

Mathematics and Visualization

Series Editors

Gerald Farin
Hans-Christian Hege
David Hoffman
Christopher R. Johnson
Konrad Polthier
Martin Rumpf

Torsten Möller
Bernd Hamann
Robert D. Russell
Editors

Mathematical Foundations
of Scientific Visualization,
Computer Graphics,
and Massive Data
Exploration

With 183 Figures, 134 in Color and 15 Tables

123

Torsten Möller
School of Computing Science
Simon Fraser University
8888 University Drive
Burnaby BC, V5A 1S6
Canada
torsten@cs.sfu.ca

Bernd Hamann
Department of Computer Science
University of California, Davis
1 Shields Avenue
Davis, CA 95616-8562
USA
hamann@cs.ucdavis.edu

Robert D. Russell
Department of Mathematics
Simon Fraser University
8888 University Drive
Burnaby BC, V5A 1S6
Canada
rdr@cs.sfu.ca

ISBN: 978-3-540-25076-0 e-ISBN: 978-3-540-49926-8
DOI: 10.1007/978-3-540-49926-8

Mathematics and Visualization ISSN 1612-3786

Library of Congress Control Number: 2008944010

Mathematics Subject Classification (2000): 35-XX, 65Dxx, 41-XX, 51-XX, 54-XX, 65-XX, 76-XX

c© 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: deblik, Berlin

Printed on acid-free paper

springer.com

Preface

The goal of visualization is the accurate, interactive, and intuitive presentation of
data. Complex numerical simulations, high-resolution imaging devices and increas-
ingly common environment-embedded sensors are the primary generators of mas-
sive data sets. Being able to derive scientific insight from data increasingly depends
on having mathematical and perceptual models to provide the necessary foundation
for effective data analysis and comprehension. The peer-reviewed state-of-the-art
research papers included in this book focus on continuous data models, such as is
common in medical imaging or computational modeling.

From the viewpoint of a visualization scientist, we typically collaborate with an
application scientist or engineer who needs to visually explore or study an object
which is given by a set of sample points, which originally may or may not have been
connected by a mesh. At some point, one generally employs low-order piecewise
polynomial approximations of an object, using one or several dependent functions.

In order to have an understanding of a higher-dimensional geometrical “object”
or function, efficient algorithms supporting real-time analysis and manipulation (ro-
tation, zooming) are needed. Often, the data represents 3D or even time-varying 3D
phenomena (such as medical data), and the access to different layers (slices) and
structures (the underlying topology) comprising such data is needed. It has become
evident over recent years that, due to the ever-increasing complexity inherent in to-
day’s data sets, it is necessary to develop feature extraction algorithms that facilitate
sensible mappings of physical data values to visual attributes, enhancing the un-
derstanding of structures and structure relationships. It is crucially important that
visualization algorithms support precise, error-controlled quantitative visual analy-
sis, especially in applications like medical data analysis for diagnosis and surgical
planning.

Over the last 20 years the profound impact of scientific computing on nearly ev-
ery area of science and engineering has become more and more evident. Visualiza-
tion, being a very young scientific field which has evolved as a branch of computer
graphics, has in turn become an important driver for the development of exciting new
directions in mathematics and computer science. Many common approaches used
in contemporary visualization algorithms and software are still quite “ad-hoc,” and

V

VI Preface

considerable work remains to be done to establish the much-needed mathematical
foundation for the growing field of scientific visualization.

Most current visualization algorithms break down for very large data sets. While
standard approaches use multiresolution data structures, approximations, and visu-
alization paradigms, peta-size data sets cannot be handled with the presently used
approaches and software. New algorithms based on sophisticated mathematical mod-
eling techniques must be devised that permit the extraction of high-level topological
structures that can be visualized and understood.

We organized a workshop at the Banff International Research Station (BIRS),
at the Banff Centre, Canada, from May 22 to May 27, 2004. The workshop focused
specifically on mathematical issues as they relate to the challenges posed by the need
to more effectively perform data processing and analysis on very large and highly
complex data sets for visual exploration. The primary objective of the workshop was
to bring together the leading researchers focusing on mathematical and foundational
research in visualization. Scientists presented their recent research results and also
shared their views concerning the most pressing research challenges facing this field
in the near future. The workshop was organized in the following five topical areas:

• Topology and discrete methods
• Signal and geometry processing
• Partial differential equations
• Data approximation techniques
• Massive data applications

While a large portion of the workshop consisted of presentations by participants
from of state-of-the-art research in the various fields, a significant amount of time
was reserved for open-ended brainstorming sessions. In three such sessions, the par-
ticipants were split into four groups which discussed these focus areas in detail. The
group leaders were asked to obtain answers to a number of questions that were dis-
tributed among the participants beforehand. The group leaders summarized these
sessions and the results. The questions distributed before the workshop were:

• What are the scientifically challenging problems to be tackled in your topic area?
• What are the driving applications in this field?
• Which journals and conferences exist today that are appropriate venues for pub-

lishing mathematically oriented methods in this field?
• Which good on-line resources exist today supporting research in this subfield,

e.g., data sets, commercial and free software libraries, publication databases,
benchmarking sites, etc.?

• Which scientific domains and subfields are needed to solve successfully and ele-
gantly the identified problems?

The brainstorming sessions were welcomed by the participants. As far as we
know, this format of discussing specialized topics in a question-driven fashion has
not previously been used in visualization workshops. Participants commented pos-
itively on the format, and it seems to us that sharing ideas and perspectives in this
way is a highly effective means for defining relevant new directions in visualization.

Preface VII

This book contains papers authored by participants at the workshop. We hope that
they are inspiring and convey some of the excitement we all experienced during the
sunny days at the Banff workshop. We would like to thank the following colleagues
for helping with the organization of the workshop or serving as group discus-
sion leaders: Herbert Edelsbrunner, Hans Hagen, Chris Johnson, Ken Joy, Raghu
Machiraju, Tamara Munzner, Greg Nielsen, Jack Snoeyink, Gabriel Taubin, and Ross
Whitaker.

Torsten Möller
Bernd Hamann

Robert D. Russell

Contents

Maximizing Adaptivity in Hierarchical Topological Models
Using Cancellation Trees
Peer-Timo Bremer, Valerio Pascucci, and Bernd Hamann 1

The Toporrery: Computation and Presentation of Multiresolution
Topology
Valerio Pascucci, Kree Cole-McLaughlin, and Giorgio Scorzelli 19

Isocontour Based Visualization of Time-Varying Scalar Fields
Ajith Mascarenhas and Jack Snoeyink . 41

DeBruijn Counting for Visualization Algorithms
David C. Banks and Paul K. Stockmeyer . 69

Topological Methods for Visualizing Vortical Flows
Xavier Tricoche and Christoph Garth . 89

Stability and Computation of Medial Axes: A State-of-the-Art Report
Dominique Attali, Jean-Daniel Boissonnat, and Herbert Edelsbrunner 109

Local Geodesic Parametrization: An Ant’s Perspective
Lior Shapira and Ariel Shamir . 127

Tensor-Fields Visualization Using a Fabric-like Texture Applied
to Arbitrary Two-dimensional Surfaces
Ingrid Hotz, Louis Feng, Bernd Hamann, and Kenneth Joy 139

Flow Visualization via Partial Differential Equations
Tobias Preusser, Martin Rumpf, and Alex Telea . 157

Iterative Twofold Line Integral Convolution for Texture-Based Vector
Field Visualization
Daniel Weiskopf . 191

IX

X Contents

Constructing 3D Elliptical Gaussians for Irregular Data
Wei Hong, Neophytos Neophytou, Klaus Mueller, and Arie Kaufman 213

From Sphere Packing to the Theory of Optimal Lattice Sampling
Alireza Entezari, Ramsay Dyer, and Torsten Möller . 227

Reducing Interpolation Artifacts by Globally Fairing Contours
Martin Bertram and Hans Hagen . 257

Time- and Space-Efficient Error Calculation for Multiresolution Direct
Volume Rendering
Attila Gyulassy, Lars Linsen, and Bernd Hamann . 271

Massive Data Visualization: A Survey
Kenneth I. Joy . 285

Compression and Occlusion Culling for Fast Isosurface Extraction
from Massive Datasets
Benjamin Gregorski, Joshua Senecal, Mark Duchaineau, and Kenneth I. Joy . . 303

Volume Visualization of Multiple Alignment of Large Genomic DNA
Nameeta Shah, Scott E. Dillard, Gunther H. Weber, and Bernd Hamann 325

Model-Based Visualization: Computing Perceptually Optimal
Visualizations
Jarke J. van Wijk . 343

Maximizing Adaptivity in Hierarchical Topological
Models Using Cancellation Trees

Peer-Timo Bremer1, Valerio Pascucci2, and Bernd Hamann3

1 Department of Computer Science, University of Illinois, Urbana-Champaign
ptbremer@acm.org

2 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
pascucci@llnl.gov

3 Institute for Data Analysis and Visualization, Department of Computer Science, University
of California, Davis
hamann@cs.ucdavis.edu

Summary. We present a highly adaptive hierarchical representation of the topology of func-
tions defined over two-manifold domains. Guided by the theory of Morse–Smale complexes,
we encode dependencies between cancellations of critical points using two independent struc-
tures: a traditional mesh hierarchy to store connectivity information and a new structure called
cancellation trees to encode the configuration of critical points. Cancellation trees provide a
powerful method to increase adaptivity while using a simple, easy-to-implement data struc-
ture. The resulting hierarchy is significantly more flexible than the one previously reported
(IEEE Trans. Vis. Comput. Graph. 10(4):385–396, 2004). In particular, the resulting hierar-
chy is guaranteed to be of logarithmic height.

1 Introduction

Topology-based methods used for visualization and analysis of scientific data are be-
coming increasingly popular. Their main advantage lies in the capability to provide a
concise description of the overall structure of a scientific data set. Subtle features can
easily be missed when using “traditional” visualization methods like volume render-
ing or isocontouring, unless “correct” transfer functions and isovalues are chosen.
On the other hand, the presence of a large number of small features creates a “noisy
visualization,” in which larger features can be overlooked. By visualizing topology
directly, one can guarantee that no feature is missed. Furthermore, one can use sound
mathematical principles to simplify a topological structure. The topology of func-
tions is also often used for feature detection and segmentation (e.g., in surface seg-
mentation based on curvature).

However, for topology-based data analysis one needs flexible, hierarchical
models able to adaptively remove noise or features not relevant for a particular

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 1
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

2 P.-T. Bremer et al.

segmentation. In practice, the simplification/refinement should be fast (preferably
interactive) and highly adaptive in order to be useful in a large variety of situa-
tions. Requiring interactivity inadvertently leads to the use of hierarchical encodings
rather than simplification schemes. Hierarchical models often reduce the adaptivity
of a representation to gain the ability to perform incremental changes for varying
queries.

We address the need for adaptive topology-based data exploration by improving
significantly the topological hierarchy proposed in [4]. Creating two largely inde-
pendent hierarchies, we show how one can remove many of the dependencies in the
original hierarchy, making the structure simpler, more compact, and more adaptive
than the original one.

1.1 Related Work

The topological structure of a scalar field can be described partially by its contour
tree [5, 17, 18], which describes the relations between the connected components
of its level sets. This structure provides a user with a compact representation of the
topology [1] and can be used to accelerate the computation of isosurfaces [24]. How-
ever, the contour tree provides little information about the embedding of the level
sets and therefore remains somewhat abstract. Morse theory [15, 16], on the other
hand, provides methods to analyze the complete topology of a function over a man-
ifold as well as its embedding. Early approaches for the bivariate case are provided
in [6, 14, 19]. More recently, the Morse–Smale complex was introduced by Edels-
brunner et al. [8, 9] as a description of the topology of scalar-valued functions over
two- and three-dimensional manifolds. Applications of this theory vary from implicit
geometry modeling [21] to shape description [13]. Related concepts are also used in
flow visualization. Helman and Hesselink [12] showed how to find and classify criti-
cal points in flow fields and propose a structure similar to the Morse–Smale complex
for vector fields. Later, methods to analyze and simplify this complex were proposed
by de Leeuw and van Liere [7] and Tricoche et al. [22, 23].

The first multiresolution encoding of a Morse–Smale complex we are aware of
was proposed by Pfaltz [20], which has been improved and extended by Edelsbrunner
et al. [9] and Bremer et al. [3, 4]. More recent hierarchical structures are based on
the concept of persistence [10], which relates the difference in function value of
critical point pairs to the importance of a topological feature. Given a Morse–Smale
complex, we:

1. Provide an improved hierarchical encoding of the Morse–Smale complex
2. Prove that the resulting hierarchy is of logarithmic height
3. Demonstrate our methods for various data sets

We first review necessary concepts from Morse theory and the construction of
a Morse–Smale complex (Sect. 2). In Sect. 3, we describe cancellation trees and the
resulting hierarchy in Sect. 4. We conclude with results and possibilities for future
research (Sect. 6).

Maximizing Adaptivity in Hierarchical Topological Models 3

2 Morse–Smale Complex

We base our algorithms on intuitions derived from the study of smooth functions.
We review key aspects from Morse theory [15, 16] for smooth functions and discuss
how these can be used in the piecewise linear case.

2.1 Morse Theory

Given a smooth function f : M → R, a point a ∈ M is called critical when its
gradient �f (a) = (δf/δx, δf/δy) vanishes; it is called regular otherwise. For two-
manifolds, (nondegenerate) critical points are maxima (f decreases in all directions),
minima (f increases in all directions), or saddles (f switches between decreasing
and increasing four times around the point). Using a local coordinate frame at a, we
compute the Hessian H of f , which is the matrix of second partial derivatives. If H
is nonsingular we can construct a local coordinate system such that f has the form
f (x1, x2) = f (a)± x2

1 ± x2
2 in a neighborhood of a. The number of minus signs is

the index of a and distinguishes the different types of critical points: minima have
index 0, saddles have index 1, and maxima have index 2.

At any regular point, the gradient (vector) is nonzero, and when we follow the
gradient we trace out an integral line, which starts at a critical point and ends at a
critical point, while technically not containing either of them. Since f is smooth, two
integral lines are either disjoint or the same. The descending manifoldD(a) of a crit-
ical point a is the set of points that flow toward a. More formally, it is the union of a
and all integral lines that end at a. The collection of descending manifolds is a com-
plex in the sense that the boundary of a cell is the union of lower-dimensional cells.
Symmetrically, we define the ascending manifold A(a) of a as the union of a and all
integral lines that start at a. If no integral line starts and ends at a saddle, see [9], we
can overlay these two complexes and obtain what we call the Morse–Smale complex
of f . Its vertices are the vertices of the two overlayed complexes, which are the min-
ima, maxima, and saddles of f . Its cells are four-sided regions bounded by parts of
integral lines between saddles and extrema. An example is shown in Fig. 1.

Using the insight gained from smooth Morse theory when applied to piecewise
linear functions, we follow the concepts described in [3].

minimum

maximum

saddle

ascending path

descending path

Fig. 1. Morse–Smale complex

4 P.-T. Bremer et al.

splitting of two–fold saddlemaximumsaddleminimum regular point

v v v v v
v

Fig. 2. Classification of a vertex v based on relative height of its edge-connected neighbors,
where light vertices/edges mark higher neighbors and solid vertices/edges lower neighbors

We follow the concepts described in [3] to apply the concepts of smooth Morse
theory to piecewise linear functions. Critical points are identified and classified based
on their local neighborhood, see [2, 9]. If all vertices that are edge-connected to a
point u have function values below that of u, we call it a maximum; if all are above u,
then we call it a minimum, etc., see Fig. 2. In general, there can exist saddles with
high multiplicity that we split into simple ones, as shown on the far right in Fig. 2.

2.2 Persistence

As a numerical measure of the importance of critical points we define pairs of criti-
cal points and use the absolute difference between their height/function values. The
underlying intuition is the following: We imagine sweeping the two-manifold M in
the direction of increasing height (w.r.t. the scalar field value.) The topology of the
part of M below the sweep line changes whenever we add a critical vertex, and it
remains unchanged whenever we add a regular vertex. Each change either creates
a component, destroys a component, or changes its genus. We pair a vertex v that
creates a component with the vertex u that destroys the component. The persistence
of u and of v is the “delay” between the two events: p = f (v)− f (u), see [10].

2.3 Construction

In practice, we construct the Morse–Smale complex by successively computing its
edges, starting from the saddles, see [3]. Starting from each saddle, we compute two
lines of steepest ascent and two lines of steepest descent connecting the saddle to two
maxima and two minima. We call these lines ascending or descending paths. Two
paths in the same direction (ascending or descending) can merge; two paths with dif-
ferent direction must remain separate. Once two paths have been merged they never
split. Following these rules, we are guaranteed to produce a nondegenerate Morse–
Smale complex. A more detailed analysis can be found in [3]. Having computed all
paths, we partition the surface into four-sided regions forming the cells of the Morse–
Smale complex. Specifically, we grow each quadrangle from a triangle incident to a
saddle without ever crossing a path.

Maximizing Adaptivity in Hierarchical Topological Models 5

(a) (b)

Fig. 3. Graph of a function before (a) and after (b) cancellation of pair u, v

2.4 Simplification

To simplify an Morse–Smale complex locally we use a cancellation that eliminates
two critical points. The inverse operation to refine the complex is called an anti-
cancellation. Only two adjacent critical points in an Morse–Smale complex can be
canceled. The possible configurations are a minimum and a saddle or a saddle and a
maximum. Since the two cases are symmetric we limit our discussion to the second
case, which is illustrated in Fig. 3.

Only if v is a simple saddle adjacent to two distinct maxima u, w with f (w) >
f (v) the pair u, v can be canceled. In particular, a cancellation or anticancellation
must always maintain a valid Morse–Smale complex. An Morse–Smale complex is
called valid, if all cells have four (not necessarily distinct) corners and every path
between a saddle and maximum/minimum is ascending/descending. Alternatively,
an adaptively refined Morse–Smale complex is valid if it can be created from the
highest resolution one using a sequence of cancellations.

3 Cancellation Forest

The information an Morse–Smale complex provides can be separated into the critical
points and their connectivity. The critical points information includes position, type,
and function value and we refer to this as critical point configuration . The connectiv-
ity encodes which paths (edges) define a Morse cell and the neighboring information
between cells. As with most mesh encoding schemes the critical point configuration
provides most (but not all) information about the Morse–Smale complex. Especially
during simplification, the connectivity of the Morse–Smale complex can often be in-
ferred from the critical point configuration. For example, in Fig. 3 after u and v have
been removed all saddles that were connected to u are now connected to w.

When encoding a cancellation the separation between critical point configura-
tion and connectivity is very intuitive. The top row of Fig. 4 shows three consecutive
cancellations C1, C2, and C3 of minima. To reverse any of these cancellations one
first needs to know how the connectivity of the Morse–Smale complex changes. For
example, in Fig. 4dm4 must be created on the left ofm3 (not on its right). This infor-
mation is provided by the neighborhood relations between Morse cells, see Sect. 4.

6 P.-T. Bremer et al.

C1 C2

C3

m4

s1

m3s2

m0

s3 m4

s4

s0

m3

m1
m0

m2m2
m3

m0

m4

s4

s3
s2

s1

s4

s3
s2

(a) (b) (c)

C1−1

s3
s2m3

m0

m2

s0

C3−1

s3
s2m3

m0
C1−1

s0

s3
s2m3

m0
m1

(d) (e) (f)

Fig. 4. Morse–Smale complex (a) shown after three successive cancellations (b), (c), and
(d). The configurations in (e) and (f) have the same connectivity but a different critical point
configuration

−8

−6

−4

−3−2
−8

−4

0−3−2
−8 −2

−4

−6

(a) (b) (c)

Fig. 5. Morse–Smale complex of Fig. 4 with function values. (a) Original complex. (b) Invalid
critical point configuration (the path marked in red cannot be descending.) (c) Valid critical
point configuration requires anticancellation C1−1 to create m2 rather than m1

One important aspect when encoding (anti)cancellations is whether the opera-
tions can be performed out of order. The less ordered dependent the encoding is the
more flexible the resulting hierarchy becomes. However, when reversing the order of
anticancellations the connectivity alone does not uniquely encode a Morse–Smale
complex. For example, starting from Fig. 4d and performing C1−1 before C2−1

seems to result in the structure of Fig. 4e. Nevertheless, the Morse–Smale complex
drawn in (f) has the same connectivity but a different critical point configuration.

The straightforward solution to encoding the critical point configuration is to link
it directly to each cancellation. If a cancellation removed the critical point pair u, v
then the corresponding anticancellation would introduce u, v. However, this imposes
restrictions on the order of cancellations and anticancellations. Figure 5 shows the
example of Fig. 4 enhanced by labeling some critical points with function values. In
this situation the configuration after reversing C1 must be the one shown in Figs. 5c
and 4f, respectively. The saddle s2 cannot be connected tom0 since the resulting path
could not be descending from saddle to minimum. However,C1 removed s0,m1 and
linking the critical point configuration directly to each cancellation would create an

Maximizing Adaptivity in Hierarchical Topological Models 7

invalid Morse–Smale complex. The algorithm proposed in [4] avoids these compli-
cations by imposing additional restrictions on the order of operations, see Sect. 4.

We propose a different strategy that allows us to store connectivity and critical
point configuration independently of each other using a simple data structure. The
core idea is to view the cancellation shown in Fig. 3 not as removing u and v but as
merging the triple u, v, and w into w. After a sequence of cancellations we think
of every extremum as the representative of itself plus all extrema merged with it.
Maxima only merge with maxima and minima only with minima. We keep track of
these merges by creating a graph for every extremum. Initially, each extremum is
represented by itself as a graph with a single node. During each cancellation an arc
is added between the two extrema that were connected to the corresponding saddle
in the initial Morse–Smale complex. Notice, that these two extrema are not necessar-
ily the ones involved in the current cancellation, which merges their representatives.
Since no extremum can merge with itself these graphs are trees, called cancella-
tion trees which form the cancellation forest. Figure 6 shows several cancellations
and the resulting trees. Figure 17a shows the cancellation trees of a typical terrain
data set. Notice, that the cancellation trees provide a very intuitive description of the
orientation and general shape of the dominate ridges and valleys in the data.

Even though the data structure used for cancellation trees is simple, it is also
very powerful due to two key properties. First, recall that during a cancellation the
higher maximum or lower minimum always prevails in the Morse–Smale complex.
This fact implies that, for example, the representative of a tree of maxima is always
the highest node of the tree. Second, arcs of a cancellation tree correspond to saddles
and/or cancellations. In fact, given a cancellation forest created, for example, during
an earlier simplification, it is possible to derive a (nearly) complete Morse–Smale

M
M

M

M

M

M

M

M
M

M

M

M

M

M

M
M

M

M

M

M

M

Fig. 6. Example of cancellation trees of maxima resulting from multiple cancellations. Morse–
Smale complex with some cancellations indicated in red (top). Corresponding cancellation
trees of all maxima (bottom). Note, that arcs are added between extrema incident to the same
saddle in the initial complex not the extrema merged by the current cancellation

8 P.-T. Bremer et al.

Fig. 7. Strangulation where two Morse cells have the same corners

complex based only on a set of saddles. Assume one is given a highly simplified
Morse–Smale complex and the corresponding cancellation forest; Furthermore, as-
sume a refinement of the Morse–Smale complex is described by a set of saddles
S = {s0, . . . , sn} that must appear in the refined complex, for example all saddles
within a view frustrum. First, one removes all arcs corresponding to a saddle in S
from the cancellation forest resulting in another forest with more but smaller trees.
Subsequently, one can reconstruct the Morse–Smale complex in the following man-
ner: Each saddle si was initially connected to two maximaM0,M1 and two minima
m0,m1. All of these extrema are part of a tree, and the saddle is connected to the four
representatives of these trees. This defines the adaptive Morse–Smale complex to the
level of the embedding of the paths. The saddles are given, the remaining critical
points are the representatives of the cancellation trees, and the paths embedding can
be derived from concatenating original paths.

Nevertheless, the connectivity between Morse cells is not uniquely defined by the
construction described above. This is due to the fact that in an Morse–Smale complex
paths are not uniquely defined by their end points, see Fig. 7. As a result, Morse cells
are not identified by their corners and the connectivity must still be stored explicitly.
Section 4 describes how the connectivity as well as the configuration of saddles can
be stored hierarchically.

In general, a cancellation tree can be split anywhere at any time. As a result,
the search for the representative of a subtree does not map to a union-find approach
traditionally employed in similar situations. Therefore, maintaining the cancellation
forest involves a linear search during an anticancellation and is a constant-time oper-
ation during a cancellation. While more sophisticated structures are possible our ex-
periments suggest that cancellation trees have an overall low branching factor. This
would likely diminishes any advantage of more complicated structures and would
make implementation more difficult.

4 Hierarchy

Using cancellation trees to maintain the critical point configuration allows us to cre-
ate a mesh hierarchy geared completely toward connectivity. The main objective is
to construct a hierarchy that supports as many different configurations as possible.
Following traditional triangle mesh hierarchies, (anti)cancellations are stored in a
dependency graph representing a partial order among operations. All configurations
that can be created by observing the partial order should result in a valid Morse–
Smale complex.

Maximizing Adaptivity in Hierarchical Topological Models 9

4.1 Hierarchy Construction

Following the approach discussed in [4], we split each Morse cell into two Morse
triangles by introducing the diagonal connecting the minimum to the maximum into
the complex. As a result, the neighborhood around a saddle then consists of four tri-
angles that form the diamond around the saddle, as indicated in gray in Fig. 8a. Each
cancellation removes one diamond from the Morse–Smale complex. We create a hi-
erarchy in a bottom-up fashion by successively canceling critical points, see Fig. 9
for an example. Two cancellations are called independent if it is irrelevant in what
order they are performed and dependent otherwise. The extended dependency graph
contains a node for every cancellation and an arc between dependent cancellations.
The dependency graph is derived from the extended one using path compression.
The height of the dependency graph is defined as the maximal distance from a root
to a leaf. In practice, one is interested in constructing a shallow graph with few edges
since this implies the possibility of a large number of different configurations.

Clearly, the definition of dependencies between cancellations determines the
shape of the dependency graph. In [4], the region of interference of the cancellation
in Fig. 8 is defined as all Morse cells incident to either u, v, or w. Two cancellations

wvu w

(a) (b)

Fig. 8. Morse–Smale complex corresponding to Fig. 3 (a) before and (b) after cancellation of
pair u, v. Diagonals indicating diamonds are shown as dotted lines

C1
C1

C3
C1

C3

C2

C4

C1

C2

C1

C4
C3

C2 C2

Fig. 9. Hierarchy construction as described in [4]. Cancellations are indicated by arrows, the
corresponding region of interference is shaded in gray, and regions of overlap with previous
cancellations are shaded in red. The corresponding dependency graphs are shown next to the
Morse–Smale complexes. After four cancellations the dependency graph is a line

10 P.-T. Bremer et al.

are defined as dependent if their regions of interference have a (true) intersection.
This large region of interference is necessary to avoid the problems discussed in
Sect. 3. Given the large region of interference, storing the hierarchy is straightfor-
ward. Each cancellation replaces Morse cells around three critical points by Morse
cells around the remaining one. The boundary of the region does not change and the
dependencies ensure that a (anti)cancellation is only performed if the Morse–Smale
complex is locally identical to the one encountered during construction. This can
be viewed as a special case of the concepts described for general multiresolution
structures described, for example, by De Floriani et al. [11]. An example of several
cancellations and the resulting dependency graphs using the old hierarchy is shown
in Fig. 9. Due to the large regions of interference the final dependency graph (lower
right corner) is a line allowing no adaptations beyond the ones encountered during
construction.

Using cancellation trees one can ignore the configuration of minima and max-
ima, requiring us to encode only the connectivity and saddle configuration. Since
each cancellation removes the diamond around a saddle it is natural to link the sad-
dle information directly to a diamond. Therefore, if we can store the diamond in-
formation (the connectivity) hierarchically, cancellation trees provide the remaining
information.

To store the connectivity information we use the concepts from [11] but now
with a significantly smaller region of interference. Each cancellation removes one
diamond replacing eight triangles around a vertex by four. An anticancellation rein-
troduces a diamond replacing four triangles by eight, introducing two vertices.
Some possible configurations are shown in Fig. 10. The cancellation of a diamond
changes a reduced Morse–Smale complex only for the neighboring (edge-connected)
diamonds. Therefore, the region of interference of a cancellation is defined as the
corresponding diamond plus its edge-connected neighbors. The smaller regions of
interference produce a smaller set of dependencies. In fact, the number of ances-
tors and the number of children of each node in the dependency graph is bounded
(assuming path compression). Each diamond has at most four edge-connected neigh-
bors and therefore, a node cannot have more than four children. Canceling a diamond
merges its four neighbors into two. As a result, a node can have no more than two
ancestors. Figure 11 shows the example of Fig. 9 using cancellation trees.

We create a hierarchy by removing diamonds from the highest-resolution Morse–
Smale complex in “batches” of independent cancellations. However, this strategy
can result in cancellations of high persistence to be dependent on cancellations with
much lower persistence, which is undesirable for most applications. Therefore, we
limit the batches such that the largest persistence in a batch is not larger than twice
the maximal persistence of the previous batch. The resulting hierarchy performs sig-
nificantly better than the unrestricted one in terms of the error cause for a given
number of critical points and shows practically no difference in flexibility. However,
theoretically, the restricted algorithm can create a hierarchy of linear height. Without
this restriction, it is guaranteed that each batch contains about one quarter of the re-
maining diamonds in the complex and therefore the algorithm creates a hierarchy of
logarithmic height.

Maximizing Adaptivity in Hierarchical Topological Models 11

1

1 1

2

2 2
3

4

21

43

a

b 21

a

b

1 2

c

d
−1

−1

21
a

b

1 2

c

1 2

3

a
a

a
c

c

c

b
b

b

c

d 4

3

d

1

2
2

1
1

2

d
d

d4

Fig. 10. Three examples for encoding the connectivity during cancellations. The triangulation
before (top) and after (bottom) the cancellation of the diamond a, b, c, d is shown. The middle
row shows how the change in neighborhood structure for an (anti)cancellation is encoded as a
list of triangle pairs (−1 indicating a boundary edge)

C2

C2−1

C3 C4

C1−1

C1

m2

M2

m1

M0

m3

m0

M2

m1

m3

C2
m1

m0M1
m2

M1

M2

M2

m1

m3

m0

m3
C4

m2

C2
m1

m0

C1
M1

M0

M0

M2
C3

M0

M1
C1

M2

m1

m3

C3
M2

m2
C4

m3

m1

m2

m1

m3

C1

C3
M2

M1

M0

m0

m3
C4

m2

C2
m1

m0

C2
m1

m0

M0

M2
C3

M0

M1
C1m2

M1

M2

m3

M1

Fig. 11. The top two rows show the example of Fig. 9 using cancellation trees to encode the
hierarchy. The regions of interference are shaded in gray, and the corresponding cancellation
trees are drawn on the right side of each figure with the representative marked in red. Using
the reduced Morse–Smale complex all cancellations are independent. The bottom row shows
the complex after the anticancellation of C1 (left) and C2 (right). Note that C1−1 correctly
createsM1 rather than M0 (M1 is higher thanM0)

12 P.-T. Bremer et al.

5 Results

To compare the new hierarchy with the one proposed in [4] we applied both strategies
to a 1,201-by-1,201 single-byte integer value terrain data set of the Grand Canyon.
Figure 12 shows a rendering (a) and the initial Morse–Smale complex (b) of the
Grand Canyon data set with 11,620 critical points. We assess quality via a fly-over
comparing the adaptivity of the cell-based hierarchy with the one using cancella-
tion trees. A narrow view-frustum is defined where the topology is refined to the
highest resolution. Outside the given view-frustum only dependent topology is used.
Figures 13 and 14 show two frames of the fly-over for two distinct stages of the
fly-over path.

0 200 400 600 800 1000
frame number

0

1000

2000

3000

4000

5000

6000

7000

#
 o

f
cr

it
ic

al
 p

oi
nt

s

original hierarchy [4]
improved hierarchy

Fig. 12. Number of critical points used during a fly-over (Grand Canyon data set)

Fig. 13. Left: Typical cancellation trees of a terrain. Maxima are shown in red, minima in blue,
and arcs in green. Note the overall low branching factor. Right: Rendering of original Yakima
data set

Maximizing Adaptivity in Hierarchical Topological Models 13

Fig. 14. Left: Original Morse–Smale complex of the Yakima data set (17,691 critical points);
(right) adaptively refined Morse–Smale complex, where only features below function value of
0.14 are preserved (8,063 critical points)

Fig. 15. Pseudo-colored rendering and simplified Morse–Smale complex of oil-pressure
data set

Figure 15 shows the number of critical points in the adaptive Morse–Smale
complex during the fly-over for both methods used for hierarchy construction.
The hierarchy using cancellation trees is clearly superior to the original encod-
ing. One explanation for the large differences in quality is the presence of high-
valency extrema in the Morse–Smale complex. Often, data sets (especially terrains)
are biased to contain significantly more maxima than minima (or the reverse), which
results in some extrema of the Morse–Smale complex having high valency values.
Using the original large region of interference, the hierarchy around a high-valency
extremum degenerates into a linear sequence. The smaller region of interference

14 P.-T. Bremer et al.

proposed in this paper, however, is based on saddles which always have valence four.
Therefore, the shape of the hierarchy remains largely unaffected by high valency
extrema.

The adaptive refinement and display of topology is useful for many areas.
Figure 16 shows the oil pressure of an underground oil reservoir. The figure shows
an isosurface of water saturation, pseudo-colored by oil pressure. The linear color

Fig. 16. Rendering of Grand Canyon data set; (Top) original Morse–Smale complex of
(Bottom) using 11,620 critical points (minima shown in blue, maxima in red, and saddles
in green)

Maximizing Adaptivity in Hierarchical Topological Models 15

map used in Fig. 16 provides little structural information. However, the seven oil
extraction sites are visible as local minima in the simplified Morse–Smale complex.

Figure 17b shows a rendering of the Yakima terrain data set consisting of
1,201 × 1,201 single-byte integer height values. Figure 18 shows the corresponding

Fig. 17. Global view of a fly-over of Grand Canyon data set. Inside the local view frustum
(yellow) the finest resolution topology is shown on the outside only dependent topology is
used. (Top) The results of the hierarchy in [4]; (Bottom) refinement using the improved hier-
archy introduced in this paper

16 P.-T. Bremer et al.

Fig. 18. Another frame of the fly-over of the Grand Canyon data set. (Top) Using the original
hierarchy; (Bottom) using the cancellation forest

Morse–Smale complex with 17,691 critical points and the same complex refined to
preserve only features below a function value of 0.14 (with function values scaled to
[0, 1]) using 8,063 critical points. The density of the Morse–Smale complex shows
how the region around the canyons remains highly refined.

Maximizing Adaptivity in Hierarchical Topological Models 17

One disadvantage of the new technique is that the hierarchy is so flexible that
it becomes impossible to precompute function values corresponding to all possible
topological refinements. However, for any topological refinement we can compute
a function with the given topology using the concepts of [4]. The general idea of
this computation is indicated in Fig. 8. Canceling the maximum u with the saddle v
requires us to lower the function within a region around u and to raise the function
along the path u− v −w.

6 Conclusions and Future Research

We have improved our original results discussed in [4] significantly in several differ-
ent ways, moving toward the practical application of topology for data visualization
and analysis. Using cancellation trees, the hierarchy is smaller, more adaptable, and
supports the use of larger, more complicated Morse–Smale complexes. Furthermore,
cancellation trees are easy to implement and to maintain during refinement. Cur-
rently, we only display the adapted topology, not the corresponding adapted function
interactively. We plan to develop new techniques computing high-quality topological
approximation on-the-fly.

Acknowledgments

This work was performed under the auspices of the US Department of Energy by
University of California Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48. B. Hamann is supported by National Science Foundation under
contract ACI 9624034 (CAREER Award), through the Large Scientific and Software
Data Set Visualization (LSSDSV) program under contract ACI 9982251, through
the National Partnership for Advanced Computational Infrastructure (NPACI), and
through a large Information Technology Research (ITR) grant. We thank the mem-
bers of Data Science thrust from the Center for Applied Scientific Computing
(CASC) at Lawrence Livermore National Laboratory, and the Visualization and
Computer Graphics Research Group at the University of California, Davis.

