounded degree 178
10.2 A spanner with logarithmic spanner diameter 184
10.3 Applications to other proximity problems 186
Exercises 194
Bibliographic notes 195

11 The Dumbbell Theorem 196

11.1 Chapter overview 196
11.2 Dumbbells 197
11.3 A packing result for dumbbells 198
11.4 Establishing the length-grouping property 202
11.5 Establishing the empty-region property 205
11.6 Dumbbell trees 207
11.7 Constructing the dumbbell trees 209
11.8 The dumbbell trees constitute a spanner 210
11.9 The Dumbbell Theorem 215
Exercises 217
Bibliographic notes 217

12 Shortcutting Trees and Spanners with Low
Spanner Diameter 219

12.1 Shortcutting trees 219
12.2 Spanners with low spanner diameter 238
Exercises 240
Bibliographic notes 240

13 Approximating the Stretch Factor of Euclidean Graphs 242

13.1 The first approximation algorithm 243
13.2 A faster approximation algorithm 248
Exercises 253
Bibliographic notes 253

IV The Path-Greedy Algorithm and Its Analysis

14 Geometric Analysis: The Leapfrog Property 257

14.1 Introduction and motivation 257
14.2 Relation to the gap property 259
14.3 A sufficient condition for the leapfrog property 260
14.4 The Leapfrog Theorem 262
14.5 The cleanup phase 264
14.6 Bounding the weight of non-lateral edges 273
14.7 Bounding the weight of lateral edges 297
14.8 Completing the proof of the Leapfrog Theorem 306
14.9 A variant of the leapfrog property 307

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

x CONTENTS

14.10 The Sparse Ball Theorem 309
Exercises 315
Bibliographic notes 317

15 The Path-Greedy Algorithm 318

15.1 Analysis of the simple greedy algorithm PathGreedy 319
15.2 An efficient implementation of algorithm PathGreedy 327
15.3 A faster algorithm that uses indirect addressing 353
Exercises 381
Bibliographic notes 382

V Further Results on Spanners and Applications

16 The Distance Range Hierarchy 385

16.1 The basic hierarchical decomposition 386
16.2 The distance range hierarchy for point sets 400
16.3 An application: Pruning spanners 401
16.4 The distance range hierarchy for spanners 408
Exercises 413
Bibliographic notes 413

17 Approximating Shortest Paths in Spanners 415

17.1 Bucketing distances 416
17.2 Approximate shortest path queries for points that are separated 416
17.3 Arbitrary approximate shortest path queries 422
17.4 An application: Approximating the stretch factor of

Euclidean graphs 425
Exercises 426
Bibliographic notes 426

18 Fault-Tolerant Spanners 427

18.1 Definition of a fault-tolerant spanner 427
18.2 Vertex fault-tolerance is equivalent to fault-tolerance 429
18.3 A simple transformation 430
18.4 Fault-tolerant spanners based on well-separated pairs 434
18.5 Fault-tolerant spanners with O(kn) edges 437
18.6 Fault-tolerant spanners of low degree and low weight 437
Exercises 441
Bibliographic notes 441

19 Designing Approximation Algorithms with Spanners 443

19.1 The generic polynomial-time approximation scheme 443
19.2 The perturbation step 444
19.3 The sparse graph computation step 446
19.4 The quadtree construction step 448
19.5 A digression: Constructing a light graph of low weight 450
19.6 The patching step 454

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

CONTENTS xi

19.7 The dynamic programming step 464
Exercises 466
Bibliographic notes 467

20 Further Results and Open Problems 468

20.1 Spanners of low degree 468
20.2 Spanners with few edges 469
20.3 Plane spanners 470
20.4 Spanners among obstacles 472
20.5 Single-source spanners 473
20.6 Locating centers 474
20.7 Decreasing the stretch factor 474
20.8 Shortcuts 474
20.9 Detour 476
20.10 External memory algorithms 477
20.11 Optimization problems 477
20.12 Experimental work 478
20.13 Two more open problems 479
20.14 Open problems from previous chapters 480
Exercises 481

Bibliography 483
Algorithms Index 495
Index 496

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

xii

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

Preface

Philosophy is written in this grand book – I mean universe – which stands
continually open to our gaze. But the book cannot be understood unless one first
learns to comprehend the language and read the letters in which it is composed.
It is written in the language of mathematics, and its characters are triangles,
circles, and other geometric figures without which it is humanly impossible to
understand a single word of it.

—Galileo, The Assayer (Il saggiatore), 1623

This book started as a collection of personal notes on Geometric Spanner Networks. Over
time, these notes grew, and we realized that they could be of value to many researchers
in the field. Gautam Das suggested that it be turned into a monograph. It made sense,
because the geometric spanner problem is closely related to several fundamental problems
in geometric and graph algorithms, including the minimum spanning tree problem, the
Steiner minimum tree problem, the traveling salesperson problem, and the shortest path
problem. We assume that the reader has had previous exposure to (undergraduate-level)
basic concepts of discrete mathematics, data structures, probability and combinatorics,
algorithm analysis, fundamental algorithms, and mathematical proof techniques. This
book can serve as a reference text and can also be used as a self-study book for anyone
interested in research in computational geometry and geometric algorithms.

One of the main features of this book is its attention to detail – detail in the proofs
and arguments presented. We have striven to present complete proofs, wherever possible
and appropriate, while at the same time peppering it with intuition, so that the reader can
understand the underlying train of thought.

While there are numerous examples of the design of efficient algorithms much before
that, by 1864 Charles Babbage foresaw rather clearly the development of the field of
algorithms when he wrote in The Life of a Philospher:

As soon as an Analytical Engine exists, it will necessarily guide the future course
of the science. Whenever any result is sought by its aid, the question will then
arise – by what course of calculation can these results be arrived at by the machine
in the shortest time?

Many of us were drawn to the field of algorithms because of the elegance, subtlety,
precision, and clarity of the ideas and arguments. This is especially true of some of the
early work in the field, some of which is now part of undergraduate texts. The field has
evolved since then. The algorithms and data structures and analysis tools have become
more complex and sophisticated. To do research and to keep up with the advances in the
field, it is necessary to know how to read papers, focus on their central ideas, and skip
unnecessary details that may cloud an elegant argument. But this requires training and
skill, and it is particularly challenging for the novice, the beginning graduate student. As

xiii

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

xiv PREFACE

academics, we already know that “teaching is not the mere imparting of information but
the cultivation of an inquiring mind” (J. Krishnamurthy, Life Ahead (1963)). But we face a
greater challenge – one of capturing and maintaining students’ interest and keeping them
challenged. Details, when presented in papers, are often boring and time-consuming,
especially when the underlying ideas are new. Details are hard to write down. So, it is
with good reason that details are often pushed “under the rug.”

Then why should the novice be concerned about understanding details? It takes skill
and training to convert good ideas and great intuition into an end result (an algorithm, a
proof, etc.). When writing a paper, without the attention to details, one is more prone to
errors. It is easier to make wild claims and statements without details, and it is harder to see
subtle errors without the attention to details. Many of us have refereed papers for journals
and conferences, where this is certainly a critical issue. Also, details help you “take apart”
an algorithm or a proof; details help you understand limitations that are not obvious from
an overview; details will help you understand the hurdles that must be overcome to make
improvements; finally details will help you innovate and dig deeper.

Web site

This book has its own Web site(s); the following are mirror sites:

www.scs.carleton.ca/˜michiel/SpannerBook.html
www.cis.fiu.edu/˜giri/SpannerBook.html

They will contain a list of known errors and new developments in Geometric Spanner
Networks.

Acknowledgments

We gratefully acknowledge all our “co-conspirators,” who have worked with us on span-
ners and related geometric topics, and from whom we have learned an awful lot. These
collaborators include Lyudmil Aleksandrov, Srinivasa Arikati, Estie Arkin, Sunil Arya,
Prosenjit Bose, Danny Chen, Paul Chew, Gautam Das, Christian Duncan, Joachim Gud-
mundsson, Dagmar Handke, Paul Heffernan, Ravi Janardan, Sanjiv Kapoor, Rolf Klein,
Christian Knauer, Aaron Lee, Hans-Peter Lenhof, Christos Levcopoulos, Anil Mahesh-
wari, Joe Mitchell, Pat Morin, Jason Morrison, David Mount, Kirk Pruhs, Jeff Salowe,
Warren Smith, Petra Specht, Jan Tusch, David Wood, Daming Xu, Martin Zachariasen,
Christos Zaroliagis, Norbert Zeh, and Jianlin Zhu.

We thank David Peleg for his perspective on the history of spanners.
We are indebted to several anonymous referees and to people who pointed out errors

and sent us feedback on preliminary versions of some of the chapters of this book. They
include: Hubert Chan, Rolf Klein, Piyush Kumar, Aaron Lee, Tamas Lukovszki, Joe
Mitchell, Marcin Pilat, and Justin Schechter.

Parts of this book were used as lecture notes at the Max-Planck-Institute for Computer
Science in Saarbrücken and for courses at the University of Magdeburg and Carleton Uni-
versity. We thank the students in Magdeburg and Ottawa for their enthusiasm and feedback.

The people at Cambridge University Press have been a pleasure to work with. Pooja Jain
has been tremendously helpful. We particularly appreciate the patience and the attention
to detail of Lauren Cowles, who has worked with us right from the start. Finally, we want

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

PREFACE xv

to thank Anoop Chaturvedi at TechBooks, Inc., who did an excellent and professional job
of taking the book through the publication stage.

Initial ideas for the cover design came from Kalai Mathee. The talent of Namitha Raju
helped refine these conceptions and brought them closer to reality. We are grateful to both
of them.

A project of this magnitude is never possible without the support and encouragement
of friends and family. We are forever indebted to them.

Much of our research on spanners would not have been possible without the resources
provided to us by our parent institutions during this period. These include the Max-
Planck-Institute, King’s College London, University of Magdeburg, Carleton University,
University of Memphis, and Florida International University. We also thank Københavns
Universitet, Otto-von-Guericke-Universität in Magdeburg, Lund University, and Florida
International University, which hosted several visits, making a lot of this work possible.

We acknowledge the funding provided by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and the National Science Foundation (NSF) for some
of our personal research reported in this book.

Giri Narasimhan Michiel Smid
Miami Ottawa

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

xvi

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

part i

Preliminaries

1

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

2

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

1

Introduction

The truth is, most of us discover where we are headed when we arrive. At that

time, we turn around and say, yes, this is obviously where I was going all along.

—Bill Watterson, 1990

1.1 What is this book about?

In this book, we will consider the following problem:

General network design problem: Given a set S of n points in Rd , how to
construct a good network that connects these points?

What do we mean by this? A network connecting the points of S is a graph G = (S, E)
with vertex set S and edge set E ⊆ S × S, such that any two points p, q ∈ S are connected
by a path in G. A geometric network is a weighted graph where the vertices correspond
to point sites in Euclidean space and the weights on the edges correspond to the distances
between the endpoints in the Euclidean metric. Clearly, there are many such networks.
For example, the complete graph, in which all pairs of distinct points are connected by an
edge, is one such network connecting the points of S. The disadvantage, however, is that
the number of edges is

(
n

2

) = �(n2); it is quadratic in the number of points.
Assume that the goal is to construct networks having only “few” edges. How many

edges does a connected graph necessarily contain? The answer is n − 1. To prove this,
consider an arbitrary network G connecting the points of S, and let m be the number of
edges of G. Hence, we have to show that m ≥ n − 1. Let us do the following: As long as
G contains a cycle, take an arbitrary cycle, and remove an arbitrary edge from it.

Removing one edge from a cycle does not destroy the connectivity of the graph.
Therefore, repeating this operation over and over again, we obtain an acyclic connected
graph G′, that is, a tree. If m′ denotes the number of edges of G′, then clearly m ≥ m′.
Hence, it suffices to show that m′ ≥ n − 1.

We claim that in fact m′ = n − 1. That is, any tree on n points has exactly n − 1 edges.
The proof is by induction on n. For n = 1, the claim is trivial. Let n ≥ 2, and assume the
claim is true for all trees on n − 1 points. Now let G′ be a tree on n points. Since G′ is
acyclic, there is a point with degree exactly 1. (This is easy to prove by contradiction:
if all degrees are larger than 1, then the graph must contain a cycle.) Remove this point,
together with its adjacent edge, from G′. This gives a graph G′′ on n − 1 points; in fact,
G′′ is a tree. Hence, by the induction hypothesis, G′′ has n − 2 edges. Since G′ itself has
one more edge, the proof is complete.

3

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

4 INTRODUCTION

Property 1.1.1. Any network connecting a set of n points must have at least n − 1 edges.

Let us call a network sparse, if it has O(n) edges, that is, the number of edges is linear
in the number of points. Again, there are many such sparse networks. Later in this chapter,
we discuss several of them; each one is good in some sense.

The more general network design problem is to connect the set of sites by a network
that satisfies a specified set of properties. To measure how good a network is, several
quality measures have been used in the literature, some of which are listed here:

1. Size is defined as the number of edges in the network. In general, it is preferable to have
networks with as few edges as possible, perhaps linear in the number of points.

2. Weight is defined as the sum of the weights of the edges. Since any network must connect
all the points, its weight is bounded from below by the weight of a minimum spanning
tree. The weight is a good measure of the cost of building the network; thus, it is often
desirable to have networks with small weight.

3. Stretch Factor (or Dilation or Distortion) for two given points is defined as the ratio of
the distance between the two points in the network to the metric distance between them.
The stretch factor of a network is defined as the maximum stretch factor for any pair of
distinct points in the network. It is often required that the stretch factor of the network be
bounded by a small constant (which must be at least one). Networks with stretch factor at
most t are called t-spanners.

4. Degree is the maximum number of edges incident on any point in the network, often
required to be bounded by a small constant. For a network, bounded degree implies small
size, but not vice versa.

5. Diameter is the maximum number of edges along a shortest path connecting any two
vertices in the network. It dictates the conciseness with which network paths can be
described. A weighted diameter, that is, the total length of the longest path of minimum
length could also be used as a quality measure instead. Diameters may be required to be
small.

6. Connectivity is the vertex or edge connectivity of the network. It is a measure of how
fault-tolerant the network is, since it signifies the number of points or links that must fail
in order for the network to be disconnected.

7. Fault Tolerance is the number of points or links that must fail in order for the network
to fail to have some desirable properties. This is slightly more general than the previous
property.

8. Genus: In many applications, it is desirable for a network to be nearly planar. This is
often quantified by its genus; it may also be measured by the size of the largest planar
subgraph or the number of crossing edges in a straight-line drawing.

9. Number of Steiner Points: Often, better networks can be designed by adding Steiner
points (points not in the input set). However, one may be constrained to have very few or
no Steiner points in the network.

10. Load Factor of an edge can be defined as the number of shortest paths between some
pair of vertices that use this edge (many alternate definitions and generalizations exist).
The load factor of a network is defined as the load factor of the most “loaded” edge in the
network. To prevent bottlenecks, it is desirable that the load factor of a network be small.

Earlier we discussed the property size. In general, when designing a network, one
would like to impose constraints on a combination of the quality measures mentioned
above; when analyzing a network, one would like to understand the properties of the
network with respect to these quality measures. A common thread among most of the

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

1.1 WHAT IS THIS BOOK ABOUT? 5

problems mentioned in this monograph is the study of networks with small stretch factor
(in combination with other properties); as mentioned earlier, such networks are called
spanners. Spanners with small size and/or weight are referred to as sparse spanners.

To motivate such problems, we mention a few “concrete” examples. Consider the net-
work of highways connecting n cities, where a road is a straight-line segment connecting
two cities. If we want to travel from p to q, then we have to travel at least a distance |pq|,
the Euclidean distance between p and q. Of course, if there is a direct highway linking
p and q, then we travel this distance more or less exactly. Otherwise, it would be nice if
there is a path between p and q, whose length is not too large as compared to |pq|, thus
giving rise to the concept of a spanner. Observe that the length of a path is defined as the
sum of the lengths of its edges.

Consider the section of the Scandinavian rail network (prior

C

M

Figure 1.1: A section of
the Scandinavian rail net-
work prior to the year
2000.

to the year 2000) shown in Figure 1.1. A quick inspection reveals
that if one wants to use the rail system to travel from Malmö
(marked by a M) in Sweden to Copenhagen (marked by a C)
in Denmark, then the distance between these cities in the rail
network is more than five times the direct “as-the-crow-flies”
distance. Adding a direct link between these two cities would
clearly improve the rail network.1

We consider another example of a network design problem
that relates to stretch factor: Imagine an existing set of highways
connecting a collection of cities, where there is a need to upgrade
the highway system in a cost-effective manner. Instead of spending the resources to
improve all the existing highways, it would be better to improve only a carefully selected
subset of the existing highways. If this subset of highway segments constitute a sparse
spanner network (small stretch factor, small size, and small weight) of the highway
system, then it is guaranteed that (i) one could drive from any city to any other using only
improved highway segments with only a constant factor increase in the driving distance
over distances in the original system of highways, and (ii) the amount of resources needed
to upgrade the highway system is small since a sparse spanner has small size (number of
highway segments) and weight (total length of the highways).

Given an existing system of highways, it is also easy to understand the significance
of network analysis. Obvious queries include: “What is the size, weight, stretch factor,
diameter, degree or connectivity of the network?” or “What is the farthest pair of cities in
the network?” or “What is the stretch factor for a given pair of cities (i.e., what is the ratio
of the length of the shortest path between two given cities in the network to the Euclidean
distance between them?)?” For a federal authority maintaining the highway system, an
appropriate query might be: “For which pair of cities in the network is the stretch factor
the largest?” If this authority has the resources to build some highway segments, a useful
query would be: “Which edge (or k edges) should be added to the network to achieve
the greatest decrease in stretch factor and/or load factor?” While budgeting for future
improvements to the highway network, a planner may ask: “What is the total length of the
edges to be added to the network to achieve a desired fault-tolerance and stretch factor
without destroying the planarity?” Planning for emergency situations requires analysis of
the fault-tolerance of the network, and this may provoke a query of the type: “What is the
maximum increase in stretch factor of the network (assuming it remains connected) if all

1 A 16-km bridge across the Øresund connecting the two cities was opened to traffic during the summer of 2000.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

6 INTRODUCTION

highway segments within a 50-mile radius of some point are unusable due to a natural
disaster?”

The list of desirable properties in a “good” network reflects many contradictory needs.
For example, if bounded degree networks are desired, then small diameters are not pos-
sible; if small stretch factor networks are needed, then arbitrarily small size or weight
may not be possible. Thus many network design problems display interesting tradeoffs
between the quality measures and they can be thought of as multicriteria optimization
problems. It is clear that a versatile software package with a suite of network design
and analysis tools can be invaluable in making complex, practical decisions regarding
geometric networks.

The network design problem encompasses many interesting and fundamental problems.
The minimum spanning tree can be thought of as a network with least possible weight and
infinite stretch factor; if Steiner points can be added, then the network with least possible
weight and infinite stretch factor is the Steiner minimum tree. As the required stretch
factor is decreased and approaches one, the network becomes denser until it ultimately
becomes the trivial complete graph. If the degree of each site is required to be 2, then the
network with least weight is the traveling salesperson tour on the points.

1.1.1 Spanning trees

A tree on a set S of n points is an acyclic connected graph on these points. We also call
such a graph a spanning tree of S. A spanning tree is good in the sense that it has the
minimum number of edges.

A set of points has many spanning trees. Sylvester showed in 1857 – and, independently,
Cayley in 1889 – that any set of n points has exactly nn−2 spanning trees.

Let T be a spanning tree of the set S. The weight wt (T) of T is defined to be the sum of
the lengths of its edges, where the length of an edge {p, q} is the Euclidean distance |pq|
between p and q. A minimum spanning tree MST(S) of S is a spanning tree of minimum
weight. A minimum spanning tree on 13,509 US cities is shown in Figure 1.2.

Property 1.1.2. A minimum spanning tree of a set S is a shortest network connecting the
points of S.

In particular, Property 1.1.2 states the obvious fact that a shortest connected network
must be a tree. Thus, a minimum spanning tree is good in the sense that both its number
of edges and its weight are minimum. The following property states that it is also good
in the sense that it has a small degree. The proof of this property is left as an exercise
(see Exercise 4.3).

Property 1.1.3. In a minimum spanning tree of a set of points in the plane, each point
has degree at most six.

In fact, if S is a finite set of points in Rd , where d ≥ 2, then the degree of each point of
the minimum spanning tree of S is bounded from above by a constant that depends only
on d.

The first algorithm for computing a minimum spanning tree (of an arbitrary weighted
graph) is due to Borůvka and dates back to 1926. In Section 2.6, we will present two other
algorithms for computing a minimum spanning tree.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

1.1 WHAT IS THIS BOOK ABOUT? 7

Figure 1.2: A minimum spanning tree on 13,509 US cities.

1.1.2 Steiner trees

According to Property 1.1.2, a minimum spanning tree is a shortest network that connects
a point set S. This is not quite true; it is a shortest graph with vertex set S that connects
these points.

Assume that we consider connected graphs G = (V, E), whose vertex set V contains
the set S. In other words, we allow the graph to contain additional vertices. The vertices of
V \ S are called Steiner points. Let SMT(S) be such a graph G of minimum weight, where
the weight wt(G) of G is defined to be the sum of the lengths of its edges. This graph is
called a Steiner minimum tree of S, named after Jakob Steiner – a Swiss mathematician
who lived from 1796 until 1863. (Apparently, Steiner had nothing to do with Steiner
minimum trees.)

The problem of finding a Steiner minimum tree of the vertices of a triangle is called the
Fermat problem, named after Pierre de Fermat (1601–65). Gauß (1777–1855) computed
the Steiner minimum tree of a set of four German cities. His motivation was to link these
cities by railroad.

It is clear that wt(SMT(S)) ≤ wt(MST(S)). Can a Steiner minimum tree be much
smaller than a minimum spanning tree? The following lemma shows that the answer is
“no.”

Lemma 1.1.4. Let S be a finite set of points in Rd . Then

wt(MST(S)) ≤ 2 · wt(SMT(S)).

proof Let T be a Steiner minimum tree for S. We will construct a spanning tree T ′ of
S having weight at most twice the weight of T . This will prove the lemma, because the
minimum spanning tree of S has weight at most that of T ′.

Here is the construction. We double each edge of T . This gives a multigraph W

connecting the points of S and the Steiner points of T . The degree of each vertex in W

is even. Hence, W contains an Euler tour2 W ′, which is a tour that visits each edge of
W exactly once and that returns to the starting vertex. Observe that this tour may visit
vertices more than once. It is clear that the weight of W ′ is equal to that of W , which in
turn is equal to twice the weight of T .

2 Named after Euler (1707–83), the father of graph theory.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

8 INTRODUCTION

We will construct from W ′ a spanning tree T ′ of the points of S. The basic operation
is that of short-cutting: Assume the Euler tour moves from point a to point b, and then to
point c. Then short-cutting means that from point a, we immediately move to point c. By
the triangle inequality, such a short-cut operation gives a tour – in general not along all
points – having weight at most the weight of W ′.

By following the tour W ′, we repeatedly make short-cuts, in such a way that we (i)
remove all Steiner points, and (ii) for each point p of S, remove all visits to p, except the
first one. The result is a path that visits each point of S exactly once, and whose weight is
at most twice the weight of T . This path is clearly a spanning tree of S; it is the tree T ′

we were looking for.

Thus, the weight of a minimum spanning tree is at most twice that of a Steiner minimum
tree. Is the factor 2 best possible? We will see in Exercise 1.5 that, for point sets in the
two-dimensional plane, a factor smaller than 2/

√
3 is not possible. In 1968, Gilbert and

Pollack conjectured that 2/
√

3 is in fact the best possible factor. That is, they conjectured
that for any finite set S of points in R2,

wt(MST(S)) ≤ 2√
3
wt(SMT(S)).

This remained an open problem for over 20 years until Du and Hwang settled the conjecture
in 1990.

We mention that Steiner minimum trees are extremely hard to compute; the problem
is known to be NP-hard. In fact, it is not known if the decision problem for the Euclidean
metric is in NP. On the other hand, a minimum spanning tree of n points in the plane can
be computed in O(n log n) time.

1.1.3 The traveling salesperson tour

The traveling salesperson problem is an important problem that influenced the blossoming
of fields such as operations research, polyhedral combinatorics, probabilistic analysis, and
complexity theory. The traveling salesperson tour TSP(S) of a finite set S of points is
the shortest tour that visits each point of S exactly once, and returns to the starting point.
Here the assumption is that the set S of points belongs to a metric space. The problem
of computing an optimal length tour is NP-hard, even when the points lie in Euclidean
space. In terms of approximation algorithms, Rosenkrantz, Stearns, and Lewis showed
that a factor 2 approximation to the optimal tour for points in an arbitrary metric space
can be obtained from the minimum spanning tree; their argument is basically the one
that we presented in the proof of Lemma 1.1.4. By combining minimum spanning trees
with minimum weight matchings, Christofides improved the approximation factor to 3/2.
In 1996, Arora (and, independently, Mitchell) improved on these results, by designing a
polynomial-time approximation scheme for the Euclidean case. An improved polynomial-
time approximation scheme by Rao and Smith in 1998 made use of the concept of spanners;
details will be given in Chapter 19.

1.1.4 Triangulations

Let S be a set of n points in the plane. A triangulation of S is a partition of the convex
hull of S into triangles, such that the vertices of these triangles are exactly the points of S.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

1.2 THE TOPIC OF THIS BOOK: SPANNERS 9

Since a triangulation is a planar graph, it follows from Euler’s theorem that it has at most
3n − 6 = O(n) edges. Observe also that a triangulation is a connected graph. Therefore,
it is a sparse network connecting the points of S.

In general, a point set can have many triangulations. Santos and Seidel proved in 2003
that any set of n points in the plane has O(59n) many triangulations. Some triangulations
have special properties:

� The Delaunay triangulation, which is the dual of the Voronoi diagram.
� The minimum weight triangulation, which is a triangulation, whose weight is minimum

among all triangulations of the point set. In 2006, Mulzer and Rote proved that the problem
of computing this triangulation is NP-hard.

� The greedy triangulation, which is defined as follows: Sort all
(
n

2

)
edges of the complete

graph in increasing order of their lengths. Start with a graph G whose edge set is empty,
and consider the edges in sorted order, one after another. Add the current edge to G if and
only if it does not intersect any edge already contained in G.

1.2 The topic of this book: Spanners

In this book, we will mainly be concerned with the problem of designing algorithms that
compute geometric networks whose stretch factor is bounded. As we have mentioned
already, such networks will be referred to as spanners.

Definition 1.2.1 (Spanner). Let S be a set of n points in Rd and let t ≥ 1 be a real
number. A t-spanner for S is an undirected graph G with vertex set S, such that for any
two points p and q of S, there is a path in G between p and q, whose length is less than
or equal to t |pq|. Any path satisfying this condition is called a t-spanner path between p

and q.

In Figure 1.3, six geometric networks on 532 US cities are shown, each of which is
a t-spanner for a different value of t . These spanners were computed by the path-greedy
algorithm that will be presented in Section 1.4.

Definition 1.2.1 considers a spanner to be an undirected graph. Sometimes, it is useful
to consider directed spanners:

Definition 1.2.2 (Directed spanner). Let S be a set of n points in Rd and let t ≥ 1 be
a real number. A directed t-spanner for S is a directed graph G with vertex set S, such
that for any two points p and q of S, there is a directed path in G from p to q, whose
length is less than or equal to t |pq|. Any path satisfying this condition is called a directed
t-spanner path from p to q.

If G is a t-spanner for the point set S, then obviously, G is also a t ′-spanner for any
real number t ′ with t ′ > t . This leads to the following definition:

Definition 1.2.3 (Stretch factor). Let S be a set of n points in Rd and let G be a Euclidean
graph with vertex set S. The stretch factor of G is the smallest real number t such that G

is a t-spanner of S.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

10 INTRODUCTION

(a) (b)

(c) (d)

(e) (f)

Figure 1.3: Six geometric t -spanner networks on 532 US cities with stretch factors of (a) 10, (b) 5, (c) 3,
(d) 2, (e) 1.5, and (f) 1.2, respectively.

Property 1.1.1 and the definition of the minimum spanning tree imply the following
property:

Property 1.2.4. Let S be a set of n points in Rd and let t ≥ 1 be a real number. Any
t-spanner of S has at least n − 1 edges, and weight at least wt(MST(S)).

The complete graph is a 1-spanner, but it has a quadratic number of edges. In fact, if we
assume that no three points of S are on a line, then the complete graph is the only 1-spanner
for S. Therefore, t-spanners are in general interesting only for values of t that are larger

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

1.3 USING SPANNERS TO APPROXIMATE MINIMUM SPANNING TREES 11

than 1. As you may expect, we are interested in sparse spanners, that is, t-spanners with
only O(n) edges.

Basic spanner problem: Let S be a set of n points in Rd , and let t > 1 be a real
number. Does there exist a t-spanner for S having at most ctdn edges, where ctd

is a real number that depends only on t and d? If so, how much time does it take
to compute such a t-spanner?

In this book, we will see that the answer to the first question is “yes”: Sparse t-spanners
exist for values of t that are arbitrarily close to one. Moreover, such t-spanners can be
computed in O(n log n) time, where the constant in the Big-Oh bound depends on the
stretch factor t and the dimension d.

In later chapters, we will also consider the existence and construction of sparse
t-spanners having one or more of the following additional properties:

More spanner problems: Let S be a set of n points in Rd , and let t > 1 be a
real number.

1. Does there exist a t-spanner for S, in which each point has a degree that depends
only on t and d?

2. Does there exist a t-spanner for S, whose weight is proportional to the weight
of a minimum spanning tree of S?

3. Does there exist a sparse t-spanner for S, whose spanner diameter is small?
Here, the spanner diameter is defined to be the smallest integer D, such
that each pair of points is connected by a t-spanner path containing at most
D edges.

4. Can we construct such t-spanners in O(n log n) time?

It should be clear that the above properties are conflicting. For example, any t-spanner
whose degree is bounded by a constant must have spanner diameter �(log n). The proof
of this claim is left as an exercise; see Exercise 1.11.

In most places in this book, the stretch factor t is a real number that is larger than, but
arbitrarily close to, 1. We will always assume that the dimension d is a constant. As such,
Big-Oh bounds contain factors that depend on t . On the other hand, factors that involve
only d will be omitted in these bounds.

1.3 Using spanners to approximate minimum spanning trees

In this section, we present a first application of spanners. Let S be a set of n points in
the plane. Since any minimum spanning tree MST(S) of S is contained in the Delau-
nay triangulation DT(S) of S, we can compute MST(S) in the following way: First, in
O(n log n) time, compute DT(S). Then, compute the minimum spanning tree of DT(S).
This minimum spanning tree is in fact a Euclidean minimum spanning tree of the set S.
Since DT(S) contains only a linear number of edges, the entire algorithm has a running
time of O(n log n).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

12 INTRODUCTION

For point sets in Rd , where d ≥ 3, it is unlikely that the same running time can be
obtained. In fact, for d = 3, it is even unlikely that an algorithm exists that computes a
minimum spanning tree within a time bound that is significantly smaller than n4/3. This
leads to the natural question of whether there exist fast algorithms that approximate a
minimum spanning tree. The following theorem shows that this question has a positive
answer, provided we have a fast algorithm for computing a spanner.

Theorem 1.3.1. Let S be a set of n points in Rd , let t > 1 be a real number, and let G be
an arbitrary t-spanner for S. A minimum spanning tree of G is a t-approximate minimum
spanning tree of S, that is, the weight of any minimum spanning tree of G is at most
t · wt(MST(S)).

proof Let T be a minimum spanning tree of S, and number its edges arbitrarily as
e1, e2, . . . , en−1. Consider edge ei . Since G is a t-spanner for S, there exists a t-spanner
path Pi in G between the endpoints of ei . Thus, the length wt(Pi) of Pi is at most t times
the length of edge ei . It follows that

n−1∑
i=1

wt(Pi) ≤
n−1∑
i=1

t · wt(ei) = t · wt(MST(S)).

Let G′ be the subgraph of G, whose edge set is the union of the edge sets of the paths Pi ,
1 ≤ i ≤ n − 1. Then G′ is a connected graph with vertex set S, and its weight is at most
t · wt(MST(S)). Since the weight of a minimum spanning tree of G is less than or equal
to the weight of G′, the proof is complete.

1.4 A simple greedy spanner algorithm

At this point, it is not clear whether for any set S of n points in Rd , and for any
real number t > 1, a t-spanner for S having a subquadratic number of edges actually
exists. In this section, we present a simple algorithm that, in fact, computes such a
spanner.

As discussed before, t-spanners generalize the notion of spanning trees, which require
to have paths connecting every pair of points. A t-spanner is required to have reasonably
short paths between every pair of points. This observation suggests that an algorithm
to construct t-spanners can be obtained by generalizing Kruskal’s minimum spanning
tree algorithm (which will be discussed in Section 2.6.1). We remark that this spanner
algorithm does not necessarily compute a t-spanner of minimum weight.

Simple greedy spanner construction: Generalizing Kruskal’s minimum span-
ning tree algorithm gives a greedy algorithm for constructing spanners. The
algorithm starts with a graph G having vertex set S and whose edge set is empty.
It considers all pairs of distinct points of S in nondecreasing order of their dis-
tances. The decision whether or not to add the current pair {p, q} as an edge
to G is made as follows: Instead of checking whether the vertices p and q are
connected, check whether they have a path of length at most t |pq| that connect
them in G.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

1.4 A SIMPLE GREEDY SPANNER ALGORITHM 13

A formal description of this algorithm is given below.

Algorithm PathGreedy(S, t)

Comment: This algorithm takes as input a set S of n points in R
d and a real number

t > 1. It returns a t-spanner for S.

sort the
(
n

2

)
pairs of distinct points in nondecreasing order of their

distances (breaking ties arbitrarily), and store them in list L;
E := ∅;
G := (S,E);
for each {p, q} ∈ L (∗ consider pairs in sorted order ∗)
do δ := length of a shortest path in G between p and q;

if δ > t |pq|
then E := E ∪ {{p, q}};

G := (S,E)
endif

endfor;
output the graph G

Algorithm PathGreedy(S, t), with the value t = n − 1, produces the same output as
Kruskal’s minimum spanning tree algorithm, when given the complete Euclidean graph
on S as input. The proof of this claim is left as an exercise (see Exercise 1.12).

The following lemma states the obvious fact that the path-greedy algorithm computes
a t-spanner.

Lemma 1.4.1. Let S be a set of n points in Rd , and let t > 1 be a real number. The output
of algorithm PathGreedy(S, t) is a t-spanner for S.

Of course, many questions arise from the algorithm given above. Why is it not a
minimum-weight t-spanner? Is there a nontrivial bound on the weight of the t-spanner?
Is there a nontrivial bound on the number of edges included in the t-spanner? Is there a
nontrivial bound on the degree of each vertex in the t-spanner? How can the algorithm
be implemented efficiently? All these questions are dealt with in detail in Chapters 14
and 15.

Exercises

1.1. We mentioned in Section 1.1.1 that any set of n points has exactly nn−2 spanning trees. Verify this

claim for small values of n.

1.2. Prove the following results.

(1) Let T be an arbitrary spanning tree of S. Prove that wt(T) ≤ (n − 1) · wt(MST (S)).

(2) Let ε > 0 be an arbitrarily small constant, and let n be a sufficiently large integer. Give an example

of a set S of n points in the plane and a spanning tree T of S for which wt(T) ≥ (n − 1 − ε) ·
wt(MST (S)).

1.3. Prove that a Steiner minimum tree really is a tree.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14 INTRODUCTION

1.4. Consider a triangle with three vertices p, q, and r . Determine the minimum spanning tree and the

Steiner minimum tree of these three points. There are two cases to consider, depending on whether

or not all angles of the triangle are at most 120◦.

1.5. Let S be the set of vertices of an equilateral triangle. Prove that wt(MST (S)) = (2/
√

3) ·
wt(SMT (S)).

1.6. Prove that for any finite set S of points in R
d ,

wt(MST (S)) ≤ wt(TSP (S)) ≤ 2 · wt(MST (S)).

1.7. Let S be a finite set of points in R
d , and let S ′ be a nonempty subset of S. Prove the following

monotonicity properties:

(1) wt(TSP (S ′)) ≤ wt(TSP (S)).

(2) wt(SMT (S ′)) ≤ wt(SMT (S)).

Prove that, in general, this monotonicity property does not hold for the minimum spanning

tree.

1.8. Let S be a set of n points in the plane, not all on a straight line.

(1) Prove that a triangulation of S exists.

(2) Assume that no three points of S are collinear. Let h be the number of points on the convex hull of S.

Prove that any triangulation of S has exactly 3n − 3 − h edges.

1.9. Get yourself a German dictionary, and find out the meaning of the word Spanner.

1.10. Let t be a real number with 1 < t < 2, and consider an arbitrary t -spanner G for a set S of points

in R
d .

(1) Prove that each closest pair in S is connected by an edge in G.

(2) Let p ∈ S, and let q be a nearest neighbor of p in S. Are p and q connected by an edge in G?

(3) Now let t = 2. Prove that there is an edge in G, whose endpoints form a closest pair in S.

1.11. Let G be an arbitrary connected graph with n vertices, and let k ≥ 1 be an integer constant. Assume

that each vertex of G has degree at most k. Prove that there are two vertices p and q such that

each path between p and q contains �(log n) edges.

1.12. Prove that algorithm PathGreedy(S, t) in Section 1.4, with the value t = n − 1, is Kruskal’s

minimum spanning tree algorithm Kruskal(G), with G being the complete Euclidean graph on S;

see Section 2.6.1.

1.13. Let S be a set of n points in R
d , let t > 1 be a real number, and let G be the t -spanner that

is computed by algorithm PathGreedy(S, t) in Section 1.4. Prove that G contains a minimum

spanning tree of S.

1.14. In this exercise, we will introduce a spanner whose size depends on the lengths of the sides of the

bounding box of the point set. Let S be a set of n points in the hypercube [1, W]d , and choose

real constants α and β such that α ≥ β > 1. Construct a sequence S0, S1, . . . , Sh of subsets of S,

such that the following four properties hold:

(1) Sh ⊆ Sh−1 ⊆ . . . ⊆ S1 ⊆ S0 = S.

(2) |Sh| = 1 and h = O(log W).

(3) For each i with 0 ≤ i ≤ h, and for any two distinct points p and q in Si , we have |pq| ≥ βi .

(4) For each i with 0 ≤ i < h, and for each p ∈ Si , there exists a point q in Si+1, such that |pq| ≤ βi+1.

For each i with 0 ≤ i ≤ h, define

Ei := {{p, q} : p, q ∈ Si and |pq| ≤ αβi}.
Let G be the graph with vertex set S and edge set E := ⋃h

i=0 Ei .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHIC NOTES 15

(1) Give an efficient algorithm that constructs the graph G. (Use a grid to compute the subsets

S0, S1, . . . , Sh.)

(2) Prove a tight upper bound on the number of edges of G.

(3) Assuming that α > 2β/(β − 1), prove that G is a t -spanner for

t = max

(
β

α(β − 1) + 2β

α(β − 1) − 2β
,
α

β

)
.

Bibliographic notes

It may be hard to believe, but spanners are known to occur in nature! Many rivers are
known to be t-spanners for t ≈ π . That is, the length of a river divided by the Euclidean
distance between its source and mouth is roughly equal to π . See Stølum [1996].

History of spanners: While concepts similar to that of a spanner may have appeared in
some form in earlier work from other related areas, its first appearance in the Compu-
tational Geometry literature can be traced to a paper by Chew [1986]. (The full version
of this paper appeared in Chew [1989].) Chew defined the concept only for the complete
Euclidean graph, although the word spanner was not used in his work. The formal defi-
nition of a spanner for an arbitrary graph in the general setting was first introduced about
a year later (and, in fact, independently from Chew), in Peleg and Ullman [1987]. (The
full version appeared as Peleg and Ullman [1989].) The term spanners was coined in this
paper. Spanners were further investigated in the follow-up paper by Peleg and Schäffer
[1989].

In the literature, stretch factor is also referred to by other terms such as dilation (in Peleg
and Schäffer [1989]) and distortion (in Linial, London, and Rabinovich [1995]).

The field of geometric spanners has been surveyed by Soares [1992], Bern and Eppstein
[1997], Eppstein [2000], Mitchell [2000], and Gudmundsson and Knauer [2006].

Related Topics: Much research has been done on spanners in general (i.e., nongeometric)
graphs. A good starting point is the book by Peleg [2000]. Without being exhaustive, we
also mention the papers by Peleg and Ullman [1987], Peleg and Schäffer [1989], Peleg
and Ullman [1989], Cai and Corneil [1992, 1995a,b], Madanlal, Venkatesan, and Rangan
[1996], Prisner [1997], Brandstädt, Chepoi, and Dragan [1999], and Le and Le [1999].

With regard to other related topics, excellent overviews of the history of the minimum
spanning tree problem can be found in Graham and Hell [1985] and Nešetřil [1997]. The
first algorithm for computing a minimum spanning tree was reported in two early papers
[Borůvka, 1926a,b]. The most popular minimum spanning tree algorithms are the greedy
algorithms by Kruskal [1956], Prim [1957], and Dijkstra [1959]. Many other algorithms
exist for the minimum spanning tree problem; see the work of Fredman and Willard [1994],
Karger, Klein, and Tarjan [1995], Chazelle [2000b], and Pettie and Ramachandran [2002].

Euclidean variants of the minimum spanning tree problem were studied by Yao [1982a],
Vaidya [1988], Agarwal et al. [1991], Callahan and Kosaraju [1993], and Krznaric, Lev-
copoulos, and Nilsson [1999]. Good expected time algorithms were considered by Bentley
and Friedman [1978], Bentley, Weide, and Yao [1980], Clarkson [1989], and Narasimhan
and Zachariasen [2001]. The Euclidean minimum spanning tree of a set of n points in the
plane can be computed in O(n log n) time. The fastest known algorithms for computing
the minimum spanning tree of a three-dimensional point set have running times that are

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

16 INTRODUCTION

close to O(n4/3); see Agarwal et al. [1991] and Callahan and Kosaraju [1993]. In Erickson
[1995], it is argued that it is unlikely that a faster algorithm exists.

Several proofs of the fact that a set of n points has exactly nn−2 spanning trees can
be found in the books by Aigner and Ziegler [2004] and van Lint and Wilson [1992];
see also Section 2.3.4.6 in Knuth [1997].

For excellent surveys on the topic of Steiner minimum trees, see Du and Hwang [1995]
and the book by Hwang, Richards, and Winter [1992] (and the references given therein).
The Steiner ratio conjecture was posed by Gilbert and Pollak [1968]. After 20 years, the
conjecture was finally settled by Du and Hwang [1990a]; see also Du and Hwang [1990b]
and Du and Hwang [1992]. Garey, Graham, and Johnson [1977] showed that computing
Steiner minimum trees is NP-hard.

A captivating history of the traveling salesperson problem can be found in the book by
Lawler et al. [1985], especially in the survey article by Johnson and Papadimitriou [1985].
For points in an arbitrary metric space, the problem of finding an optimal tour was shown
to be NP-hard by Karp [1972]. For the Euclidean case, this was proved a few years later
by Garey, Graham, and Johnson [1977] and Papadimitriou [1977].

The problem of designing good heuristics and approximation algorithms for the trav-
eling salesperson problem has had a long and interesting history. For the general case in
which the input does not necessarily satisfy the triangle inequality, Sahni and Gonzalez
[1976] showed that computing any approximation to the optimal tour is NP-hard. The case
when the points are from Euclidean space Rd was less intractable. A 2-approximation
algorithm based on “doubling a minimum spanning tree” was designed by Rosenkrantz,
Stearns, and Lewis [1977]; see also Exercise 1.6. For d = 2, their algorithm can be im-
plemented to run in O(n log n) time. However, if the input also includes a planar graph
that contains a minimum spanning tree (such as the Delaunay triangulation), then a min-
imum spanning tree can be computed in linear time using the algorithm of Cheriton and
Tarjan [1976]. A 3/2-approximation algorithm based on minimum spanning trees, Euler
tours, and minimum weight matchings was invented by Christofides [1976]. Improving
this result was a major open problem for over two decades. Many heuristics and local
optimization methods did not help in topping Christofides’ result. Many of these heuris-
tics are surveyed in Bentley [1992]. A breakthrough was achieved when Arora [1998]
designed the first randomized polynomial-time approximation scheme for the Euclidean
traveling salesperson problem, thus achieving a (1 + ε)-approximation algorithm with a
time complexity of O(n(log n)(O(

√
d/ε))d−1

) for points in Rd . A similar result was discov-
ered independently at about the same time by Mitchell [1999] for points in the plane.
Rao and Smith [1998] took this one step further by designing a deterministic (1 + ε)-
approximation algorithm with a time complexity of O(n log n) for points in d-dimensional
space. More information about the latter result will be given in Chapter 19.

The upper bound on the number of triangulations of any planar point set that was
mentioned in Section 1.1.4 appears in Santos and Seidel [2003]. The question of whether
or not the minimum weight triangulation problem is in P or NP-hard appears in the book
by Garey and Johnson [1979].This problem was settled only recently by Mulzer and Rote
[2006], who showed the problem to be NP-hard. Some results about this triangulation and
the greedy triangulation can be found in Krznaric [1997]. Triangulations can have small
stretch factors. For example, the Delaunay triangulation of a set of points in the plane is
a t-spanner for t = 2π

3 cos π/6 ≈ 2.42, see Keil and Gutwin [1992]; it is not known if it is a
t-spanner for smaller values of t . It is known that t cannot be smaller than π/2. See also
Section 20.3.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHIC NOTES 17

A solution to Exercise 1.14 can be found in Grünewald et al. [2002].
There are many excellent and useful books on computational geometry. These include

the following: Mehlhorn [1984a]; Edelsbrunner [1987]; Preparata and Shamos [1988];
Agarwal [1991]; Mulmuley [1994]; de Berg et al. [2000]; Boissonnat and Yvinec [1998];
O’Rourke [1998]; Goodman and O’Rourke [2004]; Sack and Urrutia [2000]; Matoušek
[1999]; and Chazelle [2000a].

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

2

Algorithms and Graphs

The Feynmann problem-solving algorithm: (1) write down the problem;
(2) think very hard; (3) write down the answer.

—Attributed to Murray Gell-mann

2.1 Algorithms and data structures

Throughout this book, algorithms will be presented in either plain English or pseu-
docode. Most of our algorithms will be designed for the algebraic computation-tree
model. In this model, an algorithm works with arbitrary real numbers and can per-
form the operations of addition (+), subtraction (−), multiplication (∗), division (/),
and the square root. Each of these operations takes one unit of time. Furthermore, an
algorithm can test, again in one unit of time, whether or not any two real numbers,
x and y, are equal, whether or not x < y, and whether or not x ≤ y. Operations that
are not allowed in our model of computation include the floor and ceiling functions,
nonalgebraic functions such as log, sin, cos, and tan, and bitwise operations on bit
strings such as XOR. Unless stated otherwise, our algorithms will not use indirect ad-
dressing. A formal definition of the algebraic computation-tree model will be given in
Chapter 3.

We will use standard data structures such as linked lists, heaps, Fibonacci heaps,
balanced binary search trees, and skip lists, and we assume that the reader is familiar with
these data structures.

The running time of an algorithm will be expressed as a function of the number n of
input elements. This function counts the worst-case number of primitive operations made
by the algorithm on any input of length n. Actually, the input will generally be a set of n

points in Rd and, hence, it consists of a sequence of dn real numbers. Since we assume,
however, that the dimension d is a constant, it is realistic to consider n to be the length of
the input.

We will use the standard asymptotic notation to estimate the running times of algo-
rithms. Let f : N −→ N and g : N −→ N be two functions.

1. f (n) = O(g(n)) if there are constants n0 and C such that f (n) ≤ C · g(n) for all
n ≥ n0.

2. f (n) = �(g(n)) if there are constants n0 and C such that f (n) ≥ C · g(n) for all
n ≥ n0.

3. f (n) = �(g(n)) if f (n) = O(g(n)) and f (n) = �(g(n)).

18

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

2.2 SOME NOTIONS FROM GRAPH THEORY 19

4. f (n) = o(g(n)) if limn→∞ f (n)/g(n) = 0. (Here we assume that g(n) �= 0 for all suffi-
ciently large n.)

2.2 Some notions from graph theory

2.2.1 Graphs

An undirected graph is a pair G = (V, E), where V is a set whose elements are called
vertices, and E is a set consisting of pairs of vertices. Any element of E is called an edge
and has the form {u, v} for some distinct vertices u and v in V . We also say that u and
v are connected by an edge. Observe that {u, v} and {v, u} denote the same edge of E.
Throughout this book, we will consider only finite graphs, that is, graphs whose vertex
set is finite.

If u and v are two vertices of an undirected graph G = (V, E), then a path between u

and v is a sequence u0, u1, u2, . . . , uk of vertices of V for some k ≥ 0 such that u = u0,
uk = v, and {ui, ui+1} ∈ E, for all i with 0 ≤ i < k. The path is called simple if all its
vertices are pairwise distinct. The path is called a cycle if all its vertices are pairwise
distinct, except that u = v.

Two vertices u and v of an undirected graph G = (V, E) are said to be connected by
a path if there is a path in G between u and v. Observe that each vertex is connected
to itself. We say that G is connected if each pair of vertices is connected by a path. A
connected component of G is a maximal subset of V , all of whose elements are pairwise
connected by paths.

The degree of a vertex u in an undirected graph G = (V, E) is defined as the number
of edges that contain u as a vertex. We denote the degree of u by deg(u). The degree of G

is the maximum degree of any of its vertices.
An undirected graph G = (V, E) is called weighted if each of its edges e has a weight

wt(e), which is a real number. If e = {u, v}, then we write wt(u, v) instead of wt({u, v}).
The weight of a path u0, u1, u2, . . . , uk is defined as

∑k−1
i=0 wt(ui, ui+1).

We say that an undirected weighted graph G = (V, E) satisfies the triangle inequality
if wt(u, v) ≤ wt(u, w) + wt(w, v) for any three edges {u, v}, {u, w}, and {v, w} of E.

The complete graph on a set V is the undirected graph G = (V, E) for which E is the
set of all

(|V |
2

)
pairs of vertices of V .

A directed graph is a pair G = (V, E), where, again, V is a finite set of vertices, but
now, E is a set of directed edges of the form (u, v) for some distinct vertices u and v of
V . We say that u is the source and v is the sink of the edge. The notions of a path and a
cycle are defined similarly as for undirected graphs, the only difference being that edges
are considered “one-way streets.” The outdegree of a vertex u is defined as the number of
edges having u as a source, whereas the indegree of u is the number of edges having u as
a sink. The degree of u is the sum of its indegree and outdegree.

An embedding of a directed or undirected graph G = (V, E) is obtained by mapping
each vertex of V to a point in the plane, and each edge of E to a straight-line segment
joining the two vertices of the edge. We require that the vertices are mapped to pairwise
distinct points. The embedding is called plane if no two edges in the embedding intersect,
except possibly at their endpoints. The graph G is called planar if it admits a plane
embedding. If G is planar then |E| ≤ 3|V | − 6.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

20 ALGORITHMS AND GRAPHS

2.2.2 Geometric networks

The Euclidean distance |pq| between any two points p = (p1, p2, . . . , pd) and q =
(q1, q2, . . . , qd) in Rd is defined as

|pq| := (
(q1 − p1)2 + (q2 − p2)2 + · · · + (qd − pd)2)1/2

.

In this book, we will mainly consider geometric networks (or Euclidean graphs). Let S be
a finite set of points in Rd . A geometric network on S is a graph G = (S, E), in which the
weight of each edge is defined as the Euclidean distance between its vertices. The weight
of a path in such a graph will also be referred to as its length. Hence, if t > 1 is a real
number, then G is a t-spanner for S if any two points p and q of S are connected in G by
a path of length at most t |pq|.

2.2.3 Trees

An undirected graph T = (V, E) is called a tree if T is connected and has no cycles. The
vertices of T are also called nodes. Observe that T has exactly |V | − 1 edges.

Let T = (V, E) be a tree and let r be an arbitrary node that we call the root of T . For
any node v of T with v �= r , the parent of v is defined to be the first node different from
v on the (unique) path in T from v to r . If u is a node of T and v is the parent of u, then
we say that u is a child of v. If v does not have any children, then v is called a leaf of the
rooted tree T ; otherwise, v is called an internal node. Any node u on the path between v

and r is called an ancestor of v; if u �= v, then u is a proper ancestor of v. Similarly, any
node u for which the path between u and r contains node v is called a descendent of v;
if u �= v, then u is a proper descendent of v. The subtree of v is the tree induced by all
descendents of v.

A rooted tree T is called a binary tree if each node has at most two children. (Observe
that a binary tree with more than one node has degree 3.) In case a node v has two children,
we call one of them the left child and the other one the right child.

2.2.4 Representing graphs

Let G = (V, E) be a graph with n vertices and m edges. We assume for simplicity that
G is undirected. We number the vertices of V arbitrarily as v1, v2, . . . , vn. There are
basically two different ways to store G in a data structure.

The first one uses an adjacency matrix. This is an n × n matrix M , where M[i, j] = 1
if {vi, vj } is an edge of E, and M[i, j] = 0 otherwise. The advantage of this representation
is that we can decide in constant time if any two vertices vi and vj are connected by an
edge. (Observe that we need the indirect addressing operation for this.) The disadvantages
are that it takes O(n) time to report all edges that are incident to a given vertex of V , and
the amount of space used is always �(n2), irrespective of the size m of E. Since we will
mainly consider sparse graphs in this book, that is, graphs having m = O(n) edges, we
are interested in data structures that need only O(n + m) space.

In an adjacency lists representation, we store with each vertex vi a list containing
all vertices that are connected by an edge to vi . The total amount of space needed is
proportional to n plus the sum of the degrees of all vertices, that is, it is O(n + m).
Using this representation, we can report all edges that are incident to a given vertex vi in

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

2.3 SOME ALGORITHMS ON TREES 21

O(deg(vi)) time. The same amount of time is needed to check whether vi is connected by
an edge to any given vertex vj .

Observe that both representations of undirected graphs can easily be extended to
directed graphs.

2.3 Some algorithms on trees

2.3.1 Traversing a binary tree

In many algorithms that operate on trees, it is necessary to traverse the nodes of the tree.
The order in which the nodes are visited during this traversal depends on the problem at
hand. In this section, we introduce three different orderings. We will see in Section 2.3.2
how they can be used to solve some specific problems.

Let T be a rooted tree. We assume for simplicity that each internal node has exactly
two children. We also assume that each internal node has pointers to its two children, and
that each node (except the root) has a pointer to its parent.

The three traversals are defined recursively. If T contains only one node, then each of
the three traversals is the node itself. Otherwise, the postorder traversal is the recursively
defined postorder traversal of the left subtree of T ’s root, followed by the recursively
defined postorder traversal of the right subtree of T ’s root, followed by the root itself. The
inorder traversal is the recursively defined inorder traversal of the left subtree of T ’s root,
followed by the root, followed by the recursively defined inorder traversal of the right
subtree of T ’s root. Finally, the preorder traversal is the root, followed by the recursively
defined preorder traversal of the left subtree of T ’s root, followed by the recursively
defined preorder traversal of the right subtree of T ’s root.

The amount of time needed by each of these three traversals is proportional to the
number of nodes of T .

2.3.2 Lowest common ancestors

Let T be a rooted tree. As in the previous section, we assume for simplicity that each
internal node has exactly two children. The lowest common ancestor of any two nodes u

and v is the node that is an ancestor of both u and v, and that is farthest away from the
root of T . Equivalently, it is the node in which the two paths from the root to nodes u and
v diverge.

In this section and Section 2.3.3, we show how to represent the tree T in such a way
that lowest common ancestor queries can be answered efficiently. In such a query, we
are given two arbitrary nodes u and v of T , and have to compute their lowest common
ancestor. Clearly, we may assume without loss of generality that u �= v.

Let n denote the number of leaves of the tree T . For any node u of T , let size(u) denote
the number of leaves in the subtree of u, and let 	(u) := �log size(u)�. Observe that 	(u)
is an integer in the range from zero to �log n�. Moreover, on the path from any leaf to the
root of T , the 	(u)-values form a nondecreasing sequence.

We will use the values 	(u) to partition the tree T into a collection of pairwise disjoint
paths. For any node u of T , let Pu be the subgraph of T consisting of all nodes v for which
(i) 	(v) = 	(u), and (ii) 	(w) = 	(u) for all nodes w on the path in T between u and v. It
is not difficult to prove that Pu is a path (see Exercise 2.1).

We extend the tree T by storing with each node u the value of size (u), and a pointer to
the node gpar (u) of Pu that is closest to the root. We call gpar (u) the group parent of u.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

22 ALGORITHMS AND GRAPHS

We denote the parent of node u by p(u). It is easy to prove that if two distinct nodes u

and v have the same group parent, then either u is an ancestor of v, or v is an ancestor of
u (see Exercise 2.2).

Let u be any node of T , and consider the sequence

u, gpar (u), p(gpar (u)), gpar (p(gpar (u))), p(gpar (p(gpar (u)))), . . .

of nodes, which terminates at the root of T . This sequence consists of at most 2�log n� + 1
nodes. Hence, we can walk from any node to the root of T in O(log n) time. We generalize
this approach to solve lowest common ancestor queries, as shown in algorithm LCA.

Algorithm LCA(u, v, T)

Comment: This algorithm takes as input two nodes u and v of T , and returns their lowest
common ancestor. We assume for simplicity that u �= v, and neither u nor v is the root
of T .

Step 1: Compute the sequence gu
0 , gu

1 , . . . , gu
i of nodes in T where gu

0 := u, gu
1 :=

gpar(u), gu
k := gpar(p(gu

k−1)) for 2 ≤ k ≤ i, and gu
i is the first node in this sequence

that is equal to the root of T . Since u is not the root, we have i ≥ 1.

Step 2: Compute the sequence gv
0 , gv

1 , . . . , gv
j of nodes in T where gv

0 := v, gv
1 :=

gpar(v), gv
k := gpar(p(gv

k−1)) for 2 ≤ k ≤ j , and gv
j is the first node in this sequence

that is equal to the root of T . As in Step 1, we have j ≥ 1.

Step 3: Compute the integer k such that gu
i = gv

j , gu
i−1 = gv

j−1, . . . , gu
i−k+1 = gv

j−k+1,
and gu

i−k �= gv
j−k . Since gu

i = gv
j , we have k ≥ 1. Obviously, k ≤ min(i, j).

Step 4: There are four possible cases to consider:

Case 4.1: i = j = k.
Since gu

1 = gv
1 , we have gpar(u) = gpar(v) and, hence, one of u and v is an ancestor

of the other. Therefore, the algorithm returns u if size(u) ≥ size(v), and it returns v

otherwise.

Case 4.2: i �= j and k = i.
Since u = gu

0 �= gv
j−k and gpar(u) = gu

1 = gv
j−k+1, one of the nodes u and p(gv

j−k)
(both are on the path Pu) is the lowest common ancestor of u and v. Therefore, the
algorithm returns u if size(u) ≥ size(p(gv

j−k)), and it returns p(gv
j−k) otherwise.

Case 4.3: i �= j and k = j .
This case is symmetric to Case 4.2. The algorithm returns v if size(v) ≥
size(p(gu

i−k)), and it returns p(gu
i−k) otherwise.

Case 4.4: k �= i and k �= j .
Since gu

i−k+1 = gv
j−k+1 and gu

i−k �= gv
j−k , one of the nodes p(gu

i−k) and p(gv
j−k) is

the lowest common ancestor of u and v. Therefore, the algorithm returns p(gu
i−k) if

size(p(gu
i−k)) ≥ size(p(gv

j−k)), and it returns p(gv
j−k) otherwise.

This completes the description of algorithm LCA for computing the lowest common
ancestor of any two nodes of T . It is not difficult to see that the running time is O(log n).
It remains to show how to preprocess the tree T . That is, we have to show how to compute
the values size(u) and 	(u), and the group parents gpar (u).

We start with the computation of the values size(u) and 	(u). The values size(u) can
be computed by traversing the tree T in postorder. From these, we can compute 	(u)
as 	(u) = �log size(u)�. The disadvantage of this approach is that we need the floor and

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

2.3 SOME ALGORITHMS ON TREES 23

logarithm functions for this. The following observation implies that we can avoid these
functions.

Observation 2.3.1. Let u be an internal node of T and let v and w be the two children
of u. Assume that size(v) ≤ size(w).

1. If size(v) + size(w) ≥ 2	(w)+1, then 	(u) = 	(w) + 1.

2. If size(v) + size(w) < 2	(w)+1, then 	(u) = 	(w).

Algorithm SizeAndLValues(u) takes as input a node u of T . It traverses the subtree
rooted at u in postorder, and returns the value 2	(u). After this algorithm has terminated,
the values size(v) and 	(v) for all nodes v that are in the subtree of u have been com-
puted. Hence, we obtain the values size(v) and 	(v) for all nodes v of T , by calling
SizeAndLValues(u) with u being the root. The running time for this call is O(n).

Algorithm SizeAndLValues(u)

Comment: This algorithm computes the values size(v) and 	(v) for all nodes v that are
in the subtree of u, and it returns the value 2	(u).

if u is a leaf
then size(u) := 1;

	(u) := 0;
x := 1;
return x

else v := left child of u;
w := right child of u;
x := SizeAndLValues(v);
y := SizeAndLValues(w);
(∗ x = 2	(v) and y = 2	(w) ∗)
size(u) := size(v) + size(w);
if size(w) < size(v)
then swap v and w, and swap x and y

endif;
(∗ size(v) ≤ size(w) ∗)
if size(u) ≥ 2y

then 	(u) := 	(w) + 1;
z := 2y;
return z

else 	(u) := 	(w);
return y

endif
endif

The algorithm that computes the group parents is based on a preorder traversal of the
tree T . This algorithm, denoted by GroupParents(u, x), takes as input two nodes u and
x such that gpar (u) = x. It computes the group parents of all nodes in the subtree rooted
at u. If we denote the root of T by r , then a call to GroupParents(r, r) computes the
group parents of all nodes of the tree. The time for this call is O(n).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

24 ALGORITHMS AND GRAPHS

Algorithm GroupParents(u, x)

Comment: This algorithm takes as input two nodes u and x of the tree T , such that
gpar(u) = x. It computes the group parents of all nodes in the subtree rooted at u.

gpar(u) := x;
if u is not a leaf
then v := left child of u;

w := right child of u;
if 	(u) = 	(v)
then GroupParents(v, x)
else GroupParents(v, v)
endif;
if 	(u) = 	(w)
then GroupParents(w, x)
else GroupParents(w,w)
endif

endif

We have described all algorithms for trees in which each internal node has exactly two
children. Observe that such a tree with n leaves has exactly 2n − 1 nodes. We leave it to
the reader to generalize the algorithms to arbitrary rooted trees. This gives the following
result:

Theorem 2.3.2. Let T be a rooted tree with n nodes. We can preprocess T in O(n) time
such that lowest common ancestor queries can be answered in O(log n) time.

2.3.3 A faster algorithm for lowest common ancestor queries

The algorithm in Section 2.3.2 works in the algebraic computation-tree model. In this
section, we add the indirect addressing operation as a unit time operation to this model.
We will show that in this more powerful model, lowest common ancestor queries can
be answered in O(1) time, after an O(n)–time preprocessing step. This algorithm can in
fact be implemented in the algebraic computation-tree model so that after an O(n)–time
preprocessing, the lowest common ancestor queries can be answered in O(log log n) time.

We start by reducing the lowest common ancestor problem on a tree with n nodes to the
so-called range minimum problem on an array of O(n) real numbers. Then we show how
range minimum queries can be answered in O(1) time, after an O(n)–time preprocessing
of the array.

Reduction to the range minimum problem

Let T be a rooted tree with n nodes. We again assume for simplicity that each internal
node has exactly two children. The level of any node u of T is the number of edges on the
path from the root to u.

We number the nodes of T arbitrarily as u1, u2, . . . , un. Consider an Euler tour of the
“double-tree” obtained by doubling each edge of T . This tour starts at the root, visits each
edge of T exactly twice, and returns to the root. Let E[1 . . 2n − 1] be the array that stores
the nodes of T in the order in which they occur in the Euler tour. To give an example,
consider the following tree T with root u1.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

2.3 SOME ALGORITHMS ON TREES 25

u1

u2 u3

u8 u9 u4 u5

u6 u7

The corresponding array E is shown below with the array indices in the top row and the
array entries in the bottom row:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
u1 u2 u8 u2 u9 u2 u1 u3 u4 u6 u4 u7 u4 u3 u5 u3 u1

Since we assume that each node has zero or two children, each internal node of T occurs
exactly three times in E, whereas each leaf occurs exactly once. Let L[1 . . 2n − 1] be the
array where L[i] stores the level of node E[i], 1 ≤ i ≤ 2n − 1. For our example tree, we
obtain the following array L, again, with the array indices in the top row:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1 2 1 2 1 0 1 2 3 2 3 2 1 2 1 0

Finally, let R[1 . . n] be the array in which R[i] is equal to the smallest integer 	 for
which E[] = ui , 1 ≤ i ≤ n. In other words, R[i] is equal to the first “time” that node
ui is visited during the Euler tour of T . For our example tree, we get the following
array R:

1 2 3 4 5 6 7 8 9
1 2 8 9 15 10 12 3 5

The following lemma explains how the arrays E, L, and R can be used to obtain the
lowest common ancestor of any two distinct nodes of the tree T .

Lemma 2.3.3. Let i and j be distinct integers with 1 ≤ i ≤ n and 1 ≤ j ≤ n, and assume
that R[i] < R[j]. Let k be the integer such that R[i] ≤ k ≤ R[j] and L[k] is minimum.
The lowest common ancestor of the nodes ui and uj is equal to E[k].

proof The lowest common ancestor of ui and uj is visited during the portion of the
Euler tour that starts at the first visit to ui and ends at the first visit to uj . Among all nodes
visited during this portion, it is that node that is closest to the root of T . This portion of
the Euler tour is stored in E[R[i] . . R[j]], and the levels of the nodes of this portion are
stored in L[R[i] . . R[j]].

Hence, we can answer lowest common ancestor queries by answering a so-called range
minimum query in the array L. We will show later how such queries can be answered
in O(1) time after an O(n)–time preprocessing step, by using the following property
of L.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

26 ALGORITHMS AND GRAPHS

Observation 2.3.4. The array L satisfies the (±1)-property, that is, L[i + 1] is equal to
either L[i] + 1 or L[i] − 1 for each i with 1 ≤ i ≤ 2n − 2.

Given the tree T , the arrays E, L, and R can be computed in O(n) time. Moreover,
the reduction given above can easily be extended to arbitrary rooted trees. Therefore, we
obtain the following result:

Theorem 2.3.5. Let T be a rooted tree with n nodes. We can preprocess T in O(n) time
such that lowest common ancestor queries can be answered in O(1) time. The algorithms
work in the algebraic computation-tree model, extended with indirect addressing.

The O(n)–time preprocessing algorithm can be implemented in the algebraic
computation-tree model (i.e., without using indirect addressing). In this weaker model,
the query time becomes O(log log n). This will imply the following result:

Theorem 2.3.6. Let T be a rooted tree with n nodes. We can preprocess T in O(n) time
such that the lowest common ancestor queries can be answered in O(log log n) time. The
algorithms work in the algebraic computation-tree model.

Solving the range minimum problem

In the range minimum problem, we are given an array A[1 . . n] of real numbers. We want
to preprocess A such that for any two given integers i and j with 1 ≤ i < j ≤ n, we can
efficiently compute an integer k with i ≤ k ≤ j , for which A[k] is minimum.

In the application to the lowest common ancestor problem, we have to solve this
problem for the array L[1 . . 2n − 1]. Observe that for this application, we need the index
of the minimal element rather than the minimal element itself.

We start by giving two simple solutions to this problem, both of which do not assume
any restriction on the array A. These solutions use O(n2) and O(n log n) preprocessing
time (and space), respectively. Afterward, we show how these solutions can be combined
to obtain an O(n)–time preprocessing algorithm for arrays that satisfy the (±1)-property.

A first solution: In this solution to the range minimum problem, we store all
(
n

2

)
possible

answers. That is, for each i with 1 ≤ i < n, there is an array Xi[i + 1 . . n], where for
each j with i + 1 ≤ j ≤ n, the value of Xi[j] is equal to the integer k with i ≤ k ≤ j ,
for which A[k] is minimum. It is clear that these arrays can be used to answer a range
minimum query in O(1) time. Using the relations

Xi[i + 1] =
{

i if A[i] < A[i + 1],
i + 1 otherwise,

for 1 ≤ i < n, and

Xi[j] =
{

Xi[j − 1] if A[Xi[j − 1]] < A[j],
j otherwise,

for 1 ≤ i < n − 1 and i + 2 ≤ j ≤ n, all arrays Xi , 1 ≤ i < n, can be computed in O(n2)
time.

A second solution: We improve upon the previous solution, by storing for each i with
1 ≤ i < n, the answers to only O(log n) different range minimum queries. To be more
precise, for each i with 1 ≤ i < n, there is an array Yi[1 . . �log(n − i + 1)�], in which
for each 	 with 1 ≤ 	 ≤ �log(n − i + 1)�, the value of Yi[] is equal to the integer k with
i ≤ k ≤ i + 2	 − 1, for which A[k] is minimum.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

2.3 SOME ALGORITHMS ON TREES 27

Let us see how these arrays can be used to answer a range minimum query. Let i and j be
two integers with 1 ≤ i < j ≤ n and let h := �log(j − i)�. If h = 0, then j = i + 1 and
Yi[1] is the answer to the query. Assume that h ≥ 1. We observe that j − 2h + 1 ≤ i + 2h

and, therefore,

{i, i + 1, . . . , i + 2h − 1} ∪ {j − 2h + 1, j − 2h + 2, . . . , j} = {i, i + 1, . . . , j}.
Let k := Yi[h] and k′ := Yj−2h+1[h]. (Observe that h is in the range of both Yi and
Yj−2h+1.) If A[k] < A[k′], then A[k] is a minimal element in the subarray A[i . . j] and,
therefore, k is the answer to the query. Otherwise, k′ is the answer. Hence, assuming that
the value of h can be computed in O(1) time, we can answer a range minimum query in
O(1) time.

If we initialize an array Z[1 . . n], where Z[m] = �log m�, 1 ≤ m ≤ n, then h is obtained
in O(1) time by looking up the value Z[j − i]. This array can be computed in O(n) time,
without using the floor and logarithm functions.

The relations

Yi[1] =
{

i if A[i] < A[i + 1],
i + 1 otherwise,

for 1 ≤ i < n, and

Yi[] =
{

Yi[− 1] if A[Yi[− 1]] < A[Yi+2	−1 [− 1]],
Yi+2	−1 [− 1] otherwise,

for 1 ≤ i < n − 1 and 2 ≤ 	 ≤ �log(n − i + 1)�, imply that all arrays Yi , 1 ≤ i < n, can
be computed in O(n log n) time.

Hence, we have shown that the array A can be preprocessed in O(n log n) time, such
that range minimum queries can be answered in O(1) time.

An optimal solution: We now assume that the array A[1 . . n] satisfies the (±1)-property.
Furthermore, we assume for simplicity that log n is an even integer.

We partition A into blocks of length (1/2) log n, where the h-th block is the subarray

A[((h − 1)/2) log n + 1, ((h − 1)/2) log n + 2, . . . , (h/2) log n],

for 1 ≤ h ≤ �2n/ log n�.
Let B[1 . . �2n/ log n�] be the array in which B[h] is equal to the minimal element of

the h-th block for 1 ≤ h ≤ �2n/ log n�. The array B can be computed in O(n) time. We
use our second solution to preprocess B for range minimum queries. This takes O(n)
time, after which queries in B can be answered in O(1) time.

We also initialize an array C[1 . . n] in which C[i] = �2i/ log n� for 1 ≤ i ≤ n. We
will use this array to compute, given any i with 1 ≤ i ≤ n, the number of the block that
contains A[i]. The array C can be computed in O(n) time, without using the floor function.

Let i and j be two integers with 1 ≤ i < j ≤ n, let h := �2i/ log n�, and let h′ :=
�2j/ log n�. Hence, A[i] and A[j] are contained in the h-th and h′-th blocks of A,
respectively. Let us first consider the case when h < h′. The minimal value in the subarray
A[i . . j] is equal to the minimum of the following three numbers:

1. the minimum in the portion of the h-th block that starts at position i and ends at the end
of this block,

2. the minimum in the portion of the h′-th block that starts at the beginning of this block and
ends at position j , and

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

28 ALGORITHMS AND GRAPHS

3. the minimum in the subarray B[h + 1 . . h′ − 1]. (Let us say that this minimum is ∞ if
h′ = h + 1.)

The third minimum can be computed in O(1) time using the data structure for the array B.
To compute the first and second minima, we have to preprocess the blocks so that in-block
range minimum queries can be answered. If h = h′, then A[i] and A[j] are contained in
the same block and the query on A reduces to an in-block query.

Let us see how the blocks can be preprocessed for in-block queries. Consider the
normalized blocks obtained by taking each block and subtracting the first element of the
block from each element of the block. The critical point is that even though there are
�2n/ log n� blocks, we will show that the number of distinct normalized blocks is only
O(

√
n). To see this, we observe that there are �2n/ log n� normalized blocks, each

� having length (1/2) log n,
� starting with a zero, and
� satisfying the (±1)-property.

A normalized block can be uniquely encoded by a string of length (1/2) log n − 1 over
the alphabet {+1, −1}. We observe that relative to the start of a block, the location of the
minimal item within that block is dependent only on the string encoding its normalized
block and is independent of the value of its first item. Since the number of such strings
is only 2(1/2) log n−1 = (1/2)

√
n, it follows that we have to preprocess only up to (1/2)

√
n

many “distinct” blocks.
Our preprocessing proceeds as follows. For each h with 1 ≤ h ≤ �2n/ log n�, let sh :=

s1s2 . . . s(1/2) log n−1 be the (±1)-string corresponding to the h-th block of A, and let the
integer xh be defined by

xh :=
(1/2) log n−1∑

i=1

si + 1

2
2i .

That is, we replace in sh each occurrence of −1 by 0, and each occurrence of +1 by 1. The
resulting binary string is the binary representation of the integer xh. Each of the �2n/ log n�
integers xh can be computed in O(log n) time. Also, we can sort all these integers in O(n)
time. After this sorting step, we know the “distinct” blocks of A. For each distinct value of
xh, we preprocess the corresponding normalized block for range minimum queries using
our first solution. Since each normalized block has length O(log n), and since we do this
for only O(

√
n) blocks, this part of the preprocessing takes O(

√
n log2 n) = O(n) time.

Finally, for each h with 1 ≤ h ≤ �2n/ log n�, we store with the h-th block of the
array A a pointer to the data structure for the normalized block that corresponds to the
integer xh.

We now present the query algorithm. Given two integers i and j with 1 ≤ i < j ≤ n,
we compute h := �2i/ log n� and h′ := �2j/ log n�. If h < h′, then we do the following:

1. We follow the pointer to the data structure for the normalized block that corresponds to
xh and compute the index of the minimal element in the portion that starts at position i

and ends at the end of this normalized block.

2. We follow the pointer to the data structure for the normalized block that corresponds to xh′

and compute the index of the minimal element in the portion that starts at the beginning
of this normalized block and ends at position j .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

2.3 SOME ALGORITHMS ON TREES 29

3. If h < h′ − 1, then we use the data structure for B to compute the index of the minimal
element in the subarray B[h + 1 . . h′ − 1].

It should be clear that, given this information, the index of the minimal element in the
subarray A[i . . j] can be computed in O(1) time. If h = h′, then we follow the pointer to
the data structure for the normalized block that corresponds to xh, and answer the query
within this normalized block. The answer to this query allows us to find, in O(1) time,
the index of the minimal element in the subarray A[i . . j]. We have proved the following
result:

Theorem 2.3.7. Let A[1 . . n] be an array of real numbers satisfying the (±1)-property.
We can preprocess A in O(n) time such that range minimum queries can be answered in
O(1) time. The algorithms work in the algebraic computation-tree model, extended with
indirect addressing.

In the algorithms given above, indirect addressing is a crucial operation. We claim that
these algorithms can be implemented without using indirect addressing, at the expense of
an increase in the query time:

Theorem 2.3.8. Let A[1 . . n] be an array of real numbers satisfying the (±1)-property.
We can preprocess A in O(n) time such that range minimum queries can be answered in
O(log log n) time. The algorithms work in the algebraic computation-tree model.

2.3.4 Centroids and separators in trees

Divide-and-conquer is a standard technique in algorithm design. When applying this
technique to trees, we have to partition the tree into a small number of pieces such that
each piece contains at most a constant fraction of the nodes. In this section, we will
introduce the notion of centroid node, centroid edge, and separator node. Each of these
can be used to achieve such a partition.

Before we can define centroid nodes, we have to introduce some notation. We denote
the number of nodes of any tree T by #(T). We say that two nodes u and v of T are
neighbors if they are connected by an edge.

Consider any node u of T . Removing node u (and its incident edges) from T results in a
collection of subtrees with one subtree for each neighbor of u. We denote by Tuv the subtree
that contains neighbor v. Observe that Tuv �= Tvu. In fact, we have #(Tuv) + #(Tvu) = #(T).

A node u of the tree T is called a centroid node if Tuv contains at most #(T)/2 nodes
for each neighbor v of u. The following theorem states that such a node always exists and
that it can be computed efficiently.

Theorem 2.3.9. Let n ≥ 2. Any tree having n nodes contains a centroid node, which can
be computed in O(n) time.

proof For each node v of T , we define

mv := max{#(Tvw) : w is a neighbor of v}.
Let u be a node of T for which mu is minimum. We will show that u is a centroid node
of T .

Let v be a neighbor of u such that the tree Tuv contains mu vertices. Let
u, w1, w2, . . . , wk be the neighbors of v in T . Observe that, by our choice of u, we
have mv ≥ mu. Let x be a neighbor of v such that the tree Tvx contains mv nodes. Then

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

30 ALGORITHMS AND GRAPHS

x ∈ {u, w1, w2, . . . , wk}. We claim that x = u. To prove this, assume that there is an in-
dex i with 1 ≤ i ≤ k, such that x = wi . Then #(Tvwi

) < #(Tuv), which is a contradiction,
because #(Tvwi

) = mv and #(Tuv) = mu. It follows that

n = #(Tuv) + #(Tvu) = #(Tuv) + #(Tvx) = mu + mv ≥ 2mu,

that is, we have mu ≤ n/2. This proves that u is a centroid node. We leave the computation
of the centroid node as an exercise (see Exercise 2.12).

A similar notion is that of a centroid edge, that is, an edge whose removal from the tree
T gives two trees having approximately the same size. If the degree of T is bounded by a
constant, then such a centroid edge always exists and can be computed in O(n) time. The
proof of this claim is left as an exercise (see Exercise 2.14).

Let T be a tree with n nodes. A separator node is a node in T whose removal
results in two graphs G1 and G2 (that are forests), each having at most 2n/3 nodes. In
fact, a centroid node is also a separator node. Given this node, the two graphs G1 and
G2 can be computed in O(n) time. (The proof of this claim is left as an exercise; see
Exercise 2.16.)

2.4 Coloring graphs of bounded degree

For the rest of this chapter, we will discuss several graph algorithms. We start with a
simple graph coloring problem. In Chapter 11, we will need an algorithm that gives each
vertex of a given graph a color such that any two vertices that are connected by an edge
have different colors. In this section, we show that this is always possible using D + 1
colors if D is the maximum degree of any vertex.

Let G be an undirected graph with n vertices, let D be the maximum degree of any
vertex of G, and let C be a set of D + 1 colors. We present a greedy algorithm that colors
the vertices of G using the colors of C, such that any two adjacent vertices have different
colors.

Let v1, v2, . . . , vn be the sequence of vertices of G. Our algorithm visits the vertices
in this order. For any k with 1 ≤ k ≤ n, if the algorithm has visited v1, v2, . . . , vk, then
each of these vertices will have a color of C, such that any two adjacent vertices vi and
vj , with 1 ≤ i < j ≤ k, have different colors.

Initially, k = 1, and the algorithm colors v1 with an arbitrary element of C. Let 1 ≤
k < n, and assume that v1, v2, . . . , vk have been colored already. The algorithm computes
the set Ck of all colors c ∈ C for which there is an index i, such that i ≤ k, vi has color c,
and {vi, vk+1} is an edge of G. Then the algorithm colors vk+1 with an arbitrary element of
the set C \ Ck . Observe that C \ Ck is nonempty, because Ck contains at most D elements.

It is clear that this algorithm computes a valid coloring of the vertices of G. Furthermore,
the algorithm can be implemented so that its running time is O(Dn). Hence, we have
proved the following result:

Theorem 2.4.1. Let G be an undirected graph with n vertices and let D be a positive
integer. Assume that the degree of each vertex of G is less than or equal to D. The vertices
of G can be colored using D + 1 colors, such that any two adjacent vertices have different
colors. Moreover, such a coloring can be computed in O(Dn) time.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

2.5 DIJKSTRA’S SHORTEST PATHS ALGORITHM 31

2.5 Dijkstra’s shortest paths algorithm

Let G = (V, E) be a weighted undirected graph. Each edge {u, v} in E has a weight that
we denote by wt(u, v). We assume that these weights are positive real numbers. Since
the graph G is undirected, we have wt(u, v) = wt(v, u) for any edge {u, v}. Recall that
the weight of a path in G is defined as the sum of the weights of the edges on this path.
For any two vertices u and v of V , we denote by δ(u, v) the minimum weight of any path
in G between u and v. If there is no path between u and v, then δ(u, v) := ∞. Observe
that δ satisfies the triangle inequality: We have δ(u, v) ≤ δ(u, w) + δ(w, v) for any three
vertices u, v, and w of V .

In this section, we give an algorithm that solves the following problem:

Problem 2.5.1. Given a weighted undirected graph G = (V, E) in which each edge has
a positive real weight, given a vertex s ∈ V , and given a real number R > 0, compute all
vertices v ∈ V for which δ(s, v) ≤ R, and for each such vertex v, compute the value of
δ(s, v).

If R = ∞, then the standard algorithm for solving this problem is Dijkstra’s algorithm.
The idea of this algorithm is as follows. For each vertex v, we maintain a variable d(v),
whose value is the smallest weight of any path between s and v encountered so far.
Hence, during the algorithm, we always have δ(s, v) ≤ d(v) for all vertices v ∈ V . We
also maintain a subset A of V , such that for each v ∈ A, the value of δ(s, v) has been
computed already.

At the start of the algorithm, we set d(s) := 0, d(v) := ∞ for all vertices v ∈ V \ {s},
and initialize A to be the empty set. Then we repeatedly select a vertex u ∈ V \ A for which
d(u) is minimum. As we will see later, this vertex u has the property that d(u) = δ(s, u).
Therefore, we add u to the set A and update the values d(v) for all vertices v ∈ V that are
connected by an edge to u by assigning d(v) := min(d(v), d(u) + wt(u, v)).

The vertices v ∈ V \ A are maintained in a priority queue PQ with the priority being
the value d(v). This priority queue can be implemented, for example, using a binary heap
or a Fibonacci heap. In this way, the minimum value d(u) can be selected and deleted
efficiently, and the values d(v) that change can be updated efficiently.

It is clear that we can also run this algorithm if R is finite. The disadvantage of this
approach is that the running time is at least linear in the number of vertices and edges of
the graph G. Our goal is an algorithm whose running time depends only on the number
of vertices v for which δ(s, v) ≤ R and the degrees of these vertices.

2.5.1 Algorithm SingleSource

In our variant of Dijkstra’s algorithm, the priority queue PQ stores only those vertices
v for which d(v) ≤ R. For every vertex v ∈ V , the algorithm maintains two Boolean
variables added to PQ(v) and reported(v). Initially, all these variables have the value
false. The algorithm also maintains a set A, which is implemented as a linked list. During
the algorithm, the following two properties will be maintained for each vertex v:

1. added to PQ(v) = true if and only if v has ever been inserted into PQ.

2. reported(v) = true if and only if v is contained in the set A.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

32 ALGORITHMS AND GRAPHS

As shown later, the set A consists of all vertices v with δ(s, v) ≤ R for which we have
computed δ(s, v). The algorithm terminates as soon as PQ is empty or the current minimum
value d(u) in PQ is larger than R.

Algorithm SingleSource(G, s, R)

Comment: This algorithm takes as input an undirected graph G in which every edge has
a positive weight, a vertex s of G, and a real number R > 0. It returns the set A of all
vertices v for which δ(s, v) ≤ R.

Step 1: Initialize d(s) := 0, PQ as the priority queue containing s, added to PQ(s) := true,
A as the empty list, and reported(s) := false.

Step 2: If PQ is empty, then go to Step 3. Otherwise, let u be a vertex of PQ for which
d(u) is minimum. If d(u) > R, then go to Step 3. Otherwise, d(u) ≤ R, in which case
the following Steps 2.1 and 2.2 are made:

Step 2.1: Add u to the list A, set reported(u) := true, and delete u from PQ.

Step 2.2: For each vertex v for which {u, v} is an edge of G and reported(v) = false,
distinguish the following two cases:

Case 2.2.1: If added to PQ(v) = false, then set d(v) := d(u) + wt(u, v) and, if
d(v) ≤ R, insert v into PQ and set added to PQ(v) := true.

Case 2.2.2: If added to PQ(v) = true and d(u) + wt(u, v) < d(v), then set d(v) :=
d(u) + wt(u, v) and update the priority of v in PQ.

After Steps 2.1 and 2.2 have been made, repeat Step 2.

Step 3: Reset all variables added to PQ(v) that are true to false, and reset all variables
reported(v) with v ∈ A to false.

Step 4: Return the list A.

Remark 2.5.2. In Chapter 15, algorithm SingleSource(G, s, R) will be run repeatedly
on a fixed graph G, for different vertices s. Prior to one call to this algorithm, the values
of all variables added to PQ(v) and reported(v) are assumed to be false. Because of this,
all these variables are reset to false in Step 3 of the algorithm. There is no need to reset the
values of the variables d(v). Prior to one call to SingleSource, these variables can have
arbitrary values. The proof of this last claim is left as an exercise (see Exercise 2.17).

In Section 2.5.2, we prove that the list A returned in Step 4 indeed consists of all
vertices v for which δ(s, v) ≤ R. In Section 2.5.3, we analyze the running time of the
algorithm.

2.5.2 The correctness proof of algorithm SingleSource

We start by showing that for each vertex v stored in the priority queue PQ, the value of
d(v) is an upper bound on the weight of a shortest path between s and v.

Lemma 2.5.3. Algorithm SingleSource(G, s, R) maintains the invariant that δ(s, v) ≤
d(v) for all vertices v for which added to PQ(v) = true.

proof The proof is by induction on the number of times Step 2 has been executed.
Immediately after Step 1 (i.e., when Step 2 has not been executed yet), only the variable
added to PQ(s) has the value true. At this moment, the variable d(s) has value zero,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

2.5 DIJKSTRA’S SHORTEST PATHS ALGORITHM 33

which is equal to δ(s, s). Hence, the invariant holds immediately before Step 2 is executed
for the first time.

Consider one execution of Step 2, and assume that PQ is not empty at the start of this
execution. Consider the vertex u in PQ for which d(u) is minimum and that is chosen in
this execution, and assume that d(u) ≤ R.

Let v be any vertex for which added to PQ(v) = true at the start of this execution of
Step 2. If d(v) does not change during this execution, then we clearly have δ(s, v) ≤ d(v)
afterward. Assume that d(v) does change. Then at the end of this execution, we have d(v) =
d(u) + wt(u, v). Since d(u) does not change during this execution, we have δ(s, u) ≤ d(u).
By the triangle inequality, we have δ(s, v) ≤ δ(s, u) + wt(u, v). This implies that at the
end of this execution of Step 2, we have δ(s, v) ≤ d(v).

Finally, let v be any vertex for which the value of added to PQ(v) is set to true during
this execution of Step 2. Then, d(v) = d(u) + wt(u, v). As in the previous case, we
conclude that δ(s, v) ≤ d(v) at the end of this execution.

Next we prove that after the value of a variable d(v) becomes equal to δ(s, v), it does
not change during the rest of the algorithm.

Lemma 2.5.4. Let v be any vertex of V . Assume that at some moment during the algo-
rithm, added to PQ(v) = true and the value of d(v) becomes equal to δ(s, v). Then the
value of d(v) does not change during the rest of the algorithm.

proof Since added to PQ(v) = true, we have, by Lemma 2.5.3, δ(s, v) ≤ d(v). It
follows from the algorithm that, after added to PQ(v) has been set to true, the value of
d(v) does not increase.

Lemma 2.5.5. The minimum value d(u) stored in the priority queue PQ does not decrease
during the algorithm.

proof Consider any execution of Step 2, and let u be the vertex that is inserted into A

during this execution. Then d(u) is minimum over all vertices that are stored in PQ. Let v

be any vertex such that (i) v is already in PQ and d(v) is decreased during this execution,
or (ii) v is inserted into PQ during this execution. Then d(v) = d(u) + wt(u, v), which is
larger than d(u). Hence, after deleting u from PQ, the new minimum stored in PQ is not
smaller than d(u).

The next lemma is the basis for the correctness proof of algorithm SingleSource.

Lemma 2.5.6. Let v be any vertex of V such that v �= s and δ(s, v) ≤ R, and let P be a
shortest path between s and v. Let {u, v} be the last edge on P . Assume that u is inserted
into A during some execution of Step 2, and assume that d(u) = δ(s, u) at that moment.
Then d(v) = δ(s, v) at any moment after this execution.

proof During the execution of Step 2 in which u is inserted into A, the algorithm
considers the edge {u, v}. We claim that v is not an element of A at that moment, that is,
reported(v) = false. To prove this, assume that reported(v) = true at the moment when
u is inserted into A. It follows from the algorithm that added to PQ(v) = true at this
moment. Also, by Lemma 2.5.5, we have d(v) ≤ d(u) at this moment. Combining this
with Lemma 2.5.3 and the assumption of the lemma, it follows that

δ(s, v) ≤ d(v) ≤ d(u) = δ(s, u). (2.1)

On the other hand, since P is a shortest path between s and v, the subpath of P be-
tween s and u is a shortest path between s and u. Therefore, δ(s, v) = δ(s, u) + wt(u, v).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

34 ALGORITHMS AND GRAPHS

Combining this with (2.1) implies that wt(u, v) ≤ 0, which is a contradiction because
u �= v and the edge weights are positive.

Hence, when the algorithm considers the edge {u, v}, we have reported(v) = false. At
the end of the execution of Step 2 in which u is inserted into A, we have d(v) ≤ d(u) +
wt(u, v). Then the assumption of the lemma implies that d(v) ≤ δ(s, u) + wt(u, v) at the
end of this execution. We have seen already that δ(s, u) + wt(u, v) = δ(s, v). Therefore,
we have d(v) ≤ δ(s, v) at the end of this execution. Then Lemmas 2.5.3 and 2.5.4 imply
that d(v) = δ(s, v) at any moment after the execution in which u is inserted into A.

The next lemma states that for each vertex u that is contained in the list A that is
returned in Step 4, the algorithm has computed the correct value of δ(s, u).

Lemma 2.5.7. Let A be the list that is returned by algorithm SingleSource(G, s, R).
We have d(u) = δ(s, u) for each vertex u in this list.

proof We claim that for each vertex u of the final list A, we have d(u) = δ(s, u) at the
moment when u is inserted into this list. Since d(u) does not change later, this will prove
the lemma.

The proof of the claim is by induction. The vertex s is the first vertex that is inserted
into A. For this vertex, the claim clearly holds.

Let u be any vertex of the final list A such that u �= s. Consider the execution of Step 2
in which u is inserted into A. We denote the list A at the beginning of this execution by
A′. The inductive hypothesis is that the claim holds for any vertex x ∈ A′. We will show
that the claim then also holds for u.

Let P be a shortest path between s and u. (Since δ(s, u) ≤ d(u) ≤ R, the path P exists.)
Observe that s ∈ A′ and u �∈ A′. Let y be the first1 vertex on P that is not contained in
A′ and let x be the predecessor of y. Then x ∈ A′. By the induction hypothesis, we
had d(x) = δ(s, x) at the moment when x was inserted into A. Hence, by Lemma 2.5.6,
d(y) = δ(s, y) at any moment after the execution of Step 2 in which x is inserted into A.

We claim that y = u. If this is true, then d(u) = δ(s, u) at the moment when u is
inserted into A, and the proof is complete.

Assume that y �= u. Then δ(s, y) < δ(s, u). Hence, at the moment when the algorithm
inserts u into A, we have d(y) < δ(s, u). Vertex u is inserted into A because, at that
moment, d(u) is minimum in the priority queue. That is, when u is inserted into A, we
have d(u) ≤ d(y). Hence, we have d(u) < δ(s, u) at that moment. This is a contradiction
to Lemma 2.5.3 and, therefore, we have shown that y = u.

The previous lemma implies that algorithm SingleSource(G, s, R) computes a subset
of the set of all vertices u for which δ(s, u) ≤ R. It remains to show that the algorithm
computes all such vertices u.

Lemma 2.5.8. Let A be the list that is returned by algorithm SingleSource(G, s, R).
The list A contains all vertices u of V for which δ(s, u) ≤ R.

proof By Lemma 2.5.5, the minimum value of d(u) stored in the priority queue
does not decrease over time. This implies that the list A stores the vertices u in
nondecreasing order of the value d(u). By Lemma 2.5.7, we have d(u) = δ(s, u) for
each u ∈ A. Therefore, the algorithm can terminate as soon as the minimum value d(u)
in the priority queue is larger than R.

1 When following the path P from s to u.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

2.6 MINIMUM SPANNING TREES 35

2.5.3 The running time of algorithm SingleSource

Let n denote the number of vertices of G, and consider the list A that is returned by
the algorithm. The running time is dominated by the total time needed to process the
following priority queue operations:

1. DeleteMin: This operation finds and deletes the vertex u in PQ for which d(u) is
minimum. It is performed at most |A| + 1 times.

2. Insert(v): This operation inserts the vertex v into PQ, with priority d(v). Since the
algorithm inserts v only in case d(v) ≤ R, this operation is performed |A| times.

3. DecreaseKey(v, d ′(v)): This operation replaces the priority d(v) of vertex v by the
smaller priority d ′(v). It is performed at most |A| +∑

v∈A deg(v) times.

We denote the number of vertices stored in the priority queue by |PQ|. If we implement
PQ using a Fibonacci heap, then one operation DeleteMin takes O(log |PQ|) amortized
time, one operation Insert takes O(1) amortized time, and one operation DecreaseKey
takes O(1) amortized time. Since |PQ| ≤ |A| at any moment during the algorithm, we
have proved the following result:

Theorem 2.5.9. Let G be a weighted undirected graph with n vertices, whose edges have
positive weights; let s be any vertex of G, and let R > 0 be any real number. Algorithm
SingleSource(G, s, R) computes

1. the set A of all vertices v of G for which δ(s, v) ≤ R, and

2. for each vertex v ∈ A the value of δ(s, v),

in O
(|A| log |A| +∑

v∈A deg(v)
)

time.
If we run algorithm SingleSource(G, s, R) with R = ∞, then we get for each vertex

v the weight δ(s, v) of a shortest path between s and v. In this case, we have the classical
Dijkstra algorithm, which solves the single-source shortest paths problem. Since |A| ≤ n,
and

∑
v∈A deg(v) is equal to twice the number of edges of G, we get the following result:

Corollary 2.5.10. Let G be a weighted undirected graph with n vertices and m edges,
and assume that these edges have positive weights. Let s be any vertex of G. Algorithm
SingleSource(G, s, ∞) computes for each vertex v of G the value δ(s, v) in total time
O(n log n + m).

2.6 Minimum spanning trees

Let G = (V, E) be a weighted undirected connected graph. Each edge e in E has a weight
wt(e), which is a positive real number. The weight of any subgraph G′ = (V, E′) of G is
defined as the sum of the weights of the edges of E′.

In this section, we consider the problem of computing a connected subgraph G′ of G

having minimum weight. It is not difficult to see that G′ must be a tree. Therefore, G′ is
called a minimum spanning tree of G.

We will present two well-known algorithms for computing a minimum spanning tree.
Both use a greedy strategy to build the tree, and their correctness proofs are based on the
following lemma, whose proof is left as an exercise (see Exercise 2.18). We say that two
sets A and B of vertices form a partition of the vertex set V if A ∪ B = V , A ∩ B = ∅,
A �= ∅, and B �= ∅.

Lemma 2.6.1. Let A and B be two sets of vertices that form a partition of V . Let a and
b be vertices of A and B, respectively, such that {a, b} is an edge of E and the weight
wt(a, b) is minimum. Then the graph G contains a minimum spanning tree in which {a, b}
is an edge.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

36 ALGORITHMS AND GRAPHS

2.6.1 Kruskal’s algorithm

Our first minimum spanning tree algorithm is known as Kruskal’s algorithm. Let the graph
G = (V, E) have n vertices and m edges. Kruskal’s algorithm maintains a forest, which
is a collection of trees. It repeatedly adds an edge of minimum weight that does not create
a cycle. To be more precise, the algorithm starts with a forest consisting of n trees, each
consisting of a single vertex of V . Then the algorithm combines two trees in the forest,
using an edge of minimum weight, and repeats this, until the forest consists of one single
tree. This final tree is a minimum spanning tree of the graph G.

The algorithm, which we denote by Kruskal(G), is given below. During this algorithm,
every tree in the forest has a unique vertex that is chosen as a “leader.” When two trees of
the forest are combined, one of the two leaders of the two trees is chosen as the leader of
the combined tree.

Algorithm Kruskal(G)

Comment: This algorithm takes as input a connected weighted undirected graph G =
(V,E). It returns the edge set of a minimum spanning tree of G.

sort the edges of E in nondecreasing order of their weights;
let {uk, vk}, 1 ≤ k ≤ |E|, be the sorted sequence of edges;
for each u ∈ V

do Vu := {u};
Eu := ∅

endfor;
for k := 1 to |E|
do (∗ test if the edge {uk, vk} has to be included ∗)

x := index such that uk ∈ Vx ;
y := index such that vk ∈ Vy ;
if x �= y

then (∗ adding edge {uk, vk} does not introduce a cycle ∗)
Vx := Vx ∪ Vy ;
Vy := ∅;
Ex := Ex ∪ Ey ∪ {{uk, vk}};
Ey := ∅

endif
endfor;
x := index such that Vx �= ∅;
return Ex

We claim that after all edges {uk, vk} have been tested for inclusion, there is exactly
one index x for which Vx �= ∅. The corresponding set Ex is the edge set of a minimum
spanning tree of the graph G. The correctness proof is based on the following claims,
whose proofs are left as an exercise (see Exercise 2.19):

1. At any moment after the edge {uk, vk} has been tested for inclusion, the vertices uk and
vk are connected by a path in the graph (V,E′), where E′ := ⋃

x∈V Ex .

2. During the second for-loop, the following invariant is maintained:

(a) The nonempty sets Vx form a partition of the vertex set V .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

2.6 MINIMUM SPANNING TREES 37

(b) There is a minimum spanning tree of G that contains the edge set E′ := ⋃
x∈V Ex .

(c) For any two indices x and y, such that x �= y and Vx and Vy are both nonempty, no
vertex of Vx is connected by a path in the graph (V,E′) to any vertex of Vy .

To implement Kruskal’s algorithm, we have to maintain the nonempty vertex sets Vx

under the following three operations:

1. MakeSet(u): Given a vertex u, this operation initializes a new set Vu := {u}. It has to be
processed for each vertex u of V .

2. Find(u): This operation finds the index x such that vertex u is an element of the set Vx . It
has to be processed 2m times.

3. Union(Vx, Vy): This operation assigns Vx := Vx ∪ Vy and Vy := ∅. It has to be processed
n − 1 times.

The problem of designing a data structure that supports these three operations is called
the union-find problem. In Exercise 2.20, you are asked to design a data structure in which
each MakeSet and Union operation takes O(1) time and each Find operation takes
O(log n) time. Therefore, we obtain the following result:

Theorem 2.6.2. Given a connected weighted undirected graph G with n vertices and m

edges, algorithm Kruskal(G) computes a minimum spanning tree of G in O(m log n)
time.

2.6.2 Prim’s algorithm

The second algorithm for computing a minimum spanning tree is known as Prim’s algo-
rithm. As before, we denote the number of vertices and edges of the graph G = (V, E)
by n and m, respectively. Prim’s algorithm starts with a set A containing an arbitrary
vertex of G, and an empty set E′ of edges. Then, it repeatedly adds to the edge set E′

an edge of minimum weight between a vertex of A and a vertex of V \ A. If {u, v} is
such an edge, with u ∈ A, then the vertex v “moves” to the set A. The algorithm termi-
nates as soon as A = V . At that moment, the graph (V, E′) is a minimum spanning tree
of G.

Algorithm Prim(G)

Comment: This algorithm takes as input a connected weighted undirected graph G =
(V,E). It returns the edge set of a minimum spanning tree of G.

r := arbitrary vertex of G;
A := {r};
E′ := ∅ ;
while A �= V

do find a vertex u ∈ A and a vertex v ∈ V \ A such that
{u, v} ∈ E and wt(u, v) is minimum;
A := A ∪ {v};
E′ := E′ ∪ {{u, v}}

endwhile;
return E′

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

38 ALGORITHMS AND GRAPHS

The correctness proof of this minimum spanning tree algorithm is left as an exercise
(see Exercise 2.21). If we implement the algorithm using a Fibonacci heap, then we get
the following result:

Theorem 2.6.3. Given a connected weighted undirected graph G with n vertices and m

edges, algorithm Prim(G) computes a minimum spanning tree of G in O(n log n + m)
time.

Exercises

2.1. Prove that the subgraph Pu in Section 2.3.2 is a path.

2.2. In Section 2.3.2, we defined the notion of a group parent. Prove that if two distinct nodes u and v

have the same group parent, then either u is an ancestor of v, or v is an ancestor of u.

2.3. Prove the correctness of algorithm LCA in Section 2.3.2.

2.4. Prove Observation 2.3.1.

2.5. Algorithm GroupParents(u, x) in Section 2.3.2 is based on a preorder traversal of the tree T .

Design an algorithm that is based on a postorder traversal and that computes the group parents of

all nodes of T .

2.6. Let T be a rooted binary tree with n nodes. Assume that each internal node of T stores pointers to

its left and right children, but no node stores a pointer to its parent. Design an O(n)–time algorithm

that stores with each node of T (except for the root) a pointer to its parent.

2.7. We have proved Theorem 2.3.2 for binary trees. Extend the proof to arbitrary rooted trees.

2.8. Let T = (V,EV) be a tree with n nodes, and let G = (V,E) be an undirected graph that contains T ,

that is, EV ⊆ E. Let u and v be any two distinct nodes of V , and let P = (u = x0, x1, x2, . . . , x	 =
v) be the unique path in T between u and v. A path Q = (u = xi0 , xi1 , xi2 , . . . , xik = v) in the

graph G between u and v is called a T -monotone path, if 0 = i0 < i1 < i2 < · · · < ik = 	. The

T -monotone diameter of G is defined as the smallest integer k, such that for any two distinct

nodes u and v of V , there is a T -monotone path in G between u and v that contains at most

k edges.

Design an O(n)–time algorithm that computes, when given any tree T with n nodes as input, a

graph having O(n) edges and whose T -monotone diameter is O(log n). (Hint: Use the paths Pu

that were defined in Section 2.3.2.)

2.9. Prove Theorems 2.3.6 and 2.3.8.

2.10. Let T be a rooted tree with n nodes. For any two distinct nodes u and v of T , let w be their lowest

common ancestor, and let wu and wv be the children of w that contain u and v in their subtrees,

respectively. Extend the results of Section 2.3.3 such that, when given u and v, not only their lowest

common ancestor w, but also wu and wv are returned.

2.11. We have proved Theorems 2.3.7 and 2.3.8 for arrays that satisfy the (±1)-property. Prove that

these theorems hold for arbitrary arrays. (Hint: Reduce the range minimum problem for an arbitrary

array to the lowest common ancestor problem.)

2.12. Design an algorithm that computes, in O(n) time, a centroid node of any given tree with n nodes.

2.13. Can a tree have more than one centroid node? Can it have more than two centroid nodes?

2.14. Let n and D be integers such that n ≥ 2 and 2 ≤ D < n. Let T be a tree with n nodes in which

each node has degree at most D. Prove that T contains a centroid edge, that is, an edge e, such

that removing e from T gives two trees, each of which contains at least (n − 1)/D, and at most

((D − 1)n + 1)/D nodes. Design an O(n)–time algorithm that computes such a centroid edge.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHIC NOTES 39

2.15. Let P be a simple polygon with n vertices. A diagonal is a line segment joining two nonadjacent

vertices of P that is completely contained in P . Such a diagonal cuts P into two disjoint simple

polygons P1 and P2. Prove that there is a diagonal such that both P1 and P2 have at least 1 + n/3
and at most 1 + 2n/3 vertices. (Hint: The dual of any triangulation of P is a tree.)

2.16. Let n ≥ 2 and let T be a tree with n vertices. Prove that G contains a separator node v, that

is, a node whose removal gives two graphs G1 and G2 – that are not necessarily trees – each

having at most 2n/3 vertices. Moreover, design an algorithm that computes such a vertex v and

the corresponding graphs G1 and G2 in O(n) time.

2.17. Consider algorithm SingleSource(G, s, R) of Section 2.5.1. Assume that, prior to running this

algorithm, the variable d(v) of each vertex v of G has some arbitrary value. Prove that the algorithm

still correctly solves Problem 2.5.1.

2.18. Prove Lemma 2.6.1.

2.19. Use Lemma 2.6.1 to prove the correctness of Kruskal’s minimum spanning tree algorithm.

2.20. Design a data structure for the union-find problem on a set of n elements (see Section 2.6.1),

in which each MakeSet and Union operation takes O(1) time, and each Find operation takes

O(log n) time.

2.21. Use Lemma 2.6.1 to prove the correctness of Prim’s minimum spanning tree algorithm.

2.22. Prove that the vertices of any planar graph can be colored using six colors, such that no two adjacent

vertices have the same color. (Hint: First prove that in any planar graph, there is a vertex whose

degree is less than or equal to five.)

Bibliographic notes

Good and thorough introductions to algorithms can be found in the books by Manber
[1989] and Cormen et al. [2001]. Much deeper treatments of graph theory can be found
in the books by Bollobás [1998], Diestel [2000], Even [1979], and Harary [1972].

The technique that we used in Section 2.3.2 to partition a tree T into pairwise disjoint
paths is due to Cole and Vishkin [1988].

Harel and Tarjan were the first to show that lowest common ancestor queries in a tree
with n nodes can be answered in O(1) time (using indirect addressing) after an O(n)–
time preprocessing; see Harel and Tarjan [1984]. They also proved an �(log log n) lower
bound for pointer machine algorithms. The algorithm of Harel and Tarjan was simplified
in Schieber and Vishkin [1988] (see also Chapter 8 of the book by Gusfield [1997]). The
simple algorithm given in Section 2.3.3 is from Bender and Farach-Colton [2000]; this
paper also contains a solution to Exercise 2.11.

Jordan [1869] was the first to show that every tree contains a centroid node; see
Theorem 2.3.9. The proof given in Section 2.3.4 is from Bodlaender, Tel, and Santoro
[1994]. The existence of a separator node in a tree is a special case of Lipton and Tarjan’s
separator theorem for planar graphs, see Lipton and Tarjan [1979, 1980].

Dijkstra’s single-source shortest paths algorithm appeared in Dijkstra [1959]. Fibonacci
heaps are due to Fredman and Tarjan [1987]. Kruskal’s minimum spanning tree algorithm
appeared in Kruskal [1956], whereas Prim’s algorithm was discovered independently by
Jarnı́k [1930], Prim [1957], and Dijkstra [1959]. Good descriptions of the algorithms of
Dijkstra, Kruskal, and Prim, as well as Fibonacci heaps and data structures for the union-
find problem can be found in the book by Cormen et al. [2001]. The currently fastest
known algorithm for computing a minimum spanning tree appears in Chazelle [2000b].

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

40 ALGORITHMS AND GRAPHS

The Euclidean minimum spanning tree MST(S) of a set S of n points in Rd is a
minimum spanning tree of the complete Euclidean graph whose vertex set is S. Prim’s
algorithm computes this tree in O(n2) time. By exploiting geometry, we can do better.
Let us assume that the dimension d is equal to two. It is known that MST(S) is a subgraph
of the Delaunay triangulation DT(S) of S. That is, the minimum spanning tree of DT(S)
is a Euclidean minimum spanning tree of the point set S. Since DT(S) is a planar graph
with n vertices, it has at most 3n − 6 edges. Therefore, given DT(S), we can use either
Kruskal’s or Prim’s algorithm to compute MST(S) in O(n log n) time. In fact, Cheriton
and Tarjan [1976] have shown that MST(S) can be computed in O(n) time from DT(S).
Several algorithms are know for computing DT(S) in O(n log n) time (see Shamos and
Hoey [1975], Lee and Schachter [1980], or any of the books on computational geometry
mentioned in the bibliographic notes at the end of Chapter 1).

In dimensions d ≥ 3, the Euclidean minimum spanning tree problem becomes consid-
erably harder. For example, if d = 3, a Euclidean minimum spanning tree can be computed
in a time that is roughly proportional to n4/3 (see Agarwal et al. [1991] and Callahan and
Kosaraju [1993]). In Chapter 10, we will show how spanners can be used to compute an
approximate Euclidean minimum spanning tree of any set of n points in Rd in O(n log n)
time.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

3

The Algebraic Computation-Tree Model

My intelligence is bewildered by Your equivocal instructions. Therefore,
please tell me decisively which will be most beneficial for me.

—The Bhagavad Gita

In this chapter, we formalize the model of computation that will be used throughout most
of this book. This model, called the algebraic computation-tree model, captures algo-
rithms that perform exact arithmetic on arbitrary real numbers, and that use the following
primitive operations: comparison of two real numbers, and the arithmetic operations of
addition (+), subtraction (−), multiplication (×), division (/), and the square root. Al-
gorithms in this model take sequences of real numbers as input. The worst-case running
time of such an algorithm depends only on the number of elements in the input sequence.
Hence, it does not depend on the number of bits needed to specify the input.

We start in Section 3.1 with a formal definition of computation problems, and algebraic
computation-trees as devices for solving such problems. In Section 3.2, we introduce a
restricted type of algebraic computation-trees, called algebraic decision trees, that solve
decision problems (i.e., their output is either YES or NO). In Section 3.3, we present a
general technique for proving lower bounds on the time complexity for solving decision
problems. Since a given computation problem often “contains” a related decision problem,
this also gives a general approach for proving lower bounds on the time complexity for
solving computation problems. In Section 3.4, we apply this approach and prove that the
time complexity of computing a t-spanner of a set of n points in Rd is � (n log n).

3.1 Algebraic computation-trees

Informally, an algorithm is a procedure that transforms an input consisting of n real
numbers (i.e., a point in Rn) to an output (e.g., a real number or a combinatorial structure)
belonging to some solution space S. In other words, an algorithm solves a computation
problem, which is a function

P : R
n → S.

An example of a computation problem is the sorting problem, in which S is the set of all
nondecreasing sequences of n real numbers.

Definition 3.1.1. Let n be a positive integer, and let S be a solution space. An algebraic
computation-tree on a sequence s1, s2, . . . , sn of n variables is a finite tree T in which
each node has at most two children, and that satisfies the following three conditions:

1. Each leaf is labeled with the combinatorial description, in terms of the variables
s1, s2, . . . , sn, of an element in S.

41

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

42 THE ALGEBRAIC COMPUTATION-TREE MODEL

2. Each node u having one child is labeled with a variable Z(u) and an assignment of the
form

(a) Z(u) := A1&A2, where & ∈ {+,−, ∗, /}, or

(b) Z(u) := √
A1,

where, for i = 1, 2, (i) Ai = Z(u′) for some proper ancestor u′ of u in T , (ii) Ai ∈
{s1, s2, . . . , sn}, or (iii) Ai is a real number constant.

3. Each node u having two children is labeled with a comparison of the form A �� 0, where
(i) A = Z(u′) for some proper ancestor u′ of u in T , or (ii) A ∈ {s1, s2, . . . , sn}. The
two outgoing edges leading to the left and right children of u are labeled with ≤ and >,
respectively.

An algebraic computation-tree T corresponds to an algorithm AT that solves a com-
putation problem P : Rn → S. Given an input sequence s1, s2, . . . , sn of n real numbers,
algorithm AT traverses a path down the tree T starting at the root. If the current node u has
one child, then AT performs the corresponding arithmetic operation, assigns the result to
the variable Z(u), and proceeds to the child of u. If the current node u has two children,
then the corresponding comparison is made and, depending on the outcome, AT proceeds
to the left or right child of u. When AT reaches a leaf, say w, it takes the label stored at w,
replaces all variables in this label by the values of the real numbers s1, s2, . . . , sn, returns
the resulting label and terminates. The returned label is the solution to the problem P on
input sequence s1, s2, . . . , sn, that is, the value of P(s1, s2, . . . , sn).

We require that no computation leads to a division by 0 or taking the square root of
a negative number. Hence, for any sequence of n real numbers, algorithm AT is well-
defined. We also require that for each leaf w of T , there exists an input sequence of length
n, on which algorithm AT terminates in w.

Thus, a specific algebraic computation-tree can represent only an algorithm on all
inputs of a specific length. In this sense, the algebraic computation-tree represents all
possible behaviors of an algorithm over all input sequences consisting of n real numbers.
We remark that an algebraic computation-tree is used only to analyze an algorithm; the tree
is not explicitly constructed. As we will see, algebraic computation-trees are a convenient
tool to prove lower bounds for computation problems.

An algorithm A that makes only comparisons and the arithmetic operations +, −, ∗, /,
and √ , is called an algebraic computation-tree algorithm, if there is an algebraic
computation-tree T such that A = AT . In Exercise 3.6, you will be asked to prove
that not every such algorithm A is an algebraic computation-tree algorithm.

Definition 3.1.2. Let P : Rn → S be a computation problem. We say that P is solvable
in the algebraic computation-tree model if there exists an algebraic computation-tree T

such that, for any (s1, s2, . . . , sn) ∈ Rn, the corresponding algorithm AT returns the value
of P(s1, s2, . . . , sn). We say then that T solves the computation problem P .

Intuitively, the worst-case running time of an algebraic computation-tree algorithm AT

is the maximum number of comparisons and arithmetic operations that are made on any
input sequence of length n. Hence, each comparison and each of the elementary operations
+, −, ∗, /, and √ takes unit time. The following definition expresses this in terms of the
tree T .

Definition 3.1.3. Let T be an algebraic computation-tree. The time complexity of the
corresponding algorithm AT is defined as the height of the tree T .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

3.3 LOWER BOUNDS FOR ALGEBRAIC DECISION TREE ALGORITHMS 43

Having defined the time complexity of an algorithm, we can define the time complexity
of a computation problem:

Definition 3.1.4. Let P : Rn → S be a computation problem that is solvable in the
algebraic computation-tree model. The time complexity of P is defined as the minimum
height of any algebraic computation-tree that solves P .

3.2 Algebraic decision trees

A computation problem P : Rn → S is called a decision problem if S = {YES,NO}. An
example is the element uniqueness problem, in which we are given a sequence s1, s2, . . . , sn

of n real numbers and have to decide if these elements are pairwise distinct. In this case,
we have

P(s1, s2, . . . , sn) =
{

YES if si �= sj for all i �= j ,
NO otherwise.

Throughout this book, we will mainly consider computation problems. As we will see,
however, lower bounds for decision problems are generally easier to prove than lower
bounds for computation problems. Fortunately, it is often the case that a computation
problem implicitly “contains” a related decision problem. For example, any algorithm that
computes the minimum distance in a set of n points also solves the element uniqueness
problem. As a result, any lower bound for the latter decision problem immediately implies
a lower bound for the corresponding computation problem.

An algebraic computation-tree that solves a decision problem is called a algebraic deci-
sion tree. This restricted type of decision tree is formally defined by replacing Condition 1
in Definition 3.1.1 by the following condition:

� Each leaf is labeled with either YES or NO.

LetP : Rn → {YES,NO} be a decision problem. A point (s1, s2, . . . , sn) in Rn is called
a YES-instance for P , if the value of P(s1, s2, . . . , sn) is YES. We associate with P the
subset VP of Rn consisting of all YES-instances. Conversely, for any subset V of Rn, there
is a decision problem P for which VP = V . Hence, we can identify decision problems
with subsets of Rn. As an example, if P is the element uniqueness problem, then we have

VP =
(s1, s2, . . . , sn) ∈ R

n :
∏

1≤i<j≤n

(si − sj) �= 0

 .

A decision problem P : Rn → {YES,NO} is called decidable in the algebraic decision
tree model, if there exists an algebraic decision tree T such that, for any (s1, s2, . . . , sn) ∈
Rn, the corresponding algorithm AT returns YES if (s1, s2, . . . , sn) ∈ VP , and NO if
(s1, s2, . . . , sn) �∈ VP . We say then that T decides the decision problem P .

Definition 3.2.1. Let V be a subset of Rn, and let P be the corresponding decision
problem. If P is decidable in the algebraic decision tree model, then we define the time
complexity of V as the minimum height of any algebraic decision tree that decides P .

3.3 Lower bounds for algebraic decision tree algorithms

In this section, we will show that the topological structure of a set V ⊆ Rn yields a lower
bound on the time complexity of V .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

44 THE ALGEBRAIC COMPUTATION-TREE MODEL

Basic Idea: A lower bound on the time complexity of a decision problem P
can be obtained by inspecting the topological structure of VP . If the number of
connected components of VP is CC(VP), then the following is true: In the linear
decision tree model, its time complexity is lower bounded by log(CC(VP));
in the algebraic decision tree model, its time complexity is lower bounded by
log(CC(VP))−n log 3

1+2 log 3 .

3.3.1 Linear decision trees

In order to introduce the basic approach, we first consider a restricted class of algorithms.
We consider algorithms that can perform only the following unit-time operations: First,
quantities that can be added or substracted are either constants, input elements, or values
that have been previously computed. Second, any input element and any previously
computed value can be multiplied by a constant. Finally, any input element and any
previously computed value can be compared with zero with an outcome of either “≤” or
“>.”

This restricted class of algorithms is formally defined by replacing Condition 2 in
Definition 3.1.1 by the following condition:

� Each node u having one child is labeled with a variable Z(u) and an assignment Z(u) :=
A1&A2, having one of the following two forms:

1. & ∈ {+,−} and, for i = 1, 2, (i) Ai = Z(u′) for some proper ancestor u′ of u in T ,
(ii) Ai ∈ {s1, s2, . . . , sn}, or (iii) Ai is a real constant.

2. & ∈ {∗, /} and

(a) A1 = Z(u′) for some proper ancestor u′ of u in T , or A1 ∈ {s1, s2, . . . , sn}, or
A1 is a real constant, whereas

(b) A2 is a real constant.

Observe that two input elements (or previously computed values) cannot be multiplied
or divided, thus avoiding nonlinear functions of the input elements. Hence, each variable
that occurs during the execution of the corresponding algorithm is a linear function of
the input variables, such as 4 + 3s1 + s2/7 − 8s3 + 2s4 − s5. Therefore, we call these
algorithms linear decision tree algorithms.

Consider a decision problem P that is decidable in this linear model, and let V :=
VP ⊆ Rn be the corresponding set of YES-instances. Let T be an arbitrary linear decision
tree that decides P . Hence, the algorithm AT corresponding to T returns YES if and only
if it gets an element of V as input.

For any leaf w of T , we denote by R(w) the set of those inputs on which algorithm AT

terminates in leaf w. To give a formal definition of this set, consider the path u1, u2, . . . , u	

from the root u1 to u	 = w. Let v1, v2, . . . , vk be all nodes on this path that have two
children. For each i with 1 ≤ i ≤ k, algorithm AT makes a comparison in node vi , which
can be written as

Fi(s1, s2, . . . , sn) �� 0,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

3.3 LOWER BOUNDS FOR ALGEBRAIC DECISION TREE ALGORITHMS 45

where Fi is a linear function of the n input variables s1, s2, . . . , sn. Then R(w) is the set
consisting of all points (s1, s2, . . . , sn) ∈ Rn, such that for all i with 1 ≤ i ≤ k,

1. Fi(s1, s2, . . . , sn) ≤ 0 if the path in T to w proceeds from vi to its left child, and

2. Fi(s1, s2, . . . , sn) > 0 if the path in T to w proceeds from vi to its right child.

The following lemma states the main property of the sets R(w) that we will use to
prove a lower bound on the time complexity of the decision problem P .

Lemma 3.3.1. The set R(w) is connected, i.e., for any two points p and q in R(w), there
is a continuous curve in Rn between p and q that is completely contained in R(w).

proof The inequality at node vi , given by Fi(s1, s2, . . . , sn) �� 0, defines a closed or
open halfspace in Rn. The set R(w) is the intersection of the halfspaces defined by the
inequalities at nodes v1, . . . , vk. Hence, since each halfspace is convex, R(w) is also
convex and, therefore, connected.

The set V consists of one or more connected components. Let A and B be two distinct
connected components of V , and let p = (s1, s2, . . . , sn) and q = (t1, t2, . . . , tn) be points
in A and B, respectively. Let wp be the leaf of T in which algorithm AT terminates on
input p. Define wq similarly with respect to input q.

Lemma 3.3.2. The leaves wp and wq are distinct.

proof Assume that wp = wq , and denote this leaf by w. Observe that p and q are
both contained in the set R(w). We saw in the proof of Lemma 3.3.1 that R(w) is convex.
Therefore, the line segment pq is completely contained in R(w). Hence, for each point
x = (x1, x2, . . . , xn) that is on pq, algorithm AT , when given x as input, terminates in w.
Since p ∈ V , leaf w is labeled with YES. This proves that each point x on pq belongs to
the set V . As a result, points p and q are connected by a continuous curve (viz. the line
segment pq) that is completely inside V . This is a contradiction because these points are
in different connected components of V .

Lemma 3.3.2 immediately implies the following lower bound. For any subset V of Rn,
we denote the number of its connected components by CC(V).

Theorem 3.3.3. Let P be a decision problem that is decidable in the linear decision tree
model and let VP ⊆ Rn be the corresponding set of YES-instances. The time complexity
of VP in the linear decision tree model is greater than or equal to log(CC(VP)).

proof Let T be an arbitrary linear decision tree that decides VP . By Lemma 3.3.2,
T has at least CC(VP) leaves. Hence, the height of this tree is greater than or equal to
log(CC(VP)).

Let us apply this result to the element uniqueness problem, in which case we have

VP =
(s1, s2, . . . , sn) ∈ R

n :
∏

1≤i<j≤n

(si − sj) �= 0

 .

In order to get a lower bound on this problem for linear decision tree algorithms, we need
to estimate the number of connected components of VP .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

46 THE ALGEBRAIC COMPUTATION-TREE MODEL

Let π and ρ be two distinct permutations of 1, 2, . . . , n, and consider the points
p := (π(1), π(2), . . . , π(n)) and r := (ρ(1), ρ(2), . . . , ρ(n)) in Rn. Clearly, both p and
r belong to the set VP . We will show that these two points belong to different connected
components of VP . This will prove that CC(VP) ≥ n!.

Because π and ρ are distinct, there are indices i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ n,
such that π(i) < π(j) and ρ(i) > ρ(j). Hence, the points p and r are on different sides of
the hyperplane xi = xj . Any continuous curve in Rn between p and r must pass through
this hyperplane. That is, any such curve contains a point q := (q1, q2, . . . , qn) for which
qi = qj . As a result, this curve is not completely contained in the set VP . Therefore, p

and r belong to different connected components of VP .
Theorem 3.3.3 immediately implies the following lower bound.

Theorem 3.3.4. The time complexity of the element uniqueness problem for n real num-
bers in the linear decision tree model is greater than or equal to �log n!� = n log n − O(n).

This theorem states that using comparisons, the arithmetic operations of addition and
subtraction, and multiplication and division by constants, it is not possible to solve the
element uniqueness problem in o(n log n) time. It does not rule out, however, o(n log n)–
time algorithms that can multiply and divide input elements and take square roots. In
the next section, we will show that these operations do not significantly reduce the time
complexity of the element uniqueness problem.

3.3.2 The general lower bound

The proof of Theorem 3.3.3 heavily depends on the fact that the set R(w) associated with
a leaf w is connected. For an algebraic decision tree, this set is, in general, not connected.
For example, for n = 2, let R(w) be defined by the two inequalities s2

1 + s2
2 − 1 ≤ 0

and −8s2
1 + s2 + 2 ≤ 0. That is, R(w) is the set of those points that are inside the unit

circle and below the parabola s2 = 8s2
1 − 2. This set clearly consists of two connected

components.
In this section, we will prove that the arguments of Section 3.3.1 can, nevertheless,

be generalized. As we will see, the number of connected components of the set VP of
YES-instances still gives a lower bound on the time complexity of the (decidable) decision
problem P . The proof will be based on the following result from algebraic topology.

Theorem 3.3.5. Let k and g be positive integers, and let F1, F2, . . . , Fk be polynomials
in n variables, each having degree less than or equal to g. Let

W := {(x1, x2, . . . , xn) ∈ R
n : Fi(x1, x2, . . . , xn) = 0 for all 1 ≤ i ≤ k}.

The set W has at most g(2g − 1)n−1 connected components.

For a proof of this theorem, which is highly nontrivial, the reader is referred to the
references given in the bibliographic notes at the end of this chapter. Observe that the upper
bound on the number of connected components of the set W depends only on the number
of variables and the degrees of the polynomials; it does not depend on the number of
polynomials.

Consider an arbitrary algebraic decision tree T , and let w be any leaf of T . Later in
this section, we will show that the set R(w) ⊆ Rn of all inputs on which algorithm AT

terminates in w can be described by a system of polynomial equations and inequalities,
each having degree less than or equal to 2. Our goal is to derive an upper bound on the

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

3.3 LOWER BOUNDS FOR ALGEBRAIC DECISION TREE ALGORITHMS 47

number of connected components of R(w). This will be done by transforming the system
of equations and inequalities that describe R(w) into a system containing polynomial
equations only and then applying Theorem 3.3.5. The details of this transformation are
given in the following theorem.

Theorem 3.3.6. Let a, b and c be nonnegative integers, and let E1, . . . , Ea , N1, . . . , Nb,
P1, . . . , Pc be polynomials in n variables, each having degree less than or equal to 2. Let
W be the set of all points (x1, . . . , xn) in Rn such that the following is true:

1. Ei(x1, . . . , xn) = 0 for all i with 1 ≤ i ≤ a,

2. Ni(x1, . . . , xn) ≤ 0 for all i with 1 ≤ i ≤ b, and

3. Pi(x1, . . . , xn) > 0 for all i with 1 ≤ i ≤ c.

The set W has at most 3n+b+c connected components.

proof It can be shown that the number CC(W) of connected components of W is
finite. Let d := CC(W). For each j with 1 ≤ j ≤ d, let pj ∈ Rn be an arbitrary point in
the j -th connected component of W . Define

ε := min{Pi(pj) : 1 ≤ i ≤ c, 1 ≤ j ≤ d}.
Clearly, ε > 0. Let Wε be the set of all points (x1, . . . , xn) ∈ Rn, such that

� Ei(x1, . . . , xn) = 0 for all i with 1 ≤ i ≤ a,
� Ni(x1, . . . , xn) ≤ 0 for all i with 1 ≤ i ≤ b, and
� Pi(x1, . . . , xn) ≥ ε for all i with 1 ≤ i ≤ c.

Then, Wε ⊆ W and Wε contains the points p1, p2, . . . , pd .
We transform the equations and inequalities that define Wε into a system of polynomial

equations by introducing b + c new variables xn+1, . . . , xn+b+c. Let W ′ be the set of all
points (x1, . . . , xn+b+c) ∈ Rn+b+c such that

� Ei(x1, . . . , xn) = 0 for all i with 1 ≤ i ≤ a,
� Ni(x1, . . . , xn) + x2

n+i = 0 for all i with 1 ≤ i ≤ b, and
� Pi(x1, . . . , xn) − x2

n+b+i − ε = 0 for all i with 1 ≤ i ≤ c.

The projection of W ′ onto the first n coordinates is exactly the set Wε , that is,

Wε = {(x1, . . . , xn) : ∃xn+1, . . . , xn+b+c ∈ R, (x1, . . . , xn+b+c) ∈ W ′}.

For each j with 1 ≤ j ≤ d, let p′
j be a point in W ′ such that its projection onto the first

n coordinates is the point pj . Since the points p1, p2, . . . , pd are in pairwise distinct
connected components of W and since Wε ⊆ W , it follows that the points p′

1, p
′
2, . . . , p

′
d

are in pairwise distinct connected components of W ′. Hence, CC(W ′) ≥ d.
The set W ′ is defined by polynomial equations in n + b + c variables, each having

degree less than or equal to 2. Therefore, by Theorem 3.3.5, we have

CC(W ′) ≤ 2 · 3n+b+c−1 ≤ 3n+b+c.

This completes the proof.

Now we are ready to prove the lower bound for algebraic decision tree algorithms.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

48 THE ALGEBRAIC COMPUTATION-TREE MODEL

Theorem 3.3.7. Let P be a decision problem that is decidable in the algebraic deci-
sion tree model, and let VP ⊆ Rn be the corresponding set of YES-instances. The time
complexity of VP in the algebraic decision tree model is greater than or equal to

log(CC(VP)) − n log 3

1 + 2 log 3
.

proof Let T be an arbitrary algebraic decision tree that decides VP , and let w be any
leaf of T . Let R(w) be the set of all points (s1, s2, . . . , sn) ∈ Rn, such that the computation
in T on input s1, s2, . . . , sn terminates in w. We will derive an upper bound on the number
of connected components of R(w).

Consider the path u1, u2, . . . , uk+1 in T from the root u1 to uk+1 = w. Let r be the
number of nodes on this path that have exactly one child, and let s be the number of such
nodes that are labeled with a √ -assignment. We will define a system of k + s polynomial
equations and inequalities in the variables x1, . . . , xn+k. The variables x1, . . . , xn represent
the input variables s1, . . . , sn, whereas the variables xn+1, . . . , xn+k represent the program
variables of the nodes u1, . . . , uk.

Let i be any integer with 1 ≤ i ≤ k, and consider node ui . There are two possible cases.

Case 1: ui has one child, that is, ui is a computation node.
Node ui is labeled with an assignment of the form Z(ui) := A1&A2 or Z(ui) := √

A1,
where & ∈ {+, −, ∗, /}, and, for m = 1, 2, (i) Am = Z(uj) for some index j with 1 ≤ j <

i, (ii) Am ∈ {s1, s2, . . . , sn}, or (iii) Am = c for some real constant c. (See Definition 3.1.1.)
We add one equation to our system for this computation node ui . Furthermore, de-

pending on the form of the assignment, we may add one ≤-inequality to our system. In
Table 3.1, all possibilities are listed. For example, if the assignment is Z(ui) := sa/Z(u),
then we add the equation xn+ixn+	 − xa = 0. Here, xn+i represents the program variable
Z(ui), xn+	 represents Z(u), and xa represents the input variable sa . If the assignment
is Z(ui) := √

sa , then we add the equation x2
n+i − xa = 0 and the inequality −xn+i ≤ 0.

(Observe that xn+i = √
xa if and only if x2

n+i = xa and xn+i ≥ 0.)

Case 2: ui has two children, that is, ui is a comparison node.
Node ui is labeled with a comparison of the form A �� 0, where (i) A = Z(uj) for

some index j with 1 ≤ j < i, or (ii) A ∈ {s1, s2, . . . , sn}.
In case the path in T to w proceeds from ui to its left child, we do the following: If

the comparison in ui has the form Z(uj) �� 0, then we add the inequality xn+j ≤ 0 to our
system. Otherwise, the comparison in ui has the form sa �� 0, in which case we add the
inequality xa ≤ 0.

In case the path to w proceeds from ui to its right child, we do the following: If the
comparison in ui has the form Z(uj) �� 0, then we add the inequality xn+j > 0. Otherwise,
the comparison in ui has the form sa �� 0, in which case we add the inequality xa > 0.

Recall that r denotes the number of computation nodes on the path to w, and s denotes
the number of computation nodes on this path that are labeled with a √ -assignment. Let
t be the number of times this path proceeds from a comparison node to its left child. Then
we have obtained a system of r polynomial equations, s + t polynomial ≤-inequalities,
and k − r − t polynomial >-inequalities, in the variables x1, . . . , xn+k. Each of these
polynomials has degree less than or equal to 2. Let W ⊆ Rn+k be the set of all points that
satisfy these equations and inequalities. Then, by Theorem 3.3.6, W has at most 3n+2k+s−r

connected components.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

3.3 LOWER BOUNDS FOR ALGEBRAIC DECISION TREE ALGORITHMS 49

Table 3.1: The equations and inequalities corresponding to all possible
assignments of computation node ui . The indices j and 	 satisfy
1 ≤ j < i and 1 ≤ 	 < i; the indices a and b satisfy 1 ≤ a ≤ n and
1 ≤ b ≤ n; and c and d are real constants.

Assignment Equation/inequality

Z(ui) := Z(uj) + Z(u) xn+i − xn+j − xn+	 = 0
Z(ui) := Z(uj) − Z(u) xn+i − xn+j + xn+	 = 0
Z(ui) := Z(uj) ∗ Z(u) xn+i − xn+j xn+	 = 0
Z(ui) := Z(uj)/Z(u) xn+ixn+	 − xn+j = 0
Z(ui) := √

Z(uj) x2
n+i − xn+j = 0 and −xn+i ≤ 0

Z(ui) := sa + Z(u) xn+i − xa − xn+	 = 0
Z(ui) := sa − Z(u) xn+i − xa + xn+	 = 0
Z(ui) := Z(u) − sa xn+i − xn+	 + xa = 0
Z(ui) := sa ∗ Z(u) xn+i − xaxn+	 = 0
Z(ui) := sa/Z(u) xn+ixn+	 − xa = 0
Z(ui) := Z(u)/sa xn+ixa − xn+	 = 0
Z(ui) := sa + sb xn+i − xa − xb = 0
Z(ui) := sa − sb xn+i − xa + xb = 0
Z(ui) := sa ∗ sb xn+i − xaxb = 0
Z(ui) := sa/sb xn+ixb − xa = 0
Z(ui) := √

sa x2
n+i − xa = 0 and −xn+i ≤ 0

Z(ui) := c + Z(u) xn+i − c − xn+	 = 0
Z(ui) := c − Z(u) xn+i − c + xn+	 = 0
Z(ui) := Z(u) − c xn+i − xn+	 + c = 0
Z(ui) := c ∗ Z(u) xn+i − cxn+	 = 0
Z(ui) := c/Z(u) xn+ixn+	 − c = 0
Z(ui) := Z(u)/c cxn+i − xn+	 = 0
Z(ui) := c + sb xn+i − c − xb = 0
Z(ui) := c − sb xn+i − c + xb = 0
Z(ui) := sb − c xn+i − xb + c = 0
Z(ui) := c ∗ sb xn+i − cxb = 0
Z(ui) := c/sb xn+ixb − c = 0
Z(ui) := sb/c cxn+i − xb = 0
Z(ui) := c + d xn+i − c + d = 0
Z(ui) := c − d xn+i − c + d = 0
Z(ui) := c ∗ d xn+i − cd = 0
Z(ui) := c/d dxn+i − c = 0
Z(ui) := √

c x2
n+i − c = 0 and −xn+i ≤ 0

The projection of W onto the first n coordinates is equal to the set R(w). This implies
that CC(R(w)) ≤ CC(W) and, hence, CC(R(w)) ≤ 3n+2k+s−r . Let h be the height of our
algebraic decision tree T . Then, since k ≤ h and s ≤ r , we have proved that CC(R(w)) ≤
3n+2h.

Now we can complete the proof of the theorem. Recall that VP ⊆ Rn is the set of
YES-instances for the decision problem P . A leaf w of T is called a YES-leaf, if its label
is YES. Since

VP =
⋃

w:YES-leaf of T

R(w),

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

50 THE ALGEBRAIC COMPUTATION-TREE MODEL

we have

CC(VP) ≤
∑

w:YES-leaf of T

CC(R(w)).

Hence, the number of connected components of VP is less than or equal to 3n+2h times
the number of YES-leaves of T . Since T has height h, it has at most 2h leaves. Therefore,

CC(VP) ≤ 3n+2h · 2h.

Taking logarithms and rewriting this inequality, we obtain

h ≥ log(CC(VP)) − n log 3

1 + 2 log 3
,

which is exactly what we wanted to show.

Remark 3.3.8. Let P be a decision problem that is decidable in the algebraic decision
tree model, and let V ⊆ Rn be the corresponding set of YES-instances. It follows from
the proof of Theorem 3.3.7 that the number of connected components of V is finite.

3.3.3 Some applications

Let us again consider the element uniqueness problem. As we have seen already in
Section 3.3.1, the corresponding subset V of Rn has at least n! connected components.
Hence, Theorem 3.3.7 gives a lower bound of

log n! − n log 3

1 + 2 log 3
= � (n log n)

on the time complexity of this problem.

Theorem 3.3.9. The time complexity of the element uniqueness problem for n real num-
bers in the algebraic decision tree model is � (n log n).

Using simple reductions, this theorem implies other interesting lower bounds.

Corollary 3.3.10. The following two problems have time complexity � (n log n) in the
algebraic computation-tree model:

1. the sorting problem for n real numbers, and

2. the closest pair problem, that is, given a set S of n points in R
d , compute two distinct

points of S, whose distance is minimum.

proof Let A be an arbitrary algebraic computation-tree algorithm that solves the
sorting problem, and let T (n) be its time complexity. The following algebraic decision
tree algorithm B solves the element uniqueness problem: On an input consisting of n real
numbers s1, s2, . . . , sn, B first uses algorithm A to sort them. Then, B compares all pairs
of elements that are neighbors in the sorted sequence. Algorithm B returns YES if no two
equal elements are encountered; otherwise, it returns NO.

Algorithm B has time complexity T (n) + O(n), which, by Theorem 3.3.9, must be
� (n log n). It follows that T (n) = � (n log n).

The lower bound for the closest pair problem follows immediately from Theorem 3.3.9
because the input sequence contains two equal elements if and only if the distance of the
closest pair is zero.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

3.4 A LOWER BOUND FOR CONSTRUCTING SPANNERS 51

We now give an example of a problem that is not decidable in the algebraic decision
tree model. Consider a decision problem P , and let V ⊆ Rn be the corresponding set
of YES-instances. If V has an infinite number of connected components, then it follows
from Remark 3.3.8 that P is not decidable in the algebraic decision tree model. Hence,
by taking V := N = {0, 1, 2, . . .}, we obtain the following result:

Theorem 3.3.11. There is no algebraic decision tree algorithm that, when given an
arbitrary real number x as input, returns YES if x ∈ N, and NO if x �∈ N.

3.4 A lower bound for constructing spanners

In this section, we will use Theorem 3.3.7 to prove an � (n log n) lower bound for
constructing t-spanners. We try to make this lower bound as strong as possible, that is,
it should hold for a very general class of spanner graphs. To be more precise, the lower
bound that we will prove holds for any value of t > 1, that is, t may even depend on the
number n of input points. Also, it holds for spanners that include additional vertices that
were not part of the input. We formally define these spanners as follows.

Let S be a multiset of n points in Rd . We consider graphs G = (V, E), such that V is
a finite multiset of points in Rd that contains all points of S. Let t > 1 be a real number.
Consider a graph G = (V, E) that satisfies these two conditions. Assume that for any two
points p and q of S, there is a path in G between p and q whose length is less than or
equal to t |pq|. Hence, if V = S, then G is a t-spanner for S. If the size of V is larger than
that of S, then we call G a Steiner t-spanner for S. In this case, the points of V that are
not in S are called the Steiner points of G.

To be as general as possible, the graph G may have multiple vertices that represent the
same point: There may be points u and v in S that are distinct as elements of S, but that
represent the same point in Rd . Similarly, there may be a point u of S and a Steiner point
v that represent the same point in Rd . Finally, there may be Steiner points u and v that
are distinct as vertices of G, but that represent the same point. Hence, graph G may have
edges of length zero.

Throughout this section, we consider algebraic computation-tree algorithms that con-
struct Steiner t-spanners with o(n log n) edges. (Clearly, any algorithm that constructs
Steiner t-spanners with � (n log n) edges takes � (n log n) time.) Moreover, we will fo-
cus on algorithms that construct Steiner t-spanners for one-dimensional multisets, that
is, multisets of real numbers. We will prove that even this one-dimensional case has an
� (n log n) lower bound. Of course, this implies the same lower bound for any dimension
d ≥ 1.

3.4.1 A reduction from the element uniqueness problem

Let s1, s2, . . . , sn, t be a sequence of n + 1 real numbers, such that t > 1. The main
observation is encapsulated in the following key idea.

Key Idea: If si = sj for some i and j with i �= j , then any Steiner t-spanner
for s1, s2, . . . , sn contains a path between si and sj , whose length is less than or
equal to t |si − sj | = 0. In particular, each edge on this path has length zero.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

52 THE ALGEBRAIC COMPUTATION-TREE MODEL

We have to be careful in formalizing this, however, because the spanner may contain
Steiner points.

LetA be an arbitrary algebraic computation-tree algorithm that, when given a sequence
of n real numbers s1, s2, . . . , sn and a real number t > 1, constructs a Steiner t-spanner
for the multiset S = {s1, s2, . . . , sn} of n points on the one-dimensional real line. We may
assume that each vertex of the spanner graph constructed by A is labeled as either being
an element of S or being a Steiner point.

We will show how algorithm A can be used to solve the element uniqueness problem.
Consider the following algorithm that takes as input a sequence S = (s1, s2, . . . , sn) of n

real numbers:

Step 1: Choose an arbitrary real number t > 1, and run algorithm A on the input sequence
s1, s2, . . . , sn, t . Let G be the resulting Steiner t-spanner.

Step 2: Construct the subgraph G′ of G such that G′ contains the same vertices as G, and
G′ contains all edges of G having length zero.

Step 3: Compute the connected components of the graph G′.
Step 4: For each connected component of G′, check whether it contains two or more

distinct elements (i.e., elements having distinct indices) of S among its vertices. If this
is the case for some connected component, return NO. Otherwise, return YES.

It is not difficult to see that this algorithm correctly solves the element uniqueness
problem. Hence, given the Steiner t-spanner G, we can solve the element uniqueness
problem in a time that is proportional to the number of edges of G, which we assumed to
be o(n log n). Therefore, it follows from Theorem 3.3.9 that the worst-case running time
of algorithm A is � (n log n).

Theorem 3.4.1. Let d ≥ 1 be an integer constant. In the algebraic computation-tree
model, any algorithm that, when given a multiset S of n points in Rd , and a real number
t > 1, constructs a Steiner t-spanner for S, takes � (n log n) time in the worst case.

This lower bound proof is unsatisfying, in the sense that most existing algorithms to
construct t-spanners, assume implicitly that all input points are pairwise distinct. When
the inputs are thus constrained, the above proof does not work: If the points are known
to be pairwise distinct, then the element uniqueness problem can be solved in O(1) time,
because the output is always YES. In the next section, we will consider algorithms that
construct Steiner spanners for inputs consisting of pairwise distinct points.

3.4.2 A lower bound for a set of pairwise distinct points

The main result of this section is encapsulated below.

Main Result: In the algebraic computation-tree model, the lower bound of
� (n log n) for the Steiner t-spanner construction problem holds even if the input
is known to consist of pairwise distinct points. The proof effectively uses a lower
bound of � (n log n) for the mingap problem.

As in the previous section, we will consider only algorithms that compute Steiner
t-spanners for one-dimensional point sets, that is, sets of real numbers.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

3.4 A LOWER BOUND FOR CONSTRUCTING SPANNERS 53

Throughout this section, we fix an integer n. Moreover,A denotes an arbitrary algebraic
computation-tree algorithm that, when given a set S of n pairwise distinct real numbers,
and a real number t > 1, constructs a Steiner t-spanner for S with o(n log n) edges. Hence,
the output of A is a graph having as its vertices the elements of S and (possibly) some
additional Steiner points. We assume that each vertex of this graph is labeled as either
being an element of S or being a Steiner point. If two input elements of S are equal, then
algorithm A is not defined.

Our goal is to prove that the worst-case running time of A is � (n log n). First observe
that A solves a computation problem. Therefore, in order to apply Theorem 3.3.7, we
have to define an appropriate algorithm D, such that

1. D solves a decision problem; that is, it returns YES or NO;

2. D has a running time that is within a constant factor of A’s running time; and

3. the set of YES-instances of D, considered as a subset of R
n, consists of many (at least n!,

in our case) connected components.

Roughly stated, algorithm D takes the input to algorithm A and returns YES if the
length of the shortest edge in the spanner returned by A is greater than a specified length.
Consequently, proving a lower bound of � (n log n) for algorithm D implies the same
lower bound for algorithm A.

However, the above strategy faces the following hurdle: Since algorithm A (and,
consequently, algorithm D) accepts only pairwise distinct real numbers, it is not defined
on all points in Rn. In fact, the subset of Rn on which it is defined trivially contains at
least n! connected components. Thus we cannot apply Theorem 3.3.7 to these algorithms.

To emphasize the point that Theorem 3.3.7 cannot be applied here, consider, for
example, an algorithm X that takes as input any sequence of n pairwise distinct real
numbers, and simply returns YES (therefore, it runs in O(1) time). Since algorithm X is
not defined if two input elements are equal, the subset of Rn accepted by this algorithm
has at least n! connected components.

Therefore, in order to apply Theorem 3.3.7, we carefully define algorithm D so that
it can take any point of Rn as input and that its set of YES-instances still has � (n!)
connected components. We will define algorithm D in three steps.

1. First, we define an algorithm B that takes pairwise distinct real numbers as input. This
algorithm runs algorithm A on this input, and returns the length L of a shortest edge of
nonzero length in the graph that A computes.

2. Next, we use algorithm B to define a positive real number L∗. Algorithm C takes pairwise
distinct real numbers as input. It runs algorithm B on this input, and returns YES if and
only if the output L of B is greater than or equal to L∗.

3. Finally, we change algorithm C, such that it is well-defined on any input sequence of
real numbers. The resulting algorithm is the algebraic decision tree algorithm D we are
looking for.

In the rest of this section, we will fill in the details.

Algorithm B
Algorithm B does the following on an input consisting of n pairwise distinct real numbers
s1, s2, . . . , sn and a real number t > 1: It first runs algorithmA on the input s1, s2, . . . , sn, t .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

54 THE ALGEBRAIC COMPUTATION-TREE MODEL

Let G be the Steiner t-spanner that is computed by A. By considering all edges of G,
algorithm B selects a shortest edge of nonzero length and returns the length L of this edge.

The following lemma relates the output L of algorithm B to the minimum distance of
its input sequence. For real numbers s1, s2, . . . , sn, we define

mingap(s1, s2, . . . , sn) := min{|si − sj | : 1 ≤ i < j ≤ n}.
Lemma 3.4.2. The real number L that is returned by algorithm B satisfies

0 < L ≤ t · mingap (s1, s2, . . . , sn).

proof Let i and j be two indices, such that |si − sj | = mingap(s1, s2, . . . , sn). Observe
that since the input elements are pairwise distinct, we have |si − sj | > 0. The graph G

constructed by algorithm A contains a path between si and sj , whose length is less than
or equal to t |si − sj |. The length of each edge on this path is obviously less than or equal
to t |si − sj |. The claim follows because this path contains at least one edge of nonzero
length.

Let TA(n, t) and TB(n, t) denote the worst-case running times of algorithms A and B,
respectively. Then, the fact that the graph G has o(n log n) edges implies that

TB(n, t) ≤ TA(n, t) + o(n log n).

Algorithm C
We fix a real number t > 1. Before we define algorithm C, we use algorithm B to define a
positive real number L∗ as follows: For each permutation π of the integers 1, 2, . . . , n, let
Lπ be the output of algorithmB when given as input the sequence π(1), π(2), . . . , π(n), t .
Among all these n! outputs, let L∗ be one that has the minimum value.

Now we can define algorithm C. It takes only input sequences of our fixed length n,
consisting of n pairwise distinct real numbers. On input s1, s2, . . . , sn, algorithm C does
the following: It first runs algorithm B on the input sequence s1, s2, . . . , sn, t . Let L be
the output of B. Algorithm C returns YES if L ≥ L∗, and NO otherwise.

We remark that it is not necessary to compute L∗, which would take a lot of time. For
our proof, it is sufficient that algorithm C exists. In other words, since algorithm C takes
only inputs of our fixed length n, and since we also fixed t , we may assume that it “knows”
the value L∗.

It is clear that the running time of algorithm C is within a constant factor of B’s running
time.

Algorithm D
Algorithm C is defined only for inputs consisting of n pairwise distinct real numbers. As
a result, C can safely perform operations such as z := x/(si − sj) and z := √

y, without
having to worry whether the denominator si − sj is zero, or whether y ≥ 0. Our final
algorithm D will take any sequence s1, s2, . . . , sn of n real numbers as input. On such an
input, D performs the same computation as C does on the same input, except that each
operation of the form z := x/y is performed by D as

if y �= 0
then z := x/y

else return YES and terminate
endif

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

3.4 A LOWER BOUND FOR CONSTRUCTING SPANNERS 55

and each operation of the form z := √
y is performed by D as

if y ≥ 0
then z := √

y

else return YES and terminate
endif

Since C is a well-defined algorithm for inputs consisting of n pairwise distinct real
numbers, it will always be the case that y �= 0 when the operation z := x/y is performed.
When two input elements are equal, it may still be true that y �= 0, although this is not
necessarily the case. Similarly, if the input elements are pairwise distinct, it will always be
the case that y ≥ 0 when the operation z := √

y is performed. When two input elements
are equal, y may still be nonnegative, although, again, this is not necessarily the case.

It is clear that C and D give the same output when given, as input, the same sequence of
n pairwise distinct real numbers. If these numbers are not pairwise distinct, then C is not
defined, whereas D is, although its output may not have a meaning at all. Finally, observe
that the running time of D is within a constant factor of that of C.

Analysis of algorithm D
We now prove that the worst-case running time of algorithm D is � (n log n). This will
imply the same lower bound on the running time of our target algorithm A.

Let W be the set of all points (s1, s2, . . . , sn) ∈ Rn such that algorithm D returns YES
on the input sequence s1, s2, . . . , sn. The lower bound will follow from the following
lemma:

Lemma 3.4.3. The set W has at least n! connected components.

proof Let π and ρ be two distinct permutations of 1, 2, . . . , n. We will show that the
points

p := (π (1), π (2), . . . , π (n))

and

r := (ρ(1), ρ(2), . . . , ρ(n))

belong to different connected components of W . (Observe that both these points are
elements of W .) This will prove the lemma.

Since π and ρ are distinct permutations, there are indices i and j with 1 ≤ i ≤ n and
1 ≤ j ≤ n, such that π(i) < π(j) and ρ(i) > ρ(j).

Consider an arbitrary continuous curve C in Rn that connects p and r . We will show
that C contains a point q, which does not belong to the set W . From this, it will follow that
p and r are in different connected components of W . In order to guarantee that q �∈ W , the
point q = (q1, q2, . . . , qn) must have the property that L < L∗, where L is the output of
algorithm B on input q1, q2, . . . , qn, t . Moreover, we have to take care that the coordinates
of q are pairwise distinct.

Since the curve C passes through the hyperplane xi = xj , it contains points for which
the absolute difference between the i-th and j -th coordinates is positive but arbitrarily
small. However, for such points q = (q1, q2, . . . , qn), there may be two distinct indices k

and 	, such that qk = q	. We do not have any control over algorithm D when given such

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

56 THE ALGEBRAIC COMPUTATION-TREE MODEL

a point q as input. Therefore, we proceed as follows: We take for q the first point on the
curve C, such that

mingap(q1, q2, . . . , qn) ≤ L∗/(2t).

We will see below that the coordinates of q are pairwise distinct. If we run algorithm B on
input q1, q2, . . . , qn, t , then, by Lemma 3.4.2, the output L satisfies L ≤ t · L∗/(2t) < L∗.
Hence, point q is not contained in the set W . In the rest of the proof, we will formalize
this.

We parameterize the curve C as C(τ), 0 ≤ τ ≤ 1, where C(0) = p and C(1) = r . For
each k with 1 ≤ k ≤ n, we write the k-th coordinate of the point C(τ) as C(τ)k . We define

τ0 := min{0 ≤ τ ≤ 1 : mingap(C(τ)1, C(τ)2, . . . , C(τ)n) ≤ L∗/(2t)}.
Observe that τ0 exists because the curve C passes through the hyperplane xi = xj and the
function mingap is continuous along C.

Let q := C(τ0). We write this point as q = (q1, q2, . . . , qn). Clearly, we have

mingap(q1, q2, . . . , qn) ≤ L∗/(2t).

Also, by Lemma 3.4.2, and since C(0) = p ∈ W , we have

mingap(C(0)1, C(0)2, . . . , C(0)n) ≥ L∗/t > L∗/(2t).

The value of τ0 is the first “time” at which the mingap-function is less than or equal to
L∗/(2t). Since this function is continuous along C, we have mingap (q1, q2, . . . , qn) > 0.
Hence (q1, q2, . . . , qn) is a sequence of n pairwise distinct real numbers.

Consider what happens when we run algorithm D on the input sequence q1, q2, . . . , qn.
First, algorithm B is run on the input sequence q1, q2, . . . , qn, t . Let L be the output of B.
By Lemma 3.4.2, we have

L ≤ t · mingap(q1, q2, . . . , qn).

Hence, L ≤ t · L∗/(2t) < L∗ and, therefore, algorithm D returns NO. This implies that
point q does not belong to the set W . This completes the proof.

Recall that we denote the number of connected components of the set W by CC(W).
Lemma 3.4.3 and Theorem 3.3.7 imply that the running time of any algebraic decision
tree algorithm that decides the set W is bounded from below by

� (log(CC(W)) − n) = � (n log n).

Since D is such an algorithm, it follows that for our fixed values of n and t , the worst-case
running time of D is greater than or equal to cn log n, where c is a positive constant
independent of n and t . This, in turn, implies that there is an input on which algorithm A
takes time at least c′n log n, for some constant c′ > 0. Since c′ does not depend on n and
t , this implies that the lower bound holds for all values of n and t . Hence, we have proved
the following theorem.

Theorem 3.4.4. Let d ≥ 1 be an integer constant. In the algebraic computation-tree
model, any algorithm that, when given a set S of n pairwise distinct points in Rd and
a real number t > 1, constructs a Steiner t-spanner for S, takes � (n log n) time in the
worst case.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

EXERCISES 57

Our lower bound proof of Theorem 3.4.4 holds for inputs consisting of pairwise distinct
points. In computational geometry, we often make stronger assumptions on the input, for
example, no three points are on a line, no four points are in a two-dimensional plane, etc.
We say that a set S of points in Rd is in general position, if for each k with 3 ≤ k ≤ d + 1,
no k points of S are contained in a (k − 2)-dimensional subspace of Rd . For such general
position inputs, our lower bound proof does not hold; the proof heavily uses the fact that
the points are on a line.

Open problem: Let d ≥ 2 be an integer constant. Prove that, in the algebraic
computation-tree model, any algorithm that, when given a set S of n points in
Rd that are in general position and a real number t > 1, constructs a Steiner
t-spanner for S, takes � (n log n) time in the worst case.

Exercises

3.1. Prove that log n! = n log n − O(n).

3.2. Prove Theorem 3.3.5 for n = 1.

3.3. In the proof of Theorem 3.3.7, it is mentioned that the projection of the set W onto the first n

coordinates is equal to the set R(w). Prove this claim.

3.4. Prove that, in the algebraic computation-tree model, the following problems have time complexity

� (n log n):

� Constructing the convex hull of a set of n points in the plane. (The convex hull vertices should

be reported in clockwise or counterclockwise order.)
� Constructing the Voronoi diagram of a set of n points in the plane.
� Constructing an arbitrary triangulation of a set of n points in the plane.

3.5. It is known that the sorting problem for a set of n arbitrary integers has an � (n log n) lower bound in

the algebraic computation-tree model. Use this fact to prove that the sorting problem for n pairwise

distinct integers has the same lower bound in this model.

3.6. In Figure 3.1, an algorithm is given that takes an arbitrary real number x as input, and returns YES

if and only if x ∈ N. Does this contradict Theorem 3.3.11?

3.7. Prove that there is no algebraic computation-tree algorithm that, on an arbitrary input x ∈ R,

computes the value �x�. (Hint: Use Theorem 3.3.11.)

Algorithm NaturalNumber(x)
(∗ x is a real number ∗)
if x < 0
then return NO
else k := 0;

while k ≤ x

do k := k + 1
endwhile;
	 := k − 1;
if x > 	

then return NO
else return YES
endif

endif

Figure 3.1: An algorithm that decides the set N = {0, 1, 2, . . .}.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

58 THE ALGEBRAIC COMPUTATION-TREE MODEL

3.8. Prove that there is no algebraic computation-tree algorithm that, on an arbitrary input x ∈ R,

computes the value of sin x.

3.9. We have seen in Remark 3.3.8 that any set V ⊆ R
n, having an infinite number of connected

components, is not decidable in the algebraic decision tree model. Give an example of a set

V ⊆ R
2 with a finite number of connected components that is not decidable in this model. (In fact,

there is such a set V consisting of only one connected component.)

3.10. In the algebraic computation-tree model, square roots can be computed in unit time. Prove that

Theorem 3.3.7 also holds (with different constant factors) if k-th roots can be computed in unit time,

where k is any element from a finite set of positive integers. (The size of this set is a constant that

does not depend on n.)

3.11. Let A[1 . . n] and B[1 . . m] be arrays, and assume that B[i] ∈ {1, 2, . . . , n} for all i with 1 ≤ i ≤
m. An assignment of the form x := A[B[i]] is called an indirect addressing assignment. Algorithms

that use such assignments as unit-cost operations do not work in the algebraic computation-tree

model. Explain why this is the case. Observe that this implies that the lower bound proofs that have

been presented in this chapter are not valid for such algorithms.

3.12. For any sequence s1, s2, . . . , sn of real numbers, we define a gap to be the absolute value of the

difference of two elements si and sj (with i �= j) that are consecutive in the sorted sequence.

The uniformgap-problem is defined as follows: Given a sequence s1, s2, . . . , sn of real numbers,

and given a real number g, decide whether all n − 1 gaps are equal to g. Prove an � (n log n)
lower bound on the time complexity of the uniformgap-problem in the algebraic decision tree

model.

3.13. The maxgap-problem is defined as follows: Given a sequence s1, s2, . . . , sn of real numbers, com-

pute the maximum gap in this sequence, which is the largest absolute value of the difference of any

two elements si and sj (with i �= j) that are consecutive in the sorted sequence. Use Exercise 3.12

to prove an � (n log n) lower bound on the time complexity of the maxgap-problem in the algebraic

computation-tree model.

3.14. Consider the algebraic computation-tree model in which, additionally, any indirect addressing op-

eration takes unit time, and in which the floor-function can be computed in unit time. Prove that in

this model, the maxgap-problem can be solved in O(n) time.

Bibliographic notes

Sections 3.1, 3.2, and 3.3 are based on the books by Mehlhorn [1984b] and Preparata and
Shamos [1988].

Ford and Johnson [1959] introduced decision trees as a model to study comparison-
based sorting algorithms. In 1966, Rabin generalized decision trees to the more general
class of algebraic computation-trees; see Rabin [1972] and Reingold [1972]. Dobkin
and Lipton [1979] introduced the linear decision tree model and proved Theorem 3.3.3.
Theorems 3.3.6 and 3.3.7 are due to Ben-Or [1983], who extended earlier work by Steele
and Yao [1982]. Theorem 3.3.5 was proved independently by Milnor [1964] and Thom
[1965]. In the proof of Theorem 3.3.6, it is mentioned that the set W has a finite number
of connected components. This was proved by Milnor [1968]. A wealth of information
about algebraic algorithms can be found in the book by Bürgisser, Clausen, and Shokrollahi
[1997].

The lower bound for constructing spanners that is presented in Section 3.4 is due to
Chen, Das, and Smid [2001].

The � (n log n) lower bound for sorting n integers in the algebraic computation-tree
model that is mentioned in Exercise 3.5 is due to Yao [1991]. A solution to this exercise
can be found in Chen, Das, and Smid [2001].

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHIC NOTES 59

The � (n log n) lower bounds for the uniformgap- and maxgap-problems in Exer-
cises 3.12 and 3.13 are due to Lee and Wu [1986]. Earlier, these lower bounds were
proved in Manber and Tompa [1985] for the linear decision tree model. The O(n)–time
algorithm in the more powerful model in Exercise 3.14 is due to Gonzalez [1975]; see
also Preparata and Shamos [1988].

We have considered only deterministic algebraic algorithms. In Yao [1977], a general
technique for proving lower bounds on the expected running time of randomized algo-
rithms is presented. This technique is also described in the books by Mehlhorn [1984b]
and Motwani and Raghavan [1995].

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

60

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

part ii

Spanners Based on Simplicial Cones

61

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

62

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

4

Spanners Based on the �-Graph

It is not always by plugging away at a difficulty and sticking to it that
one overcomes it; often it is by working on the one next to it. Some
things and some people have to be approached obliquely, at an angle.

—Andre Gide, Journals, 26 October, 1924

If you want to drive from Dallas to Washington, DC, then you are most likely to set out
on Interstate highway 30 East. Why? Because, among the many higways leading out of
Dallas, it is the only major highway that is headed in the northeasterly direction from
Dallas, and is therefore headed in the general direction of your destination.

In this chapter, we introduce the �-graph, which insists on adding an edge in each of
κ different directions for each of the n input points. Thus, to find a short path from one
vertex in the graph to another, one would simply “follow one’s nose,” that is, pick an edge
in the general direction of the destination.

We also show that the �-graph is a sparse t-spanner for any arbitrarily small given real
number t > 1. As we will see, this graph may have large degree, large weight, and a large
spanner diameter. Nevertheless, we will use the �-graph to efficiently construct a sparse
t-spanner whose degree is bounded from above by a function that depends only on t , and
a sparse spanner whose spanner diameter is O(log n).

All results for �-graphs and its variants are presented for two-dimensional point sets.
In Chapter 5, we will show how these results can be extended to d-dimensional point sets,
for any d ≥ 2.

4.1 The �-graph

Let S be a set of points in the plane. Assume that we have an undirected graph G with the
property that for any two distinct points p and q in S, G contains an edge {p, r} such that

1. the vector −→pr points “in the general direction” of q, and

2. following this edge from p to r does not take us “too far” beyond q.

Then, we can (attempt to) construct a path in G between p and q as follows: Start at
p0 := p. Let i ≥ 0, and assume we have already constructed a path p0, p1, . . . , pi . If
pi = q, then we have reached our destination. Otherwise, if pi �= q, but {pi, q} is an edge
of G, then we follow this edge, and arrive at our destination. Assume that pi �= q, and
{pi, q} is not an edge of G. Let pi+1 be a point of S such that {pi, pi+1} is an edge of G

that satisfies 1. and 2. above. That is, {pi, pi+1} takes us in the general direction of q, but
not too far beyond q. Then pi+1 is the next point on our path. The �-graph, which will
be defined below, is based on this idea. The notion of an edge taking us “in the general
direction” of a point or a set of points is based on cones.

63

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

64 SPANNERS BASED ON THE �-GRAPH

The �-graph: For each p ∈ S, among all “nearly-parallel” edges incident on p

in the complete graph, the �-graph retains only the “shortest” one. These graphs
are t-spanners for an appropriate value of t . The stretch factor t is determined by
the condition for edges to be considered “nearly parallel.”

A cone is the region in the plane between two rays that emanate from the same point,
called the apex of the cone.

Let κ ≥ 2, and define θ := 2π/κ . If we rotate the positive x-axis by angles iθ , 0 ≤
i < κ , then we get κ rays. Each pair of successive rays defines a cone whose apex is at
the origin. We denote the collection of these κ cones by Cκ . It is clear that the cones of Cκ

partition the plane. Also, the two bounding rays of any cone of Cκ make an angle θ .
For each cone C ∈ Cκ , let 	C be a fixed ray that emanates from the origin and that

is contained in C. The ray 	C can be chosen arbitrarily; as a concrete example, we can
choose it to be the bisector of C. In other words, for the set of directions in cone C, 	C is
a representative direction.

Let C be any cone of Cκ and let p be any point in the plane. We define Cp := C + p :=
{x + p : x ∈ C}; that is, Cp is the cone obtained by translating C such that its apex is at
p. Similarly, we define 	C,p := 	C + p. Hence, 	C,p is the ray that emanates from p, that
is contained in the translated cone Cp, and that is parallel to 	C .

We are now ready to define the �-graph; refer to Figure 4.1.

Definition 4.1.1 (�-graph). Let κ ≥ 2 be an integer, let θ = 2π/κ , and let S be a set of
points in the plane. The undirected graph �(S, κ) is defined as follows:

1. The vertices of �(S, κ) are the points of S.

2. For each point p of S and for each cone C of Cκ , such that the translated cone Cp contains
one or more points of S \ {p}, the graph �(S, κ) contains one edge {p, r}, where r is a
point in Cp ∩ S \ {p}, whose orthogonal projection onto 	C,p is closest to p.

An example of a �-graph for 30 points is given in Figure 4.2. In this example, the
number κ of cones is equal to 9, and for each cone C, the ray 	C is the bisector of C.
In Section 4.1.1, we will present a technique that can be used to prove that this graph is
a t-spanner for t = 1/(1 − 2 sin(π/9)) ≈ 3.165; see also Exercise 4.4. In fact, the true
stretch factor of this graph is approximately equal to 1.496.

•p

• r

•

•
•

	C,p�

Figure 4.1: The graph �(S, κ) contains an edge between p and r , since, among all points in the cone
Cp , the projection of point r onto 	C,p is closest to p.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

4.1 THE �-GRAPH 65

Figure 4.2: A �-graph for 30 points based on 9 cones. For each cone C, the ray 	C is the bisector
of C.

Remark 4.1.2. If we take for r a point in Cp ∩ S \ {p} that is closest to p, in the
Euclidean metric, then we obtain a graph that is called the geographic neighborhood
graph. It can be shown that this graph has properties similar to that of a �-graph and is a
sparse t-spanner, for some real number t that depends on the angle θ . (The proof is left
as an exercise; see Exercise 4.5.) Moreover, this graph can be constructed in O(n log n)
time. As we will see in Section 4.1.2, defining the edges as in the �-graph definition
(Definition 4.1.1) has the advantage that there is a simple O(n log n)–time algorithm for
constructing �(S, κ). Moreover, a direct generalization of this graph to an arbitrary – but
constant – dimension can be constructed in O(n logO(1) n) time. For dimensions larger than
2, it is not known if the geographic neighborhood graph can be constructed within this time
bound.

Before we prove an upper bound on the stretch factor of �(S, κ), let us mention the
obvious fact that the �-graph is sparse:

Lemma 4.1.3. If S is a set of n points in the plane, and κ ≥ 2 is a constant, then the
graph �(S, κ) contains at most κn = (2π/θ)n = O(n) edges.

4.1.1 Bounding the stretch factor of the �-graph

We start by presenting an obvious algorithm that constructs a path in �(S, κ) between
two points p and q of S. Later in this section, we will prove an upper bound on the length
of the path constructed by this algorithm.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

66 SPANNERS BASED ON THE �-GRAPH

Algorithm �-Walk(p, q)

Comment: This algorithm takes as input two points p and q in S, and returns a path in
�(S, κ) between p and q.

p0 := p;
i := 0;
while pi �= q

do (∗ p = p0, p1, . . . , pi is a path in �(S, κ) ∗)
C := cone of Cκ such that q ∈ Cpi

;
pi+1 := point of Cpi

∩ S \ {pi} such that {pi, pi+1}
is an edge of �(S, κ);

i := i + 1
endwhile;
return the path p0, p1, . . . , pi

The top of Figure 4.3 shows the path returned when running algorithm �-Walk(p, q)
on the �-graph of Figure 4.2. The path contains 5 edges and its length is approximately
1.071 · |pq|. The bottom of the figure shows the path returned when running algorithm
�-Walk(q, p). In this case, the path consists of 4 edges, and its length is approximately
1.037 · |pq|.

Below, we prove a geometric lemma that is valid for all κ ≥ 8. If κ ≥ 9, it will enable
us to determine an upper bound on the stretch factor of �(S, κ). To be more precise, this
lemma will imply that for κ ≥ 9 (i) algorithm �-Walk(p, q) terminates, that is, the path
constructed indeed reaches point q, and (ii) the length of this path is at most a constant
factor times the Euclidean distance between p and q, where the constant depends on κ .

Lemma 4.1.4. Let κ ≥ 8 be an integer, let θ = 2π/κ , let p and q be two distinct points
in the plane, and let C be the cone of Cκ such that q ∈ Cp. Let r be a point in Cp such that
the orthogonal projection of r onto the ray 	C,p is at least as close to p as the orthogonal
projection of q onto 	C,p. Then,

1. |pr| ≤ |pq|/ cos θ , and

2. |rq| ≤ |pq| − (cos θ − sin θ)|pr|.
proof If r = q, then both claims hold. We assume in the rest of the proof that r �= q.
Let q ′ be the orthogonal projection of q onto 	C,p and let α be the angle between the
segments pq and pq ′. Observe that 0 ≤ α ≤ θ . We have

|pq ′| = |pq| cos α ≤ |pq|.
Similarly, let r ′ be the orthogonal projection of r onto 	C,p, and let β be the angle between
pr and pr ′. Then 0 ≤ β ≤ θ and

|pr ′| = |pr| cos β ≥ |pr| cos θ.

Our assumption implies that |pr ′| ≤ |pq ′|. Therefore,

|pr| cos θ ≤ |pr ′| ≤ |pq ′| ≤ |pq|,
which proves the first claim in the lemma.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

4.1 THE �-GRAPH 67

Figure 4.3: The paths computed when running algorithms �-Walk(p, q) (top figure) and �-Walk(q, p)
(bottom figure) on the �-graph of Figure 4.2.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

68 SPANNERS BASED ON THE �-GRAPH

• •
p p

• •
s s

• •
q q

•
•

r

r

	 	γ γ

Figure 4.4: Cases 1 and 2 in the proof of Lemma 4.1.4.

To prove the second claim, let 	 be the line through p and q, and let s be the orthogonal
projection of r onto 	. Finally, let γ be the angle between the segments pq and pr . We have
0 ≤ γ ≤ θ . We distinguish two cases depending on whether |ps| ≤ |pq| or |ps| > |pq|;
see Figure 4.4.

Case 1: |ps| ≤ |pq|.
We have |rs| = |pr| sin γ ≤ |pr| sin θ and |ps| = |pr| cos γ ≥ |pr| cos θ . Applying

the triangle inequality, we get

|rq| ≤ |rs| + |sq|
= |rs| + |pq| − |ps|
≤ |pr| sin θ + |pq| − |pr| cos θ

= |pq| − (cos θ − sin θ)|pr|.

Case 2: |ps| > |pq|.
We have |rs| = |pr| sin γ and |ps| = |pr| cos γ . Applying the triangle inequality

and using the fact that the function sin x + cos x is nondecreasing for 0 ≤ x ≤ π/4,
we get

|rq| ≤ |rs| + |sq|
= |rs| + |ps| − |pq|
= |pr|(sin γ + cos γ) − |pq|
≤ |pr|(sin θ + cos θ) − |pq|.

We proved already that |pr| cos θ ≤ |pq|, which is equivalent to the inequality

|pr|(sin θ + cos θ) − |pq| ≤ |pq| − (cos θ − sin θ)|pr|.

Therefore, even in this case, we have |rq| ≤ |pq| − (cos θ − sin θ)|pr|.

Let κ ≥ 9, so that 0 < θ < π/4. Let p and q be two distinct points of S, and consider
the path p = p0, p1, p2, . . . that is constructed by algorithm �-Walk(p, q). Let i ≥ 0,
and assume that pi �= q. Then point pi+1 exists; that is, the algorithm extends the path
by one more point. Consider the three points pi , q, and pi+1. Let C be the cone such that
q ∈ Cpi

. By the definition of �(S, κ), the orthogonal projection of pi+1 onto the ray 	C,pi

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

4.1 THE �-GRAPH 69

is at least as close to pi as the orthogonal projection of q onto 	C,pi
. Hence, we can apply

Lemma 4.1.4, and obtain

|pi+1q| ≤ |piq| − (cos θ − sin θ)|pipi+1| < |piq|, (4.1)

where the strict inequality follows from the fact that 0 < θ < π/4.
Hence we have shown that the points p0, p1, p2, . . . on the path starting at p are pairwise

distinct; each successive point on this path takes us strictly closer to our destination q.
Since the set S is finite, this implies that algorithm �-Walk(p, q) terminates. That is,
this algorithm indeed constructs a path between p and q.

We now prove an upper bound on the length of this path. Let m be the index such that
pm = q. Rearranging the leftmost inequality in (4.1), yields

|pipi+1| ≤ 1

cos θ − sin θ
(|piq| − |pi+1q|)

for each i with 0 ≤ i < m. Therefore, the length of the path between p and q has length
m−1∑
i=0

|pipi+1| ≤ 1

cos θ − sin θ

m−1∑
i=0

(|piq| − |pi+1q|)

= 1

cos θ − sin θ
(|p0q| − |pmq|)

= 1

cos θ − sin θ
|pq|.

We have shown that the graph �(S, κ) is a t-spanner of S for t = 1/(cos θ − sin θ).

The stretch factor of the �-graph: When we are at pi , we are a distance
|piq| from our destination. When following edge {pi, pi+1}, we travel a distance
|pipi+1| and, by (4.1), this takes us closer to our destination by at least cos θ −
sin θ times this distance, implying that the stretch factor of �(S, κ) is at most
1/(cos θ − sin θ).

The following theorem summarizes the results obtained so far.

Theorem 4.1.5. Let κ ≥ 9 be an integer, let θ = 2π/κ , and let S be a set of points in the
plane. The graph �(S, κ) is a t-spanner for S, for t = 1/(cos θ − sin θ). It contains at
most κn edges.

Remark 4.1.6. For each t > 1, there is a κ ≥ 9 such that 1 < 1/(cos θ − sin θ) ≤ t holds
for θ = 2π/κ . Hence, for each real constant t > 1, there exists a sparse t-spanner. Let
us consider what happens if t > 1 and t → 1. We obtain the best result if we choose
the minimum κ for which 1/(cos θ − sin θ) ≤ t . If t → 1, then θ → 0 and t ∼ 1 + θ =
1 + 2π/κ . Hence, Theorem 4.1.5 gives a t-spanner for S having O((1/(t − 1))n) edges.
In Section 4.1.2, we will see that this spanner can be computed in O((1/(t − 1))n log n)
time.

4.1.2 Constructing the �-graph

We now turn to the problem of constructing the �-graph. Let S be a set of n points in the
plane, and let κ ≥ 2 be an integer. Recall that Cκ is a set of cones that partition the plane

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

70 SPANNERS BASED ON THE �-GRAPH

•p
� 	C,p

h2 + p

h1 + p

Figure 4.5: The translated cone Cp .

and have the origin as their apex. Let C be a fixed cone of Cκ . We will give an algorithm
that computes all edges of �(S, κ) that correspond to C, that is, edges of the form {p, r},
where p ∈ S and r ∈ Cp ∩ S \ {p}. Repeating this for all κ cones of Cκ , we obtain the
entire graph �(S, κ).

We have to introduce some notation; refer to Figure 4.5. Let h1 and h2 be the two lines
through the origin containing the bounding rays of C. Thus, h1 + p and h2 + p are lines
through point p containing the bounding rays of Cp. We assume without loss of generality
that the ray 	C coincides with the positive x-axis, and that h1 (resp. h2) contains the upper
(resp. lower) bounding ray of C. Figure 4.5 illustrates this scenario.

The following observation characterizes the point r , which defines the edge {p, r} in
�(S, κ).

Observation 4.1.7. Let p be a point of S, and assume that the translated cone Cp contains
one or more points of S \ {p}. Let {p, r} be the edge of �(S, κ) for which r ∈ Cp ∩ S \ {p}.
The point r has the property that it has the least x-coordinate among all points of S that
are (i) below h1 + p, and (ii) above h2 + p.

The question is how to compute this point r efficiently for each point p of S. We
will solve this problem using a simple plane sweep algorithm. We start by considering a
simpler dynamic query problem.

Finding the leftmost point in a translated query halfplane

Our algorithm for computing all edges of �(S, κ) that correspond to the fixed cone C will
use a solution to the following problem:

Problem 4.1.8 (Find-Leftmost-in-Translated-Halfplane). Let h be a fixed nonvertical
line through the origin. Maintain a set S of n points in a data structure that supports the
following operations:

MinAbove(p) : Given a query point p ∈ S, compute a point with the minimum
x-coordinate among all points in S that are above h + p.

Insert(p) : Insert an arbitrary point p ∈ R2 into S.

Delete(p) : Delete point p from S.

Let D be the directed line through the origin that is orthogonal to the line h. This line
is directed to point toward the halfplane consisting of all points in R2 that are above h.

We use the directed line D to define the following order relation on the points of S:
Let p and q be two points of S, and let p′ and q ′ be their orthogonal projections onto D,
respectively. Then, p is smaller than q in the order relation, if the vector from p′ to q ′ has
the same direction as D. We call this relation the order induced by D.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

4.1 THE �-GRAPH 71

•
0

�

�

�D2

D1

� 	C

h2

h1

•0

Figure 4.6: The cone C and the directed lines D1 and D2.

To solve the problem Find-Leftmost-in-Translated-Halfplane (Problem 4.1.8),
we store the points of S at the leaves of a balanced binary search tree T , sorted according
to the order induced by D. Each internal node u of T contains information to guide
searching (e.g., the point stored at the rightmost leaf in the left subtree rooted at u). Also,
each node u of T contains as additional information a point zu stored in the subtree of u

whose x-coordinate is minimum. This tree T can be built in O(n log n) time; the proof of
this claim is left as an exercise (see Exercise 4.10).

Given the tree T , we can answer a query MinAbove(p), where p ∈ S, as follows:
Initialize an empty set M . Then follow the path in T from the root to the leaf storing
p. Each time this path proceeds from a node v to its left child, add the right child of v

to M . After the path has been completely traversed, the set M contains O(log n) nodes,
having the following property. The subsets of S stored in the subtrees rooted at the nodes
of M partition the set of all points of S that are larger (according to the order induced by
D) than p. These are exactly the points that are above the line h + p. Recall that each
node u stores a point zu from its subtree having minimum x-coordinate. Therefore, if we
take that point among the points zu, u ∈ M , having minimum x-coordinate, then we get
exactly the point that we want to compute. It is not difficult to see that the time of this
query algorithm is O(log n).

If we take T from, say, the class of red-black trees, then the operations Insert and
Delete can also be performed in O(log n) time. (The details of the update algorithms are
left as Exercise 4.10.) We obtain the following result:

Lemma 4.1.9. The above tree T solves the problem Find-Leftmost-in-Translated-
Halfplane (Problem 4.1.8). It supports each of the operations MinAbove, Insert, and
Delete in O(log n) time. This data structure has size O(n) and can be built in O(n log n)
time.

Computing all edges of �(S, κ) corresponding to a cone

We are now ready to present the plane sweep algorithm that computes the edges of �(S, κ)
that correspond to the fixed cone C. Recall that h1 and h2 are the lines through the upper
and lower bounding rays of C, respectively, and that we assume that the ray 	C coincides
with the positive x-axis.

Let D1 and D2 be the lines through the origin that are orthogonal to h1 and h2,
respectively. We direct D1 such that it points toward the halfplane consisting of all points
in R2 that are below h1, and we direct D2 such that it points toward the halfplane consisting
of all points in R2 that are above h2. Figure 4.6 illustrates this scenario.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

72 SPANNERS BASED ON THE �-GRAPH

Algorithm Build�Graph(S, C)

Comment: This algorithm takes as input a set S of n points in the plane and a cone C of
Cκ . It returns the set of all edges of �(S, κ) that correspond to C. The algorithm makes
the following three steps:

Step 1: Sort the points of S according to the order induced by the directed line D1. Let
p1, p2, . . . , pn be the sorted sequence of points.

Step 2: Initialize an empty data structure T for solving problem Find-Leftmost-in-
Translated-Halfplane (Problem 4.1.8) using h := h2.

Step 3: Visit the points of S one after another, starting at pn. Assume the algorithm has
already visited the points pn, pn−1, . . . , pi+1. Also, assume that T stores these n − i

points (and no other points). The next point to be visited is pi . The algorithm does the
following:

� It inserts pi into T ; that is, it performs the operation Insert(pi).
� It finds the point ri in T that is above the line h2 + pi and whose x-coordinate

is minimum; that is, it answers the query MinAbove(pi).

Observe that point ri is one of the points pn, pn−1, . . . , pi+1. These are exactly the
points of S that are below the line h1 + pi . Therefore, {pi, ri} is the edge of �(S, κ)
that corresponds to cone C.

After all points of S have been visited in Step 3, all edges of �(S, κ) that correspond
to the cone C have been computed.

We analyze the running time of algorithm Build�Graph(S, C). The initial sorting of
the points in Step 1 takes O(n log n) time. Clearly, Step 2 takes O(1) time. By Lemma 4.1.9,
the total time for Step 3 is O(n log n). Hence, the entire algorithm takes O(n log n) time.

The complete graph �(S, κ) is obtained by running algorithm Build�Graph(S, C) κ

times, once for each cone C of Cκ . We have proved the following result:

Theorem 4.1.10. Let κ ≥ 2 be an integer, let θ = 2π/κ , and let S be a set of n points in
the plane. The graph �(S, κ) can be constructed in O(κn log n) time, using O(n) space.

Remark 4.1.11. In Chapters 2 and 3, we made the convention that the running time of an
algorithm is expressed as a function of the number, say N , of input elements. Algorithm
Build�Graph takes as input a set of n points in the plane (where each point is specified
by its x- and y-coordinates), and an integer κ . Hence, we have N = 2n + 1. The time
complexity in Theorem 4.1.10, however, is not a function of N only, but also depends on
the size of the parameter κ . In other words, algorithm Build�Graph does not work in
the algebraic computation-tree model, if κ is considered to be an input variable. If κ is a
constant, however, then the result in Theorem 4.1.10 is valid in this model.

Most algorithms in the rest of this book take as input a set of n points, together
with some additional parameters that specify the degree of approximation in the output.
Running times will always be expressed as functions that depend on n and the values of
these additional parameters. We allow that algorithms compute nonalgebraic functions
(such as the floor and ceiling functions, and log, sin, cos, and tan) of these parameters. For
example, to compute a t-spanner for a given set of n points in the plane, the algorithm may
start by computing an integer κ such that 1/(cos(2π/κ) − sin(2π/κ)) ≤ t , and then use
algorithm Build�Graph to compute the t-spanner �(S, κ). If each of these additional

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

4.2 A SPANNER OF BOUNDED DEGREE 73

parameters is considered to be a constant, then the algorithms will work in the algebraic
computation-tree model and, therefore, the results will not contradict Theorem 3.3.11 and
Exercises 3.6, 3.7, and 3.8.

Constructing the �-graph: For any p ∈ S, let r be the point such that {p, r}
is the edge of �(S, κ) corresponding to the cone C. Then r is the solution to
a minimization query subject to two linear constraints. Using the plane sweep
technique, the number of constraints is reduced to one. On the other hand, these
one-constraint minimization queries have to be answered for a dynamically
changing set of points.

4.1.3 Is the �-graph a good spanner?

We have seen that for any real number t > 1, there is an integer κ such that the graph
�(S, κ) is a sparse t-spanner for S. What can we say about the other measures that were
mentioned in Section 1.2? That is, is the degree of �(S, κ) “small”? Does �(S, κ) have
“low” weight? Finally, what can we say about the spanner diameter of �(S, κ)?

Let S consist of the origin and n − 1 points that are on the unit circle. Assume that these
n − 1 points are the vertices of a regular (n − 1)-gon. If κ ≥ 9, then �(S, κ) contains an
edge between each of the n − 1 points on the circle and the origin. Hence, the vertex at the
origin has degree n − 1 in �(S, κ). If n is sufficiently large, then the weight of a minimum
spanning tree of S is approximately equal to 2π + 1. On the other hand, if κ ≥ 9, then the
weight of �(S, κ) increases linearly with n, proving that the �-graphs may have neither
low weight nor low degree.

Now let S be a set of n points on the x-axis. Then �(S, κ) is basically the sequence of
points, sorted from left to right. The unique path between the leftmost and rightmost point
is a 1-spanner path consisting of n − 1 edges. Therefore, �(S, κ) has spanner diameter
n − 1, proving that the �-graphs may not have low spanner diameter.

Hence, the �-graph is good only in the sense that it is sparse and has a small stretch
factor. In Sections 4.2 and 4.3, we will show how the �-graph can be transformed into
spanners of bounded degree and O(log n) spanner diameter, respectively. To obtain a
spanner of low weight, new techniques are needed. These will be dealt with in Chapters 6,
7, 14, and 15.

4.2 A spanner of bounded degree

In this section, we will give an O(n log n)–time algorithm that constructs a t-spanner, for
any given constant t > 1, in which each vertex has a degree that is bounded by a constant.
The basic idea is given below.

Basic Idea: Start with a �-graph that is a
√

t-spanner. Direct all the edges in
such a way that the outdegree is bounded for every vertex. To take care of vertices
with high indegree, replace each “star” subgraph consisting of edges pointing
into a vertex by a structure that is a bounded degree “sink spanner.” This is done
in a way that can increase the stretch factor by a multiplicative factor of

√
t , thus

resulting in a bounded degree t-spanner.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

74 SPANNERS BASED ON THE �-GRAPH

To be more precise, we will prove the following result. Let S be a set of n points in
the plane, let t ′ > 1 be a constant, and let G be an arbitrary undirected t ′-spanner for S.
Assume that, in O(n log n) time, the edges of G can be directed such that each vertex has
an outdegree that is bounded by a constant. Let t be an arbitrary constant larger than t ′.
We will then show how to transform G into an undirected t-spanner in which the degree
of each vertex is bounded by a constant. This transformation takes O(n log n) time.

By directing the edges of G, we mean the following. We replace each edge {p, q} of
G by either the directed edge (p, q) or the directed edge (q, p). We remark that this is
a purely conceptual notion that is needed in the transformation. In particular, we do not
require that a t ′-spanner path in G be a directed path in the directed graph.

To give an example, replace in Definition 4.1.1 the edge {p, r} of �(S, κ) by the directed
edge (p, r). Then it is easy to see that in the resulting directed graph, the outdegree of
each vertex is less than or equal to κ = 2π/θ .

Our transformation uses the notion of a sink spanner, which will be introduced in
Section 4.2.1. In Section 4.2.2, we will present the transformation itself. We tie it all up
in Section 4.2.3.

4.2.1 Sink spanners

Definition 4.2.1 (Sink spanner). Let S be a set of n points in the plane, let q be a point
of S, and let t > 1 be a real number. A directed graph having the points of S as its vertices
is called a q-sink t-spanner for S, if for every point p of S there is a directed t-spanner
path from p to q in this graph.

We show how to construct a q-sink t-spanner in which (i) each vertex has an indegree
that is bounded from above by an integer that depends only on t , (ii) the outdegree of q is
zero, and (iii) each other vertex has outdegree one. The construction is similar to that of
the �-graph.

Let κ ≥ 9 be an integer, and let θ = 2π/κ . Consider the collection Cκ of cones that
was defined in Section 4.1. For each cone C of Cκ , let 	C be a fixed ray that emanates
from the origin and that is contained in C. As introduced in Section 4.1, we will use the
notation Cp to represent the cone C translated so that its apex is at the point p, and 	C,p

to be the ray 	C translated to emanate from point p.
Consider the set S and the point q of S. Let n be the number of points of S. We

recursively define a graph �(S, q, κ) having the points of S as its vertices. Later, we will
see that �(S, q, κ) is indeed a q-sink spanner for the set S.

If n = 1, then �(S, q, κ) is the graph consisting of the single vertex q. Assume that
n ≥ 2. For each C ∈ Cκ , let SC be the set of all points of S \ {q} that are contained in the
cone Cq . If a subset SC contains more than n/2 points, then we partition it (arbitrarily)
into two subsets SC,1 and SC,2, each of size at most n/2. Since there can be at most one
subset SC of size more than n/2, we get a partition of S \ {q} into at most κ + 1 nonempty
subsets, each of size at most n/2.

For each nonempty subset SC or, in case this set contains more than n/2 points, for
each subset SC,i , i = 1, 2, let r be the point in this subset whose orthogonal projection
onto the ray 	C,q is closest to q. The graph �(S, q, κ) contains

1. the directed edge (r, q), and

2. a recursively defined graph �(A, r, κ) for the subset A := SC (respectively A := SC,i).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

4.2 A SPANNER OF BOUNDED DEGREE 75

Lemma 4.2.2. In the graph �(S, q, κ), the indegree of each vertex is less than or equal
to κ + 1, the outdegree of q is zero, while the outdegree of all the other vertices is one.
The graph �(S, q, κ) can be constructed in O(κ + n log n log κ) time.

proof The bounds on the outdegree and indegree follow easily from the definition of
�(S, q, κ). Also, this definition immediately implies a recursive algorithm for constructing
�(S, q, κ). It takes O(κ) time to construct the collection Cκ of cones. Let T (n) denote the
time needed by the algorithm to construct the graph �(S, q, κ) for a set S of size n. Then
T (1) is a constant and for n ≥ 2, we have

T (n) = O(n log κ) +
∑
A

T (|A|), (4.2)

where A ranges over the (at most κ + 1) nonempty subsets SC (resp. SC,i). (The log κ term
is the time for distributing the points over the κ cones.) Since each subset A has size at
most n/2, and these subsets partition the set S, this recurrence solves to T (n) = O(n log
nlog κ).

It remains to prove that �(S, q, κ) is a q-sink t-spanner, for an appropriate value of t .
Let p be a point of S. The algorithm that computes a spanner path from p to q is basically
the same as algorithm �-Walk in Section 4.1.1.

The path from p to q is constructed recursively, in a backward order. We define q0 := q.
Let i ≥ 0, and assume that we have already constructed a directed path qi, qi−1, . . . , q0,
in �(S, q, κ). If qi = p, then we stop the construction. Otherwise, let C be the cone of
Cκ such that p ∈ Cqi

. The graph �(S, q, κ) contains a subgraph �(A, qi, κ), for some
subset A of S, in which p is a vertex. (The proof of this claim is left as an exercise; see
Exercise 4.13.) This subgraph contains an edge (r, qi), where

1. r is contained in Cqi
,

2. the orthogonal projection of r onto the ray 	C,qi
is at least as close to qi as the orthogonal

projection of p onto this ray, and

3. p and r are in the same subset SC (or SC,1 resp. SC,2).

We define qi+1 := r; that is, r is the next vertex on our path.
Consider the reversed sequence q = q0, q1, q2, . . . , that is constructed in this way. For

each i ≥ 0, there is a cone C in Cκ such that p and qi+1 are both contained in Cqi
, and

the orthogonal projection of qi+1 onto 	C,qi
is at least as close to qi as the orthogonal

projection of p onto this ray. Therefore, by Lemma 4.1.4, we have

|qi+1p| ≤ |qip| − (cos θ − sin θ)|qiqi+1|.
It follows (in exactly the same way as in Section 4.1.1) that there is an index m such
that qm = p, and the path p = qm, qm−1, . . . , q1, q0 = q, which is a directed path in
�(S, q, κ), has length at most t |pq| for t = 1/(cos θ − sin θ). That is, we have shown
that the graph �(S, q, κ) is a q-sink t-spanner for this value of t . We have proved the
following result.

Theorem 4.2.3. Let S be a set of n points in the plane, let q be a point of S, let κ ≥ 9 be
an integer, and let θ = 2π/κ and t = 1/(cos θ − sin θ). The graph �(S, q, κ) is a q-sink
t-spanner for S. It can be constructed in O(κ + n log n log κ) time. In �(S, q, κ), the
indegree of each vertex is less than or equal to κ + 1, the outdegree of q is 0, and the
outdegree of each other vertex is 1.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

76 SPANNERS BASED ON THE �-GRAPH

•

•

•

•
•

• •
p = p0

p1

p2

p3

p4 = q

a
b

Figure 4.7: G contains the t ′-spanner path p = p0, p1, p2, p3, p4 = q. Edge {p1, p2} on this path is
approximated by the (t/t ′)-spanner path p1, a, b, p2 in G0.

Remark 4.2.4. There exists a much simpler algorithm than the recursive one described
above to construct a spanner path from p to q. Since the graph �(S, q, κ) is a tree rooted
at q, there is a unique path from p to q. This path is obtained by starting at p and following
outgoing edges until the root q has been reached.

4.2.2 The transformation

We are now ready to present the transformation to obtain a bounded degree spanner, but
with a possible increase in the stretch factor. Let S be a set of n points in the plane, and
let t and t ′ be real numbers such that t > t ′ > 1. Let G be a t ′-spanner for S whose edges
can be directed such that each vertex has outdegree at most D, for some integer D. We
denote the directed version of G by �G, and the time for computing �G from G by T (n).
We show that by making local changes to �G, we can transform it into a t-spanner for S

of bounded degree. We remind the reader once again that the �-graph satisfies the above
condition; that is, its edges can be directed to make the outdegree of each of its vertices
to be bounded by a constant. Hence, as discussed in Section 4.2.3, this transformation is
well-suited for �-graphs.

Let κ ≥ 9 be an integer such that 1/(cos θ − sin θ) ≤ t/t ′ for θ = 2π/κ . For each point
q of S, we do the following. Let Vq be the set of all points r ∈ S for which (r, q) is an
edge of �G. In the graph �G, we replace all edges (r, q), with r ∈ Vq , by the edges of the
q-sink (t/t ′)-spanner �(Vq ∪ {q}, q, κ).

Let �G0 be the directed graph that is obtained in this way. We replace each edge (p, q)
of �G0 by the undirected edge {p, q}, and denote the resulting undirected graph by G0. We
claim that G0 is a t-spanner for S in which each vertex has bounded degree.

Let us first prove that G0 is a t-spanner; refer to Figure 4.7. Let p and q be any two
points of S. The graph G contains a path

Q = (p = p0, p1, p2, . . . , pm = q)

between p and q of length at most t ′|pq|. Let i be any integer with 0 ≤ i < m, and
consider the edge {pi, pi+1} on this path. Assume that in �G, this edge is directed from pi

to pi+1. (The case when the edge is directed from pi+1 to pi can be handled similarly.)
The directed graph �G0 contains the pi+1-sink (t/t ′)-spanner �(Vpi+1 ∪ {pi+1}, pi+1, κ),
in which pi is a vertex. Hence, in the graph G0 there is a path Qi between pi and pi+1 of
length at most (t/t ′)|pipi+1|.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

4.2 A SPANNER OF BOUNDED DEGREE 77

The concatenation of the paths Qi , 0 ≤ i < m, is a path in G0 between the points p

and q. This path has length at most

m−1∑
i=0

(t/t ′)|pipi+1|,

which is (t/t ′) times the length of the path Q. This, in turn, is bounded from above by
(t/t ′)t ′|pq| = t |pq|, completing the proof that G0 is a t-spanner for S.

To bound the degrees of the vertices in G0, we first consider the directed graph �G0. Let
p be an arbitrary point of S, and let Wp be the set of all points q ∈ S for which (p, q) is
an edge of �G.

We start by estimating the outdegree of p in �G0. Let r be any point of S for which
(p, r) is an edge of �G0. There is a point q in S such that (p, r) is an edge of the sink
spanner �(Vq ∪ {q}, q, κ). Observe that q �= p. Since p is a vertex of �(Vq ∪ {q}, q, κ),
we have p ∈ Vq ; that is, (p, q) is an edge of �G. Hence, we have shown that each edge
of �G0 having p as a source is contained in one of the sink spanners �(Vq ∪ {q}, q, κ),
q ∈ Wp. Since p has outdegree one in any of these sink spanners, and since Wp contains
at most D elements, it follows that the outdegree of p in �G0 is less than or equal to D.

Next we consider the indegree of p in �G0. Let r be any point of S for which (r, p) is an
edge of �G0. As above, there is a point q in S such that (r, p) is an edge of �(Vq ∪ {q}, q, κ).
Now either q = p or (p, q) is an edge of �G. Hence, each edge of �G0 having p as a sink
is contained in one of the sink spanners �(Vq ∪ {q}, q, κ), q ∈ Wp ∪ {p}. Since p has
indegree at most κ + 1 in any of these sink spanners, we have shown that the indegree of
p in �G0 is less than or equal to (D + 1)(κ + 1).

In the (undirected) t-spanner G0, the degree of a vertex is less than or equal to the sum
of its outdegree and its indegree in �G0. That is, in G0, each vertex has a degree that is
bounded from above by D + (D + 1)(κ + 1).

Finally, let us consider the time needed to construct the t-spanner G0 from the original
t ′-spanner G. It takes O(κ) time to construct the collection Cκ of cones that are used for
the various sink (t/t ′)-spanners. By our assumption, it takes T (n) time to construct the
directed graph �G. Let q be any point of S, and consider the set Vq . By Theorem 4.2.3, we
can build the q-sink spanner �(Vq ∪ {q}, q, κ) in O((|Vq | + 1) log(|Vq | + 1) log κ) time,
which is O(|Vq | log n log κ). Therefore, the time needed to construct G0 is

O

κ + T (n) +
∑
q∈S

|Vq | log n log κ

 .

Since each edge in �G has outdegree at most D, the number of edges of G is less than
or equal to Dn. Hence,

∑
q∈S |Vq |, which exactly counts the number of edges of G,

is bounded from above by Dn. This shows that we can construct G0 from G in
O(κ + T (n) + Dn log n log κ) time. We have proved the following result.

Theorem 4.2.5. Let S be a set of n points in the plane, let t and t ′ be real numbers
with t > t ′ > 1, and let κ ≥ 9 be an integer such that 1/(cos θ − sin θ) ≤ t/t ′, where
θ = 2π/κ . Let G be a t ′-spanner for S, whose edges can be directed in T (n) time, such that
each vertex has outdegree at most D, for some integer D. In O(κ + T (n) + Dn log n log κ)
time, we can transform G into a t-spanner for S in which each vertex has degree at most
D + (D + 1)(κ + 1).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

78 SPANNERS BASED ON THE �-GRAPH

The transformation: For each q ∈ S, we replace in the directed version �G of
the spanner G, each “star” subgraph consisting of all edges pointing to q by a
q-sink spanner. Since the directed version of each edge e of G is contained in
some star subgraph of �G, it follows that e is replaced by a spanner path between
the endpoints of e.

4.2.3 Applying the transformation

Let S be a set of n points in the plane, and let t > 1 be a real number. We show how
Theorem 4.2.5 can be applied to obtain a bounded degree t-spanner for S.

Let κ ≥ 9 be an integer such that 1/(cos θ − sin θ) ≤ √
t , where θ = 2π/κ . Let G be

the graph �(S, κ), which is a
√

t-spanner for S; see Theorem 4.1.5. Given the point set
S, we can construct this graph in O(κn log n) time; see Theorem 4.1.10. We saw already
at the beginning of Section 4.2 that the edges of G can be directed, in O(κn) time, such
that each vertex has outdegree at most κ .

Thus, Theorem 4.2.5, applied with t ′ = √
t , T (n) = O(κn), and D = κ , shows that we

can, in O((κ log κ)n log n) time, transform G into a t-spanner for S in which each vertex
has degree at most κ + (κ + 1)2. This proves the following theorem:

Theorem 4.2.6. Let S be a set of n points in the plane, let t > 1 be a real num-
ber, and let κ ≥ 9 be an integer such that 1/(cos θ − sin θ) ≤ √

t , where θ = 2π/κ .
In O((κ log κ)n log n) time, we can construct a t-spanner for S in which each vertex has
a degree that is less than or equal to κ2 + 3κ + 1.

Remark 4.2.7. Let us consider what happens if t > 1 and t → 1. If we choose κ as
small as possible such that 1/(cos θ − sin θ) ≤ √

t , then we have θ → 0,
√

t ∼ 1 + θ ,
t ∼ 1 + 2θ = 1 + 4π/κ , and κ ∼ 4π/(t − 1). Theorem 4.2.6 guarantees the construction
of a t-spanner for S, such that the spanner

1. can be constructed in

O

(
log(1/(t − 1))

t − 1
n log n

)
time, and

2. the degree of each vertex is O(1/(t − 1)2).

4.3 Generalizing skip lists: A spanner with logarithmic
spanner diameter

We now turn to the problem of constructing a spanner whose spanner diameter is “small.”
We will show that by generalizing skip lists, we get a randomized algorithm that constructs
a sparse spanner whose expected spanner diameter is O(log n). In Section 4.3.1, we review
skip lists. As we will see, for any set of n real numbers, this randomized data structure
is a sparse 1-spanner whose spanner diameter has an expected value of O(log n). In
Section 4.3.2, we present the generalization to the planar case.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

4.3 GENERALIZING SKIP LISTS 79

1 2 4 5 8 9 10 12 14 15

2 5 9 10 12 15

9 12 15

12

Figure 4.8: A skip list for the set S = {1, 2, 4, 5, 8, 9, 10, 12, 14, 15}. There are four nonempty subsets
S1, S2, S3, and S4. The value of h is equal to 4.

4.3.1 Skip lists

Let S be a set of n real numbers. We construct a nested sequence of subsets of S, as
follows. Initialize by setting S1 := S and i := 1. As long as Si �= ∅, construct a random
subset Si+1 of Si , in the following way. For each element of Si , flip a coin that comes up
heads with probability 1/2 and that is independent of the coin flips for the other elements
of Si . Set Si+1 to be the subset of all elements from Si whose coin flips came up heads.
Finally, set i := i + 1 and iterate.

Let h be the number of iterations of this construction. Then we obtain the sequence

∅ = Sh+1 ⊆ Sh ⊆ Sh−1 ⊆ Sh−2 ⊆ · · · ⊆ S2 ⊆ S1 = S

of subsets of S, where Sh �= ∅.

Definition 4.3.1. Consider the subsets Si , 1 ≤ i ≤ h, of S that are constructed by the
above coin flipping process. The skip list for S is defined as follows:

1. For each i, with 1 ≤ i ≤ h, there is a doubly linked list Li storing the elements of Si in
sorted order. We say that the elements of Si are at level i of the skip list.

2. For each i, with 1 < i ≤ h, and each p ∈ Si , the occurrences of p in Li and Li−1 are
connected by pointers.

An example of a skip list is given in Figure 4.8.
Observe that the value of h and the sizes of the subsets Si are random variables. The

following lemma, which we state without proof, gives some basic properties of these
variables.

Lemma 4.3.2. Consider the subsets Si , 1 ≤ i ≤ h, produced by the given random pro-
cess, and let M be the total size of the corresponding skip list.

1. The expected value of h is O(log n).

2. There is a positive constant c such that for all sufficiently large real numbers s, we have

Pr(h ≥ s log n) ≤ 1/ncs .

3. The value of M is proportional to
∑h

i=1 |Si |, and the expected value of this summation is
O(n).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

80 SPANNERS BASED ON THE �-GRAPH

4. There is a positive constant c′ such that for all sufficiently large real numbers s, we
have

Pr(M ≥ sn) = e−c′sn.

Let p and q be two elements of S with p < q, and assume that we want to construct a
path in the skip list between p and q. Of course, we can walk along the bottom list L1.
This may lead, however, to a path having up to n − 1 edges.

Therefore, we do the following. We start at the occurrence of p in L1, and walk along
this list to the right, until we reach our destination q or encounter an element that occurs
at level 2. If we reach q, then we are done with the construction. Otherwise, let p1 be the
first element encountered that occurs at level 2. Now we start at the occurrence of q in L1,
and walk along this list to the left, until we reach p1 or encounter an element that occurs at
level 2. If we reach p1, then we are done; otherwise, let q1 be the first element encountered
that occurs at level 2. Then we “move” with p1 and q1 to level 2, and recursively construct
a path between p1 and q1.

In this way, we construct two paths, one starting at p and extending “to the right,” and
the other starting at q and extending “to the left.” These paths are extended alternately,
and the construction stops as soon as the paths meet.

If we use this algorithm to construct a path in the skip list of Figure 4.8 between
elements 4 and 14, then we get the following result (ji denotes the occurrence of element
j at level i):

41, 51, 52, 92, 93, 123, 122, 121, 141 (4.3)

Below we give the intuition why the expected number of steps made by our algorithm
when it constructs a path between p and q is O(log n). By Lemma 4.3.2, the expected
number of levels in the skip list is O(log n). Consider any level i, and let pi and qi be the
elements of Li such that, at level i, our algorithm starts at pi (resp. qi) and walks along Li

to the right (resp. left). What is the expected number of steps made at level i? Consider
the subpath at level i that starts at pi , and let x be an arbitrary element on this subpath. If
x is not the last element on this subpath, then x does not occur at level i + 1. Hence, since
every element at level i occurs at level i + 1 with probability 1/2, the expected number
of elements on this subpath should be bounded by a constant. Similarly, the expected
number of elements on the subpath at level i that starts in qi should be bounded by a
constant. Hence, the expected number of steps made by the algorithm at any level of the
skip list should be O(1). As a result, the expected number of steps made by the algorithm,
when constructing the path between p and q, should be O(log n). We remark here that
this argument does not constitute a proof.

Remark 4.3.3. For a set of real numbers, we can also define the skip list by including
every second element of the sorted subset Si in the subset Si+1. This gives a deterministic
data structure with the same performance. Using randomization has three advantages.
First, it leads to simple update algorithms; that is, elements can be inserted and deleted in
a simple and efficient way. Second, for the deterministic version, an adversary can design
a set of inserts and deletes that can make later search operations very expensive (O(n)). In
contrast, the adversary would have to know the results of the coin flips in order to have the
same damaging effect on the randomized version of the data structure. Third, it is easy to

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

4.3 GENERALIZING SKIP LISTS 81

generalize to the case when the elements are points in the plane. (Observe that for points
in the plane, there is no natural notion of “every second” element.)

By “flattening” the vertices of the skip list, we can regard this data structure as a graph
G having the elements of S as its vertices. This graph has, expected, O(n) edges, and for
any two elements p and q of S, there is a path in G between p and q having length |pq|,
which is the absolute value of the difference between p and q, and containing an expected
number of O(log n) edges. To illustrate this, consider the path (4.3) in our example skip
list. In the corresponding graph G, this becomes the path 4, 5, 9, 12, 14.

Hence, the skip list can be regarded as a 1-spanner for S. (In fact, even the list L1, the
first level list from the data structure is itself a 1-spanner for S.) What can we say about
its expected spanner diameter? To answer this question, we have to bound the expected
maximum number of edges on the shortest1 1-spanner path between any pair of elements.
We know that for any two fixed elements p and q of S, the expected number of edges
on a shortest path between p and q is O(log n). This does not imply, however, that the
expected spanner diameter is O(log n). The reason is that, in general, the expected value
of the maximum of random variables is not equal to the maximum of the expected values
of these variables. (See also Exercise 4.16.)

Fortunately, it can be shown that for any two fixed elements p and q of S, the number
N (p, q) of edges on the shortest 1-spanner path between p and q is O(log n), with high
probability. That is, there exists a positive constant c such that for all sufficiently large
real numbers s, we have

Pr(N (p, q) ≥ s log n) ≤ 1/ncs .

Since the spanner diameter N0 is equal to maxp,q∈S N (p, q), it follows that

Pr(N0 ≥ s log n) ≤
(

n

2

)
· 1/ncs ≤ n2−cs .

From this, it can be shown that the expected spanner diameter of the skip list is O(log n).
In fact, the spanner diameter is O(log n) with high probability. More details about these
claims will be given in Section 4.3.3. We summarize our results.

Theorem 4.3.4. Let S be a set of n real numbers. The skip list of S can be regarded as
a graph which is a 1-spanner for S. With high probability, the number of edges of this
graph is O(n) and its spanner diameter is O(log n).

4.3.2 The skip list spanner

The generalization of the results of Section 4.3.1 to the two-dimensional case should be
clear. Let S be a set of n points in the plane. We use the same random process as in
Section 4.3.1, to obtain a nested sequence

∅ = Sh+1 ⊆ Sh ⊆ Sh−1 ⊆ Sh−2 ⊆ · · · ⊆ S2 ⊆ S1 = S

of subsets of S, where Sh �= ∅. As before, every element of Si has a probability of 1/2 of
being incuded in Si+1.

1 With respect to the number of edges.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

82 SPANNERS BASED ON THE �-GRAPH

Definition 4.3.5. Let κ ≥ 2 be an integer, and consider the subsets Si , 1 ≤ i ≤ h, that are
constructed by the coin flipping process. The skip list spanner SLS(S, κ) for S is defined
as follows:

1. For each i with 1 ≤ i ≤ h, the points of Si are stored in the graph �(Si, κ); see Defini-
tion 4.1.1. We say that the points of Si are at level i of the skip list spanner.

2. For each i with 1 < i ≤ h and each p ∈ Si , the occurrences of p at level i and level i − 1
are connected by pointers.

If all points of S lie on a line, then each graph �(Si, κ) is basically a list containing the
points of Si in sorted order, in which case, the skip list spanner is a standard skip list.

We regard SLS(S, κ) as a graph with vertex set S and edge set the union of the edge sets
of the graphs �(Si, κ), 1 ≤ i ≤ h. The pointers that connect the �-graphs of consecutive
levels are not considered to be edges of the graph.

Lemma 4.3.6. Let κ ≥ 9 be an integer, let θ = 2π/κ , and let S be a set of n points in the
plane. The skip list spanner SLS(S, κ) is a t-spanner for S with t = 1/(cos θ − sin θ). With
high probability, this graph contains O(κn) edges and can be constructed in O(κn log n)
time.

proof The skip list spanner contains �(S, κ), which, by Theorem 4.1.5, is a t-spanner.
Therefore, SLS(S, κ) is also a t-spanner. By Theorem 4.1.5, the number of edges of
SLS(S, κ) is at most

∑h
i=1 κ|Si |. Lemma 4.3.2 implies that, with high probability, the

value of this summation is O(κn). The bound on the construction time follows in a similar
way.

Hence, the skip list spanner is a t-spanner. In order to construct a t-spanner path
between two points p and q of S that contains few edges, we use the following algorithm.
(Recall our notation Cκ for the collection of κ cones of angle θ = 2π/κ , that have their
apex at the origin, and that partition the plane; see Section 4.1.)

Just as with the one-dimensional case, we grow two partial paths, one starting from
p, referred to as the p-path, and one starting from q, referred to as the q-path. When the
paths intersect, the process stops.

We start at the occurrence of p at level 1 of the skip list spanner and construct a path
in the graph �(S1, κ) from p toward q. Suppose that we have already constructed a path
from p to x. If x = q, then we have reached our destination, and the construction stops. If
x �= q, then we check if x occurs at level 2. If this is not the case, then we extend the path
as follows. Let C be the cone of Cκ such that q ∈ Cx . Let x ′ be the point of Cx ∩ S1 such
that {x, x ′} is an edge of �(S1, κ). Then x ′ is the next point on the path from p toward q,
i.e., we set x := x ′. We keep on extending this path until x = q or the point x occurs at
level 2 of the skip list spanner.

Assume that the path has reached a point x that occurs at level 2. Then we start
constructing a path in �(S1, κ) from q toward x. Suppose that we have already constructed
a path from q to y. We stop extending this path if y is equal to one of the points on the
path from p to x, or y occurs at level 2. Let us first assume that y is equal to the point, say,
p′ on the path from p to x. Then we return the path in �(S1, κ) from p to p′, followed
by the reverse of the path in �(S1, κ) from q to p′. In this case, the construction stops.
Otherwise, y occurs at level 2, and we move with x and y to the second level of the skip
list spanner and use the same algorithm to compute a path between x and y. The formal
algorithm is given below.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

4.3 GENERALIZING SKIP LISTS 83

Algorithm SLS-Walk(p, q)

Comment: This algorithm takes as input two points p and q in S, and returns a t-spanner
path between p and q in the skip list spanner SLS(S, κ).

p0 := p; q0 := q; a := 0; b := 0; r := 0; s := 0; i := 1;
(∗ p = p0, p1, . . . , pr , . . . , pa and q = q0, q1, . . . , qs, . . . , qb are

paths in SLS(S, κ), r = min{j : pj ∈ Si}, s = min{j : qj ∈ Si},
and pr, pr+1, . . . , pa, qs, qs+1, . . . , qb ∈ Si ∗)

stop := false;
while stop = false

do while pa �= qb and pa �∈ Si+1

do C := cone of Cκ such that qb ∈ Cpa
;

pa+1 := point of Cpa
∩ Si such that {pa, pa+1} is

an edge of �(Si, κ);
a := a + 1

endwhile;
(∗ pa = qb or pa ∈ Si+1 ∗)
while qb �∈ {pr, pr+1, . . . , pa} and qb �∈ Si+1

do C := cone of Cκ such that pa ∈ Cqb
;

qb+1 := point of Cqb
∩ Si such that {qb, qb+1} is

an edge of �(Si, κ);
b := b + 1

endwhile;
(∗ qb ∈ {pr, pr+1, . . . , pa} or both pa and qb occur in Si+1 ∗)
if qb ∈ {pr, pr+1, . . . , pa}
then 	 := index such that qb = p	;

return the path p = p0, p1, . . . , p	, qb−1, qb−2, . . . , q0 = q;
stop := true

else i := i + 1; r := a; s := b

endif
endwhile

We first prove the correctness of this algorithm. The idea of the proof is the same as in
Section 4.1.1.

Lemma 4.3.7. Let κ ≥ 9 be an integer, and let θ = 2π/κ . For any two points p and q of
S, algorithm SLS-Walk(p, q) constructs a t-spanner path in SLS(S, κ) between p and
q, for t = 1/(cos θ − sin θ).

proof In this proof, we use the notation of algorithm SLS-Walk. Consider the two
partial paths p = p0, p1, p2, . . . and q = q0, q1, q2, . . . that are constructed by the algo-
rithm. As mentioned above, these are referred to as the p-path and q-path, respectively.
First observe that if pa �= qb, pa �∈ Si+1, and the two paths do not intersect, then the p-path
is extended by a point pa+1 ∈ Si . A similar remark holds for the q-path.

The proof of the lemma is by induction on the number of levels of the skip list spanner.
To prove the base case, assume that SLS(S, κ) consists of only one level. Consider what
happens during the first iteration of the outer while-loop. In the first inner while-loop, a

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

84 SPANNERS BASED ON THE �-GRAPH

path p = p0, p1, p2, . . . is constructed. This inner while-loop terminates if and only if the
last point on this path is equal to q. Let a ≥ 0 and consider the points pa and pa+1. Then
pa �= q. Let C be the cone such that q ∈ Cpa

, and consider the ray 	C that emanates from
the origin and that is contained in C; see Section 4.1. It follows from the algorithm and
the definition of the graph �(S1, κ) that (i) {pa, pa+1} is an edge of the skip list spanner,
(ii) pa+1 ∈ Cpa

, and (iii) the orthogonal projection of pa+1 onto the ray 	C,pa
is at least as

close to pa as the orthogonal projection of q onto 	C,pa
. Therefore, by Lemma 4.1.4, we

have

|pa+1q| ≤ |paq| − (cos θ − sin θ)|papa+1| < |paq|. (4.4)

This proves that during each iteration of the first inner while-loop, the Euclidean distance
between pa and q becomes strictly smaller. As a result, this inner while-loop terminates.
Let z be the number of iterations made. Then the algorithm has constructed a path
p = p0, p1, p2, . . . , pz = q. The second inner while-loop is not executed at all since the
test fails right at the start. Since the points p0, p1, . . . , pz are pairwise distinct, the variable
	 is assigned the value z. Hence, the algorithm returns the path p = p0, p1, p2, . . . , pz = q

and terminates. The length of this path is equal to

z−1∑
a=0

|papa+1| ≤ t

z−1∑
a=0

(|paq| − |pa+1q|)

= t(|p0q| − |pzq|)
= t |pq|.

Hence, the algorithm has constructed a t-spanner path between p and q. This proves the
base case of the induction.

Let h > 1, and consider a skip list spanner consisting of h levels. Also, assume the
lemma holds for all skip list spanners with less than h levels.

Consider again the first iteration of the outer while-loop. During the first inner while-
loop, a path p = p0, p1, p2, . . . , pz is constructed such that pz = q or pz ∈ S2. Also,
(4.4) holds for all a, 0 ≤ a ≤ z − 1.

If pz = q, then the path p = p0, p1, p2, . . . , pz is returned and the algorithm termi-
nates. In exactly the same way as above, it follows that this path is a t-spanner path
between p and q.

Assume that pz �= q. Then pz ∈ S2. Observe that the points p0, p1, . . . , pz are pairwise
distinct. During the second inner while-loop, a path q = q0, q1, q2, . . . is constructed.
Using Lemma 4.1.4, it follows that

|qb+1pz| ≤ |qbpz| − (cos θ − sin θ)|qbqb+1| < |qbpz| (4.5)

for all b such that qb and qb+1 are defined. The second inner while-loop terminates if and
only if the last point on the q-path is (i) equal to one of the pi’s or (ii) occurs at level 2 of
the skip list spanner. Since during each iteration, the Euclidean distance between qb and
pz becomes strictly smaller, this while-loop terminates. Let y be the number of iterations
made. Then the algorithm has constructed a path q = q0, q1, q2, . . . , qy . It follows from
(4.5) that the points on this path are pairwise distinct. The termination condition implies
that all points p0, p1, . . . , pz, q0, q1, . . . , qy−1 are pairwise distinct. There are two possible
cases.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

4.3 GENERALIZING SKIP LISTS 85

The first case is when qy ∈ {p0, p1, . . . , pz}. Let 	 be such that qy = p	. Then the
algorithm returns the path p = p0, p1, . . . , p	 = qy, qy−1, . . . , q0 = q, having length

	−1∑
a=0

|papa+1| +
y−1∑
b=0

|qbqb+1|

≤
z−1∑
a=0

|papa+1| +
y−1∑
b=0

|qbqb+1|

≤ t

z−1∑
a=0

(|paq| − |pa+1q|) + t

y−1∑
b=0

(|qbpz| − |qb+1pz|)

= t(|p0q| − |pzq| + |q0pz| − |qypz|)
= t(|pq| − |qypz|) ≤ t |pq|.

Hence, in this case the algorithm has constructed a t-spanner path between p and q.
The second case is when qy �∈ {p0, p1, . . . , pz}. Now, qy ∈ S2 and the algorithm moves

to level 2 of the skip list spanner. The rest of the algorithm “takes place” at levels 2, . . . , h.
These levels constitute a skip list spanner SLS(S2, κ) consisting of h − 1 levels. Therefore,
by the induction hypothesis, a t-spanner path between pz and qy is constructed during the
rest of the algorithm. At termination, the algorithm returns the concatenation of the path
p0, p1, . . . , pz, the t-spanner path between pz and qy , and the path qy, qy−1, . . . , q0. The
length of this path is bounded from above by

z−1∑
a=0

|papa+1| + t |pzqy | +
y−1∑
b=0

|qbqb+1|

≤ t

z−1∑
a=0

(|paq| − |pa+1q|) + t |pzqy | + t

y−1∑
b=0

(|qbpz| − |qb+1pz|)

= t(|p0q| − |pzq| + |pzqy | + |q0pz| − |qypz|)
= t |pq|.

Hence, in this case too, the algorithm has constructed a t-spanner path between p and q.
This completes the proof.

Remark 4.3.8. Consider the t-spanner path p = p0, p1, . . . , p	 = qb, qb−1, . . . , q0 = q

that is returned by algorithm SLS-Walk(p, q). Let i be any integer such that 1 ≤ i ≤ h.
Consider the points that are added to the p-path and the q-path during the iteration of the
outer while-loop that “takes place” at level i of the skip list spanner. It follows from the
proof of Lemma 4.3.7 that these points are pairwise distinct. This property will be used
later in the analysis of the expected spanner diameter.

Remark 4.3.9. In the skip list spanner SLS(S, κ), a t-spanner path is obtained by con-
catenating t-spanner paths in �-graphs for different point sets. At first sight, one may
think that a skip list spanner can be based on any t-spanner. This is, however, not the case.
The proof that the path constructed by algorithm SLS-Walk is a t-spanner path heavily
depends on the properties of the �-graph, and, more specifically, on Lemma 4.1.4. There
exist t-spanners that do not result in a t-spanner when they are used for constructing the
skip list spanner. The proof of this claim is left as an exercise (see Exercise 4.15).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

86 SPANNERS BASED ON THE �-GRAPH

4.3.3 Bounding the spanner diameter of the skip list spanner

In this section, we analyze the expected behavior of algorithm SLS-Walk. That is, we
consider two points p and q, and estimate the expected number of edges on the t-spanner
path between p and q that is constructed by algorithm SLS-Walk(p, q).

Let N denote the number of edges on the t-spanner path between p and q that is
constructed by algorithm SLS-Walk(p, q). Observe that N is a random variable; its value
depends on the coin flips that determine the levels of the skip list spanner. We will prove
that the expected value of N is O(log n). In fact, N = O(log n) with high probability.

Roughly speaking, vertices in �-graphs are connected to their closest neighbors in each
of the cones. Intuitively, edges in �-graphs at higher levels are expected to have greater
lengths on the average than the ones at lower levels. This is because every successive level
is expected to have about half as many vertices as that in the previous level. Consequently,
the nearest neighbor is also expected to be farther away in each cone. Therefore, to
decrease the number of edges on a path, it is advantageous to do the traversal at a higher
level whenever possible.

Consider the paths p = p0, p1, p2, . . . and q = q0, q1, q2, . . . that are constructed by
algorithm SLS-Walk(p, q). We will again refer to these as the p-path and q-path, re-
spectively. Let i, 1 ≤ i ≤ h, be fixed. We estimate the expected number of points that are
added to these two paths at level i of the skip list spanner.

Intuitively, the expected number of points added at level i is bounded by a constant:
During the first inner while-loop, the p-path is extended until (i) it meets the q-path, or (ii)
a point has been reached that occurs at level i + 1. Since each point of Si occurs at level
i + 1 with probability 1/2, we expect that – at level i – at most a constant number of points
are added to the p-path. During the second inner while-loop, the q-path is extended. By
a similar argument, we expect that – at level i – at most a constant number of points are
added to this path.

To make this rigorous, we have to show that each point added to one of these paths
indeed occurs at level i + 1 with probability 1/2. Put it differently, we have to convince
ourselves of the following fact: It is not the case that the coin flips that are used to build
the skip list spanner cause algorithm SLS-Walk(p, q) to visit points at level i for which
it is likely (i.e., with probability more than 1/2) that they do not occur at level i + 1. In
the rest of this section, we will give a rigorous proof of this fact.

Analyzing one level of the skip list spanner

Our proof will use conditional probabilities. Recall that we have fixed level i of the skip
list spanner. The subsets of S that determine the first i levels of the skip list spanner
depend on coin flips. Let us fix subsets

Si ⊆ Si−1 ⊆ · · · ⊆ S2 ⊆ S1 = S.

We will analyze the expected number of points added to the p- and q-paths at level i,
given that the subsets S1, S2, . . . , Si were produced by the coin flipping process. As we
see later, our upper bound on this expectation does not depend on these subsets.

Let r and s be the smallest indices such that pr ∈ Si and qs ∈ Si , respectively. Observe
that r and s do not depend on any coin flips, because we have fixed p, q, and S1, . . . , Si .

Assume – for the sake of analysis only – that we have not yet flipped our coin for
determining the set Si+1. Consider the path p′

r = pr, p
′
r+1, p

′
r+2, . . . , p′

m = qs that our
algorithm would have constructed if all points of Si did not occur at level i + 1. (It follows

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

4.3 GENERALIZING SKIP LISTS 87

from the proof of Lemma 4.3.7 that the algorithm indeed would have constructed a path
between pr and qs . Moreover, the points on this path are pairwise distinct.) Now let z be
the number of points that are added – at level i – to the p-path by the actual algorithm.
Observe that z is a random variable.

Let 	 be an integer with 0 ≤ 	 ≤ m − r , and assume that z = 	. It is easy to see
that p′

r = pr, p
′
r+1 = pr+1, . . . , p

′
r+	 = pr+	. It follows from the actual algorithm that

p′
a �∈ Si+1 for all a, r ≤ a ≤ r + 	 − 1. Therefore,

Pr(z =) ≤ Pr

(
r+	−1∧
a=r

(p′
a �∈ Si+1)

)
.

Since the path p′
r , p

′
r+1, . . . , p

′
m is completely determined by the points p and q, and by

the sets S1, . . . , Si , each of the points on this path is contained in Si+1 with probability
1/2. Therefore, using the fact that all coin flips are independent, it follows that

Pr(z =) ≤
r+	−1∏
a=r

Pr(p′
a �∈ Si+1) = (1/2)	.

That is, the random variable z has a geometric distribution with parameter 1/2. This
is not quite true: z is bounded from above by a random variable z′ having a geometric
distribution with parameter 1/2.

Again for the sake of analysis only, we consider the following experiment. Assume
that we have not yet flipped our coin for determining the set Si+1. Now we flip the coin
for the points p′

r , p
′
r+1, . . . , p

′
m, in this order, stopping (i) the first time we obtain heads,

or (ii) after having obtained m − r times tails. The number of times we obtain tails has
the same distribution as the random variable z above.

Let 	, 0 ≤ 	 ≤ m − r , be fixed and assume that z = 	. If 	 = m − r , then the p-path
constructed by the actual algorithm has reached point qs and the algorithm terminates.
So assume that 	 < m − r . Then, at this moment, we know that (i) p′

r , p
′
r+1, . . . , p

′
r+	−1

do not occur at level i + 1, (ii) p′
r+	 occurs at level i + 1, and (iii) for all points of S ′

i :=
Si \ {p′

r , p
′
r+1, . . . , p

′
r+	} we have not yet flipped the coin. Let q ′

s = qs, q
′
s+1, q

′
s+2, . . . be

the path that would have been constructed during the second inner while-loop if none of
the points of S ′

i occurred at level i + 1. Let y be the number of points of Si that are added
to the q-path – at level i – by the actual algorithm.

Let u ≥ 0 and assume that y = u. Then, q ′
s = qs, q

′
s+1 = qs+1, . . . , q

′
s+u = qs+u. By

Remark 4.3.8, all points p′
r , p

′
r+1, . . . , p

′
r+	, q

′
s, q

′
s+1, . . . , q

′
s+u−1 are pairwise distinct.

In particular, q ′
b ∈ S ′

i for all b, s ≤ b ≤ s + u − 1. As a result, in the actual skip list
spanner, each point q ′

b, with s ≤ b ≤ s + u − 1, occurs at level i + 1, independently, with
probability 1/2. Since q ′

b �∈ Si+1 for all b, s ≤ b ≤ s + u − 1, it follows that

Pr(y = u) ≤ Pr

(
s+u−1∧
b=s

(q ′
b �∈ Si+1)

)
=

s+u−1∏
b=s

Pr(q ′
b �∈ Si+1) = (1/2)u.

What have we proved? Conditional on the fixed subsets S1, S2, . . . , Si and a fixed
value of the random variable z, the random variable y is bounded from above by a random
variable y ′ having a geometric distribution with parameter 1/2. Since the distribution of
y ′ does not depend on z, the random variable y ′ also has a geometric distribution with
parameter 1/2, conditional on S1, . . . , Si only.

Altogether, conditional on fixed subsets S1, S2, . . . , Si , the random variables z and y

that count the number of points that are added – by the actual algorithm at level i – to the

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

88 SPANNERS BASED ON THE �-GRAPH

p- and q-paths are bounded by random variables z′ and y ′, respectively, both of which
have a geometric distribution with parameter 1/2. Since the distributions of z′ and y ′ do
not depend on the subsets S1, . . . , Si , this statement holds unconditionally as well.

Completing the proof

Now we can analyze the expected behavior of algorithm SLS-Walk(p, q) in exactly
the same way as for standard skip lists. Recall that the value of the random variable N

is equal to the number of edges on the t-spanner path that is computed by algorithm
SLS-Walk(p, q).

For any i, 1 ≤ i ≤ h, let zi and yi be the random variables whose values are equal
to the number of edges that are added, at level i, to the p-path and q-path, respectively.
Then N = ∑h

i=1(zi + yi). We have seen above that each of the random variables zi and
yi , 1 ≤ i ≤ h, is bounded from above by a random variable z′

i and y ′
i , respectively, that

is distributed according to a geometric distribution with parameter 1/2. The 2h random
variables z′

i and y ′
i are mutually independent. (Observe that h itself is also a random

variable.) Using Chernoff bounds and the fact that h = O(log n) with high probability, it
can be shown that N = O(log n) with high probability.

At this moment, we know that for any two fixed points p and q of S, algorithm
SLS-Walk(p, q) constructs a t-spanner path between p and q that contains O(log n)
edges with high probability. What does this imply for the spanner diameter of the skip
list spanner? To answer this question, let N (p, q) be the random variable whose value
is equal to the number of edges on the t-spanner path that is computed by algorithm
SLS-Walk(p, q). Then N(p, q) = O(log n) with high probability, and we are interested
in the expected value of the random variable N0 := maxp,q∈S N (p, q).

Using Chernoff bounds, it can be shown that there is a positive constant c such that for
any two points p and q of S, and for any sufficiently large real number s, we have

Pr(N (p, q) ≥ s log n) ≤ n−cs .

If the value of N0 is greater than or equal to s log n, then there are two distinct points
p and q in S such that N(p, q) ≥ s log n. Since the number of such pairs is

(
n

2

) ≤ n2, it
follows that for sufficiently large values of s,

Pr(N0 ≥ s log n) ≤ n2 · n−cs ≤ n−cs/2.

This proves that, with high probability, the spanner diameter of the skip list spanner is
O(log n). In particular, the expected spanner diameter is O(log n).

The next theorem summarizes the results of Section 4.3.

Theorem 4.3.10. Let κ ≥ 9 be an integer, let θ = 2π/κ , and let S be a set of n points in
the plane. Then the following is true:

1. The skip list spanner SLS(S, κ) is a t-spanner for t = 1/(cos θ − sin θ). With high prob-
ability, it contains O(κn) edges.

2. The skip list spanner can be constructed in O(κn log n) time, with high probability.

3. With high probability, the spanner diameter of the skip list spanner is O(log n).

4. All these bounds are with respect to the coin flips that are used to build the skip list
spanner.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

EXERCISES 89

The skip list spanner: Construct a nested sequence Si , i ≥ 1, of subsets of S,
where S1 = S and Si+1 is a random subset of Si for i ≥ 1. Construct a �-graph
for each Si . The expected number of levels is O(log n).

When computing a spanner path between p and q, use a two-way algorithm
that computes two paths starting at p and q, respectively. Extend these paths
alternately, always trying to move up one level in the skip list spanner. The
randomized construction of the subsets implies that the expected number of
points added to the paths at any level is bounded by a constant. Thus the spanner
path between any pair of points is expected to have O(log n) edges.

The above theorem shows that there is an efficient randomized algorithm for construct-
ing a sparse t-spanner with expected spanner diameter O(log n). In particular, it implies
that for any set S of n points in the plane and any real constant t > 1, there exists a
t-spanner for S having O(n) edges and O(log n) spanner diameter.

Exercises

4.1. What can you prove about the stretch factor of �(S, κ) if κ ≤ 8? In particular, is �(S, κ) connected

for such values of κ?

4.2. Algorithm �-Walk(p, q) in Section 4.1.1 computes a t -spanner path in the graph �(S, κ) between

the points p and q. Is this path necessarily the shortest path in �(S, κ) between p and q?

4.3. Use Lemma 4.1.4 to prove that in a minimum spanning tree of a set of points in the plane, each

point has degree at most eight. Use a direct geometric argument to prove that each point has in

fact degree at most six.

4.4. In Section 4.1, we chose for every cone C ∈ Cκ , an arbitrary ray 	C emanating from the origin

and that is contained in C. Now let 	C be the bisector of C. Prove that the second inequality in

Lemma 4.1.4 can be improved as follows:

|rq| ≤ |pq| − (1 − 2 sin(θ/2))|pr|.

Prove that the graph �(S, κ) defined by using these bisectors is a t -spanner for t = 1/(1 −
2 sin(θ/2)). This result is marginally better than that of Theorem 4.1.5. For large values of κ ,

however, we have 1/(cos θ − sin θ) ∼ 1 + θ , and 1/(1 − 2 sin(θ/2)) ∼ 1 + θ .

4.5. Consider the geographic neighborhood graph that was defined in Remark 4.1.2. Prove that for a

sufficiently small cone angle θ , this graph is a t -spanner for t = 1/(cos θ − sin θ). Prove that for a

sufficiently small cone angle θ , this graph contains the minimum spanning tree of the point set.

4.6. We call a Euclidean graph G = (S,E) a strong t-spanner for the point set S, if for any two points

p and q of S, there exists a t -spanner path between p and q in G, all of whose edges have

length at most |pq|. Consider the geographic neighborhood graph on a set S of n points in the

plane (see Remark 4.1.2), and let t = 1/(cos θ − sin θ). Prove that this graph is a strong t -spanner

for S.

4.7. Let S be a set of n points in the plane, let E = {{p, q} : p ∈ S, q ∈ S, 0 < |pq| ≤ 1}, and let

U = (S,E). The graph U is called the unit disk graph of S. Let G be the graph consisting of all

edges in the geographic neighborhood graph of S (see Remark 4.1.2) having length at most 1.

Prove that G is a t -spanner of U , for t = 1/(cos θ − sin θ). That is, prove that for any two points p

and q of S, the graph G contains a path between p and q, whose length is less than or equal to t

times the length of a shortest path between p and q in U . (Hint: Use Exercise 4.6.)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

90 SPANNERS BASED ON THE �-GRAPH

4.8. Let S be a set of n points in the plane, and let t > 1 be a real number. Prove that there exists a

t -spanner of the unit disk graph U of S, in which the degree of every vertex is bounded by a function

that depends only on t . (Refer to Exercise 4.7 for the definition of U .)

4.9. Let S be a set of n points in the plane. In Exercise 4.7, we defined the unit disk graph U of S.

Observe that U can have up to
(
n

2

)
edges. Design an algorithm that computes the connected

components of U in O(n log n) time. Prove that the time complexity of computing the connected

components of U is �(n log n) in the algebraic computation-tree model.

4.10. Prove that the data structure of Lemma 4.1.9 can be built in O(n log n) time. Give the details of the

insertion and deletion algorithms for this data structure. In particular, explain how the variables zu

can be updated in O(log n) time during the insertion or deletion of a point.

4.11. Algorithm Build�Graph(S, C), as presented in Section 4.1.2, computes the set of all edges of

�(S, κ) corresponding to the cone C, by performing only the operations MinAbove and Insert
in the data structure of Lemma 4.1.9. In other words, the operation Delete is not used by this

algorithm. Design a variant of algorithm Build�Graph(S, C), which returns the same set of

edges, and which performs, besides building the data structure from scratch for a given set of

points, only the operations MinAbove and Delete in the data structure. Show that the running

time of the new algorithm is still O(n log n).

4.12. Prove that the solution T (n) of the recurrence given by (4.2) is O(n log n log κ).

4.13. Consider the algorithm for constructing a spanner path from p to q that was given after the proof

of Lemma 4.2.2. Prove that �(S, q, κ) indeed contains a subgraph �(A, qi, κ), for some subset

A of S, in which p is a vertex.

4.14. Prove that the sink spanner �(S, q, κ) of Section 4.2.1 is a tree.

4.15. Argue why the skip list spanner cannot be based on an arbitrary spanner; see Remark 4.3.9.

4.16. Consider a skip list for a set S of n real numbers. For any p ∈ S, let hp be the random variable

whose value is equal to the number of levels of the skip list at which p occurs. Prove that the

expected value E(hp) of hp is equal to 2. Prove that E(maxp∈S hp) = �(log n).

4.17. Let S be a set of n points in the plane, let κ ≥ 9 be an integer, and let θ = 2π/κ and t =
1/(cos θ − sin θ). Let σ = (p1, p2, . . . , pn) be an arbitrary permutation of the points of S. The

ordered �-graph with respect to σ , denoted by �(S, κ, σ), is defined as follows:

� The vertices of �(S, κ, σ) are the points of S.
� For each i with 1 ≤ i ≤ n and for each cone C of Cκ , such that the translated cone Cpi

contains one or more points of {p1, p2, . . . , pi−1}, the graph �(S, κ, σ) contains one edge

{pi, pj }, where pj is a point in Cpi
∩ {p1, p2, . . . , pi−1} whose orthogonal projection onto 	C,pi

is closest to pi .

(1) Prove that for every permutation σ of the points of S, the graph �(S, κ, σ) is a t -spanner for S.

(2) Design an algorithm that computes the graph �(S, κ, σ) in O(κn log n) time.

(3) Let σ be a random permutation of S. Prove that the expected spanner diameter of �(S, κ, σ) is

O(log n).

(4) Give an example of a point set S that contains a point p, such that the following is true: For a random

permutation σ of S, the expected degree of p in �(S, κ, σ) is linear in n.

(5) Prove that for every point set S, there exists a permutation σ of S such that the degree of every

vertex in �(S, κ, σ) is less than or equal to κ(1 +∑n−1
i=1 1/i) = O(κ log n). (It is not known if a

permutation σ exists for which the degree of every vertex is bounded by a function of κ only. Also,

it is not known if a permutation σ exists for which �(S, κ, σ) has both “small” degree and spanner

diameter O(log n).)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHIC NOTES 91

Bibliographic notes

The �-graph was discovered independently by Clarkson [1987] and Keil [1988]; see
also Keil and Gutwin [1992]. In fact, Clarkson defined these graphs for points in two-
and three-dimensional spaces, whereas Keil considered only the two-dimensional case.
Althöfer et al. [1993] and Ruppert and Seidel [1991] defined the �-graph for arbitrary
dimensions. See also Arya, Mount, and Smid [1994] and Arya, Mount, and Smid [1999].
A solution to Exercise 4.4 can be found in Ruppert and Seidel [1991].

Figures 4.2 and 4.3 are from an applet implemented by Petra Specht. The applet can be
accessed through the Web site: http://isgnw2.cs.uni-magdeburg.de/
∼petra/spanner.html

The geographic neighborhood graph that was mentioned in Remark 4.1.2 is due to Yao
[1982a]. Chang, Huang, and Tang [1990] present an algorithm that constructs this graph
in O(n log n) time.

The plane sweep technique that we used in Section 4.1.2 to construct the �-graph is
one of the most powerful techniques in computational geometry. Nievergelt and Preparata
[1982] were probably the first to describe it as a general algorithmic paradigm. General
descriptions of this paradigm can be found in the books Preparata and Shamos [1988],
and de Berg et al. [2000].

The results of Section 4.2 are due to Arya et al. [1995].
Skip lists were introduced in Pugh [1990] as an alternative to balanced binary search

trees. A detailed description and analysis of this elegant data structure can be found in
the books Mulmuley [1994], and Motwani and Raghavan [1995]. Chernoff introduced his
technique for analyzing tail estimates for sums of random variables in Chernoff [1952].
Good expositions of this technique are given in Mulmuley [1994], Motwani and Raghavan
[1995], and Mitzenmacher and Upfal [2005].

The skip list spanner of Section 4.3 is due to Arya, Mount, and Smid [1994] and
Arya, Mount, and Smid [1999]. The ordered �-graph of Exercise 4.17 is due to Bose,
Gudmundsson, and Morin [2004a].

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

5

Cones in Higher Dimensional Space
and �-Graphs

To the inhabitants of space in general and H. C. in particular this work
is dedicated by a humble native of Flatland in the hope that even as
he was initiated into the mysteries of Three dimensions having been
previously conversant with Only Two so the citizens of that celestial
region may aspire yet higher and higher to the secrets of Four Five or
even Six dimensions thereby contributing to the enlargement of The
Imagination and the possible developement of that most rare and ex-
cellent gift of Modesty among the superior races of Solid Humanity.

—From the Dedication in Flatland: A romance of many dimensions
by Edwin A. Abbott, 1884

In Chapter 4, we used the collection Cκ of cones to define the �-graph �(S, κ) for two-
dimensional point sets. Each cone C in Cκ is defined by two infinite rays emanating from
the origin and making an angle of θ = 2π/κ . As a result, the cone C can be written as
the intersection of two halfplanes in R2. The lines orthogonal to the rays bounding C

(that is, D1 and D2 in Figure 4.6) define a coordinate system that we used in algorithm
Build�Graph(S, C) of Section 4.1.2 to compute all edges of �(S, κ) that correspond
to C.

In this chapter, we will generalize the �-graph and its variants to the d-dimensional
case, for any integer constant d ≥ 2. In order to obtain this generalization, we start in Sec-
tions 5.1 and 5.2 with showing how the d-dimensional analogue of the collection Cκ can be
constructed. In Section 5.3, we will present some applications of Cκ that will be used at sev-
eral places in the rest of this book. In order to generalize algorithm Build�Graph(S, C),
we need orthogonal range trees, which will be presented in Section 5.4. Finally, in Sec-
tion 5.5, we will present the d-dimensional analogues of all results in Chapter 4.

5.1 Simplicial cones and frames

For a point p ∈ Rd and a set V = {v1, v2, . . . , vk} of points in Rd , we define the cone
with apex p that is generated by V to be the set

cone(p, V) :=
p +

k∑
j=1

λjv
j : λj ≥ 0 for all j = 1, 2, . . . , k

 .

If p = 0, that is, p is the origin, then we write cone(V) instead of cone(0, V). Thus cone(V)
is the set of all points obtained by linear combinations with nonnegative coefficients of
points in V , and cone(p, V) is cone(V) translated to point p.

92

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

5.2 CONSTRUCTING A θ -FRAME 93

Definition 5.1.1. Let p ∈ Rd , let V be a finite set of points in Rd , and let C = cone(p, V)
be the cone with apex p that is generated by V . We say that C is a simplicial cone, if
|V | = d and the d points v − p, with v ∈ V , are linearly independent.

Let C be a simplicial cone with apex p that is generated by a set V of d points in
Rd . For any subset V ′ of V of size d − 1, there is a unique hyperplane H through p and
the points of V ′. Moreover, C is completely contained in one of the (closed) halfspaces
defined by H . Since V consists of d elements, the number of such subsets V ′ is equal to d.
Hence, C can be written as the intersection of d halfspaces in Rd . Since the points v − p,
with v ∈ V , are linearly independent, the directed lines orthogonal to these halfspaces
can be used as a coordinate system in Rd . Observe also that C is equal to the convex hull
of the d infinite rays emanating from p and going through the points of the translated set
V + p.

Let q = (q1, q2, . . . , qd) and r = (r1, r2, . . . , rd) be two points in R \ {0}. The angle
between q and r , denoted by angle (q, r), is defined to be the unique real number α, with
0 ≤ α ≤ π , that satisfies the equation

q · r = ‖q‖ × ‖r‖ cos α,

where q · r = ∑d
i=1 qiri is the inner product of q and r , and ‖q‖ =

(∑d
i=1 q2

i

)1/2
and

‖r‖ =
(∑d

i=1 r2
i

)1/2
are the lengths of the vectors �q and �r from the origin to the points q

and r , respectively. Equivalently, we can define angle(q, r) to be the angle between �q and
�r in the two-dimensional plane through q, r , and the origin.

If p ∈ Rd and V is a finite set of points in Rd , then we define the angular diameter of
cone(p, V) as

max {angle(q − p, r − p) : q, r ∈ cone(p, V) \ {p}} .

Having defined all concepts that are needed, we can now define the notion of a frame:

Definition 5.1.2. Let θ be a real number, such that 0 < θ < π . A θ-frame is a collection
C of cones, having the following properties:

1. Each cone in C has its apex at the origin.

2. The cones in C cover R
d ; that is, ∪C∈CC = R

d .

3. The angular diameter of each cone in C is at most θ .

4. Each cone in C is a simplicial cone.

5.2 Constructing a θ-frame

In this section, we will show how a θ-frame, consisting of O(d (3d−1)/2(π/θ)d−1) simplicial
cones, can be constructed. We start in Section 5.2.1 by proving this claim for the case when
the cones are not required to be simplicial. In Section 5.2.2, we show how to construct
a triangulation of a hypercube. Then, in Section 5.2.3, we use this triangulation to refine
the cones of Section 5.2.1 to simplicial cones.

5.2.1 Covering R
d by cones

Let θ be a real number, such that 0 < θ < π . In the two-dimensional case, we ob-
tain a θ-frame, by subdividing the unit circle into segments of angle θ . Each of these

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

94 CONES IN HIGHER DIMENSIONAL SPACE AND �-GRAPHS

segments defines a simplicial cone, and the collection of all these cones clearly satisfies
the requirements in Definition 5.1.2. We can generalize this construction, by subdividing
the boundary of the unit ball in Rd into “small pieces.” Since this process is difficult to
describe and analyze, we will use the boundary of a d-dimensional hypercube instead of
the unit ball.

A d-dimensional hypercube is defined to be the Cartesian product of d closed intervals,
all having the same length. This length is called the side length of the hypercube. Hence,
a hypercube with side length 	 can be written as

[a1, a1 +] × [a2, a2 +] × · · · × [ad, ad +],

for some real numbers a1, a2, . . . , ad .
Consider the hypercube B := [−1, 1]d in Rd . This hypercube is bounded by

2d hyperplanes, each one given by one of the equations x1 = 1, x1 = −1, x2 = 1,

x2 = −1, . . . , xd = 1, xd = −1.
In the rest of this section, we will partition each of the 2d faces of B into (d − 1)-

dimensional hypercubes, each one having a small diameter. These small hypercubes will
then be used to define a collection of cones that cover Rd and whose angular diameters
are at most θ .

Let F be a face of the hypercube B. For ease of notation, we assume that this face is
contained in the hyperplane with equation xd = 1. Hence, F is the (d − 1)-dimensional
hypercube

F = [−1, 1]d−1 × {1}.
Define

m :=
⌈√

2(d − 1)

1 − cos θ

⌉
and 	 := 2/m. (5.1)

We partition F into md−1 (d − 1)-dimensional hypercubes, called subhypercubes, each
one having side length 	. These subhypercubes are

d∏
j=1

[−1 + ij 	,−1 + (ij + 1)] × {1},

where i1, i2, . . . , id range over all elements of the set {0, 1, . . . , m − 1}.
In Lemma 5.2.2 below, we will prove that angle(q, r) ≤ θ , for any two points q and

r that are contained in the same subhypercube. Before we can prove this claim, we need
the following result, which relates angle(q, r) to the Euclidean distance |qr|:
Lemma 5.2.1. Let q and r be two points in F , and let α = angle(q, r). We have

cos α ≥ 1 − |qr|2/2.

proof Using elementary linear algebra, we have

|qr|2 = ‖q − r‖2

= (q − r) · (q − r)

= q · q + r · r − 2(q · r)

= ‖q‖2 + ‖r‖2 − 2‖q‖ × ‖r‖ cos α.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

5.2 CONSTRUCTING A θ -FRAME 95

Using the inequality a2 + b2 ≥ 2ab, which is valid for all real numbers a and b, it follows
that

|qr|2 ≥ 2(1 − cos α)‖q‖ × ‖r‖.
Since q and r are both contained in the hyperplane with equation xd = 1, we have ‖q‖ ≥ 1
and ‖r‖ ≥ 1. Therefore,

|qr|2 ≥ 2(1 − cos α),

which is equivalent to the inequality in the lemma.

Lemma 5.2.2. Let q and r be two points that are contained in the same subhypercube.
Then angle(q, r) ≤ θ .

proof We denote angle(q, r) by α. Since q and r are in the same subhypercube,
|qr| is at most

√
d − 1 times the side length 	 of this subhypercube. This, together with

Lemma 5.2.1, implies that

cos α ≥ 1 − |qr|2/2 ≥ 1 − (d − 1)	2/2.

Since m2 ≥ 2(d − 1)/(1 − cos θ), we have 	2 = 4/m2 ≤ 2(1 − cos θ)/(d − 1). By
combining these inequalities, it follows that cos α ≥ cos θ . Thus, α ≤ θ , because
0 < θ < π .

If we apply the above construction to each of the 2d faces of the hypercube B, then we
obtain a collection of subhypercubes, each one being a (d − 1)-dimensional hypercube.
Denote the total number of subhypercubes by k, and let B = {B1, B2, . . . , Bk} be the
collection of cones, where Bi is the cone with apex 0 that is generated by the vertex set of
the i-th subhypercube. Observe that k = 2dmd−1.

The cones in B cover Rd , because each ray emanating from the origin intersects at least
one subhypercube. It follows from Lemma 5.2.2 that the angular diameter of each cone
in B is at most θ . Finally, since 1 − cos θ ≥ 2θ2/π2 for all θ with 0 < θ < π , we have
m ≤ �(π/θ)

√
d�, and, therefore, k = O(d (d+1)/2(π/θ)d−1). We have proved the following

result:

Lemma 5.2.3. The collection B consists of k = O(d (d+1)/2(π/θ)d−1) cones, for which
the following properties hold:

1. Each cone in B has its apex at the origin.

2. The cones in B cover R
d .

3. The angular diameter of each cone in B is at most θ .

5.2.2 Triangulating a hypercube

The cones in Lemma 5.2.3 are not simplicial, because they are defined by subhypercubes
having 2d−1 vertices. In order to refine these cones to simplicial cones, we will partition
each subhypercube into a collection of simplices. In this section, we show how such a
partition can be obtained. We will describe the construction for a hypercube in Rd , and
apply it in Section 5.2.3 with d replaced by d − 1.

Definition 5.2.4. Let j be an integer with 0 ≤ j ≤ d, and let V = {v0, v1, . . . , vj } be a
set of j + 1 points in Rd . If the points vi − v0, 1 ≤ i ≤ j , are linearly independent, then
the convex hull �(V) of V is called a j -simplex.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

96 CONES IN HIGHER DIMENSIONAL SPACE AND �-GRAPHS

We will show how a d-dimensional hypercube U can be partitioned into a collection
of d-simplices, all having vertices that are vertices of U . This partition is called a trian-
gulation of U . For ease of notation, we will assume that U is the unit hypercube; that is,
U = [0, 1]d .

The triangulation of U is obtained as follows. For each permutation σ of {1, 2, . . . , d},
define the following d + 1 points v0

σ , v1
σ , . . . , vd

σ in Rd :

1. v0
σ is the origin.

2. For each i with 1 ≤ i ≤ d, vi
σ is obtained from vi−1

σ by changing the σ (i)-th coordinate
from 0 to 1.

In other words, vi
σ is the vertex of U such that the line through vi−1

σ and vi
σ is parallel to

the σ (i)-th coordinate axis. Observe that vd
σ is the point (1, 1, . . . , 1).

To give an example, if d = 4 and σ = (3, 1, 4, 2), then we obtain the points

v0
σ = (0, 0, 0, 0),

v1
σ = (0, 0, 1, 0),

v2
σ = (1, 0, 1, 0),

v3
σ = (1, 0, 1, 1),

v4
σ = (1, 1, 1, 1).

We define �σ to be the d-simplex

�σ := �({v0
σ , v1

σ , . . . , vd
σ }).

Let

S := {�σ : σ is a permutation of {1, 2, . . . , d}}
be the resulting collection of d-simplices. Clearly, |S| = d!. In the next two lemmas, we
prove that the d-simplices in S form a triangulation of the hypercube U .

Lemma 5.2.5. The collection S of d-simplices cover the d-dimensional unit hypercube
U , i.e., ⋃

σ

�σ = U.

proof Since each d-simplex �σ is the convex hull of d + 1 vertices of U , it is clear
that ∪σ�σ ⊆ U .

To prove that U ⊆ ∪σ�σ , let y be an arbitrary point in U . Let σ be a permuta-
tion of {1, 2, . . . , d}, such that yσ (1) ≥ yσ (2) ≥ . . . ≥ yσ (d), and consider the vertices
v0

σ , v1
σ , . . . , vd

σ of the d-simplex �σ . We will prove that the point y can be written as
a convex combination of these vertices. This will imply that y is contained in �σ .

Define the real numbers λ0 := 1 − yσ (1), λi := yσ (i) − yσ (i+1) for 1 ≤ i ≤ d − 1, and
λd := yσ (d). Then, λi ≥ 0 for each i with 0 ≤ i ≤ d, and

∑d
i=0 λi = 1. We claim that

y =
d∑

i=0

λiv
i
σ , (5.2)

which can be verified by comparing the σ (j)-th coordinates of the points on both sides of
this equation, for j = 1, 2, . . . , d. This proves that y is indeed a convex combination of
the vertices of �σ .

Lemma 5.2.6. The interiors of any two distinct d-simplices in S are disjoint.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

5.2 CONSTRUCTING A θ -FRAME 97

proof Let σ be a permutation of {1, 2, . . . , d}, and consider the vertices vi
σ , 0 ≤ i ≤ d,

of the d-simplex �σ in S. Let A be the d × d matrix having the points vi
σ , 1 ≤ i ≤ d,

as its rows. Since v0
σ is the origin, the volume of �σ is equal to 1/d! times the absolute

value of the determinant of A. By permuting the columns of A appropriately, we obtain
the matrix

A′ =

1 0 0 0 . . . 0

1 1 0 0 . . . 0

1 1 1 0 . . . 0
...

1 1 1 1 . . . 1

 ,

whose determinant is equal to ±1 times the determinant of A. Since the determinant of
A′ is equal to 1, it follows that the volume of �σ is equal to 1/d!.

By Lemma 5.2.5, we have ∪σ�σ = U . Since the volume of U is equal to 1, and since
|S| = d!, the lemma follows.

We summarize the results obtained in this section:

Theorem 5.2.7. A d-dimensional hypercube can be triangulated into d! d-simplices with
disjoint interiors.

5.2.3 Refining the cones in B to simplicial cones

Having shown how to triangulate a hypercube, we are now able to give the final step in
our construction of the θ-frame.

Consider the collection B = {B1, B2, . . . , Bk} of cones in Lemma 5.2.3, where
k = 2dmd−1, and m is as in (5.1). Each cone Bi in B is of the form Bi = cone(Vi),
where Vi is the vertex set of a (d − 1)-dimensional hypercube that is contained in one of
the 2d hyperplanes x1 = 1, x1 = −1, x2 = 1, x2 = −1, . . . , xd = 1, xd = −1. By The-
orem 5.2.7, we can triangulate this hypercube into (d − 1)! many (d − 1)-simplices
�1

i , �
2
i , . . . , �

(d−1)!
i , that are all contained in the same hyperplane as Vi . For each j

with 1 ≤ j ≤ (d − 1)!, we define C
j

i to be the cone with apex 0 that is generated by the
vertex set of �

j

i . Let

κdθ := k(d − 1)! = 2d!
⌈√

2(d − 1)/(1 − cos θ)
⌉d−1

. (5.3)

We will write κ as a short-hand for κdθ , and define

Cκ := {Cj

i : 1 ≤ i ≤ k, 1 ≤ j ≤ (d − 1)!}.
Since k = O(d (d+1)/2(π/θ)d−1), the collection Cκ consists of

κ ≤ kdd−1 = O
(
d (3d−1)/2(π/θ)d−1)

simplicial cones that cover Rd , and that all have their apex at the origin. Since C
j

i is
contained in Bi , it follows from Lemma 5.2.3 that the angular diameter of each cone in
Cκ is at most θ . Hence, we have proved the following result:

Theorem 5.2.8. Let d ≥ 2 be an integer, let θ be a real number such that 0 < θ < π ,
and let κ = κdθ be as in (5.3). The collection Cκ constitutes a θ-frame in Rd , consisting of
κ = O(d (3d−1)/2(π/θ)d−1) simplicial cones. If d is a constant, then Cκ can be constructed
in O(1/θd−1) time and consists of κ = O(1/θd−1) cones with disjoint interiors.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

98 CONES IN HIGHER DIMENSIONAL SPACE AND �-GRAPHS

5.3 Applications of θ-frames

In our first application, we use Theorem 5.2.8 to prove an upper bound on the size of any
set of points for which the minimum angle is at least some given real number θ :

Theorem 5.3.1. Let d ≥ 2 be an integer constant, let θ be a real number such that
0 < θ < π , and let S be a set of points in Rd \ {0}, such that angle(q, r) > θ for any two
distinct points q and r in S. The size of S is O(1/θd−1).

proof Consider the θ-frame Cκ in Theorem 5.2.8. For each cone C in Cκ , let SC be
the set of all points in S that are contained in C. If a point is contained in more than one
cone, then we put it in exactly one subset SC . In this way, we obtain a partition of S into
κ = O(1/θd−1) subsets. Since the angular diameter of each cone in Cκ is at most θ , each
subset SC contains at most one element of S. Therefore, |S| ≤ κ = O(1/θd−1).

The cones in the θ-frame Cκ of Theorem 5.2.8 cover Rd . This leads to the question of
how to compute, when given an arbitrary query point q in Rd , a cone C ∈ Cκ for which
q ∈ C. The following theorem shows that the special structure of Cκ can be used to answer
such a point location query in O(log κ) time.

Theorem 5.3.2. Let d ≥ 2 be an integer constant, let θ be a real number such that
0 < θ < π , and let Cκ be the θ-frame in Theorem 5.2.8. In O(1/θd−1) time, we can
preprocess Cκ into a data structure of size O(1/θd−1), such that for any query point
q ∈ Rd , a cone in Cκ that contains q can be computed in O(log(1/θ)) time.

proof Recall how we constructed the θ-frame Cκ : We started in Section 5.2.1 by
partitioning each of the 2d faces of the hypercube B = [−1, 1]d into md−1 subhypercubes,
where m is defined in (5.1). Then, in Section 5.2.3, we triangulated each of the resulting
2dmd−1 subhypercubes into (d − 1)! many (d − 1)-simplices. Finally, the θ-frame Cκ was
defined as the collection of cones that are generated by the vertex sets of these simplices.

The data structure that supports point location queries in Cκ is obtained as follows:
For each face F of B, we store the subhypercubes in the partition of F in a balanced
binary search tree TF , sorted, for example, by the lexicographically smallest vertex of
each subhypercube. With each subhypercube in TF , we store a list consisting of all
(d − 1)-simplices in the triangulation of this subhypercube.

Each such tree TF can be constructed in O(md−1) = O(1/θd−1) time, because we can
obtain the sorted order of the subhypercubes in the partition of F in this amount of time.
Hence, the entire data structure can be constructed in O(1/θd−1) time.

To answer a point location query for a point q ∈ Rd , we do the following: If q is the
origin, then we return an arbitrary cone in Cκ . Assume that q is not the origin. We shoot a
ray from the origin toward q, and determine a face F of B that is hit by this ray. Then we
compute the point q ′ on F that is hit by this ray. Next, we search with q ′ in the tree TF for a
subhypercube H in F that contains q ′. Finally, we search for a (d − 1)-simplex � in H that
contains q ′. The cone generated by the vertex set of � is a cone in Cκ that contains q. Since
d is a constant, the time for a point location query is logarithmic in the size of TF .

At several places in this book, we are given a set of directed edges in Rd , and want to
partition this set into subsets, such that the edges within each subset are “nearly parallel.”
The theorem below states that there exists an efficient algorithm that computes such a
partition. The notion of being “nearly parallel” is formalized using the angle between two
directed edges, which we define now.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

5.4 RANGE TREES 99

Let p, q, r , and s be points in Rd such that p �= q and r �= s, and consider the
two directed edges (p, q) and (r, s). The angle between (p, q) and (r, s), denoted by
angle(pq, rs), is defined as

angle(pq, rs) := angle(q − p, s − r).

In other words, if we translate the two edges (p, q) and (r, s) such that their sources are
at the origin, then angle(pq, rs) is the angle between the two translates.

Theorem 5.3.3. Let d ≥ 2 be an integer constant, let θ be a real number such that
0 < θ < π , and let E be a set of directed edges in Rd . In O(1/θd−1 + |E| log(1/θ)) time,
we can partition E into O(1/θd−1) subsets, such that angle(pq, rs) ≤ θ for any two edges
(p, q) and (r, s) that are in the same subset.

proof The algorithm does the following: Compute the θ-frame Cκ of Theorem 5.2.8,
and preprocess it for point location queries; see Theorem 5.3.2. For each cone C in Cκ ,
initialize an empty edge list EC . For each edge (p, q) in E, compute a cone C ∈ Cκ that
contains the point q − p, and add (p, q) to EC .

The resulting edge sets EC , with C ∈ Cκ , form the required partition. The claim on the
running time follows from Theorems 5.2.8 and 5.3.2.

5.4 Range trees

A d-dimensional hyperrectangle is defined to be the Cartesian product of d closed inter-
vals. Hence, such a hyperrectangle Q can be written as

Q = [a1, b1] × [a2, b2] × · · · × [ad, bd],

where ai and bi are real numbers with ai ≤ bi , 1 ≤ i ≤ d.
In this section, we design an efficient data structure that solves the following problem:

Problem 5.4.1 (Orthogonal Range Searching). Let d ≥ 1 be an integer. Preprocess a
set S of n points in Rd into a data structure that supports the following operation:

RangeQuery(S, d, Q). Given a d-dimensional query hyperrectangle Q =∏d
i=1[ai, bi], report all points p ∈ S that are contained in Q; that is, all

points p = (p1, p2, . . . , pd) ∈ S for which a1 ≤ p1 ≤ b1, a2 ≤ p2 ≤ b2, . . . ,
ad ≤ pd ≤ bd .

The data structure that we will use to solve the orthogonal range searching problem
is the range tree. It consists of a nested collection of balanced binary search trees. Each
tree T in this collection stores a subset of the point set S at its leaves, sorted by the j -th
coordinates of the points, for some j with 1 ≤ j ≤ d. For any node v in T , we denote by
Sv the set of all points of S that are stored in the subtree rooted at v. Each node v in T

stores information to guide searches. For example, we can store at v the two points that
are stored at the leftmost and rightmost leaves in the subtree rooted at v. Using this search
information, we can find, in O(log |Sv|) = O(log n) time, the leftmost leaf in T that stores
a point whose j -th coordinate is greater than or equal to some given value. Similarly, we
can find, again in O(log n) time, the rightmost leaf in T that stores a point whose j -th
coordinate is less than or equal to some given value.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

100 CONES IN HIGHER DIMENSIONAL SPACE AND �-GRAPHS

v �

Sv
� �

Sv
� �

Figure 5.1: A two-dimensional range tree. The tree on the left is the main tree, storing the points of S,
sorted by their first coordinates. Each node v of the main tree stores a pointer to its associated structure,
which is the tree on the right. The associated structure of v stores the point set Sv , sorted by their second
coordinates.

Definition 5.4.2 (Range Tree). Let d ≥ 1 be an integer, and let S be a set of n points
in Rd . A d-dimensional range tree for S is the data structure RTd (S) that is defined as
follows:

1. If d = 1, then RTd (S) is a balanced binary search tree storing the points of S in sorted
order at its leaves.

2. If d > 1, then RTd (S) consists of a balanced binary search tree, called the main tree, that
stores the points of S at its leaves, sorted by their first coordinates. For any node v of the
main tree, let S ′

v ⊆ R
d−1 be the set obtained by deleting the first coordinate from each

point in Sv . Each node v of the main tree stores a pointer to an associated structure, which
is a (d − 1)-dimensional range tree RTd−1(S ′

v) for the point set S ′
v .

For example, the main tree of a two-dimensional range tree RT2(S) is a balanced binary
search tree, storing the points of S at its leaves, sorted by their first coordinates. Each node
v of the main tree stores a pointer to an associated structure, which is a balanced binary
search tree storing the point set Sv at its leaves, sorted by their second coordinates; see
Figure 5.1.

Lemma 5.4.3. Let d ≥ 1 be an integer constant, and let S be a set of n points in Rd . The
range tree RTd(S) for S has size O(n logd−1 n), and can be built in O(n log n + n logd−1 n)
time.

proof We assume for simplicity that n is a power of 2. Let Md(n) denote the size of a d-
dimensional range tree storing a set of n points. For d = 1, we clearly have Md (n) = O(n).
Assume that d ≥ 2. A d-dimensional range tree storing n points consists of (i) the root of
the main tree, (ii) a (d − 1)-dimensional range tree storing n points (this is the associated
structure of the root), and (iii) two d-dimensional range trees (which are the left and right

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

5.4 RANGE TREES 101

substructures of the root), each storing n/2 points. Hence, we have

Md (n) =
{

O(n) if d = 1,
O(1) + Md−1(n) + 2Md (n/2) if d ≥ 2.

By a double induction on d and n, it follows that Md (n) = O(n logd−1 n).
Let Pd (n) denote the time needed to build a d-dimensional range tree for a set of n

points, which are sorted by their d-th coordinates. Then

Pd (n) =
{

O(n) if d = 1,
O(n) + Pd−1(n) + 2Pd−1(n/2) if d ≥ 2.

Again, a double induction on d and n shows that Pd (n) = O(n logd−1 n). Since pre-
sorting the points of the set S (according to their d-th coordinates), takes O(n log n)
time, the total time to build a d-dimensional range tree for a set of n points is
O(n log n) + Pd (n).

5.4.1 Answering range queries

Before we can show how range trees can be used to perform RangeQuery operations,
we have to introduce the notion of canonical nodes. Consider a d-dimensional range tree
RTd (S) for a set S of n points in Rd , and let a and b be two real numbers with a ≤ b. Let
	a be the leftmost leaf in the main tree of RTd(S) that stores a point whose first coordinate
is greater than or equal to a, let 	b be the rightmost leaf in the main tree that stores a point
whose first coordinate is less than or equal to b, and let u be the lowest common ancestor
of 	a and 	b. We define a set C of nodes in the main tree, as follows:

1. The leaves 	a and 	b are both elements of C.

2. For each node v on the path from the left child of u to 	a and for which this path proceeds
to the left child of v, the set C contains the right child of v.

3. For each node v on the path from the right child of u to 	b and for which this path proceeds
to the right child of v, the set C contains the left child of v.

The nodes in C are called the canonical nodes with respect to the real numbers a and b. The
following lemma implies that the canonical nodes can be used to reduce a RangeQuery
operation in Rd to O(log n) RangeQuery operations in Rd−1. The proof is left as an
exercise; see Exercise 5.8.

Lemma 5.4.4. Consider a range tree RTd (S) for a set S of n points in Rd , and let a and
b be two real numbers such that a ≤ b. The set C of canonical nodes with respect to a

and b can be computed in O(log n) time. The set C has the property that

{p ∈ S : a ≤ p1 ≤ b} =
⋃
w∈C

Sw,

where the sets in the union on the right-hand side are pairwise disjoint.

We are now ready to present the algorithm for answering range queries.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

102 CONES IN HIGHER DIMENSIONAL SPACE AND �-GRAPHS

Algorithm RangeQuery(r, d, Q)

Comment: This algorithm takes as input a pointer to the root r of the main tree of a range
tree RTd (S), and a query hyperrectangle Q = ∏d

i=1[ai, bi]. It returns the set of all points
in S that are contained in Q.

C := the set of canonical nodes with respect to a1 and b1;
A := ∅;
if d = 1
then for each w ∈ C

do A := A ∪ Sw

endfor
else for each w ∈ C

do r ′ := the root of the associated structure of r ;

Q′ := ∏d
i=2[ai, bi];

A := A ∪ RangeQuery(r ′, d − 1,Q′)
endfor

endif;
return A

In the following lemma, we prove the correctness of this algorithm and analyze its
running time.

Lemma 5.4.5. Let d ≥ 1 be an integer constant, let S be a set of n points in Rd , let r be
the root of the main tree of a range tree RTd (S) for S, let Q be a hyperrectangle in Rd , and
let A be the set of all points in S that are contained in Q. Algorithm RangeQuery(r, d, Q)
returns the set A in O(logd n + |A|) time.

proof It follows from Lemma 5.4.4 that each point in A is reported exactly once by
algorithm RangeQuery(r, d, Q). Let Td(n) denote the running time of this algorithm. By
Lemma 5.4.4, the set C of canonical nodes can be computed in O(log n) time. Therefore,
we obtain the following recurrence:

Td (n) =
{

O(log n + |A|) if d = 1,
O(log n) +∑

w∈C Td−1(|Sw|) if d ≥ 2.

Since the size of C is O(log n), it follows that Td(n) = O(logd n + |A|).
Remark 5.4.6. Using a technique called layering, the range tree data structure can be
extended such that RangeQuery operations can be performed in O(log n + logd−1 n +
|A|) time. The proof of this claim is left as an exercise; see Exercise 5.10.

5.4.2 Supporting deletions

Until now, we have considered range trees as a static data structure. When inserting or
deleting a point, the main difficulty is to rebalance the binary search trees that constitute
the data structure. It is possible to maintain a range tree under insertions and deletions, in
polylogarithmic time per update operation. In this book, however, it is sufficient to have
a simpler dynamic range tree that supports only deletions; see Sections 5.5 and 7.4.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

5.5 HIGHER-DIMENSIONAL �-GRAPHS 103

Consider a range tree RTd (S) for a point set S. Deleting a point p from RTd (S) is
simply done by removing all information that is related to p from the data structure. To be
more precise, we delete the leaves in all binary search trees that store p, and we update all
search information in which p is “involved.” When deleting a point, we do not rebalance
any of the binary search trees. Since the initial data structure is balanced, at any moment
during the sequence of delete operations, each binary search tree in the range tree will
have height O(log n), where n is the initial size of S.

Algorithm Delete(r, d, p)

Comment: This algorithm takes as input a pointer to the root r of the main tree of a range
tree RTd (S), and a point p of S. It returns a pointer to the root of the main tree of a range
tree RTd (S \ {p}).
Step 1: Follow the path P in the main tree from the root r to the parent of the leaf 	p that

stores p.

Step 2: Delete the leaf 	p from the main tree, and update the search information at the
nodes on the path P .

Step 3: If d ≥ 2, then for each node v on P , call algorithm Delete(r ′
v, d − 1, p), where

r ′
v is the root of the associated structure of v.

Step 4: Return a pointer to the root of the main tree.

If we assume that the initial range tree RTd(S) is balanced and stores a set of n points,
then at any moment during a sequence of delete operations, each binary tree that is part
of the range tree has height O(log n). An analysis similar to the one in the proof of
Lemma 5.4.5 shows that the running time of algorithm Delete(r, d, p) is O(logd n).

The following theorem summarizes our main results on range trees.

Theorem 5.4.7. Let d ≥ 1 be an integer constant.

1. Let S be a set of n points in R
d . A range tree RTd (S) for S in which each binary

search tree has height O(log n) has size O(n logd−1 n). Such a range tree can be built in
O(n log n + n logd−1 n) time.

2. Given a set S of n points in R
d , and given a range tree RTd (S) for S in which each

binary search tree has height O(log n), we can perform any sequence of RangeQuery
and Delete operations, such that at any moment during this sequence,

(a) the data structure has size O(n logd−1 n),

(b) each Delete operation takes O(logd n) time, and

(c) each RangeQuery operation takes O(logd n + |A|) time, where A is the set of all
points in the current point set that are contained in the query hyperrectangle.

5.5 Higher-dimensional �-graphs

In Chapter 4, we have seen several algorithms that construct spanners that are based on
two-dimensional �-graphs. In this section, we will use the θ-frame of Theorem 5.2.8 and
the range tree of Theorem 5.4.7 to generalize all these results to the d-dimensional case,
where d ≥ 2 is a constant. Since these generalizations are obtained in a straightforward
manner, we will omit most of the details.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

104 CONES IN HIGHER DIMENSIONAL SPACE AND �-GRAPHS

5.5.1 The d-dimensional �-graph

Let θ be a real number such that 0 < θ < π , let κ = κdθ be as in (5.3), and let Cκ be the
θ-frame of Theorem 5.2.8. Recall that (i) each cone in Cκ has its apex at the origin, (ii)
the angular diameter of each cone in Cκ is at most θ , (iii) each cone in Cκ is a simplicial
cone; that is, it is the intersection of d halfspaces, (iv) the cones in Cκ cover Rd , and (v)
the number of cones in Cκ is κ = O(1/θd−1).

As in Section 4.1, we fix, for each cone C ∈ Cκ , a ray 	C that emanates from the origin
and that is contained in C. For any point p ∈ Rd , we define Cp := C + p = {x + p :
x ∈ C} and 	C,p := 	C + p.

Definition 5.5.1 (�-graph). Let S be a set of n points in Rd . The d-dimensional �-graph
�(S, κ) is defined as follows:

1. The vertices of �(S, κ) are the points of S.

2. For each point p of S and for each cone C of Cκ , such that the translated cone Cp contains
one or more points of S \ {p}, the graph �(S, κ) contains one edge {p, r}, where r is a
point in Cp ∩ S \ {p} whose orthogonal projection onto 	C,p is closest to p.

Let C be a cone of Cκ . We have seen in Section 5.1 that C can be written as the
intersection of d halfspaces in Rd . Let D1, D2, . . . , Dd be the lines through the origin
that are orthogonal to the hyperplanes bounding these halfspaces. These lines define a
coordinate system that can be used to compute all edges of �(S, κ) that correspond to
C. The algorithm is a straightforward generalization of algorithm Build�Graph(S, C)
in Section 4.1.2 and Exercise 4.11. It uses a variant of a (d − 1)-dimensional range tree,
where we take into account only the d − 1 orders induced by the lines D2, D3, . . . , Dd .
By sweeping over all points of S according to the order induced by D1, we obtain all
edges of �(S, κ) that correspond to the cone C, in O(n logd−1 n) time.

We obtain the following result, which generalizes Theorems 4.1.5 and 4.1.10.

Theorem 5.5.2. Let S be a set of n points in Rd , let θ be a real number such that
0 < θ < π/4, and let κ = κdθ be as in (5.3).

1. The graph �(S, κ) is a t-spanner for S, for t = 1/(cos θ − sin θ).

2. The graph �(S, κ) contains at most κn = O(n/θd−1) edges.

3. The graph �(S, κ) can be constructed in O((n/θd−1) logd−1 n) time, using O(n/θd−1 +
n logd−2 n) space.

5.5.2 The d-dimensional sink spanner

Let S be a set of n points in Rd , let q be a point of S, and let t > 1 be a real number. A
q-sink t-spanner for S is defined as in Definition 4.2.1: It is a directed graph having the
points of S as its vertices and that contains, for every p ∈ S, a directed t-spanner path
from p to q.

A q-sink t-spanner for S can be constructed using a straightforward generalization of
the algorithm given in Section 4.2.1. This generalized algorithm uses a θ-frame Cκ , where
θ is a real number such that t ≤ 1/(cos θ − sin θ) and κ is the number of cones in Cκ as
given in (5.3). We denote the resulting q-sink t-spanner by �(S, q, κ). When constructing
this graph, Theorem 5.3.2 is used to distribute the points over the cones of Cκ . In this way,
we obtain the following generalization of Theorem 4.2.3:

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

5.5 HIGHER-DIMENSIONAL �-GRAPHS 105

Theorem 5.5.3. Let S be a set of n points in Rd , let q be a point of S, let θ be a real
number such that 0 < θ < π/4, and let κ = κdθ be as in (5.3).

1. The graph �(S, q, κ) is a q-sink t-spanner for S, for t = 1/(cos θ − sin θ).

2. In �(S, q, κ), the indegree of each vertex is less than or equal to κ + 1 = O(n/θd−1), the
outdegree of q is 0, and the outdegree of each other vertex is 1.

3. The graph �(S, q, κ) can be constructed in O(1/θd−1 + log(1/θ)n log n) time.

5.5.3 Transforming a spanner of bounded outdegree to a spanner
of bounded degree

Given Theorem 5.5.3, the results of Section 4.2.2 immediately generalize to the higher-
dimensional case:

Theorem 5.5.4. Let S be a set of n points in Rd , let t and t ′ be real numbers such that
t > t ′ > 1, and let θ be a real number such that 0 < θ < π/4 and 1/(cos θ − sin θ) ≤ t/t ′.
Let G be a t ′-spanner for S, whose edges can be directed in T (n) time, such that each
vertex has outdegree at most D, for some integer D. In

O
(
1/θd−1 + T (n) + D log(1/θ)n log n

)
time, we can transform G into a t-spanner for S in which each vertex has degree
O(D/θd−1).

5.5.4 A d-dimensional spanner of bounded degree

We now show how Theorems 5.5.2 and 5.5.4 can be combined to obtain a t-spanner in
which the degree of each vertex is bounded by a function that depends only on t .

Let S be a set of n points in Rd , and let t > 1 be a real number. We choose a real
number θ such that 0 < θ < π/4 and 1/(cos θ − sin θ) ≤ √

t . Let κ = κdθ be as in (5.3),
and consider the θ-frame Cκ of Theorem 5.2.8, where κ = O(1/θd−1).

Let G be the �-graph �(S, κ). By Theorem 5.5.2, G is a
√

t-spanner for S, which
contains at most κn edges, and which can be constructed in O(κn logd−1 n) time. It
follows from the definition of �(S, κ) that the edges of G can be directed in O(κn)
time, such that the outdegree of each vertex is less than or equal to κ . Therefore, by
applying Theorem 5.5.4, with t ′ = √

t , T (n) = O(κn), and D = κ , we can transform G,
in O(κ log(1/θ)n log n) time, into a t-spanner G0 for S in which each vertex has degree
O(κ/θd−1).

If we choose θ as large as possible, and assume that t > 1 and t → 1, then θ ∼
(t − 1)/2. Since κ = O(1/θd−1), we have κ = O(1/(t − 1)d−1). We obtain the following
generalization of Theorem 4.2.6:

Theorem 5.5.5. Let S be a set of n points in Rd , and let t > 1 be a real number. In

O

(
1

(t − 1)d−1
n logd−1 n + log(1/(t − 1))

(t − 1)d−1
n log n

)
time, we can construct a t-spanner for S in which each vertex has degree O(1/(t − 1)2d−2).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

106 CONES IN HIGHER DIMENSIONAL SPACE AND �-GRAPHS

5.5.5 The d-dimensional skip list spanner

Using Theorem 5.5.2, the skip list spanner of Section 4.3.2 generalizes to the higher-
dimensional case in a straightforward way. We denote the d-dimensional version of this
spanner by SLS(S, κ). The following theorem is the generalization of Theorem 4.3.10:

Theorem 5.5.6. Let S be a set of n points in Rd , let θ be a real number such that
0 < θ < π/4, and let κ = κdθ be as in (5.3). Then the following is true:

1. The skip list spanner SLS(S, κ) is a t-spanner for S, for t = 1/(cos θ − sin θ). With high
probability, it contains O(n/θd−1) edges.

2. The graph SLS(S, κ) can be constructed in O((n/θd−1) logd−1 n) time, using O(n/θd−1 +
n logd−2 n) space, with high probability.

3. With high probability, the spanner diameter of SLS(S, κ) is O(log n).

4. All these bounds are with respect to the coin flips that are used to build the skip list
spanner.

Exercises

5.1. Let V be a finite set of points in R
d , let CH be the convex hull of V , let p ∈ R

d , and consider

cone(p, V); that is, the cone with apex p that is generated by V . Prove that cone(p, V) is equal to

the set of all points x ∈ R
d for which a point y in CH exists such that x is on the ray emanating

from p and going through y + p.

5.2. Let 0 ≤ j ≤ d , and let V = {v0, v1, . . . , vj } be a set of points in R
d . In the definition of a j -simplex

�(V), see Definition 5.2.4, we require that the points vi − v0, 1 ≤ i ≤ j , are linearly independent.

Prove that if this is the case, then for any k, the points vi − vk with 0 ≤ i ≤ j and i �= k, are also

linearly independent.

5.3. Let σ be a permutation of {1, 2, . . . , d}, and consider �σ as defined in Section 5.2.2. Prove that

�σ is a d-simplex. Also, prove that

�σ = {y ∈ R
d : 0 ≤ yσ (d) ≤ yσ (d−1) ≤ . . . ≤ yσ (1) ≤ 1}.

5.4. Prove the equation in (5.2) in the proof of Lemma 5.2.5.

5.5. In Section 5.2.2, we have shown that a three-dimensional cube U can be partitioned into 3! = 6
tetrahedra (i.e., 3-simplices). Prove that U can in fact be partitioned into 5 tetrahedra.

5.6. Give an example of a set V of d points in R
d \ {0}, such that �(V) is a (d − 1)-simplex, but cone(V)

is not a simplicial cone.

5.7. Prove that the cones in the θ -frame Cκ in Theorem 5.2.8 are simplicial cones (i.e., satisfy the

requirements in Definition 5.1.1). Also, prove that the interiors of any two distinct cones in Cκ are

disjoint.

5.8. Prove Lemma 5.4.4.

5.9. In Lemmas 5.4.3 and 5.4.5, we have analyzed the complexity of range trees assuming that the

dimension d is a constant. By analyzing the recurrences in the proofs of these lemmas more

carefully, prove that the constant factors in the Big-Oh bounds are in fact proportional to 1/(d − 1)!.

5.10. Extend the range tree data structure such that RangeQuery operations can be performed in

O(log n + logd−1 n + |A|) time. (Hint : First, prove this claim for the case when d = 2. For any two

nodes v and w in the main tree, such that w is a child of v, connect their associate structures by

pointers. This technique is called layering.)

5.11. Work out the details for Section 5.5.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHIC NOTES 107

Bibliographic notes

Sections 5.2.1 and 5.2.3 are due to Lukovszki [1999b]. Alternative constructions of
θ-frames appear in Yao [1982a] and Ruppert and Seidel [1991]; these constructions
produce more cones than the construction that we presented.

The triangulation presented in Section 5.2.2 is known as Kuhn’s triangulation and
appears in Kuhn [1960]. According to Kuhn, this triangulation was used earlier by A. W.
Tucker. The earliest reference seems to be Freudenthal [1942].

It is possible to construct triangulations of a hypercube in Rd that consist of less than
d! simplices. Determining the smallest number of simplices in any triangulation of a
hypercube is an extremely difficult problem, which has been solved only for dimensions
d ≤ 7. More information about this triangulation problem can be found in Chapter 17 of
Goodman and O’Rourke [2004].

The orthogonal range searching problem of Section 5.4 was introduced in Knuth
[1973]. The range tree data structure was discovered independently by Bentley [1979],
Lee and Wong [1980], Lueker [1978], and Willard [1979]. Lueker [1978] shows that
range trees can be maintained under insertions and deletions, in O(logd n) time per update
operation. The layering technique that improves the time for answering range queries
(see Remark 5.4.6 and Exercise 5.10) is due to Lueker [1978] and Willard [1978]. A
generalization of this technique, called fractional cascading, appears in Chazelle and
Guibas [1986a] and Chazelle and Guibas [1986b]. The layered range tree is more difficult
to maintain under insertions and deletions. Mehlhorn and Näher [1990] give a dynamic
version of fractional cascading, and show that it can be used to maintain range trees in
O(logd−1 n log log n) time per update operation. A detailed discussion about range trees
can be found in Willard and Lueker [1985], and in the books Preparata and Shamos
[1988] and de Berg et al. [2000]. Comprehensive surveys on geometric range searching
problems can be found in Agarwal and Erickson [1999] and Agarwal [2004]. A solution
to Exercise 5.9 can be found in Monier [1980].

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

6

Geometric Analysis: The Gap Property

In attempting to understand the elements out of which mental phenom-
ena are compounded, it is of the greatest importance to remember that
from the protozoa to man there is nowhere a very wide gap either in
structure or in behaviour.

—Bertrand Russell, The Analysis of Mind, 1921

In Chapters 4 and 5, we have seen how sparse spanners, spanners of bounded degree,
and spanners having a logarithmic spanner diameter can be computed. Even though the
algorithms were nontrivial, the arguments that were used in the analysis of each of these
spanners were straightforward. In Section 1.2, we also mentioned the weight of a spanner
as a measure to be optimized. To analyze the weight, we need tools for estimating the
weight of Euclidean graphs that satisfy a certain property.

Geometric analysis: Let S be a set of n points in Rd , and let E be a set of
(directed or undirected) edges whose endpoints belong to S and that satisfy some
property P . Find a good upper bound on the weight wt(E) of E, being the sum
of the lengths of its edges.

How does this relate to the problem of computing a spanner of low weight? We will
follow a two-step approach:

Step 1: Devise a property P for which we can prove a good upper bound for wt(E).

Step 2: Design an algorithm that computes a spanner whose edge set satisfies pro-
perty P .

In this chapter, we will introduce and analyze one such property P , the so-called gap
property. We will prove that the weight of any set of edges satisfying this property is
O(log n) times the weight of a minimum spanning tree of their n endpoints. In Chapter 7,
we will show that there is an efficient algorithm that computes a spanner, for any point
set S, whose edges satisfy the gap property. Hence, the results of the current chapter
immediately imply that the weight of this spanner is O(log n) times the weight of a
minimum spanning tree of S. In Section 6.2, we show a lower bound on the maximum
possible weight of any set of edges satisfying the gap property.

The gap property is not only useful to analyze the weight of spanners. In Section 6.5,
we will show that it can be applied in a worst-case analysis of the 2-Opt algorithm for the
traveling salesperson problem.

108

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

6.1 THE GAP PROPERTY 109

6.1 The gap property

For technical reasons, we will consider sets of directed edges.

The gap property: A set of directed edges satisfies the gap property, if the
sources of any two distinct edges are “far” apart (relative to the length of the
shorter of the two edges). If this condition also holds for the sinks of any two
distinct edges, then the edge set satisfies the strong gap property.

These properties are formally defined as follows (see Figure 6.1):

Definition 6.1.1 (Gap Property). Let w ≥ 0 be a real number, and let E be a set of
directed edges in Rd .

1. We say that E satisfies the w-gap property if for any two distinct edges (p, q) and (r, s)
in E, we have

|pr| > w · min(|pq|, |rs|).
2. We say that E satisfies the strong w-gap property if for any two distinct edges (p, q) and

(r, s) in E, we have

|pr| > w · min(|pq|, |rs|)
and

|qs| > w · min(|pq|, |rs|).
The Gap Theorem below bounds the total length of any set of edges that satisfies the

gap property. Recall that for any directed edge (p, q), p is called the source, and q is
called the sink.

Theorem 6.1.2 (Gap Theorem). Let S be a set of n points in Rd , and let E ⊆ S × S be
a set of directed edges that satisfies the w-gap property.

1. If w ≥ 0, then each point of S is the source of at most one edge of E.

2. If w > 0, then

wt(E) < (1 + 2/w) · wt(MST(S)) log n,

where MST(S) denotes a minimum spanning tree of S.

3. If w ≥ 0, and E satisfies the strong w-gap property, then each point of S is the sink of at
most one edge of E.

•p

•q

• r

• s

g

g′�

�

�

�

�

	

Figure 6.1: Illustrating the strong w-gap property for the two directed edges (p, q) and (r, s). The
distance g between the two sources p and r is larger than w times the length of the shorter edge (r, s).
Similarly, the distance g′ between the two sinks q and s is larger than w|rs|.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

110 GEOMETRIC ANALYSIS: THE GAP PROPERTY

proof Let (p, q) and (r, s) be two distinct edges of E. The lower bound on |pr|, which
is the distance between the source vertices, in Definition 6.1.1 immediately implies that
|pr| > 0. Therefore, p �= r , which proves the first claim. The third claim follows in a
similar way, by applying the argument to the sink vertices.

In the rest of the proof, we will prove the second of the three claims. So assume that
w > 0. Let m be the number of edges in E. First observe that the second claim holds if
m = 1. Henceforth, we assume that m ≥ 2.

Let us first assume that m is even. We make an additional claim that E contains a
subset E′ of size m/2, such that wt(E′) < (2/w) · wt(MST(S)). To prove this claim, we
consider a shortest traveling salesperson tour TSP(S) of S, and number the points of S

such that TSP(S) = (p1, p2, . . . , pn, p1). Now we walk along this tour, starting at p1, and
consider the order in which we visit the sources of the edges of E. (We know that all
sources are distinct. Hence, this order is uniquely defined.) We number the edges of E

according to this order as e1, e2, . . . , em. For each i with 1 ≤ i ≤ m, let |ei | denote the
length of ei , and let ki be the index such that edge ei has point pki

as its source. Observe
that 1 ≤ k1 < k2 < · · · < km ≤ n.

Let i be an integer with 1 ≤ i ≤ m/2, and consider the edges e2i−1 and e2i . Let Ti be
the portion of TSP(S) that starts at pk2i−1 and ends at pk2i

, that is,

Ti = (pk2i−1, pk2i−1+1, . . . , pk2i
).

The triangle inequality implies that

|pk2i−1pk2i
| ≤ wt(Ti).

On the other hand, since e2i−1 and e2i satisfy the w-gap property, we have

|pk2i−1pk2i
| > w · min(|e2i−1|, |e2i |).

Combining these two inequalities, we get

min(|e2i−1|, |e2i |) <
1

w
· wt(Ti).

Since the portions Ti , 1 ≤ i ≤ m/2, are pairwise disjoint, the latter inequality implies that
m/2∑
i=1

min(|e2i−1|, |e2i |) <
1

w

m/2∑
i=1

wt(Ti) ≤ 1

w
· wt(TSP(S)).

It should be clear how the subset E′ is obtained: For each i with 1 ≤ i ≤ m/2, E′ contains
the shorter of the two edges e2i−1 and e2i . (Ties are broken arbitrarily.) This set E′ has size
m/2, and its weight is less than (1/w) · wt(TSP(S)). Since wt(TSP(S)) ≤ 2 · wt(MST(S)),
see Exercise 1.6, it follows that wt(E′) < (2/w) · wt(MST(S)).

If m is an odd integer with m ≥ 3, then a similar argument implies that E contains a
subset E′ of size (m + 1)/2 such that wt(E′) < (1 + 2/w) · wt(MST(S)).

Now we can prove the second claim in the lemma. We will show by induction on m

that

wt(E) < (1 + 2/w) · wt(MST(S)) log m. (6.1)

This will imply the second claim, because m ≤ n.
To start the induction, assume that m = 2. Since m is even, the set E contains an edge

whose length is less than (2/w) · wt(MST(S)). The length of the other edge of E is clearly
less than or equal to wt(MST(S)). Hence, (6.1) holds in this case.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

6.2 A LOWER BOUND 111

Let m ≥ 3, and assume that (6.1) holds for all sets of edges that have less than m

elements and satisfy the w-gap property. Let E′ be a subset of E containing at least
m/2 elements such that wt(E′) < (1 + 2/w) · wt(MST(S)). We have proved above that
E′ exists. The set E \ E′ has size at most m/2 and satisfies the w-gap property. Hence,
by the induction hypothesis, we have wt(E \ E′) < (1 + 2/w) · wt(MST(S)) log(m/2).
Since wt(E) = wt(E′) + wt(E \ E′), it follows that (6.1) holds for the set E.

Proof of the Gap Theorem: The optimal TSP tour is used in the proof.
The lengths of the edges in E are “charged” to the TSP tour edges. The
edges of E are numbered according to the order in which their sources are
visited by an optimal traveling salesperson tour TSP(S). For a given pos-
itive real number w, the shorter of any two consecutive edges has length
less than 1/w times the portion of TSP(S) that is bounded by their sources.
Therefore, E contains a subset E′ of size about half the size of E, such
that wt(E′) = O(wt(TSP(S))) = O(wt(MST(S))). Applying this argument re-
cursively to E \ E′ proves that wt(E) = O(wt(MST(S)) log n).

Remark 6.1.3. Besides the triangle inequality, we did not use any geometric properties
in the proof of the Gap Theorem. Consequently, this theorem also holds for the case when
E is a set of edges with weights from an arbitrary metric space.

Remark 6.1.4. In the proof, the lengths of the edges in E are “charged” to the TSP tour
edges. However, the proof does not need the tour to be explicitly computed. It merely
requires its existence.

6.2 A lower bound

The Gap Theorem gives an upper bound on the weight of any set of edges that satisfy the
gap property. The following theorem proves that this upper bound is tight:

Theorem 6.2.1. Let w be a real number with 0 < w < 1, let k ≥ 2 be an integer, and
let n = 3k − 1. There exists a set S of n points on the real line and a set E ⊆ S × S of
directed edges, such that E satisfies the strong w-gap property, and

wt(E) = �(wt(MST(S)) log n).

proof For each i with 0 ≤ i < k, we partition the interval [0, 1] into 3i intervals, each
having length 1/3i . Thus, for j = 0, 1, . . . , 3i − 1, the j -th interval in this partition is
[j/3i , (j + 1)/3i]. For each such j , we divide the j -th interval into three subintervals of
equal length, and define eij to be the middle of these three subintervals. Thus,

eij = [j/3i + 1/3i+1, j/3i + 2/3i+1].

We consider eij to be an edge on the real line, and define

Ei := {eij : j = 0, 1, . . . , 3i − 1}.
Finally, we define

E := E0 ∪ E1 ∪ E2 ∪ · · · ∪ Ek−1

and S ⊆ R to be the set of endpoints of the edges in E.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

112 GEOMETRIC ANALYSIS: THE GAP PROPERTY

The number of edges in E is equal to
k−1∑
i=0

3i = 3k − 1

2
.

Let n denote the number of elements in S. Since the endpoints of all edges in E are pairwise
distinct, we have n = 3k − 1. We leave it as an exercise to verify that E satisfies the strong
w-gap property, for any assignment of directions to the edges in E; see Exercise 6.2.

In order to prove the second part of the claim, we need to analyze the weight of E and
the weight of a minimum spanning tree of S. Since the total weight of all edges in Ei is
equal to 1/3, we have

wt(E) = k/3 = 1

3
log3(n + 1) = �(log n).

The minimum spanning tree of S basically consists of the sorted sequence of the elements
of S. Since the minimum and maximum elements of S are equal to 1/3k and 1 − 1/3k ,
respectively, it follows that

wt(MST(S)) = 1 − 2

3k
< 1.

By combining these bounds, it follows that

wt(E)/wt(MST(S)) > wt(E) = �(log n),

completing the proof of the theorem.

6.3 An upper bound for points in the unit cube

The Gap Theorem compares the weight of a set of edges satisfying the gap property to
the weight of a minimum spanning tree on the endpoints of these edges. In this section,
we consider the case when these endpoints are in the d-dimensional unit cube [0, 1]d . It is
well known that the weight of a minimum spanning tree of such a point set is O(n1−1/d),
and that this upper bound is tight (up to constant factors). The theorem below states that
the same upper bound holds for the weight of a set of edges that satisfies the gap property.
Let

cd := πd/2

�(d/2 + 1)
, (6.2)

where � denotes Euler’s gamma-function. For large values of d, we have

cd ∼ 1√
πd

(
2eπ

d

)d/2

.

Recall that a d-dimensional ball of radius R has volume cdR
d .

Theorem 6.3.1. Let S be a set of n points in the d-dimensional unit cube [0, 1]d , where
d ≥ 2. Let w be a real number with 0 < w ≤ 2/

√
d , and let E ⊆ S × S be a set of directed

edges that satisfies the w-gap property. Then

wt(E) ≤ cdwn1−1/d ,

where

cdw = 1 + 22d+2

cdwd
.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

6.3 AN UPPER BOUND FOR POINTS IN THE UNIT CUBE 113

For large dimensions d, we have

cdw ∼ 1 + 23d/2+2 d (d+1)/2

wd ed/2 π (d−1)/2
.

proof We know from Theorem 6.1.2 that each point of S is the source of at most one
edge of E. Therefore, the set E contains at most n edges.

We partition the edges of E into two subsets. An edge (p, q) is called long, if |pq| >

n−1/d , and short otherwise. Let E	 be the set containing all long edges of E, and let Es

be the set containing all short edges of E. Clearly, we have

wt(Es) ≤ |ES |n−1/d ≤ n1−1/d .

In the rest of the proof, we will bound the weight of the long edges.
For any integer j , we define the interval Ij ⊆ R by

Ij :=
(

2j

n1/d
,

2j+1

n1/d

]
.

Using these intervals, we further partition the set E	 into subsets

Fj := {(p, q) ∈ E	 : |pq| ∈ Ij }.

Since long edges are of length more than n−1/d and at most
√

d (the diameter of the unit
cube), we need to consider only sets Fj for integers j in the range[

0,
⌊

log
(√

dn1/d
)⌋]

.

Let j be any index such that the set Fj is nonempty. We will prove an upper bound on
the weight of Fj . Let k be the number of edges in Fj . We denote these edges by (pi, qi),
1 ≤ i ≤ k. Let L := 2j /n1/d . Then for any i with 1 ≤ i ≤ k, we have L < |piqi | ≤ 2L.
Moreover, since the edges of E satisfy the w-gap property, we have

|pipi ′ | > w · min(|piqi |, |pi ′qi ′ |) > wL

for any two distinct indices i and i ′. Hence, if we draw a d-dimensional ball Bi of
radius wL/2 around each point pi , 1 ≤ i ≤ k, then these balls are pairwise disjoint. Since
wL/2 ≤ w

√
d/2 ≤ 1, at least a fraction (1/2)d of each ball Bi is contained in the unit

cube.
Recall that we defined cd to be πd/2/�(d/2 + 1), and that a d-dimensional ball of

radius R has volume cdR
d . It follows that the total volume of all portions of the balls Bi

inside the unit cube is greater than or equal to

k

(
1

2

)d

cd

(
wL

2

)d

.

This quantity must obviously be less than or equal to 1. Therefore,

k ≤ 22d

cdwdLd
.

Since each edge of Fj has length at most 2L, we get the upper bound

wt(Fj) ≤ 2Lk ≤ 2L
22d

cdwdLd
= 22d+1

cdwd2j (d−1)
n1−1/d .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

114 GEOMETRIC ANALYSIS: THE GAP PROPERTY

Define m := �log(
√

dn1/d)�. Then summing the weights of all sets Fj , we get

wt (E) =
m∑

j=0

wt(Fj)

≤
m∑

j=0

22d+1

cdwd2j (d−1)
n1−1/d

≤ 22d+2

cdwd
n1−1/d ,

where the last inequality follows from the fact that d ≥ 2. Since wt(E) = wt(Es) +
wt(E), the proof is complete.

6.4 A useful geometric lemma

In this section, we generalize Lemma 4.1.4; the reader may recall that it proved that in
order to go from vertex p to vertex q, it is worthwhile to head for any vertex that is
(approximately) at most as far as q and that is in the general direction of q. The more
technical, yet stronger, lemma presented in this section will be used at several places
in this book, for example in the analysis in Section 6.5 of the 2-Opt algorithm for the
traveling salesperson problem, in the proof in Section 7.1 that the output of the gap-
greedy algorithm is a spanner, and in the analysis in Section 15.1.1 of the output of the
path-greedy algorithm.

In Section 5.3, we defined the angle between two directed edges. We recall the def-
inition: Let p, q, r , and s be four points in Rd such that p �= q and r �= s. The angle
between the directed edges (p, q) and (r, s), denoted by angle(pq, rs), is defined as fol-
lows: Translate the two edges (p, q) and (r, s) such that their sources are at the origin.
Then angle(pq, rs) is the angle between these two translates; it is a real number in the
interval [0, π].

Lemma 6.4.1. Let t , θ , and w be real numbers, such that 0 < θ < π/4, 0 ≤ w <

(cos θ − sin θ)/2, and t ≥ 1/(cos θ − sin θ − 2w). Let p, q, r , and s be points in Rd , such
that

1. p �= q, r �= s,

2. angle(pq, rs) ≤ θ ,

3. |rs| ≤ |pq|/ cos θ , and

4. |pr| ≤ w|rs|.
Then |pr| < |pq|, |sq| < |pq|, and t |pr| + |rs| + t |sq| ≤ t |pq|.
proof Since |rs| ≤ |pq|/ cos θ and 0 < θ < π/4, we have |rs| <

√
2|pq|. Also, since

w < 1/2 and |pr| ≤ w|rs|, we have |pr| < |rs|/2. Combining these two inequalities
gives |pr| <

√
2|pq|/2 < |pq|.

Let 	 be the ray that emanates from r and that has the same direction as the vector
−→pq. Let v be the point on 	, such that |rv| = |pq|. Observe that |pr| = |vq|. Let u

be the orthogonal projection of s onto 	, and let α be the angle between −→rs and 	.
Then α = angle(pq, rs) ≤ θ , sin α = |su|/|rs| and cos α = |ru|/|rs|. We distinguish
two cases, depending on whether |ru| ≤ |rv| or |ru| > |rv|; see Figure 6.2.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

6.4 A USEFUL GEOMETRIC LEMMA 115

• •
p p

• •
q q

• •r r• •v
v

• •s
s

• •
u

u
α α

Figure 6.2: Cases 1 and 2 in the proof of Lemma 6.4.1.

Case 1: |ru| ≤ |rv|.
To show that |sq| < |pq|, we apply the triangle inequality and simplify:

|sq| ≤ |su| + |uv| + |vq|
= |su| + |rv| − |ru| + |vq|
= |su| + |pq| − |ru| + |pr|
= |rs|(sin α − cos α) + |pq| + |pr|
≤ |rs|(sin θ − cos θ) + |pq| + w|rs|
= |pq| − |rs|(cos θ − sin θ − w). (6.3)

Since w < (cos θ − sin θ)/2 and r �= s, we conclude that |sq| < |pq|.
To prove the third claim, we use (6.3) and the assumptions of the lemma, and obtain

t |pr| + |rs| + t |sq| ≤ t |pr| + |rs| + t |pq| − t |rs|(cos θ − sin θ − w)

≤ tw|rs| + |rs| + t |pq| − t |rs|(cos θ − sin θ − w)

= (1 − t(cos θ − sin θ − 2w)) |rs| + t |pq|
≤ t |pq|.

Case 2: |ru| > |rv|.
As in Case 1, we apply the triangle inequality and simplify:

|sq| ≤ |su| + |uv| + |vq|
= |su| + |ru| − |rv| + |vq|
= |rs|(sin α + cos α) − |pq| + |pr|
≤ |rs|(sin θ + cos θ) − |pq| + w|rs|
= |rs|(sin θ + w) + |rs| cos θ − |pq|
≤ |rs|(sin θ + w) (6.4)

≤ |pq|
cos θ

(
sin θ + cos θ − sin θ

2

)
= 1

2
|pq|(1 + tan θ).

Since 0 < θ < π/4, we have tan θ < 1. Therefore, |sq| < |pq|.
We complete the proof by using (6.4) and the assumptions of the lemma. We have

t |pr| + |rs| + t |sq| ≤ t |pr| + |rs| + t |rs|(sin θ + w)

≤ tw|rs| + |rs| + t |rs|(sin θ + w)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

116 GEOMETRIC ANALYSIS: THE GAP PROPERTY

= (1 + t(sin θ + 2w)) |rs|
= t |pq| − t |pq| + (1 + t(sin θ + 2w)) |rs|
≤ t |pq| − t |rs| cos θ + (1 + t(sin θ + 2w)) |rs|
= t |pq| − (t(cos θ − sin θ − 2w) − 1) |rs|
≤ t |pq|.

This completes the proof.

An application: Assume that we want to travel from vertex p to vertex q.
Moreover, assume that there is a directed edge (r, s), such that (i) (r, s) is almost
parallel to (p, q), (ii) |rs| is not much larger than |pq|, and (iii) r is close to p.
Then Lemma 6.4.1 states that we obtain a short path between p and q, by first
traveling from p to r , then following the edge (r, s), and finally traveling from s

to q. We remark that Lemma 6.4.1 states that the two edges (p, q) and (r, s) do
not satisfy the leapfrog property that will be defined in Section 14.1.

6.5 Worst-case analysis of the 2-Opt algorithm
for the traveling salesperson problem

In this section, we show the following surprising application of the Gap Theorem: The
2-Opt algorithm for the Euclidean traveling salesperson problem outputs a set of edges
that can be partitioned into a constant number of subsets, each of which satisfies the gap
property. Hence, the 2-Opt algorithm computes, for a given set S of n points in Rd , a tour
of length O(log n) times the length of an optimal traveling salesperson tour of S.

Let S be a set of n points in Rd . Recall that in the traveling salesperson problem, we
want to find a shortest tour that visits each point of S and returns to its starting point. Such
a shortest tour is denoted by TSP(S). Since this problem is NP-hard, heuristics have been
developed that are fast and compute tours that are reasonably short on practical instances.
One such heuristic is the 2-Opt algorithm.

In the 2-Opt algorithm, we start with an arbitrary initial tour, and improve it by making
small local changes. To be more precise, let T be the current tour along the points of S.
We assume that the edges of T are directed. As long as T contains distinct edges (p, q)
and (r, s), such that

|pr| + |qs| < |pq| + |rs|, (6.5)

the 2-Opt algorithm improves T by replacing the two edges (p, q) and (r, s) by the edges
(p, r) and (q, s), and reversing the direction of the edges on the path from q to r; the
situation is shown in Figure 6.3, where the original tour is shown as straight lines, and the
replacement edges are shown as dotted lines.

The 2-Opt algorithm results in a tour T0 such that (6.5) does not hold for any pair
of distinct edges. Such a tour is called 2-optimal. Computing the worst-case value for
the approximation factor wt(T0)/wt(TSP(S)) was a long-standing open problem. As
mentioned above, we use the gap property to show that this approximation factor is
O(log n).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

6.5 WORST-CASE ANALYSIS OF THE 2-OPT ALGORITHM 117

•

• •

•

•

•

••

•

p

q

r

s

�
�

�

�

�

�
	

�

�

	

Figure 6.3: The 2-Opt algorithm replaces the two edges (p, q) and (r, s) by the edges (p, r) and (q, s).
Reversing the direction of the edges on the path from q to r results in a shorter (directed) tour.

To prove this claim, let T0 be a tour along the points of S that is 2-optimal. Then for
any two distinct edges (p, q) and (r, s) of T0, we have

|pr| + |qs| ≥ |pq| + |rs|. (6.6)

The following lemma states that any two distinct edges of T0 that are approximately
parallel satisfy the gap property. We choose real numbers θ and w such that 0 < θ < π/4
and 0 < w < (cos θ − sin θ)/2.

Lemma 6.5.1. Let (p, q) and (r, s) be two distinct edges of T0, and assume that
angle(pq, rs) ≤ θ . Then

|pr| > w · min(|pq|, |rs|),

i.e., (p, q) and (r, s) satisfy the w-gap property.

proof We may assume without loss of generality that |rs| ≤ |pq|. The proof is by
contradiction. So assume that |pr| ≤ w|rs|. Let t := 1/(cos θ − sin θ − 2w). Then, by
Lemma 6.4.1, we have

t |pr| + |rs| + t |sq| ≤ t |pq|.

Since the tour T0 is 2-optimal, inequality (6.6) implies that |pq| ≤ |pr| + |sq| − |rs|.
Therefore, we have

t |pr| + |rs| + t |sq| ≤ t |pr| + t |sq| − t |rs|,

which rewrites to (1 + t)|rs| ≤ 0. This is clearly a contradiction, because r �= s.

We partition the edges of T0 into O(1/θd−1) subsets, such that any two edges within the
same subset make an angle of at most θ ; see Theorem 5.3.3. It follows from Lemma 6.5.1
and Theorem 6.1.2 that the weight of the edges within each subset is less than (1 +
2/w) · wt(MST(S)) log n. Hence, by using the fact that wt(MST(S)) ≤ wt(TSP(S)) (see
Exercise 1.6), it follows that

wt(T0) = O

(
1

wθd−1
· wt(TSP(S)) log n

)
. (6.7)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

118 GEOMETRIC ANALYSIS: THE GAP PROPERTY

Observe that this upper bound holds for all real numbers θ and w for which 0 < θ < π/4
and 0 < w < (cos θ − sin θ)/2. Choosing θ and w to be constants implies the following
theorem.

Theorem 6.5.2. Let d ≥ 2 be an integer constant, and let S be a set of n points in Rd .
The 2-Opt algorithm computes a tour along the points of S, whose length is O(log n)
times the length of an optimal traveling salesperson tour of S.

Hence, the worst-case approximation ratio of the 2-Opt algorithm is O(log n). It can
be shown that there are infinitely many integers n for which this ratio is greater than or
equal to c log n/ log log n, for some fixed constant c.

Open problem: What is the largest possible value of the ratio wt(T0)/
wt(TSP(S)), over all sets S of n points in Rd and all 2-optimal tours T0 of S?

Exercises

6.1. Let w > 0 be a real number, let S be finite set of points in R
d , and let E ⊆ S × S be a set of

directed edges, such that for any two distinct edges (p, q) and (r, s) in E,

|pr| > w · max(|pq|, |rs|).

Prove that

wt(E) = O((1 + 1/w) · wt(MST (S))).

6.2. Prove that the edge set E defined in the proof of Theorem 6.2.1 satisfies the strong w-gap prop-

erty, for any real number w with 0 < w < 1 and for any assignment of directions to the edges

in E.

6.3. Let S be a set of n points in the d-dimensional unit cube [0, 1]d . Prove that the weight of a minimum

spanning tree of S is less than or equal to c′
dn

1−1/d , where c′
d is a real number that depends only

on d . Prove that this upper bound is tight (to within a constant factor), if d is a constant.

6.4. Prove that Lemma 4.1.4 is a special case of Lemma 6.4.1.

6.5. Let S be a finite set of points in the plane, and let T0 be a traveling salesperson tour that is 2-optimal.

Prove that no two edges of T0 cross.

6.6. Give an example of a noncrossing tour along a set of points in the plane that is not 2-optimal.

6.7. We have seen that the 2-Opt algorithm computes a tour T0 along the point set S whose length is

O

(
1

wθd−1
· wt(TSP (S)) log n

)
for any two real numbers θ and w for which 0 < θ < π/4 and 0 < w < (cos θ − sin θ)/2; see

(6.7). Determine θ and w for which this upper bound is as small as possible.

6.8. Prove the following claim: For infinitely many positive integers n, there exists a set S of n points in

the plane and a tour T0 along the points of S, such that T0 is 2-optimal and

wt(T0) ≥ c · wt(TSP (S))
log n

log log n
,

for some fixed constant c.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHIC NOTES 119

Bibliographic notes

The gap property was introduced by Chandra et al. [1995]. They also proved the Gap
Theorem. Section 6.3 is based on Chandra [1994], whereas Section 6.4 is based on Arya
and Smid [1997].

The 2-Opt algorithm for the traveling salesperson problem is due to Lin [1965]; see
also Lin and Kernighan [1973]. The analysis given in Section 6.5 is based on Chandra,
Karloff, and Tovey [1999]; see also Alon and Azar [1993]. A solution to Exercise 6.8 can
be found in Chandra, Karloff, and Tovey [1999].

The upper bound in Exercise 6.3 was originally shown by Few [1955]. The dependence
on the dimension d was subsequently improved by Smith [1988] and Steele and Snyder
[1989]; see also the book Hwang, Richards, and Winter [1992].

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

7

The Gap-Greedy Algorithm

The point is, ladies and gentlemen, that greed, for lack of a better word,
is good. Greed is right. Greed works.

—Gordon Gecko (played by Michael Douglas), Wall Street, 1987

In Chapter 6, we defined the gap property (Definition 6.1.1). The Gap Theorem (Theo-
rem 6.1.2) proved that any set E of directed edges whose endpoints belong to a set S of
n points in Rd and that satisfies the w-gap property for some constant w > 0 has weight
O(wt(MST(S)) log n). We also proved that if E satisfies the strong w-gap property, then
both the indegree and outdegree of each point of S are at most one in the graph (S, E).

In this chapter, we present the so-called gap-greedy algorithm. This algorithm computes
a spanner whose edge set can be partitioned into a constant number of subsets, each
satisfying the strong gap property. Thus, Theorem 6.1.2 immediately gives upper bounds
on the degree and the weight of this spanner.

We will give only the details for the planar case. In Section 7.5, we will indicate how
the algorithm can be generalized to an arbitrary dimension d ≥ 2.

In Section 7.2, we start with a simple and inefficient version of the gap-greedy algo-
rithm. A geometric lemma, proved in Section 7.1, shows that this graph has a small stretch
factor. Hence, this algorithm, when given any set S of n points in the plane, constructs
a spanner of bounded degree and having weight O(wt(MST(S)) log n). Its running time,
however, is �(n3). In Sections 7.3 and 7.4, we design a variant of this algorithm, and show
how to implement it such that its running time is O(n log2 n).

It turns out to be convenient to describe the algorithm so that it computes a directed
spanner. Therefore, all edges in this chapter are directed edges. Recall that the degree of
a vertex in a directed graph is defined to be the sum of its indegree and outdegree.

7.1 A sufficient condition for “spannerhood”

In this section, we prove a geometric lemma, which will be used later to prove that the
graph constructed by the gap-greedy algorithm has a small stretch factor.

When does a directed graph G have a small stretch factor: Assume that for
any two distinct points p and q of a point set S, there is an edge (r, s) in G such
that (i) the vectors −→pq and −→rs have approximately the same direction, (ii) |rs| is
not much larger than |pq|, and (iii) at least one of the distances |pr| and |qs| is
small (relative to the length of (r, s)). Then G has a small stretch factor.

120

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

7.2 THE GAP-GREEDY ALGORITHM 121

We will use the notation angle (pq, rs) for the angle between the directed edges (p, q)
and (r, s); see Section 5.3.

Lemma 7.1.1. Let θ , w, and t be real numbers such that 0 < θ < π/4, 0 ≤ w <

(cos θ − sin θ)/2, and t ≥ 1/(cos θ − sin θ − 2w). Let S be a set of n points in the plane,
and let G = (S, E) be a directed graph, such that the following holds: For any two distinct
points p and q of S, there is an edge (r, s) ∈ E, such that

1. angle (pq, rs) ≤ θ ,

2. |rs| ≤ |pq|/ cos θ , and

3. |pr| ≤ w|rs| or |qs| ≤ w|rs|.
Then, the graph G is a t-spanner for S.

proof Let p and q be any two points of S. We will show that G contains a (directed)
t-spanner path from p to q. The proof is by induction on the rank of the distance |pq| in
the sorted sequence of distances determined by all ordered pairs of points. If |pq| = 0,
then p = q and G clearly contains a t-spanner path from p to q. Assume that |pq| > 0.
Furthermore, assume that for any two points x and y of S with |xy| < |pq|, the graph G

contains a t-spanner path from x to y.
Let (r, s) be any edge of E for which all three premises of this lemma hold. We will

consider the case only when |pr| ≤ w|rs|. (The case when |qs| ≤ w|rs| can be treated
by a symmetric argument.) Since the premises of Lemma 6.4.1 from the previous chapter
are satisfied, it follows from that lemma that |pr| < |pq|, |sq| < |pq|, and

t |pr| + |rs| + t |sq| ≤ t |pq|. (7.1)

Hence, by the induction hypothesis, there are t-spanner paths in G from p to r , and from
s to q. Consider the path in G that starts in p, follows the t-spanner path to r , then takes
the edge from r to s, and finally follows the t-spanner path from s to q. The length of this
path is bounded from above by t |pr| + |rs| + t |sq|, which, by (7.1), is less than or equal
to t |pq|. Hence, G contains a t-spanner path from p to q.

7.2 The gap-greedy algorithm

In this section, we give a simple greedy algorithm for constructing a spanner. We call it
the gap-greedy algorithm, in order to distinguish it from the path-greedy algorithm that
will be given in Chapter 15.

Recall the strong gap property of Section 6.1: If w ≥ 0 is a real number, then a set E

of directed edges satisfies the strong w-gap property, if for any two distinct edges (p, q)
and (r, s) in E, we have

|pr| > w · min(|pq|, |rs|)

and

|qs| > w · min(|pq|, |rs|).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

122 THE GAP-GREEDY ALGORITHM

The gap-greedy algorithm: The algorithm starts with an empty set E of edges,
and considers all ordered pairs of distinct points in nondecreasing order of their
distances. Let p and q form the current pair of points. The algorithm adds the
edge (p, q) to E if it does not violate the strong gap property. That is, the decision
whether or not edge (p, q) is added to E is based on Lemma 7.1.1: Edge (p, q)
is added if and only if there is no edge (r, s) in the current edge set E such that (i)
(p, q) and (r, s) have approximately the same direction, and (ii) at least one of the
distances |pr| and |qs| is small. If there is such an edge (r, s), then Lemma 7.1.1
implies that we do not need to add the edge (p, q) in order to get a graph with a
small stretch factor.

Algorithm GapGreedy(S, θ, w)

Comment: This algorithm takes as input a set S of n points in the plane, and two real
numbers θ and w such that 0 < θ < π/4 and 0 ≤ w < (cos θ − sin θ)/2. The algorithm
returns a directed t -spanner G = (S,E), for t = 1/(cos θ − sin θ − 2w).

sort the 2
(
n

2

)
ordered pairs of distinct points in non-decreasing order

of their distances (ties are broken arbitrarily), and store them in a
list L;
E := ∅;
for each ordered pair (p, q) ∈ L (∗ consider pairs in sorted order ∗)
do add := true;

for each edge (r, s) ∈ E

do if angle (pq, rs) ≤ θ

then add := add ∧(|pr| > w|rs|) ∧ (|qs| > w|rs|)
endif

endfor;
if add = true then E := E ∪ {(p, q)} endif

endfor;
return the graph G = (S,E)

Lemma 7.2.1. Let θ and w be real numbers such that 0 < θ < π/4 and 0 ≤ w <

(cos θ − sin θ)/2, and let S be a set of n points in the plane. The graph G =
(S, E) that is returned by algorithm GapGreedy(S, θ, w) is a t-spanner for S, for
t = 1/(cos θ − sin θ − 2w).

proof It is sufficient to show that the set E satisfies the three conditions of Lemma 7.1.1,
since this implies that the graph G is a t-spanner for S.

Let p and q be any two distinct points of S. If (p, q) is an edge of E, then the three
conditions of Lemma 7.1.1 hold with r = p and s = q. Assume that (p, q) is not an
edge of E. Consider the iteration of the outer for-loop during which the pair (p, q) was
inspected. The algorithm did not add (p, q) to E because this set contained an edge (r, s),
such that (i) angle (pq, rs) ≤ θ , and (ii) at least one of |pr| and |qs| is less than or equal
to w|rs|. Since (r, s) was contained in E at the moment when the algorithm inspected
the pair (p, q), we have |rs| ≤ |pq|. In particular, |rs| ≤ |pq|/ cos θ . Therefore, the three
conditions of Lemma 7.1.1 are satisfied.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

7.2 THE GAP-GREEDY ALGORITHM 123

Lemma 7.2.2. Let θ and w be real numbers such that 0 < θ < π/4 and 0 ≤ w <

(cos θ − sin θ)/2, and let S be a set of n points in the plane.

1. Algorithm GapGreedy(S, θ,w) computes a graph in which each vertex has degree at
most 2�2π/θ�.

2. If w > 0, then the weight of this graph is less than �2π/θ�(1 + 2/w) log n times the
weight of a minimum spanning tree of S.

proof Consider any two distinct edges (p, q) and (r, s) in the graph G = (S, E) that is
constructed by algorithm GapGreedy(S, θ, w), and assume that angle (pq, rs) ≤ θ . We
may assume without loss of generality that (r, s) was added to E before (p, q). It follows
from the algorithm that |rs| ≤ |pq|, |pr| > w|rs|, and |qs| > w|rs|. Hence, the strong
w-gap property holds for the edges (p, q) and (r, s).

Consider a collection C of �2π/θ� cones of angle θ that have their apex at the origin
and that cover the plane. Number the cones of C as C1, C2, . . . , C�2π/θ�. For each i with
1 ≤ i ≤ �2π/θ�, define

Ei := {(p, q) ∈ E : q − p ∈ Ci}.
Since Ei ⊆ E for 1 ≤ i ≤ �2π/θ�, it is clear that Ei satisfies the strong w-gap property.
Furthermore, Theorem 6.1.2 implies that no two distinct edges of Ei share a source, and
no two distinct edges of Ei share a sink. Since the sets Ei , 1 ≤ i ≤ �2π/θ�, partition E,
it follows that each point p of S has indegree and outdegree at most �2π/θ� in G; that is,
the degree of p in G is less than or equal to 2�2π/θ�. Also, if w > 0, then Theorem 6.1.2
implies that the weight of E is less than

�2π/θ�(1 + 2/w) · wt(MST(S)) log n.

This completes the proof.

Let us examine the quality of the output of algorithm GapGreedy, as a function of the
upper bound t on the stretch factor.

Let ε > 0 be a real number and let t = 1 + ε. We assume that ε is close to zero. How
should we choose θ and w so as to achieve the best bound on the weight of the t-spanner?
In order to minimize the weight, we have to minimize the expression (2π/θ)(1 + 2/w).
Since t = 1 + ε = 1/(cos θ − sin θ − 2w), we have

w = 1

2

(
cos θ − sin θ − 1

1 + ε

)
.

Since ε is close to zero, θ is close to zero as well, and we can approximate the expression
for w by

w ∼ 1

2
(1 − θ − (1 − ε)) = 1

2
(ε − θ).

Hence, we have to minimize

2π

θ

(
1 + 2

w

)
∼ 2π

θ

4

ε − θ
;

that is, we have to maximize θ(ε − θ). The latter expression is maximum for θ = ε/2,
which gives w = ε/4. The corresponding (1 + ε)-spanner has degree at most 8π/ε, and
weight at most (32π/ε2) log n times the weight of a minimum spanning tree of S. Hence,
we have proved the following result.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

124 THE GAP-GREEDY ALGORITHM

Theorem 7.2.3. Let S be a set of n points in the plane, and let t > 1 be a real number.
Algorithm GapGreedy(S, (t − 1)/2, (t − 1)/4) computes a t-spanner for S,

1. in which the degree of each point is O(1/(t − 1)) and

2. whose weight is O((1/(t − 1)2) · wt(MST(S)) log n).

7.3 Toward an efficient implementation

A direct implementation of algorithm GapGreedy has running time �(n3). One of the
obstacles in designing an o(n2)–time implementation of this algorithm is the fact that all
pairs of points are considered. In this section, we discuss several modifications to the
algorithm with the goal of improving the time complexity. As we will see in the next
section (Section 7.4), this modified version can be implemented such that its running time
is O(n log2 n).

Throughout this section, we fix a real number θ with 0 < θ < π/4. Let κ = �2π/θ�,
and let Cκ be a collection of κ cones of angle θ that have their apex at the origin and that
cover the plane. As always, we denote the Euclidean distance between the points p and
q by |pq|. The L∞-distance between p = (p1, p2) and q = (q1, q2) will be denoted by
|pq|∞, i.e.,

|pq|∞ = max(|p1 − q1|, |p2 − q2|).

It is easy to see that

|pq|∞ ≤ |pq| ≤
√

2|pq|∞.

We will make three major modifications to algorithm GapGreedy. Consider the formal
description of the algorithm as given in Section 7.2.

Modification 1: We replace the condition “angle(pq, rs) ≤ θ” by “q − p and s − r are
contained in the same cone of Cκ .” It is clear that the latter condition implies the former
although the converse need not be true.

Modification 2: As prescribed in the pseudocode, after algorithm GapGreedy has added
an edge (r, s) to the graph, it does not add any edge (p, q) that has approximately the
same direction as (r, s), and for which p is “close” to r or q is “close” to s. Consider this
condition for the points p and r . In the algorithm, p is “close” to r , if p is contained in a
circle that is centered at r and that has radius w|rs|. Since it is not clear how to efficiently
find all points p of S that are in this circle, we modify the notion of p being “close” to r ,
in the following way.

In algorithm GapGreedy, we replace the inequality “|pr| > w|rs|” by “|pr|∞ >

(w/
√

2)|rs|,” and the inequality “|qs| > w|rs|” by “|qs|∞ > (w/
√

2)|rs|.” That is, for
the points p and r (and for the points q and s), we switch from the Euclidean metric to the
L∞-metric. Observe that all points p for which |pr|∞ ≤ (w/

√
2)|rs| are contained in the

axes-parallel square that is centered at r and that has sides of length 2(w/
√

2)|rs|. Using
range trees, see Section 5.4, we can find these points p efficiently. A similar remark holds
for the points q and s.

Modification 3: Algorithm GapGreedy considers all pairs of points in nondecreasing
order of their Euclidean distances. If (r, s) is an edge of the current graph, and (p, q) is the
current pair to be tested for inclusion, then we know that |rs| ≤ |pq|. By Lemma 7.1.1,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

7.3 TOWARD AN EFFICIENT IMPLEMENTATION 125

•
p

•q

•α
	C,p

δC(p, q)� �

�

Figure 7.1: The approximate distance δC(p, q).

however, it suffices that |rs| ≤ |pq|/ cos θ , that is, |rs| can be slightly larger than |pq|.
(See also the proof of Lemma 7.2.1.)

Our third modification is as follows. Instead of considering all pairs of points in
nondecreasing order of their distances, we consider them in nondecreasing order of their
approximate distances, to be defined below. As we will see later, this avoids having to
explicitly consider all pairs of points.

The approximate distances that we will use are based on the cones of Cκ . For each
cone C ∈ Cκ , let 	C be a fixed ray that emanates from the origin and that is contained in
C. For example, we can think of 	C as being the bisector of cone C. Recall the notation
Cp := C + p := {x + p : x ∈ C} and 	C,p := 	C + p introduced in Section 4.1.

For any cone C ∈ Cκ , and any two points p and q in the plane, we define (refer to
Figure 7.1)

δC(p, q) :=

the Euclidean distance between p and
the orthogonal projection of q onto 	C,p if q ∈ Cp,
∞ if q �∈ Cp.

Observe that δC is not a metric; in particular, it is not a symmetric function. The
following lemma states that δC(p, q) is a good approximation for the Euclidean distance
between p and q, if q ∈ Cp.

Lemma 7.3.1. Let C be a cone of Cκ , and let p and q be two distinct points in the plane,
such that q ∈ Cp. Then

|pq| cos θ ≤ δC(p, q) ≤ |pq|.
proof Let α be the angle between 	C,p and (p, q); see Figure 7.1. Then, 0 ≤ α ≤ θ

and cos α = δC(p, q)/|pq|. Hence, δC(p, q) = |pq| cos α ≥ |pq| cos θ and δC(p, q) =
|pq| cos α ≤ |pq|.

Now we are ready to present the modified version of algorithm GapGreedy. For
each cone C of Cκ , this modified algorithm computes a set EC of edges (p, q) such that
q − p ∈ C. The union of these sets will be the edge set of our final spanner.

Consider a cone C of Cκ . The algorithm initializes EC to the empty set. Then it
computes two distinct points r and s for which δC(r, s) is minimum, and adds the edge
(r, s) to EC . Lemma 7.1.1 implies that, having added this edge, one may discard from
further consideration for addition to EC , all edges (p, q) for which (i) q − p ∈ C, and (ii)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

126 THE GAP-GREEDY ALGORITHM

the distance between p and r is “small.” That is, after having added (r, s), each point p

that is “close” to r should not occur as the source of any edge that is added to EC later
during the algorithm. Similarly, after having added the edge (r, s) to EC , each point q that
is “close” to s should not occur as the sink of any edge that is added to EC afterward.
That is, the addition of edge (r, s) to EC causes certain points to become forbidden as a
source or a sink.

After having added the edge (r, s) to EC , the algorithm computes two distinct points r ′

and s ′ such that r ′ is not forbidden as a source, s ′ is not forbidden as a sink, and δC(r ′, s ′) is
minimum. It adds the edge (r ′, s ′) to EC , and makes the appropriate points forbidden as a
source or forbidden as a sink. The algorithm repeats this, as long as there are nonforbidden
points having a finite δC-distance.

The algorithm uses variables dist to keep track of the points that are forbidden as source
or sink vertices. Initially, dist(r, s) = δC(r, s), for any two points r and s in S. If an edge
(r, s) is added to EC , then the algorithm finds all points p that are “close” to r , and,
for each such p, assigns dist(p, q) := ∞, for all q ∈ S. Similarly, the algorithm finds all
points q that are “close” to s, and, for each such q, assigns dist(p, q) := ∞, for all p ∈ S.

Interpretation of the dist-variables: If p �= q, then dist (p, q) is finite if and
only if, (i) dist (p, q) = δC(p, q), (ii) q − p ∈ C (i.e., (p, q) may still be included
in the edge set EC), (iii) p is not forbidden (yet) as a source, and (iv) q is not
forbidden (yet) as a sink.

Algorithm ModGapGreedy(S, θ, w)

Comment: This algorithm takes as input a set S of n points in the plane, and two real
numbers θ and w such that 0 < θ < π/4 and 0 ≤ w < (cos θ − sin θ)/2. The algorithm
returns a directed t -spanner G = (S,E), for t = 1/(cos θ − sin θ − 2w).

for each cone C of Cκ

do for each r ∈ S and s ∈ S do dist(r, s) := δC(r, s) endfor;
EC := ∅;
while there are distinct points r and s such that dist(r, s) < ∞
do choose r and s (r �= s) such that dist(r, s) is minimum;

EC := EC ∪ {(r, s)};
for each p ∈ S such that |pr|∞ ≤ (w/

√
2)|rs|

do for each q ∈ S do dist(p, q) := ∞ endfor
endfor;
for each q ∈ S such that |qs|∞ ≤ (w/

√
2)|rs|

do for each p ∈ S do dist(p, q) := ∞ endfor
endfor

endwhile
endfor;
return the graph G = (S,E), where E := ⋃

C EC

Lemma 7.3.2. Let θ and w be real numbers such that 0 < θ < π/4 and 0 ≤ w <

(cos θ − sin θ)/2, and let S be a set of n points in the plane. The graph G = (S, E)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

7.3 TOWARD AN EFFICIENT IMPLEMENTATION 127

that is returned by algorithm ModGapGreedy(S, θ, w) is a t-spanner for S, for
t = 1/(cos θ − sin θ − 2w).

proof The proof is similar to that of Lemma 7.2.1. Let p and q be two distinct points of
S. If (p, q) ∈ E, then the three conditions of Lemma 7.1.1 hold. So assume that (p, q) is
not contained in E. Let C be the cone of Cκ such that q − p ∈ C. Consider the iteration of
the outer for-loop during which the edge set EC is constructed. At the start of this iteration,
dist(p, q) is initialized to δC(p, q), which is finite. Since (p, q) is not added to EC , the
value of dist(p, q) changes to ∞ during one of the iterations of the while-loop. Let (r, s) be
the edge that is added to EC during the iteration in which dist(p, q) is set to ∞. At the start
of this iteration, we have (i) dist(r, s) ≤ dist(p, q) < ∞, (ii) dist(r, s) = δC(r, s) and (iii)
dist(p, q) = δC(p, q). Moreover, we have |pr|∞ ≤ (w/

√
2)|rs| or |qs|∞ ≤ (w/

√
2)|rs|.

We consider these two cases separately.

Case 1: |pr|∞ ≤ (w/
√

2)|rs|.
In this case, we have |pr| ≤ √

2|pr|∞ ≤ w|rs|. Since s − r and q − p are both con-
tained in C, we have angle (pq, rs) ≤ θ . By Lemma 7.3.1, we have |rs| ≤ δC(r, s)/ cos θ

and δC(p, q) ≤ |pq|. Since δC(r, s) ≤ δC(p, q), we conclude that |rs| ≤ |pq|/ cos θ .
Hence, the three conditions of Lemma 7.1.1 hold for the points p and q.

Case 2: |qs|∞ ≤ (w/
√

2)|rs|.
It follows in the same way as in Case 1 that |qs| ≤ w|rs|, angle(qp, sr) ≤ θ and

|rs| ≤ |pq|/ cos θ . Hence also in this case, the three conditions of Lemma 7.1.1 hold for
the points p and q.

We have shown that for any two distinct points p and q of S, the three conditions of
Lemma 7.1.1 are satisfied. Therefore, the graph G is a t-spanner for S.

Lemma 7.3.3. Let θ and w be real numbers such that 0 < θ < π/4 and 0 ≤ w <

(cos θ − sin θ)/2, and let S be a set of n points in the plane.

1. Algorithm ModGapGreedy(S, θ,w) computes a graph in which each vertex has degree
at most 2�2π/θ�.

2. If w > 0, then the weight of this graph is less than �2π/θ�(1 + 2
√

2/w) log n times the
weight of a minimum spanning tree of S.

proof Consider an arbitrary cone C of Cκ . We will prove that the edges of EC satisfy the
strong (w/

√
2)-gap property. Having proved this, the lemma follows from Theorem 6.1.2.

Consider any two distinct edges (p, q) and (r, s) of EC . We may assume without loss
of generality that (r, s) was added to EC before (p, q). We have |pr|∞ > (w/

√
2)|rs|

and |qs|∞ > (w/
√

2)|rs|. (Otherwise, the algorithm would have set dist(p, q) to ∞
immediately after (r, s) was added to EC and, as a result, p and q would never have been
chosen as a pair with finite and minimal dist-value. In particular, the edge (p, q) would
not have been added to EC .) This immediately implies that

|pr| ≥ |pr|∞ > (w/
√

2)|rs| ≥ (w/
√

2) · min(|pq|, |rs|)

and

|qs| ≥ |qs|∞ > (w/
√

2)|rs| ≥ (w/
√

2) · min(|pq|, |rs|),

that is, the strong (w/
√

2)-gap property holds.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

128 THE GAP-GREEDY ALGORITHM

The modified gap-greedy algorithm: For each cone C, set EC := ∅ and
dist(r, s) := δC(r, s) for all r ∈ S and s ∈ S. Repeatedly choose two distinct
points r and s for which dist(r, s) is minimum (and finite). Add (r, s) to EC ,
and set dist(p, q) := ∞ for (i) all p that are “close” to r , and all q ∈ S, and (ii)
all q that are “close” to s, and all p ∈ S. The region of “closeness” for r (resp.
s) is the square centered at r (resp. s) and having sides of length 2(w/

√
2)|rs|.

The algorithm adds edges to EC in nondecreasing order of their δC-distances,
which is in “approximately nondecreasing” order of their Euclidean distances.
By Lemma 7.1.1, the resulting graph has a small stretch factor. Moreover, each
set EC satisfies the strong gap property.

7.4 An efficient implementation of the gap-greedy algorithm

Let C be a cone of Cκ , and consider the iteration of the outer for-loop of algorithm
ModGapGreedy during which the edge set EC is constructed. As stated, the algorithm
starts by computing a quadratic number of dist-values. Then, during each iteration of
the while-loop, it selects two distinct points r and s for which dist(r, s) is minimum
(and finite), adds the edge (r, s) to EC , and sets the appropriate dist-values to ∞. Since
the final set EC contains O(n) edges, the while-loop makes only a linear number of
iterations.

In this section, we show how to implement algorithm ModGapGreedy such that its
running time is bounded by O(n log2 n).

The main ingredients: The first ingredient is a data structure based on range trees
(see Section 5.4) that implicitly stores all finite dist-values, together with the min-
imum value among them. The second ingredient consists of two standard range
trees that are used to find those points p and q for which |pr|∞ ≤ (w/

√
2)|rs|

and |qs|∞ ≤ (w/
√

2)|rs|, respectively.

Before we can define these data structures, we have to introduce some notation. The
cone C is the intersection of two halfplanes. Let h1 and h2 be the two lines that bound
these halfplanes, and let D1 and D2 be the lines through the origin that are orthogonal to
h1 and h2, respectively. We give the lines D1 and D2 directions, as indicated in Figure 7.2.
Let L be the line that contains the ray 	C . We give L the same direction as 	C . As
in Section 7.3, we use the notation 	C,p to be the ray 	C translated to emanate from
point p.

•
0

�

�

�D2

D1

L •p
� 	C,p

h2 + p

h1 + p

Figure 7.2: The directed lines D1, D2 and L, and the translated cone Cp .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

7.4 AN EFFICIENT IMPLEMENTATION 129

Our data structures will store points with respect to different coordinate axes. Let p be
any point in the plane.

1. We write the coordinates of p with respect to the standard (orthogonal) coordinate axes
as p1 and p2.

2. For each i ∈ {1, 2}, we denote by p′
i the coordinate of p with respect to the axis Di . That

is, p′
i is the signed Euclidean distance between the origin and the orthogonal projection

of p onto Di , where the sign is positive or negative according to whether this projection
is to the “right” or “left” of the origin.

3. We denote by p′
3 the coordinate of p with respect to the axis L. That is, p′

3 is the signed
Euclidean distance between the origin and the orthogonal projection of p onto L.

Using this notation, we can write the cone C as

C = {x ∈ R
2 : x ′

i ≥ 0, i = 1, 2}.

Similarly, for any p ∈ R2, we can write the translated cone Cp as

Cp = {x ∈ R
2 : x ′

i ≥ p′
i , i = 1, 2}.

We define −Cp := −C + p = {−y + p : y ∈ C}. Then we have

−Cp = {x ∈ R
2 : x ′

i ≤ p′
i , i = 1, 2}.

Finally, we have

δC(p, q) =
{

q ′
3 − p′

3 if q ∈ Cp,
∞ if q �∈ Cp.

We assume for simplicity that the p1-coordinates of all points of S are pairwise distinct.
We make similar assumptions about the p2-, p′

1-, p′
2-, and p′

3-coordinates.

7.4.1 The main data structure

Let S be a set of n points in the plane, and let C be any cone of Cκ . The main data structure
used by our algorithm maintains the minimal finite dist-value, under the following two
operations:

ForbidSource(p): Given any point p ∈ S, this operation makes p forbidden as a
source; that is, it sets dist(p, q) to ∞ for all q ∈ S.

ForbidSink(q): Given any point q ∈ S, this operation makes q forbidden as a sink;
that is, it sets dist(p, q) to ∞ for all p ∈ S.

The data structure that supports these two operations will be referred to as the mindist-
structure; we will denote it by T . This data structure has the form of a 3-layered range
tree; it depends on the cone C. We start by describing this data structure in detail; refer to
Figure 7.3. Later, we will show how the operations ForbidSource and ForbidSink can
be implemented.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

130 THE GAP-GREEDY ALGORITHM

�

�

�

� �

S−
u3

S+
u3

η3(u)

•u1

•u

x ′
u1 x ′

u2

Layer 1 tree

Layer 2 tree
Layer 3
structures

�L

h2 + xu

h1 + xu

xu

η3(u)� �

••
•

•

•
•

•
•

•
•

•
•

Figure 7.3: Illustration of the mindist-structure. Node u2 is equal to u. The points in the cone −Cxu
belong

to the list S−
u3, while those in the cone Cxu

belong to the list S+
u3.

The mindist-structure T : We use a 2-layered range tree, based on the p′
1- and

p′
2-coordinates, to partition the set {(r, s) : r ∈ S, s ∈ S, r �= s, δC(r, s) < ∞}

into O(n log n) subsets. Each subset is a Cartesian product of the form A × B,
for two sets A and B that can be separated by a line orthogonal to L. Since A

is to the “left” of B, we have min{δC(a, b) : a ∈ A, b ∈ B} = δC(r, s), where r

is the point of A for which r ′
3 is maximum and s is the point of B for which s ′

3 is
minimum. We add a third layer to the range tree, storing the sets A and B sorted
by their p′

3-coordinates.

The layer 1 tree

There is a balanced binary search tree, called the layer 1 tree, storing the points of S at its
leaves, sorted in nondecreasing order of their p′

1-coordinates. Internal nodes of this tree

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

7.4 AN EFFICIENT IMPLEMENTATION 131

contain information to guide searches, as in Section 5.4. For any node v of the layer 1
tree, we denote by Sv1 the subset of S that is stored in the subtree of v.