References

1. C. L. Bajaj, V. Pascucci, and D. R. Schikore. Visualization of scalar topology for structural
enhancement. In D. Ebert, H. Hagen, and H. Rushmeier, editors, Proc. IEEE Visualization
1998, pages 51–58, Los Alamitos, California, 1998. IEEE Computer Society Press.

2. T. F. Banchoff. Critical points and curvature for embedded polyhedral surfaces. American
Mathematical Monthly, 77(5):457–485, May 1970.

3. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A multi-resolution data
structure for two-dimensional Morse–Smale functions. In G. Turk, J. J. van Wijk, and
R. Moorhead, editors, Proc. IEEE Visualization 2003, pages 139–146, Los Alamitos, Cal-
ifornia, 2003. IEEE Computer Society Press.

18 P.-T. Bremer et al.

4. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A topological hierarchy for
functions on triangulated surfaces. IEEE Transactions on Visualization and Computer
Graphics, 10(4):385–396, 2004.

5. H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. Computa-
tional Geometry: Theory and Applications, 24(3):75–94, 2003.

6. A. Cayley. On contour and slope lines. The London, Edinburgh and Dublin Philosophical
Magazine and Journal of Science, XVIII:264–268, 1859.

7. W. de Leeuw and R. van Liere. Collapsing flow topology using area metrics. In Proc.
IEEE Visualization 1999, pages 349–354. IEEE Computer Society Press, 1999.

8. H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse–Smale complexes for
piecewise linear 3-manifolds. In Proc. 19th Sympos. Comput. Geom., pages 361–370,
2003.

9. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse–Smale complexes for
piecewise linear 2-manifolds. Discrete and Computational Geometry, 30:87–107, 2003.

10. H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplifi-
cation. Discrete and Computational Geometry, 28:511–533, 2002.

11. L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multiresolution modeling.
In W. Straßer, R. Klein, and R. Rau, editors, Theory and Practice of Geometric Modeling.
Springer, Berlin, 1996.

12. J. L. Helman and L. Hesselink. Visualizing vector field topology in fluid flows. IEEE
Computer Graphics and Applications, 11(3):36–46, 1991.

13. M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology matching for fully
automatic similarity estimation of 3D shapes. In E. Fiume, editor, Proceedings of ACM
SIGGRPAH 2001, pages 203–212, New York, NY, USA, 2001. ACM.

14. J. C. Maxwell. On hills and dales. The London, Edinburgh and Dublin Philosophical
Magazine and Journal of Science, XL:421–427, 1870.

15. J. Milnor. Morse Theory. Princeton University Press, New Jersey, 1963.
16. M. Morse. Relations between the critical points of a real functions of n independent vari-

ables. Transactions of the American Mathematical Society, 27:345–396, July 1925.
17. S. P. Morse. A mathematical model of the analysis on contour-line data. Journal of the

Association for Computing Machinery, 15(2):205–220, 1968.
18. V. Pascucci and K. Cole-McLaughlin. Efficient computation of the topology of level sets.

In M. Gross, K. I. Joy, and R. J. Moorhead, editors, Proc. IEEE Visualization 2002, pages
187–194, Los Alamitos, California, 2002. IEEE Computer Society Press.

19. J. Pfaltz. Surface networks. Geographical Analysis, 8:77–93, 1976.
20. J. Pfaltz. A graph grammar that describes the set of two-dimensional surface networks.

Graph-Grammars and Their Application to Computer Science and Biology. Lecture Notes
in Computer Science, vol. 73. Springer, Berlin, 1979.

21. B. T. Stander and J. C. Hart. Guaranteeing the topology of implicit surface polygonization
for interactive modeling. In Proc. of ACM SIGGRPAH 1997, volume 31, pages 279–286,
New York, USA, Aug. 1997. ACM Press / ACM SIGGRAPH.

22. X. Tricoche, G. Scheuermann, and H. Hagen. A topology simplification method for 2D
vector fields. In Proc. IEEE Visualization 2000, pages 359–366, Los Alamitos, California,
2000. IEEE Computer Society Press.

23. X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topology simplification of pla-
nar vector fields. In Proc. IEEE Visualization 2001, pages 159–166, Piscataway, NJ, Oct.
2001. IEEE Computer Society Press.

24. M. J. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. Schikore. Contour
trees and small seed sets for isosurface traversal. In Symposium on Computational Geom-
etry, pages 212–220, 1997.

The Toporrery: Computation and Presentation
of Multiresolution Topology

Valerio Pascucci1, Kree Cole-McLaughlin2, and Giorgio Scorzelli1

1 Scientific Computing and Imaging Institute, School of Computing, University of Utah, UT,
USA

2 Dept. of Mathematics, UCLA, CA, USA, School of Engineering, University of Roma Tre,
Roma, Italy

Summary. The Contour Tree of a scalar field is the graph obtained by contracting all the
connected components of the level sets of the field into points. This is a powerful abstraction
for representing the structure of the field with explicit description of the topological changes
of its level sets. It has proven effective as a data-structure for fast extraction of isosurfaces
and its application has been advocated as a user interface component guiding interactive data
exploration sessions. In practice, this use has been limited to trivial examples due to the prob-
lem of presenting a graph that may be overwhelming in size and in which a planar embedding
may have self-intersections. We propose a new metaphor for visualizing the Contour Tree bor-
rowed from the classical design of a mechanical orrery – see Fig. 1a – reproducing a hierarchy
of orbits of the planets around the sun or moons around a planet. In the toporrery – see Fig. 1b
– the hierarchy of stars, planets and moons is replaced with a hierarchy of maxima, minima
and saddles that can be interactively filtered, both uniformly and adaptively, by importance
with respect to a given metric.

The implementation of the system is based on (1) a hierarchical graph model allowing
coarse-to-fine traversal for selective refinements and (2) a new algorithm for constructing a
multiresolution Contour Tree with guaranteed topological correctness independently of the
simplification metric. We have tested the approach using topological persistence as the main
metric for constructing the tree hierarchy, and using geometric position as a secondary metric
for adaptive refinements. The result is presented in linked views of the abstract toporrery and
the geometric embedding of the input data.

1 Introduction

A Morse function over a domain D, is a smooth mapping, f : D → R, such that
all its critical points (maxima, minima and saddles) are distinct. Complex natural
phenomena, both sampled and simulated, are often modeled as Morse functions.1

1 Technically the definition of Morse function is often weakened to allow multiple critical
points or other degeneracies present in real data.

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 19
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

20 V. Pascucci et al.

(a) (b)

(c) (d)

Fig. 1. (a) Orrery reproducing the hierarchical relationship between the orbits of the sun,
the planets and their moons. Original design (1812) by A. Janvier reprinted recently by
E. Tufte [24]. (b) Toporrery representing the hierarchical relationship between the critical
points in a scalar field. The particular field is an electron density distribution (ρ) computed
with an ab initio simulation for water molecules at high pressure. The three levels of prun-
ing of the topology by persistence highlight: (top) the water molecules, (middle) the dipole
hydrogen–oxygen structure for each molecule, and (bottom) the detailed topological features
including possible numerical noise (useful for debugging the simulation). (c) A level set of
the scalar field ρ selected on the basis of the topological features and highlighting the coarse
structure of the water molecules. Note that at this high pressure even for water molecules the
topology characterizes molecular structures better than the distance between the atoms. (d)
Spectral diagram [3] providing a global summary of the topological information

MRI scans generate Morse functions that are used in medical imaging to reconstruct
human tissues. Electron density distributions computed by high-resolution molecular
simulations are Morse functions whose topologies express bonds among the atoms in
molecular structures. The structure of geometric models used in computer graphics
and CAD applications can be effectively represented in terms of the topology of a
Morse function [12].

The Reeb graph [16] is a simple structure that summarizes the topology of a
Morse function. For functions with simply connected domains this graph is also sim-
ply connected and is called the Contour Tree. The Reeb graph has been used to
analyze the evolution of teeth contact interfaces in the chewing process [18], and to
compute indices of topological similarity for databases of geometric models [12].

The Toporrery: Computation and Presentation of Multiresolution Topology 21

Topological information has been used to guide the construction of transfer function
for volume rendering of scientific data [21, 26]. A more extensive discussion of the
use of the Reeb graph and its variations in geometric modeling and visualization can
be found in [11].

The first algorithm for constructing Reeb graphs of Morse functions with two-
dimensional domains is due to [19]. Given a triangulated surface, this scheme takes
as input the set of all distinct level lines and therefore has worst case time complexity
O(n2), where n is the number of vertices in the triangulation. An O(n logn) algo-
rithm for computing Contour Trees in any dimension was introduced in [5]. This
scheme has been extended in three dimensions to include the genus of all isosur-
faces [15]. The first multiresolution representation of the Reeb graph was introduced
in [12]. Their method hierarchically samples the range space of f while concurrently
refining the Reeb graph. They obtain a multiresolution model that is suitable for fast
comparison of graphs. However, this hierarchy does not represent the topology of
f at multiple levels of detail. A formal framework for ranking topological features
by persistence has been introduced in [10] and applied to two-dimensional Morse
functions in [2]. Topological simplification is used in [20] to design transfer function
that highlight only the major features in the data. Topological simplification is also
widely used in vector field visualization to highlight the most important structures
present in the data [22, 23].

Early techniques for the simplification of the Contour Tree are reported in [17],
where a simple greedy approach is used to prune the arcs of the tree corresponding
to local features of small area. This work has been recently extended by [6], with
a new simplification algorithm that applies to several classes of data approximation
metrics. In the extended abstract of this paper [8] where we first introduce a sim-
plification algorithm with proper cancellation of single pairs of critical points (see
Theorem 3.28 in [14]). The information is then collected in a multiresolution repre-
sentation amenable for coarse-to-fine adaptive traversal of the Contour Tree.

Integration of the Contour Tree in user interfaces to help selecting isosurfaces
was first suggested [62] but only fully developed 6 years later in [3]. The latter work
is particularly interesting for the use of a new concept of “Path Seeds” that explicitly
links the arcs in the Contour Tree to distinct connected components (contours) of the
level sets. This introduces the powerful new paradigm of selecting contours instead
of entire isosurfaces. Our scheme introduces a user interface based on a multireso-
lution representation of the Contour Tree (not just a simplification) and a metaphor
for presenting the tree in an abstract 3D embedding similar to a mechanical orrery.
In particular, we adapt a simple radial graph drawing algorithm [9] and combine it
with an embedding typically used for large tree hierarchies [13].

Contributions

Our results are summarized in Figs. 1 and 2 with presentations of the topology of
two scalar fields defined on 3D domains (electron density distribution of water at
high pressure) and 2D domains (armadillo). (1) We provide a multiresolution repre-
sentation for the Contour Tree with algorithms for uniform and adaptive refinement
on the basis of precomputed metrics. (2) We provide a simple scheme for laying

22 V. Pascucci et al.

(a) (b)

(c) (d) (e) (f)

Fig. 2. (a) A polygonal armadillo model with 172,974 vertices and 345,944 polygons. The
Morse function f is the height in the vertical direction. The maxima (red) and minima (green)
of f are marked with small spheres. (b) The Contour Tree of f presented with the critical
points in their original position. Several version of the tree with adaptive (one foot) or uniform
refinement. (c) Full resolution toporrery of f . (d) Simplification down to 58% of persistence
showing a skeletal structure with arms, legs, ears and tail. Adaptive refinement with full reso-
lution for lower half of the body (e) or only the left foot (f)

out the tree in an way that highlights the hierarchical relationship among the critical
points and can be integrated in an interactive graphical user interface. (3) We pro-
vide an algorithm for computing a multiresolution Contour Tree directly from join
and split trees. We discuss for what class of function the topological hierarchy we
compute corresponds to actual topological simplifications that can be constructed for
the function f . (4) The results are demonstrated on datasets of different nature, such
as terrain, surface models and volumetric scientific data.

2 Multiresolution Contour Trees

Contour Tree of a Morse Function

Let D be a triangulated domain and f : D → R be a function obtained by linear
interpolation of the value of f at the vertices of D. Morse theory provides a formal
framework for understanding the topology of D by analyzing the function f . The
fundamental tool in Morse theory is the characterization of each point of D as being
either regular or critical.

We assume that D is a simplicial complex. Therefore, every k-cell c of D is
the convex hull of k + 1 vertices of D. Moreover, a cell c′ is a called face of c if its

The Toporrery: Computation and Presentation of Multiresolution Topology 23

vertices are a subset of those of c. If c ∈ D then all its faces must be in D. For a vertex
v ∈ D, its link Lkv is the set of cells that do not contain v but that are faces of some
cell containing v. Furthermore, the lower link of v, Lk−v , is the set of all cells in Lkv
that only have vertices with function value smaller than f (v). The upper link Lk+v is
the set of cells in Lkv that have only vertices with function value greater than f (v).

Definition 1. Let D be a triangulated manifold with boundary and f : D → R be
a piecewise-linear function. A vertex v ∈ D is called regular if both Lk−v and Lk+v
have exactly one connected component. Otherwise v is called a critical point and
f (v) is called a critical value.

We can now define a Morse function. Since the definition only refers to critical
points it applies equally well in the smooth and discrete settings.

Definition 2. f is a Morse function iff all its critical values are distinct.

On piecewise-linear functions this condition can be enforced by symbolically
perturbing the critical values. If the vertices vi, vj ∈ D are critical points such that
f (vi) = f (vj), then we define f (vi) < f (vj) if and only if i < j . In practice we
apply the symbolic perturbations to the function value at all the vertices v ∈ D. This
allows us to sort the vertices by their function value and to simply define f (vi) ≡ i.
Definition 3. A level set of f is the preimage of a real value ω, Lf (ω) = f−1(ω).
Given a level set, Lf (ω), we call a connected component of Lf (ω) a contour.

Morse theory describes how the topology of Lf (ω) changes as the field value, ω,
changes. One of the main results states that if a and b are such that the range [a, b]
contains no critical values, then Lf (ω) is homeomorphic to Lf (ν) for all ω, ν ∈
[a, b]. On the other hand if the range [a, b] contains a single critical value, ω0, then
for ω ∈ [a, ω0) and ν ∈ (ω0, b] the difference in the topology of Lf (ω) and Lf (ν)
can be completely described as follows: (1) If ω0 is a local minimum, a new contour
is created in Lf (ν) that did not exist in Lf (ω). (2) If ω0 is a local maximum, a
contour of Lf (ω) is destroyed. (3) If ω0 is a saddle point, either two contours of
Lf (ω) merge into a single contour of Lf (ν) or one contour of Lf (ω) divides into
two contours ofLf (ν). For volumetric or higher dimensional domains, a saddle point
can also induce a topological change in a single contour of Lf (no split nor merge).

The Contour Tree encodes the changes in the number of contours of the level set.

Definition 4. Consider the graph obtained by contracting each contour of every level
set of f to a point. For general Morse functions this graph is called the Reeb graph
and can have any number of cycles, depending on the topology of D [7]. For simply
connected D the Reeb graph is also simply connected and is called Contour Tree.

From the definition it can be seen that the nodes of the Contour Tree correspond
critical points of f and are therefore associated with the relative critical value. Fur-
thermore, nodes that correspond to extrema are leaf nodes, and nodes that correspond
to saddle points must have degree three (or higher in degenerate cases). Figure 3a
shows a simple terrain as an example of Morse function, where the elevation of each

24 V. Pascucci et al.

(a) (b) (c)

Fig. 3. (a) A simple terrain model. The Morse function f is the vertical elevation, which
critical points are highlighted with spheres of different colors: red for maxima, yellow for
minima and blue for saddles. (b) Contour Tree of f embedded in 3D as a toporrery. The z
coordinate of each node is equal to the corresponding critical value of f. (c) 2D layout of the
same tree with y coordinate equal to the corresponding critical value of f . Note that the 2D
layout is not planar and cannot be drawn without self intersection because of the constraint on
the y coordinate of its nodes

point is the value of f . Figure 3b show the corresponding Contour Tree. Figure 3c
shows the planar layout proposed in [62] where the y coordinate of each node is
constrained to be equal to the corresponding critical value of f. Note that with this
constraint the graph cannot be drawn in the plane without self-intersections – see
Fig. 3c.

Hierarchical Graph Representation

We define a multiresolution representation of the Contour Tree that allows linear
time access to simplified representations of the topology. Typically finite graphs are
represented as a list of nodes and a list of arcs, where each arc is defined as a node
pair. In this section we discuss an alternative representation called a branch decom-
position. A branch is a monotone path in the graph traversing a sequence of nodes
with nondecreasing (or nonincreasing) value of f . The first and last nodes in the se-
quence are called the endpoints of the branch. All other nodes are said to be interior
to the branch. Note that a branch can be thought of equally as a sequence of nodes
or a sequence of arcs. A set of branches is called a branch decomposition of a graph
if every arc in the graph appears in exactly one branch of the set. The standard rep-
resentation of a graph satisfies this definition, where every branch is a single arc. We
call this the trivial branch decomposition.

Definition 5. A branch decomposition of a tree is a hierarchical tree if: (1) there
is exactly one branch connecting two leaves (called root branch), (2) every other
branch connects a leaf to a node that is interior to another branch.

We wish to construct a branch decomposition representing the Contour Tree of
a scalar field f : D → R, such that the endpoints of each branch (except the root)

The Toporrery: Computation and Presentation of Multiresolution Topology 25

B3

B1

B0
B2

(a) A Contour Tree decomposed into
branches. The root branch B0 of the tree
is the only one connecting two extrema.
These are the only critical points of the
field that cannot be canceled. B1 is a mini-
mum paired with a join saddle, which can-
not be canceled before B3. The branches
B2 and B3 are maxima paired with split
saddles. They can each be canceled inde-
pendently

β β1

β2

β3

N

N1

N2

N3

Dk

Dk+1

Dk+2

(b) Computation of the radial layout for
the orrery interface of the Contour Tree.
The diagram in figure shows the arrange-
ment used to compute the angular wedges
β1, β2, and β3 for the nodes N1, N2, and
N3 that are children of N . This scheme
is applied recursively to the branches of
a hierarchical Contour Tree so that the
most important branches (higher persis-
tence) are located at the center of the scene

Fig. 4. Branch decomposition and angular arrangement used to build the hierarchical Contour
Tree and its layout for presentation in a graphics user interface

represent an extremum paired with a saddle point of the scalar field. See Fig. 4a.
The tree can be simplified by removing a branch that does not disconnect the tree.
This corresponds to the cancellation of two critical points in the scalar field. This
simplification process defines a hierarchy of cancellations where a branch B1 is said
to be the parent of branchB3 if one endpoint of B3 is interior to B1. The root branch
has no parent and cannot be simplified. Removal of a parent before one of its children
disconnects the tree. In the next section we will discuss the construction of a branch
decomposition based on the persistence of critical point pairs.

Once the decomposition is constructed and the parent–child relations are defined,
we can build any approximation of the original tree by incrementally connecting
child branches to their parent. In particular, we associate values to each branch for
several metrics (such as persistence or geometric location) and artificially enforce
a nesting condition that requires, for all the metrics, the value of the parent to be
greater than or equal to the value of its children. Given a tolerance threshold for
several metrics at the same time, we start from the root branch and iteratively select
children with metrics above the required thresholds.

26 V. Pascucci et al.

Tree Layout and Presentation

We define an embedding of the Contour Tree, which can be used as a user interface
tool. The vertical coordinate-axis is fixed to represent the value of the scalar field.
In doing so we lose one degree of freedom, which makes it impossible, in general,
to build a planar embedding without self-intersections. Figure 3 is an example of a
simple scalar field with a Contour Tree that cannot be embedded in the plane without
self-intersections. Thus, in this section, we describe a three-dimensional embedding
of the Contour Tree that uses the z-coordinate to represent the field value, and such
that the projection of the tree onto the plane z = 0 has no self-intersections. We
also provide a progressive construction of this embedding using the multiresolution
representation given above.

Our visualization scheme can use any algorithm for the layout of rooted trees [9].
We chose a radial layout algorithm that positions the root node of the tree at the origin
and positions its descendants in concentric circles.

The main idea of the layout algorithm is to define a sequence of consecutive
disks, D1 ⊂ D2 ⊂ D3 ⊂ · · · , with radii r1 < r2 < r3 < · · · . We then compute
an angular wedge at each node such that the subtree rooted at that node is contained
entirely within the angular wedge. The root node is positioned at the origin and the
nodes of depth k are arranged on the boundary of the disk Dk . We require the ratio
of consecutive radii to be a constant, ρ = rk+1

rk
> 1. This guarantees the branches

will be spread out nicely. If instead we fix the difference between consecutive radii,
then the ratio rk+1

rk
→ 1 as k approaches ∞, and the maximal size of the angular

wedges goes to 0. Thus the subtrees of nodes far away from the origin will appear to
be arranged along a straight line.

Figure 4b demonstrates the algorithm for computing the angular wedge of a
node N , which is on the boundary of the disk Dk . Let β be the angular wedge that
has been computed for N . First, we can guarantee no self-intersections by ensuring
that all arcs drawn from N to one of its children lie to the right of the tangent to the
diskDk at N . Otherwise, an arc could cross into the interior of the diskDk , and may
intersect an edge of the tree that has already been drawn. To ensure this is not the
case we must restrict β ≤ 2cos−1(rk

rk+1
) = 2cos−1(1

ρ
). In the figure we show the

limiting case where β = 2cos−1(1
ρ
). In our implementation we use ρ = √

2, thus

we restrict β < 2cos−1(1√
2
) = π

2 . However, one can see that it is only necessary to

enforce this condition for the nodes on the boundary of the disk D1, since we have
chosen rk+1

rk
to be constant.

In Fig. 4b the children of the node N are the nodes N1, N2, and N3. To compute
the angular wedges βi we partition the angle β proportionally to the sizes of the sub-
trees rooted at each node. If we let ni be the number of leaves of the subtree rooted at
Ni and n the number of leaves of the subtree rooted atN , then we have the following
relations: n = n1 + n2 + n3, β = β1 + β2 + β3, and n1 : n2 : n3 = β1 : β2 : β3.

Therefore, we have that βi = ni
n
β ≤ β. Since β < π

2 then βi < π
2 and we can

guarantee that the subtree rooted at Ni is free of self-intersections.
To compute the embedding of a hierarchical tree we use the parent–child rela-

tionship between branches to construct a rooted tree whose nodes are the branches

The Toporrery: Computation and Presentation of Multiresolution Topology 27

of the hierarchical tree. Applying the layout algorithm above to this tree produces
a planar embedding, which we use for the (x, y)-coordinates of nodes in the hier-
archical tree. For each branch we assign these (x, y)-coordinates to all its interior
nodes and its unpaired endpoint(s). As stated above the z-coordinate of each node
is assigned the function value of the corresponding critical point in the scalar field.
The branches are then visualized as “L” shapes, where the base of the “L” connects
the branch to its parent along a horizontal line at the height of the paired endpoint.

3 Hierarchical Morse Functions

In this section we develop the tools used to compute a hierarchical representation
of the Contour Tree for a given Morse function. While we do not simplify the in-
put Morse function we establish criteria to determine in which cases the simplified
Contour Tree corresponds to a Morse function that can be constructed from the input
data by cancellations of critical points.

In summary our algorithm is robust in the sense that for any input field it con-
structs a valid branch decomposition of the Contour Tree. In fact, it produces a valid
branch decomposition even if the input data has a Reeb graph with loops.

Unfortunately, the simplification is guaranteed, in general, to produce simplifi-
cations that have a topological equivalent only if all the saddles in the data merge
or split contours. In 3D, for example, there may be pairs of critical points that only
change the genus of the contours and that may need to be canceled in pairs. To resolve
this, we plan to extend our representation to allow nodes of degree two as in [15].

For simplicity of presentation we assume in the following that the domain D is a
simply connected, compact surface.

Simplification

We develop a multiresolution framework for distinguishing fine resolution topolog-
ical features from persistent, coarse resolution structures. There are two operations
that are known to construct Morse functions from Morse function: cancellations and
handle slides. A cancellation transforms a Morse function into a topologically “sim-
pler” function. Handle slides are more subtle transformations the details of which are
not relevant here.

Let m ∈ D be an extremum and v ∈ D be a saddle point of the Morse function
f , such that there is a gradient curve connecting them. We consider the problem of
defining a new Morse function f ′ such that m and v are regular points of f ′ and all
other critical points of f are critical points of f ′. When such an f ′ can be found we
say that the pair of critical points (m, v) can be canceled.

A method for computing a sequence of paired critical points, called persistence
pairing, was described in [10]. It is based on the definition of the persistent homology
groups. The persistence of a pair, (m, v), is defined to be |f (v)− f (m)|. One thinks
of the lower valued critical point as creating a topological feature and the greater
valued one as destroying it. A hierarchy is constructed on these features by sorting

28 V. Pascucci et al.

them according to their persistence. This hierarchy defines an ideal sequence of sim-
plifications. However, it is known that the critical point pairs cannot, in general, be
canceled in this order. The authors introduce the notion of topological obstructions
to explain why a cancellation in the sequence cannot be performed.

The algorithm we present constructs a similar hierarchy, but one that defines
an order of pairs such that the next pair can always be canceled. Conceptually, we
produce a sequence that guarantees that for any given pair of critical points all ob-
structions are canceled before canceling that pair. In this section, we prove that it is
possible to construct such a sequence for any Morse function over D, where D is a
simply connected, closed surface.

Consider a saddle point v ∈ D with f (v) = ω. Let C be the contour of the
level set Lf (ω) that contains v. C is the union of two simple closed curves, called
petals, which intersect at v and do not intersect at any other point in D. A petal of
v partitions D into disjoint regions. The region that contains no other petals of v is
said to be enclosed by the petal.

Lemma 1 Let f : D → R be a Morse function, if f has more than two critical
points then it must have at least one saddle point.

Proof. Since D is compact, f must have one global maximum and one global mini-
mum. If there is another critical point, it is either a saddle (which proves the theorem)
or another extremum. In the latter case the Contour Tree of f has at least three leaf
nodes. Since the Contour Tree is connected there must be a node with degree three,
which corresponds to a saddle point of f .

Lemma 2 Let f : D → R be a Morse function, if f has more than two critical
points then there exists a saddle point, v ∈ D with a petal that encloses exactly one
critical point of f .

Proof. By Lemma 1, f must have a saddle point v0. Choose a petal of v0 and the
regionM0 enclosed by it. We assume, without loss of generality, that the descending
gradient curves starting from to the boundary of D0 point toward its interior. Thus,
there must be a local minimum, m0, in the interior of M0. Let f0 be the restriction
of f to D0. By a symbolic perturbation of the function values on boundary of D0
we can make v0 a maximum of f0 and make all the other points on the boundary of
D0 regular points. If m0 is the only critical point in the interior of D0 the theorem
is proved. So assume that there are n0 > 1 critical points of f in the interior of D0.
This implies that f0 has n0 + 1 > 2 critical points, so there must be a saddle point
v1 ∈ D0. But v0 is the only critical point of f0 on the boundary of D0 so v1 must be
in the interior of D0 and therefore it is a saddle point of the entire function f .

Now apply the above construction to v1 and recursively create a sequence of sad-
dle points v0, v1, . . . ∈ D. Thus the corresponding sequence of regions Di , enclosed
by the petals of the vi , satisfy the inclusion relations D0 ⊃ D1 ⊃ · · · . Finally, this
implies that the numbers ni of critical points of f in the interiors of Di form a de-
creasing sequence, n0 > n1 > · · · . Since there are only a finite number of critical
points and ni > 0 for all i, there must be some number k such that nk = 1. Therefore
v = vk is the required saddle point.

The Toporrery: Computation and Presentation of Multiresolution Topology 29

Lemma 3 Let f : D → R be a Morse function, v be a saddle point as in Lemma 2,
and m be the unique critical point enclosed by a petal of v. Then there exists a
function f ′ that cancels the pair (m, v). Moreover, the size of the region where the
sign of the gradient of f ′ differs from that of f can be made arbitrarily small.

Proof. First, we distinguish between the topological condition on f ′ and the ge-
ometric one. The topological condition states that f ′ cancels the pair (m, v). The
proof of this fact is a well known theorem of Morse theory and can be found in
Sect. 3.4 of [14].

On the other hand the geometric condition states that we can make the region
where we must change the sign of gradient flow as small as we like. This condition
is slightly stronger than what is typically found in the Morse theory literature. We
will demonstrate this is possible by using a triangulation of D. Consider the region
of D shown in Fig. 5, such a region exists by Lemma 2. Without loss of generality
we assume that m is a local minimum. Let c be the steepest descending edge path
from v to m. If f (v) = ω then we subdivide the mesh along the portion of the curve
Lf (ω + 2δ) shown in Fig. 5, for δ small enough. We also subdivide the mesh along
the curve Nε , which is defined such that the arcs with endpoints in Nε and c each
have length less than ε.

The endpoints of the portion of Lf (ω+2δ) drawn in the figure can be connected
by following the steepest decent paths that flow into v to form a simple closed
curve. Call the region bounded by this curve, Dδ . Similarly, we can define a simple
closed curve by connecting the endpoints of Nε . The region enclosed by this curve
will be called Dε ⊂ Dδ. We now explicitly construct f ′ by redefining the function
values of all the vertices in the region Dδ and define f ′(x) = f (x) for all x ∈ Dδ .
Figure 6 shows how the ranges of the vertices in Dδ − Dε and Dε are scaled. These
transformations are reported here:

v
N

c
m

Lf (ω+ 2δ)
Lf (ω)

Fig. 5. Two critical points, a saddle point, v, and a minimum, m, are shown, where f (v) = ω.
Bold lines with arrows indicate the steepest descending edge paths. The steepest descent path,
c, and an ε-neighborhood, N , of c are also shown. The region of D enclosed by N is the only
place where the sign of the gradient must be inverted. Furthermore, we show parts of the level
sets Lf (ω) and Lf (ω + 2δ). The area inside the curve Lf (ω + 2δ) is the only region where
the function value of f must be modified

30 V. Pascucci et al.

f(m)

f(v)=ω

ω+ δ

ω+2δ

(a) (b)

Fig. 6. A pictorial representation of the scaling factors used to construct f ′. (a) show how the
range of the vertices in the region Dδ −Dε are scaled. (b) shows how the range of the vertices
in the region Sε are scaled

f ′(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ(f (x)− f (m))
(ω + 2δ)− f (m) + (ω + δ) x ∈ Dδ −Dε

δ(f (x)− ω)
f (m)− ω + ω x ∈ Dε

The equation for x ∈ Dδ − Dε corresponds to Fig. 6a, which scales the range
[f (m), ω + 2δ] to the range [ω + δ, ω + 2δ]. On the other hand the range of the
vertices x ∈ Dε , which is [f (m), ω], is inverted and scaled to [ω,ω+ δ], see Fig. 6b.
It is easy to see that using these equations the sign of the gradient is only changed
for points in the region Dε . Since we can make Dε as small as we like, the theorem
is proved. Furthermore, the construction demonstrates that the only region where the
function value has to be modified is Dδ . ��

4 Multiresolution Contour Trees

We present an algorithm for computing a representation of the Contour Tree that
allows linear time access to simplified trees, either by uniform or adaptive simplifi-
cation. Algorithms for computing the Contour Tree can be found in [5] and [15]. In
both cases the algorithms first make two passes through the data to compute a join
tree and a split tree. The degree three nodes of the join tree represent the saddle points
where contours are merged, and the those of the split tree represent saddle points
where contours are divided. These trees are then merged to construct the Contour
Tree. We use the same approach to construct a hierarchical representation, however,
we must store all our trees as branch decompositions and modify the algorithm that
merges the join and split trees.

In addition to the basic hierarchical data structure discussed in the previous sec-
tions we take into consideration the function value of the vertices associated with
each node. Thus we can sort the nodes in a branch by increasing function value. We

The Toporrery: Computation and Presentation of Multiresolution Topology 31

call the first node the starting node of the branch and the last node the ending node.
The length of a branch is defined to be the absolute value of the difference in func-
tion value of the endpoints. This value is returned by the function Length(B). Leaf
nodes can now be classified as either minima or maxima, by checking if the node is
a starting node or ending node respectively. Furthermore, we can now characterize
saddle points as either join saddles or split saddles. An interior node is a join saddle
if it is the ending point of some branch, but a split saddle if it is the starting point of
some branch. In this characterization a join saddle corresponds to a saddle point of f
where two contours merge, and a split saddle to a saddle where one contour divides.

This data structure allows us to make certain queries that we can use to determine
if a branch can be simplified. Our algorithm checks the criteria for simplification in a
procedure called CanSimplify(G,B), which returns true if the branch B in the graph
G represents a valid cancellation. The first criterion for this to be true is that the
branch must have no children. If a branch has any children then we say that the child
branch is obstructing the parent branch. This condition is necessary but not sufficient
for determining if a branch is able to be simplified.

Given a pair of critical points that can be canceled we always think of the first
point as creating a topological feature that the second as one destroying it. For ex-
ample, a minimum creates a new contour. Thus a minimum must be paired with a
saddle that destroys that contour, which occurs at a join saddle. Similarly we can see
that a maximum must be paired with a split saddle. So the other criterion that must
be checked by CanSimplify(G,B) is that the endpoints of B are either a minimum
and a join saddle or a split saddle and a maximum.

Once a tree is constructed we can perform several queries on it. First, we include
the function GetTree(B) that returns the tree that contains the branch B. For an
arbitrary branch decomposition it is possible to have degree 2 nodes. We can check
if a node,N , has degree two with the function IsRegular(T ,N). If a node is a starting
point we can perform the query UpBranch(T ,N), which returns the branch that starts
at the node. Likewise, we can call DownBranch(T ,N) on ending points to access
the branch that ends at the node. If CanSimplify(B) returns true for a branch B,
then exactly one of it endpoints represents a saddle point. In this case we can access
the unique saddle point of the branch by calling GetSaddle(B). Finally, a branch is
defined to be a leaf branch if it has no interior nodes and one of its endpoints is a leaf
node. The function IsLeafBranch(T ,E) returns true if E is a leaf branch.

Join and Split Trees. Any of the standard algorithms for computing the join and
split trees can be implemented, but the resulting trees must be stored as trivial branch
decompositions. In these algorithms every node in each tree represents a critical
point. Thus there will be some degree two nodes in each tree, which correspond to
saddle points from the other tree.

For completeness we briefly describe the algorithm for constructing the join and
split trees that given in [5]. However, this algorithm has been improved upon in [15].
First, the vertices of D are sorted by function value. The idea is then to keep track
of a Union-Find data structure as one sweeps through the vertices in increasing and
decreasing order. During the increasing sweep we build the join tree and during the
decreasing sweep we build the split tree. We present an algorithm for computing the
join tree and describe the differences in the split tree algorithm.

32 V. Pascucci et al.

In the pseudo-code given in Table 1 (left) we make use of a simple Union-Find
data structure that includes the functions NewUF(), NewSet(UF, i), Find(UF, i),
and Union(UF, i, j). These functions respectively create the data structure, add a
new class, return the class containing a given index, and merge two classes. Finally,
we require the boolean functions IsMin(v) and IsCritical(v) that return true if v is a
local minimum of f and a critical point of f respectively (v is the only argument
since f (v) is implicitly determined by its order in a sorted array.)

The algorithm for constructing the split tree, ST , is almost identical, the only
differences are: on line 3 the for statement goes from n − 1 to 0, on line 8 the test
IsMin(vi) is replace by the test IsMax(vi), and on line 9 the edges with j > i are
considered. When the ST is constructed in this manner the start of each branch has
greater function value than the end. So it is also necessary to reverse the direction
of all the branches in the ST in order to make all the saddle points in ST split
saddles. This can be done in a subroutine and either included in the algorithm or as
a postprocessing step before constructing the contour tree.

Computing the Multiresolution CT

In previous Contour Tree algorithms the Contour Tree, CT , is constructed form the
JT and ST by “peeling off” leaves of the JT and ST and adding them to the
CT . This approach uses a queue to store the leaves during processing, which can
be removed in any order. Our algorithm uses the same approach, however, we must
impose a strong condition on the order in which the leaves are “peeled off.” We en-
force this condition by using a priority queue such that we always remove the next
shortest leaf branch that represents a valid simplification. Once a branch is removed

Table 1. Pseudocode for the computation of JoinTree and PopValid

Algorithm 1. JoinTree
Input: Sorted array of n vertices ({vi}) and a
triangulated surface (D).
Output: Join tree (JT).

1. JT = NewGraph()

2. UF = NewUF()

3. for i = 0 to n− 1 do:

4. if IsCritical(vi) then AddNode(JT , i)

5. if IsMin(vi) then NewSet(UF, i)

6. i′ = Find(UF, i)

7. for each edge vivj with j < i do:

8. j ′ = Find(UF, j)

9. if j ′ = i′ then AddBranch(JT , j ′, i′)
10. Union(UF, i′, j ′)
11. return JT

Algorithm 2. PopValid
Input: Priority Queue (PQ) of branches.
Output: Branch (B) that is a valid simplifica-
tion.

1. B = Pop(PQ)
2. isV alid = f alse
3. while not isV alid do:
4. if not CanSimplify(B) then:
5. B = Pop(PQ)
6. else:
7. if Length(B) = Priority(B) then:
8. Push(PQ, B)
9. B = Pop(PQ)

10. else:
11. isV alid = true
12. return B

The Toporrery: Computation and Presentation of Multiresolution Topology 33

from the queue the adjacent branches in the JT and ST are merged, which is why
JT and ST must be stored as branch decompositions. These merges can change
the length of branches that are already in the queue. Thus one of the major diffi-
culties in the algorithm is maintaining a valid priority queue. We do this on the fly
by simply checking if the top branch of the queue is valid. The condition that must
be checked is complex enough to warrant a subroutine, so we present the routine
PopValid(PQ).

There are two possibilities for why the branch at the top of the priority queue
is not valid. First of all, the current length of the branch might not be the same
as its length when it was entered into the queue. It is possible that the branch was
merged with another one, so it could be longer, thus it might have a lower priority
than some other branch in the queue. In this case we simply return the branch to the
queue with its new priority. Additionally, it might be the case that for the top branch,
B, CanSimplify(B) returns false. This can come about by removal and merging of
branches as well. In this case the branch has become invalidated in a more essential
way and we simply remove it from the queue altogether.

The priority queue is a standard data-structure that uses the operations: Pop(PQ)
and Push(PQ,B), that retrieve the top element of the queue, and push a branch onto
the queue respectively. It also supports the test IsEmpty(PQ) that returns true if there
are no elements in the queue. In our case the priority is the length of a branch, B,
and Pop(B) is guaranteed to return the branch with the lowest priority. The priority
of a branch, B, when it was entered into the queue can be queried using the function
Priority(B). The complete pseudocode for PopValid is reported Table 1 (right).

The procedure PopValid(PQ) ensures that we can pull the first branch that repre-
sents a valid cancellation from the queue. In this way we can ensure that each branch
represents a topological simplification of f . It was proved in the previous section
that we can always find a simplification, thus PopValid(PQ) will always return a
value as long as the priority is not empty.

For readability we introduce another subroutine of the Contour Tree algorithm
that does the work of “peeling off” a leaf branch. In this routine we make use of the
function MergeBranches(B1, B2) that merges the branches B1 and B2 into the single
branch B1. The pseudocode of PeelOffBranch is reported in Table 2.

Using the subroutines PopValid(PQ) and PeelOffBranch(B, JT , ST) the code
for our main algorithm, BuildContourTree(JT , ST), is relatively simple and is re-
ported in Table 3.

It is clear from the discussion in this and the previous section that this algorithm
produces a multiresolution Contour Tree, such that each branch represents a valid
topological simplification. We can now define an order on the branches that allows
one to extract a Contour Tree after any number of simplifications in linear time. First,
we define the persistence of a branch to be the greater of its length and the persistence
of each of its children. This definition differs from the definition of persistence given
in [10] because it takes into consideration the topological obstructions. Thus a pair
of critical points is never assigned a persistence value that is less than any of its
obstructions.

34 V. Pascucci et al.

Table 2. Pseudocode for the computation of PeelOffBranch

Algorithm 3. PeelOffBranch
Input: Branch (B), Join Tree (JT) and Split Tree (ST).
Output: A branch representing a valid simplification or null.

1. XT = WhichTree(B)
2. N = GetSaddle(B)
3. RemoveBranch(XT,B)
4. if IsRegular(JT ,N) then:
5. B1 = DownBranch(JT ,N)
6. B2 = UpBranch(JT , N)
7. MergeBranches(B1, B2)

8. if XT == ST and CanSimplify(B1) then:
9. return B1

10. if IsRegular(ST , N) then:
11. B1 = UpBranch(ST , N)
12. B2 = DownBranch(ST , N)
13. MergeBranches(B1, B2)

14. if XT == JT and CanSimplify(B1) then:
15. return B1
16. return null

Table 3. Pseudocode for the computation of BuildContourTree

Algorithm 4. BuildContourTree
Input: Join Tree (JT) and Split Tree (ST).
Output: Contour Tree (CT).

1. CT = NewGraph
2. PQ = NewPQ
3. for each B ∈ JT do:
4. if IsLeafBranch(B) and CanSimplify(B) then:
5. Push(PQ,B)
6. for each B ∈ ST do:
7. if IsLeafBranch(B) and CanSimplify(B) then:
8. Push(PQ,B)
9. while not IsEmpty(PQ) do:

10. Btop = PopValid(PQ)
11. AddBranch(CT, Btop)
12. Bnext = PeelOffBranch(Btop, JT , ST)
13. if not Bnext = null then Push(PQ, Bnext)
14. return CT

The Toporrery: Computation and Presentation of Multiresolution Topology 35

The same analysis as in [11] can be used to show that the complexity of
BuildContourTree is O(n logn) where n is the number of nodes in JT and ST .
Using a simple FIFO queue instead of a priority queue would yield a complexity of
O(n) but with the risk of building an unbalanced tree. In practice this does not seem
to be a problem and a linear queue may be advisable for a faster implementation with
lighter data-structures.

5 Output Sensitive Visualization

In this section we demonstrate the use of the multiresolution Contour Tree by show-
ing how to produce output sensitive visualizations. We visualize the Contour Tree by
embedding the nodes of the tree at the location of the corresponding critical points in
3D space. Arcs are drawn as straight line segments connecting the endpoints. Thus a
branch is drawn as a chain of connected arc segments. Since the branches are sorted
by their persistence we always draw the branches with greater persistence first (see
Figs. 7 and 8).

(a) (b)

(c) (d)

Fig. 7. Isosurface of water saturation with a function (pseudocolored) representing the oil
pressure in an oil reservoir. (a–b) Surface with critical points and the Contour Tree for a
persistence threshold of 65% of persistence. Only the shape of the surface dictates the topology
of the function. (c–d) Persistence filter reduced to 35% introducing the seven critical points
corresponding to the oil wells drilling in the reservoir

36 V. Pascucci et al.

(a) (b)

(c) (d)

Fig. 8. (a, b) Two isosurface of the Hipip dataset together with the topology filtered by 53% of
persistence. (c) Contour Tree of the simplified topology. (d) simplified topology in the original
embedding

The branch decomposition representation of the CT allows for uniform or adap-
tive refinement of the tree. Uniform simplification is achieved by interrupting the
drawing process when the first branch with persistence less than a specified value is
reached. Adaptive simplification is almost as easy, before each branch is visualized
it is tested to see if it satisfies the adaptive criterion (see Figs. 9, 10, 11, and 5).

We demonstrated the adaptive visualization of the Contour Tree using a spatial
criterion. The criterion we use in our examples is a simple test if the bounding box
of a branch intersects a given bounding box that describes a region of interest. The
bounding box of a branch,B, is defined to be the bounding box of the region in space
that contains all the critical points that must be canceled in order to simplify B.

The bounding boxes of each branch in the multiresolution Contour Tree are com-
puted by a simple recursive algorithm that merges the bounding box of the branch’s
endpoints with the bounding boxes of each of its child branches. After the bound-
ing boxes have been computed the user is allowed to select a region of interest by
manipulating a bounding box in the embedding space. We can now adaptively extract
a CT that has a greater level of detail in the region of interest by only visualizing
those branches whose bounding boxes intersect the user defined box.

The Toporrery: Computation and Presentation of Multiresolution Topology 37

(a) (b) (c) (d)

Fig. 9. (a) A pig model. (b) The Contour Tree of the pig, where the function is the displacement
along the vertical axis. (c) Simplified tree with persistence value 0.02. (d) Simplified tree with
persistence value 0.05

(a) (b) (c)

Fig. 10. (a) A shark model. (b) The Contour Tree of the shark, where the function is the
displacement along the horizontal axis. (c) Adaptively refined tree showing detail around the
shark’s fin

(a) (b) (c) (d)

Fig. 11. (a) A dinosaur model. (b) The Contour Tree of the dinosaur, where the function is
the displacement along the vertical axis. (c) Simplified tree with persistence value 0.02. (d)
Adaptively refined tree showing detail around the dinosaur’s head

(a) (b) (c) (d)

Fig. 12. (a) A horse model. (b) The Contour Tree of the horse, where the function is the
displacement along the vertical axis. (c) Simplified tree with persistence value 0.02. (d) Adap-
tively refined tree showing detail around the horse’s head

38 V. Pascucci et al.

Although this test is very simple it demonstrates a wide range of possibilities for
user interaction with the CT . Adaptive refinement becomes increasingly important
when one begins to visualize large Contour Trees. In this case a view-dependent
criterion would be useful in speeding up the rendering of the tree, as well as reducing
the amount of information the user has to take it. Using such a criterion one would
not render branches if they are outside the viewing area, too far away, or too small
to see.

6 Conclusions

We have provided a data structure for representing multiresolution Contour Trees.
We have presented a robust algorithm for constructing these trees for general do-
mains. Guaranteed topological correctness is proved for piecewise-linear functions
on simply-connected surfaces. The use of this data structure has been demonstrated
by showing how to adaptively extract output sensitive Contour Trees.

We plan to extend the work on proving topological correctness for general volu-
metric domains. These datasets pose a problem because it is more difficult to deter-
mine cancellations for critical points that do not create junctions or bifurcations. In
three-dimensional fields there can be two types of saddle points. This makes it pos-
sible for the two types of saddle points to form a pair than can be canceled, however,
it is difficult to test if a pair of this type can be canceled.

Acknowledgments

This work was performed under the auspices of the US Department of Energy by
University of California, Lawrence Livermore National Laboratory under Contract
W-7405-Eng-48.

References

1. C. L. Bajaj, V. Pascucci, and D. R. Schikore. The contour spectrum. In Roni Yagel and
Hans Hagen, editors, IEEE Visualization 9́7, pages 167–175. IEEE, November 1997.

2. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A multi-resolution data struc-
ture for two-dimensional Morse functions. In Proceeding of IEEE Conference on Visual-
ization, pages 139–146, October 2003.

3. H. Carr and J. Snoeyink. Path seeds and flexible isosurfaces – using topology for ex-
ploratory visualization. In Proceeding of IEEE TCVG Symposium on Visualization (Vis-
Sym ’03), pages 49–58, Grenoble, Fr, May 2003.

4. H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. In Pro-
ceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms, pages
918–926, January 2000.

The Toporrery: Computation and Presentation of Multiresolution Topology 39

5. H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. Com-
putational Geometry Theory and Applications, 24(2):75–94, February 2003. To appear
(extended abstract appeared at SODA 2000).

6. H. Carr, J. Snoeyink, and M. van de Panne. Simplifying flexible isosurfaces using local
geometric measures. In IEEE Visualization, pages 497–504, October 2004.

7. K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Loops
in reeb graphs of 2-manifolds. In ACM Symposium on Computational Geometry, pages
344–350, July 2003.

8. K. Cole-McLaughlin and V. Pascucci. Multiresolution representation of topology. In Pro-
ceedings of the 4th IASTED International Conference on Visualization, Imaging, And
Image Processing (VIIP 2004), pages 282–289, Marbella, Sapin, September 2004.

9. G. di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice-Hall, Upper Saddle River, NJ, 1999.

10. H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplifi-
cation. In Proceeding of The 41st Annual Symposium on Foundations of Computer Sci-
ence. IEEE, November 2000.

11. A. T. Fomenko and T. L. Kunii, editors. Topological Modeling for Visualization. Springer,
Tokyo, 1997.

12. M. Hilaga, Y. Shinagawa, T. Komura, and T. L. Kunii. Topology matching for full auto-
matic similarity estimation of 3d shapes. In Proceedings of ACM SIGGRAPH 2001, pages
203–212, August 2001.

13. E. Kleiberg, H. van de Wetering, and J. J. van Wijk. Botanical visualization of huge hi-
erarchies. In Proceedings IEEE Symposium on Information Visualization (InfoVis’2001),
pages 87–94, 2001.

14. Y. Matsumoto. An Introduction to Morse Theory. AMS, 1997.
15. V. Pascucci and K. Cole-McLaughlin. Efficient computation of the topology of the level

sets. In IEEE Visualization, pages 187–194, October 2002.
16. G. Reeb. Sur les points singuliers d’une forme de pfaff completement integrable ou d’une

fonction numerique. Comptes Rendus Acad. Sciences Paris, 222:847–849, 1946.
17. P. J. Scott. An Application of Surface Networks in Surface Texture, chapter 11: Efficient

contour tree and minimum seed set construction, pages 157–166. John Wiley & Sons,
May 2004.

18. Y. Shinagawa, T. L. Kunii, H. Sato, and M. Ibusuki. Modeling the contact of two com-
plex objects: With an application to characterizing dental articulations. Computers and
Graphics, 19:21–28, 1995.

19. Y. Shinagawa and T. L. Kunii. Constructing a Reeb graph automatically from cross sec-
tions. IEEE Computer Graphics and Applications, 11:44–51, November 1991.

20. S. Takahashi, G. M. Nielson, Y. Takeshima, and I. Fujishiro. Topological volume skele-
tonization using adaptive tetrahedralization. In Proceeding of Geometric Modeling and
Processing, pages 227–236, 2004.

21. S. Takahashi, Y. Takeshima, and I. Fujishiro. Topological volume skeletonization and its
application to transfer function design. Graphical Models, 66(1):24–49, 2004.

22. A. Telea and J. J. van Wijk. Simplified representation of vector fields. In IEEE Com-
puter Society Press, editor, Proceedings of the IEEE conference on Visualization ’99,
pages 35–42, 1999.

23. X. Tricoche, G. Scheuermann, and H. Hagen. A topology simplification method for 2d
vector fields. In Proceedings of the IEEE conference on Visualization, pages 359–366.
IEEE Computer Society Press, 2000.

24. E. R. Tufte. Envisioning Information. Graphics Press LLC, Cheshire, CT, 1990.

40 V. Pascucci et al.

25. M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees
and small seed sets for isosurface traversal. In Proceedings of the 13th International
Annual Symposium on Computational Geometry (SCG-97), pages 212–220, June 1997.
Extended version. Techincal report UCRL-JC-132016 Lawrence Livermore National
Laboratory.

26. G. H. Weber and G. Scheuermann. Automating Transfer Function Design Based on Topol-
ogy Analysis, chapter IV:5, pages 293–308. Mathematics and Visualization. Springer,
Berlin, 2004.

Isocontour Based Visualization of Time-Varying
Scalar Fields

Ajith Mascarenhas and Jack Snoeyink

Department of Computer Science, University of North Carolina at Chapel Hill,
Chapel Hill, NC, USA
ajith@cs.unc.edu, snoeyink@cs.unc.edu

Summary. Time-varying scalar fields are produced by measurements or simulation of phys-
ical processes over time, and must be interpreted with the assistance of computational tools.
A useful tool in interpreting the data is graphical visualization, often through level sets, or
isocontours of a continuous function derived from the data. In this paper we survey isocontour
based visualization techniques for time-varying scalar fields. We focus on techniques that aid
selection of meaningful isocontours, and algorithms to extract chosen isocontours.

1 Introduction

Physical processes that are measured over time, or that are modeled and simulated
on a computer, can produce large amounts of time-varying data that must be inter-
preted with the assistance of computational tools. Such data arises in a wide variety
of studies including computational fluid dynamics [15], oceanography [6], medi-
cal imaging [60], and climate modeling [46]. The data typically consists of finitely
many points in space–time and measured or computed values for each point. Often
the values are scalar, with perhaps several scalar values for each sample point. E.g.,
Pressure, temperature, density. A study of motion or velocity of some kind will re-
sult in vector-valued data. In this paper, we focus on scalar-valued data, often called
scalar fields. Irrespective of how the points are sampled, we can connect them into
a mesh and interpolate the values to obtain a continuous function over the entire do-
main. Piecewise-linear interpolation is common for large amounts of data, because
of its relative ease; multilinear interpolation is also used for regular grids.

The goal is to understand the data, usually by exploring it for important features.
A medical researcher might be interested in tumors, while a climatologist might be
interested in regions of high pressure. Because humans possess a highly developed
visual system, transforming the data into images and movies that can be displayed,
and providing the scientist with tools to control them can be a powerful visualiza-
tion method [47]. Popular techniques employed to create such visualizations are
direct volume rendering, slicing, and isocontouring. Direct volume rendering em-
ploys two classes of algorithms to display all the data: image-space projection and

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 41
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

42 A. Mascarenhas and J. Snoeyink

volume-space projection. In image-space projection algorithms we cast rays into the
three-dimensional volumetric data, map the data at each volume element to a user
determined color and opacity value, accumulate these values in front-to-back order
and display them on screen [38, 39, 41]. In volume-space projection algorithms, we
traverse the volume, compute the color and opacity contribution for each volume ele-
ment and project it onto the image screen [32,63]. Direct volume rendering displays
all the data simultaneously and requires recomputing the image for each new viewing
direction. On the other hand, techniques for computing slices and isocontours (also
called level sets) of the data have been used to reduce three-dimensional volumetric
data to a two-dimensional form suitable for interactive display. In slicing, we restrict
the data to a suitable plane, and display this restriction on a computer screen. By
mapping values to colors, we can view the variation on the plane, and by varying the
plane of slicing we can explore the variation of data in space. In isocontour based
visualization, we fix a scalar value s, compute the points in space with that value and
display the results [43]. By varying s we can explore the variation in the data.

Because time-varying data is four-dimensional, we restrict it along two dimen-
sions; one choice is to create time-slices to study temporal behavior, and isocontour-
ing within the time-slice to study variation over space. Although there can be other
choices for dimension reduction, most of the research on time-varying visualization
use this choice. This is perhaps because visualization of volumetric data preceded
that of time-varying data, and a natural step to apply existing algorithms is to con-
sider each time-step as a static volume.

In this paper we survey theory and algorithms for isocontour-based visualization
for time-varying scalar fields. We are guided by two goals. The first, given slicing
and isovalue parameters extract isocontours for display. The second, and in our opin-
ion more interesting goal, is find “interesting” parameters to aid the scientist in the
visualization.

Because visualization is an interactive process, algorithms for isocontour extrac-
tion focus on efficiency. Moreover time-varying scalar fields are usually very large
and may not fit into physical memory. Therefore reducing storage overhead and im-
proving I/O efficiency are also important.

To help us address the second goal we pose some questions: How do the differ-
ent components of an isocontour interact as the time and isovalue are continuously
varied? At what time and isovalues do new components appear, disappear, merge,
split or change genus? What tools exist that can provide this topological information
without actually computing each possible isocontour? As we will see in this survey,
some of the answers to these questions have resulted in algorithms to compute topo-
logical structures such as the Reeb graph that are useful aids in visualization. The
Reeb graph encodes isocontour topological features such as number of components,
component merge, split and genus change. We will survey algorithms for the Reeb
graph of static functions and its extension to time-varying functions. These algo-
rithms are based on the mathematical fields of topology and Morse theory, and work
on the real-world piecewise linear approximations of the smooth spaces required by
the theory. We see this trend as an important development; there is a rich and well
developed body of work in these mathematical fields that visualization research can
benefit from.

Isocontour Based Visualization of Time-Varying Scalar Fields 43

Outline

This survey is structured into two parts. The first part, consisting of Sect. 2, reviews
algorithms for extracting isocontours from time-varying data. The second part, con-
sisting of Sects. 3 and 3.3, considers topological structures that aid the visualization
process by presenting high dimensional data in a succinct visual form. Our focus
is mainly on the Reeb graph, its extension to time-varying data, and algorithms to
compute this extension.

2 Isocontour Extraction

In this section we present techniques for isocontour extraction from time-varying
scalar fields. Because most research on isocontour extraction from time-varying
scalar fields builds on the techniques for static fields, we briefly survey them first.

The volumetric data consists of finite point samples of a scalar function
f : R

3 →R. The sample points are connected into a mesh. We refer to the sample
points as vertices and each mesh element as a cell. The function value is extended to
the entire domain by interpolation. With linear or multilinear interpolation, the min–
max interval for each cell c, is the interval [minval(c), maxval(c)], where minval(c),
and maxval(c) are the minimum and maximum scalar values at the vertices of c.

Research in isocontour extraction arose in the medical imaging field, with the use
of sampled medical images to extract boundaries of organs [2, 28, 33]. In the graph-
ics and animation community, isocontours were used to model and render implicit
surfaces [8], and for modeling and animating objects [65, 66].

Lorensen & Cline [43] introduce the marching cubes algorithm for isocontour
extraction from data sampled regularly and connected into a cubical mesh. The algo-
rithm iterates through all cubes in the volume, and extracts a piece of the isocontour
from each cube. The marching cubes algorithm has a flaw [22]; it sometimes gener-
ates isocontours with holes. Subsequent research provide algorithms that correct this
problem [30, 45, 49, 51, 52]. Although simple, the marching cubes algorithm can be
inefficient because it examines the entire volume, while an isocontour may intersect
only a small fraction of this volume. Techniques that speed-up isocontour extraction
build search structures to efficiently find cells intersecting the isocontour, and can be
classified into spatial techniques, span space techniques, and topological techniques.

2.1 Spatial Techniques

Spatial techniques subdivide the volume using a octree based hierarchy [64]. Each
octant is equipped with the min–max interval of function values contained in it, en-
abling a search through the octree hierarchy to terminate at the octant if the query
isovalue does not belong to the interval. This technique works because most data sets
have large regions with function values that are distributed close together and can be
quickly pruned in a search. Next we look at an extension of the octree technique to
time-varying data.

44 A. Mascarenhas and J. Snoeyink

Temporal Branch-on-Need Tree

The Temporal Branch-on-Need Tree (T-BON) [59] extends the three-dimensional
branch-on-need octree for time-varying isocontour extraction. It aims at efficient I/O
while retaining the accelerated search enabled by a hierarchical subdivision. Unlike
the algorithms in Sects. 2.2 and 2.3 this algorithm does not exploit temporal coher-
ence and considers each time-step as a static volume.

Construction

The input to the T-BON construction is regularly sampled points in space–time. The
output is a branch-on-need octree for each time step, stored on disk in two sections.
Store information common to all trees, such as branching factor, pointers to children
and siblings, once for all trees. Store the min–max intervals associated with nodes
of an octree separately as a linear array, one per time-step, each packed in depth-first
order.

Search and Extraction

The input is a query: Extract the isocontour for isovalue s at time t . The output is
the isocontour represented as a triangulated mesh. As a first step, read the octree in-
frastructure from disk and re-create it in main memory. Resolve the query using the
octree for t and demand-driven paging [19]. Read the min–max interval of the root
from disk, and if s belongs to this interval read the child nodes. Proceed recursively,
stopping at the leaf nodes. If the min–max interval of a leaf contains s add the disk
block containing the corresponding cells values onto a list. After completing the oc-
tree traversal read all disk blocks from the list into memory. Repeat the tree traversal,
this time extracting the isocontour using the cell data read from disk.

2.2 Span-Space Techniques

Livnat et al. [42] define the span space as the two-dimensional space spanned by the
minimum and maximum values of the cells of the volume. A cell c with minimum
value minc and maximum value maxc maps to a point (minc,maxc) in the span
space. See Fig. 1. A variety of search structures on the span space have been used
to speed-up finding cells that intersect an isocontour. Gallagher [29] uses bucketing
and linked lists, Livnat et al. [42] use k-d trees [7], van Kreveld [61] and Cignoni
et al. [16] use the interval tree for two- and three-dimensional data respectively.
Chiang et al. [14] use a variant of the interval tree that enables out-of-core isocon-
tour extraction, and use the algorithm of Sect. 2.2 to extend this work to time-varying
data [13]. Unlike the spatial techniques that use the octree, which requires regularly
gridded data, span space techniques have the advantage of being also applicable to ir-
regularly sampled data. Next we look at an algorithm that uses span space techniques
for isocontour extraction from time-varying data.

Isocontour Based Visualization of Time-Varying Scalar Fields 45

min

max

(s, s)

Fig. 1. Points in shaded area of span space correspond to cells that intersect isocontour for
value s

Temporal Hierarchical Index Tree

Shen’s algorithm [55] for the Temporal Hierarchical Index (THI) tree analyzes the
span space of the time-varying data, and classifies and stores each cell in one or more
nodes of a binary tree based on the temporal variation of its values. By placing a cell
possessing a predefined small temporal variation in a single node of the THI tree,
along with a conservative min–max interval of its variation over a large time span,
this algorithm achieves savings in space. Cells with greater temporal variation are
stored at multiple nodes of the tree multiple times, each for a short time span.

Temporal Variation

Shen uses the span space to define the temporal variation of a cell’s values. The area
over which the points corresponding to a cell’s min–max values over time are spread
out give a good measure of its temporal variation; the larger the area of spread the
greater the variation. In particular, subdivide the span space into 	× 	 nonuniformly
spaced rectangles called lattice elements using the lattice subdivision scheme [56].
To perform the subdivision, lexicographically sort all extreme values of the cells in
ascending order, find 	+1 values to partition the sorted list into 	 sublists, each with
the same number of cells. Use these 	+1 values to draw vertical and horizontal lines
to get the required subdivision. Note that this subdivision does not guarantee that
each lattice element has the same number of cells. Given a time interval [i, j], a cell
is defined to have low temporal variation in that interval if its j − i + 1 min–max
interval points are located over an area of 2 × 2 lattice elements.

Construction

The input of the THI algorithm is a fixed mesh whose vertices are points in space.
Each point has a data value for each time step in [0, T − 1]. Each cell has T corre-
sponding min–max intervals. The output of the THI algorithm is a binary tree con-
structed as follows. In the root node NT−1

0 , store cells whose min–max intervals

46 A. Mascarenhas and J. Snoeyink

min

max

min

max

Fig. 2. The min–max intervals of a cell over a time interval are shown in the span-space as
points with a path connecting them in order of time. The points on the left are spread outside
a 2 × 2 lattice area. On breaking the time interval into two halves, on the right, the respective
points fall inside a 2 × 2 area

have low temporal variation in the time interval [0, T − 1]. The root has two chil-
dren, NT/20 and NT−1

T/2+1 defined recursively on cells that are not stored in the root.
Recursion stops at leaf nodes Ntt , with t ∈ [0, T − 1]. Cells that fall into leaf nodes
have the highest temporal variation. See Fig. 2.

Represent each cell that falls into an internal nodeNji by a conservative min–max
interval, called the temporal extreme values, which contains all the cells min–max
intervals for the time span j − i + 1. Because the temporal extreme values are used
to refer to a cell for more than one time step, we get a reduction in the overall index
size.

Within each tree node, organize the cells using one of the span-space based tech-
niques; Shen uses a modified ISSUE algorithm [56]. Use the lattice subdivision
scheme described above, and sort cells that belong to each lattice row, excluding
the cells in the diagonal lattice element, in ascending order, based on their minimum
temporal extreme value. Similarly, sort the cells into another list, in descending order,
based on their maximum temporal extreme value. Build an interval tree, as in [16],
for cells in the lattice elements along the diagonal.

Search and Extraction

As in the T-BON algorithm, the input is a query: Extract the isocontour for iso-
value s at time t , and the output is the isocontour represented as a triangulated mesh.
First collect all nodes in the THI-tree whose time span contains t . Traverse the tree,
starting at the root node. From the current node, visit the child Nji , with i ≤ t ≤ j ,
stopping at leaf node Ntt .

At each node in the traversal path, use the lattice index structure to locate can-
didate isocontour cells. Locate the lattice element that contains the point (s, s). Be-
cause of the symmetry of the lattice subdivision this element is the kth row in the kth

Isocontour Based Visualization of Time-Varying Scalar Fields 47

column, for some integer k. The isocontour cells are contained in the upper-left cor-
ner bounded by the lines x = s and y = s, as shown in Fig. 1. Collect these cells as
follows:

• From each row r = k + 1 to 	 − 1, collect cells from the beginning of the list
sorted on the minimum temporal extreme value until the cell whose minimum is
greater than s.

• From row k, collect cells from the beginning of the list sorted on the maximum
temporal extreme value until a cell whose maximum is lesser than s.

• From the lattice element containing (s, s), collect cells by querying the interval
tree.

Recall that because we store a conservative min–max interval with cells, some
collected cells may not actually intersect the isocontour. For all candidate cells, read
the actual data at time t to extract the isocontour.

2.3 Topological Techniques

Topological techniques for efficient isocontour extraction typically analyze the data
in a preprocess step, and compute a subset of cells called the seed set. A seed set con-
tains at least one cell, called a seed, intersecting each component of each isocontour.
To extract an isocontour first search the seed set, which is stored in an appropriate
search structure, to find a seed for each connected isocontour component. To extract
each component, start at the seed and visit all intersecting cells by a breadth first
search of the mesh. This method of extraction, by performing a breadth first search
of the mesh, is called continuation by Wyvill et al. [65], mesh propagation by Howie
& Blake [34], and contour-following by [10]. Next we look at an algorithm that uses
topological techniques for isocontour extraction from time-varying scalar fields.

Progressive Tracking

Bajaj et al. [4] extend seed set based techniques to time-varying data. They use tem-
poral coherence to compute an isocontour at time step t+1 by modifying the isocon-
tour computed at the time step t . New components at t + 1 are separately computed
from the seed set for that time step. Unlike the T-BON and THI algorithms they ac-
cept a range of time-steps and a single isovalue as arguments, and track components
over the range of time-steps.

Construction

The input can be a fixed regular or irregular mesh whose vertices are points in space.
Each point has a data value for each time step in [0, T −1]. The output is a collection
of T seed sets, one for each time step. Treat each time-step as a static scalar field and
compute a seed-set using one of the algorithms proposed in [10, 62]. Organize each
seed-set in an interval tree [16].

48 A. Mascarenhas and J. Snoeyink

Search and Extraction

The query for this algorithm is different from the T-BON and THI algorithms. Find
isocontours for isovalue s over the time range [t0, t1]. To extract an isocontour, first
extract all isocontour components at time t0 using contour propagation from the seeds
for that time. Extract all isocontour components for subsequent discrete time steps,
t ≤ t1 by a combination of modifying current isocontour components over time, and
by extracting new components from the seed sets at t .

To modify components, at each time-step t , with t0 ≤ t ≤ t1, maintain, in one
list per isocontour component, the set of intersecting cells. These cell lists are used
to track the evolution of the isocontour for s over time. As in the marching cubes
case, we can label each cell vertex as “above” if its value at time t is greater than s,
and “below” otherwise. A cell edge joining opposite labels contains an isocontour
vertex. To track an isocontour component, consider the label change for each cell
edge at t + 1. If the labels of the end vertices of a cell edge do not change then the
isocontour vertex that lies on that edge just changes position, which can be found by
linear interpolation. A cell vertex label can change, in which case the isocontour ex-
periences a local connectivity change. The changes include the contour changing its
geometry but not topology, two or more components merging, or a component split-
ting into two or more components. All these changes can be applied to the contours
by enqueueing the cell lists, extracting each cell and examining its neighborhood,
and propagating the isocontour spatially. See [4] for details.

2.4 Comparison

The TBON algorithm discussed in Sect. 2.1 can be applied to regularly gridded data
and is designed to be I/O-efficient by using demand driven paging; load data only
when it is required. It does not exploit temporal coherence and treats each time-step
as a static volumetric scalar field. The THI algorithm discussed in Sect. 2.2 can be
applied to both regularly and irregularly sampled data. It reduces the storage over-
head of the search structure, but it requires all data to be loaded into memory, a
serious drawback for time-varying data which can be large. The progressive track-
ing algorithm discussed in Sect. 2.3 can also be applied to regularly and irregularly
sampled data. Since this algorithm computes seed sets the storage overhead is not
significant. Bajaj et al. [4] show seed set sizes of less than 2% of the total number of
cells. Moreover, extracting isocontours by propagation produces coherent triangula-
tions that are amenable to compression [35], simplification [37], and streaming [36].
The other extraction algorithms do not produce coherent triangulations.

3 Topological Structures for Supporting Visualization

In this section we review a topological structure called the Reeb graph that encodes
the number of isocontour components at each isovalue, and the topological changes
experienced by components. The Reeb graph can be used to display this information

Isocontour Based Visualization of Time-Varying Scalar Fields 49

succinctly to aid visualization. Section 3.2 reviews an algorithm that extends the
Reeb graph for visualizing time-varying scalar fields. Section 3.3 reviews a more
systematic study of the evolution of Reeb graphs over time, and an algorithm to
compute this evolution.

The algorithms discussed in this section are based on Morse theory [44, 48] and
combinatorial and algebraic topology [1, 50]. Note that in deference to the terminol-
ogy used in this mathematical literature, we sometimes use the term level set instead
of isocontour. We begin with a review of smooth maps and critical points. Because
algorithms work on piecewise linear data, we discuss how to translate the concepts
from the smooth setting to the piecewise linear setting.

Smooth Maps on Manifolds

Let M be a smooth, compact d-manifold without boundary and f : M → R a smooth
map. Assuming a local coordinate system in its neighborhood, x ∈ M is a critical
point of f if all partial derivatives vanish at x. If x is a critical point, f (x) is a
critical value. Noncritical points and noncritical values are called regular points and
regular values, respectively. The Hessian at x is the matrix of second-order partial
derivatives. A critical point x is nondegenerate if the Hessian at x is nonsingular.
The index of a critical point x is the number of negative eigenvalues of the Hessian.
Intuitively, it is the number of mutually orthogonal directions at x along which f
decreases. For d = 3 there are four types of nondegenerate critical points: the minima
with index 0, the 1-saddles with index 1, the 2-saddles with index 2, and the maxima
with index 3. A function f is Morse if:

I. All critical points are nondegenerate.
II. f (x) = f (y) whenever x = y are critical.

We will refer to I and II as Genericity Conditions as they prevent certain non-
generic configurations of the critical points. This choice of name is justified because
Morse functions are dense in C∞(M), the class of smooth functions on the mani-
fold [31, 44]. In other words, for every smooth function there is an arbitrarily small
perturbation that makes it a Morse function.

The critical points of a Morse function and their indices capture information
about the manifold on which the function is defined. For example, the Euler char-
acteristic of the manifold M equals the alternating sum of critical points, χ(M) =∑
x(−1)indexx .

Piecewise Linear Functions

A triangulation of a manifold M is a simplicial complex,K , whose underlying space
is homeomorphic to M [1]. Given values at the vertices, we obtain a continuous
function on M by linear interpolation over the simplices of the triangulation. The
Euler characteristic of M can also be computed from any triangulation of M as
the alternating sum of simplices, χ(M) = ∑

σ (−1)dimσ . We need some definitions
to talk about the local structure of the triangulation and the function. The star of a
vertex u, denoted St u, consists of all simplices that share u, including u itself, and

50 A. Mascarenhas and J. Snoeyink

the link, denoted Lku, consists of all faces of simplices in the star that are disjoint
from u. The lower link, denoted Lk−u, is the subset of the link induced by vertices
with function value less than u:

St u = {σ ∈ K | u ⊆ σ },
Lku = {τ ∈ K | τ ⊆ σ ∈ St u, u ∈ τ },

Lk−u = {τ ∈ Lku | v ∈ τ ⇒ f (v) ≤ f (u)}.
Banchoff [5] introduces the critical points of piecewise linear functions as the ver-
tices whose lower links have Euler characteristic different from unity.