The layer 2 trees

Each node v of the layer 1 tree contains a pointer to the root of a balanced binary search
tree, called a layer 2 tree, storing the points of Sv1 at its leaves, sorted in nondecreasing
order of their p′

2-coordinates. Again, internal nodes contain information to guide searches.
Before we can define the third layer of the data structure, we introduce some notation.

Let u be any node of a layer 2 tree. We define two nodes u1 and u2, as follows. First,
u2 := u. To define u1, start at node u, and walk to the root of the layer 2 tree that contains
u. Then u1 is defined as that node of the layer 1 tree that contains a pointer to this root.

For each i ∈ {1, 2}, we denote by x ′
ui the maximal p′

i-coordinate that is stored in the
left subtree of node ui (as indicated in Figure 7.3). The point with coordinates x ′

u1 and x ′
u2

is denoted by xu. (These coordinates are with respect to the axes D1 and D2. In general,
xu is not an element of S.)

The third layer of the data structure

Each node u of any layer 2 tree contains pointers to data structures that form the third
layer. Consider any such node u. We denote by Su2 the subset of S that is stored in the
subtree of u. Consider the point xu as defined above.

Let S−
u3 be a subset of {p ∈ Su2 : p′

i ≤ x ′
ui, i = 1, 2} and let S+

u3 be a subset of {p ∈
Su2 : p′

i ≥ x ′
ui, i = 1, 2}. Observe that the points of S−

u3 and S+
u3 are contained in the cones

−Cxu
and Cxu

, respectively. (During the algorithm, S−
u3 and S+

u3 will be the subsets of
Su2 ∩ (−Cxu

) and Su2 ∩ Cxu
consisting of those points that are not forbidden as a source

and a sink, respectively. For the description of the data structure, we assume that they are
arbitrary subsets.) Node u of the layer 2 tree contains pointers to:

1. a list storing the points of S−
u3, sorted in nondecreasing order of their p′

3-coordinates (for
simplicity, we let S−

u3 denote both the set and the sorted list),

2. a list storing the points of S+
u3, sorted in nondecreasing order of their p′

3-coordinates (for
simplicity, we let S+

u3 denote both the set and the sorted list),

3. a variable η3(u) whose value is

η3(u) = min{δC(p, q) : p ∈ S−
u3, q ∈ S+

u3},

4. and, in case, η3(u) < ∞, a pair (p, q) of points such that p ∈ S−
u3, q ∈ S+

u3 and η3(u) =
δC(p, q).

The lists S−
u3 and S+

u3 are called layer 3 lists. If S−
u3 or S+

u3 is empty, then η3(u) = ∞. (In
particular, this is the case if u is a leaf.) Otherwise, η3(u) = δC(p, q) = q ′

3 − p′
3, where

p and q are the maximal and minimal elements that are stored in the lists S−
u3 and S+

u3,
respectively.

The reader is urged to prove the following lemma before reading on (see Exercise 7.2).

Lemma 7.4.1. Assume that S−
u3 = Su2 ∩ (−Cxu

) and S+
u3 = Su2 ∩ Cxu

for all nodes u of
any layer 2 tree. Then {(r, s) : r ∈ S, s ∈ S, r �= s, δC(r, s) < ∞} is the disjoint union of
the Cartesian products S−

u3 × S+
u3. Hence, the minimal δC-value is equal to the minimal

η3-value.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

132 THE GAP-GREEDY ALGORITHM

Additional information stored in the nodes of layer 1 and layer 2 trees

In order to maintain the minimal η3-value efficiently, we need the following additional
information.

We store with each node u of any layer 2 tree a variable η2(u), whose value is defined
as follows. If u is a leaf, then η2(u) = ∞. Otherwise, let ul and ur be the left and right
children of u, respectively. The variable η2(u) has value

η2(u) = min(η2(ul), η2(ur), η3(u)). (7.2)

In case η2(u) < ∞, we also store with node u a corresponding pair of points that realizes
η2(u).

In the same way, we store with each node v of any layer 1 tree a variable η1(v). If
v is a leaf, then η1(v) = ∞. Otherwise, let vl and vr be the left and right children of v,
respectively, and let uv be the root of the layer 2 tree to which v has a pointer. Then

η1(v) = min(η1(vl), η1(vr), η2(uv)). (7.3)

In case η1(v) < ∞, we also store with node v a pair of points that realizes η1(v).
Observe that the value η1(v), where v is the root of the layer 1 tree, is equal to the

minimum of η3(u), where u ranges over all nodes of all layer 2 trees.

The dictionary

In order to speed up searching during the algorithm, we store all points of S in a dictionary,
for example, a balanced binary search tree, where we can use any ordering of the points.
Hence, we can in O(log n) time, search for an arbitrary point of S in this dictionary. With
each point p in the dictionary, we store the following:

1. a list of pointers to all occurrences of p in the lists S−
u3 and

2. a list of pointers to all occurrences of p in the lists S+
u3.

This concludes the description of the mindist-structure T . Recall that this structure depends
on the cone C. We state the following lemma without proof.

Lemma 7.4.2. The mindist-structure T , together with the dictionary and its lists of point-
ers, has size O(n log2 n) and can be built in O(n log2 n) time.

The operations ForbidSource and ForbidSink

At the start of the iteration in which the efficient implementation of algorithm
ModGapGreedy computes the edge set EC corresponding to the cone C, layer 3 lists S−

u3
and S+

u3 store the sets {p ∈ Su2 : p′
i ≤ x ′

ui, i = 1, 2} and {p ∈ Su2 : p′
i ≥ x ′

ui, i = 1, 2},
respectively. During the algorithm, points will be made forbidden as a source or a sink,
which corresponds to deleting the point from these lists (based on their proximities to the
endpoints of other edges added to EC).

Making a point forbidden as a source or a sink: If a point p is deleted from
a list S−

u3, then it will not “contribute” anymore to the value η3(u). Therefore,
deleting p from all lists S−

u3 in which it occurs corresponds to making p forbidden
as a source (i.e., setting dist(p, q) to ∞ for all q ∈ S). Similarly, deleting a point
q from all lists S+

u3 in which it occurs corresponds to making q forbidden as a
sink.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

7.4 AN EFFICIENT IMPLEMENTATION 133

Algorithm ForbidSource(T , p)

Comment: This algorithm takes as input a point p of S. It makes p forbidden as a source,
by deleting p from all lists S−

u3 in which it occurs. After these deletions, the algorithm
updates the mindist-structure T .

Step 1: Search for p in the dictionary, and follow the pointers to the positions of all
occurrences of p in the lists S−

u3. For each such list S−
u3, carry out Steps 2 and 3.

Step 2: Delete p from S−
u3. If the list S+

u3 is empty, then we are done; otherwise, let q be
the minimal element of S+

u3. Go to Step 3.

Step 3: If p was not the maximal element of S−
u3, then we are done. Otherwise, if p was

the only element in S−
u3, then set η3(u) := ∞. Finally, if p was the maximal, but not the

only element in S−
u3, then let r be the new maximal element of S−

u3. In this case, set
η3(u) := δC(r, q) = q ′

3 − r ′
3, and store the pair (r, q) with node u.

Step 4: At this moment, all layer 3 lists and all η3-variables have been updated correctly.
In this final step, the rest of the data structure is updated.

Search for p in the layer 1 tree. For each node v on the search path, search for p

in the layer 2 tree of v. Let 	v be the leaf of this layer 2 tree in which the search ends.
(Observe that η2(v) = ∞.) Then, starting at 	v , walk back to the root of the layer 2
tree of v, and for each node u on the path, recompute the value of η2(u) using (7.2),
and update the pair of points realizing η2(u).

Having done this for all nodes v, all η2-variables have the correct values. The η1-
variables are updated in a similar fashion: Let 	 be the leaf of the layer 1 tree that stores
p. Then, starting at 	, walk back to the root of the layer 1 tree, and for each node v on
the path, recompute η1(v) using (7.3), and update the pair of points realizing η1(v).

We remark that algorithm ForbidSource(T , p) does not delete p from the layer 1 and
layer 2 trees, because this is not necessary for our final implementation of the gap-greedy
algorithm. Hence, the layer 1 and layer 2 trees do not change during a deletion, except
that the values of the η1- and η2-variables are updated. Point p has been deleted from all
layer 3 lists S−

u3 and, therefore, cannot contribute any more to any η3-variable. Point p

may be deleted from the dictionary, but this is not necessary.
In a completely symmetric way, we obtain algorithm ForbidSink(T , q), which deletes

the point q from all lists S+
u3 in which it occurs, and updates the mindist-structure. We

state the following lemma without proof.

Lemma 7.4.3. The following two claims hold.

1. Given a point p of S, algorithm ForbidSource(T , p) deletes p from all lists S−
u3 in which

it occurs, and updates the entire mindist-structure, in O(log2 n) time.

2. Given a point q of S, algorithm ForbidSink(T , q) deletes q from all lists S+
u3 in which it

occurs, and updates the entire mindist-structure, in O(log2 n) time.

7.4.2 The final algorithm

We are now ready to present an efficient implementation of algorithm ModGapGreedy.
As before, all cones of Cκ are considered separately. If C is the current cone, then our

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

134 THE GAP-GREEDY ALGORITHM

algorithm maintains the following information:

1. The mindist-structure T , consisting of the 3-layered data structure, together with the
dictionary and its lists of pointers.

2. A 2-dimensional range tree (see Section 5.4), denoted by RTsource, storing a subset of S

according to their standard coordinates p1 and p2. A point of S is contained in this range
tree if and only if it has not been forbidden as a source.

3. A 2-dimensional range tree, denoted by RTsink, storing a subset of S according to their
standard coordinates p1 and p2. A point of S is contained in this range tree if and only if
it has not been forbidden as a sink.

Recall that the range trees RTsource and RTsink can be used to find, for any two given
points r and s, all points p and q such that |pr|∞ ≤ (w/

√
2)|rs| and |qs|∞ ≤ (w/

√
2)|rs|,

respectively; see algorithm RangeQuery in Section 5.4.1. Also recall algorithm Delete
in Section 5.4.2 for deleting a point p from a range tree (without rebalancing the data
structure). We denote this algorithm by Delete(RTsource, p) and Delete(RTsink, p), re-
spectively.

Algorithm FastGapGreedy(S, θ, w)

Comment: This algorithm takes as input a set S of n points in the plane, and two real
numbers θ and w such that 0 < θ < π/4 and 0 ≤ w < (cos θ − sin θ)/2. The algorithm
returns a directed t -spanner G = (S,E), for t = 1/(cos θ − sin θ − 2w).

for each cone C of Cκ

do store the points of S in the mindist-structure T , such that
for each node u of each layer 2 tree, the layer 3 lists S−

u3

and S+
u3 store the sets {p ∈ Su2 : p′

i ≤ x ′
ui, i = 1, 2} and

{p ∈ Su2 : p′
i ≥ x ′

ui, i = 1, 2}, respectively;
store the points of S in the 2-dimensional range tree RTsource;
store the points of S in the 2-dimensional range tree RTsink;
EC := ∅;
η := η1-value stored with the root of the layer 1 tree of T ;
while η < ∞
do let (r, s) be the pair such that η = δC(r, s);

EC := EC ∪ {(r, s)};
for each p ∈ RTsource such that |pr|∞ ≤ (w/

√
2)|rs|

do Delete(RTsource, p);
ForbidSource(T , p)

endfor;

for each q ∈ RTsink such that |qs|∞ ≤ (w/
√

2)|rs|
do Delete(RTsink, q);

ForbidSink(T , q)
endfor;
η := η1-value stored with the root of the layer 1 tree of T

endwhile
endfor;
return the graph G = (S,E), where E := ⋃

C EC

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

7.4 AN EFFICIENT IMPLEMENTATION 135

We mentioned already that the η1-value stored with the root of the layer 1 tree of T

is equal to the minimal finite dist-value of algorithm ModGapGreedy. The following
lemma gives the precise statement of this claim.

Lemma 7.4.4. Let C ∈ Cκ , and consider the iteration of the outer for-loop of algorithm
FastGapGreedy(S, θ, w) during which the edge set EC is constructed. At the start of
any iteration of the while-loop, we have

η = min{δC(p, q) : p ∈ RTsource, q ∈ RTsink, p �= q}.
proof First observe that η < ∞. Since the value of each ηi-variable, 1 ≤ i ≤ 3, is
either ∞ or δC(p, q) for some p ∈ RTsource and q ∈ RTsink, it is clear that

η ≥ min{δC(p, q) : p ∈ RTsource, q ∈ RTsink, p �= q}. (7.4)

If at least one of RTsource and RTsink is empty, then η = ∞. Hence, both these range
trees are nonempty. Let r ∈ RTsource and s ∈ RTsink be two distinct points such that

δC(r, s) = min{δC(p, q) : p ∈ RTsource, q ∈ RTsink, p �= q}.
We will show that there is a node u in some layer 2 tree of T such that η3(u) = δC(r, s).
Since η ≤ η3(u), this will imply that

η ≤ min{δC(p, q) : p ∈ RTsource, q ∈ RTsink, p �= q}
and, therefore, complete the proof of the lemma.

Let u1 be the lowest common ancestor of the leaves storing r and s in the layer 1 tree
of T . Similarly, let u2 be the lowest common ancestor of the leaves storing r and s in the
layer 2 tree that is attached to node u1. We will prove that η3(u2) = δC(r, s).

Let u := u2, and consider the point xu ∈ R2 as defined in the description of the layer 2
trees of T . (The nodes u1 and u2 defined in that description are exactly the nodes that we
defined in the preceding paragraph.) Since η < ∞, inequality (7.4) implies that δC(r, s) <

∞ and, hence, s ∈ Cr . Therefore, s ′
1 ≥ r ′

1 and s ′
2 ≥ r ′

2, that is, both in the layer 1 tree and
in the layer 2 tree pointed to by u1, the leaf storing r is to the left of the leaf storing s. Then,
the definitions of x ′

u1 and x ′
u2 immediately imply that r ′

1 ≤ x ′
u1 ≤ s ′

1 and r ′
2 ≤ x ′

u2 ≤ s ′
2.

(See also Exercise 7.6.) Since r ∈ RTsource and s ∈ RTsink, the points r and s are contained
in the lists S−

u3 and S+
u3, respectively. But then, since all points of S−

u3 are stored in RTsource,
all points of S+

u3 are stored in RTsink, and δC(r, s) is minimum, r and s must be the maximal
and minimal elements in their lists, respectively. Then, the definition of η3(u) implies that
η3(u) = δC(r, s). Hence the result.

We claim that algorithms ModGapGreedy and FastGapGreedy compute the same
graph (S, E). Once we have proved this, Lemmas 7.3.2 and 7.3.3 imply upper bounds on
the stretch factor, the degree and, if w > 0, the weight of this graph. To prove this claim,
we run, for the sake of analysis, both algorithms in parallel, and show that during each
iteration of their while-loops, they add the same edge to E.

Let C be a cone ofCκ , and consider the corresponding outer for-loops of both algorithms.
Immediately before the while-loops of both algorithms, we have,

{dist(r, s) : r ∈ S, s ∈ S, r �= s, dist(r, s) < ∞}
= {δC(r, s) : r ∈ RTsource, s ∈ RTsink, r �= s, δC(r, s) < ∞}. (7.5)

Assume that Eq. (7.5) holds at the start of a specific iteration of both the algorithms.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

136 THE GAP-GREEDY ALGORITHM

Algorithm ModGapGreedy takes a pair (r ′, s ′) for which dist(r ′, s ′) is a minimal ele-
ment in the set on the left-hand side of (7.5). By Lemma 7.4.4, algorithm FastGapGreedy
takes a pair (r ′′, s ′′) for which δC(r ′′, s ′′) is a minimal element in the set on the right-hand
side of (7.5). Hence, we have dist(r ′, s ′) = δC(r ′′, s ′′). Observe that the sets in (7.5) may
have several minimal elements. In that case, we force algorithm ModGapGreedy to
choose the pair that is chosen by algorithm FastGapGreedy. We denote the chosen pair
by (r, s). Both algorithms add the edge (r, s) to their edge sets EC . Then ModGapGreedy
updates certain dist-values, while FastGapGreedy updates the structures T , RTsource,
and RTsink. By comparing the algorithms, it follows that (7.5) continues to hold at the
end of that iteration in both algorithms. This proves that algorithms ModGapGreedy and
FastGapGreedy, indeed, compute the same edge set E.

Finally, let us analyze the running time of algorithm FastGapGreedy(S, θ, w). Con-
sider a fixed cone C of Cκ . By Lemma 7.4.2, the mindist-structure T has size O(n log2 n),
and can be built in O(n log2 n) time. By Theorem 5.4.7, the range trees RTsource and RTsink

have size O(n log n), and can be built in O(n log n) time. Using these range trees, all
points contained in an axes-parallel query square can be reported in time proportional to
log2 n plus the number of points in this square. Furthermore, a point can be deleted from
a range tree in O(log2 n) time.

We estimate the running time of the while-loop of algorithm FastGapGreedy(S, θ, w).
Any point p of S is deleted from a range tree at the moment when it is reported as being
contained in a “query” square. Hence, the total time spent for all these queries and deletions
in the range trees is O(n log2 n).

Consider any point p of S. It is deleted at most once from RTsource. At the moment
when it is deleted from this range tree, algorithm ForbidSource(T , p) deletes p from all
lists S−

u3 in which it occurs, and updates T . By Lemma 7.4.3, this takes O(log2 n) time.
Similarly, when p is deleted from RTsink, algorithm ForbidSink(T , p) spends O(log2 n)
time for updating T . Hence for each point p of S, O(log2 n) time is spent for updating
the mindist-structure T .

We have shown that algorithm FastGapGreedy(S, θ, w) spends O(n log2 n) time for
each cone C in Cκ . Since there are κ such cones, the total running time of the algorithm
is O(κn log2 n). We have proved the main result of this chapter:

Theorem 7.4.5. Let θ and w be real numbers such that 0 < θ < π/4 and 0 ≤ w <

(cos θ − sin θ)/2, and let S be a set of n points in the plane. In O((1/θ)n log2 n) time
and using O(n log2 n + (1/θ)n) space, algorithm FastGapGreedy(S, θ, w) computes a
t-spanner for S, such that

1. t = 1/(cos θ − sin θ − 2w),

2. each vertex in the spanner has degree at most 2�2π/θ�, and

3. if w > 0, the weight of the spanner is less than �2π/θ�(1 + 2
√

2/w) log n times the weight
of a minimum spanning tree of S.

If we assume that t > 1 and t → 1, then, as indicated just before Theorem 7.2.3,
we obtain the best result by taking θ ∼ (t − 1)/2 and w ∼ (t − 1)/4. For these values,
the degree of the t-spanner is O(1/(t − 1)) and its weight is O((1/(t − 1)2) ·
wt(MST(S)) log n).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

7.5 GENERALIZATION TO HIGHER DIMENSIONS 137

7.5 Generalization to higher dimensions

In the previous sections, we have presented the gap-greedy algorithm for two-dimensional
point sets. We now indicate how algorithm FastGapGreedy(S, θ, w) can be generalized
to the higher dimensional case.

Let d ≥ 2 be an integer constant, and let S be a set of n points in Rd . We choose two
arbitrary real numbers θ and w such that 0 < θ < π/4 and 0 ≤ w < (cos θ − sin θ)/2.
Observe that Lemma 7.1.1 remains valid. Let κ = κdθ be as in (5.3), and let Cκ be the
θ-frame of Theorem 5.2.8. Recall that κ = O(1/θd−1).

Let C be a cone in Cκ . We fix a ray 	C that emanates from the origin and that is
contained in C. Since C is a simplicial cone, it can be written as the intersection of d

halfspaces. Let D1, D2, . . . , Dd be the lines through the origin that are orthogonal to the
hyperplanes bounding these halfspaces. Furthermore, let Dd+1 be the line through 	C .

For any point p in Rd , we write the coordinates of p with respect to the standard
(orthogonal) coordinate axes as p1, p2, . . . , pd . For each i with 1 ≤ i ≤ d + 1, we denote
by p′

i the coordinate of p with respect to the line Di . That is, p′
i is the signed Euclidean

distance between the origin and the orthogonal projection of p onto Di . Using these
coordinates, we can write the translated cone Cp as

Cp = {x ∈ R
d : x ′

i ≥ p′
i , i = 1, 2, . . . , d}.

The approximate distance function δC of Section 7.3 generalizes to

δC(p, q) =
{

q ′
d+1 − p′

d+1 if q ∈ Cp,
∞ if q �∈ Cp.

The mindist-structure T of Section 7.4.1 becomes a (d + 1)-layered data structure. The
first d layers form a d-dimensional range tree, using the coordinate system defined by
D1, D2, . . . , Dd . The (d + 1)-st layer is defined using the coordinates p′

d+1 defined by
Dd+1.

The algorithm, denoted by FastGapGreedyDDim(S, θ, w), is a direct generaliza-
tion of the corresponding algorithm in Section 7.4.2. Besides the mindist-structure
T , it uses two d-dimensional range trees RTsource and RTsink, each storing a sub-
set of S according to their standard coordinates p1, p2, . . . , pd . The output of algo-
rithm FastGapGreedyDDim(S, θ, w) consists of a directed t-spanner G = (S, E), for
t = 1/(cos θ − sin θ − 2w). The following theorem generalizes Theorem 7.4.5.

Theorem 7.5.1. Let θ and w be real numbers such that 0 < θ < π/4 and 0 ≤ w <

(cos θ − sin θ)/2, and let S be a set of n points in Rd . In O((1/θd−1)n logd n) time and us-
ing O(n logd n + (1/θd−1)n) space, algorithm FastGapGreedyDDim(S, θ, w) computes
a t-spanner for S, such that

1. t = 1/(cos θ − sin θ − 2w),

2. each vertex in the spanner has degree O(1/θd−1), and

3. the weight of this graph is O((1/θd−1)(1 + 1/w) log n) times the weight of a minimum
spanning tree of S.

Let us assume that t > 1 and t → 1. Then, using an analysis that is similar to the
one just before Theorem 7.2.3, it can be shown that we obtain the best result by taking
θ ∼ d−1

d
(t − 1) and w ∼ (t − 1)/(2d). For these values, the degree of the t-spanner is

O(1/(t − 1)d−1) and its weight is O((1/(t − 1)d) · wt(MST(S)) log n).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

138 THE GAP-GREEDY ALGORITHM

Exercises

7.1. Prove that the while-loop of algorithm ModGapGreedy (see Section 7.3) terminates.

7.2. Prove Lemma 7.4.1.

7.3. Consider the mindist-structure that was defined in Section 7.4.1. Let v be the root of the layer 1

tree. Convince yourself of the fact that

η1(v) = min{η3(u) : u is a node of a layer 2 tree}.
7.4. Prove Lemma 7.4.2.

7.5. Prove Lemma 7.4.3.

7.6. In the description of the mindist-structure in Section 7.4.1, we assumed that all p′
i -coordinates are

pairwise distinct, 1 ≤ i ≤ 3. Give the details of this data structure for arbitrary point sets. (Hint: The

main difficulty is to guarantee that the proof of Lemma 7.4.4 remains valid.)

7.7. Let S be a set of n points in the plane, let θ be a sufficiently small positive real number, let

κ = �2π/θ�, and let Cκ be a collection of κ cones of angle θ that have their apex at the origin and

that cover the plane. Let {p, q} be an edge of a minimum spanning tree of S, and let C be the cone

of Cκ such that q − p ∈ C. Consider the mindist-structure of Section 7.4.1, for the special case as

in Lemma 7.4.1. Prove that there is a node u in one of the layer 2 trees such that p ∈ S−
u3, q ∈ S+

u3

and |pq| is the minimum distance between any point in S−
u3 and any point in S+

u3.

7.8. Work out the details for Section 7.5.

Bibliographic notes

The results of this chapter are due to Arya and Smid [1997]. Algorithm
GapGreedy(S, θ, w), with w = 0, was discovered by Salowe [1994] and, according
to Vaidya [1991], also by Feder and Nisan.

The mindist-structure of Section 7.4 is closely related to the data structure of Agarwal
et al. [1991], who used it to establish a relationship between computing minimum spanning
trees and bichromatic closest pairs. (A solution to Exercise 7.7 can be found in their paper.)
Smid [1992] uses a similar data structure for maintaining the closest pair in a set of points
under insertions and deletions. Datta et al. [1995] present a variant of this data structure
that can be used to maintain the “smallest” k-point cluster in a dynamically changing set
of points.

The algorithm of this chapter belongs to the class of greedy algorithms. More infor-
mation about this powerful class of algorithms can be found in the book by Cormen et al.
[2001].

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

8

Enumerating Distances Using Spanners
of Bounded Degree

Only a fraction of a man’s virtues should be enumerated in his presence.
—The Talmud

In this chapter, we show that spanners of bounded degree can be used to solve a basic
problem in computational geometry, that is, the problem of enumerating, in nondecreasing
order, the k smallest distances among the

(
n

2

)
distances in a set of n points.

Let S be a set of n points in Rd , and let k be an integer such that 1 ≤ k ≤ (
n

2

)
. A

sequence {a1, b1}, {a2, b2}, . . . , {ak, bk} of pairwise distinct pairs of points of S is called
a sequence of k closest pairs, if

1. |a1b1| ≤ |a2b2| ≤ · · · ≤ |akbk| and

2. the distances |aibi |, 1 ≤ i ≤ k, are the k smallest elements in the multiset {|pq| : {p, q} ⊆
S, p �= q}.

In Section 8.1, we start by showing that any bounded-degree spanner can be used to
enumerate the k approximate closest pairs in O(n + k log k) time. Then, in Section 8.2,
we show how to modify the algorithm of Section 8.1 to obtain the k exact closest pairs,
in O((n + k) log n) time. Finally, in Section 8.3, we show that by using the gap-greedy
spanner of Chapter 7, the time bound for exact enumeration can be improved to O(n +
k log k). (All these time bounds do not include the time to construct the spanner.)

All spanners in this chapter are undirected.

8.1 Approximate distance enumeration

Let S be a set of n points in Rd , let k be an integer such that 1 ≤ k ≤ (
n

2

)
, and let t > 1 be

a real number.
Let {ai, bi}, 1 ≤ i ≤ (

n

2

)
, be the sequence of all pairs of points of S, sorted in non-

decreasing order of their Euclidean distances. We say that a sequence {pi, qi}, 1 ≤ i ≤ k,
of pairwise distinct pairs of points of S is a sequence of k t-approximate closest pairs, if

|aibi |/t ≤ |piqi | ≤ t |aibi |,

for all i with 1 ≤ i ≤ k.
Let D be a positive integer, and let G = (S, E) be an arbitrary t-spanner for S, such

that the degree of each point of S is less than or equal to D. In this section, we give an
algorithm that uses the t-spanner G to compute a sequence of k t-approximate closest pairs
in S. The idea is to run Dijkstra’s single-source shortest paths algorithm (see Section 2.5)
simultaneously from all points of S. The algorithm uses a priority queue PQ that stores,
at any moment, at most k pairs of points. In the priority queue PQ, the priority value

139

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

140 ENUMERATING DISTANCES USING SPANNERS OF BOUNDED DEGREE

associated with a pair {p, q} is denoted by priority({p, q}), and is equal to the length of
the shortest path in G between p and q found so far.

Algorithm ApproxDistEnum(G, k)

Comment: This algorithm takes as input a t-spanner G = (S,E) and an integer k such
that 1 ≤ k ≤ (

n

2

)
. It returns a sequence of k t -approximate closest pairs in S.

At the start of the algorithm, the priority queue PQ contains the min(k, |E|) shortest
edges of E; the priority priority({p, q}) of any such edge {p, q} is equal to the Euclidean
distance between p and q. Then a sequence of k iterations is carried out.

In one iteration, the algorithm finds a pair {p, q} with smallest priority in PQ, deletes
this pair from PQ, and reports it. Then for each edge {q, r} of G (and, in a completely
symmetric way, for each edge {p, s} of G), the algorithm does the following:

1. If the pair {p, r} has not already been reported and does not occur in PQ, then
the algorithm sets priority({p, r}) := priority({p, q}) + |qr|, and inserts {p, r}
into PQ. If PQ contains k + 1 pairs at this moment, then the pair with the highest
priority is deleted.

2. If the pair {p, r} has not already been reported, but occurs in PQ with a pri-
ority that is larger than priority({p, q}) + |qr|, then the algorithm decreases
priority({p, r}) to priority({p, q}) + |qr|, and updates PQ accordingly.

The analysis of Dijkstra’s algorithm in Section 2.5.2 shows that algorithm
ApproxDistEnum(G, k) reports, in nondecreasing order, the k smallest shortest-path
distances in G. Below, we show that, in fact, the k pairs reported form a sequence of k

t-approximate closest pairs.
As before, let {ai, bi}, 1 ≤ i ≤ (

n

2

)
, be the sequence of all pairs of points of S, sorted

in nondecreasing order of their Euclidean distances. For each i with 1 ≤ i ≤ (
n

2

)
, let

wi := |aibi |, and let w′
i be the length of a shortest path between ai and bi in the t-spanner

G. Observe that

w1 ≤ w2 ≤ w3 ≤ · · · ≤ w(n

2).

Let π be a permutation of {1, 2, . . . ,
(
n

2

)} such that

w′
π(1) ≤ w′

π(2) ≤ w′
π(3) ≤ · · · ≤ w′

(n

2)
.

Hence, algorithm ApproxDistEnum(G, k) reports k pairs of points whose final priority-
values are equal to w′

π(1), w
′
π(2), . . . , w

′
π(k).

Lemma 8.1.1. For each i with 1 ≤ i ≤ (
n

2

)
, we have

wi ≤ w′
π(i) ≤ twi, (8.1)

and

wi/t ≤ wπ(i) ≤ twi. (8.2)

proof Let i be any integer in the range
[
1,
(
n

2

)]
. Since G is a t-spanner for S, we have

wi ≤ w′
i ≤ twi . By replacing i by π(i), we get

wπ(i) ≤ w′
π(i) ≤ twπ(i). (8.3)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

8.1 APPROXIMATE DISTANCE ENUMERATION 141

First observe that (8.1) and (8.3) together imply (8.2). Therefore, it remains to show that
(8.1) holds.

We first show that wi ≤ w′
π(i). We distinguish two cases. The first case is when π(i) ≥ i.

Then, wπ(i) ≥ wi , which, when combined with the first part of inequality (8.3), implies
the desired result. The second case is when π(i) < i. Since π is a permutation, there is an
integer j , such that 1 ≤ j < i and π(j) ≥ i. Since j < i, we have w′

π(j) ≤ w′
π(i). Also,

since π(j) ≥ i, we have wπ(j) ≥ wi . Since (8.3) implies that wπ(j) ≤ w′
π(j), it follows that

wi ≤ w′
π(i).

To show that w′
π(i) ≤ twi , we again consider two cases. The first case is when π(i) ≤ i.

Then, wπ(i) ≤ wi . Multiplying this inequality by t and combining it with the second part
of inequality (8.3) implies the claim. The second case is when π(i) > i. There is an
integer j , such that i < j ≤ (

n

2

)
and π(j) ≤ i. Since i < j , we have w′

π(i) ≤ w′
π(j). Also,

since π(j) ≤ i, we have wπ(j) ≤ wi . Since the second part of inequality (8.3) implies that
w′

π(j) ≤ twπ(j), the claim follows.

Let {pi, qi}, 1 ≤ i ≤ k, be the k pairs of points that are reported by algorithm
ApproxDistEnum(G, k). To prove that these pairs form a sequence of k t-approximate
closest pairs, we have to show that for each i with 1 ≤ i ≤ k, we have

wi/t ≤ |piqi | ≤ twi. (8.4)

First observe that the length of a shortest path in G between pi and qi is equal to
w′

π(i). If wπ(i) = |piqi |, then (8.4) follows from (8.2). Since the permutation π need not
be unique, it may happen that wπ(i) and |piqi | are not equal. Therefore, we proceed as
follows. Let δ be the length of a shortest path in G between pi and qi . Then δ = w′

π(i)
and, since G is a t-spanner, we have |piqi | ≤ δ ≤ t |piqi |. Combining this with (8.1)
gives

|piqi | ≤ δ = w′
π(i) ≤ twi,

and

|piqi | ≥ δ/t = w′
π(i)/t ≥ wi/t,

proving (8.4). The following theorem summarizes our result.

Theorem 8.1.2. Let S be a set of n points in Rd , let t > 1 be a real number, let D be
a positive integer, and let G be a t-spanner for S of degree D. Given any integer k with
1 ≤ k ≤ (

n

2

)
, algorithm ApproxDistEnum(G, k) computes a sequence of k t-approximate

closest pairs in S, in O(Dn + Dk log k) time.

proof We have already proved the correctness of the algorithm. The proof of the
running time is left as an exercise (see Exercise 8.1).

Approximate distance enumeration: Run Dijkstra’s algorithm from all points
simultaneously. Use one priority queue that contains the k smallest distances in
G found so far. The algorithm enumerates the k smallest distances in the spanner
G, which are k approximately smallest Euclidean distances in S.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

142 ENUMERATING DISTANCES USING SPANNERS OF BOUNDED DEGREE

8.2 Exact distance enumeration

As in the previous section, let G = (S, E) be a t-spanner for point set S, such that
its maximum degree is D. We show that, by making two modifications to algorithm
ApproxDistEnum(G, k) of Section 8.1, we can enumerate the k exact closest pairs.

Algorithm ExactDistEnum(G, k)

Comment: This algorithm takes as input a t-spanner G = (S,E) and an integer k such
that 1 ≤ k ≤ (

n

2

)
. It returns a sequence of k exact closest pairs in S.

The algorithm is obtained by making the following two modifications to algorithm
ApproxDistEnum(G, k) of Section 8.1:

1. The priority queue PQ is maintained at full size; that is, it is not pruned to keep
only k pairs of points.

2. The algorithm does not report pairs at the moment when they have minimum
priority in PQ. Instead, it keeps track of the k closest pairs (in the Euclidean
sense) among all pairs that were ever inserted into PQ. The algorithm terminates
as soon as the smallest priority in PQ is larger than t times the Euclidean distance
of the k-th closest pair found so far. At termination, the k closest pairs that have
been found are reported.

To implement algorithm ExactDistEnum(G, k), a second priority queue is maintained
that contains the same pairs as PQ, and in which the priority of any pair {p, q} is equal
to the Euclidean distance |pq|. (Recall that the priority of any pair {p, q} in PQ is the
length of the shortest path in G between p and q found so far.)

We first prove the correctness of algorithm ExactDistEnum(G, k). Let x be the
Euclidean distance of the k-th pair reported by the algorithm, and let p and q be any
two distinct points of S such that the pair {p, q} is never inserted into PQ. We claim that
|pq| > x. To prove this claim, let {r, s} be the pair that causes the algorithm to terminate.
Then, at the moment the algorithm terminates, we have priority({r, s}) > tx. Also, at
that moment priority({r, s}) is equal to the length of a shortest path in G between r and
s. At termination, all shortest paths in G having length less than priority({r, s}) have
been found already. (This follows from general properties of Dijkstra’s algorithm, see
Section 2.5.2.) Hence, if we denote the length of a shortest path in G between p and q

by δ, then δ ≥ priority({r, s}). Since G is a t-spanner, we have |pq| ≥ δ/t . It follows that
|pq| > x.

Hence, we have shown that each pair {p, q}, with |pq| ≤ x, is inserted into PQ during
some iteration of the algorithm. Since the distance of a k-th closest pair in S is less than
or equal to x, it follows that algorithm ExactDistEnum(G, k) enumerates the k closest
pairs in S.

The analysis of the running time is based on the following claim: let wk be the k-th
smallest Euclidean distance in S, let {p, q} be the current pair with minimum priority in
PQ that is selected by the algorithm, and assume that {p, q} is the first pair for which
|pq| > twk . We claim that algorithm ExactDistEnum(G, k) terminates at the moment
when it selects {p, q}.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

8.2 EXACT DISTANCE ENUMERATION 143

To prove this claim, let δ be the length of a shortest path in G between p and q, and
let x be the k-th smallest Euclidean distance found by the algorithm at the moment
when it selects {p, q}. Since priority({p, q}) = δ at this moment, we have to show
that δ > tx.

First observe that δ ≥ |pq| and, therefore, δ > twk. Also, any pair {r, s} whose distance
in G is less than δ has already occurred as minimal element in PQ. Let r and s be any two
distinct points of S such that |rs| ≤ wk , and let δ′ be the length of a shortest path in G

between r and s. Then δ′ ≤ t |rs| ≤ twk < δ. Hence, at the moment when the algorithm
selects the pair {p, q} as a minimal element in PQ, all pairs of distinct points of S having
Euclidean distance at most wk have been inserted into PQ. This implies that x = wk and,
therefore, δ > tx.

Let I be the number of iterations made by algorithm ExactDistEnum(G, k). Then the
total running time is O(Dn + ID log n). We have just shown that I is less than or equal
to the number of pairs of distinct points of S having distance at most twk . The following
lemma gives an upper bound on I .

Lemma 8.2.1. Let wk be the k-th smallest Euclidean distance in S, let t > 1 be a real
number, and let M be the number of pairs of distinct points of S having distance at most
twk . Then

M <
(

2�t
√

d � + 1
)d

(n + 2k).

proof Let w := wk and let G be the d-dimensional grid with cells of side lengths
w/

√
d . Each cell of this grid has the form[

i1w/
√

d, (i1 + 1)w/
√

d
)

× · · · ×
[
idw/

√
d, (id + 1)w/

√
d
)

,

for some integers i1, i2, . . . , id . In other words, a cell is the Cartesian product of d intervals,
which are closed on the left and open on the right.

We call a cell of G nonempty, if it contains at least one point of S. Let g be the
number of nonempty cells. We number these cells arbitrarily as 1, 2, . . . , g. For each i

with 1 ≤ i ≤ g, let ni denote the number of points of S that are contained in the i-th
nonempty cell. We define

Z :=
g∑

i=1

(
ni

2

)
;

that is, Z is the total number of pairs {x, y} of points such that x and y are contained in
the same cell of G. If two points of S are in the same cell, then their distance is less than√

d · w/
√

d = w. Hence, since w is the k-th smallest distance in S, we have

Z < k. (8.5)

Let β := �t√d �, and let

C :=
[
i1w/

√
d, (i1 + 1)w/

√
d
)

× · · · ×
[
idw/

√
d, (id + 1)w/

√
d
)

be an arbitrary cell of the grid G. We define the neighborhood of C in the following way.
Consider the d-dimensional hypercube

C ′ :=
[
(i1 − β)w/

√
d, (i1 + 1 + β)w/

√
d
)

× · · · ×
[
(id − β)w/

√
d, (id + 1 + β)w/

√
d
)

.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

144 ENUMERATING DISTANCES USING SPANNERS OF BOUNDED DEGREE

Hence, the side lengths of C ′ are equal to (2β + 1)w/
√

d , and C ′ contains the cell C in
its center. The neighborhood of C is defined as the set of all nonempty cells of G that
overlap C ′. For each i with 1 ≤ i ≤ g, we denote by Ni the set of all indices j , such that
the j -th nonempty cell is in the neighborhood of the i-th nonempty cell. It is clear that
|Ni | ≤ (2β + 1)d .

Let p and q be any two distinct points of S such that |pq| ≤ tw. Let i and j be
the indices such that p and q are contained in the i-th and j -th nonempty cells of G,
respectively. We claim that j ∈ Ni . Indeed, if this were not the case, then

|pq| > β · w/
√

d ≥ t
√

d · w/
√

d = tw,

which is a contradiction.
Now we can prove the upper bound on M , that is, the number of distances in S that are

less than or equal to tw. We have

M ≤ 1

2

g∑
i=1

ni

∑
j∈Ni

nj

≤ 1

2

g∑
i=1

∑
j∈Ni

(
max(ni, nj)

)2

≤
g∑

	=1

|N	|n2
	 (8.6)

≤ (2β + 1)d
g∑

	=1

n2
	

= (2β + 1)d
g∑

	=1

(
n	 + 2

(
n	

2

))
≤ (2β + 1)d (n + 2Z)

< (2β + 1)d (n + 2k),

where the last inequality follows from (8.5). We leave it as an exercise to show the validity
of inequality (8.6) (see Exercise 8.3).

The following theorem summarizes the results of this section.

Theorem 8.2.2. Let S be a set of n points in Rd , let t > 1 be a real number, let D be
a positive integer, and let G be a t-spanner for S of degree D. Given any integer k with
1 ≤ k ≤ (

n

2

)
, algorithm ExactDistEnum(G, k) computes a sequence of k exact closest

pairs in S, in O(Dtd (n + k) log n) time.

8.3 Using the gap-greedy spanner

Theorem 8.2.2 holds for any spanner G of bounded degree. In this section, we show that
the running time for exact distance enumeration can be improved, if G is taken as the
gap-greedy spanner of Chapter 7.

Let θ be a real number such that 0 < θ < π/4 and cos θ − sin θ > 1/2, and let G0

be the directed graph that is constructed by algorithm FastGapGreedyDDim(S, θ, w),

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

8.3 USING THE GAP-GREEDY SPANNER 145

with w = 0; see Section 7.5 and Theorem 7.5.1. Let G = (S, E) be the graph obtained
from G0 by replacing each directed edge (p, q) by the undirected edge {p, q}. The
graph G is a t-spanner for S, for t = 1/(cos θ − sin θ). Let D be the degree of G. Then
D = O(1/θd−1).

Algorithm GapExactDistEnum(G, k)

Comment: This algorithm takes as input the undirected gap-greedy t -spanner G = (S,E)
and an integer k such that 1 ≤ k ≤ (

n

2

)
. It returns a sequence of k exact closest pairs

in S.

The algorithm is obtained by running algorithm ApproxDistEnum(G, k) of Section 8.1,

with the following modification: set the priority value of each pair {p, q} in the priority

queue PQ to |pq|.

The running time of algorithm GapExactDistEnum(G, k) is clearly the same as that
of algorithm ApproxDistEnum(G, k).

We prove by induction that algorithm GapExactDistEnum(G, k) reports a sequence
of k exact closest pairs. Let w1 ≤ w2 ≤ · · · ≤ wk be the k smallest distances in the multiset
{|pq| : {p, q} ⊆ S, p �= q}.

To start the induction, consider two points p and q of S, with |pq| = w1. Since we
chose θ , such that cos θ − sin θ > 1/2, we have t < 2. Therefore, p and q are con-
nected by an edge in G; see Exercise 1.10. Hence, in the initialization step, all pairs
having distance w1 (or k of them in case there are more than k pairs having distance
w1) are inserted into PQ. It follows that the first pair reported by the algorithm has
distance w1.

Let i be such that 2 ≤ i ≤ k, and assume that the algorithm has already reported i − 1
pairs of points, having distances w1, w2, . . . , wi−1. We show that the next pair to be
reported has distance wi . Let p and q be two points of S with |pq| = wi . If {p, q} is
an edge of G, then we are done, because the pair {p, q} was inserted into PQ in the
initialization step. So assume that p and q are not connected by an edge in G. Since
the directed graph G0 satisfies the conditions of Lemma 7.1.1, we know that (i) there
is a point s ∈ S such that {p, s} ∈ E, angle(pq, ps) ≤ θ and |ps| ≤ |pq|/ cos θ , or (ii)
there is a point r ∈ S such that {r, q} ∈ E, angle(pq, rq) ≤ θ and |rq| ≤ |pq|/ cos θ . We
consider the case only when (i) holds. (The case when (ii) holds can be treated similarly.)
By Lemma 6.4.1, we have |sq| < |pq|. Hence, the algorithm has already reported the pair
{s, q}. At the moment this pair was reported, the algorithm inserted the pair {p, q} into
PQ. Hence, after the algorithm has reported i − 1 pairs, the minimum priority in PQ is
equal to wi . This completes the correctness proof.

Theorem 8.3.1. Let S be a set of n points in Rd , let θ be a real number such that
0 < θ < π/4 and cos θ − sin θ > 1/2, let G0 be the directed graph that is constructed
by algorithm FastGapGreedyDDim(S, θ, 0), and let G be the undirected version of G0.
Given any integer k with 1 ≤ k ≤ (

n

2

)
, algorithm GapExactDistEnum(G, k) computes a

sequence of k exact closest pairs in S, in O((1/θd−1)n + (1/θd−1)k log k) time.

In Section 10.3.2, we will present a completely different algorithm for computing a
sequence of k closest pairs.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

146 ENUMERATING DISTANCES USING SPANNERS OF BOUNDED DEGREE

Exercises

8.1. Prove the time bound in Theorem 8.1.2. In particular, explain how to implement the priority queue

PQ, and how to test whether the pair {p, r} has been reported already.

8.2. Throughout this chapter, we assumed that the value of k is part of the input, that is, the number k of

(exact or approximate) closest pairs to be reported is known at the start of the algorithm. Consider

the case when this number is not known to start with. Such a situation would occur, for example, if

the algorithm is required to use some other criteria to terminate. Prove that Theorems 8.1.2, 8.2.2,

and 8.3.1 still hold, where k is the number of pairs reported.

8.3. Prove that the summation in (8.6) is greater than or equal to the double-summation immediately

above it.

8.4. In Section 8.3, we chose θ such that 0 < θ < π/4 and cos θ − sin θ > 1/2, and took for G the

undirected version of the directed graph computed by algorithm FastGapGreedyDDim(S, θ,w),
with w = 0. Do the results of Section 8.3 hold if cos θ − sin θ = 1/2 and/or if w > 0?

8.5. Do the results of Section 8.3 hold if we take for G the �-graph of Section 4.1?

8.6. Given a Delaunay triangulation of a set of n points in the plane, show that a sequence of k closest

pairs can be computed in O(n + k log k) time. What is the time complexity if the points are from

R
d , for d > 2?

8.7. Given any set S of n points in R
d , show that a set S ′ ⊂ R

d of size O(n) can be computed in

O(n log n) time, such that the Delaunay triangulation of S ∪ S ′ has bounded degree and, therefore,

has O(n) edges.

8.8. Prove that the problem of computing k closest pairs in a set of n points in R
d has a lower bound

of �(n log n + k) in the algebraic computation-tree model, even if the pairs are not required to be

output in nondecreasing order of distance.

Bibliographic notes

Salowe [1992] was the first to solve the problem of computing k closest pairs, not
necessarily in sorted order, in O(n log n + k) time. Observe that this is optimal in the
algebraic computation-tree model (see Exercise 8.8). Alternative algorithms, having
the same running time, were given by Lenhof and Smid [1995] (their algorithm uses
indirect addressing), Dickerson and Eppstein [1996] (their algorithm is discussed be-
low), Callahan [1995] (this algorithm will be presented in Section 10.3.2), and Chan
[2001]. A comprehensive overview of results on closest pair problems can be found in
Smid [2000].

The results of this chapter are due to Arya and Smid [1997]. The algorithms were
inspired by Dickerson, Drysdale, and Sack [1992], who showed that, given the Delaunay
triangulation of a set of n points in the plane, a sequence of k closest pairs can be
computed in O(n + k log k) time (see Exercise 8.6). Arya and Smid [1997] showed
that the algorithm in Dickerson, Drysdale, and Sack [1992] also works if the Delaunay
triangulation is replaced by a spanner of bounded degree.

The efficiency of the algorithm in Dickerson, Drysdale, and Sack [1992] depends
heavily on the fact that the Delaunay triangulation of a set of n points in the plane has
O(n) edges. In dimensions larger than 2, this does not hold. Dickerson and Eppstein
[1996], however, circumvent this by using the following result of Bern, Eppstein, and
Gilbert [1994]: Given any set S of n points in Rd , a set S ′ ⊂ Rd of size O(n) can be
computed in O(n log n) time, such that the Delaunay triangulation DT′ of S ∪ S ′ is of
bounded degree and, hence, has O(n) edges. Moreover, given S, DT′ can be computed

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHIC NOTES 147

in O(n log n) time (see Exercise 8.7). Dickerson and Eppstein show that DT′ can be used
to compute a sequence of k closest pairs in S, in O(n log n + k log k) time. They also
present a variant of their algorithm that computes k closest pairs, in no particular order,
in O(n log n + k) time.

The proof of Lemma 8.2.1 uses ideas from Salowe [1992] and Lenhof and Smid [1995].
A solution to Exercise 8.2 can be found in Arya and Smid [1997].

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

148

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

part iii

The Well-Separated Pair Decomposition
and Its Applications

149

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

150

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

9

The Well-Separated Pair Decomposition

And one by one the nights between our separated cities are joined to
the night that unites us.

—Pablo Neruda, “Ode and Burgeonings,” The Captain’s Verse, 1952

We introduce the well-separated pair decomposition, which is a data structure that can
be used to efficiently solve a large variety of proximity problems. We will show that,
using this data structure, a t-spanner with O(n) edges, for any given set of n points in Rd ,
and any given constant t > 1, can be computed in O(n log n) time. In this chapter, we
present an algorithm that computes the well-separated pair decomposition in O(n log n)
time. Applications of this powerful data structure are given in Chapter 10. Moreover, the
spanner constructions in several of the later chapters in this book will be based on this
data structure.

9.1 Definition of the well-separated pair decomposition

We start by defining the notion of two sets being well-separated.

Well-separated pair: As shown in Figure 9.1, two point sets A and B form a
well-separated pair if they can be enclosed in two balls of equal radius that are
“far” apart, relative to their radius. The first consequence of this property is that
the distance between any point in A and any point in B is “large” compared to
the distances between points within A (and within B). The second consequence
is that all distances between a point in A and a point in B are “approximately”
equal.

Before we can formally define this notion, we have to introduce the following notation.
If X is a bounded subset of Rd , then we denote by R(X) the smallest axes-parallel
d-dimensional hyperrectangle that contains X. We call R(X) the bounding box of X. The
distance between two disjoint balls C and C ′ in Rd is defined to be the minimum of the
Euclidean distances |xy|, over all points x ∈ C and y ∈ C ′. This minimum distance is
attained for the points x and y on the boundaries of C and C ′, respectively, that are on the
line segment joining the centers of C and C ′.

Definition 9.1.1 (Well-Separated Pair). Let s > 0 be a real number, and let A and B be
two finite sets of points in Rd . We say that A and B are well-separated with respect to s

if there are two disjoint d-dimensional balls CA and CB , such that

1. CA and CB have the same radius,

2. CA contains the bounding box R(A) of A,

151

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

152 THE WELL-SEPARATED PAIR DECOMPOSITION

•
•

•
•

•
•
••

A

•

•

•

•• •

B

�

�

≥ sρ

Figure 9.1: Two planar point sets A and B that are well-separated. Both circles have radius ρ, and their
distance is greater than or equal to sρ.

3. CB contains the bounding box R(B) of B, and

4. the distance between CA and CB is greater than or equal to s times the radius of CA.

Refer to Figure 9.1 for an illustration. The real number s will be called the separation
ratio. Observe that two sets A and B that are well-separated must be disjoint, because
the two balls CA and CB are required to be disjoint. In Definition 9.1.1, the centers of
the two balls CA and CB can be at arbitrary locations; they are not required to be at the
centers of the two bounding boxes R(A) and R(B). Strictly speaking, R(A) and R(B) are
not needed in Definition 9.1.1. We include these boxes in this definition, because they can
be used to test in O(1) time whether A and B are well-separated. This claim is left as an
exercise (see Exercise 9.1).

We now come to an important property of well-separated sets, which will be used
repeatedly throughout the rest of this book. Consider two sets A and B that are well-
separated with respect to a large separation ratio s. Then (i) the distance between any two
points in A is much smaller than the distance between any point in A and any point in B,
and (ii) all distances between a point in A and a point in B are approximately equal. The
following lemma formalizes this.

Lemma 9.1.2. Let s > 0 be a real number, let A and B be two finite sets of points that
are well-separated with respect to s, let p and p′ be any two points in A, and let q and q ′

be any two points in B. Then

1. |pp′| ≤ (2/s)|pq|, and

2. |p′q ′| ≤ (1 + 4/s)|pq|.

proof By Definition 9.1.1, there are two disjoint balls CA and CB that contain the
points of A and B, respectively, that have the same radius, say ρ, and whose distance

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

9.1 DEFINITION OF THE WELL-SEPARATED PAIR DECOMPOSITION 153

is greater than or equal to sρ. Clearly, we have |pp′| ≤ 2ρ and |pq| ≥ sρ. These two
inequalities immediately imply that |pp′| ≤ (2/s)|pq|, proving the first claim. By a sym-
metric argument, we can prove that |qq ′| ≤ (2/s)|pq|. By combining these inequalities
and applying the triangle inequality, we get

|p′q ′| ≤ |p′p| + |pq| + |qq ′|
≤ (2/s)|pq| + |pq| + (2/s)|pq|
= (1 + 4/s)|pq|,

which proves the second claim.

Approximating a well-separated pair: The second inequality in Lemma 9.1.2
implies that the distance between an arbitrary point p in A and an arbitrary point
q in B approximates all the |A| · |B| distances between the pairs in the Cartesian
product A × B.

Definition 9.1.3 (Well-Separated Pair Decomposition). Let S be a set of n points in
Rd , and let s > 0 be a real number. A well-separated pair decomposition (WSPD) for S,
with respect to s, is a sequence

{A1, B1}, {A2, B2}, . . . , {Am,Bm}
of pairs of nonempty subsets of S, for some integer m, such that

1. for each i with 1 ≤ i ≤ m, Ai and Bi are well-separated with respect to s, and

2. for any two distinct points p and q of S, there is exactly one index i with 1 ≤ i ≤ m, such
that

(a) p ∈ Ai and q ∈ Bi , or

(b) p ∈ Bi and q ∈ Ai .

The integer m is called the size of the WSPD.

Well-separated pair decomposition: Intuitively, a WSPD for S is a partition of
the

(
n

2

)
edges of the complete graph on S into a collection of m well-separated

pairs.

Does a WSPD exist for any set S? The answer is “yes”: Let any two distinct points
p and q of S form a pair {{p}, {q}}. Then Condition 2. in Definition 9.1.3 clearly holds.
To prove that Condition 1. also holds, observe that the bounding box R(X) of a set X

consisting of a single point has sides of length zero. For the sets A := {p} and B := {q},
we can take for CA and CB the balls of radius zero centered at p and q, respectively.
(Alternatively, we can take the radius to be |pq|/(s + 2), which is strictly positive.)
Hence, we indeed have a WSPD for S. Its size, however, is equal to

(
n

2

)
, which is quadratic

in n.
The main result of this chapter will be an algorithm that constructs, in O(n log n) time,

a WSPD of size O(n), for any set S of n points in Rd , and for any constant separation
ratio s > 0.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

154 THE WELL-SEPARATED PAIR DECOMPOSITION

We remark that the size m of a WSPD is not the same as the total size
∑m

i=1(|Ai | + |Bi |)
of all subsets that constitute the WSPD. In fact, in Exercise 9.2, we will see that there are
sets S of n points such that for any WSPD for S, this summation is larger than

(
n

2

)
. Still,

we will see later that the WSPD computed by our algorithm can be represented implicitly
using O(m) space.

9.2 Spanners based on the well-separated pair decomposition

Before we present the algorithm that computes a WSPD, let us show how it can be used
to obtain a spanner.

Basic spanner construction: Construct a well-separated pair decomposition
with separation ratio s > 4, and take one (arbitrary) edge for each pair of the
decomposition. This results in a t-spanner with t = (s + 4)/(s − 4).

In order to prove this, let S be a set of n points in Rd , and let t > 1 be a real number.
Consider an arbitrary WSPD

{A1, B1}, {A2, B2}, . . . , {Am,Bm}

for S, with separation ratio s := 4(t + 1)/(t − 1). For each i with 1 ≤ i ≤ m, let ai be
an arbitrary point of Ai and let bi be an arbitrary point of Bi . We call these points the
representatives of Ai and Bi , respectively. We claim that the undirected graph G = (S, E),
where E := {{ai, bi} : 1 ≤ i ≤ m}, is a t-spanner for S. This claim can be proved using
Lemma 7.1.1; this proof is left as an exercise, see Exercise 9.3. Below, we give a more
direct proof that uses Lemma 9.1.2.

We will show by induction on the rank of the distance |pq| in the sorted sequence
of distances in S, that the graph G contains a t-spanner path between p and q. To start
the induction, this claim clearly holds if |pq| = 0. Assume that |pq| > 0 and, moreover,
assume that for any two points x and y of S with |xy| < |pq|, the graph (S, E) contains a
t-spanner path between x and y. By Definition 9.1.3, there is a pair {Ai, Bi} in the WSPD
such that (i) p ∈ Ai and q ∈ Bi , or (ii) p ∈ Bi and q ∈ Ai . We may assume without
loss of generality that (i) holds. Consider the representatives ai and bi of the sets Ai and
Bi , respectively. By Lemma 9.1.2, we have |pai | ≤ (2/s)|pq|, which is less than |pq|,
because s > 4. Therefore, by the induction hypothesis, there is a t-spanner path P1 in G

between p and ai . Similarly, since |biq| < |pq|, there is a t-spanner path P2 in G between
bi and q. Let P be the path between p and q, obtained by concatenating the path P1, the
edge {ai, bi}, and the path P2, and let L denote the length of P . First observe that

L ≤ t |pai | + |aibi | + t |biq|. (9.1)

By Lemma 9.1.2, we have |aibi | ≤ (1 + 4/s)|pq|. Combining this inequality with (9.1)
and the two inequalities |pai | ≤ (2/s)|pq| and |biq| ≤ (2/s)|pq|, we get

L ≤
(

4(t + 1)

s
+ 1

)
|pq|,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

9.3 THE SPLIT TREE 155

which is equal to t |pq|, by our choice of the separation ratio s. We have thus proved the
following result.

Theorem 9.2.1 (WSPD-Spanner). Let S be a set of n points in Rd , let t > 1 be a real
number, and let s = 4(t + 1)/(t − 1). Given an arbitrary WSPD for S, with respect to
s, we can construct a t-spanner for S consisting of m edges, where m is the size of the
WSPD.

Having thus shown the motivation for the WSPD, we return to the details of the WSPD
construction.

9.3 The split tree

Let S be a set of n points in Rd , and let s > 0 be a real number. The algorithm for
computing a WSPD for S, with respect to s, consists of the following two stages:

1. In the first stage, a binary tree, called the split tree, is constructed. This tree does not
depend on s.

2. In the second stage, the split tree is used to construct the WSPD itself.

In this section, we will introduce the split tree and show how to construct it in O(n log n)
time. The second stage will be considered in Section 9.4.

A hyperrectangle, or more precisely, a d-dimensional axes-parallel hyperrectangle,
is the Cartesian product of d closed intervals. Hence, such a hyperrectangle R can be
written as

R = [1, r1] × [2, r2] × · · · × [d, rd],

where 	i and ri are real numbers with 	i ≤ ri , 1 ≤ i ≤ d. We call Li(R) := ri − 	i the
side length of R along the i-th dimension. Furthermore, we define Lmax(R) and Lmin(R)
as the maximum and minimum side lengths of R along any dimension, respectively. Let
j be the index such that Lmax(R) = Lj (R). We define h(R) := (j + rj)/2; that is, h(R)
is the center of the largest interval of R. If all values Li(R), 1 ≤ i ≤ d, are equal, then we
call R a hypercube.

9.3.1 Definition of the split tree

Recall that R(S) is the bounding box of the set S. The split tree for S is a rooted binary
tree containing the points of S in its leaves.

The split tree: If S consists of only one point, then the split tree consists of
one single node that stores that point. Assume that |S| ≥ 2. Split R(S) into two
hyperrectangles by cutting its longest interval into two equal parts. Let S1 and S2

be the subsets of S that are contained in these two new hyperrectangles. The split
tree for S consists of a root having two subtrees, which are recursively defined
split trees for S1 and S2.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

156 THE WELL-SEPARATED PAIR DECOMPOSITION

This informal description immediately leads to the following recursive algorithm for
computing the split tree:

Algorithm SplitTree(S, R)

Comment: This algorithm takes as input a set S of n points in R
d , and a hyperrect-

angle R that contains the bounding box R(S) of S. It returns the root of the split tree
for S.

if |S| = 1
then create a new node u;

R(u) := R(S);
R0(u) := R;
store with u the only point of S, and the two hyperrectangles
R(u) and R0(u), and set its two children pointers to be nil;
return node u

else compute the bounding box R(S) of S;
compute i such that Lmax(R(S)) = Li(R(S));
let H be the hyperplane with equation xi = h(R(S));
using H , split R into two hyperrectangles R1 and R2;
S1 := S ∩ R1; (∗ S1 �= ∅ and R1 contains R(S1) ∗)
S2 := S \ S1; (∗ S2 �= ∅ and R2 contains R(S2) ∗)
v := SplitTree(S1, R1);
w := SplitTree(S2, R2);
create a new node u;
R(u) := R(S);
R0(u) := R;
store with u the two hyperrectangles R(u) and R0(u), and
set its left and right child pointers to v and w, respectively;
return node u

endif

Each node u of the tree that is computed by algorithm SplitTree(S, R) stores the
following information; see also Figure 9.2.

1. The bounding box, denoted by R(u), of the points stored in the subtree rooted at u.

2. A hyperrectangle R0(u) that contains R(u).

3. If u is a leaf, then u also stores a point of S.

In Section 9.4, we will use the bounding boxes R(u) to decide in constant time whether
the subsets of S that are contained in any two subtrees are well-separated. In an actual
implementation, the hyperrectangles R0(u) (and, hence, the initial hyperrectangle R) are
not needed; they are used only in the analysis in Section 9.4.1.

Since each internal node of the split tree has exactly two children, and since the tree
has n leaves, it has 2n − 1 nodes. The height of the split tree, however, may be linear in
n. As a result, a direct implementation of algorithm SplitTree has a worst-case running

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

9.3 THE SPLIT TREE 157

R0(u)

R(u)

x1 = h(R(u))

•
•

•

••

•
• ••

R0(v) R0(w)

•
•

•

••

•
• ••

R(v)

R(w)

Figure 9.2: An illustration of algorithm SplitTree for a planar point set. Because the longest side of
R(u) is horizontal, the algorithm uses the vertical line x1 = h(R(u)) to split R(u) into two rectangles of
equal size. This line splits R0(u) into two rectangles R0(v) and R0(w). The split tree contains a node u
having v and w as its left and right children, respectively.

time of �(n2). In Section 9.3.2, we will give an improved algorithm that constructs the
split tree in O(n log n) time.

For any node u of the split tree (except for the root), we denote the parent of u by π(u).
As seen from the algorithm, R0(u) is the hyperrectangle obtained when the hyperrectangle
R0(π(u)) of its parent node was split into 2. Before we present the improved algorithm,
we prove a property of the hyperrectangles R0(u) that will be crucial in the analysis in
Section 9.4.1. The lemma states that even though the bounding boxes of the children may
be considerably smaller than that of the parent, the hyperrectangle R0(u) associated with
u is sufficiently large compared to the bounding box R(π(u)) of its parent.

Lemma 9.3.1. Let R be a hypercube that contains the bounding box R(S) of the set S

and that has sides of length Lmax(R(S)). Let T be the tree that is computed by algorithm
SplitTree(S, R), and let u be any node of T . If u is not the root of T , then

Lmin(R0(u)) ≥ 1

2
· Lmax(R(π (u))).

proof The proof is by induction. First assume that u is a child of the root of T . Then
R(π(u)) = R(S) and Lmax(R(π(u))) is equal to the side length of the hypercube R. It
follows from the algorithm that Lmin(R0(u)) is half the side length of R. Hence, the
lemma holds for u.

Let u be a node of T such that π(u) is not the root of T , and assume that the lemma
holds for π(u), that is,

Lmin(R0(π (u))) ≥ 1

2
· Lmax(R(π (π (u)))).

We distinguish two cases.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

158 THE WELL-SEPARATED PAIR DECOMPOSITION

Case 1: Lmin(R0(u)) = Lmin(R0(π(u))).
Since the hyperrectangle R(π(u)) is contained in the hyperrectangle R(π(π(u))), we

have Lmax(R(π(π(u)))) ≥ Lmax(R(π(u))). Therefore, we get

Lmin(R0(u)) = Lmin(R0(π (u)))

≥ 1

2
· Lmax(R(π (π (u))))

≥ 1

2
· Lmax(R(π (u))).

Case 2: Lmin(R0(u)) �= Lmin(R0(π(u))).
Then we must have

Lmin(R0(u)) < Lmin(R0(π (u))). (9.2)

Let i be the index such that Lmax(R(π(u))) = Li(R(π(u))). We claim that

Li(R0(u)) = Lmin(R0(u)). (9.3)

In other words, for this case, we claim that the dimension along which R0(u) has its smallest
side is the dimension along which the parent was split. Assume that this claim is false.
Then there is an index j with j �= i, such that Lj (R0(u)) = Lmin(R0(u)) < Li(R0(u)). The
algorithm has split the hyperrectangle R(π(u)) along dimension i. Therefore, we must
have Lj (R0(u)) = Lj (R0(π(u))). That is, we have

Lmin(R0(π (u))) ≤ Lj (R0(π (u))) = Lj (R0(u)) = Lmin(R0(u)),

which contradicts (9.2).
The fact that

Li(R0(u)) ≥ 1

2
· Li(R(π (u))),

and equation (9.3) imply that

Lmin(R0(u)) = Li(R0(u)) ≥ 1

2
· Li(R(π (u))) = 1

2
· Lmax(R(π (u))),

which is exactly what we wanted to show.

9.3.2 Computing the split tree in O(n log n) time

If the split tree is “balanced,” in the sense that each split of a hyperrectangle splits the
point set contained in it evenly, then its height will be O(log n), and it is not hard to see
that it can be computed in O(n log n) time. However, the splits may be very uneven. In
fact, in the worst case, even after �(n) splits, there may be one node with �(n) points
in its corresponding bounding box. Thus, as mentioned before, a direct implementation
of algorithm SplitTree has a quadratic worst-case running time. In this section, we will
show that by doing the splits in a specific order, we can build the entire split tree in
O(n log n) time.

Let a partial split tree be defined in the same way as the split tree, except that subsets
represented by the leaves may have size larger than 1.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

9.3 THE SPLIT TREE 159

Computing the split tree efficiently: There are several key ingredients that con-
tribute to the efficiency of the algorithm: (a) The algorithm starts by computing d

sorted lists, where the i-th list, 1 ≤ i ≤ d, contains the points of S in nondecreas-
ing order of their i-th coordinates. Doing this initially avoids resorting in later
recursive calls. (b) The algorithm computes a partial split tree for S, such that
for each leaf u, the set Su has size at most n/2. As we will see, using the sorted
lists, this can be done in O(n) time. Finally, for each leaf u of the partial split
tree, the algorithm recursively computes a split tree for the set Su. (c) At each
node u, the algorithm splits the corresponding bounding box into two equal-sized
hyperrectangles. The corresponding point set Su is to be partitioned into point
sets Sv and Sw corresponding to the point sets of the children nodes v and w. It
is critical that the time complexity of this split be proportional to the smaller of
|Sv| and |Sw|, and not to |Su|.

Clearly, the main problem is to compute, in O(n) time, a partial split tree, such that each
leaf corresponds to a subset of size at most n/2. We give a specification of the algorithm
that accomplishes this task.

Algorithm PartialSplitTree(S, R, (LSi)1≤i≤d)

Comment: The algorithm specification is provided here. The algorithm itself consists of
Steps 1 through 6, which are given after this specification.

Input

I.1: A set S of n points in R
d , and a hyperrectangle R that contains the bounding box R(S).

I.2: A collection of doubly-linked lists LSi , 1 ≤ i ≤ d , where LSi contains the points of S,
sorted in nondecreasing order of their i-th coordinates.

I.3: The d lists LSi are connected by cross-pointers. That is, for each point p of S, the
occurrences of p in all these lists are connected by pointers such that the following
holds. For each i and j , given the position of p in the list LSi , we can find p’s position
in LSj in O(1) time.

Output

O.1: A partial split tree T for S, such that each leaf u corresponds to a subset Su of size
at most n/2.

O.2: Each node u of T stores two hyperrectangles R(u) and R0(u), which are the same
hyperrectangles as in algorithm SplitTree.

O.3: Each leaf u of T stores the following additional information.

O.3.1: A collection of doubly-linked lists LSu
i , 1 ≤ i ≤ d , where LSu

i contains the points
of Su, sorted in nondecreasing order of their i-th coordinates.

O.3.2: The d lists LSu
i are connected by cross-pointers.

The algorithm that meets this specification makes the following six steps.

Step 1: Make copies CLSi of the lists LSi , 1 ≤ i ≤ d, and their cross-pointers. For each i

with 1 ≤ i ≤ d, add cross-pointers between LSi and CLSi . Set size := n. Create a node

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

160 THE WELL-SEPARATED PAIR DECOMPOSITION

u, which will be the root of the final partial split tree. Set R0(u) := R, rename S as Su

and, for each i with 1 ≤ i ≤ d, rename the list LSi as LSu
i . Go to Step 2.

Step 2: If size ≤ n/2, then for each i with 1 ≤ i ≤ d, walk along the list LSu
i . For each

point z in this list, follow the cross-pointer to the occurrence of z in CLSi and store with
this occurrence a pointer to node u. Then go to Step 6. Otherwise (i.e., if size > n/2),
go to Step 3.

Step 3: Using the lists LSu
i , 1 ≤ i ≤ d, compute the bounding box R(Su) of the set Su,

and set R(u) := R(Su). Compute an index i such that Lmax(R(u)) = Li(R(u)), and let
H be the hyperplane with equation xi = h(R(u)). Run the following procedure:

p := first point of LSu
i ;

p′ := successor of p in LSu
i ;

q := last point of LSu
i ;

q ′ := predecessor of q in LSu
i ;

size′ := 1;
while p′

i ≤ h(R(u)) and q ′
i ≥ h(R(u))

do p := p′;
p′ := successor of p in LSu

i ;
q := q ′;
q ′ := predecessor of q in LSu

i ;
size′ := size′ + 1

endwhile;

Immediately after this procedure, the following holds. If p′
i > h(R(u)), then (i) p is the

rightmost point in LSu
i whose i-th coordinate is less than or equal to h(R(u)), and (ii)

the value of size′ is equal to the number of points in LSu
i that are strictly to the left of p′.

Similarly, if q ′
i < h(R(u)), then (i) q is the leftmost point in LSu

i whose i-th coordinate
is greater than or equal to h(R(u)), and (ii) the value of size′ is equal to the number
of points in LSu

i that are strictly to the right of q ′. In both cases, we have size′ ≤ n/2.
Observe that size′ is the size of the smaller of the two sets into which Su is partitioned,
and in general, may be much smaller than |Su|.

If p′
i > h(R(u)), then proceed with Step 4. Otherwise (i.e., if q ′

i < h(R(u))), proceed
with Step 5.

Step 4: Create new nodes v and w, and make them the left and right children of u,
respectively. Using the hyperplane H , split hyperrectangle R into two hyperrectangles
R1 and R2, where R1 is to the “left” of R2. Set R0(v) := R1 and R0(w) := R2.
Starting at the first element, walk along the list LSu

i , until point p is reached. For each
point z encountered (including point p itself), do the following.

4.1: From the occurrence of z in LSu
i , follow cross-pointers to its occurrences in all lists

CLSj , 1 ≤ j ≤ d. With the occurrence of z in each list CLSj , store a pointer to node v.

4.2: Follow the cross-pointers from the occurrence of z in LSu
i to its occurrences in all lists

LSu
j , j �= i, and delete z from these lists.

4.3: Delete z from LSu
i .

Finally, set u := w, size := size − size′, and go to Step 2.
After Step 4.3, the following holds. First, each list LSu

j , 1 ≤ j ≤ d, contains the
points of the subset Sw, sorted in nondecreasing order of their j -th coordinates. Second,
these lists are connected by cross-pointers. Finally, the time for executing Steps 3 and 4

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

9.3 THE SPLIT TREE 161

is proportional to |Sv|, which is the size of the smaller of the two subsets Sv and Sw.
Node v will be a leaf in the final partial split tree.

Step 5: This step is symmetric to Step 4. Create new nodes v and w, and make them the
left and right children of u, respectively. Using the hyperplane H , split hyperrectangle
R into two hyperrectangles R1 and R2, where R1 is to the “left” of R2. Set R0(v) := R1

and R0(w) := R2.
Starting at the last element, walk backward along the list LSu

i , until point q is reached.
For each point z encountered (including point q itself), do the following.

5.1: From the occurrence of z in LSu
i , follow cross-pointers to its occurrences in all lists

CLSj , 1 ≤ j ≤ d. With the occurrence of z in each list CLSj , store a pointer to node w.

5.2: Follow the cross-pointers from the occurrence of z in LSu
i to its occurrences in all lists

LSu
j , j �= i, and delete z from these lists.

5.3: Delete z from LSu
i .

Finally, set u := v, size := size − size′, and go to Step 2.
Immediately before Step 6 is carried out, the following holds. The tree that has been

constructed so far satisfies conditions O.1 and O.2, except that the hyperrectangles R(u)
for the leaves u are still missing. Hence, what remains to be done is computing these
missing hyperrectangles, and establishing conditions O.3.1 and O.3.2. This is done in
Step 6. Denote the tree constructed so far by T .

Step 6: For each leaf u of T , initialize empty lists LSu
j , 1 ≤ j ≤ d. Then, for each j with

1 ≤ j ≤ d, walk along the copy CLSj of the original list LSj , and for each point z in
this copy, follow the pointer to the leaf u of T for which z ∈ Su, and add this point to the
end of the list LSu

j . Moreover, establish cross-pointers between the lists LSu
j , 1 ≤ j ≤ d.

Finally, for each leaf u of T , compute the bounding box R(Su), and assign it to R(u).
Observe that this bounding box is easily computed by looking at the first and last items
in the lists LSu

j , 1 ≤ j ≤ d.

This concludes the description of algorithm PartialSplitTree. The next lemma
proves the correctness of this algorithm and analyzes its running time.

Lemma 9.3.2. Algorithm PartialSplitTree(S, R, (LSi)1≤i≤d) computes a partial split
tree that satisfies conditions O.1, O.2, O.3.1, and O.3.2. The running time of the algorithm
is O(n).

proof The correctness of the algorithm follows from the discussion above. The running
time of Steps 1–5 is proportional to n + �u|Su|, where the summation is taken over all
leaves u of the partial split tree. Since the sets Su that occur in this summation form a
partition of S, the summation is exactly equal to n. Finally, Step 6 clearly takes O(n)
time.

Time complexity of algorithm PartialSplitTree: In the partial split tree T ,
each internal node u has two children, and at least one of these is a leaf. Let uc

be such a leaf. The algorithm spends O(|Suc
|) time to process node u (in Steps

3–5). For each leaf u of T , the algorithm spends O(|Su|) time (in Steps 2 and 6).

Having described the algorithm that computes a partial split tree, we can now present
the O(n log n)–time algorithm that computes the complete split tree.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

162 THE WELL-SEPARATED PAIR DECOMPOSITION

Algorithm FastSplitTree(S, R)

Comment: This algorithm takes as input a set S of n points in R
d , and a hyperrectangle

R that contains the bounding box R(S) of S. It returns the root of the split tree for S.

If n = 1, then proceed as in algorithm SplitTree(S,R). Assume that n > 1. In a pre-

processing step, sort the points d times, once for each coordinate, and store them in the

lists LSi , 1 ≤ i ≤ d, together with the cross-pointers. Now the actual algorithm starts.

Run algorithm PartialSplitTree(S,R, (LSi)1≤i≤d), that computes, in O(n) time, a par-

tial split tree satisfying conditions O.1, O.2, O.3.1, and O.3.2. Then, for each leaf u of

this tree, recursively call algorithm FastSplitTree(Su, R0(u)). (Observe that in recursive

calls, preprocessing is not necessary.)

This recursive algorithm FastSplitTree(S, R) computes the same tree as algorithm
SplitTree(S, R). We denote its running time (after the preprocessing step, which can be
performed in O(n log n) time) by T (n). This function satisfies the recurrence

T (n) = O(n) +
∑

u

T (|Su|),

where the summation is over all leaves u of the partial split tree. Since each subset
Su has size at most n/2, and since these subsets partition the set S, it follows that
T (n) = O(n log n). Hence, we have proved the following result.

Theorem 9.3.3. Let S be a set of n points in Rd . The split tree for S can be computed in
O(n log n) time.

9.4 Computing the well-separated pair decomposition

Let S be a set of n points in Rd , and let s > 0 be a real number. In this section, we will
give an algorithm that uses the split tree and computes a WSPD for S with respect to the
separation ratio s.

Let R be a hypercube that contains the bounding box R(S) of S and that has sides of
length Lmax(R(S)). Let T be the tree computed by algorithm FastSplitTree(S, R) in
Section 9.3.2 (or, equivalently, by algorithm SplitTree(S, R) in Section 9.3.1.) Recall
that each node u of T stores two hyperrectangles R(u) and R0(u), where (i) R(u) is the
bounding box of the subset Su of S that is stored in the subtree of u, (ii) R(u) ⊆ R0(u),
and (iii) R0(u) is determined by algorithm FastSplitTree(S, R).

Computing the WSPD: For each internal node u of the split tree, run al-
gorithm FindPairs(v, w), where v and w are the children of u. This algo-
rithm tests whether Sv and Sw are well-separated. If they are, it reports the
node pair {v, w}. Otherwise, it tests whether Lmax(R(v)) ≤ Lmax(R(w)) or
Lmax(R(v)) > Lmax(R(w)). In the first case, FindPairs(v, w) generates two re-
cursive calls FindPairs(v, wl) and FindPairs(v, wr), where wl and wr are the
two children of w. In the second case, FindPairs(v, w) generates two recur-
sive calls FindPairs(vl, w) and FindPairs(vr, w), where vl and vr are the two
children of v.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

9.4 COMPUTING THE WELL-SEPARATED PAIR DECOMPOSITION 163

The formal algorithms, denoted by ComputeWSPD(T , s) and FindPairs(v, w), are
given below. The latter algorithm tests whether the sets Sv and Sw are well-separated with
respect to s. Since the bounding boxes R(v) and R(w) of Sv and Sw are stored at v and w,
respectively, this test can be done in O(1) time.

Algorithm ComputeWSPD(T , s)

Comment: This algorithm takes as input the split tree T for the point set S, and a real
number s > 0. It returns a WSPD for S with respect to the separation ratio s.

for each internal node u of T

do v := left child of u;
w := right child of u;
FindPairs(v,w)

endfor

Algorithm FindPairs(v, w)

Comment: This algorithm takes as input two nodes v and w of the split tree T for S,
whose subtrees are disjoint. It returns a collection of well-separated pairs {A,B}, where
A is stored in the subtree of v, and B is stored in the subtree of w.

if Sv and Sw are well-separated with respect to s

then return the node pair {v,w}
else if Lmax(R(v)) ≤ Lmax(R(w))

then (∗ |Sw| > 1, hence w is not a leaf ∗)
wl := left child of w;
wr := right child of w;
FindPairs(v,wl);
FindPairs(v,wr)

else vl := left child of v;
vr := right child of v;
FindPairs(vl, w);
FindPairs(vr , w)

endif
endif

Let us first prove that algorithm FindPairs(v, w) terminates. Assume without
loss of generality that Lmax(R(v)) ≤ Lmax(R(w)). Since |Sv| · |Swl

| < |Sv| · |Sw| and
|Sv| · |Swr

| < |Sv| · |Sw|, the product of the number of points in the subtrees of the
two nodes involved becomes smaller in each recursive call. If this product is equal to
1, then both nodes are leaves, and the corresponding two sets are well-separated with
respect to s.

Next we prove that algorithm ComputeWSPD(T , s) computes a WSPD for S.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

164 THE WELL-SEPARATED PAIR DECOMPOSITION

Lemma 9.4.1. Let {vi, wi}, 1 ≤ i ≤ m, be the sequence of node pairs returned by algo-
rithm ComputeWSPD(T , s). The sequence

{Sv1 , Sw1}, {Sv2 , Sw2}, . . . , {Svm
, Swm

}

is a WSPD for the set S with respect to s.

proof Let i be an integer with 1 ≤ i ≤ m. It follows immediately from the algorithm
that Svi

and Swi
are nonempty and well-separated with respect to s.

It remains to prove that the second condition in Definition 9.1.3 is satisfied. Let p and
q be any two distinct points of S. We will show that there is an index i with 1 ≤ i ≤ m,
such that (i) p ∈ Svi

and q ∈ Swi
, or (ii) p ∈ Swi

and q ∈ Svi
. The uniqueness of this index

is left as an exercise (see Exercise 9.8).
Let u be the lowest common ancestor of the two leaves in T that store the points p and

q, and let v and w be the left and right children of u, respectively. We may assume without
loss of generality that p is in the subtree of v and q is in the subtree of w. Algorithm
ComputeWSPD(T, s) calls FindPairs(v, w). We claim that this call eventually results in
a pair {vi, wi} such that p ∈ Svi

and q ∈ Swi
.

The proof of this claim is by induction on the number N of recursive calls generated
by FindPairs(v, w). If N = 0, then the pair {v, w} is returned, and we have p ∈ Sv and
q ∈ Sw. Assume that N > 0. We may assume without loss of generality that Lmax(R(v)) ≤
Lmax(R(w)). Let wl and wr be the left and right children of w, respectively, and assume
without loss of generality that q ∈ Swl

. Then one of the two recursive calls generated by
FindPairs(v, w) is FindPairs(v, wl). Since the number of recursive calls generated by
FindPairs(v, wl) is less than N , it follows by induction that the call FindPairs(v, wl)
results in a pair {vi, wi} such that p ∈ Svi

and q ∈ Swi
.

The proof of the following lemma is left as an exercise (see Exercise 9.10).

Lemma 9.4.2. Let m be the size of the WSPD for S that is computed by algorithm
ComputeWSPD(T , s). The running time of this algorithm is O(m). (This does not include
the time to compute the split tree T.)

Representation of the WSPD: For each pair {A, B} in the WSPD, there are
two nodes v and w in the split tree T such that A = Sv and B = Sw. Hence, the
WSPD can be represented by m pairs of nodes of T .

9.4.1 The analysis of algorithm ComputeWSPD

We have seen in Lemmas 9.4.1 and 9.4.2 that algorithm ComputeWSPD(T , s) computes
a WSPD for the set S, in time proportional to the number m of pairs in the decomposition.
The main problem that remains is proving an upper bound on m.

One of the difficulties is the fact that there may be nodes a in the split tree T that are
“involved” in many pairs of the WSPD. That is, there may be �(n) nodes b in T for which
{Sa, Sb} is a pair in the WSPD. (See Exercise 9.11.) To overcome this difficulty, we use
the idea encapsulated below. Recall that for any node u of T (except for the root), π(u)
denotes the parent of u.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

9.4 COMPUTING THE WELL-SEPARATED PAIR DECOMPOSITION 165

The main idea: Make every well-separated pair an ordered pair (i.e., give it a
direction). Then, use a packing argument to show that every node is involved in
at most a small number (dependent only on s) of directed pairs.

To apply the packing argument, we make the following critical observation:
Let a and b be two nodes of the split tree T , and assume that {Sa, Sb} is a pair in
the WSPD that is computed by algorithm ComputeWSPD(T , s). Then, the sets
Sπ(a) and Sb, or the sets Sa and Sπ(b), are not well-separated.

The consequence of the above observation is as follows. Let {Sa, Sbi
}, 1 ≤ i ≤ k, be

all pairs in the WSPD that contain the set Sa as a component. Then, the sets Sbi
, with

1 ≤ i ≤ k, are pairwise disjoint. Intuitively, since for each i, the sets Sπ(a) and Sbi
, or

the sets Sa and Sπ(bi), are not well-separated, each set Sbi
is not “too far” away from Sa .

In order to apply a packing argument, we have to associate pairwise disjoint regions Zbi

in Rd to the sets Sbi
, 1 ≤ i ≤ k, such that each region Zbi

is “large” and “close” to Sa .
These regions will be obtained by using the R0-hyperrectangles and the fact that the initial
hyperrectangle R is a hypercube containing R(S) and having sides of length Lmax(R(S))
(hence, we can apply Lemma 9.3.1). The packing argument (see Lemmas 9.4.3 and 9.4.5)
states that there cannnot be too many “large” regions “close” to Sa .

We start the detailed analysis with the following lemma, which states the conditions
under which a packing argument can be applied.

Lemma 9.4.3. Let C be a hypercube in Rd , let 	 be the side length of C, and let α be a
positive real number. Let b1, b2, . . . , bk be nodes of the split tree T such that

1. bi is not the root of T for all i with 1 ≤ i ≤ k,

2. the sets Sbi
, 1 ≤ i ≤ k, are pairwise disjoint,

3. Lmax(R(π (bi))) ≥ 	/α for all i with 1 ≤ i ≤ k, and

4. R(bi) ∩ C �= ∅ for all i with 1 ≤ i ≤ k.

Then k ≤ (2α + 2)d .

proof By Lemma 9.3.1, we have

Lmin(R0(bi)) ≥ 1

2
· Lmax(R(π (bi))).

Then the third assumption implies that Lmin(R0(bi)) ≥ 	/(2α). Also, since R0(bi) contains
R(bi), the fourth assumption implies that R0(bi) ∩ C �= ∅. For each i with 1 ≤ i ≤ k, let
Ci be a hypercube with sides of length 	/(2α) such that Ci ⊆ R0(bi) and C ∩ Ci �= ∅.
It follows from the second assumption and the description of algorithm SplitTree that
the interiors of the hyperrectangles R0(bi), 1 ≤ i ≤ k, are pairwise disjoint. Hence, the
interiors of the hypercubes Ci , 1 ≤ i ≤ k, are pairwise disjoint as well.

We have shown that there exist k hypercubes C1, C2, . . . , Ck, all having sides of length
	/(2α) and whose interiors are pairwise disjoint, such that C ∩ Ci �= ∅ for all i with
1 ≤ i ≤ k.

Let C ′ be the hypercube having sides of length 	 + 2	/(2α) and that contains C in
its “center.” Then all hypercubes Ci , 1 ≤ i ≤ k, are contained in C ′. Since the volumes
of ∪k

i=1Ci and C ′ are equal to k(/(2α))d and ((1 + 1/α))d , respectively, it follows that
k(/(2α))d ≤ ((1 + 1/α))d . This implies that k ≤ (2α + 2)d .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

166 THE WELL-SEPARATED PAIR DECOMPOSITION

We mentioned already that we will represent each pair {Sa, Sb} in the WSPD as a
directed pair. Whether the pair is represented as (Sa, Sb) or (Sb, Sa) will be based on the
following lemma.

Lemma 9.4.4. Let a and b be two nodes of the split tree T , and assume that {Sa, Sb} is a
pair in the WSPD constructed by algorithm ComputeWSPD(T , s). Then at least one of
the following two claims holds.

1. Sπ(a) and Sb are not well-separated, Lmax(R(b)) ≤ Lmax(R(π (a))) and Lmax(R(π (a))) ≤
Lmax(R(π (b))).

2. Sπ(b) and Sa are not well-separated, Lmax(R(a)) ≤ Lmax(R(π (b))) and Lmax(R(π (b))) ≤
Lmax(R(π (a))).

proof The intuition is as follows. If {Sa, Sb} is a pair in the WSPD, then this pair must
have been returned by the call FindPairs(a, b). If this call was a result of a recursive
call from FindPairs(π(a), b), then the lemma shows that the longest side of R(π(a)) lies
between those of R(b) and R(π(b). On the other hand, if it was a result of a recursive call
from FindPairs(a, π(b)), then the longest side of R(π(b)) lies between those of R(a) and
R(π(a). Finally, if a and b are siblings, then both conditions are true.

More formally, let u be the lowest common ancestor of the nodes a and b. Furthermore,
let v and w be the left and right children of u, respectively. We may assume without loss
of generality that a is in the subtree of v and b is in the subtree of w. The pair {a, b}
was returned by algorithm FindPairs(v, w) or by one of the recursive calls generated by
FindPairs(v, w).

First assume that FindPairs(v, w) does not generate any recursive calls. Then a = v

and b = w, and since π(a) = π(b), both claims in the lemma hold. In the rest of the
proof, we assume that FindPairs(v, w) does generate recursive calls. Hence a �= v or
b �= w. The recursive call FindPairs(a, b) (which returns the pair {a, b}) is generated
either by FindPairs(π(a), b) or by FindPairs(a, π(b)). We assume that FindPairs(a, b)
is generated by FindPairs(π(a), b), and we will prove that the first claim in the lemma
holds. (By a symmetric argument, the other case implies that the second claim holds.)
Observe that a �= v.

It follows immediately from algorithm FindPairs that Sπ(a) and Sb are not
well-separated and Lmax(R(b)) ≤ Lmax(R(π(a))). Therefore, it remains to show that
Lmax(R(π(a))) ≤ Lmax(R(π(b))). We distinguish two cases.

Case 1: b = w.
In this case, π(a) is contained in the subtree of π(b), which implies that

Lmax(R(π(a))) ≤ Lmax(R(π(b))).

Case 2: b �= w.
We define π0(a) := a, and πk+1(a) := π(πk(a)) for k ≥ 0. Recall that we assumed

that FindPairs(a, b) is generated by FindPairs(π(a), b). Since b �= w, there is an integer
k ≥ 1, such that

1. FindPairs(πk(a), b) is generated by FindPairs(πk(a), π (b)), and

2. for each i with 0 ≤ i ≤ k − 1, FindPairs(πk−i−1(a), b) is generated by
FindPairs(πk−i(a), b).

(This claim can be proved by analyzing the recursive calls backward, starting with
FindPairs(a, b).) The first property implies that Lmax(R(πk(a))) ≤ Lmax(R(π(b))).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

9.4 COMPUTING THE WELL-SEPARATED PAIR DECOMPOSITION 167

Since k ≥ 1, node π(a) is in the subtree rooted at πk(a). Hence, Lmax(R(π(a))) ≤
Lmax(R(πk(a))). It follows that Lmax(R(π(a))) ≤ Lmax(R(π(b))). This completes the
proof.

We are now ready to prove an upper bound on the size of the WSPD that is computed
by algorithm ComputeWSPD(T , s). Consider any pair {Sa, Sb} in this decomposition.
If the first claim in Lemma 9.4.4 holds, i.e., Sπ(a) and Sb are not well-separated and
Lmax(R(b)) ≤ Lmax(R(π(a))) ≤ Lmax(R(π(b))), then we represent this pair as the directed
pair (Sa, Sb). Otherwise, we represent it as the directed pair (Sb, Sa). The following lemma
bounds the number of directed well-separated pairs that a node is “involved” in.

Lemma 9.4.5. Let a be any node of the split tree T . There are at most ((2s + 4)
√

d + 4)d

nodes b in T such that (Sa, Sb) is a directed pair in the WSPD computed by algorithm
ComputeWSPD(T , s).

proof In this proof, we will denote the distance between any two (finite or infinite)
bounded and closed sets X and Y in Rd by |XY |. That is,

|XY | = min{|xy| : x ∈ X, y ∈ Y }.

Let b be any node in T such that (Sa, Sb) is a directed pair in the WSPD.
Then Lmax(R(b)) ≤ Lmax(R(π(a))). Let Ca and Cb be the balls of radius (

√
d/2) ·

Lmax(R(π(a))) that are centered at the centers of R(π(a)) and R(b), respectively. Then
R(π(a)) ⊆ Ca and R(b) ⊆ Cb. Let x and y be the centers of the balls Ca and Cb, respec-
tively. Then |R(π(a))R(b)| ≤ |xy|. We claim that

|R(π (a))R(b)| < (s/2 + 1)
√

d · Lmax(R(π (a))). (9.4)

To prove this claim, first assume that Ca and Cb are not disjoint. Then |xy| ≤√
d · Lmax(R(π(a))), from which (9.4) follows. If Ca and Cb are disjoint, then

|CaCb| = |xy| −
√

d · Lmax(R(π (a)))

≥ |R(π (a))R(b)| −
√

d · Lmax(R(π (a))). (9.5)

Since the sets Sπ(a) and Sb are not well-separated, we have

|CaCb| < s(
√

d/2) · Lmax(R(π (a))). (9.6)

By combining (9.5) and (9.6), we obtain (9.4).
Let C be the hypercube that is centered at x and that has sides of length ((s + 2)

√
d +

1) · Lmax(R(π(a))). If R(b) ∩ C = ∅, then |R(π(a))R(b)| is larger than half the side length
of C minus Lmax(R(π(a)))/2, contradicting (9.4). Hence, R(b) ∩ C �= ∅.

Next, since the first claim in Lemma 9.4.4 holds, we have Lmax(R(π(a))) ≤
Lmax(R(π(b))). Hence, if we denote the side length of C by 	, then

Lmax(R(π (b))) ≥ 	

(s + 2)
√

d + 1
.

Now consider all directed pairs (Sa, Sb1), (Sa, Sb2), . . . , (Sa, Sbk
) in our WSPD that

contain Sa as their first component. Since Sa is common to all these k pairs and since
every pair of points must be in a unique pair (property 2. in Definition 9.1.3), it is clear that
the sets Sbi

, 1 ≤ i ≤ k, are pairwise disjoint. Moreover, none of the nodes b1, b2, . . . , bk

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

168 THE WELL-SEPARATED PAIR DECOMPOSITION

are the root of T . Finally, we have just shown that for each i with 1 ≤ i ≤ k,

Lmax(R(π (bi))) ≥ 	

(s + 2)
√

d + 1

and that R(bi) ∩ C �= ∅. Therefore, by Lemma 9.4.3, we have k ≤ ((2s + 4)
√

d +4)d .

Consider again the WSPD that is computed by our algorithm. Each pair in this decom-
position has the form {Sa, Sb}, for some nodes a and b in the split tree T , neither of them
being the root of T . Such a pair is directed either as (Sa, Sb) or as (Sb, Sa). Since T has
2n − 2 nonroot nodes, it follows from Lemma 9.4.5 that the size of the WSPD, i.e., the
number of its pairs, is less than or equal to (2n − 2)((2s + 4)

√
d + 4)d . We have proved

the following result.

Theorem 9.4.6 (WSPD Theorem). Let S be a set of n points in Rd and let s > 0 be a
real number.

1. The split tree for S can be computed in O(n log n) time. This tree has size O(n) and does
not depend on the value of s.

2. Given the split tree, we can compute in O(sdn) time, a WSPD for S with respect to s of
size O(sdn). This WSPD can be represented implicitly in O(sdn) space.

Theorems 9.4.6 and 9.2.1 immediately imply the following result.

Corollary 9.4.7 (WSPD-Spanner). Let S be a set of n points in Rd and let t > 1 be a
real number. In O(n log n + n/(t − 1)d) time, we can construct a t-spanner for S having
O(n/(t − 1)d) edges.

Thus, the WSPD-spanner has O(n) edges and can be constructed in O(n log n) time.
Let us consider the other quality measures for spanners that we have seen before:

1. There is no nontrivial bound on the degree of the WSPD-spanner. However, we will
show in Section 10.1.1 that the technique of Section 5.5.3 can be used to transform the
WSPD-spanner to a spanner of bounded degree.

2. There is no nontrivial bound on the spanner diameter of the WSPD-spanner. How-
ever, we will show in Section 10.2 that for a special choice of the representa-
tives for each well-separated pair {Ai, Bi}, the WSPD-spanner has spanner diameter
O(log n).

3. By combining the Gap Theorem (Theorem 6.1.2) of Chapter 6 with the so-called dumbbell
trees that will be introduced in Chapter 11, it can be shown that the weight of the WSPD-
spanner is O(log n) times the weight of a minimum spanning tree of the point set S; see
Exercises 9.12 and 11.6.

9.5 Finding the pair that separates two points

For a given set S of n points in Rd , let {Ai, Bi}, 1 ≤ i ≤ m, be a WSPD with respect to
a separation ratio s > 0. By definition, for any two distinct points p and q of S, there
exists a unique well-separated pair in the decomposition that contains this pair of points.
In several applications of the WSPD, we need an efficient algorithm that computes such
a well-separated pair from the decomposition. In this section, we consider the problem of
answering such pair queries.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

9.5 FINDING THE PAIR THAT SEPARATES TWO POINTS 169

Problem 9.5.1 (Pair Query). Given a WSPD {Ai, Bi}, 1 ≤ i ≤ m, for a set S of n points
in Rd , and given two distinct points p and q in S, compute the index i for which p ∈ Ai

and q ∈ Bi , or p ∈ Bi and q ∈ Ai .

In general, it is not clear how a pair query can be answered efficiently. In this section,
we will present two algorithms that use the special structure of the WSPD that is computed
by algorithm ComputeWSPD(T , s), to answer such a query in O(log n) time.

9.5.1 Answering pair queries using centroid edges

Consider the split tree T for the set S. Recall that each node u of T stores the bounding box
R(u) of the subset Su. Also recall that algorithm ComputeWSPD(T , s) (see Section 9.4)
uses T to compute the WSPD. For each internal node u of T , this algorithm calls the
recursive algorithm FindPairs(v, w) (see Section 9.4), where v and w are the two children
of u. The recursive calls generated by FindPairs(v, w) define a binary recursion tree
RT(v, w) in a natural way. Formally, this tree is defined as follows. If the sets Sv and Sw

are well-separated, then RT(v, w) consists of a single node storing the bounding boxes
R(v) and R(w), and two pointers to the nodes v and w in the split tree T . Otherwise,
assume without loss of generality that Lmax(R(v)) ≤ Lmax(R(w)). Let wl and wr be the
two children of w. Then RT(v, w) consists of a root storing the bounding boxes R(v)
and R(w). This root has pointers to two recursively defined recursion trees RT(v, wl) and
RT(v, wr).

Observe that each pair in the WSPD corresponds to a unique leaf in exactly one of the
recursion trees. Conversely, any leaf in any recursion tree corresponds to exactly one pair
in the WSPD.

Let us see how these recursion trees can be used to answer a pair query. Let p and q

be two distinct points of S, and let i be the index such that p ∈ Ai and q ∈ Bi , or p ∈ Bi

and q ∈ Ai . Let a and b be the nodes of T such that Sa = Ai and Sb = Bi , or Sa = Bi and
Sb = Ai . Hence, our goal is to find the two nodes a and b. Let u be the lowest common
ancestor of the leaves of T storing the points p and q. Then it is not difficult to see that
(pointers to) a and b are stored with one of the leaves of the recursion tree RT(v, w),
where v and w are the two children of u. Let us denote this leaf by 	.

We find the leaf 	 by walking down the tree RT(v, w). We start at the root, which stores
the hyperrectangles R(v) and R(w). Observe that (i) p ∈ R(v) and q ∈ R(w), or (ii) p ∈
R(w) and q ∈ R(v). We may assume without loss of generality that (i) holds. If RT(v, w)
consists of one single node, then this node is the leaf 	 we are looking for and, hence, we
are done. Otherwise, assume without loss of generality that Lmax(R(v)) ≤ Lmax(R(w)),
and let wl and wr be the two children of w. If q ∈ R(wl), then 	 is a leaf in the tree
RT(v, wl); hence, we proceed our search recursively in this tree. Otherwise, q ∈ R(wr)
and we continue our search for 	 in the tree RT(v, wr).

The correctness of this algorithm is clear. To analyze its running time, first observe
that the lowest common ancestor u can be computed in O(log n) time, see Theorem 2.3.2.
(There is even a faster algorithm, see Theorem 2.3.6. A logarithmic bound is, however,
good enough for our purposes.) Given u, the search in the corresponding recursion tree
RT(v, w) takes time proportional to the height of this tree. Unfortunately, this height may
be linear in n.

To improve the time to search in the recursion tree RT(v, w), we observe that it is not
necessary to start at its root. Recall that p ∈ R(v) and q ∈ R(w). Let x be an arbitrary

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

170 THE WELL-SEPARATED PAIR DECOMPOSITION

internal node of RT(v, w), and let ax and bx be the two nodes of T that correspond to x,
where R(ax) ⊆ R(v) and R(bx) ⊆ R(w). If p ∈ R(ax) and q ∈ R(bx), then the leaf 	 we
want to find is contained in the subtree of RT(v, w) rooted at x. Otherwise, 	 is contained
in the tree obtained from RT(v, w) by deleting the subtree rooted at x.

Let e be a centroid edge of RT(v, w) (see Exercise 2.14), and let x be the endpoint of
e that is furthest away from the root of RT(v, w). Deleting e from RT(v, w) results in two
trees having approximately the same number of nodes. Hence, if we start our search for
	 in node x, then in one “step,” we reduce the size of the tree in which we continue the
search by a constant factor. By continuing the search in a recursive manner, we find the
leaf 	 in a time that is logarithmic in the number of nodes of RT(v, w). Since the number
of nodes of the tree RT(v, w) is polynomial in n, we find 	 in O(log n) time.

In the preprocessing needed to answer pair queries, we preprocess the split tree for
lowest common ancestor queries (see Section 2.3.2), compute the recursion trees, and
use centroid edges to represent them in a balanced form (this is left as an exercise; see
Exercise 9.13). Since a centroid edge of a tree can be computed in time that is linear in
the size of the tree (see Exercise 2.14), we have proved the following result:

Theorem 9.5.2. Let S be a set of n points in Rd , and let s > 0 be a real number. The
WSPD of Theorem 9.4.6 can be represented in O(sdn) space, such that for any two distinct
points p and q in S, a pair query can be answered in O(log n) time. This representation
can be computed in O(sdn log n) time.

9.5.2 Answering pair queries using a path decomposition

The second data structure for answering pair queries improves the preprocessing time
in Theorem 9.5.2 from O(sdn log n) to O(n). (This does not include the time needed to
compute the split tree and the WSPD.)

We will need the following lemma, which states that the longest side of the bounding
box of the subset of S contained in the subtree of a node in the split tree T decreases by a
factor of at least 2 if we descend T by d levels.

Lemma 9.5.3. Let b and b′ be two nodes in the split tree T such that b is in the subtree
of b′ and the path between them contains at least d edges. Then

Lmax(R(b)) ≤ 1

2
· Lmax(R(b′)).

proof Let i be an integer with 1 ≤ i ≤ d. It is sufficient to prove that

Li(R(b)) ≤ 1

2
· Lmax(R(b′)).

Let b′′ be the child of b′ such that b is in the subtree of b′′. First assume that there is a
node u on the path between b and b′′ such that algorithm SplitTree splits R(π(u)) along
dimension i. Then

Li(R(b)) ≤ Li(R(u))

≤ 1

2
· Li(R(π (u)))

≤ 1

2
· Li(R(b′))

≤ 1

2
· Lmax(R(b′)).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

9.5 FINDING THE PAIR THAT SEPARATES TWO POINTS 171

We are left with the case when for each node u on the path between b and b′′, algorithm
SplitTree splits R(π(u)) along a dimension different from i. Since the path between b

and b′′ contains at least d nodes, there is an index j with j �= i, and two distinct nodes
u and v on this path, such that both R(π(u)) and R(π(v)) are split along dimension j .
Assume without loss of generality that u is in the subtree of v. Then

Li(R(b)) ≤ Li(R(π (u)))

≤ Lj (R(π (u)))

≤ Lj (R(v))

≤ 1

2
· Lj (R(π (v)))

≤ 1

2
· Lj (R(b′))

≤ 1

2
· Lmax(R(b′)).

This completes the proof.

The data structure for answering pair queries that will be discussed in the rest of this
section is based on several properties of well-separated pairs and the split tree. These
properties are stated in the following two lemmas. We define

α := 2

(s + 4)
√

d
.

The proof of the following lemma is left as an exercise. (See Exercise 9.14.)

Lemma 9.5.4. Let A and B be two bounded subsets of Rd , let p be a point in A, let q be
a point in B, and let s > 0 be a real number.

1. If A and B are well-separated with respect to s, then both Lmax(R(A)) and Lmax(R(B))
are less than or equal to (2/s)|pq|.

2. If both Lmax(R(A)) and Lmax(R(B)) are less than or equal to α|pq|, then A and B are
well-separated with respect to s.

Let s > 0 be a real number, and let {Ai, Bi}, 1 ≤ i ≤ m, be the WSPD of S, with
separation ratio s, that is computed by algorithm ComputeWSPD(T , s) in Section 9.4.
Recall that, by Theorem 9.4.6, we have m = O(sdn). Every node u of the split tree T

stores the bounding box R(u) of the set of all points that are stored in the subtree rooted at
u. For any ordered pair (p, q) of distinct points in the point set S, we define the following
two nodes in T :

� upq is the highest node u on the path in T from the leaf storing p to the root, such that
Lmax(R(u)) ≤ (2/s)|pq|.

� u′
pq is the highest node u on the path in T from the leaf storing p to the root, such that

Lmax(R(u)) ≤ α|pq|.
For each i with 1 ≤ i ≤ m, let vi and wi be the nodes in T such that Ai = Svi

and
Bi = Swi

.

Lemma 9.5.5. Let p and q be two distinct points of S, and let i be the index such that (i)
p ∈ Ai and q ∈ Bi , or (ii) p ∈ Bi and q ∈ Ai . Assume without loss of generality that (i)
holds.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

172 THE WELL-SEPARATED PAIR DECOMPOSITION

1. If we follow the path in T from the leaf storing p to the root, then we encounter, in this
order, the nodes u′

pq , vi , and upq .

2. If we follow the path in T from the leaf storing q to the root, then we encounter, in this
order, the nodes u′

qp, wi , and uqp.

3. The path in T between u′
pq and upq contains O(1/s) nodes.

4. The path in T between u′
qp and uqp contains O(1/s) nodes.

5. Given pointers to the nodes upq and uqp, we can compute the nodes vi and wi in O(1/s)
time.

proof By the construction of the split tree, we know that the sizes of the bounding
boxes of the corresponding nodes increases as we traverse from any node in the split tree
to its root. Thus, the first claim follows from the definition of the nodes u′

pq and upq , from
Lemma 9.5.4, and from algorithm FindPairs of Section 9.4. The second claim follows
by a symmetric argument. The third and fourth claims follow from Lemma 9.5.3. The last
claim follows from the third and fourth claims, and from algorithm FindPairs.

The previous lemma implies that, in order to answer a pair query for two points p and
q, it is sufficient to compute the two nodes upq and uqp.

We are now ready to describe the data structure that will allow us to efficiently answer
a pair query. We use the construction of Section 2.3.2 to partition the split tree T into
pairwise disjoint paths. Recall that these paths have the property that we can walk from
any node in T to the root, in O(log n) time. For each path P in the partition of T , let TP

be a balanced binary search tree storing the nodes on the path P . The search information
stored with each node u in TP is the value of Lmax(R(u)). When given the split tree T ,
its partition into paths, as well as the collection of all trees TP , can be computed in O(n)
time.

Given two distinct points p and q of S, let i be the index such that (i) p ∈ Ai and
q ∈ Bi , or (ii) p ∈ Bi and q ∈ Ai . As usual, we assume without loss of generality that
(i) holds. Answering the pair query for p and q (i.e., finding the two nodes vi and wi) is
done in the following way. First, in O(log n) time, find the path P in the partition of T

that contains the node upq . Then, use the binary search tree TP to find, again in O(log n)
time, the node upq on P . Finally, in O(1/s) time, find the node vi . In a symmetric way,
we find the node wi in O(log n + 1/s) time.

Theorem 9.5.6. Let S be a set of n points in Rd , and let s > 0 be a real number. The
WSPD of Theorem 9.4.6 can be represented in O(sdn) space, such that for any two distinct
points p and q in S, a pair query can be answered in O(log n + 1/s) time. Given the split
tree T and this WSPD, this representation can be computed in O(n) time.

In Section 16.3.3, we will show that the solution given above can be extended to answer
a restricted type of pair queries more efficiently.

9.6 Extension to other metrics

We have introduced the well-separated pair decomposition for point sets in Rd , under
the Euclidean metric. A natural question is whether the WSPD can be generalized to
other metrics. This is meaningful, because in many applications the underlying metric is
non-Euclidean.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

9.6 EXTENSION TO OTHER METRICS 173

A metric space is a pair (S, δ), where S is a (finite or infinite) set, whose elements are
called points, and δ : S × S −→ R is a function that assigns a distance δ(p, q) to any two
points p and q in S, and that satisfies the following three conditions:

1. For all points p and q in S, δ(p, q) ≥ 0.

2. For all points p and q in S, δ(p, q) = 0 if and only if p = q.

3. For all points p and q in S, δ(p, q) = δ(q, p).

4. For all points p, q, and r in S, δ(p, q) ≤ δ(p, r) + δ(r, q).

The fourth condition is called the triangle inequality.
Let (S, δ) be an arbitrary metric space, where S is a finite set. Before we can define the

WSPD based on the metric δ, we have to define the notion of two sets being well-separated.
The diameter D(A) of a subset A of S is defined as

D(A) := max{δ(a, b) : a, b ∈ A}.
The distance δ(A, B) of two subsets A and B of S is defined as

δ(A,B) := min{δ(a, b) : a ∈ A, b ∈ B}.
For a real number s > 0, we say that the subsets A and B of S are well-separated with
respect to s if

δ(A,B) ≥ s · max(D(A),D(B)).

Using this generalized notion of being well-separated, we define a well-separated pair
decomposition (WSPD) for S, with respect to the separation ratio s, as in Definition 9.1.3.
As before, we define the size of a WSPD to be the number of pairs in the decomposition.

For every metric space (S, δ), and for every real number s > 0, there exists a WSPD
of size

(
n

2

)
. Unfortunately, there exist metric spaces for which no WSPD of smaller size

exists; see Exercise 9.17. Below, we give two examples of metric spaces that do have a
WSPD of subquadratic size.

9.6.1 The unit disk metric

Let S be a set of n points in Rd . Recall the unit disk graph U = (S, E) of S, that was
defined in Exercise 4.7. The edge set E of this graph is defined as

E = {{p, q} : p ∈ S, q ∈ S, 0 < |pq| ≤ 1}.
For any two points p and q in S, we define δ(p, q) to be the length of a shortest path
between p and q in the graph U . Then, (S, δ) is a metric space. We state the following
theorem without proof.

Theorem 9.6.1. Let S be a set of n points in Rd such that the unit disk graph of S is
connected, and let s > 1 be a real number. Consider the metric space (S, δ) as defined
above.

1. If d = 2, then a WSPD for S, with respect to s, having size O(s4n log n), can be computed
in O(s4n log n) time.

2. If d = 3, then a WSPD for S, with respect to s, having size O(n4/3), can be computed in
O(n4/3 logO(1) n) time.

3. If d ≥ 4, then a WSPD for S, with respect to s, having size O(n2−2/d), can be computed
in O(n2−2/d) time.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

174 THE WELL-SEPARATED PAIR DECOMPOSITION

9.6.2 Doubling metrics

Several natural extensions to the concept of dimension in Euclidean spaces have been
defined and studied. One such concept is that of the doubling dimension of a metric space.
Let (S, δ) be a metric space, where S is a finite set. The doubling dimension of this space
is defined to be the smallest positive real number λ, such that the following holds: For
every real number ρ > 0, every ball of radius ρ can be covered by 2λ balls of radius ρ/2.
We say that (S, δ) is a doubling metric, if its doubling dimension does not depend on the
size of S. We state the following theorem without proof.

Theorem 9.6.2. Let (S, δ) be a metric space with doubling dimension λ, let n be the
size of S, and let s > 1 be a real number. There exists a WSPD for S, with respect to s,
consisting of O(n/sO(λ)) pairs. There exists a randomized algorithm that computes such
a WSPD in

O
(
2O(λ)n log n + n/sO(λ))

expected time.

Observe that this result is weaker than the deterministic results presented in this chapter
for Euclidean metrics.

Open problem: Which metric spaces (S, δ) admit a WSPD of subquadratic size?
Design efficient algorithms that compute such a WSPD.

Exercises

9.1. Let A and B be two finite sets of points in R
d , and assume that we know their bounding boxes

R(A) and R(B). Give an algorithm that decides in O(1) time if A and B are well-separated with

respect to some given real number s > 0.

9.2. Let s > 0 be a real number, let x := 2/s + 1, and let S be the set consisting of the n real numbers

xi , 0 ≤ i ≤ n − 1. Let {Ai, Bi}, 1 ≤ i ≤ m, be an arbitrary WSPD for S with separation ratio s.

Prove that
m∑

i=1

(|Ai | + |Bi |) =
(

n

2

)
+ m.

(Hint: For each i, at least one of the sets Ai and Bi contains only one element.)

9.3. Use Lemma 7.1.1 to prove that the graph G = (S,E) of Section 9.2 is a t -spanner for S.

9.4. In Section 9.2, we pick arbitrary representatives in the sets Ai and Bi to define the t -spanner

G. Choose the representatives ai in Ai and bi in Bi such that |aibi | is minimum. Prove that the

resulting graph has the strong spanner property of Exercise 4.6: For any two points p and q of the

point set S, there is a path between p and q whose length is less than or equal to t |pq| and all of

whose edges have length at most |pq|.
9.5. Let S be a set of n points in R

d , let p be a point of S, and let q be a nearest neighbor of p in S, i.e.,

q ∈ S and |pq| = min{|pr| : r ∈ S, r �= p}. Consider an arbitrary WSPD for S, with separation

ratio s > 2. Let {A, B} be the pair in this decomposition such that p ∈ A and q ∈ B. Prove that

the set A is a singleton set containing only the point p.

9.6. Let S be a set of n points in R
d , and let {p, q} be an arbitrary closest pair in S, that is, |pq| =

min{|ab| : a, b ∈ S, a �= b}. Consider an arbitrary WSPD for S, with separation ratio s > 2. Prove

that this decomposition contains the pair {{p}, {q}}.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

EXERCISES 175

9.7. Let S be a set of n points in R
d .

(1) Use Exercise 9.5 to prove that the size of any WSPD for S, with separation ratio s > 2, is greater

than or equal to n/2.

(2) Use the results from Section 9.2 to prove that the size of any WSPD for S, with separation ratio s > 4,

is greater than or equal to n − 1. (See also Exercise 10.7.)

9.8. Prove that the index i in the proof of Lemma 9.4.1 is unique.

9.9. Use algorithm ComputeWSPD to compute a WSPD for the set S of Exercise 9.2.

9.10. Prove Lemma 9.4.2.

9.11. Let S be the set of n real numbers defined as

S := {2i : 1 ≤ i ≤ n − 2} ∪ {−1, −2n−2},

and let s > 3 be a real number. Let T be the split tree for S, and consider the WSPD that is

computed by algorithm ComputeWSPD(T , s). Prove that for each i with 1 ≤ i ≤ n − 2, the pair

{{−1}, {2i}} is contained in this WSPD.

9.12. Let S be the set consisting of the n integers 1, 2, . . . , n, let s > 1 be a real number, and let

{Ai, Bi}, 1 ≤ i ≤ m, be an arbitrary WSPD for S with separation ratio s. Prove that the weight of

the spanner of Section 9.2 for this WSPD, for any choice of the representatives, is �(s−1
s+1 n log n).

Thus, there exist point sets S in R
d , such that the WSPD-spanner for S has weight �(log n) times

the weight of a minimum spanning tree of S. (In Exercise 11.6, we will see that this lower bound is

tight.)

9.13. In Section 9.5.1, we sketched an algorithm that uses centroid edges to search in a recursion tree

RT (v, w). Fill in the details of this algorithm. In particular, explain how centroid edges are used

to compute a balanced representation of RT (v,w) in O(n′ log n′) time, where n′ is the number of

nodes of RT (v, w).

9.14. Prove Lemma 9.5.4.

9.15. Let S be a set of n points in R
d and let s > 0 be a real number. Let {Ai, Bi}, 1 ≤ i ≤ m, be the

WSPD for S with separation ratio s, as referred to in Theorem 9.4.6. Prove that

m∑
i=1

min(|Ai |, |Bi |) = O(sdn log n).

9.16. Let S be a set of n points in R
d and let s > 0 be a real number. Give an algorithm that computes,

in O(sdn log n) time, a WSPD for S with separation ratio s, consisting of O(sdn log n) pairs of the

form {A,B}, where at least one of A and B contains only one element.

9.17. Let S be a set of n elements, and define the function δ : S × S −→ R by

δ(p, q) :=
{

0 if p = q,

1 if p �= q.

(1) Prove that (S, δ) is a metric space.

(2) Let s > 1 be a real number. Prove that for the metric space (S, δ), every WSPD for S, with respect

to the separation ratio s, consists of exactly
(
n

2

)
pairs.

9.18. In Section 9.6.2, we have defined the doubling dimension of a metric space. Determine the doubling

dimension of the metric space (S, δ), where S is a finite set of points in R
d and δ is the Euclidean

distance function.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

176 THE WELL-SEPARATED PAIR DECOMPOSITION

Bibliographic notes

The well-separated pair decomposition was introduced by Callahan and Kosaraju [1992,
1995b]; see also Callahan [1995]. Their motivation was to adapt the fast multipole method
(see Greengard [1988]) for the efficient computation of n-body potential fields. The
algorithm of Greengard makes certain assumptions about the distribution of the input
points. Callahan and Kosaraju devised the WSPD to show that this algorithm can be
adapted so that its running time does not depend on the bit representation of the input
points. The term “well-separated” is taken from Greengard.

The results of Sections 9.1, 9.3, and 9.4 are due to Callahan [1995] and Callahan
and Kosaraju [1992, 1995b]. Previously, algorithms for computing spanners, nearest
neighbors, and closest pairs, that are based on similar ideas, were given by Salowe [1991,
1992] and Vaidya [1988, 1989, 1991]. Section 9.2 is based on Callahan and Kosaraju
[1993].

The algorithm in Section 9.5.1 for answering pair queries is due to Arya, Mount,
and Smid [1994]. The improved algorithm in Section 9.5.2 is based on Gudmundsson,
Narasimhan, and Smid [2005].

A solution to Exercise 9.2 can be found in Callahan and Kosaraju [1995b]. Solutions
to Exercises 9.15 and 9.16 can be found in Callahan [1995].

The algorithm for computing the WSPD, as presented in this chapter, is based on the
split tree. There are other trees that can be used instead of the split tree. We mention the
balanced box-decomposition tree of Arya et al. [1998] (see also Arya and Mount [2000]),
and the balanced aspect ratio tree of Duncan, Goodrich, and Kobourov [2001] (see also
Duncan [1999]).

Callahan [1995], Narasimhan, Zhu, and Zachariasen [2000], Narasimhan and Zachari-
asen [2001], and Tate and Xu [2000] present experimental work on (variants of) the split
tree and the WSPD.

Varadarajan [1998] defines the semi-separated decomposition (which is a variant of
the WSPD), and uses it to compute the minimum-cost perfect matching of a set of points
in the plane.

It is natural to ask whether any theory developed for Euclidean metrics can be extended
to more general metric spaces. In Section 9.6, we stated that the WSPD can be generalized
to unit disk and doubling metric spaces. Theorem 9.6.1 for the unit disk metric is due to
Gao and Zhang [2005]. Clearly, a good candidate for an extension is any metric space that
can be isometrically embedded (i.e., embedded while preserving distances faithfully) into
a low-dimensional Euclidean space. For some applications, it may be sufficient to find
low-distortion embeddings (instead of isometric embeddings). For a fixed real number
c > 1, the metric dimension of a finite metric space (X, δ) is defined to be the least
dimension of a real normed space (Y, ‖ · ‖), such that there is an embedding φ of X into
Y , where every two points x1, x2 ∈ X satisfy

δ(x1, x2) ≥ ‖φ(x1) − φ(x2)‖ ≥ 1

c
· δ(x1, x2).

Bourgain [1985] showed that it is possible to embed an arbitrary metric space with n

elements into a O(log n)-dimensional Euclidean space, but with a logarithmic distortion,
i.e., distances suffer a distortion of at most a logarithmic factor in the embedding. The
seminal work of Linial, London, and Rabinovich [1995] showed that there exist metric
spaces (constant-degree expanders) for which every embedding into a Euclidean space (of
any dimension) has a distortion of �(log n), thus showing that Bourgain’s result cannot

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHIC NOTES 177

be improved for general metric spaces. (See also the book by Matoušek [2002].) Small
distortions are not possible even for the case of the doubling metrics (see Section 9.6.2),
as shown by Semmes [1996] and Laakso [2002].

For many applications (such as nearest neighbor problems), often the underlying met-
ric is non-Euclidean. This motivated attempts to define “Euclidean-like” metrics that
extended the concepts of a Euclidean metric. While embedding problems are of interest
for these extended metrics, the focus was on bypassing the embedding step and designing
algorithms for these metrics directly. The growth-restricted metrics were introduced by
Karger and Ruhl [2002]. These metrics satisfy the property that for any point q and any
real number ρ > 0, the number of points within distance 2ρ of q is at most a constant fac-
tor larger than the number of points within distance ρ. Karger and Ruhl [2002] designed
algorithms for nearest neighbor problems under these metrics. These algorithms are useful
in networking applications, such as the Internet or peer-to-peer networks, and vector quan-
tization applications, where feature vectors fall into low-dimensional manifolds within
high-dimensional vector spaces.

The doubling metrics of Section 9.6.2 were defined by Assouad [1983] (see also
Heinonen [2001] and Gupta, Krauthgamer, and Lee [2003]). For doubling metrics, Talwar
[2004] showed the existence of an efficiently computable well-separated pair decompo-
sition, as well as quasi-polynomial time (1 + ε)-approximation algorithms for various
optimization problems such as TSP, k-median, and facility location. However, Talwar’s
results depended on the aspect ration of the points, which is defined as the ratio of
the maximum to the minimum interpoint distance for the points in the set. Har-Peled
and Mendel [2006] eliminated the dependence on the aspect ratio in Talwar’s results,
and obtained Theorem 9.6.2. They showed how to construct in linear expected time a
hierarchical net for doubling metrics. Using this data structure, they devised improved
algorithms for many problems including approximate nearest neighbor, well-separated
pair decomposition, spanners, compact representation schemes, and computation of quan-
tities such as the doubling dimension and the (approximate) Lipschitz constant of a
function.

Other related papers include those by Hildrum et al. [2004], Krauthgamer and Lee
[2004a,b], and Krauthgamer et al. [2005].

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

10

Applications of Well-Separated Pairs

“Then you must be sure to require the citizens of your ideal state not to neglect

geometry. It has considerable incidental advantages too.”

“What are they?” he asked.

“Its usefulness for war, which you have already mentioned,” I replied; “and there

is a certain facility for learning all other subjects in which we know that those

who have studied geometry lead the field.”

“They are miles ahead,” he agreed.

“So shall we make this the second subject our young men must study?”

“Yes.”

—from The Republic depicted as dialogues of Plato (c. 427–347 BC)
with Socrates

In this chapter, we will present several applications of the well-separated pair decom-
position (WSPD) that was introduced in the previous chapter. In Section 10.1, we will
give two O(n log n) – time algorithms that compute, for any set of n points in Rd , a
t-spanner in which the degree of each vertex is bounded by a constant. Observe that these
results improve Theorem 5.5.5. In Section 10.2, we show that a t-spanner with O(n)
edges and O(log n) spanner diameter can be computed in O(n log n) time, improving the
result of Theorem 5.5.6. Finally, in Section 10.3, we show that the WSPD can be used to
obtain efficient algorithms for the closest pair problem, the k closest pairs problem, the
all-nearest neighbors problem, and the problem of computing an approximate minimum
spanning tree.

10.1 Spanners of bounded degree

In this section, we give two O(n log n)-time algorithms for constructing bounded degree
t-spanners for a set S of n points in Rd . The first algorithm combines the transformation
of Section 5.5.3 (which takes a high-degree “star” subgraph at a vertex and transforms it
into a sink spanner) with the technique used in Section 9.4.1 (which directs the WSPD
pairs computed by algorithm ComputeWSPD from Section 9.4). The second construction
computes a subgraph of the WSPD-spanner of Corollary 9.4.7. We show that this subgraph
satisfies the conditions of Lemma 7.1.1, thus guaranteeing that it is a spanner. We also
show that this subgraph has bounded outdegree, and therefore, applying the transformation
of Section 5.5.3 gives us the required bounded degree spanner.

10.1.1 The first construction

Let S be a set of n points in Rd and let t > 1 be a real number. Consider the WSPD,

{A1, B1}, {A2, B2}, . . . , {Am,Bm}
178

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

10.1 SPANNERS OF BOUNDED DEGREE 179

for S, with separation ratio s := 4(
√

t + 1)/(
√

t − 1), which is computed by algorithm
ComputeWSPD. By Theorem 9.4.6, this WSPD has size m = O(sdn) and can be com-
puted in O(n log n + sdn) time.

For each i with 1 ≤ i ≤ m, let ai be an arbitrary element of Ai and let bi be an arbitrary
element of Bi . We showed in Section 9.2 that the undirected graph G = (S, E), where
E := {{ai, bi} : 1 ≤ i ≤ m}, is a

√
t-spanner for S. The construction in the current section

chooses the representatives ai and bi in a careful way, so that the degrees of the vertices
of G can be carefully controlled.

Consider the split tree T that gave rise to our WSPD. For each leaf u of T , let r(u) be
the point of S that is stored in u. Moreover, for each internal node u of T , let r(u) be the
point of S that is stored in the rightmost leaf of the left subtree of u. Since every internal
node of T has two children, r(u) is distinct for every internal node. Also, observe that this
rightmost leaf immediately precedes u in an inorder traversal of T . Hence, in O(n) total
time, we can compute, for each node u of T , the point r(u), and store it with u.

Let i be an integer with 1 ≤ i ≤ m, and consider the well-separated pair {Ai, Bi}.
This pair is represented implicitly by two nodes, say ui and vi , of T . Hence, Ai and Bi

are the sets of points stored in the subtrees of ui and vi , respectively. We take the point
ai := r(ui) to be the representative of Ai . Similarly, we take the point bi := r(vi) to be
the representative of Bi . Observe that ai ∈ Ai and bi ∈ Bi . The following two lemmas
explain why we choose the representatives in this way.

Lemma 10.1.1. Let p be any point of S. There are at most two nodes u in T for which
r(u) = p.

proof The proof follows from the way in which we defined the representatives.

For each i with 1 ≤ i ≤ m, we direct the pair {Ai, Bi} as described after the proof of
Lemma 9.4.4, and direct the edge {ai, bi} accordingly. We denote the directed version of
G by �G.

Lemma 10.1.2. The outdegree of each vertex of �G is less than or equal to 2((2s +
4)

√
d + 4)d .

proof Let p be an arbitrary vertex of �G. By Lemma 10.1.1, there are at most two nodes
u in T such that r(u) = p. Consider such a node u. For each directed pair (Ai, Bi), where
Ai is the set of points stored in u’s subtree, p has one outgoing edge in �G. Moreover, all
outgoing edges of p are obtained in this way. The claim now follows from Lemma 9.4.5,
which bounds the number of directed pairs in which any set is involved in.

Let θ be a real number such that 0 < θ < π/4 and 1/(cos θ − sin θ) ≤ √
t . By applying

Theorem 5.5.4 to the graph G, with t ′ = √
t and D = O(sd), we transform G, in

O
(
1/θd−1 + D log(1/θ)n log n

)
time, into an undirected t-spanner for S, in which each vertex has degree O(D/θd−1).

Let us assume that t > 1 and t → 1. Then, s is proportional to 1/(t − 1), and θ is
proportional to t − 1. We have proved the following theorem.

Theorem 10.1.3. Let S be a set of n points in Rd , and let t > 1 be a real number. In

O

(
log(1/(t − 1))

(t − 1)d
n log n

)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

180 APPLICATIONS OF WELL-SEPARATED PAIRS

time, we can construct a t-spanner for S, in which each vertex has degree O(1/

(t − 1)2d−1).

First construction of a bounded-degree spanner: For each internal node in the
split tree, pick the point stored in its inorder predecessor as a representative; for
each leaf, pick the point stored in it as the representative. For each pair in the
WSPD, add an edge connecting the two representatives. Direct the edges of the
resulting graph using Lemma 9.4.4. This yields a graph of bounded outdegree.
Use the construction of Section 5.5.3 to transform this graph into an undirected
spanner of bounded degree.

10.1.2 The second construction

It turns out to be convenient to describe the second construction for directed graphs.
We will use the following special case of Lemma 7.1.1 (where the last condition was
simplified).

Lemma 10.1.4. Let θ , w, and t be real numbers such that 0 < θ < π/4, 0 ≤ w <

(cos θ − sin θ)/2, and t ≥ 1/(cos θ − sin θ − 2w). Let S be a set of n points in Rd , and
let G = (S, E) be a directed graph, such that the following holds: For any two distinct
points p and q of S, there is an edge (x, y) ∈ E, such that

� angle(pq, xy) ≤ θ , |xy| ≤ |pq|/ cos θ , and |px| ≤ w|xy|.
Then, the graph G is a t-spanner for S.

Let S be a set of n points in Rd , and let t > 1 be a real number. We choose a real
number θ such that 0 < θ < π/4 and cos θ − sin θ > 1/t , and define

s := max

(
4 cos θ

1 − cos θ
,

4

sin(θ/2)
,

4

cos θ − sin θ − 1/t

)
and w := 2/s. The proof of the following lemma is straightforward.

Lemma 10.1.5. We have

1. 1 + 4/s ≤ 1/ cos θ ,

2. 4/s ≤ sin(θ/2),

3. t ≥ 1/(cos θ − sin θ − 2w), and

4. 0 < w < (cos θ − sin θ)/2.

We now present our second construction. We first compute the split tree T , together
with the corresponding WSPD

{A1, B1}, {A2, B2}, . . . , {Am,Bm}
for S, with separation ratio s. By Theorem 9.4.6, this tree and the WSPD can be computed
in O(n log n + sdn) time. Moreover, we have m = O(sdn).

For each node u of T , let Su be the set of all points of S that are stored in the subtree of u.
For each i with 1 ≤ i ≤ m, let ui and vi be the nodes of T such that Sui

= Ai and Svi
= Bi .

We choose the representatives ai ∈ Ai and bi ∈ Bi , 1 ≤ i ≤ m, as in Section 10.1.1 (i.e.,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

10.1 SPANNERS OF BOUNDED DEGREE 181

by picking the rightmost leaf of the left subtree). Let G0 = (S, E0) be the directed graph
with edge set

E0 := {(ai, bi) : 1 ≤ i ≤ m} ∪ {(bi, ai) : 1 ≤ i ≤ m}.
We number the edges of E0 arbitrarily, from one to |E0|.

Let κ := κd,θ/2 be as in equation (5.3) in Section 5.2.3 (where we have replaced θ by
θ/2), and let Cκ be the (θ/2)-frame of Theorem 5.2.8, consisting of κ = O(1/θd−1) cones.
Recall that Cκ is a collection of κ simplicial cones of angular diameter θ/2, having their
apex at the origin, and that cover Rd . For each cone C ∈ Cκ , let

E0(C) := {(p, q) ∈ E0 : q − p ∈ C}.
We mark a subset of the edges of E0 by performing the following for each cone C of

Cκ , and for each point p of S. For a fixed cone C ∈ Cκ and a fixed point p ∈ S, do the
following: Consider all nodes u of the split tree T such that

1. u is on the path from the root to the leaf storing p,

2. there is a node v in T , such that

(a) {Su, Sv} is a pair in our WSPD, and

(b) if xu and yv are the representatives of Su and Sv , respectively, then edge (xu, yv) is
contained in E0(C).

Assume that there exists at least one node u, for which Conditions 1. and 2. are satisfied.
Then, among all edges (xu, yv) obtained in this way, we mark the shortest one. In case of
ties, we mark the shortest edge whose index is minimum.

Let E be the set of all marked edges. We will prove that the directed graph G = (S, E)
is a t-spanner for S. We need the following lemma.

Lemma 10.1.6. Let A and B be two finite sets of points in Rd that are well-separated
with respect to a separation ratio s > 0. Let p and x be two points in A, and let q and y

be two points in B. Then,

sin(angle(pq, xy)) ≤ 4/s.

proof If s ≤ 4, then the claim clearly holds. So assume that s > 4. Let α :=
angle(pq, xy). Observe that α ≥ 0. Let 	 be the ray emanating from x that is paral-
lel to pq, and let z be the point on 	 such that |xz| = |pq|. Then, |px| = |qz|, and
α = angle(xz, xy). Let y ′ be the orthogonal projection of y onto 	. Then

sin α = |yy ′|
|xy| ≤ |yz|

|xy| ≤ |yq| + |qz|
|xy| = |yq| + |px|

|xy| .

Since A and B are well-separated, Lemma 9.1.2 implies that |yq| ≤ (2/s)|xy| and |px| ≤
(2/s)|xy|. This implies that sin α ≤ 4/s.

Lemma 10.1.7. The graph G = (S, E) is a t-spanner for S.

proof We will show that the edges of E satisfy the condition of Lemma 10.1.4. First
observe that, by Lemma 10.1.5, 0 < w < (cos θ − sin θ)/2 and t ≥ 1/(cos θ − sin θ −
2w).

Let p and q be any two distinct points of S, and let i be the integer such that (i)
p ∈ Ai and q ∈ Bi , or (ii) p ∈ Bi and q ∈ Ai . We may assume without loss of generality
that (i) holds. Consider the representatives ai and bi of Ai and Bi , respectively. Then, by

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

182 APPLICATIONS OF WELL-SEPARATED PAIRS

Lemma 10.1.6, we have sin(angle(pq, aibi)) ≤ 4/s, which, by Lemma 10.1.5, is less than
or equal to sin(θ/2). Hence, angle(pq, aibi) ≤ θ/2.

Let C be the cone of Cκ such that (ai, bi) ∈ E0(C). Recall that ui is the node of the
split tree T for which Sui

= Ai . It is clear that ui is on the path from the root to the leaf
storing p. Therefore, when we considered the cone C and the point p, (ai, bi) was one of
the edges that satisfied conditions 1. and 2. above. Let (x, y) be the edge of E0(C) that
was marked when we considered C and p. Then (x, y) is an edge of E, and |xy| ≤ |aibi |.
We have

angle(pq, xy) ≤ angle(pq, aibi) + angle(aibi, xy) ≤ θ/2 + θ/2 = θ.

Since Ai and Bi are well-separated, we know from Lemma 9.1.2 that |aibi | ≤ (1 +
4/s)|pq|. Then, Lemma 10.1.5 implies that |aibi | ≤ |pq|/ cos θ . In particular, we have
|xy| ≤ |pq|/ cos θ .

Finally, let j be the integer such that (i) x ∈ Aj and y ∈ Bj , or (ii) x ∈ Bj and y ∈ Aj .
We may assume without loss of generality that (i) holds. When we considered the cone C

and the point p, we marked (x, y). Therefore, uj is on the path in T from the root to the leaf
storing p and, hence, p ∈ Aj . Since Aj and Bj are well-separated, Lemma 9.1.2 implies
that |px| ≤ (2/s)|xy| = w|xy|. Since all the premises of Lemma 10.1.4 are satisfied, we
have proved that G is a t-spanner.

Lemma 10.1.8. The outdegree of each vertex of the graph G = (S, E) is less than or
equal to 2|Cκ | = O(1/θd−1).

proof Let x be a point of S, and let C be a cone of Cκ . Clearly, it is sufficient to show
that, in G, x is the source of at most two edges in cone C. Assume that the edge set E

contains three pairwise distinct edges (x, y), (x, y ′), and (x, y ′′) that are all contained in
E0(C). We may assume without loss of generality that |xy| ≤ |xy ′| ≤ |xy ′′|. Moreover, in
case |xy| = |xy ′|, we may assume without loss of generality that (x, y) has a lower index
than (x, y ′). Similarly, in case |xy ′| = |xy ′′|, we may assume without loss of generality
that (x, y ′) has a lower index than (x, y ′′).

Let p be the point of S, such that we marked edge (x, y) when we considered the cone
C and the point p. Consider the nodes u and v of T such that (xu, yv) = (x, y). (Refer to
conditions 1. and 2. for the notation.)

Let p′ be the point of S, such that we marked edge (x, y ′) when we considered the cone
C and the point p′. Furthermore, let u′ and v′ be the nodes of T such that (xu′, yv′) = (x, y ′).
Observe that u′ is on the path from the root to the leaf storing p′. Define the point p′′ of
S, and the nodes u′′ and v′′ of T similarly with respect to the edge (x, y ′′).

Assume that u = u′. Then u is on the path from the root to the leaf storing p′. Since
|xy| ≤ |xy ′|, we could not have marked edge (x, y ′) when we considered C and p′, which
is a contradiction. Therefore, u �= u′. By symmetric arguments, it follows that u �= u′′ and
u′ �= u′′. Hence the set

{ui ∈ T : 1 ≤ i ≤ m, ai = x} ∪ {vi ∈ T : 1 ≤ i ≤ m, bi = x}

contains at least three nodes. This contradicts Lemma 10.1.1.

We now show how to efficiently compute the edges of E from the edge set E0.
First, we compute the subsets E0(C), C ∈ Cκ . By Theorem 5.3.2, this takes O(1/θd−1 +
m log(1/θ)) time. Then we run the following algorithm for each cone C of Cκ separately.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

10.1 SPANNERS OF BOUNDED DEGREE 183

We may assume that each edge (x, y) ∈ E0(C) has a pointer to the node ui (or vi)
of the split tree T such that x is the representative of Ai (or Bi). Hence, by following
these pointers, we can store with each node u of T , a list Lu containing all edges
(x, y) ∈ E0(C) such that x is the representative of Su, for some pair {Su, Sv} in our WSPD.
By considering all nodes u of T , we compute the shortest edge, which we denote by eu,
in the list Lu. (Ties are broken by using the index of the edge. If Lu is the empty list, then
eu = nil.)

Finally, we compute for each node u the shortest edge among all edges ev , where v

ranges over the ancestors of u. Denote this shortest edge by e′
u. (Again, ties are broken by

using the index of the edge. If there is no such edge ev, then e′
u = nil.) This final step can

easily be implemented by a preorder traversal of the nodes of T .
At the end of this algorithm, the edges e′

u that are stored at the leaves of T are exactly
the marked edges for this cone C. Thus, given the subsets E0(C), C ∈ Cκ , we can compute
the marked edge set E, in O(κn + m) = O(n/θd−1 + m) time.

In summary, the running time of the entire algorithm is the sum of the following
expressions:

1. O(n log n + m), where m = O(sdn). This is the time for computing the split tree and the
WSPD.

2. O(n + m) = O(m). This is the time for computing the graph G0 = (S,E0).

3. O(1/θd−1 + m log(1/θ)). This is the time for computing the subsets E0(C), C ∈ Cκ .

4. O(n/θd−1 + m). This is the time for computing the set E of marked edges.

Recall from Lemma 10.1.8 that the outdegree of the t-spanner G depends on θ . To
obtain the smallest outdegree, we must choose θ as large as possible, subject to the
condition cos θ − sin θ > 1/t , which was made in the beginning of this section. Let us
assume that t > 1 and t → 1. Then, we obtain a value for θ that is proportional to t − 1.
This, in turn, implies that the separation ratio s is proportional to 1/(t − 1)2. We have
proved the following theorem.

Theorem 10.1.9. Let S be a set of n points in Rd , and let t > 1 be a real number. In

O

(
n log n + log(1/(t − 1))

(t − 1)2d
n

)
time, we can construct a directed t-spanner for S, in which each vertex has outdegree
O(1/(t − 1)d−1).

In order to obtain a spanner of bounded degree, we apply the transformation of
Theorem 5.5.4 to the spanner in Theorem 10.1.9 (with t replaced by

√
t). This gives

the following result:

Theorem 10.1.10. Let S be a set of n points in Rd , and let t > 1 be a real number. In

O

(
log(1/(t − 1))

(t − 1)d
n log n + log(1/(t − 1))

(t − 1)2d
n

)
time, we can construct a t-spanner for S, in which each vertex has degree O(1/

(t − 1)2d−1).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

184 APPLICATIONS OF WELL-SEPARATED PAIRS

Second construction of a bounded-degree spanner: In the basic WSPD-
spanner (see Section 9.2), a graph is constructed by adding an edge for every
well-separated pair in the WSPD. However, this spanner construction tends to
add more edges than necessary. A single point can be part of many sets involved
in well-separated pairs, and each of these pairs results in an edge. The second
construction keeps only the shortest edge for each of the cone directions. The
resulting spanner is of bounded outdegree. By applying the transformation of
Theorem 5.5.4, we obtain a spanner of bounded degree.

10.2 A spanner with logarithmic spanner diameter

In Section 4.3 and its generalization to higher dimensions in Section 5.5.5, we have seen a
randomized construction of a spanner having logarithmic spanner diameter. In this section,
we will show that the WSPD can be used to obtain the same result with a deterministic
construction.

Let S be a set of n points in Rd , and let t > 1 be a real number. Consider the split tree
T and the corresponding WSPD

{A1, B1}, {A2, B2}, . . . , {Am,Bm}
for S, with separation ratio s := 4(t + 1)/(t − 1). The spanner of logarithmic spanner
diameter will be obtained by carefully selecting the representatives of Ai and Bi , for all i

with 1 ≤ i ≤ m.
We label the edges of T as being heavy or light, according to the following scheme.

Let u be any internal node of T , and let ul and ur be the left and right children of
u, respectively. Let el and er be the edges of T that connect u and ul , and u and ur ,
respectively. Finally, let nl and nr be the number of leaves in the subtrees rooted at ul and
ur , respectively. If nl ≥ nr , then we label el heavy and er light. Otherwise, if nl < nr , we
label el light and er heavy.

Since each internal node is connected by exactly one heavy edge to one of its children,
there is a unique maximal chain of heavy edges leading up from each leaf of T . These
chains partition the nodes of T into n subsets, one associated with each leaf. For each
node u of T , let 	(u) be the leaf whose chain contains u, and let r(u) be the point of S

that is stored at 	(u).
For each i with 1 ≤ i ≤ m, consider the pair {Ai, Bi} in our WSPD. Let ui and vi be the

nodes of T such that the subtrees of ui and vi store the points of Ai and Bi , respectively.
Then we define the representative ai of Ai to be the point r(ui). Similarly, we define
the representative bi of Bi to be the point r(vi). Observe that ai ∈ Ai and bi ∈ Bi . Let
E := {{ai, bi} : 1 ≤ i ≤ m}, and consider the graph G = (S, E).

Lemma 10.2.1. For each i with 1 ≤ i ≤ m, and for each point p ∈ Ai , there is a t-
spanner path in G between p and the representative ai of Ai , that contains at most
log |Ai | edges.

proof It follows from the results in Section 9.2 that the following algorithm constructs
a t-spanner path between the points p and ai . If p = ai , then return the empty path Q;
otherwise, let j be the index such that (i) p ∈ Aj and ai ∈ Bj or (ii) p ∈ Bj and ai ∈ Aj .
Assume that (i) holds. (Otherwise, interchange Aj and Bj .) Recursively construct a path

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

10.2 A SPANNER WITH LOGARITHMIC SPANNER DIAMETER 185

Q1 between p and the representative aj of Aj , and recursively construct a path Q2 between
ai and the representative bj of Bj . Return the path Q obtained by concatenating the path
Q1, the edge {aj , bj }, and the path Q2.

We will show that the number of edges on Q is less than or equal to log |Ai |, if p ∈ Ai .
The proof is by induction on the size of the set Ai . To start the induction, let i be an
index for which |Ai | is minimum. We know that Ai has size 1; that is, Ai = {ai}; see
Exercise 9.6. For this case, the claim follows trivially.

Let i be an index such that |Ai | is not minimum. Furthermore, assume that for all k

such that |Ak| < |Ai |, and for all x ∈ Ak , the algorithm above constructs a t-spanner path
between x and the representative ak of Ak , with the condition that it contains at most
log |Ak| edges.

Let p be any point of Ai . We will show that our algorithm constructs a t-spanner path
between p and ai that contains at most log |Ai | edges. If p = ai , then this path contains
no edges, and the claim clearly holds, because |Ai | ≥ 1. Assume that p �= ai . Let j be
the index such that (i) p ∈ Aj and ai ∈ Bj , or (ii) p ∈ Bj and ai ∈ Aj . We may assume
without loss of generality that (i) holds. Consider the representatives aj and bj of Aj and
Bj , respectively. Our algorithm computes the concatenation Q of a path Q1 between p

and aj , the edge {aj , bj }, and a path Q2 between bj and ai .
Let ui , uj , and vj be the nodes of the split tree T , whose subtrees store the sets Ai , Aj ,

and Bj , respectively. The facts that (i) ui is a common ancestor of the leaves storing p

and ai , (ii) uj lies on the path from the root to the leaf storing p, (iii) vj lies on the path
from the root to the leaf storing ai , and (iv) the sets Aj and Bj are disjoint, imply that uj

and vj are both in the subtree of ui , and neither is an ancestor of the other.
We claim that ai = bj . Indeed, ai is representative of Ai , because node ui belongs to the

maximal chain associated with the leaf storing ai . This chain also contains vj . Therefore,
ai is also representative of Bj ; that is, ai = bj . This implies that Q2 is the empty path.

Next, we claim that |Aj | ≤ |Ai |/2. The reason is that otherwise, all edges on the path
in T between ui and uj would be heavy. But then the representative ai of Ai would be an
element of Aj , contradicting the disjointness of Aj and Bj .

By the induction hypothesis, the path Q1 between p and aj contains at most log |Aj |
edges, which is less than or equal to log |Ai | − 1. Adding to this the single edge {aj , bj }
gives a total number of at most log |Ai | edges for the path Q.

We are now ready to prove that the graph G is a t-spanner, having spanner diameter
O(log n).

Lemma 10.2.2. The graph G is a t-spanner for S whose spanner diameter is less than
or equal to 2 log n − 1.

proof Let p and q be two distinct points of S. We will show that there is a t-spanner
path in G between p and q that contains at most 2 log n − 1 edges.

Let i be the index such that (i) p ∈ Ai and q ∈ Bi , or (ii) p ∈ Bi and q ∈ Ai . We
may assume without loss of generality that (i) holds. The results of Section 9.2 imply
an algorithm that recursively computes a path P1 between p and the representative ai of
Ai , and a path P2 between q and the representative bi of Bi . This algorithm returns the
concatenation P of P1, the edge {ai, bi}, and P2. This path P is a t-spanner path between
p and q.

It follows from Lemma 10.2.1 that the path P1 contains at most log |Ai | edges. By a
symmetric argument, the path P2 contains at most log |Bi | edges. Hence, the number of

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

186 APPLICATIONS OF WELL-SEPARATED PAIRS

edges on the path P between p and q is less than or equal to 1 + log |Ai | + log |Bi |. Since
the sets Ai and Bi are disjoint, we have |Ai | + |Bi | ≤ n. This, together with the fact that
the function − log x is convex, implies that

log |Ai | + log |Bi | ≤ log |Ai | + log(n − |Ai |) ≤ 2 log(n/2) = 2 log n − 2.

Hence, P contains at most 2 log n − 1 edges.

It is not difficult to see that, given the split tree T and the WSPD, we can compute all
representatives in O(m) time, where m is the number of pairs in the WSPD. Therefore,
we have proved the following result.

Theorem 10.2.3. Let S be a set of n points in Rd , and let t > 1 be a real number. In
O(n log n + n/(t − 1)d) time, we can construct a t-spanner for S having O(n/(t − 1)d)
edges and whose spanner diameter is less than or equal to 2 log n − 1.

Spanner of logarithmic spanner diameter: For each node u in the split tree,
follow the path down the tree by always moving to the larger subtree. The point
stored at the leaf in which the path ends is the representative of u. For each pair
in the WSPD, add an edge connecting the two representatives.

Remark 10.2.4. If t > 1 and t → 1, then Theorems 9.5.6 and 10.2.3 imply that a
t-spanner path having at most 2 log n − 1 edges can be computed in O(log2 n)
time. The amount of space needed to represent the spanner is O(n/(t − 1)d). Using
O(n log n + n/(t − 1)d) space, this path can even be computed in O(log n) time. The
proof of the latter claim is left as an exercise; see Exercise 10.2.

10.3 Applications to other proximity problems

In the rest of this chapter, we discuss a variety of applications of the WSPD. In particular,
these problems are not spanner problems, although they may be broadly classified as
proximity problems.

10.3.1 The closest pair problem

In this problem, we are given a set S of n points in Rd , and want to compute a pair of
distinct points of S, whose distance is minimum. Such a pair is called a closest pair. It
should be no surprise that the WSPD can be used to solve this problem.

Algorithm ClosestPair(S)

Comment: This algorithm takes as input a set S of n points in R
d . It returns a closest pair

in S.

Let t = 2. In O(n log n) time, we compute the WSPD t -spanner of Corollary 9.4.7. This

spanner consists of O(n) edges. We know from Exercise 1.10 that in this spanner, some

closest pair is connected by an edge. Hence, given the spanner, we find a closest pair in

S in O(n) time.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

10.3 APPLICATIONS TO OTHER PROXIMITY PROBLEMS 187

Theorem 10.3.1. Given a set S of n points in Rd , algorithm ClosestPair(S) computes
a closest pair in S in O(n log n) time.

Closest pair: The WSPD contains a pair of singleton sets representing a closest
pair of points. Thus the basic WSPD spanner contains an edge between the
closest pair of points.

We extend this idea to prove a lower bound for constructing a WSPD for S. Let s > 2
be a real number, and let

{A1, B1}, {A2, B2}, . . . , {Am,Bm}

be an arbitrary WSPD for S with separation ratio s. According to Exercise 9.6, there is an
index i such that (i) the sets Ai and Bi both have size one, and (ii) the points contained in
Ai and Bi form a closest pair in S. Hence, we can consider all pairs {Ai, Bi}, 1 ≤ i ≤ m,
and for each pair consisting of two singleton sets, compute the distance between the two
points. The smallest distance found in this way gives us the closest pair.

If T (n) denotes the worst-case time for computing the WSPD for any set S of n points,
then we can compute the closest pair of this set in T (n) + O(m) time. Clearly, T (n) ≥ m,
which implies that the time to compute the closest pair is O(T (n)). By Corollary 3.3.10,
the closest pair problem has an �(n log n) lower bound in the algebraic computation-tree
model. Therefore, we have T (n) = �(n log n).

Theorem 10.3.2. Any algebraic computation-tree algorithm that, when given a set S of
n points in Rd and a real number s > 2, computes a WSPD for S with separation ratio s,
has a worst-case running time of �(n log n).

10.3.2 Computing k closest pairs

We have seen this problem already in Chapter 8. Let S be a set of n points in Rd , and let k

be an integer such that 1 ≤ k ≤ (
n

2

)
. A sequence {pi, qi}, 1 ≤ i ≤ k, of pairwise distinct

pairs, where pi, qi ∈ S and pi �= qi for all i, is called a sequence of k closest pairs of
S, if the distances |piqi |, 1 ≤ i ≤ k, are the k smallest elements in the multiset {|xy| :
{x, y} ⊆ S, x �= y}. In this section, we show that the well-separated pair decomposition
can be used to compute such a sequence of k closest pairs. Recall that for any bounded
and closed set X ⊆ Rd , we denote by R(X) the bounding box of X, that is, the smallest
axes-parallel d-dimensional hyperrectangle that contains X.

Let s > 0 be a real number. Consider the split tree T , and the corresponding WSPD

{A1, B1}, {A2, B2}, . . . , {Am,Bm}

for the set S with separation ratio s, where m = O(sdn); see Theorem 9.4.6. For any i

with 1 ≤ i ≤ m, we denote the minimum distance between the bounding boxes R(Ai) and
R(Bi) by |R(Ai)R(Bi)|. We assume without loss of generality that the pairs are numbered,
such that

|R(A1)R(B1)| ≤ |R(A2)R(B2)| ≤ |R(A3)R(B3)| ≤ · · · ≤ |R(Am)R(Bm)|.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

188 APPLICATIONS OF WELL-SEPARATED PAIRS

Algorithm KClosestPairs(S, k)

Comment: This algorithm takes as input a set S of n points in R
d and an integer k

such that 1 ≤ k ≤ (
n

2

)
. It assumes that a WSPD for S has been computed already. The

algorithm returns a sequence of k closest pairs in S.

Step 1: Compute the smallest integer 	 ≥ 1, such that

	∑
i=1

|Ai | · |Bi | ≥ k.

Step 2: Let r := |R(A)R(B)|. Compute the integer 	′, which is defined as the number
of indices i with 1 ≤ i ≤ m, such that

|R(Ai)R(Bi)| ≤ (1 + 4/s)r.

Compute the set L consisting of all pairs {p, q} for which there is an index i with
1 ≤ i ≤ 	′, such that p ∈ Ai and q ∈ Bi , or q ∈ Ai and p ∈ Bi .

Step 3: Compute and return the k smallest distances determined by the pairs in the
set L.

The correctness of algorithm KClosestPairs(S, k) follows from the following lemma,
which shows that the pairs {Ai, Bi}, 1 ≤ i ≤ 	′, must determine all the k closest
pairs.

Lemma 10.3.3. Let p and q be two distinct points of S, and let j be the index such that
p ∈ Aj and q ∈ Bj , or q ∈ Aj and p ∈ Bj . If j > 	′, then {p, q} is not one of the k

closest pairs of the set S.

proof For any index i with 1 ≤ i ≤ m, let xi ∈ R(Ai) and yi ∈ R(Bi) be two points
such that |xiyi | = |R(Ai)R(Bi)|. (In general, xi and yi are not points of S.)

Let i be any index such that 1 ≤ i ≤ 	, let a be any point of Ai , and let b be any point
of Bi . By Lemma 9.1.2, we have |ab| ≤ (1 + 4/s)|xiyi |. It follows that

|ab| ≤ (1 + 4/s)|R(Ai)R(Bi)| ≤ (1 + 4/s)|R(A)R(B)| = (1 + 4/s)r.

By Step 1 of algorithm KClosestPairs(S, k), the pairs {Ai, Bi}, 1 ≤ i ≤ 	, satisfy

	∑
i=1

|Ai | · |Bi | ≥ k,

and thus determine at least k distances, all of which are less than or equal to (1 + 4/s)r .
On the other hand, since j > 	′, we have

|pq| ≥ |R(Aj)R(Bj)| > (1 + 4/s)r.

This proves the lemma.

In the rest of this section, we will analyze the running time of algorithm
KClosestPairs(S, k). We first remark that the ordering of the pairs of the WSPD by

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

10.3 APPLICATIONS TO OTHER PROXIMITY PROBLEMS 189

the distances between their bounding boxes is used only in the analysis of the algorithm.
This ordering is not computed by the algorithm.

Consider Step 1. By traversing the split tree T in postorder, we can compute for each
node u, the number of leaves in the subtree of u. Using this information, we can compute
for each i with 1 ≤ i ≤ m, the value of |Ai | · |Bi |, in O(m) total time. Then, the integer
	 can be computed in O(m) time, using a weighted version of a linear-time selection
algorithm; see Exercise 10.3. Hence, Step 1 of algorithm KClosestPairs(S, k) takes
O(m) time.

To bound the running time for Step 2, observe that each node u of the split tree T stores
the bounding box of all points that are stored in the subtree of u. Hence, the integer 	′

can be computed in O(m) time, by considering the pairs {Ai, Bi}, 1 ≤ i ≤ m, one after
another. Given 	′, the set L can be computed in time

O

(
	′∑

i=1

|Ai | · |Bi |
)

. (10.1)

Step 3 can be implemented as follows. First, using a linear-time selection algorithm,
we compute the k-th smallest distance δ determined by the pairs in the set L. Then, by
considering all pairs of L, we select those pairs, whose distance is less than or equal to δ.
Hence, the time for Step 3 is bounded from above by the summation in (10.1).

It follows that the total running time of algorithm KClosestPairs(S, k) is

O

(
m +

	′∑
i=1

|Ai | · |Bi |
)

. (10.2)

It remains to give an upper bound on the summation in (10.2). We will derive such an
upper bound through the following two lemmas. The first lemma relates the value of r of
Step 2 to the k-th smallest distance in S.

Lemma 10.3.4. Let δ be the k-th smallest distance in the set S, and let r = |R(A)R(B)|
be the value computed in Step 2 of algorithm KClosestPairs(S, k). Then, r ≤ δ.

proof The proof is by contradiction. So assume that δ < r . For any index i with i ≥ 	,
for any point p ∈ Ai , and for any point q ∈ Bi , we have

|pq| ≥ |R(Ai)R(Bi)| ≥ |R(A)R(B)| = r > δ.

Hence, the pairs {Ai, Bi}, 1 ≤ i ≤ 	 − 1, “contain” the k closest pairs. This contradicts
the choice of 	 in Step 1 of the algorithm.

The next lemma gives an upper bound on the distances that are considered in Step 3 of
algorithm KClosestPairs(S, k).

Lemma 10.3.5. Let δ be the k-th smallest distance in the set S, and let {p, q} be
any pair of points that is contained in the set L, as computed in Step 2 of algorithm
KClosestPairs(S, k). Then, we have

|pq| ≤ (1 + 4/s)2δ.

proof Let i be the index such that (i) p ∈ Ai and q ∈ Bi , or (ii) q ∈ Ai and p ∈ Bi . We
assume without loss of generality that (i) holds. Observe that 1 ≤ i ≤ 	′. Let xi ∈ R(Ai)
and yi ∈ R(Bi) be two points such that |xiyi | = |R(Ai)R(Bi)|. (In general, xi and yi are
not points of S.)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

190 APPLICATIONS OF WELL-SEPARATED PAIRS

By Lemma 9.1.2, we have |pq| ≤ (1 + 4/s)|xiyi |. Also, since 1 ≤ i ≤ 	′, we have
|R(Ai)R(Bi)| ≤ (1 + 4/s)r . It follows that

|pq| ≤ (1 + 4/s)|xiyi |
= (1 + 4/s)|R(Ai)R(Bi)|
≤ (1 + 4/s)2r

≤ (1 + 4/s)2δ,

where the last inequality follows from Lemma 10.3.4.

Let M denote the number of distances in the set S that are less than or equal to
(1 + 4/s)2δ. Then (10.2) and Lemma 10.3.5 imply that the total running time of algorithm
KClosestPairs(S, k) is O(m + M). Given that there are at most k pairs of points with
distance at most δ, recall that Lemma 8.2.1 bounds the number of pairs of points with
distance at most (1 + 4/s)2δ. Using this lemma, we have

M <
(

2�(1 + 4/s)2
√

d � + 1
)d

(n + 2k). (10.3)

Theorem 10.3.6. Given a set S of n points in Rd , and an integer k such that 1 ≤ k ≤(
n

2

)
, algorithm KClosestPairs(S, k) computes a sequence of k closest pairs in S, in

O(n log n + k) time.

proof We choose a small separation ratio s, for example s = 1. By Theorem 9.4.6, a
WSPD for S of size m = O(n) can be computed in O(n log n) time. We have seen above
that, given this WSPD, algorithm KClosestPairs(S, k) computes the k closest pairs in
S, in O(m + M) time. An upper bound on M is given in (10.3). Hence the result.

Computing k closest pairs using a WSPD: The algorithm orders the well-
separated pairs according to their “separation” and then picks the first 	 pairs
that determine k pairs of points (Step 1). Since there may be other well-separated
pairs with nearly the same separation as the last one, the algorithm picks a “few”
extra pairs (Step 2) that are separated by a distance fractionally larger than that of
the largest of the first 	 pairs; this brings the total to 	′ pairs. Lemma 10.3.3 shows
that 	′ pairs are sufficient. In order to show the time complexity, it is necessary to
show that the 	′ well-separated pairs do not determine too many pairs of points.
Lemma 10.3.5 shows that all pairs of points in the 	′ well-separated pairs have
a distance that is not much larger than the k-th smallest distance. Lemma 8.2.1,
the most critical lemma, shows that if there are k pairs of points with interpoint
distance δ, then the number of pairs of points with interpoint distance at most
cδ is O(n + k). This is also a bound on the number of pairs of points from the
	′ well-separated pairs selected in Step 2 of the algorithm, and is also a key to
ensuring the O(n log n + k) time complexity.

10.3.3 The all-nearest neighbors problem

In this problem, we are given a set S of n points in Rd , and want to compute for each point
p of S a nearest neighbor in S, that is, a point q ∈ S \ {p} for which |pq| is minimum.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

10.3 APPLICATIONS TO OTHER PROXIMITY PROBLEMS 191

•

•

•

•• •

R(B)
CB

•c

• p
•

q ′

•q

α

Figure 10.1: Illustrating the proof of Lemma 10.3.7.

The analysis of the algorithm that we will present in this section uses a generalization
of the fact that any point can be the nearest neighbor of at most a constant number of other
points. Lemmas 10.3.7 and 10.3.8, given below, help prove this fact.

Lemma 10.3.7. Let B be a finite set of points in Rd , let CB be the smallest ball that
contains the bounding box R(B) of B, let c be the center of CB , and let s > 1 be a real
number. Let p and q be two distinct points in Rd such that both {p} and B, and {q}
and B are well-separated with respect to s. Furthermore, assume that |pCB | ≤ |pq| and
|qCB | ≤ |pq|. Finally, let α := angle(cp, cq). Then, we have α ≥ (s − 1)/s.

proof If α ≥ 1, then the claim is true, because (s − 1)/s ≤ 1. So assume that α < 1.
Denote the radius of CB by r , and let x := |pc| and y := |qc|. We may assume without
loss of generality that x ≥ y.

Let q ′ be the point on the line segment cp such that |cq| = |cq ′|; see Figure 10.1. The
circular arc with center c that joins q and q ′ has length α|cq| = αy. Also, |pq ′| = x − y.
Hence, the triangle inequality implies that

|pq| ≤ |pq ′| + |q ′q| ≤ (x − y) + αy = x − (1 − α)y. (10.4)

Since {q} and B are well-separated, there are two balls C1 and C2, having the same
radius, say ρ, such that C1 contains q, C2 contains R(B), and |C1C2| ≥ sρ. Since the
center c of CB is contained in R(B), it is also contained in C2. Also, since CB is the
smallest ball that contains R(B), we have ρ ≥ r . It follows that

y = |qc| ≥ |C1C2| ≥ sρ ≥ sr. (10.5)

Combining this inequality with (10.4), and using the fact that α < 1, we obtain

|pq| ≤ x − (1 − α)y ≤ x − (1 − α)sr. (10.6)

Next, we claim that x = |pc| ≥ sr , the proof of which is the same as that of (10.5).
Since s > 1, this implies that p is outside the ball CB . Therefore,

x = |pc| = |pCB | + r ≤ |pq| + r.

Combining this with (10.6) yields

|pq| ≤ (|pq| + r) − (1 − α)sr,

which rewrites to α ≥ (s − 1)/s.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

192 APPLICATIONS OF WELL-SEPARATED PAIRS

Next we prove that there cannot be more than a constant number of points satisfying
the conditions of Lemma 10.3.7.

Lemma 10.3.8. Let A and B be two finite sets of points in Rd , let CB be the smallest ball
that contains R(B), and let s > 1 be a real number. Assume that for all p ∈ A, the sets
{p} and B are well-separated with respect to s. Also, assume that |pCB | ≤ |pq|, for any
two distinct points p and q of A. Then, the set A contains O((s/(s − 1))d) elements.

proof Let c be the center of CB . Then, by Lemma 10.3.7, we have

angle(cp, cq) ≥ s − 1

s

for any two distinct points p and q of A. The lemma follows from Theorem 5.3.1, which
bounds the size of any set of points for which the minimum angle is at least some given
real number.

Now the stage is set, and we are ready to present the algorithm that solves the all-nearest
neighbors problem for the point set S. We choose a real number s > 2, and compute the
split tree T and the corresponding WSPD

{A1, B1}, {A2, B2}, . . . , {Am,Bm}
for S with separation ratio s, where m = O(sdn); see Theorem 9.4.6.

Let p be a point of S, and let q be a nearest neighbor of p. Let i be the index such
that (i) p ∈ Ai and q ∈ Bi , or (ii) p ∈ Bi and q ∈ Ai . Assume without loss of generality
that (i) holds. According to Exercise 9.5, the set Ai consists only of the point p. Hence,
in order to solve the all-nearest neighbors problem, we have to consider only pairs of the
WSPD, for which at least one of their sets is a singleton. Unfortunately, this observation
does not lead to an efficient algorithm yet, because although the number of such sets is
linear in n, the number of pairs of points to consider may be large.

Recall that for any node u of the split tree T , Su denotes the set of all points of S that
are stored in the subtree rooted at u. For any node u, we define F (u) to be the set of all
points p ∈ S such that the pair {{p}, Sv} is contained in our WSPD for some ancestor v of
u. (Node u is considered to be an ancestor of itself.) Moreover, we define N (u) to be the
set of all points p ∈ F (u), such that the distance from p to the smallest ball containing
R(Su) is less than or equal to the smallest distance between p and any other point of F (u).
Observe that N(u) ⊆ F (u).

Lemma 10.3.9. For any node u of T, the size of the set N (u) is O((s/(s − 1))d).

proof Let A := N(u) and B := Su. We will show that these two sets satisfy the
conditions of Lemma 10.3.8. From this, the claim will follow.

Let CB be the smallest ball that contains R(B), and let p ∈ A. Then p ∈ F (u) and,
hence, there is an ancestor v of u such that the sets {p} and Sv are well-separated. Since
Su is a subset of Sv, the sets {p} and Su = B are well-separated as well.

Now let p and q be two distinct points of A. Then, by the definition of N (u), the
distance between p and CB is less than or equal to the smallest distance between p and
any other point of F (u). In particular, since q ∈ F (u), we have |pCB | ≤ |pq|.

Assume from now on that the separation ratio s is a small constant such that s > 2. The
sets N(u) can be computed in a top-down fashion, in O(n) total time. (The proof of this

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

10.3 APPLICATIONS TO OTHER PROXIMITY PROBLEMS 193

claim is left as an exercise; see Exercise 10.5.) At this moment, it is still unclear how we
can use these sets. Here is the answer. Let p be a point of S, let q be a nearest neighbor of
p, and let u be the leaf of T that contains q. We know that there is an index i, such that
(i) Ai = {p} and q ∈ Bi , or (ii) Bi = {p} and q ∈ Ai . We may assume without loss of
generality that (i) holds. Hence, there is an ancestor v of u such that Bi = Sv . Therefore,
p ∈ F (u). Also, since Su = {q}, the distance between p and the smallest ball containing
R(Su) is just |pq|, which is clearly less than or equal to the distance between p and any
other point of F (u). This proves that p ∈ N (u).

The discussion above leads to the following algorithm.

Algorithm AllNearestNeighbors(S)

Comment: This algorithm takes as input a set S of n points in R
d . It returns for each point

in S its nearest neighbor.

Step 1: Choose a constant s > 2, and compute the split tree T and the corresponding
WSPD for S, with respect to s, having size O(n).

Step 2: Compute the sets N (u), for all nodes u of T .

Step 3: Compute a list L consisting of all pairs {p, qu} of points, where u ranges over all
leaves of the split tree, qu is the point of S stored at u, and p ranges over all points of
N (u).

Step 4: For each p ∈ S, compute a point qp such that {p, qp} ∈ L and |pqp| is minimum.

Step 5: Return the pairs {p, qp}, where p ranges over all points of S.

We have proved the following result.

Theorem 10.3.10. Given a set S of n points in Rd , algorithm AllNearestNeighbors(S)
computes for each point in S its nearest neighbor, in O(n log n) time.

Computing all nearest neighbors: If x ∈ S and y is a nearest neighbor of x,
then the pair in the WSPD that separates x and y contains the singleton set {x}.
For any leaf u of the split tree T , storing, say, the point q, let F (u) be the set
of all p ∈ S for which there is a node v in T such that q ∈ Sv and {{p}, Sv}
is a pair in the WSPD. Furthermore, let N (u) be the set of all p ∈ F (u) for
which q is a nearest neighbor of p in the set F (u) ∪ {p}. The size of each
such set N(u) is bounded by a constant. Moreover, the split tree can be used to
compute these sets in O(n) time. Finally, if w is the leaf of T that stores y, then
x ∈ N(w).

10.3.4 Computing an approximate minimum spanning tree

Let S be a set of n points in Rd , and let t > 1 be a real number. A tree T connecting
the points of S is called a t-approximate minimum spanning tree of S, if the weight
of T is less than or equal to t · wt(MST(S)). The following algorithm computes such a
tree.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

194 APPLICATIONS OF WELL-SEPARATED PAIRS

Algorithm ApproxMST(S, t)

Comment: This algorithm takes as input a set S of n points in R
d , and a real number

t > 1. It returns a t-approximate minimum spanning tree of S.

Step 1: Compute the WSPD t -spanner G of Corollary 9.4.7.

Step 2: Using algorithm Prim(G), see Section 2.6.2, compute a minimum spanning tree
T of G.

Step 3: Return the tree T .

Step 1 takes O(n log n + n/(t − 1)d) time (see Corollary 9.4.7), whereas Step 2 takes
O(n log n + m) time, where m denotes the number of edges of G (see Theorem 2.6.3).
By Corollary 9.4.7, we have m = O(n/(t − 1)d). By Theorem 1.3.1, the tree T returned
by the algorithm is a t-approximate minimum spanning tree of S. Thus, we have proved
the following result.

Theorem 10.3.11. Let S be a set of n points in Rd , and let t > 1 be a real number. A
t-approximate minimum spanning tree of S can be computed in O(n log n + n/(t − 1)d)
time.

Exercises

10.1. Consider the directed spanner G = (S,E) of Section 10.1.2. Does this spanner satisfy the gap

property of Definition 6.1.1?

10.2. Assume that t > 1 is a real constant. In Theorem 10.2.3, we have seen a t -spanner that can be

represented in O(n) space such that for any two points, a t -spanner path between them having

O(log n) edges can be computed in O(log2 n) time. Give a representation using O(n log n) space

that can be used to compute such a path in O(log n) time.

10.3. Let x1, x2, . . . , xn be a sequence of n real numbers, and let every element xi have a weight wi ,

which is a positive integer. Let k be any positive integer. Element xi is called a weighted k-th

smallest element if ∑
j :xj <xi

wj < k and
∑

j :xj ≤xi

wj ≥ k.