A classification based on the reduced Betti numbers of the lower link is finer
than that defined by Banchoff. The k-th reduced Betti number, denoted as β̃k , is
the rank of the k-th reduced homology group of the lower link: β̃k = rank H̃k . The
reduced Betti numbers are the same as the usual (unreduced) Betti numbers, except
that β̃0 = β0 − 1 for nonempty lower links, and β̃−1 = 1 for empty lower links [50].
The first three unreduced Betti numbers are the number of connected components,
the number of tunnels, and the number of voids respectively. For example, a 2-torus
has unreduced Betti numbers: β0 = β2 = 1, and β1 = 2. For d = 3 the link is
a 2-sphere and the Betti numbers can be computed as follows: Compute the Euler
characteristic χ of the lower link as the alternating sum of vertices, edges and faces
in the lower link. Compute β0, the number of connected components in the lower
link, by using the union-find data structure [18]. If all the link vertices are also in the
lower link then β2 = 1 else β2 = 0. Compute β1 using the relation β1 = β0+β2−χ .
The reduced Betti numbers can be computed from the definitions. For an algorithm
to compute Betti numbers of simplicial complexes on the 3-sphere see [20].

When the link is a 2-sphere only β̃−1 through β̃2 can be nonzero. Simple criti-
cal points have exactly one nonzero reduced Betti number, which is equal to 1; see
Table 1 and Fig. 3. The first case in which this definition differs from Banchoff’s
is a double saddle obtained by combining a 1- and a 2-saddle into a single vertex.

Table 1. Classification of vertices into regular and simple critical points using the reduced
Betti numbers of the lower link

β̃−1 β̃0 β̃1 β̃2
Regular 0 0 0 0

Minimum 1 0 0 0
1-Saddle 0 1 0 0
2-Saddle 0 0 1 0

Maximum 0 0 0 1

Fig. 3. Lower links, shown shaded, for d = 3. From left to right, a minimum, a 1-saddle, a
2-saddle, and a maximum

Isocontour Based Visualization of Time-Varying Scalar Fields 51

The Euler characteristic of the lower link is 1, which implies that Banchoff’s def-
inition does not recognize it as critical. A multiple saddle is a critical point that
falls outside the classification of Table 1 and therefore satisfies β̃−1 = β̃2 = 0 and
β̃0 + β̃1 ≥ 2. By modifying the simplicial complex, it can be unfolded into simple 1-
saddles and 2-saddles as explained in [11, 25]. This allows us to develop algorithms
assuming that all critical points are simple.

The Reeb Graph

A level set of a function f consists of all points in the domain whose function values
are equal to a chosen real number s. A level set of f is not necessarily connected. If
we call two points x, y ∈ M equivalent when f (x) = f (y) and both points belong
to the same component of the level set, then we obtain the Reeb graph as the quotient
space in which every equivalence class is represented by a point and connectivity is
defined in terms of the quotient topology [54]. Figure 4 illustrates the Reeb graph for
a function defined on a 2-manifold of genus two. We call a point on the Reeb graph
a node if the corresponding level set component passes through a critical point of f .
The rest of the Reeb graph consists of arcs connecting the nodes. The degree of a
node is the number of arcs incident to the node. A minimum creates and a maximum
destroys a level set component and both correspond to degree-1 nodes. A saddle that
splits one level set component in two or merges two to one corresponds to a degree-
3 node. There are also saddles that alter the genus but do not affect the number of
components, and they correspond to degree-2 nodes in the Reeb graph. Nodes of
degree higher than three occur only for non-Morse functions.

Visualization Interfaces

Topological structures, such as the Reeb graph, provide a succinct summary of the
underlying function, and are used in visualization interfaces. Consider Fig. 5. It
shows a screenshot of the contour spectrum [3] interface; a window displays iso-
contour properties, such as surface area and volume, using graphs, and topological
properties using the contour tree, to aid selection of interesting isocontours which
are displayed separately.

Fig. 4. The Reeb graph of the function f on a 2-manifold that maps every point of the double
torus to its distance above a horizontal plane below the surface

52 A. Mascarenhas and J. Snoeyink

Fig. 5. The contour spectrum interface [3]. On the top, graphs of isocontour properties, such
as surface area, and volume, vs. isovalues. On the bottom, three isocontours chosen using the
contour spectrum

Fig. 6. A portion of the safari interface [40]. The control plane on the right displays the number
of isocontour components for each time-step (x-axis) and isovalue (y-axis). The user selects
isocontours for display by clicking on the contour plane

Figure 6 shows the safari interface [40], which extends the ideas of the contour
spectrum to time-varying data, provides the user with a (time, value) control plane
for isovalue selection, and extracts an isocontour from a time-slice for display. The
control plane on the right displays the number of isocontour components for each
time-step(x-axis) and isovalue(y-axis), which can be computed from the contour tree
for each time step.

Recently, Carr et al. [10] have used the contour tree to compute path seeds, a set
of edges in the triangulation that can be used to quickly find seeds for any isocontour
component, and use these path seeds to create a flexible isocontour interface. They
provide the user with an interface to select individual arcs in the contour tree and can
extract chosen isocontour components for display. Building on this work, they also
present an algorithm to simplify the contour tree using local geometric measures to
capture the essential features of the underlying data in the presence of noise [12].

Isocontour Based Visualization of Time-Varying Scalar Fields 53

3.1 Reeb Graph Algorithms

In mathematics, the Reeb graph is often used to study the manifold M that forms the
domain of the function. For example, the Reeb graph in Fig. 4 reveals that the func-
tion is defined on a double torus, assuming we know it is an orientable 2-manifold
without boundary. In visualization, on the other hand, the Reeb graph is used to
study the behavior of the function. The domain of interest is R

3 but it is convenient
to compactify it and consider functions on the 3-sphere, S

3. All the Reeb graphs for
such functions will reveal the (unexciting) connectivity of S

3 by being trees, but the
structure of the tree will tell us how the level sets of the chosen function f change
topology.

History

The Reeb graph was first introduced in [54]. In the field of visualization, Boyell and
Ruston [9] introduced the contour tree to summarize the evolution of contours on a
map. In the interactive exploration of scientific data, Reeb graphs are used to select
meaningful level sets [3] and to efficiently compute them [62]. An extensive discus-
sion of Reeb graphs and related structures in geometric modeling and visualization
applications can be found in [27].

Published algorithms for Reeb graphs take as input a function defined on a tri-
angulated manifold. We express their running times as functions of n, the number
of simplices in the triangulation. The first algorithm for functions on 2-manifolds
due to Shinagawa and Kunii [57] takes time O(n2) in the worst case. Reeb graphs
of simply-connected domains are loop-free, and are also known as contour trees.
They have received special attention because of the practical importance of these do-
mains, and because the algorithms to compute them are simpler. An algorithm that
constructs contour trees of functions on simply-connected manifolds of constant di-
mension in time O(n logn) has been suggested in [11]. For the case of 3-manifolds,
this algorithm has been extended to include information about the genus of the level
surfaces [53]. Cole-McLaughlin et al. [17] return to the general case, giving tight
bounds on the number of loops in Reeb graphs of functions on 2-manifolds and de-
scribing an O(n logn) time algorithm to construct them.

Computing a Contour Tree

We sketch the algorithm proposed by Carr et al. [11] to compute the contour tree of
a function defined on a simply-connected domain. Although their algorithm works
for any dimension we restrict our description to d = 3. This algorithm in used in
Sects. 3.2 and 3.3.

The input to the contour tree algorithm is a triangulationK of a simply-connected
3-manifold, with each vertex equipped with a distinct scalar function value. The
output is the contour tree of the function represented as a collection of nodes and
arcs that connect them. The algorithm proceeds in two passes: the first computes
the Join tree, and the second the Split tree. Since these passes are similar we describe
the construction of the Join tree. The Join tree encodes the merges experienced by

54 A. Mascarenhas and J. Snoeyink

Reeb graphSplit treeJoin tree

Fig. 7. In the top row, a 2-manifold shown with three isocontours for the height function
defined on it, and the Join, Split tree and Reeb graph. In the bottom row, two stages during the
sweep to construct the Join tree

the isocontour components as we sweep the isovalue from −∞ to ∞; the Split tree
does this for the sweep in the opposite direction.

To implement the sweep sort the vertices of K in ascending order of function
value, and iterate through the vertices. At each step maintain the collection of vertices
visited in a union-find(UF) data structure [18]. For each connected component in the
collection, maintain a tree encoding the merge history of the component. Classify
each vertex v based on its index and handle each case as follows. Add a regular point
to the set that contains its lower link vertex. A minimum creates a new component;
start a UF set, and a new Join tree arc. An index-1 critical point locally merges
two components. If the components are not connected globally, then create a join
node that merges two arcs and starts a new one, else create a join node that ends
a single arc, and starts a new one. The latter case corresponds to the component
experiencing a genus change. An index-2 critical point is handled in the split sweep.
Only the global maximum appears in the Join tree; it ends the arc corresponding to
the component that disappears at the maximum.

Finally, construct the contour tree by merging the Join and Split tree [11]. In
Fig. 7 we see two stages during the construction of the Join tree for a function defined
on a 2-manifold.

3.2 Time-Varying Contour Topology

An important problem in visualizing time-varying scalar fields is computing the
correspondence of isocontour components for a fixed isovalue over time. Another
problem is detecting when and how these components change topology. Sohn and
Bajaj [58] address these problems by computing the correspondence of contour
trees over time. They assume that the scalar field can change unpredictably between
two successive time steps, and define temporal correspondence of contour tree arcs

Isocontour Based Visualization of Time-Varying Scalar Fields 55

for successive time steps using a notion of an overlap between an isocontour at
time t with an isocontour at time t + 1. They develop an algorithm to compute cor-
respondence between successive contour trees based on this definition, and use the
correspondence to track isocontour components and their topology over time.

Temporal Contour Correspondence

Before we define temporal contour correspondence we need some notation. De-
fine X and Y for the restrictions of the domain to time t and t + 1 respectively, func-
tion ft for the restriction of function f to X, and isocontours I = f−1

t (s) and J =
f−1
t+1(s). Isocontour I has connected components I = {I1, · · · , Im}, and lies on the

intersection of X≤s = f−1
t (−∞, s] and X≥s = f−1

t [s,∞). Identify each Ii with
one component of X≤s and X≥s ; Ii belongs to their intersection. Sohn & Bajaj call
these components the lower object and upper object of Ii , respectively. Similar defi-
nitions hold for the isocontour J .

Two contour components Ii and Jj exhibit temporal correspondence if their cor-
responding upper objects overlap and their corresponding lower objects overlap.
Note, that an overlap between X≤s and Y≤s makes sense only if we assume that
both ft and ft+1 are defined on the same domain. See Fig. 8 for an example.

Algorithm for Contour Correspondence

Since each isocontour component corresponds to a point on an arc on the con-
tour tree, temporal correspondence between isocontour components can be used to
compute a correspondence between arcs of the contour tree at t with arcs of the
contour tree at t + 1. Sohn & Bajaj compute this correspondence by modifying

J1

J3

t t+1

I1 J2

Overlap

I2

Fig. 8. Temporal correspondence between isocontours at successive time steps. In the top
row, upper objects for each isocontour and their overlap, in the bottom row, lower objects and
their overlap. From the definitions in [58], we get the following correspondence: (I1 → J1),
(I1 → J2), (∅ → J3), (I2 → ∅)

56 A. Mascarenhas and J. Snoeyink

the contour tree algorithm of Carr et al. [11]. In the description that follows, we
use JTt, STt , CTt to denote the join tree, split tree, and contour tree at time t re-
spectively. The input is a simplicial mesh in R

3 . Each point of the mesh is equipped
with T scalar values. The output is a collection of T contour trees, with each arc
of CTt+1 labeled with arcs of CTt . The labels indicate the temporal correspondence
information. Since the join and split trees are symmetric we use the join tree for the
description. For each time step t , precompute the contour tree, CTt [11]. Label each
tree arc with a unique id. The correspondence information is computed as follows:

1. Augment JTt with the nodes that appear only in STt . Carr et al. [11] call the
resulting join tree the augmented join tree.

2. Equip each arc a of JTt with the ids of the corresponding arcs from CTt . An
isocontour component corresponding to a point on a, lies on the boundary of
a connected component of X ≤ s (the lower object), which may contain other
isocontour components. Each of these other isocontour components correspond
to an arc of CTt . Equip a with the ids of these arcs of CTt . This step can be done
by simultaneously scanning the nodes of CTt and JTt in increasing order of ft ,
and incrementally maintaining the arc id lists for JTt .

3. This is the step that computes the correspondence information for the arcs
of JTt+1. Simultaneously sweep the functions ft and ft+1 in increasing order,
as if constructing the join trees JTt and JTt+1. The sweep can be thought of as
incrementally generating the lower objects simultaneously in time t and t + 1,
and detecting overlap. Recall that two isocontour components from successive
time-steps exhibit temporal correspondence if their respective lower objects and
upper objects overlap. This sweep tests lower object overlap, and the reverse
sweep, for STt and STt+1, will test overlap for upper objects. During the sweep,
maintain a collection of lower objects in X≤s and Y≤s . Each lower object cor-
responds to an arc of the join tree in its respective time-step. For lower objects
in X≤s we know their corresponding contour tree arcs from step 2. When a lower
object in X≤s overlaps one in Y≤s we can create the mapping between the arcs
of JTt+1 with the corresponding arcs of JTt . For a more detailed description of
this step see [58].

4. Map labels from the arcs of JTt+1 to the corresponding arcs of CTt+1. This step
is similar to step 2.

After the above steps are repeated for STt+1, each arc of the contour tree CTt+1
has two arc lists, one from JTt+1 and the other from STt+1. The final arc list is the
intersection of the two lists.

Topology Change Graph

Consider isocontour I = {I1, · · · , Im} for isovalue s at time t . If we keep the iso-
value fixed at s and proceed forward in time to t + 1, then the isocontour undergoes
topological changes in the following possible ways: a component is created or de-
stroyed, two components merge into one, a component splits into two, a component
changes genus. The Topology change graph(TCG) depicts the change in topology as

Isocontour Based Visualization of Time-Varying Scalar Fields 57

a b c

c

a

Ct

e

e

Ct+1

a’ c’

a’

c’b

Fig. 9. In the top row, a contour tree at successive time steps, with arcs containing isovalue s
labeled. In the bottom row, the topology change graph showing how contour components
change topologically

a graph constructed as follows. At each time step compute the arcs of Ct that contain
the isovalue s. Create a node in the TCG for each these arcs. Use the correspondence
information computed for an arc of Ct to create a connection between the corre-
sponding nodes in the TCG. See Fig. 9. Genus change can be detected by examining
the Betti numbers of the component at time t + 1, which can computed using the
algorithm of Pascucci et al. [53].

3.3 Time-Varying Reeb Graph

Edelsbrunner et al. [24] have performed a systematic study of the evolution of the
Reeb graph of a function over time. This evolution can be encoded in a data structure
that can be used to extract the Reeb graph for any instant of time for display in a
visualization interface. Moreover, the data structure can be used to track isocontour
components over time, and detect changes in their topology. This information can
aid the user in selecting interesting time and isovalue parameters for visualization.

Edelsbrunner et al. enumerate all the combinatorial changes experienced by the
Reeb graph of a Morse function on S

3 over time. Crucial to understanding these
changes is the notion of Jacobi sets, which can be used to compute the trajectory of
critical points of a function over time.

Jacobi Sets

Reeb graphs can be used to summarize a function at moments in time and Jacobi
curves, as introduced in [23], to get a glimpse of their evolution through time.
Edelsbrunner et al. introduce this concept for the slightly more general case of two
Morse functions, f, g : M → R; the specific case of a time-varying function, f , is

58 A. Mascarenhas and J. Snoeyink

Fig. 10. The functions f and g are represented by their dotted and solid level curves. The
Jacobi curve is drawn in bold solid lines. The birth–death points and the critical points of the
two functions are marked by white and shaded dots, respectively

obtained by adding time as an extra dimension to the domain and letting g represent
time. For a regular value t ∈ R, consider the level set g−1(t) and the restriction of
f to this level set ft : g−1(t) → R. The Jacobi curve of f and g is the closure of
the set of critical points of the functions ft , for all t ∈ R. The closure operation adds
the critical points of f restricted to level sets at critical values, as well as the critical
points of g, which form singularities in these level sets. We use Fig. 10 from [23] to
illustrate the definition by showing the Jacobi curve of two smooth functions on a
piece of the two-dimensional plane. To understand this picture, imagine f as a cone-
like mountain indicated by dotted level curves, and the solid level curves of g gliding
over that mountain. On the left, we see a circle beginning at a minimum of g and
expanding outwards on a slope. As this circle expands a maximum of the restriction
of f moves up and a minimum moves down from the starting point.

Consider a 1-parameter family of Morse functions on the 3-sphere, f : S
3×R →

R, and introduce an auxiliary function g : S
3 × R → R defined by g(x, t) = t . A

level set has the form g−1(t) = S
3 × t , and the restriction of f to this level set is

ft : S
3 × t → R. The Jacobi curve of f and g may consist of several components,

and in the assumed generic case each is a closed 1-manifold. Identify the birth–death
points where the level sets of f and g and the Jacobi curve have a common normal
direction. To understand these points, imagine a level set in the form of a (two-
dimensional) sphere deforming, sprouting a bud, as we go forward in time. The bud
has two critical points, one a maximum and the other a 2-saddle. At the time when
the bud just starts sprouting there is a point on the sphere, a birth point, where both
these critical points are born. Run this in reverse order to understand a death point.
Decompose the Jacobi curve into segments by cutting it at the birth–death points.
The index of the critical point tracing a segment is the same everywhere along the
segment. The indices within two segments that meet at a birth–death point differ
by one:

Isocontour Based Visualization of Time-Varying Scalar Fields 59

x x
y

y
x

y

Fig. 11. Reeb graphs at three moments in time whose nodes are connected by two segments
of the Jacobi curve [24]

INDEX LEMMA [24]. Let f : M × R → R be a 1-parameter family of Morse func-
tions. The indices of two critical points created or destroyed at a birth–death
point differ by one.

Jacobi Curves Connect Reeb Graphs

Let Rt be the Reeb graph of ft , the function on S
3 at time t . The nodes of Rt corre-

spond to the critical points of ft , and as we vary t , they trace out the segments of the
Jacobi curve. The segments connect the family through time, and provide a mecha-
nism for identifying nodes in different Reeb graphs. Figure 11 illustrates this idea.

Generically, the function ft is Morse. However, there are discrete moments in
time at which ft violates one or both Genericity Conditions of Morse functions and
the Reeb graph of ft experiences a combinatorial change. Since time is the only vary-
ing parameter, one may assume that there is only a single violation of the Genericity
Conditions at any of these discrete moments, and there are no violations at all other
times. Condition I is violated iff ft has a birth–death point at which a cancellation
annihilates two converging critical points or an anticancellation gives birth to two
diverging critical points. Condition II is violated iff ft has two critical points x = y
with ft (x) = ft (y) that form an interchange. The two critical points may be inde-
pendent and have no effect on the Reeb graph, or they may belong to the same level
set component of ft and correspond to two nodes that swap their positions along
the Reeb graph. We briefly sketch the changes caused by birth–death points and by
interchanges.

Birth, Death, and Interchange

When time passes the moment of a birth point, we get two new critical points and
correspondingly two new nodes connected by an arc in the Reeb graph. By the Index
Lemma, the indices of the two critical points differ by one, leaving three possibilities:
0–1, 1–2, and 2–3. See Figs. 12 and 13, and [24] for details.

There are three similar cases when time passes the moment of a death point. Two
critical points of ft converge and annihilate when they collide, and correspondingly

60 A. Mascarenhas and J. Snoeyink

0 1 0 1
0

1

0
1

0 1

0 1
10 0

1

time

f

0 1
1
0

Fig. 12. Level sets and Reeb graphs around a 0–1 birth point. The 2–3 case is upside-down
symmetric to this case. Time increases from left to right and the level set parameter, indicated
by a rectangular slider bar, increases from bottom to top. Going forward in time, we see the
sprouting of a bud, while going backward in time we see its retraction [24]

1 2

1 2

1 2 1 2

21

1 2 1
2

1
2

1
2

time

f

Fig. 13. Level sets and Reeb graphs around a 1–2 birth point. Time increases from left to right
and the level set parameter increases from bottom to top. Going forward in time, we see a
refinement of an arc in the Reeb graph and going backward we see a coarsening [24]

Isocontour Based Visualization of Time-Varying Scalar Fields 61

an arc of the Reeb graph contracts to a point, effectively removing its two nodes. The
0–1 and 2–3 cases are illustrated in Fig. 12, which we now read from right to left,
and the 1–2 case is illustrated in Fig. 13, which we also read backward, from right
to left.

Nodes of the Reeb graph swap position in the Reeb graph when the correspond-
ing critical points, x and y, form an interchange and, at that moment, belong to the
same level set component. Assume without loss of generality that ft−ε(x) < ft−ε(y)
and ft+ε(x) > ft+ε(y). There are four choices for each of x and y depending on
whether they add or remove a handle, merge two level set components or split a
level set component. This gives a total of sixteen configurations. An analysis of pos-
sible before and after combinations and pairing them, gives the cases illustrated in
Fig. 14. It is convenient to group the cases with similar starting configurations to-
gether. Edelsbrunner et al. use +,−,M,S to mean ‘handle addition’, ‘handle dele-
tion’, ‘component merge’, and ‘component split’, respectively, and a pair of these to
indicate the types of x and y. For a more detailed description of these cases see [24].

Computing Time-Varying Reeb Graphs

The input to the algorithm is a piecewise linear function defined on a triangula-
tion K of 3-sphere cross time. The output is a collection of Reeb graphs, stored
in a partially persistent data-structure [21], that captures the evolution of the Reeb
graph Rt over time.

Begin by constructing the Jacobi curve as a collection of edges in K using the
algorithm in [23]. Also construct the Reeb graph at time zero, R0, from scratch, us-
ing the algorithm in [11]. Maintain Rt by sweeping forward in time, using the Jacobi
curve as a path for its nodes. Implement the sweep by maintaining a priority queue of
events sorted on time, repeatedly retrieving the next event, updating the Reeb graph,
and deleting and inserting interchange events as arcs are removed and added. The se-
quence can be thought of as the evolution of a single Reeb graph. Following Driscoll
et al. [21], accumulate the changes to form a single data structure representing the
entire evolution, which Edelsbrunner et al. [24] refer to as the partially persistent
Reeb graph. Adhere to the general recipe to construct it, using a constant number of
data fields and pointers per node and arc to store time information and keep track of
the changes caused by an update.

There are difficulties in implementing this algorithm. Properties of the Jacobi
curve that are valid in the smooth setting need not necessarily hold in the piecewise-
linear setting. In particular, the Jacobi curve need not be a 1-manifold; it could have
vertices with degree greater than two, and edges corresponding to multiple critical
points. Such vertices and edges have to be unfolded to simulate the 1-manifold prop-
erty. Techniques to maintain the integrity of structural properties in the piecewise
linear setting are discussed in greater detail in [26].

3.4 Comparison

We compare the algorithms of Sects. 3.2 and 3.3. The former considers a discrete
set of functions, their Reeb graphs, and maps the arcs of the Reeb graph at t to the

62 A. Mascarenhas and J. Snoeyink

y

6

4

3c

3a

2b

2c

3b

5

1a

1b

1c

2a

++

+−
−+

−−

M+

M+
+M

M−
−M

−S

−S
S−

+S

MM

MS

SS

S+

SM

x

y

x
y

x y

x y

x

y

x y

y

x

x

y

y x

x y

x y

x y

x

yx

y

x

y

x

y

y

x

y

x

y

x

x

y

y

x

x
y

y

x

x
y

x
x y

y

x y

x

y

x y
x

y

x
y
x

x
y

x

y

y

x

x

y

Fig. 14. On the left, Reeb graph portions before and after the interchange x and y. On the
right, level sets at a value just below the function value of x and y. In each case, the index of
a critical point can be inferred from whether the level set merges (index 1) or splits (index 2)
locally at the critical point [24]

Isocontour Based Visualization of Time-Varying Scalar Fields 63

b c

Ct

a a’ c’ e

Ct+1

b

a

c

a’

c’

e

f= s

Fig. 15. In the top row, a contour tree at successive time steps, with arcs containing isovalue s
labeled. The Jacobi segment for the upper node of the arcs containing a and b is shown. When
this segment intersect the line f = s the components a and b merge. Note the difference with
the TCG in Fig. 9; in [24] function f is continuous in space–time and isocontour topology can
change at any time

arcs of the graph at t + 1 using a definition of temporal coherence. This algorithm
works well when the time sampling rate is high relative to the phenomenon under
study so that there is good temporal coherence. Unlike the latter, it provides no un-
derstanding of how the Reeb graph changes over time, nor can it produce a Reeb
graph for all continuous values of time. The algorithm of Sect. 3.3 assumes a contin-
uous space–time function, uses Jacobi sets to connect all Reeb graphs, systematically
enumerates the possible changes that the Reeb graph experiences, and captures the
evolution of the Reeb graph over time. The time-varying Reeb graph can be used
to compute the topological information computed in Sect. 3.2. The arc mapping in-
formation is implicit; each Reeb graph arc at time t + 1 has a sequence of events
that maps it to an arc at time t . For the topology change graph, start with the Reeb
graph Rt , examine each arc containing isovalue s and compute the time when the
Jacobi segments attached to its end-nodes intersects the line f = s. At this time, the
corresponding isocontour component experiences a topological change. See Fig. 15.

4 Conclusions

Isocontour extraction algorithms for time-varying scalar fields use three techniques
to increase efficiency: spatial techniques, span space techniques, and topological
techniques. Spatial techniques organize space using an octree decomposition, to de-
tect regions that intersect, and reject regions that do not intersect the isocontour. Span
space techniques organize cells in the space of function values to efficiently detect
cells that intersect the isocontour. Topological techniques organize a subset of cells,

64 A. Mascarenhas and J. Snoeyink

called the seed set, in a search structure. The seed set contains one intersecting cell
for each connected component of each isocontour, and the component can be ex-
tracted by propagation from the intersecting cell. While span space techniques and
topological techniques can be used for both regularly and irregularly sampled data,
spatial techniques can be used only for regularly sampled data. Unlike spatial tech-
niques and span space techniques, topological techniques allow isocontour extraction
using contour propagation and produce coherent triangulations that are amenable to
compression [35], simplification [37], and streaming [36]. This feature is useful for
large data set visualization when the isocontours themselves might be too large to fit
in memory.

Two algorithms extend the Reeb graph to time-varying functions to aid the user
in selecting interesting time and isovalue parameters for visualization. The first al-
gorithm, by Bajaj & Sohn [58], uses a overlap heuristic to connect the Reeb graph
for each time slice; it works well when the time sampling rate is high relative to the
phenomenon under study so that there is good temporal coherence. The second algo-
rithm, by Edelsbrunner et al. [24], determines the actual dynamics of the Reeb graph
over all time slices, under a chosen interpolation function. The dynamics depend on
the Jacobi curve which is the trajectory of the critical points over time and leads to
a classification of combinatorial changes experienced by the Reeb graph over time.
The algorithm constructs the Reeb graph for time t = 0 from scratch and sweeps for-
ward in time, modifying the current Reeb graph to compute the evolution of the Reeb
graph over time. Because the theory for this algorithm is based on smooth functions
and real-world data is not smooth, special care has to be taken during implementation
to ensure structural integrity of the Jacobi curve. As a consequence this algorithm is
harder to implement than the first one, but it gives a more complete picture of the
evolution of the Reeb graph.

Beyond the questions addressed in this paper, we see some interesting research
directions that we believe will become increasingly important in visualization. Often
the data is noisy and the Reeb graph is itself too large and cluttered to make any sense.
We believe it is worthwhile to investigate simplification of time-varying Reeb graphs
on the lines of the work of Carr et al. [12]. How can we simplify the time-varying
Reeb graph, and maintain consistency with the underlying data? What meaningful
measures, geometric and topological, can we devise to guide the simplification? How
can we represent several levels of simplification and how can we present the user with
a multiresolution view of time-varying Reeb graphs?

Acknowledgments

We thank our funding agencies: NSF grant 0128426 and subcontracts from Lawrence
Livermore National Labs. Portions of this work was performed under the auspices
of the US Department of Energy by University of California Lawrence Livermore
National Laboratory under contract No. W-7405-Eng-48. We thank the anonymous
referees for their suggestions.

Isocontour Based Visualization of Time-Varying Scalar Fields 65

References

1. P. S. Alexandrov. Combinatorial Topology. Dover, Mineola, NY, 1998.
2. E. Artzy. Display of three-dimensional information in computed tomography. Computer

Graphics and Image Processing, 9:196–198, 1979.
3. C. L. Bajaj, V. Pascucci, and D. Schikore. The contour spectrum. In IEEE Visualization,

pages 167–174, 1997.
4. C. L. Bajaj, A. Shamir, and S. Bong-Soo. Progressive tracking of isosurfaces in time-

varying scalar fields. Technical report, Univ. of Texas, Austin, 2002. http://www.
ticam.utexas.edu/CCV/papers/Bongbong-Vis02.pdf.

5. T. F. Banchoff. Critical points for embedded polyhedral surfaces. The American Mathe-
matical Monthly, 77:457–485, 1970.

6. K. G. Bemis, D. Silver, P. A. Rona, and C. Feng. Case study: a methodology for plume
visualization with application to real-time acquisition and navigation. In Proc. IEEE Conf.
Visualization, pages 481–494, 2000.

7. J. L. Bentley. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM, 18(9):509–517, 1975.

8. J. F. Blinn. A generalization of algebraic surface drawing. ACM Transactions on Graph-
ics, 1(3):235–256, 1982.

9. R. L. Boyell and H. Ruston. Hybrid techniques for real-time radar simulation. In Proc.
of 1963 Fall Joint Computer Conference (IEEE), pages 445–458, 1963.

10. H. Carr and J. Snoeyink. Path seeds and flexible isosurfaces: Using topology for ex-
ploratory visualization. In Proc. of Eurographics Visualization Symposium, pages 49–58,
285, 2003.

11. H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. Compu-
tational Geometry, 24(2):75–94, 2003.

12. H. Carr, J. Snoeyink, and M. van de Panne. Simplifying flexible isosurfaces using local
geometric measures. In Proc. of IEEE Visualization 2004, pages 497–504, 2004.

13. Y.-J. Chiang. Out-of-core isosurface extraction of time-varying fields over irregular grids.
In Proc. IEEE Visualization 2003, pages 217–224, 2003.

14. Y.-J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive out-of-core isosurface extrac-
tion. In Proc. of the Symp. for Volume Vis., pages 167–174, 1998.

15. T. Chiueh and K.-L. Ma. A parallel pipelined renderer for time-varying volume data. In
Proc of Parallel Architecture, Algorithms, Networks, pages 9–15, 1997.

16. P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno. Speeding up isosurface
extraction using interval trees. IEEE Transaction on Visualization and Computer Graph-
ics, 3(2):158–170, 1997.

17. K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Loops in
Reeb graphs of 2-manifolds. In Proc. 14th Ann. Sympos. Comput. Geom., pages 344–350,
2003.

18. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT,
Cambridge, MA, 1994.

19. M. Cox and D. Ellsworth. Application controlled demand paging for out-of-core visual-
ization. In IEEE Proc. of Vis. ’97, pages 235–244, 1997.

20. C. J. A. Delfinado and H. Edelsbrunner. An incremental algorithm for betti numbers of
simplicial complexes on the 3-sphere. Computer Aided Geometric Design, 12:771–784,
1995.

21. J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persis-
tent. Journal of Computer and System Sciences, 38:86–124, 1989.

66 A. Mascarenhas and J. Snoeyink

22. M. J. Dürst. Additional reference to “marching cubes”. SIGGRAPH Computer Graphics,
22(5):243, 1988.

23. H. Edelsbrunner and J. Harer. Jacobi sets of multiple morse functions. In F. Cucker,
R. DeVore, P. Olver, and E. Sueli, editors, Foundations of Computational Mathematics,
pages 37–57. Cambridge University Press, Cambridge, 2002.

24. H. Edelsbrunner, J. Harer, A. Mascarenhas, and V. Pascucci. Time-varying Reeb graphs
for continuous space-time data. In Proc. of the 20th Ann. Sympos. on Comp. geometry,
pages 366–372. ACM Press, 2004.

25. H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-smale complexes for
piecewise linear 3-manifolds. In Proc. 19th Ann. Sympos. Comput. Geom., pages 361–
370, 2003.

26. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical morse complexes for piece-
wise linear 2-manifolds. In Proceedings of the 17th Annual Symposium on Computational
geometry, pages 70–79. ACM Press, 2001.

27. A. T. Fomenko and E. T. L. Kunii. Topological Methods for Visualization. Springer,
Tokyo, 1997.

28. H. Fuchs, Z. Kedem, and S. Uselton. Optimal surface reconstruction from planar con-
tours. Communications of the ACM, 20:693–702, 1977.

29. R. S. Gallagher. Span filtering: An efficient scheme for volume visualization of large
finite element models. In G. M. Neilson and L. Rosenblum, editors, Proc. of Vis. ’91,
pages 68–75, Oct 1991.

30. A. V. Gelder and J. Wilhelms. Topological considerations in isosurface generation. ACM
Transactions on Graphics, 13(4):337–375, 1994.

31. M. Golubitsky and V. Guillemin. Stable mappings and their singularities. Graduate Texts
in Mathematics, Vol. 14. Springer, New York, 1973.

32. P. Hanrahan. Three-pass affine transforms for volume rendering. Computer Graphics,
24(5):71–78, 1990.

33. G. T. Herman and H. K. Lun. Three-dimensional display of human organs from computed
tomograms. Computer Graphics and Image Processing, 9:1–21, 1979.

34. C. T. Howie and E. H. Black. The mesh propagation algorithm for isosurface construction.
In Computer Graphics Forum 13, Eurographics ’94 Conf. Issue, pages 65–74, 1994.

35. M. Isenburg and S. Gumhold. Out-of-core compression for gigantic polygon meshes. In
Proc. of SIGGRAPH 2003, pages 935–942, July 2003.

36. M. Isenburg and P. Lindstrom. Streaming meshes. In Manuscript, April 2004.
37. M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink. Large mesh simplification using

processing sequences. In Proc. of Vis. 2003, pages 465–472, Oct 2003.
38. J. T. Kajiya and B. P. V. Herzen. Ray tracing volume densities. Computer Graphics,

18(3):165–174, 1984.
39. A. Kaufman and E. Shimony. 3d scan-conversion algorithms for voxel-based graphics.

In 1986 Workshop on Interactive 3D Graphics, pages 45–75, 1986.
40. L. Kettner, J. Rossignac, and J. Snoeyink. The safari interface for visualizing time-

dependent volume data using iso-surfaces and contour spectra. Computational Geometry:
Theory and Applications, 25(1-2):97–116, 2003.

41. M. Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics, 9(3):245–
261, 1990.

42. Y. Livnat, H. W. Shen, and C. R. Johnson. A near optimal iso-surface extraction algo-
rithm for unstructured grids. IEEE Transaction on Visualization and Computer Graphics,
2(1):73–84, 1996.

Isocontour Based Visualization of Time-Varying Scalar Fields 67

43. W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface con-
struction algorithm. In M. C. Stone, editor, Computer Graphics (SIGGRAPH ’87 Proc.),
volume 21, pages 163–169, July 1987.

44. Y. Matsumoto. An Introduction to Morse Theory (Translated from Japanese by K. Hudson
and M. Saito). American Mathematical Society, 2002.

45. S. V. Matveyev. Approximation of isosurface in the marching cube: ambiguity problem.
In Proceedings of the conference on Visualization ’94, pages 288–292. IEEE Computer
Society Press, 1994.

46. N. Max, R. Crawfis, and D. Williams. Visualization for climate modeling. In IEEE Com-
puter Graphics Applications, pages 481–494, 2000.

47. B. H. McCormick, T. A. DeFanti, and M. D. Brown. Visualization in scientific computing.
Computer Graphics, 21(6), 1987.

48. J. Milnor. Morse Theory. Princeton University Press, New Jersey, 1963.
49. C. Montani, R. Scateni, and R. Scopigno. Discretized marching cubes. In Proceedings of

the conference on Visualization ’94, pages 281–287. IEEE Computer Society Press, 1994.
50. J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Redwood City, CA,

1984.
51. B. K. Natarajan. On generating topologically consistent isosurfaces from uniform sam-

ples. Visual Computer, 11(1):52–62, 1994.
52. G. M. Nielson and B. Hamann. The asymptotic decider: resolving the ambiguity in march-

ing cubes. In Proceedings of the 2nd conference on Visualization ’91, pages 83–91. IEEE
Computer Society Press, 1991.

53. V. Pascucci and K. Cole-McLaughlin. Parallel computation of the topology of level sets.
Algorithmica, 38(1):249–268, 2003.

54. G. Reeb. Sur les points singuliers d’une forme de pfaff complèment intégrable ou d’une
fonction numérique. Comptes Rendus de L’Académie ses Séances, Paris, 222:847–849,
1946.

55. H. W. Shen. Iso-surface extraction in time-varying fields using a temporal hierarchical
index tree. In IEEE Proc. of Vis. ’98, pages 159–166, Oct 1998.

56. H. W. Shen, C. D. Hansen, Y. Livnat, and C. R. Johnson. Isosurfacing in span space with
utmost efficiency (issue). In Proc. of Vis. ’96, pages 287–294, 1996.

57. Y. Shinagawa and T. L. Kunii. Constructing a Reeb graph automatically from cross sec-
tions. IEEE Computer Graphics and Applications, 11:44–51, 1991.

58. B.-S. Sohn and C. L. Bajaj. Time-varying contour topology. In Manuscript, 2004.
59. P. Sutton and C. Hansen. Isosurface extraction in time-varying fields using a temporal

branch-on-need tree(t-bon). In IEEE Proc. of Vis. ’99, pages 147–153, 1999.
60. N. Thune and B. Olstad. Visualizing 4-D medical ultrasound data. In Proceedings of

the 2nd conference on Visualization ’91, pages 210–215. IEEE Computer Society Press,
1991.

61. M. van Kreveld. Efficient methods for isoline extraction from digital elevation model
based on triangulated irregular networks. In Sixth Inter. Symp. on Spatial Data Handling,
pages 835–847, 1994.

62. M. van Kreveld, R. von Oostrum, C. L. Bajaj, V. Pascucci, and D. R. Schikore. Contour
trees and small seed sets for iso-surface traversal. In The 13th ACM Sym. on Computa-
tional Geometry, pages 212–220, 1997.

63. L. Westover. Interactive volume rendering. In Chapel Hill Workshop on Volume Visual-
ization, pages 9–16, 1989.

68 A. Mascarenhas and J. Snoeyink

64. J. Wilhelms and V. Gelder. Octrees for faster isosurface generation. ACM Transaction on
Graphics, 11(3):201–227, 1992.

65. B. Wyvill, C. McPheeters, and G. Wyvill. Animating soft objects. Visual Computer,
2:235–242, 1986.

66. G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft objects. Visual Computer,
2:227–234, 1986.

DeBruijn Counting for Visualization Algorithms

David C. Banks1 and Paul K. Stockmeyer2

1 Florida State University
banks@csit.fsu.edu

2 College of William and Mary
stockmeyer@cs.wm.edu

Summary. We describe how to determine the number of cases that arise in visualization al-
gorithms such as Marching Cubes by applying the deBruijn extension of Pólya counting. This
technique constructs a polynomial, using the cycle index, encoding the case counts that arise
when a discrete function (or “color”) is evaluated at each vertex of a polytope. The technique
can serve as a valuable aid in debugging visualization algorithms that extend Marching Cubes,
Separating Surfaces, Interval Volumes, Sweeping Simplices, etc., to larger dimensions and to
more colors.

1 Introduction

In 2003, Banks and Linton showed that a broad range of visualization algorithms
shared a common foundation [1]. These algorithms include Marching Cubes [12],
Sweeping Simplices [4, 19], Marching Squares, Contour Meshing (a.k.a. Marching
Hypercubes) [3, 11, 18, 21], Interval Volumes [14], Generalized Marching Cubes [9]
[20], and Separating Surfaces [13]. In each of these algorithms, a dataset representing
a mapping M : D → R is discretized into a finite set of polytopes tiling a domain
D and the range R is discretized into a finite set of values that can be viewed as
an abstract set of “colors” applied to the vertices of each polytope. A substitution
grammar allows the polytope to be replaced by geometry, called a “substitope,” that
matches a particular feature (such as a level set) in the data. The task of visualizing
M is accomplished by displaying the resulting substitopes.

A typical polytope, and one that we will use for many of our examples, is the
square. With two colors there are clearly 24 = 16 ways to apply a color to each of the
four vertices of the square. However, some of these are indistinguishable from others
when we consider the symmetries of the square. For example, the four colorings
with one black vertex and three white vertices are all equivalent under the symmetry
group of the square, and can be treated as one case. In Example 2 we illustrate our
methods by confirming that these 16 colorings fall into just six equivalence classes.
Moreover, in some applications the colors might be considered interchangeable, so
that the coloring equivalence class of one black vertex and three white vertices would

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 69
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

70 D.C. Banks and P.K. Stockmeyer

be considered the same as the class of one white vertex and three black vertices.
In Example 5 we further illustrate our methods by confirming that the six classes
combine to form just four classes under this additional equivalence.

The combinatorial explosion of possible colorings makes developing and debug-
ging new substitope algorithms difficult. Banks and Linton used a tool for compu-
tational group theory, called “GAP,” to automate the process of counting cases in
substitope algorithms. IfG is a group acting on the set C of colorings, two colorings
c1 and c2 are in the same orbit if c2 = gc1 for some element g ∈ G. The group
G is the product shapeGroup×colorGroup of the groups acting individually on the
polytope and the colors. An individual case of equivalent colorings is an “orbit” of
a group of symmetries acting on the set of colorings. Typically, the full symmetry
group (rotations and mirror reversals) or the direct symmetry group (rotations only)
is allowed to permute the vertices of the polytope, while reversal (exchanging pos-
itive and negative, for example) or full permutation is permitted on the colors. For
example, two colorings c1 and c2 of a cube are to be considered equivalent if c1 can
be rotated and its colors reversed in order to produce c2.

Banks and Linton used GAP to compute the cases for different choices of shape-
Group and colorGroup that have been used in various visualization algorithms for
dimension n = 1, 2, 3, 4 and number of colors k = 1, 2, 3, 4. Unfortunately, the
amount of memory needed for computing cases exceeded their resources, even on a
Beowulf cluster of machines, for 4-cubes having four colors. This particular situation
is more than a mere intellectual curiosity; it has a practical application in visualiz-
ing an unsteady (i.e., time-varying) fluid flow via displaying its vortex cores. Jiang
et al. demonstrated that vortex cores can be classified by discretizing the velocity
vector into four sets of directions (or equivalently, four colors) [10]. They assigned
one of the four colors to each vertex of a three-dimensional (3D) grid of 3-cubes. If
the identity group Id4 acts on the colorings, 2,916 distinct classes of colorings arise.
But if Jiang’s work is extended to unsteady flows, the 4-cubes in the resulting 4D
grid (in space and time) will cluster into how many distinct cases? Determining the
answer exceeded the computing resources available to them.

In 2004, Banks, Linton, and Stockmeyer showed how a technique called Pólya
(approximate English pronunciation: poy-yuh) counting can determine the number
of cases that arise when the colors are not permuted, and can do so without actu-
ally computing any of the cases themselves [2]. They reported the answer to the
above question: each 4-cube, with vertex colors chosen from a set of four colors,
will belong to one of 22,456,756 different cases under direct symmetry and one
of 11,756,666 cases under full symmetry. But Pólya counting does not answer the
question of how many cases arise when a group, different from the identity group,
permutes the colors. Since the permutation of the colors is essential for reducing the
number of equivalence classes of colorings in substitope algorithms, one would like
to know how many such cases exist.

The answer comes from an improvement on Pólya counting due to deBruijn (ap-
proximate English pronunciation: duh-broin or duh-brown). This powerful technique
computes the total number of cases that arise when the vertex colors are allowed to
be permuted.

DeBruijn Counting for Visualization Algorithms 71

2 History and Literature

The theory of Pólya counting was developed, illustrated, and explained in [16]; an
English translation, with commentary, exists as [17]. The theory extending this work
to include permutations acting on colors was developed by deBruijn, first in [5] and
later more completely in [6]. The formulas given in these papers are complex and
difficult to use, due in part to the use of differential operators. Equivalent formu-
las, with much more user-friendly notation, were developed by E.M. Palmer in his
Ph.D. dissertation [15]. This treatment also appears in the journal article [7] and the
book [8, Chap. 6] by Harary and Palmer. In the following discussion we stay close to
the Harary–Palmer treatment.

2.1 The Pólya Setting

The setting for using the deBruijn method for counting cases is similar to that for
Pólya’s method, which we briefly review. We are given a domain set X (vertices
of the cube) and a range set Y (colors), and consider functions in the set YX of all
functions f from X to Y that assign colors to vertices.1 The notation YX is fairly
common in combinatorics, and reflects the fact that the number of functions from X
to Y is |Y ||X|, so we have |YX| = |Y ||X|. An element in YX is thus an assignment of
colors to the vertices of the n-cube (or more informally, a vertex-coloring of a cube)
as shown below.

X

↓ f ∈ YX (1)

Y

A permutation group2 A acts on the domain set X. It is called the “shape group”
in [2]. In the case of colored cubes, the group is either the group of (orientation-
preserving) direct symmetries DCn of the n-cube or the full group FCn of symme-
tries of the n-cube.

X
α∈A−−−→ X (2)

The group A acting on X induces a permutation group A′ acting on the set YX of
functions fromX to Y (our set of cube colorings). Note that the groupsA andA′ are
isomorphic as abstract groups, since a permutation of the cube also moves the colors
assigned to the vertices, but they differ as permutation groups. One difference is that
the degree (number of objects being permuted) of A is |X| (the number of vertices),
while the degree of A′ is |Y ||X| (the number of possible colorings of the cube). For

1 The sets X and Y are denoted D and R, respectively, by deBruijn. Pólya does not have
any notation for these sets, but calls the range set the “store of figures,” with individual
elements called “figures.”

2 This group is also denoted G in [6] and H in [16].

72 D.C. Banks and P.K. Stockmeyer

any α ∈ A acting on set X, the corresponding permutation α′ acting on YX maps a
function f onto the function α′f defined by

(α′(f))(x) = f (α(x))
for all x ∈ X. This mapping is shown in the diagram below.

X
α−−−→ X

f ↓ ↙α′f
Y

(3)

Intuitively, we want to consider two functions (vertex colorings) fi and fj to be
equivalent if one can be obtained from the other by applying some symmetry permu-
tation on the elements of the domain spaceX. Thus the objects we wish to count are
the orbits3 of the group A′ acting on the set YX of coloring functions. The colorings
are equivalent (and thus lie in the same orbit) if

fj = α′(fi)
for some α′ in the group A′. Several visualization algorithms proceed by applying
a geometric substitution based on the coloring of an n-simplex or an n-cube. De-
termining the number of equivalence classes of colorings of an n-cube by hand is
tedious and error-prone because there are so many possible cases to consider. Rather
than enumerate each coloring and cluster them together as we go, we can instead
exploit a result due to Pólya that counts the equivalence classes based on the cycle
structure of elements in the shape group.

2.2 Pólya’s Theorem

Pólya counting relies heavily on a polynomial called the “cycle index.” Recall that
each element of a group can be written as a permutation of symbols. For example, the
group element α = (1 4)(2 3) contains two cycles of length 2; one maps symbol 1 to
symbol 4 and 4 to 1, and the other maps symbol 2 to symbol 3 and 3 to 2. See Fig. 1.
The number of cases can be obtained by Pólya’s theorem, which uses the cycle index
Z(A; z1, z2, . . . zd) of the shape group A acting on the d vertices in X. The cycle
index is defined by

Z(A; z1, z2, . . . , zd) = 1

|A|
∑

α∈A
z
j1(α)

1 z
j2(α)

2 · · · zjd (α)d (4)

where |A| is the order (number of elements) of the group A, the summation is taken
over each permutation α in A, the zi are variables, and each ji(α) is the number of
cycles of length i in the disjoint cycle representation of α. An example clarifies the
use of the cycle index.

3 These orbits are called “patterns” in [6]; Pólya uses the term “configuration” here, but it is
not clear whether his configuration refers to a single coloring or an entire equivalence class
(orbit) of colorings.

DeBruijn Counting for Visualization Algorithms 73

1→1 2→2 3→3 4→4−−−−−−−−−−−−−→
α0=(1)(2)(3)(4)

1→2 2→4 4→3 3→1−−−−−−−−−−−−−−→
α1=(1 2 4 3)

1→4 4→1 2→3 3→2−−−−−−−−−−−−−−→
α2=(1 4)(2 3)

1→3 3→4 4→2 2→1−−−−−−−−−−−−−−→
α3=(1 3 4 2)

Fig. 1. The shape group DC2 of direct symmetries acts on the 2-cube. Each of the four group
elements {α0, α1, α2, α3} permutes the vertices. Mappings of individual vertices are shown
above the arrow; the permutation’s cycle structure is shown below the arrow

Example 1: Cycle Index of DC2. The (orientation-preserving) direct symmetry
group of the 2-cube (i.e., the square) is DC2. Its action on the 2-cube is shown in
Fig. 1. The four elements of DC2 can be written in permutation form as shown be-
low, with zα denoting the expression zj1(α)1 z

j2(α)

2 z
j3(α)

3 z
j4(α)

4 in the summand. The
non-zero cycles and non-zero exponents are indicated by boldface.

α∈A permutation # cycles of length i zα
j1(α) j2(α) j3(α) j4(α)

α1 (1)(2)(3)(4) 4 0 0 0 z4
1 z

0
2 z

0
3 z

0
4

α2 (1 2 4 3) 0 0 0 1 z0
1 z

0
2 z

0
3 z1

4

α3 (1 4)(2 3) 0 2 0 0 z0
1 z2

2 z
0
3 z

0
4

α4 (1 3 4 2) 0 0 0 1 z0
1 z

0
2 z

0
3 z1

4

The size |DC2| of the group is 4, so the cycle index for DC2 is the sum of the
zα’s multiplied by 1/4, as shown below.

Z(DC2; z1, z2, z3, z4) = 1

4
(z4

1 + z1
4 + z2

2 + z1
4)

= 1

4
(1z4

1 + 1z2
2 + 2z1

4) (5)

Remarkably, this polynomial characterizes the number of different cases that arise in
Marching Cubes and similar visualization algorithms. We state the result that Pólya
proved.

74 D.C. Banks and P.K. Stockmeyer

Pólya’s Theorem (Constant Form):4 The number of orbits of the permutation
group A′ acting on the set YX of functions from X to Y is obtained by replacing
each variable zi in the cycle index of the shape group A with the number k = |Y | of
colors. That is, when the k colors are not permuted but the vertices are, the number
of cases (distinct colorings) is given by the reduced cycle index shown below.

Z(A; k, k, . . . , k) = 1

|A|
∑

α∈A
kj1(α) kj2(α) · · · kjd (α) (6)

Example 2: Reduced Cycle Index of DC2. The number of inequivalent ways to
color the vertices of a square with k colors, with equivalence determined by the
orientation-preserving group DC2, is found using the cycle index computed in the
example above, with k substituted for the variables zi .

Z(DC2; k, k, k, k) = 1
4 (1k

4 + 1k2 + 2k) (7)

So for k = 1 color the square has (1 + 1 + 2)/4 = 1 coloring, with k = 2 colors it
has (16 + 8 + 4)/4 = 6 colorings, with k = 3 colors it has (81 + 9 + 6)/4 = 24
colorings, and so forth. These are shown in Fig. 2.

3 Permuting the Colors: The Power Group

The extension pioneered by deBruijn and Palmer involves a second permutation
group B acting on the range set Y of colors. We call B the color group.

Y
β∈B−−−→ Y (8)

We now consider two vertex colorings to be equivalent if one can be obtained from
the other by applying some permutation α ∈ A on the domain set of vertices X,
and/or applying some permutation β ∈ B on the range set Y of colors. Here we have
two groups, A acting on the domain X and B acting on the range Y , combining to
form a group of pairs (α; β), with α ∈ A and β ∈ B, acting on the set YX of functions
from X to Y . Note that this new group is abstractly isomorphic to the Cartesian
product A × B, with order |A| · |B|. However, the notation A × B misrepresents
the nature of this group as a permutation group, since that notation usually refers
to a group acting on either the set X × Y or the set X ∪ Y . In the first case the
group has degree |X| · |Y |, and in the second case the group has degree |X| + |Y |.
Our permutation group acts on the set YX and thus has degree |YX| = |Y ||X|. As a
permutation group, this group is thus quite different from what is usually meant by
the product of two permutation groups.

4 Historically, Polya’s theorem appeared in a “weighted” version. The only previous consid-
eration of a constant (unweighted) version was due to Palmer, who presented the constant
form of his power group theorem as a warm-up for the weighted version later. Even Harary
and Palmer, in their book Graphical Enumeration, give only the weighted form of Polya’s
theorem. We follow Palmer’s example because of its simplicity.

DeBruijn Counting for Visualization Algorithms 75

k = 1

k = 2

k = 3

Fig. 2. Cases of k-colorings of the 2-cube permuted by the shape group DC2 of orientation-
preserving rotations

Each function f is mapped by (α; β) onto the function (α; β)f defined by

((α; β)f)(x) = β(f (α(x)))

for all x ∈ X. These mappings are illustrated in the diagram below.

X
α−→ X

(α;β)f↓ ↓f
Y

β←− Y

(9)

Since the set being permuted is YX, Harary and Palmer call this permutation group
the power group of groups A and B (also called the “coloring group” in [1]), and
denote it BA. The items we wish to count are the orbits of the power group BA. The
formula for counting orbits of BA, or equivalence classes of functions (colorings) of
YX, involves a sort of cycle index of cycle indices. It involves a sum taken over all
the divisors of an integer i; recall the notation s|i means s divides i (divisors of i are
displayed in sans-serif font). We use the Harary–Palmer formulation [8, p. 137] in
stating deBruijn’s counting theorem.

76 D.C. Banks and P.K. Stockmeyer

Power Group Enumeration Theorem (Constant Form) (deBruijn’s Theorem):
The numberN(A,B; X,Y) of orbits of the power group BA acting on the set YX is

N(A,B; X,Y) = 1

|B|
∑

β∈B
Z(A; c1(β), c2(β), . . . , cd (β)) (10)

where

ci(β) =
∑

s|i
sjs(β). (11)

Each js(β) is the number of cycles of length s in the disjoint cycle representation of
β; the sum is over all positive integers s that divide the subscript i. We work several
examples to clarify the use of this theorem.

Example 3: Color Group Idk. When the color group is the identity, the colors are
not changed and so the power-group formula devolves into the ordinary Pólya for-
mula. To see this, suppose we have k colors, so Y = {1, 2, 3, . . . , k}, and B is the
identity group Idk consisting of just the identity permutation β0 = (1)(2) · · · (k).
This permutation has k 1-cycles. For all other i > 1 there are 0 i-cycles, as shown in
the table below.

β∈Idk permutation 1-cycles 2-cycles 3-cycles . . .
j1(β) j2(β) j3(β) . . .

β0 (1)(2). . . (k) k 0 0 . . .

So we have j1(β0) = k and ji(β0) = 0 for i = 1, yielding the following values
for ci .

c1(β0) = ∑

s|1
sjs(β0)

= 1j1(β0) since 1 | 1

= k

c2(β0) = ∑

s|2
sjs(β0)

= 1j1(β0)+ 2j2(β0) since 1,2 | 2

= 1k + 2 · 0

= k

c3(β0) = ∑

s|3
sjs(β0)

= 1j1(β0)+ 3j3(β0) since 1,3 | 3

= 1k + 3 · 0

= k

DeBruijn Counting for Visualization Algorithms 77

c4(β0) = ∑

s|4
sjs(β0)

= 1j1(β0)+ 2j2(β0)+ 4j4(β0) since 1,2,4 | 4

= 1k + 2 · 0 + 4 · 0

= k
...

We could continue calculations all the way to ck , but it is easily seen that ci(β0) =
k for all i. The number of inequivalent functions is found by simply replacing each
ci in deBruijn’s theorem (10) with the number k of colors. Thus we have

N(A, Idk; X, {1, 2, . . . , k}) = 1
1Z(A; c1(β0), c2(β0), . . . , ck(β0))

= Z(A; k, k, . . . , k)
as it was in (6). Thus the power group enumeration theorem reduces to Pólya’s theo-
rem when the color group B acting on the color set Y is the trivial group that leaves
colors unpermuted.

3.1 Color Groups Rev2 and Rev3

When the color group is nontrivial, the strength of deBruijn’s power group enumer-
ation theorem is needed in order to determine the distinct number of cases. Two
nontrivial color groups have typically been used in analyzing cases of visualization
algorithms like Marching Cubes: the reversal group Revk that swaps “opposite” col-
ors, and the symmetric group Sk that permutes the k colors in all k! possible ways.
In this section we show how deBruijn counting can be applied to the reversal group
acting on the colors in order to produce a closed-form polynomial in k that yields
the number of distinct colorings of an n-cube. We begin with examples of reversing
two or three colors (see Figs. 3 and 4), which serve as a brief tutorial in the use of
deBruijn counting. We then extend these examples to reversals of any even or odd
number k of colors.

1→1 2→2−−−−−−→
β0=(1)(2)

1→2 2→1−−−−−−→
β0=(1 2)

Fig. 3. The color group Rev2 = {β0, β1} of reversals acts on colors {1, 2}. Mappings of the
individual colors are shown above the arrow; the cycle structure of the permutation is shown
below the arrow

78 D.C. Banks and P.K. Stockmeyer

1→1 2→2 3→3−−−−−−−−−−→
β0=(1)(2)(3)

1→3 3→1 2→2−−−−−−−−−−→
β0=(1 3)(2)

Fig. 4. The color group Rev3 = {β0, β1} of reversals acts on colors {1, 2, 3}. Mappings of the
individual colors are shown above the arrow; the cycle structure of the permutation is shown
below the arrow

Example 4: Color Group Rev2. Suppose we have two interchangeable colors (corre-
sponding to positive and negative values at a vertex in Marching Cubes) forming the
set Y = {positive, negative}. They are permuted by the group B = {β0, β1} = Rev2,
where the identity permutation β0 = (1)(2) contains 2 1-cycles and β1 = (1 2),
containing 1 2-cycle, accomplishes the swap of positive with negative. The values of
js(β) are shown in the table below, and are used in the ensuing calculations of ci .

β∈Rev2 permutation 1-cycles 2-cycles 3-cycles . . .
j1(β) j2(β) j3(β) . . .

β0 (1)(2) 2 0 0 . . .

β1 (1 2) 0 1 0 . . .

We compute values of ci for the identity permutation β0, which contains only the
pair of 1-cycles (1)(2).

c1(β0) = ∑

s|1
sjs(β0)

= 1j1(β0) since 1 | 1

= 2

c2(β0) =
∑

s|2
sjs(β0)

= 1j1(β0)+ 2j2(β0) since 1,2 | 2

= 1 · 2 + 2 · 0

= 2
...

It is evident that the subsequent terms all evaluate to 2, since 1 divides every
value of i (thus contributing 1j1(β0) = 2 to the total) and since js(β0) evaluates to
0 for all the other s = 1. That means

ci(β0) = 2 (12)

for all i. We next compute values of ci for β1, which contains only the single
2-cycle (1 2).

DeBruijn Counting for Visualization Algorithms 79

c1(β1) = ∑

s|1
sjs(β0)

= 1j1(β0) since 1 | 1

= 0

c2(β1) = ∑

s|2
sjs(β0)

= 1j1(β0)+ 2j2(β0) since 1,2 | 2

= 1 · 0 + 2 · 1

= 2
...

It is evident that the subsequent terms will evaluate to 0 whenever i is odd, since the
term 2j2(β1) = 2 only appears in the summation when 2|i, with all other values of
js being 0. By similar reasoning, whenever i is even, ci evaluates to 2. Thus

ci(β1) =
{

0 if i is odd
2 if i is even.

(13)

We now combine the two partial results from (12) and (13) to compute the number
of inequivalent colorings

N(A,Rev2; n-cube, {1, 2}) =
1
2 (Z(A; 2, 2, 2, 2, 2, . . .)+ Z (A; 0, 2, 0, 2, 0, . . .)) (14)

according to (10) from deBruijn’s theorem. We will see in a later example
that the patterns 2, 2, 2, 2, . . . and 0, 2, 0, 2, . . . generalize to k, k, k, k, . . . and
0, k, 0, k, . . . for even values of k.

Example 5: N(DC2, Rev2; n-cube, {1, 2}.) Returning to the example of the colored
square, we compute the number of its inequivalent colorings with shape group A =
DC2 and with color group B = Rev2 given above. We recall the cycle index

Z(DC2; z1, z2, z3, z4) = 1
4 (z

4
1 + z2

2 + 2z1
4)

that we computed in (5), evaluate it with arguments ci from (12) and (13) above, and
insert the result into (14) for N(DC2, Rev2; 2-cube, {1, 2}) above. The result is

1
2

(
Z(DC2; 2, 2, 2, 2)+ Z(DC2; 0, 2, 0, 2)

)

= 1
2

(
1
4 (2

4 + 22 + 2 · 21)+ 1
4 (0

4 + 22 + 2 · 21)
)

= 4

inequivalent 2-colorings of the square. These four colorings are shown at the
top of Fig. 5. They differ from the six colorings for k = 2 in Fig. 2 because
the 4-white case is permuted into the 4-black case and the 3-white case is per-
muted into the 3-black case when β1 exchanges colors 1 and 2. This example of

80 D.C. Banks and P.K. Stockmeyer

k = 2

k = 3

Fig. 5. Cases of k-colorings of the 2-cube permuted by the shape group DC2 of orientation-
preserving rotations, with colors permuted by Revk for k = 2, 3

N(DC2, Rev2; n-cube, {1, 2}), (and also that of the full symmetry shape group
FC2) appears in [8, p. 137]. All the later examples, unless otherwise noted, are
original to this paper.

Example 6: Color Group Rev3. Suppose we have three colors, corresponding to
positive, zero, and negative values of a scalar function h(x)-c as used in Marching
Cubes. If we allow interchanging positive and negative then we have the colors Y =
{+, 0,−} and color group B = {β0, β1} = Rev3, where β0 = (1)(2)(3) is the
identity, and β1 = (1 3)(2) swaps positive with negative. The cycle structure of
Rev3 is summarized in the table below.

β∈Rev3 permutation 1-cycles 2-cycles 3-cycles . . .
j1(β) j2(β) j3(β) . . .

β0 (1) (2) (3) 3 0 0 . . .

β1 (1 3) (2) 1 1 0 . . .

For β0 we have j1(β0) = 3 and ji(β0) = 0 for i = 1 (similar to the example
above for Rev2). So

ci(β0) = 1j1(β0) = 3 (15)

for all i. For β1 we have j1(β1) = 1, j2(β1) = 1, and ji(β1) = 0 for i > 2. So

ci(β1) =
{

1j1(β1) = 1 if i is odd
1j1(β1)+ 2j2(β1) = 3 if i is even.

(16)

DeBruijn Counting for Visualization Algorithms 81

Then the number of inequivalent functions is

N(A,Rev3; n-cube, {1, 2, 3}) =
1
2

(
Z(A; 3, 3, 3, 3, 3, . . .)+ Z(A; 1, 3, 1, 3, 1, . . .)

)
(17)

according to (10) from deBruijn’s theorem. We will see in a later example
that the patterns 3, 3, 3, 3, . . . and 1, 3, 1, 3, . . . generalize to k, k, k, k, . . . and
1, k, 1, k, . . . for odd values of k.

For the square permuted by the shape group DC2 we substitute into (10), using
(15) and (16), to compute

1
2

(
Z(DC2; 3, 3, 3, 3) + Z(DC2; 1, 3, 1, 3)

)

= 1
2

(
1
4 (3

4 + 32 + 2 · 31)+ 1
4 (1

4 + 32 + 2 · 31)
)

= 14

which is less than the 24 cases shown in Fig. 2 because black and white colors (i.e.,
positive and negative values) can be swapped by the color group to introduce new
equivalences among the colorings. Representatives of these 14 colorings are illus-
trated in Fig. 5. (Note that the first two colorings on the bottom-most row are mirror
images of each other. Under the full symmetry group FC2, these two become equiv-
alent and the number of cases is reduced to 13.)

3.2 Color Groups Revk when k Is Even

We next extend the examples for the color group, generalizing to Revk for k even or
k odd (which have different cycle structures, and hence different cycle indices).

Example 7: color group Revk (k even). Suppose we have k colors, k even (so k =
2κ), with B = {β0, β1} = Rev2κ , where the identity element β0 = (1)(2) · · · (k)
contains k 1-cycles, and element β1 = (1 k)(2 k − 1) · · · (k2 k+2

2), containing k
2

2-cycles, performs the swaps. The cycle structure of B is shown in the table below.

β∈Rev2κ permutation 1-cycles 2-cycles 3-cycles . . .
j1(β) j2(β) j3(β) . . .

β0 (1)(2) · · · (k) k 0 0 . . .

β1 (1 k)(2 k − 1) · · · (k2 k+2
2) 0 k

2 0 . . .

For β0 we have j1(β0) = k and js(β0) = 0 for all s = 1, so

ci(β0) = 1j1(β0) = k (18)

for all i. For β1 we have j2(β1) = k
2 and js(β1) = 0 for all s = 2, so

ci(β1) =
{

1j1(β1) = 0 if i is odd
1j1(β1)+ 2j2(β1) = k if i is even.

(19)

82 D.C. Banks and P.K. Stockmeyer

Then the number of inequivalent colorings is

N(A,Rev2κ ; n-cube, {1, . . . , 2κ}) =
1
2

(
Z(A; k, k, k, k, k, . . .)+ Z(A; 0, k, 0, k, 0, . . .)

)
. (20)

Example 8: Marching Cubes. We can verify the expression above with the 3-cube,
for which the number of 2-colorings was found by Lorensen and Cline as 15 (for
direct symmetryDC3) and 14 (for full symmetry FC3). The cycle indices

Z(DC3; z1, . . . , zd) = 1
24

(
1z8

1 + 8z2
1z

2
3 + 9z4

2 + 6z2
4

)
(21)

Z(FC4; z1, . . . , zd) =
1

48

(
1z8

1 + 6z4
1z

2
2 + 8z2

1z
2
3 + 13z4

2 + 8z1
2z

1
6 + 12z2

4

)
(22)

for the 3-cube was derived in [2, Fig. 12]. In order to make the substitution of Z into
deBruijn’s formula and substitution of the patterns of 0’s and k’s into the arguments
zi easier for the reader to follow, we highlight the patterns here in boldface. Using
the formula for the number of inequivalent colorings from (20) above and letting
shape group A = DC3, we substitute k,k,k,k,. . . and 0, k,0, k,. . . into the arguments
for the cycle index in (21) to get

Z(DC3; k,k,k,k, . . .) = 1
24

(
1k8 + 8k2k2 + 9k4 + 6k2

)

= 1
24

(
1k8 + 17k4 + 6k2

)

and

Z(DC3; 0, k,0, k, . . .) = 1
24

(
1 · 08 + 8 · 02 · 02 + 9k4 + 6k2

)

= 1
24

(
9k4 + 6k2

)

which combine by (10) in deBruijn’s theorem to produce the count

N(DC3, Revk; 3-cube, {1..k})
= 1

2 (Z(DC3; k,k,k,k, . . .) + Z(DC3; 0, k, 0, k, . . .))

= 1
2

(
1

24

(
1k8 + 17k4 + 6k2

)
+ 1

24

(
9k4 + 6k2

))

= 1
48

(
1k8 + 26k4 + 12k2

)
. (23)

Equation (23) gives a closed-form solution to the problem of counting cases for
Marching Cubes with an even number of colors and with the orientation-preserving
rotations applied to the 3-cube.

DeBruijn Counting for Visualization Algorithms 83

We substitute into the cycle index for FC3 [(22) above] to get

Z(FC3; k,k,k,k, . . .)

= 1
48

(
1k8 + 6k4k2 + 8k2k2 + 13k4 + 8k1k1 + 12k2

)

= 1
48

(
1k8 + 6k6 + 21k4 + 20k2

)

and

Z(FC3; 0, k, 0, k, . . .)

= 1
48

(
1 · 08 + 6 · 04k2 + 8 · 02 · 02 + 13k4 + 8k1k1 + 12k2

)

= 1
48

(
13k4 + 20k2

)

which combine by (10) in deBruijn’s theorem to produce the count

N(FC3, Revk; 3-cube, {1..k})
= 1

2 (Z(FC3; k,k,k,k, . . .) + Z(FC3; 0, k, 0, k, . . .))

= 1
2

(
1

48

(
1k8 + 6k6 + 21k4 + 20k2

)
+ 1

48

(
13k4 + 20k2

))

= 1
96

(
1k8 + 6k6 + 34k4 + 40k2

)
(24)

of distinct colorings. This is the closed-form solution for counting cases in March-
ing Cubes for any even number of colors where both rotations and mirror-flips are
permitted on the 3-cube.

When evaluated at k = 2, (23) and (24) produce the numbers 15 and 14, agreeing
with the number of cases found by Lorensen and Cline. When evaluated at k = 4,
these formulas produce the numbers 1,508 and 1,036, agreeing with the number of
cases found by Banks and Linton using GAP.

Example 9: Marching Hypercubes. In their table of case counts, Banks and Linton
were not able to calculate the exact number of cases for N(A,Rev4; 4-cube, {1, 2}),
corresponding to the 4-colored 4-cube [1, Fig. 7]. Counting all possible colorings
through brute-force enumeration was unattainable even thought they used a high-
performance cluster of computers; but with the deBruijn counting technique it
becomes a simple problem that can be solved using paper and pencil. We merely
evaluate the cycle index for the shape group DC4 or FC4, using (20) derived for k
even, and evaluate at k = 4. The cycle indices for the 4-cube

Z(DC4; z1, . . . , zd) =
1

192

(
1z16

1 + 12z4
1z

6
2 + 32z4

1z
4
3 + 31z8

2 + 32z2
2z

2
6 + 36z4

4 + 48z2
8

)

Z(FC4; z1, . . . , zd) =
1

384

(
1z16

1 + 12z8
1z

4
2 + 12z4

1z
6
2 + 32z4

1z
4
3 + 48z2

1z2z
3
4

+ 51z8
2 + 96z2

2z
2
6 + 84z4

4 + 48z2
8

)

84 D.C. Banks and P.K. Stockmeyer

were derived in [2, Fig. 12]. The first index gives

Z(DC4; k,k,k,k, . . .)

= 1
192

(
1k16 + 12k4k6 + 32k4k4 + 31k8 + 32k2k2 + 36k4 + 48k2

)

= 1
192

(
1k16 + 12k10 + 63k8 + 68k4 + 48k2

)

and

Z(DC4; 0, k, 0, k, . . .)

= 1
192

(
0 + 0 + 0 + 31k8 + 32k2k2 + 36k4 + 48k2

)

= 1
192

(
31k8 + 68k4 + 48k2

)

for the direct symmetry group DC4 acting on the 4-cube. Adding them together
according to (10) from deBruijn’s theorem and simplifying terms, we get a closed-
form solution to the number of inequivalent colorings.

N(DC4, Revk; 4-cube, {1, . . . , k})
= 1

2

(
Z(DC4; k,k,k,k, . . .)+ Z(DC4; 0, k, 0, k, . . .)

)

= 1
384

(
1k16 + 12k10 + 94k8 + 136k4 + 96k2

)
(25)

When k = 2 the result is 272 (which agrees with the table in [1]); when k = 4 the
result is

N(DC4, Rev2; 4-cube, {1, 2, 3, 4}) = 11, 233, 716 (26)

answering the open question raised by Banks and Linton.
The reader can verify that evaluating (20) with Z(FC4; z1, . . . , zd) produces

1
768

(
1k16 + 12k12 + 12k10 + 134k8 + 48k6 + 360k4 + 96k2

)
(27)

as the closed-form formula for the number of inequivalent 4-colored cases. When
k = 2 the result is 222 (agreeing with the table); when k = 4 the result is

N(DC4, Rev2; 4-cube, {1, 2, 3, 4}) = 5, 882, 746 (28)

which establishes the other missing value in the table of case-counts for the action of
Revk on colors.