Give an algorithm that computes a weighted k-th smallest element in O(n) time.

10.4. Let S be a set of n points in R
d and let p be a point of S. Prove that p can be the nearest neighbor

of at most a constant number of points of S, where the constant depends only on the dimension d .

10.5. Prove that the sets N (u) that were used in algorithm AllNearestNeighbors(S) in Section 10.3.3

can be computed in O(n) total time.

10.6. Let S be a set of n points in R
d , and let s > 2 be a real number. Consider an arbitrary WSPD

{A1, B1}, {A2, B2}, . . . , {Am, Bm}
for S, with separation ratio s. For each i with 1 ≤ i ≤ m, let ai and bi be points in Ai and Bi ,

respectively, such that

|aibi | = min{|xy| : x ∈ Ai, y ∈ Bi}.
Let G = (S, E) be the graph with edge set E := {{ai, bi} : 1 ≤ i ≤ m}. Prove that any minimum

spanning tree of G is a minimum spanning tree of S.

10.7. Let S be a set of n points in R
d . Use Exercise 10.6 to prove that every WSPD for S, with any

separation ratio s > 2, has size greater than or equal to n − 1.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHIC NOTES 195

10.8. (Approximate Farthest Pair Problem) Let S be a set of n points in R
d , and let ε > 0 be a real

constant. A pair {p, q} of points of S is called a (1 + ε)-diametrical pair, if |xy| ≤ (1 + ε)|pq| for

all points x and y in S. Give an algorithm that computes a (1 + ε)-diametrical pair in O(n log n)
time.

10.9. Let S be a set of n points in R
d . For each point p ∈ S, define

w(p) :=
∑
q∈S

|pq|.

Let ε > 0 be a real constant. Give an algorithm that computes, in O(n log n) time, for each p ∈ S,

a (1 + ε)-approximation to w(p), that is, a real number w′(p), such that

w(p)/(1 + ε) ≤ w′(p) ≤ (1 + ε)w(p).

10.10. Let S be a set of n points in R
d , and let k be a positive integer, such that 1 ≤ k ≤ n. Extend the

results of section 10.3.3 to compute, for each point p ∈ S, the k nearest neighbors in S.

Bibliographic notes

The construction of the spanner in Section 10.1.2 is due to Arya et al. [1995]. Their claims
that the directed spanner of Theorem 10.1.9 has bounded indegree and that its weight is
proportional to the weight of a minimum spanning tree of the points are unfortunately
wrong.

The construction of a spanner with logarithmic spanner diameter in Section 10.2 is due
to Arya, Mount, and Smid [1994]. This reference also contains a solution to Exercise 10.2.

The observation that the WSPD can be used to solve the closest pair problem (see
Section 10.3.1) is due to Callahan and Kosaraju [1993]. The algorithm of Section 10.3.2
for computing k closest pairs is due to Callahan [1995]. See the bibliographical notes at
the end of Chapter 8 for an overview of results for the k closest pairs problem.

Blum et al. [1973] gave a linear-time algorithm for computing the k-th smallest element
in a set of real numbers; see also the book by Cormen et al. [2001]. The generalization to
the weighted case (see Exercise 10.3) can be found in Johnson and Mizoguchi [1978].

Vaidya [1989] was the first who solved the all-nearest neighbors problem, in any fixed
dimension d, in O(n log n) time. The algorithm presented in Section 10.3.3 is based on
Callahan and Kosaraju [1992], who also provide a solution to Exercise 10.5. The journal
version Callahan and Kosaraju [1995b] extends the all-nearest neighbors algorithm to one
that computes, in O(n log n + kn) time, for each point its k nearest neighbors.

Vaidya [1988] and Salowe [1991] showed that approximate minimum spanning trees,
in any fixed dimension d, can be computed in O(n log n) time. Our presentation in
Section 10.3.4 is based on Callahan and Kosaraju [1993], who also give a variant of
the algorithm having a smaller dependence on the approximation factor t . The result of
Theorem 10.3.11 is optimal in the algebraic computation-tree model, if t ≤ n1−ε for some
constant ε > 0. In fact, Das, Kapoor, and Smid [1997] have shown that the complexity
of computing a t-approximate minimum spanning tree is �(n log(n/t)) in the algebraic
computation-tree model. Exercise 1.6 implies that computing a t-approximate traveling
salesperson tour has the same complexity.

Exercise 10.4 follows immediately from Lemma 10.3.8. Day and Edelsbrunner [1984]
have shown that a point can be the nearest neighbor of at most 3d − 1 points.

More applications of the WSPD can be found in Bespamyatnikh and Segal [2002],
Callahan [1993, 1995], and Callahan and Kosaraju [1993, 1995a,b], and in Chapters 11,
13, and 18.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

11

The Dumbbell Theorem

Man was put on this earth to eat meat . . . The Bible says so dumbbell . . .
I mean look it up will ya? All them old bible peoples, they was always
eating meat; soon as they found out eating apples was wrong . . . It’s
true, on special occasions: goats and lambs. Who the hell ever hear of
sacrificing a head of lettuce? You?

—Archie Bunker (played by Carroll O’Connor), All in the Family

In Chapter 9, we introduced the well-separated pair decomposition (WSPD). For a set
S of n points in Rd , the WSPD consists of well-separated pairs {Ai, Bi}, 1 ≤ i ≤ m. In
Section 9.2, we showed that by taking an arbitrary edge {ai, bi} from each pair in the
WSPD, we obtain a spanner for S. We also showed that a spanner path can be computed
between any two distinct points p and q of S, in the following way: First, find the index
i such that p ∈ Ai and q ∈ Bi . Then, recursively compute a spanner path P1 between p

and ai , and recursively compute a spanner path P2 between bi and q. The path P obtained
by concatenating P1, edge {ai, bi}, and P2 is a spanner path between p and q.

It follows from the results in Section 9.2 that in order for P to be a spanner path, P1

and P2 do not have to be spanner paths. Rather, it is sufficient if the lengths of both P1

and P2 are bounded by a small constant times the distance between the bounding boxes
R(Ai) and R(Bi). In this chapter, we use this observation to construct a spanner for S that
is represented by a constant number of rooted trees.

Throughout this chapter, we assume familiarity with Chapter 9.

11.1 Chapter overview

Let S be a set of n points in Rd . Consider the split tree and a corresponding WSPD,
{Ai, Bi}, 1 ≤ i ≤ m, as computed by the algorithms of Chapter 9. Recall that R(Ai) and
R(Bi) denote the bounding boxes of Ai and Bi , respectively. For each pair {Ai, Bi},
we consider the geometric object consisting of the heads R(Ai) and R(Bi), and the
line segment joining their centers. This object will be called a dumbbell and will be
formally defined in Section 11.2. The length of a dumbbell will be defined as the distance
between the centers of its two heads. In Section 11.3, we prove a packing result for
dumbbells whose lengths are approximately equal. This packing result is used later in the
chapter.

In Sections 11.4 and 11.5, we partition the set of all dumbbells into a small number of
subsets, such that the following holds for any two distinct dumbbells D and D′ that are
in the same subset. Let 	 and 	′ be the lengths of D and D′, respectively, and assume that
	 ≤ 	′.

196

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

11.2 DUMBBELLS 197

•

R(a) •

R(b)

Figure 11.1: The dumbbell D(a, b) consists of the two bounding boxes R(a) and R(b), and the line
segment joining their centers. Since {Sa, Sb} is a pair in the WSPD for S, this line segment is “long”
compared to the side lengths of R(a) and R(b). The centers of R(a) and R(b) are not necessarily points
of S.

Length-grouping property: Either 	′ ≤ 2	 or 	′ ≥ 	/β, where β is a fixed real number
such that 0 < β < 1/2. That is, D and D′ either have approximately the same lengths
or their lengths differ by a large amount.

Empty-region property: If 	′ ≤ 2	, then the distance between any head of D and any
head of D′ is larger than γ 	, where γ is a fixed positive real number. That is, any head
of D and any head of D′ are disjoint and separated by a large amount.

Consider any two distinct dumbbells D and D′ that are in the same subset of the
partition and whose heads are close together. Then, by the two properties above, D and
D′ differ in lengths by a large amount. This property implies a hierarchy on the dumbbells
within each subset. In Section 11.6, we show how this hierarchy can be stored in a
dumbbell tree. This tree stores, besides the dumbbells of the subset, the points of S at its
leaves. In Section 11.7, we show how the dumbbell trees can be constructed, whereas in
Section 11.8, we prove that these trees constitute a spanner for the point set S. Finally,
in Section 11.9, we summarize the entire construction and state the final result as the
Dumbbell Theorem.

11.2 Dumbbells

Throughout this chapter, we fix a set S of n points in Rd and a real number s > 1.
Moreover, T denotes the split tree for S, as computed by algorithm FastSplitTree
of Section 9.3.2, and {Ai, Bi}, 1 ≤ i ≤ m, denotes the WSPD for S, with re-
spect to the separation ratio s, as computed by algorithm ComputeWSPD(T , s) of
Section 9.4.

Recall that each node u of T stores the bounding box R(u) of Su, where Su is the set
of all points of S that are stored at the leaves of the subtree rooted at u. The length of
the longest side of R(u) is denoted by Lmax(R(u)). The parent of u is denoted by π(u).
Finally, each pair in the WSPD is specified by two nodes of T . That is, for each i with
1 ≤ i ≤ m, there are two nodes a and b in T such that Ai = Sa and Bi = Sb.

We now formalize the notion of a dumbbell, which will be the building block for the
results in the rest of this chapter. For an illustration of a dumbbell, see Figure 11.1.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

198 THE DUMBBELL THEOREM

Definition 11.2.1. Let a and b be two nodes of the split tree T such that {Sa, Sb} is a
pair in the WSPD for S. The subset of Rd consisting of the two bounding boxes R(a)
and R(b), and the line segment joining the centers of these boxes is called a dumbbell,
and is denoted by D(a, b). The bounding boxes R(a) and R(b) are called the heads of the
dumbbell. The length of a dumbbell is defined to be the Euclidean distance between the
centers of its two heads.

11.3 A packing result for dumbbells

Given a positive real number 	 and a dumbbell D whose length is approximately equal
to 	, we will need an upper bound on the number of dumbbells of length approximately
equal to 	 and that are close to D. As we will prove in Lemma 11.3.4, this upper bound
depends only on the separation ratio s. Before we can prove this lemma, we need some
preliminary results. The first of these states that for any dumbbell D(a, b), the length
of the longest side of the bounding box R(π(a)) is at least proportional to the length of
D(a, b).

Lemma 11.3.1. Let D(a, b) be a dumbbell and let 	 be its length. We have

Lmax(R(π (a))) ≥ 2√
d(s + 4)

	,

and

Lmax(R(π (b))) ≥ 2√
d(s + 4)

	.

proof Assume, without loss of generality, that Lmax(R(π(b))) ≥ Lmax(R(π(a))).
Therefore, it clearly suffices to prove the first inequality. Let u be the lowest common
ancestor of a and b in the split tree T , and let v and w be the two children of u, respectively.
We may assume without loss of generality that a is in the subtree of v and, hence, b is in
the subtree of w.

First assume that a = v. Then π(a) = u, R(a) ⊆ R(u), and R(b) ⊆ R(u). Hence,
D(a, b) is contained in R(u), which implies that the length of D(a, b) is less than or equal
to the diameter of R(u). It follows that

	 ≤
√

d · Lmax(R(u)) =
√

d · Lmax(R(π (a))),

from which the first inequality in the lemma follows.
In the rest of the proof, we assume that a �= v. Define π0(a) := a, and πk(a) :=

π(πk−1(a)) for k ≥ 1. Consider algorithm ComputeWSPD(T , s) of Section 9.4, which
computes the WSPD. It calls FindPairs(v, w), which eventually outputs the pair {Sa, Sb}.
Let k ≥ 0 be an integer such that FindPairs(a, πk(b)) is a recursive call generated by the
recursive call FindPairs(π(a), πk(b)). (Observe that such a k exists.) Then, the sets Sπ(a)

and Sπk(b) are not well-separated, and

Lmax(R(πk(b))) ≤ Lmax(R(π (a))).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

11.3 A PACKING RESULT FOR DUMBBELLS 199

Assume that

Lmax(R(π (a))) <
2√

d(s + 4)
	.

Let x and y be the centers of R(a) and R(b), respectively, and let x ′ and y ′ be the centers
of R(π(a)) and R(πk(b)), respectively. Observe that the length 	 of dumbbell D(a, b) is
equal to |xy|. Furthermore, since x is contained in R(π(a)), we have

|xx ′| ≤ 1

2

√
d · Lmax(R(π (a))) <

	

s + 4
.

Similarly, since y is contained in R(πk(b)), we have

|yy ′| ≤ 1

2

√
d · Lmax(R(πk(b))) ≤ 1

2

√
d · Lmax(R(π (a))) <

	

s + 4
.

By the triangle inequality, we have 	 = |xy| ≤ |xx ′| + |x ′y ′| + |y ′y|, which implies that

|x ′y ′| > 	 − 2	

s + 4
=
(

1 − 2

s + 4

)
	.

Let C1 and C2 be the balls of radius ρ := 	/(s + 4) that are centered at x ′ and y ′,
respectively. Since

|x ′y ′| − 2ρ >

(
1 − 4

s + 4

)
	 = sρ > 0,

these two balls are disjoint, and we have

|C1C2| = |x ′y ′| − 2ρ > sρ.

Also observe that C1 and C2 contain R(π(a)) and R(πk(b)), respectively. But this implies
that the sets Sπ(a) and Sπk(b) are well-separated, which is a contradiction.

Consider two dumbbells D(a, b) and D(a′, b′) of approximately the same length such
that b is in the subtree of b′. The next lemma gives an upper bound on the number of
edges on the path in the split tree between b and b′.

Lemma 11.3.2. Let 	 > 0 be a real number, and let D(a, b) and D(a′, b′) be two dumb-
bells whose lengths are in the interval [, 2]. Assume that, in the split tree, b is in the
subtree of b′, and let h be the number of edges on the path between b and b′. Then

h ≤ 1 + d + d log

(
2
√

d(s + 4)

s

)
.

proof We may assume that h ≥ 1, since otherwise, the lemma clearly holds. Recall
Lemma 9.5.3, which states that the longest side of the bounding box of the subset of S

contained in the subtree of a node in the split tree T decreases by a factor of at least 2 if
we descend T by d levels. It follows from this lemma that

Lmax(R(π (b))) ≤ (1/2)�(h−1)/d� · Lmax(R(b′)).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

200 THE DUMBBELL THEOREM

Also, it can be shown that Lmax(R(b′)) is less than or equal to 2/s times the length of
dumbbell D(a′, b′); see Exercise 11.1. Therefore,

Lmax(R(b′)) ≤ 4	/s.

Combining these two inequalites gives

Lmax(R(π (b))) ≤ (1/2)�(h−1)/d� · 4	/s. (11.1)

By Lemma 11.3.1, we have

Lmax(R(π (b))) ≥ 2√
d(s + 4)

	. (11.2)

The lemma follows by combining (11.1) and (11.2) and observing that (h − 1)/d − 1 ≤
�(h − 1)/d�.

The next lemma gives an upper bound on the number of dumbbells having a fixed head
and whose lengths are approximately equal.

Lemma 11.3.3. Let a be a node of the split tree T and let 	 > 0 be a real number. The
number of dumbbells having R(a) as a head and whose lengths are in the interval [, 2]
is less than or equal to (4

√
d(s + 4) + 2)d .

proof Recall that in Lemma 9.4.3, we showed a bound on the number of large and
pairwise disjoint bounding boxes corresponding to nodes of the split tree that intersect a
hypercube of a specified size. We will use this result to prove the lemma.

Let b be any node of T such that D(a, b) is a dumbbell whose length is in the interval
[, 2]. Let x and y be the centers of R(a) and R(b), respectively. Then |xy| ≤ 2	. Let
C be the hypercube centered at x and having sides of length 4	. Then R(b) ∩ C �= ∅. By
Lemma 11.3.1, we have

Lmax(R(π (b))) ≥ 2√
d(s + 4)

	 = 1

2
√

d(s + 4)
4	.

Applying Lemma 9.4.3, with 4	 instead of 	, and with α = 2
√

d(s + 4), proves an
upper bound of (4

√
d(s + 4) + 2)d on the number of nodes b, thus completing the

proof.

We are now ready to prove the main property of dumbbells.

Lemma 11.3.4. Let γ and 	 be positive real numbers, and let D(u, v) be a dumbbell
whose length is in the interval [, 2]. The number of dumbbells D(a, b) such that

1. the length of D(a, b) is in the interval [, 2] and

2. at least one of R(a) and R(b) is within distance γ 	 of some head of D(u, v)

is less than or equal to

csγ := 22d+3(4
√

d(s + 4) + 2)d
(

2
√

d(s + 4)(γ s + 2)

s
+ 2

)d (√
d(s + 4)

s

)d

= O
(
sd (1 + γ s)d

)
.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

11.3 A PACKING RESULT FOR DUMBBELLS 201

proof Consider the set D of all dumbbells whose lengths are in the interval [, 2],
and for which at least one of their heads is within distance γ 	 of R(u). For each dumbbell
D(a, b) ∈ D, we may assume without loss of generality that R(b) is within distance γ 	 of
R(u). For each node b of the split tree T , let Db be the set of all dumbbells in D involving
b, i.e.,

Db := {D(a, b) : a is a node in T and D(a, b) ∈ D}.

Let k be the number of nodes b of T for which Db is nonempty, and let b1, b2, . . . , bk be
the nodes of T such that D is the disjoint union of Dbi

, 1 ≤ i ≤ k. By Lemma 11.3.3, we
have

|Dbi
| ≤ (4

√
d(s + 4) + 2)d ,

for each i with 1 ≤ i ≤ k. Therefore,

|D| =
k∑

i=1

|Dbi
| ≤ (4

√
d(s + 4) + 2)dk. (11.3)

In the rest of the proof, we will derive an upper bound on k. Let 	′ := (2γ + 4/s)	. By
Lemma 11.3.1, we have

Lmax(R(π (bi))) ≥ 2√
d(s + 4)

	 = s√
d(s + 4)(γ s + 2)

	′,

for each i with 1 ≤ i ≤ k. Let x and y be the centers of R(u) and R(v), respectively. By
Exercise 11.1, we have

Lmax(R(u)) ≤ (2/s)|xy| ≤ (4/s)	.

Let C be the hypercube centered at x and having sides of length 	′. Then R(bi) ∩ C �= ∅
for each i with 1 ≤ i ≤ k.

We would like to apply Lemma 9.4.3 to obtain an upper bound on k. Unfortunately,
this is not possible, because the sets Sbi

, 1 ≤ i ≤ k, are not necessarily pairwise disjoint.
Therefore, we proceed as follows.

Let b′
1, b

′
2, . . . , b

′
k′ be the subsequence of b1, b2, . . . , bk such that (i) each bi , 1 ≤ i ≤ k,

is in the subtree of a node b′
j for some j with 1 ≤ j ≤ k′, and (ii) the sets Sb′

j
, 1 ≤ j ≤ k′,

are pairwise disjoint. By Lemma 9.4.3, applied with 	′ and α = √
d(s + 4)(γ s + 2)/s,

we have

k′ ≤
(

2
√

d(s + 4)(γ s + 2)

s
+ 2

)d

. (11.4)

For each j with 1 ≤ j ≤ k′, define

Ij := {i : 1 ≤ i ≤ k and bi is in the subtree of b′
j }.

If bi is in the subtree of b′
j , then, by Lemma 11.3.2, the path in T between bi and b′

j

contains at most

1 + d + d log

(
2
√

d(s + 4)

s

)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

202 THE DUMBBELL THEOREM

edges. If we denote this quantity by h, then it follows that for each j with 1 ≤ j ≤ k′, we
have

|Ij | ≤ 2h+1 − 1 ≤ 22d+2

(√
d(s + 4)

s

)d

. (11.5)

Since k = ∑k′
j=1 |Ij |, the value of k is less than or equal to the product of the quan-

tities in (11.4) and (11.5). By combining this upper bound with (11.3), it follows
that

|D| ≤ 22d+2(4
√

d(s + 4) + 2)d
(

2
√

d(s + 4)(γ s + 2)

s
+ 2

)d (√
d(s + 4)

s

)d

.

The same upper bound holds for the number of dumbbells whose lengths are in the
interval [, 2] and for which at least one of their heads is within distance γ 	 of R(v).
Since the dimension d is a constant, and since we assume that s > 1, it follows that
csγ = O(sd(1 + γ s)d).

We summarize the results of Lemmas 11.3.1 through 11.3.4 in the following capsule.

Properties of dumbbells: We have shown the following:

1. For any dumbbell D, the bounding boxes of the parents of the heads of D are
not too small as compared to the length of D.

2. If the head of a dumbbell contains the head of another dumbbell, and if they are
of similar length, then the nodes in the split tree that correspond to these heads
are within a bounded number of levels apart.

3. There is a bound on the number of dumbbells of similar length sharing one head.

4. There is a bound on the number of dumbbells of similar length all of which
have one of their heads within a small distance of some head of another fixed
dumbbell of a similar length.

11.4 Establishing the length-grouping property

In this section, we show how the set of dumbbells can be partitioned into subsets such
that, within each subset, the length-grouping property of Section 11.1 holds. We fix
real numbers β and δ, such that 0 < β < δ < 1. In fact, we will show a more general
result; that is, we will show how to partition the set of dumbbells into subsets, such
that any two dumbbells within the same subset have either lengths within a factor of
1/δ from each other or lengths that are different from each other by a factor of at
least 1/β.

Recall that m denotes the number of pairs in our WSPD. Hence, we have exactly m

dumbbells. Let M be the multiset consisting of the lengths of all dumbbells. We will
present an algorithm that partitions M into O(log1/δ(1/β)) subsets, such that for any two
elements 	 and 	′ that are in the same subset and for which 	 ≤ 	′, we either have 	′ ≤ 	/δ

or 	′ ≥ 	/β. We say that such a subset satisfies the (β, δ)-length-grouping property.
Clearly, by setting δ = 1/2, this partition of M implies a partition of the dumbbells for
which the length-grouping property of Section 11.1 holds. (In Chapter 14, we will need
the (β, δ)-length-grouping property for the general case.)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

11.4 ESTABLISHING THE LENGTH-GROUPING PROPERTY 203

Achieving the length-grouping property: The goal is to partition the multi-
set of lengths into a constant number of subsets, such that any two lengths in
the same subset are either similar or considerably different. This is achieved
by a preliminary partition step, which consists of partitioning the lengths into
(a potentially unbounded number of) intervals whose widths increase geomet-
rically by a factor of 1/(βδ). A refined partition of each of the intervals is
made, where each interval is partitioned into a constant number of subinter-
vals whose widths increase geometrically by a factor of 1/δ. Thus the re-
fined partition is “orthogonal” to the preliminary partition. The final parti-
tion is obtained by collecting together corresponding subsets from the refined
partition.

The preliminary and refined partitionings are done in a way that can be implemented in
the algebraic computation-tree model. The following algorithm produces the preliminary
partition of M .

Algorithm PrelimPartition(M, β, δ)

Comment: This algorithm takes as input a multiset M consisting of m real numbers, and
two real numbers β and δ such that 0 < β < δ < 1. The algorithm returns the preliminary
partition of M .

Step 1: Sort the elements of M , and denote the sorted sequence by 	1 ≤ 	2 ≤ . . . ≤ 	m.

Step 2: Run the following while-loop:

L := 	1; P1 := {	1}; k := 1; i := 1;
while i < m

do if 	i+1 < L/(βδ)
then Pk := Pk ∪ {	i+1}
else Pk+1 := {	i+1}; L := 	i+1; k := k + 1
endif;
i := i + 1

endwhile

Step 3: Return the sequence P1, P2, . . . , Pk of sorted sets.

Consider the sequence P1, P2, . . . , Pk of sorted and nonempty subsets of M that is re-
turned by algorithm PrelimPartition(M, β, δ). We denote the minimum and maximum
elements of any subset Pi by min(Pi) and max(Pi), respectively. The next lemma follows
immediately from the algorithm.

Lemma 11.4.1. Let i and i ′ be two integers, such that 1 ≤ i ≤ k and 1 ≤ i ′ ≤ k.

1. For every element 	 ∈ Pi , we have min(Pi) ≤ 	 < min(Pi)/(βδ).

2. If i < i ′, then min(Pi ′) ≥ min(Pi)/(βδ).

This lemma implies that, if i < i ′,

max(Pi) < min(Pi)/(βδ) ≤ min(Pi ′),

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

204 THE DUMBBELL THEOREM

i.e., the intervals [min(Pi), max(Pi)), 1 ≤ i ≤ k, are pairwise disjoint. However, observe
that in this preliminary partition, the number of sets may not be bounded by a function
that depends only on β and δ. This motivates the next partitioning step.

Algorithm RefinedPartition(M, β, δ, (Pi)1≤i≤k)

Comment: This algorithm takes as input a multiset M consisting of m real numbers,
two real numbers β and δ such that 0 < β < δ < 1, and the preliminary partition
P1, P2, . . . , Pk of M , as computed by algorithm PrelimPartition(M,β, δ). The algo-
rithm returns a partition of M into subsets, each of which satisfies the (β, δ)-length-
grouping property.

Step 1: For each i with 1 ≤ i ≤ k, partition the set Pi into subsets Pij , 1 ≤ j ≤ 2 +
log1/δ(1/β), where

Pij := {	 ∈ Pi : min(Pi)/δ
j−1 ≤ 	 < min(Pi)/δ

j }.
Step 2: For each j with 1 ≤ j ≤ 2 + log1/δ(1/β), compute the set

Mj :=
k⋃

i=1

Pij .

Step 3: Return the sequence Mj , 1 ≤ j ≤ 2 + log1/δ(1/β), of sets.

Thus, the set Mj contains the j -th subset Pij of set Pi , for all i with 1 ≤ i ≤ k. Even
though k, the number of subsets in the preliminary partition, may not be bounded, the
number of sets Mj is bounded by 2 + log1/δ(1/β).

It is not difficult to see that it is sufficient for the index j to be in the range from
1 to 2 + log1/δ(1/β). As a result, the output of algorithm RefinedPartition is indeed a
partition of M . The following lemma states that each subset Mj in this partition satisfies
the (β, δ)-length-grouping property.

Lemma 11.4.2. Let j be an integer with 1 ≤ j ≤ 2 + log1/δ(1/β), and let 	 and 	′ be
two elements of Mj such that 	 ≤ 	′. Then 	′ ≤ 	/δ or 	′ ≥ 	/β.

proof Let i and i ′ be the two indices such that 	 ∈ Pij and 	′ ∈ Pi ′j . Since 	 ≤ 	′, we
have i ≤ i ′. If i = i ′, then, by the definition of Pij , we have 	′ ≤ 	/δ. Assume that i < i ′.
Since, again by the definitions of Pij and Pi ′j , 	 < min(Pi)/δj and 	′ ≥ min(Pi ′)/δj−1, it
follows that

	′/	 > δ · min(Pi ′)/ min(Pi) ≥ 1/β,

where the last inequality follows from Lemma 11.4.1.

It remains to analyze the total running time of algorithms PrelimPartition and
RefinedPartition. Recall that in Step 1 of algorithm PrelimPartition, the elements
of M are sorted, which takes O(m log m) time. Steps 2 and 3 of this algorithm clearly take
O(m) time. Consider algorithm RefinedPartition. Since the elements of Pi are sorted,
Step 1 in this algorithm spends O(|Pi | + log1/δ(1/β)) time for the set Pi . Hence, the total
time for Step 1 is

O
(
m + k log1/δ(1/β)

) = O
(
(m log1/δ(1/β)

)
.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

11.5 ESTABLISHING THE EMPTY-REGION PROPERTY 205

Steps 2 and 3 of algorithm RefinedPartition can be performed within this time bound.
We have proved the following result.

Lemma 11.4.3. Let β and δ be real numbers, such that 0 < β < δ < 1. In

O
(
m log m + m log1/δ(1/β)

)
time, the set of m dumbbells that correspond to the WSPD can be partitioned into at
most 2 + log1/δ(1/β) subsets, such that each subset satisfies the (β, δ)-length-grouping
property. That is, within each subset, the lengths of any two dumbbells either are within a
factor of 1/δ or differ by a factor of at least 1/β. By choosing δ = 1/2, the length-grouping
property of Section 11.1 holds.

11.5 Establishing the empty-region property

Let β and γ be positive real numbers, such that β < 1/2. In this section, we show how any
set of dumbbells satisfying the length-grouping property can be partitioned into subsets,
each of which satisfies the empty-region property with parameter γ . Thus, for any two
distinct dumbbells D and D′ that are in the same subset, whose lengths are 	 and 	′,
respectively, and for which 	 ≤ 	′ ≤ 2	, the distance between any head of D and any head
of D′ is larger than γ 	. We say that such a subset satisfies the γ -empty-region property.

In fact, we will take each set Mj obtained from the previous section to obtain this
partition. We start in Section 11.5.1 by considering only dumbbells whose lengths are
within a factor of 2 of each other. The general case is considered in Section 11.5.2.

11.5.1 Dumbbells of approximately the same length

In this section, we fix a real number 	 > 0, and consider a set E of dumbbells whose lengths
are in the interval [, 2]. Recall the number csγ that was defined in Lemma 11.3.4. We
will show how to partition the set E into at most 1 + cs,2γ subsets, each of which satisfies
the γ -empty-region property.

Achieving the empty-region property: We define a graph with vertex set E ,
in which two vertices are connected by an edge if the corresponding dumbbells
have heads that are within distance 2γ 	 of each other. By Lemma 11.3.4, this
graph is of degree at most cs,2γ and, therefore, its vertices can be colored using
1 + cs,2γ colors, such that any two adjacent vertices have different colors. Our
partition is obtained by putting all dumbbells with the same color in one subset.

We define the following graph G. The vertex set of G is the set E of dumbbells. Any
two distinct vertices D and D′ are connected by an edge in G, if some head of D and
some head of D′ have distance at most 2γ 	.

By Lemma 11.3.4, the degree of each vertex of G is less than or equal to �cs,2γ �.
Hence, by Theorem 2.4.1, the vertices of G can be colored using 1 + �cs,2γ � colors, such
that adjacent vertices have different colors. For each color κ that is used in the coloring of
G, let Eκ be the subset of E consisting of all dumbbells whose color is κ . Then, it is clear
that the sets Eκ form the desired partition of E . Given the graph G, the coloring can be
computed in O(cs,2γ |E |) time; see Theorem 2.4.1. So it remains to show how the graph
G can be constructed efficiently.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

206 THE DUMBBELL THEOREM

Let D(u, v) be a dumbbell in E , and consider one of its heads, say R(u). Let x be
the center of R(u), and let C be the hypercube centered at x and having sides of length
Lmax(R(u)) + 4γ 	. To compute all vertices in G that are connected by an edge to D(u, v)
“because of” R(u), we have to find all dumbbells D(a, b) in E , such that R(a) ∩ C �= ∅
or R(b) ∩ C �= ∅. Consider such a dumbbell D(a, b), and assume that R(b) ∩ C �= ∅. Let
y be the center of R(b). Then,

|xy| ≤
√

d

(
1

2
· Lmax(R(u)) + 2γ 	

)
+ 1

2

√
d · Lmax(R(b)).

Since, by Exercise 11.1, Lmax(R(u)) ≤ 4	/s and Lmax(R(b)) ≤ 4	/s, it follows that

|xy| ≤
√

d (2γ + 4/s) 	.

Thus, if we compute all centers y of the heads of the dumbbells in E for which
|xy| ≤ √

d(2γ + 4/s)	, then we obtain a subset E ′ of E that contains all dumbbells
that are connected (in G) by an edge to D(u, v) “because of” R(u). Each dumbbell in E ′

contains a head whose distance to R(u) is less than or equal to
√

d(2γ + 4/s)	. Hence,
by Lemma 11.3.4 (applied with

√
d(2γ + 4/s) instead of γ), we have

|E ′| = O
(
sd (1 + γ s)d

)
.

The problem of constructing the graph G has been reduced to the following problem:
Given the set S ′ of centers of the heads of the dumbbells in E , compute all pairs x and y of
points in S ′ for which |xy| ≤ √

d(2γ + 4/s)	. We can compute these pairs in the following
way: First, construct a τ -spanner G′ for S ′ (where, say, τ = 2) having bounded degree; by
Theorem 10.1.3, this can be done in O(|S ′| log |S ′|) = O(|E | log |E |) time. Then, for each
vertex x, traverse G′ and report all vertices y such that |xy| ≤ √

d(2γ + 4/s)	. Observe
that for such a vertex y, the distance in G′ between x and y is less than or equal to
τ · √

d(2γ + 4/s)	. In this way, we obtain the graph G in time

O
(|E | log |E | + |E |sd (1 + γ s)d

)
.

We summarize our result.

Lemma 11.5.1. Let 	 > 0 be a real number and let E be a set of dumbbells whose lengths
are in the interval [, 2]. In

O
(|E | log |E | + |E |sd (1 + γ s)d

)
time, we can partition E into O(sd (1 + γ s)d) subsets, each of which satisfies the γ -empty-
region property.

11.5.2 The general case

We are now ready to show how the setD of all m dumbbells can be partitioned into subsets,
each of which satisfies both the length-grouping property and the γ -empty-region property.

Using algorithms PrelimPartition and RefinedPartition of Section 11.4, where
we take δ = 1/2, we partition the set D into subsets Eij , where 1 ≤ i ≤ k and 1 ≤ j ≤
2 + log(1/β), such that the following holds. Let D and D′ be any two distinct dumbbells
in ∪k

i=1Eij , for some j . Let i and i ′ be the indices such that D ∈ Eij and D′ ∈ Ei ′j ,
respectively, let 	 and 	′ be the lengths of D and D′, respectively, and assume that 	 ≤ 	′.
If i = i ′, then 	′ ≤ 2	, whereas 	′ ≥ 	/β if i < i ′.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

11.6 DUMBBELL TREES 207

For each i and j , with 1 ≤ i ≤ k and 1 ≤ j ≤ 2 + log(1/β), we use the algorithm of
Section 11.5.1 to partition Eij into subsets Eκ

ij , where κ ∈ {1, 2, . . . , 1 + �cs,2γ �}, such
that the following holds. For any two distinct dumbbells D and D′ that are in the same
subset Eκ

ij , the distance between any head of D and any head of D′ is larger than γ times
the length of the shorter of D and D′.

For each j and κ with 1 ≤ j ≤ 2 + log(1/β) and 1 ≤ κ ≤ 1 + cs,2γ , let

Dκ
j :=

k⋃
i=1

Eκ
ij .

These subsetsDκ
j form a partition ofD into subsets, each of which satisfies both the length-

grouping property and the γ -empty-region property. Using Lemmas 11.4.3 and 11.5.1,
we obtain the following result.

Lemma 11.5.2. Let D be the set of m dumbbells that correspond to the WSPD, and let β

and γ be positive real numbers such that β < 1/2. In

O
(
m log m + (

sd (1 + γ s)d + log(1/β)
)
m
)

time, we can partition D into subsets D1,D2, . . . ,Dk, where

k = O
(
sd (1 + γ s)d log(1/β)

)
,

such that for each j with 1 ≤ j ≤ k, the subset Dj satisfies the length-grouping property
and the γ -empty-region property.

11.6 Dumbbell trees

In this section, we choose positive real numbers β and γ , such that β < 1/2. Consider
the partition of the set D of all m dumbbells into subsets D1,D2, . . . ,Dk , where k =
O(sd (1 + γ s)d), as given by Lemma 11.5.2.

Let R0 be a large hypercube that contains all the dumbbells in D. We define a “dummy”
dumbbell D0 that contains R0 and a translated copy of R0 as its heads, and whose length
is equal to 1/β times the maximum length of any dumbbell in D. Furthermore, for the
root r of the split tree T , we define R(r) := R0.

Dumbbell tree: For each j with 1 ≤ j ≤ k, the following two properties hold:

1. For each dumbbell D inDj , there is a unique shortest dumbbell D′ inDj ∪ {D0},
such that at least one head of D′ is close to some head of D, and the length of
D′ is at least 1/β times the length of D.

2. For each point p in S, there is a deepest node a in the split tree, such that
p ∈ R(a) and R(a) is the head of some dumbbell in Dj ∪ {D0}.

These properties imply a hierarchy on the dumbbells in Dj ∪ {D0} and the points
in S, which will be stored in a dumbbell tree DTj .

We fix an index j with 1 ≤ j ≤ k. Let γ ′ be a real number, such that 0 < γ ′ ≤ γ and

γ ≥ β
(

1 + 2γ ′ + 2
√

d/s
)

.

The following lemma implies the hierarchy on the dumbbells in Dj ∪ {D0}.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

208 THE DUMBBELL THEOREM

Lemma 11.6.1. Let D be a dumbbell in Dj , and let 	 be its length. There is a unique
dumbbell D′ of minimum length in Dj ∪ {D0}, such that

1. the length of D′ is larger than 	, and

2. at least one of the heads of D′ is within distance γ ′	 of some head of D.

If we denote the length of D′ by 	′, then 	′ ≥ 	/β.

proof First observe that the dummy dumbbell D0 satisfies 1. and 2. above. Therefore,
there exists a dumbbell of minimum length that satisfies these two requirements. Let D′

be such a dumbbell, and let 	′ be its length. We first show that 	′ ≥ 	/β. By the second
requirement, we have 	 < 	′. Assume that 	′ ≤ 2	. Then, since γ ′ ≤ γ , D and D′ do
not satisfy the γ -empty-region property, which is a contradiction. Thus, 	′ > 2	. Then, it
follows from the length-grouping property that 	′ ≥ 	/β.

It remains to show that D′ is unique. Assume, to the contrary, that there is another
dumbbell D′′ of length 	′, such that at least one of the heads of D′′ is within distance γ ′	
of some head of D.

By Exercise 11.1, both heads of D have sides of length at most 2	/s. Let R′ be a head
of D′ and let R1 be a head of D, such that R′ is within distance γ ′	 of R1. Let R′′ be a
head of D′′ and let R2 be a head of D, such that R′′ is within distance γ ′	 of R2. Let x1 and
x2 be the centers of R1 and R2, respectively. Then |x1x2| ≤ 	, and the distance between
R′ and R′′ is less than or equal to

γ ′	 + 1

2

√
d · Lmax(R1) + |x1x2| + 1

2

√
d · Lmax(R2) + γ ′	,

which is less than or equal to (
2γ ′ + 1 + 2

√
d/s

)
	.

Since 	′ ≥ 	/β, the latter quantity is less than or equal to

β
(

2γ ′ + 1 + 2
√

d/s
)

	′ ≤ γ 	′.

This implies that D′ and D′′ do not satisfy the γ -empty-region property, which is a
contradiction. Hence, we have shown that D′ is unique.

We are now ready to define the dumbbell tree DTj for the set Dj of dumbbells. This
tree is a rooted tree, consisting of dumbbell nodes, head nodes, and leaves.

1. For each dumbbell D in Dj ∪ {D0}, there is a dumbbell node that stores D. This dumbbell
node has two children, which are head nodes storing the two heads of D.

2. The dumbbell node storing the dummy dumbbell D0 is the root of DTj .

3. For each dumbbell D in Dj , let D′ be the dumbbell in Dj ∪ {D0} that satisfies the
conditions in Lemma 11.6.1. Let 	 be the length of D, and let R′ be a head of D′ that is
within distance γ ′	 of some head of D. Then the dumbbell node storing D is a child of
the head node storing R′.

4. For each point p in S, there is a leaf that stores p. Let a be the deepest node in the split tree
T , such that p ∈ R(a) and R(a) is the head of some dumbbell in Dj ∪ {D0}. Let D be the
dumbbell in Dj ∪ {D0} of minimum length that has R(a) as a head, let v be the dumbbell
node that stores D, and let u be the child of v that stores R(a). Then, the leaf storing
p is a child of u. (Observe that, by the length-grouping and empty-region properties, the
dumbbell D is uniquely defined.)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

11.7 CONSTRUCTING THE DUMBBELL TREES 209

5. Each node v of DTj stores one point of S, which is called the representative of v. These
representatives are chosen in the following way:

(a) If v is a leaf, then the representative of v is the point of S that is stored at v.

(b) If v is a head node, then the representative of v is an arbitrary point of S that is
contained in the head stored at v.

(c) If v is a dumbbell node, then the representative of v is an arbitrary point of S that is
contained in one of the heads of the dumbbell stored at v.

This concludes the definition of the dumbbell tree DTj . Since this tree has 1 + |Dj |
dumbbell nodes, 2 + 2|Dj | head nodes, and n leaves, it is obvious that the size of DTj is
O(n + |Dj |). The next lemma states that, even though DTj may have nodes with only one
child, the size of DTj is in fact O(n). The proof is left as an exercise; see Exercise 11.3.

Lemma 11.6.2. For each j with 1 ≤ j ≤ k, the size of the dumbbell tree DTj is O(n).

11.7 Constructing the dumbbell trees

Let j be any index with 1 ≤ j ≤ k, and consider the set Dj of dumbbells. We will show
how the dumbbell tree DTj can be constructed. The main difficulty is computing the
parents of the dumbbell nodes.

Let D = D(a, b) be any dumbbell in Dj , and let 	 be its length. We need to compute
the dumbbell D′ in Dj ∪ {D0} of minimum length, such that (i) the length of D′ is larger
than 	, and (ii) the distance between some head of D′ and some head of D is less than or
equal to γ ′	. We know from Lemma 11.6.1 that the length of D′ is in fact at least 	/β.
Condition (ii) leads to two different possibilities. We fix one of these: Given the head R(a)
of D, we want to compute the dumbbell D′ in Dj ∪ {D0} of minimum length, such that

1. the length of D′ is at least 	/β, and

2. the distance between R(a) and some head of D′ is less than or equal to γ ′	.

Consider this dumbbell D′. Recall that Lmax(R(a)) ≤ 2	/s. Let x be the center of R(a),
and let C be the hypercube centered at x and having sides of length 2(γ ′ + 1/s)	. Then,
one of the heads of D′ has a nonempty intersection with C. Let u and v be the nodes
of the split tree, such that D′ = D(u, v), and assume without loss of generality that
R(u) ∩ C �= ∅.

Consider the grid on C, consisting of O(βd (1 + γ ′s)d) cells, where each cell is a
hypercube having sides of length 	/(β

√
d(s + 4)). Consider the hyperrectangle R0(u)

that is associated with R(u); see Section 9.3.1. Using Lemmas 9.3.1 and 11.3.1, we obtain

Lmin(R0(u)) ≥ 1

2
· Lmax(R(π (u))) ≥ 1

β
√

d(s + 4)
	.

Thus, the length of every side of R0(u) is at least 	/(β
√

d(s + 4)). It follows that R0(u)
contains at least one grid point. Let z be a grid point such that z ∈ R0(u). Recall from
Section 9.3.1 that the hyperrectangles R0(w), where w ranges over all leaves of the split
tree T , partition the bounding box of S. Let w be the leaf in T , such that z ∈ R0(w). Then,
u is the deepest node in T on the path from the root to w, such that

1. R(u) is the head of some dumbbell D′ in Dj ,

2. the length of D′ is at least 	/β, and

3. the distance between R(u) and R(a) is less than or equal to γ ′	.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

210 THE DUMBBELL THEOREM

We have reduced the problem of computing the parent in DTj of the dumbbell node
storing D(a, b), to the following query problem: Given a grid point z of the grid on the
hypercube C,

1. compute the leaf w in T , such that z ∈ R0(w), and

2. compute the deepest node u in T on the path from the root to w, such that

(a) R(u) is the head of some dumbbell D′ in Dj ,

(b) the length of D′ is at least 	/β, and

(c) the distance between R(u) and R(a) is less than or equal to γ ′	.

We obtain the parent of the dumbbell node storing D(a, b), by answering O(βd (1 + γ ′s)d)
such queries (for the grid corresponding to the head R(a) and for the grid corresponding
to the head R(b)).

Given a grid point z, the leaf w in T for which z ∈ R0(w) can be computed in O(log n)
time, using a balanced representation of T based on centroid edges (see Section 9.5.1 and
Exercise 9.13). Given this leaf w, we can answer the second query (in which we compute
the node u) in O(log n) time, using the path decomposition of T (see Sections 2.3.2
and 9.5.2). The details of this query algorithm are left as an exercise; see Exercise 11.4.

We have shown that, given any dumbbell D in Dj , the parent in DTj of the dumbbell
node storing D can be computed in time

O
(
βd

(
1 + γ ′s

)d
log n

)
.

Using the split tree T , the parents in DTj of all leaves (which store the points of S) can
be computed in O(n) total time. Again in O(n) total time, we can store with each node of
T , an arbitrary point of S from its subtree. Using this, the representatives for all nodes in
DTj can be computed in O(n) time. Thus, we have shown that each dumbbell tree DTj

can be constructed in time

O
(
n log n + βd

(
1 + γ ′s

)d |Dj | log n
)

.

The total time for constructing all k = O(sd(1 + γ s)d log(1/β)) dumbbell trees is

O
(
kn log n + βd

(
1 + γ ′s

)d
m log n

)
.

We have proved the following result:

Lemma 11.7.1. Let β, γ , and γ ′ be positive real numbers, such that β < 1/2, γ ′ ≤ γ ,
and

γ ≥ β
(

1 + 2γ ′ + 2
√

d/s
)

.

Consider the partition of the set D of all m dumbbells into subsets Dj , 1 ≤ j ≤ k, where
k = O(sd(1 + γ s)d log(1/β)), as given by Lemma 11.5.2. In

O
(
kn log n + βd

(
1 + γ ′s

)d
m log n

)
total time, we can compute, for each j with 1 ≤ j ≤ k, the dumbbell tree DTj for Dj .

11.8 The dumbbell trees constitute a spanner

In this section, we consider the dumbbell trees DTj , 1 ≤ j ≤ k, and show how they
can be used to obtain a spanner path between any two points of S. We assume that the

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

11.8 THE DUMBBELL TREES CONSTITUTE A SPANNER 211

parameters β, γ , and γ ′ are chosen such that the inequalities in Lemma 11.7.1 are satisfied.
Additionally, we assume that γ ′ < 1.

Let j be an index with 1 ≤ j ≤ k, and let u and v be two nodes of DTj . Let u =
u1, u2, . . . , uf = v be the path in this tree between u and v, and for each i with 1 ≤ i ≤ f ,
let pi be the representative of ui . Observe that the points pi , 1 ≤ i ≤ f , are not necessarily
pairwise distinct. Let P be the (possibly nonsimple) path p1, p2, . . . , pf , and let Q be the
simple path obtained by removing cycles from P . We call Q the geometric path between
u and v. By the triangle inequality, the length of Q is less than or equal to the length
of P .

A geometric path between two leaf nodes can be thought of as consisting of two
subpaths; that is, it starts at the first leaf node, goes up the dumbbell tree to an ancestor,
and then goes down the tree to the other leaf node. Each of the subpaths traverses
through dumbbells, where successive dumbbells are “close” to each other and have lengths
differing by a factor of at least 1/β. As we will show, this property implies that, for any
two distinct points p and q of S, there is a dumbbell tree DTj , such that the geometric
path between the leaves that store p and q is a t-spanner path, where t depends only on
the parameters s, β, γ , and γ ′. Before we can prove this strong property, we need to prove
the following weak spanner property.

Weak spanner property: The length of the geometric path between any leaf
u of DTj and any head node v in DTj that is an ancestor of u, is bounded by a
constant times the length of the dumbbell stored at the parent of v.

This property relates the length of a geometric path and the length of a related dumbbell.
It is called the “weak spanner property,” because instead of guaranteeing a t-spanner path
between the representatives p and q of u and v (i.e., a path of length at most t |pq|), it
guarantees only a path whose length is at most proportional to the length of the related
dumbbell.

Lemma 11.8.1. Let u and v be nodes in a dumbbell tree DTj , such that u is a leaf, v is
a head node, and u is in the subtree of v. Let 	 be the length of the dumbbell stored at the
parent of v. Then, the length of the geometric path between u and v is less than or equal
to c	, where

c = 6β + 8
√

d/s.

proof We write the path in DTj between u and v as u = u1, u2, . . . , uf = v. Observe
that f is an even integer. For each i with 1 ≤ i ≤ f , let pi be the representative of node
ui . The lemma will follow from the claim that

f −1∑
i=1

|pipi+1| ≤ c	. (11.6)

We define uf +1 to be the parent of v. Observe that u1 is a leaf, u2, u4, . . . , uf are head
nodes, and u3, u5, . . . , uf +1 are dumbbell nodes. For each i = 3, 5, . . . , f + 1, let 	i be
the length of the dumbbell stored at ui .

We start by analyzing the first term |p1p2| in (11.6). Let a be the node of the split tree
such that R(a) is stored at the head node u2. Since p1 and p2 are both contained in R(a),
we have

|p1p2| ≤
√

d · Lmax(R(a)) ≤ 2
√

d

s
	3. (11.7)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

212 THE DUMBBELL THEOREM

Let i be an index with 1 ≤ i ≤ f/2 − 1. We analyze the distance between p2i and
p2i+1. Let D(a, b) be the dumbbell stored at u2i+1, and assume without loss of generality
that the head node u2i stores R(a). Observe that p2i is contained in R(a), and p2i+1 is
contained in either R(a) or R(b). Hence, if we denote the centers of R(a) and R(b) by x

and y, respectively, then |xy| = 	2i+1 and

|p2ip2i+1| ≤ 1

2

√
d · Lmax(R(a)) + |xy| + 1

2

√
d · Lmax(R(b))

≤ 2
√

d

s
	2i+1 + 	2i+1

=
(

1 + 2
√

d

s

)
	2i+1. (11.8)

We next analyze the distance between p2i−1 and p2i , where i is any index with 2 ≤
i ≤ f/2. Let D(a, b) be the dumbbell stored at u2i−1, and let D(a′, b′) be the dumbbell
stored at u2i+1. We may assume without loss of generality that (i) the head node u2i stores
R(a′), and (ii) R(a′) is within distance γ ′	2i−1 of R(a). Observe that p2i−1 is contained
in either R(a) or R(b), and p2i is contained in R(a′). Hence, if we denote the centers of
R(a) and R(b) by x and y, respectively, then |xy| = 	2i−1 and

|p2i−1p2i | ≤ 1

2

√
d · Lmax(R(b)) + |xy| + 1

2

√
d · Lmax(R(a))

+ γ ′	2i−1 +
√

d · Lmax(R(a′))

≤
√

d

s
	2i−1 + 	2i−1 +

√
d

s
	2i−1 + γ ′	2i−1 + 2

√
d

s
	2i+1

=
(

2
√

d

s
+ 1 + γ ′

)
	2i−1 + 2

√
d

s
	2i+1.

Since, by Lemma 11.6.1, 	2i−1 ≤ β	2i+1, it follows that

|p2i−1p2i | ≤
(

2(1 + β)
√

d

s
+ β(1 + γ ′)

)
	2i+1. (11.9)

By combining (11.7), (11.8), and (11.9), it follows that

f −1∑
i=1

|pipi+1| = |p1p2| +
f/2−1∑
i=1

|p2ip2i+1| +
f/2∑
i=2

|p2i−1p2i |

≤
(

2(1 + β)
√

d

s
+ β(1 + γ ′)

)
	f +1

+
(

2(2 + β)
√

d

s
+ 1 + β(1 + γ ′)

)
f/2−1∑
i=1

	2i+1. (11.10)

It follows from Lemma 11.6.1 that, for each i with 1 ≤ i ≤ f/2 − 1,

	2i+1 ≤ β	2i+3 ≤ β2	2i+5 ≤ · · · ≤ βf/2−i	f +1 = βf/2−i	.

Therefore,

f/2−1∑
i=1

	2i+1 ≤ 	

f/2−1∑
i=1

βf/2−i ≤ β

1 − β
	 ≤ 2β	,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

11.8 THE DUMBBELL TREES CONSTITUTE A SPANNER 213

because β < 1/2. This, together with (11.10) and our assumption that γ ′ ≤ 1, completes
the proof of the inequality in (11.6).

Consider the head R of some dumbbell in Dj , and let p be a point of S that is contained
in R. Let v be the head node of the dumbbell tree DTj that stores R, and let u be the leaf
in DTj that stores p. Since the path in DTj between v and any leaf in its subtree may
contain dumbbells that have a nonempty intersection with R, it is not clear whether the
leaf u is in the subtree of v. The following lemma states that, for appropriate choices of
the parameters β and γ ′, u must be in the subtree of v.

Lemma 11.8.2. Assume that β < s/(
√

d(s + 4)), c ≤ γ ′, and c < s/(s + 4), where c is
as in Lemma 11.8.1. Let be p be a point in S, let u be the leaf in a dumbbell tree DTj that
stores p, and let v be a head node in DTj , such that p is contained in the head stored at
v. Then, u is in the subtree of v.

proof Let v′ be the parent of u. Then, v′ is a head node and p is contained in the head
stored at v′. If v = v′, then the lemma holds. Assume that v �= v′.

Let D be the dumbbell that is stored at the parent of v, let 	 be the length of D, let D′

be the dumbbell that is stored at the parent of v′, and let 	′ be the length of D′.
Assume that D = D′. Then v and v′ have the same parent. Since p is contained in

both the head stored at v and the head stored at v′, it follows that v = v′, a contradiction.
Therefore, D and D′ are distinct dumbbells.

We first show that 	′ ≤ 	. The proof is by contradiction, so we assume that 	 < 	′. Let
a be the node of the split tree T , such that the head node v stores R(a), and let a′ be the
node of T , such that the head node v′ stores R(a′). Since p is contained in both R(a) and
R(a′), it follows from basic properties of the split tree that a is in the subtree of a′, or a′

is in the subtree of a. Since p is stored at u, which is a child of v′, the definition of the
dumbbell tree DTj implies that a′ is in the subtree of a. It also follows from the definition
of DTj , and the assumption that 	 < 	′, that a �= a′. This, together with Lemma 11.3.1,
implies that

Lmax(R(a)) ≥ Lmax(R(π (a′))) ≥ 2√
d(s + 4)

	′.

On the other hand, since R(a) and R(a′) have a nonempty intersection, and since D �= D′,
the length-grouping and empty-region properties imply that 	 ≤ β	′. Therefore, we have

Lmax(R(a)) ≤ 2	/s ≤ 2β	′/s.

Thus,
2√

d(s + 4)
	′ ≤ 2β

s
	′,

contradicting our assumption that β < s/(
√

d(s + 4)).
Hence, we have shown that 	′ ≤ 	. We next show that, in fact, 	′ < 	. The proof is

again by contradiction. So we assume that 	′ = 	. Let p′ be the representative of v′. Since
|pp′| is less than or equal to the length of the geometric path between u and v′, it follows
from Lemma 11.8.1 that |pp′| ≤ c	. This, together with the facts that (i) p is in one of
the heads of D, (ii) p′ is in one of the heads of D′, and (iii) c ≤ γ ′ ≤ γ , implies that the
dumbbells D and D′ do not satisfy the γ -empty-region property. This is a contradiction
and, thus, we have shown that 	′ < 	.

Let v′′ be the highest head node on the path in DTj from u to the root, such that the
dumbbell stored at the parent of v′′ has length at most 	. Observe that v′′ exists. We will

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

214 THE DUMBBELL THEOREM

prove that v′′ = v, which implies the lemma. The proof is by contradiction, so we assume
that v′′ �= v.

Let D′′ be the dumbbell stored at the parent of v′′, let 	′′ be the length of D′′, and let p′′

be the representative of v′′. Since |pp′′| is less than or equal to the length of the geometric
path between u and v′′, it follows from Lemma 11.8.1 that |pp′′| ≤ c	′′.

We prove, by contradiction, that D′′ �= D. Thus, we assume that D′′ = D. Then,
|pp′′| ≤ c	. Since v �= v′′, the points p and p′′ are in different heads of D. Let x and y be
the centers of the two heads of D. Then, using Lemma 9.1.2, we have

	 = |xy| ≤ (1 + 4/s)|pp′′| ≤ c(1 + 4/s)	 < 	,

which is a contradiction.
By our choice of v′′, we have 	′′ ≤ 	. Therefore, by the length-grouping property, we

have either (i) 	 ≤ 2	′′ or (ii) 	 ≥ 	′′/β. We will prove that (ii) holds. In order to prove this,
assume that (i) holds. Then, the dumbbells D and D′′ do not satisfy the γ -empty-region
property, because (i) p is in one of the heads of D, (ii) p′′ is in one of the heads of D′′,
(iii) |pp′′| ≤ c	′′, and (iv) c ≤ γ ′ ≤ γ . This is a contradiction and, therefore, we have
shown that (ii) holds; that is, 	′′ ≤ β	.

Since |pp′′| ≤ c	′′ ≤ γ ′	′′, some head of D and some head of D′′ are within distance
γ ′	′′ of each other. Since 	 > 	′′, D satisfies conditions 1. and 2. in Lemma 11.6.1 (when
applying this lemma to the dumbbell D′′). Thus, the dumbbell node storing D is a candidate
for being the grandparent of the dumbbell node storing D′′. In particular, this grandparent
stores a dumbbell D′′′ whose length is less than or equal to that of D. But, by our choice
of v′′, the length of D′′′ is larger than 	. This is a contradiction. Thus, we have shown that
v′′ = v. This completes the proof of the lemma.

We are now ready to prove the spanner property of the dumbbell trees.

Lemma 11.8.3. Assume that β < s/(
√

d(s + 4)), c ≤ γ ′, and c < s/(s + 4), where c is
as in Lemma 11.8.1. Let p and q be two distinct points of S, let D be the dumbbell that
contains p in one of its heads and q in its other head, let j be the index such that the
dumbbell tree DTj stores D, and let u and u′ be the leaves in DTj that store p and q,
respectively. Then, the length of the geometric path between u and u′ is less than or equal
to t |pq|, where

t = 1 + 10c + 6/s.

proof Let w be the dumbbell node in DTj that stores D, and let v and v′ be the children
of w. It follows from Lemma 11.8.2 that (i) u is in the subtree of v and u′ is in the subtree
of v′, or (ii) u is in the subtree of v′ and u′ is in the subtree of v. We may assume without
loss of generality that (i) holds.

Let 	 be the length of the dumbbell D, let x be the representative of v, let y be the
representative of w, and let z be the representative of v′. Let P1 be the geometric path
between u and v, and let P2 be the geometric path between v′ and u′. Then, the path
P obtained by concatenating P1, the edges {x, y} and {y, z}, and P2, is the geometric
path between u and u′. By Lemma 11.8.1, the length of both P1 and P2 is less than or
equal to c	. Observe that (i) p and q are in different heads of D, (ii) x and z are in
different heads of D, and (iii) y is in one of the heads of D. Then, using Lemma 9.1.2, we
obtain

|xy| + |yz| ≤ (2/s)|pq| + (1 + 4/s)|pq| = (1 + 6/s)|pq|.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

11.9 THE DUMBBELL THEOREM 215

We also have 	 ≤ (1 + 4/s)|pq|, which follows again from Lemma 9.1.2. Thus, the length
of P is less than or equal to

2c	 + (1 + 6/s)|pq| ≤ (2c(1 + 4/s) + 1 + 6/s) |pq| ≤ (1 + 10c + 6/s) |pq|,
where the last inequality follows from our assumption that s ≥ 1.

11.9 The Dumbbell Theorem

We summarize how the dumbbell trees were obtained. Let S be a set of n points in Rd .
Choose positive real numbers s, β, γ , and γ ′, and define

c = 6β + 8
√

d/s

and

t = 1 + 10c + 6/s.

These parameters are chosen such that s > 1, β < 1/2, β < s/(
√

d(s + 4)), γ ′ < 1,
c ≤ γ ′ ≤ γ , c < s/(s + 4), and

γ ≥ β
(

1 + 2γ ′ + 2
√

d/s
)

.

1. Compute the split tree T and the corresponding WSPD, {Ai, Bi}, 1 ≤ i ≤ m, with respect
to s. Assign representatives for each node of T . By Theorem 9.4.6, we have m = O(sdn),
and it takes O(n log n + sdn) time to compute T and the WSPD.

2. Consider the set of m dumbbells corresponding to the WSPD. Partition this set into k

subsets, such that within each subset, both the (β, 1/2)-length-grouping property and the
γ -empty-region property hold. By Lemma 11.5.2, we have k = O(sd (1 + γ s)d log(1/β)),
and it takes

O
(
sdn log n + (

s2d (1 + γ s)d + sd log(1/β)
)
n
)

time to compute this partition.

3. Store each of the k subsets of dumbbells in a dumbbell tree. Assign representatives for
each leaf, head node and dumbbell node. By Lemma 11.7.1, this takes

O
((

sd (1 + γ s)d log(1/β) + βdsd (1 + γ ′s)d
)
n log n

)
time.

Given the point set S, the entire algorithm computes the k dumbbell trees in time

O
(
sd (1 + γ s)d (log(1/β))n log n + s2d (1 + γ s)dn

)
.

Let G be the graph with vertex set S and whose edge set consists of all pairs {p, q}
of distinct points of S for which there is a dumbbell tree and two nodes u and v in this
tree such that (i) u is a child of v, (ii) p is the representative of u, and (iii) q is the
representative of v. Then G consists of O(kn + m) = O(sd(1 + γ s)d (log(1/β))n) edges
and, by Lemma 11.8.3, G is a t-spanner for S, where

t = 1 + O(c + 1/s).

If we choose s ≥ 32
√

d,

β < min

(
1

24
,

s

2
√

d(s + 4)

)
,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

216 THE DUMBBELL THEOREM

and

γ = γ ′ = 6β + 8
√

d/s,

then all requirements on the parameters are satisfied, and

t = 1 + O(β + 1/s).

Hence, in order to obtain a t-spanner, where t is close to 1, we choose β = c′(t − 1),
for some small positive constant c′, and s = 1/β. We have proved the main result of this
chapter.

Theorem 11.9.1 (Dumbbell Theorem). Let S be a set of n points in Rd and let t > 1 be
a real number. In

O

(
log(1/(t − 1))

(t − 1)d
n log n + 1

(t − 1)2d
n

)

time, a t-spanner for S, consisting of

O

(
log(1/(t − 1))

(t − 1)d
n

)

edges, can be computed. This t-spanner is represented by

O

(
log(1/(t − 1))

(t − 1)d

)

dumbbell trees. Each dumbbell tree is a rooted tree with n leaves and O(n) nodes, each
leaf stores a unique point of S, and each node stores a representative point of S. For any
two distinct points p and q of S, there is a dumbbell tree DT, such that the geometric path
between p and q that corresponds to the leaves of DT that store p and q, is a t-spanner
path.

How do we actually compute a t-spanner path in this spanner between two distinct
points p and q of S? A first solution is to compute, for each dumbbell tree, the geometric
path corresponding to the leaves that store p and q. The shortest path obtained in this way
is a t-spanner path between p and q. The time spent to find the t-spanner path is bounded
from above by the number of dumbbell trees times the maximum number of edges visited
in any dumbbell tree. A second solution is to use Theorem 9.5.2 or Theorem 9.5.6 to find
the dumbbell tree that “contains” a t-spanner path between p and q, and then to find this
path in this tree. In this way, the time spent is O(log n) plus the number of edges on the
path visited in this dumbbell tree. In both solutions, the time to find a t-spanner path can
be linear in n. In Chapter 12, we will “shortcut” the dumbbell trees such that the number
of edges on a t-spanner path is drastically reduced.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHIC NOTES 217

The main result of this chapter is capsuled below.

Dumbbell trees and the Dumbbell Theorem: Given a set S of n points in Rd ,
it is possible to build, in O(n log n) time, a data structure consisting of k = O(1)
dumbbell trees, with the property that for any two points p and q of S, one of
the k dumbbell trees has a geometric path, which is a t-spanner path between p

and q. The structure gives a t-spanner for S with O(n) edges.

Exercises

11.1. Let D(a, b) be a dumbbell and let 	 be its length. Prove that

Lmax(R(a)) ≤ 2	/s

and

Lmax(R(b)) ≤ 2	/s.

11.2. The algorithms in Section 11.4 work in the algebraic computation-tree model. Assume that we add

indirect addressing, the floor function, and the logarithm function as unit time operations. Show

that, in this more powerful model, the (β, δ)-length property can be established in O(m) time.

11.3. Prove Lemma 11.6.2.

11.4. Work out the details for Section 11.7. In particular, show how the parent of any given dumbbell node

can be computed in O(βd (1 + γ ′s)d log n) time.

11.5. Let S be a set of n points in R
d , and let t > 1 be a constant. Use the dumbbell trees to show how

to construct, in O(n log n) time, a t -spanner for S, whose spanner diameter is O(log n) and that

consists of O(n) edges. (Hint: Use Exercise 2.8.)

11.6. Let S be a set of n points in R
d , let t > 1 be a real constant, and let G be the t -spanner of

Section 9.2 that uses the WSPD for S, as computed by algorithm ComputeWSPD of Section 9.4.

Use the dumbbell trees and the gap property of Chapter 6 to show that the weight of G is O(log n)
times the weight of a minimum spanning tree of S. (By Exercise 9.12, this upper bound is tight.)

11.7. Let S be a set of n points in R
d , and let t > 1 be a constant. Show how to construct, in O(n log n)

time, a t -spanner for S whose spanner diameter is O(log n), that consists of O(n) edges, and whose

weight is O(log n) times the weight of a minimum spanning tree of S. (Hint: Use the construction

of Section 10.2.)

Bibliographic notes

The notion of dumbbells first appeared in Das, Heffernan, and Narasimhan [1993]. They
also introduced the length-grouping property, the empty-region property, and the nesting
of dumbbells. Their purpose was to analyze the weight of a set of edges satisfying the
so-called leapfrog property; see Chapter 14.

This chapter is based on Arya et al. [1995] and on Mount’s unpublished notes (Mount
[1994]). Section 11.3 also uses results from Zeh [2002].

In Arya et al. [1995] and Mount [1994], it is shown how dumbbell trees can be combined
with the topology trees of Frederickson [1997] to obtain a t-spanner whose degree and
spanner diameter are less than or equal to ct and c′

t log n, respectively, where ct and c′
t

depend only on t .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

218 THE DUMBBELL THEOREM

Solutions to Exercises 11.6 and 11.7 can be found in Arya et al. [1995]. Exercise 11.7
shows that a sparse spanner exists, whose spanner diameter is O(log n) and whose weight
is O(log n) times the weight of a minimum spanning tree of the points. Agarwal, Wang,
and Yin [2005] prove the following lower bound: Let S be the set consisting of the integers
1, 2, . . . , n, and let t > 1 be a real constant. Then, every t-spanner for S with spanner
diameter O(log n) has weight �(log n/ log log n) times the weight of a minimum spanning
tree of S. This leads us to the following open problem.

Open problem: Does there exist a set S of n points in Rd , such that for any real
constant t > 1, every t-spanner for S with spanner diameter O(log n) has weight
�(log n) times the weight of a minimum spanning tree of S?

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

12

Shortcutting Trees and Spanners with Low
Spanner Diameter

I think that I shall never see a billboard lovely as a tree. Perhaps, unless
the billboards fall, I’ll never see a tree at all.

—Ogden Nash

In this chapter, we consider the problem of constructing spanners with low spanner
diameter. Recall that in Sections 4.3, 5.5.5, and 10.2, we gave algorithms that construct,
for any set of n points in Rd , and for any constant t > 1, a t-spanner having O(n) edges,
and whose spanner diameter is O(log n). In this chapter, we will see that these results can
be improved considerably.

We start in Section 12.1 by considering a shortcutting problem on trees. In this problem,
we are given a tree T with n vertices, and we want to add a “small” number of edges to it,
such that for any two vertices u and v of T , there exists a path Q between u and v, such
that (i) Q contains a “small” number of edges, and (ii) Q is a “subpath” of the path in T

between u and v. It turns out that this problem leads to the Ackermann function and its
inverse α(n) in a natural way. The main result will be that, by adding O(n) edges to T ,
the path Q consists of only O(α(n)) edges.

In Section 12.2, we will use solutions to the shortcutting problem, together with the
Dumbbell Theorem of the previous chapter (Theorem 11.9.1), to construct spanners with
low spanner diameter. In particular, we will see how to construct a spanner with O(n)
edges and spanner diameter O(α(n)).

Throughout this chapter, we will encounter several recurrences, which will be an-
alyzed using induction. For these analyses, it turns out to be convenient to define
log 0 := 0.

12.1 Shortcutting trees

Let V be a finite set of vertices, and let T = (V, EV) be a tree. We will consider undirected
graphs that contain T . Let G = (V, E) be such a graph (hence, EV ⊆ E), and let u and v

be any two vertices of V . Let

P = (u = x0, x1, x2, . . . , x	 = v)

be the unique path in T between u and v. A path

Q = (
u = xi0 , xi1 , xi2 , . . . , xik = v

)
in G between u and v is called a T -monotone path if

0 = i0 < i1 < i2 < . . . < ik = 	.

219

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

220 SHORTCUTTING TREES AND SPANNERS WITH LOW SPANNER DIAMETER

In other words, Q is a path between u and v, that is obtained from the path P by taking
shortcuts.

Definition 12.1.1. Let V be a set of n vertices, let T = (V, EV) be a tree, and let G =
(V, E) be a graph, such that EV ⊆ E. The T -monotone diameter of G is defined to be the
smallest integer k, such that for any two vertices u and v of V , there exists a T -monotone
path in G between u and v, that consists of at most k edges.

In this section, we consider the following shortcutting problem.

Problem 12.1.2 (Shortcutting Tree). Given a tree T = (V, EV), and given a positive
integer k, compute a graph G = (V, E), with EV ⊆ E, whose T -monotone diameter is k,
and for which the size of E is as small as possible.

12.1.1 Monotone diameters 1 and 2

Any graph G having T -monotone diameter 1 is clearly the complete graph. So let us turn
to the problem of computing a graph having T -monotone diameter 2.

We denote the number of vertices of any tree T by |T |. Let T be a tree and let
u be a vertex of T . The components of u are the trees that are obtained by remov-
ing u, together with its incident edges, from T . Recall that the vertex u is called a
centroid vertex of T if each component of u contains at most |T |/2 vertices (see Sec-
tion 2.3.4). By Lemma 2.3.9, a centroid vertex always exists and can be computed in O(|T |)
time.

Monotone diameter 2: Consider the tree T with n vertices, and let u be a
centroid vertex of T . We connect each vertex of T to u. By removing u from
T , we obtain a collection of components (which are trees again), each having
at most n/2 vertices. For each of these components, we recursively compute a
graph having monotone diameter 2. Since O(n) edges are added at each level of
the recursion, and since the recursion depth is O(log n), the final graph will have
O(n log n) edges.

Algorithm TreeMonoDiam2(T , n)

Comment: This algorithm takes as input a tree T having n vertices. It returns a graph
whose T -monotone diameter is at most 2.

If 1 ≤ n ≤ 3, then the algorithm returns the edge set E of T . Assume that n ≥ 4.

Step 1: Compute a centroid vertex u of T , and compute the edge set

E′ := {{v, u} : v is a vertex of T , v �= u}.
Step 2: Let g be the degree of u in T , and let Ti , 1 ≤ i ≤ g, be the components of u. For

each i with 1 ≤ i ≤ g, recursively call TreeMonoDiam2(Ti, |Ti |), and let Ei be the
edge set returned by this call.

Step 3: Return the edge set E := E′ ∪ E1 ∪ E2 ∪ . . . ∪ Eg .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

12.1 SHORTCUTTING TREES 221

The following theorem analyzes algorithm TreeMonoDiam2.

Theorem 12.1.3. Let T be a tree having n vertices. Algorithm TreeMonoDiam2(T , n)
computes, in O(n log n) time, a graph on the vertices of T , having at most n log n edges,
and whose T -monotone diameter is less than or equal to 2.

proof Let V be the vertex set of T , and let G = (V, E) be the graph that is returned
by algorithm TreeMonoDiam2(T , n). We first prove that the T -monotone diameter of
G is less than or equal to 2. The proof is by induction on n. If 1 ≤ n ≤ 3, then this is
clearly the case. So let n ≥ 4, and assume that for any tree T ′ with less than n vertices,
algorithm TreeMonoDiam2(T ′, |T ′|) returns a graph having T ′-monotone diameter less
than or equal to 2.

Let v and w be any two distinct vertices of V . Consider the centroid vertex u of T that
is computed by algorithm TreeMonoDiam2(T , n). If one of v and w is equal to u, then v

and w are connected by an edge from E′ and this edge forms a T -monotone path between
v and w. If v and w are in different components of u, then they are connected by the path
Q in G consisting of the two edges {v, u} and {u, w}. Since the unique path in T between
v and w passes through the centroid vertex u, the path Q is T -monotone. Finally, assume
that v and w are contained in the same component, say Ti , of u. Note that the path in G

consisting of the two edges {v, u} and {u, w} is not T -monotone. But, by the induction
hypothesis, the recursive call TreeMonoDiam2(Ti, |Ti |) returns a graph in which v and
w are connected by a Ti-monotone path consisting of at most two edges. This path is also
a path in G, and it is T -monotone.

Next we prove that the graph G contains at most n log n edges. If 1 ≤ n ≤ 3, then
G contains exactly n − 1 edges, which is less than or equal to n log n. Let n ≥ 4, and
assume that for any tree T ′ with less than n vertices, algorithm TreeMonoDiam2(T ′, |T ′|)
returns a graph having at most |T ′| log |T ′| edges. Consider again the centroid vertex u

of T , let g be its degree in T , and consider the components Ti , 1 ≤ i ≤ g, of u. Observe
that |Ti | ≤ n/2 < n for all i with 1 ≤ i ≤ g, and n = 1 +∑g

i=1 |Ti |. It follows from the
algorithm and the induction hypothesis that the number of edges of G is bounded from
above by

n − 1 +
g∑

i=1

|Ti | log |Ti | ≤ n +
g∑

i=1

|Ti | log(n/2)

= n + (n − 1) log(n/2)

≤ n + n log(n/2)

= n log n.

Since, by Lemma 2.3.9, a centroid vertex in a tree with n vertices can be com-
puted in O(n) time, it follows in a similar way that the running time of algorithm
TreeMonoDiam2(T , n) is O(n log n).

12.1.2 Monotone diameter 3

We now turn to the problem of constructing a graph having T -monotone diameter 3. The
construction is a generalization of the previous algorithm TreeMonoDiam2(L, n).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

222 SHORTCUTTING TREES AND SPANNERS WITH LOW SPANNER DIAMETER

Monotone diameter 3: Given the tree T with n vertices, we remove approx-
imately

√
n vertices, together with their incident edges, such that each of the

resulting components contains less than
√

n vertices. The vertices that are re-
moved are called cut vertices. We connect these cut vertices by a complete graph.
Each vertex v of T that is not a cut vertex is connected by an edge to each of the
cut vertices that is on the “boundary” of the component containing v. Finally,
we run the algorithm recursively on each of the components. As we will see,
O(n) edges are added at each level of the recursion. Since the recursion depth is
O(log log n), the final graph will have O(n log log n) edges.

Existence of cut vertices

The first question is whether cut vertices having the property mentioned above exist. We
will show that such vertices indeed exist, and that they can be computed by a simple
recursive algorithm that is based on Lemma 2.3.9. That is, we compute a centroid tree
CT(T) of T , in the following way. First, we compute a centroid vertex u of T , which
we store with the root of CT(T). Then we recursively compute a centroid tree of each
of the components of u. The roots of all these recursively computed centroid trees are
made children of the root of CT(T). A formal description of this algorithm is given
below.

Algorithm CentroidDecomp(T , n)

Comment: This algorithm takes as input a tree T with n vertices. It returns the root of the
centroid tree CT (T) of T .

create a new node x;
if n = 1
then store the only vertex of T with node x

else u := centroid vertex of T ;
store vertex u with node x;
g := degree of u in T ;
let Ti , 1 ≤ i ≤ g, be the components of u;
for i := 1 to g

do xi := CentroidDecomp(Ti, |Ti |);
make xi a child of x

endfor
endif
return node x

Lemma 12.1.4. Let T be a tree with n vertices. The running time of algorithm
CentroidDecomp(T , n) is O(n log n).

proof The proof follows from the facts that (i) a centroid vertex in a tree with
m vertices can be computed in O(m) time, and (ii) the recursion depth of algorithm
CentroidDecomp(T , n) is O(log n).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

12.1 SHORTCUTTING TREES 223

The next lemma tells us how the desired cut vertices can be obtained from the centroid
tree CT(T). Before we can state this lemma, we have to introduce some terminology.

First observe that each node of the centroid tree stores a unique vertex of the tree T .
Each node of CT(T) represents a subtree of T in a natural way: Let x be any node of
CT(T), and let Tx be the subtree of T on those vertices that are stored with the nodes in
the subtree of x. (Observe that Tx is connected and, therefore, indeed a tree.) We will say
that node x represents the subtree Tx .

Let n and 	 be positive integers, let T be a tree with n vertices, and let CT(T)
be the centroid tree that is computed by algorithm CentroidDecomp(T , n). We
define

R	 := {x : x is a node of CT(T) that represents a subtree of T having at least 	 vertices},

and

CV	 := {u : u is a vertex of T and there is a node x ∈ R	 such that u is stored with x}.

The following lemma implies that the vertices of the set CV	 can be used as cut vertices.

Lemma 12.1.5. Using the notation introduced above, the following holds.

1. By removing all vertices of CV	, together with their incident edges, from the tree T , we
get a collection of trees, each having less than 	 vertices.

2. The set CV	 consists of at most 2n/	 vertices of T .

proof The first claim follows immediately from the definition of the sets R	 and CV	.
In the rest of the proof, we will prove the second claim. If 	 = 1, then CV	 is equal to the
set of all vertices of T . In this case, the second claim clearly holds. Assume from now on
that 	 ≥ 2.

Let CT	(T) be the tree obtained from CT(T) by removing all nodes that are not in R	.
Observe that CT	(T) may have nodes with only one child. We denote the number of nodes
of CT	(T) by |CT	(T)|. We will show that

|CT	(T)| ≤ max (0, 2n/	 − 1) . (12.1)

Since |CV	| = |R	| = |CT	(T)|, this will prove the second claim.
The proof of (12.1) is by induction on n. If 1 ≤ n < 	, then CT	(T) is empty. In this

case, we have |CT	(T)| = 0 ≤ max(0, 2n/	 − 1).
Let n ≥ 	 and assume that for any tree T ′ with less than n vertices, algorithm

CentroidDecomp(T ′, |T ′|) computes a centroid tree CT(T ′) for which the corresponding
tree CT	(T ′) has at most max(0, 2|T ′|/	 − 1) nodes. Consider the centroid vertex u of T

that is computed by algorithm CentroidDecomp(T , n). Let g be the degree of u in T ,
and let T1, T2, . . . , Tg be the components of u, that is, the trees obtained by removing u,
together with its incident edges, from T . We may assume without loss of generality that
|T1| ≥ |T2| ≥ . . . ≥ |Tg|.

First assume that |T1| < 	. Then the tree CT	(T) consists of exactly one node (viz.
the node that stores the vertex u) and, therefore, |CT	(T)| = 1 ≤ 2n/	 − 1 = max(0,

2n/	 − 1).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

224 SHORTCUTTING TREES AND SPANNERS WITH LOW SPANNER DIAMETER

Assume from now on that |T1| ≥ 	. Let h be the index such that 1 ≤ h ≤ g and

|T1| ≥ |T2| ≥ . . . ≥ |Th| ≥ 	 > |Th+1| ≥ |Th+2| ≥ . . . ≥ |Tg|.

We distinguish two cases. The first case is when h ≥ 2. Then we have

|CT	(T)| = 1 +
h∑

i=1

|CT	(Ti)|.

The induction hypothesis implies that for each i with 1 ≤ i ≤ h,

|CT	(Ti)| ≤ max (0, 2|Ti |/	 − 1) = 2|Ti |/	 − 1.

Therefore,

|CT	(T)| ≤ 1 +
h∑

i=1

(2|Ti |/	 − 1)

= 1 − h + 2

	

h∑
i=1

|Ti |

≤ −1 + 2n/	

= max (0, 2n/	 − 1) .

We are left with the case when h = 1. In this case,

|CT	(T)| = 1 + |CT	(T1)|.

By the induction hypothesis, we have

|CT	(T1)| ≤ max (0, 2|T1|/	 − 1) = 2|T1|/	 − 1.

Combining this with the fact that |T1| ≤ n/2, we get

|CT	(T)| ≤ 1 + 2|T1|/	 − 1 ≤ n/	 ≤ 2n/	 − 1 = max (0, 2n/	 − 1) .

This completes the proof.

Connecting the vertices of T to the cut vertices

At this moment, we know that the vertices of CV	 can be used as cut vertices. According
to our earlier description, all the cut vertices get connected by edges to form a complete
subgraph. The next question is how to connect the other vertices of T to these cut vertices.
Of course, we want to do this, using only O(n) edges.

Let n and 	 be positive integers such that n ≥ 	, let T be a tree with n vertices, and let
CT(T) be the centroid tree of T . Let V be the vertex set of T , and consider the set CV	 of
cut vertices of Lemma 12.1.5. Let T1, T2, . . . , Tg be the collection of subtrees obtained by
removing all vertices of CV	, together with their incident edges, from T . For each i with
1 ≤ i ≤ g, we define the border of Ti as the set of all vertices u ∈ CV	 that are connected
by an edge (in T) to some vertex of Ti . We also say that u is a border vertex of Ti (even
though it is not strictly in Ti).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

12.1 SHORTCUTTING TREES 225

We connect the vertices of V \ CV	 to the cut vertices in the following way. Each vertex
v ∈ V \ CV	 is connected by an edge to each border vertex of the subtree that contains v.
In the algorithm that will be given later, the set of edges obtained in this way is denoted
by E′′. Hence,

E′′ := {{v, u} : v �∈ CV	, u ∈ CV	, u is a border vertex of the subtree that has v as a vertex}.

The following lemma states that the set E′′, indeed, consists of O(n) edges.

Lemma 12.1.6. Let n and 	 be positive integers, such that n ≥ 	, and consider the set
E′′ defined above. Then,

1. the set E′′ contains at most 3n edges, and

2. given the centroid tree CT(T), the set E′′ can be computed in O(n) time.

proof Consider the subtrees T1, T2, . . . , Tg that we get by removing the vertices of
CV	 from T . We fix an arbitrary vertex r of CV	. Using this vertex, we divide the edges
of E′′ into two groups. Let {v, u} be any edge of E′′ and assume without loss of generality
that v �∈ CV	 and u ∈ CV	. Let Ti be the subtree that contains v. Since u is a border
vertex of Ti , each vertex on the path in T between u and v, except for u, is a vertex
of Ti , thus ruling out the possibility that r is on this path. This implies that either (i) u

is on the path in T between r and v or (ii) v is on the path in T between r and u. We
call edge {v, u} of E′′ an upstream edge if (i) holds. Otherwise, (ii) holds, in which case
{v, u} is called a downstream edge. We will count the upstream and downstream edges
separately.

Each vertex v �∈ CV	 is incident on exactly one upstream edge. (Otherwise, the tree
T would contain a cycle.) Conversely, each upstream edge of E′′ is incident on exactly
one vertex that is not in CV	. Therefore, the set E′′ contains exactly n − |CV	| upstream
edges.

Let u be any vertex of CV	 \ {r} and consider two distinct downstream edges {v, u} and
{v′, u}. Hence, neither of v and v′ is a vertex of CV	. Let i and j be the indices such that v

and v′ are vertices of Ti and Tj , respectively. Then, we have i = j , because otherwise, the
tree T would contain a cycle. It follows that each downstream edge of E′′ that is incident
on u, is incident on a vertex of Ti . Since Ti has less than 	 vertices, this implies that there
are less than 	 downstream edges that are incident on u. Since each downstream edge is
incident on exactly one vertex of CV	 \ {r}, this proves that the number of downstream
edges in E′′ is bounded from above by (|CV	| − 1)(− 1).

We know from Lemma 12.1.5 that CV	 contains at most 2n/	 vertices. Therefore, the
number of edges in E′′ is bounded from above by

(n − |CV	|) + (|CV	| − 1)(− 1) ≤ n + |CV	| 	 ≤ 3n.

This proves the first claim. The proof of the second claim is left as an exercise (see
Exercise 12.4).

We are now ready to present the algorithm that constructs a graph whose T -monotone
diameter is at most 3.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

226 SHORTCUTTING TREES AND SPANNERS WITH LOW SPANNER DIAMETER

Algorithm TreeMonoDiam3(T , n, x)

Comment: This algorithm takes as input a tree T with n vertices, and the root x of the
centroid tree CT (T). It returns a graph whose T -monotone diameter is at most 3.

If 1 ≤ n ≤ 4, then the algorithm returns the edge set E of T . Assume that n ≥ 5.

Step 1: Let 	 := �√n �. Use the centroid tree CT (T) to compute the set CV	 of cut
vertices of T (see Lemma 12.1.5). Compute the set E′ as the edge set of the complete
graph on CV	.

Step 2: Compute the subtrees T1, T2, . . . , Tg obtained by removing the vertices of CV	

from T , and compute the edge set

E′′ := {{v, u} : v �∈ CV	, u ∈ CV	, u is a border vertex of the
subtree that has v as a vertex}.

For each i with 1 ≤ i ≤ g, let xi be the node of CT (T) that represents Ti , run algorithm
TreeMonoDiam3(Ti, |Ti |, xi), and let Ei be the edge set returned by this algorithm.

Step 3: Return the edge set E := E′ ∪ E′′ ∪ E1 ∪ E2 ∪ . . . ∪ Eg .

Theorem 12.1.7. Let T be a tree with n vertices. In O(n log n) time, we can compute a
graph on these vertices, having at most 6n log log n + 1 edges, and whose T -monotone
diameter is less than or equal to 3.

proof Given the tree T , we first use algorithm CentroidDecomp(T , n) to compute a
centroid tree CT(T) of T . By Lemma 12.1.4, this can be done in O(n log n) time. Let x be
the root of this centroid tree. We claim that algorithm TreeMonoDiam3(T , n, x) gives
the desired graph.

Let V be the vertex set of T , and let G = (V, E) be the graph that is returned by
algorithm TreeMonoDiam3(T , n, x). We first prove that the T -monotone diameter of
this graph is less than or equal to 3. If 1 ≤ n ≤ 4, then this is clearly the case. Let n ≥ 5
and assume that for any tree T ′ with less than n vertices, algorithm TreeMonoDiam3
computes a graph whose T ′-monotone diameter is less than or equal to 3.

Let 	 := �√n �, let CV	 be the set of cut vertices of T that are computed by the
algorithm, and let T1, T2, . . . , Tg be the trees obtained by removing these cut vertices
from T . Let u and v be any two distinct vertices of V . First assume that u and v are
both cut vertices. Then, u and v are connected by an edge in G, and this edge forms a
T -monotone path between u and v. Next assume that u ∈ CV	 and v �∈ CV	. Let w be the
first vertex of CV	 on the path in T from v to u. If u = w, then {v, u} is an edge in G,
which forms a T -monotone path between u and v. If u �= w, then {v, w} and {w, u} are
edges in G. These two edges form a T -monotone path between u and v. The case when
v ∈ CV	 and u �∈ CV	 is symmetric. The next case is when neither u nor v is a cut vertex
and these two vertices are in different subtrees. Let w and w′ be the first and last vertices
of CV	 on the path in T from u to v, respectively. If w �= w′, then the three edges {u, w},
{w, w′}, and {w′, v}, which are edges in G, form a T -monotone path between u and v. If
w = w′, then the two edges {u, w} and {w, v} are edges in G and form a T -monotone path
between u and v. The final case is when u and v are contained in the same subtree, say Ti .
By the induction hypothesis, the recursive call TreeMonoDiam3(Ti, |Ti |, xi) computes a

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

12.1 SHORTCUTTING TREES 227

graph in which u and v are connected by a Ti-monotone path, consisting of at most three
edges. This path is also a path in G, and it is T -monotone.

Next we prove an upper bound on the number of edges of the graph G. If 1 ≤ n ≤ 4,
then G contains n − 1 edges, which is less than or equal to 6n log log n + 1. Let n ≥ 5,
and assume that for any tree T ′ with less than n vertices, algorithm TreeMonoDiam3
constructs a graph having at most 6|T ′| log log |T ′| + 1 edges.

Consider again the set CV	 of cut vertices in T , and the corresponding subtrees
T1, T2, . . . , Tg. Observe that, by Lemma 12.1.5, |Ti | ≤ �√n � − 1 <

√
n < n for each

i with 1 ≤ i ≤ g, and
∑g

i=1 |Ti | ≤ n. Again by Lemma 12.1.5, we have

|CV	| ≤ 2n/	 = 2n/�√n � ≤ 2
√

n.

Therefore, the size of the edge set E′ of the complete graph on CV	 satisfies

|E′| =
(|CV	|

2

)
≤ |CV	|2/2 ≤ 2n.

Lemma 12.1.6 implies that the size of the edge set E′′ that is computed by the algorithm
satisfies

|E′′| ≤ 3n.

Let i be any integer with 1 ≤ i ≤ g, and consider the edge set Ei that is computed by the
recursive call TreeMonoDiam3(Ti, |Ti |, xi). By the induction hypothesis, we have

|Ei | ≤ 6|Ti | log log |Ti | + 1 ≤ 6|Ti | log log
√

n + 1.

It follows that
g∑

i=1

|Ei | ≤ g +
g∑

i=1

6|Ti | log log
√

n ≤ n + 6n log log
√

n.

Putting everything together, we get the following upper bound on the size of the edge
set E:

|E| = |E′| + |E′′| +
g∑

i=1

|Ei |

≤ 6n + 6n log log
√

n

= 6n log log n

≤ 6n log log n + 1.

It remains to analyze the running time of the algorithm. Let n ≥ 5, and assume that
we have already computed the centroid tree of T . Then, by Lemma 12.1.6, the algo-
rithm spends O(n) time at each level of the recursion. Since the recursion depth is
O(log log n), it follows that the total running time of algorithm TreeMonoDiam3(T , n, x)
is O(n log log n). Hence, the entire algorithm for computing the graph G, when only given
T as input, takes O(n log n) time.

12.1.3 Generalization to larger monotone diameters

Our goal is to generalize the results of Theorems 12.1.3 and 12.1.7 to monotone diameters
that are larger than 3. We first introduce the general idea before getting into the details.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

228 SHORTCUTTING TREES AND SPANNERS WITH LOW SPANNER DIAMETER

General approach: Given the tree T with n vertices, and given an integer k ≥ 4,
we choose an integer 	k and remove approximately n/	k cut vertices, together
with their incident edges, such that each of the resulting components contains
less than 	k vertices. As in Section 12.1.2, we connect each vertex v of T that
is not a cut vertex by an edge to each of the cut vertices that is a border vertex
of the component containing v. Then we run the algorithm recursively, with the
same value of k, on each of the components. We would like to run the algorithm,
with k replaced by k − 2, on the cut vertices. For this, we have to connect the
cut vertices into a tree. We will see that this can be done by “inheriting” the tree
structure of T . The disadvantage is that the T -monotone diameter of the resulting
graph will be 2k instead of k. We will choose 	k such that (i) the number of edges
that are added at each level of the recursion is O(n), and (ii) the recursion depth
is as small as possible. It turns out that the “correct” value of 	k is related to the
inverse of the Ackermann function.

The next section is devoted to the understanding of the details of the Ackermann
function and its inverse.

12.1.4 The Ackermann function and its inverse

The set of nonnegative integers will be denoted by N. We will use the following notation.
For any function f : N −→ N and any s ∈ N, we denote the s-fold iteration of f by f (s).
That is, the functions f (s) : N −→ N are inductively defined as follows:

f (0)(n) := n, for all n ≥ 0,

and

f (s)(n) := f (f (s−1)(n)), for all n ≥ 0 and s ≥ 1.

Definition 12.1.8. For each k ≥ 0, the functions Ak : N −→ N and Bk : N −→ N are
recursively defined as follows:

A0(n) := 2n, for all n ≥ 0,

Ak(n) :=
{

1 if k ≥ 1 and n = 0,
Ak−1(Ak(n − 1)) if k ≥ 1 and n ≥ 1,

B0(n) := n2, for all n ≥ 0,

Bk(n) :=
{

2 if k ≥ 1 and n = 0,
Bk−1(Bk(n − 1)) if k ≥ 1 and n ≥ 1.

The following lemma gives an alternative way for computing the functions Ak and Bk .
The claims can be proved by a straightforward induction on n.

Lemma 12.1.9. For all k ≥ 1 and n ≥ 0, we have

1. Ak(n) = A
(n)
k−1(1), and

2. Bk(n) = B
(n)
k−1(2).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

12.1 SHORTCUTTING TREES 229

Let us consider some examples. Using Definition 12.1.8 or Lemma 12.1.9, it can be
verified that for all n ≥ 0,

� A1(n) = 2n,

� A2(n) = 22···
2︸︷︷︸

n

,

� B1(n) = 22n

,

� B2(n) = 22···
2︸︷︷︸

2n+1

.

It should be clear from these examples that, for k ≥ 2, the functions Ak and Bk are
extremely fast growing. The next four lemmas state some useful monotonicity properties
of these functions.

Lemma 12.1.10. For all k ≥ 0 and n ≥ 0, we have

1. Ak(n) ≥ 2n and

2. Bk(n) ≥ n2.

proof The claims can be proved by double inductions on k and n.

Lemma 12.1.11. For all k ≥ 0, the functions Ak and Bk are nondecreasing.

proof It follows immediately from the definition of A0 that this function is nonde-
creasing. Let k ≥ 1 and n ≥ 1. We have

Ak(n) = Ak−1(Ak(n − 1)) ≥ 2Ak(n − 1) ≥ Ak(n − 1),

where the equality holds by definition, and the first of the two inequalities is due to
Lemma 12.1.10. Thus, the function Ak is nondecreasing. The proof that each of the
functions Bk , k ≥ 0, is nondecreasing is similar.

Lemma 12.1.12. For all k ≥ 0 and n ≥ 0, we have Ak+1(n) ≥ Ak(n).

proof The claim can be proved using Lemmas 12.1.10 and 12.1.11.

Lemma 12.1.13. For all k ≥ 0 and n ≥ 3, we have Ak(n + 1) ≤ Ak+1(n).

proof First observe that, by Lemma 12.1.12,

Ak+1(n − 1) ≥ A0(n − 1) = 2n − 2 ≥ n + 1.

Since the function Ak is nondecreasing, it follows that

Ak+1(n) = Ak(Ak+1(n − 1)) ≥ Ak(n + 1),

which is what we wanted to show.

We now define the functional inverses of the functions Ak and Bk .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

230 SHORTCUTTING TREES AND SPANNERS WITH LOW SPANNER DIAMETER

Definition 12.1.14. For each k ≥ 0, we define the functions α2k : N −→ N and α2k+1:
N −→ N as follows:

1. α2k(n) := min{s ≥ 0 : Ak(s) ≥ n}, for all n ≥ 0, and

2. α2k+1(n) := min{s ≥ 0 : Bk(s) ≥ n}, for all n ≥ 0.

Observe that, by Lemma 12.1.10, these functions are well-defined. Let us look at some
examples. For each n ≥ 0, we define

log∗ n := min{s ≥ 0 : log log . . . log︸ ︷︷ ︸
s

n ≤ 1}.

(Observe that log∗ 0 = log∗ 1 = 0.) For all n ≥ 0, we have

� α0(n) = �n/2�,
� α1(n) = �√n �,
� α2(n) = �log n�,
� α3(n) = �log log n�,
� α4(n) = log∗ n,
� α5(n) = ⌊

1
2 log∗ n

⌋
.

Lemma 12.1.15. For each k ≥ 0, the function αk is nondecreasing.

proof We will prove the claim for even values of k. (For odd values of k, the proof is
similar.) For simplicity, we write 2k instead of k. Let m and n be two nonnegative integers
such that m < n. We will prove that α2k(m) ≤ α2k(n).

Let s := α2k(n). By the definition of the function α2k , we have Ak(s) ≥ n. Since
m < n, we also have Ak(s) ≥ m. Then, the definition of α2k implies that α2k(m) ≤ s, i.e.,
α2k(m) ≤ α2k(n).

In Lemma 12.1.18 below, we will state a useful characterization of the functions αk .
Before we can prove it, we need two more lemmas.

Lemma 12.1.16. For each k ≥ 1, we have

1. α2k(n) = 1 + α2k(α2k−2(n)), for all n ≥ 2, and

2. α2k+1(n) = 1 + α2k+1(α2k−1(n)), for all n ≥ 3.

proof Let k ≥ 1 and n ≥ 2. Since the function Ak−1 is nondecreasing, it follows from
the definition of the function α2k−2 that, for all m ≥ 0,

Ak−1(m) ≥ n if and only if m ≥ α2k−2(n).

By using this equivalence, we get the following chain of equalities:

α2k(n) = min{s ≥ 0 : Ak(s) ≥ n}
= min{s ≥ 1 : Ak(s) ≥ n}
= min{s ≥ 1 : Ak−1(Ak(s − 1)) ≥ n}
= min{s ≥ 1 : Ak(s − 1) ≥ α2k−2(n)}
= 1 + min{s ′ ≥ 0 : Ak(s ′) ≥ α2k−2(n)}
= 1 + α2k(α2k−2(n)),

proving the first claim. The second claim can be proved in a similar way.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

12.1 SHORTCUTTING TREES 231

Lemma 12.1.17. Let k ≥ 0.

1. For each n ≥ 2, there is an s ≥ 1, such that α
(s)
2k (n) ≤ 1.

2. For each n ≥ 3, there is an s ≥ 1, such that α
(s)
2k+1(n) ≤ 2.

proof We will prove the first claim, and leave the proof of the second claim to the
reader. By Lemma 12.1.10, we have Ak(m − 1) ≥ 2(m − 1) ≥ m, for all m ≥ 2. Then,
the definition of the function α2k implies that

α2k(m) ≤ m − 1, for all m ≥ 2. (12.2)

Assume that α
(s)
2k (n) ≥ 2 for all s ≥ 1. For s = n, this reads α

(n)
2k (n) ≥ 2. On the other

hand, by repeatedly applying (12.2), we obtain

α
(n)
2k (n) = α2k(α(n−1)

2k (n))

≤ α
(n−1)
2k (n) − 1

≤ α
(n−2)
2k (n) − 2

...

≤ α
(1)
2k (n) − (n − 1)

= α2k(n) − (n − 1)

≤ 0,

which is a contradiction.

Lemma 12.1.18. For all k ≥ 1 and n ≥ 0, we have

1. α2k(n) = min{s ≥ 0 : α
(s)
2k−2(n) ≤ 1}, and

2. α2k+1(n) = min{s ≥ 0 : α
(s)
2k−1(n) ≤ 2}.

proof We prove only the first claim. The second claim can be proved in a similar way.
If n ∈ {0, 1}, then the first claim follows from the fact that α2k(n) = 0. Assume that n ≥ 2.
Let s ≥ 1 be the smallest integer such that α

(s)
2k−2(n) ≤ 1. By Lemma 12.1.17, s is well-

defined. Observe that α
(j)
2k−2(n) ≥ 2 for all j with 0 ≤ j < s. By applying Lemma 12.1.16

twice, we get

α2k(n) = 1 + α2k(α2k−2(n))

= 2 + α2k(α2k−2(α2k−2(n)))

= 2 + α2k(α(2)
2k−2(n)).

Repeating this, we get

α2k(n) = 3 + α2k(α(3)
2k−2(n))

= 4 + α2k(α(4)
2k−2(n))

...

= (s − 1) + α2k(α(s−1)
2k−2 (n))

= s + α2k(α(s)
2k−2(n)).

Since α
(s)
2k−2(n) ∈ {0, 1}, we have α2k(α(s)

2k−2(n)) = 0. Hence, α2k(n) = s, which is exactly
what we wanted to show.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

232 SHORTCUTTING TREES AND SPANNERS WITH LOW SPANNER DIAMETER

We now define the Ackermann function A and its functional inverse α.

Definition 12.1.19 (Ackermann function). The Ackermann function A : N −→ N is
defined by

A(n) := An(n), for all n ≥ 0.

The reader can easily verify that A(0) = 0, A(1) = 2, A(2) = 4, A(3) = 216 = 65,536.
Moreover, we have

A(4) = A3

22···
2︸︷︷︸

65,536

 .

Definition 12.1.20 (inverse Ackermann function). The inverse Ackermann function
α : N −→ N is defined by

α(n) := min{s ≥ 0 : A(s) ≥ n}, for all n ≥ 0.

By Lemma 12.1.10, we have A(n) = An(n) ≥ 2n ≥ n, for all n ≥ 0. Therefore, the
function α is well-defined. It is not difficult to verify that α(0) = 0, α(1) = 1, α(2) = 1,
α(3) = 2, and α(65,536) = 3. Although the function α is unbounded, it grows extremely
slowly. In fact, for all practical applications, we have α(n) ≤ 4.

Lemma 12.1.21. The function α is nondecreasing.

proof The proof is similar to that of Lemma 12.1.15.

We now consider the behavior of the function α2k(n), for values of k that are close to
α(n). Observe that for such k, the index of the function α2k depends on n.

Lemma 12.1.22. The following inequalities hold.

1. α2α(n)−2(n) ≥ α(n), for all n ≥ 1,

2. α2α(n)(n) ≤ α(n), for all n ≥ 0, and

3. α2α(n)+2(n) ≤ 4, for all n ≥ 0.

proof Let n ≥ 1. The definition of the function α implies that

Aα(n)−1(α(n) − 1) = A(α(n) − 1) < n.

Combining this with the definition of the function α2α(n)−2(n), i.e.,

α2α(n)−2(n) = min{s ≥ 0 : Aα(n)−1(s) ≥ n},

and the fact that the function Aα(n)−1 is nondecreasing, we obtain that α2α(n)−2(n) >

α(n) − 1. Since α2α(n)−2(n) and α(n) are integers, this proves the first inequality.
To prove the second inequality, let n ≥ 0. The definition of the function α implies that

Aα(n)(α(n)) = A(α(n)) ≥ n.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

12.1 SHORTCUTTING TREES 233

Since

α2α(n)(n) = min{s ≥ 0 : Aα(n)(s) ≥ n},

it follows that α2α(n)(n) ≤ α(n).
It remains to prove the third inequality. Let n ≥ 0. Lemma 12.1.13 implies that for all

k ≥ 0,

Ak+1(3) ≥ Ak(4) ≥ Ak−1(5) ≥ . . . ≥ A0(k + 4) = 2(k + 4) ≥ k.

Combining this inequality with the fact that the function Ak is nondecreasing, we
get

Ak+1(4) = Ak(Ak+1(3)) ≥ Ak(k) = A(k),

for all k ≥ 0. For k := α(n), this reads

Aα(n)+1(4) ≥ A(α(n)).

By the definition of α, we have A(α(n)) ≥ n. Hence,

Aα(n)+1(4) ≥ n.

Then, the definition of the function value α2α(n)+2(n), that is,

α2α(n)+2(n) = min{s ≥ 0 : Aα(n)+1(s) ≥ n},

immediately implies that α2α(n)+2(n) ≤ 4.

12.1.5 Monotone diameter 2k

In this section, we present the algorithm that solves Problem 12.1.2 (Shortcutting
Tree) for T -monotone diameters that are larger than 3. However, note that the achieved
diameter of the resulting graph will be 2k, rather than k.

Let T be a rooted tree with n vertices, let k ≥ 4 be an integer, and let 	 = αk−2(n). The
algorithm will remove approximately n/	 cut vertices, together with their incident edges,
such that each of the resulting components contains less than 	 vertices. It constructs the
set E′′ as in algorithm TreeMonoDiam3 in Section 12.1.2, and calls itself recursively
(with the same value of k) for each of the components. Next, the algorithm uses the
structure of T to connect the cut vertices into a tree T ′, and calls itself recursively
(with k replaced by k − 2) on this new tree. We will see that, in the final graph, any
two vertices of T , such that one is an ancestor of the other, are connected by a T -
monotone path, consisting of at most k edges. This will imply that the T -monotone
diameter of this graph is less than or equal to 2k. A formal description of the algorithm
follows.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

234 SHORTCUTTING TREES AND SPANNERS WITH LOW SPANNER DIAMETER

Algorithm TreeMonoDiam(T , n, r, x, k)

Comment: This algorithm takes as input a tree T having n vertices and that is rooted at
r , the root x of the centroid tree CT (T), and an integer k ≥ 1. The algorithm returns a
graph having T -monotone diameter less than or equal to 2k.

If k = 1, then return the complete graph on the vertices of T . If k = 2, then call algorithm
TreeMonoDiam2(T , n), and return the edge set that is returned by this algorithm. If
k = 3, then call algorithm TreeMonoDiam3(T , n, x), and return the edge set that is
returned by this algorithm.
Assume that k ≥ 4. If 1 ≤ n ≤ k + 1, then the algorithm returns the edge set E of T .
Assume that n ≥ k + 2.

Step 1: Let 	 := αk−2(n). Use the centroid tree CT (T) to compute the set CV	 of cut
vertices of T (see Lemma 12.1.5), and let CV ′

	 := CV	 ∪ {r}.
Step 2: Construct a tree T ′ with vertex set CV ′

	 and root r , by making each vertex u

of CV	 a child of the first vertex of CV ′
	 on the path in T from u to r . Run algorithm

CentroidDecomp(T ′, |CV ′
	 |), and let x ′ be the root of the centroid tree of T ′ that is

returned by this algorithm.

Step 3: If k = 4, then run algorithm TreeMonoDiam2(T ′, |CV ′
	 |) of Section 12.1.1. If

k = 5, then run algorithm TreeMonoDiam3(T ′, |CV ′
	 |, x ′) of Section 12.1.2. If k ≥ 6,

then run algorithm TreeMonoDiam(T ′, |CV ′
	 |, r, x ′, k − 2). Let E′ be the edge set

that is computed in this step.

Step 4: Compute the subtrees T1, T2, . . . , Tg obtained by removing the vertices of CV	

from T , and compute the edge set

E′′ := {{v, u} : v �∈ CV	, u ∈ CV	, u is a border vertex of the
subtree that has v as a vertex}.

For each i with 1 ≤ i ≤ g, compute the vertex ri of Ti that is closest to the
root of T , set xi to the node of CT (T) that represents Ti , run algorithm
TreeMonoDiam(Ti, |Ti |, ri , xi, k), and let Ei be the edge set returned by this al-
gorithm.

Step 5: Return the edge set E := E′ ∪ E′′ ∪ E1 ∪ E2 ∪ . . . ∪ Eg .

Let us see why algorithm TreeMonoDiam(T , n, r, x, k) terminates. Assume that k ≥ 4
and n ≥ k + 2. Since n ≥ 6, it follows from the definition of the function αk−2 that 	 ≥ 1.
Also, by inequality (12.2) in the proof of Lemma 12.1.17, we have 	 = αk−2(n) ≤ n − 1, if
k is even. It is easy to verify that this inequality also holds if k is odd. Hence, we have 	 < n,
which implies that each tree Ti in the recursive call TreeMonoDiam(Ti, |Ti |, ri, xi, k)
has less than n vertices.

We now analyze the T -monotone diameter of the graph that is computed by algorithm
TreeMonoDiam.

Lemma 12.1.23. Let T be a rooted tree with vertex set V , let u and v be two distinct
vertices of T such that u is an ancestor of v, let k ≥ 1 be an integer, and let G = (V, E)
be the graph that is computed by algorithm TreeMonoDiam(T , n, r, x, k). There is a
T -monotone path in G between u and v consisting of at most k edges.

proof The proof is by induction on k. If k = 1, then the claim clearly holds. If
k ∈ {2, 3}, then the claim follows from Theorems 12.1.3 and 12.1.7.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

12.1 SHORTCUTTING TREES 235

Let k ≥ 4, and assume the lemma holds for all trees and all values that are less than k.
If the number of vertices of T is less than or equal to k + 1, then the lemma clearly holds.
Let n ≥ k + 2, and assume that the lemma holds for k, and for all trees having fewer than
n vertices.

Consider the set CV ′
	 of vertices in T that is computed in Step 1 of the algorithm. There

are several different cases to consider.
First assume that u and v are both elements of CV ′

	 . In the tree T ′ that is constructed in
Step 2, u is an ancestor of v. Therefore, by the induction hypothesis, the graph (CV ′

	, E
′)

that is computed in Step 3 contains a T ′-monotone path between u and v, consisting of at
most k − 2 edges. This path is a T -monotone path in the graph G.

Next assume that u ∈ CV ′
	 and v �∈ CV ′

	 . Let w be the first vertex of CV ′
	 on the path

in T from v to u. If u = w, then {v, u} is an edge in G, which forms a T -monotone path
between u and v. Assume that u �= w. Since u is an ancestor of w in T ′, the graph G

contains a T -monotone path between u and w consisting of at most k − 2 edges. Since
{v, w} is an edge in G, and since w is an ancestor of v, it follows that G contains a
T -monotone path between u and v consisting of at most k − 1 edges. The case when
v ∈ CV ′

	 and u �∈ CV ′
	 is symmetric.

The next case is when neither u nor v is an element of CV ′
	 , and these two vertices are in

different subtrees (see Step 4 in the algorithm). Let w and w′ be the first and last vertices
of CV	 on the path in T from u to v, respectively. If w = w′, then {u, w} and {w, v} are
edges in G and form a T -monotone path between u and v. Assume that w �= w′. Since w

is an ancestor of w′ in T ′, the graph G contains a T ′-monotone path between w and w′

consisting of at most k − 2 edges. Since {v, w} and {w′, v} are edges in G, it follows that
G contains a T -monotone path between u and v consisting of at most k edges.

The final case is when u and v are contained in the same subtree, say Ti . Observe
that u is an ancestor of v in Ti . Therefore, by the induction hypothesis, the recursive
call TreeMonoDiam(Ti, |Ti |, ri, xi, k) in Step 4 computes a graph in which u and v are
connected by a Ti-monotone path consisting of at most k edges. This path is also a path
in G, and it is T-monotone.

Lemma 12.1.24. Let T be a rooted tree with n vertices, and let k ≥ 1 be an integer.
Algorithm TreeMonoDiam(T , n, r, x, k) computes a graph whose T-monotone diameter
is less than or equal to 2k.

proof Let u and v be two distinct vertices of T and let w be their lowest common
ancestor. The claim follows by applying Lemma 12.1.23 to w and u, and to w and v.

Lemma 12.1.25. Let k ≥ 2 be an integer, and let Fk(n) be the maximum number of edges
in the graph computed by algorithm TreeMonoDiam(T , n, r, x, k), where T ranges over
all trees having n vertices. Then,

1. Fk(n) ≤ 2knαk(n), if k is even, and

2. Fk(n) ≤ 3 · 2k−2nαk(n) + 1, if k is odd.

proof We give only the proof for even values of k. The case when k is odd can be
analyzed in a similar way.

We will prove by induction on k that Fk(n) ≤ 2knαk(n), for all n ≥ 1. We start the
induction with k = 2. For this case, the claim follows from Theorem 12.1.3. Let k ≥ 4,
and assume that

Fk−2(s) ≤ 2k−2sαk−2(s), (12.3)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

236 SHORTCUTTING TREES AND SPANNERS WITH LOW SPANNER DIAMETER

for all s ≥ 1. If n = 1, then Fk(n) = 0 ≤ 2knαk(n). If 2 ≤ n ≤ k + 1, then Fk(n) = n −
1 ≤ 2knαk(n), because, by Lemma 12.1.16, αk(n) ≥ 1. So let n ≥ k + 2, and assume that

Fk(s) ≤ 2ksαk(s), (12.4)

for all s with 1 ≤ s < n. Let T be a tree with n vertices for which the edge set E that is
computed by algorithm TreeMonoDiam(T , n, r, x, k) has Fk(n) edges.

The number of edges in the set E′ that is computed in Step 3 of the algorithm is
less than or equal to Fk−2(|CV ′

	 |). By Lemma 12.1.5, we have |CV ′
	 | = 1 + |CV	| ≤

1 + 2n/	 ≤ 3n/	. Therefore, by the induction hypothesis (12.3), and since the function
αk−2 is nondecreasing, we have

|E′| ≤ 2k−2(3n/)αk−2(n) = 3 · 2k−2n.

By Lemma 12.1.6, the number of edges in the set E′′ that is computed in Step 4 of the
algorithm is less than or equal to 3n.

Let i be any integer with 1 ≤ i ≤ g, and consider the edge set Ei that is computed
in Step 4 of the algorithm. We have |Ei | ≤ Fk(|Ti |). Therefore, since |Ti | < 	 < n, and
since the function αk is nondecreasing, the induction hypothesis (12.4) implies that |Ei | ≤
2k|Ti |αk(). By Lemma 12.1.16, we have

αk(n) = 1 + αk(αk−2(n)) = 1 + αk().

Hence,
g∑

i=1

|Ei | ≤
g∑

i=1

2k|Ti |(αk(n) − 1) ≤ 2kn(αk(n) − 1).

We conclude that

Fk(n) = |E|

= |E′| + |E′′| +
g∑

i=1

|Ei |

≤ 3 · 2k−2n + 3n + 2kn(αk(n) − 1)

= 2knαk(n) + (3 · 2k−2 + 3 − 2k)n

≤ 2knαk(n).

This completes the proof.

It remains to analyze the running time of algorithm TreeMonoDiam. For
any integer k ≥ 2, let Ck(n) denote the worst-case running time of algorithm
TreeMonoDiam(T , n, r, x, k), when given as input any tree T with n vertices that is
rooted at r , and the root x of the centroid tree CT(T).

By Theorems 12.1.3 and 12.1.7, Ck(n) = O(n log n) for k ∈ {2, 3}. Let k ≥ 4. Step 1
of algorithm TreeMonoDiam(T , n, r, x, k) takes O(n) time, whereas Step 2 takes
O(n log n) time. The time for Step 3 is at most Ck−2(3n/αk−2(n)). Finally, Step 4 takes
time O(n) +∑g

i=1 Ck(ni), where ni is the number of vertices of the tree Ti . Hence, we
obtain the recurrence

Ck(n) = O(n log n) + Ck−2(3n/αk−2(n)) +
g∑

i=1

Ck(ni),

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

12.1 SHORTCUTTING TREES 237

where ni < αk−2(n), for each i with 1 ≤ i ≤ g, and
∑g

i=1 ni ≤ n. As in the proof of
Lemma 12.1.25, it can be shown that Ck(n) = O(2knαk(n) log n).

Since, by Lemma 12.1.4, the initial centroid tree CT(T) of T can be computed in
O(n log n) time, the entire algorithm for computing a graph whose T -monotone diameter
is at most 2k, when only given T as input, is O(2knαk(n) log n). We have proved the
following result.

Theorem 12.1.26. Let T be a tree with n vertices, and let k ≥ 4 be an integer. In
O(2knαk(n) log n) time, we can compute a graph on these vertices, having O(2knαk(n))
edges, and whose T -monotone diameter is less than or equal to 2k.

12.1.6 Shortcutting trees using O(n) edges

Theorem 12.1.26 does not give us a shortcutting that uses O(n) edges. In this section, we
show that a simple variation of algorithm TreeMonoDiam, together with Exercise 2.8,
leads to such a shortcutting.

We fix a constant c such that 22α(n)+2 ≤ n, for all n ≥ c.

Algorithm TreeMonoDiamLin(T , n, r)

Comment: This algorithm takes as input a tree T having n vertices and that is rooted at
r . It returns a graph with O(n) edges, whose T -monotone diameter is O(α(n)).

If 1 ≤ n < c, then the algorithm returns the edge set E of T . Assume that n ≥ c.

Step 1: Let k := 2α(n) + 2 and 	 := 2k . Use algorithm CentroidDecomp(T , n) to com-
pute a centroid tree CT (T) of T . Use this centroid tree to compute the set CV	 of cut
vertices of T , see Lemma 12.1.5, and let CV ′

	 := CV	 ∪ {r}.
Step 2: Construct a tree T ′ with vertex set CV ′

	 and root r , by making each vertex u

of CV	 a child of the first vertex of CV ′
	 on the path in T from u to r . Run algorithm

CentroidDecomp(T ′, |CV ′
	 |), and let x ′ be the root of the centroid tree of T ′ that is

returned by this algorithm.

Step 3: Run algorithm TreeMonoDiam(T ′, |CV ′
	 |, r, x ′, k). Let E′ be the edge set that

is computed in this step.

Step 4: Compute the subtrees T1, T2, . . . , Tg obtained by removing the vertices of CV	

from T , and compute the edge set

E′′ := {{v, u} : v /∈ CV	, u ∈ CV	, u is a border vertex of the
subtree that has v as a vertex}.

For each i with 1 ≤ i ≤ g, let Vi be the vertex set of Ti , and compute a graph
(Vi, Ei) having O(|Vi |) edges, and whose Ti -monotone diameter is O(log |Vi |); see
Exercise 2.8.

Step 5: Return the edge set E := E′ ∪ E′′ ∪ E1 ∪ E2 ∪ . . . ∪ Eg .

In exactly the same way as in Lemmas 12.1.23 and 12.1.24, it can be shown that the
T -monotone diameter of the graph that is computed by this algorithm is

O(max(c, k, log)) = O(α(n)).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

238 SHORTCUTTING TREES AND SPANNERS WITH LOW SPANNER DIAMETER

We estimate the number of edges in this graph. Assume that n ≥ c. By Theorem 12.1.26
and Lemma 12.1.5, the size of the edge set E′ that is computed in Step 3 satisfies

|E′| = O
(
2k|CV ′

	 | · αk(|CV ′
	 |)
) = O

(
2k(n/)αk(n)

) = O(nαk(n)).

Since, by Lemma 12.1.22, αk(n) = α2α(n)+2(n) ≤ 4, it follows that |E′| = O(n). By
Lemma 12.1.6, and since n ≥ 	, the size of the edge set E′′ that is computed in Step 4 is
less than or equal to 3n = O(n). Finally, we have

g∑
i=1

|Ei | = O

(
g∑

i=1

|Vi |
)

= O(n).

Hence, the total number of edges in the graph is O(n). In a similar way, it can be shown
that the algorithm takes O(n log n) time. We have proved the following result.

Theorem 12.1.27. Let T be a tree with n vertices. In O(n log n) time, we can compute a
graph on these vertices, having O(n) edges, and whose T -monotone diameter is O(α(n)).

12.2 Spanners with low spanner diameter

We now show how the results of the previous section can be used to obtain spanners with
low spanner diameter. The best results we have seen so far, are those of Theorems 4.3.10,
5.5.6, and 10.2.3, and Exercise 11.5, giving spanners with O(n) edges and O(log n)
spanner diameter.

Let S be a set of n points in Rd , and let t > 1 be a real number. By the Dumbbell
Theorem (Theorem 11.9.1), there exist O((1/(t − 1))d log(1/(t − 1))) dumbbell trees
having the following properties.

1. Each dumbbell tree has size O(n) and stores the points of S at its leaves, and each internal
node stores a representative point of S.

2. For any two leaves u and v of any dumbbell tree T , the geometric path corresponding
to u and v is the path in R

d defined by the representatives of all nodes on the path in T

between u and v.

3. For any two distinct points p and q of S, there is a dumbbell tree T such that the geometric
path between p and q that corresponds to the leaves of T that store p and q, is a t-spanner
path.

For each of these dumbbell trees T , let GT be a shortcutting of T having T -monotone
diameter k. Then for any two distinct points p and q of S, there is a dumbbell tree T such
that

1. the geometric path P between p and q that corresponds to the leaves u and v of T that
store p and q, is a t-spanner path, and

2. the graph GT contains a T -monotone path Q between the leaves u and v in T consisting
of at most k edges.

Since Q is a T -monotone path, and since the length of P is less than or equal to t |pq|,
the triangle inequality implies that the geometric path corresponding to Q is a t-spanner
path between p and q. Hence, the geometric graph implied by the collection of all graphs
GT constitutes a t-spanner for S, whose spanner diameter is less than or equal to k.

Therefore, by combining Theorems 11.9.1, 12.1.3, 12.1.7, 12.1.26, and 12.1.27, we
obtain the main result of this chapter.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

12.2 SPANNERS WITH LOW SPANNER DIAMETER 239

Theorem 12.2.1. Let S be a set of n points in Rd , and let t > 1 be a real number.

1. In time

O

(
log(1/(t − 1))

(t − 1)d
n log n + n/(t − 1)2d

)
,

a t-spanner for S can be computed, which has

O

(
log(1/(t − 1))

(t − 1)d
n log n

)
edges, and whose spanner diameter is 2.

2. In time

O

(
log(1/(t − 1))

(t − 1)d
n log n + n/(t − 1)2d

)
,

a t-spanner for S can be computed, which has

O

(
log(1/(t − 1))

(t − 1)d
n log log n

)
edges, and whose spanner diameter is 3.

3. Let k ≥ 4 be an integer. In time

O

(
log(1/(t − 1))

(t − 1)d
2knαk(n) log n + n/(t − 1)2d

)
,

a t-spanner for S can be computed, which has

O

(
log(1/(t − 1))

(t − 1)d
2knαk(n)

)
edges, and whose spanner diameter is 2k.

4. In time

O

(
log(1/(t − 1))

(t − 1)d
n log n + n/(t − 1)2d

)
,

a t-spanner for S can be computed, which has

O

(
log(1/(t − 1))

(t − 1)d
n

)
edges, and whose spanner diameter is O(α(n)).

In Theorem 12.2.1, we have seen that, for any constant t > 1 and any integer k ≥ 4, a
t-spanner with O(2knαk(n)) edges and spanner diameter 2k can be constructed. Using an
improved solution for the shortcutting problem on trees, by Bodlaender, Tel, and Santoro
[1994], we obtain a t-spanner with O(knαk(n)) edges and spanner diameter k. It is not
clear, however, if their construction can be implemented in subquadratic time. (For the
case when the points are one-dimensional, this can be done; see Exercise 12.9.)

Open problem: Let S be a set of n points in Rd , let t > 1 be a real constant, and
let k ≥ 4 be an integer. Give a formal proof that there exists an algorithm that
computes, in O(n log n + knαk(n)) time, a t-spanner for S, having O(knαk(n))
edges, and whose spanner diameter is less than or equal to k.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

240 SHORTCUTTING TREES AND SPANNERS WITH LOW SPANNER DIAMETER

Bodlaender, Tel, and Santoro [1994] prove lower bounds for the shortcutting problem
on trees. It is possible that their proof technique can be used to solve the following two
open problems.

Open problem: Let t > 1 be a real constant, and let k ≥ 3 be an integer. Prove
that there exists a set S of n points in Rd , such that every t-spanner for S, whose
spanner diameter is less than or equal to k, contains �(knαk(n)) edges. (For
k = 2, this is true, see Exercise 12.10.)

Open problem: Let t > 1 be a real constant. Prove that there exists a set S of
n points in Rd , such that every t-spanner for S, that consists of O(n) edges, has
spanner diameter �(α(n)).

Exercises

12.1. Define the function Log∗ : N −→ N by

Log∗(n) := min{s ≥ 0 : �log�log . . . �log︸ ︷︷ ︸
s

n� . . .�� ≤ 1}.

Prove that Log∗(n) = log∗(n) for all n ≥ 0.

12.2. Use Lemma 12.1.18 to verify the values of the functions αk , for k ≤ 5, that are given after Defini-

tion 12.1.14.

12.3. Prove that limn→∞ α(n) = ∞.

12.4. Prove the second claim in Lemma 12.1.6.

12.5. Use Exercise 2.14 to give alternative proofs of Theorems 12.1.3 and 12.1.7, for trees whose

degree is bounded from above by a constant.

12.6. In Section 12.1.6, we used a constant c, such that 22α(n)+2 ≤ n, for all n ≥ c. Prove that such a

constant c exists.

12.7. In this chapter, we have ignored the problem of computing the various values of the functions

αk and α that are used by the shortcutting algorithms. Give an algorithm that works in the alge-

braic computation-tree model and that computes these values such that the running times of the

shortcutting algorithms do not increase asymptotically.

12.8. In the spanners of Theorem 12.2.1, any two points are connected by a spanner path having a

small number edges. Give algorithms that actually compute such spanner paths.

12.9. Let S be a sorted set of n real numbers, let t = 1, and let k ≥ 2 be an integer. Give an algorithm that

computes, in O(knαk(n)) time, a t -spanner for S, having O(knαk(n)) edges, and whose spanner

diameter is less than or equal to k.

12.10. Let t ≥ 1 be a real number. Prove that there exists a set S of n real numbers, such that every

t -spanner for S, whose spanner diameter is 2, contains �(n log n) edges.

Bibliographic notes

The shortcutting problem of Section 12.1 is a natural one and, not surprisingly, has been
discovered by several people. Yao [1982b] and Chandra, Fortune, and Lipton [1985] give
solutions for lists (in the latter paper, the problem is studied in the context of computing
semigroup products on unbounded fan-in circuits). Yao also proves lower bounds. Chazelle

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHIC NOTES 241

[1987] and Alon and Schieber [1987] solve the shortcutting problem for trees. Alternative
solutions are given by Bodlaender, Tel, and Santoro [1994] (who also prove lower bounds)
and Thorup [1997].

The Ackermann function is due to Ackermann [1928]. It occurs in the theory of
computation, as an example of a function that is recursive (i.e., computable by a Turing
machine), but not primitive–recursive. The inverse Ackermann function α(n) appeared
for the first time in the analysis of algorithms in Tarjan [1975], where he used it to analyze
the well-known union-find algorithm. This function also appears in the analysis of many
geometric algorithms, see the book by Sharir and Agarwal [1995].

The algorithms of Section 12.1 are based on Bodlaender, Tel, and Santoro [1994] and
Alon and Schieber [1987]. A solution to Exercise 12.7 can be found in La Poutré [1990].

All results in Theorem 12.2.1 depend exponentially on the dimension d. Chan [1998]
presents an algorithm that computes, in O(d2n log n) time, an O(d3/2)-spanner with
O(dn log n) edges and spanner diameter 2.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

13

Approximating the Stretch Factor of
Euclidean Graphs

Everything that exists exists in some degree, and if it exists in some
degree it ought to be measured.

—Mathematician’s Bill of Rights

Let S be a set of n points in Rd , and let G = (S, E) be a connected Euclidean graph
having the points of S as its vertices. (In this chapter, all graphs are undirected.) For any
two points p and q of S, we denote by δG(p, q) the length of a shortest path in G between
p and q. If there is no path in G between p and q, then δG(p, q) := ∞. Recall that the
stretch factor t∗ of G is given by

t∗ = max

{
δG(p, q)

|pq| : p, q ∈ S, p �= q

}
.

We denote the number of vertices and edges of the graph G by n and k, respectively.
In this chapter, we consider the problem of computing the stretch factor t∗ of G.

Clearly, we can use any algorithm solving the all-pairs-shortest-path problem for G to
compute t∗. Hence, running Dijkstra’s algorithm – implemented using Fibonacci heaps
(see Corollary 2.5.10) – from each vertex of G, gives the stretch factor of G, in
O(n2 log n + nk) time. For some classes of graphs, better running times can be obtained.
For example, the lengths of the shortest paths between all pairs of vertices in a Euclidean
planar graph can be computed in O(n2) total time. Therefore, the stretch factor of such a
graph can be computed in O(n2) time. The stretch factor of a path, cycle, or tree can be
computed in subquadratic time; see the references in the bibliographic notes at the end of
this chapter. There are no known algorithm that computes the stretch factor in subquadratic
time, for any other broad class of connected Euclidean graphs. A reasonable problem to
consider is that of designing fast algorithms for computing approximate stretch factors.

Definition 13.0.1. Let G be a connected Euclidean graph, let t∗ denote its stretch factor,
and let c1 ≥ 1, c2 ≥ 1, and t ≥ 1 be real numbers. We say that t is a (c1, c2)-approximate
stretch factor of G if

t/c1 ≤ t∗ ≤ c2t.

We will show that the well-separated pair decomposition (WSPD) can be used to reduce
the problem of approximating the stretch factor to that of computing (or approximating) the
lengths of shortest paths between a “small” number of pairs of vertices. In Section 13.1,
we present a first approximation algorithm, which gives good results only for simple
classes of Euclidean graphs such as paths, cycles, and trees. In Section 13.2, we present a
simpler algorithm: We show that in order to approximate the stretch factor of a Euclidean
graph G with n vertices, it suffices to compute (or approximate) the lengths of shortest

242

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

13.1 THE FIRST APPROXIMATION ALGORITHM 243

paths between O(n) pairs of vertices. Surprisingly, these vertex-pairs depend only on the
location in space of the vertex set of G; they do not depend on the edges of G.

13.1 The first approximation algorithm

Let S be a set of n points in Rd , and let G be a connected Euclidean graph having the
points of S as its vertices. Let s > 0 be a real number, and let

{A1, B1}, {A2, B2}, . . . , {Am,Bm}
denote an arbitrary WSPD for S with respect to the separation ratio s.

Approximating the stretch factor: By Lemma 9.1.2, (i) all Euclidean distances
between a point in Ai and a point in Bi are approximately equal, (ii) the distance
between any two points in Ai is much smaller than any distance between a point
in Ai and a point in Bi , and (iii) the distance between any two points in Bi is much
smaller than any distance between a point in Ai and a point in Bi . Therefore, if
we compute for each i with 1 ≤ i ≤ m, a point ai ∈ Ai and a point bi ∈ Bi whose
distance δG(ai, bi) in G is maximum, then the largest value of δG(ai, bi)/|aibi |
should be a good approximation to the stretch factor t∗ of G.

This observation leads to our first approximation algorithm:

Algorithm ApproxSF(G, ε)

Comment: This algorithm takes as input a Euclidean graph G on a set S of points in R
d

and a real number ε > 0. Its output is a (1, 1 + ε)-approximate stretch factor of G.

Step 1: Using separation ratio s = 4/ε, compute a WSPD {Ai, Bi}, 1 ≤ i ≤ m, for the
set S.

Step 2: For each i with 1 ≤ i ≤ m, compute two points ai and bi , with ai ∈ Ai and
bi ∈ Bi , such that

δG(ai, bi) = max{δG(p, q) : p ∈ Ai, q ∈ Bi},
and compute ti := δG(ai, bi)/|aibi |.

Step 3: Report the value of t , defined as t := max(t1, t2, . . . , tm). Also report points ai

and bi for which t = ti .

The following lemma proves bounds on the approximation factor of this algorithm.

Lemma 13.1.1. The value of t reported by algorithm ApproxSF(G, ε) is a (1, 1 + ε)-
approximate stretch factor of G. That is,

t ≤ t∗ ≤ (1 + ε)t,

where t∗ denotes the exact stretch factor of G.

proof Since the output t of the algorithm can be written as δG(p, q)/|pq|, for some
points p and q in S with p �= q, it is clear that t ≤ t∗. In the rest of this proof, we will
show that t∗ ≤ (1 + ε)t .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

244 APPROXIMATING THE STRETCH FACTOR OF EUCLIDEAN GRAPHS

Let p and q be two distinct points of S such that t∗ = δG(p, q)/|pq|. Let i be the index
such that (i) p ∈ Ai and q ∈ Bi , or (ii) p ∈ Bi and q ∈ Ai . We may assume without loss
of generality that (i) holds.

Consider the points ai ∈ Ai and bi ∈ Bi that were computed in Step 2 of the algo-
rithm. We have δG(p, q) ≤ δG(ai, bi). By Lemma 9.1.2, we have |aibi | ≤ (1 + 4/s)|pq| =
(1 + ε)|pq|. It follows that

t∗ = δG(p, q)

|pq| ≤ δG(ai, bi)

|pq| ≤ (1 + ε)
δG(ai, bi)

|aibi | = (1 + ε)ti ≤ (1 + ε)t.

This completes the proof.

13.1.1 Applying algorithm ApproxSF

The main problem in efficiently implementing algorithm ApproxSF is the time complexity
of Step 2. In this step, we are given a sequence {Ai, Bi}, 1 ≤ i ≤ m, of pairs of sets, and
for each such pair, we have to compute the maximum distance (in the graph G) between
sets Ai and Bi . In general, this is a difficult problem. We will first show below that this can
be done efficiently for the case when the graph G is a path or a tree. Our algorithm will
take advantage of the fact that the well-separated point sets Ai and Bi are not arbitrary
sets of points; rather, they are sets that are stored in subtrees of the split tree T .

Approximating the stretch factor of a path

Let G be a path on the points of S. We denote these points, in the order in which they
appear along the path, by p1, p2, . . . , pn. Let ε be a positive real number.

Following algorithm ApproxSF, we start by computing a split tree T and a corre-
sponding WSPD, {Ai, Bi}, 1 ≤ i ≤ m, for S, with respect to the separation ratio s = 4/ε.
By Theorem 9.4.6, we can compute such a WSPD with m = O(sdn) = O(n/εd), in
O(n log n + n/εd) time.

Recall that each pair {Ai, Bi} is represented by two nodes ui and vi in T , whose subtrees
contain exactly the points of Ai and Bi in their leaves, respectively.

Let us see how Step 2 of algorithm ApproxSF can be implemented. As preprocessing
for this step, we traverse the split tree T in postorder, and store with each node u the
smallest and largest indices of all points of S that are stored at the leaves of the subtree
rooted at u. Also, we traverse the path G, and compute for each vertex pj , 2 ≤ j ≤ n, the
distance δG(p1, pj). Using this information, we can compute, for any two indices j and
k with 0 ≤ j < k < n, the distance δG(pj , pk) as the difference between δG(p1, pk) and
δG(p1, pj). Thus, this preprocessing can be done in time linear in the size of the split tree,
that is, O(n).

Consider any index i with 1 ≤ i ≤ m. Step 2 requires us to compute points ai and bi ,
where ai ∈ Ai and bi ∈ Bi , such that

δG(ai, bi) = max{δG(p, q) : p ∈ Ai, q ∈ Bi}.
To find these points, consider the nodes ui and vi of the split tree T . Let j and j ′ be the
smallest and largest indices that are stored with ui , respectively. Similarly, let k and k′ be
the smallest and largest indices that are stored with vi , respectively. Then it is clear that

max{δG(p, q) : p ∈ Ai, q ∈ Bi} = max
(
δG(pj , pk′), δG(pj ′, pk)

)
.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

13.1 THE FIRST APPROXIMATION ALGORITHM 245

Hence, by computing the distances δG(pj , pk′) and δG(pj ′, pk), and selecting the
largest one, we obtain the points ai and bi . Given these two points, we compute
ti := δG(ai, bi)/|aibi |.

The time spent for Step 2 is thus O(1) for each well-separated pair, giving us a total time
of O(n + m) = O(n/εd). Finally, Step 3 is trivially implemented in O(m) = O(n/εd)
time. The result is given in the following theorem.

Theorem 13.1.2. Let S be a set of n points in Rd , let G be a path on the points of
S, and let ε be a positive real number. In O(n log n + n/εd) time, we can compute a
(1, 1 + ε)-approximate stretch factor of G.

Hence, for paths, Step 2 of algorithm ApproxSF is easy to implement. In Exercise 13.1,
you are asked to prove that for the case when G is a cycle, the algorithm can also be
implemented in O(n log n) time. The main difficulty is that in this case there are two paths
between any two points. Therefore, Step 2 has to be implemented more carefully.

We now prove that the result of Theorem 13.1.2 is optimal in the algebraic computation-
tree model.

Theorem 13.1.3. Any algebraic computation-tree algorithm that takes as input a Eu-
clidean path or cycle on a set of n points in Rd and real numbers c1 ≥ 1 and c2 ≥ 1, and
that computes a (c1, c2)-approximate stretch factor of this graph, has worst-case running
time �(n log n).

proof We give the lower bound proof for the case when the graph G is a path. The
lower bound proof for cycles is left as Exercise 13.2.

Let A be any algorithm that satisfies the hypothesis. We will show that A can be used
to solve the element-uniqueness-problem, for which we have shown an �(n log n) lower
bound in Theorem 3.3.9.

Let x1, x2, . . . , xn be an arbitrary sequence of n real numbers. We consider these
numbers as points on the first coordinate axis in Rd . Let M be the largest element in the
input sequence. Define the path G by

G := (x1,M + 1, x2,M + 2, x3,M + 3, . . . , xn−1,M + n − 1, xn).

Observe that each edge of G has a nonzero length so that the stretch factor of G is well-
defined. We choose arbitrary real numbers c1 ≥ 1 and c2 ≥ 1, and run algorithm A on
the path G. Let t be the (c1, c2)-approximate stretch factor of G that is computed by A. It
is easy to see that t is finite if and only if the input numbers x1, x2, . . . , xn are pairwise
distinct.

Since the reduction takes O(n) time, it follows that algorithm A has a worst-case
running time of �(n log n).

Approximating the stretch factor of a tree

We now assume that G is a tree on the n points of S. In this case, it is not clear how to
implement Step 2, that is, how to compute, for each i with 1 ≤ i ≤ m, the point ai ∈ Ai

and the point bi ∈ Bi for which δG(ai, bi) is maximum. We give a variant of algorithm
ApproxSF that will approximate the stretch factor of G in O(n log2 n) time.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

246 APPROXIMATING THE STRETCH FACTOR OF EUCLIDEAN GRAPHS

Recall from Section 2.3.4 that the tree G contains a separator vertex v, that is, a vertex
whose removal gives two graphs G′

1 and G′
2, each having at most 2n/3 vertices. Moreover,

such a vertex v can be computed in O(n) time. Observe that for each j ∈ {1, 2},

1. the graph G′
j is a forest of trees, and

2. the graph Gj := G′
j ∪ {v} is connected and acyclic and, hence, a tree.

Computing stretch factors of a tree – the basic approach: Let t∗, t∗1 , and t∗2
be the stretch factors of the trees G, G1, and G2, respectively. Let p and q be the
points in G1 and G2, respectively, for which t∗12 := δG(p, q)/|pq| is maximum.
Then t∗ = max(t∗1 , t∗2 , t∗12). Hence, to approximate t∗, it suffices to approximate
t∗1 , t∗2 , and t∗12. The values of t∗1 and t∗2 are approximated recursively. All paths
that determine the value of t∗12 must contain the separator vertex v. We use the
split tree T and the WSPD to approximate t∗12.

The following recursive algorithm computes a (1, 1 + ε)-approximate stretch factor of
the tree G.

Step 1: If n = 1, then return the value t := −∞. If n = 2, then return the value t := 1.
Assume that n ≥ 3. Compute a separator vertex v of G, whose removal gives two
graphs G′

1 and G′
2, each having at most 2n/3 vertices. Also compute the corresponding

trees G1 := G′
1 ∪ {v} and G2 := G′

2 ∪ {v}. Observe that v is a vertex of both these
trees.

Step 2: For each j ∈ {1, 2}, traverse the tree Gj in preorder (starting at the root v), and
store with each vertex p the distance δG(p, v) between p and v.

Step 3: Use the same algorithm to recursively compute a (1, 1 + ε)-approximate stretch
factor t1 of G1, and a (1, 1 + ε)-approximate stretch factor t2 of G2.

Step 4: Let s := 4/ε. Compute the split tree T and the corresponding WSPD {Ai, Bi},
1 ≤ i ≤ m, for the points of S, with respect to the separation ratio s = 4/ε, having size
m = O(n/εd).

Step 5: For each node u of the split tree T , denote by Su the set of points of S that are
stored in the subtree rooted at u. Traverse T in postorder and compute for each of its
nodes u the values

dist1(u) := max{δG(q, v) : q ∈ Su ∩ G1, q �= v},

and

dist2(u) := max{δG(q, v) : q ∈ Su ∩ G2, q �= v}.

(We define the maximal element of the empty set as −∞.) If dist1(u) �= −∞, then
we also store with u a point q1 ∈ Su ∩ G1, q1 �= v, for which dist1(u) = δG(q1, v).
Similarly, if dist2(u) �= −∞, then we store with u a point q2 ∈ Su ∩ G2, q2 �= v, for
which dist2(u) = δG(q2, v). In other words, each node u of T stores the vertices in Su ∩
G1 and Su ∩ G2 that are farthest (in G) from the vertex v, along with the corresponding
distances in G. As we will see, these vertices help determine the approximate stretch
factor between vertices in a well-separated pair of the decomposition.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

13.1 THE FIRST APPROXIMATION ALGORITHM 247

Step 6: For each i with 1 ≤ i ≤ m, do the following. Consider the pair {Ai, Bi} in the
WSPD, and the nodes ui and vi in the split tree such that Ai = Sui

and Bi = Svi
,

respectively.
If dist1(ui) = −∞ or dist2(vi) = −∞, then set t ′i := −∞. Otherwise, consider the point
q1 ∈ Ai ∩ G1, q1 �= v, for which dist1(ui) = δG(q1, v), and the point q2 ∈ Bi ∩ G2,
q2 �= v, for which dist2(vi) = δG(q2, v). Set t ′i := δG(q1, q2)/|q1q2|.
Symmetrically, if dist2(ui) = −∞ or dist1(vi) = −∞, then set t ′′i := −∞. Otherwise,
consider the point q1 ∈ Bi ∩ G1, q1 �= v, for which dist1(vi) = δG(q1, v), and the point
q2 ∈ Ai ∩ G2, q2 �= v, for which dist2(ui) = δG(q2, v). Set t ′′i := δG(q1, q2)/|q1q2|.
Observe that δG(q1, q2) can be easily computed as the sum of δG(q1, v) and δG(q2, v),
both of which have been computed in Step 2.

Step 7: The last step is to compute

t := max(t1, t2, t
′
1, t

′
2, . . . , t

′
m, t ′′1 , t ′′2 , . . . , t ′′m),

and return the value of t .

The correctness of this algorithm is proved in the following lemma.

Lemma 13.1.4. The given algorithm computes a (1, 1 + ε)-approximate stretch factor
of the tree G.

proof The proof is by induction on the number n of vertices of the tree G. The algorithm
trivially computes the stretch factor (exactly) when n ≤ 2. Let n ≥ 3 and assume that the
algorithm correctly computes a (1, 1 + ε)-approximate stretch factor of any tree with less
than n vertices.

Let t∗ be the exact stretch factor of the tree G. Since each of the values t1, t2,
t ′1, t

′
2, . . . , t

′
m, t ′′1 , t ′′2 , . . . , t ′′m either is −∞ or has the form δG(p, q)/|pq| for some dis-

tinct points p and q of S, we clearly have t ≤ t∗. It remains to show that t∗ ≤ (1 + ε)t .
Let p and q be two distinct points of S such that t∗ = δG(p, q)/|pq|. We distinguish

two cases.

Case 1: p and q are both vertices in G1 or both vertices in G2.
We may assume without loss of generality that p and q are vertices in G1. Let t∗1 be the

exact stretch factor of the tree G1. By the induction hypothesis, we have t∗1 ≤ (1 + ε)t1.
Since the path in G between p and q is completely contained in G1, we have t∗1 = t∗.
This implies that

t∗ = t∗1 ≤ (1 + ε)t1 ≤ (1 + ε)t.

Case 2: p and q are in different trees.
We may assume without loss of generality that p is a vertex in G1 and q is a vertex in

G2. Let i be the index such that (i) p ∈ Ai and q ∈ Bi , or (ii) p ∈ Bi and q ∈ Ai . Assume
without loss of generality that (i) holds. Consider the nodes ui and vi of the split tree such
that Ai = Sui

and Bi = Svi
.

Since p ∈ Ai ∩ G1, we know that dist1(ui) �= −∞. Let q1 ∈ Ai ∩ G1 be such
that dist1(ui) = δG(q1, v). Then δG(p, v) ≤ δG(q1, v). Similarly, since q ∈ Bi ∩ G2,
dist2(vi) �= −∞. Let q2 ∈ Bi ∩ G2 be such that dist2(vi) = δG(q2, v). Then δG(q, v) ≤
δG(q2, v). We have

t∗ = δG(p, q)

|pq| = δG(p, v) + δG(v, q)

|pq| ≤ δG(q1, v) + δG(v, q2)

|pq| = δG(q1, q2)

|pq| .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

248 APPROXIMATING THE STRETCH FACTOR OF EUCLIDEAN GRAPHS

By Lemma 9.1.2, we have |q1q2| ≤ (1 + 4/s)|pq| = (1 + ε)|pq|. It follows that

t∗ ≤ (1 + ε)
δG(q1, q2)

|q1q2| = (1 + ε)t ′i ≤ (1 + ε)t.

This completes the proof.

Let T (n) denote the running time of the algorithm on any input tree having n vertices.
It is easy to see that barring the two recursive calls in Step 3, the rest of the algorithm
can be implemented in O(n log n + n/εd) time. For n sufficiently large, there are positive
integers n1 and n2, such that n1 ≤ 2n/3, n2 ≤ 2n/3, n1 + n2 = n − 1, and

T (n) ≤ c(n log n + n/εd) + T (n1 + 1) + T (n2 + 1),

where c is a positive constant that depends neither on n nor on ε. This recurrence solves
to T (n) = O(n log2 n + (n/εd) log n). Hence, we have proved the following theorem.

Theorem 13.1.5. Let S be a set of n points in Rd , let G be a tree having the points of S

as its vertices, and let ε > 0 be a real number. In O(n log2 n + (n/εd) log n) time, we can
compute a (1, 1 + ε)-approximate stretch factor of G.

The following section shows how the above theorem can be improved.

13.2 A faster approximation algorithm

We have seen that even for simple classes of graphs, it is not obvious how to design an
efficient implementation of algorithm ApproxSF. The main problem is the farthest pair
computation in Step 2, in which we compute a point ai ∈ Ai and a point bi ∈ Bi for which
the distance δG(ai, bi) between ai and bi in G is maximum. That is, we have to solve
farthest pair queries between two sets of vertices. For paths, such queries are easy to solve.
For trees, however, we already had to work harder.

In this section, we give a much simpler approximation algorithm. Recall that in Step 2
of algorithm ApproxSF, for every well-separated pair {Ai, Bi}, we use δG(ai, bi)/|aibi | as
a candidate for the approximate stretch factor of the graph G. Below, we prove that we can
take arbitrary points ai ∈ Ai and bi ∈ Bi , and use δG(ai, bi)/|aibi |, or an approximation
to this quantity, as a candidate. This is surprising, because the distances in the graph G

between points of Ai and points of Bi can vary greatly.
As a result, the problem of approximating the stretch factor of a Euclidean graph can

be reduced to the problem of solving (approximate) shortest path queries for O(n) pairs of
points. Such queries can, in general, be solved more efficiently than farthest pair queries
between sets of points that were required when implementing algorithm ApproxSF.

Our faster approximation algorithm will be based on a remarkable theorem. Before
we state this theorem, we introduce some notation. Let S be a set of n points in Rd ,
and let G be a connected Euclidean graph having the points of S as its vertices. Let
t∗ denote the exact stretch factor of G, and let p and q be two distinct points of S for
which t∗ = δG(p, q)/|pq|. Let {Ai, Bi}, 1 ≤ i ≤ m, denote an arbitrary WSPD for S with
respect to a separation ratio s > 4. Let i be the index such that (i) p ∈ Ai and q ∈ Bi , or
(ii) p ∈ Bi and q ∈ Ai . Assume without loss of generality that (i) holds.

The theorem below states that all distances in the graph G between any point of Ai and
any point of Bi are approximately equal. It is important to note that this theorem applies
to the pair {Ai, Bi} that contains p and q; it does not apply to all well-separated pairs in
the decomposition.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

13.2 A FASTER APPROXIMATION ALGORITHM 249

Distances in G between Ai and Bi are approximately equal: Let x ∈ Ai and
y ∈ Bi . Since |xy| and |pq| are approximately equal, δG(x, y) cannot be much
larger than δG(p, q). Assume that δG(x, y) is much smaller than δG(p, q). Since
δG(p, q) ≤ δG(p, x) + δG(x, y) + δG(y, q), at least one of δG(p, x) and δG(y, q)
is very large. Assume δG(p, x) is very large. Since |px| is much smaller than
|pq|, δG(p, x)/|px| must be larger than δG(p, q)/|pq|, which is not possible.

Theorem 13.2.1. Let S be a set of n points in Rd , and let s > 4 be a real number. Let
G be a connected Euclidean graph having the points of S as its vertices. Let t∗ denote
the exact stretch factor of G and let p and q be two distinct points of S for which
t∗ = δG(p, q)/|pq|. Let {Ai, Bi}, 1 ≤ i ≤ m, be an arbitrary WSPD for S, with respect
to s. Let i be the index such that (i) p ∈ Ai and q ∈ Bi , or (ii) p ∈ Bi and q ∈ Ai . Let x

be an arbitrary point of Ai and let y be an arbitrary point of Bi . Then

s

s + 4
≤ δG(p, q)

δG(x, y)
≤ (s + 4)2

s(s − 4)
.

proof We assume, without loss of generality, that p ∈ Ai and q ∈ Bi . In this proof,
we will repeatedly use Lemma 9.1.2, which relates Euclidean distances involving points
in a well-separated pair. Since δG(x, y)/|xy| ≤ δG(p, q)/|pq|, we have

δG(x, y)

δG(p, q)
≤ |xy|

|pq| ≤ 1 + 4

s
= s + 4

s
,

proving the leftmost inequality. We claim that

δG(p, q)

|pq| ≤ s + 4

s − 4

δG(x, y)

|xy| . (13.1)

From this, it will follow that

δG(p, q)

δG(x, y)
= δG(p, q)

|pq|
|xy|

δG(x, y)

|pq|
|xy| ≤ s + 4

s − 4

|pq|
|xy| ≤ s + 4

s − 4

(
1 + 4

s

)
= (s + 4)2

s(s − 4)
.

So it remains to prove (13.1). By the triangle inequality, we have

δG(p, q) ≤ δG(p, x) + δG(x, y) + δG(y, q).

Let us assume first that x �= p and y �= q. By Lemma 9.1.2, we have |px| ≤ (2/s)|pq|,
|yq| ≤ (2/s)|pq|, and |xy| ≤ (1 + 4/s)|pq|. Using these inequalities, it follows that

t∗ = δG(p, q)

|pq|
≤ δG(p, x)

|pq| + δG(x, y)

|pq| + δG(y, q)

|pq|
≤ 2

s

δG(p, x)

|px| +
(

1 + 4

s

)
δG(x, y)

|xy| + 2

s

δG(y, q)

|yq|
≤ 2

s
t∗ +

(
1 + 4

s

)
δG(x, y)

|xy| + 2

s
t∗

= 4

s
t∗ +

(
1 + 4

s

)
δG(x, y)

|xy| .

This inequality is equivalent to (13.1). If x = p or y = q, then a similar calculation shows
that (13.1) holds.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

250 APPROXIMATING THE STRETCH FACTOR OF EUCLIDEAN GRAPHS

13.2.1 The reduction

In this section, we give the faster approximation algorithm. First, we need a definition.
Let p and q be two distinct vertices of a connected Euclidean graph G, and let c ≥ 1 be a
real number. We say that the real number L(p, q) is a c-approximation to the length of a
shortest path in G between p and q, if

L(p, q)/c ≤ δG(p, q) ≤ L(p, q).

Let G be a class of connected Euclidean graphs, and let c ≥ 1 be a real number. We
assume that we have an algorithm ASPc that takes as input (i) any graph G from the
class G, and (ii) any sequence of pairs of vertices of G. Algorithm ASPc gives as output a
c-approximation to δG(x, y) for every pair (x, y) in the sequence.

Algorithm FastApproxSF(G, ε)

Comment: This algorithm takes as input a Euclidean graph G from the class G on a set
S of points in R

d , and a real number ε > 0. Its output is a (c, 1 + ε)-approximate stretch
factor of G.

Step 1: Using a separation ratio of s = 4(2 + ε)/ε, compute a WSPD, {Ai, Bi}, 1 ≤ i ≤
m, for S. For each i with 1 ≤ i ≤ m, pick an arbitrary point ai ∈ Ai and an arbitrary
point bi ∈ Bi .

Step 2: Use algorithm ASPc to compute, for each i with 1 ≤ i ≤ m, a c-approximation
L(ai, bi) to the length δG(ai, bi) of a shortest path in G between ai and bi . For each i

with 1 ≤ i ≤ m, compute

ti := L(ai, bi)/|aibi |.
Step 3: Report the value of t , defined as t := max(t1, t2, . . . , tm). Also report points ai

and bi for which t = ti .

The following lemma bounds the approximation factor of the output of this algorithm.

Lemma 13.2.2. The value of t reported by algorithm FastApproxSF(G, ε) is a
(c, 1 + ε)-approximate stretch factor of G, that is,

t/c ≤ t∗ ≤ (1 + ε)t,

where t∗ denotes the exact stretch factor of G.

proof Let j be the index such that t = tj = L(aj , bj)/|ajbj |. Then

t ≤ c · δG(aj , bj)

|ajbj | ≤ c t∗.

In the rest of the proof, we will show that t∗ ≤ (1 + ε)t .
Let p and q be two points of S that determine the stretch factor of G, that is, t∗ =

δG(p, q)/|pq|. Let i be the index such that (i) p ∈ Ai and q ∈ Bi , or (ii) p ∈ Bi and
q ∈ Ai . Assume without loss of generality that (i) holds.

Consider the points ai ∈ Ai and bi ∈ Bi that were chosen in Step 1 of the algorithm.
We have seen in the proof of Theorem 13.2.1 – see (13.1) – that

t∗ ≤ s + 4

s − 4

δG(ai, bi)

|aibi | = (1 + ε)
δG(ai, bi)

|aibi | .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

13.2 A FASTER APPROXIMATION ALGORITHM 251

It follows that

t∗ ≤ (1 + ε)
L(ai, bi)

|aibi | = (1 + ε)ti ≤ (1 + ε)t.

This completes the proof.

Remark 13.2.3. Even though the stretch factor t∗ is defined by
(
n

2

)
pairs of points,

Lemma 13.2.2 shows that t∗ can be approximated by solving approximate shortest path
queries for only O(n) pairs of points. Furthermore, the pairs of points on which these
queries are solved depend only on the positions of the vertices, they do not depend on the
edges of the graph G.

In the following theorem, we summarize the result of this section. We denote by
T (n, k,) the worst-case running time of algorithm ASPc, when given (i) a graph G ∈ G
having n vertices and k edges, and (ii) a sequence of c-approximate shortest path queries,
consisting of 	 pairs of vertices of G.

Theorem 13.2.4. Let S be a set of n points in Rd , let G be a Euclidean graph from the
class G having the points of S as its vertices, and let ε be a positive real number. We can
compute a (c, 1 + ε)-approximate stretch factor of G, in

O(n log n + n/εd) + T (n, k, βεn)

time, where βε is a real number that is proportional to 1/εd .

proof The proof follows from algorithm FastApproxSF, Theorem 9.4.6, and
Lemma 13.2.2.

13.2.2 Applying algorithm FastApproxSF

In order to implement algorithm FastApproxSF for a specific classG of Euclidean graphs,
we need an efficient algorithm that solves a batch of exact or approximate shortest pair
queries. Clearly, the performance will depend on the class G. We will indicate how such
queries can be solved for several classes of graphs.

Paths, cycles, and trees

Let G be the class of Euclidean paths, cycles, or trees. For any graph G on n vertices in
this class, we can, after an O(n)–time preprocessing, answer exact shortest path queries
in O(1) time if G is a path or cycle, and in O(log log n) time if G is a tree. For paths and
cycles, this is easy to prove, the claim for trees is left as an exercise; see Exercise 13.5.
We observe that if we allow nonalgebraic operations, then we can even answer shortest
path queries in a tree in O(1) time.

Hence, we can apply Theorem 13.2.4 with c = 1 and T (n, k,) = O(n +) if G is
a path or cycle, and T (n, k,) = O(n + 	 log log n) if G is a tree, and get the following
result.

Theorem 13.2.5. Let S be a set of n points in Rd , let G be a Euclidean path, cycle, or
tree having the points of S as its vertices, and let ε be a positive real number. We can
compute a (1, 1 + ε)-approximate stretch factor of G in

1. O(n log n + n/εd) time if G is a path or cycle, and

2. O(n log n + (n/εd) log log n) time if G is a tree.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

252 APPROXIMATING THE STRETCH FACTOR OF EUCLIDEAN GRAPHS

It follows from Theorem 13.1.3 that the above result is optimal in the algebraic
computation-tree model.

Planar graphs

For the next application, let G be the class of planar connected Euclidean graphs. Let G

be a graph in this class on a set of n points in Rd . Here is what is known. Any sequence
of 	 exact shortest path queries in G can be solved in

O
(
	2/3n2/3 log n + n4/3 log1/3 n

)
time. This is left as an exercise; see Exercise 13.8. Hence, we can apply Theorem 13.2.4
with c = 1 and

T (n, k,) = O
(
	2/3n2/3 log n + n4/3 log1/3 n

)
.

This gives the following theorem.

Theorem 13.2.6. Let S be a set of n points in Rd , let G be a planar connected Euclidean
graph having the points of S as its vertices, and let ε be a positive real number. In

O

(
n4/3

ε2d/3
log(n/ε)

)
time, we can compute a (1, 1 + ε)-approximate stretch factor of G.

General Euclidean graphs

In our final application, we let G be the general class of connected Euclidean graphs.
Let G ∈ G be any graph with n vertices and k edges. Observe that k ≥ n − 1. Again,
here is what is known. For any integer constant β ≥ 1, and any real constant ε, such
that 0 < ε ≤ 1/2, any sequence of (2β(1 + ε))-approximate shortest path queries can be
solved in

O((k +)n1/β log2 n)

expected time, where 	 is the number of queries. We leave this as an exercise; see
Exercise 13.9. Applying Theorem 13.2.4 gives the following result.

Theorem 13.2.7. Let S be a set of n points in Rd , let G be a connected Euclidean graph
having the points of S as its vertices and having k edges, let β ≥ 1 be an integer constant,
and let ε be a real constant such that 0 < ε ≤ 1/2. In

O(kn1/β log2 n)

expected time, we can compute a (2β(1 + ε), 1 + ε)-approximate stretch factor of G.

By choosing different values for the integer constant β, Theorem 13.2.7 gives a trade-
off between the running time and the approximation factor. For example, by choosing
β large enough, the running time in Theorem 13.2.7 is almost linear in k, but then the
approximation of the stretch factor is very weak (although it is still bounded by a constant).

Theorem 13.2.7 implies the following result for sparse graphs, that is, graphs having
O(n) edges.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

EXERCISES 253

Corollary 13.2.8. Let S be a set of n points in Rd , let G be a sparse connected Euclidean
graph having the points of S as its vertices, let β ≥ 1 be an integer constant, and let ε be
a real constant such that 0 < ε ≤ 1/2. In

O(n1+1/β log2 n)

expected time, we can compute a (2β(1 + ε), 1 + ε)-approximate stretch factor of G.

In Section 17.4, we will show that the results in Theorem 13.2.7 and Corollary 13.2.8
can be improved significantly if G is a Euclidean graph whose stretch factor t∗ is known
in advance to be bounded from above by a constant.

Exercises

13.1. Let S be a set of n points in R
d , let G be a cycle on the points of S, and let ε be a positive constant.

Show that algorithm ApproxSF(G, ε) can be implemented such that it runs in O(n log n) time.

(Hint: Use the WSPD of Exercise 9.16 and a data structure that solves the interval split-find problem

in O(1) amortized time per operation. This data structure uses nonalgebraic operations.)

13.2. Prove Theorem 13.1.3 for the case when the graph G is a cycle.

13.3. Theorem 13.2.1 proved a result about the well-separated pair {Ai, Bi}, which contains the points

p and q. Now prove the same result about the well-separated pair {Aj , Bj }, which is output by

the algorithm FastApproxSF. More formally, the problem is described as follows: Let S be a

set of n points in R
d and let G be a connected Euclidean graph having the points of S as its

vertices. Let t∗ denote the exact stretch factor of G, and let p and q be two distinct points of

S for which t∗ = δG(p, q)/|pq|. Consider an arbitrary WSPD, {Ai, Bi}, 1 ≤ i ≤ m, for S, with

separation ratio of s > 4. Let i be the index such that (i) p ∈ Ai and q ∈ Bi , or (ii) p ∈ B1 and

q ∈ Ai . In Theorem 13.2.1, we have shown that all distances in the graph G between any point of

Ai and any point of Bi are approximately equal. Run algorithm FastApproxSF(G, ε), as given in

Section 13.2.1, and let its output be t . Let j be the index such that t = tj . Prove that all distances

in G between any point of Aj and any point of Bj are approximately equal, and determine the

approximation ratio.

13.4. Run algorithm FastApproxSF(G, ε) using separation ratio s = 4(1 + ε)/ε. Prove that the output

is a (c, (1 + ε)2)-approximate stretch factor of G.

13.5. Let G be a Euclidean tree having n nodes. Give an O(n)–time algorithm that preprocesses T

in such a way that for any two nodes u and v, their distance δG(u, v) in G can be computed in

O(log log n) time.

13.6. Let G be a noncrossing path on a set of n vertices in the plane. If x ∈ R
2, then we say that x ∈ G

if x is a vertex of G or x is in the interior of some edge of G. For any two points x ∈ G and y ∈ G,

let δG(x, y) denote the Euclidean distance traveled when walking along G from x to y. The detour

D(G) of G is defined as the maximum value of δG(x, y)/|xy| over all distinct points x ∈ G and

y ∈ G. Prove that there is a vertex of G and a point y ∈ G for which D(G) = δG(x, y)/|xy|.
13.7. Let G be a planar connected Euclidean graph with n vertices. Give an algorithm that preprocesses

G in O(n
√

n) time into a data structure that allows exact shortest path queries to be solved in G

in O(
√

n) time per query.

13.8. Let G be a planar connected Euclidean graph with n vertices. Give an algorithm that answers any

sequence of 	 exact shortest path queries in O(2/3n2/3 log n + n4/3 log1/3 n) time.

13.9. Let G be a connected Euclidean graph with n vertices and k edges, let β ≥ 1 be an integer constant,

and let ε be a real constant, such that 0 < ε ≤ 1/2. Give a randomized algorithm that answers

any sequence of (2β(1 + ε))-approximate shortest path queries in O((k +)n1/β log2 n) expected

time, where 	 is the number of queries.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

254 APPROXIMATING THE STRETCH FACTOR OF EUCLIDEAN GRAPHS

Bibliographic notes

This chapter is based on Narasimhan and Smid [1999] and Narasimhan and Smid [2000].
In Narasimhan and Smid [2000], algorithm FastApproxSF is given using separation
ratio s = 4(1 + ε)/ε, which results in a (c, (1 + ε)2)-approximate stretch factor (see Ex-
ercise 13.4). The coverage of Section 13.2 is new.

An algorithm that solves the all-pairs-shortest-path problem for planar graphs in O(n2)
time is presented in Frederickson [1987].

The result on shortest path queries in planar graphs that was used to prove Theo-
rem 13.2.6 (see also Exercise 13.8) is due to Cabello [2006]. A solution to Exercise 13.7
can be found in Arikati et al. [1996] and Djidjev [1997]; using this exercise, the running
time in Theorem 13.2.6 becomes O(n

√
n/εd). The result on approximate shortest path

queries in general graphs that was used to prove Theorem 13.2.7 (see also Exercise 13.9)
is due to Cohen [1998].

A solution to Exercise 13.1 can be found in Narasimhan and Smid [1999]. The data
structure for the interval split-find problem that is needed to solve this exercise is due to
Imai and Asano [1987].

The notion of detour (see Exercise 13.6) appears in Ebbers-Baumann et al. [2004b].
Using an approach that is completely different from the one presented in this chapter,
Agarwal et al. [2006] show that the exact stretch factor and the exact detour of a Euclidean
path, tree, and cycle on n points in the plane can be computed in O(n log n), O(n log2 n),
and O(n

√
n log n) expected time, respectively. These authors also present algorithms for

the three-dimensional versions of these problems. For more information about detour
problems, see Section 20.9.

Klein et al. [2005] generalize the algorithms given in this chapter and those given in
Agarwal et al. [2006], to compute (or approximate) the number of pairs of vertices whose
stretch factor is larger than some given value k.

Narasimhan and Smid [2002] consider the following bottleneck stretch factor problem:
Preprocess a set S of n points in Rd into a data structure that supports the queries of the
following type: Given an arbitrary query value b > 0, compute an approximation to the
stretch factor of the graph Gb, which is the graph on S containing all edges of length at
most b.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

part iv

The Path-Greedy Algorithm and
Its Analysis

255

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

256

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14

Geometric Analysis: The Leapfrog Property

‘No,’ replied the Lord,‘Your hands were made for blessing, not for striking.’
Don Camillo sighed heavily. He genuflected and left the sanctuary. As he
turned to make a final sign of the cross he found himself exactly behind
Peppone who, on his knees, was apparently absorbed in prayer. ‘Lord,’
groaned Don Camillo, clasping his hands and gazing at the crucifix. ‘My
hands were made for blessing, but not my feet!’ ‘There is something in
that,’ replied the Lord from above the altar, ‘but all the same, Don Camillo,
bear it in mind: only one!’ The kick landed like a thunderbolt and Peppone
received it without so much as blinking an eye. Then he got to his feet
and sighed with relief. ‘I’ve been waiting for that for the last ten minutes,’
he remarked. ‘I feel better now.’ ‘So do I!’ exclaimed Don Camillo, whose
heart was now as light and serene as a May morning. The Lord said
nothing at all, but it was easy enough to see that He too was pleased.

—Giovanni Guareschi, The Little World of Don Camillo, 1951

14.1 Introduction and motivation

In Chapter 6, we introduced the w-gap property. We proved the Gap Theorem (Theo-
rem 6.1.2), which states that any set of directed edges, whose endpoints are from a set S

of n points in Rd , and for which the w-gap property holds, for some constant w > 0, has
a weight that is at most proportional to log n times the weight of a minimum spanning
tree of S. We also showed in Theorem 6.2.1 that the weight of such a set of edges can be
�(log n) times the weight of a minimum spanning tree.

In this chapter, we introduce the leapfrog property. This property, like the gap property,
restricts how a set of edges can be positioned in space. However, better bounds can be
proved for it. As we will see, any set of edges satisfying the leapfrog property has small
weight, that is, at most a constant times the weight of a minimum spanning tree of the
endpoints.

To give the motivation for the leapfrog property, we briefly recall algorithm
PathGreedy, which we have seen in Section 1.4, and which is considered in more
detail in Chapter 15. Let S be a set of n points in Rd , and let t > 1 be a real number.
Algorithm PathGreedy(S, t) initializes a graph G = (S, E), whose edge set E is empty.
Then it goes through the

(
n

2

)
pairs of distinct points of S, in nondecreasing order of their

distances. The algorithm adds the pair {p, q} to the edge set E, if and only if the length
of a shortest path in the current graph G is larger than t |pq|. The final graph G = (S, E)
is a t-spanner for S.

Let p1 and q1 be two distinct points of S, and consider the moment when algorithm
PathGreedy(S, t) tests the pair {p1, q1}. Assume that, at this moment, the edge set E

257

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

258 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

• p1

• q1

•p2

•q2

•p3

•q3

• p4

• q4

•p5

•q5

Figure 14.1: Algorithm PathGreedy(S, t) tests whether or not to include the pair {p1, q1} as an edge
in the path-greedy spanner.

contains edges {pi, qi}, 2 ≤ i ≤ k, such that all distances

|p1p2|, |q2p3|, |q3p4|, . . . , |qk−1pk|, |qkq1| (14.1)

are less than |p1q1|. This situation is illustrated in Figure 14.1 for k = 5. The solid edges
have already been picked by the algorithm. The pairs defining the distances in sequence
(14.1) are shown as dotted edges in the figure. Each pair that defines a distance in this
sequence either consists of two identical points or was already considered by the algorithm,
and may or may not have been added as an edge to E. Therefore, each pair that defines a
distance in sequence (14.1) is connected by a t-spanner path in the current graph G. We
denote these t-spanner paths by P1, P2, . . . , Pk . Obviously,

P1, {p2, q2}, P2, {p3, q3}, P3, . . . , Pk−1, {pk, qk}, Pk

is a (possibly nonsimple) path in the current graph G between the points p1 and q1, and
its length is bounded from above by

k∑
i=2

|piqi | + t

(
|p1p2| +

k−1∑
i=2

|qipi+1| + |qkq1|
)

. (14.2)

If the quantity in (14.2) is less than or equal to t |p1q1|, then the pair {p1, q1} is not added to
the edge set E, because a sufficiently short alternate path exists in the graph. In other words,
if {p1, q1} is an edge in the spanner that is computed by algorithm PathGreedy(S, t),
then

t |p1q1| <

k∑
i=2

|piqi | + t

(
|p1p2| +

k−1∑
i=2

|qipi+1| + |qkq1|
)

.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.2 RELATION TO THE GAP PROPERTY 259

The leapfrog property defined below is a restatement of the above condition, regardless
of whether or not all distances in (14.1) are less than |p1q1|.
Definition 14.1.1 (Leapfrog Property). Let t > 1 be a real number. A set E of undirected
edges in Rd is said to satisfy the t-leapfrog property, if for every k ≥ 2, and for every
sequence {p1, q1}, {p2, q2}, . . . , {pk, qk} of k pairwise distinct edges of E,

t |p1q1| <

k∑
i=2

|piqi | + t

(
|p1p2| +

k−1∑
i=2

|qipi+1| + |qkq1|
)

.

Observe that this definition requires that the inequality holds for every permutation of
the k edges, and for every labeling of their endpoints. In other words, for every set of k

pairwise distinct edges, the leapfrog property gives k! 2k inequalities.

14.2 Relation to the gap property

How is the leapfrog property related to the gap property (see Definition 6.1.1)? While the
gap property is defined on directed edges and is thus dependent on the chosen labeling for
the endpoints of the segments, the leapfrog property is independent of how the endpoints
are labeled. Also, the gap property is a local property, while the leapfrog property is of a
more global nature. In this sense, the leapfrog property may be considered as an intrinsic
property of a set of line segments. The leapfrog property generalizes the gap property in
the sense described in Lemma 14.2.1 below.

Before we state the lemma, we recall the definition of the strong gap property. For a
real number w ≥ 0, a set of directed edges in Rd satisfies the strong w-gap property, if
for any two distinct edges (p, q) and (r, s) in the set,

|pr| > w · min(|pq|, |rs|)
and

|qs| > w · min(|pq|, |rs|).
Recall our notation angle(pq, rs) for the angle between the directed edges (p, q) and
(r, s), which is defined to be the angle (in [0, π]) between the two vectors from the origin
to the points q − p and s − r , respectively.

Lemma 14.2.1. Let t > 1 be a real number, and let E be a set of undirected edges in
Rd satisfying the t-leapfrog property. Let θ be a real number, such that 0 < θ < π/4 and
cos θ − sin θ ≥ 1/t . Let {p, q} and {r, s} be two distinct edges in E with angle(pq, rs) ≤
θ . Then, the directed edges (p, q) and (r, s) satisfy the strong w-gap property, for

w = 1

2
(cos θ − sin θ − 1/t) .

proof We may assume without loss of generality that |rs| ≤ |pq|. Thus, we have to
show that |pr| > w|rs| and |qs| > w|rs|.

Assume that |pr| ≤ w|rs|. Then, all conditions in Lemma 6.4.1 are satisfied, and,
therefore,

t |pr| + |rs| + t |sq| ≤ t |pq|.
By taking k = 2, p1 = p, q1 = q, p2 = r , and q2 = s in Definition 14.1.1, the above
inequality contradicts the assumption that the edge set E satisfies the t-leapfrog property.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

260 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

Hence, we have |pr| > w|rs|. In a symmetric way, the inequality |qs| > w|rs| can be
proven.

By combining this lemma with the Gap Theorem (Theorem 6.1.2) and the technique
of Theorem 5.3.3 for partitioning a set of edges into subsets of near-parallel edges, we
obtain the following result:

Lemma 14.2.2. Let t > 1 be a real number, let S be a set of n points in Rd , and let
G = (S, E) be an undirected graph, such that E satisfies the t-leapfrog property.

1. The degree of every vertex of G is O(1/(t − 1)d−1).

2. The weight wt(E) of E satisfies

wt(E) = O
(
(1/(t − 1)d) · wt(MST(S)) log n

)
,

where MST(S) denotes a minimum spanning tree of S.

proof We start by proving the first claim. Let p be a point of S, and let Ep be the
set of all edges in E that are incident on p. We have to show that the size of Ep is
O(1/(t − 1)d−1).

Let �Ep be the set of directed edges obtained by replacing each edge {p, q} in Ep

by the directed edge (p, q). We choose a real number θ , such that 0 < θ < π/4 and
cos θ − sin θ ≥ 1/t . By Theorem 5.3.3, we can partition �Ep into O(1/θd−1) subsets, such
that angle(pq, pr) ≤ θ , for any two edges (p, q) and (p, r) that are in the same subset. By
Lemma 14.2.1, each subset in this partition of �Ep satisfies the strong w-gap property, for
w = (cos θ − sin θ − 1/t)/2. Since w ≥ 0, the Gap Theorem (Theorem 6.1.2) implies
that each subset in this partition contains at most one element. It follows that |Ep| =
| �Ep| = O(1/θd−1). In order to obtain the best upper bound, we have to choose θ as
large as possible. That is, we choose θ such that 0 < θ < π/4 and cos θ − sin θ = 1/t .
Assuming that t > 1 and t → 1, we have θ ∼ t − 1, and the first claim follows.

The second claim can be proved in a similar way, by again using the Gap Theorem,
and using the analysis given after the proof of Lemma 7.2.2 for choosing the best value
for θ .

To further understand the relationship between the gap property and the leapfrog
property, see Exercise 14.1.

14.3 A sufficient condition for the leapfrog property

Deciding whether or not a given set E of edges satisfies the leapfrog property does not
appear to be easy, because the inequality in Definition 14.1.1 has to be verified for every
k ≥ 2, and for every sequence of k edges of E. In this section, we provide a simpler
condition for the case when the edge set E forms a spanner of the endpoints. As we will
see, this condition implies the leapfrog property.

We introduce the following notation. Let S be a set of n points in Rd , let G be a
connected Euclidean graph with vertex set S, and let p and q be two distinct points of S.
We denote by δ2(p, q) the length of a second shortest simple path in G between p and q. In
order to define δ2(p, q) more precisely, recall that a path is called simple if its vertices are
pairwise distinct. Consider all distinct simple paths P1, P2, . . . , Pm between p and q, and
let 	i denote the length of Pi , 1 ≤ i ≤ m. Note that the paths may have vertices or edges
in common. We assume that these paths are numbered such that 	1 ≤ 	2 ≤ · · · ≤ 	m. If

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.3 A SUFFICIENT CONDITION FOR THE LEAPFROG PROPERTY 261

m ≥ 2, then we define δ2(p, q) := 	2, and we call P2 a second shortest path between
p and q. If m = 1, then there is only one simple path between p and q, and we define
δ2(p, q) := ∞.

The following lemma gives a sufficient condition for the edge set of a spanner to satisfy
the leapfrog property.

Lemma 14.3.1. Let S be a set of n points in Rd , let t > 1 be a real number, and let
G = (S, E) be an undirected t-spanner for S. Assume that δ2(p, q) > t |pq|, for every
edge {p, q} in E. Then, the edge set E satisfies the t-leapfrog property.

proof Let k ≥ 2, and let {pi, qi}, 1 ≤ i ≤ k, be an arbitrary sequence of pairwise
distinct edges in E. We have to show that the t-leapfrog property holds, that is,

t |p1q1| <

k∑
i=2

|piqi | + t

(
|p1p2| +

k−1∑
i=2

|qipi+1| + |qkq1|
)

. (14.3)

Let P1 be a shortest path in G between p1 and p2. For each i with 2 ≤ i ≤ k − 1, let
Pi be a shortest path in G between qi and pi+1. Finally, let Pk be a shortest path in G

between qk and q1. Since G is a t-spanner, the length |Pi | of each path Pi is less than or
equal to t times the distance between its endpoints. Let P be the (possibly nonsimple)
path

P1, {p2, q2}, P2, {p3, q3}, P3, . . . , Pk−1, {pk, qk}, Pk

between p1 and q1, and let P ′ be a simple path between p1 and q1 obtained by removing
all cycles from P . We distinguish two cases.

Case 1: The path P ′ consists of at least two edges.
In this case, we have

|P ′| ≤ |P |

=
k∑

i=1

|Pi | +
k∑

i=2

|piqi |

≤ t

(
|p1p2| +

k−1∑
i=2

|qipi+1| + |qkq1|
)

+
k∑

i=2

|piqi |.

Since {p1, q1} is an edge of E, and since P ′ contains at least two edges, we have
δ2(p1, q1) ≤ |P ′|. Then, the assumption of the lemma implies that

|P ′| ≥ δ2(p1, q1) > t |p1q1|.

Hence, the required inequality (14.3) holds.

Case 2: The path P ′ consists of exactly one edge.
In this case, the nonsimple path P contains the edge {p1, q1}. In fact, there is an index

j with 1 ≤ j ≤ k, such that the path Pj contains this edge. Hence, we have

|p1q1| ≤ |Pj | ≤
k∑

i=1

|Pi |.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

262 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

It follows that

t |p1q1| ≤ t

k∑
i=1

|Pi |

= t

(
|p1p2| +

k−1∑
i=2

|qipi+1| + |qkq1|
)

<

k∑
i=2

|piqi | + t

(
|p1p2| +

k−1∑
i=2

|qipi+1| + |qkq1|
)

,

which proves that also in this case inequality (14.3) holds.

14.4 The Leapfrog Theorem

The Leapfrog Theorem below bounds the total length of any set of edges that satisfies the
leapfrog property.

Theorem 14.4.1 (Leapfrog Theorem). Let t > 1 be a real number, let E be a set of
undirected edges in Rd that satisfies the t-leapfrog property, and let S be the set of
endpoints of the edges in E. Then,

wt(E) ≤ cdt · wt(MST(S)),

where MST(S) denotes a minimum spanning tree of S, and cdt is a real number that
depends only on d and t . If t > 1 and t → 1, then

cdt = O
(
1/(t − 1)2d

)
.

The rest of this chapter gives the proof of this theorem.

14.4.1 Overview of the proof of the Leapfrog Theorem

Before starting the weight analysis, we perform a “cleanup phase,” as described in Sec-
tion 14.5. This is a conceptual step, in which we partition the edge set E into a “small”
number of subsets, each one satisfying certain properties that help us analyzing the weight
of the subset. One of the properties is that all edges in a subset are approximately parallel.
Consider such a subset E′, and assume that all edges in E′ are approximately parallel to
the d-th coordinate axis.

A key ingredient in our analysis of the weight of E′ is the concept of a dumbbell. Each
edge e = {p, q} in E′ defines a dumbbell, which consists of the line segment joining p

and q, together with two dumbbell heads that are attached to p and q. These dumbbell
heads are hypercylinders that are centered at p and q, respectively, their axes are parallel
to the d-th coordinate axis, and their heights and radii are proportional to the length of
the edge e; see Figure 14.2 in Section 14.5.3. Each hypercylinder is bounded by two flat
faces, which are those parts that are extreme along the d-th coordinate axis, and a side
face, which is the “cylindrical” part of the boundary.

Our partitioning of E is done in such a way that the edges of E′ form a nested hierarchy
(based on pseudo-dumbbells, which closely approximate the dumbbells), referred to as
the nesting tree.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.4 THE LEAPFROG THEOREM 263

• p

Hp

��
2a|pq|

�

h|pq|

• q

Hq

Figure 14.2: The dumbbell De for the edge e = (p, q) consists of the heads Hp and Hq , and the line
segment joining p and q. Each head is a hypercylinder of height h|pq| and radius a|pq|, that is centered
at an endpoint of e, and whose axis is the line through the endpoint that is parallel to the d-th coordinate
axis.

We remark that the dumbbells, as defined here, are different from those in Chapter 11,
where the dumbbell heads were bounding boxes of point sets corresponding to nodes in
the split tree. Moreover, the dumbbell hierarchy and the corresponding nesting tree is not
to be confused with the dumbbell trees of Chapter 11 (even though they are based on the
same principle).

Let T := MST(S) be a minimum spanning tree of the set S of endpoints of the edges
in E. The analysis that we present shows that the total weight of the edges in the subset
E′ is proportional to the weight of T .

Consider an edge e of E′, and let p be any endpoint of e. Let Gp be the graph that
is defined to be the connected portion of the union of (i) all edges of E′ that are in p’s
head of the pseudo-dumbbell of e, and (ii) the portion of T that is inside this head and
that is connected to p. Since T connects the points of S, it must pierce through each
pseudo-dumbbell head in order to reach the corresponding endpoint. We partition the set
E′ of edges into two subsets, on the basis of the locations at which the graphs Gp intersect
the boundaries of the pseudo-dumbbell heads of the edges in E′. For each edge e = {p, q}
of E′, consider the graphs Gp and Gq that are inside the two heads of the pseudo-dumbbell
of e. If none of these two graphs pierce any of the flat faces of the two pseudo-dumbbell
heads, then we call e a lateral edge. All other edges of E′ are termed as non-lateral. In
other words, the pseudo-dumbbell heads of lateral edges are pierced only on their side
faces by the graphs Gp.

Our partitioning of the edge set E will be done in such a way that every subset E′

contains only lateral edges or only non-lateral edges. We show separately that the weight
of the edges in E′ is O(wt(T)). This is tackled in Sections 14.6 and 14.7, respectively. The
global techniques used in both cases are similar. In both, we perform a bottom-up analysis

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

264 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

in the nesting tree that is defined by the pseudo-dumbbells of the edges in E′. However,
the local techniques used are quite different. The analysis for the non-lateral edges uses
the leapfrog property, whereas the analysis for the lateral edges uses only inherent local
properties of Steiner minimum trees.

To achieve our analysis, we will show that for each edge e in E′, there is a sufficiently
large portion of T within the two heads of the pseudo-dumbbell of e, such that the length
of e can be charged to this portion. Observe that the pseudo-dumbbell heads may contain
other edges of E′ that also need portions of T to be charged to. The charging will be
done carefully enough so that there is always enough uncharged portion of the tree T to
account for all these other edges.

For every edge e′ of T , we assume that its length has two components: a “vertical”
component denoted by wtV (e′) (which is the length of e′ along the d-th coordinate axis)
and a “radial” component denoted by wtR(e′) (which is the length of e′ when ignoring the
d-th coordinates). Our analysis employs a charging scheme, in such a way that each edge of
E′ is accounted for by the vertical and radial components of the lengths of the edges in T .

14.5 The cleanup phase

Let t > 1 be a real number, let E be a set of undirected edges in Rd that satisfies the
t-leapfrog property, and let S be the set of endpoints of the edges in E.

Before we discuss the analysis of the weight of the edge set E, we show that this set can
be partitioned into a “small” number of subsets, such that each subset contains edges that
are near-parallel, length-grouped, and base-separated, and satisfy the nested-dumbbells
property. Moreover, the edges in a subset are either all lateral or all non-lateral. All these
terms are defined later. As will become clear in the analysis, this cleanup helps simplify
the weight analyses of the edge set E.

The cleanup phase uses Lemma 14.2.1. Since a set of directed edges is needed to apply
this lemma, we assume from now on that the edge set E is directed. In other words, we
replace each undirected edge {p, q} by either the directed edge (p, q) or the directed edge
(q, p). For simplicity, we denote the resulting set of directed edges by E.

14.5.1 Near-parallel

Near-parallel: The edge set E can be partitioned into subsets, such that the edges
within each subset are near-parallel, that is, the angle between any two edges in
the subset is bounded from above by some fixed value θ .

The following lemma makes this statement precise:

Lemma 14.5.1. Let θ be a real number, such that 0 < θ < π/4 and cos θ − sin θ > 1/t .
The set E of directed edges satisfying the t-leapfrog property can be partitioned into
O(1/θd−1) subsets, such that angle(pq, rs) ≤ θ , for any two edges (p, q) and (r, s) that
are in the same subset. Every subset in this partition satisfies the strong w-gap property,
for

w = 1

2
(cos θ − sin θ − 1/t) .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.5 THE CLEANUP PHASE 265

proof The lemma follows from Theorem 5.3.3 (which bounds the number of sets
satisfying the required angle property) and Lemma 14.2.1 (which connects the leapfrog
property and the gap property).

14.5.2 Length-grouped and base-separated

Length-grouped and base-separated: Each subset in the partition of
Lemma 14.5.1 can be further partitioned into subsets, such that in each subset,
the following holds:

� The edges are length-grouped: Any two distinct edges have lengths that are
either nearly equal (i.e., differ by at most a factor 1/δ) or significantly different
(i.e., differ by at least a factor 1/β), for some fixed values 0 < β < δ < 1.

� The edges are base-separated: Any two distinct edges that have nearly equal
lengths satisfy the strong µ-gap property, for some fixed value µ ≥ w.

The following lemma gives a precise statement of these properties. We assume that θ and
w are real numbers satisfying the conditions of Lemma 14.5.1.

Lemma 14.5.2. Let β, δ, and µ be real numbers, such that 0 < β < δ < 1 and µ ≥ w,
and let E′ be any subset in the partition of Lemma 14.5.1. The set E′ can be partitioned
into

O

(
log(1/β)

log(1/δ)

(
1 + µ

wδ

)d
)

subsets, such that for any two distinct edges (p, q) and (r, s) that are in the same subset
and for which |pq| ≤ |rs|, the following holds:

1. |rs| ≤ |pq|/δ or |rs| ≥ |pq|/β.

2. If |rs| ≤ |pq|/δ, then |pr| > µ|pq| and |qs| > µ|pq| (in other words, (p, q) and (r, s)
satisfy the strong µ-gap property).

proof The lemma can be proved using the techniques of Sections 11.4 and 11.5, and
the fact that the set E′ satisfies the strong w-gap property. The details are left as an
exercise; see Exercise 14.2.

Remark 14.5.3. The proof of Lemma 14.5.2 uses the fact that the edge set E′ satisfies
the strong w-gap property. The lemma remains valid if we require only the strong w-gap
property to hold for any two distinct edges (p, q) and (r, s) in E′ for which |pq| ≤ |rs| ≤
|pq|/δ. We will use this fact in Section 14.9.

14.5.3 Nested-dumbbells

Consider a subset of E in the partition of Lemma 14.5.2. We would like to store the edges
in this subset in a nesting tree, such that the following holds, for any two distinct edges e

and f in the same subset: f is stored in the subtree of e if and only if the dumbbell Df is
completely contained in one of the heads of the dumbbell De. This is possible if, for any
two distinct edges e and f in the same subset, the dumbbells De and Df are either disjoint
or one dumbbell is completely contained in the head of the other dumbbell. Unfortunately,
since the boundaries of some head of De and some head of Df may overlap, the latter

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

266 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

property does not necessarily hold. In this section, we will show, however, that by slightly
modifying the dumbbells, we can achieve this property. The modified dumbbells will be
called pseudo-dumbbells.

Nested-dumbbells: Each subset of E in the partition of Lemma 14.5.2 can be
stored in a nesting tree, such that the following holds, for any two distinct edges e

and f in the same subset: f is stored in the subtree of e if and only if f ’s pseudo-
dumbbell is completely contained in one of the heads of e’s pseudo-dumbbell.

We assume that θ , w, β, δ, and µ are real numbers satisfying the conditions of
Lemmas 14.5.1 and 14.5.2.

Let E′′ be any subset of E in the partition of Lemma 14.5.2. Hence, any two edges in
E′′ are (i) near-parallel with parameter θ , (ii) length-grouped with parameters β and δ,
and (iii) base-separated with parameter µ. We may assume without loss of generality that
each edge (p, q) in E′′ makes an angle of at most θ with the d-th coordinate axis, and
that, along this axis, p is below q.

Before we can formalize the nested-dumbbells property for the edge set E′′, we define
the notion of a dumbbell. We assume from now on that β < cos θ . We choose real numbers
a and h, such that

0 < a < h <
cos θ − β

1 + β
. (14.4)

Let e = (p, q) be an arbitrary edge in E′′. We define the dumbbell heads (or, simply,
the heads) of p and q to be the sets

Hp :=
{

x ∈ R
d :

d−1∑
i=1

(xi − pi)
2 ≤ a2|pq|2 and |xd − pd | ≤ h|pq|/2

}
and

Hq :=
{

x ∈ R
d :

d−1∑
i=1

(xi − qi)
2 ≤ a2|pq|2 and |xd − qd | ≤ h|pq|/2

}
,

respectively. In other words, the head Hp is the hypercylinder of height h|pq| and radius
a|pq|, that is centered at p, and whose axis is the line through p that is parallel to the
d-th coordinate axis. We call the parts of the boundary of Hp that are extreme along the
d-th coordinate axis the flat faces of Hp. Each of the two flat faces of Hp is contained in
a hyperplane that is orthogonal to the d-th coordinate axis. The rest of the boundary of
Hp will be called the side face of Hp. This side face is contained in the boundary of the
hypercylinder of radius a|pq|, whose axis is the line through p that is parallel to the d-th
coordinate axis.

The dumbbell De of the edge e = (p, q) is defined to be the subset of Rd consisting of
the two heads Hp and Hq , and the line segment joining p and q. See Figure 14.2 for an
illustration.

Observe that, since the distance between p and q along the d-th coordinate axis is
at least |pq| cos θ , and since 0 < h < cos θ , the heads Hp and Hq of the dumbbell De

are disjoint. The following lemma states that the dumbbell Df of an edge f , which is
significantly shorter than e, cannot intersect both heads of the dumbbell De.

Lemma 14.5.4. Let e = (p, q) and f = (r, s) be two edges in E′′, such that |pq| ≥
|rs|/β. The dumbbell Df cannot intersect both heads of the dumbbell De.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.5 THE CLEANUP PHASE 267

proof Along the d-th coordinate axis, the minimum distance between the two heads Hp

and Hq is at least (cos θ − h)|pq|. On the other hand, along the same axis, the maximum
distance between any two points of Df is less than or equal to (1 + h)|rs| ≤ β(1 + h)|pq|.
By our choice of h, see (14.4); the latter quantity is less than (cos θ − h)|pq|.

Next, we prove that, for any two distinct edges e and f in E′′ that have nearly equal
lengths, the dumbbells De and Df are far apart, provided the parameter β is sufficiently
small and the parameter µ is sufficiently large.

Lemma 14.5.5. Let e = (p, q) and f = (r, s) be two distinct edges in E′′, where, along
the d-th coordinate axis, p is below q, and r is below s, and assume that |pq| ≤ |rs| ≤
|pq|/δ. Let C be the hypercylinder with center r , height ((2 + h)/(1 − 2β))|rs|, and
radius ((a + sin θ)/(1 − 2β))|rs|, whose axis is the line through r that is parallel to the
d-th coordinate axis. If β < 1/2 and

µ ≥ (1 + a + h/2 + sin θ)

(
1 + 1

δ(1 − 2β)

)
, (14.5)

then De and C are disjoint. In particular, De and Df are disjoint.

proof Assume that De and C are not disjoint, and let z be a point in their intersection.
(This point z may be on the edge e.) Then,

|pr| ≤ |pz| + |zr|
≤ ((a + sin θ) + (1 + h/2)) |pq| +

(
a + sin θ

1 − 2β
+ 1 + h/2

1 − 2β

)
|rs|.

Combining this with the assumption that |rs| ≤ |pq|/δ and the inequality in (14.5), it
follows that |pr| ≤ µ|pq|, contradicting the fact that e and f are base-separated with
parameter µ. Hence, the dumbbell De and the hypercylinder C are disjoint. Since the
dumbbell Df is completely contained in C, De and Df are disjoint as well.

As mentioned already, the boundaries of the heads of two different dumbbells may
overlap so that a proper nesting of the dumbbells is, in general, not possible. To obtain
a proper nesting, we will slightly deform the dumbbells. As we will see later, this yields
pseudo-dumbbells that closely approximate the original dumbbells, a claim whose proof
will require the following lemma. This lemma states that any set F of dumbbells that form
a connected subset of Rd is contained in a hypercylinder whose size is proportional to the
length of a longest dumbbell in F .

We define the radial distance between any two points x and y in Rd to be the Euclidean
distance between the two points in Rd−1 that are obtained by deleting the d-th coordinates
from x and y. The vertical distance between x and y is defined as the absolute value of
the difference between their d-th coordinates.

Lemma 14.5.6. Let F be a subset of E′′, and assume that the set

DF :=
⋃
f ′∈F

Df ′

is a connected subset of Rd . Let L be the length of a longest edge in F , and assume that
β < 1/2 and

µ ≥ (1 + a + h/2 + sin θ)

(
1 + 1

δ(1 − 2β)

)
.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

268 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

Then, there exists a hypercylinder of height ((2 + h)/(1 − 2β))L and radius ((a +
sin θ)/(1 − 2β))L, whose axis is parallel to the d-th coordinate axis, that contains the set
DF .

proof We first assume that the lengths of all edges in F are greater than or equal
to δL. Let f = (r, s) be an edge in F of length L, and let C be the hypercylinder in
Lemma 14.5.5. We have seen in the proof of Lemma 14.5.5 that the dumbbell Df is
contained in C. Moreover, by Lemma 14.5.5, for each edge f ′ in F \ {f }, the dumbbell
Df ′ has an empty intersection with C. Since the set DF is connected, it follows that
F = {f } and, thus, the set DF is contained in C.

We now consider the general case. Again, let f = (r, s) be an edge in F of length L,
and let C be the hypercylinder in Lemma 14.5.5. Recall that C is centered at r , has height
((2 + h)/(1 − 2β))|rs|, radius ((a + sin θ)/(1 − 2β))|rs|, and its axis is the line through
r that is parallel to the d-th coordinate axis.

We first show that the length of each edge in F \ {f } is less than or equal to βL. The
proof is by contradiction. Thus, we assume that the set

F ′ := {e′ ∈ F \ {f } : |e′| > βL}
is nonempty. Since the edge set E′′ is length-grouped, each edge in F ′ has, in fact, length
at least δL. Hence, by Lemma 14.5.5, we have De′ ∩ C = ∅ for each e′ ∈ F ′.

Since the set DF is connected, there exists an edge e′ in F ′, such that the dumbbells De′

and Df are connected by dumbbells of edges that all have length at most βL. Consider
such an edge e′, and let F ′′ be a subset of F , such that

1. each edge in F ′′ has length at most βL,

2. the set DF ′′ := ⋃
e′′∈F ′′ De′′ is connected,

3. DF ′′ has a nonempty intersection with Df , and

4. DF ′′ has a nonempty intersection with De′ .

By an inductive argument, the set DF ′′ is contained in a hypercylinder C ′′ of height
β((2 + h)/(1 − 2β))L and radius β((a + sin θ)/(1 − 2β))L, whose axis is parallel to the
d-th coordinate axis. In particular, C ′′ and Df have a nonempty intersection. Therefore,
the radial distance between r and any point of C ′′ is less than or equal to

(a + sin θ)L + 2β(a + sin θ)

1 − 2β
L = a + sin θ

1 − 2β
L,

which is the radius of the hypercylinder C. Similarly, the vertical distance between r and
any point of C ′′ is less than or equal to

(1 + h/2)L + β(2 + h)

1 − 2β
L = 1 + h/2

1 − 2β
L,

which is half the height of the hypercylinder C. It follows that the set DF ′′ is completely
contained in C. But then, since DF ′′ ∩ De′ �= ∅, the dumbbell De′ overlaps C, which is a
contradiction. Thus, we have shown that the set F ′ is empty, that is, each edge in F \ {f }
has length at most βL.

Now we can complete the proof of the lemma. Consider the subset DF \ Df of Rd .
Each connected component of this subset touches Df and is determined by edges of
F of length at most βL. The arguments above show that each connected component is
contained in the hypercylinder C. Thus, we have shown that the set DF is contained
in C.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.5 THE CLEANUP PHASE 269

Now we are ready to define pseudo-dumbbells. Let e = (p, q) be any edge in E′′, and
define

Fe := {f ∈ E′′ : |f | ≤ β|e|}
and

De :=
⋃
f ∈Fe

Df .

Consider the connected components of De, and let C1, C2, . . . , Ck be those connected
components that intersect the boundary of the head Hp of the dumbbell De. We define
the pseudo-head PHp of p to be the connected component of the set Hp \

(⋃k
i=1 Ci

)
that

contains p. Similarly, let C ′
1, C ′

2, . . . , C ′
	 be the connected components of De that intersect

the boundary of the head Hq of De. The pseudo-head PHq of q is defined to be the
connected component of Hq \

(⋃	
i=1 C ′

i

)
that contains q. We define the pseudo-dumbbell

PDe of e to be the subset of Rd consisting of the line segment joining p and q, and
the two pseudo-heads PHp and PHq . We will refer to PHp and PHq as the heads of
pseudo-dumbbell PDe.

We now show that the pseudo-dumbbells approximate the original dumbbells. We
assume that

β < min

(
h

4(1 + h)
,

a

4a + 2 sin θ

)
.

Let

h′ := h − 2β(2 + h)

1 − 2β

and

a′ := a − 2β(a + sin θ)

1 − 2β
.

Then 0 < h′ < h and 0 < a′ < a. For each edge e = (p, q) in E′′, we define the inner-
dumbbell IDe to be the subset of Rd consisting of the line segment joining p and q, and
the two inner-heads

IHp :=
{

x ∈ R
d :

d−1∑
i=1

(xi − pi)
2 ≤ (a′)2|pq|2 and |xd − pd | ≤ h′|pq|/2

}
and

IHq :=
{

x ∈ R
d :

d−1∑
i=1

(xi − qi)
2 ≤ (a′)2|pq|2 and |xd − qd | ≤ h′|pq|/2

}
.

Thus, the inner-heads IHp and IHq are obtained by shrinking the heights and radii of the
heads Hp and Hq to the values h′ and a′, respectively. We will refer to IHp and IHq as the
heads of the inner-dumbbell IDe.

Lemma 14.5.7. Let e be an edge of E′′, and let p be one of its endpoints. Then, the
boundary of the pseudo-head PHp is between the boundaries of the head Hp and the
inner-head IHp, that is,

IHp ⊆ PHp ⊆ Hp.

proof It is clear that PHp is contained in Hp. To prove that the inner-head IHp and
the boundary of the pseudo-head PHp are disjoint, consider the connected components

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

270 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

C1, C2, . . . , Ck of the set De that intersect the boundary of the head Hp. By Lemma 14.5.6,
each connected component Ci is contained in a hypercylinder of height β((2 + h)/
(1 − 2β))|e| and radius β((a + sin θ)/(1 − 2β))|e|, whose axis is parallel to the d-th
coordinate axis. Since Ci intersects the boundary of Hp, it follows from the definitions of
h′ and a′ that Ci and the inner-head IHp are disjoint.

The next lemma implies that the pseudo-dumbbells can be properly nested.

Lemma 14.5.8. Let e and f be two distinct edges in E′′, and assume that |f | ≤ |e|. Then,
either all the heads of the pseudo-dumbbells PDe and PDf are disjoint, or the pseudo-
dumbbell PDf is completely contained in one of the heads of the pseudo-dumbbell PDe.

proof If any two heads of PDe and PDf are disjoint, then the lemma holds. Assume
that some head of PDe has a nonempty intersection with some head of PDf . Then the
dumbbells De and Df are not disjoint and thus, by Lemma 14.5.5 and the length-grouping
property, we have |f | ≤ β|e|. If PDf is not completely inside one of the heads of PDe,
then PDf intersects the boundary of some head of PDe, contradicting the definition of a
pseudo-head.

Remark 14.5.9. It is possible that the edge set E′′ contains two distinct edges e and f ,
such that |f | ≤ |e| and any two heads of the pseudo-dumbbells PDe and PDf are disjoint,
but still, the pseudo-dumbbells PDe and PDf are not disjoint. If this is the case, then
(i) the edge e (which is part of PDe) intersects PDf (which consists of the edge f and two
pseudo-heads), or (ii) the edge f (which is part of PDf) intersects PDe (which consists
of the edge e and two pseudo-heads). Also, by Lemma 14.5.5, this can be only the case if
|f | ≤ β|e|.

Let e0 be a “dummy” edge, whose length is larger than 1/β times the length of a
longest edge in E′′, such that one of the heads of its “dummy” dumbbell D0 contains the
dumbbells of all edges in E′′. We define the corresponding “dummy” pseudo-dumbbell
PD0 to be equal to D0.

We now establish the nested-dumbbells property, by defining a tree N , which will be
referred to as the nesting tree. The rule used to construct this tree is encapsulated below.

Nesting Rule: The node set of the nesting tree N is the set E′′ ∪ {e0} of edges,
where e0 is the root. Let f be an arbitrary edge in E′′, and let e be the shortest edge
in E′′ ∪ {e0}, such that |f | < |e| and the pseudo-dumbbell PDf is completely
contained in one of the heads of the pseudo-dumbbell PDe. Then, in the nesting
tree N , node e is the parent of node f .

Observe that, by Lemma 14.5.8, e is uniquely determined by f . Also, N is indeed
a tree: If e is the parent of f , then, by definition, |f | < |e|, and, therefore, N does not
contain any cycle.

Lemma 14.5.10. Let e and f be two distinct edges in E′′ ∪ {e0}. The following properties
hold:

1. f is stored in the subtree of e (in the nesting tree N), if and only if the pseudo-dumbbell
PDf is completely contained in one of the heads of the pseudo-dumbbell PDe.

2. If f is stored in the subtree of e, then |e| ≥ |f |/β.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.5 THE CLEANUP PHASE 271

proof The first claim follows from the definition of the nesting tree and Lemma 14.5.8.
The second claim follows from Lemmas 14.5.5 and 14.5.7, and the fact that the edges in
E′′ ∪ {e0} are length-grouped with parameters β and δ.

We summarize the results of this section in the following lemma.

Lemma 14.5.11. Let θ , β, δ, µ, a, and h be positive real numbers, such that θ < π/4,
cos θ − sin θ > 1/t , δ < 1, a < h < (cos θ − β)/(1 + β),

µ ≥ max

(
w, (1 + a + h/2 + sin θ)

(
1 + 1

δ(1 − 2β)

))
,

where w = 1
2 (cos θ − sin θ − 1/t), and

β < min

(
δ, cos θ,

h

4(1 + h)
,

a

4a + 2 sin θ

)
.

Let h′ = h − 2β(2 + h)/(1 − 2β) and a′ = a − 2β(a + sin θ)/(1 − 2β) be the height and
radius parameters for the heads of the inner-dumbbells. Finally, let E′′ be any subset in
the partition of Lemma 14.5.2. Then, the edges of E′′ can be stored in a nesting tree N ,
such that the following holds, for any two distinct edges e and f in E′′ with |f | ≤ |e|: f is
stored in the subtree of e if and only if the pseudo-dumbbell PDf is completely contained
in one of the heads of the pseudo-dumbbell PDe.

14.5.4 Lateral and non-lateral edges

Let T be a minimum spanning tree of the set S of endpoints of the edges in E, and
consider a subset E′′ and its nesting tree N , as in Lemma 14.5.11. For convenience, we
introduce Steiner vertices at all locations where T pierces the boundaries of the heads of
the pseudo-dumbbells of the edges in E′′.

Let e = (p, q) be an edge in E′′, and consider one of the heads of the pseudo-dumbbell
PDe, say the head PHp. We formalize the definition of the graph Gp, that was introduced
informally in Section 14.4.1: Consider the graph obtained by adding to T all edges of E′′

that are completely contained in the pseudo-head PHp. We define Gp to be the maximal
connected subgraph of this graph that contains p and that is completely contained in the
pseudo-head PHp. We define the graph Gq similarly with respect to the point q. Since T
connects all points of S, Gp contains at least one vertex that is on the boundary of PHp

and, similarly, Gq contains at least one vertex that is on the boundary of PHq .
Consider the flat faces of the inner-head IHp, that is, the parts of the boundary of IHp

that are extreme along the d-th coordinate axis. Let P − and P + be the hyperplanes that
are orthogonal to the d-th coordinate axis and that contain the lower and upper flat faces
of IHp, respectively. The pseudo-head PHp contains two flat faces, where one flat face is
defined to be the part of the boundary of PHp that is below P −, and the other flat face is
defined to be the part of the boundary of PHp that is above P +. The remaining part of the
boundary of PHp is defined to be the side face of PHp. The two flat faces and the side
face of the pseudo-head PHq are defined similarly with respect to q. Observe that a flat
face or a side face need not be connected. Also, a flat face is, in general, not really flat.

We call the edge e = (p, q) of E′′ a lateral edge, if (i) no vertex of Gp is on any of
the two flat faces of PHp and (ii) no vertex of Gq is on any of the two flat faces of PHq .
Otherwise, e is called a non-lateral edge. Thus, if e is a non-lateral edge, then Gp touches
one of the flat faces of PHp or Gq touches one of the flat faces of PHq .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

272 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

p

q

s

r

(a)

p

q

s

r

(b)
Figure 14.3: (a) The figure shows a collection of vertical edges, together with their pseudo-dumbbells.
The dashed segments form the minimum spanning tree T of the endpoints. The three solid edges do not
belong to T . (b) The figure shows the graphs Gp , Gq , Gr , and Gs , all drawn by solid segments. The edge
(p, q) is lateral, whereas the edge (r, s) is non-lateral.

Figure 14.3 illustrates these notions. The top part (Figure 14.3(a)) shows a collection
of vertical edges, together with their pseudo-dumbbells. (For convenience, the heads of
these pseudo-dumbbells are drawn as squares.) The edges of the minimum spanning tree
T are drawn as dashed segments. The three solid edges do not belong to T . The bottom
part (Figure 14.3(b)) shows the same configuration of edges and pseudo-dumbbells. All
the segments shown in the bottom part are either part of the minimum spanning tree T
or the set E′′. Among these, the edges that are part of the graphs Gp, Gq , Gr , and Gs

are drawn as solid segments. The rest are drawn as dashed segments. The edge (p, q) is
lateral, because (i) the two leaves of Gp are on the side face of the pseudo-head PHp and
(ii) the leaf of Gq is on the side face of the pseudo-head PHq . On the other hand, the edge
(r, s) is non-lateral, because one leaf of Gs is on the flat face of the pseudo-head PHs .

Consider the nesting tree N for the set E′′. We “split” this tree into two nesting trees
N− andN⊥, where the former stores all lateral edges of E′′, the latter stores all non-lateral
edges of E′′, both trees inherit the tree structure of N , and both trees store the dummy
edge e0 in their roots. The following lemma follows from Lemma 14.5.11.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.6 BOUNDING THE WEIGHT OF NON-LATERAL EDGES 273

Lemma 14.5.12. Let E′′ be a subset of E, as in Lemma 14.5.11, and let N be the nesting
tree for E′′. We can transform N into nesting trees N− and N⊥, such that N− stores all
lateral edges of E′′, N⊥ stores all non-lateral edges of E′′, and both N− and N⊥ satisfy
the properties of Lemma 14.5.11.

14.5.5 Summarizing the cleanup phase

We started with a set E of edges that satisfy the t-leapfrog property, for some real number
t > 1, chose real numbers θ , β, δ, µ, a, and h, and defined

w := 1

2
(cos θ − sin θ − 1/t) ,

h′ := h − 2β(2 + h)

1 − 2β
,

and

a′ := a − 2β(a + sin θ)

1 − 2β
.

These parameters were chosen such that 0 < θ < π/4, cos θ − sin θ > 1/t , 0 < δ < 1,

µ ≥ max

(
w, (1 + a + h/2 + sin θ)

(
1 + 1

δ(1 − 2β)

))
,

0 < β < min

(
δ, cos θ,

h

4(1 + h)
,

a

4a + 2 sin θ

)
,

and

0 < a < h <
cos θ − β

1 + β
.

We have shown that the set E can be partitioned into

O

(
log(1/β)

θd−1 log(1/δ)

(
1 + µ

wδ

)d
)

subsets, such that the following properties hold for any two distinct edges that are in the
same subset:

� near-parallel with parameter θ ,
� length-grouped with parameters β and δ, and
� base-separated with parameter µ.

Furthermore,

� each subset in this partition contains either only lateral edges or only non-lateral edges,
and

� each subset in this partition is represented by a nesting tree that satisfies the nested-
dumbbells property.

14.6 Bounding the weight of non-lateral edges

Recall that E denotes the original set of edges that satisfy the t-leapfrog property, and
that S denotes the set of endpoints of the edges in E. In this section, we consider a
subset of E consisting only of non-lateral edges and satisfying the properties mentioned

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

274 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

in Section 14.5.5. For ease of notation, we denote this subset by E. However, S will still
denote the set of endpoints of the original edge set. The nesting tree for E is denoted by
N . Recall that the root of N stores the dummy edge e0, which is not contained in E.

As in Section 14.5.3, we assume, without loss of generality, that each edge (p, q) in
E makes an angle of at most θ with the d-th coordinate axis, and that, along this axis,
p is below q. Moreover, we assume that the parameters θ , β, δ, µ, a, and h satisfy the
inequalities given in Section 14.5.5.

Recall that a denotes the radius parameter of the dumbbell heads. The main goal of
this section is to prove the following lemma.

Lemma 14.6.1. Let E be a set of non-lateral edges satisfying the properties mentioned
in Section 14.5.5, and let T be a minimum spanning tree of the point set S. Then, for an
appropriate choice of the parameters, we have

wt(E) ≤ 2

a
· wt(T).

Intuition: To prove Lemma 14.6.1, we will use the nesting tree N to “process”
the edges of E in a bottom-up fashion. Consider any edge e = (p, q) in E, and
assume without loss of generality that the graph Gp touches one of the flat faces
of the head PHp of the pseudo-dumbbell PDe. During the processing, we charge
the length of e to the weight of a portion of a path in Gp that stretches from p to
one of the flat faces of PHp.

Recall that the radial distance between two points x and y in Rd is the Euclidean
distance between the two points in Rd−1 obtained by deleting the d-th coordinates from x

and y, and that the vertical distance between x and y is the absolute value of the difference
between their d-th coordinates. Also, recall that we have introduced Steiner vertices at
all locations where T pierces the boundaries of the heads of the pseudo-dumbbells of
the edges in E. (In order to obtain a rigorous analysis, more Steiner vertices have to be
introduced. We leave the details as an exercise; see Exercise 14.8.)

For each edge e′ of T , we define its radial weight wtR(e′) to be the radial distance
between the endpoints of e′, and we define its vertical weight wtV (e′) to be the vertical
distance between the endpoints of e′. Without loss of generality, we assume that no edge
of T is parallel to any of the d coordinate axes, so that the radial and vertical weights of
all edges of T are strictly positive.

The analysis of the total weight of the edges in E uses a potential function � that
contains the following components:

1. For every edge e′ of T , �R(e′) and �V (e′) denote the radial potential and vertical potential
of e′, respectively.

2. For every edge e of E, �D(e) denotes the dumbbell potential of e.

The potential function � is defined as

� =
∑
e′∈T

(
�R(e′) + �V (e′)

)+
∑
e∈E

�D(e).

Observe that the edges of E as well as the edges of T have potentials associated with
them. At the start of the analysis, we set the values of �R(e′) and �V (e′) to wtR(e′) and

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.6 BOUNDING THE WEIGHT OF NON-LATERAL EDGES 275

wtV (e′), respectively, for every edge e′ of T , and we set the value of �D(e) to zero, for
every edge e in E.

Let �0 be the initial value of �. Our goal is to prove the claim that

�0 ≥ a · wt(E). (14.6)

From this, it would follow that

wt(E) ≤ 1

a
· �0

= 1

a

∑
e′∈T

(
wtR(e′) + wtV (e′)

)
≤ 2

a

∑
e′∈T

|e′|

= 2

a
· wt(T).

Thus, Lemma 14.6.1 follows from the inequality in (14.6).
As mentioned above, the analysis consists of processing the edges of E in a bottom-up

fashion (with respect to the nesting tree N). The processing of an edge e of E can be
briefly described as follows.

Processing an edge e: First, edges of T that lie within the heads of the pseudo-
dumbbell PDe of e may get nulled out by “transferring” their radial and vertical
weights to the dumbbell potential of the edge e. Furthermore, the unused dumb-
bell potential of edges that are descendants of e in the nesting tree are also
“transferred” to the dumbbell potential of the edge e. Finally, some of the dumb-
bell potential of edge e is used up to account for the weight of the edge e.

Later on, during the bottom-up processing, all the unused dumbbell potential of edge
e is “transferred” to the dumbbell potential of an edge that is e’s ancestor in the nesting
tree, after which e is never considered again and its potential is set to zero for the rest of
the analysis. In the next section, we will formally describe the main properties that are
maintained during the processing.

14.6.1 The invariant P
As before, let �0 denote the initial value of the potential function. At any moment during
the bottom-up processing of the edges of E, let � denote the current value of the potential
function, and let W denote the total weight of all edges in E that have already been
processed. During the processing, the following invariant P will be maintained:

P.1: �0 = � + aW .

P.2: All current values of �R , �V , and �D are nonnegative.

P.3: For every edge e′ of T ,

(a) if e′ has not been nulled out, then �R(e′) = wtR(e′) and �V (e′) = wtV (e′),
(b) if e′ has been nulled out, then �R(e′) = 0 and �V (e′) = 0.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

276 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

P.4: For every edge e of E that has been processed, but for which none of its proper
ancestors in the current nesting tree N have been processed, we have �D(e) ≥ (2a +
sin θ)|e|.
After all edges of E have been processed, we have W = wt(E). Hence, by the first and

second properties in the invariant,

�0 = � + aW ≥ aW = a · wt(E).

In other words, if we can show that the invariant is maintained during the processing of
the edges, then the inequality in (14.6) holds and, therefore, Lemma 14.6.1 holds.

The main difficulty will be to prove that the dumbbell potentials �D remain nonnegative
during the processing. It is for this reason that we have included property P.4. This
property implies that there is sufficient unused dumbbell potential left in the edge for
the accounting. We remark that the quantity (2a + sin θ)|e| has been chosen because it
is an upper bound on the radial distance between any two points that are in the same
pseudo-dumbbell PDe, a detail that will become important in Section 14.6.7.

Before we show how the edges of E are processed, let us verify that the invariant holds
at the start of the process. At that moment, �0 = �, no edge of E has been processed
(thus, W = 0), and no edge of T has been nulled out. Clearly, the above properties P.1
through P.4 hold at this moment.

14.6.2 Processing one edge of E

Let f = (x, y) be an arbitrary edge of E. Recall the definition of the graphs Gx and Gy ;
see Section 14.5.4. Also, recall that Gx and Gy are completely contained in the heads PHx

and PHy , respectively, of the pseudo-dumbbell PDf . Since f is a non-lateral edge, either
Gx or Gy (or both) touches one of the flat faces of a head of PDf . We (arbitrarily) choose
one of these two graphs that touches a flat face of a head of PDf , and refer to this graph
as the non-lateral graph of the edge f . The non-lateral graph will be used to account for
the length of f and its ancestors, whereas the other graph is not used unless it is part of
the non-lateral graph of some other ancestor edge.

As the processing proceeds in a bottom-up fashion, let e = (p, q) be a shortest edge in
E that has never been considered for processing, and assume that the invariant P holds at
this moment. We assume without loss of generality that Gp is the non-lateral graph of e.
Thus, Gp touches a flat face of the pseudo-head PHp.

By Lemma 14.5.10, we have |f | < |e|, for every edge f �= e that is stored in the subtree
of e (in the nesting tree N). Therefore, all these edges f have already been processed.

The processing of edge e consists of performing the following four steps:

Step 1: For each edge f in E, such that

1. f is a child of e in the current nesting tree N , and

2. the non-lateral graphs of f and e are disjoint,

make f a child of the parent of e.

Step 2: Set

�D(e) :=
 ∑

e′∈Gp∩T

(
�R(e′) + �V (e′)

)+
∑

f : child of e

�D(f)

− a|e|.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.6 BOUNDING THE WEIGHT OF NON-LATERAL EDGES 277

Step 3: For each child f of e, set �D(f) := 0.

Step 4: For each edge e′ of Gp ∩ T , set �R(e′) := 0 and �V (e′) := 0.

If e′ is an edge of Gp ∩ T , and �R(e′) and �V (e′) were positive prior to Step 4, then
we say that e′ is nulled out by the edge e.

Intuition: In Step 1, the non-lateral graph of edge f is not needed to account
for edge e, because it is disjoint from the non-lateral graph of e. However,
since the unused dumbbell potential of f (which, by the invariant, is at least
(2a + sin θ)|f |) may be useful later, f is moved up one level in the nesting tree
N . Observe that edge f continues to satisfy property P.4. After Step 1, the
non-lateral graph of e has a nonempty intersection with the non-lateral graphs of
all its descendants.

In Steps 2 and 3, each child f of e (in the modified nesting tree) “transfers”
its dumbbell potential �D(f) to the dumbbell potential �D(e) of e. In Steps 2
and 4, each edge e′ of Gp ∩ T that has not been nulled out yet, “transfers” its
radial potential �R(e′) and vertical potential �V (e′) to the dumbbell potential
�D(e) of e.

In Steps 2, 3, and 4, all the unused potential inside the pseudo-head PHp

is swept up, a quantity a|e| is used to “pay” for the edge e, and the remaining
amount is stored as unused dumbbell potential �D(e).

Let � denote the value of the potential function just before edge e is processed. Let W

denote the total weight of all edges in E that have been processed, again just before e is
processed. Let �′ and W ′ denote these quantities just after e has been processed.

Since the invariant holds before e is processed, we have �0 = � + aW . Obviously,
we have W ′ = W + |e|. Finally, it follows from Steps 2, 3, and 4 that �′ − � = −a|e|.
Therefore,

�0 = � + aW = �′ + a|e| + aW = �′ + aW ′

and, thus, property P.1 in the invariant is maintained during the processing of e. It is clear
that propertiesP.2 andP.3 are also maintained, except for the condition that the new value,
�′

D(e), of �D(e) is nonnegative. In fact, for property P.4 to hold, �′
D(e) must be at least

(2a + sin θ)|e|. In the following subsections, we will prove that �′
D(e) ≥ (2a + sin θ)|e|.

From this, it will follow that all four parts of the invariant are maintained.

14.6.3 The charging path for edge e

Consider again the edge e = (p, q) that was processed. Recall that we assume that Gp is
the non-lateral graph of e. Our goal is to prove that, just after e has been processed, its
dumbbell potential is greater than or equal to (2a + sin θ)|e|.

From now on, we consider the situation just after Step 1 in the processing of e. (In
other words, just after the nesting tree N has been modified.) Let

�′
D(e) :=

 ∑
e′∈Gp∩T

(
�R(e′) + �V (e′)

)+
∑

f : child of e

�D(f)

− a|e|.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

278 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

Here, all potentials on the right-hand side are values just before edge e is processed,
whereas �′

D(e) is the dumbbell potential of e, just after e has been processed. We have to
show that �′

D(e) ≥ (2a + sin θ)|e|.
We consider a carefully chosen path P in Gp between p and some point on one of

the flat faces of the pseudo-head PHp (see Lemma 14.6.3). Observe that P consists of
edges of T and edges of E and is completely contained in PHp. After edge e has been
processed, all edges of P ∩ T have been nulled out.

We will show that at this moment (i.e., just after Step 1 in the processing of e), and for
the specific path P that will be chosen later, the sum of

1. the total radial and vertical potential of all edges of P ∩ T and

2. the total dumbbell potential of some appropriately chosen edges that are children of e

is “sufficiently large.” In particular, we will show that �′
D(e) ≥ (2a + sin θ)|e|.

The sets PN and PNN : We define PN to be the set consisting of

1. all edges of P ∩ T that have been nulled out (prior to the processing of edge e),
and

2. all edges of P that are not contained in T .

We define PNN to be the set of all edges of P \ PN . Thus, PNN consists of all
edges of P ∩ T that have not been nulled out.

The following lemma states some properties of the edges in PN . We will use these
properties at several places in our analysis.

Lemma 14.6.2. Let e′ be an edge of PN . There exists an edge f in E, such that the
following six properties hold:

1. In the current nesting tree N , f is a child of e.

2. |f | ≤ β|e|.
3. �D(f) ≥ (2a + sin θ)|f |.
4. If e′ is an edge of T , then e′ has been nulled out by some edge in the subtree of f .

5. If e′ is not an edge of T , then e′ is stored in the subtree of f .

6. If e′ �= f , then e′ is an edge of the non-lateral graph of f .

proof First assume that e′ is not an edge of T , that is, it is an edge of E. Since e′ is
contained in the pseudo-head PHp, it follows from the nested-dumbbells property that,
in the original nesting tree (i.e., before any edge of E has been processed), e′ is in the
subtree of e. During the processing of edges of E, e′ may have moved up the tree. We
claim, however, that at this moment (i.e., just after Step 1 in the processing of edge e),
e′ is still in the subtree of e. To prove this claim, assume that this is not the case. Then,
during Step 1 of the processing of e, the child of e, say g, whose subtree contains e′,
was made a child of the parent of e. Thus, the non-lateral graphs of e and g are disjoint.
Since e′ is still in the subtree of g, the non-lateral graphs of e′ and g are not disjoint.
Since e′ is an edge of P , it is an edge of the non-lateral graph of e. This implies that,
since some endpoint of e′ is a vertex of the non-lateral graph of e′, the non-lateral graphs

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.6 BOUNDING THE WEIGHT OF NON-LATERAL EDGES 279

of e and e′ are not disjoint. Thus, (i) the non-lateral graphs of e and g are disjoint, (ii)
the non-lateral graphs of e′ and g are not disjoint, and (iii) the non-lateral graphs of
e and e′ are not disjoint. Since e′ is in the subtree of g, which is in the subtree of e,
this is a contradiction because of the nested-dumbbells property. Hence, we have shown
that at this moment, e′ is indeed still in the subtree of e. Let f be the child of e, such
that e′ is in the subtree of f . Then obviously, the first claim in the lemma holds. The
second claim follows from Lemma 14.5.10. Property P.4 in the invariant implies that
the third claim holds. The fourth claim does not apply, because e′ is not an edge of T .
The fifth claim holds because of our choice of f . It remains to prove the sixth claim.
Assume that e′ �= f . If e′ is not contained in the head of PDf that contains the non-lateral
graph of f , then the non-lateral graphs of f and e′ are disjoint, in which case e′ is not in
the subtree of f . Therefore, e′ is contained in the head of PDf that contains the non-lateral
graph of f . Then it follows from the definition of the non-lateral graphs that e′ is an edge
of the non-lateral graph of f . Thus, the sixth claim holds.

Now assume that e′ is an edge of T . Then, since e′ is an edge of PN , this edge has been
nulled out. Let g be the edge of E that has nulled out e′. Since the edges of E are processed
in nondecreasing order of their lengths, we have |g| ≤ |e|. Clearly, g �= e. Since e′ has
been nulled out by g, e′ is contained in one of the heads of PDg . Since e′ is also contained
in the pseudo-head PHp of PDe, it follows that the pseudo-dumbbells PDe and PDg are
not disjoint. Then, by the nested-dumbbells property, in the original nesting tree, g is in
the subtree of e. As above, it can be shown that, at this moment (again, this is just after
Step 1 in the processing of edge e), g is still in the subtree of e. Let f be the child of e,
such that g is in the subtree of f . Obviously, the first and fourth claims hold, whereas the
fifth claim does not apply to f . The second claim follows from Lemma 14.5.10. Property
P.4 in the invariant implies that the third claim holds. It remains to prove the sixth claim.
Since e′ has been nulled out by g, e′ is an edge of the non-lateral graph of g. Hence,
if f = g, the sixth claim holds. If f �= g, then, by Lemma 14.5.10, PDg is completely
contained in one of the heads of PDf . If PDg is not in the head of PDf containing the
non-lateral graph of f , then g cannot be in the subtree of f . From this, it follows that also
in this case, the sixth claim holds.

The edge ϕ(e′): Let e′ be an arbitrary edge in PN , and consider the child f of e

that has the properties stated in Lemma 14.6.2. We denote this edge f by ϕ(e′).

Let f be a child of e, and consider two distinct edges e′ and e′′ of PN , such that
ϕ(e′) = ϕ(e′′) = f . In general, it will not be the case that e′′′ ∈ PN and ϕ(e′′′) = f , for
every edge e′′′ on the subpath of P joining e′ and e′′. We will show, however, that it is
possible to choose the path P , such that this property does hold.

As before, we start with an arbitrary path P in Gp between p and some point on one
of the flat faces of the pseudo-head PHp. We will modify this path, such that the property
mentioned above holds.

Starting at the endpoint p, we follow P until we reach the first edge e′
1, which is

contained in PN . Let f = ϕ(e′
1), and let e′

2 be the last edge on P for which e′
2 ∈ PN and

ϕ(e′
2) = f . By the sixth claim in Lemma 14.6.2, e′

1 and the non-lateral graph of f are
not disjoint, as are e′

2 and the non-lateral graph of f . Let x be an endpoint of e′
1 that is a

vertex of the non-lateral graph of f , and let y be an endpoint of e′
2 that is a vertex of the

non-lateral graph of f . The non-lateral graph of f contains a path, say Pxy , between x and

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

280 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

y. In P, we replace the subpath between x and y by the path Pxy . We denote the resulting
path by P again. Observe that this modifies the set PN . The new path P has the following
property: It consists of an initial portion, none of whose edges are in PN . Then, it consists
of a portion, all of whose edges e′ are in PN and satisfy ϕ(e′) = f . The remaining portion
of P has not been modified yet, but none of its edges e′ satisfy e′ ∈ PN and ϕ(e′) = f .
We now follow this remaining portion of P until we reach the first edge that is contained
in PN , and modify P as above. We continue making these modifications, until we obtain
a path P , which satisfies the property in the following lemma.

Lemma 14.6.3. There exists a path P in Gp between p and some point on one of the flat
faces of the pseudo-head PHp, for which the following property holds: Let f be a child
of e, and let e′ and e′′ be two distinct edges of PN , such that ϕ(e′) = ϕ(e′′) = f . Then, for
every edge e′′′ on the subpath of P joining e′ and e′′, we have e′′′ ∈ PN and ϕ(e′′′) = f .

The charging path P , the subset EP of E, and the potential �P of P : We
choose a path P in Gp between p and some point on one of the flat faces of the
pseudo-head PHp, that satisfies the property in Lemma 14.6.3. We will refer to
P as the charging path for edge e. We define

EP := {ϕ(e′) : e′ ∈ PN }.
In words, EP is the set of children f of e, such that

1. some edge stored in the subtree of f has nulled out at least one edge of P ∩ T
or

2. some edge stored in the subtree of f is on the charging path P .

We define

�P :=
∑

e′∈P∩T

(
�R(e′) + �V (e′)

)+
∑
f ∈EP

�D(f).

In the following subsections, we will show that �P ≥ (3a + sin θ)|e|. Since �′
D(e) ≥

�P − a|e|, this will imply that �′
D(e) ≥ (2a + sin θ)|e|.

Before we can prove that �P ≥ (3a + sin θ)|e|, we need two preliminary results on
sets of intervals.

14.6.4 A digression: two lemmas on intervals

Let I be a set of closed intervals on the real line. We define span(I) to be the union of all
intervals in I, that is,

span(I) :=
⋃
I∈I

I.

For any interval I = [a, b], we denote the length of I by |I |. Thus, |I | = b − a. Observe
that span(I) consists of a collection of pairwise disjoint intervals. The length |span(I)| is
defined to be the sum of the lengths of these intervals.

In this section, we will present two lemmas that allow us to choose a subset I ′ of I, such
that the intervals in I ′ are pairwise disjoint, and |span(I ′)| is proportional to |span(I)|.
Both these lemmas will be used in later subsections.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.6 BOUNDING THE WEIGHT OF NON-LATERAL EDGES 281

Lemma 14.6.4. Let I be a set of closed intervals on the real line. There exists a subset
I ′ of I, such that the intervals in I ′ are pairwise disjoint and |span(I ′)| ≥ |span(I)|/3.

proof The proof is left as an exercise (see Exercise 14.4).

We define the gap between two disjoint intervals I = [a1, b1] and J = [a2, b2], where
b1 < a2, to be the real number a2 − b1.

For real numbers β ′ and δ′, we say that the intervals in the set I are length-grouped
with parameters β ′ and δ′, if for any two intervals I and J in I, with |I | ≤ |J |, we have
|J | ≤ |I |/δ′ or |J | ≥ |I |/β ′.

Lemma 14.6.5. Let β ′ and δ′ be real numbers, such that 0 < β ′ < δ′ < 1, and let I be a
set of closed intervals on the real line that are length-grouped with parameters β ′ and δ′.
There exists a subset I ′ of I, such that the following holds:

1. |span(I ′)| ≥ δ′(1−β ′)
2(1−β ′)+δ′(3−β ′) |span(I)|.

2. Any two distinct intervals I and J in I ′ are disjoint, and the gap between them is larger
than |I |/δ′.

3. Any two intervals I ∈ I ′ and J ∈ I, for which |J | ≥ |I |/β ′, are disjoint.

proof Obviously, we may assume that the set I is nonempty. We present a greedy
algorithm whose output is a set I ′ of intervals satisfying the three requirements.

Step 1: Initialize I0 := I; I ′ := ∅, and k := 0.

Step 2: If I0 = ∅, then the algorithm terminates. Assume that I0 �= ∅. Let Ik be a longest
interval in I0, and let ak and bk be the real numbers such that Ik = [ak, bk]. Let I ′

k be
the set of all intervals J in I0 for which

J ∩ [
ak − (bk − ak)/δ′, bk + (bk − ak)/δ′] �= ∅.

Step 3: For every interval J in I ′
k , add to I ′

k all intervals I ∈ I0 for which |J | ≥ |I |/β ′

and I ∩ J �= ∅. Repeat this step until no more such intervals I can be added
to I ′

k .

Step 4: Set I ′ := I ′ ∪ {Ik}, I0 := I0 \ I ′
k , k := k + 1, and go to Step 2.

We now show that the set I ′ = {I0, I1, . . . , Ik−1} satisfies the three claims in the lemma.
It follows from the algorithm that the second claim holds. The proof of this fact is left as
an exercise; see Exercise 14.5.

To prove the first claim, we first observe that the sets I ′
0, I ′

1, . . . , I ′
k−1 form a partition

of I. Let j be an integer with 0 ≤ j ≤ k − 1, and consider the j -th iteration of the
algorithm. Since Ij is a longest interval in I0, we have, after Step 2,

|span(I ′
j)| ≤ (3 + 2/δ′)|Ij |.

In Step 3, intervals are added to I ′
j , whose span has length at most

2|Ij |
(
β ′ + (β ′)2 + (β ′)3 + · · ·) = 2β ′

1 − β ′ |Ij |.

It follows that after Step 3,

|span(I ′
j)| ≤ (3 + 2/δ′)|Ij | + 2β ′

1 − β ′ |Ij | = 2(1 − β ′) + δ′(3 − β ′)
δ′(1 − β ′)

|Ij |.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

282 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

Therefore,

|span(I ′)| =
k−1∑
j=0

|Ij |

≥ δ′(1 − β ′)
2(1 − β ′) + δ′(3 − β ′)

k−1∑
j=0

|span(I ′
j)|

≥ δ′(1 − β ′)
2(1 − β ′) + δ′(3 − β ′)

|span(I)|,

which proves that the first claim holds.
Finally, we prove that the third claim holds. Let j be an integer with 0 ≤ j ≤ k − 1,

and let J be an interval in I such that |J | ≥ |Ij |/β ′. We have to show that Ij and J are
disjoint. Assume that Ij ∩ J �= ∅. In the j -th iteration of the algorithm, Ij is a longest
interval in I0 and, therefore, J is not in I0 at that moment. Let m be the integer such that
J is deleted from I0 during iteration m. Then m < j and J ∈ I ′

m. But then, in Step 2 or 3
of iteration m, the interval Ij is added to I ′

m, which implies that Ij cannot be chosen in
iteration j . This is a contradiction.

14.6.5 Choosing a subset E′
P of EP

We continue the analysis that will lead to the proof of our claim at the end of Section 14.6.3
that �P ≥ (3a + sin θ)|e|. Recall from Section 14.6.3 that EP is the set of all children f

of e, such that (i) some edge stored in the subtree of f has nulled out at least one edge
of P ∩ T , or (ii) some edge stored in the subtree of f is on the charging path P . In this
section, we show how to pick a subset E′

P of EP that will be used in the proof of the claim
that �P ≥ (3a + sin θ)|e|.

For any closed and bounded subset X of Rd , we define the vertical span of X, denoted
by spanV (X), to be the closed interval that is obtained by projecting X orthogonally onto
the d-th coordinate axis.

Recall from Section 14.6.3 that PN is the set consisting of (i) all edges of P ∩ T that
have been nulled out (as before, this is prior to the processing of edge e), and (ii) all edges
of P \ T . Also, PNN is the set of all edges of P ∩ T that have not been nulled out. By
property P.3 in the invariant, we have �V (e′) = wtV (e′) for every edge e′ in PNN , and
�V (e′) = 0 for every edge e′ in PN ∩ T . First assume that∣∣∣∣∣∣

⋃
e′∈PNN

spanV (e′)

∣∣∣∣∣∣ ≥ (3a + sin θ)|e|.

Then it follows from the definition of �P , that

�P ≥
∑

e′∈P∩T
�V (e′)

=
∑

e′∈PNN

wtV (e′)

=
∑

e′∈PNN

|spanV (e′)|

≥
∣∣∣∣∣∣
⋃

e′∈PNN

spanV (e′)

∣∣∣∣∣∣
≥ (3a + sin θ)|e|,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.6 BOUNDING THE WEIGHT OF NON-LATERAL EDGES 283

which is exactly what we want to show. Hence, from now on, we assume that∣∣∣∣∣∣
⋃

e′∈PNN

spanV (e′)

∣∣∣∣∣∣ < (3a + sin θ)|e|.

Recall that P is a path between p and some point on one of the flat faces of the pseudo-head
PHp. Using Lemma 14.5.7, it follows that∣∣∣∣∣⋃

e′∈P

spanV (e′)

∣∣∣∣∣ ≥ h′|e|/2,

where h′ is the height parameter of the inner-dumbbells. Hence,

h′|e|/2 ≤
∣∣∣∣∣∣
 ⋃

e′∈PN

spanV (e′)

⋃ ⋃
e′∈PNN

spanV (e′)

∣∣∣∣∣∣
≤
∣∣∣∣∣∣
⋃

e′∈PN

spanV (e′)

∣∣∣∣∣∣+
∣∣∣∣∣∣
⋃

e′∈PNN

spanV (e′)

∣∣∣∣∣∣ .
It follows that ∣∣∣∣∣∣

⋃
e′∈PN

spanV (e′)

∣∣∣∣∣∣ > (h′/2 − 3a − sin θ)|e|.

In the rest of the analysis of the non-lateral edges, we do not need the pseudo-dumbbells
any more. All arguments that follow will be based on the (regular) dumbbells only.

Let e′ be an arbitrary edge in PN , and consider the child ϕ(e′) of e that has the
properties stated in Lemma 14.6.2. It follows from the sixth claim in Lemma 14.6.2 that
spanV (e′) ⊆ spanV (Dϕ(e′)). Therefore, we have⋃

e′∈PN

spanV (e′) ⊆
⋃

e′∈PN

spanV (Dϕ(e′)),

which implies that∣∣∣∣∣∣
⋃

e′∈PN

spanV (Dϕ(e′))

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
⋃

e′∈PN

spanV (e′)

∣∣∣∣∣∣ > (h′/2 − 3a − sin θ)|e|.

The sets of intervals, Y and Yspan: We define

Y := {spanV (Dϕ(e′)) : e′ ∈ PN }
and

Yspan := {I ∈ Y : I ⊆ spanV (P)}.
In plain terms, Y contains intervals corresponding to the vertical spans of the
dumbbells of all edges of E that are children of e and that have (i) nulled out
some edge of P ∩ T or (ii) whose subtree contains an edge of P \ T . The set
Yspan contains only those intervals of Y that do not extend beyond the vertical
span of P .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

284 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

Hence, we have

∣∣∣∣∣⋃
I∈Y

I

∣∣∣∣∣ > (h′/2 − 3a − sin θ)|e|.

If e′ is an edge in PN , then, by Lemma 14.6.2, |ϕ(e′)| ≤ β|e| and, therefore,

|spanV (Dϕ(e′))| = wtV (ϕ(e′)) + h|ϕ(e′)| ≤ (1 + h)|ϕ(e′)| ≤ β(1 + h)|e|.

Since e′ is an edge of P , and e′ has a nonempty intersection with the dumbbell Dϕ(e′),
spanV (Dϕ(e′)) has a nonempty intersection with spanV (P). Therefore, we have

∣∣∣∣∣∣
⋃

I∈Yspan

I

∣∣∣∣∣∣ ≥
∣∣∣∣∣⋃
I∈Y

I

∣∣∣∣∣− 4β(1 + h)|e| > (h′/2 − 3a − sin θ − 4β(1 + h))|e|. (14.7)

From now on, we assume that

h′ > 6a + 2 sin θ + 8β(1 + h), (14.8)

implying that the right-hand side in (14.7) is positive. We also assume that

β(1 + h)2 < δ(h + cos θ)2. (14.9)

The following lemma implies that we can apply Lemma 14.6.5 to the set Yspan.

Lemma 14.6.6. The intervals in Yspan are length-grouped with parameters

β ′ := β(1 + h)

h + cos θ

and

δ′ := δ(h + cos θ)

1 + h
.

proof First observe that, because of (14.9), 0 < β ′ < δ′ < 1. Let I1 and I2 be two
distinct intervals in Yspan, and assume that |I1| ≤ |I2|. We have to prove that |I2| ≤ |I1|/δ′

or |I2| ≥ |I1|/β ′.
Let e′

1 and e′
2 be edges in PN , such that I1 = spanV (Dϕ(e′

1)) and I2 = spanV (Dϕ(e′
2)).

Since

|I1| = wtV (ϕ(e′
1)) + h|ϕ(e′

1)|,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.6 BOUNDING THE WEIGHT OF NON-LATERAL EDGES 285

we have

(h + cos θ)|ϕ(e′
1)| ≤ |I1| ≤ (1 + h)|ϕ(e′

1)|.

In a symmetric way, we obtain the inequalities

(h + cos θ)|ϕ(e′
2)| ≤ |I2| ≤ (1 + h)|ϕ(e′

2)|.

Using these inequalities, together with the fact that ϕ(e′
1) and ϕ(e′

2) are length-grouped
with parameters β and δ, the lemma follows.

From now on, we assume that the parameters β ′ and δ′ satisfy the following inequality:

δ′(1 − β ′)
2(1 − β ′) + δ′(3 − β ′)

≥ 1/6. (14.10)

Lemma 14.6.7. There exists a subset Y ′ of Yspan, such that the following properties hold:

1.
∑

I∈Y ′ |I | ≥ (h′ − 6a − 2 sin θ − 8β(1 + h))|e|/12.

2. Each interval in Y ′ is contained in spanV (P).

3. Any two distinct intervals I and J in Y ′ are disjoint, and the gap between them is larger
than |I |/δ′.

4. Any two intervals I ∈ Y ′ and J ∈ Yspan, for which |J | ≥ |I |/β ′, are disjoint.

proof The lemma follows by applying Lemma 14.6.5 and the inequalities in (14.7)
and (14.10) to the set Yspan.

Now, given EP , which was defined to be the set {ϕ(e′) : e′ ∈ PN }, we are ready to
define a subset E′

P as follows:

The subset Y ′ of Yspan and the subset E′
P of EP : Y ′ is the subset of Yspan, as

given by Lemma 14.6.7. We define

E′
P := {ϕ(e′) ∈ EP : e′ ∈ PN and spanV (Dϕ(e′)) ∈ Y ′}.

Intuitively, Y ′ is a subset of disjoint vertical intervals from Yspan that together
cover a “sufficiently large” fraction of the vertical span of P , while leaving
“sufficiently large” gaps between the intervals. The set E′

P is simply the set of
edges whose dumbbells have vertical spans represented in Y ′.

For any edge ϕ(e′) in E′
P , we have

|spanV (Dϕ(e′))| = wtV (ϕ(e′)) + h|ϕ(e′)| ≤ (1 + h)|ϕ(e′)|.

Therefore, ∑
f ∈E′

P

|f | ≥ 1

1 + h

∑
f ∈E′

P

|spanV (Df)|

= 1

1 + h

∑
I∈Y ′

|I |

≥ h′ − 6a − 2 sin θ − 8β(1 + h)

12(1 + h)
|e|. (14.11)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

286 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

If f is an edge in E′
P , then f ∈ EP and, by Lemma 14.6.2, �D(f) ≥ (2a + sin θ)|f |.

Hence, it follows from the definition of �P that

�P ≥
∑
f ∈E′

P

�D(f)

≥ (2a + sin θ)
∑
f ∈E′

P

|f |

≥ (2a + sin θ)
(
h′ − 6a − 2 sin θ − 8β(1 + h)

)
12(1 + h)

|e|.

At this point, it is tempting to choose the parameters in such a way that the quantity
on the right-hand side is at least (3a + sin θ)|e|. For this to be possible, however, h′ has
to be at least 12. This obviously contradicts the requirement that the two heads of any
inner-dumbbell are disjoint. As a result, a more refined analysis is needed to complete the
proof of the claim that �P ≥ (3a + sin θ)|e|.

14.6.6 Decomposing the charging path P

If f is an edge of E′
P , then, by the definition of E′

P , we have spanV (Df) ∈ Y ′, and there is
at least one edge e′ in PN , such that f = ϕ(e′). Also, by the sixth claim in Lemma 14.6.2,
e′ is contained in the dumbbell Df .

The edge e′
f in PN , the subpath Pf of P , and the subset Ef of EP : For each

edge f of E′
P , we define the following:

1. e′
f is a fixed edge of PN , such that f = ϕ(e′

f).

2. Pf is the subpath of the charging path P that contains e′
f and whose vertical

span is equal to spanV (Df).

3. Ef is the set of children g of e, such that

(a) spanV (Dg) ∈ Yspan (i.e., the dumbbell Dg does not extend beyond the vertical
span of P) and

(b) g = ϕ(e′) for some edge e′ of Pf that is contained in PN .

The subpath Pf is illustrated in Figure 14.4 for the case when f �= e′
f . Observe that,

by the second claim in Lemma 14.6.7, spanV (Df) ⊆ spanV (P) and, thus, Pf exists.
If g ∈ Ef , then (i) some edge in the subtree of g has nulled out at least one edge e′ of

Pf ∩ T , or (ii) some edge e′ in the subtree of g is an edge of Pf . Observe that f ∈ Ef ,
because e′

f is an edge of Pf . Also, Ef ⊆ EP .

Lemma 14.6.8. Let f1 and f2 be two distinct edges in E′
P . Then, the paths Pf1 and Pf2

are disjoint, and the sets Ef1 and Ef2 are disjoint.

proof Since spanV (Pf1) = spanV (Df1) ∈ Y ′ and spanV (Pf2) = spanV (Df2) ∈ Y ′, it
follows from Lemma 14.6.7 that the vertical spans of Pf1 and Pf2 are disjoint. There-
fore, the paths Pf1 and Pf2 are disjoint as well.

To prove the second claim, assume that Ef1 ∩ Ef2 �= ∅. Let g be an edge in the
intersection of Ef1 and Ef2 . Since f1 and f2 are distinct, we have g �= f1 or g �= f2. We
assume without loss of generality that g �= f1.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.6 BOUNDING THE WEIGHT OF NON-LATERAL EDGES 287

•

•

f

•
•e′

f

•
•

•

•

•
•

•

•

•

•

Pf

Figure 14.4: The subpath Pf of the charging path P , for the case when f �= e′
f . The vertical span of Pf

is equal to the vertical span of the dumbbell Df .

Since g ∈ Ef1 , there exists an edge e′ on Pf1 , such that e′ ∈ PN and g = ϕ(e′). By the
sixth claim in Lemma 14.6.2, we have spanV (e′) ⊆ spanV (Dg). Since e′ is an edge on the
path Pf1 , we have

spanV (e′) ⊆ spanV (Pf1) = spanV (Df1).

Hence,

spanV (Df1) ∩ spanV (Dg) �= ∅. (14.12)

In particular, it follows that g �= f2. In a symmetric way, we can prove that

spanV (Df2) ∩ spanV (Dg) �= ∅. (14.13)

Since the edges f1 and g are distinct and length-grouped with parameters β and δ,
there are three possible cases.

Case 1: |g| ≥ |f1|/β.
First observe that spanV (Df1) ∈ Y ′ and spanV (Dg) ∈ Yspan. Since

|spanV (Dg)| = wtV (g) + h|g| ≥ (h + cos θ)|g| ≥ h + cos θ

β
|f1|

and

|spanV (Df1)| = wtV (f1) + h|f1| ≤ (1 + h)|f1|,
we have

|spanV (Dg)| ≥ |spanV (Df1)|/β ′,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

288 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

where β ′ is as in Lemma 14.6.6. This, together with (14.12), contradicts the fourth property
in Lemma 14.6.7.

Case 2: δ ≤ |f1|/|g| ≤ 1/δ.
It follows from (14.12) and (14.13) that the gap between the intervals spanV (Df1) and

spanV (Df2) is less than or equal to

|spanV (Dg)| ≤ (1 + h)|g|
≤ 1 + h

δ
|f1|

≤ 1 + h

δ(h + cos θ)
|spanV (Df1)|

= |spanV (Df1)|/δ′,

where δ′ is as in Lemma 14.6.6. Since both spanV (Df1) and spanV (Df2) are contained in
Y ′, this contradicts the third property in Lemma 14.6.7.

Case 3: |f1| ≥ |g|/β.
In this case, the gap between the intervals spanV (Df1) and spanV (Df2) is less than or

equal to

|spanV (Dg)| ≤ (1 + h)|g|
≤ β(1 + h)|f1|
≤ β(1 + h)

h + cos θ
| spanV (Df1)|

≤ |spanV (Df1)|/δ′.

As in Case 2, this contradicts the third property in Lemma 14.6.7.

The potential of Pf : For each edge f in E′
P , we define

�f :=
∑

e′∈Pf ∩T

(
�R(e′) + �V (e′)

)+
∑
g∈Ef

�D(g).

It follows from Lemma 14.6.8 and the definition of �P given at the end of Section 14.6.3
that

�P ≥
∑
f ∈E′

P

�f . (14.14)

Let A and B be the real numbers such that spanV (P) = [A, B], and define the interval IP

by

IP := [A + β(1 + h)|e|, B − β(1 + h)|e|].

The subset E′′
P of E′

P : We define

E′′
P := {f ∈ E′

P : spanV (Df) ⊆ IP }.

For any edge f in E′
P , we have, by the definition of E′

P , spanV (Df) ∈ Y ′. Since Y ′ is
a subset of Yspan, it follows from the definition of Yspan that

spanV (Df) ⊆ spanV (P) = [A,B].

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.6 BOUNDING THE WEIGHT OF NON-LATERAL EDGES 289

Also, by Lemma 14.6.2, we have |f | ≤ β|e|. Finally, we observe that

|spanV (Df)| ≤ (1 + h)|f | ≤ β(1 + h)|e|.
Therefore, since the vertical spans of the edges in E′

P are pairwise disjoint, we have∑
f ∈E′′

P

|f | ≥
∑
f ∈E′

P

|f | − 4β(1 + h)|e|. (14.15)

We assume from now on that

h′ > 6a + 2 sin θ + 8β(1 + h) + 48β(1 + h)2, (14.16)

and define the positive real number ξ by

ξ := 12(1 + h)(3a + sin θ)

h′ − 6a − 2 sin θ − 8β(1 + h) − 48β(1 + h)2
. (14.17)

In the next section, we will show that �f ≥ ξ |f |, for each f ∈ E′′
P . Combining this with

(14.11), (14.14), and (14.15), and the fact that E′′
P ⊆ E′

P will imply that

�P ≥
∑
f ∈E′

P

�f

≥
∑
f ∈E′′

P

�f

≥ ξ
∑
f ∈E′′

P

|f |

≥ ξ

∑
f ∈E′

P

|f | − 4β(1 + h)|e|

≥ ξ

(
h′ − 6a − 2 sin θ − 8β(1 + h)

12(1 + h)
− 4β(1 + h)

)
|e|

= (3a + sin θ)|e|.

14.6.7 The analysis of �f

In this section, we fix an edge f in E′′
P . Thus, f ∈ E′

P and spanV (Df) ⊆ IP . We will
prove that �f ≥ ξ |f |. Recall from the previous subsection that this suffices to complete
the proof of Lemma 14.6.1.

Recall the set Ef that was defined in the beginning of Section 14.6.6. Also, recall that,
for any edge e′ of PN , ϕ(e′) denotes the edge of E (which is a child of e in the nesting
tree) that has the properties stated in Lemma 14.6.2.

Lemma 14.6.9. Let g be a child of e, let e′ be an edge on the path Pf , and assume that
e′ ∈ PN and ϕ(e′) = g. Then, g ∈ Ef .

proof We have to show that spanV (Dg) ∈ Yspan. It follows from Lemma 14.6.2 that
spanV (e′) ⊆ spanV (Dg) and |g| ≤ β|e|. Since

spanV (e′) ⊆ spanV (Pf) = spanV (Df),

we have spanV (Df) ∩ spanV (Dg) �= ∅. Observe that

|spanV (Dg)| ≤ (1 + h)|g| ≤ β(1 + h)|e|.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

290 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

This, together with the fact that spanV (Df) ⊆ IP , implies that spanV (Dg) ⊆ spanV (P).
Since spanV (Dg) ∈ Y (which holds because e′ ∈ PN), it follows that spanV (Dg)
∈ YSpan.

Our proof of the claim that �f ≥ ξ |f | is by contradiction. Hence, from now on, we
assume that �f < ξ |f |.

Intuition: We assume that �f < ξ |f |. Then, the path Pf must pass through
dumbbells that have nulled out large portions of it. Since Pf is sufficiently close
to the edge f , the edges corresponding to these very same dumbbells contradict
the leapfrog property.

Let x and y be arbitrary vertices of the path Pf , and let Q be the subpath of Pf between
x and y. We partition Q into subpaths in the following way. Follow the path Q from x to
y, and let e′

1 be the first edge that is in PN . Let g1 be the child of e such that ϕ(e′
1) = g1.

In other words, g1 is the child of e such that (i) e′
1 has been nulled out by some edge in the

subtree of g1 (this is the case if e′
1 is an edge of T) or (ii) e′

1 is stored in the subtree of g1

(this is the case if e′
1 is an edge of Q \ T ; in this case, e′

1 may be equal to g1). Let x1 be
the first vertex of e′

1, which is reached when following Q from x to y, and let R1 be the
(possibly empty) subpath of Q between x and x1. Let Q1 be the maximal subpath of Q,
having the property that for each edge e′ of Q1, e′ ∈ PN and ϕ(e′) = g1. Observe that, by
Lemma 14.6.3, Q1 is well-defined. The vertex x1 is an endpoint of Q1; let y1 be the other
endpoint of this subpath. By Lemma 14.6.2, Q1 is completely contained in the dumbbell
Dg1 . Also, by Lemma 14.6.3, no edge e′ on the subpath of Q between y1 and y satisfies
e′ ∈ PN and ϕ(e′) = g1.

Next, follow the path Q from y1 to y, and let e′
2 be the first edge that is in PN . Let

g2 be the child of e, such that ϕ(e′
2) = g2. Observe that g2 �= g1. Let x2 be the first

vertex of e′
2 that is reached when following Q from y1 to y, and let R2 be the (possibly

empty) subpath of Q between y1 and x2. Let Q2 be the maximal subpath of Q, having
the property that for each edge e′ of Q2, e′ ∈ PN and ϕ(e′) = g2. This subpath Q2 has
x2 as an endpoint; let y2 be the other endpoint. Continuing in this way, we obtain a
partition

Q = R1Q1R2Q2 . . . Rm−1Qm−1Rm

of Q into subpaths, and sequences x1, . . . , xm, y0, . . . , ym−1, e′
1, . . . , e

′
m−1, and

g1, . . . , gm−1, where y0 = x and xm = y, such that the following properties hold:

1. For each i with 1 ≤ i ≤ m, Ri is a (possibly empty) subpath between yi−1 and xi , and no
edge on this subpath is in PN .

2. For each i with 1 ≤ i ≤ m − 1, gi is a child of e, and Qi is a subpath between xi and yi .
This subpath contains the edge e′

i , and for each edge e′ on Qi , e′ ∈ PN and ϕ(e′) = gi .
By Lemma 14.6.3, Qi is well-defined and, by Lemma 14.6.2, Qi is completely contained
in the dumbbell Dgi

.

3. The edges g1, . . . , gm−1 are pairwise distinct and, by Lemma 14.6.9, are all contained
in Ef .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.6 BOUNDING THE WEIGHT OF NON-LATERAL EDGES 291

Denoting the radial distance between any two points p and q in Rd by |pq|R , we apply
the triangle inequality and obtain

|xy|R ≤
m∑

i=1

|yi−1xi |R +
m−1∑
i=1

|xiyi |R

≤
m∑

i=1

∑
e′∈Ri

wtR(e′) +
m−1∑
i=1

|xiyi |R.

Consider any index i with 1 ≤ i ≤ m − 1. Since xi and yi are both in the dumbbell
Dgi

, we have |xiyi |R ≤ (2a + sin θ)|gi |. Moreover, since gi is a child of e, we have
�D(gi) ≥ (2a + sin θ)|gi |. We next observe that for each i with 1 ≤ i ≤ m, and for each
edge e′ on Ri , we have wtR(e′) = �R(e′), because e′ is not contained in PN . It follows that

|xy|R ≤
∑

e′∈Q∩T
�R(e′) +

m−1∑
i=1

�D(gi) ≤ �f < ξ |f |. (14.18)

Let pf and qf be the endpoints of the edge f , where pf is below qf along the d-th
coordinate axis. Recall that e′

f is a representative edge on the path Pf , such that e′
f ∈ PN

and f = ϕ(e′
f). Moreover, e′

f is contained in the dumbbell Df . We may assume without
loss of generality that the head Hpf

of Df contains an endpoint of e′
f .

We choose vertices x and y on the path Pf , such that |pf x|R and |pf y|R are minimum
and maximum, respectively. Since Hpf

contains an endpoint of e′
f , we have |pf x|R ≤

a|f |. Therefore,

|pf y|R ≤ |pf x|R + |xy|R < (a + ξ)|f |. (14.19)

Let Cf be the hypercylinder with radius (a + ξ)|f |, whose axis is the line through pf

that is parallel to the d-th coordinate axis, and whose vertical span is equal to the vertical
span of Df . Then the path Pf is completely contained in Cf . The following lemma states
that every edge in Ef \ {f } is significantly shorter than f , provided that the parameter µ

is chosen sufficiently large.

Lemma 14.6.10. Let g be an edge in Ef \ {f }. If

µ ≥ (a + 1 + h/2)(1 + 1/δ) + (ξ + sin θ)/δ, (14.20)

then |g| ≤ β|f |.

proof Since the edges of E are length-grouped with parameters β and δ, we have (i)
|g| ≥ |f |/β, (ii) δ ≤ |f |/|g| ≤ 1/δ, or (iii) |f | ≥ |g|/β.

Since f ∈ E′′
P , which is a subset of E′

P , the definition of E′
P implies that spanV (Df) ∈

Y ′. Also, by the definition of the set Ef , we have spanV (Dg) ∈ Yspan (i.e., the dumbbell’s
vertical span does not extend beyond that of P), and g = ϕ(e′

g) for some edge e′
g of Pf

that is contained in the set PN . By Lemma 14.6.2, we have

spanV (e′
g) ⊆ spanV (Dg).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

292 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

Since e′
g is an edge on Pf , we have

spanV (e′
g) ⊆ spanV (Pf) = spanV (Df).

It follows that the intersection of the vertical spans of Df and Dg is nonempty. Therefore,
by the fourth property in Lemma 14.6.7, we have

|spanV (Dg)| < |spanV (Df)|/β ′.

A simple calculation shows that |g| < |f |/β. Hence, (i) above does not hold.
Assume that (ii) holds. Let z be one of the endpoints of e′

g , and let pg be the lower
(along the d-th coordinate axis) endpoint of g. Since z is a vertex of Pf (which is contained
in the hypercylinder Cf), we have

|pf z| < (a + ξ + 1 + h/2)|f |.
Since z is in one of the heads of Dg, we have

|pgz| ≤ (a + sin θ + 1 + h/2)|g|.
If |f | ≤ |g|, then, since |g| ≤ |f |/δ,

|pf pg| ≤ |pf z| + |zpg|
< ((a + 1 + h/2)(1 + 1/δ) + ξ + (sin θ)/δ) |f |
≤ µ|f |,

contradicting the fact that f and g are base-separated with parameter µ. Therefore, (ii)
does not hold. If |g| ≤ |f |, then in a similar way, using the fact that |f | ≤ |g|/δ, we
obtain the inequality |pf pg| < µ|g|, which again contradicts the fact that f and g are
base-separated with parameter µ. Thus, also in this case, (ii) does not hold, implying that
(iii) must hold.

Let Af and Bf be the real numbers such that spanV (Df) = [Af , Bf], and define the
interval If by

If := [Af + h|f |, Bf − h|f |]. (14.21)

Thus, If is the vertical gap between the two heads of the dumbbell Df .

The subpath Qf of Pf : We choose a subpath Qf of Pf such that spanV (Qf) =
If .

The subpath Qf is illustrated in Figure 14.5. After adding the appropriate Steiner
points to Qf , we choose subpaths Q1

f , Q2
f , . . . , Q	

f of Qf , having the following four
properties:

1. The interiors of the vertical spans of these subpaths are pairwise disjoint.

2.
⋃	

j=1 spanV (Qj

f) = spanV (Qf).

3. For each j with 1 ≤ j ≤ 	, the subpath Q
j

f is monotone along the d-th coordinate axis.

4. For each j with 1 ≤ j < 	, when following Qf (starting at the endpoint whose d-th
coordinate is minimum), the subpath Q

j

f is encountered before Q
j+1
f .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.6 BOUNDING THE WEIGHT OF NON-LATERAL EDGES 293

•

•

f

•
•e′

f

•
•

•1

•2

Qf
•

•
• 3

•
•

4•

•

•

Pf

Figure 14.5: The subpath Qf of the path Pf of Figure 14.4. The vertical span of Qf is equal to the
vertical gap between the heads of the dumbbell Df . The subpath Q1

f has vertices 1 and 2 as its endpoints,
whereas vertices 3 and 4 are the endpoints of the subpath Q2

f .

In plain terms, the collection of subpaths are fragments of Qf that are monotone along the
d-th coordinate axis and monotone along Qf , have disjoint vertical spans, and together
cover the same vertical span as Qf . For the example in Figure 14.5, one Steiner point
(labeled 3) has to be added to Qf , and there are two subpaths that satisfy these properties:
The subpath Q1

f has as endpoints the two vertices labeled 1 and 2, whereas the subpath
Q2

f has as endpoints the two vertices labeled 3 and 4. The points labeled 2 and 3 have
equal d-th coordinates.

First observe that
	∑

j=1

|spanV (Qj

f)| = |spanV (Qf)| ≥ (cos θ − h)|f |.

It follows from the definition of �f and our assumption that

	∑
j=1

∑
e′∈Q

j

f ∩T
�V (e′) ≤

∑
e′∈Qf ∩T

�V (e′) ≤ �f < ξ |f |.

Recall that, for each edge e′ of Qf ∩ T , �V (e′) is equal to wtV (e′) if e′ is not an element
of PN , and zero otherwise. Let Qf,N be the set of all edges of

⋃	
j=1 Q

j

f that are contained

in PN , and let Qf,NN be the set of all remaining edges of
⋃	

j=1 Q
j

f . Then,∣∣∣∣∣∣
⋃

e′∈Qf,NN

spanV (e′)

∣∣∣∣∣∣ ≤
∑

e′∈Qf,NN

wtV (e′) =
	∑

j=1

∑
e′∈Q

j

f ∩T
�V (e′) < ξ |f |

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

294 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

and ∣∣∣∣∣∣∣
	⋃

j=1

⋃
e′∈Q

j

f

spanV (e′)

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋃

e′∈Qf,N

spanV (e′)

∣∣∣∣∣∣+
∣∣∣∣∣∣

⋃
e′∈Qf,NN

spanV (e′)

∣∣∣∣∣∣
<

∣∣∣∣∣∣
⋃

e′∈Qf,N

spanV (e′)

∣∣∣∣∣∣+ ξ |f |.

Since ∣∣∣∣∣∣∣
	⋃

j=1

⋃
e′∈Q

j

f

spanV (e′)

∣∣∣∣∣∣∣ =
	∑

j=1

|spanV (Qj

f)| ≥ (cos θ − h)|f |,

it follows that ∣∣∣∣∣∣
⋃

e′∈Qf,N

spanV (e′)

∣∣∣∣∣∣ > (cos θ − h − ξ)|f |.

The right-hand side in this inequality is positive, if we assume that

ξ < cos θ − h. (14.22)

Let e′ be an arbitrary edge of Qf,N , and consider the edge ϕ(e′). Observe that, by
Lemma 14.6.9, ϕ(e′) ∈ Ef . Moreover, by Lemma 14.6.2, spanV (e′) ⊆ spanV (Dϕ(e′)).
Hence, ⋃

e′∈Qf,N

spanV (e′) ⊆
⋃

e′∈Qf,N

spanV (Dϕ(e′)),

which implies that∣∣∣∣∣∣
⋃

e′∈Qf,N

spanV (Dϕ(e′))

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
⋃

e′∈Qf,N

spanV (e′)

∣∣∣∣∣∣ > (cos θ − h − ξ)|f |.

Hence, if we define

Z := {spanV (Dϕ(e′)) : e′ ∈ Qf,N },
then we have ∣∣∣∣∣⋃

I∈Z

I

∣∣∣∣∣ > (cos θ − h − ξ)|f |.

By Lemma 14.6.4, there exists a subset Z′ of Z, such that the intervals in Z′ are pairwise
disjoint and ∑

I∈Z′
|I | ≥ cos θ − h − ξ

3
|f |.

The subset E′
f of Ef : We define

E′
f := {ϕ(e′) : e′ ∈ Qf,N and spanV (Dϕ(e′)) ∈ Z′}.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.6 BOUNDING THE WEIGHT OF NON-LATERAL EDGES 295

It follows from Lemma 14.6.9 that E′
f ⊆ Ef . Moreover, the vertical spans of the edges

in E′
f are pairwise disjoint, and∑

g∈E′
f

|g| ≥
∑
g∈E′

f

|spanV (Dg)|
1 + h

= 1

1 + h

∑
I∈Z′

|I | ≥ cos θ − h − ξ

3(1 + h)
|f |. (14.23)

Observe that, by the inequality in (14.22), the set E′
f is nonempty.

Lemma 14.6.11. The edge f is not contained in E′
f .

proof Assume that f ∈ E′
f . Let e′ be an edge of Qf,N , such that f = ϕ(e′). Since e′

overlaps at least one of the heads of Df , the vertical span of Qf is not equal to the interval
If . This is a contradiction.

We write E′
f = {g1, g2, . . . , gk}. Since E′

f �= ∅, we have k ≥ 1. In the next section,
we will prove that the sequence f, g1, g2, . . . , gk of edges does not satisfy the t-leapfrog
property. This will contradict our assumption that �f < ξ |f | and, thus, will imply that
�f ≥ ξ |f |.

14.6.8 Contradicting the leapfrog property

For each i with 1 ≤ i ≤ k, let pi and qi be the endpoints of the edge gi , where, along the
d-th coordinate axis, pi is below qi . We may assume without loss of generality that, again
along the d-th coordinate axis, gi is below gi+1, for each i with 1 ≤ i < k. Recall that pf

and qf are the endpoints of f , and that, along the d-th coordinate axis, pf is below qf .
To prove that the edges f, g1, g2, . . . , gk do not satisfy the t-leapfrog property, we will

show that

k∑
i=1

|gi | + t

(
|pf p1| +

k−1∑
i=1

|qipi+1| + |qkqf |
)

≤ t |f |. (14.24)

We denote the vertical distance between any two points p and q in Rd by |pq|V . Recall
that |pq|V is the absolute value of the difference between the d-th coordinates of p and q.

For each i with 1 ≤ i ≤ k, let e′
i be an edge of Qf,N such that gi = ϕ(e′

i). Since
E′

f ⊆ Ef , it follows from Lemmas 14.6.10 and 14.6.11 that |gi | ≤ β|f | for each i with
1 ≤ i ≤ k. Recall from Lemma 14.6.2 that e′

i overlaps at least one of the heads of Dgi
.

Moreover, since e′
i is an edge on the path Qf , we have spanV (e′

i) ⊆ If , where If is defined
in (14.21).

We start by analyzing the vertical distances between the pairs of points appearing on
the left-hand side of (14.24). We claim that, along the d-th coordinate axis, p1 is above
pf . To prove this claim, let x be a point in Rd that is on the top flat face of the (lower)
head Hpf

of Df . Thus, the d-th coordinate of x is equal to the left endpoint of the interval
If . If p1 is above x, then p1 is obviously above pf . Assume that p1 is below x. Then,
since spanV (Dg1) ∩ If �= ∅,

|p1x|V ≤ (1 + h/2)|g1| ≤ β(1 + h/2)|f |.

Since we assume that β < h/(4(1 + h)) (see Section 14.5.5), it follows that

|p1x|V < (h/2)|f | = |pf x|V ,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

296 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

proving that also in this case, p1 is above pf . In a symmetric way, it can be shown that
qk is below qf . Combining this with the fact that the vertical spans of g1, g2, . . . , gk are
pairwise disjoint and sorted along the d-th coordinate axis, it follows that

|pf p1|V +
k−1∑
i=1

|qipi+1|V + |qkqf |V

= |pf p1|V + |p1qk|V −
k∑

i=1

|piqi |V + |qkqf |V

= |pf qf |V −
k∑

i=1

|piqi |V

≤ |f | −
k∑

i=1

|gi | cos θ. (14.25)

Next, we analyze the radial distances between the pairs of points appearing on the
left-hand side of (14.24). Let z be one of the endpoints of e′

1. Since z is a vertex of the
path Pf , it follows from (14.19) that |pf z|R < (a + ξ)|f |. Since z is in one of the heads
of Dg1 , we have

|p1z|R ≤ (a + sin θ)|g1| ≤ β(a + sin θ)|f |.

Thus,

|pf p1|R ≤ |pf z|R + |zp1|R < (a + ξ + β(a + sin θ)) |f |. (14.26)

An upper bound on |qkqf |R is obtained in a similar way: Let z′ be one of the endpoints of
e′
k. Then

|qkz
′|R ≤ (a + sin θ)|gk| ≤ β(a + sin θ)|f |

and

|qf z′|R ≤ |qf pf |R + |pf z′|R < |f | sin θ + (a + ξ)|f | = (a + ξ + sin θ)|f |.

Thus,

|qkqf |R ≤ |qkz
′|R + |z′qf |R < (a + ξ + sin θ + β(a + sin θ)) |f |. (14.27)

Finally, we consider the sum
∑k−1

i=1 |qipi+1|R . For each i with 1 ≤ i ≤ k, consider the
maximal subpath of Qf having the property that e′ ∈ PN and ϕ(e′) = gi for all edges e′

on this subpath. (By Lemma 14.6.3, this subpath is well-defined.) Let xi and yi be the
endpoints of this subpath of Qf . Since yi is in one of the heads of the dumbbell Dgi

, we
have

k−1∑
i=1

|qiyi |R ≤ (a + sin θ)
k−1∑
i=1

|gi |.

Similarly, since xi+1 is in one of the heads of Dgi+1 , we have

k−1∑
i=1

|xi+1pi+1|R ≤ (a + sin θ)
k−1∑
i=1

|gi+1|.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.7 BOUNDING THE WEIGHT OF LATERAL EDGES 297

We next claim that
k−1∑
i=1

|yixi+1|R < ξ |f |, (14.28)

which can be proved using an analysis that is similar to the one that we used to prove
(14.18). The proof of (14.28) uses the fact that E′

f ⊆ Ef , and is left as an exercise; see
Exercise 14.6. Thus,

k−1∑
i=1

|qipi+1|R ≤
k−1∑
i=1

(|qiyi |R + |yixi+1|R + |xi+1pi+1|R)

< 2(a + sin θ)
k∑

i=1

|gi | + ξ |f |. (14.29)

The inequalities (14.25), (14.26), (14.27), and (14.29) imply that the left-hand side in
(14.24) is less than or equal to

(1 − t cos θ + 2t(a + sin θ))
k∑

i=1

|gi | + t (1 + 2a + 3ξ + sin θ + 2β(a + sin θ)) |f |.

We assume that

cos θ > 2(a + sin θ) + 1/t, (14.30)

which is equivalent to 1 − t cos θ + 2t(a + sin θ) < 0. This, together with (14.23), implies
that the left-hand side in (14.24) is less than or equal to

(1 − t cos θ + 2t(a + sin θ)) (cos θ − h − ξ)

3(1 + h)
|f |

+ t (1 + 2a + 3ξ + sin θ + 2β(a + sin θ)) |f |,
which is less than or equal to t |pf qf | = t |f |, if

ξ ≤ (t cos θ − 1 − 2t(a + sin θ)) (cos θ − h)

t cos θ − 1 − 2t(a + sin θ) + 9t(1 + h)

− 3t(1 + h)(2a + sin θ + 2β(a + sin θ))

t cos θ − 1 − 2t(a + sin θ) + 9t(1 + h)
. (14.31)

Recall that ξ is defined in (14.17). Assuming that the parameters θ , β, δ, µ, a, and h can
be chosen such that the inequalities in (14.8), (14.9), (14.10), (14.16), (14.20), (14.22),
(14.30), and (14.31), and those given in Section 14.5.5, are satisfied, we have completed
the analysis of the non-lateral edge set E, and, therefore, the proof of Lemma 14.6.1. We
will consider the choice of these parameters in Section 14.8.

14.7 Bounding the weight of lateral edges

In this section, we consider a subset of E (which is the original set of edges that satisfy
the t-leapfrog property) that consists of lateral edges only and that satisfies the properties
mentioned in Section 14.5.5. For ease of notation, we denote this subset by E. We will
denote the set of endpoints of the original edge set by S. We assume without loss of
generality that each edge (p, q) in E makes an angle of at most θ with the d-th coordinate
axis. We also assume that the parameters θ , β, δ, µ, a, and h satisfy the inequalities given

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

298 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

in Section 14.5.5. Recall that a denotes the radius parameter of the dumbbell heads. In
this section we prove the following lemma:

Lemma 14.7.1. Let E be a set of lateral edges satisfying the properties mentioned in
Section 14.5.5, and let T be a minimum spanning tree of the point set S. Then, for an
appropriate choice of the parameters, we have

wt(E) = O

(
1

a
· wt(T)

)
.

Intuition: Lemma 14.7.1 will be proved by “processing” the edges of E in a
bottom-up fashion. We will show that the length of every edge e = (p, q) of
the lateral set E can be charged to the radial components of the weights of the
portion of T that is in the head PHp of the pseudo-dumbbell PDe.

Surprisingly, the analysis of the lateral set E does not use the fact that the edges satisfy
the leapfrog property. Instead, the entire analysis is based on the so-called Sparse Ball
Theorem (Theorem 14.10.3), which states a basic local property of Steiner minimum trees.
A precise statement and proof of this theorem will be given in Section 14.10.

In the next section, we will describe the main properties that are maintained during the
processing of the edges of E.

14.7.1 The invariant Q
During the processing of the edges of the lateral edge set E, the minimum spanning tree
T will be modified. From now on, T will always refer to the minimum spanning tree of
the point set S, whereas T ′ will denote the current tree. Thus, before any edges of E have
been processed, T and T ′ are equal. Recall that we have introduced Steiner vertices at
all locations where T pierces the boundaries of the heads of the pseudo-dumbbells of the
edges in E. During the processing, some points of S will not be vertices of T ′. Also, T ′

will contain Steiner vertices.
We denote by W the total weight of all edges in E that have been processed. As before,

we use |pq|R and |pq|V to denote the radial and vertical distances, respectively, between
any two points p and q in Rd . Also, wtR(T) and wtR(T ′) denote the sum of the radial
weights of all edges in T and T ′, respectively.

During the processing of the edges in E, the following invariant Q will be maintained:

Q.1: T ′ is a tree.

Q.2: There exists a real constant α (that depends only on the dimension d) with 0 < α < 1,
such that

wtR(T) ≥ wtR(T ′) +
(

αa′ − sin θ − 6aβ

1 − β

)
W.

Note that the parameters a, a′, β, and θ are as described in Section 14.5.5.

Q.3: For every edge f in E that has not been processed and for each endpoint x of f ,
there exists a point υ(x) in S, such that the following three properties hold:

Q.3.1: υ(x) is a vertex of T ′.
Q.3.2: υ(x) is in the head PHx of the pseudo-dumbbell PDf .

Q.3.3: If υ(x) �= x, then there exists an edge g in E, such that

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.7 BOUNDING THE WEIGHT OF LATERAL EDGES 299

Q.3.3.1: g has been processed,

Q.3.3.2: υ(x) is in one of the heads of the pseudo-dumbbell PDg,

Q.3.3.3: |xυ(x)|R ≤ (2a/(1 − β))|g|, and

Q.3.3.4: |xυ(x)|V ≤ (h/(1 − β))|g|.
Assume that υ(x) �= x. Since the edges of E will be processed in nondecreasing order

of their lengths, we have |g| ≤ |f |. Properties Q.3.2 and Q.3.3.2 imply that some head of
PDf has a nonempty intersection with some head of PDg . Thus, by the length-grouping
and nested-dumbbells properties, we have |g| ≤ β|f |, implying that the vertex υ(x) is
close to x.

Before we can state property Q.4 of the invariant, we introduce some notation. Recall
the graphs Gx (for each endpoint x of each edge of E) that were defined in Section 14.5.4.
We define a generalization of these graphs, which, for convenience, we denote by Gx

again. These graphs are based on

1. the tree T ′,
2. the edges of E that have not been processed, and

3. the vertices υ(x) of T ′,

and are defined in the following way: Let f = (x, y) be any edge in E that has not been
processed, and consider one of the heads of the pseudo-dumbbell PDf , say the head PHx .
Consider the graph obtained by adding to T ′ the edges (υ(p), υ(q)), for all edges (p, q) in
E that have not been processed and that are contained in the pseudo-head PHx . We define
Gx to be the maximal connected subgraph of this graph that contains the vertex υ(x) and
that is completely contained in the pseudo-head PHx . We define the graph Gy similarly
with respect to the other endpoint y of f . (Thus, Gy is connected to the vertex υ(y).)

Thus the main difference between the earlier definition of Gx from Section 14.5.4 and
the definition above is the fact that the graph Gx is defined with respect to the current tree
T ′, and with respect to vertices υ(p) instead of p. Furthermore, the graph Gx includes only
edges (υ(p), υ(q)), which are close approximations of unprocessed edges (p, q) from E.

We can now state the fourth property of the invariant:

Q.4: For every edge f in E that has not been processed and for each endpoint x of f , no
vertex of the graph Gx is on any of the flat faces of the head PHx of the pseudo-dumbbell
PDf .

Property Q.3 states that the endpoint x of the edge f (that has not been processed) is
either a vertex of the current tree T ′, or there exists a vertex υ(x) of T ′ that is sufficiently
close to x. Property Q.4 states that all unprocessed edges f remain as lateral edges,
even after the processing of an edge e, and hence will eventually be processed in a
manner similar to edge e. Observe that the notion of being lateral is based on the current
graph Gx .

After all edges of E have been processed, we have W = wt(E). Then, it follows from
property Q.2 that

wtR(T) ≥ wtR(T ′) +
(

αa′ − sin θ − 6aβ

1 − β

)
W

≥
(

αa′ − sin θ − 6aβ

1 − β

)
W

=
(

αa′ − sin θ − 6aβ

1 − β

)
· wt(E).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

300 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

We assume from now on that

αa′ − sin θ − 6aβ

1 − β
≥ 1

2
αa. (14.32)

This implies that

wt(E) ≤ 2

αa
· wtR(T) ≤ 2

αa
· wt(T).

Thus, if we can show how to maintain the invariant during the processing of the edges of
E, then we will have proved Lemma 14.7.1.

Let us verify that the invariant holds before any edge of E has been processed. At that
moment, we have W = 0 and T ′ = T . We define υ(x) := x for each endpoint x of each
edge of E. Since Gx is exactly the graph as defined in Section 14.5.4, the invariant holds
at this moment.

In the next sections, we will show how the invariant can be maintained during the
processing of an edge of E.

14.7.2 Processing one edge of E

Let e = (p, q) be a shortest edge in E that has not been processed, and assume that
the invariant holds at this moment. Observe that, by Lemma 14.5.10, each edge f

that is contained in one of the heads of the pseudo-dumbbell PDe has already been
processed.

We fix one endpoint of e, say p, and define T ′
p to be the maximal portion of the

tree T ′ that contains the vertex υ(p) and that is completely contained in the head PHp

of the pseudo-dumbbell PDe. By property Q.3.2, υ(p) is in PHp and, therefore, T ′
p is

well-defined. In what follows, we show that T ′
p can be modified so that it accounts for the

weight of edge e while maintaining the invariant.
Let u1, u2, . . . , uk be the intersections of T ′

p with the boundary of the pseudo-head
PHp. Since T ′

p is a subgraph of Gp, it follows from property Q.4, that all these intersection
points are on the side face of PHp. Since T ′ is a tree (by property Q.1), and υ(p) and
υ(q) are in different heads of PDe (by property Q.3.2), we have k ≥ 1.

We follow the path in the tree T ′ from υ(q) to υ(p), and consider the first element of
{u1, u2, . . . , uk} that is encountered. We assume without loss of generality that this first
element is u1.

Let υ(p)⊥ be the orthogonal projection of υ(p) onto the hyperplane xd = 0, and for
each i with 1 ≤ i ≤ k, let u⊥

i be the orthogonal projection of ui onto this hyperplane. Let
T ′′⊥

p be a Steiner minimum tree of the points υ(p)⊥, u⊥
1 , u⊥

2 , . . . , u⊥
k . Observe that T ′′⊥

p

is contained in Rd−1. Let e
′′⊥ be a longest edge on the path in T ′′⊥

p between υ(p)⊥ and
u⊥

1 . We apply the inverse of the projection to the tree T ′′⊥
p to obtain a Steiner tree T ′′

p .
Formally, T ′′

p is a Steiner tree of the points υ(p), u1, u2, . . . , uk, such that

1. the orthogonal projection of T ′′
p onto the hyperplane xd = 0 is equal to T ′′⊥

p , and

2. T ′′
p is completely contained in the head PHp of the pseudo-dumbbell PDe.

Finally, we denote by e′′ the edge of T ′′
p , whose orthogonal projection onto the hyperplane

xd = 0 is equal to e
′′⊥.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.7 BOUNDING THE WEIGHT OF LATERAL EDGES 301

The processing of edge e consists of performing the following three steps:

Step 1: In the tree T ′, replace the portion T ′
p by the tree T ′′

p .

Step 2: Add the edge (υ(p), υ(q)) to the tree resulting from Step 1.

Step 3: Delete the edge e′′ from the graph resulting from Step 2.

Intuition: Recall that we compare the total weight of the edges in E to the radial
weight of the edges of the minimum spanning tree T ; see property Q.2 in the
invariant. In other words, the vertical components of the weights of the edges
of T are ignored. Since wtR(T ′′

p) ≤ wtR(T ′
p), the tree resulting from Step 1 has

a smaller radial weight than the tree T ′. The edge (υ(p), υ(q)) that is added in
Step 2 is almost vertical and, thus, its radial weight is small. It follows from our
choice of the vertex u1 that the graph resulting from Step 2 contains a cycle that
contains the path in T ′′

p between υ(p) and u1. Therefore, by deleting the edge
e′′ in Step 3, we obtain a tree again. It follows from the Sparse Ball Theorem in
Section 14.10 that the radial weight of e′′ (which is equal to the weight of e

′′⊥)
is proportional to the length of the edge e of E being processed. In other words,
the radial weight of e′′ is used to “pay” for the edge e.

After e has been processed as described above, there may be an edge f in E that has
not been processed yet, such that for one of its endpoints x, the point υ(x) is a vertex of
the tree T ′

p that is replaced in Step 1. In this case, υ(x) will not be a vertex of the tree
that results from Step 3. As we will see later, however, if we redefine υ(x) to be the point
υ(p), then property Q.3 will hold again.

Remark 14.7.2. The point υ(x) only has to be redefined if the old vertex υ(x) is in the
pseudo-head PHp and, thus, x is close to p (as compared to the length of the edge e).
Using the fact that the edges of E satisfy the strong gap property (see Section 14.5.1), and
by choosing the parameters appropriately, we can guarantee that |xp| is large compared
to the length of e. In this way, υ(x) will be equal to x during the entire processing of the
edges of E. We do not consider this, however, because in Section 14.9, we generalize the
proof of the Leapfrog Theorem to the case when the strong gap property holds only for
edges that have approximately the same length. In that case, the vertex υ(x) may change
during the processing of the edges.

We denote by T ′′, the graph that results after applying Steps 1, 2, and 3. As we have
seen above, T ′′ is a tree and, thus, property Q.1 in the invariant holds after e has been
processed. In the following subsections, we will show that properties Q.2, Q.3, and Q.4
also hold at this moment.

14.7.3 Analyzing the radial weight of T ′′

In this section, we will prove that, after edge e = (p, q) has been processed, property Q.2
in the invariant still holds.

We consider the situation just before e is processed. Consider again the intersections
u1, u2, . . . , uk of the portion T ′

p of T ′ with the side face of the head PHp of the pseudo-
dumbbell PDe. Recall that υ(p)⊥, u⊥

1 , u⊥
2 , . . . , u⊥

k denote the orthogonal projections of the

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

302 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

points υ(p), u1, u2, . . . , uk onto the hyperplane xd = 0. We define p⊥ to be the orthogonal
projection of p onto the hyperplane xd = 0.

The following lemma states that the points u⊥
1 , u⊥

2 , . . . , u⊥
k are outside of a ball centered

at υ(p)⊥, whose radius is at least proportional to the length of the edge e. From now on,
we assume that

β <
a′

2a + a′ . (14.33)

Lemma 14.7.3. Let B⊥ be the ball in the hyperplane xd = 0, with center υ(p)⊥ and
radius (

a′ − 2aβ

1 − β

)
|pq|.

Then, none of the points u⊥
1 , u⊥

2 , . . . , u⊥
k are in the interior of B⊥.

proof First observe that, because of (14.33), the radius of B⊥ is positive. Let i be an
index with 1 ≤ i ≤ k. We have to show that

|υ(p)⊥u⊥
i | ≥

(
a′ − 2aβ

1 − β

)
|pq|. (14.34)

By Lemma 14.5.7, the pseudo-head PHp contains the inner-head IHp. The boundary
of this inner-head is contained in a hypercylinder centered at p, having radius a′|pq|, and
whose axis is parallel to the d-th coordinate axis. Since ui is on the side face of PHp, it
follows that |pui |R ≥ a′|pq|. Therefore, we have

a′|pq| ≤ |pui |R = |p⊥u⊥
i | ≤ |p⊥υ(p)⊥| + |υ(p)⊥u⊥

i | = |pυ(p)|R + |υ(p)⊥u⊥
i |.

Hence, if υ(p) = p, then a′|pq| ≤ |υ(p)⊥u⊥
i |, from which (14.34) follows. Assume that

υ(p) �= p. By property Q.3.3 in the invariant, there exists an edge g in E, such that (i)
g has been processed, (ii) υ(p) is in one of the heads of the pseudo-dumbbell PDg , and
(iii) |pυ(p)|R ≤ (2a/(1 − β))|g|. Since, by property Q.3.2, υ(p) is in the head PHp of
PDe, it follows that the pseudo-dumbbells PDe and PDg are not disjoint. Since g has
been processed and e has not been processed, we have |g| ≤ |e|. Then, it follows from the
length-grouping property and Lemma 14.5.5 that |g| ≤ β|e| = β|pq|. Hence,

a′|pq| ≤ |pυ(p)|R + |υ(p)⊥u⊥
i |

≤ 2a

1 − β
|g| + |υ(p)⊥u⊥

i |

≤ 2aβ

1 − β
|pq| + |υ(p)⊥u⊥

i |,

which is equivalent to (14.34).

In the following lemma, we prove that the edge e′′ in Step 3 of the processing of the
edge e has a radial weight that is at least proportional to the length of e.

Lemma 14.7.4. Consider the edge e′′ that is deleted in Step 3 of the processing of the
edge e = (p, q). There exists a real constant α (that depends only on the dimension d),
such that 0 < α < 1 and

wtR(e′′) ≥ α

(
a′ − 2aβ

1 − β

)
|pq|.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.7 BOUNDING THE WEIGHT OF LATERAL EDGES 303

proof Recall from Section 14.7.2, that e
′′⊥ is a longest edge on the path in the tree

T ′′⊥
p between υ(p)⊥ and u⊥

1 , and that e
′′⊥ is the orthogonal projection of e′′ onto the

hyperplane xd = 0. In other words, wtR(e′′) is equal to the length of e
′′⊥.

The tree T ′′⊥
p is a Steiner minimum tree of the points υ(p)⊥, u⊥

1 , u⊥
2 , . . . , u⊥

k . All
points u⊥

i are on the boundary of or outside the ball B⊥ in Lemma 14.7.3; recall that
B⊥ is centered at υ(p)⊥. Then, the Sparse Ball Theorem in Section 14.10 (applied in the
(d − 1)-dimensional space xd = 0) implies that there exists a constant α with 0 < α < 1,
such that the length of e

′′⊥ is at least α times the radius of B⊥. This completes the
proof.

We are now ready to prove that property Q.2 in the invariant is maintained during the
processing of the edge e. Recall that T ′ denotes the tree in property Q.1, just before e is
processed, whereas T ′′ denotes this tree, just after e has been processed. It follows from
Steps 1, 2, and 3 in Section 14.7.2 that

wtR(T ′′) = wtR(T ′) − wtR(T ′
p) + wtR(T ′′

p) + |υ(p)υ(q)|R − wtR(e′′).

Since the orthogonal projection of T ′
p onto the hyperplane xd = 0 is a Steiner tree of the

points υ(p)⊥, u⊥
1 , u⊥

2 , . . . , u⊥
k , and since T ′′⊥

p is a Steiner minimum tree of these points,
we have

wtR(T ′′
p) = wt(T ′′⊥

p) ≤ wtR(T ′
p).

Next we observe that

|υ(p)υ(q)|R ≤ |υ(p)p|R + |pq|R + |qυ(q)|R
≤ |υ(p)p|R + |pq| sin θ + |qυ(q)|R.

An analysis that is similar to the one in the proof of Lemma 14.7.3 shows that

|υ(p)p|R ≤ 2aβ

1 − β
|pq|

and

|qυ(q)|R ≤ 2aβ

1 − β
|pq|.

By combining these inequalities with the lower bound on wtR(e′′) in Lemma 14.7.4 and
the fact that 0 < α < 1, we obtain

wtR(T ′′) ≤ wtR(T ′) +
(

4aβ

1 − β
+ sin θ

)
|pq| − α

(
a′ − 2aβ

1 − β

)
|pq|

≤ wtR(T ′) −
(

αa′ − sin θ − 6aβ

1 − β

)
|pq|. (14.35)

Let W denote the total weight of the edges of E that have been processed, just before
e is processed. Let W ′ denote this quantity just after e has been processed. Thus, W ′ =
W + |pq|. By property Q.2 in the invariant, we have

wtR(T) ≥ wtR(T ′) +
(

αa′ − sin θ − 6aβ

1 − β

)
W.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

304 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

By combining this with the inequality in (14.35), it follows that

wtR(T) ≥ wtR(T ′′) +
(

αa′ − sin θ − 6aβ

1 − β

)
W ′.

Thus, property Q.2 in the invariant is maintained during the processing of the edge e.

14.7.4 Property Q.3 is maintained

To prove that property Q.3 in the invariant is maintained, we choose an edge f in E that
has not been processed (just after e = (p, q) has been processed). Let x be one of the
endpoints of f .

Recall that T ′ denotes the tree in property Q.1, prior to the processing of e, whereas
T ′′ denotes this tree, just after e has been processed. Consider the point υ(x) of S, just
before edge e is processed. If υ(x) is a vertex of the tree T ′′, then obviously, property
Q.3 still holds after e has been processed. Assume that υ(x) is not a vertex of T ′′.
Define

υnew(x) := υ(p)

and

gnew := e.

We will show that, after e has been processed, property Q.3 holds for T ′′, υnew(x), and
gnew.

Obviously, υnew(x) is a point of S that is a vertex of T ′′, that is, Q.3.1 holds. To prove
that Q.3.2 holds, we have to show that υnew(x) is in the head PHx of the pseudo-dumbbell
PDf . That is, we have to show that υ(p) is contained in PHx . Since the invariant holds
before e is processed, υ(x) is contained in PHx . Recall from the way we process the
edge e that each vertex of T ′ that is not a vertex of T ′′ is contained in the head PHp

of the pseudo-dumbbell PDe. Therefore, since υ(x) is a vertex of T ′, but not of T ′′,
υ(x) is contained in PHp. Hence, the pseudo-dumbbells PDf and PDe have a nonempty
intersection. Since f has not been processed, we have |e| ≤ |f |. Then, it follows from
the nested-dumbbells property that PDe is completely contained in the pseudo-head PHx .
Since, by Q.3.2, υ(p) is contained in one of the heads of PDe, it follows that υ(p) is
contained in PHx . Thus, Q.3.2 holds.

It remains to show that property Q.3.3 holds for υnew(x) and gnew. We assume that
υnew(x) �= x. Obviously, gnew has been processed and, thus, Q.3.3.1 holds. Property
Q.3.3.2 follows from the fact that υ(p) is contained in the head PHp of the pseudo-
dumbbell PDe. To prove Q.3.3.3 and Q.3.3.4, there are two cases, depending on whether
or not υ(x) and x are equal. We consider only the case when υ(x) �= x. (The easier case
when υ(x) = x is left as an exercise; see Exercise 14.9.) Since Q.3 holds just before e is
processed, there exists an edge g in E, such that

1. g has been processed (before e is processed),

2. υ(x) is in one of the heads of the pseudo-dumbbell PDg ,

3. |xυ(x)|R ≤ (2a/(1 − β))|g|, and

4. |xυ(x)|V ≤ (h/(1 − β))|g|.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.7 BOUNDING THE WEIGHT OF LATERAL EDGES 305

We have seen above that υ(x) is contained in the head PHp of the pseudo-dumbbell
PDe. We also know from the invariant that υ(p) is contained in PHp. Therefore, using
the fact that the pseudo-head PHp is contained in the head Hp of the dumbbell De, we
have

|υ(x)υnew(x)|R = |υ(x)υ(p)|R ≤ 2a|e|
and

|υ(x)υnew(x)|V = |υ(x)υ(p)|V ≤ h|e|.
Since υ(x) is in the head PHp of PDe and in one of the heads of PDg , the pseudo-
dumbbells PDe and PDg have a nonempty intersection. Since g was processed before e,
we have |g| ≤ |e|. Thus, it follows from the length-grouping property and Lemma 14.5.5,
that |g| ≤ β|e|. By combining the above inequalities, we obtain

|xυnew(x)|R ≤ |xυ(x)|R + |υ(x)υnew(x)|R
≤ 2a

1 − β
|g| + 2a|e|

≤ 2aβ

1 − β
|e| + 2a|e|

= 2a

1 − β
|e|

= 2a

1 − β
|gnew|.

In a similar way, we obtain

|xυnew(x)|V ≤ h

1 − β
|gnew|.

Thus, properties Q.3.3.3 and Q.3.3.4 hold. This completes the proof of our claim that
property Q.3 is maintained during the processing of the edge e.

14.7.5 Property Q.4 is maintained

In this section, we will show that property Q.4 in the invariant is maintained during the
processing of the edge e = (p, q). For any edge that has not been processed, and for any
of its endpoints x, we denote by υ(x) the point of S in property Q.3 of the invariant, prior
to the processing of e. Let υ ′(x) denote this point just after e has been processed. We have
seen in Section 14.7.4 that, if υ ′(x) �= υ(x), then υ ′(x) = υ(p).

Let f be an edge in E that has not been processed (just after e has been processed), and
let x be one of the endpoints of f . We denote the graph in property Q.4 for the point x,
just before e is processed, by Gx . Let G ′

x denote this graph just after e has been processed.
Let P be an arbitrary path in G ′

x between υ ′(x) and some point, say u, on the boundary
of the head PHx of the pseudo-dumbbell PDf . To prove that property Q.4 holds, we have
to show that u is on the side face of PHx . We will show that P can be converted to a
path in Gx between υ(x) and u. This will imply that u is on the side face of PHx , because
property Q.4 holds before e is processed.

Clearly, if P is a path in Gx , we are done. Thus, we assume that P is not a path in Gx .
Then, some portion of P must have a nonempty intersection with the head PHp of the
pseudo-dumbbell PDe. Since |e| ≤ |f |, the nested-dumbbells property implies that PDe

is completely contained in PHx .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

306 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

We consider three types of subpaths of P . The first type is a subpath P ′ that is contained
in the head PHp of the pseudo-dumbbell PDe, and whose endpoints v and w are vertices
of the tree T ′′

p that are on the boundary of PHp. Observe that v and w are on the side
face of PHp. It follows from Step 1 in the processing of e, that the tree T ′

p contains a path
between v and w that is completely contained in PHp.

The second type is a subpath P ′, such that (i) one of its endpoints v is a vertex of
T ′′

p that is on the boundary of PHp, (ii) the last edge on P ′ is (υ ′(y), υ ′(z)), for some
edge (y, z) that is either equal to e or has not been processed, and (iii) the path P ′

minus the last edge is completely contained in the head PHp of the pseudo-dumbbell
PDe. In this case, we have υ ′(y) = υ(p), υ ′(z) = υ(z), and υ ′(z) is not contained in
PHp. It follows from Steps 1 and 2 in the processing of e that the tree T ′

p contains a
path between υ(y) and υ(p), and a path between v and υ(p). Hence, we can convert
P ′ to the concatenation of (i) the path in T ′

p between v and υ(y), and (ii) the edge
(υ(y), υ(z)).

The third type is a subpath P ′ that consists of two edges (υ ′(y1), υ ′(z1)) and
(υ ′(y2), υ ′(z2)), for some distinct edges (y1, z1) and (y2, z2), each of which is either
equal to e or has not been processed, such that υ ′(z1) = υ ′(y2) is contained in PHp. In this
case, we have υ ′(z1) = υ ′(y2) = υ(p), υ ′(y1) = υ(y1), and υ ′(z2) = υ(z2), and υ ′(y1) and
υ ′(z2) are not contained in PHp. It follows from Steps 1 and 2 in the processing of e that
the tree T ′

p contains a path between υ(z1) and υ(p), and a path between υ(y2) and υ(p).
Hence, we can convert P ′ to the concatenation of (i) the edge (υ(y1), υ(z1)), (ii) the path
in T ′

p between υ(z1) and υ(y2), and (iii) the edge (υ(y2), υ(z2)).
Starting with the path P , we convert each subpath that is of one of the three types,

as described above. Each subpath that is not of one any these types remains unchanged.
This results in a path between the points υ(x) and u. This path is, in fact, a path in the
graph Gx . This completes the proof of the claim that property Q.4 is maintained during
the processing of the edge e.

Assuming that the parameters θ , β, δ, µ, a, and h can be chosen such that the inequalities
in (14.32) and (14.33), and those given in Section 14.5.5, are satisfied, we have completed
the analysis of the lateral edge set E, and, therefore, the proof of Lemma 14.7.1. We will
consider the choice of these parameters in the next section.

14.8 Completing the proof of the Leapfrog Theorem

Let t > 1 be a real number, let E be a set of undirected edges in Rd that satisfies the
t-leapfrog property, and let S be the set of endpoints of the edges in E. Let θ , β, δ, µ, a, and
h be real numbers, and let w := (cos θ − sin θ − 1/t)/2. Assume that these parameters
are chosen, such that all inequalities in Section 14.5.5, as well as those in (14.8), (14.9),
(14.10), (14.16), (14.20), (14.22), (14.30), (14.31), (14.32), and (14.33) are satisfied. (Re-
call that ξ is defined in (14.17) and α is a constant that is given by Lemma 14.7.4.)
Then it follows from the results in Section 14.5.5, Lemmas 14.6.1 and 14.7.1,
that

wt(E) = O

(
log(1/β)

aθd−1 log(1/δ)

(
1 + µ

wδ

)d
)

· wt(MST(S)). (14.36)

To complete the proof of the Leapfrog Theorem (Theorem 14.4.1), it remains to choose
the parameters, such that all requirements are satisfied. We claim that this is the case, if

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.9 A VARIANT OF THE LEAPFROG PROPERTY 307

we take β = min(10−4, α/49), δ = 99/100, h = 1/100, µ = 5, a = (t − 1)/(106t), and
θ such that 0 < θ < π/4,

sin θ ≤ min

(
αa/8,

t − 1

200t

)
,

and

cos θ ≥ max

(
91/100, 1 + 1375a

9/1000 − 18a
− 7

9

t − 1

t

)
.

We leave the (tedious) verification of this claim as an exercise (see Exercise 14.11).
If t > 1 and t → 1, then the parameters a, θ , and w are proportional to t − 1. In this

case, since the other parameters β, δ, and µ are constants, the quantity in (14.36) is
proportional to 1/(t − 1)2d . This completes the proof of the Leapfrog Theorem.

14.9 A variant of the leapfrog property

The analysis of algorithm PathGreedy (see Section 1.4) utilizes the Leapfrog Theo-
rem to show that the weight of the edges produced is proportional to the weight of a
minimum spanning tree of the points. However, the cluster-based implementation of this
algorithm, presented in Chapter 15, throws in another complication. Although the output
of algorithm PathGreedy satisfies the leapfrog property, the output of the cluster-based
implementation satisfies the following weaker version of the leapfrog property.

Definition 14.9.1 (Generalized Leapfrog Property). Let t1 and t2 be real numbers, such
that 1 < t1 < t2. A set E of undirected edges in Rd is said to satisfy the (t1, t2)-leapfrog
property, if for every k ≥ 2, and for every sequence {p1, q1}, {p2, q2}, . . . , {pk, qk} of k

pairwise distinct edges of E,

t1|p1q1| <

k∑
i=2

|piqi | + t2

(
|p1p2| +

k−1∑
i=2

|qipi+1| + |qkq1|
)

.

What can we say about the total weight of a set of edges satisfying the generalized
leapfrog property? We claim that the analysis given for the leapfrog property can be used
for this case as well.

Recall that in the first step of our previous analysis, we partitioned the edge set into
near-parallel subsets, see Section 14.5.1. By Lemma 14.2.1, each subset satisfies the strong
w-gap property, for some parameter w that only depends on t and the angle parameter θ .
For the generalized leapfrog property, this does not hold; see Exercise 14.13. Fortunately,
as pointed out in Remark 14.5.3 (see also Remark 14.7.2), it is sufficient to have the
following weaker version of this property:

Lemma 14.9.2. Let t1 and t2 be real numbers, such that 1 < t1 < t2, and let E be
a set of undirected edges that satisfies the (t1, t2)-leapfrog property. Let δ and θ be
real numbers, such that (t2 − t1)/(t2 − 1) < δ < 1, 0 < θ < π/4, and cos θ − sin θ >

(t2 − t1 + δ)/(δt2), and define

w := 1

2
(cos θ − sin θ) − t2 − t1 + δ

2δt2
.

Let {p, q} and {r, s} be two distinct edges in E, such that angle(pq, rs) ≤ θ and |rs| ≤
|pq| ≤ |rs|/δ. Then, the directed edges (p, q) and (r, s) satisfy the strong w-gap property,
that is, |pr| > w|rs| and |qs| > w|rs|.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

308 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

proof Observe that the parameters δ and θ can be chosen such that the requirements
in the statement of the lemma hold, and that w > 0. The proof follows from an analysis
that is similar to the one in the proofs of Lemmas 6.4.1 and 14.2.1. The details are left as
an exercise; see Exercise 14.14.

Theorem 14.9.3 (Generalized Leapfrog Theorem). There exists an absolute constant
φ with 0 < φ < 1, such that the following holds. Let t1 and t2 be real numbers, such that
1 < 1 − φ + φt2 < t1 < t2, let S be a set of points in Rd , and let E be a set of edges,
whose endpoints are from S, and that satisfies the (t1, t2)-leapfrog property. Then,

wt(E) ≤ cdt1t2 · wt(MST(S)),

where MST(S) denotes a minimum spanning tree of S, and cdt1t2 is a real number that
depends only on d, t1, and t2. If t2 > 1 and t2 → 1, then

cdt1t2 = O
(
1/(t2 − 1)2d

)
.

proof A close inspection of the proof of the Leapfrog Theorem reveals that the proof
remains valid, provided that the parameters θ , β, δ, µ, a, and h are chosen in the follow-
ing way: First, all restrictions in Section 14.5.5 are satisfied, except that the inequality
cos θ − sin θ > 1/t is replaced by the inequalities in Lemma 14.9.2; this lemma also
gives the new value for w. Second, all inequalities in (14.8), (14.9), (14.10), (14.16),
(14.20), (14.22), (14.32), and (14.33) are satisfied. Third, the inequality in (14.30) is
replaced by

cos θ > 2(a + sin θ) + 1/t2.

Finally, in order to contradict the (t1, t2)-leapfrog property, as we did in Section 14.6.8,
we obtain

k∑
i=1

|gi | + t2

(
|pf p1| +

k−1∑
i=1

|qipi+1| + |qkqf |
)

≤ (1 − t2 cos θ + 2t2(a + sin θ)) (cos θ − h − ξ)

3(1 + h)
|f |

+ t2 (1 + 2a + 3ξ + sin θ + 2β(a + sin θ)) |f |,

which is less than or equal to t1|f |, if

ξ ≤ 3t1(1 + h) + (t2 cos θ − 1 − 2t2(a + sin θ)) (cos θ − h)

9t2(1 + h) + t2 cos θ − 1 − 2t2(a + sin θ)

− 3t2(1 + h) (1 + 2a + sin θ + 2β(a + sin θ))

9t2(1 + h) + t2 cos θ − 1 − 2t2(a + sin θ)
.

This inequality for ξ replaces the one in (14.31). Observe that the definition of ξ in (14.17)
remains the same.

All these requirements are satisfied, if we take φ = 233/303, β = min(10−4, α/49),
δ = 99/100, h = 1/100, µ = 5,

a = min

(
t2 − 1

106t2
,
t1 − (1 − φ) − φt2

105t2

)
,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.10 THE SPARSE BALL THEOREM 309

and θ such that 0 < θ < π/4, cos θ > 91/100,

sin θ ≤ min

(
αa/8,

t2 − 1

200t2

)
,

cos θ − sin θ >
t2 − t1 + δ

δt2
,

cos θ > 1/100 + 2/106 + (
1 − 1/100 − 2/106

)
/t2,

and

cos θ ≥ 1 + 1375a

9/1000 − 18a
− 7

9

t2 − 1

t2
+ 101

30

t2 − t1

t2
.

If t2 > 1 and t2 → 1, then the parameters a, θ , and w are proportional to t2 − 1. Details
are left as an exercise; see Exercise 14.15.

14.10 The Sparse Ball Theorem

A crucial ingredient in Section 14.7.3 is the following capsuled property of a Steiner
minimum tree T of a set S of n ≥ 2 points:

Basic Idea: Let p be an element of S, and let B be a ball centered at p, such
that B does not contain any other point of S. Consider the portion of T that is
inside B and that is connected to p. Then, every path in this portion that starts
at p and ends at some point on the boundary of B must necessarily contain an
edge whose length is at least proportional to the radius of B.

In this section, we will prove this result, where we assume, without loss of generality,
that p is the origin. Before we give a precise statement of this result, we mention some
basic properties of Steiner minimum trees.

Lemma 14.10.1. Let S be a set of n points in Rd , and let T be a Steiner minimum tree
of S. The following properties hold:

1. The degree in T of every Steiner point is equal to 3.

2. The degree in T of every point of S is less than or equal to 3.

3. T contains at most n − 2 Steiner points.

Lemma 14.10.2. Let R > 0 be a real number, and let S be a set of n points in Rd that
are contained in a ball of radius R. If n ≥ 2d , then the weight of a Steiner minimum tree
of S is less than or equal to

8Rn1−1/d .

proof The proof is left as an exercise; see Exercise 14.17. Observe that the lemma,
with a larger constant, also follows from Exercise 6.3.

We introduce the following notation, where R is an arbitrary positive real number:

� S denotes a set of n points in R
d that contains the origin,

� T denotes a Steiner minimum tree of S,
� B(R) denotes the ball with radius R that is centered at the origin,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

310 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

� T (R) denotes the portion of T within B(R) that is connected to the origin (observe that,
since T is clipped at the boundary of B(R), T (R) is not exactly a subtree of T),

� s(R) denotes the number of Steiner points of T (R), and
� b(R) denotes the number of intersections of T (R) with the boundary of B(R).

Theorem 14.10.3 (Sparse Ball Theorem). Let S be a set of n points in Rd , such that the
origin is an element of S. Let R and r be real numbers, such that R > r > 0. Assume that
the origin is the only point of S that is contained in B(R). Let

κ := max

(
2223d

, 22

2R

(R−r) log d
d−1

)
.

Then, the following are true:

1. s(r) ≤ κ .

2. Every path in T (r) between the origin and some point on the boundary of B(r) contains
an edge of length at least r/(κ + 1).

If r is a constant fraction of R, then κ is bounded by a constant that depends only on
the dimension d. In this case, the theorem implies that every path in T (R) between the
origin and some point on the boundary of B(R) contains an edge whose length is �(R).

We first show that the second claim in this theorem follows from the first claim. Indeed,
consider any path P in T (r) between the origin and some point on the boundary of B(r).
Then the length of P is greater than or equal to r . On the other hand, the number of edges
on P is less than or equal to κ + 1. Therefore, P must contain an edge whose length is
greater than or equal to r/(κ + 1).

It remains to prove the first claim in the Sparse Ball Theorem. In Section 14.10.1, we
prove a recurrence relation for the function s. In Section 14.10.2, we apply this recurrence
relation to obtain estimates for the number of Steiner points in progressively smaller balls.
In Section 14.10.3, we combine these estimates, which will result in a proof of the first
claim in the Sparse Ball Theorem. In the rest of this section, we assume that the premises
of this theorem are satisfied.

14.10.1 A recurrence relation for the number of Steiner points

In this section, we prove the basic recurrence relation for the function s. This recurrence
states that by shrinking a ball centered at the origin, the number of Steiner points inside
the ball is reduced by a “large” factor.

Lemma 14.10.4. Let x and y be real numbers, such that 0 < x < y ≤ R and s(y) ≥ 2d .
Assume that the boundaries of the balls B(x) and B(y) do not contain any Steiner points
of T . Then,

s(x) ≤ 8y

y − x
(s(y) + 4)1−1/d .

proof Let k be the degree (in T) of the origin. By Lemma 14.10.1, we have 1 ≤ k ≤ 3.
Since the ball B(x) contains only one point of S, and since, again by Lemma 14.10.1, the
degree of every Steiner point is equal to 3, we have b(x) = s(x) + k. Thus,

s(x) < b(x) ≤ s(x) + 3.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.10 THE SPARSE BALL THEOREM 311

In a symmetric way, we obtain the inequality

s(y) < b(y) ≤ s(y) + 3.

We number the intersections of T (x) with the boundary of B(x) arbitrarily from one
to b(x). For each i with 1 ≤ i ≤ b(x), let Ti denote the portion of T (y) \ T (x) that is
connected to the i-th intersection of T (x) with the boundary of B(x). Since the origin is
the only point of S that is in the ball B(y), and since the portion Ti is not connected to the
origin, Ti must intersect the boundary of B(y). It follows that

b(x)∑
i=1

wt(Ti) ≥ b(x)(y − x).

For each j with 1 ≤ j ≤ b(y), let zj be a point of T (y) that is on the boundary of B(y),
and let T ′(y) be a Steiner minimum tree of the origin and the points z1, z2, . . . , zb(y). By
Lemma 14.10.2, we have

wt(T ′(y)) ≤ 8y (b(y) + 1)1−1/d .

We claim that

wt(T ′(y)) ≥ b(x)(y − x).

Assume this is not the case. Then, by replacing, in T , the portions Ti , 1 ≤ i ≤ b(x), by
T ′(y), we obtain a Steiner tree for the point set S, whose weight is less than that of T .
This is obviously a contradiction.

By combining the above inequalities, we get

s(x) ≤ b(x)

≤ 1

y − x
· wt(T ′(y))

≤ 8y

y − x
(b(y) + 1)1−1/d

≤ 8y

y − x
(s(y) + 4)1−1/d .

This completes the proof of the lemma.

Recall the parameters R and r in the Sparse Ball Theorem. If we apply Lemma 14.10.4
with y = R, then we get

s(x) = O

(
1

1 − x/R
n1−1/d

)
,

because, by Lemma 14.10.1, s(R) ≤ n. In words, by shrinking the radius of the ball
centered at the origin, from R to x, the number of Steiner points inside this ball decreases
from n to the product of n1−1/d and a factor that is proportional to 1/(1 − x/R). In the next
section, we define a specific sequence R = X0 > X1 > X2 > . . . of real numbers, having
the property that the values s(Xi) decrease rapidly. As a result, we will have s(X) ≤ κ ,
for some index 	. In fact, the sequence has the property that such an index 	 exists, for
which X	 ≥ r . From this, the first claim in the Sparse Ball Theorem will follow, because
s(r) ≤ s(X) ≤ κ .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

312 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

14.10.2 Applying the recurrence relation

We start by defining the sequence X0, X1, X2, . . . of real numbers, having the properties
mentioned above. Let X0 := R and, for each i ≥ 0 and j ≥ 0, let

ni :=
{

s(Xi) if Xi > 0,
0 if Xi ≤ 0,

xij := Xi − jR

(log log ni)2
,

ki :=
⌊

log log ni

log d
d−1

⌋
,

and

Xi+1 := xiki
.

Observe that these values are defined only if ni ≥ 3, because only then log log ni is
nonzero. We assume that, for each i ≥ 0 and j ≥ 0, the boundary of the ball B(xij) does
not contain any Steiner point of T . If this is not the case, then we perturb xij by an
infinitesimal amount. Thus, we can apply Lemma 14.10.4 to the values xij . The following
lemma follows immediately from the definitions above.

Lemma 14.10.5. Let i ≥ 0 and assume that ni ≥ 3. Then, ni+1 ≤ ni and

Xi − R

log d
d−1 log log ni

≤ Xi+1 < Xi ≤ R.

By applying Lemma 14.10.4, with x = xi,j+1 and y = xij , we obtain the following
result:

Lemma 14.10.6. Let i ≥ 0 and j ≥ 0 be integers, and assume that ni ≥ 3, Xi+1 > 0,
j < ki , and s(xij) ≥ 2d . Then,

s(xi,j+1) ≤ 24−1/d (log log ni)
2
(
s(xij)

)1−1/d
.

proof We first observe that 0 < xi,j+1 < xij ≤ R. Hence, we can apply
Lemma 14.10.4 with x = xi,j+1 and y = xij . Using the facts that Xi ≤ R and s(xij) ≥
2d ≥ 4, we obtain

s(xi,j+1) ≤ 8xij

xij − xi,j+1

(
s(xij) + 4

)1−1/d

= 8

(
Xi

R
(log log ni)

2 − j

) (
s(xij) + 4

)1−1/d

≤ 8(log log ni)
2
(
2 · s(xij)

)1−1/d

= 24−1/d (log log ni)
2
(
s(xij)

)1−1/d
,

proving the lemma.

The next lemma states that the values ni decrease very rapidly.

Lemma 14.10.7. Let i ≥ 0 be an integer, and assume that ni+1 ≥ 2d . Then,

ni+1 ≤ 24d+1(log log ni)
2d .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

14.10 THE SPARSE BALL THEOREM 313

proof Let k = ki . We first observe that ni ≥ ni+1 ≥ 3. Moreover, we have Xi+1 > 0,
because otherwise, ni+1 would be zero. Finally, we have s(xij) ≥ s(xik) = ni+1 ≥ 2d

for each j with 0 ≤ j < k. Therefore, we can apply Lemma 14.10.6 repeatedly for
j = 0, 1, . . . , k − 1, yielding

ni+1 = s(xik) ≤ (
24−1/d (log log ni)

2
)∑k−1

j=0(1−1/d)j
(s(xi0))(1−1/d)k .

Since

k =
⌊

log log ni

log d
d−1

⌋
>

log log ni

log d
d−1

− 1,

we have

(1 − 1/d)k = 2−k log d
d−1 ≤ 2− log log ni+log d

d−1 = d

d − 1
· 1

log ni

.

Hence, since s(xi0) = ni , we have

(s(xi0))(1−1/d)k = 2(1−1/d)k log ni ≤ 2
d

d−1 ≤ 4.

The proof is completed by using the fact that
∑k−1

j=0(1 − 1/d)j ≤ d.

Next, we apply Lemma 14.10.7 to obtain an upper bound on ni in terms of n. For any
integer k ≥ 0, we use log(k) n to denote the k-fold iteration of the logarithm function. (For
k = 0, log(k) n = n.) Recall that

log∗ n = min{k ≥ 0 : log(k) n ≤ 1}.
Lemma 14.10.8. Let 	 ≥ 0 be an integer, such that 2	 ≤ log∗ n − log∗(4d) and n	 ≥ 2d .
Then, for all i with 0 ≤ i ≤ 	,

ni ≤ 26d+1
(
log(2i) n

)2d
.

proof The proof is by induction on i. If i = 0, then log(2i) n = n and, by
Lemma 14.10.1, ni ≤ n. Hence, in this case, the claim obviously holds. Let 0 ≤ i ≤ 	 − 1,
and assume that

ni ≤ 26d+1
(
log(2i) n

)2d
.

Since ni+1 ≥ n	 ≥ 2d , we can apply Lemma 14.10.7, and obtain

ni+1 ≤ 24d+1(log log ni)
2d

≤ 24d+1
(

log log
(

26d+1
(
log(2i) n

)2d
))2d

= 24d+1
(
log

(
6d + 1 + 2d log(2i+1) n

))2d
.

Since 2	 ≤ log∗ n − log∗(4d), we have

log(2i+1) n ≥ log(2	−1) n ≥ 4d ≥ 6 + 1/d.

It follows that

ni+1 ≤ 24d+1
(
log

(
3d log(2i+1) n

))2d

= 24d+1
(
log(3d) + log(2i+2) n

)2d
.

Since 2	 ≤ log∗ n − log∗(4d), we have

log(2i+2) n ≥ log(2) n ≥ log(4d) ≥ log(3d).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

314 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

Thus,

ni+1 ≤ 24d+1
(
2 log(2i+2) n

)2d

= 26d+1
(
log(2i+2) n

)2d
.

This completes the proof.

The next lemma states that ni is bounded from above by a constant if i is approximately
equal to 1

2 log∗ n.

Lemma 14.10.9. Let L := 1
2 log∗ n − 1

2 log∗(4d). Assume that L ≥ 0 and nL ≥ 2d . Then,

nL ≤ 28d2+6d+1.

proof By Lemma 14.10.8, we have

nL ≤ 26d+1 (log(2L) n
)2d = 26d+1

(
log(log∗ n−log∗(4d)) n

)2d

.

Since

log(log∗ n−log∗(4d)) n ≤ 22···
2︸︷︷︸

log∗(4d)

< 24d ,

the lemma follows.

The next lemma gives a sufficient condition for X	 to be “large.”

Lemma 14.10.10. Let 	 ≥ 2 be an integer, and assume that n	−1 ≥ 2d and
log log log n	−2 ≥ 3d. Then,

X	 ≥ R

(
1 − 2

log d
d−1 log log n	−1

)
.

proof Let i be an integer with 0 ≤ i ≤ 	 − 2. It follows from Lemma 14.10.5 and the
assumption that ni+1 ≥ n	−1 ≥ 2d . Therefore, we can apply Lemma 14.10.7, and obtain

log log ni+1 ≤ log log
(
24d+1(log log ni)

2d
)

= log (4d + 1 + 2d log log log ni)

≤ log (3d log log log ni)

= log(3d) + log log log log ni

≤ 2 log log log log ni

≤ 1

2
log log ni.

This inequality implies that, for each i with 0 ≤ i ≤ 	 − 2,

log log ni ≥ 2	−1−i log log n	−1.

Observe that the latter inequality also holds if i = 	 − 1. Therefore,

	−1∑
i=0

1

log log ni

≤ 1

log log n	−1

	−1∑
i=0

(
1

2

)	−1−i

≤ 2

log log n	−1
.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

EXERCISES 315

By combining this inequality with Lemma 14.10.5, we obtain

X	 ≥ X0 −
	−1∑
i=0

R

log d
d−1 log log ni

= R

(
1 −

	−1∑
i=0

1

log d
d−1 log log ni

)

≥ R

(
1 − 2

log d
d−1 log log n	−1

)
.

This completes the proof.

14.10.3 Completing the proof of the Sparse Ball Theorem

We are now ready to prove the first claim in the Sparse Ball Theorem (Theorem 14.10.3).
Recall that

κ = max

(
2223d

, 22

2R

(R−r) log d
d−1

)
.

We have to prove that s(r) ≤ κ . Define L := 1
2 log∗ n − 1

2 log∗(4d). If L ≤ 0, then s(r) ≤
s(R) = n0 ≤ n ≤ 24d ≤ κ . Hence, we may assume that L ≥ 1. There are three possible
cases.

Case 1: n0 ≤ κ .
In this case, we have s(r) ≤ s(R) = n0 ≤ n ≤ κ .

Case 2: There exists an integer 	 with 1 ≤ 	 ≤ L − 1, such that n	−1 ≥ κ and n	 < κ .
If 	 ≥ 2, then it follows from Lemma 14.10.10 that X	 ≥ r . In fact, it is easy to verify

that this inequality also holds if 	 = 1. Therefore, s(r) ≤ s(X) = n	 ≤ κ .

Case 3: nL−1 ≥ κ .
It follows from Lemma 14.10.10 that XL ≥ r . (This is also true if L = 1.) Therefore,

by applying Lemma 14.10.9, it follows that

s(r) ≤ s(XL) = nL ≤ 28d2+6d+1 ≤ κ.

In conclusion, we have completed all the pieces of the proof of the Leapfrog Theorem.
The proof contains a number of useful ideas. First, it includes ideas to break down the
geometric proof into one set of arguments that apply in the vertical direction and a
completely different set of arguments that apply in the radial direction. This turned out
to be useful, even though there was nothing in the problem or the solution that suggested
such a dichotomy. Second, many of the charging arguments used in the proof borrow
ideas from amortized analysis. Finally, the proof of the Sparse Ball Theorem contains
arguments that are of an asymptotic flavor.

Exercises

14.1. Prove the following two claims:

1. The converse of Lemma 14.2.1 is not true: Let w ≥ 0 and t > 1 be real numbers. Give an example

of a set �E of directed edges that are all vertical and satisfy the strong w-gap property, but for which

the corresponding set E of undirected edges does not satisfy the t -leapfrog property.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

316 GEOMETRIC ANALYSIS: THE LEAPFROG PROPERTY

2. Let w > 0 and δ be real numbers, such that 0 < δ < min(1, 1/(2w)), and let (p, q) and (r, s) be

two distinct directed edges, such that δ ≤ |pq|/|rs| ≤ 1/δ. Assume that the set �E = {(p, q), (r, s)}
satisfies the strong w-gap property. Prove that the set E = {{p, q}, {r, s}} of undirected edges

satisfies the t -leapfrog property, for t = δ/(1 − 2wδ).

14.2. Prove Lemma 14.5.2 and the claim made in Remark 14.5.3.

14.3. In Section 14.6.3, we defined the charging path P to be a path in the graph Gp between p

and some point on one of the flat faces of the pseudo-head PHp , that satisfies the conditions in

Lemma 14.6.3. Prove that Gp may contain such a path P that does not satisfy the conditions in

Lemma 14.6.3.

14.4. Prove Lemma 14.6.4.

14.5. Prove the second claim in Lemma 14.6.5.

14.6. Prove inequality (14.28) in Section 14.6.8.

14.7. In Sections 14.6.2–14.6.8, we have proved that the invariantP is maintained during the processing

of any edge e of the non-lateral edge set E. Verify this proof for an edge e that is a leaf in the

original nesting tree for E.

14.8. In Section 14.5.4, we introduced Steiner vertices at all locations where the minimum spanning

tree T pierces the boundaries of the heads of the pseudo-dumbbells. In order to obtain a rigorous

analysis in Section 14.6, more Steiner vertices have to be introduced. Explain which Steiner

vertices have to be introduced, and show that these can be introduced before the processing of

the edges (as explained in Section 14.6.2) starts.

14.9. In Section 14.7.4, we proved properties Q.3.3.3 and Q.3.3.4 for the case when υ(x) �= x. Prove

that these two properties also hold if υ(x) = x.

14.10. In Section 14.5.4, we use the graphs Gp and Gq to define the notion of the edge e = (p, q)
being lateral or non-lateral. Let Tp be the maximum portion of the minimum spanning tree of S that

contains p as a vertex and that is contained in the head PHp of the pseudo-dumbbell PDe. Define

Tq similarly with respect to q. Assume that we define the notion of e being lateral or non-lateral

using the trees Tp and Tq , instead of the graphs Gp and Gq . Prove that (i) the analysis of the

non-lateral edges, as given in Section 14.6, remains valid, but (ii) the analysis of the lateral edges,

as given in Section 14.7, does not remain valid.

14.11. Consider the choice for the parameters θ , β, δ, µ, a, and h, as given in Section 14.8. Prove that

these parameters satisfy all requirements that are needed to complete the proof of the Leapfrog

Theorem.

Hint: The assumption that cos θ ≥ 91/100 implies that 9δ/10 ≤ δ′ ≤ δ and 9β ′/10 ≤ β ≤ β ′,
from which the inequality in (14.10) follows. Prove that

ξ ≤ 25a
2

1000 − 4a
.

The inequality in (14.31) is satisfied if

ξ ≤ 9

110
(cos θ − 1/t) − t − 1

55t
.

14.12. Prove that the Leapfrog Theorem (Theorem 14.4.1) remains valid if we only require that the

inequality

t |p1q1| <

k∑
i=2

|piqi | + t

(
|p1p2| +

k−1∑
i=2

|qipi+1| + |qkq1|
)

holds for every k ≥ 2, and for every sequence {p1, q1}, {p2, q2}, . . . , {pk, qk} of k pairwise distinct

edges, such that |p1q1| ≥ |piqi | for all i with 2 ≤ i ≤ k.

14.13. Let t1, t2, and w be real numbers, such that t2 > t1 > 1 and w > 0. Give an example of four

pairwise distinct points p, q, r , and s in R
2, such that the vectors −→pq and −→rs are parallel, the set

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHIC NOTES 317

E = {{p, q}, {r, s}} satisfies the (t1, t2)-leapfrog property, and the set �E = {(p, q), (r, s)} does

not satisfy the w-gap property.

14.14. Prove Lemma 14.9.2.

14.15. Prove the Generalized Leapfrog Theorem (Theorem 14.9.3).

14.16. Prove that the weight of a Steiner minimum tree for n points in the unit hypercube in R
d is at most

d3/2

d − 1
· n1−1/d

1 − n−1/d
.

14.17. Prove that the weight of a Steiner minimum tree for n points in the unit ball in R
d is at most

2d

d − 1
· n1−1/d

1 − n−1/d
.

Furthermore, if n ≥ 2d and d ≥ 2, the weight is at most

8n1−1/d .

Bibliographic notes

This chapter is largely based on results that appeared in Das, Heffernan, and Narasimhan
[1993] and Das, Narasimhan, and Salowe [1995]. The leapfrog property was introduced
by Das, Heffernan, and Narasimhan [1993]. The Leapfrog Theorem (Theorem 14.4.1)
was also given in the same paper. However, the proof was confined to edges in three-
dimensional space, and only a sketch of the proof was given. The proof provided here is a
modified version of that sketch and includes all the details. The proof for the lateral edges
was modified to use the Sparse Ball Theorem (Theorem 14.10.3, due to Rao and Smith
[1998].

A number of results on Steiner minimum trees were used in this chapter. A proof
of Lemma 14.10.1 can be found in Gilbert and Pollak [1968] and Hwang, Richards,
and Winter [1992]. Bounds on the weights of Steiner minimum trees and minimum
spanning trees in unit hypercubes and unit balls were computed by Few [1955] (see also
Hwang, Richards, and Winter [1992]). The improved versions (see Lemma 14.10.2, and
Exercises 14.16 and 14.17) appeared in Smith [1988] and Rao and Smith [1998].

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15

The Path-Greedy Algorithm

Do not go where the path may lead, go instead where there is no path
and leave a trail.

—Ralph Waldo Emerson

So far, in this book, we have presented two different greedy algorithms to compute a
sparse spanner. In Section 1.4, we presented algorithm PathGreedy, while in Chapter 7,
we presented algorithm GapGreedy.

Algorithm GapGreedy was designed such that its output satisfied the strong gap
property. As a result, the Gap Theorem (Theorem 6.1.2) immediately implied that the
weight of the graph computed by this algorithm was O(log n) times the weight of a
minimum spanning tree of the points. The fact that the graph computed by the gap-greedy
algorithm had a small stretch factor, however, was not obvious.

Algorithm PathGreedy, as presented in Section 1.4, was a simple greedy algorithm
that generalized Kruskal’s minimum spanning tree. After sorting all the pairs of points
based on their distance, the pairs were considered in sorted order. In each iteration, the
decision whether or not to add an edge was made by checking whether there was a “short”
path connecting the endpoints. Because of the condition that was tested, it was obvious
that the output of algorithm PathGreedy had a small stretch factor (see Lemma 1.4.1).
We will often refer to its output as the path-greedy spanner.

No further analysis of algorithm PathGreedy was presented in Section 1.4. It was
not clear whether the algorithm outputs a sparse graph, whether its degree was small,
or whether there were nontrivial bounds on its weight. In this chapter, we address these
questions regarding the analysis of algorithm PathGreedy.

In Section 15.1.1, we show a simple proof that the spanner computed by algorithm
PathGreedy satisfies the strong gap property of Section 6.1. Hence, the degree of each
point is bounded by a constant (and, thus, the spanner only has a linear number of edges),
and the weight of the spanner is O(log n) times the weight of a minimum spanning tree
of the points.

In Section 15.1.2, we prove that for random points in the unit hypercube, the weight of
this spanner is proportional to the weight of a minimum spanning tree of the points, with
high probability, thus providing some evidence that the weight of the spanner output by
algorithm PathGreedy may, in fact, have weight O(1) times the weight of a minimum
spanning tree of the points.

The above results are improved in Section 15.1.3, where we prove that, in fact, for
any point set, the edge set of the spanner output by algorithm PathGreedy satisfies the
leapfrog property of Chapter 14, implying immediately that its weight is proportional to
the weight of a minimum spanning tree of the points.

318

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.1 ANALYSIS OF THE SIMPLE GREEDY ALGORITHM PathGreedy 319

Finally, we tackle the problem of an efficient implementation of algorithm
PathGreedy. The improvements lead us to variants, which we refer to as the
FastPathGreedy and RAMPathGreedy algorithms. The basic version of the path-
greedy algorithm has a high running time, because it explicitly considers each pair of
points. It turns out to be sufficient, however, to consider pairs of points that are connected
by an edge in an initial spanner G′. The improved algorithm computes a path-greedy
spanner G of G′. Hence, by “transitivity,” G is a spanner of the given set of points. In
Section 15.2, we use graph clustering techniques to design a variant of the path-greedy
algorithm called FastPathGreedy with a running time of O(n log2 n/ log log n).

The clustering-based algorithm of Section 15.2 works in the algebraic computation-
tree model. In Section 15.3, we give an O(n log n)–time implementation of an improved
path-greedy algorithm (called RAMPathGreedy) that uses indirect addressing as an
additional operation.

All spanners in this chapter are undirected.

15.1 Analysis of the simple greedy algorithm PathGreedy

Let S be a set of n points in Rd and let t > 1 be a real number. Algorithm
PathGreedy(S, t) (see Section 1.4) starts with a graph G on vertex set S and no edges.
It considers all pairs of distinct points of S in nondecreasing order of their distances. If
{p, q} is the current pair of points being considered, then the algorithm adds the edge
{p, q} to G if the distance between p and q in the current graph G is larger than t |pq|.

15.1.1 Preliminary analysis of the path-greedy spanner

Consider the t-spanner G = (S, E) computed by algorithm PathGreedy(S, t). There
are three questions that come to mind. First, how many edges does the graph G have?
Second, can we prove a nontrivial upper bound on the maximum degree of any vertex of
G? Finally, can we prove a nontrivial upper bound on the total weight of the edges of
G? We will show that we can apply the Gap Theorem (Theorem 6.1.2) to answer these
questions. In order to apply this theorem, we need a set of directed edges. We obtain
such a set by giving each edge of E an arbitrary direction. We denote the resulting set of
directed edges by �E.

Lemma 15.1.1. Let G = (S, E) be the t-spanner computed by algorithm
PathGreedy(S, t). Let θ and w be real numbers, such that 0 < θ < π/4, 0 ≤ w <

(cos θ − sin θ)/2, and t ≥ 1/(cos θ − sin θ − 2w). Let (p, q) and (r, s) be two distinct
edges in the set �E, and assume that angle(pq, rs) ≤ θ . Then, the edges (p, q) and (r, s)
satisfy the strong w-gap property.

proof We will first show that |pr| > w · min(|pq|, |rs|). (In particular, this will imply
that p �= r .) The proof is by contradiction. So assume that |pr| ≤ w · min(|pq|, |rs|).
We may assume without loss of generality that algorithm PathGreedy(S, t) examines
the pair {r, s} before it examines {p, q}. Hence, |rs| ≤ |pq|. By Lemma 6.4.1, we have
|pr| < |pq|, |sq| < |pq|, and

t |pr| + |rs| + t |sq| ≤ t |pq|. (15.1)

Consider the moment when algorithm PathGreedy(S, t) examines the pair {p, q}. At this
moment, edge {r, s} has already been added to E. Also, in case p �= r , the algorithm has

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

320 THE PATH-GREEDY ALGORITHM

already examined the pair {p, r}, and if s �= q, the pair {s, q} has already been examined.
Hence, at this moment, the graph G contains (i) a t-spanner path between p and r , (ii)
the edge {r, s}, and (iii) a t-spanner path between s and q. The concatenation of these is
a path between p and q, and by (15.1), the length of this path is less than, or equal to,
t |pq|. This is a contradiction to the fact that edge {p, q} is added to E.

Since angle(pq, rs) = angle(qp, sr), it follows in a completely symmetric way that
|qs| > w · min(|pq|, |rs|). Hence, we have shown that any two distinct edges in �E satisfy
the strong w-gap property of Definition 6.1.1, provided their angle is at most θ .

We partition the edges of �E into subsets such that any two edges within the same
subset make an angle of at most θ . By Theorem 5.3.3, such a partition exists consisting
of O(1/θd−1) subsets. By Lemma 15.1.1, each subset in this partition satisfies the strong
w-gap property. Observe that this result holds for any choice of θ and w in the given range,
whereas the spanner G depends only on the value of t . Recall that the Gap Theorem
(Theorem 6.1.2) proved a bound on the degree and weight of a set of directed edges
satisfying the w-gap property. Applying this theorem, we obtain the following result:

Theorem 15.1.2. Let S be a set of n points in Rd , let t > 1 be a real number, and
let G = (S, E) be the t-spanner that is computed by algorithm PathGreedy(S, t).
For any two real numbers θ and w with 0 < θ < π/4, 0 ≤ w < (cos θ − sin θ)/2, and
t ≥ 1/(cos θ − sin θ − 2w),

1. the degree in G of each point of S is O(1/θd−1), and

2. if w > 0, the weight of G is

O

(
1

wθd−1
log n

)
times the weight of a minimum spanning tree of S.

As mentioned already, Theorem 15.1.2 holds for any choice of θ and w in the given range.
To obtain the smallest upper bound on the degree of the spanner, we must choose θ as
large as possible, such that cos θ − sin θ ≥ 2w + 1/t . Let w = 0, and write t = 1 + ε,
where ε is positive and close to zero. Then we want to choose θ such that 0 < θ < π/4
and

cos θ − sin θ = 1/t ∼ 1 − ε.

Since ε is small, θ is small as well, and we have

cos θ − sin θ ∼ 1 − θ.

It follows that we can take θ to be proportional to ε = t − 1, and obtain the following
result:

Corollary 15.1.3. Let S be a set of n points in Rd , let t > 1 be a real number, and let G

be the t-spanner that is computed by algorithm PathGreedy(S, t). The degree in G of
each point of S is

O

((
1

t − 1

)d−1
)

.

In Section 6.3, we showed that the maximum weight of a set of directed edges that
satisfy the w-gap property and whose endpoints are in the unit hypercube is given by
cdwn1−1/d (for an appropriate constant cdw, which depends only on d and w). Applying

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.1 ANALYSIS OF THE SIMPLE GREEDY ALGORITHM PathGreedy 321

Theorem 6.3.1 to each of the subsets in the partition of �E defined above, we obtain the
following result:

Theorem 15.1.4. Let S be a set of n points in the d-dimensional unit hypercube [0, 1]d ,
where d ≥ 2, and let t > 1 be a real number. Let G = (S, E) be the t-spanner that
is computed by algorithm PathGreedy(S, t). Let θ and w be arbitrary real numbers
such that 0 < w ≤ 2/

√
d, 0 < θ < π/4, 0 < w < (cos θ − sin θ)/2, and t ≥ 1/(cos θ −

sin θ − 2w). Then

wt(E) = O
(cdw

θd−1
· n1−1/d

)
,

where cdw is given in Theorem 6.3.1.

15.1.2 Probabilistic analysis of the path-greedy spanner

At this moment, we know that the weight of the path-greedy spanner is O(log n) times
the weight of a minimum spanning tree of the point set. In this section, we prove a
probabilistic upper bound for the weight of the path-greedy spanner for the case when the
points are randomly chosen in the unit hypercube [0, 1]d .

For any set S of n points, we denote its minimum spanning tree by MST(S). We know
from Exercise 6.3 that the weight of MST(S) is O(n1−1/d), if all points of S are in the
unit hypercube. In Lemma 15.1.6 below, we prove that this upper bound is tight with high
probability, if the points are chosen independently and uniformly at random from [0, 1]d .
Before we can prove this lemma, we need an estimate for a sum of binomial coefficients.
The binary entropy function H : [0, 1] → R is defined by

H (x) :=
{−x log x − (1 − x) log(1 − x) if 0 < x < 1,

0 if x = 0 or x = 1.

Observe that H is a continuous function. It is also easy to see that 2−H (x) = xx(1 − x)(1−x).

Lemma 15.1.5. For any positive integer n and any real number α with 0 ≤ α ≤ 1/2, we
have

�αn�∑
k=0

(
n

k

)
≤ 2n·H (α).

proof The inequality holds if α = 0, because both sides of the inequality evaluate to
1. So assume that 0 < α ≤ 1/2. Using Newton’s binomial theorem, we get

1 = (α + (1 − α))n

=
n∑

k=0

(
n

k

)
αk(1 − α)n−k

≥
�αn�∑
k=0

(
n

k

)
αk(1 − α)n−k

=
�αn�∑
k=0

(
n

k

)
(1 − α)n

(
α

1 − α

)k

.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

322 THE PATH-GREEDY ALGORITHM

Figure 15.1: Partitioning the unit hypercube into n large hypercubes for the case when d = 2 and n = 4.
Each large hypercube is partitioned into 3d cells. The cells in the centers of the large hypercubes are
black, and all other cells are white.

Since 0 < α ≤ 1/2, we have 0 < α/(1 − α) ≤ 1. Therefore,

1 ≥
�αn�∑
k=0

(
n

k

)
(1 − α)n

(
α

1 − α

)αn

= 2−n·H (α)
�αn�∑
k=0

(
n

k

)
,

which is exactly the claim in the lemma.

Lemma 15.1.6. Let n be such that n1/d is an integer, let S be a set of n points that are
chosen independently and uniformly at random from [0, 1]d . There are constants c > 0
and ρ with 0 < ρ < 1, such that

Pr
(
wt(MST(S)) < c · n1−1/d

) ≤ ρn.

proof We start by partitioning the unit hypercube [0, 1]d into n hypercubes having
sides of length (1/n)1/d . Each of these hypercubes is called a large hypercube. We
further partition each large hypercube into 3d small hypercubes having sides of length
(1/3)(1/n)1/d . We call each of these 3dn small hypercubes a cell. For each large hypercube,
we color the cell that is in its center black. All other cells are colored white. (See Figure 15.1
for an illustration.) Observe that there are exactly n black cells. Also, the distance between
any two points that are in different black cells is at least (2/3)(1/n)1/d . We say that a cell
is empty if it does not contain any point of S; otherwise, the cell is said to be nonempty.

Let α with 0 < α < 1/2 be a constant, whose value will be determined later. Assume
that at least αn black cells are nonempty. Let S ′ be the set of all points of S that are
contained in the black cells. Consider a shortest traveling salesperson tour TSP(S ′) of S ′.
It is clear that

wt(TSP(S ′)) ≥ 2

3

(
1

n

)1/d

αn = 2

3
α · n1−1/d .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.1 ANALYSIS OF THE SIMPLE GREEDY ALGORITHM PathGreedy 323

Then it follows from Exercises 1.6 and 1.7 that

wt(MST(S)) ≥ 1

3
α · n1−1/d .

Hence we have shown that

Pr(at least αn black cells are nonempty)

≤ Pr

(
wt(MST(S)) ≥ 1

3
α · n1−1/d

)
,

which implies that

Pr

(
wt(MST(S)) <

1

3
α · n1−1/d

)
= 1 − Pr

(
wt(MST(S)) ≥ 1

3
α · n1−1/d

)
≤ 1 − Pr(at least αn black cells are nonempty)

= 1 − Pr(at most (1 − α)n black cells are empty)

= Pr(more than (1 − α)n black cells are empty).

Let k be any integer such that (1 − α)n ≤ k ≤ n. We estimate the probability that k black
cells are empty. Since there are

(
n

k

)
possible ways to choose k black cells, and the total

volume of k black cells is equal to k (1/3)d(1/n), we have

Pr(k black cells are empty) ≤
(

n

k

)(
1 − k

(
1

3

)d 1

n

)n

≤
(

n

k

)(
1 − (1 − α)

(
1

3

)d
)n

.

This implies that

Pr

(
wt(MST(S)) <

1

3
α · n1−1/d

)
≤

n∑
k=�(1−α)n�

Pr(k black cells are empty)

≤
n∑

k=�(1−α)n�

(
n

k

)(
1 − (1 − α)

(
1

3

)d
)n

=
(

1 − (1 − α)

(
1

3

)d
)n �αn�∑

k=0

(
n

k

)

≤
(

1 − (1 − α)

(
1

3

)d
)n

2n·H (α)

=
((

1 − (1 − α)

(
1

3

)d
)

2H (α)

)n

,

where the last inequality follows from Lemma 15.1.5.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

324 THE PATH-GREEDY ALGORITHM

We claim that there is a choice for α, such that 0 < α < 1/2 and(
1 − (1 − α)

(
1

3

)d
)

2H (α) < 1. (15.2)

This follows from the observations that (i) the expression on the left-hand side is a
continuous function of α, 0 ≤ α ≤ 1/2, and (ii) for α = 0, this function has value 1 −
(1/3)d , which is strictly less than 1.