These results complete two entries of the table that were missing in [1] and [2].
They also give one possible answer to a problem raised by Weigle and Banks in 1996.
Marching Cubes produces level sets h(x, y, z) = c of a real-valued function; Weigle
and Banks extended the algorithm to produce level sets h(u, v) = c of complex
functions, with u, v, c ∈ C. Each variable has a real and an imaginary component,
so the domain C

2 can be treated as the 4-dimensional space R
4 tiled by 4-cubes. The

level set is invariant under negation; that is,

h(u, v)-c = −(h(u, v)-c) = 0

DeBruijn Counting for Visualization Algorithms 85

which permits swapping of the “colors,” namely, the real part and the imaginary part
of h(u, v)-c at each vertex. Letting β1 be the permutation

β1 =
(
Re(h-c)− Re(h-c)

) (
Im(h-c)− Im(h-c)

)

the swaps the positive and negative real and imaginary parts of h-c, we have the color
group Rev4 acting on the 4-cube. How many cases arise? This question is answered
by (26) and (28) above using deBruijn counting.

3.3 Color Groups Revk when k Is Odd

We next present the formula for counting cases when the colors are permuted by
Revk for k odd. This generalizes the example for Rev3 in Example 6 above.

Example 10: color group Revk (k odd). Suppose we have k colors, k odd
(k = 2κ + 1), with B = {β0, β1} = Revk , where β0 = (1)(2) · · · (k) is the identity
and opposite colors are swapped by β1 = (1 k)(2 k-1) · · · (k−1

2
k+3

2)(
k+1

2). Note
that the middle color of an odd-numbered set is its own opposite, thus remaining
fixed. The cycle structure of Rev2κ+1 is shown in the table below.

β∈Rev2κ+1 permutation 1-cycles 2-cycles . . .

j1(β) j2(β) . . .

β0 (1)(2) · · · (k) k 0 . . .

β1 (1 k)(2 k-1)...(k-1
2

k+3
2)(

k+1
2) 1 k-1

2 . . .

For β0 we have j1(β0) = k and ji(β0) = 0 for i = 1, so

ci(β0) = 1j1(β0) = k (29)

for all i. For β1 we have j1(β1) = 1, j2(β1) = k−1
2 , and ji(β1) = 0 when i > 2, so

ci(β1) =
{

1j1(β1) = 1 if i is odd

1j1(β1)+ 2j2(β1) = k if i is even.
(30)

Then the number of inequivalent functions is

N (A,Revk; n-cube, {1..k})
= 1

2 (Z(A; k, k, k, k, k, . . .)+ Z(A; 1, k, 1, k, 1, . . .)) (31)

when k is odd.
The number of cases arising from the actions of color groupsDCn and FCn and

shape groups Idk and Revk can therefore be written explicitly as polynomials in k.
This completely solves the question of how many cases arise for colorings of n-cubes

86 D.C. Banks and P.K. Stockmeyer

in visualization algorithms that traverse cube-shaped tiles and evaluate functions that
can be reversed (or negated) on a feature set of interest. In order to complete the case-
counts that are still missing from the taxonomy in [2], all that remains is to develop
the deBruijn formulas for the symmetric group. We have already begun this process,
which will fill the two unsolved case-counts still remaining in the table in [2].

Taking the polynomials Z(A,Revk; n-cube, {1, 2, · · · , k}) derived in [2], sub-
stituting them into (10), and evaluating them with formulas (20) and (31) for even
and odd k, one can derive the complete set of polynomials that generate all 32 of the
Revk entries in the table by Banks and Linton, and can extend the table arbitrarily
far to the right (in the k direction). Figure 6 presents this collection of case-count
polynomials, which the reader can derive from the principles and examples found in
this paper together with the cycle indices in [2].

n N(DCn,Revk ; n-cube, {1, 2, . . . , k})
1 1

2

(
1k2

)
k even

1
2

(
1k2 + 1

)
k odd

2 1
8

(
1k4 + 2k2 + 4k

)
k even

1
8

(
1k4 + 2k2 + 4k + 1

)
k odd

3 1
48

(
1k8 + 26k4 + 12k2

)
k even

1
48

(
1k8 + 26k4 + 12k2 + 9

)
k odd

4 1
384

(
1k16 + 12k10 + 94k8 + 0k6 + 136k4 + 96k2

)
k even

1
384

(
1k16 + 12k10 + 94k8 + 12k6 + 136k4 + 96k2 + 33

)
k odd

n N(FCn,Revk ; n-cube, {1, 2, . . . , k})
1 1

4

(
1k2 + 2k

)
k even

1
4

(
1k2 + 2k + 1

)
k odd

2 1
16

(
1k4 + 2k3 + 6k2 + 4k

)
k even

1
16

(
1k4 + 2k3 + 6k2 + 6k + 1

)
k odd

3 1
96

(
1k8 + 6k6 + 34k4 + 40k2

)
k even

1
96

(
1k8 + 6k6 + 34k4 + 46k2 + 9

)
k odd

4 1
768

(
1k16 + 12k12 + 12k10 + 134k8 + 48k6 + 360k4 + 96k2

)
k even

1
768

(
1k16 + 12k12 + 12k10 + 134k8 + 60k6 + 420k4 + 96k2 + 33

)
k odd

Fig. 6. Closed-form expressions for the case-counts of k-colored n-cubes, where colorings
within a case are equivalent under the action of the shape group A (either the direct symmetry
DCn or the full symmetry FCn) and the color group Revk

DeBruijn Counting for Visualization Algorithms 87

4 Summary

In this paper we showed how the number of equivalence classes (cases) that arise in
visualization algorithms can be counted without explicitly generating their members.
The strategy is to use deBruijn’s extension of Pólya’s counting technique. A shape
groupA acts on the vertices of an n-cube tiling a domain, while a color group B acts
on the k abstract “colors” assigned to each vertex. The two groups together act on
the colorings of the figures. Two colorings are equivalent if one can be mapped to
the other via elements of A and B. In practice, determining the size of the equiva-
lence classes is a combinatorial problem that becomes much too large to accomplish
by hand when n > 3, which limits the creation of, or extensions of, visualization
algorithms that depend on substituting geometry for polytopes based on coloring.

The deBruijn counting technique makes this class of enumeration problems
tractable. In fact, we can write closed-form expressions for the case counts when
B = Revk (the group that reverses k colors). This allows us to determine the exact
number of cases for situations that previously required too much time and memory
to compute by brute force. Knowing the exact number is a necessary first step for
creating a look-up table that allows a visualization algorithm to replace grid cells
with features.

References

1. David C. Banks and Stephen A. Linton. Counting cases in marching cubes: Toward a
generic algorithm for producing substitopes. In Proceedings of Visualization 2003, pages
51–58. IEEE, 2003.

2. David C. Banks, Stephen A. Linton, and Paul K. Stockmeyer. Counting cases in substitope
algorithms. IEEE Transactions on Visualization and Computer Graphics, 10(4):371–384,
2004.

3. Praveen Bhaniramka, Rephael Wenger, and Roger Crawfis. Isosurfacing in higher dimen-
sions. In Proceedings of IEEE Visualization 2000, pages 267–273. IEEE, 2000.

4. Jules Bloomenthal. Polygonization of implicit surfaces. In Computer Aided Geometric
Design, volume 5, pages 341–355, 1988.

5. N. G. deBruijn. Generalization of pólya’s fundamental theorem in enumerative combina-
torial analysis. Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. 21, pages 59–69,
1959.

6. N. G. deBruijn. Pólya’s theory of counting. In Edwin F. Bechenbach, editor, Applied
Combinatorial Mathematics, pages 144–184. Wiley, New York, 1964.

7. Frank Harary and Ed Palmer. The power group enumeration theorem. Journal of Combi-
natorial Theory, 1:157–173, 1966.

8. Frank Harary and Edgar Palmer. Graphical Enumeration. Academic, New York, 1973.
9. Hans-Christian Hege, Martin Seebass, Detlev Stalling, and Malte Zöckler. A Generalized

Marching Cubes Algorithm Based on Non-Binary Classifications. Konrad-Zuse-Zentrum
für Informationstechnik Berlin, 1997. Technical Report SC 97-05.

10. Ming Jiang, Raghu Machiraju, and David Thompson. A novel approach to vortex core
region detection. In Proceedings of the symposium on data visualization 2002, pages
217–225. Eurographics Association, 2002.

88 D.C. Banks and P.K. Stockmeyer

11. Stefan F. Kirchberg. Marching Hypercubes – ein Verfahren zur Konstruktion von
Hyperflächen aus 4D-Rasterdaten. Universität Dortmund, 1993. Doplomarbeit am
Lehrstuhl 7.

12. William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. In Proceedings of SIGGRAPH 1987, pages 163–169. ACM, 1987.

13. Gregory M. Nielson and Richard Franke. Computing the separating surface for segmented
data. In Proceedings of IEEE Visualization 1997, pages 229–233. IEEE, 1997.

14. Gregory M. Nielson and Junwon Sung. Interval volume tetrahedrization. In Proceedings
of IEEE Visualization 1997, pages 221–228. IEEE, 1997.

15. E. M. Palmer. Graphical Enumeration and the Power Group (Ph.D. dissertation).
University of Michigan, 1965.

16. G. Pólya. Kombinatorische anzahlbestimmungen für gruppen, graphen und chemische
verbindungen. Acta Mathematica, 68:145–254, 1937.

17. G. Pólya and R. C. Read. Combinatorial Enumeration of Groups, Graphs, and Chemical
Compounds. Springer, New York, 1987.

18. Jonathan C. Roberts and Steve Hill. Piecewise linear hypersurfaces using the marching
cubes algorithm. In Robert Erbacher and Alex Pang, editors, Visual Data Exploration and
Analysis VI, Proceedings of SPIE, pages 170–181. IS&T and SPIE, January 1999.

19. Han-Wei Shen and Christopher R. Johnson.Sweeping simplices: A fast iso-surface extrac-
tion algorithm for unstructured grids. In Proceedings of IEEE Visualization 1995, pages
143–151. IEEE, 1995.

20. Detlev Stalling, Malte Zöckler, O. Sander, and Hans-Christian Hege. Weighted Labels
for 3D Image Segmentation.Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1998.
Technical Report SC 98-39.

21. Chris Weigle and David C. Banks. Complex-valued contour meshing. In Proceedings of
IEEE Visualization 1996, pages 173–180. IEEE, 1996.

Topological Methods for Visualizing Vortical Flows

Xavier Tricoche1 and Christoph Garth2

1 Computer Science Department, Purdue University, West Lafayette, IN, USA
xmt@purdue.edu

2 Department of Computer Science, University of California, Davis, USA
cgarth@ucdavis.edu

Summary. The paper describes the application of topological methods to the visualization
of vortical flow patterns that arise in simulations from Computational Fluid Dynamics. Two
techniques are presented: the first is concerned with the exploration of complicated, instanta-
neous flow structures while the second one permits the visualization of their temporal evolu-
tion in large-scale transient simulations. In both cases the mathematical framework is derived
from the notion of parametric topology. This yields a unified formalism that permits to effi-
ciently address the challenges raised by typical flow problems. The benefits of this approach
are demonstrated in the analysis and visualization of transient vortical flows that undergo the
phenomenon of vortex breakdown.

1 Introduction

Scientific computing is an important tool for the development of new prototypes in
the design of modern aircrafts. While the basic theoretical principles of aerodynam-
ics are well established, they are applicable to large scale problems only and do not
describe the increasingly important details on small scales. The quality of numerical
models has risen to a point where simulations can fill this gap. As the demand for
faster aircrafts and improved security is high, they have established themselves as
an extremely valuable alternative to physical experiments. Aside from the validation
of prototypes, simulations can help to increase our understanding of the dynamics
of some of the more complex flow patterns that keep appearing in aviation-related
problems.

A prominent example is vortex breakdown. This phenomenon has stood in the
way of a wide application of delta-wing type aircrafts as it limits the controllabil-
ity in critical flight situations and causes damage to the aircraft through the induced
pressure differences. In order to understand the origin of this phenomenon and avoid
its occurrence in future designs, it has been reproduced and is now investigated in
numerical simulations. In this case like in Computational Fluid Dynamics problems
in general, these simulations facilitate complicated flow experiments and provide ac-
curate measurements of multiple quantities over the whole 3D domain considered.

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 89
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

90 X. Tricoche and C. Garth

However, this comes along with a hindrance for analysis at the post-processing stage.
Since detailed models require fine resolutions, the amount of generated data is enor-
mous which is especially true for time-dependent problems. This obstacle must be
properly addressed by visualization methods, as they are essential to assist and im-
prove the evaluation of the resulting numerical datasets.

For the analysis of planar flows, flow topology has proven valuable in distilling
a complete structural picture of the prevalent structures by an analysis of the critical
points and separatrices of the flow vector field. Parametric topology has extended
this methodology to time-dependent flows. The resulting visualization is expressive,
while the algorithms are efficient. Therefore, planar flow topology can be regarded
as mostly complete as a flow analysis tool. Unfortunately, the extension to three di-
mensions is far from having achieved the same quality of visualization. This can be
in part attributed to the fact that the elements involved (e.g., separating surfaces) are
inherently 3D. A full display of nontrivial 3D topology is very complicated at best
and suffers from mutual obstruction of the corresponding primitives. Approaches ex-
ist for simplified depictions of 3D topology, however, they remain rather unsatisfying
in comparison to their 2D counterparts. Therefore the aim of this work is to provide
a visualization approach for complex 3D flows that inherits the appealing properties
of planar flow topology. In that way we are able to complement well established
feature extraction methods in a unified framework built upon rigorous mathematical
notions.

More precisely, the key idea behind the visualization methods introduced in this
paper is the notion of parametric topology. Depending on the considered application
the corresponding parameter can be interpreted as the time underlying a transient
evolution or as the distance reached along a particular curve that traverses a region
of interest. Practically, to obtain accurate and intuitive depictions of intricate flow
structures we transform traditional cutting planes into flexible and powerful tools for
exploring flow volumes in a continuous way. These moving cutting planes smoothly
travel along trajectories that can be either obtained automatically by standard fea-
ture extraction schemes or directly provided by the user to explore a particular re-
gion. We accurately track the parametric vector field topology captured on the cutting
planes. This allows us to dissect the 3D flow, detect and visualize essential proper-
ties of the flow, especially for recirculation bubbles which are key features of vortex
breakdown. While understanding of this phenomenon is still incomplete, it is known
that it is characterized by the appearance of stagnation points (critical points of the
flow velocity field) on the vortical axis. To gain insight from the temporal behav-
ior of the stagnation points, the critical point tracking from 2D parametric topology
is extended to 3D vector fields defined over tetrahedral grids. For visualization, the
four-dimensional trajectories are reduced to two dimensions by using the symmetry
inherent to the vortical structures. To further enhance the understanding of the full
3D flow pattern, we also incorporate stream surfaces into the representation.

The paper is structured as follows. Section 2 summarizes previous and related
work. In Sect. 3, we recall essential theoretical notions of steady and parametric flow
topology. In this context we also provide a detailed discussion of the Poincaré index.
The tracking of vector field critical points with respect to a parameter change is

Topological Methods for Visualizing Vortical Flows 91

discussed in Sect. 4 along with the corresponding algorithm. Next, Sect. 5 introduces
the moving cutting plane approach. We complete our presentation with our visual-
ization results for two CFD datasets in Sect. 6 and conclude in Sect. 5.

2 Related Work

The importance of topology for depicting flow fields was first recognized by Helman
and Hesselink [7] and resulted in a 2D visualization method. Complete 3D topology
has not been attempted yet, however there are authors that examine subsets, such as
Globus et al. [6] and Theisel et al. [17] using saddle connectors. Tricoche et al. [18]
describe how the time-tracking of singularities and the corresponding topological
variations can be investigated for instationary 2D vector fields. Theisel and Seidel
also propose a method for the tracking of critical points in more general settings by
integrating streamlines of the derived feature flow field [16]. However, the construc-
tion of this field is prohibitively expensive for large datasets.

Concerning the temporal variation of features, there are approaches that detect
features in several time steps and perform a matching procedure to extract their evo-
lution (e.g., Silver and Wang [14] and Samtaney et al. [12]). Making explicit use
of the temporal interpolation, Weigle and Banks [19] extract features in the form of
four-dimensional isosurfaces. A similar course is followed by Bauer and Peikert [2].
They incorporate a scale-space approach into their method for the tracking of vortex
cores. As to the interrelations among multiple features over time, Silver et al. [3]
have developed the Feature Tree that is remotely related to the much simpler struc-
tural graph we establish here.

In our development of a critical point tracking algorithm on tetrahedral grids, we
make use of the Poincaré Index concept, which was described earlier by Mann and
Rockwood [9]. They explain its basic premise and show how it can be applied to the
study of critical points and other types of singularities. Their work is however limited
to the study of analytical vector fields and is not directly applicable to our work.

From the viewpoint of fluid mechanics, vortex breakdown (or vortex burst) has
concerned many authors due to its relevance for a large number of applications (see,
e.g., [10]). In the field of visualization, Kenwright and Haimes [8] were among few
to write about the detection and visualization of vortex breakdown. They already
emphasized its importance in aeronautics. However, their interpretation of vortex
breakdown is not in accordance with modern theories.

3 Theoretical Aspects of (Parametric) Topology

We introduce in this section basic notions of vector field topology both in the 2D
and 3D settings as required by the visualization methods discussed in the paper. The
emphasis is put on linear structures induced by piecewise linear interpolation over
simplicial grids. This choice is justified by the fact that arbitrary grid types can be
decomposed into simplices.

92 X. Tricoche and C. Garth

3.1 Phase Portrait, Limit Sets, and Separatrices

The essential idea behind topology analysis in the steady case is to characterize the
nature of a flow with respect to the asymptotic behavior of its streamlines. For that
purpose, one associates the domain of definition of the flow with its phase portrait
that consists of the set of all streamlines. This corresponds to introducing an equiv-
alence relation that groups all the points located on the path of the same streamline
into a single class.

The topological structure of the flow is essentially a subdivision of the phase por-
trait into regions where all streamlines are asymptotically equivalent, thus forming
a uniform flow. More specifically, all streamlines belonging to such a region con-
verge toward the same so-called limit sets both forward and backward. Limit sets
have a general mathematical definition but for the needs of this presentation we are
only interested in critical points and closed orbits. The boundaries of the different
topological regions are called separatrices and can be either streamlines or stream
surfaces.

3.2 Critical Points

The critical points (or singular points) of a vector field are the positions where the
field magnitude is zero. These points play a fundamental role in the field structure
because they are the only locations where streamlines can meet. In the linear case the
classification of critical points is based on the eigenvalues of the Jacobian matrix.

In planar fields, depending on the real and imaginary parts of these eigenval-
ues, there exist several basic configurations, some of which are shown in Fig. 1. The
saddle points are of particular interest since the separatrices start or end at their lo-
cation along the eigenvectors. Note that for every other critical point type, the sign
of the real parts of both eigenvalues is either positive or negative, corresponding
to a repelling (source) or an attracting (sink) nature, respectively. Thus separatrices
emanate from saddle points and end at sources or sinks.

In the 3D case, the Jacobian matrix has three eigenvalues, and more combina-
tions exist. If all eigenvalues have a positive (resp. negative) real part the corre-
sponding critical point is a source (resp. a sink). Other cases correspond to different
types of saddle points. As in the 2D setting, separatrices of the topology start origi-
nate 3D saddle points along their eigenvectors. However these separatrices are either
one-dimensional (streamlines) or two-dimensional (stream surfaces). The latter are
spanned by both eigenvectors associated with the eigenvalues whose real parts have
same sign. The various cases are illustrated in Fig. 2.

Fig. 1. Linear critical points in the plane

Topological Methods for Visualizing Vortical Flows 93

Fig. 2. Linear critical points in three dimensions

3.3 Poincaré Index

Definition and Properties

A fundamental concept in planar vector field topology is the so-called Poincaré in-
dex of a simple (i.e., non self-intersecting) closed curve. It measures the number
of rotations of the vector field while traveling along the curve in positive direction
(also called winding number). In a more mathematical way, one gets the following
definition for the index of a simple curve γ :

indγ = 1

2π

∮

γ

dφ, where φ = arctan
vy

vx
.

(φ is the angle coordinate of the vector field v(vx, vy).) Remark that the index is
always an integer.

Similarly one defines the index of a critical point as the index of a simple closed
curve around the critical point enclosing no other singular point. For linear criti-
cal points, the possible index values are +1 and −1. A saddle point has index −1
whereas every other critical point has index +1. Following properties of the Poincaré
index are essential in practice [1]:

1. A simple closed curve that encloses no critical point has index 0.
2. The index of a simple closed curve that encloses several critical points is the sum

of the respective indices of those critical points.

This notion can be generalized to 3D vector fields. First, one defines the winding
number #x(S) of a closed surface S with respect to a point x as

#x(S) := 1

4π

∫

S

y − x
|y − x|3 dS(y).

It is an integral value as in the planar case and corresponds to the number of times
S wraps around x. For example, the x-centered sphere Sε(x) of radius ε > 0 has
the canonical winding number 1. Now, to define the index of a closed surface S with
respect to a three-dimensional vector field, one introduces the notion of Gauss map

γ : R
3\{0} → S2, x �→ x

||x|| ,

94 X. Tricoche and C. Garth

that maps any nonzero vector to its (normalized) direction. The index of a closed
surface S is then defined as the number of times the vector field directions on S cover
the origin as we move around all of S. In other words, it is the winding number of the
Gauss map of v restricted to S with respect to the origin. Mathematically speaking,
we have

4π indS = #0(γ (v|S)) =
∫

S
γ (v(x))dS(γ (v(x))). (1)

Note that the winding number can be read as an oriented area integral of γ (v|S).
Hence, the sign of indS depends on the orientation of S relative to R

3. We are able to
define indz(v) of a singularity z via

indz(v) := lim
ε→0

#0(γ (v|Sε(z))). (2)

The properties mentioned previously for the planar case hold in the three-
dimensional case too. Let S be a closed surface that encloses the vector field singu-
larities zi . Then ∑

i

indzi (v) = #0(γ (v|S)).

As in the 2D case positive orientation is assumed for all closed surfaces under consid-
eration. From the last equation, we find that the index vanishes if S does not enclose
any singularity in its interior. Observe that the converse holds only in the linear case.

Computation

In the piecewise linear setting the critical points that may be encountered in the inte-
rior domain of each linearly interpolated triangle or tetrahedron cell are of first order
and have therefore either index +1 or −1. We consider 3D critical points first and
show how the 2D setting can be seen as a special case. To compute the index of an
isolated linear 3D critical point z we can use a simple approach that is based on the
Jacobian J of the corresponding linear vector field. Indeed, assuming a nondegener-
ate case, J has full rank which implies that |indz(v)| = 1. Hence, the index is +1
if J is orientation-preserving and 1 otherwise. In other words, the index of a linear
critical point is determined by the sign of its determinant. Therefore, if we consider
the types of linear critical points mentioned previously, a source has index +1 and a
sink has index −1. Concerning saddle points, their index depends on the particular
type. If the dimension associated with the 1D separatrix corresponds to a source, the
index is +1, otherwise −1. Refer to Fig. 2. If we now consider two dimensional crit-
ical points, we easily see that a similar result applies: sink and sources correspond to
two eigenvalues of same sign and both types have index +1 while saddle points have
index −1, see Fig. 1.

3.4 Parameter Dependent Topology

In the case of a parameter-dependent (e.g., instationary) flow, parameter changes
entail transformations of the topology. Despite the unlimited variety of such trans-
formations they always preserve qualitative consistency. In particular, the Poincaré
index acts as a topological invariant.

Topological Methods for Visualizing Vortical Flows 95

Fig. 3. Hopf bifurcation

Fig. 4. Three-dimensional fold bifurcation

For the needs of our method we only mention two types of local bifurcations in
the 2D case and derive a similar example for the 3D case. The first local bifurcation
in 2D involves pairs of critical points, namely a saddle point and a sink or a source.
When both critical points become progressively closer, merge and eventually vanish
the bifurcation is a pairwise annihilation. The reverse phenomenon is called pair-
wise creation. The common terminology for both evolutions is fold bifurcations. The
second type of planar bifurcation affects a single spiral critical point, either a sink
or a source, and is known as Hopf bifurcation. The corresponding evolution for a
planar field is pictured in Fig. 3. The corresponding critical point (a center) is an un-
stable configuration and any change in the parameter value will transform it into a
source surrounded by a closed orbit that behaves as a sink. The reverse evolution is
possible too, as well as swapped roles for sinks and sources. Similar transformations
occur in the 3D case. A simple example can be obtained by adding a one-dimensional
source behavior to a saddle point and a source involved in a fold bifurcation. This
creates two 3D saddle points that merge and vanish in the very same way. An illus-
tration is proposed in Fig. 4. Observe that as in the 2D case the basic ingredient of
this fold bifurcation is the fact that the overall index of both critical points is 0 (two
saddle points of opposite indices) which corresponds to a neighborhood without sin-
gularity. Consequently, the local value of the Poincaré index is preserved throughout
the corresponding transformation. This remark also explains why a fold bifurcation
in 3D can concern a source (index +1) and a sink (index −1).

4 Topology Tracking

In the following we describe a simple algorithmic solution to track the continuous
evolution of the topology and detect the associated bifurcations. The method was
originally designed for time-dependent 2D vector fields [18] and has been recently
extended to the 3D case [5]. We focus the description hereafter on the latter case,

96 X. Tricoche and C. Garth

which is in essence very similar to the planar case. In particular, bifurcations on the
common boundary of two neighboring cells, tracking through successive entry and
exit points, as well as the ability to filter out insignificant details or interpolation
artifacts in postprocessing are common features of both the 2D and 3D implemen-
tation. Section 5.1 explains how the 2D method can be applied to steady 3D vector
fields. Observe that in both cases, and in contrast to the original method, we do not
explicitly track the separatrices of the topology.

Setting

The objective is to determine the paths of isolated critical points of a time-dependent
piecewise-linear vector field, given on a tetrahedral grid. Let pi ∈ R

3 be a set of
points and vji the vector values associated with the pi at discrete times tj ∈ R. Let
Tk be a set of tetrahedra defined on the points pi . Then every tetrahedron Tk gives
rise to a vector field v(x, t) that is linear in both space and time: if x ∈ Tk and
t ∈ [tj , tj+1], then set

v(x, t) =
3∑

l=0

βl(x)

(
t − tj
tj+1 − tj v

j+1
l + tj+1 − t

tj+1 − tj v
j
l

)

,

where βl are the barycentric coordinates w.r.t. Tk and l refers to the vertices of Tk .
We will next examine the paths of singularities in a single tetrahedron Tk .

Bifurcations

Due to the inherent limitations imposed on the singularities by the piecewise linear
nature of the vector field, we can conclude that fold bifurcations that involve two
critical points can only occur on the common face of two neighboring tetrahedra.
Bifurcations on an edge or a vertex are special cases that are numerically highly
unstable. Therefore there are not addressed here.

Assume we have two tetrahedra T1 and T2 that share a common face on which
we find a bifurcation at some time t . Since the field is linear in both tetrahedra, from
the two singularities involved, one is located in T1 and the other in T2. Moreover,
due to index conservation, the overall index must be zero. Hence the indices of the
critical points must be +1 and −1, respectively.

Paths in a Single Cell

We first consider a single tetrahedron T and determine what possibilities exist for
the path of a singularity z. To simplify the notations, we assume that the vector field
in T is given in the form

v(x) =
3∑

i=0

βi(x)
(
(1 − t)vni + tvn+1

i

)
, x ∈ T , t ∈ [0, 1]

Topological Methods for Visualizing Vortical Flows 97

and that v is nondegenerate, i.e., it contains exactly one isolated zero at all times.
For fixed t we can solve for the position of the singularity of this field in barycentric
coordinates. For example, with wi(t) = (1 − t)vni + tvn+1

i we write (omitting the
parameters)

v = w0 + β1(w1 −w0)+ β2(w2 −w0)+ β3(w3 −w0)

and apply Cramer’s rule to find

β1(t) = det(−w0, w2 − w0, w3 −w0)

det(w1 − w0, w2 −w0, w3 −w0)
=: b1(t)

q(t)
.

The same can be done for all βi . Brief computation shows that the resulting bi(t)
and q(t) are polynomials of degree 3 in t . We required that v be nondegenerate,
this reflects in q(t) = 0 for all t ∈ [0, 1]. Naturally, if βi(t) < 0 for some i, the
singularity of v is outside the tetrahedron for this specific t . In other words, we have
found an explicit representation for the location of z. Taking a closer look at bi , we
find that the zeros of these polynomials allow us to determine when z crosses one
of T ′s faces. If for t̂ ∈ [0, 1] we find βi(t̂) = 0 and βj (t̂) >= 0 for j = i, then
the singularity is located on the face of T opposite the vertex pi (its barycentric
coordinate is zero). For this case, by evaluating the sign of the derivative

β ′
i (t̂) =

(
bi

q

)′
(t̂) = b′i (t̂)

q(t̂)
(since bi(t̂) = 0)

we can tell if the singularity enters or leaves the tetrahedron at t̂ . We will say that
T has an entrance/exit on face F at t̂ . This information is important to determine in
which neighboring tetrahedron (if one exists for F) the singularity path continues.

For fixed t ∈ [0, 1] there can be at most one singularity inside T , hence we can
conclude that if there is a singularity in T at some t ∈ (0, 1), it must either have
entered T at an earlier time 0 < t̂ < t or remained in T since t = 0 (in this case we
will say that z enters at t = 0). In complete analogy, it must either exit T at t < t̃ < 1
or remain in T until t = 1 (read z exits at t = 1). In other words, a singularity path
always connects an entrance to an exit, and exits and entrances always come in pairs.
Moreover an entrance is always connected to the closest exit (in time).

When z passes from T to a neighbor T ′ through the face F at t̂ , there is a singular-
ity on F in both T and T ′ at t̂ . Two possibilities exist: either we find an exit/entrance
combination in T and T ′, in which case the path continues in T ′, or we find an
exit/exit or entrance/entrance combination. In the latter case, the vector field has
a fold bifurcation on F at t̂ , and the paths of both singularities involved start or
end on F .

4.1 Tracking Algorithm

Using previous results, we give in the following a simple scheme for tracking a sin-
gularity between two time steps t = 0 and t = 1. It works by simply connecting
entrance/exit path segments over tetrahedron boundaries. Observe that the iterative
nature of our scheme allows to restrict to two consecutive time steps the amount of
data that is needed at once for processing.

98 X. Tricoche and C. Garth

Assume that a singularity z is present in T at t ∈ (0, 1). Then, to compute the
path forward in time:

1. Compute the bi and q for T , and determine entrances and exits.
2. If there is no exit later than t , z exits T at t = 1; the path is complete.
3. If there are exits in T , then z leaves T at the earliest exit later than t; determine

the neighbor tetrahedron T ′ corresponding to the exit face F and compute b′i , q ′
for T ′.

4. If T ′ has an exit on F corresponding to the exit on T (→ bifurcation), the path
of z ends on F .

5. Otherwise, T ′ has an entrance on F corresponding to the exit on T ; z is now in
T ′. Set T = T ′ and restart at 1.

Following the path of z backwards in time can be achieved in a completely anal-
ogous manner. Both directions are completely equivalent. We use this procedure as a
building block for computing the paths of all singularities present in two given time
steps between t = 0 and t = 1:

1. Find the sets of tetrahedra S0 and S1 that contain a singularity at t = 0 and t = 1
respectively. Let B = {} be the set of bifurcations encountered in between t = 0
and t = 1.

2. For every T ∈ S0: follow the path of z forward in time
(a) If it ends in T ′ at t = 1, eliminate T ′ from S1.
(b) If it ends at a bifurcation, add it to B.

3. For every T ∈ S1 (singularities not reached by paths from t = 0): follow the
path of z backward in time
(a) It must end at a bifurcation; add it to B.

4. For all bifurcations in B: check if B has two paths connecting to it; if it does not,
there must be another singularity involved. Follow its path forward or backward
in time depending on whether the bifurcation is a creation of singularities or an
annihilation.
(a) The path must end at a bifurcation; add it to B; goto 4.

The algorithm avoids multiple tracing of the same path by using the equivalence
between forward and backward tracing (i.e., if a path extends from t = 0 to t = 1,
we only need to trace it forward). The test in step 4 is required because nonintuitive
situations can occur (see Fig. 5). The final result is a set of paths that completely
describe the continuous structural variation of the vector field between the two time

entrance
exit
entrance/exit
bifurcation

po
si
ti
on

time

Fig. 5. Special cases of cell-wise singularity tracking

Topological Methods for Visualizing Vortical Flows 99

steps. Going to several time steps from here is easy as it only involves connecting
the paths from different time steps according to which singularity they start/end at.

Observe that some cases are not covered by the given algorithm. If two bifur-
cations that create and annihilate a pair of singularities lie between two time steps,
neither of the singularities will show up in either time step, and hence their paths will
not be discovered by the algorithm (see Fig. 5). However they do not interact with
other singularities and therefore they do not play an important role in understanding
the structural changes in between the time steps. Moreover, it is often desirable to
ignore small-scale local behavior.

4.2 Structural Graph Filtering

To obtain a complete picture of the structural evolution of a given dataset, the interac-
tion of the various singularities form a structural graph with bifurcations as vertices
and paths as edges (see Fig. 7 for an example). We describe here how this graph can
be manipulated at the postprocessing stage.

The method described above is restricted to tetrahedra which implies that arbi-
trary input datasets must be tetrahedrized before application. Although the track-
ing algorithm could be extended to nontetrahedral grid cells, this would result in a
number of special cases that complicate the simple structure of the algorithm. In its
present form, implementation is straightforward and fast. However, the price to pay
is that tetrahedrization of arbitrary grids can result in the creation of singularities that
are not in the original dataset. It is possible that a cell of index 0 is split up such that
the resulting tetrahedra have nonzero indices. These “artificial” singularities are not
an issue since they are always created pair-wise and typically only last for a short
period of time.

Numerical datasets are often subject to noise, especially if the computations in-
volve some kind of differentiation. It is common practice to apply smoothing op-
erators to datasets in order to account for this limitation. Numerical noise usually
reflects in short-lived pairs of artificial singularities that exist in isolation and are not
part of the datasets structural evolution over time. It can also occur that a path is
“interrupted” by a pair of artificial bifurcations that enclose a path segment of very
short duration (Fig. 5 (left) gives an example).

What seems a drawback at first can be turned into an advantage: instead of
smoothing the dataset we filter the resulting set of singularity paths by removing
paths that last less than, e.g., one time step. Filtering can be applied on the structural
graph directly and can be implemented in an efficient way by first removing edges
that represent paths with short duration and successively removing all isolated ver-
tices. In our experiments, we found this method to be very effective in treating noisy
datasets. It must be mentioned here that conventional smoothing does not signifi-
cantly reduce the number of artificial singularities. Moreover it affects the structure
of the dataset in such a way that the structural evolution is obscured or changed
(this is especially true for minimum/maximum tracking as described in the next
para- graph). Consequently a filtering based directly on the topological structure of
the flow offers a much more accurate control over the complexity of the structural
information.

100 X. Tricoche and C. Garth

4.3 Algorithm Performance

The tracking algorithm itself is of linear complexity in both the number of singulari-
ties and the number of time steps. The most time-intensive part is the precomputation
of all singularities in a time step, for which each cell has to be considered individ-
ually. This is not a drawback of our algorithm but rather a limitation inherent in
this class of tracking algorithms (cf. [16, 18]) If this information is assumed given,
the running times for our examples are on the order of very few seconds. Since the
algorithm only needs two successive time steps to do its work, it is possible to inte-
grate it directly into the CFD simulation. The structural graph for all time steps can
then be completed in postprocessing. This would also allow for online supervision
of simulations that are still in progress.

5 Planar Topology Tracking for Volume Exploration

As mentioned previously the approach developed in this section consists in using the
framework of planar topology tracking to explore steady 3D flow structures. More
precisely, the 3D (steady) flow is now investigated through the parametric topology
of its 2D projection onto a plane that is swept along a given curve across the volume
of interest. In other words, the curve provides the third dimension and is interpreted
as the parameter space for topology tracking. Essential algorithmic aspects of this
method are discussed next.

5.1 Moving Cutting Planes

Trajectories

By definition, the choice of a particular trajectory to explore a flow volume is es-
sential to ensure the quality and the usefulness of the extracted topology and must
therefore be carefully chosen with respect to the considered application. The general
idea followed in our implementation is to use any inherent symmetry of the dataset to
yield a natural way to split the physical space. Since the application of our technique
is focused on vortical flows and vortex breakdown we selected the curves described
next. Refer to Fig. 6 for an illustration.