Given an α for which (15.2) holds, we complete the proof by defining

ρ :=
(

1 − (1 − α)

(
1

3

)d
)

2H (α),

and c := α/3.

Now we can prove the main result of this section. It states that if the set S is chosen
randomly in the unit hypercube, then with high probability, the weight of the path-greedy
spanner for S is proportional to the weight of MST(S).

Theorem 15.1.7. Let n be such that n1/d is an integer, let S be a set of n points that
are chosen independently and uniformly at random from [0, 1]d , where d ≥ 2, and let
t > 1 be a real constant. Let G = (S, E) be the t-spanner that is computed by algorithm
PathGreedy(S, t). There are constants c′ > 0 and ρ with 0 < ρ < 1, such that

Pr
(
wt(E) ≥ c′ · wt(MST(S))

) ≤ ρn.

proof Since the points of S are contained in the unit hypercube, we know from
Theorem 15.1.4 that

wt(E) ≤ c0 · n1−1/d ,

for some constant c0. Therefore, if wt(E) ≥ c′ · wt(MST(S)), then we have wt(MST(S)) ≤
(c0/c

′) · n1−1/d . Let c and ρ be the constants in Lemma 15.1.6. Then by taking c′ := c0/c,
the claim follows from Lemma 15.1.6.

As a corollary to this theorem, we show that for point sets S that are randomly chosen
in the unit hypercube, the expected weight of the path-greedy spanner for S is proportional
to the weight of MST(S).

Corollary 15.1.8. Let n be such that n1/d is an integer, let S be a set of n points that
are chosen independently and uniformly at random from [0, 1]d , where d ≥ 2, and let
t > 1 be a real constant. Let G = (S, E) be the t-spanner that is computed by algorithm
PathGreedy(S, t). There is a constant c′′ > 0, such that

E

(
wt(E)

wt(MST(S))

)
≤ c′′,

if n is sufficiently large.

proof We start by observing that for any set V of n points in Rd , the weight of the
path-greedy spanner for V is at most equal to n2 times wt(MST(V)). To prove this, let D

denote the diameter of the set V . It is clear that wt(MST(V)) ≥ D. Also, each edge of the

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.1 ANALYSIS OF THE SIMPLE GREEDY ALGORITHM PathGreedy 325

path-greedy spanner has length at most D. Since the spanner has at most n2 edges, the
claim follows.

Let c′ and ρ be the constants in Theorem 15.1.7. Let X denote the event “wt(E) <

c′ · wt(MST(S)),” and let X denote the complement of X. Then, using conditional expec-
tations, we get

E

(
wt(E)

wt(MST(S))

)
= Pr(X) · E

(
wt(E)

wt(MST(S))

∣∣∣∣X)
+ Pr

(
X
) · E

(
wt(E)

wt(MST(S))

∣∣∣∣X)
≤ 1 · c′ + ρn · n2.

Hence, if n is large enough so that ρn · n2 ≤ 1, then we have

E

(
wt(E)

wt(MST(S))

)
≤ c′ + 1,

that is, we can take c′′ := c′ + 1.

15.1.3 Improved weight analysis of the path-greedy spanner

In the previous section, we proved that, with high probability, the weight of the path-
greedy spanner is O(wt(MST(S))), for point sets S that are randomly chosen in the unit
hypercube. In this section, we will prove that this upper bound in fact holds for any point
set.

We start by recalling the leapfrog property of Chapter 14 (see Definition 14.1.1). For
any real number t > 1, a set E of undirected edges in Rd satisfies the t-leapfrog property,
if for every k ≥ 2, and for every sequence {pi, qi}, 1 ≤ i ≤ k, of pairwise distinct edges
in E, we have

t |p1q1| <

k∑
i=2

|piqi | + t

(
|p1p2| +

k−1∑
i=2

|qipi+1| + |qkq1|
)

. (15.3)

In Section 14.1, we used the path-greedy algorithm to motivate the definition of the
leapfrog property. We showed that (15.3) holds for certain sequences of edges. In this
section, we show that (15.3) in fact holds for any sequence of edges of the path-greedy
spanner.

We recall the following notation. Let G be a connected Euclidean graph, and let p and
q be two distinct vertices of G. We denote by δ2(p, q) the length of a second shortest
simple path in G between p and q. (For a formal definition, refer to Section 14.3.)

In a t-spanner, any two points p and q are connected by a path of length at most t |pq|.
The following lemma states that for every edge {p, q} of the path-greedy spanner, the
length of a second shortest path between p and q, if it exists, is larger than t |pq|.
Lemma 15.1.9. Let S be a set of n points in Rd , let t > 1 be a real number, and let
G = (S, E) be the t-spanner that is computed by algorithm PathGreedy(S, t). For
every edge {p, q} in E, we have

δ2(p, q) > t |pq|.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

326 THE PATH-GREEDY ALGORITHM

proof If δ2(p, q) = ∞, then the claim clearly holds. Hence, we may assume that
δ2(p, q) is finite. Let P = (p = p0, p1, p2, . . . , pk = q) be a path in G between p and q

consisting of at least two edges and having length δ2(p, q). Observe that k ≥ 2. We have
to show that the length |P | of P is larger than t |pq|. Consider the cycle

C := (p0, p1, p2, . . . , pk, p0)

in the graph G. Let {x, y} be the edge of C that was added last by the path-greedy
algorithm. Then {x, y} is a longest edge of C. We denote by Cxy the path in G between x

and y that is obtained by deleting the edge {x, y} from C.
Consider the moment when the path-greedy algorithm examines the pair {x, y}. At

that moment, the algorithm has already added all edges of Cxy to the graph G. Since the
algorithm adds the edge {x, y} to G, the length |Cxy | of the path Cxy is larger than t |xy|.
Also, since |pq| ≤ |xy|, we have |P | ≥ |Cxy |. It follows that

δ2(p, q) = |P | ≥ |Cxy | > t |xy| ≥ t |pq|,

proving the claim.

Lemmas 15.1.9 and 14.3.1 immediately imply the following result:

Lemma 15.1.10. Let S be a set of n points in Rd , let t > 1 be a real number, and let
G = (S, E) be the t-spanner that is computed by algorithm PathGreedy(S, t). The edge
set E satisfies the t-leapfrog property.

The path-greedy algorithm operates economically: Any two points p and q

are connected by a path of length at most t |pq|. On the other hand, for every edge
{p, q} of the path-greedy spanner, the length of a second shortest path between p

and q is larger than t |pq|. This implies that the edge set of this spanner satisfies
the leapfrog property.

The Leapfrog Theorem (Theorem 14.4.1) states that the weight of any set of edges
that satisfy the leapfrog property is proportional to the weight of a minimum spanning
tree of the endpoints. Thus, by combining the Leapfrog Theorem, Corollary 15.1.3, and
Lemma 15.1.10, we get the main result of this section.

Theorem 15.1.11. Let S be a set of n points in Rd , let t > 1 be a real number, and let
G = (S, E) be the t-spanner that is computed by algorithm PathGreedy(S, t).

1. The degree in G of each point of S is

O

((
1

t − 1

)d−1
)

.

2. The weight of G is

O

((
1

t − 1

)2d

· wt(MST(S))

)
,

where MST(S) denotes a minimum spanning tree of S.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.2 AN EFFICIENT IMPLEMENTATION OF ALGORITHM PathGreedy 327

15.2 An efficient implementation of algorithm PathGreedy

Let us consider the time complexity of algorithm PathGreedy(S, t), assuming that t is
a constant. The algorithm examines

(
n

2

)
pairs of points. For each pair {p, q}, it computes

the distance between p and q in the current graph G. Using Dijkstra’s algorithm (see
Section 2.5 and Corollary 2.5.10), one such distance computation can be done in O(n log n)
time. (Here we use the fact that the graph G contains O(n) edges.) Hence, the overall
running time of algorithm PathGreedy(S, t) is O(n3 log n).

In this section, we present a series of improvements, ending up with a new algo-
rithm (referred to later as algorithm FastPathGreedy), which is quite close to algo-
rithm PathGreedy in spirit. We will show that algorithm FastPathGreedy computes
a spanner of bounded degree and having weight proportional to the weight of a mini-
mum spanning tree of the point set, in O(n log2 n/ log log n) time. In Section 15.2.1, we
give a high-level description of the algorithm. The details are worked out in subsequent
subsections.

15.2.1 Overview of an improved path-greedy algorithm

On the basis of the observations above on how algorithm PathGreedy works, we present
a first improvement to the algorithm.

Speeding up the path-greedy algorithm – Idea #1: The algorithm sorts the
(
n

2

)
interpoint distances and inspects each pair for inclusion in the spanner. This is
expensive, because it effectively starts with a complete graph. Instead, we could
start with a

√
t/t ′-spanner G′ with O(n) edges obtained using any “quick-and-

dirty” spanner algorithm and then compute a
√

t t ′-spanner of G′, using a variant
of algorithm PathGreedy that inspects only the edges of G′.

Thus, we can improve the running time by using the fact that the notion of being a
spanner is “transitive.” To be more precise, we do the following. Given a set S of n points
in Rd and a real number t > 1, we first compute an arbitrary

√
t/t ′-spanner G′ for S,

for some real number t ′ with 1 < t ′ < t . Then we run the path-greedy algorithm, with
parameter

√
t t ′, on the edges of G′. This results in a

√
t t ′-spanner G of G′. Since G′ is a√

t/t ′-spanner for S, it is not difficult to see that G is a t-spanner for S.
How does Idea #1 affect the analysis of the previous section (Section 15.1.3) and the

time complexity of PathGreedy? First, since we start with a
√

t/t ′-spanner G′ with O(n)
edges, the output G will also have O(n) edges. Second, if we start with a bounded-degree
spanner G′, then the output G will be of bounded degree as well. Third, a generalization
of Lemma 15.1.9 shows that, for every edge {p, q} of G, we have δ2(p, q) >

√
t t ′|pq|,

where δ2(p, q) denotes the length of a second shortest path in G between p and q. Then,
a generalization of Lemma 14.3.1 shows that the edge set of the computed spanner G

satisfies the (
√

t t ′, t)-leapfrog property of Section 14.9. Hence, if t is a constant and
t ′ is chosen appropriately, then the Generalized Leapfrog Theorem (Theorem 14.9.3)
implies that the weight of the spanner G is proportional to the weight of a minimum
spanning tree of S. To analyze the time complexity, we first note that a

√
t/t ′-spanner

of bounded degree and with O(n) edges can be computed in O(n log n) time (see Theo-
rem 10.1.3 in Section 10.1). Therefore, the time complexity of the improved algorithm is

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

328 THE PATH-GREEDY ALGORITHM

O(n log n) times the number of edges of the
√

t/t ′-spanner, giving us an O(n2 log n)–time
algorithm.

For the following discussion, we assume that we have four real numbers t > 1, t ′ > 1,
µ > 1, and α, such that t > t ′ and 0 < α < 1/2. As explained above, first we compute a
bounded degree

√
t/t ′-spanner G′ = (S, E′). Thus, G′ has O(n) edges. Let D denote the

maximum length of any edge of E′, and let E0 be the set of all edges of E′ whose lengths
are less than, or equal to, D/n. Since the number of edges of E0 is O(n), it is clear that
wt(E0) = O(D) = O(wt(MST(S))). Therefore, it does no harm for us to make all the
edges in E0 a part of the final t-spanner G computed by our algorithm. In the rest of the
algorithm, a subset of E′ \E0 will be selected using the path-greedy strategy. In order to
select this subset efficiently, we need a fast method to answer shortest-path queries in the
partially constructed spanner. That brings us to Idea #2.

Speeding up the path-greedy algorithm – Idea #2: The basic test for deciding
whether or not to add an edge {p, q} to the spanner relies on a shortest path
computation. However, it suffices to have approximate shortest path information
for this test. This is achieved by maintaining a simpler graph, referred to as the
cluster graph, in which distances between vertices approximate corresponding
distances in the partially constructed spanner.

Note that the resulting spanner may not be identical to the one obtained with exact
shortest path queries, although it will be shown to retain all the properties that are critical
to the analyses and the proofs.

The algorithm partitions the edge set E′ \E0 into �logµ n� groups, such that edges
within each group differ in length by at most µ. Then it examines the edges of E′ \E0,
going from one group to the next one, in nondecreasing order of their lengths. While
examining these edges, the final t-spanner G = (S, E) for S is computed.

Speeding up the path-greedy algorithm – Idea #3: As mentioned before, the
shortest path computations are made on a cluster graph. An edge is added to
the spanner whenever the shortest path test in the cluster graph determines that
the shortest path in the partially constructed spanner is too long. As edges are
added to the spanner, the corresponding cluster graph must also be updated.
In fact, as more edges are added to the spanner, longer edges are examined and
added to it. The idea is to periodically make the cluster graph simpler and coarser.
To prevent the cost of updating and simplifying the cluster graph from becoming
too high, edges are processed in O(logµ n) batches or “groups.”

We give a brief description of how the algorithm processes one group of edges. Let the
lengths of all edges in this group be between W and µW . First, the algorithm computes a
cluster graph H for the partially constructed spanner G in the following way. The vertices
of G are covered by subsets, called clusters, such that

1. each cluster has a representative vertex, called its center;

2. each vertex in a cluster is within distance αW , in G, from the cluster center; and

3. any two distinct cluster centers have distance more than αW in G.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.2 AN EFFICIENT IMPLEMENTATION OF ALGORITHM PathGreedy 329

The cluster graph H has the cluster centers as its vertices. Any two vertices u and v of
H are connected by an edge (i) if the distance in G between the cluster centers u and
v is at most W or (ii) if there is an edge in G joining two vertices, one of which is in
the cluster of u and the other of which is in the cluster of v. The weight of any edge
of H is (approximately) equal to the distance in G between the corresponding cluster
centers. We remark that the actual cluster graph is slightly different. Details are presented
in Section 15.2.2. The essential ideas, however, are captured by the description given here.

The cluster graph H has the following important properties:

1. For any two vertices u and v of H , the distance in H between u and v is approximately
equal to the distance in G between u and v;

2. the degree of each vertex of H is O(µd);

3. the weight of each edge of H is larger than αW ; and

4. each point of S is contained in O(1) clusters.

Any edge {p, q} in the current group of edges is processed as follows. For each
cluster containing p, and each cluster containing q, the algorithm computes the distance
δH (u, v) between the two corresponding cluster centers u and v. Since the smallest
value δH (u, v) obtained approximates the distance in G between p and q, the algorithm
uses δH (u, v) to decide whether or not edge {p, q} is to be added to the graph G. If {p, q}
is added to G, then the graph H is modified locally in order to represent a valid cluster
graph for the new graph G.

Speeding up distance computations

The main reason to maintain a cluster graph is to speed up distance computations. Why
are distance computations likely to be faster in the cluster graph than in the partially
constructed spanner? For one, the cluster graph is likely to be sparser. But that is not so
critical, since both graphs can be shown to contain only O(n) edges. Note that in order
to check whether the distance between a pair of points p and q is at most

√
t t ′|pq|, one

needs to run Dijkstra’s shortest path algorithm from one of the points, say p, and check
whether q is reached within the required distance. The time complexity is related to the
number of points within distance

√
t t ′|pq| and the number of edges on the path between

p and q.
In order to understand this, we make a short digression. Suppose that you have an

unweighted graph, that is, all edges have the same weight. Now, suppose that you want to
test whether the distance between two given vertices is at most c, where c is a constant.
If nc is an upper bound on the number of vertices within distance c, then the time com-
plexity of running Dijkstra’s single-source algorithm from a query point is O(nc log nc).
Furthermore, if the graph has bounded degree �, then nc = �c; if � is a constant, then
the distance test can be done in O(1) time. Now, let us go through the same argument,
but with a weighted graph in which all vertices have degree bounded by �, and all the
edges have approximately the same weight (i.e., they are all within a small factor µ of
each other, say between W and µW). Then it is easy to see that the number of vertices
within distance µcW is given by nc = O(�µc). If � and µ are bounded by constants,
then the time it takes to test whether the distance between two given vertices is at most
cW remains O(1).

In fact, we will show in our discussions below that we exploit these observations,
by maintaining the cluster graphs in such a way that nt = O(log n), thereby making

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

330 THE PATH-GREEDY ALGORITHM

the cost of a distance test to be O(log n log log n). We encapsulate the above idea as
follows.

Speeding up the path-greedy algorithm: Distance computations – Idea #4:
The cluster graph is maintained in such a way that when performing a distance
test for a pair of points {p, q}, with |pq| in the range (W, µW], the cluster graph
is a bounded degree graph with edges of lengths in the range (αW, µW + 2αW].

Going back to our discussion of the cluster graph, to estimate the time needed to process
{p, q}, we observe that (i) each edge of H has weight more than αW , (ii) H has degree
O(µd), (iii) |pq| ≤ µW , and (iv) G is a partial spanner in the sense that any pair of points
having Euclidean distance less than W is connected by a t-spanner path. Therefore, we
can use a packing argument to show that, when computing δH (u, v), only O(µ2d) vertices
of H have to be explored, starting in u, before vertex v is reached. In fact, using Dijkstra’s
algorithm, δH (u, v) can be computed in O(µ2d) time.

After all edges of the current group have been processed, the algorithm sets W := µW ,
computes – from scratch – a new “coarser” cluster graph H , and processes the next group
of edges.

We will prove that the graph G = (S, E) computed by the algorithm is a t-spanner
for S and, for an appropriate choice of α, the edge set E\E0 satisfies the (t ′, t)-leapfrog
property of Section 14.9. Hence, G has bounded degree (because it is a subgraph of the
initial spanner G′) and, if t ′ is chosen appropriately, its weight is proportional to the weight
of a minimum spanning tree of S.

Let us finally consider the total running time of the algorithm. Computing the cluster
graph H can be done in O(n log n + µdn) time. Recall that this has to be done for each of
the �logµ n� groups. For each of the O(n) edges of E′ \E0, the algorithm spends O(µ2d)
time. Hence, the total running time is

O
(
n log n logµ n + µdn logµ n + nµ2d

)
.

By choosing µ = (log n)1/(2d), we obtain a running time of O(n log2 n/ log log n).
This concludes the informal description of the algorithm. As mentioned already, we

will work out the details in the following subsections.

The main ingredients: Partition the edge set of the initial spanner G′ into logµ n

groups such that within each group, edges differ in length by at most µ. Run the
path-greedy algorithm on the edges of G′ by processing all the groups one after
another. Approximate the partially constructed spanner G by a cluster graph H

in which shortest path queries for pairs of points that are “close” together can be
solved fast.

Now we move on to the details.

15.2.2 Clustering weighted graphs

We start by defining the notions of a cluster cover and a cluster graph. Since these concepts
are not limited to Euclidean graphs, we define them for general weighted graphs.

Let G = (V, E) be an arbitrary undirected weighted graph. We denote the weight of
any edge {u, v} of E by wtG(u, v). We assume that these weights are strictly positive and

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.2 AN EFFICIENT IMPLEMENTATION OF ALGORITHM PathGreedy 331

satisfy the triangle inequality (see Section 2.2.1). For any two vertices u and v of V , we
denote by δG(u, v) the minimum weight of any path in G between u and v. If there is no
path between u and v, then δG(u, v) = ∞. Observe that, because of the triangle inequality,
we have δG(u, v) = wtG(u, v) for any edge {u, v} of E.

The notions of a cluster and a cluster cover of G are defined in a natural way, as follows:

Definition 15.2.1. Let R > 0 be a real number and let v be a vertex of V . The R-cluster
with center v is the set

{u ∈ V : δG(v, u) ≤ R}.
We call R the radius of the cluster.

Definition 15.2.2. Let R > 0 be a real number, let m ≥ 1 be an integer, and let
v1, v2, . . . , vm be m pairwise distinct vertices of V . For any i with 1 ≤ i ≤ m, let Ci

be the R-cluster with center vi . We say that the set C = {C1, C2, . . . , Cm} is a R-cluster
cover of the graph G, if

1. C1 ∪ C2 ∪ · · · ∪ Cm = V , and

2. δG(vi, vj) > R, for all distinct indices i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ m.

Observe that two R-clusters Ci and Cj of a R-cluster cover may have vertices in
common. However, since we require that δG(vi, vj) > R, each cluster center belongs to a
unique R-cluster. We are now ready to define the cluster graph.

Definition 15.2.3. Let W and α be real numbers, such that W > 0 and 0 < α < 1/2.
Let C = {C1, C2, . . . , Cm} be an (αW)-cluster cover of the graph G, and, for each i with
1 ≤ i ≤ m, let vi be the center of Ci . The cluster graph H is the weighted graph defined
as follows.

1. H has V as its vertex set.

2. Edges of H are denoted as [u, v]. These edges are undirected.

3. The edge set of H consists of the following edges.

(a) For each i with 1 ≤ i ≤ m and each u ∈ Ci , [u, vi] is an edge of H . These edges are
called intra-cluster edges.

(b) For each i and j with 1 ≤ i ≤ m, 1 ≤ j ≤ m, and i �= j , [vi, vj] is an edge of H , if

(i) δG(vi, vj) ≤ W , or

(ii) δG(vi, vj) > W and there is an edge {u, v} ∈ E such that u ∈ Ci and v ∈ Cj .

These edges are called inter-cluster edges. If the first condition holds, then we refer
to the edge as a short inter-cluster edge; else we refer to it as a long inter-cluster
edge.

4. The weight wtH (u, v) of an intra-cluster edge [u, v] and a short inter-cluster edge [u, v]
is defined as wtH (u, v) := δG(u, v).

5. The weight wtH (vi, vj) of a long inter-cluster edge [vi, vj] is defined as

min{δG(vi, u) + wtG(u, v) + δG(v, vj) : u ∈ Ci, v ∈ Cj , {u, v} ∈ E}.
Observe that for each i with 1 ≤ i ≤ m, [vi, vi] is an intra-cluster edge of H , having

weight zero.
If [u, v] is an intra-cluster edge or a short inter-cluster edge, then we defined its

weight wtH (u, v) to be the weight of a shortest path in G between u and v. The weight
wtH (vi, vj) of a long inter-cluster edge [vi, vj] is defined differently. We could have

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

332 THE PATH-GREEDY ALGORITHM

defined wtH (vi, vj) to be equal to δG(vi, vj). Since the latter quantity can be much larger
than W , however, we would need too much time to compute it. The above definition is
designed to “estimate” wtH (vi, vj) as efficiently as possible. Moreover, we will see that
it is a close approximation to δG(vi, vj), which suffices for our purposes.

For any two vertices u and v of V , we denote by δH (u, v) the minimum weight of any
path in H between u and v. If such a path does not exist, then δH (u, v) = ∞. The basic
idea behind a cluster graph is summarized in the capsule below.

Cluster graph – basic idea: Given parameters α and W , constructing the cluster
graph involves first constructing clusters of radius αW . These clusters may
overlap, but each cluster center belongs to only one cluster, thus ensuring that
cluster centers are not too close to each other. All vertices in a cluster are joined
by an intra-cluster edge to their cluster centers. This guarantees that in the cluster
graph, the shortest path between points does not contain a large number of short
edges. The cluster graph also contains two types of inter-cluster edges, which are
“local,” in the following sense. Two cluster centers are joined by a short inter-
cluster edge if they are within distance W from each other in the original graph;
they are connected by a long inter-cluster edge if there is an edge connecting
some vertex in one cluster with that in the other cluster.

15.2.3 The cluster graph H approximates G

Having defined the cluster graph H above, we will now argue that the construction was
meaningful and that H is a good approximation of the original graph G.

Throughout this section, G = (V, E) is a graph as in Section 15.2.2. Furthermore, W

and α are real numbers such that W > 0 and 0 < α < 1/2, C = {C1, C2, . . . , Cm} is a
(αW)-cluster cover of the graph G, and H is the corresponding cluster graph. Let vi be
the center of cluster Ci , for 1 ≤ i ≤ m.

We prove in Lemmas 15.2.5 and 15.2.6 that for any two vertices u and v that are “far”
apart in G, the values δG(u, v) and δH (u, v) are approximately equal. We start with some
simple, but useful properties of the weights of the edges in the cluster graph.

Lemma 15.2.4. Let [u, v] be any edge of the cluster graph H , and let L be the maximum
weight of any edge of G.

1. In the graph G, u and v are connected by a path.

2. δG(u, v) ≤ wtH (u, v).

3. If [u, v] is an intra-cluster edge, then wtH (u, v) ≤ αW .

4. If [u, v] is an inter-cluster edge, then

αW < wtH (u, v) ≤ max(W,L + 2αW).

5. If [u, v] is an inter-cluster edge, then wtH (u, v) ≤ 4αW + δG(u, v).

proof We prove only the last claim, because the other ones are obvious. So assume
that [u, v] is an inter-cluster edge. If it is a short inter-cluster edge, then, by definition,
wtH (u, v) = δG(u, v), which is clearly less than, or equal to, 4αW + δG(u, v). Assume
that [u, v] is a long inter-cluster edge. Let x and y be vertices of V such that x is a vertex

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.2 AN EFFICIENT IMPLEMENTATION OF ALGORITHM PathGreedy 333

of the (αW)-cluster having center u, y is a vertex of the (αW)-cluster having center v,
{x, y} is an edge of E, and

wtH (u, v) = δG(u, x) + wtG(x, y) + δG(y, v).

By the triangle inequality, we have

wtG(x, y) = δG(x, y)

≤ δG(x, u) + δG(u, v) + δG(v, y)

≤ αW + δG(u, v) + αW.

Hence,

wtH (u, v) = δG(u, x) + wtG(x, y) + δG(y, v)

≤ αW + wtG(x, y) + αW

≤ 4αW + δG(u, v),

proving the last claim of the lemma.

Next, we prove that distances in G are bounded from above by distances in H .

Lemma 15.2.5. For any two vertices u and v of V , we have

δG(u, v) ≤ δH (u, v).

proof If u = v or δH (u, v) = ∞, then the claim clearly holds. So assume that u �= v,
and that δH (u, v) is finite. Let u = u0, u1, . . . , uk = v be a path in H between u and v

having weight δH (u, v). By Lemma 15.2.4, any two vertices ui and ui+1 are connected by
a path in G, 0 ≤ i < k. The triangle inequality and Lemma 15.2.4 imply that

δG(u, v) ≤
k−1∑
i=0

δG(ui, ui+1) ≤
k−1∑
i=0

wtH (ui, ui+1) = δH (u, v),

proving the claim.

The next lemma is a sort of converse to Lemma 15.2.5. It states that distances in H are
“not much” larger than distances in G, for any two vertices that are “far” apart. It should
be noted that the lemma need not be true for vertices that are “close” to each other.

Lemma 15.2.6. Let u and v be any two vertices of V such that δG(u, v) > (1 − 2α)W .
Let C be a (αW)-cluster cover of G. Furthermore, assume that no cluster in C contains
both u and v. Then,

δH (u, v) ≤ 1 + 18α

1 − 2α
· δG(u, v).

proof We write the (αW)-cluster cover as C = {C1, C2, . . . , Cm}. Let vi be the center
of cluster Ci , for 1 ≤ i ≤ m. First observe that u and v are distinct vertices. If δG(u, v) =
∞, then the claim clearly holds. Hence, we may assume that δG(u, v) < ∞. Let P be a

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

334 THE PATH-GREEDY ALGORITHM

•ui

C ′
i • ui+1

C ′
i+1

•u

• •

•

•

•wi

•
• •

•
•wi+1 •

•

•v

Figure 15.2: Converting the path P in the graph G between u and v into a path Q in the cluster graph H .
The solid edges represent the path P , whereas the dotted line represents the inter-cluster edge [ui, ui+1]
of H . Note that C ′

i and C ′
i+1 represent (αW)-clusters in G, they do not represent Euclidean balls.

path in G between u and v having minimum weight. We will construct a path Q in the
cluster graph H between u and v having weight at most (1 + 18α)/(1 − 2α) times the
weight of P . This will prove the lemma.

In the rest of the proof, we will use the following terminology. For any vertex w of the
path P , we denote by P (w) the subpath of P consisting of all vertices that are between w

and v, not including w, but including v. If x and y are vertices of P , and if x is a vertex
of P (y), then we say that (i) x is closer to v than y, and (ii) y is farther from v than x.
Finally, for any index i with 1 ≤ i ≤ m, such that P (w) ∩ Ci �= ∅, the last vertex of P (w)
in the (αW)-cluster Ci is the vertex of P (w) ∩ Ci that is closest to v. Similarly, the first
vertex of P (w) in Ci is the vertex of P (w) ∩ Ci that is farthest from v.

The path Q is constructed as follows. We start by taking an arbitrary (αW)-cluster from
C that contains u. Denote this cluster and its center by C ′

1 and u1, respectively. Then we
initialize Q as the path containing the single intra-cluster edge [u, u1]. By the assumption
of the lemma, v is not contained in C ′

1. We consider all (αW)-clusters Ci ∈ C such that (i)
[u1, vi] is an inter-cluster edge of H , and (ii) the subpath P (u) and Ci have a nonempty
intersection. (Recall that vi is the center of the cluster Ci .) It follows from the definition
of the cluster graph H that there is at least one such cluster Ci . Among these clusters, let
Ci be one for which the last vertex of P (u) in Ci is closest to v. Then we define C ′

2 := Ci ,
u2 as the center of C ′

2, and w2 as the last vertex of P (u) in C ′
2. We add the inter-cluster

edge [u1, u2] to the path Q.
If v is not contained in C ′

2, then we extend the path Q in a similar way. That is, we
consider all (αW)-clusters Ci ∈ C such that (i) [u2, vi] is an inter-cluster edge of H , and
(ii) P (w2) ∩ Ci �= ∅. Among all these, let Ci be one for which the last vertex of P (w2) in
Ci is closest to v. Then we define C ′

3 := Ci , u3 as the center of C ′
3, w3 as the last vertex

of P (u) in C ′
3, and add the inter-cluster edge [u2, u3] to the path Q (see Figure 15.2).

We keep on extending the path Q = (u, u1, u2, . . . , uk), until the vertex v is contained
in the (αW)-cluster C ′

k . Then we complete Q, by adding the intra-cluster edge [uk, v].
Algorithm ConvertToClusterPath provides a formal description of the construction
of the path Q.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.2 AN EFFICIENT IMPLEMENTATION OF ALGORITHM PathGreedy 335

Algorithm ConvertToClusterPath(G, H, C, P)

Comment: This algorithm converts the path P in G between u and v into a path Q in the
cluster graph H .

C ′
1 := any (αW)-cluster that contains u;

u1 := center of C ′
1;

Q := path in H consisting of the intra-cluster edge [u, u1];
w1 := u;
k := 1;
while v �∈ C ′

k

do (∗ uk is the center of C ′
k , wk is a vertex of P , wk ∈ C ′

k ∗)
among all (αW)-clusters Ci such that
(i) [uk, vi] is an inter-cluster edge of H , and
(ii) P (wk) and Ci have a nonempty intersection,
let Ci be one such that the last vertex of P (wk) in Ci is
closest to v;
uk+1 := vi ;
C ′

k+1 := Ci ;
wk+1 := last vertex of P (wk) in C ′

k+1;
add the inter-cluster edge [uk, uk+1] to Q;
k := k + 1

endwhile;
add the intra-cluster edge [uk, v] to Q;
report the path Q = (u, u1, u2, . . . , uk, v)

Consider the resulting path

Q = (u, u1, u2, . . . , uk, v)

in H between u and v. Since no single (αW)-cluster from C contains both u and v,
we have k ≥ 2. Observe that for each i with 1 ≤ i ≤ k, ui is the center of the cluster
C ′

i . Also, it follows from our construction that the clusters C ′
i , 1 ≤ i ≤ k, are pairwise

distinct.
In the rest of the proof, we will show that the weight (in H) of the path Q is less than,

or equal to, (1 + 18α)/(1 − 2α) times the weight (in G) of the path P . From this, it will
follow that

δH (u, v) ≤ 1 + 18α

1 − 2α
· δG(u, v).

We will denote the weights of P and Q by wtG(P) and wtH (Q), respectively.
We distinguish three cases, depending on whether k = 2, k is odd, or k is even and

greater than or equal to 4.

Case 1: k = 2.
In this case, the path Q consists of the intra-cluster edge [u, u1], the inter-cluster edge

[u1, u2], and the intra-cluster edge [u2, v]. Since u is a vertex of the (αW)-cluster C ′
1,

we have δG(u, u1) ≤ αW . Similarly, we have δG(u2, v) ≤ αW . By Lemma 15.2.4, we

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

336 THE PATH-GREEDY ALGORITHM

•u2j−1

C ′
2j−1

• u2j+1

C ′
2j+1

•x

•
Pj

•r •

• y

•
u2j

Qj

Figure 15.3: Illustrating Case 2 in the proof of Lemma 15.2.6. Note that C ′
2j−1 and C ′

2j+1 represent
(αW)-clusters in G, they do not represent Euclidean balls. The subpath Pj of P is shown, as is the
corresponding (dotted) subpath Qj of Q.

have wtH (u1, u2) ≤ 4αW + δG(u1, u2). Combining these inequalities with the triangle
inequality, we obtain

wtH (Q) = wtH (u, u1) + wtH (u1, u2) + wtH (u2, v)

= δG(u, u1) + wtH (u1, u2) + δG(u2, v)

≤ 6αW + δG(u1, u2)

≤ 6αW + δG(u1, u) + δG(u, v) + δG(v, u2)

≤ 8αW + δG(u, v).

By the assumption of the lemma, we have δG(u, v) > (1 − 2α)W . It follows that

wtH (Q) ≤
(

8α

1 − 2α
+ 1

)
· δG(u, v) ≤ 1 + 18α

1 − 2α
· δG(u, v).

Case 2: k ≥ 3 and k is odd.
Recall that w1 = u, and wj is the last vertex on P (wj−1) that is in C ′

j , 2 ≤ j ≤ k. For
each j with 1 ≤ j ≤ (k − 1)/2,

1. let Pj be the subpath of P between the vertex w2j−1 and the first vertex on P (w2j) that is
in C ′

2j+1, including both end-vertices, and

2. let Qj be the subpath of Q containing the two inter-cluster edges [u2j−1, u2j] and
[u2j , u2j+1].

Observe that any two subpaths Pj and Pj ′ , with j �= j ′, are disjoint, except possibly for
their end-vertices.

We first show that the weight wtH (Qj) of any subpath Qj is bounded from above by
a constant (depending on α only) times the weight wtG(Pj) of the subpath Pj .

So let us fix j with 1 ≤ j ≤ (k − 1)/2. Let x be the end-vertex of Pj that is in C ′
2j−1,

and let y be the end-vertex of Pj that is in C ′
2j+1 (see Figure 15.3). We claim that

wtG(Pj) > (1 − 2α)W. (15.4)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.2 AN EFFICIENT IMPLEMENTATION OF ALGORITHM PathGreedy 337

Assume that this is not the case. Then,

δG(u2j−1, u2j+1) ≤ δG(u2j−1, x) + δG(x, y) + δG(y, u2j+1)

≤ 2αW + δG(x, y)

≤ 2αW + wtG(Pj)

≤ W.

Hence, since the (αW)-clusters C ′
2j−1 and C ′

2j+1 are distinct, [u2j−1, u2j+1] is an inter-
cluster edge of H . This is a contradiction to the choice of the vertex u2j . Hence, we have
proved (15.4).

Let r be any vertex on the subpath Pj that is in the (αW)-cluster C ′
2j . We have

wtH (u2j−1, u2j) ≤ 4αW + δG(u2j−1, u2j)

≤ 4αW + δG(u2j−1, x) + δG(x, r) + δG(r, u2j)

≤ 6αW + δG(x, r),

and, similarly,

wtH (u2j , u2j+1) ≤ 6αW + δG(r, y).

This implies that

wtH (Qj) = wtH (u2j−1, u2j) + wtH (u2j , u2j+1)

≤ 12αW + δG(x, r) + δG(r, y)

= 12αW + δG(x, y)

= 12αW + wtG(Pj)

<

(
12α

1 − 2α
+ 1

)
· wtG(Pj)

= 1 + 10α

1 − 2α
· wtG(Pj).

Since the latter inequality holds for any j , it follows that

wtH (Q) = wtH (u, u1) +
(k−1)/2∑

j=1

wtH (Qj) + wtH (uk, v)

≤ αW +
(k−1)/2∑

j=1

1 + 10α

1 − 2α
· wtG(Pj) + αW

≤ 2αW + 1 + 10α

1 − 2α
· wtG(P)

= 2αW + 1 + 10α

1 − 2α
· δG(u, v).

By the assumption of the lemma, we have δG(u, v) > (1 − 2α)W . Therefore,

wtH (Q) ≤
(

2α

1 − 2α
+ 1 + 10α

1 − 2α

)
· δG(u, v) ≤ 1 + 18α

1 − 2α
· δG(u, v).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

338 THE PATH-GREEDY ALGORITHM

Case 3: k ≥ 4 and k is even.
For each j with 1 ≤ j ≤ (k − 2)/2, define the subpaths Pj and Qj as in Case 2. Then

it can be proved in exactly the same way as in Case 2 that

wtH (Qj) <
1 + 10α

1 − 2α
· wtG(Pj),

1 ≤ j ≤ (k − 2)/2.
We have not considered yet the last inter-cluster edge [uk−1, uk] of Q. Let Pk/2 be the

subpath of P between the vertices wk−1 and v, including both end-vertices. Then

wtH (uk−1, uk) ≤ 4αW + δG(uk−1, uk)

≤ 4αW + δG(uk−1, wk−1) + δG(wk−1, v) + δG(v, uk)

≤ 6αW + wtG(Pk/2).

Since 0 < α < 1/2, it follows that

wtH (uk−1, uk) ≤ 6αW + 1 + 10α

1 − 2α
· wtG(Pk/2).

Therefore, we get

wtH (Q) = wtH (u, u1) +
(k−2)/2∑

j=1

wtH (Qj) + wtH (uk−1, uk) + wtH (uk, v)

≤ 8αW + 1 + 10α

1 − 2α
· δG(u, v)

≤
(

8α

1 − 2α
+ 1 + 10α

1 − 2α

)
· δG(u, v)

= 1 + 18α

1 − 2α
· δG(u, v).

This completes the proof.

15.2.4 Cluster graphs of partial spanners

We have defined the cluster graph H for an arbitrary weighted graph G = (V, E) satisfying
the triangle inequality. We now consider the special case when the graph G is a “partial”
spanner. As we will see, for this case, we can apply a packing argument to prove a
nontrivial upper bound on the number of clusters that contain any given point. Also, we
can prove a nontrivial upper bound on the degree of the subgraph of the cluster graph
H induced by the inter-cluster edges. In Section 15.2.5, we will use these facts to give
efficient algorithms for constructing the cluster graph H and for answering shortest path
queries in H .

Let S be a set of n points in Rd and let G = (S, E) be an undirected graph. In
this section, the weight (or length) wtG(p, q) of any edge {p, q} ∈ E is defined as the
Euclidean distance between p and q, i.e., wtG(p, q) = |pq|. As before, we denote by
δG(p, q) the length of a shortest path in G between any two points p and q of S. If such
a path does not exist, then δG(p, q) = ∞.

Let t > 1 and X > 0 be real numbers. We say that the graph G is an X-partial t-spanner
for S, if for any two points p and q of S with |pq| ≤ X, we have δG(p, q) ≤ t |pq|.

Why is the concept of a partial spanner useful? For example, after algorithm
PathGreedy(S, t) (see Section 1.4) has examined all pairs of points whose Euclidean

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.2 AN EFFICIENT IMPLEMENTATION OF ALGORITHM PathGreedy 339

distance is X, the graph G constructed so far by this algorithm is an X-partial t-spanner
for S. Note that the characteristics of algorithm FastPathGreedy are slightly different
(see Exercise 15.4).

The following capsule describes the basic idea of a packing argument.

Packing argument: Let K ⊆ Rd and let q ∈ Rd , such that all points of K are
“close” to q, and any two distinct points in K are “far” apart. Then a packing
argument gives an upper bound on the size of K . In our case, we let K be a subset
of the set of cluster centers. The points in K were chosen so that they were far
from each other in G. But, the fact that G is a partial spanner implies that any
two distinct points in K also have a “large” Euclidean distance. The argument
would thus show that not many cluster centers are “close” to an arbitrary point
q.

In the rest of this section, we will use several parameters, whose values will be carefully
chosen in subsequent sections. A summary of these parameters is given below.

The parameters [n, d, t, W, α, β, γ, µ] associated with clustering: We have a
set S of n points in Rd and a Euclidean graph G = (S, E). The other parameters
are real numbers with the following constraints: t > 1, W > 0, 0 < α < 1/2,
β > 0, γ > 0, and µ > 1. The parameters are used in the following contexts:

� G is a (βW)-partial t-spanner for S.
� The length of each edge of G is less than or equal to µW .
� C = {C1, C2, . . . , Cm} is an (αW)-cluster cover of G, vi is the center of Ci ,

1 ≤ i ≤ m, and H is the corresponding cluster graph.
� We use the cluster graph H to answer queries of the following form: Given any

two points p and q of S and any real number L such that 0 < L ≤ γW , is there
a path in H between p and q whose weight is less than or equal to L?

The two main results in this section follow from the following lemma, which gives
an upper bound on the number of cluster centers that are contained in any ball of radius
O(W).

Lemma 15.2.7. Let λ > 0 be a real number and let B be a ball in Rd having radius λW .
The number of (αW)-cluster centers that are in or on the boundary of B is less than or
equal to (

1 + 2λ

min(β, α/t)

)d

.

proof Let vi and vj be two distinct cluster centers and assume that |vivj | ≤ βW . Since
the graph G is a (βW)-partial t-spanner for S, we have δG(vi, vj) ≤ t |vivj |. On the other
hand, the definition of (αW)-cluster cover implies that δG(vi, vj) > αW . Combining these
two inequalities gives |vivj | > (α/t) · W . Hence, we have shown that

|vivj | > min(β, α/t) · W (15.5)

for any two distinct cluster centers vi and vj .
Let ρ := min(β, α/t) · W/2. Furthermore, let 	 be the number of cluster centers that

are in or on the boundary of the ball B. We may assume without loss of generality that

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

340 THE PATH-GREEDY ALGORITHM

these cluster centers are v1, v2, . . . , v	. For any i with 1 ≤ i ≤ 	, let Bi be the ball centered
at vi and having radius ρ. Also, let B ′ be the ball of radius ρ ′ := λW + ρ having the same
center as B. Then it follows from (15.5) that the balls Bi , 1 ≤ i ≤ 	, are pairwise disjoint.
Also, all these balls are contained in B ′.

Any ball in Rd of radius r has volume cdr
d , where cd = πd/2/�(d/2 + 1) (see (6.2)

in Section 6.3). It follows that

	 ≤ cd

(
ρ ′)d

cd ρd
=
(

1 + 2λ

min(β, α/t)

)d

,

which is exactly the claim of the lemma.

Lemma 15.2.8. Let p be any point of S. The number of (αW)-clusters that contain p is
less than or equal to (

1 + 2α

min(β, α/t)

)d

.

proof Let B be the ball in Rd with center p and radius αW . Let i be any index such
that p is contained in the (αW)-cluster Ci . Recall that vi denotes the center of this cluster.
We have |vip| ≤ δG(vi, p) ≤ αW , i.e., vi is in or on the boundary of B. The claim follows
by applying Lemma 15.2.7 with λ = α.

Lemma 15.2.9. Let i be any index such that 1 ≤ i ≤ m. The number of inter-cluster
edges in the cluster graph H that are incident to the cluster center vi is less than or equal
to (

1 + 2µ + 4α

min(β, α/t)

)d

.

proof Let B be the ball in Rd with center vi and radius (µ + 2α)W . Consider any
inter-cluster edge [vi, vj]. By Lemma 15.2.4, we have

δG(vi, vj) ≤ wtH (vi, vj) ≤ max(W,µW + 2αW) = (µ + 2α)W,

where the last equality follows from the fact that µ > 1. Hence, we have |vivj | ≤ (µ +
2α)W , i.e., vj is in or on the boundary of B. Applying Lemma 15.2.7 with λ = µ + 2α

proves the claim.

15.2.5 Clustering algorithms for partial spanners

In this section, we present a collection of algorithms that are needed in the fast spanner
algorithm, which is described in the following section (Section 15.2.6), where all these
pieces will be tied together.

Throughout this section, we assume that S is a set of n points in Rd and t > 1, W > 0,
0 < α < 1/2, β > 0, γ > 0, and µ > 1 are real numbers. Furthermore, we assume that
G = (S, E) is a (βW)-partial t-spanner for S and that the length of each edge of G is less
than or equal to µW .

We will give efficient algorithms that (i) perform limited-radius single-source compu-
tations, (ii) compute an (αW)-cluster cover of G, (iii) compute the corresponding cluster
graph H , and (iv) decide if δH (p, q) ≤ L, when given any two points p and q of S, and
any real number L, such that 0 < L ≤ γW .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.2 AN EFFICIENT IMPLEMENTATION OF ALGORITHM PathGreedy 341

Algorithm SingleSource(G′, p, R)

Recall that this algorithm was described earlier in Section 2.5. It takes as input any
undirected graph G′ whose edges have positive weights, any vertex p of G′, and any
positive real number R. The output consists of the following:

� The set A of all vertices q of G′ for which δG′(p, q) ≤ R.

� For each vertex q ∈ A, the value of δG′(p, q).

It was shown (see Section 2.5) that this algorithm can be implemented as a variant of

Dijkstra’s algorithm that terminates as soon as it reaches a vertex q for which δG′ (p, q)>R.

By Theorem 2.5.9, the running time of algorithm SingleSource(G′, p, R) is

O

|A| log |A| +
∑
q∈A

degG′(q)

 . (15.6)

If we denote the number of vertices of the graph G′ by n, then the expression in (15.6) is
clearly

O

|A| log n +
∑
q∈A

degG′(q)

 . (15.7)

In the algorithms that follow, we will use algorithm SingleSource as a subroutine,
with G′ being either the partial spanner G or the subgraph of the cluster graph H induced
by the inter-cluster edges.

Algorithm ClusterCover(G, R)

Comment: The input for this algorithm consists of the (βW)-partial t-spanner G for S

and any positive real number R. The algorithm computes the following:

� An R-cluster cover C = {C1, C2, . . . , Cm} of G, for some m with 1 ≤ m ≤ n, and
for each i with 1 ≤ i ≤ m, the center vi of Ci .

� For each point q of S, a list containing the indices of all R-clusters that contain q.

Algorithm ClusterCover(G,R) uses a simple greedy strategy. It takes an arbitrary point

v1 of S and runs algorithm SingleSource(G, v1, R). This gives the first R-cluster C1 with

center v1. Then the algorithm marks all points of C1, takes an arbitrary point v2 ∈ S that

is not marked, and runs algorithm SingleSource(G, v2, R). This results in the second

R-cluster C2 having v2 as its center. The algorithm marks all points of C2, and proceeds in

the same way with an arbitrary point v3 ∈ S that is not marked. The algorithm terminates

as soon as all points are marked. At that moment, it has computed a valid R-cluster cover

of G. The algorithm can easily be extended such that it computes for each point q of S, a

list containing all indices i for which q ∈ Ci .

By (15.7), the running time of algorithm ClusterCover(G, R) is

O

n +
m∑

i=1

|Ci | log n +
∑
q∈Ci

degG(q)

 .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

342 THE PATH-GREEDY ALGORITHM

We analyze this summation for the case when R = αW . It follows from Lemma 15.2.8
that

m∑
i=1

|Ci | =
∑
q∈S

|{i : q ∈ Ci}| ≤
(

1 + 2α

min(β, α/t)

)d

n.

Similarly, we have
m∑

i=1

∑
q∈Ci

degG(q) =
∑
q∈S

∑
i:q∈Ci

degG(q) ≤
(

1 + 2α

min(β, α/t)

)d ∑
q∈S

degG(q)

= 2

(
1 + 2α

min(β, α/t)

)d

|E|.

(Recall that E denotes the edge set of the graph G.) Hence, the running time of algorithm
ClusterCover(G, αW) is

O

((
1 + α

min(β, α/t)

)d

(n log n + |E|)
)

. (15.8)

Algorithm ClusterGraph(G, α, W)

Comment: This algorithm takes as input the (βW)-partial t-spanner G = (S,E) and the
real numbers α and W such that 0 < α < 1/2 and W > 0. Its output consists of the
following:

� The output of algorithm ClusterCover(G,αW).
� The cluster graph H for G.

� For each edge [p, q] of H , its weight wtH (p, q).

It consists of the following three steps:

Step 1: Run algorithm ClusterCover(G,αW).

Let C = {C1, C2, . . . , Cm} be the (αW)-cluster cover that is computed in this first step,
and let vi be the center of Ci , 1 ≤ i ≤ m.
We can easily extend Step 1 such that it computes all intra-cluster edges [vi, q]
of H , where 1 ≤ i ≤ m and q ∈ Ci , together with their weights wtH (vi, q). (Recall
that, by definition, wtH (vi, q) = δG(vi, q), which is computed when running algorithm
SingleSource(G, vi, αW).) In Steps 2 and 3 below, the inter-cluster edges and their
weights will be computed.

Step 2: For each i with 1 ≤ i ≤ m, do the following:

2.1: Run algorithm SingleSource(G, vi,W).

2.2: For each cluster center vj that is reported in Step 2.1, and for which j �= i, add
[vi, vj] to H as a short inter-cluster edge. Observe that the weight wtH (vi, vj)
of this edge, which is equal to δG(vi, vj), is computed when running algorithm
SingleSource(G, vi,W).

Step 3: For each edge {p, q} of the edge set E of G, do the following. Consider all indices
i and j such that i �= j , p ∈ Ci , and q ∈ Cj . For all such i and j ,

3.1: if [vi, vj] is not an edge of H yet, add it as a long inter-cluster edge, and set
wtH (vi, vj) := δG(vi, p) + |pq| + δG(q, vj).

3.2: Otherwise, set wtH (vi, vj) := min(wtH (vi, vj), δG(vi, p) + |pq| + δG(q, vj)).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.2 AN EFFICIENT IMPLEMENTATION OF ALGORITHM PathGreedy 343

Observe that the values of δG(vi, p) and δG(q, vj) that are needed in Step 3 have been
computed already in Step 1. If, in Step 3.2, [vi, vj] is a short inter-cluster edge, then
wtH (vi, vj) is left unchanged, because δG(u, v) = wtG(u, v) for any edge {u, v} of E.
Using this, the correctness of the algorithm is clear.

Now for the time complexity analysis. Recall that the time for Step 1 is given by (15.8).
To analyze Step 2, let Ai be the set of all points q ∈ S such that δG(vi, q) ≤ W . By (15.7),
the total time for Step 2 is

O

 m∑
i=1

|Ai | log n +
∑
q∈Ai

degG(q)

 .

We further analyze this summation. First observe that

m∑
i=1

|Ai | =
∑
q∈S

|{i : δG(q, vi) ≤ W }|.

Since |qvi | ≤ δG(q, vi), we have

|{i : δG(q, vi) ≤ W }| ≤ |{i : |qvi | ≤ W }|.

Therefore, if we apply Lemma 15.2.7 with λ = 1, then we get

m∑
i=1

|Ai | ≤
(

1 + 2

min(β, α/t)

)d

n.

Similarly, we obtain the bound

m∑
i=1

∑
q∈Ai

degG(q) ≤ 2

(
1 + 2

min(β, α/t)

)d

|E|.

Hence, the total time for Step 2 is

O

((
1 + 1

min(β, α/t)

)d

(n log n + |E|)
)

.

Finally, we analyze the time for Step 3. Consider any edge {p, q} of E. By
Lemma 15.2.8, there are at most

(
1 + 2α

min(β, α/t)

)2d

pairs (i, j) of indices such that p ∈ Ci and q ∈ Cj . For each such pair for which i �= j , we
have to check whether [vi, vj] already exists as an inter-cluster edge. If we store the inter-
cluster edges using adjacency lists, then this checking can be done in time proportional to

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

344 THE PATH-GREEDY ALGORITHM

the degree of vi (or vj) in the subgraph of H induced by the inter-cluster edges. By
Lemma 15.2.9, this degree is at most(

1 + 2µ + 4α

min(β, α/t)

)d

.

If [vi, vj] does not exist yet, we can insert it in O(1) time into the adjacency lists of vi

and vj . Finally, given the positions of [vi, vj] in the adjacency lists of vi and vj , the value
of wtH (vi, vj) can be initialized or recomputed in O(1) time. Hence, the total time for
Step 3 is

O

((
1 + α

min(β, α/t)

)2d (
1 + µ + α

min(β, α/t)

)d

|E|
)

.

Since α < 1/2, by adding the time bounds for all three steps, it follows that the overall
running time of algorithm ClusterGraph(G, α, W) is

O

((
1 + 1

min(β, α/t)

)d

(n log n + |E|)

+
(

1 + α

min(β, α/t)

)2d (
1 + µ + α

min(β, α/t)

)d

|E|
)

. (15.9)

Algorithm ShortPath(H, p, q, L)

Comment: This algorithm takes as input any two distinct points p and q of S and any
positive real number L. Its output is true if there is a path in H between p and q whose
weight is less than, or equal to, L. If such a path does not exist, the algorithm returns
false. Algorithm ShortPath(H,p, q, L) makes the following three steps.

Step 1: Mark all cluster centers vj such that q is contained in the (αW)-cluster Cj . Initialize
a Boolean variable bool to false.

Step 2: For each index i such that p is contained in the (αW)-cluster Ci , do the following:

Step 2.1: Run algorithm SingleSource(H ′, vi, L), where H ′ is the subgraph of H

induced by the inter-cluster edges.

Step 2.2: Consider all cluster centers vj that are reported in Step 2.1. For each such
vj , check if (i) vj is marked, and (ii) wtH (p, vi) + δH ′ (vi, vj) + wtH (vj , q) ≤ L. If
(i) and (ii) hold, then set bool to true.

Step 3: Unmark all cluster centers that were marked in Step 1, and return the variable
bool.

The correctness proof of this algorithm is left as an exercise; see Exercise 15.5. We
analyze its running time for the case when L ≤ γW . It follows from Lemma 15.2.8 that
the time for Steps 1 and 3 is

O

((
1 + α

min(β, α/t)

)d
)

.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.2 AN EFFICIENT IMPLEMENTATION OF ALGORITHM PathGreedy 345

To analyze Step 2, consider any index i such that p ∈ Ci . Let Ai be the set of cluster
centers vj for which δH ′(vi, vj) ≤ L. By (15.6), Step 2.1 takes

O

|Ai | log |Ai | +
∑
vj ∈Ai

degH ′(vj)

time, where degH ′(vj) denotes the degree of vj in the graph H ′.

We first prove an upper bound on the size of Ai . Let vj be any point of Ai . Then
δH ′(vi, vj) ≤ L ≤ γW . Hence, |vivj | is also less than, or equal to, γW . That is, all
elements of Ai are cluster centers that are in or on the boundary of the ball with center vi

and radius γW . Therefore, by Lemma 15.2.7, we have

|Ai | ≤
(

1 + 2γ

min(β, α/t)

)d

.

By Lemma 15.2.9, the degree in H ′ of any cluster center vj is less than, or equal
to, (

1 + 2µ + 4α

min(β, α/t)

)d

.

Therefore, for any fixed i, Step 2.1 takes time proportional to

(
1 + γ

min(β, α/t)

)d
(

log

(
1 + γ

min(β, α/t)

)
+
(

1 + µ + α

min(β, α/t)

)d
)

.

Next, we consider Step 2.2. If the cluster center vj is reported in Step 2.1, then we
know the value of δH ′(vi, vj). Since this value is equal to δH (vi, vj), we spend O(|Ai |)
time in Step 2.2, for any fixed i.

Finally, Lemma 15.2.8 gives an upper bound on the number of indices i that are
considered in Step 2.

Hence, we have shown that for any L with 0 < L ≤ γW , the total running time of
algorithm ShortPath(H, p, q, L) is proportional to(

1 + α

min(β, α/t)

)d (
1 + γ

min(β, α/t)

)d

×
(

log

(
1 + γ

min(β, α/t)

)
+
(

1 + µ + α

min(β, α/t)

)d
)

. (15.10)

15.2.6 The fast spanner algorithm

Having described all the pieces, we are now ready to present our fast implementation
of the path-greedy algorithm. The algorithm takes as input a set S of n points in Rd ,
two real numbers t > 1 and t ′ > 1 such that t > t ′, and two real numbers µ > 1 and
α such that 0 < α < 1/2. A formal description of this algorithm, which we denote by
FastPathGreedy(S, t, t ′, α, µ), is given below.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

346 THE PATH-GREEDY ALGORITHM

Algorithm FastPathGreedy(S, t, t ′, α, µ)

Comment: This is the cluster-based path-greedy algorithm that improves upon algorithm
PathGreedy. Here, S is a set of n points in R

d , t > 1, t ′ > 1, t > t ′, 0 < α < 1/2, and
µ > 1.

Compute a bounded-degree
√

t/t ′-spanner G′ = (S,E′) for S,
using the algorithm of Section 10.1.1;
Sort the edges of E′ in nondecreasing order of their lengths
(ties are broken arbitrarily);
D := maximum length of any edge of E′;
I0 := (0,D/n];
E0 := sorted sequence of edges of E′ having lengths in I0;
for k := 1 to �logµ n�
do Ik := (µk−1D/n, µkD/n];

Ek := sorted sequence of edges of E′ having lengths in Ik

endfor;
E := E0; G := (S,E); W := D/n;
for k := 1 to �logµ n�
do H := ClusterGraph(G,α,W);

for each edge {p, q} of Ek (∗ considered in sorted order ∗)
do if ShortPath(H,p, q,

√
t t ′|pq|) = false

then E := E ∪ {{p, q}};
G := (S,E);
for all cluster centers vi and vj , i �= j , such that p is in

vi ’s cluster and q is in vj ’s cluster
do if [vi, vj] is an inter-cluster edge in H

then wtH (vi, vj) :=
min(wtH (vi, vj), wtH (vi, p) + |pq| + wtH (q, vj))

else add [vi, vj] as an inter-cluster edge to H ;
wtH (vi, vj) := wtH (vi, p) + |pq| + wtH (q, vj)

endif
endfor

endif
endfor;
W := µW

endfor;
return the graph G = (S,E)

Before we turn to the correctness proof of this algorithm, let us consider the other three
parameters, viz. W , β, and γ , that we used in the previous subsections. As can be seen in
algorithm FastPathGreedy, the parameter W has different values during the algorithm.
During the phase in which the edges of Ek are examined, we have W = µk−1D/n.
Furthermore, each edge of Ek has length larger than W , but less than, or equal to, µW .
Hence if the algorithm answers a query ShortPath(H, p, q, L) with L = √

t t ′|pq|,
then 0 < L ≤ √

t t ′ · µW . That is, we can take the parameter γ to be equal to µ
√

t t ′.
The parameter β should have a value such that G is a (βW)-partial t-spanner for S.
In Lemma 15.2.12 below, we will prove that we can take β = √

t ′/t . Observe that the

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.2 AN EFFICIENT IMPLEMENTATION OF ALGORITHM PathGreedy 347

algorithm does not need to “know” the parameters β and γ ; they are used only in the
correctness proof and in the analysis of the running time.

The parameter t ′ will be needed in the weight analysis of the graph G = (S, E) that
is computed by the algorithm. In Section 15.2.8, we will show that, for an appropriate
choice of α, the edge set E \ E0 satisfies the (t ′, t)-leapfrog property. Hence, by choosing
t ′ appropriately, we can apply the Generalized Leapfrog Theorem (Theorem 14.9.3) for
the analysis. Finally, the parameter µ will be chosen in such a way that we obtain the best
time bound.

15.2.7 The correctness proof of algorithm FastPathGreedy

The main result of this section will be a proof that algorithm FastPathGreedy
computes a t-spanner for S. We define phase k to be the iteration of algorithm
FastPathGreedy(S, t, t ′, α, µ) in which the edges of Ek are processed.

Lemma 15.2.10. Let k be an integer, such that 1 ≤ k ≤ �logµ n�. Consider phase k of
algorithm FastPathGreedy(S, t, t ′, α, µ). Then,

1. the (αW)-cluster cover that is computed at the beginning of phase k remains a valid
cluster cover for G throughout this phase, and

2. the graph H is a valid cluster graph for G throughout phase k.

proof The proof is by induction. At the beginning of phase k, algorithm
ClusterGraph(G, α, W) computes a valid (αW)-cluster cover, say, {C1, C2, . . . , Cm}
of G, and a valid cluster graph H for G.

Consider any edge {p, q} of Ek , and assume that immediately before this edge is
examined, {C1, C2, . . . , Cm} is a valid (αW)-cluster cover and H is a valid cluster graph
for the current graph G. We may assume that {p, q} is added to E, because otherwise the
graphs G and H do not change.

Since the length of the edge {p, q} is larger than W , and since 0 < α < 1/2, the
following four claims are easy to verify. First, when adding {p, q} to E, {C1, C2, . . . , Cm}
remains a valid (αW)-cluster cover of the new graph G. Second, when adding {p, q} to
E, no new intra-cluster edge arises in H and the weights of all existing intra-cluster edges
do not change. Third, when adding {p, q} to E, no new short inter-cluster edge arises in
H and the weights of all existing short inter-cluster edges do not change. Finally, when
{p, q} is added to E, the algorithm correctly adds new long inter-cluster edges to H , gives
them the correct weights, and correctly updates the weights of existing long inter-cluster
edges.

Hence, we have shown that immediately after {p, q} has been examined, {C1,

C2, . . . , Cm} is a valid (αW)-cluster cover and H is a valid cluster graph for the new
graph G.

Remark 15.2.11. We have not yet proved that, at any moment during algorithm
FastPathGreedy, the graph G is a (βW)-partial t-spanner for S, for some appropri-
ate value of β. Algorithms ClusterGraph and ShortPath were described assuming
that G is a (βW)-partial t-spanner for S. This fact is, however, not used in the correctness
proofs of these two algorithms; it is used only in the analysis of their running times.
Therefore, the above proof is a correct proof of Lemma 15.2.10.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

348 THE PATH-GREEDY ALGORITHM

Lemma 15.2.12. During algorithm FastPathGreedy(S, t, t ′, α, µ), the graph G is a
(
√

t ′/t · W)-partial t-spanner for S.

proof Let k be any integer such that 1 ≤ k ≤ �logµ n�. During phase k, the value of
W is equal to µk−1D/n and the edges considered in this phase have weights in the range
(W, µW]. Consider the graph G = (S, E) at the beginning of phase k. (Hence, if k = 1,
then E = E0.)

Let {x, y} be any edge of the
√

t/t ′-spanner G′, such that |xy| ≤ W . We will show that
δG(x, y) ≤ √

t t ′|xy|. If edge {x, y} has been added to E, then δG(x, y) = |xy| ≤ t |xy|.
Assume that this edge was not added to E. Then clearly, edge {x, y} is not in E0, and {x, y}
was examined in phase i, for some integer i with 1 ≤ i < k. Then δĤ (x, y) ≤ √

t t ′|xy|,
where Ĥ is the cluster graph at the moment when {x, y} was examined. Hence, by
Lemma 15.2.5, we have δĜ(x, y) ≤ √

t t ′|xy|, where Ĝ is the graph G at the moment when
the algorithm examined {x, y}. Since Ĝ is a subgraph of G, we have δG(x, y) ≤ √

t t ′|xy|.
Hence, we have shown the following. Let G be the graph at the beginning of phase k.

For any edge {x, y} of G′ such that |xy| ≤ W , we have δG(x, y) ≤ √
t t ′|xy|. In the rest

of the proof, we will use this fact to show that G is a (
√

t ′/t · W)-partial t-spanner for S.
Let a and b be any two points of S such that |ab| ≤ √

t ′/t · W . Let a = a0, a1, . . . , a	 =
b be a shortest path in G′ between a and b. Since the length of this path is less than, or
equal to,

√
t/t ′|ab|, each of its edges has length at most

√
t/t ′|ab|, which is less than, or

equal to, W . Therefore, we have

δG(a, b) ≤
	−1∑
i=0

δG(ai, ai+1)

≤
√

t t ′
	−1∑
i=0

|aiai+1|

=
√

t t ′ · δG′(a, b)

≤
√

t t ′ ·
√

t/t ′ · |ab|
= t |ab|.

This proves that, at the beginning of phase k, the graph G is a (
√

t ′/t · W)-partial t-spanner
for S. Since W does not change during this phase, and since G is modified only by edge
insertions, the proof is complete.

The above proof can easily be extended to a proof of the following result.

Lemma 15.2.13. Algorithm FastPathGreedy(S, t, t ′, α, µ) computes a t-spanner
for S.

15.2.8 The weight analysis of the spanner

We now show that the weight of the spanner computed by the improved algorithm
FastPathGreedy(S, t, t ′, α, µ) is proportional to the weight of a minimum spanning
tree of the point set S, provided the parameters t ′ and α are carefully chosen. The proof
is a simple extension of the proof given in Section 15.1.3 for the weight analysis of the
basic version PathGreedy.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.2 AN EFFICIENT IMPLEMENTATION OF ALGORITHM PathGreedy 349

We denote by δG,2(p, q) the Euclidean length of a second shortest path in the graph
G between the points p and q. (In Section 14.3, the notion of a second shortest path was
formally defined.)

We start by generalizing Lemma 15.1.9. In the lemmas below, we use the edge set E0

as defined in algorithm FastPathGreedy.

Lemma 15.2.14. Let S be a set of n points in Rd and let t > 1, t ′ > 1, α > 0, and µ > 1
be real numbers, such that t > t ′ and

α ≤
√

t − √
t ′

2
√

t + 18
√

t ′
.

Let G = (S, E) be the output of algorithm FastPathGreedy(S, t, t ′, α, µ). For any edge
{p, q} in E \ E0, we have

δG,2(p, q) > t ′|pq|.
proof If δG,2(p, q) = ∞, then the claim obviously holds. Thus, we may assume that
δG,2(p, q) is finite. Let P = (p = p0, p1, p2, . . . , p	 = q) be a second shortest path in G

between p and q, consisting of at least two edges. (Hence, 	 ≥ 2.) We have to show that
the length of this path is larger than t ′|pq|. Consider the cycle

C := (p0, p1, p2, . . . , p	, p0),

which is a cycle in the graph G. Let {x, y} be the edge of C that was added last by the
algorithm. Then, {x, y} is a longest edge of C, and {x, y} �∈ E0. Let Cxy denote the path
in G between x and y that is obtained by deleting the edge {x, y} from C.

Consider the moment when algorithm FastPathGreedy examines the edge {x, y}.
At that moment, the algorithm has already added all edges of Cxy to the graph G. Let Ĝ

be the graph G immediately before {x, y} is examined, and let Ĥ be the corresponding
cluster graph (for cluster radius αW). Since the algorithm adds the edge {x, y} to Ĝ, we
have δĤ (x, y) >

√
t t ′|xy|.

Since 0 < α < 1/2 and |xy| > W , no (αW)-cluster in the cluster cover of Ĝ contains
both x and y. Also, we have δĜ(x, y) ≥ |xy| > W > (1 − 2α)W . Then, Lemma 15.2.6
implies that

δĜ(x, y) ≥ 1 − 2α

1 + 18α
· δĤ (x, y) >

1 − 2α

1 + 18α

√
t t ′|xy| ≥ 1 − 2α

1 + 18α

√
t t ′|pq|.

Since |pq| ≤ |xy|, we have |P | ≥ |Cxy |. It follows that

δG,2(p, q) = |P | ≥ |Cxy | ≥ δĜ(x, y) >
1 − 2α

1 + 18α

√
t t ′|pq|.

Our assumption on α implies that the quantity on the right-hand side is greater than, or
equal to, t ′|pq|.

Lemma 15.2.14 can be used to prove that the subset E \ E0 of the edge set E of the
spanner computed by algorithm FastPathGreedy satisfies the (t ′, t)-leapfrog property.
Recall that this property states that for every 	 ≥ 2, and for every sequence {pi, qi},
1 ≤ i ≤ 	, of pairwise distinct edges in E \ E0, we have

t ′|p1q1| <

	∑
i=2

|piqi | + t

(
|p1p2| +

	−1∑
i=2

|qipi+1| + |q	q1|
)

.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

350 THE PATH-GREEDY ALGORITHM

We state this result in the following lemma. The proof is left to the reader, because it is
almost identical to the proof of Lemma 14.3.1.

Lemma 15.2.15. Let S be a set of n points in Rd and let t > 1, t ′ > 1, α > 0, and µ > 1
be real numbers, such that t > t ′ and

α ≤
√

t − √
t ′

2
√

t + 18
√

t ′
.

Let G = (S, E) be the output of algorithm FastPathGreedy(S, t, t ′, α, µ). The edge set
E \ E0 satisfies the (t ′, t)-leapfrog property.

According to the Generalized Leapfrog Theorem (Theorem 14.9.3 in Section 14.9),
there exists an absolute constant φ with 0 < φ < 1, such that the following holds: For
all real numbers t and t ′ with 1 < 1 − φ + φt < t ′ < t , the weight of any set of edges
satisfying the (t ′, t)-leapfrog property is proportional to the weight of a minimum spanning
tree of the endpoints of the edges. This implies the following result.

Theorem 15.2.16. Let S be a set of n points in Rd , and let t , t ′, α, and µ be real numbers,
such that 1 < 1 − φ + φt < t ′ < t , µ > 1, and

0 < α ≤
√

t − √
t ′

2
√

t + 18
√

t ′
.

1. Algorithm FastPathGreedy(S, t, t ′, α, µ) computes a t-spanner G = (S,E) for S.

2. The degree in G of each point of S is

O

((
1√

t/t ′ − 1

)2d−1
)

.

3. The weight of G is

O

(((
1√

t/t ′ − 1

)2d−1

+
(

1

t − 1

)2d
)

· wt(MST(S))

)
,

where MST(S) denotes a minimum spanning tree of S.

proof The first claim follows from Lemma 15.2.13. Consider the initial bounded-
degree

√
t/t ′-spanner G′ = (S, E′) that is computed by the algorithm. Since G is a

subgraph of G′, the second claim follows from Theorem 10.1.3. Let D be the maximum
length of any edge of E′, and consider the set E0 of all edges of E′ having length at most
D/n. Since wt(MST(S)) ≥ D, we have

wt(E0) ≤ (D/n)|E0| = O

((
1√

t/t ′ − 1

)2d−1

· wt(MST(S))

)
.

The upper bound on wt(E \ E0) follows from Lemma 15.2.15 and the Generalized
Leapfrog Theorem (Theorem 14.9.3).

15.2.9 The running time of algorithm FastPathGreedy

Finally, we analyze the running time of algorithm FastPathGreedy. Let S be a set of
n points in Rd and let t > 1, t ′ > 1, µ > 1, and α be real numbers such that t > t ′ and
0 < α < 1/2.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.2 AN EFFICIENT IMPLEMENTATION OF ALGORITHM PathGreedy 351

Algorithm FastPathGreedy(S, t, t ′, α, µ) starts by computing a bounded-degree√
t/t ′-spanner G′ = (S, E′) for S. By Theorem 10.1.3, this spanner can be computed

in time

O

(
log(1/(

√
t/t ′ − 1))(√

t/t ′ − 1
)d n log n

)
. (15.11)

Again by Theorem 10.1.3, we have

|E′| = O

((
1√

t/t ′ − 1

)2d−1

n

)
.

Next, algorithm FastPathGreedy sorts the edges of E′ in nondecreasing order of their
lengths, partitions E′ into pairwise disjoint subsets Ek, 0 ≤ k ≤ �logµ n�, and initializes
G to the graph (S, E0). The time for this part of the algorithm is

O
(|E′| log n

)
. (15.12)

Consider the main loop of the algorithm in which the edges of E′ \ E0 are processed.
Let k be any integer such that 1 ≤ k ≤ �logµ n�, and consider phase k, that is, the iteration
in which the edges of Ek are processed.

First, a cluster graph H for the current graph G is computed. The time to compute
H is given by (15.9). Since 0 < α < 1/2 and, by Lemma 15.2.12, β = √

t ′/t , we have
min(β, α/t) = α/t . Also, it is clear that at any moment, the graph G is a subgraph of
the initial

√
t/t ′-spanner G′. Hence, the number of edges of G is always bounded from

above by |E′|. Therefore, the time for computing the cluster graph H is

O

((
1 + t

α

)d (
n log n + |E′|)+ t2d

((
1 + µ

α

)
t
)d

|E′|
)

= O
(
(t/α)dn log n + t3d (µ/α)d |E′|) . (15.13)

After computing H , the algorithm examines all edges of Ek . For any such edge {p, q},
the time for answering the query ShortPath(H, p, q,

√
t t ′|pq|) is given by (15.10). We

have seen in Section 15.2.6 that γ = µ
√

t t ′. Therefore, we get an upper bound of

O
(
t7d/2 (t ′)d/2

(µ/α)2d
)

(15.14)

on the time for one such query. If {p, q} is added as an edge to G, then the algorithm
updates the cluster graph, by considering all (αW)-clusters that contain p and all (αW)-
clusters that contain q. By Lemma 15.2.8, the number of pairs of clusters considered is
less than, or equal to, (1 + 2t)2d = O(t2d). For each such pair of clusters, the algorithm
checks whether the corresponding inter-cluster edge [vi, vj] already exists. If it does, its
weight is updated. Otherwise, [vi, vj] is added to H and its weight is computed. If we store
the inter-cluster edges using adjacency lists, then, by Lemma 15.2.9, the algorithm spends

O

((
1 + µ + α

min(β, α/t)

)d
)

= O
(
td (µ/α)d

)
time for each pair of clusters. Hence, after adding the edge {p, q} to G, the algorithm
spends

O
(
t3d (µ/α)d

)
(15.15)

time to update the cluster graph.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

352 THE PATH-GREEDY ALGORITHM

Thus, the total running time of algorithm FastPathGreedy(S, t, t ′, α, µ) is the
sum of

1. the quantities in (15.11) and (15.12),

2. O(logµ n) times the quantity in (15.13), and

3. |E′| times the sum of the quantities in (15.14) and (15.15).

Let us see how to choose the parameters so as to get the best result. We assume
that we are given the point set S and the real number t > 1, and want to compute, as
fast as possible, a bounded-degree t-spanner of low weight. We obtain the best time
bound by choosing t ′ as small as possible, and α as large as possible. Hence, to satisfy
the conditions of Theorem 15.2.16, we take t ′ slightly larger than 1 − φ + φt and α =
(
√

t − √
t ′)/(2

√
t + 18

√
t ′).

Let us write t = 1 + ε, where ε is a small positive real number. Then
√

t ∼ 1 + ε/2,
t ′ ∼ 1 + φε,

√
t ′ ∼ 1 + φε/2,

√
t/t ′ ∼ 1 + (1 − φ)ε/2, and α ∼ ε(1 − φ)/40. Hence,

the total running time of algorithm FastPathGreedy(S, t, t ′, α, µ) is

O

(
1

εd log µ
n log2 n + µd

ε3d−1 log µ
n log n + µ2d

ε4d−1
n

)
. (15.16)

If we choose µ = 2, then we get a running time of O(n log2 n). The best time bound is
obtained by taking

µ = (log n)1/(2d).

For this value of µ, the quantity in (15.16) is O(n log2 n/ log log n). Hence, we have
proved the following result:

Theorem 15.2.17. Let S be a set of n points in Rd and let t > 1 be a real number. In

O

(
1

(t − 1)d
n log2 n

log log n
+ 1

(t − 1)3d−1

n log3/2 n

log log n
+ 1

(t − 1)4d−1
n log n

)
time, a t-spanner for S can be computed,

1. in which each point has degree O(1/(t − 1)2d−1), and

2. whose weight is

O

(
1

(t − 1)2d
· wt(MST(S))

)
,

where MST(S) denotes a minimum spanning tree of S.

Remark 15.2.18. Algorithm FastPathGreedy starts with the
√

t/t ′-spanner G′ of The-
orem 10.1.3. Consider the modification of this algorithm that (i) starts with an arbitrary√

t/t ′-spanner G′ and (ii) takes for E0 the set consisting of all edges of G′ whose lengths
are at most D/n2. This modified algorithm computes a t-spanner G for S, whose weight
is O(1/(t − 1)2) times the weight of a minimum spanning tree of S.

1. Is there a nontrivial bound on the degree of G? The answer is “no”: Let x =
(
√

t + √
t ′)/(

√
t − √

t ′), let S be the one-dimensional point set defined as S =
{0, x, x2, x3, . . . , xn−1}, and let G′ be the graph with vertex set S and edge set
{{0, xi} : 1 ≤ i ≤ n − 1}. Then, G′ is a

√
t/t ′-spanner for S. The t-spanner G that is

computed by the modified algorithm FastPathGreedy is equal to G′ and, therefore, G

contains a vertex of degree n − 1.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.3 A FASTER ALGORITHM THAT USES INDIRECT ADDRESSING 353

2. Is there a nontrivial bound on the number of edges of G? Again, the answer is “no”: Let
S ′ be a set of n − 1 points in R

d that are very close to the origin, let p be a point in R
d that

is very far away from the origin, and let S := S ′ ∪ {p}. Let G′ be the graph that consists
of an arbitrary spanner G′′ for S ′, and one edge between p and one of the points of S ′.
Then, G′ is a

√
t/t ′-spanner for S, and the t-spanner G that is computed by the modified

algorithm FastPathGreedy is equal to G′. Hence, if we take for G′′ the complete graph
on S ′, then the t-spanner G consists of �(n2) edges.

Algorithm FastPathGreedy can be implemented in the algebraic computation-tree
model that was introduced in Section 3.1. Theorem 15.2.17 gives the fastest known
algorithm for computing a t-spanner of low weight in this model.

Open problem: Is there an algebraic computation-tree algorithm that, when
given a set S of n points in Rd and a real constant t > 1, computes, in O(n log n)
time, a t-spanner for S, whose weight is proportional to the weight of a minimum
spanning tree of S? Can such a spanner of bounded degree be computed in
O(n log n) time?

In the next section, we will show that, in a more powerful model of computation, a
variant of algorithm FastPathGreedy can be implemented, such that its running time is
O(n log n).

15.3 A faster algorithm that uses indirect addressing

The algorithm that will be presented in this section works in the algebraic computation-
tree model in which additionally any indirect addressing operation takes unit time. We do
not assume that the floor-function can be computed in unit time. (See also Exercises 3.11
and 3.13.) This algorithm is again based on the path-greedy strategy and is designed along
the same lines as the algorithm of Section 15.2. In Section 15.3.1, we give an overview of
the algorithm and describe the main differences with algorithm FastPathGreedy.

15.3.1 Overview of the algorithm

The main structure of the algorithm is the same as that of algorithm FastPathGreedy,
described in Section 15.2. The input consists of a set S of n points in Rd and three real
numbers t > 1, t ′ > 1, and α, such that t > t ′ > 1 and 0 < α < 1/2.

As in algorithm FastPathGreedy, a bounded-degree
√

t/t ′-spanner G′ = (S, E′) is
computed first. Let E0 be the set of all edges of E′ whose lengths are less than, or equal
to, D/n, where D is the maximum length of any edge of E′, and let G = (S, E0).

The algorithm partitions the edge set E′ \ E0 into �log n� groups E1, E2, . . . , such
that edges within each group differ in length by at most 2. (Hence, the parameter µ of
Section 15.2 is equal to 2.) Then, the algorithm processes the edges of E′ \ E0, processing
one group after another in nondecreasing order of their lengths.

At the beginning of phase k, that is, the iteration in which group Ek is processed, a
cluster cover and the corresponding cluster graph H are computed. The new ingredient
is that these are not computed on the basis of the Euclidean lengths of the edges of the
partially constructed spanner G, but rather on “simpler” weights that approximate the
Euclidean lengths. These edge weights are integers in the range 1, 2, . . . , O(n), and how

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

354 THE PATH-GREEDY ALGORITHM

closely they approximate the Euclidean lengths depends on the index k. (In particular,
there is a separate integer weight function for each phase; the approximation gets coarser
as k increases.)

The advantage of these integer edge weights is that a cluster cover and the corresponding
cluster graph can be computed in O(n) time, provided the cluster centers are known in
advance. The main tool used is a multiple-sources shortest paths algorithm that basically
runs Dijkstra’s single-source algorithm “in parallel,” using the cluster centers as sources.
Recall that in Dijkstra’s algorithm (see Section 2.5), we used a Fibonacci heap to maintain
the lengths of the shortest paths computed so far. Since the edge weights are “small”
integers, we can use one single array to maintain these lengths for all sources. It is in this
part of the algorithm that the power of indirect addressing is used; the indices of the array
are used to represent the lengths of the shortest paths computed so far.

One problem that is left is how to choose the cluster centers. If k = 1, that is, in
the first phase, we use the same greedy approach as in algorithm ClusterCover of
Section 15.2.5, to compute the cluster centers in O(n log n) time. We show that for each
k ≥ 1, we can use the cluster centers of phase k to compute, in O(n) time, cluster centers for
phase k + 1.

Recall that all results on cluster covers and cluster graphs of Sections 15.2.2 and 15.2.3
were presented for arbitrary undirected weighted graphs that satisfy the triangle inequality.
Therefore, these results are valid if we use our integer edge weights. (These integer weights
satisfy the triangle inequality.)

Given the cluster graph H , any edge {p, q} in Ek is processed as in algorithm
FastPathGreedy, except that now the integer edge weights of phase k are used to
decide if {p, q} is added to G.

The overall running time of the algorithm will be O(n log n). We will use an analysis
similar to those in Sections 15.2.7 and 15.2.8 to prove that the final graph G = (S, E) is
a t-spanner for S and, for an appropriate choice of α, the edge set E \ E0 satisfies the
(t ′, t)-leapfrog property. Hence, the algorithm computes a t-spanner of bounded degree
and, if t ′ is chosen appropriately, its weight is proportional to the weight of a minimum
spanning tree of S.

This concludes the informal description of the main ingredients of the algorithm. In
the following subsections, we will fill in the details. Since some of these details are
quite subtle, we have decided to present them in a “modular” form. This means that the
algorithm computes some of the information more than once. We believe, however, that
in this way, it is easier to follow the presentation.

The main ingredients: Partition the edge set of the initial spanner G′ into
log n groups such that within each group, edges differ in length by at most a
factor of 2. Run the path-greedy algorithm on the edges of G′ by processing
the groups one after another. During phase k, that is, when processing the k-th
group, approximate the partially constructed spanner G by a cluster graph H .
Furthermore, scale all the edge weights so that they are integers in the range
[0, cn], and such that they approximate their true lengths. Compute the cluster
centers in O(n) time using the cluster centers of the previous phase. Given these
cluster centers for phase k, run Dijkstra’s algorithm “in parallel” from all these
cluster centers, and compute H in O(n) time. Use H to answer shortest path
queries for pairs of points that are “close” together, in O(1) time.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.3 A FASTER ALGORITHM THAT USES INDIRECT ADDRESSING 355

15.3.2 The integer weight functions

In this section, we define the integer weights that will be used by our algorithm to
approximate Euclidean distances. We start by giving the motivation of how these integer
weights are defined. Let k be an integer such that 0 ≤ k ≤ �log n�, and let

Wk := 2k−1D/n,

where D is the maximum Euclidean length of any edge in the initial spanner G′. In
phase k, our algorithm processes all edges of G′ whose Euclidean lengths are in the
interval (Wk, 2Wk]. For each such edge {p, q}, the algorithm decides if the cluster graph
H contains a path between p and q, having length at most c|pq|, for some constant c.
Hence, all paths that need to be dealt with have lengths at most 2cWk . The idea is to make
this maximum possible length correspond to the integer c′n, for some constant c′.

We now formally define the integer edge weights. Let ε be a real number such that
0 < ε < 1/2. For any integer k with 0 ≤ k ≤ �log n�, we define

Uk := εWk/n = ε 2k−1D/n2,

and for any two points p and q in Rd , we define

wtk(p, q) := �|pq|/Uk� .

Let G = (S, E) be an arbitrary graph whose vertex set S is a set of points in Rd . If p

and q are two points of S, then we denote by δG(p, q) the length of a shortest path in G

between p and q, with respect to the Euclidean metric. Furthermore, δk
G(p, q) will denote

the length of a shortest path in G between p and q, with respect to the weight function
wtk. As before, if p and q are not connected by a path, then δG(p, q) and δk

G(p, q) are
both infinity.

We prove some simple lemmas, showing the relationships between the different weight
functions.

Lemma 15.3.1. For any two points p and q in S and any integer k with 0 ≤ k ≤ �log n�,
we have

δG(p, q) ≤ δk
G(p, q) · Uk < δG(p, q) + εWk.

proof The first inequality follows from the fact that |xy| ≤ wtk(x, y) · Uk for any two
points x and y. The second inequality follows from the facts that wtk(x, y) < 1 + |xy|/Uk

for any two points x and y, and the shortest path between p and q contains less than n

edges.

The next lemma follows immediately from Lemma 15.3.1. It states that δk
G(p, q) · Uk

and δG(p, q) are approximately equal, provided that p and q are “far” apart.

Lemma 15.3.2. Let k be an integer with 0 ≤ k ≤ �log n�, and let p and q be two points
of S, such that δG(p, q) ≥ Wk . Then,

δG(p, q) ≤ δk
G(p, q) · Uk < (1 + ε) · δG(p, q).

The following lemma states that the weights wtk come from an integral universe of
size O(n). The proof follows immediately from the definitions of Wk, Uk , and wtk.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

356 THE PATH-GREEDY ALGORITHM

Lemma 15.3.3. Let k be an integer with 0 ≤ k ≤ �log n�, and let p and q be any two
distinct points in Rd , such that |pq| ≤ 2Wk . Then,

1 ≤ wtk(p, q) < 3n/ε.

The final lemma of this subsection states the relation between δk
G and δk+1

G .

Lemma 15.3.4. Let k be an integer with 0 ≤ k < �log n�, and let p and q be two points
of S. Then,

1. δk+1
G (p, q) ≤ δk

G(p, q) ≤ 2 · δk+1
G (p, q) and

2. δk
G(p, q) > 2 · δk+1

G (p, q) − n.

proof The first inequality in 1. follows from the fact that

wtk+1(x, y) =
⌈ |xy|

2Uk

⌉
≤
⌈ |xy|

Uk

⌉
= wtk(x, y)

for any two points x and y. To prove the second inequality in 1., first observe that for any
two points x and y, we have

wtk(x, y) = 2 · 1

2

⌈ |xy|
Uk

⌉
≤ 2

⌈
1

2

⌈ |xy|
Uk

⌉⌉
.

Using the fact that �z/2� = ��z�/2� for any z ∈ R, it follows that

wtk(x, y) ≤ 2

⌈ |xy|
2Uk

⌉
= 2 · wtk+1(x, y).

This implies the second inequality in 1.
The inequality in 2. follows from the fact that for any two points x and y, we

have

wtk+1(x, y) =
⌈ |xy|

2Uk

⌉
=
⌈

1

2

⌈ |xy|
Uk

⌉⌉
≤ 1

2

⌈ |xy|
Uk

⌉
+ 1

2
= 1

2
· wtk(x, y) + 1

2
.

We mentioned already that our algorithm will use the integer weight function wtk

during phase k. Since the value of k increases during the algorithm, the weights of the
partially constructed spanner have to be recomputed at the beginning of each phase. If
we keep track of the values Uk and use the ceiling-function �x�, then the integer weight
wtk(p, q) can be easily computed. In the rest of this section, we show how these weights
can be computed within the algebraic computation-tree model.

Recall that in phase k, all edges of the partially constructed spanner and all edges that
are considered in this phase have Euclidean lengths at most 2Wk. Hence, by Lemma 15.3.3,
all relevant weights wtk are integers in the range from 1 to �3n/ε�.

Let T be a balanced binary search tree, whose nodes store the integers 1, 2, . . . , �3n/ε�.
Each node storing, say, the integer 	, stores pointers to its two children, and a pointer to the
node storing the integer �	/2�. This tree can be constructed in the algebraic computation-
tree model, in O((n/ε) log(n/ε)) time. (The proof of this claim is left as an exercise; see
Exercise 15.10.) Below, we define two operations on the tree T .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.3 A FASTER ALGORITHM THAT USES INDIRECT ADDRESSING 357

Algorithm Integralize(p, q, k)

Comment: This algorithm takes as input two distinct points p and q of the set S and an
integer k, such that 0 ≤ k ≤ �log n� and |pq| ≤ 2Wk . The algorithm returns the value of
wtk(p, q) and a pointer to the node of T that stores this value.

Step 1: Compute x := |pq|/Uk .

Step 2: Search in T for the smallest element greater than, or equal to, x.

Step 3: Return a pointer to the node found in Step 2 and the integer stored therein.

Observe that �x� = wtk(p, q). It is clear that the running time of this algorithm is
O(log(n/ε)). As will be shown later, the value Uk needed in the above algorithm is
precomputed. Also, this algorithm is run exactly once for each edge in Ek.

Algorithm Reintegralize(p, q, k, u)

Comment: This algorithm takes as input two distinct points p and q of S, an integer k

such that 1 ≤ k ≤ �log n� and |pq| ≤ 2Wk , and the node u of T that stores the value of
wtk−1(p, q). The algorithm returns the value of wtk(p, q) and a pointer to the node of T

that stores this value.

Step 1: Follow the pointer that is stored in node u to the node, say v, that stores the integer
�wtk−1(p, q)/2�.

Step 2: Return a pointer to v and the integer stored therein.

The value �wtk−1(p, q)/2� is indeed equal to wtk(p, q), because⌈
wtk−1(p, q)

2

⌉
=
⌈

1

2

⌈ |pq|
Uk−1

⌉⌉
=
⌈ |pq|

2Uk−1

⌉
= wtk(p, q).

The running time of algorithm Reintegralize(p, q, k, u) is O(1). As shown later, this
algorithm is run at most O(log n) times for each edge in E.

15.3.3 Some packing results

We now generalize the results of Section 15.2.4. Throughout this section, we will use the
following parameters. We have a set S of n points in Rd , an integer k with 0 ≤ k ≤ �log n�,
and real numbers t > 1, 0 < ε < α < 1/2, χ ≥ α, and β > 0. Furthermore, G = (S, E)
is a graph with vertex set S. We make the following assumptions.

� G is a Euclidean (βWk)-partial t-spanner for S, that is, δG(p, q) ≤ t |pq| for any two
points p and q in S for which |pq| ≤ βWk .

� The Euclidean length of each edge of E is less than, or equal to, 2Wk .
� v1, v2, . . . , vm are pairwise distinct points of S such that δk

G(vi, vj) > αn/ε for all i �= j .
� For any i with 1 ≤ i ≤ m, Ci denotes the set

Ci = {p ∈ S : δk
G(vi, p) ≤ χn/ε}.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

358 THE PATH-GREEDY ALGORITHM

Lemma 15.3.5. Let λ > 0 be a real number and let B be a ball in Rd having Euclidean
radius λWk . The number of indices i for which vi is in or on the boundary of B is less
than or equal to (

1 + 2λ

min(β, (α − ε)/t)

)d

.

proof Consider any two distinct indices i and j , and assume that |vivj | ≤ βWk. Since
G is a (βWk)-partial t-spanner for S, we have δG(vi, vj) ≤ t |vivj |. On the other hand, by
our third assumption, we have δk

G(vi, vj) · Uk > (αn/ε)Uk = αWk . Hence, by applying
Lemma 15.3.1, we obtain

δG(vi, vj) > δk
G(vi, vj) · Uk − εWk > (α − ε)Wk.

It follows that |vivj | ≥ (1/t) · δG(vi, vj) > ((α − ε)/t)Wk . Hence, we have shown that

|vivj | > min(β, (α − ε)/t) · Wk

for any two distinct indices i and j . The rest of the proof involves the same packing
arguments as in the proof of Lemma 15.2.7.

Lemma 15.3.6. Let p be any point of S. The number of indices i for which p ∈ Ci is less
than, or equal to, (

1 + 2χ

min(β, (α − ε)/t)

)d

.

proof Let B be the ball in Rd with center p and Euclidean radius χWk . Let i be any
index such that p ∈ Ci . Then δk

G(vi, p) · Uk ≤ (χn/ε)Uk = χWk . By Lemma 15.3.1, we
have δG(vi, p) ≤ δk

G(vi, p) · Uk. Hence, |vip| ≤ δG(vi, p) ≤ χWk , that is, vi is in or on
the boundary of B. The claim follows by applying Lemma 15.3.5 with λ = χ .

In Section 15.2.2, we have defined the notions of a cluster, a cluster cover, and a cluster
graph for general weighted graphs. These notions apply to the graph G using the weight
function wtk; see also Exercise 15.11. We denote the integer weights of the cluster graph
H by wtkH . (Hence, wtkH is defined in terms of wtk and δk

G.) The results of Section 15.2.3
are valid for these integer weights.

Lemma 15.3.7. Let χ = α, and let {C1, C2, . . . , Cm} be a (αn/ε)-cluster cover of G with
respect to the weight function wtk . Let H be the corresponding cluster graph. Let i be
any index such that 1 ≤ i ≤ m. The number of inter-cluster edges in H that are incident
to vi is at most (

1 + 4 + 4α + 2ε

min(β, (α − ε)/t)

)d

.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.3 A FASTER ALGORITHM THAT USES INDIRECT ADDRESSING 359

proof Let B be the ball in Rd with center vi and Euclidean radius (2 + 2α + ε)Wk .
Consider any inter-cluster edge [vi, vj] of H . By Lemma 15.2.4, we have

δk
G(vi, vj) ≤ wtkH (vi, vj) ≤ max(n/ε, L + 2αn/ε),

where L is the largest weight (with respect to wtk) of any edge of E. Let {p, q} be an
edge of E such that wtk(p, q) = L. Then,

L = �|pq|/Uk� < 1 + |pq|/Uk ≤ 1 + 2Wk/Uk = 1 + 2n/ε,

and, hence, δk
G(vi, vj) ≤ 1 + 2n/ε + 2αn/ε. It follows that

δk
G(vi, vj) · Uk ≤ ((2 + 2α)n/ε + 1)Uk

= (2 + 2α)Wk + Uk

≤ (2 + 2α + ε)Wk.

Since |vivj | ≤ δG(vi, vj), Lemma 15.3.1 implies that

|vivj | ≤ δk
G(vi, vj) · Uk ≤ (2 + 2α + ε)Wk,

that is, vj is in or on the boundary of B. Applying Lemma 15.3.5 with λ = 2 + 2α + ε

proves the claim.

15.3.4 A multiple-sources shortest paths algorithm

In Section 15.2.5, we used algorithm SingleSource to compute a cluster cover of the
partially constructed spanner G. The centers of the clusters were determined one after
another, using a simple greedy strategy. In Section 15.3.5, we will show how a cluster
cover can be computed if the cluster centers are known in advance; the main tool used
is a multiple-sources shortest paths algorithm, which we present in the current section.
In Sections 15.3.6 and 15.3.7, we will see how the cluster centers themselves can be
computed.

We assume that the reader is familiar with algorithm SingleSource of Section 2.5.

The basic approach: Algorithm MultipleSources(G, K, L, wt) takes as input
a graph G whose edge weights are given by the integer function wt , a set
K = {v1, v2, . . . , vm} of source vertices, and a real number L. It returns, for each
vi ∈ K , the set of all vertices u such that δG(vi, u) ≤ L.

The algorithm does the following: It runs m single-source algorithms “in
parallel,” using the vertices vi , 1 ≤ i ≤ m, as sources. Since all edge weights are
positive integers, and since we are interested only in shortest path distances that
are less than, or equal to, L, we can use one single array A[0 . . L] to represent
all the m priority queues, one for each source vertex vi . Each array entry A[j] is
a list storing all pairs (vi, u) of vertices having the property that the length of the
shortest path in G between vi and u found so far is equal to j . Hence, addresses
in A are used to represent shortest path lengths.

We give a formal specification of the algorithm that accomplishes this task.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

360 THE PATH-GREEDY ALGORITHM

Algorithm MultipleSources(G, K, L, wt)

Input

� An undirected graph G = (V,E) with positive-integer edge weights given by the
function wt . These weights define a shortest path distance function on G, which
we denote by δG.

� A set K = {v1, v2, . . . , vm} of m pairwise distinct vertices of V .
� A real number L > 0.

Output

� For each i with 1 ≤ i ≤ m, a list containing the set Ci of all vertices u of V for
which δG(vi, u) ≤ L. For simplicity, we denote this list by Ci .

� For each i with 1 ≤ i ≤ m and for each u ∈ Ci , the value of δG(vi, u).
� For each u ∈ V , a list Fu containing all indices i for which u ∈ Ci .

The algorithm that meets this specification will maintain the following invariants.

Invariants:

1. A[0 . . L] is an array, where, for each j with 0 ≤ j ≤ L, A[j] is a list of ordered pairs
(vi, u) of vertices. If (vi, u) is in the list A[j], then the shortest path in G between vi and
u found so far has length j .

2. For each u ∈ V , Pu is a list containing pointers to all nodes of the lists
A[0], A[1], . . . , A[L] that contain the pair (vi, u) for some i with 1 ≤ i ≤ m.

3. For each i with 1 ≤ i ≤ m, Ci is a list containing all vertices u for which the value of
δG(vi, u) has been computed already and for which this value is at most L.

4. For each u ∈ V , Fu is a list containing all indices i for which u is contained Ci .

We first describe the steps that are needed to initialize the algorithm.

Algorithm MultipleSources(G, K, L, wt) (Continued)

Initialization steps

1. Delete all edges {u, v} from E with wt(u, v) > L. For simplicity, denote the resulting
edge set by E again.

2. For each j with 0 ≤ j ≤ L, initialize an empty list A[j].

3. For each u ∈ V , initialize empty lists Pu and Fu.

4. For each i with 1 ≤ i ≤ m, do the following: Add the pair (vi, vi) to the list A[0]; add
to Pvi

a pointer to the occurrence of (vi, vi) in A[0]; and initialize an empty list Ci .

Next, we show how one step of the iteration is performed.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.3 A FASTER ALGORITHM THAT USES INDIRECT ADDRESSING 361

Algorithm MultipleSources(G, K, L, wt) (Continued)

Iteration 	, 	 = 0, 1, . . . L: For each pair (vi, u) in A[], do the following:

1. Add vertex u to list Ci , and add index i to list Fu.

2. For each vertex u′ ∈ V for which {u, u′} ∈ E, i �∈ Fu′ , and 	 + wt(u, u′) ≤ L,
do the following:

2.1. If list Pu′ contains a pointer to the pair (vi, u
′), then proceed

to Step 2.2. Otherwise, add pair (vi, u
′) to list A[+ wt(u, u′)],

and add to Pu′ a pointer to the occurrence of (vi, u
′) in list

A[+ wt(u, u′)].
2.2. Follow the pointer in Pu′ to the occurrence of (vi, u

′) in list, say, A[′].
If 	 + wt(u, u′) < 	′, then
� add (vi, u

′) to list A[+ wt(u, u′)],
� delete (vi, u

′) from list A[′],
� replace the pointer in Pu′ to the occurrence of (vi, u

′) in A[′] by a
pointer to the occurrence of (vi, u

′) in A[+ wt(u, u′)].
3. Delete from Pu the pointer to the occurrence of (vi, u) in A[].

4. Delete the pair (vi, u) from A[].

This concludes the description of algorithm MultipleSources(G, K, L, wt). We
leave the correctness proof of this algorithm as an exercise; see Exercise 15.12.

Remark 15.3.8. Steps 2.1 and 2.2 are the only places in the entire algorithm of Sec-
tion 15.3 in which indirect addressing is used.

In the rest of this section, we analyze the running time of algorithm
MultipleSources(G, K, L, wt). We denote the number of vertices of G by n, and
define

M := max
u∈V

|{i : 1 ≤ i ≤ m,u ∈ Ci}|, (15.17)

where Ci denotes this list at the end of the algorithm. In other words, M is the largest
mu, u ∈ V , where mu is the number of clusters that u belongs to. Furthermore, we denote
by degG(u) the degree of the vertex u in the graph G.

It is clear that the initialization steps take O(n + L + |E|) time. To bound the time for
the rest of the algorithm, first observe that, at any time, each of the lists Pu and Fu, for
u ∈ V , has size at most M .

First consider a pair (vi, u) from list A[], examined in iteration 	. Steps 1, 3, and 4 take
O(1), O(M), and O(1) time, respectively. In Step 2, degG(u) vertices u′ are considered.
For each such vertex u′, the algorithm spends (i) O(M) time to check whether i is in Fu′ ,
(ii) O(M) time to check whether Pu′ contains a pointer to the pair (vi, u

′), whereas (iii) the
rest takes O(1) time. At the end of Step 1, u has been added to Ci and the pair (vi, u) has
been deleted from the “priority queue.” During the rest of the algorithm, the pair (vi, u) is

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

362 THE PATH-GREEDY ALGORITHM

never considered again. This implies that, over all iterations, the time complexity is

O

L +
m∑

i=1

|Ci | + M
∑
u∈Ci

degG(u)

 .

Simple algebraic manipulations show that
∑m

i=1 |Ci | ≤ Mn and

m∑
i=1

∑
u∈Ci

degG(u) ≤ 2M|E|.

Hence, we have proved the following result:

Theorem 15.3.9. Algorithm MultipleSources(G, K, L, wt) takes

O
(
L + Mn + M2|E|)

time, where M is defined in (15.17).

15.3.5 Computing a cluster cover and the cluster graph

In this section we describe algorithm RAMClusterGraph, which is the equivalent of
algorithm ClusterGraph (described in Section 15.2.5) for the faster spanner construction
algorithm. (Here RAM indicates that the algorithm uses indirect addressing.) Algorithm
RAMClusterGraph will meet the following specification.

Algorithm RAMClusterGraph(G, α, K, k)

Input
� A set S of n points in R

d .
� An integer k with 1 ≤ k ≤ �log n�.
� Real numbers t > 1, 0 < ε < α < 1/2, and β > 0.
� A graph G = (S,E), which is a Euclidean (βWk)-partial t -spanner for S, with

edges of Euclidean length at most 2Wk .
� A set K = {v1, v2, . . . , vm} of pairwise distinct points of S, such that

δk
G(vi, vj) > αn/ε for all i �= j . Furthermore, a (αn/ε)-cluster cover of G

(with respect to the weights wtk) with cluster centers v1, v2, . . . , vm exists,
that is, for each p ∈ S, there is an index i such that δk

G(vi, p) ≤ αn/ε.

Output
� For each i with 1 ≤ i ≤ m, a list Ci containing all points p ∈ S for which

δk
G(vi, p) ≤ αn/ε. Hence, {C1, C2, . . . , Cm} is a (αn/ε)-cluster cover of G

with respect to the weights wtk . Also, for each i with 1 ≤ i ≤ m and for each
p ∈ Ci , the value of δk

G(vi, p).
� For each p ∈ S, a list Fp storing all i for which p ∈ Ci .
� The cluster graph H corresponding to the (αn/ε)-cluster cover, with weight

wtkH (p, q) for each edge [p, q] of H .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.3 A FASTER ALGORITHM THAT USES INDIRECT ADDRESSING 363

Before we give a formal description of algorithm RAMClusterGraph, observe that,
by Lemma 15.3.3, 1 ≤ wtk(p, q) ≤ �3n/ε�, for each edge {p, q} ∈ E.

Algorithm RAMClusterGraph(G, α, K, k) (Continued)

Step 1: Run algorithm MultipleSources(G,K, αn/ε,wtk). We have seen in Sec-
tion 15.3.4 that this yields

� lists Ci , 1 ≤ i ≤ m, where Ci stores all points p ∈ S for which δk
G(vi, p) ≤

αn/ε,
� the values δk

G(vi, p) for all 1 ≤ i ≤ m and p ∈ Ci , and
� lists Fp, p ∈ S, where Fp stores all indices i for which p ∈ Ci .

Step 2: Compute all intra-cluster edges [vi, p], where 1 ≤ i ≤ m and p ∈ Ci , and set
wtkH (vi, p) := δk

G(vi, p).

Step 3: Run algorithm MultipleSources(G,K, n/ε,wtk). This gives
� lists C ′

i , 1 ≤ i ≤ m, where C ′
i stores all points p ∈ S for which δk

G(vi, p) ≤
n/ε,

� the values δk
G(vi, p) for all 1 ≤ i ≤ m and p ∈ C ′

i , and
� lists F ′

p, p ∈ S, where F ′
p stores all indices i for which p ∈ C ′

i .

Step 4: For each j with 1 ≤ j ≤ m, consider all elements i in the list F ′
vj

. For each such
i with i �= j , add [vi, vj] to the edge set of H as a short inter-cluster edge, and set
wtkH (vi, vj) := δk

G(vi, vj).

Step 5: In this step, the long inter-cluster edges are computed. For each edge {p, q}
of E, for each index i ∈ Fp, and for each index j ∈ Fq with i �= j , do the follow-
ing:

5.1: If [vi, vj] is not an edge of H yet, add it as a long inter-cluster edge, and set
wtkH (vi, vj) := δk

G(vi, p) + wtk(p, q) + δk
G(q, vj).

5.2: Otherwise, set wtkH (vi, vj) := min(wtkH (vi, vj), δk
G(vi, p) + wtk(p, q) +

δk
G(q, vj)).

This concludes the description of algorithm RAMClusterGraph. We leave the correct-
ness proof to the reader. To bound the running time of the algorithm, we define

M1 := max
p∈S

|{i : 1 ≤ i ≤ m,p ∈ Ci}|, (15.18)

M2 := max
p∈S

|{i : 1 ≤ i ≤ m,p ∈ C ′
i}|,

and M3 as the maximum number of inter-cluster edges that are incident on any point vi ,
1 ≤ i ≤ m.

By Theorem 15.3.9, Steps 1 and 3 take time O(αn/ε + M1n + M2
1 |E|) and O(n/ε +

M2n + M2
2 |E|), respectively. The time for Step 2 is proportional to

∑m
i=1 |Ci | ≤ M1n,

whereas the time for Step 4 is proportional to
m∑

j=1

|F ′
vj

| =
m∑

j=1

|{i : 1 ≤ i ≤ m, vj ∈ C ′
i}| ≤ M2m ≤ M2n.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

364 THE PATH-GREEDY ALGORITHM

Finally, the time for Step 5 is proportional to

∑
{p,q}∈E

|Fp| · |Fq | · M3 ≤ M2
1 M3|E|.

Since M1 ≤ M2, it follows that algorithm RAMClusterGraph(G, α, K, k) takes

O
(
n/ε + M2n + (M2

2 + M2
1 M3)|E|) (15.19)

total time. It remains to prove upper bounds on M1, M2, and M3. These follow immediately
from our packing results of Section 15.3.3. Applying Lemma 15.3.6 with χ = α shows
that

M1 ≤
(

1 + 2α

min(β, (α − ε)/t)

)d

. (15.20)

Lemma 15.3.6, applied with χ = 1, implies that

M2 ≤
(

1 + 2

min(β, (α − ε)/t)

)d

.

Finally, by Lemma 15.3.7, we have

M3 ≤
(

1 + 4 + 4α + 2ε

min(β, (α − ε)/t)

)d

.

15.3.6 Computing the cluster centers

Algorithm RAMClusterGraph(G, α, K, k) presented in the previous section takes the
set K of cluster centers as part of its input. We showed that the cluster graph can be
computed efficiently in O(n) time. This implies that as the O(log n) groups of edges are
processed, the total time to compute the cluster graph is O(n log n). Next, our goal is to
show that computing the cluster centers for the O(log n) iterations can also be done in
O(n log n) time. Here we show how this can be achieved.

The algorithm uses GreedyCenters to compute the centers only for k = 1, that is,
before the first group of edges is processed, and will be shown to run in O(n log n) time.
However, for later iterations (k > 1), algorithm RecomputeCenters is used. In contrast
to GreedyCenters, algorithm RecomputeCenters will be shown to run in O(n) time.
Thus, the idea is to use a brute force algorithm for the first iteration and more efficient
schemes for later iterations.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.3 A FASTER ALGORITHM THAT USES INDIRECT ADDRESSING 365

Algorithm GreedyCenters(G, α)

Input: A set S of n points in R
d , and real numbers t > 1, 0 < ε < α < 1/2, and β > 0.

Furthermore, G = (S,E) is a Euclidean (βW1)-partial t-spanner for S, and each edge
of E has Euclidean length at most 2W1.

Output: A subset {v1, v2, . . . , vm} of S, for some m, such that there exists an (αn/ε)-
cluster cover of G, with respect to the weights wt1.

Algorithm: The algorithm follows a greedy approach. It chooses an arbitrary point v1 of S
and runs algorithm SingleSource(G, v1, αn/ε) of Section 2.5, using the weight func-
tion wt1. This gives the set C1 := {p ∈ S : δ1

G(v1, p) ≤ αn/ε}. The algorithm marks
all points of C1, chooses an arbitrary point v2 that is not marked, and runs algorithm
SingleSource(G, v2, αn/ε), again using the weight function wt1. Then the algorithm
marks all points of the set C2 := {p ∈ S : δ1

G(v2, p) ≤ αn/ε}, chooses an arbitrary
point v3 that is not marked, and proceeds in the same way, until all points of S are
marked.

Let v1, v2, . . . , vm be the points that are computed by this algorithm, and let Ci := {p ∈
S : δ1

G(vi, p) ≤ αn/ε}, for 1 ≤ i ≤ m. It follows from Theorem 2.5.9, that algorithm
GreedyCenters(G, α) takes

O

 m∑
i=1

|Ci | log n +
∑
p∈Ci

degG(p)

time, see also (15.7) in Section 15.2.5. This quantity is bounded by

O(M1n log n + M1|E|), (15.21)

where M1 is defined in (15.18). An upper bound on M1 is given in (15.20).

15.3.7 Recomputing the cluster centers

Algorithm GreedyCenters(G, α) of the previous section will be used only in the first
phase of our spanner algorithm, that is, when k = 1. In all later phases, the algorithm will
use the cluster centers of the previous phase to compute the cluster centers for the current
phase. Given these cluster centers, the corresponding cluster cover and cluster graph will
be computed using algorithm RAMClusterGraph of Section 15.3.5.

We start by introducing the situation at the end of phase k or, equivalently, at the
beginning of phase k + 1. We have a set S of n points in Rd , a graph G = (S, E) with
vertex set S, an integer k with 1 ≤ k < �log n�, and real numbers t > 1, 0 < α < 1/2,
0 < ε < α/2, and β > 0. To set up the stage, we observe that the following conditions
are satisfied.

� G is a Euclidean (βWk+1)-partial t-spanner for S.
� The Euclidean length of each edge of E is less than, or equal to, 2Wk .
� v1, v2, . . . , vm is a sequence of pairwise distinct points of S such that δk

G(vi, vj) > αn/ε

for all i �= j .
� For 1 ≤ i ≤ m, Ci := {p ∈ S : δk

G(vi, p) ≤ αn/ε} is the (αn/ε)-cluster, with respect to
the weights wtk , centered at vi .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

366 THE PATH-GREEDY ALGORITHM

� {C1, C2, . . . , Cm} is an (αn/ε)-cluster cover of G, with respect to the weights wtk . Hence,
for each p ∈ S, there is an index i such that δk

G(vi, p) ≤ αn/ε.

Goal: Use v1, v2, . . . , vm to compute a subset V ′ of S, whose elements can be
used as cluster centers with respect to the weights wtk+1. Hence, V ′ must have
the following properties:

� δk+1
G (u, v) > αn/ε, for all u and v in V ′ with u �= v.

� For each p ∈ S, there is a u ∈ V ′, such that δk+1
G (u, p) ≤ αn/ε.

Algorithm RecomputeCenters, which achieves this goal in three stages, is now
described in detail.

Algorithm RecomputeCenters(G, α, {v1, v2, . . . , vm}, k)

Input: A set S of n points in R
d , an integer k with 1 ≤ k < �log n�, real numbers t > 1,

0 < α < 1/2, 0 < ε < α/2, and β > 0, and a subset {v1, v2, . . . , vm} of S, for some
m, such that there exists an (αn/ε)-cluster cover of G, with respect to the weights wtk .
Furthermore, G = (S,E) is a Euclidean (βWk+1)-partial t-spanner for S, and each
edge of E has Euclidean length at most 2Wk .

Output: A subset V ′ = {v′
1, v

′
2, . . . , v

′
m′ } of S, for some m′, such that there exists an

(αn/ε)-cluster cover of G, with respect to the weights wtk+1.

Algorithm: The algorithm works in three stages, each of which is described separately
below.

We start with the first stage of RecomputeCenters.

First stage of RecomputeCenters(G, α, {v1, v2, . . . , vm}, k)

Run algorithm MultipleSources(G, {v1, v2, . . . , vm}, αn/ε,wtk+1) of Section 15.3.4.
This gives (αn/ε)-clusters C ′

1, C
′
2, . . . , C

′
m centered at the points v1, v2, . . . , vm, with

respect to the weights wtk+1. Thus,

C ′
i = {p ∈ S : δk+1

G (vi, p) ≤ αn/ε},
for each i with 1 ≤ i ≤ m.

By Theorem 15.3.9, this first stage takes

O(αn/ε + M4n + M2
4 |E|) (15.22)

time, where

M4 := max
p∈S

|{i : 1 ≤ i ≤ m,p ∈ C ′
i}|. (15.23)

To prove an upper bound on M4, we define C ′′
i := {p ∈ S : δk(vi, p) ≤ 2αn/ε} for 1 ≤ i ≤

m, and M ′′ := maxp∈S |{i : 1 ≤ i ≤ m, p ∈ C ′′
i }|. Applying Lemma 15.3.6, with χ = 2α,

shows that

M ′′ ≤
(

1 + 4α

min(β, (α − ε)/t)

)d

.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.3 A FASTER ALGORITHM THAT USES INDIRECT ADDRESSING 367

By Lemma 15.3.4, we have δk
G(vi, p) ≤ 2 · δk+1

G (vi, p). This implies that C ′
i ⊆ C ′′

i , for
1 ≤ i ≤ m, and, hence, M4 ≤ M ′′. Therefore, we have

M4 ≤
(

1 + 4α

min(β, (α − ε)/t)

)d

. (15.24)

The fact that δk+1
G (vi, p) ≤ δk

G(vi, p) (see Lemma 15.3.4) implies that Ci ⊆ C ′
i for

1 ≤ i ≤ m. Hence, the sets C ′
i , 1 ≤ i ≤ m, cover the set S. It may happen, however, that

some of the centers are “too close” together. That is, there may be indices i and j with
i �= j , such that δk+1

G (vi, vj) ≤ αn/ε.
Observe that, by our assumption, we have δk

G(vi, vj) > αn/ε for all i �= j . Also by
Lemma 15.3.4, we have δk+1

G (vi, vj) ≥ δk
G(vi, vj)/2. It follows that for all i �= j ,

δk+1
G (vi, vj) > αn/(2ε). (15.25)

The clusters C ′
1, C

′
2, . . . , C

′
m have the desired radius of αn/ε under the coarser weight

function wtk+1. These clusters have roughly twice the radius as that of the clusters
C1, C2, . . . , Cm, which have radius of αn/ε under the weight function wtk.

The first stage: The clusters C ′
1, C

′
2, . . . , C

′
m cover the sets S. For any two

distinct cluster centers vi and vj , we have δk+1
G (vi, vj) > αn/(2ε). Since our goal

is to choose cluster centers that are at least αn/ε apart from each other, we may
have to discard some of these cluster centers in the second stage.

The second stage uses a greedy approach to select a subset K0 of {v1, v2, . . . , vm},
such that δk+1

G (u, v) > αn/ε for any two distinct points u and v of K0. The algorithm is
as follows, where we assume that initially, all points of S are unmarked.

Second stage of RecomputeCenters(G, α, {v1, v2, . . . , vm}, k)

K0 := ∅;
for i := 1 to m

do if vi is not marked
then K0 := K0 ∪ {vi};

for each j such that vj ∈ C ′
i

do mark point vj

endfor
endif

endfor;
unmark all points of S

Lemma 15.3.10. Consider the set K0 at the end of the second stage, and let u and v be
two distinct points of K0. We have δk+1

G (u, v) > αn/ε.

proof Assume that δk+1
G (u, v) ≤ αn/ε. We may assume without loss of generality that

u was inserted into K0 before v. Let i be the index such that u = vi . At the moment
when the algorithm inserts u into K0, all points vj that are contained in C ′

i are marked.
Since δk+1

G (u, v) ≤ αn/ε, point v is one of these points vj . Hence, when u is inserted
into K0, point v is marked. This implies that v is never inserted into K0, which is a
contradiction.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

368 THE PATH-GREEDY ALGORITHM

The running time of the second stage is

O

(
n +

m∑
i=1

|C ′
i |
)

= O(n + M4n) = O(M4n), (15.26)

where M4 is defined in (15.23). An upper bound on M4 is given in (15.24).

The second stage: We have discarded a set of cluster centers from the set
{v1, v2, . . . , vm} to obtain a subset K0, whose elements are sufficiently far apart
from each other to serve as cluster centers for phase k + 1 (see Lemma 15.3.10).
However, we may have discarded too many. It may happen that the (αn/ε)-
clusters, with respect to the weights wtk+1, centered at the points of K0, do not
cover the set S. If this is the case, then we have to compute more cluster centers.
This will be done by repeatedly performing the third stage.

The third stage

Let K be the set of cluster centers computed so far. We assume that δk+1
G (u, v) > αn/ε

for all u and v in K with u �= v. Initially, K = K0.
We start by running a greedy algorithm that selects a subset K ′ of S such that (i)

δk+1
G (p, u) > αn/ε for all p ∈ K ′ and u ∈ K , and (ii) |C ′

i ∩ K ′| ≤ 1 for all i with 1 ≤
i ≤ m. Here, C ′

i is the (αn/ε)-cluster, with respect to the weights wtk+1, centered at vi ,
that was computed in the first stage. We denote this algorithm by GreedySelect. It uses
a Boolean variable Choose(p) for each p ∈ S. If Choose(p) = false, then point p either
has been added to K ′ already or cannot be added to K ′ without violating (i) or (ii) above.

Algorithm GreedySelect(G, K, α, k)

Comment: This algorithm greedily augments the set of cluster centers K to include at
most one point from each C ′

i with at least one uncovered point.

MultipleSources(G,K, αn/ε,wtk+1);
for each p ∈ S do Choose(p) := true endfor;
for each u ∈ K

do for each p with δk+1
G (u, p) ≤ αn/ε

do Choose(p) := false

endfor
endfor;
K ′ := ∅;
for i := 1 to m

do if C ′
i contains a point p such that Choose(p) = true

then let p ∈ C ′
i such that Choose(p) = true;

K ′ := K ′ ∪ {p};
for each q ∈ C ′

i

do Choose(q) := false

endfor
endif

endfor
return K ′;

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.3 A FASTER ALGORITHM THAT USES INDIRECT ADDRESSING 369

If the set K ′ returned by algorithm GreedySelect is empty, then the set K is a valid
set of cluster centers for phase k + 1, and we are done with the third stage; otherwise, we
proceed to GreedyRefine.

Before we analyze algorithm GreedySelect, we claim that after its completion,
Choose(p) = false for all p ∈ S. We leave the proof as an exercise; see Exercise 15.13.

Lemma 15.3.11. Consider the set K ′ that is returned by algorithm GreedySelect. The
following two properties hold:

1. δk+1
G (p, u) > αn/ε for each p ∈ K ′ and each u ∈ K .

2. |C ′
i ∩ K ′| ≤ 1 for each i with 1 ≤ i ≤ m.

proof Let p ∈ K ′ and u ∈ K . Immediately before K ′ is initialized to the empty set,
we have Choose(p) = true, because otherwise p would not have been inserted into K ′.
This implies that δk+1

G (p, u) > αn/ε.
To prove the second claim, assume that C ′

i ∩ K ′ �= ∅. Let p be the point of C ′
i ∩ K ′ that

was inserted first into K ′. At the moment when p is inserted into K ′, the algorithm sets
Choose(q) to false for all q ∈ C ′

i . Hence, at the end of the algorithm, C ′
i ∩ K ′ contains

only the point p.

To estimate the running time of algorithm GreedySelect, we define

M5 := max
p∈S

|{u ∈ K : δk+1
G (u, p) ≤ αn/ε}|. (15.27)

By Theorem 15.3.9, algorithm MultipleSources(G, K, αn/ε, wtk+1) takes O(αn/ε +
M5n + M2

5 |E|) time. The rest of the algorithm takes

O

(
n +

∑
u∈K

|{p ∈ S : δk+1
G (u, p) ≤ αn/ε}| +

m∑
i=1

|C ′
i |
)

time, which is O(M5n + M4n), where M4 is defined in (15.23). An upper bound on M4

is given in (15.24). By Lemma 15.3.6, applied with χ = α and k replaced by k + 1, we
have

M5 ≤
(

1 + 2α

min(β, (α − ε)/t)

)d

. (15.28)

Since M5 ≤ M4, the running time of algorithm GreedySelect is

O(αn/ε + M4n + M2
5 |E|). (15.29)

After algorithm GreedySelect: Assume that K ′ is nonempty. It may happen
that K ′ contains points p and q such that δk+1

G (p, q) ≤ αn/ε. Therefore, we now
run the following greedy algorithm GreedyRefine that selects a subset K ′′ of
K ′, whose elements are “sufficiently far” apart from each other.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

370 THE PATH-GREEDY ALGORITHM

Algorithm GreedyRefine(G, K ′, α, k)

Comment: This algorithm greedily discards all cluster centers from K ′ that are not suffi-
ciently far from the other centers. It assumes that initially, all points of S are unmarked.

MultipleSources(G,K ′, αn/ε,wtk+1);
K ′′ := ∅;
for each u ∈ K ′

do if u is not marked
then K ′′ := K ′′ ∪ {u};

for each p ∈ S with δk+1
G (u, p) ≤ αn/ε

do mark point p

endfor
endif

endfor;
unmark all points of S;
return K ′′;

Lemma 15.3.12. Consider the set K ′′ that is returned by algorithm GreedyRefine, and
let u and v be two distinct points of K ∪ K ′′. Then δk+1

G (u, v) > αn/ε.

proof If u and v are both elements of K , then the claim holds by the assumption
made on K . If u and v are both elements of K ′′, then the claim follows from algorithm
GreedyRefine (see also the proof of Lemma 15.3.10). If u ∈ K and v ∈ K ′′, then the
claim follows from Lemma 15.3.11 and the fact that K ′′ ⊆ K ′.

Let us analyze the running time of algorithm GreedyRefine. We define

M6 := max
p∈S

|{u ∈ K ′ : δk+1
G (u, p) ≤ αn/ε}|.

By Theorem 15.3.9, the call to MultipleSources(G, K ′, αn/ε, wtk+1) takes O(αn/ε +
M6n + M2

6 |E|) time. The time for the rest of the algorithm is proportional to∑
u∈K ′

|{p ∈ S : δk+1
G (u, p) ≤ αn/ε}|,

which is less than or equal to M6n. Hence, the running time of algorithm GreedyRefine
is

O(αn/ε + M6n + M2
6 |E|). (15.30)

We will prove below that

M6 ≤
(

1 + 4α

min(β, (α/2 − ε)/t)

)d

. (15.31)

Let p be an arbitrary point of S, and let u1, u2, . . . , u	 be all points of K ′ such that
δk+1
G (ui, p) ≤ αn/ε, 1 ≤ i ≤ 	.

Consider how the set K ′ was constructed: For each i with 1 ≤ i ≤ 	, let v′
i be the

point of {v1, v2, . . . , vm} that “gave rise to” ui . That is, when algorithm GreedySelect
considered v′

i , it chose ui as a point for which Choose(ui) = true, and this point ui was
inserted into K ′. Observe that δk+1

G (v′
i , ui) ≤ αn/ε. Also, the points v′

i , 1 ≤ i ≤ 	, are
pairwise distinct.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.3 A FASTER ALGORITHM THAT USES INDIRECT ADDRESSING 371

We fix i and j such that 1 ≤ i ≤ 	, 1 ≤ j ≤ 	, and i �= j . By (15.25), we have
δk+1
G (v′

i , v
′
j) > αn/(2ε). Assume that |v′

iv
′
j | ≤ βWk+1. Since G is a Euclidean (βWk+1)-

partial t-spanner, we have δG(v′
i , v

′
j) ≤ t |v′

iv
′
j |. Applying Lemma 15.3.1, we obtain

δG(v′
i , v

′
j) > δk+1

G (v′
i , v

′
j) · Uk+1 − εWk+1

> (αn/(2ε))Uk+1 − εWk+1

= (α/2 − ε)Wk+1.

It follows that |v′
iv

′
j | > (α/2 − ε)Wk+1/t . Hence, we always have

|v′
iv

′
j | > min(β, (α/2 − ε)/t) · Wk+1 (15.32)

for all i �= j .
Next consider an arbitrary index i with 1 ≤ i ≤ 	. We observe that

|pv′
i | ≤ |pui | + |uiv

′
i | ≤ δG(p, ui) + δG(ui, v

′
i),

which, by Lemma 15.3.1, is less than or equal to

δk+1
G (p, ui) · Uk+1 + δk+1

G (ui, v
′
i) · Uk+1.

The latter expression is bounded from above by 2(αn/ε)Uk+1 = 2αWk+1. Hence, we have
shown that

|pv′
i | ≤ 2αWk+1 (15.33)

for all i with 1 ≤ i ≤ 	.
The inequalities (15.32) and (15.33) imply that we can apply a packing argument to

prove an upper bound on 	. A straightforward analysis shows that

	 ≤
(

1 + 4α

min(β, (α/2 − ε)/t)

)d

.

This proves (15.31).

Overview of the third stage

Let us summarize what we have done during one iteration of the third stage.

Enlargening K to K ∪ K ′′: We start with a set K of points that are “sufficiently”
far apart from each other, that is, δk+1

G (u, v) > αn/ε for all u and v in K with
u �= v. First, algorithm GreedySelect uses C ′

1, C
′
2, . . . , C

′
m to compute a set

K ′ of points, such that the points in K ′ are sufficiently far apart from the points
in K , and |C ′

i ∩ K ′| ≤ 1 for each i. Then, algorithm GreedyRefine selects a
subset K ′′ of K ′, whose elements are sufficiently far apart from each other. As a
result, all points in the union K ∪ K ′′ are sufficiently far apart from each other.

Initially, K = K0, which is computed in the second stage. In each iteration of the third
stage, K is enlarged, until this set is large enough so that it contains the centers of a
valid cluster cover of the graph G for phase k + 1. In other words, the third stage can be
terminated as soon as the set K ′′ returned by a call to GreedyRefine is empty. Note that
it can actually be terminated as soon as the set K ′ returned by a call to GreedySelect is
empty. However, it is convenient to describe it as shown below.

The third stage can thus be summarized as follows.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

372 THE PATH-GREEDY ALGORITHM

Third stage of RecomputeCenters(G, α, {v1, v2, . . . , vm}, k)

Comment: We assume that K0 is the set of cluster centers at the end of the second
stage. This stage comprises of a repeated sequence of steps involving augmenting the
set of cluster centers and then pruning them down.

K := K0;
repeat

K ′ := GreedySelect(G,K, α, k);
K ′′ := GreedyRefine(G,K ′, α, k);
K := K ∪ K ′′;

until K ′′ = ∅;
return K ;

The values of K at the end of each iteration of the repeat-loop of the third stage can be
written down as a nested sequence

K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ KL

of subsets of S, where, for 0 ≤ 	 < L, K	+1 is the set K	 ∪ K ′′ that is obtained by applying
the third stage to the set K := K	. The index L is the smallest integer such that the sets
{p ∈ S : δk+1

G (u, p) ≤ αn/ε}, u ∈ KL, form an (αn/ε)-cluster cover of G, with respect
to the weights wtk+1. Recall that δk+1

G (u, v) > αn/ε for any two distinct points u and v

in KL.
In the rest of this section, we prove an upper bound on L, that is, on the number of

times that we perform the third stage. The basis for this proof is the following lemma,
which states the following. Consider any point q of S, and assume that q is not covered
by the clusters centered at the points of K	. When we enlarge K	 to K	+1, a cluster center
is added that is “close” to q.

Lemma 15.3.13. Let 0 ≤ 	 < L and let q be a point of S. Assume that δk+1
G (v, q) > αn/ε

for all v ∈ K	. Then the set K	+1 \ K	 contains a point u such that |qu| ≤ 3αWk+1.

proof Let K := K	. Recall how we compute the set K	+1: We use algorithm
GreedySelect to compute a subset K ′ of S, use algorithm GreedyRefine to com-
pute a subset K ′′ of K ′, and set K	+1 := K ∪ K ′′.

Consider the algorithm that computes K ′. Immediately before K ′ is initialized to the
empty set, the value of Choose(q) is true. Let i be the integer, 1 ≤ i ≤ m, such that
Choose(q) is set to false during the iteration in which C ′

i is considered. (The index i

exists, see Exercise 15.13.) Observe that q ∈ C ′
i . Let p be the point of C ′

i that is inserted
into K ′ during this iteration. Observe that p is not contained in K . Applying the triangle
inequality and Lemma 15.3.1 shows that

|qp| ≤ |qvi | + |vip| ≤ δG(q, vi) + δG(vi, p) ≤ δk+1
G (q, vi) · Uk+1 + δk+1

G (vi, p) · Uk+1.

Since p and q are both contained in C ′
i , it follows that

|qp| ≤ 2(αn/ε)Uk+1 = 2αWk+1.

First assume that p ∈ K ′′. Then p ∈ K	+1 \ K	 and |qp| ≤ 3αWk+1. Hence, the claim
of the lemma holds with u := p.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.3 A FASTER ALGORITHM THAT USES INDIRECT ADDRESSING 373

It remains to consider the case when p �∈ K ′′. In this case, it follows from algorithm
GreedyRefine that there is point u ∈ K ′′ such that δk+1

G (u, p) ≤ αn/ε. Hence, u ∈
K	+1 \ K	, and

|qu| ≤ |qp| + |pu| ≤ 2αWk+1 + δG(p, u).

Since δG(p, u) ≤ αWk+1, it follows that |qu| ≤ 3αWk+1.

Lemma 15.3.14. Let L be as defined above. We have

L ≤
(

1 + 6α

min(β, (α − ε)/t)

)d

.

proof Let q be a point of S such that δk+1
G (v, q) > αn/ε for all v ∈ KL−1. By

Lemma 15.3.13, the set KL contains L pairwise distinct points u1, u2, . . . , uL such that
|qu	| ≤ 3αWk+1 for all 1 ≤ 	 ≤ L. Furthermore, we know that δk+1

G (ui, uj) > αn/ε for
all i �= j . From this, it easily follows that

|uiuj | > min(β, (α − ε)/t) · Wk+1

for all i �= j . The proof can be completed by applying a, by now familiar, packing
argument.

We have now completed the description and analysis of the three stages of algorithm
RecomputeCenters(G, α, V, k) that uses the centers V = {v1, v2, . . . , vm} of an (αn/ε)-
cluster cover of G, with respect to the weights wtk, to compute centers of an (αn/ε)-cluster
cover of G, with respect to the weights wtk+1. (The conditions on the parameters in this
algorithm are given at the beginning of Section 15.3.7.) The running time of this algorithm
is the sum of the quantities in (15.22) and (15.26), plus L times the sum of the quantities
in (15.29) and (15.30). This gives an overall time bound of

O
(
(αn/ε)L + M6Ln + M2

6 L|E|) . (15.34)

Upper bounds on M6 and L are given in (15.31) and Lemma 15.3.14, respectively.

15.3.8 Answering short-path queries

As usual, we start by introducing the parameters. We have a set S of n points in Rd , an
integer k with 1 ≤ k ≤ �log n�, and real numbers t > 1, 0 < ε < α < 1/2, and β > 0.
Furthermore, G = (S, E) is a Euclidean (βWk)-partial t-spanner for S, each edge of E

has Euclidean length at most 2Wk, {C1, C2, . . . , Cm} is an (αn/ε)-cluster cover of G, with
respect to the weights wtk, vi is the center of Ci for 1 ≤ i ≤ m, and H is the corresponding
cluster graph.

Given two distinct points p and q of S, and a positive real number R, we want to decide
if δk

H (p, q) ≤ R. This query can be answered using algorithm ShortPath(H, p, q, R) of
Section 15.2.5, of course using the weights wtk . Recall that the output of this algorithm
is true, if there is a path in H between p and q whose weight (with respect to wtk) is less
than, or equal to, R. If such a path does not exist, then the algorithm returns false.

Let γ > 0. We analyze the running time of algorithm ShortPath(H, p, q, R) for the
case when R ≤ γ n/ε.

Applying Lemma 15.3.6 with χ = α shows that Steps 1 and 3 take

O

((
1 + α

min(β, (α − ε)/t)

)d
)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

374 THE PATH-GREEDY ALGORITHM

time. Steps 2.1 and 2.2 are executed for at most(
1 + 2α

min(β, (α − ε)/t)

)d

indices i. Consider one such index i. Let Ai := {vj : δk
H ′(vi, vj) ≤ R}, where H ′ is the

subgraph of H induced by the inter-cluster edges. For this i, Step 2.1 takes

O

|Ai | log |Ai | +
∑
vj ∈Ai

degH ′(vj)

time, whereas Step 2.2 takes O(|Ai |) time.

We first prove an upper bound on the size of Ai . Let vj be any point of Ai . Then,
δk
H ′(vi, vj) ≤ R ≤ γ n/ε. By Lemma 15.3.1, we have

|vivj | ≤ δG(vi, vj) ≤ δk
G(vi, vj) · Uk,

whereas by Lemma 15.2.5, we have δk
G(vi, vj) ≤ δk

H (vi, vj) ≤ δk
H ′(vi, vj). It follows that

|vivj | ≤ δk
H ′(vi, vj) · Uk ≤ (γ n/ε)Uk = γWk.

We have shown that all elements of Ai are cluster centers that are in or on the boundary
of the ball with center vi and Euclidean radius γWk . Then, Lemma 15.3.5 implies that

|Ai | ≤
(

1 + 2γ

min(β, (α − ε)/t)

)d

.

An upper bound on the degree in H ′ of any cluster center vj is given by Lemma 15.3.7:

degH ′(vj) ≤
(

1 + 4 + 4α + 2ε

min(β, (α − ε)/t)

)d

.

If we combine all these bounds, then we have shown that for any R with 0 < R ≤ γ n/ε,
algorithm ShortPath(H, p, q, R) takes time proportional to(

1 + α

min(β, (α − ε)/t)

)d (
1 + γ

min(β, (α − ε)/t)

)d

×
(

log

(
1 + γ

min(β, (α − ε)/t)

)
+
(

1 + 1 + α + ε

min(β, (α − ε)/t)

)d
)

. (15.35)

15.3.9 The fast spanner algorithm

Having described all necessary subroutines, we are now ready to present the complete
spanner algorithm.

Algorithm RAMPathGreedy(S, t, t ′, α)

Input: A set S of n points in R
d , two real numbers t > 1 and t ′ > 1 such that t > t ′, and

a real number α such that 0 < α < 1/2. The value of ε that we used before will be
equal to α/4.

Output: A t-spanner G = (S,E) for S that, for an appropriate choice of α, satisfies the
(t ′, t)-leapfrog property.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.3 A FASTER ALGORITHM THAT USES INDIRECT ADDRESSING 375

Details of algorithm RAMPathGreedy(S, t, t ′, α) follow.

Algorithm RAMPathGreedy(S, t, t ′, α)

Step 1: Compute a bounded-degree
√

t/t ′-spanner G′ = (S,E′) for S, using the algo-
rithm of Section 10.1.1.

Step 2: Sort the edges of E′ by nondecreasing Euclidean lengths (where ties are broken
arbitrarily).

Step 3: Compute the maximum Euclidean length D of any edge of E′, set I0 := (0,D/n]
and W0 := D/(2n), and compute E0 as the sorted sequence of all edges of E′ whose
Euclidean lengths are in I0.

For k = 1, 2, . . . , �log n�, set Wk := 2Wk−1, Uk := (αWk)/(4n) and Ik :=
(Wk, 2Wk], and compute Ek as the sorted sequence of all edges of E′ whose Eu-
clidean lengths are in Ik .

Step 4: Construct the balanced binary search tree T , storing the integers
1, 2, . . . , �12n/α�, that was defined in Section 15.3.2.

Step 5: For each edge {p, q} ∈ E0, perform upq := Integralize(p, q, 0); see Sec-
tion 15.3.2. (Recall that this function returns the node upq of T that stores wt0(p, q).
Also, it stores with edge {p, q}, the value of wt0(p, q).)

Step 6: Set E := E0 and G := (S,E).
Step 7: Do the following for k = 1, 2, . . . , �log n�:

7.1: For each edge {p, q} ∈ Ek , perform upq := Integralize(p, q, k).

7.2: For each edge {p, q} ∈ E, perform upq := Reintegralize(p, q, k, upq); see
Section 15.3.2.

7.3: If k = 1, then set K := GreedyCenters(G,α) (see Section 15.3.6); else, set
K := RecomputeCenters(G,α,K, k − 1) (see Section 15.3.7).

7.4: Perform H := RAMClusterGraph(G,α,K, k); see Section 15.3.5.

7.5: Do the following:

for each edge {p, q} of Ek (∗ consider the edges in sorted order ∗)
do if ShortPath(H,p, q,

√
t t ′|pq|/Uk) = false

then E := E ∪ {{p, q}};
G := (S,E);
for all cluster centers vi ∈ K and vj ∈ K such that

p is in vi ’s cluster and q is in vj ’s cluster and vi �= vj

do if [vi, vj] is an inter-cluster edge in H

then wtkH (vi, vj) :=
min(wtkH (vi, vj), wtkH (vi, p) + wtk(p, q) + wtkH (q, vj))

else add [vi, vj] as an inter-cluster edge to H ;
wtkH (vi, vj) := wtkH (vi, p) + wtk(p, q) + wtkH (q, vj)

endif
endfor

endif
endfor

Step 8: Return the graph G.

In Sections 15.3.2–15.3.8, we used three parameters, viz. ε, β, and γ . As men-
tioned already, we take ε = α/4. If in Step 7.5, the algorithm answers a query

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

376 THE PATH-GREEDY ALGORITHM

ShortPath(H, p, q, R) with R = √
t t ′|pq|/Uk , then

0 < R ≤ 2
√

t t ′Wk/Uk = 2
√

t t ′n/ε.

Hence, we can take the parameter γ to be equal to 2
√

t t ′. The parameter β should be
chosen such that, at any moment, G is a (βWk)-partial t-spanner for S. In Lemma 15.3.16,
we will prove that we can take β = √

t ′/t . Observe that the algorithm does not have to
“know” the parameters β and γ .

15.3.10 The correctness proof

In this section, we will prove that algorithm RAMPathGreedy computes a t-spanner for
the point set S. The proof is a direct generalization of the results of Section 15.2.7. We
define phase k to be the iteration of algorithm RAMPathGreedy in which the edges of
Ek are processed.

Lemma 15.3.15. Let k be any integer such that 1 ≤ k ≤ �log n� and consider phase k of
algorithm RAMPathGreedy(S, t, t ′, α).

1. The (αn/ε)-cluster cover that is computed at the beginning of phase k remains a valid
cluster cover for G throughout this phase.

2. The graph H is a valid cluster graph for G throughout phase k.

proof In Step 7.4 of phase k, algorithm RAMClusterGraph(G, α, K, k) computes
a valid (αn/ε)-cluster cover of G and a valid cluster graph H , with respect to the weight
function wtk . Denote the clusters by C1, C2, . . . , Cm, and let vi be the center of Ci ,
1 ≤ i ≤ m. Hence, K = {v1, v2, . . . , vm}.

Let {p, q} be an arbitrary edge of Ek, and assume that immediately before this edge is
examined in Step 7.5, {C1, C2, . . . , Cm} is a valid (αn/ε)-cluster cover, and H is a valid
cluster graph for the current graph G. We may assume that {p, q} is added to the edge set
E of G, because otherwise the graphs G and H do not change. The four claims below
imply that the claims of the lemma hold immediately after {p, q} has been added to E.

First, after {p, q} has been added to E, {C1, C2, . . . , Cm} is a valid (αn/ε)-cluster cover
of the new graph G. This claim follows from the fact that |pq| > Wk and, therefore,

wtk(p, q) = �|pq|/Uk� ≥ |pq|/Uk > Wk/Uk = n/ε > αn/ε.

This inequality also implies the second claim: When {p, q} is added to E, no new intra-
cluster edge arises in H , and the weights (with respect to wtk) of all existing intra-cluster
edges do not change.

Third, when {p, q} is added to E, no new short inter-cluster edge arises in H , and the
weights (with respect to wtk) of all existing short inter-cluster edges do not change. This
claim follows from the fact that δk

G(vi, vj) ≤ n/ε for any short inter-cluster edge [vi, vj].
On the other hand, we have seen above that wtk(p, q) > n/ε.

Fourth, when {p, q} is added to E in Step 7.5, the algorithm correctly adds new long
inter-cluster edges to H , gives them the correct weights (with respect to wtk), and correctly
updates the weights of existing long inter-cluster edges.

Observe that the proof above is correct, even though we did not prove yet that, at
any moment during phase k, the graph G is a (βWk)-partial t-spanner for S. See also
Remark 15.2.11.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.3 A FASTER ALGORITHM THAT USES INDIRECT ADDRESSING 377

Lemma 15.3.16. Let k be any integer such that 1 ≤ k ≤ �log n�. During phase k of
algorithm RAMPathGreedy(S, t, t ′, α), the graph G is a (

√
t ′/t · Wk)-partial t-spanner

for S.

proof Consider the graph G = (S, E) at the beginning of phase k, and let {x, y} be
any edge of the

√
t/t ′-spanner G′, such that |xy| ≤ Wk . We will prove that δG(x, y) ≤√

t t ′|xy|.
If {x, y} is an edge of E, then δG(x, y) = |xy| and the claim clearly holds. Thus, we may

assume that {x, y} �∈ E. Then, {x, y} �∈ E0 and, hence, this edge was examined in phase i,
for some integer i with 1 ≤ i < k. Hence, δi

Ĥ
(x, y) ≤ √

t t ′|xy|/Ui , where Ĥ is the cluster
graph at the moment when {x, y} was examined in Step 7.5. Hence, by Lemma 15.2.5, we
have δi

Ĝ
(x, y) ≤ √

t t ′|xy|/Ui , where Ĝ is the graph G at the moment when the algorithm
examined {x, y}. Since Ĝ is a subgraph of G, we also have δi

G(x, y) ≤ √
t t ′|xy|/Ui . Then,

by Lemma 15.3.1, we have

δG(x, y) ≤ δi
G(x, y) · Ui ≤

√
t t ′|xy|.

The proof of the lemma can now be completed in exactly the same way as in the proof
of Lemma 15.2.12.

As in Section 15.2.7, the above proof can easily be extended to a proof of the following
result.

Lemma 15.3.17. Algorithm RAMPathGreedy(S, t, t ′, α) computes a t-spanner for S.

15.3.11 The weight analysis

In this section, we generalize the results of Section 15.2.8 to prove that the weight of the
t-spanner computed by algorithm RAMPathGreedy(S, t, t ′, α) is proportional to the
weight of a minimum spanning tree of S, provided that the parameters t ′ and α are chosen
appropriately.

For any two distinct points p and q of S, we denote by δG,2(p, q) the Euclidean length
of a second shortest path in the graph G between p and q. (See Section 14.3 for a formal
definition.)

Lemma 15.3.18. Let S be a set of n points in Rd and let t > 1, t ′ > 1, and α > 0 be real
numbers, such that t > t ′ and

α ≤
√

t − √
t ′

2
√

t + 21
√

t ′
.

Let G = (S, E) be the output of algorithm RAMPathGreedy(S, t, t ′, α). For any edge
{p, q} in E \ E0, we have

δG,2(p, q) > t ′|pq|.
proof We may assume that δG,2(p, q) is finite. Let P = (p = p0, p1, p2, . . . , p	 = q)
be a second shortest path in G between p and q, with respect to the Euclidean metric.
(Hence, 	 ≥ 2.) We have to show that the Euclidean length |P | of P is larger than t ′|pq|.
Consider the cycle

C := (p0, p1, p2, . . . , p	, p0),

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

378 THE PATH-GREEDY ALGORITHM

which is a cycle in G. Let {x, y} be the edge of C that was added last to G by the algorithm.
Then, {x, y} is a longest edge of C, and {x, y} �∈ E0. Let Cxy denote the path in G between
x and y that is obtained by deleting the edge {x, y} from C.

Consider the moment when algorithm RAMPathGreedy examines the edge {x, y},
and let k be the number of the phase in which this happens. At that moment, all edges of
Cxy appear already in G. Let Ĝ be the graph G immediately before {x, y} is examined,
and let Ĥ be the corresponding cluster graph. Since {x, y} is added to Ĝ, we have
δk

Ĥ
(x, y) >

√
t t ′|xy|/Uk .

Assume that there is an (αn/ε)-cluster in the cluster cover of Ĝ that contains both x

and y. Then δk

Ĝ
(x, y) ≤ 2αn/ε and, hence,

|xy| ≤ δĜ(x, y) ≤ δk

Ĝ
(x, y) · Uk ≤ (2αn/ε)Uk = 2αWk < Wk.

On the other hand, we know that |xy| > Wk, which is a contradiction. Hence, no cluster
in the cluster cover of Ĝ contains both x and y. Furthermore, we have

δk

Ĝ
(x, y) ≥ δĜ(x, y)/Uk ≥ |xy|/Uk > Wk/Uk > (1 − 2α)n/ε.

Hence, by Lemma 15.2.6, we have

δk

Ĝ
(x, y) ≥ 1 − 2α

1 + 18α
· δk

Ĥ
(x, y)

>
1 − 2α

1 + 18α

√
t t ′|xy|/Uk

≥ 1 − 2α

1 + 18α

√
t t ′|pq|/Uk.

Since δĜ(x, y) ≥ |xy| > Wk , Lemma 15.3.2 implies that

δĜ(x, y) >
1

1 + ε
· δk

Ĝ
(x, y) · Uk.

Hence,

δG,2(p, q) = |P | ≥ |Cxy | ≥ δĜ(x, y) >
1

1 + ε

1 − 2α

1 + 18α

√
t t ′|pq|.

Our assumption on α implies that (1 − 2α)
√

t t ′ ≥ (1 + 21α)t ′. Finally, since ε = α/4
and 0 < α < 1/2, we have (1 + ε)(1 + 18α) ≤ 1 + 21α. It follows that δG,2(p, q) >

t ′|pq|.
If α satisfies the condition of Lemma 15.3.18, then a proof similar to the one of

Lemma 14.3.1 shows that the subset E\E0 of the edge set E of the spanner computed by
algorithm RAMPathGreedy satisfies the (t ′, t)-leapfrog property.

According to the Generalized Leapfrog Theorem (Theorem 14.9.3 in Section 14.9),
there exists an absolute constant φ with 0 < φ < 1, such that the following holds: For
all real numbers t and t ′ with 1 < 1 − φ + φt < t ′ < t , the weight of any set of edges
satisfying the (t ′, t)-leapfrog property is proportional to the weight of a minimum spanning
tree of the endpoints of the edges. Hence, we have proved the following result.

Theorem 15.3.19. Let S be a set of n points in Rd , and let t , t ′, and α be real numbers,
such that 1 < 1 − φ + φt < t ′ < t and

0 < α ≤
√

t − √
t ′

2
√

t + 21
√

t ′
.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

15.3 A FASTER ALGORITHM THAT USES INDIRECT ADDRESSING 379

1. Algorithm RAMPathGreedy(S, t, t ′, α) computes a t-spanner G = (S,E) for S.

2. The degree in G of each point of S is

O

((
1√

t/t ′ − 1

)2d−1
)

.

3. The weight of G is

O

(((
1√

t/t ′ − 1

)2d−1

+
(

1

t − 1

)2d
)

· wt(MST(S))

)
,

where MST(S) denotes a minimum spanning tree of S.

15.3.12 The running time

In this final section, we analyze the running time of algorithm RAMPathGreedy. Let S

be a set of n points in Rd , and let t > 1, t ′ > 1, and α > 0 be real numbers, such that t > t ′

and α < 1/2. Recall that we take ε to be equal to α/4. Furthermore, we have β = √
t ′/t

and γ = 2
√

t t ′. Therefore,

min(β, (α − ε)/t) = (α − ε)/t = 3α/(4t)

and

min(β, (α/2 − ε)/t) = (α/2 − ε)/t = α/(4t).

We consider each step of the algorithm separately (see Section 15.3.9), and for each
one, give an upper bound on its running time.

Step 1: By Theorem 10.1.3, the time to compute the initial bounded-degree
√

t/t ′-spanner
G′ = (S, E′) is

O

(
log(1/(

√
t/t ′ − 1))(√

t/t ′ − 1
)d n log n

)
.

Again by Theorem 10.1.3, we have

|E′| = O

((
1√

t/t ′ − 1

)2d−1

n

)
.

Observe that, at any time during algorithm RAMPathGreedy, the partially constructed
spanner G = (S, E) has at most |E′| edges.

Steps 2 and 3: These two steps take O(|E′| log n) and O(|E′|) time, respectively.

Step 4: The binary tree T can be constructed in O((n/α) log(n/α)) time, see Section 15.3.2
and Exercise 15.10.

The total time for Integralize: During the entire algorithm, the function Integralize
is called exactly once for each edge of G′ (see Steps 5 and 7.1). Since one such call
takes O(log(n/α)) time (see Section 15.3.2), the total time for this part of the algorithm
is O(|E′| log(n/α)).

The total time for Reintegralize: During the entire algorithm, the function
Reintegralize is called at most �log n� times for each edge of G′ (see Step 7.2).
Since one call takes O(1) time (see Section 15.3.2), the total time for this part of the
algorithm is O(|E′| log n).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

380 THE PATH-GREEDY ALGORITHM

Step 7.3: In this step, algorithm GreedyCenters(G, α) is called once, and algorithm
RecomputeCenters(G, α, K, k − 1) is called �log n� − 1 times. The total time for
Step 7.3 is given by (15.21) plus O(log n) times the expression in (15.34), which gives
an upper bound of O(t3d |E′| log n).

Step 7.4: In this step, algorithm RAMClusterGraph(G, α, K, k) is called �log n� times.
Using (15.19), this gives a total time bound of

O

(((
t

α

)2d

+ t3d

αd

)
|E′| log n

)
.

Step 7.5: In this part of the algorithm, each edge {p, q} of E′ \E0 is considered once. By
(15.35), the time for answering one query ShortPath is

O

(
t3d

α2d

(√
t t ′
)d
)

. (15.36)

If {p, q} is added as an edge to G, then the algorithm updates the cluster graph by
considering all (αn/ε)-clusters that contain p, and all (αn/ε)-clusters that contain q.
By Lemma 15.3.6, applied with χ = α, the number of pairs of clusters considered is
less than or equal to (1 + 8t/3)2d = O(t2d). For each such pair of clusters, the algorithm
checks whether the corresponding inter-cluster edge [vi, vj] exists in H . If it does, its
weight is updated. Otherwise, [vi, vj] is added to H and its weight is computed. By
storing the inter-cluster edges using adjacency lists, the algorithm spends

O

((
t

α

)d
)

(15.37)

time for each pair of clusters (see Lemma 15.3.7). This proves that the total time for
Step 7.5 is bounded by |E′| times the quantity in (15.36) plus O(t2d |E′|) times the
quantity in (15.37), which is

O

(
t3d

α2d

(√
t t ′
)d

|E′|
)

.

Steps 6 and 8: These two steps clearly take O(|E′|) time.
By taking the sum of all these bounds, it follows that the total running time of algorithm
RAMPathGreedy(S, t, t ′, α) is proportional to

log(1/(
√

t/t ′ − 1))(√
t/t ′ − 1

)d n log n + (|E′| + n/α
)

log(n/α)

+
((

t

α

)2d

+ t3d

αd

)
|E′| log n + t3d

α2d

(√
t t ′
)d

|E′|. (15.38)

It remains to choose the parameters t ′ and α so as to get the best result. As in Sec-
tion 15.2.9, we should choose t ′ as small as possible, and α as large as possible. If we
take t ′ slightly larger than 1 − φ + φt and α = (

√
t − √

t ′)/(2
√

t + 21
√

t ′), then the
conditions of Theorem 15.3.19 are satisfied.

We write t = 1 + ε′, where ε′ is a small positive real number. Then
√

t ∼ 1 +
ε′/2, t ′ ∼ 1 + φε′,

√
t ′ ∼ 1 + φε′/2,

√
t/t ′ ∼ 1 + (1 − φ)ε′/2, and α ∼ ε′(1 − φ)/46.

Hence, the time bound in (15.38) becomes

O

(
1

(t − 1)4d−1
n log n

)
.

This proves the final result of this chapter.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

EXERCISES 381

Theorem 15.3.20. Let S be a set of n points in Rd and let t > 1 be a real number. In

O

(
1

(t − 1)4d−1
n log n

)
time, a t-spanner for S can be computed,

1. in which each point has degree O(1/(t − 1)2d−1), and

2. whose weight is

O

(
1

(t − 1)2d
· wt(MST(S))

)
,

where MST(S) denotes a minimum spanning tree of S.

Remark 15.3.21. All claims in Remark 15.2.18 are also valid for algorithm
RAMPathGreedy.

Exercises

15.1. Show how to choose the values of θ and w in Theorem 15.1.4 so as to obtain the best possible

upper bound on the weight of the edge set E.

15.2. Give an example of a point set S that contains two distinct points p and q, such that the spanner

computed by algorithm PathGreedy(S, t) contains only one simple path between p and q.

15.3. Given an example of an undirected weighted graph G = (V,E) that satisfies the triangle inequality,

and an R-cluster cover of G, such that

1. G has a vertex that is contained in |V | − 1 clusters, and

2. the maximum degree of the subgraph of the cluster graph H induced by the inter-cluster edges is

|V | − 1.

15.4. Show that after algorithm FastPathGreedy(S, t, t ′, α, µ) has examined all pairs of points whose

Euclidean distance is X, the spanner graph G constructed so far by it is an (X/
√

t/t ′)-partial

t -spanner for S.

15.5. Prove the correctness of algorithm ShortPath given in Section 15.2.5.

15.6. Prove Lemma 15.2.13.

15.7. Let S be a set of n points in R
d , and let t , t ′, α, and µ be real numbers such that t > t ′ > 1, 0 <

α < min(1/2, (
√

t t ′ − 1)/8), and µ > 1. Consider algorithm FastPathGreedy(S, t, t ′, α, µ).
Consider the moment when this algorithm adds an edge {p, q} to the edge set E. Let i and j be

indices such that, at that moment, p is in the (αW)-cluster Ci , and q is in the (αW)-cluster Cj .

Prove that immediately before {p, q} is added to the edge set E, this set does not contain any

edge {x, y} such that x ∈ Ci and y ∈ Cj . Hence, at this moment, the cluster graph H does not

contain the inter-cluster edge [vi, vj], where vi and vj are the centers of Ci and Cj , respectively.

15.8. We obtained the O(n log2 n/ log log n)–time bound in Theorem 15.2.17 by choosing µ =
(log n)1/(2d). Prove that there is no choice for µ that gives an asymptotically better time bound.

15.9. Verify the claims in Remark 15.2.18.

15.10. Prove that the binary search tree T , which was defined in Section 15.3.2, can be constructed, in

the algebraic computation-tree model, in O((n/ε) log(n/ε)) time.

15.11. In Section 15.3, we used clusters, cluster covers, and cluster graphs for the partially constructed

spanner G, on the basis of the integer weight function wtk . The results of Sections 15.2.2

and 15.2.3 require that wtk satisfies the triangle inequality. Prove that this is the case, that is,

wtk(p, q) ≤ wtk(p, r) + wtk(r, q) for any three edges {p, q}, {p, r}, and {r, q} of G.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

382 THE PATH-GREEDY ALGORITHM

15.12. Prove the correctness of algorithm MultipleSources(G, K,L, wt) that was presented in Sec-

tion 15.3.4. In particular, prove that δ(vi, u) = 	 immediately after vertex u has been added to the

list Ci in Step 1.

15.13. Prove that at the end of algorithm GreedySelect of Section 15.3.7, Choose(p) = false for all

p ∈ S.

Bibliographic notes

The path-greedy algorithm first appeared in Althöfer et al. [1993]. According to them,
it was discovered independently by Bern in 1989. The algorithm also appears in Soares
[1994], who proves that the path-greedy spanner has bounded degree. Theorem 15.1.2
is due to Chandra et al. [1995]. Theorem 15.1.4 and Section 15.1.2 are based on
Chandra [1994]. See also Karp and Steele [1985] for related probabilistic results.
Das et al. [1993] mention that the path-greedy spanner satisfies the leapfrog property.
The proof we gave in Section 15.1.3 is due to Das and Narasimhan [1997].

Section 15.2 follows Das and Narasimhan [1997] and Gudmundsson, Levcopoulos,
and Narasimhan [2002a]. Das and Narasimhan use the value µ = 2. Consequently, they
obtain a time bound of O(n log2 n). Gudmundsson et al. give a more refined analysis of
the algorithm, leading to the value µ = (log n)1/(2d) that we used in Section 15.2.9.

The results of Section 15.3 are based on Gudmundsson, Levcopoulos, and Narasimhan
[2002a].

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

part v

Further Results on Spanners
and Applications

383

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

384

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

16

The Distance Range Hierarchy

It was a perfect title, in that it crystallized the article’s niggling mind-
lessness, its funereal parade of yawn-enforcing facts, the pseudo-light it
threw upon non-problems.

—Kingsley Amis, Lucky Jim, 1954

In Chapter 9, we introduced the well-separated pair decomposition (WSPD) of a set S of
n points in Rd . This decomposition consists of a sequence of pairs of subsets of S that
are well-separated with respect to a given separation ratio. Assume that we take for each
pair {A, B} in this sequence an arbitrary representative point xA in A and an arbitrary
representative point yB in B. By the definition of the WSPD, for any two distinct points p

and q in S, there is a pair {A, B} in the WSPD such that (i) p ∈ A and q ∈ B or (ii) p ∈ B

and q ∈ A. Assume without loss of generality that (i) holds. Then, by Lemma 9.1.2, both
|pxA| and |qyB | are small compared to |pq| and, hence, |pq| and |xAyB | are approximately
equal. In this way, we can approximate all the

(
n

2

)
distances determined by the points of S

using only m distances of the form |xAyB |, where m is the number of pairs in the WSPD.
Since there exists a WSPD with m = O(n) pairs (see Chapter 9), the �(n2) distances can
be approximated by O(n) distances. The drawback of the WSPD is that finding the pair
{A, B} for which (i) or (ii) holds takes O(log n) time (see Theorems 9.5.2 and 9.5.6).

In this chapter, we introduce a hierarchical decomposition that has properties similar
to those of the WSPD, but will allow finding the pairs more efficiently. What is this
new decomposition? Given a set S of n points in Rd , we will show how to compute
a sequence L1, L2, . . . , L	 of real numbers and a sequence S1, S2, . . . , S	 of subsets of
S, where 	 = O(n) and

∑	
i=1 |Si | = O(n), such that the following holds. For any two

distinct points p and q of S, there exists an index i (which is not necessarily unique) and
two points x and y in Si such that

1. both |px| and |qy| are small compared to |pq| and, therefore, |pq| is approximately equal
to |xy|, and

2. |xy| is within a factor of nO(1) of Li .

Given the points p and q, we obtain this index i and these points x and y by perform-
ing a lowest common ancestor computation in a tree having size O(n). Hence, i, x,
and y can be computed in O(log log n) time in the algebraic computation-tree model
(see Theorem 2.3.6) and in O(1) time if we add indirect addressing to this model (see
Theorem 2.3.5).

Assume that we want to solve some problem that involves distances between pairs of
points of S. Then using this decomposition, we obtain an approximate solution by solving
the problem for each subset Si , 1 ≤ i ≤ 	, separately. The advantage is that for each set Si ,
we have to consider only distances that are within a factor of nO(1) of the fixed real number

385

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

386 THE DISTANCE RANGE HIERARCHY

Li . Because of this property, we call this decomposition the distance range hierarchy for
the point set S.

This chapter is organized as follows. In Section 16.1, we define the hierarchical decom-
position based on an arbitrary spanner G for the point set S and prove its main properties.
Besides the sequences Li and Si , 1 ≤ i ≤ 	, mentioned above, we construct a sequence
Gi = (Si, Fi), 1 ≤ i ≤ 	, of graphs that approximate the spanner G in the following sense.
For any two distinct points p and q of S, consider the index i and the points x and y in Si

as above. Then the shortest-path distance between p and q in G is approximately equal
to the shortest-path distance between x and y in Gi .

In Section 16.2, we apply the results of Section 16.1 to an arbitrary spanner for the
point set S and obtain the distance range hierarchy for S.

In Section 16.3, we combine the distance hierarchy with well-separated pairs to design
an efficient algorithm for pruning any given spanner G. That is, we show how to compute
a (1 + ε)-spanner of G having O(n) edges.

For any graph G, we will denote by δG(x, y) the length of a shortest path in G between
the vertices x and y. If t > 1 and L > 0 are real numbers, then we say that G is an L-partial
t-spanner if for any two vertices x and y with |xy| < L, we have δG(x, y) ≤ t |xy|.

The graphs Gi mentioned above have the property that δGi
(x, y) ≤ t |xy|, provided that

|xy| is within a factor of nO(1) of Li . In Section 16.4, we extend each graph Gi to a graph
G′

i that is an Li-partial spanner for the point set Si . In this way, we obtain the distance
range hierarchy for an arbitrary spanner G for the point set S.

Throughout this chapter, we consider undirected t-spanners, where the value of t may
be large. We will present all algorithms in this chapter in the algebraic computation-tree
model. If we add indirect addressing to this model, then the running times can be improved.

16.1 The basic hierarchical decomposition

Let S be a set of n points in Rd , let t ≥ 1 be a real number, and let G = (S, E) be a
t-spanner for S. We assume that n ≥ 2t . We also fix a real constant c ≥ 7.

Outline: We partition the edge set E of the spanner G into subsets
E1, E2, . . . , E	, where 	 = O(|E|), such that within each subset, edge lengths
are within a factor of nO(1) of each other. By considering, for any index i, each
connected component of the graph (S, E1 ∪ · · · ∪ Ei−2) as a super-vertex, we
obtain a sequence Gi = (Si, Fi), 1 ≤ i ≤ 	, of Euclidean graphs, whose total
size is O(|E|). Each of these graphs Gi has the property that for vertices x and
y such that |xy| is within a factor of nO(1) of the edge lenghts in Ei , the values
of δG(x, y) and δGi

(x, y) are approximately equal. The sequence Gi , 1 ≤ i ≤ 	,
of graphs defines a natural hierarchical representation of the points of S. This
hierarchy has the property that for any two points p and q of S, a lowest common
ancestor computation gives an index i and two vertices x and y of Gi such that
(i) both |px| and |qy| are small compared to |pq|, and (ii) |xy| is within a factor
of nO(1) of the edge lenghts in Ei . As a result, δGi

(x, y) is approximately equal
to δG(p, q).

16.1.1 Partitioning the edge set E

We start by partitioning the edge set of the t-spanner G = (S, E) into subsets. For a reason
that will become clear in the proofs of Lemmas 16.1.11, 16.1.12, and 16.1.13, some of

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

16.1 THE BASIC HIERARCHICAL DECOMPOSITION 387

these subsets are empty. The algorithm is denoted by EdgePartition and described
below.

Algorithm EdgePartition(G)

Comment: This algorithm takes as input a t-spanner G = (S,E). It returns a sequence
L = (L1, L2, . . . , L) of real numbers, and a sequence E = (E1, E2, . . . , E) of edge
sets that form a partition of E.

Step 1: Initialize E′ := E.

Step 2: Compute the length L of a shortest edge in E′ and set L1 := ncL, L2 := ncL1,
and L3 := ncL2.

Step 2.1: Compute the set E1 consisting of all edges in E′ whose lengths are less than
L1 and compute the set E′ := E′ \ E1.

Step 2.2: Compute the set E2 consisting of all edges in E′ whose lengths are less than
L2 and compute the set E′ := E′ \ E2.

Step 2.3: Compute the set E3 consisting of all edges in E′ whose lengths are less than
L3 and compute the set E′ := E′ \ E3.

Step 2.4: Initialize i := 3.

Step 3: If Ei = ∅ and E′ = ∅, then go to Step 4. Otherwise, do the following.

Step 3.1: If Ei �= ∅, then set Li+1 := ncLi , else let L be the length of a shortest edge
in E′ and set Li+1 := ncL.

Step 3.2: Compute the set Ei+1 consisting of all edges in E′ whose lengths are less
than Li+1, compute the set E′ := E′ \ Ei+1, set i := i + 1, and go to Step 3.

Step 4: Set 	 := i. Output the sequence L = (L1, L2, . . . , L) of real numbers and the
sequence E = (E1, E2, . . . , E) of edge sets.

Lemma 16.1.1. Given the t-spanner G = (S, E), algorithm EdgePartition(G) takes
O(|E| log n) time.

proof If the edges of E are sorted in nondecreasing order of their lengths, then the
algorithm can be implemented such that its running time is O(|E|). Clearly, sorting the
edges can be done in O(|E| log n) time.

For each i with 1 ≤ i ≤ 	, we define the interval Ii by

Ii := (Li/nc, Li).

The following lemma states some properties of the sequences Li , Ei , and Ii , 1 ≤ i ≤ 	,
that will be used throughout the rest of this chapter. The proof follows from algorithm
EdgePartition(G). In the proofs of Lemmas 16.1.11, 16.1.12, and 16.1.13, it will become
clear why we need the fifth and sixth properties.

Lemma 16.1.2. The following properties hold:

1. For each i with 1 ≤ i ≤ 	 − 1, for each L ∈ Ii , and for each L′ ∈ Ii+1, we have L < L′.
2. For each i with 1 ≤ i ≤ 	 and for each edge {p, q} in Ei , we have |pq| ∈ Ii , i.e.,

Li/nc ≤ |pq| < Li .

3. For each edge {p, q} ∈ E, there is a unique index i with 1 ≤ i ≤ 	 such that {p, q} ∈ Ei

and, hence, |pq| ∈ Ii .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

388 THE DISTANCE RANGE HIERARCHY

4. For each i with 1 ≤ i ≤ 	 − 1, we have Li+1 ≥ ncLi .

5. L2 = ncL1 and L3 = ncL2.

6. For each i with 1 ≤ i ≤ 	 − 1 and for which Ei �= ∅, we have Li+1 = ncLi .

7. E	 = ∅.

8. 3 ≤ 	 ≤ 2|E| + 1.

16.1.2 A hierarchy of Euclidean graphs

Consider the sequence Li , 1 ≤ i ≤ 	, of real numbers and the sequence Ei , 1 ≤ i ≤ 	,
of edge sets that are returned by algorithm EdgePartition(G) in Section 16.1.1. We
will give an algorithm that uses these sequences to define a sequence Gi = (Si, Fi),
1 ≤ i ≤ 	, of Euclidean graphs. As we will see, this sequence defines a natural hi-
erarchical representation of the points of S, in terms of a sequence Ui , 1 ≤ i ≤ 	,
of forests. The algorithm is denoted by HierarchicalDecomposition and described
below.

Algorithm HierarchicalDecomposition(G,L, E)

Comment: This algorithm takes as input a t-spanner G = (S,E), and the sequences L
and E that are returned by algorithm EdgePartition(G).

Define S1 := S, F1 := E1, G1 := (S1, F1), S2 := S, F2 := E1 ∪ E2, and G2 := (S2, F2).
For each connected component C of G1, let TC be the tree whose root stores the index

1 (to indicate that it is a tree in the forest U1) and an arbitrary point of C. This root has
|C| children (which are leaves), each one storing a unique point of C. Hence, TC consists
of |C| + 1 nodes. The forest U1 is the collection of the trees TC , where C ranges over all
connected components of G1. We define the forest U2 in the same way with respect to
the graph G2. The root of each tree in this forest stores the index 2 (to indicate that it is a
tree in the forest U2).

For i = 3, 4, . . . , 	, do the following:

Step 1: Initialize both Fi and Si as the empty set.

Step 2: For each edge {p, q} in Ei−1 ∪ Ei , do the following (refer to Figure 16.1): let x be
the point stored at the root of the tree in Ui−2 in which p is stored at a leaf. Let y be the
point stored at the root of the tree in Ui−2 in which q is stored at a leaf. If x �= y, then
insert x and y into Si (if they are not already inserted), and then insert the edge {x, y}
into Fi .

Having done this for all edges {p, q} in Ei−1 ∪ Ei , we have obtained the graph
Gi = (Si, Fi).

Step 3: For each connected component C of Gi , do the following. Choose an arbitrary
point z in C. Consider all trees T in Ui−2 such that the points stored in their roots form
the set C. Construct a tree whose root stores the index i and the point z, and that has
the roots of all these trees T as its children.

Step 4: The forest Ui consists of all trees that are obtained from Step 3 and all trees in
Ui−2 whose roots store a point that is not in Si .

Step 5: Output the trees U	−1 and U	, the sequence S = (S1, . . . , S) of point sets, and
the sequence G = (G1, . . . ,G) of graphs, where Gi = (Si, Fi), for 1 ≤ i ≤ 	.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

16.1 THE BASIC HIERARCHICAL DECOMPOSITION 389

•x

• •

••

• ••p

•y

• ••

••

• •q •
Figure 16.1: The point p is stored in the tree of the forest Ui−2 whose root stores the point x. The
point q is stored in the tree of the forest Ui−2 whose root stores the point y. Since x �= y, the edge
{p, q} of Ei−1 ∪ Ei is represented by the edge {x, y} in the graph Gi . Since x and y belong to the same
connected component of Gi , the two trees (possibly with some other trees) are merged in Step 3 of the
algorithm.

Remark 16.1.3. The edges of Fi may not be edges in G. It is convenient to think of
the nodes x and y in Step 2 as “supernodes” from level i − 2 of the hierarchy; these
supernodes represent connected components of Gi−2. Edges in Fi connect supernodes
from level i − 2.

The following lemma follows from the way the forest Ui is defined and the facts that
E	 = ∅ (see Lemma 16.1.2) and the spanner G is connected.

Lemma 16.1.4. The following properties hold:

1. For each i with 1 ≤ i ≤ 	, the trees in the forest Ui are in one-to-one correspondence with
the connected components of the graph with vertex set S and edge set E1 ∪ E2 ∪ · · · ∪ Ei .

2. Each of U	 and U	−1 consists of one single tree whose leaves are in one-to-one corre-
spondence with the points of S.

Remark 16.1.5. Intuitively, Gi contains edges of a certain length group (see
Lemma 16.1.8). Observe that if {x, y} ∈ Fi , then x and y are contained in Si . The con-
nected components of Gi are represented by trees in the forest Ui . But Ui may have more.
In Step 4, we add to Ui all trees of Ui−2 that involve points not incident to edges in Gi .
So the roots of trees in Ui may involve points not in Si . Consequently, Si may have points
not in Si−1 or Si−2. Thus the sets S1, . . . , S	 do not necessarily form a “containment”
hierarchy.

Next, we prove upper bounds on the total size of the graphs Gi , 1 ≤ i ≤ 	, and the
trees U	−1 and U	, and on the time needed to construct them.

Lemma 16.1.6. The following properties hold:

1.
∑	

i=1 |Si | ≤ 2n + 4|E| = O(|E|).
2.

∑	
i=1 |Fi | ≤ 2|E|.

3. Both U	−1 and U	 have size O(n).

4. Given the sequences Li and Ei , 1 ≤ i ≤ 	, we can compute the sequence Gi , 1 ≤ i ≤ 	,
of graphs and the trees U	−1 and U	 in O(|E| log n) time.

proof First observe that |S1| = |S2| = n, |F1| = |E1|, and |F2| = |E1| + |E2|. Let
i be any index with 3 ≤ i ≤ 	. Since Gi does not contain vertices of degree 0, we

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

390 THE DISTANCE RANGE HIERARCHY

have |Si | ≤ 2|Fi |. It is clear from algorithm HierarchicalDecomposition(G,L, E) that
|Fi | ≤ |Ei−1| + |Ei |. It follows that

	∑
i=1

|Fi | ≤ 2
	∑

i=1

|Ei | = 2|E|

and
	∑

i=1

|Si | ≤ 2n + 2
	∑

i=3

|Fi | ≤ 2n + 4|E|.

Since the spanner G is a connected graph, E contains at least n − 1 edges. Therefore,
2n + 4|E| = O(|E|).

By Lemma 16.1.4, each of U	 and U	−1 consists of a tree with n leaves. Each internal
node in these trees has at least two children. Therefore, both trees have size O(n).

It remains to prove the claim on the running time. To obtain a fast implementation of
Steps 2 and 3, we use a union-find data structure that supports union-operations in O(1)
time and find-operations in O(log n) time; see Exercise 2.20. Observe that the connected
components of a graph can be computed in time that is proportional to the number of its
vertices and edges. Using these results, the sequence Gi = (Si, Fi), 1 ≤ i ≤ 	, of graphs
and the sequence Ui , 1 ≤ i ≤ 	, of forests can be computed in time

O

(
	∑

i=1

(|Si | + |Fi |) +
	∑

i=3

(|Ei−1| + |Ei |) log n

)
= O(|E| log n).

This completes the proof.

Remark 16.1.7. We have seen that both trees U	−1 and U	 have size O(n). It follows
from Step 3 of the algorithm that the index i is stored with some node in one of these trees
if and only if the set Si is nonempty. Therefore, even though 	 can be proportional to |E|,
the number of nonempty graphs Gi in the sequence is only O(n).

16.1.3 Properties of the hierarchical decomposition

In this section, we will prove several properties of the hierarchical decomposition. As we
will see in Section 16.1.4, these properties allow us to obtain, for any two given distinct
points p and q of S, an index i with 1 ≤ i ≤ 	, and two points x and y in Si , such that
both |px| and |qy| are small as compared to |pq|, and |xy| is within a factor of nO(1)

of Li .
We start by proving that points stored in the same tree of the forest Ui are within a

distance of O(nLi) from each other, and that edge lengths in Gi are O(Li).

Lemma 16.1.8. The following properties hold:

1. For any i with 1 ≤ i ≤ 	, let p and x be two points that are stored in the same tree of the
forest Ui . Then |px| < nLi .

2. For each i with 1 ≤ i ≤ 	, every edge in Gi has length less than 2Li .

proof If p and x are in the same tree of the forest Ui , then, by Lemma 16.1.4, they
are in the same connected component of the graph Gi with vertex set S and edge set
E1 ∪ E2 ∪ · · · ∪ Ei . Since the length of each edge in Gi is less than Li , and since any path
between p and x in Gi contains less than n edges, it follows that |px| ≤ δGi (p, x) < nLi .
This proves the first claim.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

16.1 THE BASIC HIERARCHICAL DECOMPOSITION 391

The second claim clearly holds if i ∈ {1, 2}. Assume that 3 ≤ i ≤ 	, and let {a, b} be
an arbitrary edge of Gi . Then a �= b and there is an edge {p, q} in Ei−1 ∪ Ei such that the
forest Ui−2 contains two distinct trees T ′ and T ′′ such that (i) the root of T ′ stores a, (ii)
p is stored in T ′, (iii) the root of T ′′ stores b, and (iv) q is stored in T ′′. By the first claim,
we have |ap| < nLi−2 and |qb| < nLi−2. Therefore,

|ab| ≤ |ap| + |pq| + |qb| < 2nLi−2 + |pq|.
Since {p, q} ∈ Ei−1 ∪ Ei , we have |pq| < Li . Moreover, by Lemma 16.1.2, Li−2 ≤
Li/n2c. It follows that

|ab| < 2nLi−2 + |pq| < 2Li/n2c−1 + Li ≤ 2Li,

where the last inequality follows from the fact that n2c−1 ≥ 2. Hence, we have shown that
the length of every edge in Gi is less than 2Li .

Recall from Lemma 16.1.4 that both U	−1 and U	 consist of a single tree storing all the
points of S in its leaves. Therefore, for any two points p and q in S, the lowest common
ancestor of the leaves of U	−1 or U	 storing p and q is well-defined.

Lemma 16.1.9. Let p and q be distinct points of S, let U be the tree U	−1 or U	, let u

be the lowest common ancestor of the leaves in U that store p and q, and let v and w be
the children of u that contain p and q in their subtrees, respectively. Let x and y be the
points of S that are stored in v and w, respectively, and let i be the index that is stored
with u. If i ≥ 3, then the following inequalities hold:

1. |px| < nLi−2,

2. |qy| < nLi−2,

3. |xy| < 2nLi−2 + |pq|,
4. |pq| < 2nLi−2 + |xy|,
5. |pq| ≥ Li−2/t ,

6. |xy| ≥ Li−2/t .

proof Let j be the index stored with v. Then 1 ≤ j ≤ i − 2 and v is the root of a tree
in the forest Uj . Hence, by Lemma 16.1.8, |px| < nLj ≤ nLi−2, proving the first claim.
The second claim follows in a symmetric way. From these first two claims, we obtain

|xy| ≤ |xp| + |pq| + |qy| < 2nLi−2 + |pq|,
proving the third claim. The fourth claim can be proved in a symmetric way.

To prove the fifth claim, assume that |pq| < Li−2/t . Since G is a t-spanner, we have
δG(p, q) ≤ t |pq| < Li−2. Hence, p and q are connected by a path in the graph with
vertex set S and edge set E1 ∪ E2 ∪ · · · ∪ Ei−2. But then, by Lemma 16.1.4, p and q are
stored in the same tree in the forest Ui−2, which is a contradiction to the assumption that
their lowest common ancestor u stores the index i. The sixth claim follows by a similar
argument.

For the next four lemmas, we fix two distinct points p and q of S. Moreover, we will
use the following notation.

� Let u be the lowest common ancestor of the leaves in U	−1 that store p and q. Let v and
w be the children of u that contain p and q in their subtrees, respectively. Let x and y be
the points of S that are stored at v and w, respectively, and let i be the index that is stored
with u.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

392 THE DISTANCE RANGE HIERARCHY

� Let u′ be the lowest common ancestor of the leaves in U	 that store p and q. Let v′ and
w′ be the children of u′ that contain p and q in their subtrees, respectively. Let x ′ and y ′

be the points of S that are stored at v′ and w′, respectively, and let i ′ be the index that is
stored with u′.

The next lemma shows that i ′ = i ± 1. In Lemmas 16.1.11, 16.1.12, and 16.1.13, we
will prove that |xy| is within a factor of nO(1) of Li or |x ′y ′| is within a factor of nO(1)

of Li ′ .

Lemma 16.1.10. We have i ′ = i − 1 or i ′ = i + 1.

proof Observe that U	−1 stores only odd indices and U	 stores only even indices, or
vice versa. We may assume without loss of generality that i ′ ≥ i + 1. Hence, we have to
prove that i ′ = i + 1.

Assume that i ′ ≥ i + 3. Then i ′ ≥ 4 and, by Lemma 16.1.2, Li ≤ Li ′−3 ≤ Li ′−2/nc.
Moreover, by Lemma 16.1.9, Li ′−2 ≤ t |pq|. It follows that

Li ≤ t |pq|/nc.

First assume that i = 1. Then p and q are connected by a path in the graph G1 with
vertex set S and edge set E1. Let L be the length of a longest edge on a shortest path
between p and q in this graph. Then |pq| ≤ δG1 (p, q) < nL < nL1. Since nc−1 ≥ t , it
follows that

L1 ≤ t |pq|/nc < tL1/nc−1 ≤ L1,

which is a contradiction. If i = 2, then a similar argument shows that L2 < L2, which is
again a contradiction. Hence, we know that i ≥ 3. By Lemma 16.1.9, Li−2 ≤ t |xy| and
|pq| < 2nLi−2 + |xy|. Therefore,

Li ≤ t |pq|/nc

< t (2nLi−2 + |xy|) /nc

≤ t (2tn|xy| + |xy|) /nc

= (
2t2n + t

) |xy|/nc.

Since, by our assumptions, c ≥ 7 and n ≥ 2t , we have 2t2n + t ≤ nc−1. It follows that
Li < |xy|/n, contradicting the first claim in Lemma 16.1.8. Hence, we have proved that
i ′ = i + 1.

Lemma 16.1.11. If {i, i ′} = {1, 2}, then Li/nc+1 ≤ |xy| < Li/t or Li ′/nc+1 ≤ |x ′y ′| <

Li ′/t .

proof We may assume without loss of generality that i = 1 and i ′ = 2. First observe
that x = x ′ = p and y = y ′ = q. Hence, we have to prove that L1/nc+1 ≤ |pq| < L1/t

or L2/nc+1 ≤ |pq| < L2/t .
Let L be the length of a longest edge on a shortest path between p and q in the graph

G. Then L ≤ δG(p, q). Since G is a t-spanner, we have δG(p, q) ≤ t |pq|. It follows
that |pq| ≥ L/t . Since the length of a shortest edge in G is equal to L1/nc, we have
L ≥ L1/nc and, therefore,

|pq| ≥ L/t ≥ L1/(tnc) ≥ L1/nc+1,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

16.1 THE BASIC HIERARCHICAL DECOMPOSITION 393

where the last inequality follows from the fact that n ≥ t . If |pq| < L1/t , then the claim
in the lemma holds. So assume that |pq| ≥ L1/t . By Lemma 16.1.2, we have L2 = ncL1.
It follows that

|pq| ≥ L1/t = L2/(tnc) ≥ L2/nc+1.

It remains to show that |pq| < L2/t . Since i = 1, p and q are connected by a path in the
graph G1 with vertex set S and edge set E1. Let L′ be the length of a longest edge on a
shortest path between p and q in G1. Then L′ < L1 and

|pq| ≤ δG1 (p, q) < nL′ < nL1 = L2/nc−1 ≤ L2/t,

completing the proof.

Lemma 16.1.12. If {i, i ′} = {2, 3}, then Li/nc+1 ≤ |xy| < Li/t or Li ′/nc+1 ≤ |x ′y ′| <

Li ′/t .

proof We may assume without loss of generality that i = 3 and i ′ = 2. Since i ′ = 2,
we have x ′ = p and y ′ = q. Hence, we have to prove that L3/nc+1 ≤ |xy| < L3/t or
L2/nc+1 ≤ |pq| < L2/t .

By Lemmas 16.1.2 and 16.1.9, we have L2 = ncL1 and |pq| ≥ L1/t . Therefore,

|pq| ≥ L1/t = L2/(tnc) ≥ L2/nc+1.

If |pq| < L2/t , then the claim in the lemma holds. So assume that |pq| ≥ L2/t .
By Lemma 16.1.2, we have L3 = ncL2. Let L be the length of a longest edge on a

shortest path between p and q in the graph G2 with vertex set S and edge set E1 ∪ E2.
(Since i ′ = 2, such a path exists.) Then L < L2 and

|pq| ≤ δG2 (p, q) < nL < nL2 = L3/nc−1.

By Lemma 16.1.9, we have |xy| < 2nL1 + |pq|. Hence,

|xy| < 2nL1 + L3/nc−1 = 2L3/n2c−1 + L3/nc−1 ≤ L3/t,

where the last inequality follows from the fact that

2/n2c−1 + 1/nc−1 ≤ 2/nc−1 ≤ 1/t,

which, in turn, follows from the facts that nc ≥ 2 and nc−1 ≥ 2t . It remains to prove that
|xy| ≥ L3/nc+1. Using Lemma 16.1.9, we get

|xy| > |pq| − 2nL1 ≥ L2/t − 2nL1 = L3/(tnc) − 2L3/n2c−1.

Since nc−2 ≥ 2 and n ≥ 2t , we have

1/nc+1 + 2/n2c−1 ≤ 2/nc+1 ≤ 1/(tnc).

It follows that

|xy| >
(
1/(tnc) − 2/n2c−1

)
L3 ≥ L3/nc+1.

This completes the proof.

In the previous two lemmas, we have considered the case when either i or i ′ is equal
to 2. By Lemma 16.1.10, the remaining case is when i and i ′ are both greater than or equal
to 3.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

394 THE DISTANCE RANGE HIERARCHY

Lemma 16.1.13. If i ≥ 3 and i ′ ≥ 3, then Li/nc+1 ≤ |xy| < Li/t or Li ′/nc+1 ≤
|x ′y ′| < Li ′/t .

proof By Lemma 16.1.10, we may assume without loss of generality that i ′ =
i + 1. Since, by Lemma 16.1.9, |xy| < 2nLi−2 + |pq| and |pq| < 2nLi ′−2 + |x ′y ′| =
2nLi−1 + |x ′y ′|, we have

|xy| < 2nLi−2 + 2nLi−1 + |x ′y ′|
≤ 2Li−1/nc−1 + 2nLi−1 + |x ′y ′|
≤ 3nLi−1 + |x ′y ′|.

Hence,

|xy| < 3Li/nc−1 + |x ′y ′|. (16.1)

In a symmetric way, we obtain the inequality

|x ′y ′| < 3Li/nc−1 + |xy|. (16.2)

By Lemma 16.1.8, we have |xy| < nLi . This, together with (16.2), implies that

|x ′y ′| <
(
3/nc−1 + n

)
Li ≤ (

3/n2c−1 + 1/nc−1
)
Li+1 ≤ Li+1/t,

where the last inequality follows from the fact that n ≥ 2t . If |x ′y ′| ≥ Li+1/nc+1, then
the lemma holds. So from now on, we assume that

|x ′y ′| < Li+1/nc+1. (16.3)

Let L′ be the length of a longest edge on a shortest path between x ′ and y ′ in the graph
G. Since L′ ≤ δG(x ′, y ′) ≤ t |x ′y ′|, it follows that L′/t ≤ |x ′y ′|. Let j ′ be the index such
that L′ is contained in the interval Ij ′ . Then Lj ′/nc ≤ L′ and, therefore,

Lj ′/nc+1 ≤ Lj ′/(tnc) ≤ L′/t ≤ |x ′y ′|. (16.4)

By combining (16.3) and (16.4), it follows that Lj ′ < Li+1, which implies that j ′ ≤ i.
We claim that j ′ = i. To prove this, assume that j ′ ≤ i − 1. Then x ′ and y ′ are connected
by a path in the graph with vertex set S and edge set E1 ∪ E2 ∪ · · · ∪ Ei−1. Hence,
by Lemma 16.1.4, x ′ and y ′ are stored in the same tree in the forest Ui−1, which is a
contradiction.

Since L′ ∈ Ij ′ = Ii , the edge set Ei is nonempty. Therefore, by Lemma 16.1.2, we have
Li+1 = ncLi . Then it follows from (16.1) and (16.3) that

|xy| < 3Li/nc−1 + Li+1/nc+1 = 3Li/nc−1 + Li/n ≤ Li/t.

It remains to prove that |xy| ≥ Li/nc+1. We will prove this inequality by contradiction.
So we assume that |xy| < Li/nc+1. Let L be the length of a longest edge on a shortest
path between x and y in the graph G and let j be the index such that L ∈ Ij . An argument
similar to the one that was used to obtain (16.4) shows that Lj/nc+1 ≤ |xy| and, hence,
Lj ≤ nc+1|xy| < Li . Therefore, j ≤ i − 1. If j ≤ i − 2, then x and y are contained in
the same tree in the forest Ui−2, which we know is not the case. Therefore, j = i − 1
and, hence, the points x and y are stored in the same tree in the forest Ui−1. Let T be
the tree in Ui−1 that stores x and y. By Lemma 16.1.4, the subset of S stored in T is the
union of one or more subsets of S that are stored in trees in Ui−2. We also know that p

and x are stored in the same tree in Ui−2, and q and y are stored in the same tree in Ui−2.
Therefore, p and q are both stored in T . But then, the lowest common ancestor of the

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

16.1 THE BASIC HIERARCHICAL DECOMPOSITION 395

leaves in U	 storing p and q stores an index that is less than or equal to i − 1. This is a
contradiction.

16.1.4 Querying the hierarchical decomposition

The reason why the hierarchical decomposition of Section 16.1.2 is interesting is that the
properties detailed in Section 16.1.3 imply an algorithm that efficiently does the following:
Given any two distinct query points p and q of S, it is possible to compute an index i with
1 ≤ i ≤ 	, and two points x and y in Si such that both |px| and |qy| are small compared
to |pq|, and |xy| is within a factor of nO(1) of Li . The data structure for answering this
type of queries consists of the following.

1. The sequence L = (L1, L2, . . . , L) of real numbers that was defined in Section 16.1.1.

2. The sequence S = (S1, S2, . . . , S) of subsets of S that was defined in Section 16.1.2.

3. The two trees U	−1 and U	 that were defined in Section 16.1.2. We assume that both
trees have been preprocessed such that lowest common ancestor queries can be answered
efficiently (see Sections 2.3.2 and 2.3.3, and Exercise 2.10).

The query algorithm is described below.

Algorithm QueryHD(L,S, U	−1, U	, p, q)

Comment: This algorithm takes as input two distinct points p and q of S. It returns an
index i with 1 ≤ i ≤ 	, and two points x and y in Si .

Step 1: Compute the lowest common ancestor u of the leaves in U	−1 storing p and q, and
compute the children v and w of u that contain p and q in their subtrees, respectively.
Let x and y be the points of S that are stored at v and w, respectively. Finally, let i be
the index that is stored with u.

Step 2: Compute the lowest common ancestor u′ of the leaves in U	 storing p and q, and
compute the children v′ and w′ of u′ that contain p and q in their subtrees, respectively.
Let x ′ and y ′ be the points of S that are stored at v′ and w′, respectively. Finally, let i ′

be the index that is stored with u′.

Step 3: If Li/nc+1 ≤ |xy| < Li/t , then return the index i and the points x and y of Si .
Otherwise, return the index i ′ and the points x ′ and y ′ of Si ′ .

It follows from Lemmas 16.1.10, 16.1.11, 16.1.12, and 16.1.13 that (i) Li/nc+1 ≤
|xy| < Li/t or (ii) Li ′/nc+1 ≤ |x ′y ′| < Li ′/t . Assume, for ease of notation, that (i) holds.

Lemma 16.1.14. The following properties hold:

1. Both |px| and |qy| are less than |xy|/nc−2.

2. Both |px| and |qy| are less than 2|pq|/nc−2.

3. 1 − 2/nc−2 < |pq|/|xy| < 1 + 2/nc−2.

proof If i ∈ {1, 2}, then x = p and y = q, and the claims clearly hold. Assume that
i ≥ 3. By Lemmas 16.1.2 and 16.1.9, we have

|px| < nLi−2 ≤ Li/n2c−1 ≤ |xy|/nc−2.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

396 THE DISTANCE RANGE HIERARCHY

In a symmetric way, we obtain the inequality |qy| < |xy|/nc−2, proving the first claim.
The triangle inequality gives

|pq| ≤ |px| + |xy| + |yq| < |xy| + 2|xy|/nc−2 = (
1 + 2/nc−2) |xy|

and

|xy| ≤ |xp| + |pq| + |qy| < |pq| + 2|xy|/nc−2.

The latter inequality can be rewritten as(
1 − 2/nc−2) |xy| < |pq|,

proving the third claim. Using the inequality 1/(1 − α) ≤ 1 + 2α for 0 ≤ α ≤ 1/2, it
follows that

|px| < |xy|/nc−2

<
(
1/nc−2

) |pq|
1 − 2/nc−2

≤ (
1/nc−2

) (
1 + 4/nc−2

) |pq|
≤ 2|pq|/nc−2.

In a symmetric way, we obtain the inequality |qy| < 2|pq|/nc−2, proving the second
claim.

16.1.5 The graphs Gi approximate the spanner G

Until now, we have considered only properties of the Euclidean distances implied by
the hierarchical decomposition. In this section, we compare shortest-path distances in
the spanner G with shortest-path distances in the sequence Gi , 1 ≤ i ≤ 	, of graphs.
More specifically, we will prove the following. Let p and q be two distinct points of
S. Let i be the index and let x and y be the points of Si that are returned by algo-
rithm QueryHD(L,S, U	−1, U	, p, q) of Section 16.1.4. Then δG(p, q) and δGi

(x, y) are
approximately equal. We will prove this claim in Lemma 16.1.17.

We will need the following two lemmas, which state that for pairs x and y of points in
Si with Li/nc+4 ≤ |xy| < Li/t , the values of δG(x, y) and δGi

(x, y) are approximately
equal. Although for the proof of Lemma 16.1.17, we need only this result for the case
when Li/nc+1 ≤ |xy| < Li/t , later in Section 16.4, we use this result for the larger range
of |xy|.
Lemma 16.1.15. Let i be an index such that 1 ≤ i ≤ 	, and let x and y be vertices of Gi

such that Li/nc+4 ≤ |xy| < Li/t . Then,

δGi
(x, y) ≤ (

1 + 2/nc−6) · δG(x, y).

proof We have δGi
(x, y) = δG(x, y) for i ∈ {1, 2}; see Exercise 16.1. Hence, we may

assume that i ≥ 3. Let P = (x = x0, x1, . . . , xk = y) be a shortest path between x and y

in the graph G. Since G is a t-spanner, the length of P is less than or equal to t |xy|, which
is less than Li . Therefore, |xjxj+1| < Li for each j with 0 ≤ j ≤ k − 1.

We first show how to convert P to a path Q between x and y in the graph Gi . Then,
we prove that the length of Q is less than or equal to 1 + 2/nc−6 times the length of P .
The following invariant will be maintained during the conversion of P to Q.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

16.1 THE BASIC HIERARCHICAL DECOMPOSITION 397

• yk′

• •

••

• ••
xj

• yk′+1

• ••

••

• •
xj+1

•
Figure 16.2: The points xj and xj+1 are stored in different trees of the forest Ui−2. Since {xj , xj+1} is
an edge in Ei−1 ∪ Ei , {yk′ , yk′+1} is an edge of Gi . We convert the edge {xj , xj+1} of the path P in G to
the edge {yk′ , yk′+1} of the path Q in Gi .

Invariant: The subpath x = x0, x1, . . . , xj of P has been converted to a path Q =
(y0, y1, . . . , yk′) in Gi , where y0 = x0. The point yk′ is stored at the root of the tree
in the forest Ui−2 that stores xj .

We start the conversion by setting j := 0, k′ := 0, and y0 := x0. Since x0 is a vertex of
Gi , the invariant holds at this moment.

We now assume that 0 ≤ j < k. There are two possible cases.

Case 1: xj and xj+1 are stored in the same tree of the forest Ui−2. In this case, we set
j := j + 1, and leave k′ unchanged. Observe that the invariant is maintained in this
case.

Case 2: xj and xj+1 are stored in different trees of the forest Ui−2, as shown in Figure 16.2.
Since |xjxj+1| < Li , the edge {xj , xj+1} is contained in E1 ∪ E2 ∪ · · · ∪ Ei . Since xj

and xj+1 are in different trees of Ui−2, however, this edge cannot be contained in
E1 ∪ E2 ∪ · · · ∪ Ei−2; see Lemma 16.1.4. Hence, {xj , xj+1} is an edge in Ei−1 ∪ Ei .
Let yk′+1 be the point stored at the root of the tree in Ui−2 that contains xj+1. Then
{yk′, yk′+1} is an edge of Gi . Therefore, if we set j := j + 1 and k′ := k′ + 1, the
invariant still holds.

We continue extending the path Q until j = k. Observe that, since y is a vertex of
Gi , the last vertex of Q is equal to xk = y. Therefore, the final path Q is indeed a path
between x and y in the graph Gi .

It remains to estimate the length of Q. Consider the edge {yk′, yk′+1} obtained in the
second case above. By Lemma 16.1.8, both |yk′xj | and |xj+1yk′+1| are less than

nLi−2 ≤ Li/n2c−1 ≤ |xy|/nc−5.

It follows that

|yk′yk′+1| ≤ |yk′xj | + |xjxj+1| + |xj+1yk′+1| < |xjxj+1| + 2|xy|/nc−5.

Since the path Q contains less than n edges, it follows that the length of Q is less than the
length of P plus 2|xy|/nc−6. That is,

δGi
(x, y) < δG(x, y) + 2|xy|/nc−6.

Since |xy| ≤ δG(x, y), the proof is complete.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

398 THE DISTANCE RANGE HIERARCHY

Lemma 16.1.16. Let i be an index such that 1 ≤ i ≤ 	 and let x and y be vertices of Gi

such that Li/nc+4 ≤ |xy| < Li/t . Then

δG(x, y) ≤ (
1 + 2(t + 1)/nc−6) · δGi

(x, y).

proof It follows from Exercise 16.1 that δG(x, y) = δGi
(x, y) for i ∈ {1, 2}. Hence,

we may assume that i ≥ 3. Let {a, b} be an arbitrary edge in Gi . We will prove an upper
bound on δG(a, b). It follows from the definition of Gi that there is an edge {p, q} in
G such that (i) {p, q} ∈ Ei−1 ∪ Ei , (ii) a is stored at the root of the tree in the forest
Ui−2 that contains p, and (iii) b is stored at the root of the tree in the forest Ui−2

that contains q. By Lemma 16.1.8, both |pa| and |bq| are less than nLi−2 ≤ Li/n2c−1.
Therefore,

|pq| ≤ |pa| + |ab| + |bq| < |ab| + 2Li/n2c−1.

Since G is a t-spanner, we have

δG(a, p) ≤ t |ap| < tLi/n2c−1

and

δG(q, b) ≤ t |qb| < tLi/n2c−1.

By combining these inequalities and using the triangle inequality for δG, it follows that

δG(a, b) ≤ δG(a, p) + |pq| + δG(q, b) < |ab| + 2(t + 1)Li/n2c−1. (16.5)

Now consider the points x and y. Since δG(x, y) < ∞, it follows from Lemma 16.1.15
that x and y are connected by a path in the graph Gi . Let k be the number of edges on
a shortest path between x and y in Gi . By applying (16.5) to each edge on this path, we
obtain

δG(x, y) < δGi
(x, y) + k · 2(t + 1)Li/n2c−1

< δGi
(x, y) + 2(t + 1)Li/n2c−2

≤ δGi
(x, y) + 2(t + 1)|xy|/nc−6.

Since |xy| ≤ δGi
(x, y), the proof is complete.

Lemma 16.1.17. Let p and q be two distinct points of S. Let i be the index and let x and
y be the points of Si that are returned by algorithm QueryHD of Section 16.1.4. Then,

1. δG(p, q) ≤ (
1 + 3(t + 1)/nc−6

) · δGi
(x, y) and

2. δGi
(x, y) ≤ (

1 + 3/nc−6
) · δG(p, q).

proof First, by Step 3 of algorithm QueryHD, we know that Li/nc+1 ≤ |xy| < Li/t

(see Section 16.1.4). By Lemma 16.1.14, each of |px| and |qy| is less than both |xy|/nc−2

and 2|pq|/nc−2. By Lemmas 16.1.15 and 16.1.16, we have

δGi
(x, y) ≤ (

1 + 2/nc−6
) · δG(x, y)

and

δG(x, y) ≤ (
1 + 2(t + 1)/nc−6

) · δGi
(x, y).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

16.1 THE BASIC HIERARCHICAL DECOMPOSITION 399

By combining these inequalities, we obtain

δG(p, q) ≤ δG(p, x) + δG(x, y) + δG(y, q)

≤ t |px| + (
1 + 2(t + 1)/nc−6

) · δGi
(x, y) + t |yq|

< 2t |xy|/nc−2 + (
1 + 2(t + 1)/nc−6

) · δGi
(x, y)

≤ (
2t/nc−2 + 1 + 2(t + 1)/nc−6) · δGi

(x, y)

≤ (
1 + 3(t + 1)/nc−6) · δGi

(x, y).

In a similar way, we obtain

δGi
(x, y) ≤ (

1 + 2/nc−6
) · δG(x, y)

≤ (
1 + 2/nc−6

)
(δG(x, p) + δG(p, q) + δG(q, y))

≤ (
1 + 2/nc−6) (t |xp| + δG(p, q) + t |qy|)

<
(
1 + 2/nc−6) (4t |pq|/nc−2 + δG(p, q)

)
≤ (

1 + 2/nc−6) (4t/nc−2 + 1
) · δG(p, q)

≤ (
1 + 3/nc−6

) · δG(p, q),

where the last inequality follows from the fact that 4t/n4 + 8t/nc−2 ≤ 1 (which can be
shown using our assumptions that n ≥ 2t and c ≥ 7).

16.1.6 Summarizing the hierarchical decomposition

In this section, we summarize the main properties of the hierarchical decomposition.
Recall that we are given a set S of n points in Rd , a real number t ≥ 1, a t-spanner
G = (S, E) for S, and a real constant c ≥ 7. We assume that n ≥ 2t . We have shown that
we can compute, in O(|E| log n) time,

1. a sequence L1, L2, . . . , L	 of real numbers, where 	 = O(|E|),
2. a sequence S1, S2, . . . , S	 of subsets of S such that

∑	
i=1 |Si | = O(|E|),

3. a sequence Gi = (Si, Fi), 1 ≤ i ≤ 	, of graphs such that
∑	

i=1 |Fi | = O(|E|), and

4. two rooted trees U	−1 and U	, each storing the points of S at its leaves and having size
O(n),

such that the following holds. For any two distinct points p and q of S, there exist an
index i with 1 ≤ i ≤ 	, and two points x and y in Si , such that

1. Li/nc+1 ≤ |xy| < Li/t ,

2. both |px| and |qy| are less than |xy|/nc−2,

3. both |px| and |qy| are less than 2|pq|/nc−2,

4. 1 − 2/nc−2 < |pq|/|xy| < 1 + 2/nc−2,

5. δG(p, q) ≤ (
1 + 3(t + 1)/nc−6

) · δGi
(x, y), and

6. δGi
(x, y) ≤ (

1 + 3/nc−6
) · δG(p, q).

Given p and q, the values of i, x, and y can be computed by answering two lowest
common ancestor queries, one in the tree U	−1 and the other in the tree U	. Hence, in the
algebraic computation-tree model, i, x, and y can be computed in O(log log n) time (see
Theorem 2.3.6), whereas O(1) time suffices if we add indirect addressing to this model
(see Theorem 2.3.5).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

400 THE DISTANCE RANGE HIERARCHY

Remark 16.1.18. If we define L′
i := Li/t for 1 ≤ i ≤ 	, then the inequality in 1. above

can be replaced by

L′
i/nc+1 ≤ |xy| < L′

i .

If we assume that n ≥ 3(t + 1) and c > 7, then the inequality in 5. above can be replaced
by

δG(p, q) ≤ (
1 + 1/nc−7

) · δGi
(x, y).

In this way, the main properties of the hierarchical decomposition do not depend on
the value of t , except that we need that t = O(n). In fact, by using a larger value of c,
properties similar to those above still hold if t is at most polynomial in n.

In Section 16.2, we will use the hierarchical decomposition to obtain the distance range
hierarchy for a set of points. In Section 16.4, we will extend the sequence Gi of graphs
to a sequence G′

i of partial spanners. By combining these graphs G′
i with the hierarchical

decomposition, we will obtain the distance range hierarchy for an arbitrary spanner.

16.2 The distance range hierarchy for point sets

The results of Section 16.1 immediately give us the distance range hierarchy for a set S

of n points in Rd : First, use Corollary 9.4.7 to compute the WSPD-spanner G = (S, E),
with stretch factor t = 2 and |E| = O(n). (In fact, any constant value can be used for t .)
Then apply the results of the previous section to this spanner G. In this way, we obtain
the following theorem (see also Remark 16.1.18).

Theorem 16.2.1 (DRH Theorem). Let S be a set of n points in Rd , and let c ≥ 7 be a
real constant. In O(n log n) time, we can compute

1. a sequence L1, L2, . . . , L	 of real numbers, where 	 = O(n),

2. a sequence S1, S2, . . . , S	 of subsets of S such that
∑	

i=1 |Si | = O(n), and

3. two rooted trees U	−1 and U	, each storing the points of S at its leaves and having size
O(n),

such that the following holds. For any two distinct points p and q of S, there exist an
index i with 1 ≤ i ≤ 	 and two points x and y in Si such that

1. Li/nc+1 ≤ |xy| < Li ,

2. both |px| and |qy| are less than |xy|/nc−2,

3. both |px| and |qy| are less than 2|pq|/nc−2, and

4. 1 − 2/nc−2 < |pq|/|xy| < 1 + 2/nc−2.

Given p and q, the trees U	−1 and U	 can be used to compute the values of i, x, and y,
in O(log log n) time in the algebraic computation-tree model, and in O(1) time if we add
indirect addressing to this model.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

16.3 AN APPLICATION: PRUNING SPANNERS 401

Distance range hierarchy: Suppose we are given an arbitrary point set S and
want to solve some problem that involves distances between pairs of points of S.
Using Theorem 16.2.1, we obtain an approximate solution by solving the problem
for each subset Si , 1 ≤ i ≤ 	. Observe that for the set Si , we have to consider
only distances that are within a factor of nO(1) of the fixed real number Li .

Therefore, this decomposition for point set S has applications in problems that become
“easier” if the distances are within a polynomial factor of each other. In Section 16.3, we
will present an application for which the latter property is crucial.

16.3 An application: Pruning spanners

Let S be a set of n points in Rd , let t ≥ 1 be a real number, and let G = (S, E) be a
t-spanner for S. We consider the problem of approximating G by a sparse graph. To be
more precise, given a real number ε > 0, we want to compute a linear-sized (i.e., the
number of edges is O(n)) subgraph G′ of G, such that G′ is a (1 + ε)-spanner for G, that
is, δG′(p, q) ≤ (1 + ε) · δG(p, q) for all points p and q in S. We refer to this process as
pruning the t-spanner G.

In Section 16.3.1, we present a general framework for solving this pruning problem.
In Section 16.3.2, we show that the well-separated pair decomposition of Chapter 9 can
be used to obtain an algorithm that fits in this framework and that solves the pruning
problem in O(|E| log n) time. In Sections 16.3.3 and 16.3.4, we show how the distance
range hierarchy of Section 16.2 can be used to improve the running time, in the algebraic
computation-tree model, to O(n log n + |E| log log n).

Algorithms FastPathGreedy of Section 15.2.6 and RAMPathGreedy of Sec-
tion 15.3.9 can be used to compute a (1 + ε)-spanner G′ of G. The output G′, however,
does not necessarily have O(n) edges; see Remarks 15.2.18 and 15.3.21. Moreover, these
algorithms start by sorting the edges of G and, therefore, the running time is �(|E| log n).
As we will show, the pruning algorithm of Sections 16.3.3 and 16.3.4 does produce a
(1 + ε)-spanner of G with O(n) edges, without sorting the edges of G.

16.3.1 A general framework for pruning spanners

Let a1, a2, . . . , am and b1, b2, . . . , bm be points of S, where ai �= bi for all i. Now consider
the set

P = {{a1, b1}, {a2, b2}, . . . , {am, bm}}.
Let s := ((1 + ε)(8t + 4) + 4)/ε. Assume that for each edge {p, q} in E, there is an index
i such that

1. |pai | ≤ (2/s)|aibi | and |qbi | ≤ (2/s)|aibi |, or

2. |pbi | ≤ (2/s)|aibi | and |qai | ≤ (2/s)|aibi |.
In other words, for each edge {p, q} in E, the set P contains a “close approximation.”
Algorithm GreedyPrune(G, P) below uses this set P to compute a (1 + ε)-spanner G′

for G having at most m edges. We say that this algorithm prunes the graph G with respect
to the set P of pairs.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

402 THE DISTANCE RANGE HIERARCHY

Algorithm GreedyPrune(G, P)

Comment: This algorithm takes as input a t-spanner G = (S,E) and a set P of pairs of
points satisfying the properties mentioned above. It returns a (1 + ε)-spanner G′ of G.

Construct a sequence Ci , 1 ≤ i ≤ m, of lists, in the following way. Initially, all these lists
are empty. For each edge {p, q} in E, let i be an (arbitrary) index i such that 1. or 2.
above is satisfied. Then we add the edge {p, q} to the list Ci .

We define G′ to be the graph with vertex set S and whose edge set E′ contains exactly
one (arbitrary) edge from each nonempty list Ci , 1 ≤ i ≤ m. Output G′.

The lemma below shows that algorithm GreedyPrune is correct.

Lemma 16.3.1. The graph G′ = (S, E′) that is returned by algorithm GreedyPrune
(G, P) is a (1 + ε)-spanner of G = (S, E).

proof It suffices to prove that δG′(p, q) ≤ (1 + ε)|pq| for each edge {p, q} of E. We
will prove this by induction on the length of the edge {p, q}.

To start the induction, let {p, q} be a shortest edge in E. Let i be the index such
that {p, q} ∈ Ci . Then (i) |pai | ≤ (2/s)|aibi | and |qbi | ≤ (2/s)|aibi |, or (ii) |pbi | ≤
(2/s)|aibi | and |qai | ≤ (2/s)|aibi |. We may assume without loss of generality that (i)
holds. Let {x, y} be the edge of Ci that is contained in E′. Observe that (i) |xai | ≤
(2/s)|aibi | and |ybi | ≤ (2/s)|aibi |, or (ii) |xbi | ≤ (2/s)|aibi | and |yai | ≤ (2/s)|aibi |.
Again, we may assume without loss of generality that (i) holds. If not, we reverse the
roles of x and y.

Since G is a t-spanner for S, we have

δG(p, x) ≤ t |px| ≤ t (|pai | + |aix|) ≤ (4t/s)|aibi |.
Using the triangle inequality, we obtain

|aibi | ≤ |aip| + |pq| + |qbi | ≤ (4/s)|aibi | + |pq|,
which can be rewritten as

|aibi | ≤ s

s − 4
|pq|.

Since s > 4(t + 1), it follows that

δG(p, x) ≤ 4t

s

s

s − 4
|pq| = 4t

s − 4
|pq| < |pq|.

Hence, if p �= x, then the length of each edge on a shortest path in G between p and x is
less than |pq|. Since {p, q} is a shortest edge in E, it follows that p = x.

In a symmetric way, we have q = y. Hence, {p, q} is an edge of E′, which implies that
δG′(p, q) = |pq| ≤ (1 + ε)|pq|. This completes the basis of the induction.

Now assume that {p, q} is not a shortest edge in E. Furthermore, assume that
δG′(u, v) ≤ (1 + ε)|uv| for all edges {u, v} in E with |uv| < |pq|. Let i be the index and let
{x, y} be the edge of E′ as above. Hence, we have |pai | ≤ (2/s)|aibi |, |qbi | ≤ (2/s)|aibi |,
|xai | ≤ (2/s)|aibi |, and |ybi | ≤ (2/s)|aibi |.

Exactly as before, we have

δG(p, x) ≤ 4t

s − 4
|pq| < |pq|;

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

16.3 AN APPLICATION: PRUNING SPANNERS 403

therefore, each edge on the shortest path in G between p and x has length less than |pq|.
By induction, it follows that

δG′(p, x) ≤ (1 + ε) · δG(p, x) ≤ (1 + ε)
4t

s − 4
|pq|.

In a completely symmetric way, we get

δG′(y, q) ≤ (1 + ε)
4t

s − 4
|pq|.

Hence,

δG′(p, q) ≤ δG′(p, x) + |xy| + δG′(y, q) ≤ (1 + ε)
8t

s − 4
|pq| + |xy|.

Since

|xy| ≤ |xai | + |aibi | + |biy|
≤ (1 + 4/s) |aibi |
≤ (1 + 4/s)

s

s − 4
|pq|

= s + 4

s − 4
|pq|,

and using our choice of s, it follows that

δG′(p, q) ≤ (1 + ε)
8t

s − 4
|pq| + s + 4

s − 4
|pq| = (1 + ε)|pq|.

The above process is summarized as follows.

Summary: Assume that we are given a spanner G = (S, E) and a set P of pairs
{ai, bi}, 1 ≤ i ≤ m, of points in S such that for each edge {p, q} in E, there exists
a pair {ai, bi} in P that is “close” to {p, q}, i.e., both |pai | and |qbi | are small
compared to |aibi |. Under these conditions, algorithm GreedyPrune essentially
prunes G using set P as a “guide.” Each edge of G is “mapped” to a pair in P ,
and in the pruned subgraph, for each pair in P we retain one edge that is mapped
to it (if there are any). This results in a spanner G′ for G having at most m edges.
In order to apply this general framework, we need

� an algorithm that computes such a set P , preferably of size m = O(n), and
� an algorithm that computes, for each edge {p, q} in E, a pair in P that is close

to it.

16.3.2 A pruning algorithm based on well-separated pairs

We obtain our first pruning algorithm by a straightforward application of the well-separated
pair decomposition (WSPD) of Chapter 9.

Let s := ((1 + ε)(8t + 4) + 4)/ε. By Theorems 9.4.6 and 9.5.6, we can compute,
in O(n log n + sdn) time, a representation of a WSPD {Ai, Bi}, 1 ≤ i ≤ m, of S with
separation ratio s and m = O(sdn), such that for any two distinct points p and q in S,
the index i with p ∈ Ai and q ∈ Bi or p ∈ Bi and q ∈ Ai can be computed in O(log n +
1/s) = O(log n) time. Observe that sd = O((1 + 1/ε)d td).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

404 THE DISTANCE RANGE HIERARCHY

If we define P as the set of all pairs {ai, bi}, 1 ≤ i ≤ m, where ai and bi are arbitrary
points in Ai and Bi , respectively, then we can apply the construction of Section 16.3.1
and obtain the following result.

Theorem 16.3.2. Let S be a set of n points in Rd , let t ≥ 1 and ε > 0 be real numbers, and
let G = (S, E) be a t-spanner for S. A (1 + ε)-spanner for G having O((1 + 1/ε)d tdn)
edges can be computed in O((1 + 1/ε)d tdn + |E| log n) time.

Remark 16.3.3. As t becomes larger, t-spanners become sparser. While it is not surpris-
ing that the time complexity has a factor of (1 + 1/ε)d , it is interesting to note that the
time complexity of this pruning algorithm also has a factor of td , implying that it increases
with t .

16.3.3 Setting the stage for the distance range hierarchy

The pruning algorithm of Section 16.3.2 spends O(log n) time for each edge of the spanner
G. In this section and Section 16.3.4, we will show how the distance range hierarchy can
be used to improve this to O(log log n).

Outline: Using the distance range hierarchy of Section 16.2, we can approximate
each edge {p, q} of the spanner G by a pair {x, y} such that x and y are points of
some set Si in the hierarchy and |xy| is within a factor of nO(1) of the real number
Li associated with Si . By using a WSPD for Si , we can approximate the pair
{x, y} by a pair {a, b}, as we did in Section 16.3.2. Hence, {a, b} approximates
the edge {p, q}. By Theorem 16.2.1, we can obtain the pair {x, y} in O(log log n)
time. In this section, we show how the fact that |xy| and Li are within a factor of
nO(1) of each other can be used to obtain the pair {a, b} in O(log log n) time.

Let s be a real number, and consider the split tree T and the corresponding WSPD
{Ai, Bi}, 1 ≤ i ≤ m, of S with separation ratio s and m = O(sdn); see Chapter 9. We
assume for convenience that s ≥ 1. (In fact, it suffices for s to be bounded from below by
a positive constant.)

Let k > 0 be a constant, let L > 0 be a real number, and let Q be a set of pairs of points
in S such that L/nk ≤ |xy| ≤ L for each pair {x, y} ∈ Q. In this section, we show how
to efficiently compute, for each element {x, y} of Q, the index i for which x ∈ Ai and
y ∈ Bi or x ∈ Bi and y ∈ Ai .

The algorithm that we will present generalizes the results of Section 9.5.2. As in
Section 9.5.2, it is based on several properties of the split tree and well-separated pairs.

Recall that the bounding box of a bounded subset A of Rd is the smallest axes-parallel
d-dimensional hyperrectangle that contains A. Let

α := 2

(s + 4)
√

d
.

Let A and B be two bounded subsets of Rd , let x be a point in A, and let y be a point in
B. Recall Lemma 9.5.4, which states the following:

� If A and B are well-separated with respect to s, then the lengths of all sides of the bounding
boxes of A and B are less than or equal to (2/s)|xy|.

� If the lengths of all sides of the bounding boxes of A and B are less than or equal to α|xy|,
then A and B are well-separated with respect to s.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

16.3 AN APPLICATION: PRUNING SPANNERS 405

Recall from Section 9.3 that every node u of the split tree T stores the bounding box
R(u) of the set of all points that are stored in the subtree rooted at u. For each point x ∈ S,
we define the following two nodes of the split tree T .

1. ux is the highest node u on the path from the leaf storing x to the root, such that the
lengths of all sides of R(u) are less than or equal to (2/s)L.

2. u′
x is the highest node u on the path from the leaf storing x to the root, such that the

lengths of all sides of R(u) are less than or equal to αL/nk .

The proof of the following lemma is left as an exercise; see Exercise 16.3.

Lemma 16.3.4. By traversing the split tree T , all nodes ux and u′
x , with x ∈ S, can be

computed in O(n) time.

Next, we define for each element e = {x, y} in Q, the following four nodes in T .

1. uex is the highest node u on the path from the leaf storing x to the root, such that the
lengths of all sides of R(u) are less than or equal to (2/s)|xy|.

2. u′
ex is the highest node u on the path from the leaf storing x to the root, such that the

lengths of all sides of R(u) are less than or equal to α|xy|.
3. The nodes uey and u′

ey are defined similarly with respect to point y.

Recall that for each pair {Ai, Bi} in the WSPD, there are two nodes vi and wi in T such
that Ai is the set of points of S stored in the subtree rooted at vi , and Bi is the set of points
of S stored in the subtree rooted at wi . The following lemma is a direct generalization of
Lemma 9.5.5. Its proof uses our assumption that s ≥ 1.

Lemma 16.3.5. Let e = {x, y} be an element of Q and let i be the index such that x ∈ Ai

and y ∈ Bi or x ∈ Bi and y ∈ Ai .

1. If we follow the path in T from the leaf storing x to the root, then we encounter, in this
order, the nodes u′

x , u′
ex , vi , uex , and ux .

2. The path in T between u′
x and ux contains O(log n) nodes.

3. The path in T between u′
ex and uex contains O(1) nodes.

4. Given pointers to the nodes uex and uey , we can compute the nodes vi and wi in O(1)
time.

For each point x in S, let Tx be a balanced binary search tree storing the O(log n) nodes
on the path in T between u′

x and ux . The search information stored with each node u is
the length of a longest side of the bounding box R(u). All trees Tx with x ∈ S can be
computed in O(n log n) time.

Lemma 16.3.6. Let e = {x, y} be an element of Q. Using the trees Tx and Ty , we can
compute the two nodes uex and uey in O(log log n) time.

The proof is left as an exercise; see Exercise 16.3. The previous two lemmas imply
an algorithm for computing, for each of the elements {x, y} in Q, the index i for which
x ∈ Ai and y ∈ Bi , or x ∈ Bi and y ∈ Ai . The total running time, when given the split
tree and the WSPD, is O(n log n + |Q| log log n). Since each tree Tx has size O(log n),
the amount of space used is O(n log n). Since all elements in Q are given in advance,
however, the space requirement can be reduced to O(n). We summarize the results of this
section.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

406 THE DISTANCE RANGE HIERARCHY

Lemma 16.3.7. Let S be a set of n points in Rd , and let s ≥ 1 be a real number. Assume
we are given the split tree T and the corresponding WSPD {Ai, Bi}, 1 ≤ i ≤ m, of S with
separation ratio s and m = O(sdn). Let k > 0 be a constant, let L > 0 be a real number,
and let Q be a set of pairs of points in S such that L/nk ≤ |xy| ≤ L for each element
{x, y} ∈ Q. In O(n log n + |Q| log log n) time, we can compute, for each element {x, y}
in Q, the index i for which x ∈ Ai and y ∈ Bi , or x ∈ Bi and y ∈ Ai .

16.3.4 A pruning algorithm based on the distance range hierarchy

Let S be a set of n points in Rd , let t ≥ 1 be a real number, let G = (S, E) be a t-spanner
for S, let ε > 0 be a real number, and let s = ((1 + ε)(8t + 4) + 4)/ε. We assume that
n ≥ 2t and n5 ≥ s + 2.

Using Theorem 16.2.1 (applied with c = 7), we compute in O(n log n) time the distance
range hierarchy for S. Hence, we have a sequence L1, L2, . . . , L	 of real numbers such
that 	 = O(n) and a sequence S1, S2, . . . , S	 of subsets of S such that

∑	
i=1 |Si | = O(n).

For any two distinct points p and q of S, we can compute in O(log log n) time, an index
i and two points x and y in Si such that Li/n8 ≤ |xy| < Li and both |px| and |qy| are
less than |xy|/n5.

For each i with 1 ≤ i ≤ 	 and Si �= ∅, we use Theorem 9.4.6 to compute a split tree
Ti and a corresponding WSPD {Ai

j , B
i
j }, 1 ≤ j ≤ mi , of Si with separation ratio 2s and

mi = O(sd |Si |). The total time needed for this is proportional to

	∑
i=1

(|Si | log |Si | + sd |Si |
) = O

(
n log n + sdn

)
,

where we use the convention that log 0 = 0.
For each i and j with 1 ≤ i ≤ 	, 1 ≤ j ≤ mi , and Si �= ∅, let ai

j and bi
j be arbitrary

points in Ai
j and Bi

j , respectively, and define

P := {{ai
j , b

i
j } : 1 ≤ i ≤ 	, 1 ≤ j ≤ mi, Si �= ∅}.

Observe that

|P | =
∑

1≤i≤	,Si �=∅
mi = O

(
sd

	∑
i=1

|Si |
)

= O(sdn).

The next lemma shows that the set P satisfies the premises of the general framework of
Section 16.3.1.

Lemma 16.3.8. For each edge {p, q} in E, there are indices i and j with 1 ≤ i ≤ 	 and
1 ≤ j ≤ mi , such that

1. |pai
j | ≤ (2/s)|ai

j b
i
j | and |qbi

j | ≤ (2/s)|ai
j b

i
j |, or

2. |pbi
j | ≤ (2/s)|ai

j b
i
j | and |qai

j | ≤ (2/s)|ai
j b

i
j |.

proof Let {p, q} be an arbitrary edge of E. By the properties of the distance range
hierarchy, there exist an index i and two points x and y in Si such that |px| < |xy|/n5

and |qy| < |xy|/n5. By the definition of the WSPD, there exists an index j such that (i)
x ∈ Ai

j and y ∈ Bi
j or (ii) x ∈ Bi

j and y ∈ Ai
j . We may assume without loss of generality

that (i) holds.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

16.3 AN APPLICATION: PRUNING SPANNERS 407

Consider the point ai
j in the set Ai

j and the point bi
j in the set Bi

j . Since we chose the
separation ratio for the WSPD to be 2s, we know from Lemma 9.1.2 that |xai

j | ≤ |ai
jb

i
j |/s

and |xy| ≤ (1 + 2/s)|ai
j b

i
j |. It follows that

|pai
j | ≤ |px| + |xai

j |
≤ |xy|/n5 + |ai

j b
i
j |/s

≤ (
(1 + 2/s)/n5 + 1/s

) |ai
j b

i
j |

≤ (2/s)|ai
j b

i
j |,

where the last inequality follows from our assumption that n5 ≥ s + 2. By a symmetric
argument, it can be shown that |qbi

j | ≤ (2/s)|ai
j b

i
j |.

We proceed as follows. Initialize empty lists Qi , 1 ≤ i ≤ 	. For each edge {p, q} in
E, use Theorem 16.2.1 to compute the corresponding index i and the two points x and
y in Si , and add {x, y} to the list Qi . The total time for this is O(|E| log log n). Observe
that

∑	
i=1 |Qi | ≤ |E| and each set Qi satisfies the premises of Lemma 16.3.7 (for k = 8).

Therefore, in O(|Si | log |Si | + |Qi | log log n) time, we can compute for each element
{x, y} in Qi , the index j for which x ∈ Ai

j and y ∈ Bi
j or x ∈ Bi

j and y ∈ Ai
j . Having

done this for all i with 1 ≤ i ≤ 	, we can apply the general construction of Section 16.3.1.
The details of algorithm PruneSpanner are provided below.

Algorithm PruneSpanner(G, t, ε)

Comment: This algorithm takes as input a t-spanner G = (S,E) and a real number
ε > 0. It returns a (1 + ε)-spanner G′ of G having O(n) edges.

Step 1: Compute the distance range hierarchy with c = 7, according to Theorem 16.2.1.
Let S1, S2, . . . , S	 be the subsets of S in the hierarchy.

Step 2: For every i with 1 ≤ i ≤ 	, set Qi := ∅.

Step 3: For each edge {p, q} ∈ E, compute the index i and the two points x and y,
according to Theorem 16.2.1, and add {x, y} to Qi .

Step 4: For each i with 1 ≤ i ≤ 	 and for which Si �= ∅, do the following:

Step 4.1: Compute the split tree Ti for Si .

Step 4.2: Compute the well-separated pair decomposition of Si , {{Ai
1, B

i
1}, . . . ,

{Ai
mi

, Bi
mi

}}, using separation ratio 2s, where s = ((1 + ε)(8t + 4) + 4)/ε. Pick ar-
bitrary points ai

j ∈ Ai
j and bi

j ∈ Bi
j from each well-separated pair to define the set

Pi := {{ai
j , b

i
j } : 1 ≤ j ≤ mi}.

Step 4.3: Combine Lemma 16.3.7 (applied to the sets Q1,Q2, . . . ,Q) with algorithm
GreedyPrune(G,P1 ∪ P2 ∪ · · · ∪ P) to prune G. Let the pruned graph be G′ =
(S,E′).

Step 5: Return the graph G′ = (S,E′).

Hence, we have proved the following result.

Theorem 16.3.9. Let S be a set of n points in Rd , let t ≥ 1 and ε > 0 be real numbers
such that n ≥ 2t and n5 = �((1 + 1/ε)t), and let G = (S, E) be a t-spanner for S. A

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

408 THE DISTANCE RANGE HIERARCHY

(1 + ε)-spanner for G having O((1 + 1/ε)d tdn) edges can be computed in time

O
(
n log n + (1 + 1/ε)d tdn + |E| log log n

)
.

Remark 16.3.10. Algorithm PruneSpanner presented in this section works in the al-
gebraic computation-tree model. If we add indirect addressing to this model, then the
log log n term can be eliminated from the running time; see the bibliographic notes at the
end of this chapter.

Open problem: Given a set S of n points in Rd , real numbers t > 1 and ε > 0,
and a t-spanner G = (S, E) for S, is there an algorithm that computes, in O(|E|)
time, a (1 + ε)-spanner G′ of G with O(n) edges? Of course, the constants in
the Big-Oh bounds may depend on t and ε. Can such a spanner G′ be computed
without accessing every edge of G? In other words, can it be modified to run in
o(|E|) time?

We have shown that every t-spanner G = (S, E) contains a subgraph G′ = (S, E′),
such that |E′| = O(n) and G′ is a (1 + ε)-spanner of G (and, hence, G′ is a ((1 + ε)t)-
spanner of S). This leads to the question of whether such a spanner G′ exists in which the
degree of each point is bounded by a constant. It turns out that this is not the case; see
Exercise 16.7.

16.4 The distance range hierarchy for spanners

Let S be a set of n points in Rd , let t ≥ 1 be a real number, and let G = (S, E) be a
t-spanner for S. We fix a real number ε > 0 and assume that

n ≥ max((1 + ε)t, 2(t + 1)/ε).

Observe that this implies that n ≥ 2t , a fact that we need to apply the hierarchical decom-
position of Section 16.1.6.

Assume that we have computed a hierarchical decomposition of G with c = 7. Accord-
ing to Section 16.1.6, we get the sequences Li , Si , and Gi = (Si, Fi), 1 ≤ i ≤ 	. Recall
that 	 = O(|E|), ∑	

i=1 |Si | = O(|E|), and
∑	

i=1 |Fi | = O(|E|).
Let i be an index with 1 ≤ i ≤ 	 and let x and y be two points of Si such that

Li/n11 ≤ |xy| < Li/t . It follows from Lemmas 16.1.15 and 16.1.16, and our assumption
on n, that

δG(x, y)/(1 + ε) ≤ δGi
(x, y) ≤ (1 + ε) · δG(x, y). (16.6)

Therefore, since G is a t-spanner, we have

δGi
(x, y) ≤ (1 + ε)t |xy|. (16.7)

In other words, any two points x and y in Si with Li/n11 ≤ |xy| < Li/t are connected by
a ((1 + ε)t)-spanner path in the graph Gi . In Section 17.3, we will need a graph for which
(16.7) holds for each pair x and y of points for which |xy| < Li/t . That is, we need an
(Li/t)-partial ((1 + ε)t)-spanner for the point set Si .

In this section, we extend each graph Gi to a graph G′
i that is an (Li/t)-partial ((1 + ε)t)-

spanner for Si . Using these new graphs, we will obtain the distance range hierarchy for
the t-spanner G.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

16.4 THE DISTANCE RANGE HIERARCHY FOR SPANNERS 409

16.4.1 The partial spanners G′
i

We define G′
1 := G1 and G′

2 := G2. For each i with 3 ≤ i ≤ 	 and Si �= ∅, let G0
i be

the WSPD-spanner, with stretch factor ((1 + ε)t), for the vertex set Si of Gi ; see Corol-
lary 9.4.7. (In fact, we can take any ((1 + ε)t)-spanner for Si . Taking the WSPD-spanner,
however, gives good bounds on the number of edges of G0

i and the time needed to compute
it.) For each nonempty set Si , we define G′

i to be the graph with vertex set Si and whose
edge set is the union of

1. the edge set of Gi and

2. the set of all edges of G0
i whose lengths are less than or equal to Li/n10.

If Si is the empty set, we define G′
i to be the empty graph, that is, G′

i = (∅, ∅).

Lemma 16.4.1. Given the graphs Gi = (Si, Fi), 1 ≤ i ≤ 	, the sequence G′
i , 1 ≤ i ≤ 	,

can be computed in O(|E| log n + sd |E|) time, where

s = O

(
(1 + ε)t

(1 + ε)t − 1

)
.

The total number of edges in the graphs G′
i , 1 ≤ i ≤ 	, is O(sd |E|).

proof According to Theorem 9.2.1, for each i with 3 ≤ i ≤ 	 and Si �= ∅, the ((1 +
ε)t)-spanner G0

i is obtained from a WSPD with separation ratio

s = 4
(1 + ε)t + 1

(1 + ε)t − 1
= O

(
(1 + ε)t

(1 + ε)t − 1

)
.

Hence, by Theorem 9.4.6, the total time for computing all graphs G0
i is proportional to

(we use the convention that log 0 = 0)

	∑
i=3

(|Si | log |Si | + sd |Si |
) = O

(|E| log n + sd |E|) ,

and their total number of edges is proportional to
∑	

i=3 sd |Si | = O(sd |E|). Therefore, the
sequence of graphs G′

i , 1 ≤ i ≤ 	, can be computed in time

O

(
|E| log n + sd |E| +

	∑
i=1

|Fi |
)

= O
(|E| log n + sd |E|) .

The total number of edges in these graphs is

O

(
sd |E| +

	∑
i=1

|Fi |
)

= O
(
sd |E|) .

The following lemma states that G′
i is an (Li/t)-partial ((1 + ε)t)-spanner for Si .

Moreover, it states that for each pair of points in Si whose Euclidean distance is within a
factor of nO(1) of Li , the shortest-path distances in the graphs G and G′

i are approximately
equal.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

410 THE DISTANCE RANGE HIERARCHY

Lemma 16.4.2. Let i be an index with 1 ≤ i ≤ 	 and let x and y be two vertices of G′
i

such that |xy| < Li/t .

1. We have δG′
i
(x, y) ≤ (1 + ε)t |xy|.

2. If |xy| ≥ Li/n8, then

δG(x, y)/(1 + ε) ≤ δG′
i
(x, y) ≤ (1 + ε) · δG(x, y).

proof Using Exercise 16.1, it can be shown that both claims are true if i ∈ {1, 2}.
Hence, we may assume that i ≥ 3. If |xy| ≥ Li/n11, then the first claim follows from
(16.7) and the fact that Gi is a subgraph of G′

i . Assume that |xy| < Li/n11. Since G0
i is a

((1 + ε)t)-spanner for Si , we have

δG0
i
(x, y) ≤ (1 + ε)t |xy| < (1 + ε)tLi/n11 ≤ Li/n10,

where the last inequality follows from our assumption that n ≥ (1 + ε)t . Hence, any
shortest path in G0

i between x and y is completely contained in G′
i . Therefore, we have

δG′
i
(x, y) ≤ δG0

i
(x, y) ≤ (1 + ε)t |xy|,

proving the first claim.
To prove the second claim, assume that |xy| ≥ Li/n8. Since Gi is a subgraph of G′

i , we
have δG′

i
(x, y) ≤ δGi

(x, y), whereas by (16.6), δGi
(x, y) ≤ (1 + ε) · δG(x, y). It remains

to prove that δG(x, y) ≤ (1 + ε) · δG′
i
(x, y).

Let x = x0, x1, . . . , xk = y be a shortest path between x and y in G′
i . (Since δG(x, y) <

∞, the rightmost inequality in the second claim implies that this path exists.) Let j be
any index with 0 ≤ j ≤ k − 1 and consider the edge {xj , xj+1} in G′

i . First, assume that
{xj , xj+1} is an edge in Gi . Then it follows from the proof of Lemma 16.1.16 (see (16.5))
that

δG(xj , xj+1) ≤ |xjxj+1| + 2(t + 1)Li/n13.

If {xj , xj+1} is not an edge in Gi , then it must be an edge in G0
i and |xjxj+1| ≤ Li/n10.

In this case, we have

δG(xj , xj+1) ≤ t |xjxj+1| ≤ tLi/n10.

Hence, in either case, we get the upper bound

δG(xj , xj+1) ≤ |xjxj+1| + 2(t + 1)Li/n13 + tLi/n10

≤ |xjxj+1| + 2tLi/n10

≤ |xjxj+1| + 2t |xy|/n2.

It follows that

δG(x, y) ≤
k−1∑
j=0

δG(xj , xj+1) ≤ δG′
i
(x, y) + k · 2t |xy|/n2.

Since k < n and n ≥ 2t/ε, we obtain

δG(x, y) ≤ δG′
i
(x, y) + 2t |xy|/n ≤ δG′

i
(x, y) + ε|xy|.

The proof is completed by observing that |xy| ≤ δG′
i
(x, y).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

16.4 THE DISTANCE RANGE HIERARCHY FOR SPANNERS 411

16.4.2 The partial spanners G′
i approximate the spanner G

We now prove the generalization of Lemma 16.1.17 to the graphs G′
i .

Lemma 16.4.3. Let p and q be two distinct points of S. Let i be the index and let x and
y be the points of Si that are returned by algorithm QueryHD of Section 16.1.4. Then,

1. δG(p, q) ≤ (1 + 2ε) · δG′
i
(x, y), and

2. δG′
i
(x, y) ≤ (1 + 2ε) · δG(p, q).

proof First observe that Li/n8 ≤ |xy| < Li/t (see Section 16.1.4). Moreover, x and
y are vertices of the graph G′

i . By Lemma 16.4.2, we have δG(x, y) ≤ (1 + ε) · δG′
i
(x, y).

We know from Section 16.1.6 that both |px| and |qy| are less than |xy|/n5. By using
these inequalities and the fact that G is a t-spanner, we obtain

δG(p, q) ≤ δG(p, x) + δG(x, y) + δG(y, q)

≤ t |px| + (1 + ε) · δG′
i
(x, y) + t |yq|

≤ 2t |xy|/n5 + (1 + ε) · δG′
i
(x, y)

≤ ε|xy| + (1 + ε) · δG′
i
(x, y)

≤ (1 + 2ε) · δG′
i
(x, y).

The proof of the second claim is similar:

δG′
i
(x, y) ≤ (1 + ε) · δG(x, y)

≤ (1 + ε) (δG(x, p) + δG(p, q) + δG(q, y))

≤ (1 + ε) (t |xp| + δG(p, q) + t |qy|)
≤ (1 + ε)

(
4t |pq|/n5 + δG(p, q)

)
≤ (1 + ε)

(
4t/n5 + 1

) · δG(p, q)

≤ (1 + 2ε) · δG(p, q),

where the last inequality follows from the fact that n5 ≥ 4t(1 + 1/ε).

16.4.3 The main result

By combining the results of Sections 16.4.1 and 16.4.2 with those of Sections 16.1.6
and 16.3.4, we obtain the distance range hierarchy for any spanner.

Theorem 16.4.4 (DRH Theorem for Spanners). Let S be a set of n points in Rd , let
t ≥ 1 be a real number, let G = (S, E) be a t-spanner for S, and let ε be a real number
such that 0 < ε ≤ 2. Assume that n ≥ max((1 + ε/4)2t, ((8 + 2ε)t + 8)/ε). In

O

(
|E| log log n + (t/ε)dn log n + t2d

(t − 1)dεd
n

)
time, we can compute

1. a sequence L1, L2, . . . , L	 of real numbers, where 	 = O((t/ε)dn),

2. a sequence S1, S2, . . . , S	 of subsets of S, such that
∑	

i=1 |Si | = O((t/ε)dn),

3. two rooted trees U	−1 and U	, each storing the points of S at its leaves and having size
O(n), and

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

412 THE DISTANCE RANGE HIERARCHY

4. a sequence G′
1,G

′
2, . . . , G

′
	 of graphs, such that the total of the number of edges in these

graphs is

O

(
t2d

(t − 1)dεd
n

)
,

and for each i with 1 ≤ i ≤ 	, G′
i is an Li-partial ((1 + ε)t)-spanner for Si .

This decomposition satisfies the following additional properties. For any two distinct
points p and q of S, the trees U	−1 and U	 can be used to compute, in O(log log n) time,
an index i with 1 ≤ i ≤ 	 and two points x and y in Si such that

1. Li/n8 ≤ |xy| < Li ,

2. both |px| and |qy| are less than |xy|/n5,

3. both |px| and |qy| are less than 2|pq|/n5,

4. 1 − 2/n5 < |pq|/|xy| < 1 + 2/n5,

5. δG(p, q) ≤ (1 + ε) · δG′
i
(x, y), and

6. δG′
i
(x, y) ≤ (1 + ε) · δG(p, q).

proof We start by using Theorem 16.3.9 to compute a (1 + ε/4)-spanner G′ = (S, E′)
for G with |E′| = O((t/ε)dn). Thus, we first obtain a pruned graph with only a linear
number of edges. Observe that G′ is a ((1 + ε/4)t)-spanner for the point set S and that it
can be computed in time

O
(
n log n + (t/ε)dn + |E| log log n

)
.

Since the number of edges in G′ is only linear, we can afford to build the required
distance range hierarchy. Therefore, we apply the results of Sections 16.1.6, 16.4.1,
and 16.4.2 to the spanner G′, where we replace G = (S, E) by G′ = (S, E′), replace ε by
ε/4, and replace t by (1 + ε/4)t . Hence, by the results in Section 16.1.6 and Lemmas 16.4.1
and 16.4.2, we obtain in O(|E′| log n + (t/(t − 1))d |E′|) time, two trees U	 and U	−1,
sequences Li , Si , and G′

i , 1 ≤ i ≤ 	, such that 	 = O(|E′|),∑	
i=1 |Si | = O(|E′|), the total

number of edges of the graphs G′
i is O((t/(t − 1))d |E′|), and for each i with 1 ≤ i ≤ 	, G′

i

is an (Li/((1 + ε/4)t))-partial ((1 + ε/4)2t)-spanner for Si . Since (1 + ε/4)2t ≤ (1 + ε)t ,
each graph G′

i is an (Li/((1 + ε/4)t))-partial ((1 + ε)t)-spanner for Si .
Given any two distinct points p and q in S, we can compute, in O(log log n) time,

an index i and two points x and y in Si , such that (i) Li/n8 ≤ |xy| < Li/((1 + ε/4)t),
(ii) both |px| and |qy| are less than |xy|/n5, (iii) both |px| and |qy| are less than
2|pq|/n5, (iv) 1 − 2/n5 < |pq|/|xy| < 1 + 2/n5, (v) δG′(p, q) ≤ (1 + ε/2) · δG′

i
(x, y),

and (vi) δG′
i
(x, y) ≤ (1 + ε/2) · δG′(p, q).

Since G′ is a subgraph of G, we have δG(p, q) ≤ δG′(p, q). Moreover, since G′ is a
(1 + ε/4)-spanner for G, we have δG′(p, q) ≤ (1 + ε/4) · δG(p, q). Hence, (v) and (vi),
together with our assumption that 0 < ε ≤ 2, imply that δG(p, q) ≤ (1 + ε) · δG′

i
(x, y)

and δG′
i
(x, y) ≤ (1 + ε) · δG(p, q). The proof of the theorem is completed by renaming

Li/((1 + ε/4)t) as Li .

In Chapter 17, we will use Theorem 16.4.4 to give an efficient algorithm for approxi-
mating shortest paths in an arbitrary spanner.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHIC NOTES 413

Exercises

16.1. Let G be a t -spanner for a point set S, let L be a real number, let G′ be the subgraph of G consisting

of all edges of G whose lengths are less than L, and let p and q be two points of S such that

|pq| < L/t . Prove that δG′ (p, q) = δG(p, q).

16.2. Prove that the result in Section 16.3.2 can also be obtained if we let s take the value 4(1 +
(1 + ε)t)/ε.

16.3. Work out the details for Section 16.3.3. In particular, the following problems are nontrivial: (a) How

can all nodes ux and u′
x be computed for all points in S in O(n) time? (b) How can all trees Tx be

computed for all points in S in O(n log n) time? (c) How can the space requirement for computing

all trees Tx be reduced to O(n)?

16.4. In Section 16.3.4, we computed, for each i with 1 ≤ i ≤ 	 and Si �= ∅, a well-separated pair

decomposition {Ai
j , B

i
j }, 1 ≤ j ≤ mi , of the set Si . Is the union of all these sequences a well-

separated pair decomposition for the point set S?

16.5. Let S be a set of n points in R
d , let t ≥ 1 be a real constant, let G = (S, E) be a t -spanner for

S, and let θ > 0 be a real constant. Consider a collection C1, C2, . . . , Ch of simplicial cones of

angular diameter θ , all having their apex at the origin, and that cover R
d , where h is a constant that

depends only on θ .

Let G′ = (S, E′) be the subgraph of G that is obtained by taking, for each p ∈ S and each i

with 1 ≤ i ≤ h, a shortest edge {p, q} in E for which q − p ∈ Ci .

Does there exist a constant t ′ such that the graph G′ is a t ′-spanner of G?

16.6. Let S be a set of n points in R
d , let t ≥ 1 be a real constant, let G = (S, E) be a t -spanner for

S, and let ε > 0 be a real constant. Let k > 0 be a real constant, and assume that the distance

between any two distinct points of S is in the interval [1, nk]. For any p ∈ S, denote by E(p) the

set of all edges in E that are incident on p.

Let ε0 := ε/(2(1 + t(1 + ε))). For each p ∈ S, partition E(p) into subsets

Ei(p) := {{p, q} ∈ E(p) : (1 + ε0)i ≤ |pq| < (1 + ε0)i+1}.

Let θ be a positive real constant such that 0 < θ < π/4 and cos θ − sin θ ≥ 1 − ε/(2t(1 + ε)).
Consider a collection C1, C2, . . . , Ch of simplicial cones of angular diameter θ , all having their apex

at the origin, and that cover R
d , where h is a constant that depends only on t and ε. Further partition

each subset Ei(p) into h subsets

Eij (p) := {{p, q} ∈ Ei(p) : q − p ∈ Cj }.

Let G′ = (S, E′) be the subgraph of G that is obtained by taking exactly one (arbitrary) edge

from each nonempty set Eij (p).
Prove that (i) G′ has O(min(|E|, n log n)) edges, (ii) G′ can be computed in O(|E| log log n)

time, and (iii) G′ is a (1 + ε)-spanner of G. (Hint: Use Lemma 4.1.4.)

16.7. A tree T is called a star if all edges of T have one vertex in common. Let t > 1 be a real

number. Give an example of a set S of n points in R
d and a star T = (S, E), such that T is a

t -spanner of S. Conclude that there exist spanners that cannot be pruned to a spanner of bounded

degree.

Bibliographic notes

The distance range hierarchy appeared (implicitly) in Gudmundsson et al. [2002c] and
Gudmundsson et al. [2004]. The problem of pruning spanners (see Section 16.3) first
appeared in Gudmundsson et al. [2002b]. These authors present the pruning algorithm of
Section 16.3.2, a solution for Exercise 16.6 and an algorithm for pruning the spanner G′

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

414 THE DISTANCE RANGE HIERARCHY

in this exercise. The pruning algorithms in Sections 16.3.1, 16.3.3, and 16.3.4 are due to
Gudmundsson, Narasimhan, and Smid [2005].

All algorithms presented in this chapter work in the algebraic computation-tree model.
Using Section 15.3 and a nontrivial extension of Section 17.1, the results can be improved
in the model that additionally uses indirect addressing. The details can be found in
Gudmundsson et al. [2004] and Gudmundsson, Narasimhan, and Smid [2005].

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

17

Approximating Shortest Paths in Spanners

Adversity is the first path to truth.
—Lord Byron

We have seen many algorithms for computing t-spanners. For some of them, it is clear
from the construction how to compute t-spanner paths. For example, this is true for the
�-graph of Chapter 4 and the spanner obtained from the well-separated pair decomposition
(see Section 9.2 and Theorem 9.5.2). If the value of t is large, however, the t-spanner path
computed may be much longer than the actual shortest path. On the other hand, for some
of the spanners that we have seen in previous chapters, it is not clear how a t-spanner path
can be computed efficiently. In this chapter, we consider the problem of approximating
the lengths of shortest paths in arbitrary spanners.

Let G = (S, E) be a t-spanner for a set S of n points in Rd . For any two points p

and q of S, we denote by δG(p, q) the length of a shortest path between p and q in G.
If ε > 0 and � are real numbers, then we say that � is a (1 + ε)-approximation to the
shortest-path distance between p and q in G if

δG(p, q) ≤ � ≤ (1 + ε) · δG(p, q).

In Section 17.2, we present a data structure that can be used to compute (1 + ε)-
approximate shortest-path distances for points p and q in S that are “far” apart. That is, if
D is the length of a longest edge in G, then the Euclidean distance between p and q must
be larger than D/C, where C > 2 is a real number that may depend on n. The main idea
is to store a sequence of cluster graphs that were used in the cluster-based path-greedy
algorithm of Section 15.2. That is, the data structure consists of a sequence of cluster
graphs of increasing coarseness, each of which helps answer approximate shortest path
queries for pairs of points whose Euclidean distance belong to a specific interval. We start
this chapter in Section 17.1 with presenting a “bucketing” tool that allows us to find the
“correct” cluster graph for any given pair of points in S.

In Section 17.3, we show how arbitrary (1 + ε)-approximate shortest path queries in
G can be answered. Our approach is as follows. Using the distance range hierarchy for
the spanner G (see Section 16.4), we approximate G by a sequence G′

1, G
′
2, . . . , G

′
	 of

partial spanners. As we have seen in Theorem 16.4.4, this sequence has the property that
for any two distinct points p and q in S, there exists an index i and two vertices x and y

of G′
i such that δG′

i
(x, y) is a (1 + ε)-approximation to δG(p, q). Moreover, x and y are

sufficiently far apart so that the algorithm of Section 17.2 can be applied to G′
i to compute

an approximation to δG′
i
(x, y).

Throughout this chapter, we consider undirected t-spanners, where the value of t may
be large. The algorithms to be presented work in the algebraic computation-tree model.
Using the results of Section 15.3, the results in this chapter can be improved in the

415

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

416 APPROXIMATING SHORTEST PATHS IN SPANNERS

algebraic computation-tree model extended with indirect addressing; see the references
in the bibliographic notes at the end of this chapter.

17.1 Bucketing distances

Let ε > 0 be a real number. For any two distinct points p and q in Rd and for any real
number λ ≥ 1, we define the bucket index BIndexε(λ, p, q) to be the integer i such that
(1 + ε)i−1 < |pq|/λ ≤ (1 + ε)i , that is,

BIndexε(λ, p, q) =
⌈

log1+ε

(|pq|
λ

)⌉
=
⌈

log |pq| − log λ

log(1 + ε)

⌉
.

Let K be a positive integer. We consider the problem of constructing a data structure,
such that for any real number λ ≥ 1 and for any two points p and q in Rd with λ < |pq| ≤
K , the value of BIndexε(λ, p, q) can be computed efficiently. Observe that, since λ ≥ 1,

1 ≤ BIndexε(λ, p, q) ≤ ⌈
log1+ε K

⌉ = O((log K)/ε).

If the ceiling and logarithm functions are available as unit-time operations, then a
bucket index query can clearly be answered in O(1) time. To get an algorithm that
works in the algebraic computation-tree model, we store the sorted sequence (1 + ε)i ,
0 ≤ i ≤ �log1+ε K�, in a balanced binary search tree. With each value (1 + ε)i in this
tree, we also store the integer i. This tree can clearly be built in O((log K)/ε) time and can
be used to answer bucket index queries in O(log((log K)/ε)) = O(log log K + log(1/ε))
time. This gives the following result:

Lemma 17.1.1. Let K be a positive integer, and let ε > 0 be a real number. In
O((log K)/ε) time, we can build a data structure of size O((log K)/ε), such that for
any real number λ ≥ 1 and for any two points p and q in Rd with λ < |pq| ≤ K , the
value of BIndexε(λ, p, q) can be computed in O(log log K + log(1/ε)) time.

17.2 Approximate shortest path queries for points
that are separated

Let S be a set of n points in Rd , let t > 1 be a real number, and let G = (S, E) be a
t-spanner for S. In this section, we show how approximate shortest path queries in G can
be answered for pairs of points that are “far” apart. To be more precise, let D be the length
of a longest edge in G, let ε > 0 be a real number, and let C > 2 be a real number that may
depend on n. We will show how to preprocess G into a data structure, such that for any
two points p and q of S with |pq| > D/C, a (1 + ε)-approximation to the shortest-path
distance between p and q in G; that is, a real number � such that

δG(p, q) ≤ � ≤ (1 + ε) · δG(p, q),

can be computed. We may assume without loss of generality that D = C. (If this is not
the case, then we scale the coordinates of the points of S.) Hence, the length of each edge
of G is less than or equal to C, and we want to answer approximate shortest path queries
for pairs p and q of points in S for which |pq| > 1.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

17.2 APPROXIMATE SHORTEST PATH QUERIES FOR POINTS THAT ARE SEPARATED 417

17.2.1 The general approach

Our data structure will be based on the cluster-based implementation of the path-greedy
spanner algorithm (see Section 15.2). We will apply the results of that section with

� t replaced by (1 + ε)t ,
� t ′ replaced by (1 + ε)/t ,
� the roles of G and G′ interchanged, and
� the roles of E and E′ interchanged.

Outline: The cluster-based path-greedy algorithm computes a spanner of the
spanner G, by processing the edges of G in a sequence of phases and maintaining
a cluster graph H . During each phase, this graph H has the following properties.
First, δH (p, q) approximates δG(p, q), provided the Euclidean distance between
p and q is approximately equal to the lengths of the edges that are processed in
this phase. Second, the value of δH (p, q) can easily be computed for such points
p and q. This suggests to store one cluster graph H for each phase. Given any
two query points p and q with |pq| > 1, we can use Lemma 17.1.1 to find a
cluster graph H for which δH (p, q) approximates δG(p, q).

Remark 17.2.1. In Section 15.2, we assume that the parameter t ′ is larger than 1. As
mentioned above, we replace t ′ by (1 + ε)/t , which may be less than 1. Fortunately, all
results in Section 15.2, except those that analyze the weight of the spanner produced by
algorithm FastPathGreedy, remain valid for parameters t > 1 and t ′ > 0 with t t ′ >

1. In our case, these conditions are satisfied, because we replace t by (1 + ε)t and t ′

by (1 + ε)/t . Also, we do not use the weight of the spanner produced by algorithm
FastPathGreedy.

We briefly recall those parts of algorithm FastPathGreedy of Section 15.2 that are
relevant for our approximate shortest-path data structure. The input to the cluster-based
path-greedy algorithm consists of

1. real numbers t > 1, ε > 0, µ > 1, λ ≥ 1, and 0 < α < 1/4, and

2. the t-spanner G = (S,E) for S.

We define

E0 := {{p, q} ∈ E : |pq| ≤ λ}
and, for i ≥ 1,

Ei := {{p, q} ∈ E : µi−1λ < |pq| ≤ µiλ}.
The sets Ei , 0 ≤ i ≤ �logµ(C/λ)�, partition the edge set E of G. (Strictly speaking, they
do not form a partition, because some of the sets Ei may be empty.) For each i with
1 + �logµ(C/λ)� ≤ i ≤ 2 + �logµ(nC/λ)�, we define Ei := ∅.

The algorithm initializes E′ := E0 and G′ := (S, E′). Then it processes the edge sets
Ei , for i = 1, 2, . . . , 2 + �logµ(nC/λ)�, one after another.

Consider phase i, that is, the iteration in which the edges of Ei are processed. (In
algorithm FastPathGreedy, the value of W is equal to µi−1λ during this phase.) At the
start of phase i, the algorithm computes the cluster graph H of the current graph G′, by

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

418 APPROXIMATING SHORTEST PATHS IN SPANNERS

calling algorithm ClusterGraph(G′, α, µi−1λ) (see Section 15.2.5). Then, all edges of
Ei are considered in sorted order of their lengths. If {p, q} is the current edge of Ei , then
the algorithm decides if δH (p, q) > (1 + ε)|pq| and, if so, adds {p, q} to the edge set E′

of G′ and updates the cluster graph H .
We now state the main properties that are maintained during this algorithm.

Property 17.2.2. At any moment during the algorithm, we have δG′(p, q) ≤ δH (p, q) for
all points p and q in S.

proof See Lemma 15.2.5.

Property 17.2.3. Let i be an integer with 1 ≤ i ≤ 2 + �logµ(nC/λ)�. At any moment
during phase i, we have

δH (p, q) ≤ 1 + 18α

1 − 2α
· δG′(p, q)

for all points p and q in S with δG′(p, q) > (1 − 2α)µi−1λ.

proof See Lemma 15.2.6. This lemma requires that no cluster in the (αµi−1λ)-cluster
cover of G′ contains both p and q. This condition is satisfied because we assume that
0 < α < 1/4.

Property 17.2.4. Let i be an integer with 1 ≤ i ≤ 2 + �logµ(nC/λ)� and consider the
graph G′ at the start of phase i. For each edge {p, q} of G for which |pq| ≤ µi−1λ, we
have δG′(p, q) ≤ (1 + ε)|pq|.
proof The claim follows from the proof of Lemma 15.2.12.

Property 17.2.5. Let i be an integer with 1 ≤ i ≤ 2 + �logµ(nC/λ)�. At any moment
during phase i and for any two points p and q of S, it takes

O

(
(1 + ε)5dµ2d t3d

α2d

)
time to decide if δH (p, q) ≤ (1 + ε)2µiλ. If this is the case, then the value of δH (p, q)
can be computed within this time bound.

proof The decision can be made by running algorithm ShortPath(H, p, q, (1 +
ε)2µiλ) (see Section 15.2.5). For the claim on the running time, see (15.10); in this
equation, replace t by (1 + ε)t , replace t ′ by (1 + ε)/t , and take γ = (1 + ε)2µ and
β = 1/t .

Let p and q be two points of S such that |pq| > λ. We will show how the sequence
of cluster graphs that is computed during the path-greedy algorithm can be used to
approximate the length of a shortest path between p and q in G. Let i ≥ 1 be the integer
such that µi−1λ < |pq| ≤ µiλ. Then

µi−1 < |pq|/λ ≤ δG(p, q)/λ ≤ nD/λ = nC/λ

(since we assume that D = C) and, therefore, i ≤ 1 + �logµ(nC/λ)�. Consider the graph
G′ and the corresponding cluster graph H at the end of phase i, that is, when the algorithm
has just processed all edges of Ei . Assume that we have chosen µ such that µ > t .
Furthermore, assume that |pq| ≤ µiλ/t . Since G′ is a subgraph of G, we have

δG(p, q) ≤ δG′(p, q).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

17.2 APPROXIMATE SHORTEST PATH QUERIES FOR POINTS THAT ARE SEPARATED 419

By Property 17.2.2, we have

δG′(p, q) ≤ δH (p, q).

Since δG′(p, q) ≥ |pq| > µi−1λ > (1 − 2α)µi−1λ, we have, by Property 17.2.3,

δH (p, q) ≤ 1 + 18α

1 − 2α
· δG′(p, q).

Since G is a t-spanner for S, we have δG(p, q) ≤ t |pq| ≤ µiλ. Hence, the length of each
edge on a shortest path between p and q in G is less than or equal to µiλ. Since G′ is the
graph at the start of phase i + 1, it follows from Property 17.2.4 that

δG′(p, q) ≤ (1 + ε) · δG(p, q).

Combining these inequalities yields

δG(p, q) ≤ δH (p, q) ≤ 1 + 18α

1 − 2α
· (1 + ε) · δG(p, q).

Hence, by choosing α = ε/(2ε + 20), we have

δG(p, q) ≤ δH (p, q) ≤ (1 + ε)2 · δG(p, q), (17.1)

that is, δH (p, q) is a (1 + ε)2-approximation to δG(p, q). (Recall that we need 0 < α <

1/4. This is true if 0 < ε < 10.)
Since δH (p, q) ≤ (1 + ε)2 · δG(p, q) ≤ (1 + ε)2µiλ, Property 17.2.5 gives an upper

bound on the time needed to compute δH (p, q).
If we replace ε by ε/3 in the entire construction, and assume that 0 < ε ≤ 3, then

(17.1) implies that

δG(p, q) ≤ δH (p, q) ≤ (1 + ε) · δG(p, q).

We have obtained the following result:

Lemma 17.2.6. Let 0 < ε ≤ 3 and λ ≥ 1 be real numbers, let µ be a real number
with µ > t , and let α = ε/(2ε + 60). Assume that we run the cluster-based path-greedy
algorithm on the t-spanner G as described above. Let p and q be two points of S such
that |pq| > λ, let i ≥ 1 be the integer such that µi−1λ < |pq| ≤ µiλ, and let H be
the cluster graph at the end of phase i. If |pq| ≤ µiλ/t , then δH (p, q) is a (1 + ε)-
approximation to the shortest-path distance between p and q in G. Moreover, given the
value of i and the cluster graph H , the value of δH (p, q) can be computed in O(µ2d t3d/ε2d)
time.

Summary: We can compute an approximation to δG(p, q), provided that
|pq| ≤ µiλ/t , i.e., the distance |pq| is contained in the initial part of the in-
terval (µi−1λ, µiλ). This condition can be satisfied by running the path-greedy
algorithm for different values for λ. The details will be given in Section 17.2.2.

17.2.2 The data structure

Let t > 1, 0 < ε ≤ 3, and µ be real numbers such that µ > t , let α = ε/(2ε + 60), and
let G = (S, E) be a t-spanner for the point set S. For any j with 0 ≤ j ≤ �logµ/t µ�,
let λj := (µ/t)j . Observe that 1 ≤ λj ≤ µ. For each such j , we run the path-greedy

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

420 APPROXIMATING SHORTEST PATHS IN SPANNERS

algorithm on the t-spanner G, as described in Section 17.2.1, using the following partition
of E:

E
j

0 := {{p, q} ∈ E : |pq| ≤ λj }
and, for 1 ≤ i ≤ 2 + �logµ(nC/λj)�,

E
j

i := {{p, q} ∈ E : µi−1λj < |pq| ≤ µiλj }.
For each such i and j , let H

j

i be the cluster graph at the end of phase i of the j -th run of
the path-greedy algorithm. The data structure consists of the following:

1. The collection of cluster graphs H
j

i , where 0 ≤ j ≤ �logµ/t µ� and 1 ≤ i ≤ 2 + �logµ

(nC/λj)�.

2. The data structure of Lemma 17.1.1 for answering queries BIndexµ−1(1, p, q) for points
p and q of S with 1 < |pq| ≤ nC.

3. The data structure of Lemma 17.1.1 for answering queries BIndexµ/t−1(λ, p, q) for real
numbers λ ≥ 1 and points p and q of S with λ < |pq| ≤ µnC.

We now show how this data structure can be used to answer approximate shortest path
queries in G.

Algorithm RestrictedApproxShortestPath(p, q)

Comment: This algorithm takes as input two points p and q of S, such that |pq| > 1. It
returns a (1 + ε)-approximation to the length of a shortest path between p and q in G.

Step 1: Compute i := BIndexµ−1(1, p, q).

Step 2: Compute j := BIndexµ/t−1(µi−1, p, q) − 1.

Step 3: Use Lemma 17.2.6 to compute and return the value of δ
H

j

i
(p, q).

To prove the correctness of this algorithm, we first observe that the index i that is
computed in Step 1 has the property that µi−1 < |pq| ≤ µi . Next, the index j that is
computed in Step 2 has the properties that

λj = (µ/t)j < |pq|/µi−1 ≤ (µ/t)j+1 = (µ/t)λj ,

|pq| > λj , and 0 ≤ j ≤ �logµ/t µ�. It follows that

µi−1λj < |pq| ≤ µiλj/t.

Hence, by Lemma 17.2.6, the value of δ
H

j

i
(p, q) is a (1 + ε)-approximation to the length

of a shortest path between p and q in G.
We next analyze the running time of the query algorithm. By Lemma 17.1.1, the time

to compute i and j is

O(log log(nC) + log(1/(µ − 1)) + log log(µnC) + log(1/(µ/t − 1))) ,

which is

O(log log(µnC) + log(t/(µ − t))) .

Combining this with Lemma 17.2.6, it follows that the total time to answer the (1 + ε)-
approximate shortest path query for p and q is

O
(
log log(µnC) + log(t/(µ − t)) + µ2d t3d/ε2d

)
.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

17.2 APPROXIMATE SHORTEST PATH QUERIES FOR POINTS THAT ARE SEPARATED 421

We next analyze the amount of space needed to store the data structure. By
Lemma 17.1.1, the size of the two data structures for answering BIndex-queries is

O((log(nC))/(µ − 1) + (log(µnC))/(µ/t − 1)) = O((t/(µ − t)) log(µnC)).

It follows from the definition of the cluster graph (see Section 15.2.2) and Lemmas 15.2.8
and 15.2.9 that the size of one cluster graph is O((µt/ε)dn). (In these two lemmas,
replace t by (1 + ε)t , take β = 1/t , and use the facts that α is proportional to ε, and ε is
bounded from above by a constant.) Since the number of cluster graphs that we store is
less than or equal to(

1 + logµ/t µ
) (

2 + logµ(nC)
) = O

(
1 + logµ/t (µnC)

)
,

the total size of the approximate shortest path data structure is

O

(
µdtd

εd

(
1 + logµ/t (µnC)

)
n

)
.

Finally, we estimate the time needed to build the data structure. We leave it to the
reader to verify that the time to build the BIndex-structures is less than the time for the
different runs of the path-greedy algorithm. Let j be an integer with 0 ≤ j ≤ �logµ/t µ�
and consider the j -th run of the path-greedy algorithm.

The algorithm starts by sorting the edges of E by their lengths and partitioning them
into subsets E

j

i . This can clearly be done in O(|E| log n) time. Let i be an integer with
1 ≤ i ≤ 2 + �logµ(nC/λj)� and consider phase i of the algorithm. First, the cluster graph
H for the current graph G′ is computed. By (15.9), this takes time

O
(
(t/ε)dn log n + (µdt3d/εd)|E|) .

(In (15.9), replace t by (1 + ε)t , take β = 1/t , and use the facts that α is proportional to
ε, and ε is bounded from above by a constant.) After H has been computed, the algorithm
processes the edges of E

j

i . Consider one such edge {p, q}. The algorithm decides if
δH (p, q) > (1 + ε)|pq|, which, by (15.14), takes O(µ2d t3d/ε2d) time. If this is the case,
then the algorithm updates the graph H , which, by (15.15), takes O(µdt3d/εd) time.
Hence, the total time for phase i is

O
(

(t/ε)dn log n + (µdt3d/εd)|E| + (µ2d t3d/ε2d)|Ej

i |
)

.

Since the algorithm makes O(1 + logµ(nC)) phases, a straightforward calculation shows
that the total time for the j -th run is

O

(
td

εd log µ
n(log n) log(nC) + µdt3d

εd log µ
|E| log(nC) + µ2d t3d

ε2d
|E|

)
.

Since we run this algorithm for O(logµ/t µ) values of j , we have proved the following
result:

Theorem 17.2.7. Let S be a set of n points in Rd , let t > 1, 0 < ε ≤ 3, and µ > t be
real numbers, and let G = (S, E) be a t-spanner for S. Let D be the length of a longest
edge in G, and let C > 2 be a real number. In

O

(
td

εd log(µ/t)
n(log n) log(nC) + µdt3d

εd log(µ/t)
|E| log(nC) + µ2d t3d log µ

ε2d log(µ/t)
|E|

)
time, we can preprocess G into a data structure of size

O

(
µdtd

εd

(
1 + logµ/t (µnC)

)
n

)
,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

422 APPROXIMATING SHORTEST PATHS IN SPANNERS

such that for any two points p and q in S with |pq| > D/C, a (1 + ε)-approximation to
the shortest-path distance between p and q in G can be computed in time

O

(
log log(µnC) + log(t/(µ − t)) + µ2d t3d

ε2d

)
.

Remark 17.2.8. The size of the data structure does not depend on the number of edges
of the given t-spanner G = (S, E). If we are required to store G, then we have to add the
size of E to the space bound.

In the next section, we will need a generalization of Theorem 17.2.7. Recall that, for
real numbers t > 1 and L > 0, the graph G = (S, E) is an L-partial t-spanner for the
point set S, if for any two points p and q of S with |pq| < L, we have δG(p, q) ≤ t |pq|.
The following theorem states that Theorem 17.2.7 remains true even for partial spanners.
The proof is left as an exercise; see Exercise 17.2.

Theorem 17.2.9. Let S be a set of n points in Rd , let t > 1, L > 0, 0 < ε ≤ 3, and µ > t

be real numbers, let G = (S, E) be an L-partial t-spanner for S, and let C > 2 be a real
number. In

O

(
td

εd log(µ/t)
n(log n) log(nC) + µdt3d

εd log(µ/t)
|E| log(nC) + µ2d t3d log µ

ε2d log(µ/t)
|E|

)
time, we can preprocess G into a data structure of size

O

(
µdtd

εd

(
1 + logµ/t (µnC)

)
n

)
,

such that for any two points p and q in S with L/C ≤ |pq| < L, a (1 + ε)-approximation
to the shortest-path distance between p and q in G can be computed in time

O

(
log log(µnC) + log(t/(µ − t)) + µ2d t3d

ε2d

)
.

17.3 Arbitrary approximate shortest path queries

The data structure of Theorem 17.2.9 can be used to answer only approximate shortest
path queries for pairs of points whose Euclidean distance is within a factor of C of some
fixed real number L. In this section, we will combine this result with the distance range
hierarchy of Theorem 16.4.4 to answer arbitrary approximate shortest path queries.

We are given a set S of n points in Rd , real numbers t > 1, 0 < ε ≤ 1 and µ >

(1 + ε/4)t , and a t-spanner G = (S, E). We assume that n ≥ max((1 + ε/16)2t, ((32 +
2ε)t + 32)/ε).

17.3.1 Computing the distance range hierarchy for G

We apply Theorem 16.4.4 (see also Section 16.1.6) to the t-spanner G, with ε replaced
by ε/4. This gives, in time

O

(
|E| log log n + (t/ε)dn log n + t2d

(t − 1)dεd
n

)
,

1. a sequence L1, L2, . . . , L	 of real numbers, where 	 = O((t/ε)dn),

2. a sequence S1, S2, . . . , S	 of subsets of S, such that
∑	

i=1 |Si | = O((t/ε)dn),

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

17.3 ARBITRARY APPROXIMATE SHORTEST PATH QUERIES 423

3. a sequence G′
i = (Si, F

′
i), 1 ≤ i ≤ 	, of graphs, such that each G′

i is an Li-partial ((1 +
ε/4)t)-spanner for Si , and

	∑
i=1

|F ′
i | = O

(
t2d

(t − 1)dεd
n

)
,

and

4. two rooted trees U	−1 and U	, each storing the points of S at its leaves and having size
O(n).

By Theorem 16.4.4, these sequences have the following property. For any two distinct
points p and q of S, we can use the trees U	−1 and U	 to compute, in O(log log n) time,
an index i with 1 ≤ i ≤ 	 and two points x and y in Si , such that

Li/n8 ≤ |xy| < Li, (17.2)

δG(p, q) ≤ (1 + ε/4) · δG′
i
(x, y), (17.3)

and

δG′
i
(x, y) ≤ (1 + ε/4) · δG(p, q). (17.4)

17.3.2 Preprocessing the distance range hierarchy

For each i with 1 ≤ i ≤ 	 and Si �= ∅, we apply Theorem 17.2.9 to the graph G′
i = (Si, F

′
i),

with ε replaced by ε/4, t replaced by (1 + ε/4)t , L replaced by Li , and C = n8. Hence,
we preprocess G′

i in

O

(
td

εd log(µ/t)
|Si | log2 n + µdt3d

εd log(µ/t)
|F ′

i | log n + µ2d t3d log µ

ε2d log(µ/t)
|F ′

i |
)

time into a data structure of size

O

(
µdtd

εd

(
1 + logµ/t (µn)

) |Si |
)

,

such that the following holds. For any two points x and y in Si with Li/n8 ≤ |xy| < Li ,
we can compute in

O

(
log log(µn) + log(t/(µ − t)) + µ2d t3d

ε2d

)
time a value � such that

δG′
i
(x, y) ≤ � ≤ (1 + ε/4) · δG′

i
(x, y). (17.5)

17.3.3 Answering approximate shortest path queries in G

We now present the algorithm that approximates the length of a shortest path in the
t-spanner G, between any two points of S.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

424 APPROXIMATING SHORTEST PATHS IN SPANNERS

Algorithm ApproxShortestPath(p, q)

Comment: This algorithm takes as input two distinct points p and q of S. It returns a
(1 + ε)-approximation to the length of a shortest path between p and q in G.

Step 1: Use the distance range hierarchy of Section 17.3.1 to compute an index i and two
vertices x and y in Si for which (17.2), (17.3), and (17.4) hold.

Step 2: Use the data structure of Section 17.3.2 for G′
i to compute a value � for which

(17.5) holds.

Step 3: Return the value �′ := (1 + ε/4)�.

To prove the correctness of this query algorithm, observe that

δG(p, q) ≤ (1 + ε/4) · δG′
i
(x, y) ≤ (1 + ε/4)� = �′

and

�′ = (1 + ε/4)� ≤ (1 + ε/4)2 · δG′
i
(x, y) ≤ (1 + ε/4)3 · δG(p, q).

Since we assume that 0 < ε ≤ 1, we have (1 + ε/4)3 ≤ 1 + ε and, hence, �′ is a (1 + ε)-
approximation to the shortest-path distance between p and q in the spanner G.

Observe that the only information that is needed to answer (1 + ε)-approximate shortest
path queries are the trees U	−1 and U	, and the data structures of Section 17.3.2 for the
graphs G′

i , 1 ≤ i ≤ 	. Therefore, we have proved the following result:

Theorem 17.3.1. Let S be a set of n points in Rd , let t > 1, 0 < ε ≤ 1, and µ > (1 +
ε/4)t be real numbers such that

n ≥ max
(
(1 + ε/16)2t, ((32 + 2ε)t + 32)/ε

)
and let G = (S, E) be a t-spanner for S. In

O

(
|E| log log n + t2d

ε2d log(µ/t)
n log2 n + µdt5d

ε2d (t − 1)d log(µ/t)
n log n

+ µ2d t5d log µ

ε3d (t − 1)d log(µ/t)
n

)
time, we can preprocess G into a data structure of size

O

(
µdt2d

ε2d

(
1 + logµ/t (µn)

)
n

)
,

such that for any two distinct points p and q in S, a (1 + ε)-approximation to the shortest-
path distance between p and q in G can be computed in time

O

(
log log(µn) + log(t/(µ − t)) + µ2d t3d

ε2d

)
.

Remark 17.3.2. Observe that the size of the data structure does not depend on the number
of edges of G. If we are required to store this graph, then we have to add the size of its
edge set E to the space bound.

The bounds in Theorem 17.3.1 depend on the value of µ. Let us assume that t and ε

are constants and that we want a query time of O(log log n). Then we obtain the best
preprocessing time by taking µ = (log log n)1/(2d).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

17.4 APPROXIMATING THE STRETCH FACTOR EUCLIDEAN GRAPHS 425

Theorem 17.3.3. Let S be a set of n points in Rd , let t > 1 and 0 < ε ≤ 1 be real
constants, and let G = (S, E) be a t-spanner for S. In

O
(|E| log log n + n log2 n/ log log log n

)
time, we can preprocess G into a data structure of size

O
(
n log n

√
log log n/ log log log n

)
,

such that for any two points p and q in S, a (1 + ε)-approximation to the shortest-path
distance in G between p and q can be computed in O(log log n) time.

The algorithms presented so far work in the algebraic computation-tree model. Using
Section 15.3, Remark 16.3.10, and a nontrivial extension of Section 17.1, the results can
be improved in the model that additionally uses indirect addressing. We state this result
without proof and, for ease of notation, for the case when t and ε are constants.

Theorem 17.3.4. Let S be a set of n points in Rd , let t > 1 and 0 < ε ≤ 1 be real
constants, and let G = (S, E) be a t-spanner for S. In the algebraic computation-tree
model extended with indirect addressing, we can preprocess G in O(|E| + n log n) time
into a data structure of size O(n log n), such that for any two points p and q in S, a (1 + ε)-
approximation to the shortest-path distance in G between p and q can be computed in
O(1) time.

This leads us to the following two open problems.

Open problem: Improve the preprocessing time, space requirement, and/or
query time in Theorems 17.3.1, 17.3.3, and 17.3.4.

Open problem: The results in this chapter give only an approximation to the
length of a shortest path between two query points p and q in the t-spanner
G, not the approximate shortest path itself. Let k be the minimum number of
edges on any (1 + ε)-approximate shortest path between p and q. Is there an
algorithm that computes a (1 + ε)-approximate shortest path with O(k) edges in
O(f (n) + k) time, where f (n) = o(n)?

17.4 An application: Approximating the stretch factor
of Euclidean graphs

Let S be a set of n points in Rd , let G = (S, E) be a connected Euclidean graph, and let t∗

be the stretch factor of G. In Chapter 13, we have considered the problem of approximating
the value of t∗. In Section 13.2, we presented algorithm FastApproxSF, which does the
following: First, it computes a well-separated pair decomposition {Ai, Bi}, 1 ≤ i ≤ m,
for S, where m = O(n). Then, for each i with 1 ≤ i ≤ m, the algorithm picks an arbitrary
point ai in Ai , and an arbitrary point bi in Bi , and an approximation L(ai, bi) to the
shortest-path distance in G between ai and bi is computed. The algorithm returns the
value t ′, which is defined to be t ′ := max1≤i≤m L(ai, bi)/|aibi |. The approximation factor
of this algorithm, that is, the relation between t ′ and the exact stretch factor t∗, is given by
Lemma 13.2.2. In Section 13.2.2, we applied algorithm FastApproxSF to several classes
of graphs. The most general result is given in Theorem 13.2.7.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

426 APPROXIMATING SHORTEST PATHS IN SPANNERS

Assume that we know, in advance, an upper bound t on the stretch factor t∗ of the
graph G. In other words, we know that G is a t-spanner for S, and want to approximate
the smallest real number t∗ for which G is a t∗-spanner. Then we can combine algorithm
FastApproxSF with the results in Section 17.3.3, and obtain a fast algorithm for ap-
proximating t∗. In particular, if t is a constant, then by combining Theorem 13.2.4 with
Theorems 17.3.3 and 17.3.4, we obtain the following result. (For ease of notation, we
state the result for the case only when ε is a constant.)

Theorem 17.4.1. Let S be a set of n points in Rd , let G = (S, E) be a Euclidean graph,
and let t > 1 and ε > 0 be real constants, such that the stretch factor of G is less than or
equal to t . We can compute a real number t ′, such that

t ′/(1 + ε) ≤ t∗ ≤ (1 + ε)t ′,

where t∗ is the exact stretch factor of G,

1. in O(|E| log log n + n log2 n/ log log n) time in the algebraic computation-tree model,
and

2. in O(|E| + n log n) time, if we add indirect addressing to this model.

Exercises

17.1. We have used Lemma 17.1.1 in Section 17.2.2. Explain why this lemma can be applied.

17.2. Prove Theorem 17.2.9.

17.3. The result of Theorem 17.3.1 depends on the value of µ. Assume that t and ε are constants and

we want a query time of O(log log n). How should we choose µ if we want to minimize the space

bound?

17.4. Let t > 1 and ε > 0 be real constants and let G = (S,E) be a t -spanner whose vertex set S

consists of n points in R
d . Consider queries of the following two types:

(1) Given a subset X of S, compute a (1 + ε)-approximation to

min{δG(p, q) : p, q ∈ X, p �= q}.
(2) Given subsets X and Y of S, compute a (1 + ε)-approximation to

min{δG(p, q) : p ∈ X, q ∈ Y }.
Design a data structure that can be used to answer these types of queries in O(|X|(q(n) + log |X|))
and O((|X| + |Y |)(q(n) + log(|X| + |Y |))) time, respectively, where q(n) is the time needed to

compute a (1 + ε)-approximation to the shortest-path distance in G between any two query points.

Bibliographic notes

This chapter is based on Gudmundsson et al. [2002b] and Gudmundsson et al. [2004].
These authors present the improvement when indirect addressing is added to the algebraic
computation-tree model. They also present a solution to Exercise 17.4.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

18

Fault-Tolerant Spanners

Don’t find fault, find a remedy.
—Henry Ford

This chapter considers the problem of incorporating fault-tolerance into spanner networks.
Fault tolerance is intimately related to the graph-theoretic concept of connectivity. The
vertex (resp. edge) connectivity of a graph is defined to be the minimum number of vertices
(resp. edges) that need to be removed in order to disconnect it. Fault-tolerant networks
are usually designed by making them highly connected.

In this chapter, we show how to construct geometric networks that are more than just
resilient to vertex or edge faults; they also have good spanner properties. Thus, our goal
is to construct graphs having the property that when a small number of vertices and/or
edges fail, the remaining graph still contains “short” paths between each pair of points.
In Section 18.1, we will give a formal definition of this notion of a fault-tolerant spanner.
In Section 18.2, we prove that any fault-tolerant spanner that is resilient to vertex faults,
is also resilient to edge faults. As a result, when analyzing the spanner properties of fault-
tolerant networks, it suffices to consider vertex faults, thereby simplifying the analysis.
In Section 18.3, we present a simple algorithm that converts any spanner G into a fault-
tolerant spanner G′. If D is the maximum degree of G, and if k is the number of vertex
faults that G′ is resilient to, then G′ has degree O(Dk+1) and weight O(kDk) times the
weight of G. In the remaining sections, we show that several spanner constructions that
have been presented in this book can be generalized to obtain fault-tolerant spanners. In
Section 18.4, we show that the well-separated pair decomposition of Chapter 9 leads to a
k-fault-tolerant spanner with O(k2n) edges. In Section 18.5, we show that the �-graph of
Section 4.1 can be generalized to obtain a k-fault-tolerant spanner with O(kn) edges. A
generalization of the transformation of Section 4.2, which combines sink spanners with
the �-graph, leads to a k-fault-tolerant spanner of degree O(k2). In Section 18.6, we
show that the path-greedy algorithm of Section 1.4 can be generalized to obtain a k-fault-
tolerant spanner of degree O(k), whose weight is O(k2) times the weight of a minimum
spanning tree of the points. Unfortunately, it is not clear whether there exists an efficient
implementation of this algorithm. It turns out, however, that the gap-greedy algorithm of
Chapter 7 can be generalized to an efficient algorithm that computes a k-fault-tolerant
spanner of degree O(k), whose weight is O(k2 log n) times the weight of a minimum
spanning tree of the points.

In this chapter, we consider undirected graphs.

18.1 Definition of a fault-tolerant spanner

Let S be a set of n points in Rd , let t > 1 be a real number, let k ≥ 0 be an integer, and let
G = (S, E) be an undirected Euclidean graph with vertex set S.

427

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

428 FAULT-TOLERANT SPANNERS

The notion of G being a t-spanner that is resilient to k or less vertex faults is easy to
define:

Vertex fault-tolerant spanner: We require that for any subset S ′ of S hav-
ing size at most k, the graph obtained from G = (S, E) by removing all ver-
tices of S ′, together with their incident edges, is a t-spanner for the points
of S \ S ′.

To define the notion of G being a t-spanner that is resilient to k or less edge faults, we
have to be more careful. A first idea is to require that for any subset E′ ⊆ E of size at most
k, the graph obtained from G by removing all edges of E′, that is, the graph (S, E \ E′),
is a t-spanner for the points of S. It is not difficult to see, however, that such a graph
does not exist for all sets S of points: Let S be the set containing two distinct points p

and q that are close together, and whose other points are far away from these two points.
Since the graph G is a t-spanner for S, it contains the edge {p, q}. If this edge, however,
is contained in E′, then the length of any path in (S, E \ E′) between p and q is much
larger than the Euclidean distance |pq|.

This example leads us to the second idea: We require that for any subset E′ ⊆ E of
size at most k, any two points p and q are connected, in the graph (S, E \ E′), by a path
whose length is at most t times the length of a k-th shortest path between p and q in the
complete graph on S. Again, such a graph does not exist for all sets S: Let A be a “small”
set of points that are close to the origin, and let B be a set of points that are far away
from the origin, whose minimum distance is large, and that contains a point p on the
negative x1-axis, and a point q on the positive x1-axis. Let S := A ∪ B, and k := (|A|+2

2

)
.

Observe that the graph G contains at most k edges connecting points in the set A ∪ {p, q}.
Moreover, the complete graph on S contains

|A|∑
i=0

(|A|
i

)
i! ≥ |A|!

paths between p and q, whose lengths are close to the Euclidean distance |pq|. Hence, if
k ≤ |A|!, then the length of a k-th shortest path between p and q in the complete graph on
S is roughly equal to |pq|. Let E′ be the set of all edges in G between points of A ∪ {p, q}.
Then |E′| ≤ k. Moreover, the length of any path between p and q in the graph (S, E \ E′)
is much larger than the length of a k-th shortest path between p and q in the complete
graph on S.

This discussion leads us to the appropriate definition of a t-spanner that is resilient to
k or less edge faults:

Edge fault-tolerant spanner: For any subset E′ ⊆ E of size at most k, and
for any two points p and q of S, there is a path between p and q in the graph
(S, E \ E′), whose length is at most t times the length of a shortest path between
p and q in the graph obtained by deleting E′ from the complete graph on S.
Observe that this is the best possible path “under the circumstances.”

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

18.2 VERTEX FAULT-TOLERANCE 429

We now define these notions formally. We need the following notation. For a given
set S of points, let KS denote the complete Euclidean graph on S. Let G = (S, E)
be an undirected Euclidean graph, let E′ be a subset of E, and let S ′ be a subset
of S.

1. G \ S ′ denotes the graph with vertex set S \ S ′, and edge set consisting of all edges of E

that have both endpoints in S \ S ′. G \ S ′ is therefore the induced subgraph of G on the
vertex set S \ S ′.

2. G \ E′ denotes the graph (S,E \ E′).
3. G \ (S ′, E′) denotes the graph with vertex set S \ S ′, and edge set the set of all edges of

E \ E′ that have both endpoints in S \ S ′.

Definition 18.1.1. Let S be a set of n points in Rd , let t > 1 be a real number, let k ≥ 0
be an integer, and let G = (S, E) be an undirected Euclidean graph.

1. G is called a k-vertex fault-tolerant t-spanner for S, or (k, t)-VFTS, if for any subset S ′

of S with size at most k, the graph G \ S ′ is a t-spanner for the points of S \ S ′.
2. G is called a k-edge fault-tolerant t-spanner for S, or (k, t)-EFTS, if the following holds

for any subset E′ of E with size at most k:
� For any two points p and q in S, the graph G \ E′ contains a path between p and q,

whose length is at most t times the length of a shortest path between p and q in the
graph KS \ E′.

3. G is called a k-fault-tolerant t-spanner for S, or (k, t)-FTS, if the following holds for any
subset S ′ of S, and any subset E′ of E such that |S ′| + |E′| ≤ k:
� For any two points p and q in S \ S ′, the graph G \ (S ′, E′) contains a path between

p and q, whose length is at most t times the length of a shortest path between p and q

in the graph KS \ (S ′, E′).

18.2 Vertex fault-tolerance is equivalent to fault-tolerance

We have defined spanners that are resilient to vertex faults, edge faults, or both. But
how are these concepts related? It follows immediately from Definition 18.1.1 that any
(k, t)-FTS is also a (k, t)-VFTS and a (k, t)-EFTS. In this section, we will prove that the
converse is also true: Any (k, t)-VFTS is a (k, t)-FTS and, hence, also a (k, t)-EFTS. This
result implies that in the rest of this chapter, we can concentrate on constructing spanners
that are resilient to vertex faults.

More formally, let S be a set of n points in Rd , let k ≥ 0 be an integer, let t > 1 be a real
number, and let G = (S, E) be a (k, t)-VFTS for S. We will prove that G is a (k, t)-FTS
for S.

Let S ′ be any subset of S of size k′, and let E′ be any subset of E of size k′′, such that
k′ + k′′ ≤ k. We may assume without loss of generality that no edge of E′ is incident to
any point of S ′; otherwise, we can decrease k′′ accordingly.

Let p and q be two arbitrary points of S \ S ′. To prove that G is a (k, t)-FTS, we have
to show that the graph G \ (S ′, E′) contains a path between p and q, whose length is at
most t times the length of a shortest path between p and q in the graph KS \ (S ′, E′).

We may assume that p �= q. The following lemma considers the case when {p, q} is
an edge of the graph KS \ (S ′, E′).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

430 FAULT-TOLERANT SPANNERS

Lemma 18.2.1. Assume that {p, q} is an edge of KS \ (S ′, E′). Then the graph G \
(S ′, E′) contains a path between p and q, whose length is at most t |pq|.

proof Let S ′′ be a subset of S \ {p, q} that is obtained by taking for each edge of E′,
an arbitrary endpoint that is not equal to p or q. Since {p, q} is not an edge of E′, it is
possible to choose such a subset S ′′. (For example, if {a, b} and {b, c} are edges of E′,
then S ′′ can contain the endpoints a and b; or a and c; or b and c; or only b.) Observe that
this set S ′′ contains at most k′′ points.

Let G′ be the graph G \ (S ′ ∪ S ′′). Observe that

|S ′ ∪ S ′′| = |S ′| + |S ′′| ≤ k′ + k′′ ≤ k.

Since the graph G is a (k, t)-VFTS for S, it follows from Definition 18.1.1 that G′ is
a t-spanner for the set S \ (S ′ ∪ S ′′). By our construction, p and q are vertices of G′.
Therefore, G′ contains a path P between p and q, whose length is at most t |pq|. This
path neither contains any vertices of S ′ nor any edges of E′. Hence, P is a path in the
graph G \ (S ′, E′).

Now we can consider the general case. That is, we are ready to show that the graph
G \ (S ′, E′) contains a path between p and q, whose length is at most t times the length
of a shortest path between p and q in the graph KS \ (S ′, E′).

Let P be a shortest path between p and q in the graph KS \ (S ′, E′). Write the vertices
on this path as p = p0, p1, p2, . . . , p	 = q. For each i with 0 ≤ i < 	, {pi, pi+1} is
an edge of KS \ (S ′, E′). By Lemma 18.2.1, the graph G \ (S ′, E′) contains a path Qi

between pi and pi+1, whose length is at most t |pipi+1|. Let Q be the concatenation of
Q0, Q1, . . . , Q	−1. Then, Q is a path in G \ (S ′, E′) between p and q, whose length is
bounded from above by

	−1∑
i=0

|Qi | ≤
	−1∑
i=0

t |pipi+1| = t |P |.

We have thus proved the following theorem:

Theorem 18.2.2. Let S be a set of n points in Rd , let k ≥ 0 be an integer, let t > 1
be a real number, and let G = (S, E) be an undirected Euclidean graph. Then G is a
(k, t)-VFTS for S if and only if G is a (k, t)-FTS for S.

18.3 A simple transformation

In order to address the issue of constructing fault-tolerant spanners, we give a simple
construction that transforms any spanner into a k-fault-tolerant spanner.

Let S be a set of n points in Rd , let t > 1 be a real number, and let k ≥ 0 be an
integer. Let G be an arbitrary t-spanner for S. The transformed graph G′ is obtained
by connecting each point p of S to all points that are reachable in G, from p, by a
path having at most k + 1 edges. Algorithm SimpleFTS describes precisely how this is
achieved.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

18.3 A SIMPLE TRANSFORMATION 431

Algorithm SimpleFTS(G, k)

Comment: This algorithm takes as input a t-spanner G = (S,E) and an integer k ≥ 0.
It returns a (k, t)-FTS G′.

Step 1: For every point p ∈ S,
� compute the set N (p), consisting of all points of S \ {p} that are connected to

p by a path in G having at most k + 1 edges, and
� compute the set Ep of edges, defined as

Ep := {{p, q} : q ∈ N (p)}.
Step 2: Return the transformed graph G′ = (S,E′), where

E′ :=
⋃
p∈S

Ep.

Observe that G is a subgraph of G′. Intuitively, it is clear that G′ is a k-fault-tolerant
t-spanner for S. In the following lemma, we give a formal proof of this fact.

Lemma 18.3.1. The graph G′ that is returned by algorithm SimpleFTS(G, k) is a (k, t)-
FTS for S.

proof By Theorem 18.2.2, it suffices to show that G′ is a (k, t)-VFTS for S. Let S ′

be any subset of S with size at most k, and let p and q be two points of S \ S ′. We have
to show that the graph G′ \ S ′ contains a path between p and q, whose length is at most
t |pq|. We may assume that p �= q.

Since G is a t-spanner for S, this graph contains a path P between p and q, whose
length is at most t |pq|. Write the vertices of this path P as

p = q0, q1, q2, . . . , q	 = q.

We will construct a path Q between p and q in the graph G′ \ S ′, which is a subpath of
P . Then, the triangle inequality implies that the length of Q is at most that of P . This will
prove the lemma.

First assume that 	 ≤ k + 1. Then, q ∈ N (p) and, hence, {p, q} is an edge of G′. Since
p and q are both contained in S \ S ′, {p, q} is an edge of G′ \ S ′, and we can take for Q

the path consisting of this single edge.
Assume from now on that k + 2 ≤ 	. The following algorithm constructs the path

Q = (p0, p1, . . .) incrementally.

Step 1: Define p0 := p, i := 0, and j := 0. Go to Step 2.

Step 2: At this moment, Q = (p0, p1, . . . , pi) is a path in G′ \ S ′, j is the index such that
pi = qj , and j + k + 2 ≤ 	. In particular, pi �= q and qj ∈ S \ S ′.
If there is an index m with j + 1 ≤ m ≤ j + k + 1, such that

1. m + k + 2 ≤ 	, and

2. qm is a vertex of S \ S ′,

then go to Step 3. Otherwise, go to Step 4.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

432 FAULT-TOLERANT SPANNERS

Step 3: Since qj and qm are both vertices of S \ S ′, and qm ∈ N (qj), we know that {qj , qm}
is an edge of G′ \ S ′. Therefore, we define pi+1 := qm, set i := i + 1 and j := m, and
go to Step 2.

Step 4: We know that pi = qj and j + k + 2 ≤ 	. Moreover, for all m with j + 1 ≤ m ≤
j + k + 1, such that qm is a vertex of S \ S ′, we have m + k + 1 ≥ 	.

We claim that there is an index m with j + 1 ≤ m ≤ j + k + 1, such that {qj , qm} and
{qm, q} are both edges of G′ \ S ′.

Assume this claim is true. Then we define pi+1 := qm and pi+2 := q, and the construc-
tion of the path Q between p and q is complete.

It remains to prove the claim. Since S ′ has size at most k, there is an index m with
j + 1 ≤ m ≤ j + k + 1, such that qm ∈ S \ S ′. Hence, qm ∈ N (qj) and {qj , qm} is an
edge of G′ \ S ′. Our assumption implies that m + k + 1 ≥ 	. Therefore, q = q	 ∈ N (qm)
and {qm, q} is an edge of G′. Since qm and q are both contained in S \ S ′, edge {qm, q} is
contained in G′ \ S ′. This proves the claim.

To complete the proof of the lemma, we have to show that the algorithm terminates.
Each time Step 3 is executed, the path Q is extended by a new point. Therefore, at some
moment, Step 4 must be executed. At that moment, Q reaches q, and the algorithm
terminates.

The following lemma gives some additional properties of the graph G′, in case we start
with a t-spanner G of bounded degree.

Lemma 18.3.2. Let D be the maximum degree of any vertex of the t-spanner G, and let
G′ = (S, E′) be the graph that is returned by algorithm SimpleFTS(G, k).

1. In the transformed graph G′, the degree of each point of S is at most 2Dk+1.

2. Given the t-spanner G, the transformed graph G′ can be computed in O(Dk+1n) time.

proof Let p be any point of S. Since G is connected, D ≥ 2. Thus, we have

|N (p)| ≤ D + D2 + D3 + · · · + Dk+1 ≤ 2Dk+1.

For any point q, we have {p, q} ∈ E′ if and only if q ∈ N (p) or p ∈ N (q). Since q ∈ N (p)
if and only if p ∈ N(q), it follows that the degree, in G′, of point p is bounded from above
by 2Dk+1.

The transformed graph G′ can easily be constructed in O(Dk+1n) time, by computing
N(p) for each point p.

If we apply Lemmas 18.3.1 and 18.3.2 to the t-spanner of Theorem 10.1.3, then we get
the following result:

Theorem 18.3.3. Let S be a set of n points in Rd , let k ≥ 0 be an integer, and let t > 1
be a real number. In

O

(
log(1/(t − 1))

(t − 1)d
n log n + 1

(t − 1)(2d−1)(k+1)
n

)
time, a (k, t)-FTS for S can be computed, in which each point has degree
O(1/(t − 1)(2d−1)(k+1)).

The next lemma gives an upper bound on the weight of the transformed graph G′, for
the case when the t-spanner G has bounded degree.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

18.3 A SIMPLE TRANSFORMATION 433

Lemma 18.3.4. Let D be the maximum degree of any vertex of the t-spanner G, and let
G′ = (S, E′) be the graph that is returned by algorithm SimpleFTS(G, k). The weight of
G′ is bounded from above by 8(k + 1)Dk times the weight of G.

proof We use the following charging scheme to prove an upper bound on the total
edge length of the graph G′. Let {p, q} be any edge of the transformed graph G′, and
consider any path P in the original graph G between p and q, containing at most k + 1
edges. (Observe that such a path exists.) We write the vertices of P as

p0 = p, p1, p2, . . . , p	 = q.

Hence, 	 ≤ k + 1. We charge the length |pq| of edge {p, q} to the edges of the path P ,
in such a way that no edge {pi, pi+1}, 0 ≤ i < 	, is charged by more than |pipi+1|. Since
by the triangle inequality, the Euclidean distance |pq| is at most the total length of P , this
is possible.

For each edge e of G, let ne be the number of times this edge is charged. Then the
total edge length of G′ is at most

∑
e∈G ne|e|, where |e| denotes the length of edge e.

We will show that ne ≤ 8(k + 1)Dk . This will imply that the total edge length of G′ is at
most 8(k + 1)Dk

∑
e∈G |e|, which is equal to 8(k + 1)Dk times the total edge length of

G. Hence, this will prove the lemma.
Let e be any edge of G, and let it have endpoints a and b. Every time e is charged,

there are two points p and q, such that there is a path between p and q in G, containing
at most k + 1 edges, e being one of them. Assume without loss of generality that, on this
path, a is between p and b. Let i be the number of edges on the subpath between p and a.
Then 0 ≤ i ≤ k. If j denotes the number of edges on the subpath between b and q, then
0 ≤ j ≤ k − i.

If we fix i and j , then the number of possibilities for p is at most

1 + D + D2 + D3 + · · · + Di ≤ 2Di,

where the inequality follows from the fact that D ≥ 2. Similarly, the number of possibil-
ities for q is at most

1 + D + D2 + D3 + · · · + Dj ≤ 2Dj .

It follows that

ne ≤
k∑

i=0

2Di

k−i∑
j=0

2Dj

= 4
k∑

i=0

Di
(
1 + D + D2 + · · · + Dk−i

)
≤ 8

k∑
i=0

DiDk−i

= 8(k + 1)Dk.

This completes the proof.

If we apply Lemmas 18.3.1, 18.3.2, and 18.3.4 to the t-spanner of Theorem 15.2.17,
then we obtain an algorithm that constructs, in the algebraic computation-tree model,
a (k, t)-FTS for S that has nontrivial bounds on its degree and weight. By using The-
orem 15.3.20 (instead of Theorem 15.2.17), we obtain an algorithm that works in the

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

434 FAULT-TOLERANT SPANNERS

algebraic computation-tree model in which additionally any indirect addressing operation
takes unit time. For simplicity, we state only the latter result in the following theorem:

Theorem 18.3.5. Let S be a set of n points in Rd , let k ≥ 0 be an integer, and let t > 1
be a real number. In

O

(
1

(t − 1)4d−1
n log n + 1

(t − 1)(2d−1)(k+1)
n

)
time, a (k, t)-FTS for S can be computed, in which each point has degree

O

(
1

(t − 1)(2d−1)(k+1)

)
,

and whose weight is

O

(
k

(t − 1)(2d−1)k+2d
· wt(MST(S))

)
,

where MST(S) denotes a minimum spanning tree of S.

18.4 Fault-tolerant spanners based on well-separated pairs

The number of edges in the k-fault-tolerant t-spanners of Theorems 18.3.3 and 18.3.5 is
exponential in k. In this section, we give an algorithm for constructing such spanners that
use only a polynomial number of edges. The construction uses the well-separated pair
decomposition (WSPD) of Chapter 9.

Let S be a set of n points in Rd , let t > 1 be a real number, and let k ≥ 0 be an integer.
Consider an arbitrary WSPD

{A1, B1}, {A2, B2}, . . . , {Am,Bm}
for S, with separation ratio s = 4(t + 1)/(t − 1). In Section 9.2, we saw that we obtain
a t-spanner for S by adding an edge between an arbitrary point of Ai and an arbitrary
point of Bi , for each well-separated pair {Ai, Bi}. We generalize this spanner to obtain a
k-fault-tolerant t-spanner by adding more than one edge (in fact, we add O(k2) edges) for
each well-separated pair.

18.4.1 Definition of the graph G

We define a graph G with vertex set S. In Section 18.4.2, we will show that G is a
k-fault-tolerant t-spanner for S.

For each i with 1 ≤ i ≤ m, we define a set Ei of edges. The edge set E of the graph G

is then defined as E := ⋃m
i=1 Ei .

Let i be any index such that 1 ≤ i ≤ m, and consider the well-separated pair {Ai, Bi}.
We may assume without loss of generality that |Ai | ≥ |Bi |. To define the edge set Ei , we
distinguish three cases. The most general case is dealt with in Case 1, which corresponds
to the case when both Ai and Bi have at least k + 1 points.

Case 1: |Bi | ≥ k + 1.
Choose k + 1 points aj , 1 ≤ j ≤ k + 1, in Ai , and k + 1 points bj , 1 ≤ j ≤ k + 1, in

Bi . Observe that these points need to be pairwise distinct. Let Ei be the set of k + 1 edges,
defined as

Ei := {{aj , bj } : 1 ≤ j ≤ k + 1}.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

18.4 FAULT-TOLERANT SPANNERS BASED ON WELL-SEPARATED PAIRS 435

Case 2: |Bi | ≤ k and |Ai | ≥ k + 1.
Choose k + 1 pairwise distinct points aj , 1 ≤ j ≤ k + 1, in Ai . Let Bi =

{b1, b2, . . . , bx}, where x := |Bi | ≤ k. The edge set Ei is defined as

Ei := {{aj , b	} : 1 ≤ j ≤ k + 1, 1 ≤ 	 ≤ x}.

Observe that |Ei | = x(k + 1) ≤ k(k + 1).

Case 3: |Ai | ≤ k.
In this case, the set Ei is defined as the edge set of the complete bipartite graph on the

points of Ai ∪ Bi , that is,

Ei := {{a, b} : a ∈ Ai, b ∈ Bi}.

Hence, we have |Ei | = |Ai | · |Bi | ≤ k2.

This concludes the definition of our graph G. Observe that E, the edge set of G, has
size O(kn + k2m) = O(k2m).

18.4.2 The graph G is a (k, t)-FTS

We now prove that our graph G is indeed a k-fault-tolerant t-spanner for the set S. By
Theorem 18.2.2, it suffices to show that G is a (k, t)-VFTS. To prove this, let S ′ be an
arbitrary subset of S of size at most k. We have to show that for any two points p and q of
S \ S ′, the graph G \ S ′ contains a path between p and q, whose length is at most t |pq|.

We will prove this by induction on the rank of the distance |pq| in the sorted sequence
of distances in S \ S ′. To start the induction, the claim clearly holds if p = q. Assume
from now on that p and q are two distinct points of S \ S ′. Moreover, assume that for any
two points a and b in S \ S ′, with |ab| < |pq|, the graph G \ S ′ contains a path between
a and b, whose length is at most t |ab|.

Let i be the index such that (i) p ∈ Ai and q ∈ Bi , or (ii) p ∈ Bi and q ∈ Ai . We
assume without loss of generality that (i) holds, and that |Ai | ≥ |Bi |. We distinguish three
cases.

Case 1: |Bi | ≥ k + 1.
Consider the k + 1 points aj , 1 ≤ j ≤ k + 1, in Ai , and the k + 1 points bj , 1 ≤ j ≤

k + 1, in Bi , that were chosen in the construction of G.

Lemma 18.4.1. There is an index j with 1 ≤ j ≤ k + 1, such that the graph G \ S ′

contains

1. the edge {aj , bj };
2. a path P between p and aj , whose length is at most t |paj |; and

3. a path Q between q and bj , whose length is at most t |bjq|.

proof Since S ′ has size at most k, there is an index j with 1 ≤ j ≤ k + 1, such that
aj and bj are both contained in S \ S ′. Let j be an arbitrary index having this property.
Then {aj , bj } is an edge of G \ S ′.

By Lemma 9.1.2, we have |paj | ≤ (2/s)|pq|, which is less than |pq|, because s > 2.
Therefore, by the induction hypothesis, the graph G \ S ′ contains a path P between p and
aj , whose length is at most t |paj |. By a symmetric argument, the graph G \ S ′ contains
a path Q between q and bj , whose length is at most t |bjq|.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

436 FAULT-TOLERANT SPANNERS

We can now complete the proof for Case 1. Consider the index j , and the paths P and
Q of Lemma 18.4.1. Let R be the path in G \ S ′ between p and q, that is obtained by
concatenating path P , edge {aj , bj }, and path Q. By the properties of well-separated pairs
proved in Chapter 9, we know that |paj | and |bjq| are much smaller than |aibj |. Then it
follows in exactly the same way as in Section 9.2 that the length of this path R is at most
t |pq|.
Case 2: |Bi | ≤ k and |Ai | ≥ k + 1.

Consider the k + 1 points aj , 1 ≤ j ≤ k + 1, in Ai that were chosen in the construction
of G. Let bj , 1 ≤ j ≤ x := |Bi |, be the points of Bi . Observe that q is one of the bj ’s.
Also, in G, point q is connected by an edge to each point aj , 1 ≤ j ≤ k + 1.

Let j be an index such that aj is a vertex of G \ S ′. Then {aj , q} is an edge of G \ S ′.
It follows in the same way as in the proof of Lemma 18.4.1 that G \ S ′ contains a path P

between p and aj , whose length is at most t |paj |. Then, just as in Case 1, it follows that
the path consisting of P , followed by edge {aj , q}, is a path in the graph G \ S ′ between
p and q, whose length is at most t |pq|.
Case 3: |Ai | ≤ k.

In this case, G contains the complete bipartite graph on Ai ∪ Bi as a subgraph. Since
p and q are both points of S \ S ′, we know that {p, q} is an edge of G \ S ′. That is, G \ S ′

contains a path between p and q, having length |pq|, which is at most t |pq|.
We have thus proved the following result:

Theorem 18.4.2. Let S be a set of n points in Rd , let k ≥ 0 be an integer, and let t > 1
be a real number. Let

{A1, B1}, {A2, B2}, . . . , {Am,Bm}
be an arbitrary WSPD for S, with separation ratio s = 4(t + 1)/(t − 1). The graph
G = (S, E) defined in Section 18.4.1 is a (k, t)-FTS for S. This graph contains O(k2m)
edges.

18.4.3 Constructing the graph G

The algorithm for constructing the graph G follows immediately from the previous results.
Given the set S, the integer k ≥ 0, and the real number t > 1, we use the algorithm given in
Chapter 9 (see Theorem 9.4.6), to compute a WSPD for S of size m = O(n), in O(n log n)
time. For each pair {Ai, Bi} in this WSPD, we construct the corresponding edge set Ei .
If Case 1 applies, then we construct Ei in O(k) time. If Case 2 or 3 applies, then we need
O(k2) time to construct Ei .

Theorem 18.4.3. Let S be a set of n points in Rd , let k ≥ 0 be an integer, and let t > 1
be a real number. In O(n log n + k2n/(t − 1)d) time, a (k, t)-FTS for S can be computed
that contains O(k2n/(t − 1)d) edges.

proof Let s = 4(t + 1)/(t − 1). It follows from Theorem 9.4.6 and the discussion
above that the graph G can be constructed in O(n log n + k2n/(t − 1)d) time and contains
O(k2n/(t − 1)d) edges. By Theorem 18.4.2, G is a (k, t)-FTS for S.

By using the result in Exercise 9.16, Theorem 18.4.3 can be improved for values of k

that are larger than log n:

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

18.6 FAULT-TOLERANT SPANNERS OF LOW DEGREE AND LOW WEIGHT 437

Theorem 18.4.4. Let S be a set of n points in Rd , let k ≥ 0 be an integer, and let t > 1
be a real number. In O((kn log n)/(t − 1)d) time, a (k, t)-FTS for S can be computed that
contains O((kn log n)/(t − 1)d) edges.

The proof of this theorem is left as an exercise; see Exercise 18.1.

18.5 Fault-tolerant spanners with O(kn) edges

Theorems 18.4.3 and 18.4.4 give algorithms for constructing k-fault-tolerant spanners
with O(k2n) and O(kn log n) edges, respectively. Can we do better? The answer is “yes”:
By generalizing the �-graph of Section 4.1, we obtain the following result:

Theorem 18.5.1. Let S be a set of n points in Rd , let k ≥ 0 be an integer, and let t > 1
be a real number. In

O

(
1

(t − 1)d−1

(
n logd−1 n log k + kn log log n

))
time, a (k, t)-FTS for S can be computed that contains O(kn/(t − 1)d−1) edges.

We claim that this result is optimal in terms of the number of edges. Indeed, let G be
an arbitrary (k, t)-FTS for a set S of n points in Rd . If we remove any k edges from G,
then the resulting graph is connected. Therefore, the degree of each vertex in G must be
at least k + 1 and, thus, G must have at least (k + 1)n/2 = �(kn) edges.

Open problem: Is there an algorithm that constructs a k-fault-tolerant t-spanner
with O(kn) edges in O(n log n + kn) time?

In Sections 4.2 and 5.5.3, we showed that a spanner of bounded degree can be ob-
tained, by combining sink spanners with a spanner whose edges can be directed such
that each vertex has bounded outdegree. This construction can be generalized to obtain
k-fault-tolerant spanners. If we apply this generalized construction to the (k, t)-FTS of
Theorem 18.5.1, then we obtain a (k, t)-FTS, in which the degree of each vertex is O(k2).
In the next section, we will show how to obtain a (k, t)-FTS of degree O(k).

18.6 Fault-tolerant spanners of low degree and low weight

As we have seen in Section 18.5, every k-fault-tolerant spanner has degree at least k + 1.
What can we say about the weight of such spanners? Let k be an even integer, and consider
a set A of 1 + k/2 points that are all close to the origin. Let B be a set of n − 1 − k/2
points that are all close together, but at distance roughly one from the origin. Let G be
an arbitrary (k, t)-FTS for the set S := A ∪ B, where t is a constant close to one. Since
the degree of each vertex of G is at least k + 1, every point of A has to be connected by
an edge to at least 1 + k/2 points of B. Therefore, G contains �(k2) edges, all having
length roughly equal to 1. On the other hand, the weight of a minimum spanning tree of
S is roughly equal to 1.

Thus, there exist point sets S, such that the weight of every (k, t)-FTS for S is �(k2) ·
wt(MST(S)), where MST(S) denotes a minimum spanning tree of S. In this section, we
show how to obtain, for any point set S, a (k, t)-FTS of weight O(k2) · wt(MST(S)), in
which every vertex has degree O(k).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

438 FAULT-TOLERANT SPANNERS

18.6.1 A generalization of the path-greedy algorithm

The algorithm below is a generalization of algorithm PathGreedy of Section 1.4. This
algorithm uses the concept of vertex-disjoint paths: For any two distinct vertices p and q

of a graph, two paths between p and q are said to be vertex-disjoint, if p and q are the
only common vertices of these paths.

Algorithm FTPathGreedy(S, k, t)

Comment: This algorithm takes as input a set S of n points in R
d , an integer k ≥ 0, and

a real number t > 1. It returns a (k, t)-FTS for S.

sort the
(
n

2

)
pairs of distinct points in nondecreasing order of their

distances (break ties arbitrarily), and store them in list L;
E := ∅;
G := (S,E);
for each {p, q} ∈ L (∗ consider pairs in sorted order ∗)
do if G does not contain k + 1 vertex-disjoint t-spanner paths

between p and q

then E := E ∪ {{p, q}};
G := (S,E)

endif
endfor;
output the graph G

Observe that for k = 0, algorithm FTPathGreedy(S, k, t) is identical to algorithm
PathGreedy(S, t). The proof of the following lemma is left as an exercise, see Exer-
cise 18.3.

Lemma 18.6.1. The output of algorithm FTPathGreedy(S, k, t) is a (k, t)-FTS for S.

In Sections 18.6.2 and 18.6.3, we will analyze the degree and the weight of the fault-
tolerant path-greedy spanner.

We fix a set S of n points in Rd , an integer k ≥ 0, and a real number t > 1. Let
G = (S, E) be the (k, t)-FTS that is returned by algorithm FTPathGreedy(S, k, t).
For our analysis, we need a real number θ , such that 0 < θ < π/4 and t ≥ 1/(cos θ −
sin θ). Moreover, our analysis uses (a variant of) the following theorem from graph
theory:

Theorem 18.6.2 (Menger). Let H be an undirected graph with vertex set V , let k ≥ 0
be an integer, and let u and v be two distinct vertices of H . Then, H contains k + 1
vertex-disjoint paths between u and v, if and only if for every subset V ′ of V \ {u, v} with
|V ′| ≤ k, u and v are connected by a path in the graph H \ V ′.

18.6.2 Bounding the degree of the fault-tolerant path-greedy spanner

In this section, we will prove that the degree of every vertex of G is O(k). We start with
the following lemma, which follows from Lemma 4.1.4.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

18.6 FAULT-TOLERANT SPANNERS OF LOW DEGREE AND LOW WEIGHT 439

Lemma 18.6.3. Let p, q, and r be three pairwise distinct points of S, such that {p, r} is
an edge of G, |pr| ≤ |pq| and angle(pq, pr) ≤ θ . Let Q be an arbitrary t-spanner path
in G between r and q, and let P be the path obtained by concatenating {p, r} and Q.
Then, Q is a t-spanner path in G between p and q.

The next lemma is the basis for our claim that the graph G has degree O(k). The lemma
can be proved using Lemma 18.6.3.

Lemma 18.6.4. Let p be a point of S, and let C be a cone with apex p and an-
gular diameter θ . Then, the graph G contains at most k + 1 edges {p, q} for which
q ∈ C.

By combining Lemma 18.6.4 with Theorem 5.3.3, we obtain the following result:

Lemma 18.6.5. The degree of every vertex of G is O(k/(t − 1)d−1).

18.6.3 Bounding the weight of the fault-tolerant path-greedy spanner

In this section, we prove that the edge set E of the (k, t)-FTS G = (S, E) can be partitioned
into O(k2) subsets, each of which satisfies the t-leapfrog property of Chapter 14; see
Definition 14.1.1. (In fact, each subset satisfies the version of the leapfrog property given
in Exercise 14.12.) Thus, the Leapfrog Theorem (Theorem 14.4.1) implies that the weight
of G is O(k2) times the weight of a minimum spanning tree of S.

Throughout this section, we assume for simplicity that the Euclidean distances between
all

(
n

2

)
pairs of points in S are distinct.

Lemma 18.6.6. Let e = {p, q} be an edge in E. There exists a subset Se of S \ {p, q},
such that |Se| ≤ k, and for which the following property holds: Let Ge be the graph
consisting of all edges of G \ Se having length less than |pq|. Then, the length of every
path in Ge between p and q is larger than t |pq|.
proof Since the edge e is included in the edge set E, it follows from algorithm
FTPathGreedy that G contains at most k vertex-disjoint t-spanner paths between p and
q, all of whose edges have length less than |pq|. The claim follows from a variant of
Theorem 18.6.2.

We start by partitioning the edge set E into subsets, such that any two edges in the same
subset make an angle of at most θ . By Theorem 5.3.3, such a partition exists, consisting
of O(1/θd−1) subsets. Below, every subset E′ in this partition will be further subdivided.

We fix a subset E′ in the partition of E. For any edge e in E, we define

F ′
e := {f ∈ E′ : |f | < |e| and f ∩ Se �= ∅},

where Se is the set in Lemma 18.6.6. In words, F ′
e is the set of all edges in E′ that

are shorter than |e|, and that are incident to at least one vertex of Se. Observe that, by
Lemma 18.6.4, every point of Se is incident to at most k + 1 edges in E′. Combining this
with Lemma 18.6.6, it follows that

|F ′
e| ≤ (k + 1)|Se| ≤ k(k + 1).

We use the following procedure to partition the edge set E′ into subsets
E′

0, E
′
1, . . . , E

′
k(k+1):

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

440 FAULT-TOLERANT SPANNERS

1. Initially, E′
i = ∅ for all i with 0 ≤ i ≤ k(k + 1).

2. Consider all edges of E′, in increasing order of their lengths. If e is the current edge, then
e is added to a set E′

i that does not contain any element of F ′
e.

Observe that this partition exists, because |F ′
e| ≤ k(k + 1).

Lemma 18.6.7. Each of the sets E′
0, E

′
1, . . . , E

′
k(k+1) satisfies the version of the t-leapfrog

property given in Exercise 14.12.

proof We fix one of the subsets in the partition of E′. For ease of notation, we
assume that this subset is E′

0. Let 	 ≥ 2 and let {p1, q1}, {p2, q2}, . . . , {p	, q	} be an
arbitrary sequence of pairwise distinct edges of E′

0, such that |p1q1| > |piqi | for all i with
2 ≤ i ≤ 	. We have to show that

t |p1q1| <

	∑
i=2

|piqi | + t

(
|p1p2| +

	−1∑
i=2

|qipi+1| + |q	q1|
)

. (18.1)

If |p1q1| < |p1p2|, |p1q1| < |q	q1|, or |p1q1| < |qipi+1| for some i with 2 ≤ i ≤ 	 − 1,
then the inequality in (18.1) obviously holds. Hence, we may assume that |p1q1| > |p1p2|,
|p1q1| > |q	q1|, and |p1q1| > |qipi+1| for all i with 2 ≤ i ≤ 	 − 1.

Denote the edge {p1, q1} by e, and consider the subset Se of S \ {p1, q1} and the graph
Ge, as given in Lemma 18.6.6. Recall that the length of every path in Ge between p1

and q1 is larger than t |p1q1|. We will construct a path Q in Ge between p1 and q1,
such that

|Q| ≤
	∑

i=2

|piqi | + t

(
|p1p2| +

	−1∑
i=2

|qipi+1| + |q	q1|
)

, (18.2)

where |Q| denotes the length of Q. From this, the inequality in (18.1) will follow.
The construction of the path Q will use the fact that

Se ∩ {p1, p2, . . . , p	, q1, q2, . . . , q	} = ∅.

The proof of this claim is by contradiction: If pi ∈ Se, for some i with 2 ≤ i ≤ 	, then
{pi, qi} ∩ Se �= ∅. Since |piqi | < |p1q1| = |e|, it follows that {pi, qi} is contained in the
set F ′

e. But then, since {pi, qi} ∈ E′
0, our procedure for partitioning E′ did not add the

edge e to the set E′
0, which is a contradiction. Thus, none of the points pi , 2 ≤ i ≤ 	, are

contained in Se. Since Se ⊆ S \ {p1, q1}, it is clear that p1 is not contained in Se. A similar
argument shows that none of the points qi , 1 ≤ i ≤ 	, are contained in Se. Let {x, y} be
an arbitrary pair in the set

{{p1, p2}, {q2, p3}, {q3, p4}, . . . , {q	−1, p	}, {q	, q1}}.

Recall that |xy| < |p1q1| = |e|. It follows from algorithm FTPathGreedy that either
{x, y} is an edge in E or the graph G contains k + 1 vertex-disjoint t-spanner paths
between x and y, all of whose edges have length less than |xy| < |e|. Thus, since x �∈ Se,
y �∈ Se, and |Se| ≤ k, the graph Ge contains a t-spanner path Qxy between x and y.

Let Q be the concatenation of path Qp1p2 , edge {p2, q2}, path Qq2p3 , edge {p3, q3}, . . . ,
path Qq	−1p	

, edge {p	, q	}, and path Qq	q1 . Then, Q is a path in Ge between p1 and q1,
for which the inequality in (18.2) holds. This completes the proof.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

EXERCISES 441

In summary, we have partitioned the edge set E into O(k2/θd−1) subsets, each of which
satisfies the version of the t-leapfrog property given in Exercise 14.12. Then, the Leapfrog
Theorem (Theorem 14.4.1) implies that

wt(E) = O
(
k2/(t − 1)3d−1) · wt(MST(S)).

By combining this with Lemmas 18.6.1 and 18.6.5, we obtain the following result:

Theorem 18.6.8. Let S be a set of n points in Rd , let k ≥ 0 be an integer, and let t > 1 be
a real number. Algorithm FTPathGreedy(S, k, t) computes a (k, t)-FTS for S, in which
every vertex has degree O(k/(t − 1)d−1), and whose weight is

O

(
k2

(t − 1)3d−1

)
· wt(MST(S)).

Unfortunately, it is not clear how an efficient implementation of algorithm
FTPathGreedy, or a variant of it, can be obtained.

How about generalizing the gap-greedy algorithm of Chapter 7? We claim that this
does lead to an efficient algorithm, at the cost of an O(log n) increase in the weight bound:

Theorem 18.6.9. Let S be a set of n points in Rd , let k ≥ 0 be an integer, and let t > 1
be a real number. In

O

(
1

(t − 1)d−1

(
kn logd n + nk2 log k

))
time, a (k, t)-FTS for S can be computed in which every vertex has degree O(k/(t − 1)d−1),
and whose weight is

O

(
k2 log n

(t − 1)d

)
· wt(MST(S)).

The following two open problems arise from the discussion above.

Open problem: Is there an algorithm that constructs a k-fault-tolerant t-spanner
of degree O(k) in O(n log n + kn) time?

Open problem: Is there an algorithm that constructs, in O(n log n + kn) time, a
k-fault-tolerant t-spanner, whose weight is bounded by O(k2) times the weight
of a minimum spanning tree of S?

Exercises

18.1. Use Exercise 9.16 to prove Theorem 18.4.4.

18.2. Prove Theorem 18.5.1. Also, prove the claim made at the end of Section 18.5 about constructing a

k-fault-tolerant spanner of degree O(k2).

18.3. Prove Lemma 18.6.1.

18.4. Work out the details in Section 18.6.2.

18.5. Complete the proof of Lemma 18.6.6.

18.6. In the analysis in Section 18.6.3, we assumed that the Euclidean distances between all
(
n

2

)
pairs of

points in S are distinct. Prove that the analysis is still valid for point sets S that do not satisfy this

assumption.

18.7. Prove Theorem 18.6.9.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

442 FAULT-TOLERANT SPANNERS

Bibliographic notes

Fault-tolerant spanners were introduced in Levcopoulos, Narasimhan, and Smid [1998].
Sections 18.1–18.4 are based on their paper, and on the follow-up paper Levcopoulos,
Narasimhan, and Smid [2002]. The result of Section 18.2 that every spanner that is
resilient to vertex faults is also resilient to edge faults also appears in Lukovszki [1999a].
Section 18.5 is based on Lukovszki [1999a]. The generalizations of the path- and gap-
greedy algorithms in Section 18.6 are due to Czumaj and Zhao [2004].

Theorem 18.6.2 is due to Menger [1927]. A proof can be found, for example, in the
books by Harary [1972] and Bollobás [1998].

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

19

Designing Approximation Algorithms
with Spanners

The difference between expected and achieved results could, in fact, be
expressed in an exact relation, called the Snafu equation, involving the
Finagle constants.

—Francis P. Chisholm, The Chisholm Effect: Basic Laws of
Frustration, Mishap and Delay, 1963

In this chapter we consider approximation algorithms for geometric optimization problems
that use geometric networks of low weight satisfying specific properties. Given an input
of size n (usually a set of n points in Rd) and a real number ε > 0, a polynomial-time
approximation scheme (PTAS) is an algorithm that computes a solution that is within a
factor of 1 + ε of the optimal solution, in time that is polynomial in n, assuming that ε is
a constant.

In Section 19.1, we present a generic PTAS that can be used for geometric optimization
problems having the property that it is possible to quickly compute a sparse graph that
contains an approximately optimal solution. In the remaining sections, we illustrate how
to use the generic PTAS to obtain an O(n log n)–time algorithm that computes, for any
given set S of n points in Rd , a tour of S whose weight is at most 1 + ε times the weight
of an optimal traveling salesperson tour of S. For this problem, it is essential that there is
a fast algorithm that computes a (1 + ε)-spanner for S with O(n) edges and whose weight
is within a (possibly large) constant factor of the weight of a minimum spanning tree of
S. In Chapter 15, we have seen that such a spanner can be computed in O(n log n) time;
see Theorem 15.3.20.

The generic PTAS uses dynamic programming. Therefore, throughout this chapter, the
model of computation will be the algebraic computation-tree, in which additionally any
indirect addressing operation takes unit time.

19.1 The generic polynomial-time approximation scheme

In this section, we present the PTAS in general terms. We assume that the optimization
problem to be approximately solved takes as input a set S of n points in Rd . The generic
PTAS makes the following steps:

1. The perturbation step: The input is made well-rounded; that is, the points of S are
perturbed so that they all occupy grid positions on a uniform grid. The grid size is chosen
in such a way that the optimal solutions for S and the perturbed point set are approximately
equal.

2. The sparse graph computation step: A sparse graph on the perturbed point set is
computed, which contains an optimal or near-optimal solution to the problem.

443

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

444 DESIGNING APPROXIMATION ALGORITHMS WITH SPANNERS

3. The quadtree construction step: A hypercube containing the perturbed point set is
shifted by a random vector, and a quadtree is computed using a recursive geometric
partitioning of the shifted hypercube.

4. The patching step: The amount of “interaction” in an optimal or near-optimal solution
between adjacent hypercubes in the quadtree is reduced, by using a series of “patching”
steps. The result is a graph that contains an optimal or near-optimal solution and that
is “r-light” (meaning that the “interaction” between adjacent hypercubes is of “size” at
most r).

5. The dynamic programming step: Because of Step 4, each hypercube in the quadtree
generates only a small number of subproblems. Dynamic programming is applied to solve
all these subproblems, by traversing the quadtree in postorder.

Step 2 involves computing a sparse graph and is specific to the application. For the case
of the traveling salesperson problem, a (1 + ε)-spanner of low weight suffices. Steps 4
and 5 are also specific to the application, whereas Steps 1 and 3 are more or less generic.

In the rest of this chapter, we show how the generic PTAS can be used to design
an O(n log n)–time algorithm that computes a (1 + ε)-approximation to the traveling
salesperson problem.

Throughout the rest of this chapter, we fix a set S of n points in Rd . A tour of S is
defined to be a cycle T = (p1, p2, . . . , pn, p1) with vertex set S, which visits each point
of S exactly once and returns to its starting point. The weight wt(T) of T is defined to
be

∑n
i=1 |pipi+1|, where pn+1 := p1. The traveling salesperson problem is to compute a

tour of S of minimum weight. We call such a tour a traveling salesperson tour of S, and
denote it by TSP(S).

We will apply the generic approximation scheme to the problem of finding a tour of S,
whose weight is at most (1 + ε) · wt(TSP(S)). Throughout the rest of this chapter, ε is a
real number with 0 < ε < 1.

19.2 The perturbation step

This step perturbs the set of points, as described below.

Basic idea: The input is made well-rounded; that is, the input points are perturbed
so that they occupy grid positions on a uniform grid. The net effect is that all
points can be thought of as having integer coordinates in the range [0, O(n)].
The grid granularity is chosen such that the error caused by the perturbation is
small.

Since we are looking only for approximate solutions, it is clear that there should be
no harm in “snapping” each input point to a nearby grid point. Points that occupy the
same grid position are replaced by one single point. As we will see, if the grid is defined
appropriately, the resulting increase in the weight of the solution is bounded. The main
purpose of the perturbation step is to ensure that the quadtree that is computed in a later
step has only O(log n) levels. In the process, it also helps simplify the descriptions of the
quadtree decomposition.

Let B be the side length of a smallest axes-parallel hypercube that contains all points
of S. We may assume without loss of generality that S ⊆ [0, B]d . (If this is not the case,
then we can translate S.) Let MST(S) denote a minimum spanning tree of S, and let M be

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

19.2 THE PERTURBATION STEP 445

the weight of a 2-approximate minimum spanning tree of S. Thus,

wt(MST(S)) ≤ M ≤ 2 · wt(MST(S)). (19.1)

We define

L := 2�log(4Bn
√

d/(εM))�.

By Exercise 6.3, we have M = O(B · n1−1/d) and, therefore, L is a positive integer. Since
B ≤ wt(MST(S)) ≤ M , we have

L ≤ 4Bn
√

d/(εM) ≤ 4n
√

d/ε = O(n/ε). (19.2)

Moreover, we have

L ≥ 2log(4Bn
√

d/(εM))−1 = 2Bn
√

d/(εM). (19.3)

We place a uniform grid on the hypercube [0, B]d , consisting of Ld cells, where each
cell is a hypercube with sides of length B/L. For each point p in S, let p′ be a grid point
that is nearest to p, and define

S ′ := {p′ : p ∈ S}.
We remark that we consider S ′ to be a set; that is, multiple points at the same grid point
are replaced by one single point. We state the following lemma without proof.

Lemma 19.2.1. Let p and q be two points of S, and consider the corresponding points
p′ and q ′ in S ′. Then, the following inequalities hold:

1. |pp′| ≤ √
dB/(2L).

2. |p′q ′| ≤ |pq| + √
dB/L.

3. |pq| ≤ |p′q ′| + √
dB/L.

The next lemma states that the traveling salesperson tours (and the minimum spanning
trees) of S and S ′ have approximately the same weight.

Lemma 19.2.2. The following inequalities are true:

1. wt(TSP(S ′)) ≤ (1 + ε) · wt(TSP(S)).

2. wt(TSP(S)) ≤ (1 + ε) · wt(TSP(S ′)).
3. wt(MST(S ′)) ≤ (1 + ε) · wt(MST(S)).

4. wt(MST(S)) ≤ (1 + ε) · wt(MST(S ′)).

proof We prove only the first claim. Let T = (S, E) be a tour of S with weight
wt(TSP(S)). Define T ′ to be the graph with vertex set S ′ and edge set

E′ = {{p′, q ′} : {p, q} ∈ E,p′ �= q ′}.
Then, T ′ is a (possibly nonsimple) cycle that visits each point of S ′. Using Lemma 19.2.1
and the inequality in (19.3), we obtain

wt(T ′) ≤ wt(T) + n
√

dB/L

≤ wt(T) + εM/2.

By the inequality in (19.1) and Exercise 1.6, we have

M ≤ 2 · wt(MST(S)) ≤ 2 · wt(T).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

446 DESIGNING APPROXIMATION ALGORITHMS WITH SPANNERS

Therefore, we have

wt(T ′) ≤ (1 + ε) · wt(T).

The first claim follows by observing that wt(TSP(S ′)) is less than or equal to wt(T ′).

Each point p′ of S ′ can be written as p′ = (i1B/L, i2B/L, . . . , idB/L), for some
integers i1, i2, . . . , id in [0, L]. It turns out to be convenient to scale the coordinates of
these points. That is, we define p′′ := (i1, i2, . . . , id) and

P := {p′′ : p′ ∈ S ′}.

Then, by (19.2),

P ⊆ [0, L]d = [0,O(n/ε)]d .

Later, we will need the following upper bound on the weight of a minimum spanning tree
of P :

Lemma 19.2.3. We have wt(MST(P)) = O(n/ε).

proof Since P is obtained by scaling S ′, we have wt(MST(P)) = (L/B) ·
wt(MST(S ′)). Then, using Lemma 19.2.2 and the definition of L in Section 19.2, it
follows that

wt(MST(P)) ≤ (1 + ε)L

B
· wt(MST(S))

≤ (1 + ε)LM

B

≤ 4(1 + ε)n
√

d

ε
= O(n/ε),

where we have used our assumption that ε < 1.

We finish this section by analyzing the amount of time needed for the perturbation step.

Lemma 19.2.4. Given the set S and the real number ε with 0 < ε < 1, the perturbed
and scaled point set P can be computed in O(n log(n/ε)) time.

proof The side length B of a smallest axes-parallel hypercube that contains S can
clearly be computed in O(n) time. By Theorem 10.3.11, the weight M of a 2-approximate
minimum spanning tree of S can be computed in O(n log n) time. Using d binary searches
in a set consisting of L + 1 integers (one search for each dimension), the sets S ′ and P

can be computed in O(n log L) = O(n log(n/ε)) time. Observe that the floor function is
not used.

19.3 The sparse graph computation step

Recall that our goal is to compute an approximation to the optimal traveling salesperson
tour of the original set S. By Lemma 19.2.2, it is sufficient to compute an approximation
to the optimal traveling salesperson tour of the perturbed and scaled set P .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

19.3 THE SPARSE GRAPH COMPUTATION STEP 447

Basic idea: Every spanner contains an approximation to the optimal traveling
salesperson tour of the points. A(1 + ε)-spanner G for the perturbed and scaled
point set P is computed. After G has been appropriately modified in the patching
step, it still contains an approximation to the optimal traveling salesperson tour.
In order to obtain an efficient algorithm, it is essential that the spanner G contains
O(n) edges and that its weight is O(wt(MST(P))).

Until now, we have considered only tours of point sets. If G is a graph with vertex
set P , then a tour of P in G is a (possibly nonsimple) cycle in G that visits each
point of P at least once. The next lemma states that every spanner for P contains a
tour whose weight is proportional to the weight of an optimal traveling salesperson tour
of P .

Lemma 19.3.1. Let t > 1 be a real number, and let G be an arbitrary t-spanner for P .
Then, there is a tour of P in G, whose weight is at most t · wt(TSP(P)).

proof The lemma follows by replacing every edge of an optimal traveling salesperson
tour of P by a t-spanner path in G.

Thus, we can use any spanner to obtain an approximation to the optimal traveling
salesperson tour of P . As we will see later, in order to obtain a fast approximation
algorithm, we need to choose a spanner G for P with O(n) edges and whose weight is
O(wt(MST(P))). By Theorem 15.3.20, there exists an efficient algorithm that computes
such a spanner G:

Lemma 19.3.2. In

O

(
1

ε4d−1
n log n

)

time, a (1 + ε)-spanner G for P can be computed, such that

1. the number of edges of G is O(n/ε2d−1) and

2. the weight of G is

O

(
1

ε2d
· wt(MST(P))

)
.

From now on, G will denote the (1 + ε)-spanner for P as given by Lemma 19.3.2.
Observe that, by Lemma 19.2.3,

wt(G) = O
(
n/ε2d+1

)
. (19.4)

By Lemma 19.3.1, it suffices to compute a tour of P in G, whose weight is approxi-
mately minimum. The next two steps in Sections 19.4 and 19.6 will approximate G by a
graph G′ that is more amenable to search for such a tour.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

448 DESIGNING APPROXIMATION ALGORITHMS WITH SPANNERS

19.4 The quadtree construction step

A quadtree structure is needed for later steps. Its construction is described below.

Basic idea: A hypercube containing the perturbed and scaled point set P is
expanded and shifted by a random amount. Then, a quadtree is computed using
the shifted hypercube. This step is required to identify a hierarchy of subproblems
for the dynamic programming step. In the patching step in Section 19.6, this
hierarchy will be used to bound the amount of interaction between neighboring
hypercubes in the quadtree. A random shift allows us to bound the expected
increase in weight when the spanner G is patched.

Recall that P ⊆ [0, L]d . We pick integers a1, a2, . . . , ad in [1, L], and define a :=
(a1, a2, . . . , ad). For each i with 1 ≤ i ≤ d, we extend the unit grid on the hypercube
[0, L]d along dimension i, by adding

1. ai grid planes before the first grid plane, and

2. L − ai grid planes after the last grid plane.

Then we translate the enlarged hypercube by the vector (1/2, 1/2, . . . , 1/2). We denote
the resulting hypercube by C(a). Thus,

C(a) =
d∏

i=1

[−ai + 1/2, 2L − ai + 1/2].

This hypercube has sides of length 2L, and each point of P is at the center of a unit
hypercube.

We define the dissection of C(a) to be the following recursive partition into smaller hy-
percubes. The root of the dissection stores C(a). Consider any node u storing a hypercube
C ′. We partition C ′ into 2d hypercubes of equal size. Then, node u gets 2d children, one
child for each of these smaller hypercubes. If u stores a hypercube with sides of length
one, then the process stops (for u), and u is a leaf in the dissection. Thus, this dissection
process defines a dissection tree of height 1 + log L = O(log(n/ε)), which consists of

1+log L∑
i=0

(2L/2i)d = O(Ld) = O((n/ε)d)

nodes. Observe that each nonleaf node in the dissection tree has 2d − 1 siblings and shares
a ((d − 1)-dimensional) hyperplanar boundary with at most d of them.

A hyperplane is called a grid hyperplane with respect to C(a), if it is orthogonal to
one of the coordinate axes and has an integer distance from a face of C(a) along this axis.
Thus, any grid hyperplane is of the form xi = j + 1/2, for some integers i and j with
1 ≤ i ≤ d.

For any graph G′ with vertex set P , and for any grid hyperplane h, we define I (G′, h) to
be the number of edges of G′ that cross h. (Since no point of P is on any grid hyperplane,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

19.4 THE QUADTREE CONSTRUCTION STEP 449

the notion of an edge crossing h is well-defined.) Furthermore, we define

I (G′) :=
∑

h:grid hyperplane

I (G′, h).

The following lemma relates the value of I (G′) to the weight of the graph G′.

Lemma 19.4.1. Let G′ be a graph with vertex set P . Then,

I (G′) ≤
√

d · wt(G′).

proof Let x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) be two distinct points of P ,
and assume that {x, y} is an edge of G′. The straight-line edge {x, y} crosses the same
grid hyperplanes as any shortest Manhattan path between x and y. Recall that x and y

are not contained in any grid hyperplane. Also, for each i with 1 ≤ i ≤ d, |xi − yi | is a
nonnegative integer. It follows that the contribution of the edge {x, y} to the summation
I (G′) is equal to

∑d
i=1 |xi − yi |, which is less than or equal to

√
d|xy|.

Lemma 19.4.2. For the spanner G of Lemma 19.3.2, we have

I (G) = O
(
n/ε2d+1

)
.

proof The claim follows from Lemma 19.4.1 and the bound in (19.4).

Let h be a grid hyperplane. We define the level of h to be the smallest integer i, such
that the dissection of C(a) contains a hypercube with sides of length 2L/2i , one of whose
faces is contained in h. If such an i does not exist (i.e., if h does not intersect the hypercube
C(a)), then we define the level of h to be ∞. Thus, if the level of h is finite, then it is an
integer in {0, 1, . . . , 1 + log L}.

In Section 19.6, the shift vector a will be chosen randomly in {1, 2, . . . , L}d . As a
result, the level of a grid hyperplane will be a random variable. The following lemma
gives the probability distribution of this random variable.

Lemma 19.4.3. Let h be a grid hyperplane, and let i be an integer with 0 ≤ i ≤
1 + log L. Assume that the values of a1, a2, . . . , ad that define the shift vector a are
chosen independently and uniformly at random from the set {1, 2, . . . , L}. Then, the
probability that the level of h is equal to i is at most 2i−1/L.

proof We may assume without loss of generality that h is given by the equation
x1 = j + 1/2, for some integer j . Assume that the level of h is equal to i. Then the
dissection tree contains a hypercube with sides of length 2L/2i = L/2i−1, and h contains
one of the two faces of this hypercube that are extreme along the first coordinate axes.
This is possible only if a1 is a multiple of L/2i−1, i.e., a1 ∈ {k · L/2i−1 : 1 ≤ k ≤ 2i−1}.
The lemma follows from the fact that a1 is randomly chosen in {1, 2, . . . , L}.

Until now, we have proved several properties about the dissection tree. We emphasize
that we do not compute this tree, because it contains O((n/ε)d) nodes. For our application,
it suffices to compute a subtree of the dissection tree, which we call the quadtree QT(P, a)
of P with respect to the shift vector a. This quadtree consists of all nodes u in the dissection
tree, such that at least one of the 2d hypercubes stored at u and its siblings contains at
least one point of P .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

450 DESIGNING APPROXIMATION ALGORITHMS WITH SPANNERS

Given the point set P and the shift vector a, the quadtree QT(P, a) can be constructed
recursively, where the recursion terminates at a node u as soon as the hypercube stored
at u contains at most one point of P . Thus, this tree has height O(log L) = O(log(n/ε)),
at most 2dn = O(n) leaves, O(n log(n/ε)) nodes, and can be constructed in a top-
down manner in O(n log(n/ε)) time. The proof of this claim is left as an exercise; see
Exercise 19.1.

Lemma 19.4.4. For any shift vector a, the quadtree QT(P, a) has the following pro-
perties:

1. It has height O(log(n/ε)).

2. It has O(n log(n/ε)) nodes.

3. It can be constructed in O(n log(n/ε)) time.

19.5 A digression: Constructing a light graph of low weight

In the patching step that will be presented in Section 19.6, we need a special type of graph
that connects a given set of points that is contained in some face of a hypercube in the
quadtree QT(P, a). In this section, we will specify the requirements for this graph, and we
give an efficient algorithm that computes such a graph. Observe that a face of a hypercube
in QT(P, a) is a hypercube in Rd−1. For ease of notation, we will present our algorithm
for a hypercube in Rd . In other words, in Section 19.6, we will apply the algorithm with
d replaced by d − 1.