Fig. 6. Different types of moving cutting planes

Topological Methods for Visualizing Vortical Flows 101

• Vortex Core Lines are a natural choice to explore vortical regions. We extract
them using an implementation of the standard method by Sujudi and Haimes [15]
based on the Parallel Operator [11]. A smoothing step applied in preprocessing
permits to improve the results.

• Straight Line across the grid are a straightforward alternative. They are mainly
used to explore large structures whose overall orientation is known.

• Recirculation Bubble Axis: to explore the recirculation bubbles induced by vortex
breakdown, the medium axis usually exhibited by these structures can be used.
More specifically, as mentioned previously a recirculation bubble is delimited by
two stagnation points and the line connecting them plays the role of a rotation
axis in our method.

Cutting Plane Orientation

A robust computation of the cutting plane orientation is mandatory for our flow ex-
ploration technique. It can be seen on Fig. 6 that choosing the recirculation bubble
axis as exploratory curve fully determines the plane orientation. Similarly we also
used the straight line as plane normal when it is selected to capture large-scale fea-
tures. On the contrary, when dealing with a vortex core line the inaccuracy of the ex-
traction method results in an approximated position of the actual vortex core which
can have a negative impact on the resulting normal value. The same holds true when
approximating the curved, possibly complex path of a vortex by a straight line seg-
ment. In both cases we need an automatic way to compute a suitable normal at each
point along the discrete path according to the local flow orientation. Practically, the
quality of a normal is evaluated with respect to the amount of flow crossing the plane
over a small region around the considered point. We use a simple iterative scheme to
maximize this quantity which consists in assigning in every step the mean direction
of crossing flow to the current approximation of the normal.

Planar Resampling

The remaining task consists in resampling the 3D vector field on the cutting plane
while ensuring consistency of the coordinate frames between consecutive positions
along the followed curve. This is mandatory to obtain meaningful results during the
topology tracking procedure. To do so, it is sufficient to assign a single basis vector to
each plane, the second one being readily obtained by cross product with the normal.
Practically we select an arbitrary vector in the first plane and we iteratively transport
this vector from one plane to the next by successive projections and normalization,
similar to, e.g., [13]. Once provided with the grid resolution (i.e., sampling rate) we
only need to control the spatial extent of the sampled region around the curve on the
plane. This is to ensure that the sampling will not include data points corresponding
to positions lying outside the structure of interest. Practically we either assume a
constant size of the feature or we apply the technique described in a recent paper [4]
to determine the boundary of the vortex core region.

102 X. Tricoche and C. Garth

5.2 Topology Tracking

The previous step collects the successive values of the projected vector field as the
cutting plane moves through the volume. As mentioned previously we can now ab-
stract these data from their original embedding in three-space and treat them as the
successive states of a parameter-dependent planar vector field. In that way we can
apply the two-dimensional tracking scheme proposed in [18] and whose extension
to three dimensions was discussed in the previous section. In essence the setting of
the original method corresponds here to the computational space. One difference is
that the results obtained (singularity paths, bifurcations) must be mapped back into
physical space after tracking for visualization and interpretation. Moreover we need
to account for the lack of smoothness of the vector field projected on the moving
cutting plane along a curve. Specifically this may cause spiraling critical points to
oscillate between sink and source behavior, creating numerous Hopf bifurcations.
We correct this effect by filtering out small-scale features like pairs of critical points
vanishing shortly after their creation or type swap between sources and sinks. The
latter is handled by assigning the type center to the critical point. Although this is an
unstable structure in planar topology, this may be monitored in cutting plane topol-
ogy when inspecting a vortex whose spiraling flow neither converges nor diverges
with respect to its core line.

6 Results

We now show the results of both topology tracking methods applied to two CFD
simulations specifically designed to investigate the impact of vortex breakdown on a
vortical flow.

6.1 Datasets

Delta Wing: This simulation describes a sharp-edged delta wing at subsonic speed
(0.2 Mach) with the characteristic vortical systems above the wing. The angle of at-
tack increases over time, eventually leading to vortex breakdown in later time steps.
The viscous simulation of the full configuration was performed with- out the as-
sumption of symmetry and was carried out using the DLR Tau Code solver. The grid
consists of 11.1 million unstructured grid cells based on about 3 million vertices.
At these, a number of variables is given (velocity, pressure, kinetic energy, etc.) for
each of the 90 time steps. Among the significant physical features are secondary and
tertiary vortices on the wing and corresponding separation and attachment structures.

Can Dataset: The aim behind this simulation of a cylindrical container filled with
an incompressible and highly viscous liquid was to study vortex breakdown under
ideal conditions, created by the viscosity of the fluid and the high symmetry in the
problem that lead to numerically very accurate and smooth data. The bottom cylinder
cap rotates, creating a vortex on the symmetry axis of the cylinder. A variation in the
rotation speed leads to the appearance and successive vanishing of vortex breakdown

Topological Methods for Visualizing Vortical Flows 103

during the 500 time steps. The dataset is given in the same form as the delta wing
dataset, with the grid containing approx. 750,000 elements.

6.2 3D Critical Point Tracking

We have employed the critical-point tracking described in Sect. 4.1 for the analysis
of both datasets. It is already known that vortex breakdown is associated with the
occurrence of (pairwise) stagnation points, therefore we have applied the tracking
algorithm to the velocity fields first. Furthermore, there are speculations that both
acceleration and signed helicity (i.e., dot product of velocity and vorticity) play an
important role in this context. We have computed these fields for those datasets and
applied tracking to them as well, in the case of signed helicity minimum tracking
was performed. Since these computations involve derivative computation, we ob-
serve strong numerical noise in both helicity and acceleration yielding many artificial
singularities. Using structural graph filtering we are still able to obtain meaningful
results.

For the can dataset, the results are of almost analytical quality (see Fig. 7). The
simulation actually shows two occurrences of vortex breakdown (and two corre-
sponding pairs of stagnation points) and it is interesting to observe how primary
and secondary vortex breakdown successively merge and split again. Acceleration
zeros and helicity minima show a strong correlation with the onset of the breakdown
process and the bifurcation that creates the two stagnation points. It is also obvious
that the structural graph helps locate interesting time steps quickly.

In treating the delta wing dataset, we focus on two regions that correspond to
breakdown on both sides of the wing. After a coordinate transformation consisting in
a projection onto the vortical axis, the structural graph of the right region (cf. Fig. 8)
clearly shows the evolution of the stagnation points as they move towards the wing.

0 0.2 0.4 0.6 0.8 1

758

1602
1888

2458
2968

4925

singularity position on principal axis

stagnation point
helicity min.
acceleration zero

primary vortex breakdown

secondary
vortex
breakdown

structural evolution timestep 1700 timestep 4400

Fig. 7. Left: Structural graph of the can dataset. The green paths represent the stagnation points
in the velocity field. Primary and secondary breakdown each create a pair of stagnation points.
Around time step 1,888, the two phenomena join, only to re-split at time step 2,458 and suc-
cessively decay. The blue and orange paths belong to helicity minima and acceleration zeros.
Note the strong interrelation between the three quantities. Middle and right: Two snapshots
from the can dataset. Separation stream surfaces are started at the singularity positions. Time
step 1,700 shows both breakdowns, whereas the second breakdown has already vanished in
time step 4,000 and the first breakdown shows the typical “mushroom” structure

104 X. Tricoche and C. Garth

1 1.5

595

singularity position

tim
es

te
p

stagnation points
helicity min.
acceleration zeros

1 1.5

597

723

singularity position

tim
es

te
p

stagnation points
helicity min.
acceleration zeros

Overview Right breakdown Left breakdown

Fig. 8. Left: Overview of the delta wing dataset with its two primary vortices above the wings.
Stream surfaces wrap around the vortices and are eventually distorted by vortex breakdown.
Note the asymmetrical breakdown structure. Middle and right: Structural graphs for right and
left breakdown. Again a connection between various quantities involved in vortex breakdown
can be observed for the right breakdown. In the left breakdown, several oscillating breakdown
structures are visible in the later time steps

Again, acceleration zeros and a helicity minimum seem to play a role in formation of
breakdown, although the correlation is not as obvious as in the can dataset. This is,
in part to be blamed upon the lack of resolution and numerical noise. Filtering of
the structural graph for the helicity gradient field reduces the number of meaningful
paths from roughly 1.000 to 4, effectively eliminating all artificial singularities. The
left region is even more complex, and it is clearly visible how the stagnation points
begin to oscillate and disappear around time step 730, to be followed by what appears
to be a sequence of short-lasting vortex breakdowns in different places. In this case,
the structural graph makes identification of multiple breakdown bubbles possible
by grouping the velocity field singularities according to their common origin in a
bifurcation. The stream surfaces shown are separation surfaces originating in the
separation planes of the (saddle) stagnation points. Although this picture conveys the
basic structure of the breakdown bubbles, for an accurate interpretation the structural
graph is necessary.

6.3 Moving Cutting Planes

The moving cutting planes scheme from Sect. 5 was applied to both datasets with
the aim of investigating the flow structures obtained by the simulations. For the delta
wing dataset, the reproduction of primary, secondary, and tertiary vortices is crucial.
Figure 9 left gives an overview of the wing created with parallel cutting planes along
the wing symmetry axis. The primary vortices are presented prominently, and the
vortex axis results from the tracking of the corresponding singularities. Using the
cutting plane orientation scheme described in Sect. 5.1 with the vortex core as in-
put curve for the plane generation, both secondary and tertiary vortices are visible.
Moreover, the planar cut reveals interactions between the three vortices that are hard
to determine by other means. This includes the separation surface between the pri-
mary and secondary vortices and the so-called primary separation, i.e., the flow sheet
that emanates from the wing edge and divides the flow above the wing from the sur-
rounding flow. Both appear as a separatrix in the plane.

Topological Methods for Visualizing Vortical Flows 105

The dataset had been examined for the presence of the vortical system before,
using the method of Sujudi and Haimes [15]. However, this scheme requires careful
computation of derivatives and involves smoothing. The result is a set of discon-
nected line segments and is hard to interpret. In comparison, the approach employed
here was easily applied. This can be attributed in part to the fact that the approximate
location of the sought features was a priori known, which is usually the case in the
verification of datasets.

Application of the planar topology to the can dataset has revealed a peculiarity.
The simulation exhibits vortex breakdown, hence a so-called breakdown bubble is
visible. Over time, this bubble grows, merges and successively re-splits with a second
bubble, and shrinks until it vanishes as the breakdown is resolved.

Aside from the strict validation of datasets, parametric planar topology can also
serve as a feature extraction method for vortex core lines under limited circum-
stances. For example, the primary vortex axes in the delta wing dataset can be
extracted in this manner (cf. Fig. 9). Although it is in this case equivalent to other
algorithms, it excels in the extraction of recirculation cores. As the vortex break-
down bubble encloses a mostly rotation symmetric region of recirculation, there is
essentially a bent vortex inside the bubble. Its core appears as a singularity in the
section planes revolving around the original vortex axis. Then, tracking provides a
connection between different planes and thus constructs the core of the recirculation
vortex. Figures 10 and 11 show these recirculation rings.

Fig. 9. Left: An overview of the delta wing dataset: parametric topology visualizes the pri-
mary vortices. The planes are computed along the symmetry axis of the wing and are parallel.
Each planes shows two sinks/sources (primary vortices) and a number of saddle points (sep-
aration from the wing). Note how the separatrices end in cycles. This indicates very weak
attracting/repelling behavior of the vortices. Right: Primary, secondary and tertiary vortices
visualized by planar topology. Here, the planes are on the primary vortex core and oriented
to the flow. Note how plane orientation affects the resulting structures. Green arrows indicate
the three vortices in the top image. The red arrow shows the separation sheet between primary
and secondary vortex. The primary separation at the wing edge is indicated by the blue arrow.
All three vortices are present as expected

106 X. Tricoche and C. Garth

Fig. 10. Left: An overview of the can dataset. Right: Parametric topology shows the essentials
of vortex breakdown including the recirculation ring (blue) and a secondary vortex breakdown.
To show that the separatrices accurately model the flow behavior, the breakdown bubbles
are surrounded with transparent stream surfaces [4] (light blue/light red) originating at the
upstream stagnation points that are reproduced as saddle points in the topology of the planes
(red)

Fig. 11. Enlargement of the right recirculation bubble in the delta wing dataset. Continuous
tracking on the projected topology onto a plane rotating around the axis connected the 3D
stagnation points. The resulting parametric topology exhibits numerous Hopf bifurcations that
are smoothed out to yield the center type critical point (yellow) corresponding to the typical
closed vortex core

7 Conclusion

We have introduced a unified algorithmic framework to address the challenging task
of analyzing and visualizing the flow structures exhibited by typical CFD simula-
tions of complex vortical flows. Building upon the central idea of parametric topol-
ogy we investigate 3D flow patterns like vortical systems and recirculation bubbles to
yield intuitive and accurate representations. Moreover we extend a topology tracking
scheme originally designed for 2D transient vector fields to the three-dimensional
setting and show how to leverage it to efficiently explore large time-dependent
datasets and understand the temporal evolution of features of interest. The corre-
sponding algorithms are easily implemented and suitable for the processing of typi-
cal CFD datasets, both online during numerical simulations and at the postprocessing
stage.

Topological Methods for Visualizing Vortical Flows 107

References

1. A. A. Andronov. Qualitative Theory of Second-Order Dynamic Systems. Wiley, New
York, 1973.

2. D. Bauer and R. Peikert. Vortex tracking in scale-space. In Data Visualization 2002.
Proc. VisSym ’02, 2002.

3. J. Chen, D. Silver, and L. Jiang. The feature tree: visualizing feature tracking in dis-
tributed AMR datasets. In IEEE Symposium on Parallel and Large-Data Visualization
and Graphics, 2003.

4. C. Garth, X. Tricoche, T. Salzbrunn, and G. Scheuermann. Surface techniques for vortex
visualization. In Proceedings Eurographics – IEEE TCVG Symposium on Visualization,
May 2004.

5. C. Garth, X. Tricoche, and G. Scheuermann. Tracking of vector field singularities in un-
structured 3D time-dependent datasets. In IEEE Visualization Proceedings ’04, October
2004.

6. A. Globus, C. Levit, and T. Lasinski. A tool for visualizing the topology of three-
dimensional vector fields. In IEEE Visualization Proceedings, pages 33–40, October
1991.

7. J. L. Helman and L. Hesselink. Visualizing vector field topology in fluid flows. IEEE
Computer Graphics and Applications, 11(3):36–46, May 1991.

8. D. N. Kenwright and R. Haimes. Vortex identification – applications in aerodynamics: a
case study. In R. Yagel and H. Hagen, editors, IEEE Visualization ’97, pages 413–416,
Los Alamitos, CA, 1997.

9. S. Mann and A. Rockwood. Computing singularities of 3D vector fields with geometric
algebra. In IEEE Visualization Proceedings ’03, 2003.

10. T. Mullin, J. J. Kobine, S. J. Tavener, and K. A. Cliffe. On the creation of stagnation
points near straight and sloped walls. Physics of Fluids, 12(2), 2000.

11. R. Peikert and M. Roth. The “Parallel vectors” operator – a vector field visualization
primitive. In IEEE Visualization Proceedings ’00, pages 263–270, 2000.

12. R. Samtaney, D. Silver, N. Zabusky, and J. Cao. Visualizing features and tracking their
evolution. IEEE Computer, 27(2):20–27, 1994.

13. W. J. Schroeder, R. Volpe, and W. E. Lorensen. The stream polygon: a technique for 3D
vector field visualization. In IEEE Visualization Proceedings, 1991.

14. D. Silver and X. Wang. Tracking and visualizing turbulent 3D features. IEEE Transac-
tions on Visualization and Computer Graphics, 3(2), 129–141, 1997.

15. D. Sujudi and R. Haimes. Identification of swirling flow in 3D vector fields. Technical
Report AIAA Paper 95–1715, American Institute of Aeronautics and Astronautics, 1995.

16. H. Theisel and H.-P. Seidel. Feature flow fields. In Joint Eurographics-IEEE TVCG
Symposium on Visualization, 2003.

17. H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Saddle connectors – an approach
to visualizing the topological skeleton of complex 3D vector fields. In IEEE Visualization
’03, 2003.

18. X. Tricoche, T. Wischgoll, G. Scheuermann, and H. Hagen. Topology tracking for
the visualization of time-dependent two-dimensional flows. Computers and Graphics,
26(2):249 – 257, 2002.

19. C. Weigle and D. C. Banks. Extracting iso-valued features in 4-dimensional scalar fields.
In Proc. Symposium on Volume Visualization, 1998.

Stability and Computation of Medial Axes:
A State-of-the-Art Report

Dominique Attali1, Jean-Daniel Boissonnat2, and Herbert Edelsbrunner3

1 Gipsa-lab, ENSE3, Domaine Universitaire, BP 46, 38402 Saint Martin d’Hères, France
Dominique.Attali@gipsa-lab.inpg.fr

2 INRIA, 2004 Route des Lucioles, BP 93, 06904 Sophia-Antipolis, France
Jean-Daniel.Boissonnat@sophia.inria.fr

3 Department of Computer Science, Duke University, Durham, and Raindrop Geomagic,
Research Triangle Park, NC, USA
edels@cs.duke.edu

Summary. The medial axis of a geometric shape captures its connectivity. In spite of its
inherent instability, it has found applications in a number of areas that deal with shapes. In this
survey paper, we focus on results that shed light on this instability and use the new insights to
generate simplified and stable modifications of the medial axis.

1 Introduction

In this paper, we survey what is known about the medial axis of a geometric shape.
To get an intuitive feeling for this concept, consider starting a grass fire along a curve
in the plane, like the outer closed curve in Fig. 1. The fire starts at the same moment,
everywhere along the curve, and it grows at constant speed in every direction. The
medial axis is the set of locations where the front of the fire meets itself. In mathemat-
ical language: it is the set of points that have at least two closest points on the curve.
If we start the fire along the boundary of a geometric shape in R

k we generically get
a medial axis of dimension k − 1, one less than the dimension of the space.

In the plane, the medial axis is a (one-dimensional) graph whose branches cor-
respond to regions of the shape it represents. Its structure has found applications in
image analysis for shape recognition [52] and in robotics for motion planning [42].
The distance-to-boundary recorded at points of the medial axis provides information
about local thickness, which can be used to segment the shape, separating it into large
regions with relatively narrow connections [21, 25, 45]. In reverse engineering, the
medial axis appears naturally as a tool to characterize the sampling density needed
to reconstruct a curve in the plane and a surface in space [1, 2]. Other applications
include domain decomposition in mesh generation [46,50], feature extraction in geo-
metric design [38,39], and tool-path creation in computer-aided manufacturing [36].

In this paper, we make no attempt to cover the large amount of work on medial
axes in digital image processing and instead refer to texts in the area [35, 40, 41].

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 109
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

110 D. Attali et al.

Fig. 1. Medial axis of shape whose boundary is the outer closed curve. The distance-to-
boundary function has three critical points, one saddle and two maxima. One of the maxima
coincides with a branch point

Whenever possible, we state the definitions and results for R
k, where k is an arbitrary

but fixed constant, but sometimes we need to limit ourselves to R
2 and R

3. Since
most applications are in two and three dimensions, this limitation implies only a
minor loss of relevance. The style adopted in this paper is not that of a typical survey
paper. Rather than aiming at a broad coverage of the literature, we focus on a small
number of results that we deem important. Those are centered around questions of
stability and computation of the medial axes. We encapsulate the various topics in
a relatively large number of small and by-and-large independent sections. Starting
with fundamental properties, we slowly progress towards more advanced results. In
Sect. 2, we define medial axes and skeletons. Sections 3 and 4 state properties of the
medial axis that concern its finiteness and its homotopy type. Sections 5, 6, and 12
discuss the stability of the medial axis under various notions of distance. Section 7
recalls that computing the medial axis exactly runs into obstacles except for certain
classes of shapes, and Sect. 8 introduces the approximation paradigm designed to
circumvent these obstacles. Sections 9, 10, 11 and 13 describe steps and aspects of
this paradigm. We find that topics of stability and computation are related, which is
the reason for interleaving the sections as enumerated.

2 Medial Axis and Skeleton

There is no generally agreed upon definition for either the medial axis or the skeleton
of a shape; the precise meaning of these terms changes from one author to another.
The medial axis has been introduced by Blum [12] as a tool in image analysis. In
this paper, we adopt the definitions given in [43]. Let X be a bounded open subset of
the k-dimensional Euclidean space, R

k . The medial axis, M[X], is the set of points
that have at least two closest points in the complement of X. We call an open ball
B ⊆ X maximal if every ball that contains B and is contained in X equals B. The
skeleton is the set of centers of maximal balls. The two notions are closely related
but not the same. Specifically, the medial axis is a subset of the skeleton which is,
in turn, a subset of the closure of the medial axis [44, Chap. 11]. In the most general

Stability and Computation of Medial Axes 111

case, the skeleton is not necessarily closed and the last inequality is strict. Examples
of shapes in R

2 whose skeletons are composed of an infinite number of curves and
which are not closed can be found in [16, 22]. A simple example of a skeleton in R

3

that is not closed is given in [20]. Even though medial axes are not necessarily the
same as skeletons, the two concepts are too similar to warrant a balanced treatment
of both. The rest of this paper will therefore focus exclusively on the medial axis.

If we weight each point x of the medial axis with the radius ρ(x) of the maximal
ball centered at x, then we have enough information to reconstruct the shape. In
other words, the medial axis together with the map ρ provides a reversible coding of
shapes. This coding is not necessarily minimal and some shapes, such as finite unions
of balls, can be reconstructed from proper subsets of their weighted medial axes.

3 Finiteness Properties

There are cases in which the medial axis has infinitely many branches, even if the
shape is bounded and its boundary isC∞-smooth [22]. To construct such an example,
let f : R → R be a C∞-smooth function defined by

f (x1) =
⎧
⎨

⎩
1 − e−

1
x2

1

(
sin π

x1

)2
if |x1| < 1,

1 if |x1| ≥ 1.

Consider the set of points X ⊆ R
2 above its graph, as shown in Fig. 2. The medial

axis of X consists of infinitely many branches, one for each oscillation of f . To
obtain a bounded shape, we apply inversion, mapping every point x ∈ X to ι(x) =
x/‖x‖2. The inversion preserves circles and incidences between curves. It follows
that the medial axis of ι(X) has the same structure and number of branches as the
medial axis of X. More specifically, if we compactify R

2 and join all branches of
M[X] at the added point at infinity, then we have a homeomorphism between M[X]
and M[ι(X)]. The point at infinity maps to the center of the circle that is the image

0

X

Fig. 2. The upper “half-plane” X bounded by a smooth curve and its image under inversion.
Both shapes have medial axes with infinitely many branches

112 D. Attali et al.

of the line x2 = 1. We note, however, that the homeomorphism between the two
medial axes is different from ι, which does not preserve centers of circles. The above
construction can be extended to produce medial axes with infinitely many branch
points and similar pathological examples in higher dimension.

In the plane, Choi et al. [22] establish that the medial axis of a bounded shape
whose boundary is piecewise real analytic is a finite graph. Chazal and Soufflet [20]
extend this result to semianalytic bounded open sets, which are bounded and open
subsets X ⊆ R

k for which every point of R
k has a neighbourhood U with X ∩ U

defined by a finite system of analytic equations and inequalities. They prove that such
sets have medial axes which admit stratifications and satisfy finiteness properties.
Specifically, the medial axis can be decomposed into a finite number of strata, each
a connected i-manifold with boundary, for i < k. Furthermore, the medial axis has
finite j -dimensional volume, where j denotes the largest dimension of any stratum.
In addition, in R

3 the boundary of the medial axis consists of a finite union of points
and curves of finite length. For shapes in R

3, a classification of points in the closure
of the medial axis can be found in [4, 33].

4 Homotopy Equivalence

In [43], Lieutier proves that any bounded open subset X ⊆ R
k is homotopy equiva-

lent to its medial axis. Unlike earlier works [51,53], he assumes no regularity condi-
tion on the boundary of X. Intuitively, this result implies that the medial axis and the
shape are connected the same way, ignoring local dimensionality. To be formal, we
say that two maps f and g from X to Y are homotopic if there exists a continuous
mapH : X×[0, 1] → Y with H(x, 0) = f (x) and H(x, 1) = g(x). Using this def-
inition, two spaces X and Y are homotopy equivalent if one can find two continuous
maps f : X → Y and g : Y → X such that g ◦ f is homotopic to the identity on X
and f ◦ g is homotopic to the identity on Y . To establish the homotopy equivalence
between a shape X and its medial axis, Lieutier considers the distance-to-boundary
function, ρ, which associates to each point x ∈ X its distance to the complement of
X and defines the vector field ∇ρ : X→ R

k by

∇ρ(x) = x − c(x)
ρ(x)

, (1)

where c(x) is the center of the smallest ball enclosing the set of points in the com-
plement of X closest to x. Used before for the purpose of surface reconstruction
in [29, 34], this vector field extends the gradient of ρ to points on the medial axis,
where the gradient is not defined. The extended vector field is not continuous but
induces flow lines used in the proof to map the shape to its medial axis. Specifi-
cally, each point x is mapped to the point f (x) it occupies after flowing along the
vector field ∇ρ for a sufficiently long but constant amount of time. The proof uses
f : X → M[X] and the inclusion map g : M[X] → X to establish the homotopy
equivalence.

Stability and Computation of Medial Axes 113

5 Instability and Semi-continuity

We think of M as a transform that maps the shape X to its medial axis, M[X]. As
emphasized in [43], geometric shapes are usually not known exactly and represented
by approximations of one kind or another. For example, the boundary of a shape may
be approximated by a triangulation obtained by software for surface reconstruction
or segmentation. Under these circumstances, it would be important that the transform
be continuous. In other words, one should be able to compute an arbitrarily accurate
approximation of the output for a sufficiently accurate approximation of the input.
Most commonly, one would use the Hausdorff distance to quantify the difference
between two inputs and two outputs and this way define what it means for the trans-
form to be continuous. Unfortunately, the medial axis transform is not continuous
under this notion of distance: small modifications of the input shape can induce large
modifications of its medial axis. This effect is illustrated in Fig. 4, where we compare
the medial axis of an oval on the left with the medial axis of a set whose Hausdorff
distance to the oval is bounded from above by ε > 0. The difficulty of approximat-
ing the medial axis due to its instability with respect to the Hausdorff distance is a
well-known but until recently not well-understood problem.

One can observe experimentally that small modifications of a shape do not af-
fect the entire medial axis. Typical effects for shapes in R

2 are fluctuating branches
that leave the rest of the medial axis unchanged. Similarly, for shapes in R

3 we
notice fluctuating spikes, added to or removed from the otherwise stable structure.
This observation is consistent with the fact that the medial axis is semicontinuous
with respect to the Hausdorff distance [44, Chap. 11]. To explain this concept, we
let A and B be subsets of R

k and write dH (A |B) = supx∈A d(x, B) for the one-
sided Hausdorff distance of A from B, where d(x, B) is the infimum of the Eu-
clidean distances between x and points y in B. Observe that dH (A |B) < ε if and
only if A is contained in the parallel body B+ε = {x ∈ R

k | d(x, B) < ε}. The
Hausdorff distance between A and B is dH (A,B) = max{dH (A |B), dH (B |A)}.
We write Ac and Bc for the complements of A and B and note that the Haus-
dorff distance between Ac and Bc is generally different from that between A
and B. Indeed, dH (Ac, Bc) is forgiving for small islands of A far away from
B, while dH (A,B) is forgiving for small holes of A far away from Bc. With
this notation, we are ready to define the concept of semicontinuity. Specifically,
a transform T is semicontinuous if for every bounded open subset X ⊆ R

k

and for every δ > 0, there exists ε > 0 such that for every open subset Y of
R
k ,

dH (X
c, Y c) < ε =⇒ dH (T [X] | T [Y]) < δ. (2)

Note that ε depends on X. In words, small Hausdorff distance between the comple-
ments of X and Y implies that T [X] is contained in a tight parallel body of T [Y].
As mentioned earlier, this condition is satisfied for T = M.

114 D. Attali et al.

6 Stability Under C2-Perturbations

In [20], Chazal and Soufflet prove that the medial axis transform is continuous when
C2-perturbations are applied to shapes in R

3. To define what this means, we call
two multilinear maps ε-close if the norm of their differences is less than ε. A map
f : R

3 → R
3 is an ε-small Cm-perturbation if:

(1) f (x) = x outside some compact subset of R
3.

(2) f is a Cm-diffeomorphism.
(3) The i-th derivatives of f and f−1 are ε-close to the i-th derivative of the identity

map, for all points x ∈ R
3 and all i from 0 to m.

LetX be an open subset of R
3 whose boundary is aC2-smooth manifold [37]. Chazal

and Soufflet [20] prove that a small C2-perturbation f implies a small Hausdorff dis-
tance between the medial axes ofX and f (X). Formally, for every δ > 0, there exists
ε > 0 such that for every ε-small C2-perturbation f , dH (M[X],M[f (X)]) < δ.
This result is optimal form since the medial axis of a shape is already instable under
C1-perturbations [20]. Therefore, for approximating the medial axis of X with the
medial axis of Y , the boundary of Y must be close to the boundary of X both in po-
sition, normal direction and curvature. Unfortunately, effective implementations of
exact alorithms for the medial axis are known only for restricted families of shapes,
such as polyhedra, unions of balls and complements of discrete point sets, whose
boundaries are generally not C2. In other words, it is unlikely that the positive ap-
proximation result for C2-perturbations can be turned into a practical algorithm.

7 Exact Computation of Medial Axes

A fairly general class of shapes for which it is possible, in principle, to compute the
medial axis exactly are the semi-algebraic sets, each the set of solutions of a finite
system of algebraic equations and inequalities. The medial axis of such a set is itself
semi-algebraic and can be computed with tools from computer algebra. To describe
this, let X be a shape in R

3 whose boundary is a C1-smooth manifold. We introduce
the symmetry set of X, consisting of the centers of spheres tangent to the boundary
of X at two or more points. It contains all points of the medial axis but possibly
additional points since the spheres are not constrained to bound balls contained inX.
Suppose now the boundary of X is defined by the algebraic equation f (x) = 0 and
0 is a regular value of f . It follows that the gradient for all points of the boundary
is non-zero, ∇f (x) = 0. In this case, the symmetry set is the closure of the set of
points z for which there exists points x and y that satisfy the following system of
algebraic equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f (x) = 0,
f (y) = 0,
(x − z)× ∇f (x) = 0,
(y − z)× ∇f (y) = 0,
‖x − z‖2 = ‖y − z‖2,

t‖x − y‖2 = 1

Stability and Computation of Medial Axes 115

In the last condition, t is an additional free variable that ensures that x and y are
distinct. If 0 is not a regular value of f , we need to add ∇f (x)∇f (y)s = 1 as
yet another equation, with s a free variable. Finally, the medial axis is obtained by
imposing the additional conditions that ‖u − z‖2 ≥ ‖x − z‖2, for all points u on
the boundary, and z be contained in X. Considering u a new free variable, we thus
remove points from the solution, namely the points z for which f (z) < 0 or for
which there exists u with f (u) = 0 and ‖u − z‖2 < ‖x − z‖2. This new set is still
semi-algebraic since it is the difference between two semi-algebraic sets.

Although possible in principle, we are not aware of an implementation that ef-
fectively constructs the exact medial axes of general semi-algebraic sets. The most
advanced effective implementations are limited to the planar case, to piecewise linear
shapes, and to shapes constructed from finitely many balls. Even for shapes bounded
by simple curves in the plane, the algebraic difficulties in computing medial axes
are significant and satisfactory implementations are rare and far in between. Piece-
wise linear curves involve the comparison of expressions with two nested square
roots [17] and efficient and fully robust implementations are few [36]. Ramamurthy
and Farouki tackle the case of algebraic curve segments whose bisectors have ratio-
nal parametrizations [47]. An exact algorithm for not-necessarily convex polyhedra
in R

3 can be found in [24]. For the complement of a union of balls in R
k , the medial

axis can be derived from the Apollonius diagram of the corresponding spheres or
from convex hulls of finitely many points in R

k+2 [11, 14]. Perhaps suprisingly, the
medial axis of the union of finitely many balls is simpler than that of the comple-
ment. As first described in [5], it is piecewise linear and can be constructed from the
Voronoi diagram of a finite set of points. As discussed in more detail shortly, the cells
of dimension less than k in this diagram may be interpreted as the medial axis of a
punctured Euclidean space, a case that permits particularly simple exact algorithms.

8 Approximation Paradigm for Medial Axes

The difficulty of computing medial axes exactly motivates a serious look at approx-
imation algorithms. We describe a framework that captures a common line of attack
to approximating the medial axis, as sketched in Fig. 3. First, we find Y approximat-
ing X that belongs to a class of shapes for which the medial axis can be constructed
exactly. Second, we construct the medial axis of Y . Third, we prune the medial axis
of Y to get a subset P[M[Y]] ⊆ M[Y] that approximates the medial axis of X.

X Y

P[M[Y]] M[Y]

�APPROXIMATE

�

�

�

�

�

�

��
APPROXIMATE
MEDIAL AXIS

�
CONSTRUCT
MEDIAL AXIS

�PRUNE

Fig. 3. An approximation P[M[Y]] of the medial axis of a shape X can be found as part of
the medial axis of a shape Y approximating X

116 D. Attali et al.

The composition of the three steps provides the approximation of the medial axis of
X. The most challenging step in this paradigm is the extraction of a subset P[M[Y]]
of M[Y] that indeed approximates M[X]. Recent mathematical results that ratio-
nalize this approach are discussed shortly.

The notion of approximation used in the first step varies between different im-
plementations of the approximation paradigm. It either means that Y is the image
of X under a small Cm-perturbation, or that the Hausdorff distance between the
complements of X and Y is small, as in [19]. Other notions of approximation are
conceivable.

9 Punctured Euclidean Spaces

We start by identifying a class of shapes for which the medial axis can be constructed
exactly and efficiently. We obtain shapes in this class by puncturing the k-dimension
real space at a discrete set of locations. Equivalently, we consider the complement of
a discrete set of points P in R

k . The medial axis of this space is the Voronoi graph
of P , which we define as the union of all cells in the Voronoi diagram of dimension
k−1 or less. Algorithms for constructing the Voronoi graph are well-studied in com-
putational geometry and implementations are available from the geometric software
library CGAL (http://www.cgal.org/). For a set P of n points in R

k , the
graph can be constructed in time O(n�k/2 + n logn), which is optimal in the worst
case because the graph can consist of a constant times n�k/2 faces. In most practical
applications, the number of faces, F , is much less and the output-sensitive algorithm
in [18] constructs the graph in R

3 in time O((n + F) log2 F). Examples of point
sets with provably small Voronoi graphs are so-called κ-light ε-samples of compact
smooth generic surfaces in R

3, with F = O(n logn) [8], and κ-light ε-samples of
polyhedral surfaces in R

3, with F = O(n) [7]. Such samples will be studied in more
detail shortly.

Consider a finite point set P whose Hausdorff distance to the boundary of a shape
X is less than ε and write Vor[P] for the Voronoi graph of P . Using the semicon-
tinuity of the medial axis expressed in (2), we can show that the subset of Vor[P]
inside X contains an approximation of the medial axis of X. In the approximation
paradigm for medial axes, this subset can be interpreted as part of the medial axis
of a shape Y close to X. Following [19], we let Y be the parallel body X+ε of X
minus the points in P ; see Fig. 4. Since the Hausdorff distance between P and the
boundary of X is less than ε, the same is true for the complements of X and the thus
constructed space: dH (Xc, Y c) < ε. In summary, we have M[Y]∩X = Vor[P]∩X.

10 Voronoi Graph and Medial Axis

We now consider results that focus on the detailed relationship between the Voronoi
graph of a finite point set and the medial axis of the shape whose boundary the points
sample. We need precise notions. A sample of the boundary of a shape X is a finite

Stability and Computation of Medial Axes 117

Fig. 4. On the left, a shape X and its medial axis. In the middle, a finite set of points P whose
Hausdorff distance to the boundary of X is less than ε and its Voronoi graph. On the right,
X+ε − P and its medial axis

Fig. 5. In R
2, vertices and edges lying inside a shape and extracted from the Voronoi graph of

an ε-sample of the boundary approximate the medial axis (courtesy of Attali and Montanvert
[10])

set of points (exactly and not just approximately) on that boundary. An ε-sample
is a sample whose Hausdorff distance to the boundary of X is less than ε. In other
words, every point of the boundary is less than distance ε away from a point in the
ε-sample. The ε-sample is κ-light if the number of sample points within distance
ε is never more than κ . The ε-sample is noisy if points are not necessarily on the
boundary but at Hausdorff distance less than ε to the boundary.