If C is a hypercube in Rd with sides of length 	, where 	 > 1, then we define the
reduced hypercube of C to be the hypercube C0 obtained by shrinking C by an addi-
tive factor of 1/2. Thus, if C = ∏d

i=1[ai, ai +], then the reduced hypercube of C is∏d
i=1[ai + 1/2, ai + 	 − 1/2]. We define the graph of C0 to be the graph whose vertex

set consists of the 2d corners of C0 and whose edge set consists of the d2d−1 edges
of C0.

Let 	 be a positive integer that is a power of 2, and let C be a hypercube in Rd with
sides of length 	. Recall that a grid hyperplane with respect to C is a hyperplane that is
orthogonal to one of the coordinate axes and that has an integer distance from a face of C

along this axis. Let V be a set of m points in C, and assume that no point of V is contained
in any grid hyperplane. We say that a spanning graph H of V is light with respect to C if
it satisfies the following properties:

1. H is completely contained in the hypercube C.

2. The vertex set of H contains V .

3. No vertex of H is contained in any grid hyperplane.

4. For every hypercube C ′ in the dissection of C, with C ′ �= C, and for every face f of C ′,
there is at most one edge in H that crosses f ; if such an edge exists, then it is contained
in an edge of the graph of the reduced hypercube of the parent of C ′.

Our goal is to compute a light spanning graph H , whose weight is “small.” Observe
that an exact or approximate minimum spanning tree of V has weight O(· m1−1/d); see
Exercise 6.3. However, this graph may not satisfy the fourth requirement. The following
algorithm computes a graph that does satisfy all four requirements and whose weight is
O(· m1−1/d).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

19.5 A DIGRESSION: CONSTRUCTING A LIGHT GRAPH OF LOW WEIGHT 451

Algorithm LightGraph(V, C, 	, d)

Comment: This algorithm takes as input a hypercube C in R
d with sides of length 	

(which is a power of 2), and a set V of m points in C, such that no point of V is contained
in any grid hyperplane. The algorithm returns a spanning graph H of V , which is light with
respect to C, and whose weight is O(· m1−1/d).

if d = 1
then H := path consisting of the points of V in sorted order along

the interval C
else if 	 = 1

then c := center of C;
H := 2-approximate minimum spanning tree of V ∪ {c}

else H := graph of the reduced hypercube of C;
partition C into hypercubes C1, C2, . . . , C2d of equal size;
for j := 1 to 2d

do Vj := V ∩ Cj ;
if Vj �= ∅
then Hj := LightGraph(Vj , Cj , 	/2, d);

H := H ∪ Hj

endif
endfor

endif
endif;
modify H such that no two edges overlap;
return H

The second last line in this algorithm needs some explanation. Before this line is
executed, the graph H may contain edges {a, b} and {a′, b′}, such that the line segment
ab is contained in the line segment a′b′. In the second last line, these two edges are
replaced by the three pairwise nonoverlapping edges {a′, a}, {a, b}, and {b, b′}. (If a = a′

or b = b′, then the two edges are replaced by two nonoverlapping edges.)
In Figure 19.1, an example is given for a set V of nine points in a two-dimensional

hypercube C (i.e., a square) with sides of length 	 = 16. The grid hyperplanes (which are
lines) are indicated by dashed lines, whereas the graph H , which is returned by algorithm
LightGraph(V, C, 	, 2), is indicated by solid lines. The points of V that are in a unit
square of the dissection of C, together with the center of this unit square, are connected
by an approximate minimum spanning tree.

The algorithm as presented above uses the graph of the reduced hypercube of C. We
remark that it is in fact sufficient for our purposes to use a spanning tree of this graph.

The following lemma proves the correctness of algorithm LightGraph.

Lemma 19.5.1. Let H be the graph that is returned by algorithm LightGraph(V, C,

	, d). Then, the following properties hold:

1. H is a spanning graph of V , which is light with respect to C.

2. If d = 1, then wt(H) ≤ 	.

3. If d ≥ 2, then wt(H) = O(· m1−1/d).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

452 DESIGNING APPROXIMATION ALGORITHMS WITH SPANNERS

×

××

××

××

×

××

×
× ×

××
×

×
×

×

× ×

×

×

×

××
× ×

•

• •
••

•

•
•

•

Figure 19.1: Illustrating algorithm LightGraph(V,C, 	, d), where V is the set of nine points indicated
by •, C is a square in R

2, 	 = 16, and d = 2. The grid hyperplanes are indicated by the dashed lines.
The graph H , which is returned by the algorithm, is indicated by the solid lines. The vertices of the graphs
of the reduced hypercubes are indicated by ×.

proof The first claim is left as an exercise; see Exercise 19.2. If d = 1, then the weight
of H is less than the length 	 of the interval C, proving the second claim. To prove the
third claim, assume that d ≥ 2. If 	 = 1, then, by Exercise 6.3,

wt(H) = O
(
(m + 1)1−1/d

) = O
(
	 · m1−1/d

)
.

In the rest of this proof, we assume that 	 ≥ 2. We say that a call to algorithm LightGraph
is at level i, if the hypercube in this call has sides of length 	/2i . Consider one call
to algorithm LightGraph at level i, where 0 ≤ i < log 	. In this call, the graph of a
reduced hypercube is added to H ; this graph has weight O(/2i). Since the number of
calls at level i is at most 2id , the total amount of weight that is added to H at level
i is

O
(
2id · 	/2i

) = O
(
2(d−1)i	

)
.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

19.5 A DIGRESSION: CONSTRUCTING A LIGHT GRAPH OF LOW WEIGHT 453

Thus, if k is the integer such that

2k ≤ m1/d < 2k+1,

then the total amount of weight that is added to H at levels 0, 1, . . . , k is propor-
tional to

k∑
i=0

2(d−1)i	 = 2(d−1)(k+1) − 1

2d−1 − 1
	

≤ 2	 · 2(d−1)k

≤ 2	 · m(d−1)/d

= O
(
	 · m1−1/d

)
. (19.5)

We next estimate the total amount of weight that is added to H at levels k + 1,

k + 2, . . . , log 	 − 1. Consider a point p of V . The total weight of the graphs of the reduced
hypercubes that are constructed in the calls involving p at these levels is proportional to∑

i≥k+1

	/2i = O
(
	/2k+1

) = O
(
	/m1/d

)
.

Thus, since |V | = m, the total amount of weight that is added to H at levels k + 1,

k + 2, . . . , log 	 − 1 is

O
(
	 · m1−1/d

)
. (19.6)

Finally, we estimate the total weight that is added to H at level log L. Let h be the
number of unit hypercubes in the dissection of C that contain at least one point of V . For
each j with 1 ≤ j ≤ h, let mj be the number of points of V that are contained in the j -th
nonempty unit hypercube. Observe that

∑h
j=1 mj = m. By Exercise 6.3, the total weight

that is added to H at level log L is

O

 h∑
j=1

(mj + 1)1−1/d

 = O

 h∑
j=1

m
1−1/d

j

 . (19.7)

Let the function f be defined by f (x) := −x1−1/d for x > 0. Since f ′′(x) > 0 for all
x > 0, the function f is convex. Therefore,

f

 h∑
j=1

mj/h

 ≤
h∑

j=1

f (mj)/h,

which rewrites to

h∑
j=1

m
1−1/d

j ≤ h

 h∑
j=1

mj/h

1−1/d

= h(m/h)1−1/d = h1/dm1−1/d .

Since the dissection of C consists of 	d unit hypercubes, we have h ≤ 	d . Therefore, we
have

h∑
j=1

m
1−1/d

j ≤ 	 · m1−1/d . (19.8)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

454 DESIGNING APPROXIMATION ALGORITHMS WITH SPANNERS

By combining (19.5)–(19.8), it follows that the weight of the graph H is
O(· m1−1/d).

We next analyze the running time of algorithm LightGraph.

Lemma 19.5.2. The running time of algorithm LightGraph(V, C, 	, d) is

O(m log m + m log).

proof If d = 1, then the claim obviously holds. Assume that d ≥ 2. We have seen in
Lemma 10.3.11 that a 2-approximate minimum spanning tree of a set of k points in Rd

can be computed in O(k log k) time; in other words, each of these k points “contributes”
O(log k) to this time bound. The lemma follows from the facts that the recursion depth
of algorithm LightGraph(V, C, 	, d) is O(log), and each point of V “contributes”
O(log m + log) to the total running time.

19.6 The patching step

Recall that G denotes the (1 + ε)-spanner for P as given by Lemma 19.3.2. In order to
make the dynamic programming step efficient, we need to limit the amount of “interaction”
between sibling hypercubes of the quadtree QT(P, a). This will be done by modifying the
spanner G, such that the edges of the modified graph cross hypercube boundaries at only
a small number of positions.

Basic idea: The amount of “interaction” between sibling hypercubes of the
quadtree QT(P, a) is reduced by using a series of “patching” steps. These steps
ensure that the number of times the edges cross the boundary between any two
sibling hypercubes is bounded by a small quantity. The result is an “r-light
graph” (which may not be a spanner). If the shift vector a is randomly chosen
then, with probability at least 1/2, this graph contains a tour of P , whose weight
is approximately equal to wt(TSP(P)).

Let G′ be a graph that is contained in the shifted hypercube C(a), and whose vertex
set contains P . Assume that no vertex of G′ is contained in any grid hyperplane. For
a positive integer r , we say that G′ is r-light with respect to the quadtree QT(P, a), if
the following holds: Consider any two sibling hypercubes in QT(P, a) that share a face
f (which is a (d − 1)-dimensional hypercube). Then, G′ contains at most r edges that
cross f .

Thus, the property of being r-light implies that the amount of interaction between
sibling quadtree boxes is bounded by the parameter r . It will become clear later how this
property is used in the dynamic programming step.

In the rest of this section, we show how the spanner G can be transformed into an
r-light graph G′. As we will see, the additive increase in weight of the graph G′ (as
compared to the weight of G) is proportional to the weight of G divided by r . Thus, by
choosing the parameter r sufficiently large, the weight of G′ is only slightly larger than
that of G. This, combined with the fact that the weight of G is proportional to the weight
of a minimum spanning tree of P , will imply that G′ contains a “short” tour of P .

The algorithm that transforms the spanner G into an r-light graph G′ is de-
noted by Patch(G, r) and will be presented later. The heart of this algorithm is the
BoundaryPatch procedure, which patches the spanner with respect to a face f of a

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

19.6 THE PATCHING STEP 455

f

•

•

•

•

• •

•

f

f + f −

•

• •

•

•

•z+
• z−

•

• • • •

• •
•

Figure 19.2: Illustration of algorithm BoundaryPatch for d = 2.

hypercube in the dissection of C(a). Observe that f is a (d − 1)-dimensional hypercube
that is contained in a grid hyperplane. Also, the intersection between the dissection of
C(a) and the face f is a (d − 1)-dimensional dissection. Because of this, we can use al-
gorithm LightGraph of Section 19.5. Algorithm BoundaryPatch is described below.
The situation is illustrated for d = 2 in Figure 19.2.

Algorithm BoundaryPatch(G′, f, V)

Comment: This algorithm takes as input a graph G′ that is contained in the shifted
hypercube C(a), whose vertex set contains P , such that no vertex is contained in any
grid hyperplane. The input parameter f is the face of some hypercube in the dissection
of C(a), whereas V is the set of all intersection points between f and the edges of G′.
The algorithm returns a graph that contains at most one edge that crosses f .

If V = ∅, then return the graph G′ and terminate. Assume that V �= ∅. Run algorithm
LightGraph(V, f, 	, d − 1) of Section 19.5, where 	 is the side length of f , and let Hf

be the graph that is returned by this algorithm.
Draw two “shadow” faces f + and f − parallel to f , one on either side of f and

infinitesimally away from f . Let H+
f and H−

f be copies of Hf translated to the faces f +

and f −, respectively. Finally, let z be an arbitrary element of V , and let z+ and z− be the
corresponding points in f + and f −, respectively.

Modify the graph G′ as follows. First, add the graphs H+
f and H−

f , and add a patching

bridge {z+, z−}. Next, for each edge {x, y} of G′ that crosses f , do the following: Let

x+ be the intersection between {x, y} and f +, and let x− be the intersection between

{x, y} and f −. Replace the edge {x, y} by the two edges {x, x+} and {x−, y}. Return the

resulting graph.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

456 DESIGNING APPROXIMATION ALGORITHMS WITH SPANNERS

Observe that the patching bridge is the only edge that crosses the face f after algorithm
BoundaryPatch(G′, f, V) is applied. The following lemma bounds the weight of the
output of algorithm BoundaryPatch(G′, f, V) in terms of the weight of the input graph
G′. Recall that I (G′, f) denotes the number of edges of G′ that cross f .

Lemma 19.6.1. Let G′′ be the output of algorithm BoundaryPatch(G′, f, V), and let
	 be the side length of f .

1. If d = 2, then wt(G′′) ≤ wt(G′) + 2	.

2. If d > 2, then wt(G′′) = wt(G′) + O(· (I (G′, f))1−1/(d−1)).

proof First observe that |V | = I (G′, f). If V = ∅, then G′′ = G′, and the claim
obviously holds. Assume that V �= ∅. It follows from the algorithm that

wt(G′′) = wt(G′) + 2 · wt(Hf),

where Hf is the graph returned by algorithm LightGraph(V, f, 	, d − 1). In this case,
the claim follows from Lemma 19.5.1.

The following lemma states the running time of algorithm BoundaryPatch(G′, f, V).
Recall that this algorithm gets the set V of intersections between f and the edges of G′

as part of its input.

Lemma 19.6.2. The running time of algorithm BoundaryPatch(G′, f, V) is

O
(
I (G′, f)

(
log I (G′, f) + log(n/ε)

))
.

proof Let 	 be the side length of f . It follows from Lemma 19.5.2 that the running
time of algorithm BoundaryPatch(G′, f, V) is

O(|V | log |V | + |V | log) .

Since |V | = I (G′, f) and 	 ≤ 2L = O(n/ε), the lemma follows.

In the rest of this section, we will use the following terminology. A hypercube will
always be a d-dimensional hypercube in the dissection of C(a). A face will always be a
face of some hypercube. Thus, a face is a (d − 1)-dimensional hypercube.

Algorithm Patch is given below. It starts with the spanner G for P as given by
Lemma 19.3.2, and calls algorithm BoundaryPatch for every face f , such that (i) f is
contained in some face of some hypercube in the quadtree QT(P, a), and (ii) f is crossed
by more than r edges of the current graph. The algorithm considers these faces in order
of their side lengths from the smallest to the largest possible side length.

Recall that the level of a grid hyperplane h is the smallest integer j , such that the
dissection of C(a) contains a hypercube with sides of length 2L/2j , one of whose faces
is contained in h.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

19.6 THE PATCHING STEP 457

Algorithm Patch(G, r)

Comment: This algorithm takes as input the (1 + ε)-spanner G for the set P , and a
positive integer r . It returns a graph G′ that is (r + d − 1)-light with respect to the quadtree
QT (P, a).

G′ := G

for j := 1 + log L down to 0
do for each grid hyperplane h whose level is at most j

do partition h ∩ C(a) into 2j (d−1) faces, each having sides of
length 2L/2j ;
for each face f in this partition that is contained in some

face of some hypercube that is stored in QT (P, a)
do V := set of intersections between f and the edges of G′;

if |V | > r

then G′ := BoundaryPatch(G′, f, V)
endif

endfor
endfor

endfor;
modify G′ such that no two edges overlap;
return G′

Observe that algorithm BoundaryPatch(G′, f, V) is called on the current graph G′.
Having eliminated all crossings between f and the edges of G′, this algorithm adds a
patching bridge. This patching bridge crosses f and is an edge of the new graph G′.
Therefore, the crossing due to the patching bridge may be eliminated in later calls to
algorithm BoundaryPatch.

Lemma 19.6.3. Let f be a face and assume that BoundaryPatch(G′, f, V) is called
during algorithm Patch(G, r). At the moment when BoundaryPatch(G′, f, V) is
called, we have I (G′, f) ≤ I (G, f).

proof Let h be the grid hyperplane that contains f , and let j be the integer,
such that f has sides of length 2L/2j . Assume that, at the moment when algorithm
BoundaryPatch(G′, f, V) is called, we have I (G′, f) > I (G, f). Then, before this
call, crossings have been introduced on f . Thus, there exists an integer j ′, a grid hy-
perplane h′, and a face f ′ in h′, such that (i) j ′ ≥ j , (ii) h′ is orthogonal to h, (iii)
f ′ properly intersects f ′, and (iv) during iteration j ′ of the outer for-loop, algorithm
BoundaryPatch(G′, f ′, V ′) is called. Observe that f ′ has sides of length 2L/2j ′

. Since
f ′ properly intersects f , it follows from properties of the dissection that 2L/2j ′

> 2L/2j ,
that is, j ′ < j , which contradicts (i).

Consider the graph G′ that is returned by algorithm Patch(G, r). In the next lemma,
we prove that G′ is s-light with respect to the quadtree QT(P, a), where s = r + d − 1.
Recall the definition of G′ being s-light with respect to QT(P, a): For every face f that
is common to two sibling hypercubes in QT(P, a), the graph G′ contains at most s edges
that cross f .

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

458 DESIGNING APPROXIMATION ALGORITHMS WITH SPANNERS

Lemma 19.6.4. For every integer r ≥ 1, the graph G′ that is returned by algorithm
Patch(G, r) is (r + d − 1)-light with respect to QT(P, a).

proof Let f be a face that is common to two sibling hypercubes in QT(P, a), let j be
the integer such that f has sides of length 2L/2j , and let h be the grid hyperplane that
contains f . Then, the level of h is equal to j .

Consider iteration j of the outer for-loop. This is the last iteration in which h is
considered. In iteration j , f is one of the faces that is considered. Thus, immediately after
h has been considered for the last time, the graph G′ contains at most r edges that cross
f . Later during the algorithm, however, new crossings may arise on f . This can happen
only because of grid hyperplanes h′, such that (i) h′ is orthogonal to h, (ii) h′ touches f ,
and (iii) the level of h′ is less than the level of h. There are 2(d − 1) grid hyperplanes h′

for which conditions (i) and (ii) hold, but only d − 1 of these have a level that is less than
the level of h; the level of the other d − 1 grid hyperplanes is equal to the level of h. In
other words, there are d − 1 grid hyperplanes h′ that satisfy all three conditions. Let h′ be
one of these grid hyperplanes, and let j ′ be its level. Thus, j ′ ≤ j − 1.

Let j ′′ be any integer with j ′ ≤ j ′′ ≤ j − 1, and let f ′′ be the face in h′, such that f ′′ has
sides of length 2L/2j ′′

and f ′′ touches f . We may assume without loss of generality that
the shadow face (f ′′)+ of f ′′ intersects f . Consider iteration j ′′ of the outer for-loop, and
assume that algorithm BoundaryPatch(G′, f ′′, V ′′) is called, where V ′′ is the set of all
intersections between f ′′ and the edges of the graph G′ at that moment. In this call, a graph
is constructed that is contained in the shadow face (f ′′)+; thus, some edges of this graph
may cross f . Consider the intersection between (f ′′)+ and the hypercubes in the quadtree
QT(P, a). This intersection is contained in the ((d − 1)-dimensional) dissection of (f ′′)+.
Therefore, it follows from Lemma 19.5.1 that the call BoundaryPatch(G′, f ′′, V ′′)
gives rise to at most one crossing on the face f . In fact, this crossing is the same for each
j ′′ with j ′ ≤ j ′′ ≤ j − 1.

Hence, we have shown that after iteration j of the outer for-loop, at most d − 1 new
crossings appear on the face f . It follows that after algorithm Patch(G, r) has terminated,
the graph G′ contains at most r + d − 1 edges that cross f .

We next consider the running time of algorithm Patch(G, r).

Lemma 19.6.5. For every integer r ≥ 1, algorithm Patch(G, r) takes O((n/ε2d+1)
log(n/ε)) time.

proof Using Lemmas 19.6.2 and 19.6.3, it can be shown that the total running
time of algorithm Patch(G, r) is O(I (G)(log I (G) + log(n/ε))) plus the total amount
of time needed to compute the sets V for all calls to algorithm BoundaryPatch.
Using the quadtree QT(P, a), all these sets V can be computed in O(I (G) log L) =
O(I (G) log(n/ε)) time. Since I (G) = O(n/ε2d+1) (see Lemma 19.4.2), the claim in the
lemma follows.

We now analyze the weight of the graph G′ that is returned by algorithm Patch(G, r).
Lemma 19.6.1 guarantees an upper bound on the increase in the weight of G′ in one
single call to algorithm BoundaryPatch. We would like to show that after all calls to
BoundaryPatch have been completed, the total increase in weight is small. Below, we
show that this is the case for the expected total increase in weight, assuming that the shift
vector a is randomly chosen. It turns out to be convenient to treat the cases when d = 2
and d > 2 separately.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

19.6 THE PATCHING STEP 459

Lemma 19.6.6 (Patching Lemma, d = 2). Assume that the values of a1 and a2 that de-
fine the shift vector a are chosen independently and uniformly at random in {1, 2, . . . , L}.
Let G′ be the output of algorithm Patch(G, r). Then,

E(wt(G′) − wt(G)) ≤ 4
√

2

r
· wt(G).

proof Let h be a grid hyperplane. We analyze the expected contribution to wt(G′) −
wt(G) that is due to h. For any integer j with 0 ≤ j ≤ 1 + log L, we define cj to be the
number of times that algorithm BoundaryPatch is called when h is processed during
iteration j of the outer for-loop. Let i be the level of h. Then, i is a random variable, and
for all j ≥ i, cj does not depend on i. We first claim that

1+log L∑
j=0

cj ≤ I (G,h)/r.

To prove this claim, observe that prior to a call of BoundaryPatch(G′, f, V), the graph
G′ has at least r + 1 edges that cross f . Immediately after this call, G′ contains only one
edge that crosses f . Thus, each call to BoundaryPatch that is due to h reduces the
number of edges that cross h by at least r . The claim then follows from Lemma 19.6.3 and
the fact that at the start of algorithm Patch(G, r), the graph G′ contains I (G, h) edges
that cross h.

The faces f that are considered in iteration j have length 2L/2j . (Since d = 2, these
faces are line segments.) Therefore, by Lemma 19.6.1, the total contribution to wt(G′) −
wt(G) due to h is less than or equal to

1+log L∑
j=i

4L

2j
· cj .

Using Lemma 19.4.3, it follows that the total expected contribution to wt(G′) − wt(G)
due to h is less than or equal to

1+log L∑
i=0

2i−1

L

1+log L∑
j=i

4L

2j
· cj = 2

1+log L∑
j=0

cj

j∑
i=0

2i−j

≤ 4
1+log L∑

j=0

cj

≤ 4

r
· I (G,h).

If we apply this upper bound to all grid hyperplanes h and use the linearity of expec-
tation, then we obtain

E(wt(G′) − wt(G)) ≤
∑

h:grid hyperplane

4

r
· I (G,h) = 4

r
· I (G).

Since, by Lemma 19.4.1, I (G) ≤ √
2 · wt(G), the proof is complete.

Lemma 19.6.7 (Patching Lemma, d > 2). Assume that the values of a1, a2, . . . , ad

that define the shift vector a are chosen independently and uniformly at random in
{1, 2, . . . , L}. Let G′ be the output of algorithm Patch(G, r). Then,

E(wt(G′) − wt(G)) = O

(
1

r1/(d−1)
· wt(G)

)
.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

460 DESIGNING APPROXIMATION ALGORITHMS WITH SPANNERS

proof Let h be a grid hyperplane. As in the proof of Lemma 19.6.6, we analyze
the expected contribution to wt(G′) − wt(G) that is due to h. For any integer j with
0 ≤ j ≤ 1 + log L, let cj be the number of times that algorithm BoundaryPatch is
called when h is processed during iteration j of the outer for-loop. For each k with
1 ≤ k ≤ cj , we define mjk to be the decrease in the number of edges of the graph G′

that cross h during the k-th call to algorithm BoundaryPatch in iteration j of the outer
for-loop.

In one execution of algorithm BoundaryPatch, at least r + 1 crossings are replaced
by one crossing. Therefore, we have mjk ≥ r . Also,

1+log L∑
j=0

cj∑
k=1

mjk ≤ I (G,h).

Let i be the level of h. The faces f that are considered in iteration j have length 2L/2j .
Therefore, by Lemma 19.6.1, the total contribution to wt(G′) − wt(G) due to h is

O

1+log L∑
j=i

cj∑
k=1

L

2j

(
mjk + 1

)1−1/(d−1)

 .

Using Lemma 19.4.3, it follows that the total expected contribution to wt(G′) − wt(G)
due to h is

O

1+log L∑
i=0

2i−1

L

1+log L∑
j=i

cj∑
k=1

L

2j

(
mjk + 1

)1−1/(d−1)

= O

1+log L∑
j=0

cj∑
k=1

(
mjk + 1

)1−1/(d−1)
j∑

i=0

2i−j

= O

1+log L∑
j=0

cj∑
k=1

(
mjk + 1

)1−1/(d−1)

= O

1+log L∑
j=0

cj∑
k=1

(
mjk + 1

) 1

(mjk + 1)1/(d−1)

 .

Since mjk ≥ r , the latter quantity is

O

 1

r1/(d−1)

1+log L∑
j=0

cj∑
k=1

(
mjk + 1

) .

Again using the fact that mjk ≥ r , we have

mjk + 1 ≤ mjk + mjk/r ≤ 2mjk.

Therefore, the total expected contribution to wt(G′) − wt(G) due to h is

O

 1

r1/(d−1)

1+log L∑
j=0

cj∑
k=1

mjk

 = O

(
1

r1/(d−1)
· I (G,h)

)
.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

19.6 THE PATCHING STEP 461

By applying this upper bound to all grid hyperplanes h, and using the linearity of expec-
tation, it follows that

E(wt(G′) − wt(G)) = O

 ∑
h:grid hyperplane

1

r1/(d−1)
· I (G,h)

= O

(
1

r1/(d−1)
· I (G)

)
.

Since, by Lemma 19.4.1, I (G) ≤ √
d · wt(G), the proof is complete.

It is interesting to note that although, by Lemma 19.6.1, the increase in weight due to a
single application of algorithm BoundaryPatch is proportional to the side length of the
face with respect to which the algorithm is applied, the Patching Lemma (Lemmas 19.6.6
and 19.6.7) shows that the overall expected increase in weight is independent of the total
side lengths of the faces of the grid hyperplane.

Consider again the graph G′ that is computed by algorithm Patch(G, r). Observe that
the vertex set of G′ contains P . We define a tour of P in G′ to be a (possibly nonsimple)
cycle in G′ that visits each point of P at least once.

We now use the Patching Lemma to obtain an efficient randomized algorithm that com-
putes a shift vector a for which the graph G′ that is computed by algorithm Patch(G, r)
contains a tour of P , whose weight is apprioximately equal to wt(TSP(P)).

Algorithm GoodShiftVector(P, r)

Comment: This algorithm takes as input the set P that was defined in Section 19.2, and
an integer r ≥ d. It returns a shift vector a, the corresponding quadtree QT (P, a), and
the graph G′ that is computed by algorithm Patch(G, r).

Step 1: Compute the (1 + ε)-spanner G of Lemma 19.3.2.

Step 2: Choose a1, a2, . . . , ad independently and uniformly at random in {1, 2, . . . , L},
construct the quadtree QT (P, a), where a = (a1, a2, . . . , ad), and run algorithm
Patch(G, r − d + 1). Let G′ be the output of this patching algorithm.

Step 3: Compute the weights of G and G′. If

wt(G′) − wt(G) ≤ 2 · α

r1/(d−1)
· wt(G),

where α is the constant in the Big-Oh bound in the Patching Lemma (Lemmas 19.6.6
and 19.6.7), then return a, QT (P, a), and G′. Otherwise, go back to Step 2.

The following lemma states the main properties of the output of algorithm
GoodShiftVector. The third claim in this lemma states that the graph G′ that is returned
by this algorithm contains a tour C ′ of P , whose length is at most (1 + δ) · wt(TSP(P)),
for some real number δ > 0, provided that r is chosen such that ε2dr1/(d−1) � 1.

Lemma 19.6.8. Consider the set P that was defined in Section 19.2, and let r be an integer
with r ≥ d. In O((n/ε4d−1) log n) expected time, algorithm GoodShiftVector(P, r)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

462 DESIGNING APPROXIMATION ALGORITHMS WITH SPANNERS

computes a shift vector a, the corresponding quadtree QT(P, a), and a graph G′, such
that the following properties hold:

1. P is contained in the vertex set of G′.
2. G′ is r-light with respect to QT(P, a).

3. There exists a tour C ′ of P in G′ that has the following properties:

(a) C ′ traverses each edge of G′ at most once in each direction.

(b) The weight of C ′ is at most(
1 + ε + O

(
1

ε2dr1/(d−1)

))
· wt(TSP(P)).

proof Recall Markov’s inequality, which states that, with probability at least 1/2, the
value of a nonnegative random variable X is at most twice the expected value of X. As
a result, the expected number of times that Steps 2 and 3 are carried out is at most 2.
The claim on the expected running time in the lemma thus follows from Lemmas 19.3.2,
19.4.4, and 19.6.5. The first two claims in the lemma follow from Lemma 19.6.4.

It remains to prove the third claim. Consider the (1 + ε)-spanner G for P . Let C

be a tour of P in G, whose weight is minimum. The graph G′ is obtained by running
algorithm Patch(G, r − d + 1). This algorithm transforms C into a tour C ′ of P in
G′: Initially, C ′ is equal to C. Consider the current tour C ′ and assume that algorithm
BoundaryPatch(G′, f, V) is called for some face f . Let {x, y} be an edge of C ′ that
crosses f . Using the notation of algorithm BoundaryPatch, we obtain a new tour of
P , by replacing {x, y} by the concatenation of (i) the edge {x, x+}, (ii) the path in T +

f

between x+ and z+, (iii) the patching bridge {z+, z−}, (iv) the path in T −
f between z− and

x−, and (v) the edge {x−, y}.
Consider the tour C ′ of P that is obtained after all calls to BoundaryPatch have been

completed. Assume that there is an edge {x, y} of G′, such that C ′ traverses this edge twice
in the direction from x to y. Then, we can write C ′ as R1, x, y, R2, x, y, R3, where R1, R2,
and R3 are (possibly nonsimple) paths in G′. Consider the tour that is the concatenation of
R1, the reverse of R2, and R3. This tour still visits all points of P . By repeatedly applying
these short-cutting steps, we obtain a tour C ′ of P in G′, which traverses each edge of
G′ at most once in each direction. Observe that this tour C ′ is basically the union of C

and a collection of paths in the graphs in shadow faces that are added during algorithm
Patch(G, r − d + 1). Since each edge in any of these graphs is traversed at most twice,
it follows that

wt(C ′) ≤ wt(C) + 2
(
wt(G′) − wt(G)

)
and, therefore, by the condition in Step 3 of algorithm GoodShiftVector,

wt(C ′) ≤ wt(C) + O

(
1

r1/(d−1)
· wt(G)

)
.

By Lemma 19.3.1, we have wt(C) ≤ (1 + ε) · wt(TSP(P)), whereas by Lemma 19.3.2
and Exercise 1.6, wt(G) = O(1/ε2d) · wt(TSP(P)). It follows that

wt(C ′) ≤ (1 + ε) · wt(TSP(P)) + O

(
1

ε2dr1/(d−1)
· wt(TSP(P))

)
,

completing the proof of the third claim.

Consider the output a, QT(P, a), and G′ of algorithm GoodShiftVector(P, r).
Lemma 19.6.8 implies that we can use dynamic programming to compute a

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

19.6 THE PATCHING STEP 463

minimum-weight tour of P in the r-light graph G′. The following Structure Theorem
allows us to simplify the dynamic programming algorithm.

For every face f that is common to two sibling hypercubes in QT(P, a), we define the
portals of f to be the intersections between f and the edges of G′. Observe that each
such face contains at most r portals. Let P ′ be the union of P and the set of all portals. We
define a tour of P in P ′ to be a (possibly nonsimple) cycle C whose vertex set is contained
in P ′ and that visits each point of P exactly once. The Structure Theorem states that we
can ignore the graph G′, and compute a minimum-weight tour of P in P ′ that visits each
portal at most twice. This tour crosses any face that is common to two sibling hypercubes
only at portals, and its weight is approximately equal to wt(TSP(P)), provided that the
value of r is sufficiently large.

Theorem 19.6.9 (Structure Theorem). Consider the set P that was defined in Sec-
tion 19.2, and let r be an integer with r ≥ d. In O((n/ε4d−1) log n) expected time, we can
compute a shift vector a, the corresponding quadtree QT(P, a), and a set P ′ of points,
such that the following properties hold:

1. P ⊆ P ′.
2. Each point of P ′ \ P is contained in a face that is common to some pair of sibling

hypercubes in QT(P, a).

3. For every face f that is common to two sibling hypercubes in QT(P, a), P ′ contains at
most r points that are in f .

4. There exists a tour C of P in P ′ that has the following properties:

(a) C visits each point of P ′ \ P at most twice.

(b) C is (2r)-light with respect to QT(P, a). That is, for every face f that is common
to two sibling hypercubes in QT(P, a), every crossing of C with f is at a vertex of
P ′ \ P .

(c) The weight of C is at most(
1 + ε + O

(
1

ε2dr1/(d−1)

))
· wt(TSP(P)).

proof Consider the shift vector a, the corresponding quadtree QT(P, a), and the graph
G′, as given by Lemma 19.6.8. We define P ′ to be the union of P and the set of all
crossings between edges of G′ and faces that are common to two sibling hypercubes in
QT(P, a).

The first and second claims in the theorem obviously hold. The third claim follows
from the fact that the graph G′ is r-light with respect to QT(P, a). To prove the fourth
claim, consider the tour C ′ of P in G′, as given in Lemma 19.6.8. Observe that each point
of P ′ \ P is in the interior of some edge of G′. Since G′ is r-light with respect to QT(P, a),
and since C ′ traverses each edge of G′ at most once in each direction, it follows that C ′

is (2r)-light with respect to QT(P, a), and C ′ visits each point of P ′ \ P at most twice.
Consider a portion of C ′ whose endpoints are on the boundary of some hypercube that is
stored in QT(P, a), and that is completely contained in this hypercube. Let x and y be the
endpoints of this portion. Observe that x and y are elements of P ′ \ P . By shortcutting,
we replace this portion (which is a path in G′) by a path that visits only points of P ′. This
new path is still contained in the same hypercube. Having done this for all hypercubes in
QT(P, a), we have obtained a tour C of P in P ′ that satisfies the requirements in the fourth
claim in the theorem. (We may have to perform more shortcutting steps to guarantee that
each point of P is traversed exactly once.)

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

464 DESIGNING APPROXIMATION ALGORITHMS WITH SPANNERS

In the next section, we will show how dynamic programming can be used to compute
a minimum-weight tour of P in P ′ that satisfies conditions 4.(a)–(c) in the Structure
Theorem. The next lemma states that such a tour leads to a tour of the original point set
S, whose weight is approximately equal to wt(TSP(S)), assuming that the parameter r is
chosen sufficiently large.

Lemma 19.6.10. Let C be a minimum-weight tour of P in P ′ that satisfies conditions
4.(a)–(c) in the Structure Theorem. In O(rn log(n/ε)) time, we can convert C to a tour T

of the original point set S, such that

wt(T) ≤
(

(1 + ε)

(
1 + ε + O

(
1

ε2dr1/(d−1)

))
+ ε

)
· wt(TSP(S)).

proof Recall from Section 19.2 that the set P is a scaled copy of the set S ′, where S ′

is obtained by moving each point of S to the nearest grid point in the uniform grid with
sides of length B/L. We convert C to a tour T of S through the following sequence of
steps:

1. By shortcutting, convert C to a tour C ′ of P . Thus, C ′ visits each point of P exactly once
and returns to the starting point.

2. By scaling, convert C ′ to a tour C ′′ of S ′.
3. By applying a transformation similar to the one in the proof of Lemma 19.2.2, convert C ′′

to a tour T of S.

It follows from Lemma 19.4.4 and the Structure Theorem (Theorem 19.6.9) that the
number of edges of C is O(rn log(n/ε)). This implies that the entire conversion from C

to T can be done in O(rn log(n/ε)) time.
To estimate the weight of the tour T , we make the following observations: By the

Structure Theorem, we have

wt(C) ≤
(

1 + ε + O

(
1

ε2dr1/(d−1)

))
· wt(TSP(P)).

By scaling and Lemma 19.2.2, we have

wt(TSP(P)) = L

B
· wt(TSP(S ′)) ≤ (1 + ε)L

B
· wt(TSP(S)).

By scaling and the triangle inequality, we have

wt(C ′′) = B

L
· wt(C ′) ≤ B

L
· wt(C).

Finally, an argument that is similar to the one in the proof of Lemma 19.2.2 shows that

wt(T) ≤ wt(C ′′) + ε · wt(TSP(S)).

By combining these bounds, it follows that the weight of T is bounded from above by the
quantity that is stated in the lemma.

19.7 The dynamic programming step

Let r be an integer with r ≥ d. We assume that we have already computed a shift vector a,
the corresponding quadtree QT(P, a), and the set P ′, as given by the Structure Theorem
(Theorem 19.6.9). Recall that each point of P ′ \ P is called a portal, and that it is in a

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

19.7 THE DYNAMIC PROGRAMMING STEP 465

face that is common to some pair of sibling hypercubes in QT(P, a). Moreover, each such
face contains at most r portals.

In this section, we give an algorithm that computes a minimum-weight tour of P in P ′

that satisfies conditions 4.(a)–(c) in the Structure Theorem. The strategy is to find portions
of this tour in each of the hypercubes in QT(P, a), and then “stitch” them together.

Basic idea: Dynamic programming is applied to solve a hierarchy of subprob-
lems that are generated from the quadtree. Three things need to be specified for
this step to work: The subproblems to be solved, a procedure for solving the
“basis” subproblems (for leaves of the quadtree), and a procedure for combining
optimal solutions to subproblems to optimally solve larger subproblems. The ba-
sis subproblems can be solved efficiently, because they involve only O(r) portals
and at most one point of P . Combining subproblems can be done efficiently: The
interactions between subproblems is bounded, because we want an optimal tour
that is (2r)-light with respect to the quadtree.

Consider a minimum-weight tour C of P in P ′ that satisfies conditions 4.(a)–(c) in the
Structure Theorem, and let H be any hypercube in the quadtree QT(P, a). The part of C

that is inside H consists of a collection of paths, such that (i) each endpoint of each path
is a portal on the boundary of H , (ii) each point of P ∩ H is on exactly one of these paths,
and (iii) each portal on the boundary of H occurs at most twice as an endpoint of these
paths. (The endpoints of one path may be the same.) Let A denote the set of all portals on
the faces of H , and let m be the size of A. Then, m ≤ 2dr , and the subproblems for the
hypercube H are specified by the following inputs:

1. An integer k with 1 ≤ k ≤ m.

2. A sequence b1, b
′
1, b2, b

′
2, . . . , bk, b

′
k of points in A, such that each element of A appears

at most twice in this sequence.

The solution to this subproblem consists of a collection of k paths, such that

1. for each i with 1 ≤ i ≤ k, the i-th path is between bi and b′
i ,

2. each point of P ∩ H is on exactly one of these paths, and

3. the total weight of these paths is minimum.

Observe that the optimal tour C of P in P ′ “contains” the solution to one of these
subproblems for H .

We first estimate the number of subproblems that are generated by H . For any k with
1 ≤ k ≤ m, there are

(2m

2k

)
ways to choose 2k elements in A, such that each element of

A is chosen at most twice. Given 2k such elements, there are (2k)! ways to label them
b1, b

′
1, b2, b

′
2, . . . , bk, b

′
k . Since bi and b′

i can be considered to be an unordered pair, it
follows that the number of subproblems due to H is

m∑
k=1

(
2m

2k

)
(2k)!

2k
≤ (2m)!

m∑
k=1

1

(2m − 2k)!
≤ e(2m)! ≤ e(4dr)4dr = rO(r).

The dynamic programming algorithm traverses the quadtree in postorder. Assume that
the current node visited is a leaf storing the hypercube H . Then, each subproblem for H

is solved in the following way: If H does not contain any point of P , then the solution

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

466 DESIGNING APPROXIMATION ALGORITHMS WITH SPANNERS

is
∑k

i=1 |bib
′
i |. Otherwise, H contains exactly one point, say p, of P . In this case, the

solution is

min
1≤j≤k

|bjp| + |pb′
j | +

∑
i �=j

|bib
′
i |
 .

Now assume that the current node visited in the postorder traversal is not a leaf. Let
H be the hypercube stored in the current node, and consider any of its subproblems.
The solution to this subproblem is computed by taking the best solution that is obtained
by combining solutions to compatible subproblems for the 2d children hypercubes of
H . Here, we say that subproblems for two hypercubes are compatible if their common
portals, if any, are paired in the two subproblems in a consistent manner.

The last node visited in the postorder traversal is the root of the quadtree. The hypercube
H stored at the root generates only one problem, because there are no portals on the faces
of H . Thus, by combining the solutions to all compatible subproblems of the 2d children
hypercubes of H , we obtain a minimum-weight tour of P in P ′ that satisfies conditions
4.(a)–(c) in the Structure Theorem. In this way, we obtain only the weight of this tour. It
is, however, easy to extend the algorithm, such that the actual tour is obtained as well.

We estimate the running time of the dynamic programming algorithm. By
Lemma 19.4.4, the quadtree has O(n log(n/ε)) nodes. Since each hypercube generates
rO(r) subproblems, the algorithm spends rO(r) time at each node. Thus, the running time
of the entire dynamic programming algorithm is

O
(
rO(r)n log(n/ε)

)
. (19.9)

Let C be the tour of P in P ′ that is computed by the algorithm. By Lemma 19.6.10,
C can be converted to a tour T of the original point set S, such that

wt(T) ≤
(

(1 + ε)

(
1 + ε + O

(
1

ε2dr1/(d−1)

))
+ ε

)
· wt(TSP(S)).

If we take

r = c

ε(2d−1)(d−1)
,

for an appropriate constant c (that depends on d), then

wt(T) ≤ (1 + 6ε) · wt(TSP(S)).

Thus, if we replace ε by ε/6 in the entire algorithm, and use Lemma 19.2.4, the Structure
Theorem (Theorem 19.6.9), Lemma 19.6.10, and the bound in (19.9), then we obtain the
main result of this chapter:

Theorem 19.7.1. Let S be a set of n points in Rd , and let ε > 0 be a real number. In

(1/ε)O(1/εd2
) n log n

expected time, a tour of S can be computed, whose length is at most (1 + ε) · wt(TSP(S)).

Exercises

19.1. Prove Lemma 19.4.4.

19.2. Prove the first claim in Lemma 19.5.1.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHIC NOTES 467

19.3. Explain why in algorithm Patch(G, r) (see Section 19.6), the index j goes down from 1 + log L

to 0, rather than up from 0 to 1 + log L.

19.4. Consider the following modification to algorithm Patch(G, r) in Section 19.6: In the j -th iteration of

the outer for-loop, we consider only grid hyperplanes h, whose level is equal to j . Prove that for this

modified algorithm, the Patching Lemma (Lemmas 19.6.6 and 19.6.7) does not hold. In particular,

show that, in the two-dimensional case,

E(wt(G′) − wt(G)) = O

(
wt(G)

r
log L

)
= O

(
wt(G)

r
log(n/ε)

)
.

19.5. Work out the details in the proof of Lemma 19.6.5.

19.6. The algorithm that computes a (1 + ε)-approximation for the traveling salesperson problem uses

the (1 + ε)-spanner G as given by Lemma 19.3.2. Explain why it is essential that the weight of G

is proportional to the weight of a minimum spanning tree of the point set P .

Bibliographic notes

This chapter is based on Rao and Smith [1998], who showed how to use spanners to speed
up the polynomial-time approximation scheme of Arora [1998]. These authors also show
how the generic PTAS of Section 19.1 can be used to design approximation algorithms
for several other geometric optimization problems.

More information about approximation algorithms for the traveling salesperson prob-
lem is given in the bibliographic notes in Chapter 1.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

20

Further Results and Open Problems

A classic is a book that has never finished saying what it has to say.
—Italo Calvino

In this chapter, we give a brief overview of further results on geometric spanners. We also
present several open problems.

20.1 Spanners of low degree

In this book, we have seen several algorithms that solve the following version of the
spanner problem: Determine a “small” function F (d, t), such that for any set S of n points
in Rd , a t-spanner for S with maximum degree at most F (d, t) exists. We showed in
Theorems 10.1.3 and 10.1.10 that F (d, t) = O(1/(t − 1)2d−1). These theorems in fact
show that such spanners can be computed in O(n log n) time.

Dobkin, Friedman, and Supowit [1990] posed a dual version of this spanner problem.
That is, they asked for the smallest integer Dd , having the following property: There
exists a real number t , such that for any finite set S of points in Rd , a t-spanner for S with
maximum degree at most Dd exists.

Dobkin, Friedman, and Supowit [1990] stated that 3 ≤ D2 ≤ 7. The following argu-
ment, due to Das and Heffernan [1996], shows that D2 ≥ 3. Assume that n is an even
perfect square, and let S be the set of n points that are the vertices of a

√
n × √

n grid,
whose cells have sides of length 1. Let G be an arbitrary connected graph with vertex
set S and having maximum degree 2. Then, G is either a path or a cycle. Hence, we can
number the points according to their order along G as p1, p2, . . . , pn. Since each edge
of G has length at least 1, the distance in G between p1 and pn/2 is at least n/2 − 1. On
the other hand, the Euclidean distance between p1 and pn/2 is at most

√
2(

√
n − 1). It

follows that the stretch factor of G is at least
n/2 − 1√
2(

√
n − 1)

= �(
√

n).

This proves that, for every real number t > 1, there exists an integer n and a set S of n

points in the plane, such that a t-spanner for S having maximum degree 2 does not exist.
The upper bound for D2 was improved by Soares [1994], who proved that D2 ≤ 5.

Salowe [1994] presented the following approach, which works for any constant dimension
d ≥ 2: Let S be a set of n points in Rd , let t > 1 be a real number, let D be a positive
integer, and let G be an arbitrary t-spanner for S having maximum degree D. Salowe
proposed an algorithm that transforms G into a t ′-spanner for S having maximum degree
�D/2� + 2, where t ′ = 117t + 32 · 3d+1. He did not provide an analysis of the running
time, but the transformation can be implemented, such that it runs in O(n log n) time.
Let G be one of the t-spanners in Theorems 10.1.3 and 10.1.10 with, say, t = 2. Observe

468

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

20.2 SPANNERS WITH FEW EDGES 469

that the maximum degree of G depends only on the dimension d. If we start with G,
and apply Salowe’s transformation O(log D) = O(1) times, then we obtain a t ′-spanner
for S having maximum degree 4. Thus, we have Dd ≤ 4 for all d ≥ 2. In fact, this result
shows that a spanner of maximum degree 4 and constant stretch factor can be computed
in O(n log n) time.

The problem of determining Dd was settled by Das and Heffernan [1996]; they proved
that Dd = 3. In fact, they prove the following stronger result:

Theorem 20.1.1. Let S be a set of n points in Rd and let ε > 0 be a real number. In
O(n log n) time, a t-spanner for S (where t depends on ε and d) can be constructed that
has maximum degree 3 and at most (1 + ε)n edges, and whose weight is proportional to
the weight of a minimum spanning tree of S.

20.2 Spanners with few edges

Let S be a set of n points in Rd , and let t > 1 be a real number. Since any t-spanner for
S is a connected graph, it must have at least n − 1 edges. If the spanner has exactly n − 1
edges, then it is a tree, and we call it a tree t-spanner for S. Is there a constant t , such
that a tree t-spanner exists for every point set S? The proof in Section 20.1 that D2 ≥ 3
suggests that the answer to this question is “no.” We will prove in Theorem 20.2.1 below
that this is indeed the case.

We first estimate the stretch factor of a minimum spanning tree T of S. Consider any
two distinct points p and q of S, and let p = p1, p2, p3, . . . , pk = q be the path in T

between p and q. We claim that the length of each edge {pi, pi+1}, 1 ≤ i < k, on this
path is less than or equal to |pq|. Indeed, if this is not the case, then we replace any edge
{pi, pi+1} whose length is larger than |pq| by the edge {p, q}, giving a spanning tree
of lower weight. It follows that the length of the path between p and q is less than or
equal to (k − 1)|pq|, which is at most (n − 1)|pq|, because k ≤ n. Thus, any minimum
spanning tree of any set of n points in Rd is an (n − 1)-spanner. Of course, this gives only
an upper bound on the stretch factor. It is, however, not difficult to give an example of
a set of n points in Rd , whose minimum spanning tree has stretch factor n − 1. Hence,
in general, minimum spanning trees do not have a bounded stretch factor. The following
theorem, which is due to Eppstein [2000], states that there exist point sets S for which
every spanning tree has stretch factor �(n). (Aronov et al. [2005] proved that a similar
result even holds for Steiner trees of S.)

Theorem 20.2.1. Let R be planar regular polygon with n vertices, where n ≡ 0 mod 4,
and let S be the vertex set of R. The stretch factor of every spanning tree of S is at least
(
√

2/π)n.

proof We may assume without loss of generality that the points of S are on the unit-
circle. Let T be an arbitrary spanning tree of S, and let v be a centroid node of T (see
Section 2.3.4). Hence, by removing v from T , we obtain subtrees, each of which contains
at most n/2 points of S. We may assume without loss of generality that v is the north-pole
of the unit-circle. Observe that more than half of the points of S are on or below the
x-axis. Therefore, there are two points p and q in S that are (i) adjacent in R, (ii) in
different subtrees of v, and (iii) on or below the x-axis. Let P be the path in T between p

and q. Since P passes through v, the length of P is at least 2
√

2. On the other hand, the
Euclidean distance between p and q is at most 2π/n.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

470 FURTHER RESULTS AND OPEN PROBLEMS

Thus, graphs with n − 1 edges can have unbounded stretch factor. What happens to
the stretch factor if we allow n − 1 + k edges, for some small integer k? Theorem 20.1.1
shows that a constant stretch factor can be obtained if k = εn, for any constant ε > 0. The
following theorem generalizes this result for all k with 0 ≤ k ≤ n. This result was proved
by Aronov et al. [2005] for point sets in the plane. The construction was generalized by
Smid [2006] to any dimension d ≥ 2.

Theorem 20.2.2. Let S be a set of n points in Rd , and let k be an integer with 0 ≤ k ≤ n.
In O(n log n) time, a graph with vertex set S can be computed that has the following
properties:

1. The graph contains at most n − 1 + k edges.

2. The graph has stretch factor O(n/(k + 1)).

3. Each vertex of the graph has degree at most 5.

Aronov et al. [2005] extended the proof of Theorem 20.2.1 and gave an example of
a set S of n points in the plane, such that every connected graph with vertex set S and
consisting of n − 1 + k edges has stretch factor �(n/(k + 1)). Therefore, the result in
Theorem 20.2.2 is optimal with respect to the number of edges and stretch factor.

Open problem 1: Decrease the bound on the maximum degree in Theorem
20.2.2.

20.3 Plane spanners

In this section, we give a very brief overview of the large amount of research that has
been devoted to the construction of plane spanners, that is, spanners for point sets in R2

whose embeddings are plane. In fact, the first publication on geometric spanners (see
Chew [1986]) was on plane spanners.

Chew [1986] proved the following result: The L1-Delaunay triangulation of a set S

of points in R2, that is, the dual of the Voronoi diagram of S in the Manhattan metric,
is a

√
10-spanner. (Observe that, even though the Delaunay triangulation is based on the

L1-metric, the stretch factor is measured in the Euclidean metric.) The journal version of
this paper (see Chew [1989]) contains the following result: The Delaunay triangulation,
based on a convex distance function defined by an equilateral triangle, is a 2-spanner.

Chew [1986] conjectured that, for any set S of points in R2, the Delaunay triangulation,
based on the Euclidean metric, is a t-spanner, for some constant t . This conjecture was
proved by Dobkin et al. [1990], who showed that t ≤ π(1 + √

5)/2. The analysis was
improved by Keil and Gutwin [1992], who showed that t ≤ 2π

3 cos π/6 . A more general
result appears in Bose et al. [2004b]: For every two points p and q of S, the Delaunay
triangulation contains a path between p and q of length at most 2π

3 cos π/6 · |pq|, all of whose
edges have length at most |pq|.

If the points of S are (approximately) on the boundary of a circle, then the stretch factor
of the Delaunay triangulation is at least π/2. It is widely believed that, for every set of
points in R2, the Delaunay triangulation is a (π/2)-spanner.

Open problem 2: Prove that, for every set S of points in R2, the Delaunay
triangulation of S is a (π/2)-spanner.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

20.3 PLANE SPANNERS 471

Eppstein [2002] and Bose et al. [2006] proved that the stretch factors of the Gabriel
graph, the relative neighborhood graph, and β-skeletons are not bounded by any constant.

Das and Joseph [1989] introduced a general approach for analyzing the stretch factor
of plane graphs. Let α be a real number, such that 0 < α < π/2. The α-diamond of a line
segment e is defined to be the union of the two isosceles triangles with base e and base
angle α. A plane graph G with vertex set S is said to have the α-diamond property, if
for every edge e of G, at least one of the triangles comprising the α-diamond of e does
not contain any point of S in its interior. For a real number κ ≥ 1, we say that G satisfies
the κ-good polygon property, if for every face f of G, and for every two vertices p and
q of G, such that p and q are on the boundary of f , and the line segment joining them
is completely inside f , the shortest path between p and q along the boundary of f has
length at most κ|pq|. Das and Joseph [1989] proved that the stretch factor of G is bounded
by a function that depends only on α and κ , if G satisfies both the α-diamond property
and the κ-good polygon property. A complete proof of this claim appears in Das [1990].
The analysis was improved slightly by Lee [2004]:

Theorem 20.3.1. Let α ∈ (0, π/2) and κ ≥ 1 be real numbers, and let G be a plane
graph that satisfies the α-diamond property and the κ-good polygon property. Then, G is
a t-spanner, where

t ≤ 8(π − α)2κ

α2 sin2(α/4)
.

Observe that every triangulation satisfies the κ-good polygon property with κ = 1.
Several classes of triangulations satisfy the α-diamond property, for some α, and are,
thus spanners. For example, it is obvious that this holds for the Delaunay triangulation
with α = π/4. (Observe, however, that Theorem 20.3.1 gives a stretch factor that is much
worse than the result in Keil and Gutwin [1992].) In Drysdale, McElfresh, and Snoeyink
[2001], this is shown for the minimum weight triangulation with α = π/4.6. Finally, Lee
[2004] shows this for the greedy triangulation with α = π/6.

Plane spanners that satisfy the α-diamond property and the κ-good polygon property
can be used to design competitive online routing algorithms that use a limited amount of
memory. Some of these algorithms can be found in Bose and Morin [2004a,b].

Another general approach for estimating the stretch factor of triangulations appeared
in Karavelas and Guibas [2001]: Let T be a triangle in R2, let 	 be the length of a longest
side of T , and let h be the corresponding height of T . The aspect ratio of T is defined to
be 	/h. The aspect ratio of a triangulation on a set of points in R2 is defined to be the
maximum aspect ratio of any triangle in the triangulation. Karavelas and Guibas [2001]
proved that every triangulation with aspect ratio α is a (2α)-spanner.

As mentioned above, Chew [1989] showed that a plane 2-spanner exists for every set
of points in the plane. It is clear that every plane graph on the four vertices of a square
has stretch factor at least

√
2.

Open problem 3: What is the smallest real number t , such that a plane t-spanner
exists for every finite set of points in R2?

Levcopoulos and Lingas [1992] considered plane spanners of low weight. Using the
result of Keil and Gutwin [1992], they showed that, given the Delaunay triangulation for a
set S of n points in R2, and given any real number r > 0, a plane graph can be constructed

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

472 FURTHER RESULTS AND OPEN PROBLEMS

in O(n) time that is a t-spanner for t = (1 + 1/r) 2π
3 cos π/6 , and whose total weight is at

most 2r + 1 times the weight of a minimum spanning tree of S.
The problem of constructing plane t-spanners of bounded degree (for some constant

t) was considered in Bose, Gudmundsson, and Smid [2005]. They present an algorithm
that, when given a set S of n points in R2, computes a plane spanner for S, whose
maximum degree is at most 27. The degree bound was improved to 23 by Li and Wang
[2004]. Recently, Bose, Smid, and Xu [2006] gave an improved algorithm that constructs
a plane spanner, whose maximum degree is at most 17. The spanners computed by all
these algorithms are subgraphs of the Delaunay triangulation (and can be computed
in O(n log n) time). In fact, Bose, Smid, and Xu [2006] show that every triangulation
satisfying the α-diamond property contains a spanner, whose maximum degree is at most
14 + �2π/α�.

Open problem 4: What is the smallest real number D, such that, for some real
number t that depends only on D, a plane t-spanner of maximum degree at most
D exists, for every finite set of points in R2?

It is natural to try to generalize spanner results for triangulations to higher dimensional
space. Unfortunately, not much is known. We mention the following result, which is due
to Karavelas and Guibas [2001]. Let T be a tetrahedron in R3, let R be the radius of
the smallest sphere that contains T , and let r be the radius of the largest sphere that is
contained in T . The aspect ratio of T is defined to be R/r . Karavelas and Guibas [2001]
proved that every triangulation of a set of points in R3, in which the aspect ratio of every
tetrahedron is at most α, and in which the minimum interior angle is θ , is a t-spanner for
t = max(4/θ2, π2/4).

Open problem 5: Does there exist a real constant t such that, for every finite set
S of points in R3, the Delaunay triangulation of S is a t-spanner?

20.4 Spanners among obstacles

Consider a set of pairwise disjoint polyhedral objects, which we regard as obstacles. For
a real number t > 1, a t-spanner for these obstacles is a graph G having the following
properties: First, the vertex set of G includes the vertices of the polygons. Second, no
edge of G intersects the interior of any polygon. Finally, for any two vertices p and q,
there is a path in G between p and q, whose length is at most t times the length of a
shortest obstacle-avoiding path between p and q.

Clarkson [1987] introduced the �-graph of Chapter 4, in order to construct such a
spanner for the two- and three-dimensional cases. In his version of the �-graph, for each
vertex p, space is covered using cones with apex p and having a fixed angular diameter.
Then, for each cone C, the graph contains an edge between p and a closest vertex in C

that can see p.
For the two-dimensional case, Das [1997] showed that a t-spanner of bounded degree

can be computed in O(n log n) time, where n is the total number of vertices of the
polygonal obstacles. Again for the two-dimensional case, Arikati et al. [1996] showed
that by adding O(n) Steiner points, a plane t-spanner can be constructed in O(n log n)
time.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

20.5 SINGLE-SOURCE SPANNERS 473

20.5 Single-source spanners

Given a set of n points in Rd , a spanner is a network on this point set that would guarantee
“short” paths between every pair of points. What if we do not desire a network with such
stringent requirements? What if we have identified a “center” or “source” and we only
require sufficiently “short” paths between this center and all other vertices? This is clearly
a “single-source” equivalent of the spanner networks considered in this book. They are
also an undirected version of the sink spanners presented in Section 4.2.1.

Definition 20.5.1 (Single-source spanner). Let S be a set of n points in Rd , let q be a
point of S, and let t > 1 be a real number. A graph having the points of S as its vertices is
called a t-spanner for S with source q, if for every point p of S there is a t-spanner path
between p and q in this graph. The minimum value t for which the above definition holds
is called the single-source stretch factor with respect to the source q.

Khuller, Raghavachari, and Young [1995] showed that, given a weighted graph with
n vertices and m edges (equivalently, given an arbitrary metric space), a specific source
vertex, a stretch factor bound, and a (approximate) minimum spanning tree of the graph,
it is possible to compute in O(m + n) time a spanning tree for which the single-source
stretch factor with respect to the source is bounded, and for which the total weight is
within a constant factor of the weight of a minimum spanning tree. The resulting tree can
be viewed as balancing the salubrious properties of minimum spanning trees (minimum
weight) and shortest path trees (minimum distance from source) with respect to a given
source.

How does the above algorithm fare for points in Euclidean space? Given n points in Rd ,
we can use algorithm ApproxMST of Section 10.3.4 to compute an approximate minimum
spanning tree in O(n log n) time. Given this spanning tree, the algorithm of Khuller,
Raghavachari, and Young [1995] can compute the required tree for a specified source in
O(n) time. A related open problem is the following:

Open problem 6: Given a set S of n points in Rd , design an efficient algorithm
to find the best “source” vertex; that is, find the source vertex such that some
spanning tree on S has the least single-source stretch factor (with respect to this
source) among all the spanning trees.

If, instead of a point set, we are provided with a Euclidean graph G with n vertices and
m edges, we can compute a minimum spanning tree of G in O(n log n + m) time. Thus,
the required tree for a specified source can be computed in O(n log n + m) time, even if
a minimum spanning tree is not available. The following open problem is closely related
to the previous one.

Open problem 7: Given a Euclidean graph G with n vertices and m edges
embedded in Rd , design an efficient algorithm to find the best “source” vertex;
that is, find the source vertex such that some spanning tree has the least single-
source stretch factor (with respect to this source) among all the spanning trees.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

474 FURTHER RESULTS AND OPEN PROBLEMS

20.6 Locating centers

Given a set of n points in Rd , Eppstein and Wortman [2005] considered the problem of
identifying the “star graph” with the least stretch factor. A star graph has exactly one
internal vertex called its center with edges from the center to every other vertex; it has no
other edges. Thus, the problem is that of identifying the star with the least stretch factor
among the n − 1 star graphs. This problem has applications to various versions of the
facility location problem.

The results of Eppstein and Wortman [2005] showed the following: (a) the stretch
factor of any star graph can be computed in O(n log n) time; (b) for the case when the
center can be any point in Rd , the star graph with the least stretch factor can be identified
in O(n log n) expected time; and (c) for the case when d = 2 and the center is constrained
to be one of the input points, there exists a randomized algorithm to find the star graph
with the least stretch factor in O(n2α(n) log2 n) expected time, where α(n) is the inverse
Ackermann function defined in Definition 12.1.20.

The following open problem is a natural extension to the above problem.

Open problem 8: For a given positive integer k, define a k-star as a graph with
k internal vertices called hubs, edges from the hubs to all other vertices, and with
no other edges in the graph. Given a set of points in Rd , design an algorithm to
identify the k-star with the smallest stretch factor.

20.7 Decreasing the stretch factor

Given a geometric graph G = (S, E) with n vertices and m edges, in Chapter 13, we saw
how to approximate its stretch factor. It is clear that as we add edges to this graph, the stretch
factor cannot increase. Supposing we were allowed to add a set of k edges to this graph, a
useful question to ask is to determine which k edges to add in order to get the most gain, that
is, to result in a graph with the least stretch factor. Farshi, Giannopoulos, and Gudmundsson
[2005] considered this problem for k = 1. Their results include the following: (a) a
O(n3m + n4 log n)–time and O(n)–space algorithm, (b) a O(n4)–time and O(n2)–space
algorithm, (c) a 3-approximate algorithm running in O(nm + n2 log n) time and O(n)
space, and (d) a (2 + ε)-approximate algorithm running in O(nm + n2(log n + 1/ε3d))
time and space O(n2). No known results exist for k > 1. Two related open problems are
proposed below.

Open problem 9: Improve the time-space trade-off from Farshi, Giannopoulos,
and Gudmundsson [2005]. Design an efficient algorithm to identify the k > 1
edges that minimizes (or approximately minimizes) the stretch factor of the
resulting geometric graph.

If one thinks of every edge added as adding a “shortcut,” then this leads naturally to
the material presented in the next section.

20.8 Shortcuts

The concept of spanners is limited in the sense that it only guarantees reasonably “short”
paths between vertices in a network. However, the concept can be put in a more general

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

20.8 SHORTCUTS 475

setting if one considers guaranteeing short paths between all points that lie “on” the
network, whether the points correspond to vertices or to intermediate points lying on
the edges of the network. When generalized appropriately, this leads us naturally to the
concept of geometric dilation or detour, to be defined below (also see Exercise 13.6).
In a railroad system, one may have access to the network only at stations (the vertices);
however, if the network is a system of waterways or streets in an urban setting, access to
the network may be possible at any point on any of its edges.

Let us suppose that we are given a polygonal chain C of total length 	(C) in the plane.
Consider any pair of points, p and q, on C. Clearly, depending on how “winding” C is,
the ratio of the distances between p and q along C may be considerably larger than the
Euclidean distance between them. A simple question to ask is whether a small amount
(of small total length) of shortcuts can be added to C so that any two points on C are
within distance (along the curve and shortcuts) at most a constant factor away from their
Euclidean distance.

Jones [1990] proved the existence of such shortcuts. Kenyon and Kenyon [1992]
showed how to effectively construct such shortcuts for polygonal chains in the plane.
To state their result precisely, assume that we are given 2-dimensional simple polygonal
chain, which can be represented as a Euclidean graph G = (S, E). Let P (E) be the
(infinite) set of points that compose the edges in E. The following is a restatement of a
theorem from Kenyon and Kenyon [1992]:

Theorem 20.8.1. Given a 2-dimensional simple polygonal chain C represented as a
graph G = (S, E), a (possibly infinite) set E′ of new edges can be added connecting
points in P (E) such that, (1) in the new structure there is a path between any two points p

and q in P (E) of length at most tD · |pq|, and (2) wt(E′) ≤ cD · 	(C). Here tD > 1 and
cD > 0 are two absolute constants.

We highlight the interesting aspects of the work of Kenyon and Kenyon. First, though
the number of segments added may be infinite, the algorithm outputs only a finite length
description of the set of shortcuts. Second, we assume that the polygonal chain is simple;
that is, the edges are noncrossing. If they do cross, then we have two points such that the
Euclidean distance between them is zero, while the length along the chain is nonzero,
resulting in a stretch factor of infinity. Third, if we are required only to provide shortcuts
between pairs of points that are at least ε > 0 distance apart, then the algorithm can be
easily modified to only add a finite number of shortcut edges. This is perhaps justified
since finite precision prevents us from distinguishing points that are too close to each other.
Last but not the least, we note that the algorithm of Kenyon and Kenyon can be easily
modified to achieve a property that has been referred to as finite extendibility. In other
words, it is possible to obtain a structure with greater precision from one with a smaller
precision by simply adding more segments, without having to remove the previous ones.
The constant tD will be defined precisely later and is referred to as detour.

More generally, the existence result of Jones, as well as the constructive result of Kenyon
and Kenyon, are applicable to rectifiable curves in the plane. Das and Narasimhan [1995]
extended the results to prove the following theorem:

Theorem 20.8.2. Given a connected Euclidean graph G = (V, E) in Rd , and any tD > 1,
a (possibly infinite) set E′ of shortcuts can be added between points in P (E) such that,
(1) in the new structure there is a path between any two points p and q in P (E) of length

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

476 FURTHER RESULTS AND OPEN PROBLEMS

at most tD · |pq|, and (2) wt(E′) ≤ c(tD, d) · wt(E), where c(tD, d) > 0 is a constant
depending only on tD and d.

Once again, we summarize the important aspects of the results by Das and Narasimhan
[1995]. First, while Theorem 20.8.2 generalizes Theorem 20.8.1 to higher dimensions, it
does more. It extends the results from polygonal chains to arbitrary connected Euclidean
graphs. Second, while Theorem 20.8.1 proved the existence of a constant tD > 1, Theo-
rem 20.8.2 is true for any given stretch factor tD > 1. Clearly, as tD gets closer to 1, the
constant factor c(tD, d) in the length bound of the shortcuts gets larger. Third, the algo-
rithm achieves “finite precision” by only providing short paths between pairs of points
that are not “too close.” Fourth, both the finite extendibility and the finite description
properties are satisfied. Finally, like the earlier planar version, it too can be generalized to
smooth curves in higher dimensional space.

The running time of both algorithms were not analyzed since it depends on the values
of the coordinates involved and not just on the number of vertices and edges in the input.
For example, a pair of long, parallel edges will generate a lot of shortcuts.

20.9 Detour

The concept of detour was mentioned in the previous section. Here, we formalize this
notion. Let G = (S, E) be a geometric network in Rd . We assume that the edges of the
network do not intersect at any points other than the vertices. Let x and y be two points
“on” the graph. In other words, each of the two points may be either a vertex of G or any
point in the interior of an edge. Then the detour for the pair (x, y) is defined as the ratio
δG(x, y)/|xy|, where δG(x, y) denotes the length of a shortest path between x and y in G.
The detour tD(G) of G is defined as the maximum value of δG(x, y)/|xy| over all distinct
points x ∈ G and y ∈ G. The definition of detour in its current form was first introduced
by Ebbers-Baumann et al. [2001], although the basic idea may be found earlier in the
work of Jones [1990].

The concept of detour has been found to be very useful. For example, Icking and Klein
[1995] analyzed online navigation strategies by estimating the detour of curves. It was
also used in proving results comparing the Fréchet and Hausdorff distance measures of
plane curves [Alt et al., 2001, 2003].

Grüne [2002] proved a lower bound of �(n log n) for computing the detour of any
simple planar polygonal curve by extending Theorem 13.1.3. Ebbers-Baumann et al.
[2001, 2004b] showed how to compute a (1 − ε)-approximation of the detour of a polyg-
onal chain in the plane in O(n

ε
log n) time. As shown by Grüne et al. [2002, 2003], it

is also possible to compute a (1 − ε)-approximation of the detour of a simple polygon
in O(n log n) time. Agarwal et al. [2006] designed a number of algorithms to compute
the (exact) detour of geometric networks. They showed how to compute the detour of a
polygonal chain in the plane in O(n log n) expected time. A significantly different algo-
rithm (with expected time complexity O(n log n)) for the same problem can be found in
a paper by Langerman et al. [2002], who also designed a O(n log2 n)–time algorithm for
trees and cycles in the plane. Other algorithms to compute the exact detour by Agarwal
et al. [2006] include a deterministic O(n log4 n)–time algorithm for polygonal chains and
curves in the plane, a randomized O(n log2 n)–time algorithm for curves in the plane, and
a deterministic O(n16/9+ε)–time algorithm for chains in R3. Agarwal et al. also showed

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

20.11 OPTIMIZATION PROBLEMS 477

that computing the detour in the 3-dimensional case is as hard as Hopcroft’s problem, for
which it is strongly believed that a �(n4/3) lower bound applies [Erickson, 1996].

The problem of finding good bounds for the detour of any planar curve has been
investigated by several researchers. Icking, Klein, and Langetepe [1999] and Aichholzer
et al. [2001] have proved upper bounds on the detour of simple planar closed curves in
terms of their oscillation width. It has been shown that given any simple planar closed
curve C with minimum and maximum “caliper” distances (i.e., diameters) of w and D

respectively, the detour of C is at least arcsin (w
D

) +
√

(D
w

)2 − 1 [Ebbers-Baumann et al.,

2004a], and at most 2
(

D
w

arcsin (w
D

) +
√

(D
w

)2 − 1
)

[Dumitrescu et al., 2005a].

Ebbers-Baumann, Grüne, and Klein [2003] also considered the problem of finding good
bounds on the detour of any planar curve that contains a fixed point set S. They showed that
the detour of a fixed, finite, planar point set has an upper bound of 1.67784 . . . and a lower
bound of π/2. The lower bound was later improved to (1 + 10−11)π/2 by Dumitrescu,
Grüne, and Rote [2005b]. Ebbers-Baumann et al. [2005] investigated the bounds when
the given point set is embedded into a broader class of graphs than just planar curves.
They showed that each finite point set can be embedded into the vertex set of a finite
triangulation of detour at most 1.1247, and that each embedding on a closed convex curve
has a detour of at least 1.00157.

For a detailed survey of results on detours, we refer to the paper by Gudmundsson and
Knauer [2006].

20.10 External memory algorithms

Several algorithms that have been presented in this book have been later modified so
that they lead to efficient implementations in the external memory model. In this model,
efficiency is measured by the number of I/O-operations that an algorithm makes.

Govindarajan et al. [2000] gave an I/O-efficient algorithm that computes the well-
separated pair decomposition of Chapter 9. This leads to I/O-efficient algorithms for
computing a spanner with O(n) edges (see Section 9.2) and a spanner with O(n) edges
and spanner diameter O(log n) (see Section 10.2).

Lukovszki, Maheshwari, and Zeh [2001] showed that the �-graph of Chapter 4 and
the fault-tolerant �-graph of Section 18.5 can be constructed I/O-efficiently. They also
generalized Clarkson’s �-graph among obstacles (see Section 20.4) so that it can be
constructed in an I/O-efficient way.

Maheshwari, Smid, and Zeh [2001] gave an I/O-efficient version of the algorithm of
Arikati et al. [1996] to construct a plane Steiner spanner among obstacles.

A detailed overview of I/O-efficient algorithms for geometric spanner and proximity
problems can be found in Zeh [2002].

20.11 Optimization problems

Throughout this book, we have been concerned only with uniform upper bounds on
quantities such as the stretch factor, the number of edges, and the weight, that is, bounds
that are valid for all point sets. In an optimization problem, we want to minimize such a
quantity for a given point set. For example, given a set S of n points in Rd , and given a real
number t > 1, we want to compute a t-spanner for S with the minimum number of edges.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

478 FURTHER RESULTS AND OPEN PROBLEMS

For general (non-geometric) graphs, the decision problems corresponding to most of such
optimization problems for spanners are NP-complete; see Peleg and Schäffer [1989], Cai
[1994], Brandes and Handke [1998], Handke [1999], and Chapter 16 in Peleg [2000].
Gudmundsson and Smid [2006] have shown that it is NP-hard to compute, when given
any geometric graph G, a t-spanner of G with the minimum number of edges. Klein and
Kutz [2006] showed this result for the case when G is the complete geometric graph. In
other words, they showed that it is NP-hard to compute, when given any set S of points
in Rd , a t-spanner of S with the minimum number of edges. Cheong, Haverkort and Lee
[2006] have shown that even the problem of deciding whether there exists a spanning tree
of S whose stretch factor is at most t is NP-hard.

An interesting class of optimization problems is that of minimizing the stretch factor:
Let G be a class of graphs, such as paths, cycles, trees, or plane graphs. Given a set S of
n points in Rd , compute a graph in G whose vertex set is S and whose stretch factor is
minimum. As mentioned above, Cheong, Haverkort and Lee [2006] have proved that this
problem is NP-hard if G is the class of trees. For other classes, the complexity status of
such problems is not known.

Open problem 10: For which classes G of graphs, does there exist a polynomial-
time algorithm that, when given a set S of n points in Rd , computes a graph in G
whose vertex set is S and whose stretch factor is minimum?

If G is the class (or a subclass) of planar graphs (as opposed to plane graphs), then we
can ask the question whether the graph with minimum stretch factor is non-crossing. Klein
and Kutz [2006] have shown that there exists a set S of seven points in the plane, such
that any tree with vertex set S and whose stretch factor is minimum has self-intersections.
Cheong, Haverkort and Lee [2006] have given such a set S consisting of only five points.
They also showed that for any set S of size at most four, the spanning tree of S whose
stretch factor is minimum does not have self-intersections. Cheong, Haverkort and Lee
[2006] have also shown that there exists a set S of points in the plane, such that any path
(or cycle) with vertex set S and minimum stretch factor has self-intersections. Finally,
they have given an example of a set of n points in the plane for which the minimum
spanning tree has stretch factor �(n), and for which there exists a spanning tree whose
stretch factor is bounded by a constant.

20.12 Experimental work

Here we report on a few publications that discuss experimental work related to spanners.
Navarro and Paredes [2003] considered several algorithms for constructing t-spanners
for points in a general metric space. They considered a recursive divide-and-conquer
algorithm and a basic incremental greedy algorithm (which is the same as algorithm
PathGreedy of Section 1.4). They also considered two variants of the PathGreedy
algorithm, one that limits the propagation of an edge insertion, and another that inserts a
lot of edges before recomputing the all-pairs distance matrix. They showed that three out
of the four algorithms work well in practice. It has been reported that these algorithms
compute t-spanners for graphs with several thousand nodes in a few minutes. Note that
these experiments were not for the Euclidean metric, for which one would expect better
performance than for general metrics.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

20.13 TWO MORE OPEN PROBLEMS 479

Sigurd and Zachariasen [2004] report on an implementation of an exact algorithm
to find the minimum-weight spanner and the comparison of its weight with that of the
greedy spanner. Their algorithm for the exact minimum-weight spanner relies on an integer
programming formulation, which they then solve using a branch-and-bound method using
bounds from the LP-relaxations. They report that the greedy spanner (such as the one
computed using the PathGreedy algorithm) is a surprisingly good approximation to a
minimum-weight spanner and, for non-Euclidean inputs (i.e., points from an arbitrary
metric space), had a weight roughly within 5% of that of the optimum. However, their
experiments showed that the quality of the greedy spanner was much worse for Euclidean
inputs. As the stretch factor was increased from 1.2 to 1.8, the difference between the
weight of the greedy spanner and the optimal weight spanner increased from less than
5% to more than 20%. The conclusion for Euclidean inputs was that the greedy spanner
was very close the optimum weight for small stretch factors, wildly off from the optimum
weight for moderate stretch factors and eventually starts to get closer again as the stretch
factor becomes large.

Finally, the only work comparing algorithms for computing Euclidean t-spanners is
reported by Farshi and Gudmundsson [2005]. It is a comprehensive effort comparing
the following algorithms: a modified version of the PathGreedy algorithm (that makes
only O(n) shortest path queries), a simplified version of the Build�Graph algorithm (see
Section 4.1.2) for constructing �-graphs, a variant for constructing ordered �-graphs (see
Exercise 4.17), and WSPD-spanners using the ComputeWSPD algorithm of Section 9.4.
They compared the algorithms on the basis of size, weight, degree, spanner diameter, and
the number of crossings. Finally, they also experimented with point sets generated from
different distributions. The greedy algorithm was found to be superior on all the reported
measures except for the spanner diameter. It should be noted that a key measure, namely
computation times, was not reported, for which the greedy algorithm is unlikely to perform
very well. The �-graphs had small weight for nonclustered distributions, and surprisingly
high degree for clustered distributions. The WSPD-based construction fared poorly except
for clustered distributions, where it often produced spanners with size smaller than the
ordered �-graph construction. Overall, the conclusion was that the quality of spanners
produced (with a few exceptions) were in the following order: greedy spanners, �-graphs,
ordered �-graphs, and WSPD-based spanners.

20.13 Two more open problems

In this book, we have seen several algorithms that compute, for any set S of n points
in Rd and any real number t > 1, a t-spanner for S in O(n log n) time. Most of these
algorithms work in the algebraic computation-tree model and are, therefore, optimal; see
Theorem 3.4.4.

Open problem 11: Is it possible to compute spanners in o(n log n) time, if
the floor function, indirect addressing, and/or randomization are added to the
algebraic computation-tree model?

The final open problem is that of designing a data structure that allows efficient
updates of a spanner, when points are inserted and deleted from the point set. The only
known nontrivial results are as follows. First, the ordered �-graph of Exercise 4.17 can
be maintained in polylogarithmic time per insertion; it is not clear, however, how to

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

480 FURTHER RESULTS AND OPEN PROBLEMS

efficiently support deletions. Second, it was shown in Arya, Mount, and Smid [1999]
how to maintain the �-graph and the skip list spanner of Chapter 4 under insertions and
deletions of points, in the model of random updates as defined in Chapter 4 of Mulmuley
[1994]. (This model was introduced independently in Schwarzkopf [1991].) Intuitively,
this model assumes that, after an insertion of a point, every point in the new set has the
same probability of being the newly inserted point. Also, in a deletion, every point in the
current point set has the same probability of being deleted. The reason that the �-graph
and the skip list spanner can be maintained in this model is that the average degree in
these spanners is bounded by a constant. Since the maximum degree can be linear in n,
however, it is not clear how to obtain an efficient algorithm that maintains, say, the �-graph
in polylogarithmic worst-case time per insertion and deletion. We finally mention a recent
result of Gao, Guibas, and Nguyen [2006]. These authors have shown how to construct,
in O(n log α) time, a spanner with O(n) edges and maximum degree O(log α), that can
be maintained under insertions and deletions of points, in O(log α) time per update. Here,
α is the aspect ratio of the point set, that is, the ratio of the diameter and the closest-pair
distance.

Open problem 12: Construct spanners that can be maintained under insertions
and deletions of points, in o(n) worst-case or amortized time per update.

20.14 Open problems from previous chapters

In previous chapters, many open problems have been presented. In this final section, we
collect them in one list.

13. (from Section 3.4.2) Let d ≥ 2 be an integer constant. For a given real number t > 1,
prove a lower bound of �(n log n) time in the algebraic computation-tree model for the
problem of computing a Steiner t-spanner for a given set S of n points in IT d in general
position.

14. (from Section 4.1) The geographic neighborhood graph can be constructed in O(n log n)
time for points in the plane. Unlike the �-graph, for dimensions larger than 2, it is not
known whether the geographic neighborhood graph can be constructed within this time
bound.

15. (from the exercises in Chapter 4) Let S be a set of n points in R
d . In Exercise 4.17, we

defined the ordered �-graph �(S, κ, σ) with respect to a permutation σ of S. Does there
exist a permutation σ of S such that the degree of every vertex in �(S, κ, σ) is bounded
by a function of κ only? Does there exist a permutation σ of S such that �(S, κ, σ) has
both “small” degree and spanner diameter O(log n)?

16. (from Section 6.5) What is the largest possible value of the ratio wt(T0)/wt(TSP(S)), over
all sets S of n points in R

d and all 2-optimal tours T0 of S?

17. (from Section 9.6.2) Which metric spaces (S, δ) admit a well-separated pair decomposition
of subquadratic size? Design efficient algorithms that compute such a well-separated pair
decomposition.

18. (from the bibliographic notes in Chapter 11) Does there exist a set S of n points in R
d ,

such that for any real constant t > 1, every t-spanner for S with spanner diameter O(log n)
has weight �(log n) times the weight of a minimum spanning tree of S?

19. (from Section 12.2) Let S be a set of n points in R
d , let t > 1 be a real constant, and

let k ≥ 4 be an integer. Give a formal proof that there exists an algorithm that computes,

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

EXERCISES 481

in O(n log n + knαk(n)) time, a t-spanner for S, having O(knαk(n)) edges, and whose
spanner diameter is less than or equal to k.

20. (from Section 12.2) Let t > 1 be a real constant, and let k ≥ 3 be an integer. Prove that
there exists a set S of n points in R

d , such that every t-spanner for S, whose spanner
diameter is less than or equal to k, contains �(knαk(n)) edges. (For k = 2, this is true;
see Exercise 12.10.)

21. (from Section 12.2) Let t > 1 be a real constant. Prove that there exists a set S of n points
in R

d , such that every t-spanner for S, which consists of O(n) edges, has spanner diameter
�(α(n)).

22. (from Section 15.2.9) Is there an algebraic computation-tree algorithm that, when given a
set S of n points in R

d and a real constant t > 1, computes, in O(n log n) time, a t-spanner
for S, whose weight is proportional to the weight of a minimum spanning tree of S? Can
such a spanner of bounded degree be computed in O(n log n) time?

23. (from Section 16.3.4) Given a set S of n points in R
d , real numbers t > 1 and ε > 0,

and a t-spanner G = (S,E) for S, is there an algorithm that computes, in O(|E|) time, a
(1 + ε)-spanner G′ of G with O(n) edges? Of course, the constants in the Big-Oh bounds
may depend on t and ε. Can such a spanner G′ be computed without accessing every edge
of G? In other words, can it be modified to run in o(|E|) time?

24. (from Section 17.3.3) In Chapter 17, we have presented data structures that can be used
to approximate the length of a shortest path between two query points in any spanner.
Improve the preprocessing time, space requirement, and/or query time in Theorems 17.3.1,
17.3.3, and 17.3.4.

25. (from Section 17.3.3) The results in Chapter 17 give only an approximation to the length
of a shortest path between two query points p and q in any spanner, not the approximate
shortest path itself. Let k be the minimum number of edges on any (1 + ε)-approximate
shortest path between p and q. Is there an algorithm that computes a (1 + ε)-approximate
shortest path with O(k) edges in O(f (n) + k) time, where f (n) = o(n)?

26. (from Section 18.5) Is there an algorithm that constructs a k-fault-tolerant t-spanner with
O(kn) edges in O(n log n + kn) time?

27. (from Section 18.6.3) Is there an algorithm that constructs a k-fault-tolerant t-spanner of
degree O(k) in O(n log n + kn) time?

28. (from Section 18.6.3) Is there an algorithm that constructs, in O(n log n + kn) time,
a k-fault-tolerant t-spanner, whose weight is bounded by O(k2) times the weight of a
minimum spanning tree of S?

Exercises

20.1. Consider a simple polygonal chain with two edges and with a sharp acute angle θ between them.

Show that, for a given t > 1, if the angle is sufficiently small, then it is necessary to add an infinite

number of shortcuts to ensure a dilation of t .

20.2. Show with the help of a small example that the number of shortcuts generated by the algorithm of

Das and Narasimhan [1995] depends on the values of the coordinates of the vertices and not just

on the number of vertices and edges in the input.

20.3. Show that the detour of a closed simple polygonal planar curve P of length 	 is attained by a pair

of points (p, q) such that the distance between them along P is exactly 	/2.

20.4. Show that the detour of a connected simple straight-line plane graph P is attained by a pair of

covisible points.

20.5. Show that an exact minimum-weight spanner need not contain a minimum spanning tree.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

482 FURTHER RESULTS AND OPEN PROBLEMS

20.6. Give an example of a set S of five points in the plane, such that any tree with vertex set S and whose

stretch factor is minimum has self-intersections. Prove that for all sets S of at most four points in

the plane, any spanning tree of S does not have self-intersections.

20.7. Give an example of a small set S of points in the plane, such that any path and any cycle with vertex

set S and whose stretch factor is minimum has self-intersections.

20.8. Give an example of a set of n points in the plane for which the minimum spanning tree has stretch

factor �(n), and for which there exists a spanning tree with stretch factor O(1).

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

Bibliography

W. Ackermann. Zum Hilbertschen Aufbau der
reellen Zahlen. Mathematische Annalen, 99:
118–133, 1928.

P. K. Agarwal. Intersection and Decomposition
Algorithms for Planar Arrangements. Cam-
bridge University Press, Cambridge, UK,
1991.

P. K. Agarwal. Range searching. In J. E. Good-
man and J. O’Rourke, editors, Handbook
of Discrete and Computational Geometry,
pages 809–837. CRC Press, Boca Raton, FL,
2nd edition, 2004.

P. K. Agarwal, H. Edelsbrunner, O. Schwarz-
kopf, and E. Welzl. Euclidean minimum
spanning trees and bichromatic closest pairs.
Discrete & Computational Geometry, 6:
407–422, 1991.

P. K. Agarwal and J. Erickson. Geometric range
searching and its relatives. In B. Chazelle,
J. E. Goodman, and R. Pollack, editors,
Advances in Discrete and Computational
Geometry, volume 223 of Contempo-
rary Mathematics, pages 1–56. American
Mathematical Society, Providence, RI, 1999.

P. K. Agarwal, R. Klein, C. Knauer, S. Langer-
man, P. Morin, M. Sharir, and M. Soss.
Computing the detour and spanning ratio of
paths, trees and cycles in 2d and 3d. Discrete
& Computational Geometry, 2006.

P. K. Agarwal, Y. Wang, and P. Yin. Lower
bound for sparse Euclidean spanners. In Pro-
ceedings of the 16th ACM-SIAM Symposium
onDiscreteAlgorithms, pages670–671,2005.

O. Aichholzer, F. Aurenhammer, C. Icking,
R. Klein, E. Langetepe, and G. Rote. Gen-
eralized self-approaching curves. Discrete
Applied Mathematics, 109:3–24, 2001.

M. Aigner and G. M. Ziegler. Proofs From THE
BOOK. Springer-Verlag, Berlin, 3rd edition,
2004.

N. Alon and Y. Azar. On-line Steiner trees in the
Euclidean plane. Discrete & Computational
Geometry, 10:113–121, 1993.

N. Alon and B. Schieber. Optimal preprocess-
ing for answering on-line product queries.
Technical Report 71/87, Tel-Aviv University,
1987.

H. Alt, C. Knauer, and C. Wenk. Matching
polygonal curves with respect to the Fréchet
distance. In Proceedings of the 18th Annual
Symposium on Theoretical Aspects of Com-
puter Science, volume 2010 of Lecture Notes
in Computer Science, pages 63–74, Berlin,
2001. Springer-Verlag.

H. Alt, C. Knauer, and C. Wenk. Comparison
of distance measures for planar curves.
Algorithmica, 38:45–58, 2003.

I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and
J. Soares. On sparse spanners of weighted
graphs. Discrete & Computational Geometry,
9:81–100, 1993.

S. Arikati, D. Z. Chen, L. P. Chew, G. Das,
M. Smid, and C. D. Zaroliagis. Planar
spanners and approximate shortest path
queries among obstacles in the plane. In
Proceedings of the 4th European Symposium
on Algorithms, volume 1136 of Lecture
Notes in Computer Science, pages 514–528,
Berlin, 1996. Springer-Verlag.

B. Aronov, M. de Berg, O. Cheong, J. Gud-
mundsson, H. Haverkort, and A. Vigneron.
Sparse geometric graphs with small dilation.
In Proceedings of the 16th International
Symposium on Algorithms and Computation,
volume 3827 of Lecture Notes in Com-
puter Science, pages 50–59, Berlin, 2005.
Springer-Verlag.

S. Arora. Polynomial time approximation sch-
emes for Euclidean traveling salesman and
other geometric problems. Journal of the
ACM, 45:753–782, 1998.

S. Arya, G. Das, D. M. Mount, J. S. Salowe, and
M. Smid. Euclidean spanners: short, thin,
and lanky. In Proceedings of the 27th ACM
Symposium on the Theory of Computing,
pages 489–498, 1995.

483

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

484 BIBLIOGRAPHY

S. Arya and D. M. Mount. Approximate range
searching. Computational Geometry: Theory
and Applications, 17:135–152, 2000.

S. Arya, D. M. Mount, N. S. Netanyahu, R. Sil-
verman, and A. Wu. An optimal algorithm
for approximate nearest neighbor searching
in fixed dimensions. Journal of the ACM, 45:
891–923, 1998.

S. Arya, D. M. Mount, and M. Smid. Ran-
domized and deterministic algorithms for
geometric spanners of small diameter. In
Proceedings of the 35th IEEE Symposium on
Foundations of Computer Science, pages
703–712, 1994.

S. Arya, D. M. Mount, and M. Smid. Dynamic
algorithms for geometric spanners of small
diameter: Randomized solutions. Computa-
tional Geometry: Theory and Applications,
13:91–107, 1999.

S. Arya and M. Smid. Efficient construction of
a bounded-degree spanner with low weight.
Algorithmica, 17:33–54, 1997.

P. Assouad. Plongements lipschitziens dans
R

N . Bulletin de la Société Mathématique de
France, 111:429–448, 1983.

M. Ben-Or. Lower bounds for algebraic compu-
tation trees. In Proceedings of the 15th ACM
Symposium on the Theory of Computing,
pages 80–86, 1983.

M. A. Bender and M. Farach-Colton. The LCA
problem revisited. In Proceedings of the 4th
Latin American Symposium on Theoretical
Informatics, volume 1776 of Lecture Notes
in Computer Science, pages 88–94, Berlin,
2000. Springer-Verlag.

J. L. Bentley. Decomposable searching prob-
lems. Information Processing Letters, 8:
244–251, 1979.

J. L. Bentley. Fast algorithms for the geometric
traveling salesperson problems. ORSA
Journal on Computing, 4:387–411, 1992.

J. L. Bentley and J. H. Friedman. Fast algo-
rithms for constructing minimal spanning
trees in coordinate spaces. IEEE Trans.
Comput., C-27:97–105, 1978.

J. L. Bentley, B. W. Weide, and A. C. Yao.
Optimal expected-time algorthms for closest
point problems. ACM Transactions on
Mathematical Software, 6:563–580, 1980.

M. Bern and D. Eppstein. Approximation algori-
thms for geometric problems. In D. S. Hoch-
baum, editor, Approximation Algorithms for
NP-Hard Problems, pages 296–345. PWS
Publishing Company, Boston, MA, 1997.

M. Bern, D. Eppstein, and J. Gilbert. Prova-
bly good mesh generation. Journal of
Computer and System Sciences, 48:384–409,
1994.

S. Bespamyatnikh and M. Segal. Fast al-
gorithms for approximating distances.
Algorithmica, 33:263–269, 2002.

M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest,
and R. E. Tarjan. Time bounds for selection.
Journal of Computer and System Sciences,
7:448–461, 1973.

H. L. Bodlaender, G. Tel, and N. Santoro. Trade-
offs in non-reversing diameter. Nordic Jour-
nal of Computing, 1:111–134, 1994.

J.-D. Boissonnat and M. Yvinec. Algorith-
mic Geometry. Cambridge University Press,
Cambridge, UK, 1998.

B. Bollobás. Modern Graph Theory. Springer-
Verlag, Berlin, 1998.

O. Borůvka. O jistém problému minimálnı́m
(About a certain minimal problem). Práce
Mor. Přı́rodověd. Spol. v Brně III (Acta
Societ. Scient. Natur. Moravicae), 3:37–58,
1926a.

O. Borůvka. Přı́spěvek k řešenı́ otázky eko-
nomické stavby electrovodných sı́tı́ (Con-
tribution to the solution of a problem of
economical construction of electrical net-
works). Elektrotechnický obzor, 15:153–154,
1926b.

P. Bose, L. Devroye, W. Evans, and D. Kirk-
patrick. On the spanning ratio of Gabriel
graphs and β-skeletons. SIAM Journal on
Discrete Mathematics, 20:412–427, 2006.

P. Bose, J. Gudmundsson, and P. Morin. Ordered
theta graphs. Computational Geometry: The-
ory and Applications, 28:11–18, 2004a.

P. Bose, J. Gudmundsson, and M. Smid. Con-
structing plane spanners of bounded degree
and low weight. Algorithmica, 42:249–264,
2005.

P. Bose, A. Maheshwari, G. Narasimhan,
M. Smid, and N. Zeh. Approximating geo-
metric bottleneck shortest paths. Computa-
tional Geometry: Theory and Applications,
29:233–249, 2004b.

P. Bose and P. Morin. Competitive online routing
in geometric graphs. Theoretical Computer
Science, 324:273–288, 2004a.

P. Bose and P. Morin. Online routing in trian-
gulations. SIAM Journal on Computing, 33:
937–951, 2004b.

P. Bose, M. Smid, and D. Xu. Diamond triangu-
lations contain spanners of bounded degree.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHY 485

Proceedings of the 17th International Sympo-
sium on Algorithms and Computation. Lec-
ture Notes in Computer Science, Berlin, 2006.
Springer-Verlag.

J. Bourgain. On Lipschitz embedding of finite
metric spaces in Hilbert space. Israel Journal
of Mathematics, 52:46–52, 1985.

U. Brandes and D. Handke. NP-completeness
results for minimum planar spanners. Dis-
crete Mathematics and Theoretical Computer
Science, 3:1–10, 1998.

A. Brandstädt, V. Chepoi, and F. F. Dragan.
Distance approximating trees for chordal and
dually chordal graphs. Journal of Algorithms,
30:166–184, 1999.

P. Bürgisser, M. Clausen, and M. A. Shokrol-
lahi. Algebraic Complexity Theory. Springer-
Verlag, Berlin, 1997.

S. Cabello. Many distances in planar graphs.
In Proceedings of the 17th ACM-SIAM
Symposium on Discrete Algorithms, pages
1213–1220, 2006.

L. Cai. NP-completeness of minimum spanner
problems. Discrete Applied Mathematics, 48:
187–194, 1994.

L. Cai and D. Corneil. Tree spanners: An
overview. Congressus Numerantium, 88:65–
76, 1992.

L. Cai and D. Corneil. Isomorphic tree spanner
problems. Algorithmica, 14:138–153, 1995a.

L. Cai and D. Corneil. Tree spanners. SIAM
Journal on Discrete Mathematics, 8:359–
387, 1995b.

P. B. Callahan. Optimal parallel all-nearest-
neighbors using the well-separated pair de-
composition. In Proceedings of the 34th IEEE
Symposium on Foundations of Computer
Science, pages 332–340, 1993.

P. B. Callahan. Dealing with Higher Dimen-
sions: The Well-Separated Pair Decompo-
sition and its Applications. Ph.D. thesis,
Department of Computer Science, Johns
Hopkins University, Baltimore, MD, 1995.

P. B. Callahan and S. R. Kosaraju. A decomposi-
tion of multi-dimensional point-sets with ap-
plications to k-nearest-neighbors and n-body
potential fields. In Proceedings of the
24th ACM Symposium on the Theory of
Computing, pages 546–556, 1992.

P. B. Callahan and S. R. Kosaraju. Faster algo-
rithms for some geometric graph problems
in higher dimensions. In Proceedings of
the 4th ACM-SIAM Symposium on Discrete
Algorithms, pages 291–300, 1993.

P. B. Callahan and S. R. Kosaraju. Algorithms
for dynamic closest-pair and n-body potential
fields. In Proceedings of the 6th ACM-SIAM
Symposium on Discrete Algorithms, pages
263–272, 1995a.

P. B. Callahan and S. R. Kosaraju. A decompo-
sition of multidimensional point sets with ap-
plications to k-nearest-neighbors and n-body
potential fields. Journal of the ACM, 42:67–
90, 1995b.

T. M. Chan. Approximate nearest neighbor
queries revisited. Discrete & Computational
Geometry, 20:359–373, 1998.

T. M. Chan. On enumerating and selecting
distances. International Journal of Com-
putational Geometry & Applications, 11:
291–304, 2001.

B. Chandra. Constructing sparse spanners for
most graphs in higher dimensions. Informa-
tion Processing Letters, 51:289–294, 1994.

B. Chandra, G. Das, G. Narasimhan, and
J. Soares. New sparseness results on graph
spanners. International Journal of Computa-
tional Geometry & Applications, 5:125–144,
1995.

A. K. Chandra, S. Fortune, and R. J. Lipton.
Unbounded fan-in circuits and associative
functions. Journal of Computer and System
Sciences, 30:222–234, 1985.

B. Chandra, H. Karloff, and C. Tovey. New
results on the old k-opt algorithm for the
traveling salesman problem. SIAM Journal
on Computing, 28:1998–2029, 1999.

M. S. Chang, N.-F. Huang, and C.-Y. Tang. An
optimal algorithm for constructing oriented
Voronoi diagrams and geographic neighbor-
hood graphs. Information Processing Letters,
35:255–260, 1990.

B. Chazelle. Computing on a free tree via
complexity-preserving mappings. Algorith-
mica, 2:337–361, 1987.

B. Chazelle. The Discrepancy Method. Cam-
bridge University Press, Cambridge, UK,
2000a.

B. Chazelle. A minimum spanning tree
algorithm with inverse-Ackermann type
complexity. Journal of the ACM, 47:
1028–1047, 2000b.

B. Chazelle and L. J. Guibas. Fractional
cascading: I. A data structuring technique.
Algorithmica, 1:133–162, 1986a.

B. Chazelle and L. J. Guibas. Fractional
cascading: II. Applications. Algorithmica, 1:
163–191, 1986b.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

486 BIBLIOGRAPHY

O. Cheong and H. Haverkort and M. Lee.
Computing a minimum-dilation spanning
tree is NP-hard. 2006. Manuscript.

D. Z. Chen, G. Das, and M. Smid. Lower
bounds for computing geometric spanners
and approximate shortest paths. Discrete
Applied Mathematics, 110:151–167, 2001.

D. Cheriton and R. E. Tarjan. Finding minimum
spanning trees. SIAM Journal on Computing,
5:724–742, 1976.

H. Chernoff. A measure of asymptotic efficiency
for tests of a hypothesis based on the sum
of observations. Annals of Mathematical
Statistics, 23:493–509, 1952.

L. P. Chew. There is a planar graph almost as
good as the complete graph. In Proceedings of
the 2nd ACM Symposium on Computational
Geometry, pages 169–177, 1986.

L. P. Chew. There are planar graphs almost
as good as the complete graph. Journal of
Computer and System Sciences, 39:205–219,
1989.

N. Christofides. Worst-case analysis of a new
heuristic for the traveling salesman problem.
In J. F. Traub, editor, Symposium on New
Directions and Recent Results in Algorithms
and Complexity, page 441, New York, 1976.
Academic Press.

K. L. Clarkson. Approximation algorithms for
shortest path motion planning. In Proceed-
ings of the 19th ACM Symposium on the
Theory of Computing, pages 56–65, 1987.

K. L. Clarkson. An algorithm for geometric
minimum spanning trees requiring nearly
linear expected time. Algorithmica, 4:
461–469, 1989.

E. Cohen. Fast algorithms for constructing
t-spanners and paths with stretch t . SIAM
Journal on Computing, 28:210–236, 1998.

R. Cole and U. Vishkin. The accelerated cen-
troid decomposition technique for optimal
parallel tree evaluation in logarithmic time.
Algorithmica, 3:329–346, 1988.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT
Press, Cambridge, MA, 2nd edition, 2001.

A. Czumaj and H. Zhao. Fault-tolerant geo-
metric spanners. Discrete & Computational
Geometry, 32:207–230, 2004.

G. Das. Approximation Schemes in Computa-
tional Geometry. Ph.D. thesis, University of
Wisconsin, 1990.

G. Das. The visibility graph contains a bounded-
degree spanner. In Proceedings of the 9th

Canadian Conference on Computational
Geometry, pages 70–75, 1997.

G. Das and P. J. Heffernan. Constructing degree-
3 spanners with other sparseness properties.
International Journal of Foundations of
Computer Science, 7:121–135, 1996.

G. Das, P. Heffernan, and G. Narasimhan.
Optimally sparse spanners in 3-dimensional
Euclidean space. In Proceedings of the
9th ACM Symposium on Computational
Geometry, pages 53–62, 1993.

G. Das and D. Joseph. Which triangulations
approximate the complete graph? In Proceed-
ings of the International Symposium on Opti-
mal Algorithms, volume 401 of Lecture Notes
in Computer Science, pages 168–192, Berlin,
1989. Springer-Verlag.

G. Das, S. Kapoor, and M. Smid. On the com-
plexity of approximating Euclidean traveling
salesman tours and minimum spanning trees.
Algorithmica, 19:447–460, 1997.

G. Das and G. Narasimhan. A fast algorithm
for constructing sparse Euclidean span-
ners. International Journal of Computa-
tional Geometry & Applications, 7:297–315,
1997.

G. Das and G. Narasimhan. Short cuts in higher
dimensional space. In Proceedings of the 7th
Canadian Conference on Computational
Geometry, pages 103–108, 1995.

G. Das, G. Narasimhan, and J. Salowe. A
new way to weigh malnourished Euclidean
graphs. In Proceedings of the 6th ACM-SIAM
Symposium on Discrete Algorithms, pages
215–222, 1995.

A. Datta, H.-P. Lenhof, C. Schwarz, and
M. Smid. Static and dynamic algorithms
for k-point clustering problems. Journal of
Algorithms, 19:474–503, 1995.

W. H. E. Day and H. Edelsbrunner. Efficient
algorithms for agglomerative hierarchical
clustering methods. Journal of Classification,
1:7–24, 1984.

M. de Berg, M. van Kreveld, M. Overmars,
and O. Schwarzkopf. Computational Ge-
ometry: Algorithms and Applications.
Springer-Verlag, Berlin, 2nd edition, 2000.

M. T. Dickerson, R. L. Drysdale, and J. R. Sack.
Simple algorithms for enumerating interpoint
distances and finding k nearest neighbors.
International Journal of Computational Geo-
metry & Applications, 2:221–239, 1992.

M. T. Dickerson and D. Eppstein. Algorithms
for proximity problems in higher dimensions.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHY 487

Computational Geometry: Theory and Appli-
cations, 5:277–291, 1996.

R. Diestel. Graph Theory. Springer-Verlag,
Berlin, 2nd edition, 2000.

E. W. Dijkstra. A note on two problems in con-
nexion with graphs. Numerische Mathematik,
1:269–271, 1959.

H. N. Djidjev. On-line algorithms for shortest
path problems on planar digraphs. In Pro-
ceedings of the 22nd Workshop on Graph-
Theoretic Concepts in Computer Science,
volume 1197 of Lecture Notes in Computer
Science, pages 151–165, Berlin, 1997.
Springer-Verlag.

D. P. Dobkin, S. J. Friedman, and K. J. Supowit.
Delaunay graphs are almost as good as
complete graphs. Discrete & Computational
Geometry, 5:399–407, 1990.

D. P. Dobkin and R. J. Lipton. On the complex-
ity of computations under varying sets of
primitives. Journal of Computer and System
Sciences, 18:86–91, 1979.

R. L. Drysdale, S. McElfresh, and J. S.
Snoeyink. On exclusion regions for op-
timal triangulations. Discrete Applied
Mathematics, 109:49–65, 2001.

D.-Z. Du and F. K. Hwang. An approach
for proving lower bounds: Solution of
Gilbert-Pollak conjecture on Steiner ratio.
In Proceedings of the 31st IEEE Symposium
on Foundations of Computer Science, pages
76–85, 1990a.

D.-Z. Du and F. K. Hwang. A proof of Gilbert-
Pollak’s conjecture on the Steiner ratio.
Algorithmica, 7:121–136, 1992.

D.-Z. Du and F. K. Hwang. The state of art on
Steiner ratio problems. In D.-Z. Du and F. K.
Hwang, editors, Computing in Euclidean
Geometry, pages 195–224. World Scientific,
Singapore, 2nd edition, 1995.

D. Z. Du and F. K. Hwang. The Steiner ratio
conjecture of Gilbert and Pollak is true.
Proceedings of the National Academy of
Sciences of the United States of America, 87:
9464–9466, 1990b.

A. Dumitrescu, A. Ebbers-Baumann, A. Grüne,
R. Klein, and G. Rote. On geometric dilation
and halving chords. In Proceedings of the
9th Workshop on Algorithms and Data
Structures, volume 3608 of Lecture Notes in
Computer Science, pages 244–255, Berlin,
2005a. Springer-Verlag.

A. Dumitrescu, A. Grüne, and G. Rote.
Improved lower bounds on the geometric

dilation of point sets. In Abstracts of the 21st
European Workshop on Computational
Geometry, pages 37–40, 2005b.

C. A. Duncan. Balanced Aspect Ratio Trees.
Ph.D. thesis, Department of Computer Sci-
ence, Johns Hopkins University, Baltimore,
MD, 1999.

C. A. Duncan, M. T. Goodrich, and S. Kobourov.
Balanced aspect ratio trees: Combining the
advantages of k-d trees and octrees. Journal
of Algorithms, 38:303–333, 2001.

A. Ebbers-Baumann, R. Klein, E. Langetepe,
and A. Lingas. A fast algorithm for approx-
imating the detour of a polygonal chain. In
Proceedings of the 9th European Symposium
on Algorithms, volume 2161 of Lecture Notes
in Computer Science, pages 321–332, Berlin,
2001. Springer-Verlag.

A. Ebbers-Baumann, A. Grüne, and R. Klein.
The geometric dilation of finite point sets.
In Proceedings of the 14th International
Symposium on Algorithms and Computation,
volume 2906 of Lecture Notes in Com-
puter Science, pages 250–259, Berlin, 2003.
Springer-Verlag.

A. Ebbers-Baumann, A. Grüne, and R. Klein.
Geometric dilation of closed planar curves:
A new lower bound. In Abstracts of the
20th European Workshop on Computational
Geometry, pages 123–126, 2004a.

A. Ebbers-Baumann, R. Klein, E. Langetepe,
and A. Lingas. A fast algorithm for approxi-
mating the detour of a polygonal chain.
Computational Geometry: Theory and
Applications, 27:123–134, 2004b.

A. Ebbers-Baumann, A. Grüne, M. Karpinski,
R. Klein, C. Knauer, and A. Lingas. Embed-
ding point sets into plane graphs of small dila-
tion. In Proceedings of the 16th International
Symposium on Algorithms and Computation,
volume 3827 of Lecture Notes in Computer
Science, pages 5–16, Berlin, 2005. Springer-
Verlag.

H. Edelsbrunner. Algorithms in Combinatorial
Geometry. Springer-Verlag, Berlin, 1987.

D. Eppstein. Beta-skeletons have unbounded di-
lation. Computational Geometry: Theory and
Applications, 23:43–52, 2002.

D. Eppstein. Spanning trees and spanners. In
J.-R. Sack and J. Urrutia, editors, Handbook
of Computational Geometry, pages 425–461.
Elsevier Science, Amsterdam, 2000.

D. Eppstein and K. A. Wortman. Minimum
dilation stars. In Proceedings of the 21st

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

488 BIBLIOGRAPHY

ACM Symposium on Computational Geom-
etry, pages 321–326, 2005.

J. Erickson. New lower bounds for Hopcroft’s
problem. Discrete & Computational Geom-
etry, 16:389–418, 1996.

J. Erickson. On the relative complexities of some
geometric problems. In Proceedings of the
7th Canadian Conference on Computational
Geometry, pages 85–90, 1995.

S. Even. Graph Algorithms. W. H. Freeman,
New York, 1979.

M. Farshi and J. Gudmundsson. Experimental
study of geometric t-spanners. In Proceed-
ings of the 13th European Symposium on
Algorithms, volume 3669 of Lecture Notes in
Computer Science, pages 556–567, Berlin,
2005. Springer-Verlag.

M. Farshi, P. Giannopoulos, and J. Gudmunds-
son. Finding the best shortcut in a geometric
network. In Proceedings of the 21st ACM
Symposium on Computational Geometry,
pages 327–335, 2005.

L. Few. The shortest path and the shortest road
through n points in a region. Mathematika,
2:141–144, 1955.

L. R. Ford and S. M. Johnson. A tournament
problem. The American Mathematical
Monthly, 66:387–389, 1959.

G. N. Frederickson. A data structure for dy-
namically maintaining rooted trees. Journal
of Algorithms, 24:37–65, 1997.

G. N. Frederickson. Fast algorithms for shortest
paths in planar graphs, with applications.
SIAM Journal on Computing, 16:1004–1022,
1987.

M. L. Fredman and R. E. Tarjan. Fibonacci
heaps and their uses in improved network
optimization algorithms. Journal of the
ACM, 34:596–615, 1987.

M. L. Fredman and D. E. Willard. Trans-
dichotomous algorithms for minimum
spanning trees and shortest paths. Journal of
Computer and System Sciences, 48:533–551,
1994.

H. Freudenthal. Simplizialzerlegungen von
beschränkter Flachheit. Annals of Mathemat-
ics, 43:580–582, 1942.

J. Gao, L. J. Guibas, and A. Nguyen. De-
formable spanners and applications. Compu-
tational Geometry: Theory and Applications,
35:2–19, 2006.

J. Gao and L. Zhang. Well-separated pair
decomposition for the unit-disk graph metric

and its applications. SIAM Journal on
Computing, 35:151–169, 2005.

M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, New York,
1979.

M. R. Garey, R. L. Graham, and D. S. Johnson.
The complexity of computing Steiner
minimal trees. SIAM Journal on Applied
Mathematics, 32:835–859, 1977.

E. N. Gilbert and H. O. Pollak. Steiner minimal
trees. SIAM Journal on Applied Mathematics,
16:1–29, 1968.

T. Gonzalez. Algorithms on sets and related
problems. Technical Report, Department of
Computer Science, University of Oklahoma,
Norman, 1975.

J. E. Goodman and J. O’Rourke, editors. Hand-
book of Discrete and Computational Geome-
try. CRC Press, Boca Raton, FL, 2nd edition,
2004.

S. Govindarajan, T. Lukovszki, A. Maheshwari,
and N. Zeh. I/O-efficient well-separated pair
decomposition and its applications. [See
notes] Algorithmica, 45:585–614, 2006.

R. L. Graham and P. Hell. On the history of
the minimum spanning tree problem. Ann-
als of the History of Computing, 7:43–57,
1985.

L. F. Greengard. The Rapid Evaluation of Po-
tential Fields in Particle Systems. MIT Press,
Cambridge, MA, 1988.

A. Grüne. Umwege in Polygonen. Master’s the-
sis, Universität Bonn, Germany, 2002.

A. Grüne, R. Klein, and E. Langetepe. Comput-
ing the detour of polygons. In Abstracts of the
19th European Workshop on Computational
Geometry, pages 61–64, 2003.

M. Grünewald, T. Lukovszki, C. Schindelhauer,
and K. Volbert. Distributed maintenance of
resource efficient wireless network topolo-
gies. In Proceedings of the 8th Euro-Par
Conference, volume 2400 of Lecture Notes
in Computer Science, pages 935–946, Berlin,
2002. Springer-Verlag.

J. Gudmundsson and C. Knauer. Dilation and
detours in geometric networks. In T. F. Gon-
zalez, editor, Handbook on Approximation
Algorithms and Metaheuristics. Chapman &
Hall/CRC, Boca Raton, FL, 2006.

J. Gudmundsson and M. Smid. On spanners
of geometric graphs. In Proceedings of the
10th Scandinavian Workshop on Algorithm

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHY 489

Theory, volume 4059 of Lecture Notes in
Computer Science, pages 388–399, Berlin,
2006. Springer-Verlag.

J. Gudmundsson, C. Levcopoulos, and G. Nara-
simhan. Fast greedy algorithms for construct-
ing sparse geometric spanners. SIAM Journal
on Computing, 31:1479–1500, 2002a.

J. Gudmundsson, C. Levcopoulos, G. Nara-
simhan, and M. Smid. Approximate distance
oracles for geometric graphs. In Proceed-
ings of the 13th ACM-SIAM Symposium
on Discrete Algorithms, pages 828–837,
2002b.

J. Gudmundsson, C. Levcopoulos, G. Nara-
simhan, and M. Smid. Approximate distance
oracles revisited. In Proceedings of the 13th
International Symposium on Algorithms and
Computation, volume 2518 of Lecture Notes
in Computer Science, pages 357–368, Berlin,
2002c. Springer-Verlag.

J. Gudmundsson, C. Levcopoulos, G. Nara-
simhan, and M. Smid. Approximate distance
oracles for geometric spanners. Manuscript,
2004.

J. Gudmundsson, G. Narasimhan, and M. Smid.
Fast pruning of geometric spanners. In Pro-
ceedings of the 22nd Symposium on Theo-
retical Aspects of Computer Science, volume
3404 of Lecture Notes in Computer Science,
pages 508–520, Berlin, 2005. Springer-
Verlag.

A. Gupta, R. Krauthgamer, and J. R. Lee.
Bounded geometries, fractals, and low-
distortion embeddings. In Proceedings of the
44th IEEE Symposium on Foundations of
Computer Science, pages 534–543, 2003.

D. Gusfield. Algorithms on Strings, Trees and
Sequences. Cambridge University Press,
Cambridge, UK, 1997.

D. Handke. Graphs with Distance Guarantees.
Ph.D. thesis, Fakultät für Mathematik und
Informatik, Universität Konstanz, Konstanz,
Germany, 1999.

S. Har-Peled and M. Mendel. Fast construction
of nets in low-dimensional metrics and their
applications. SIAM Journal on Computing,
35:1148–1184, 2006.

F. Harary. Graph Theory. Addison-Wesley,
Reading, MA, 1972.

D. Harel and R. E. Tarjan. Fast algori-
thms for finding nearest common ancestors.
SIAM Journal on Computing, 13:338–355,
1984.

J. Heinonen. Lectures on Analysis on Metric
Spaces. Springer-Verlag, Berlin, 2001.

K. Hildrum, J. Kubiatowicz, S. Ma, and S. Rao.
A note on the nearest neighbor in growth-
restricted metrics. In Proceedings of the 15th
ACM-SIAM Symposium on Discrete Algo-
rithms, pages 560–561, 2004.

F. K. Hwang, D. S. Richards, and P. Winter.
The Steiner Tree Problem. Elsevier Science,
Amsterdam, 1992.

C. Icking and R. Klein. Searching for the kernel
of a polygon: A competitive strategy. In
Proceedings of the 11th ACM Symposium on
Computational Geometry, pages 258–266,
1995.

C. Icking, R. Klein, and E. Langetepe. Self-
approaching curves. Mathematical Proceed-
ings of the Cambridge Philosophical Society,
125:441–453, 1999.

H. Imai and Ta. Asano. Dynamic orthogonal
segment intersection search. Journal of
Algorithms, 8:1–18, 1987.

V. Jarnı́k. O jistém problému minimálnı́m.
Práce Moravské Přı́rodovědecké Společnosti,
6:57–63, 1930.

D. B. Johnson and T. Mizoguchi. Selecting the
Kth element in X + Y and X1 + X2 + · · · +
Xm. SIAM Journal on Computing, 7:147–153,
1978.

D. S. Johnson and C. H. Papadimitriou. Com-
putational complexity and the traveling sales-
man problem. In E. L. Lawler, J. K. Lenstra,
A. H. G. Rinnooy Kan, and D. B. Shmoys, ed-
itors, The Traveling Salesman Problem, pages
68–74. John Wiley & Sons, New York, 1985.

P. Jones. Rectifiable sets and the traveling sales-
man problem. Inventiones Mathematicae,
102:1–15, 1990.

C. Jordan. Sur les assemblages de lignes. Jour-
nal für die reine und angewandte Mathe-
matik, 70:185–190, 1869.

M. I. Karavelas and L. J. Guibas. Static and ki-
netic geometric spanners with applications. In
Proceedings of the 12th ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 168–176,
2001.

D. R. Karger and M. Ruhl. Finding nearest
neighbors in growth-restricted metrics. In
Proceedings of the 34th ACM Symposium on
the Theory of Computing, pages 741–750,
2002.

D. R. Karger, P. N. Klein, and R. E. Tarjan.
A randomized linear-time algorithm to find

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

490 BIBLIOGRAPHY

minimum spanning trees. Journal of the
ACM, 42:321–328, 1995.

R. M. Karp. Reducibility among combinatorial
problems. In R. E. Miller and J. W. Thatcher,
editors, Complexity of Computer Compu-
tations, Advances in Computing Research,
pages 85–103. Plenum Press, 1972.

R. M. Karp and J. M. Steele. Probabilistic analy-
sis of heuristics. In E. L. Lawler, J. K. Lenstra,
A. H. G. Rinnooy Kan, and D. B. Shmoys, ed-
itors, The Traveling Salesman Problem, pages
181–205. John Wiley & Sons, New York,
1985.

J. M. Keil. Approximating the complete Eu-
clidean graph. In Proceedings of the 1st Scan-
dinavian Workshop on Algorithm Theory,
volume 318 of Lecture Notes in Computer
Science, pages 208–213, Berlin, 1988.
Springer-Verlag.

J. M. Keil and C. A. Gutwin. Classes of graphs
which approximate the complete Euclidean
graph. Discrete & Computational Geometry,
7:13–28, 1992.

C. Kenyon and R. Kenyon. How to take short
cuts. Discrete & Computational Geometry,
8:251–264, 1992.

S. Khuller, B. Raghavachari, and N. E.
Young. Balancing minimum spanning trees
and shortest-path trees. Algorithmica, 14:
305–321, 1995.

R. Klein, C. Knauer, G. Narasimhan, and
M. Smid. Exact and approximation algo-
rithms for computing the dilation spectrum
of paths, trees, and cycles. In Proceedings
of the 16th International Symposium on
Algorithms and Computation, volume 3827
of Lecture Notes in Computer Science, pages
849–858, Berlin, 2005. Springer-Verlag.

R. Klein and M. Kutz. Computing geometric
minimum-dilation graphs is NP-hard. Pro-
ceedings of the 14th International Symposium
on Graph Drawing. Lecture Notes in Com-
puter Science, Berlin, 2006. Springer-Verlag.

D. E. Knuth. Fundamental Algorithms, vol-
ume 1 of The Art of Computer Programming.
Addison-Wesley, Reading, MA, 3rd edition,
1997.

D. E. Knuth. Sorting and Searching, volume 3
of The Art of Computer Programming.
Addison-Wesley, Reading, MA, 1973.

R. Krauthgamer and J. R. Lee. The black-box
complexity of nearest neighbor search.
In Proceedings of the 31st International
Colloquium on Automata, Languages and

Programming, volume 3142 of Lecture Notes
in Computer Science, pages 858–869, Berlin,
2004a. Springer-Verlag.

R. Krauthgamer and J. R. Lee. Navigating
nets: simple algorithms for proximity search.
In Proceedings of the 15th ACM-SIAM
Symposium on Discrete Algorithms, pages
798–807, 2004b.

R. Krauthgamer, J. R. Lee, M. Mendel, and
A. Naor. Measured descent: a new embed-
ding method for finite metrics. Geometric
and Functional Analysis, 15:839–858,
2005.

J. B. Kruskal. On the shortest spanning subtree
of a graph and the traveling salesman prob-
lem. Proceedings of the American Mathemat-
ical Society, 7:48–50, 1956.

D. Krznaric. Progress in Hierarchical Cluster-
ing & Minimum Weight Triangulation. Ph.D.
thesis, Department of Computer Science,
Lund University, Lund, Sweden, 1997.

D. Krznaric, C. Levcopoulos, and B. J. Nilsson.
Minimum spanning trees in d dimensions.
Nordic Journal of Computing, 6:446–461,
1999.

H. W. Kuhn. Some combinatorial lemmas in
topology. IBM Journal of Research and
Development, 4:518–524, 1960.

J. A. La Poutré. New techniques for the Union-
Find problem. In Proceedings of the 1st ACM-
SIAM Symposium on Discrete Algorithms,
pages 54–63, 1990.

T. J. Laakso. Plane with A∞-weighted metric not
bilipschitz embeddable to R

n. Bulletin of the
London Mathematical Society, 34:667–676,
2002.

S. Langerman, P. Morin, and M. Soss. Comput-
ing the maximum detour and spanning ratio
of planar paths, trees and cycles. In Proceed-
ings of the 19th Symposium on Theoretical
Aspects of Computer Science, volume 2285
of Lecture Notes in Computer Science, pages
250–261, Berlin, 2002. Springer-Verlag.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy
Kan, and D. B. Shmoys, editors. The Travel-
ing Salesman Problem. John Wiley & Sons,
New York, 1985.

H.-O. Le and V. B. Le. Optimal tree 3-spanners
in directed path graphs. Networks, 34:81–87,
1999.

A. W. Lee. Diamonds are a Plane Graph’s
Best Friend. Master’s thesis, School of Com-
puter Science, Carleton University, Ottawa,
2004.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHY 491

D. T. Lee and B. J. Schachter. Two algorithms
for constructing Delaunay triangulations.
International Journal of Computer and
Information Sciences, 9:219–242, 1980.

D. T. Lee and C. K. Wong. Quintary trees: A
file structure for multidimensional database
systems. ACM Transactions on Database
Systems, 5:339–353, 1980.

D. T. Lee and Y. F. Wu. Geometric complexity
of some location problems. Algorithmica,
1:193–211, 1986.

H.-P. Lenhof and M. Smid. Sequential and par-
allel algorithms for the k closest pairs prob-
lem. International Journal of Computational
Geometry & Applications, 5:273–288, 1995.

C. Levcopoulos and A. Lingas. There are planar
graphs almost as good as the complete graphs
and almost as cheap as minimum spanning
trees. Algorithmica, 8:251–256, 1992.

C. Levcopoulos, G. Narasimhan, and M. Smid.
Efficient algorithms for constructing fault-
tolerant geometric spanners. In Proceedings
of the 30th ACM Symposium on the Theory
of Computing, pages 186–195, 1998.

C. Levcopoulos, G. Narasimhan, and M. Smid.
Improved algorithms for constructing fault-
tolerant spanners. Algorithmica, 32:144–156,
2002.

X.-Y. Li and Y. Wang. Efficient construction of
low weighted bounded degree planar span-
ner. International Journal of Computational
Geometry & Applications, 14:69–84, 2004.

S. Lin. Computer solutions of the traveling
salesman problem. Bell Systems Technical
Journal, 44:2245–2269, 1965.

S. Lin and B. Kernighan. An effective heuristic
algorithm for the traveling salesman problem.
Operations Research, 21:498–516, 1973.

N. Linial, E. London, and Y. Rabinovich.
The geometry of graphs and some of its
algorithmic applications. Combinatorica, 15:
215–245, 1995.

R. J. Lipton and R. E. Tarjan. Applications of
a planar separator theorem. SIAM Journal on
Computing, 9:615–627, 1980.

R. J. Lipton and R. E. Tarjan. A separator
theorem for planar graphs. SIAM Journal on
Applied Mathematics, 36:177–189, 1979.

G. S. Lueker. A data structure for orthogo-
nal range queries. In Proceedings of the
19th IEEE Symposium on Foundations of
Computer Science, pages 28–34, 1978.

T. Lukovszki. New results on fault tolerant
geometric spanners. In Proceedings of the 6th

Workshop on Algorithms and Data Struc-
tures, volume 1663 of Lecture Notes in Com-
puter Science, pages 193–204, Berlin, 1999a.
Springer-Verlag.

T. Lukovszki. New Results on Geometric Span-
ners and Their Applications. Ph.D. thesis,
Department of Computer Science, Univer-
sity of Paderborn, Paderborn, Germany,
1999b.

T. Lukovszki, A. Maheshwari, and N. Zeh.
I/O-efficient batched range counting and
its applications to proximity problems. In
Proceedings of the 21st Conference on the
Foundations of Software Technology and The-
oretical Computer Science, volume 2245 of
Lecture Notes in Computer Science, pages
244–255, Berlin, 2001. Springer-Verlag.

M. S. Madanlal, G. Venkatesan, and C. Pandu
Rangan. Tree 3-spanners on interval, permu-
tation and regular bipartite graphs. Informa-
tion Processing Letters, 59:97–102, 1996.

A. Maheshwari, M. Smid, and N. Zeh. I/O-
efficient shortest-path queries in geometric
spanners. In Proceedings of the 7th Work-
shop on Algorithms and Data Structures,
volume 2125 of Lecture Notes in Computer
Science, pages 287–299, Berlin, 2001.
Springer-Verlag.

U. Manber. Introduction to Algorithms: A Cre-
ative Approach. Addison-Wesley, Reading,
MA, 1989.

U. Manber and M. Tompa. The complexity of
problems on probabilistic, nondeterministic,
and alternating decision trees. Journal of the
ACM, 32:720–732, 1985.

J. Matoušek. Geometric Discrepancy: An Illus-
trated Guide. Springer-Verlag, Berlin, 1999.

J. Matoušek. Lectures on Discrete Geometry.
Springer-Verlag, Berlin, 2002.

K. Mehlhorn. Data Structures and Algorithms
3: Multi-dimensional Searching and Compu-
tational Geometry. Springer-Verlag, Berlin,
1984a.

K. Mehlhorn. Data Structures and Algorithms
1: Sorting and Searching. Springer-Verlag,
Berlin, 1984b.

K. Mehlhorn and S. Näher. Dynamic fractional
cascading. Algorithmica, 5:215–241, 1990.

K. Menger. Zur allgemeinen Kurventheorie.
Fundamenta Mathematicae, 10:96–115,
1927.

J. W. Milnor. On the Betti numbers of real alge-
braic varieties. Proceedings of the American
Mathematical Society, 15:275–280, 1964.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

492 BIBLIOGRAPHY

J. W. Milnor. Singular Points of Complex Hype-
rsurfaces. Princeton University Press, Prince-
ton, NJ, 1968.

J. S. B. Mitchell. Guillotine subdivisions ap-
proximate polygonal subdivisions: A simple
polynomial-time approximation scheme for
geometric TSP, k-MST, and related prob-
lems. SIAM Journal on Computing, 28:
1298–1309, 1999.

J. S. B. Mitchell. Geometric shortest paths and
network optimization. In J.-R. Sack and J. Ur-
rutia, editors, Handbook of Computational
Geometry, pages 633–701. Elsevier Science,
Amsterdam, 2000.

M. Mitzenmacher and E. Upfal. Probability and
Computing. Cambridge University Press,
Cambridge, UK, 2005.

L. Monier. Combinatorial solutions of multidi-
mensional divide-and-conquer recurrences.
Journal of Algorithms, 1:60–74, 1980.

R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press,
Cambridge, UK, 1995.

D. M. Mount. Dumbbell trees. Unpublished
manuscript, 1994.

K. Mulmuley. Computational Geometry: An
Introduction Through Randomized Algo-
rithms. Prentice-Hall, Englewood Cliffs, NJ,
1994.

W. Mulzer and G. Rote. Minimum weight
triangulation is NP-hard. Proceedings of the
22nd ACM Symposium on Computational
Geometry, 1–10, 2006.

G. Narasimhan and M. Smid. Approximation
algorithms for the bottleneck stretch factor
problem. Nordic Journal of Computing, 9:
13–31, 2002.

G. Narasimhan and M. Smid. Approximating
the stretch factor of Euclidean graphs. SIAM
Journal on Computing, 30:978–989, 2000.

G. Narasimhan and M. Smid. Approximating
the stretch factor of Euclidean paths, cycles
and trees. Technical Report 9, Department of
Computer Science, University of Magdeburg,
Magdeburg, Germany, 1999.

G. Narasimhan and M. Zachariasen. Geometric
minimum spanning trees via well-separated
pair decompositions. ACM Journal of Exper-
imental Algorithmics, 6, 2001. Article 6.

G. Narasimhan, J. Zhu, and M. Zachariasen.
Experiments with computing geometric
minimum spanning trees. In Proceedings of
the 2nd Workshop on Algorithm Engineering
and Experiments, pages 183–196, 2000.

G. Navarro and R. Paredes. Practical construc-
tion of metric t-spanners. In Proceedings of
the 5th Workshop on Algorithm Engineering
and Experiments, pages 69–81, 2003.

J. Nešetřil. Some remarks on the history of
MST-problem. Archivum Mathematicum,
33:15–22, 1997.

J. Nievergelt and F. P. Preparata. Plane-sweep
algorithms for intersecting geometric figures.
Communications of the ACM, 25:739–747,
1982.

J. O’Rourke. Computational Geometry in C.
Cambridge University Press, Cambridge,
UK, 2nd edition, 1998.

C. H. Papadimitriou. The Euclidean traveling
salesman problem is NP-complete. Theoret-
ical Computer Science, 4:237–244, 1977.

D. Peleg. Distributed Computing: A Locality-
Sensitive Approach. Monographs on Discrete
Mathematics and Applications. Society
for Industrial and Applied Mathematics,
Philadelphia, 2000.

D. Peleg and A. A. Schäffer. Graph spanners.
Journal of Graph Theory, 13:99–116, 1989.

D. Peleg and J. D. Ullman. An optimal syn-
chronizer for the hypercube. In Proceedings
of the 8th ACM Symposium on Principles of
Distributed Computing, pages 77–85, 1987.

D. Peleg and J. D. Ullman. An optimal syn-
chronizer for the hypercube. SIAM Journal
on Computing, 18:740–747, 1989.

S. Pettie and V. Ramachandran. An optimal
minimum spanning tree algorithm. Journal
of the ACM, 49:16–34, 2002.

F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag,
Berlin, 1988.

R. C. Prim. Shortest connection networks and
some generalizations. Bell Systems Technical
Journal, 36:1389–1401, 1957.

E. Prisner. Distance approximating spanning
trees. In Proceedings of the 14th Symposium
on Theoretical Aspects of Computer Science,
volume 1200 of Lecture Notes in Computer
Science, pages 499–510, Berlin, 1997.
Springer-Verlag.

W. Pugh. Skip lists: A probabilistic alternative
to balanced trees. Communications of the
ACM, 35:668–676, 1990.

M. O. Rabin. Proving simultaneous positivity
of linear forms. Journal of Computer and
System Sciences, 6:639–650, 1972.

S. B. Rao and W. D. Smith. Approximating
geometrical graphs via “spanners” and

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

BIBLIOGRAPHY 493

“banyans.” In Proceedings of the 30th ACM
Symposium on the Theory of Computing,
pages 540–550, 1998.

E. M. Reingold. On the optimality of some
set algorithms. Journal of the ACM, 19:
649–659, 1972.

D. J. Rosenkrantz, R. E. Stearns, and P. M.
Lewis. An analysis of several heuristics
for the traveling salesman problem. SIAM
Journal on Computing, 6:563–581, 1977.

J. Ruppert and R. Seidel. Approximating the
d-dimensional complete Euclidean graph. In
Proceedings of the 3rd Canadian Conference
on Computational Geometry, pages 207–210,
1991.

J.-R. Sack and J. Urrutia, editors. Handbook of
Computational Geometry. Elsevier Science,
Amsterdam, 2000.

S. Sahni and T. Gonzalez. P-complete ap-
proximation problems. Journal of the ACM,
23:555–565, 1976.

J. S. Salowe. Constructing multidimensional
spanner graphs. International Journal of
Computational Geometry & Applications, 1:
99–107, 1991.

J. S. Salowe. Enumerating interdistances in
space. International Journal of Computa-
tional Geometry & Applications, 2:49–59,
1992.

J. S. Salowe. Euclidean spanner graphs with
degree four. Discrete Applied Mathematics,
54:55–66, 1994.

F. Santos and R. Seidel. A better upper bound
on the number of triangulations of a planar
point set. Journal of Combinatorial Theory,
Series A, 102:186–193, 2003.

B. Schieber and U. Vishkin. On finding lowest
common ancestors: Simplifications and par-
allelisations. SIAM Journal on Computing,
17:327–334, 1988.

O. Schwarzkopf. Dynamic maintenance of geo-
metric structures made easy. In Proceedings
of the 32nd IEEE Symposium on Founda-
tions of Computer Science, pages 197–206,
1991.

S. Semmes. On the nonexistence of bi-
Lipschitz parameterizations and geometric
problems about A∞-weights. Revista
Matemática Iberoamericana, 12:337–410,
1996.

M. I. Shamos and D. Hoey. Closest-point
problems. In Proceedings of the 16th IEEE
Symposium on Foundations of Computer
Science, pages 151–162, 1975.

M. Sharir and P. K. Agarwal. Davenport-
Schinzel Sequences and Their Geometric
Applications. Cambridge University Press,
Cambridge, UK, 1995.

M. Sigurd and M. Zachariasen. Construction of
minimum-weight spanners. In Proceedings
of the 12th European Symposium on Algo-
rithms, volume 3221 of Lecture Notes in
Computer Science, pages 797–808, Berlin,
2004. Springer-Verlag.

M. Smid. Closest-point problems in computa-
tional geometry. In J.-R. Sack and J. Urrutia,
editors, Handbook of Computational Ge-
ometry, pages 877–935. Elsevier Science,
Amsterdam, 2000.

M. Smid. Geometric spanners with few edges
and degree five. In Proceedings of the
12th Computing: The Australasian Theory
Symposium, volume 51 of Conferences in
Research and Practice in Information Tech-
nology, pages 7–9, Sydney, 2006. Australian
Computer Society Inc.

M. Smid. Maintaining the minimal distance of a
point set in polylogarithmic time. Discrete &
Computational Geometry, 7:415–431, 1992.

W. D. Smith. Studies in Computational Geome-
try Motivated by Mesh Generation. Ph.D. the-
sis, Priceton University, Princeton, NJ, 1988.

J. Soares. Approximating Euclidean distances
by small degree graphs. Discrete & Compu-
tational Geometry, 11:213–233, 1994.

J. Soares. Graph spanners: A survey. Congres-
sus Numerantium, 89:225–238, 1992.

J. M. Steele and T. L. Snyder. Worst-case
growth rates of some classical problems of
combinatorial optimization. SIAM Journal
on Computing, 18:278–287, 1989.

J. M. Steele and A. C. Yao. Lower bounds
for algebraic decision trees. Journal of
Algorithms, 3:1–8, 1982.

H.-H. Stølum. River meandering as a self-
organizational process. Science, 271:
1710–1713, 1996.

K. Talwar. Bypassing the embedding: Approxi-
mation schemes and compact representations
of low dimensional metrics. In Proceedings
of the 36th ACM Symposium on the Theory
of Computing, pages 281–290, 2004.

R. E. Tarjan. Efficiency of a good but not linear
set-union algorithm. Journal of the ACM,
22:215–225, 1975.

S. R. Tate and K. Xu. General-purpose spatial
decomposition algorithms: Experimental
results. In Proceedings of the 2nd Workshop

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

494 BIBLIOGRAPHY

on Algorithm Engineering and Experiments,
pages 197–215, 2000.

R. Thom. Sur l’homologie des variétés
algébriques reélles. In S. S. Cairns, editor,
Differential and Combinatorial Topology,
pages 255–265. Princeton University Press,
Princeton, NJ, 1965.

M. Thorup. Parallel shortcutting of rooted trees.
Journal of Algorithms, 23:139–159, 1997.

P. M. Vaidya. Minimum spanning trees in
k-dimensional space. SIAM Journal on Com-
puting, 17:572–582, 1988.

P. M. Vaidya. An O(n log n) algorithm for the
all-nearest-neighbors problem. Discrete &
Computational Geometry, 4:101–115, 1989.

P. M. Vaidya. A sparse graph almost as good
as the complete graph on points in K dimen-
sions. Discrete & Computational Geometry,
6:369–381, 1991.

J. H. van Lint and R. M. Wilson. A Course in
Combinatorics. Cambridge University Press,
Cambridge, UK, 1992.

K. R. Varadarajan. A divide-and-conquer
algorithm for min-cost perfect matching in
the plane. In Proceedings of the 39th IEEE
Symposium on Foundations of Computer
Science, pages 320–329, 1998.

D. E. Willard. Predicate-oriented database
search algorithms. Ph.D. thesis, Harvard

Computation Laboratory, Harvard University,
Cambridge, MA, 1978. Report TR-20-78.

D. E. Willard. The super-b-tree algorithm.
Report TR-03-79, Harvard Computation
Laboratory, Harvard University, Cambridge,
MA, 1979.

D. E. Willard and G. S. Lueker. Adding range
restriction capability to dynamic data struc-
tures. Journal of the ACM, 32:597–617, 1985.

A. C. Yao. On constructing minimum spanning
trees in k-dimensional spaces and related
problems. SIAM Journal on Computing, 11:
721–736, 1982a.

A. C. Yao. Lower bounds for algebraic com-
putation trees with integer inputs. SIAM
Journal on Computing, 20:655–668, 1991.

A. C. Yao. Probabilistic computation: Towards
a unified measure of complexity. In Pro-
ceedings of the 18th IEEE Symposium on
Foundations of Computer Science, pages
222–227, 1977.

A. C. Yao. Space-time trade-off for answer-
ing range queries. In Proceedings of the
14th ACM Symposium on the Theory of
Computing, pages 128–136, 1982b.

N. R. Zeh. I/O-Efficient Algorithms for Shortest
Path Related Problems. Ph.D. thesis, School
of Computer Science, Carleton University,
Ottawa, Canada, 2002.

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

Algorithms Index

ApproxDistEnum, 140–141, 145
ApproxMST, 194
ApproxSF, 243–248
ApproxShortestPath, 424–425

BoundaryPatch, 455–457
Build�Graph, 72–73, 104

CentroidDecomp, 222–224
ClosestPair, 186–187
ClusterCover, 341–342
ClusterGraph, 342–344, 418
ComputeWSPD, 163–164, 166–167, 171, 197–198

DecreaseKey, 35
Delete, 103
DeleteMin, 35
Dijkstra’s algorithm, 31, 139, 142, 242, 329
Dijkstra’s shortest paths, 31–35, 139

EdgePartition, 387–388
ExactDistEnum, 142–144

FastApproxSF, 250–253
FastGapGreedy, 134–136
FastGapGreedyDDim, 137, 144
FastPathGreedy, 346
FastSplitTree, 162, 197
FindPairs, 163, 166, 172, 198
ForbidSink, 129, 136
ForbidSource, 129, 133, 136
FTPathGreedy, 438

GapExactDistEnum, 145
GapGreedy, 122–126
GoodShiftVector, 461–463
GreedyCenters, 365

GreedyPrune, 402
GreedyRefine, 370
GreedySelect, 368

Insert, 35
Integralize, 357, 379

LightGraph, 451–454

ModGapGreedy, 126–127, 136
MultipleSources, 360–362

PartialSplitTree, 159–161
Patch, 457–461
PathGreedy, 258–259, 307
PrelimPartition, 203–204
PruneSpanner, 407

RAMClusterGraph, 362–364
RAMPathGreedy, 374–376
RangeQuery, 102
RecomputeCenters, 366–368, 372
RefinedPartition, 204
Reintegralize, 357
RestrictedApproxShortestPath, 420–422

ShortPath, 344–345
SimpleFTS, 431–434
SingleSource, 32, 341
SLS-Walk, 83–89
SplitTree, 156–158

TreeMonoDiam, 234–237
TreeMonoDiam2, 220–221
TreeMonoDiam3, 226–227
TreeMonoDiamLin, 237–238
�-Walk, 66–69

495

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

Index

Ackermann function, 228–233
acyclic connected graph, 6
adjacency list, 20
adjacency matrix, 20
algebraic computation-tree algorithm, 245
algebraic computation-tree model, 18, 24, 26, 29, 41,

73, 399, 416
closest pair problem, 50–51
computation trees, 41–43
decision trees, 43
lower bounds for algebraic decision tree algorithms,

43–51
lower bounds for spanner constructions, 51–57
sorting problem, 50–51

algebraic decision tree model, 41, 43, 49
time complexity in, 48, 50

algorithms
algorithms and data structures, 18–19
all-nearest neighbors problem, 190–193
divide-and-conquer technique, 29
external memory, 477
k closest pairs, sequence of, 187–190
lower bounds for algebraic decision tree algorithms,

43–51
plane sweep, 70
randomized, 78
sorting, 50

all-nearest neighbors problem, 190–193
all-pairs-shortest-path problem, 242
ancestor, 20

lowest common, 21–29
proper, 20

approximation algorithm, 242
faster approximation of stretch factor of Euclidean

graph, 248–253
first approximation of stretch factor of Euclidean

graph, 243–248

balanced binary search trees, 18, 99, 132, 416
base-separated, 265, 266
Big-Oh bounds, 11
binary tree, 20
bounding box, 151
bucketing distances, 416

canonical nodes. See nodes
Cartesian product, of d intervals, 143
centroid edge, 30
centroid node, 29
Chernoff bounds, 88

cleanup phase, 273
clusters, 328

center, 364–373
cover, 362–364
graph, 328–329

complete graph, 3, 19
conditional probabilities, 86
cone, 64, 71

angular diameter of, 93
apex of, 64
covering d-dimensional hypercube with, 93–95
simplicial. See simplicial cones and frames

connectivity, 4, 427
cut vertices

connecting of, 224–227
existence of, 222–224

cycle, 19

d-dimensional hyperrectangle, 99
d-dimensional unit cube, 112
decision problem, 43
degree, 4
Delaunay triangulation, 470
descendent, 20

proper, 20
detour, 476–477
diameter, 4
α-diamond property, of graph, 471
α-diamond, of line segment, 471
Dijkstra’s algorithm, 31, 139, 142, 242, 329
dilation. See stretch factor
directed t-spanner, 9

paths, 9
directed graph, 19

embedding of, 19
directed path, 9, 74–75
distance enumeration

approximation of, 139–142
exact, 142–144

distance range hierarchy, 386
distortion. See stretch factor
doubling dimension, of metric space, 174
doubling metrics, 174
DRH theorem, 400

for spanners, 411–412
dumbbell nodes, 208, 214
dumbbell potential, 274, 276
dumbbell trees, 197, 214, 238

as spanners, 210–215
construction of, 209–210

496

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

INDEX 497

dumbbells, 197–198, 296
of approximately same length, 205–206
dumbbell theorem, 197, 215–217
dumbbell trees. See dumbbell trees
empty-region property, 205–207
heads, 198, 262–263
length, 196
length-grouping property, 202–205
nested, 279
packing results for dumbbells, 198–202
properties of, 200–202
pseudo, 262, 274, 283, 298–300, 302,

304–306
dynamic programming, 464–466

edge, 19
charging path of, 280
connected by, 19
downstream, 225
forbidden, 126
lateral, 263. See also lateral edges
nonforbidden, 126
non-lateral graph of, 276
non-lateral, 263, 297. See also non-lateral edges
nulled out by, 277–278
upstream, 225

element uniqueness problem, 43, 50, 245
empty-region property, 197

computation of, 205–207
Euclidean distance 20
Euclidean graphs, 20

approximating stretch factor of, 243–253,
425–426

hierarchy of, 388–390
Euclidean graphs, approximating stretch factor of,

425–426
faster approximation of, 248–253
first approximation algorithm of, 243–248

Euclidean metrics, 8, 124, 172, 174
Euclidean minimum spanning tree, 12
Euclidean planar graph, 242
Euler tour, 8, 24–25
Euler’s gamma-function, 112
Euler’s theorem, 9

fault-tolerance, 4. See also fault-tolerant spanners
of network, 5

fault-tolerant spanners
among obstacles, 472–473
based on well-separated pairs, 434–437
definition of, 427–429
EFTS, 429–432
FTS, 429–432
of low degree and low weight, 437–441,

468–469
path greedy, 438–441
plane, 470–472
simple transformation of, 430–434
single-source, 473–474
VFTS, 429–430
with few edges, 469–470
with O(kn) edges, 437

Fermat problem, 7
Fibonacci heaps, 18, 242
flat faces, 262
θ -frame

application of, 98–99
construction of, 93–97
definition of, 93

Fréchet and Hausdorff distance measures, of plane
curves, 476

Gabriel graph, 471
gap property, 108–111, 127

geometric lemma, 114–116
lower bound, 111–112
upper bound for points in the unit cube,

112–114
Gap Theorem, 109, 257, 260, 320

proof of, 111
gap-greedy algorithm, 121–124

condition for spannerhood, 120–121
efficient implementation of, 128–137
generalizations to higher dimensions, 137

generalizing skip lists, 78
genus, 4
geographic neighborhood graph, 65
geometric dilation, concept of, see detour
geometric network, 3, 9, 20

t-spanner, on US cities, 10
graph algorithms, 30
graphs

acyclic connected, 3
coloring graphs, of bounded degree,

30–31
connected, 7, 9, 12, 390, 468–469
α-diamond property of, 471
κ-good polygon property of, 471
notions from graph theory, 19–21
representation of, 20–21
sparse, 20
star, 474

�-graphs
application of, 98–99
construction of θ -frames, 93–98
construction of, 69–73
d-dimensional, 104
higher-dimensional, 103–106
planar, 19
range trees, 99–103
simplicial cones and frames, 92–93
spanners from, 63–73
stretch factor bounding of, 65–69

greedy algorithm, 281

heaps, 18
hierarchical decomposition, 399–400

comparison of shortest-path distances in the
spanner G, 396–399

hierarchy of Euclidean graphs, 388–390
partitioning of edge sets, 386–388
properties of, 390–395
querying of, 395–396

Hopcroft’s problem, 476–477

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

498 INDEX

hypercube, 155, 157, 162, 165, 201, 209, 320,
450

covering, with cone, 93–95
d-dimensional, 94, 96, 143
subhypercubes, 94–95
triangulation of, 95–96
unit, 96

hypercylinders, 262, 291–292, 302
hyperrectangle, 155, 160–161, 165,

209

I/O-efficient algorithms, 477
in-block range minimum queries, 28
indirect addressing operation, 24, 29
infinite stretch factor, 6, 475
inorder traversal, of tree, 21
integer weight function, 354, 355–357, 379

k t-approximate closest pairs, sequence of,
139

Kruskal’s algorithm, 12, 13, 36
κ-good polygon property, of graph, 471

lateral edges, 271–273
processing one edge of E, 300–301

layer 3 lists, 131
leaf, 20
Leapfrog Theorem, 115, 262–264, 301, 306–309, 315,

330, 378
bounding the weight of lateral and non-lateral edges,

273–294, 297–306
cleanup phase in, 264–273
condition for, 260–262
relation to gap property, 259–260
variant of, 307–309

length of a path, 5, 20
length-grouped, 264, 265, 266
length-grouping property, 197, 214

computation of, 202–205
linear decision tree algorithms, 44–46
linked lists, 18
load factor, 4
locating centers, 474
lower bounds

for algebraic decision tree algorithms,
43–51

for pairwise distinct points, 52–53
for spanner constructions, 51–57
general, 46–50

lowest common ancestor, of any two nodes, 21–24
faster algorithm for queries of, 24–29

Markov’s inequality, 462
metric space, 173
mindist-structure T , 132, 134, 137
mingap function, 56
monotone path, 235
multicriteria optimization problems, 6

near-parallel, 264–266, 273, 307
neighborhood, 143–144

nested-dumbbells, 265–271
network analysis, significance of, 5
network design

desirable properties of, 6
problems, 5–6

network design problem, 5
nodes, 20

canonical, 101
dumbbell, 208
head, 208
internal, 20
lowest common ancestor of, 21–29

non-lateral edges, 271–273
analysis of �f , 289–295
charging path for edge e, 277–280
choosing of subsets, 282–286
decomposition of the charge path P ,

286–289
lemmas on intervals, 280–282
processing one edge of E, 276–277

non-lateral graph, 279
normalized block queries, 28–29

2-OPT, 114, 116–119
worst-case analysis, 116–118

2-optimal tour, 116–117
optimal length tour, 8
orthogonal range searching, 99

packing arguments
arguments, 165, 330, 338–339, 358, 371,

373
results, 196, 198–202, 357–359

pair queries, 168
answering of, using centroid edges,

169–170
answering of, using path decomposition,

170–172
pairwise distinct points, 52–57
parent, 20
Patching Lemma, 459–461
path

connected by, 19
cycle, 19
directed t-spanner, 9
directed, 9, 74–75
length of, 5
simple, 19

path-greedy algorithm, 9, 13
analysis of simple form of, 319–327
faster algorithm. See faster algorithm with indirect

addressing
implementation of

clsuter graph approximation, 332–338
cluster graphs, notions of, 330–332
clustering weighted graphs, 330–332
constructing cluster algorithms of partial spanners,

340
constructing cluster graphs of partial spanners,

338–340
first improvement to, 327–330

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

INDEX 499

path-greedy spanner
improved weight analysis of, 325–326
probablistic analysis of, 321–325

perturbation step, 444–446
plane sweep algorithm, 70
point location query, 98
polynomial equations, system of, 46–48
polynomial-time approximation schemes, 8,

443–444
postorder traversal, of tree, 21
potential function �, 274
preorder traversal, of tree, 21
Prim’s algorithm, 37–38
proper ancestor, 20
proper descendent, 20
pruning spanners

distance range hierarchy of, 404–406
general framework for, 401–403
pruning algorithm based on the distance range

hierarchy, 406–408
pruning algorithm based on well-separated pairs,

403–404
PTAS. See polynomial-time approximation schemes

quadtree structure, construction of, 448–450

radial distance, 274
radial potential, 274
radial weight, 274
range minimum problem, 24

solving of, 26–29
range minimum query, in array, 25–27
range trees, 124

d-dimensional, 100–101
definition, 100
for supporting deletions, 102–103
in range query operations, 101–102

rectifiable curves, 475
reintegralize function, 379
running time, of an algorithm, 18

second shortest path, 261
separation ratio, 152
separator node, 30
short path approximations, in spanners

approximate shortest path queries, for separated
points, 416–422

arbitrary approximate shortest path queries,
422–425

bucketing distances, 416
shortcuts, 474–476
short-cutting operations, 8
short-cutting trees

Ackermann function and its inverse,
228–233

generalization of larger monotone diameters,
227–228

monotone diameters 1 and 2, 220–221
monotone diameters 2k, 233–237
monotone diameters 3, 221–227
using O(n) edges, 237–238

simplex, 95
simplicial cones and frames, 92–93
sink spanners. See spanners
sink, 109, 126
skip lists spanners, 81–85, 88–89

bounding the spanner diameter of, 86–89
d-dimensional, 106

skip lists, 18, 79–81
generalizing, 78

solution space, 41
sorting problem, 41
spanners, 5, 9

algorithm, 12
among obstacles, 472
approximating shortest paths in. See short path

approximations, in spanners
based on WSPD, 154–155, 168
based on �-graph, 63–73
bounded degree d-dimensional, 105
diameters of, 11, 73, 185, 239
directed, 9
distance range hierarchy for, 408–412
dumbbell trees as, 209–210
experimental work related to, 478–479
fault-tolerant. See fault-tolerant spanners
gap-greedy, 144–145
of bounded degrees, 73–78

first construction, 178–180
second construction, 180–183

of low degree, 468–469
open problems with, 479–481
path-greedy. See path-greedy spanner
plane, 470–472
pruning. See pruning spanners
q-sink t-, 104–105
single-source, 473
sink, 74–77, 104–105
skip list. See skip lists spanners
sparse, 5, 11
transformation of bounded degree, 76–78
transformation of bounded outdegree to bounded

degree, 105
weight analysis of, 348–350
with few edges, 469–470
with logarithmic spanner diameter, 184–186. See also

skip lists spanners
with low spanner diameter, 238–239

spanning tree, 6
Kruskal’s algorithm, of minimum, 12–13, 36
minimum, 11–12, 35, 108, 262, 298, 301, 320, 330,

377, 434
computation of, approximate, 193–194
Prim’s algorithm, of minimum, 37–38

properties of, 6
Sparse Ball Theorem, 298, 303, 309–315

proof of, 315
recurrence relation for Steiner points, 310–315

sparse graphs, 20
sparse network, 4
sparse spanner network, 5
sparse spanners, 5

P1: JZP

CUNY600-Main CUNY600-Narasimhan 0 521 86205 1 October 31, 2006 23:14

500 INDEX

sparse t-spanner, 69
split tree, 168, 171, 180, 199, 210, 244

computation of, in O(n log n) time, 158–162
definition of, 155–158
height of, 156
partial, 158

star graph, 474
Steiner minimum tree, 6–7, 264, 298, 303
Steiner points, 4, 6–7, 292, 310–315
Steiner trees, 7
Steiner t-spanner, 51–54, 56
stretch factor, 4, 15

approximation algorithm of Euclidean graphs. See
approximation algorithm

bounding of, to �-graph, 65–69
constant, 469
decreasing the, 474
of Euclidean graphs, 425–426
of Gabriel graph, 471
infinity, 6, 475
minimum, 478
of minimum spanning tree, 469
of plane graph, 471
of triangulations, 471
single-source, 473

structure theorem, 463–464
subhypercubes. See hypercube
subtree. See tree

T -monotone path, 219–222, 226–227, 233–235,
238

t-approximate minimum spanning tree, 193
time complexity, 42–43
T -monotone diameter, 38, 219–222, 225–226, 228,

233–238
translated query halfplane, 70–71
traveling salesperson problem, 8–9, 110–111

worst-case analysis, of the 2-OPT algorithm for,
116–118

traveling salesperson tour, 6, 8–9
traversals

inorder, 21
postorder, 21
preorder, 21

tree, 3, 20
arbitrary rooted, 24
computing stretch factors of, 245–248
nesting, 262
short cutting problems on, 219
split. See split tree
subtree, 20–21, 71, 170, 181, 213, 223, 286
traversing binary, 21

triangle inequality, 19, 31, 173, 249, 291

triangulations, 9
Delaunay, 9, 11, 470
greedy, 9
minimum weight, 9

t-spanner path, 9
t-spanners. See spanners

undirected graph, 19
embedding of, 19
weighted, 19

unit disk graph, 173
unit disk metrics, 173

vertex, 20, 73, 105
border, 224–226, 228, 234, 244
centroid, 220–221, 223
degree of, 19
disjoint, 438–439
faults, 427–428
indegree, 19
outdegree, 19
separator, 246
source vertex, 473–474
super, 386

vertical distance, 274
vertical potential, 274
vertical spans, 282, 287, 289, 293, 295
vertical weight, 274
vertices, 19
Voronoi diagram, 9

weak spanner property, 211
weighted graph, 3, 6, 329, 338, 473

clustering of, 330–332
general, 358
undirected, 19, 35–36, 354

well-separated pair decomposition, 215, 434
computation of pair separating two points, 168–172
computation of, 162–168
definition of, 151–154
extension to other metrics, 172–174
size of, 153
spanners based on, 154–155
split trees, 155–162

well-separated pair, application of
application to other proximity problems, 186–194
spanners of bounded degrees, 178–184
spanners with logarithmic spanner diameter,

184–186
WSPD. See well-separated pair decomposition

YES-leaf, 49–50
YES-instances, 43, 50

	Cover
	Half-title
	Title
	Copyright
	Dedication
	Contents
	Preface
	Web site
	Acknowledgments

	PART I Preliminaries
	1 Introduction
	1.1 What is this book about?
	1.1.1 Spanning trees
	1.1.2 Steiner trees
	1.1.3 The traveling salesperson tour
	1.1.4 Triangulations

	1.2 The topic of this book: Spanners
	1.3 Using spanners to approximate minimum spanning trees
	1.4 A simple greedy spanner algorithm
	Exercises
	Bibliographic notes

	2 Algorithms and Graphs
	2.1 Algorithms and data structures
	2.2 Some notions from graph theory
	2.2.1 Graphs
	2.2.2 Geometric networks
	2.2.3 Trees
	2.2.4 Representing graphs

	2.3 Some algorithms on trees
	2.3.1 Traversing a binary tree
	2.3.2 Lowest common ancestors
	2.3.3 A faster algorithm for lowest common ancestor queries
	Reduction to the range minimum problem
	Solving the range minimum problem

	2.3.4 Centroids and separators in trees

	2.4 Coloring graphs of bounded degree
	2.5 Dijkstra’s shortest paths algorithm
	2.5.1 Algorithm SingleSource
	2.5.2 The correctness proof of algorithm SingleSource
	2.5.3 The running time of algorithm SingleSource

	2.6 Minimum spanning trees
	2.6.1 Kruskal’s algorithm
	2.6.2 Prim’s algorithm

	Exercises
	Bibliographic notes

	3 The Algebraic Computation-Tree Model
	3.1 Algebraic computation-trees
	3.2 Algebraic decision trees
	3.3 Lower bounds for algebraic decision tree algorithms
	3.3.1 Linear decision trees
	3.3.2 The general lower bound
	3.3.3 Some applications

	3.4 A lower bound for constructing spanners
	3.4.1 A reduction from the element uniqueness problem
	3.4.2 A lower bound for a set of pairwise distinct points
	Algorithm B
	Algorithm C
	Algorithm D
	Analysis of algorithm D

	Exercises
	Bibliographic notes

	PART II Spanners Based on Simplicial Cones
	4 Spanners Based on the Theta-Graph
	4.1 The Theta-graph
	4.1.1 Bounding the stretch factor of the Theta-graph
	4.1.2 Constructing the Theta-graph
	Finding the leftmost point in a translated query halfplane
	Computing all edges of (S, κ) corresponding to a cone

	4.1.3 Is the Theta-graph a good spanner?

	4.2 A spanner of bounded degree
	4.2.1 Sink spanners
	4.2.2 The transformation
	4.2.3 Applying the transformation

	4.3 Generalizing skip lists: A spanner with logarithmic spanner diameter
	4.3.1 Skip lists
	4.3.2 The skip list spanner
	4.3.3 Bounding the spanner diameter of the skip list spanner
	Analyzing one level of the skip list spanner
	Completing the proof

	Exercises
	Bibliographic notes

	5 Cones in Higher Dimensional Space and Theta-Graphs
	5.1 Simplicial cones and frames
	5.2 Constructing a Theta-frame
	5.2.1 Covering Rd by cones
	5.2.2 Triangulating a hypercube
	5.2.3 Refining the cones in B to simplicial cones

	5.3 Applications of Theta-frames
	5.4 Range trees
	5.4.1 Answering range queries
	5.4.2 Supporting deletions

	5.5 Higher-dimensional Theta-graphs
	5.5.1 The d-dimensional Theta-graph
	5.5.2 The d-dimensional sink spanner
	5.5.3 Transforming a spanner of bounded outdegree to a spanner of bounded degree
	5.5.4 A d-dimensional spanner of bounded degree
	5.5.5 The d-dimensional skip list spanner

	Exercises
	Bibliographic notes

	6 Geometric Analysis: The Gap Property
	6.1 The gap property
	6.2 A lower bound
	6.3 An upper bound for points in the unit cube
	6.4 A useful geometric lemma
	6.5 Worst-case analysis of the 2-Opt algorithm for the traveling salesperson problem
	Exercises
	Bibliographic notes

	7 The Gap-Greedy Algorithm
	7.1 A sufficient condition for “spannerhood”
	7.2 The gap-greedy algorithm
	7.3 Toward an efficient implementation
	7.4 An efficient implementation of the gap-greedy algorithm
	7.4.1 The main data structure
	The layer 1 tree
	The layer 2 trees
	The third layer of the data structure
	Additional information stored in the nodes of layer 1 and layer 2 trees
	The dictionary
	The operations ForbidSource and ForbidSink

	7.4.2 The final algorithm

	7.5 Generalization to higher dimensions
	Exercises
	Bibliographic notes

	8 Enumerating Distances Using Spanners of Bounded Degree
	8.1 Approximate distance enumeration
	8.2 Exact distance enumeration
	8.3 Using the gap-greedy spanner
	Exercises
	Bibliographic notes

	PART III The Well-Separated Pair Decomposition and Its Applications
	9 The Well-Separated Pair Decomposition
	9.1 Definition of the well-separated pair decomposition
	9.2 Spanners based on the well-separated pair decomposition
	9.3 The split tree
	9.3.1 Definition of the split tree
	9.3.2 Computing the split tree in O(n log n) time

	9.4 Computing the well-separated pair decomposition
	9.4.1 The analysis of algorithm ComputeWSPD

	9.5 Finding the pair that separates two points
	9.5.1 Answering pair queries using centroid edges
	9.5.2 Answering pair queries using a path decomposition

	9.6 Extension to other metrics
	9.6.1 The unit disk metric
	9.6.2 Doubling metrics

	Exercises
	Bibliographic notes

	10 Applications of Well-Separated Pairs
	10.1 Spanners of bounded degree
	10.1.1 The first construction
	10.1.2 The second construction

	10.2 A spanner with logarithmic spanner diameter
	10.3 Applications to other proximity problems
	10.3.1 The closest pair problem
	10.3.2 Computing closest pairs
	10.3.3 The all-nearest neighbors problem
	10.3.4 Computing an approximate minimum spanning tree

	Exercises
	Bibliographic notes

	11 The Dumbbell Theorem
	11.1 Chapter overview
	11.2 Dumbbells
	11.3 A packing result for dumbbells
	11.4 Establishing the length-grouping property
	11.5 Establishing the empty-region property
	11.5.1 Dumbbells of approximately the same length
	11.5.2 The general case

	11.6 Dumbbell trees
	11.7 Constructing the dumbbell trees
	11.8 The dumbbell trees constitute a spanner
	11.9 The Dumbbell Theorem
	Exercises
	Bibliographic notes

	12 Shortcutting Trees and Spanners with Low Spanner Diameter
	12.1 Shortcutting trees
	12.1.1 Monotone diameters 1 and 2
	12.1.2 Monotone diameter 3
	Existence of cut vertices
	Connecting the vertices of T to the cut vertices

	12.1.3 Generalization to larger monotone diameters
	12.1.4 The Ackermann function and its inverse
	12.1.5 Monotone diameter 2k
	12.1.6 Shortcutting trees using O(n) edges

	12.2 Spanners with low spanner diameter
	Exercises
	Bibliographic notes

	13 Approximating the Stretch Factor of Euclidean Graphs
	13.1 The first approximation algorithm
	13.1.1 Applying algorithm ApproxSF
	Approximating the stretch factor of a path
	Approximating the stretch factor of a tree

	13.2 A faster approximation algorithm
	13.2.1 The reduction
	13.2.2 Applying algorithm Fast ApproxSF
	Paths, cycles, and trees
	Planar graphs
	General Euclidean graphs

	Exercises
	Bibliographic notes

	PART IV The Path-Greedy Algorithm and Its Analysis
	14 Geometric Analysis: The Leapfrog Property
	14.1 Introduction and motivation
	14.2 Relation to the gap property
	14.3 A sufficient condition for the leapfrog property
	14.4 The Leapfrog Theorem
	14.4.1 Overview of the proof of the Leapfrog Theorem

	14.5 The cleanup phase
	14.5.1 Near-parallel
	14.5.2 Length-grouped and base-separated
	14.5.3 Nested-dumbbells
	14.5.4 Lateral and non-lateral edges
	14.5.5 Summarizing the cleanup phase

	14.6 Bounding the weight of non-lateral edges
	14.6.1 The invariant P
	14.6.2 Processing one edge of E
	14.6.3 The charging path for edge e
	14.6.4 A digression: two lemmas on intervals
	14.6.5 Choosing a subset…
	14.6.6 Decomposing the charging path P
	14.6.7 The analysis of Phi
	14.6.8 Contradicting the leapfrog property

	14.7 Bounding the weight of lateral edges
	14.7.1 The invariant Q
	14.7.2 Processing one edge of E
	14.7.3 Analyzing the radial weight of T ��
	14.7.4 Property Q.3 is maintained
	14.7.5 Property Q.4 is maintained

	14.8 Completing the proof of the Leapfrog Theorem
	14.9 A variant of the leapfrog property
	14.10 The Sparse Ball Theorem
	14.10.1 A recurrence relation for the number of Steiner points
	14.10.2 Applying the recurrence relation
	14.10.3 Completing the proof of the Sparse Ball Theorem

	Exercises
	Bibliographic notes

	15 The Path-Greedy Algorithm
	15.1 Analysis of the simple greedy algorithm PathGreedy
	15.1.1 Preliminary analysis of the path-greedy spanner
	15.1.2 Probabilistic analysis of the path-greedy spanner
	15.1.3 Improved weight analysis of the path-greedy spanner

	15.2 An efficient implementation of algorithm PathGreedy
	15.2.1 Overview of an improved path-greedy algorithm
	Speeding up distance computations

	15.2.2 Clustering weighted graphs
	15.2.3 The cluster graph H approximates G
	15.2.4 Cluster graphs of partial spanners
	15.2.5 Clustering algorithms for partial spanners
	15.2.6 The fast spanner algorithm
	15.2.7 The correctness proof of algorithm FastPathGreedy
	15.2.8 The weight analysis of the spanner
	15.2.9 The running time of algorithm FastPathGreedy

	15.3 A faster algorithm that uses indirect addressing
	15.3.1 Overview of the algorithm
	15.3.2 The integer weight functions
	15.3.3 Some packing results
	15.3.4 A multiple-sources shortest paths algorithm
	15.3.5 Computing a cluster cover and the cluster graph
	15.3.6 Computing the cluster centers
	15.3.7 Recomputing the cluster centers
	The third stage
	Overview of the third stage

	15.3.8 Answering short-path queries
	15.3.9 The fast spanner algorithm
	15.3.10 The correctness proof
	15.3.11 The weight analysis
	15.3.12 The running time

	Exercises
	Bibliographic notes

	PART V Further Results on Spanners and Applications
	16 The Distance Range Hierarchy
	16.1 The basic hierarchical decomposition
	16.1.1 Partitioning the edge set E
	16.1.2 A hierarchy of Euclidean graphs
	16.1.3 Properties of the hierarchical decomposition
	16.1.4 Querying the hierarchical decomposition
	16.1.5 The graphs Gi approximate the spanner G
	16.1.6 Summarizing the hierarchical decomposition

	16.2 The distance range hierarchy for point sets
	16.3 An application: Pruning spanners
	16.3.1 A general framework for pruning spanners
	16.3.2 A pruning algorithm based on well-separated pairs
	16.3.3 Setting the stage for the distance range hierarchy
	16.3.4 A pruning algorithm based on the distance range hierarchy

	16.4 The distance range hierarchy for spanners
	16.4.1 The partial spanners G'i
	16.4.2 The partial spanners G'i approximate the spanner G
	16.4.3 The main result

	Exercises
	Bibliographic notes

	17 Approximating Shortest Paths in Spanners
	17.1 Bucketing distances
	17.2 Approximate shortest path queries for points that are separated
	17.2.1 The general approach
	17.2.2 The data structure

	17.3 Arbitrary approximate shortest path queries
	17.3.1 Computing the distance range hierarchy for G
	17.3.2 Preprocessing the distance range hierarchy
	17.3.3 Answering approximate shortest path queries in G

	17.4 An application: Approximating the stretch factor of Euclidean graphs
	Exercises
	Bibliographic notes

	18 Fault-Tolerant Spanners
	18.1 Definition of a fault-tolerant spanner
	18.2 Vertex fault-tolerance is equivalent to fault-tolerance
	18.3 A simple transformation
	18.4 Fault-tolerant spanners based on well-separated pairs
	18.4.1 Definition of the graph G
	18.4.2 The graph G is a (k, t)-FTS
	18.4.3 Constructing the graph G

	18.5 Fault-tolerant spanners with O(kn) edges
	18.6 Fault-tolerant spanners of low degree and low weight
	18.6.1 A generalization of the path-greedy algorithm
	18.6.2 Bounding the degree of the fault-tolerant path-greedy spanner
	18.6.3 Bounding the weight of the fault-tolerant path-greedy spanner

	Exercises
	Bibliographic notes

	19 Designing Approximation Algorithms with Spanners
	19.1 The generic polynomial-time approximation scheme
	19.2 The perturbation step
	19.3 The sparse graph computation step
	19.4 The quadtree construction step
	19.5 A digression: Constructing a light graph of low weight
	19.6 The patching step
	19.7 The dynamic programming step
	Exercises
	Bibliographic notes

	20 Further Results and Open Problems
	20.1 Spanners of low degree
	20.2 Spanners with few edges
	20.3 Plane spanners
	20.4 Spanners among obstacles
	20.5 Single-source spanners
	20.6 Locating centers
	20.7 Decreasing the stretch factor
	20.8 Shortcuts
	20.9 Detour
	20.10 External memory algorithms
	20.11 Optimization problems
	20.12 Experimental work
	20.13 Two more open problems
	20.14 Open problems from previous chapters
	Exercises

	Bibliography
	Algorithms Index
	Index