An early result on the connection between the Voronoi graph and the medial axis
is due to Brandt [15]. Given a shape in R

2, he takes an ε-sample on the boundary
curve and considers the Voronoi edges and vertices that are completely contained
in the shape; see Fig. 5. He then proves that under some technical conditions on
the boundary curve, the portion of the Voronoi graph defined by these edges and

118 D. Attali et al.

Fig. 6. On the left we see a triangulation of the boundary of a shape in R
3. Its vertices deter-

mine a Voronoi diagram whose vertices inside the shape are shown in the middle. The subset
of poles inside the shape is shown on the right

vertices approximates the medial axis. Amenta and Bern [1] point out that the direct
extension of this result to shapes in R

3 does not hold; see Fig. 6. The validity of
the extension is spoiled by the existence of slivers in three-dimensional Delaunay
triangulations, which occur for ε-samples with arbitrarily small ε > 0. Roughly,
a sliver is a tetrahedron whose four vertices are almost cocircular. The location of
the Voronoi vertex corresponding to the sliver depends on the four vertices but is
generally unrelated to any feature of the surface and does not necessarily lie near the
medial axis. As a first step to cope with slivers, Amenta and Bern eliminate all but a
few Voronoi vertices they refer to as poles. Every sample point p generates a Voronoi
polyhedron and the vertices furthest away from p on the two sides of the surface are
the poles of p. Clearly, there are at most 2n poles for a sample of n points. As proved
in [3], for a shape whose boundary is a smooth C1-manifold, the poles tend to the
medial axis of the shape and its complement as ε goes to zero.

To extend the result of Brandt to R
3, we need more than just points (the poles)

near the medial axes, we also need to connect them to form a geometric structure
approximating the medial axis. In [3], Amenta, Choi and Kolluri use simplices of
the (weighted) Delaunay triangulation of the poles. To avoid the construction of this
weighted Delaunay triangulation and connect the poles directly inside the Voronoi
graph, we need to know about its local distance from the medial axis. Bounds on this
distance can be found in [6,13,23]. Assuming the boundary of the shape is a smooth
C1-manifold and using these bounds, among other things, Dey and Zhao [27] give
an algorithm that identifies a subgraph of the Voronoi graph that approximates the
medial axis for the Hausdorff distance. We note that the above results are limited
to smooth surfaces and to samples of points that lie on that surface. The next two
sections deal with more general data.

11 Pruning in the Presence of Noise

Assuming the medial axis of a shape Y approximating X has been constructed, we
prune M[Y] to retrieve an approximation of M[X]. In this paragraph, the terms
shape, medial axis, and stable part refer to Y , M[Y], and P[M[Y]], respectively.

Stability and Computation of Medial Axes 119

Pruning methods shorten peripheral branches of the medial axis, trying to capture its
stable part. Typically, points on the border are successively removed until a stopping
condition is satisfied. This condition may be a threshold on the difference between
the initial shape and the shape reconstructed from the simplified medial axis [16,
23, 28, 48, 49], or it may be based on an estimate of the stability of portions of the
medial axis [9, 10, 26, 31, 32, 45]. We present experimental results due to Attali and
Montanvert [10] that shed light on the latter approach. To each point y ∈ Y , we
associate the distance to Y c, the complement of Y , and the largest angle formed by
points in Y c closest to y:

ρ(y) = d(y, Y c) and θ(y) = max
a,b∈�(y)

∠ayb,

where �(y) = {x ∈ Y c | d(y, Y c) = ‖y − x‖}. We obtain the parameter graph
by collecting, for all points y of the medial axis, the points (θ(y), ρ(y)) in the two-
dimensional parameter space [9, 10]. Points in this graph lie on curves associated
with branches of the medial axis, as illustrated in Fig. 7. When noise is added to
the boundary, new branches appear on its medial axis; see Fig. 8. The corresponding

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3

E1

E2

E3

E1

E2

E3

θ

ρ

Fig. 7. Medial axis, parameter graph and simplified medial axis obtained by keeping points in
the upper right quadrant of the parameter graph (courtesy of Attali and Montanvert [10])

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3
θ

ρ

Fig. 8. A small amount of noise added to the boundary of a shape suffices to dramatically
change its medial axis. The simplified medial axis is defined by points in the upper right
quadrant of the parameter graph (courtesy of Attali and Montanvert [10])

120 D. Attali et al.

effect on the parameter graph is the appearance of a hyperbola-like point cloud lo-
cated near the coordinate axes. This experimental observation suggests a method for
recognizing points on the medial axis that owe their existence to noise in the in-
put data. As a first cut, we remove points y for which ρ = ρ(y) is smaller than a
first threshold or θ = θ(y) is smaller than a second threshold. In order to refine the
method, let us introduce h(y) = supa,b∈�(y) ‖a− b‖/2. The new quantity, h = h(y)
is related to the previous ones by

ρ = h

sin(θ/2)
.

For each fixed h we get ρ as a function of θ . By plotting a few of these functions,

we can experimentally find a value of h for which the graph of this function approx-
imates the hyperbola-like point cloud induced by the noise. This suggests that the
stable part of the medial axis corresponds to points y for which h exceeds a given
threshold. The next section describes a theoretical justification of this experimen-
tal finding.

12 Stability of the λ-Medial Axis

Chazal and Lieutier [19] define the λ-medial axis of a bounded open subset X of R
k

and prove its stability under the Hausdorff distance, for regular values of λ. Remem-
ber that this property is not shared by the medial axis transform. To describe their
results, let r(x) be the radius of the smallest ball enclosing�(x), the set of points in
the complement of X with minimum distance to x. By definition, the λ-medial axis
of X is

Mλ[X] = {x ∈ X | r(x) ≥ λ}.
For λ > 0, the λ-medial axis is a subset of the medial axis and the Hausdorff distance
between the two tends to zero when λ goes to zero. We say that λ is a regular value
of X if the function that maps μ ∈ R to Mμ[X] in R

k is continuous under the
Hausdorff metric at μ = λ. In other words, a small modification of a regular value
λ implies a small modification of the λ-medial axis. Typical non-regular values are
radii of locally largest maximal balls. We are now ready to give a precise statement
of the result in [19]: if λ is a regular value of a shape X, the λ-medial axis transform
is continuous at X for the Hausdorff distance. In other words, for every δ > 0, there
exists ε > 0 such that for every open subset Y of R

k ,

dH (X
c, Y c) < ε =⇒ dH (Mλ[X],Mλ[Y]) < δ. (3)

Note the similarity with (2), which expresses the same property using one-sided in-
stead of two-sided Hausdorff distance. As part of the approximation paradigm for
medial axes, this result sheds new light on the pruning method described above,
which is now seen as approximating the λ-medial axis. Furthermore, an approxima-
tion of the medial axis can be obtained by forcing λ to decrease as Y gets closer to X.

Stability and Computation of Medial Axes 121

Fig. 9. Left: a shape with weak feature size indicated by the arrow. Right: the λ-medial axis
for a value of λ greater than the weak feature size. Each endpoint has two closest points on the
boundary, whose distance from each other is 2λ

This idea appears in [27] and can also be found in [19]. Specifically, we consider a
sequence of shapes Yε whose Hausdorff distance toX is at most ε. WritingD for the
diameter of X and introducing g(ε) = 10

√
3D3/4 4

√
ε, we get

lim
ε→0

dH (M[X],Mg(ε)[Yε]) = 0, (4)

[private communication with André Lieutier]. Unlike the medial axis, the λ-medial
axis is not necessarily homotopy equivalent to the shape (Fig. 9). To shed light on this
phenomenon, Chazal and Lieutier [19] call a point x ∈ X critical if the vector field
∇ρ defined in (1) vanishes at x; see Fig. 1. The weak feature size of X is the small-
est distance between a critical point and the boundary of X. As proved in [19], the
λ-medial axis is homotopy equivalent to X if λ is smaller than the weak feature size.

13 What Now?

How do we best harness the power of the new insights, in particular the stability
of the λ-medial axis? In this section, we speculate how this stability can be used to
obtain improved implementations of the approximation paradigm for medial axes.
We also mention some of the open issues that are still obstacles in our quest for a
satisfactory solution in the absence of any knowledge on the shape X other than a
possibly noisy finite sample of its boundary.

Given a finite point set P , we call the λ-medial axis of the complement the
λ-Voronoi graph of P . The λ-complex consists of all simplices in the Delaunay trian-
gulation that can be enclosed by a sphere of radius less than λ. The relation between
the two is one of duality and complementarity: a Voronoi cell of dimension less than
k belongs to the λ-Voronoi graph iff the dual Delaunay simplex does not belong to
the λ-complex. To derive an alternative description, let B be the set of open balls
with radius λ whose centers are points in P . The λ-complex consists of all Delau-
nay simplices spanned by points in P whose balls have a non-empty intersection.
This is similar to but slightly weaker than the condition for the simplex to belong to

122 D. Attali et al.

Fig. 10. The λ-complex and the λ-Voronoi graph of a noisy sample of a simple closed curve
in the plane

the α-shape [31], which requires that the balls and the (k-dimensional) Voronoi cells
have a non-empty intersection. Indeed, it is not difficult to prove that for λ = α, the
λ-complex and the α-complex are homotopy equivalent. To construct the λ-Voronoi
graph, we simply select the Delaunay simplices that belong to the λ-complex and
collect the dual Voronoi cells of the remaining Delaunay simplices as the pieces of
the λ-Voronoi graph. An example of this construction is shown in Fig. 10. Assume
now that P is a noisy sample of the boundary of an open setX ⊆ R

k . If we know that
P is an ε-sample of that boundary, we may set λ = g(ε) and compute the λ-Voronoi
graph. The results presented in Sects. 10 and 12 assure that as ε goes to zero, the
λ-Voronoi graph restricted to X is an approximation of the medial axis of X. To
recapitulate, we go through the following steps to obtain an approximation of the
medial axis:

1. Determine how small an ε is needed
2. Obtain an ε-sample of the boundary of X
3. Construct the λ-Voronoi graph, with λ = g(ε)
4. Select the part of the graph inside X

In practice, we rarely have enough knowledge about X to know what ε > 0 is suf-
ficiently small, and even if we knew, we might not have the means to obtain an
ε-sampling of the boundary. In exceptional cases, the boundary ofX is defined math-
ematically, e.g. as the zero-set of an algebraic function f : R

k → R, and we can de-
termine sufficiently fine ε-samples and therefore λ-Voronoi graphs that approximate
the medial axis, as in Fig. 11. This approach to medial axes thus suffers from the same
difficulties as the α-shape approach to surface reconstruction: it is usually not clear
which value of λ (or α) is most appropriate, and in many cases there is no such most
appropriate value. This suggests we re-trace some of the developments aimed at fix-
ing this drawback for α-shapes, namely looking at the filtration (nested sequence) of
λ-Voronoi graphs and use topological persistence [30] to select and combine pieces
of λ-Voronoi graphs for different values of λ in different portions of X.

Stability and Computation of Medial Axes 123

Fig. 11. Two λ-medial axes of the same shape, with λ increasing from left to right, constructed
as a subset of the λ-Voronoi graph of a sample of the boundary

Acknowledgement

We thank Frédéric Chazal and André Lieutier for communications related to ques-
tions discussed in this paper. We thank David Cohen-Steiner for fruitful discussions.
The first two authors acknowledge the support of the EU through the Network of
Excellence AIM@SHAPE Contract IST 506766. The third author acknowledges the
support of the NSF through grant CCR-00-86013.

References

1. N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete Comput.
Geom., 22:481–504, 1999.

2. N. Amenta, M. Bern, and D. Eppstein. The crust and the beta-skeleton: combinatorial
curve reconstruction. Graph. Model. Image Process., 60:125–135, 1998.

3. N. Amenta, S. Choi, and R. K. Kolluri. The power crust, unions of balls, and the medial
axis transform. Comput. Geom. Theory Appl., 19:127–153, 2001.

4. E. V. Anoshkina, A. G. Belyaev, O. G. Okunev, and T. L. Kunii. Ridges and ravines: a
singularity approach. Internat. J. Shape Modeling, 1:1–11, 1994.

5. D. Attali. Squelettes et graphes de Voronoi 2-d et 3-d. PhD thesis, Univ. Joseph Fourier,
Grenoble, 1995.

6. D. Attali and J.-D. Boissonnat. Complexity of the Delaunay triangulation of points on
polyhedral surfaces. Discrete Comput. Geom., 30:437–452, 2003.

7. D. Attali and J.-D. Boissonnat. A linear bound on the complexity of the Delaunay trian-
gulation of points on polyhedral surfaces. Discrete Comput. Geom., 31:369–384, 2004.

8. D. Attali, J.-D. Boissonnat, and A. Lieutier. Complexity of the Delaunay triangulation of
points on surfaces: the smooth case. In Proc. 19th Ann. Sympos. Comput. Geom., pages
201–210, 2003.

9. D. Attali and J.-O. Lachaud. Delaunay conforming iso-surface. Skeleton Extraction and
Noise Removal, 19:175–189, 2001.

124 D. Attali et al.

10. D. Attali and A. Montanvert. Modeling noise for a better simplification of skeletons. In
Proc. Internat. Conf. Image Process., volume 3, pages 13–16, 1996.

11. F. Aurenhammer and H. Imai. Geometric relations among Voronoi diagrams. Geom.
Dedicata, 27:65–75, 1988.

12. H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen-Dunn,
editor, Models for the Perception of Speech and Visual Form, pages 362–380, MIT,
Cambridge, MA, 1967.

13. J.-D. Boissonnat and F. Cazals. Natural neighbor coordinates of points on a surface. Com-
put. Geom. Theory Appl., 19:155–173, 2001.

14. J.-D. Boissonnat and M. Karavelas. On the combinatorial complexity of Euclidean
Voronoi cells and convex hulls of d-dimensional spheres. In Proc. 14th ACM-SIAM Sym-
pos. Discrete Alg., pages 305–312, 2003.

15. J. W. Brandt. Convergence and continuity criteria for discrete approximations of the con-
tinuous planar skeletons. CVGIP: Image Understanding, 59:116–124, 1994.

16. J. W. Brandt and V. R. Algazi. Continuous skeleton computation by Voronoi diagram.
CVGIP: Image Understanding, 55:329–337, 1992.

17. C. Burnikel. Exact computation of Voronoi diagrams and line segment intersections. PhD
thesis, Universität des Saarlandes, March 1996.

18. T. M. Chan, J. Snoeyink, and C. K. Yap. Primal dividing and dual pruning: Output-
sensitive construction of 4-d polytopes and 3-d Voronoi diagrams. Discrete Comput.
Geom., 18:433–454, 1997.

19. F. Chazal and A. Lieutier. Stability and homotopy of a subset of the medial axis. In Proc.
9th ACM Sympos. Solid Modeling Appl., 2004.

20. F. Chazal and R. Soufflet. Stability and finiteness properties of medial axis and skeleton.
J. Control Dyn. Syst., 10:149–170, 2004.

21. C. H. Chen, L. F. Pau, and P. S. Wang, editors. Segmentation tools in Mathematical Mor-
phology. World Scientific, Singapore, 1993.

22. H. I. Choi, S. W. Choi, and H. P. Moon. Mathematical theory of medial axis transform.
Pacific J. Math., 181:57–88, 1997.

23. S. W. Choi and H.-P. Seidel. Linear one-sided stability of MAT for weakly injective 3D
domain. In Proc. 7th ACM Sympos. Solid Modeling Appl., pages 344–355, 2002.

24. T. Culver. Computing the medial axis of a polyhedron reliably and efficiently. Depart.
comput. sci., Univ. North Carolina, Chapel Hill, NC, 2000.

25. T. K. Dey, J. Giesen, and S. Goswami. Shape segmentation and matching with flow
discretization. In F. Dehne et al., editor, Proc. Workshop Alg. Data Structures, pages
25–36, 2003.

26. T. K. Dey and W. Zhao. Approximate medial axis as a Voronoi subcomplex. In Proc. 7th
ACM Sympos. Solid Modeling Appl., pages 356–366, 2002.

27. T. K. Dey and W. Zhao. Approximating the medial axis from the Voronoi diagram with
a convergence guarantee. Algorithmica, 38:179–200, 2004.

28. A. R. Dill, M. D. Levine, and P. B. Noble. Multiple resolution skeletons. IEEE Trans.
Pattern Anal. Mach. Intell., 9:495–504, 1987.

29. H. Edelsbrunner. Surface reconstruction by wrapping finite point sets in space. In
B. Aronov, S. Basu, J. Pach, and M. Sharir, editors, Discrete and Computational Ge-
ometry – The Goodman-Pollack Festschrift, pages 379–404. Springer, Berlin, 2004.

30. H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplifi-
cation. Discrete Comput. Geom., 28:511–533, 2002.

31. H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graph-
ics, 13:43–72, 1994.

Stability and Computation of Medial Axes 125

32. M. Foskey, M. Lin, and D. Manocha. Efficient computation of a simplified medial axis.
In Proc. 8th ACM Sympos. Solid Modeling Appl., pages 96–107, 2003.

33. P. Giblin and B. B. Kimia. A formal classification of 3D medial axis points and their local
geometry. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), 26:238–251, 2004.

34. J. Giesen and M. John. Surface reconstruction based on a dynamical system. In Proc.
23rd Ann. Conf. European Association for Computer Graphics (Eurographics), Computer
Graphics Forum, pages 363–371, 2002.

35. R. Haralick and L. Shapiro. Computer and Robot Vision, volume 1. Addison-Wesley,
New York, 1992.

36. M. Held. VRONI: An engineering approach to the reliable and efficient computation of
Voronoi diagrams of points and line segments. Comput. Geom. Theory Appl., 18:95–123,
2001.

37. M. W. Hirsch. Differential Topology. Springer, New York, 1988.
38. M. Hisada, A. G. Belyaev, and T. L. Kunii. A skeleton-based approach for detection

of perceptually salient features on polygonal surfaces. In Computer Graphics Forum,
volume 21, pages 689–700, 2002.

39. C. Hoffmann. Geometric and Solid Modeling. Morgan-Kaufmann, San Mateo, CA, 1989.
40. B. Jähne. Digital Image Processing, 4th edition. Springer, Berlin, 1997.
41. L. Lam, S.-W. Lee, and C. Y. Suen. Thinning methodologies – a comprehensive survey.

IEEE Trans. on PAMI, 14(9):869–885, 1992.
42. J.-C. Latombe. Robot Motion Planning. Kluwer Academic, Boston, 1991.
43. A. Lieutier. Any open bounded subset of R

n has the same homotopy type as its medial
axis. In Proc. 8th ACM Sympos. Solid Modeling Appl., pages 65–75. ACM, 2003.

44. G. Matheron. Examples of topological properties of skeletons. In J. Serra, editor, Im-
age Analysis and Mathematical Morphology, Volume 2: Theoretical Advances, pages
217–238. Academic, London, 1988.

45. R. Ogniewicz. A multiscale MAT from Voronoi diagrams: the skeleton-space and its
aplication to shape description and decomposition. In C. Arcelli et al., editors, Aspects of
Visual Form Processing, pages 430–439. World Scientific, Singapore, 1994.

46. M. A. Price and C. G. Armstrong. Hexahedral mesh generation by medial surface subdivi-
sion: Part II. solids with flat and concave edges. Int. J. Numer. Methods Eng., 40:111–136
1997.

47. R. Ramamurthy and R. T. Farouki. Voronoi diagram and medial axis algorithm for planar
domains with curved boundaries, I and II. J. Comput. Appl. Math., 102:119–141 and
253–277, 1999.

48. G. Sanniti di Baja and E. Thiel. A multiresolution shape description algorithm. In
D. Chetverikov et al., editor, Lecture Notes in Computer Science, volume 719, pages
208–215. Springer, Berlin, 1993.

49. D. Shaked and A. M. Bruckstein. Pruning medial axes. Comput. Vis. Image Underst.,
69:156–169, 1998.

50. A. Sheffer, M. Etzion, A. Rappoport, and M. Bercovier. Hexahedral mesh generation
using the embedded Voronoi graph. Engineering Comput., 15:248–262, 1999.

51. E. Sherbrooke, N. M. Patrikalakis, and F.-E. Wolter. Differential and topological proper-
ties of medial axis transforms. Graph. Model. Image Process., 58:574–592, 1996.

52. M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis and Machine Vision, 2nd
edition. PWS, Pacific Grove, 1999.

53. F.E. Wolter. Cut locus and medial axis in global shape interrogation and representation.
Technical Report Design Laboratory Memorandum 92-2, MIT, 1992.

Local Geodesic Parametrization: An Ant’s Perspective

Lior Shapira1 and Ariel Shamir2

1 Tel Aviv-University
lior@liors.net

2 The Interdisciplinary Center
arik@idc.ac.il

Summary. Two-dimensional parameterizations of meshes is a dynamic field of research.
Most works focus on parameterizing complete surfaces, attempting to satisfy various con-
straints on distances and angles and produce a 2D map with minimal errors. Except for devel-
opable surfaces no single map can be devoid of errors, and a parametrization produced for one
purpose usually doesn’t suit others.

This work presents a different viewpoint. We try and acquire the perspective of an ant liv-
ing on the surface. The point on which it stands is the center of its world, and importance di-
minishes from there onward. Distances and angles measured relative to its position have higher
importance than those measured elsewhere. Hence, the local parametrization of the geodesic
neighborhood should convey this perspective by mostly preserving geodesic distances from
the center. We present a method for producing such overlapping local-parametrization for
each vertex on the mesh. Our method provides an accurate rendition of the local area of each
vertex and can be used for several purposes, including clustering algorithms which focus on
local areas of the surface within a certain window such as Mean Shift.

1 Introduction

Contrasted with the modern evidence that the Earth is round, the ancient belief that
the Earth is flat is reasonable from the point of view of a person standing on it.
Similarly, an Ant standing on a manifold surface in 3D has a particular perspective
concerning the shape of the surface it lives on. The distances and angles to points
which lie on the surface relative to the Ant’s position create a perspective map of the
neighborhood surface. We call this map local-geodesic parametrization and in this
work we present a method to create such maps for any position on a manifold mesh.

A manifold is a topological space that is locally Euclidean. This means that
around every point, there is a neighborhood that is topologically the same as the
open unit ball in R

n (taken from [13]). In R
3 a manifold surface-mesh is locally

homeomorphic to an open unit circle. The basic problem of parametrization is find-
ing a map from 2D Euclidean space to the surface-mesh or to sub-parts of the mesh
with minimum distortion of lengths and/or angles between points on the mesh.

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 127
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

128 L. Shapira and A. Shamir

Numerous solution have been proposed focusing on different aspects of the field,
achieving results which suit different objectives, and using different methods. In sev-
eral important papers Floater presented barycentric coordinates as a way to allow ver-
tices in triangulations to be expressed as convex combinations of their neighbors [3].
This was later enhanced by the mean value coordinates in [4]. Such constraints can
be solved as a sparse linear system of equations. Levy and Mallet presented a method
to solve the same convex combination problem as a minimization problem [8]. Sev-
eral papers such as Sheffer and Sturler [12], and Zigelman et al. [14], concentrate
on parametrization with free boundaries. Lee et al. [7] present parametrization with
virtual boundaries. In this method a surface homeomorphic to a disc which is to be
parameterized is surrounded with one to several layers of virtual vertices and edges.
These virtual vertices lie on a convex boundary, allowing more flexibility in relax-
ation of the parameterization, achieving better results. Other works have focused
on processing the mesh to make it suitable for parameterizations and improve the
parametrization results. For example, by introducing seams to an arbitrary mesh, the
mesh is modified to be homeomorphic to a disc and the parametrization distortion is
reduced [11] and [2]. For a thorough review of the field the reader is referred to a
recent survey by Floater and Hormann [5].

In fact, most previous papers concentrate on minimizing the angle, length or area
distortions on a global scale. In contrast, in this work we are interested in minimizing
the distortion with a bias towards a specific position (the Ant’s viewpoint) and locally
in its neighborhood. This gives raise to a different type of parametrization which can
be seen as a perspective geodesic map.

Figure 1 gives an overview of our method. The algorithm starts from a vertex
which is the central position of the map. Using a front marching method a surface

(An Ant on) a manifold mesh The 3D geodesic neighborhood patch

The seam tree Resulting 2D geodesic parametrization

Fig. 1. Overview of local geodesic parametrization

Local Geodesic Parametrization: An Ant’s Perspective 129

patch with a given geodesic distance is built around the vertex. If the patch is not
homeomorphic to a disk, seams are introduced in order to have only one boundary
loop. Next, the vertices of the boundary loop are placed on a 2D circle according
to their angle and then moved to their true geodesic distance from the center. Filler
vertices and triangles are added to create a new convex boundary. Lastly, mean-value
coordinates are used to calculate the parametrization inside the patch.

The algorithm is described in details in Sect. 2. Next, in Sect. 3 we discuss several
implementation issues. We give an example for the use of such maps for geodesic
mean shift in Sect. 4, and conclude in Sect. 5.

2 The Algorithm

2.1 Building the Neighborhood Patch

The first step in the algorithm is to define the geodesic neighborhood of the vertex.
This is done using a front marching algorithm similar to the one used in [6]. The
algorithm starts from the vertex and expands along a breadth first front. At all times
the algorithm keeps a set of vertices for which geodesic distance has been found
(fixed), a set of vertices which are on the advancing front (close) and a set of vertices
whose distance is yet unknown (far). The front advances until it reaches the geodesic
distance defined as maximum radius (Fig. 2a–g). At this stage, all fixed vertices are
added to the local geodesic neighborhood. Note that if the front meets itself, it merges
to produce a new unified front. This will mean that there is a need to cut seams in the
patch in later stages (Fig. 2d–f).

The output of this step is a collection of vertices and edges which comprise a
vertex’s local geodesic neighborhood within a given radius. Even though the mesh is
manifold, the computed geodesic neighborhood will not, in general, be homeomor-
phic to a disk. This is the case when the neighborhood radius is large or the mesh
is complex (e.g., fingers of a hand). To create a patch which is homeomorphic to a

(g)

(a) (b)

(e) (d)

(c)

(f)

Fig. 2. Building the geodesic neighborhood using the front marching method

130 L. Shapira and A. Shamir

(a) (b) (c)

Fig. 3. Examples of seam-trees cuts: (a) for the geodesic neighborhood of Fig. 2, and (b) and
for larger geodesic neighborhood defined in (c). The color represents the geodesic distance
from the center (from blue to red)

disk, we wish to ensure that it includes only one boundary loop. This boundary loop
will become the boundary of the patch’s local geodesic map, and define the patch’s
shape.

Based on [11] we attempt to connect the different boundary loops using two
steps. First, we build a set of essential vertices which must be in the seams. This
set includes all the vertices sitting on the different boundary loops, but also specific
vertices which were marked during the front marching algorithm. These are called
maxima vertices and are vertices where the front merged with itself (see Fig. 2d).
Next, we assign weights to all edges in the patch. Boundary edges are assigned a
small weight of ε > 0 and other edges are given weight relative to the distance from
the center vertex. We use all-pairs-shortest path to find the shortest paths between
the subset of vertices. In the second step, a minimum cost spanning tree of these
paths is created. This tree connects all the vertices we marked as essential in the
previous step creating the seams needed to cut the patch (Fig. 3). It will include all
the boundary loops, and by including maxima vertices, this process guarantees that
the seams occur at “natural” boundaries of the patch, i.e., along maxima ridges of
the geodesic distance from the center.

To create a disk-like shape, the patch is cut along the branches of the seam tree.
Vertices from which several branches in the seam tree grow are duplicated and main-
tain a reference to their original vertex. The resulting patch has only one boundary
loop, hence it is homeomorphic to a disc and can be parameterized.

2.2 Parametrization

Once the patch has a single boundary, we can order the vertices on this boundary
to form a single loop. We place the vertices in order on a 2D circle, whose initial
radius is the geodesic neighborhood radius. We calculate the loop length and assign

Local Geodesic Parametrization: An Ant’s Perspective 131

an importance measure to each vertex based on the ratio of the lengths of its adjacent
boundary edges to the total length. The angle between the vertices is chosen relative
to the importance of each vertex.

After this stage we have several options for defining the boundary of the patch
to be parameterized. We can keep the boundary vertices on the initial circle (which
is convex) and fill the rest of the patch using a barycentric method. This method is
quick and simple but fairly inaccurate in terms of preserving the geodesic distance
(Fig. 4a).

If we want to preserve the shape of the patch as defined by its boundary, we
pull towards the center all the vertices whose distance to the center is smaller than
the neighborhood-radius, and position them in their true distance. This forms a non-
convex shape, which is harder to parameterize. This can be solved in two possible
ways. The first alternative is to calculate the convex hull of the shape, and pull the

(a) (b) (c)

Fig. 4. Different parametrization alternatives for the 3D patch of the Dino arm (top): (a) Plac-
ing the patch boundary loop on a circle. (b) Pulling the boundary vertices to their true geodesic
distance and back to the convex hull. (c) Pulling the boundary vertices to their true geodesic
distance and adding filler vertices and triangles. The top row shows a color mapping of the
true geodesic distance from the center and the bottom row shows the difference between the
true geodesic distance and the Euclidean distance inside the patch, where darker means larger
error

132 L. Shapira and A. Shamir

vertices which do not lie on the convex hull back to the hull. This achieves better
results than if we parameterize the circle, by conforming more naturally to the patch
shape (Fig. 4b). This solution is useful if we require a convex map (e.g., for mean
shift, see Sect. 4). However, using this method still introduces some errors in the
preservation of geodesic distances.

The most accurate method in term of geodesic distance preservation involves
computing the convex hull as above, but instead of pulling the vertices back to the
hull, add “filler” triangles and vertices to complete the shape to a convex shape much
like in [7]. This will create a convex patch where the original boundary vertices
are positioned in the true geodesic distance. Hence, by keeping the natural shape of
the patch and adding “filler” vertices we add more flexibility to the patch, and the
resulting parametrization preserves geodesic distances much better than the other
two solutions (Fig. 4c).

Now that we have a convex boundary of the patch we calculate the parameteriza-
tions of the triangles inside the patch by using simple mean value coordinates [4]. In
this method each vertex is expressed as a convex combination of its neighbors. This
improves over Floater’s earlier work [3] utilizing the mean value theorem for Har-
monic functions. In practice, the method takes into account both the angles around
the vertices and the edge lengths. This method produced good results, although other
parameterizations techniques may be applied at this stage. Post processing tech-
niques might also be used to relax the parameterizations and spread the geodesic
distance error more evenly across the patch.

Figure 4 shows the different alternatives for parameterizing the patch. We
measure the error using the difference between geodesic distance from the center
vertex (as calculated by the front marching algorithm) and the Euclidean dis-
tance from the center vertex (distance calculated between the vertices on the 2D
parametrization).

3 Implementation

3.1 Timing

The computation time for parametrization is dependent on the size of the patch (ra-
dius of geodesic neighborhood), the complexity of the mesh (number of seams, etc.)
and more. However, as can be seen in the following table, in most cases the whole
process takes a few second to compute. Most of the computation time is taken up by
the iterative solution which finds the coordinates of vertices inside the patch. This
code was not optimized and furthermore, this part is similar in any parametrization
method. This means that the added computation for creating the correct geodesic
boundary is very small.

Local Geodesic Parametrization: An Ant’s Perspective 133

Mesh # Vertices Type of Number Computation
in patch parametrization of seams time (s)

Dino-pet 500 Circle 4 3.2
Dino-pet 500 Filled 4 4.4
Dino-pet 650 Circle 4 4.1
Dino-pet 650 Filled 4 5.4
Dino-pet 800 Circle 4 7.0
Dino-pet 800 Filled 4 9.6
Horse 100 Circle 0 1.4
Horse 100 Filled 0 2.0
Horse 1,000 Circle 0 6.7
Horse 1,000 Filled 0 7.5
Eight 800 Circle 1 4.6
Eight 800 Filled 1 5.7
Eight 1,300 Circle 1 9.0
Eight 1,300 Filled 1 9.9

3.2 Artificial Seams

In some cases there is a need to add seams even if the patch is homeomorphic to
a disk. Such an example can be seen in Fig. 5. The center vertex is chosen close to
the hoof, where the triangles are very large. In contrast, the triangles along the leg
are smaller, and the leg itself is long and thin. When the patch is mapped to a circle,
the boundary triangles are stretched and the triangles near the center are condensed.
This creates a large error in terms of geodesic distance (Fig. 5d). The solution is to
find a special vertex while building the geodesic neighborhood, and add a seam to
the patch (Fig. 5e).

3.3 Map Storage

Performing geodesic parametrization process on all (or a selected number of) vertices
in a two-manifold mesh, creates a collection of local geodesic maps which can be
used for a variety of purposes. Nevertheless, since the amount of overlap in these
maps can be quite large, there is a need to analyze the storage of these maps carefully,
balancing efficiency and speed with storage size and memory requirements.

The first option is to store each local map as a regular mesh, with connectivity
and geometry information, and a mapping from the map vertices to the original mesh
vertices. This method is efficient, but costly in terms of memory requirement. These
requirements depend on the size of the original mesh and the size of the geodesic
radius for the maps. If the size of the original mesh isO(n) the required memory for
all local maps is roughlyO(n2).

134 L. Shapira and A. Shamir

(a) (b) (c)

(d) (e)

Fig. 5. Adding a seam for better parametrization: compare the mapping of geodesic distance
without a seam (d), and with a seam (e)

Other options alow us to reconstruct the patch using different information. For
example, we can save for each local map:

1. The indexes of the vertices in the original mesh which appear in the patch
2. The distance from the center vertex to each vertex in the patch (from the front

marching algorithm)
3. The set of half edges which represent the seam tree
4. The location of each vertex in the patch (original vertices which were split have

more than one location)

This storage method saves the space of the connectivity information for the patch,
but forces some reconstruction every time we need a map. During reconstruction we
must create a mesh object for the patch, use the connectivity information from the
original mesh, cut the patch along the seam tree, and then and assign the correct
coordinates to each vertex.

In fact, most of the storage space is composed of the geometry information of
the patch, i.e., the vertices coordinates. Hence, the last storage method is similar to
the previous one without geometry (4). This creates very small memory footprint

Local Geodesic Parametrization: An Ant’s Perspective 135

as it consists only of indices and half edge lists, with no geometry or connectivity.
Nevertheless, it forces us to parameterize the actual patch anew every time we need
a map resulting in a relatively high processing times to rebuild the patch.

4 Sample Application

There are several possible applications for local geodesic maps such as re-meshing,
local texture mapping and more. In this section we concentrate on a specific applica-
tion where preserving the local geodesic distances from the center is a key constraint.

The mean-shift algorithm is a clustering or filtering algorithm which is widely
used on images and video. One step in the mean shift procedure moves a point in
feature-space to its neighborhood average point. This shifting is continued until con-
vergence (i.e., until the point is located at the average of its neighborhood). The point
of convergence is called the mode point, as it is a local maximum in a Parzen win-
dow density estimation function. The main operation in this clustering process is
therefore a weighted averaging of the neighborhood of a point in a high-dimensional
space of “features.” The weights for averaging are relative to the distance from the
center point. More details can be found in [1].

Recent results [9,10] have adapted the mean-shift method to work on volumetric
as well as manifold meshes (Fig. 6). Since the averaging is dependent on the distance
from the center point, measured on the mesh, there is a need to use geodesic distances
between points on the mesh for averaging. Nevertheless, unlike images or volumes,
where the averaging neighborhood is convex, on manifold meshes weighting points
on the mesh can easily result in a point laying outside the mesh. Contrarily to the
Laplacian operator, there is a need to constrain the movement of the mean-shift on
manifold meshes to remain on the mesh. Furthermore, due to the fact that usually the
mesh sampling is not uniform, there is a need to weigh the contribution of each point
in the neighborhood by the area it represents.

Fig. 6. An example of using the mean-shift algorithm for clustering areas on a manifold mesh.
The color signifies the feature value which is the normal direction. This creates a 6D feature
space (along with the XYZ coordinates). The lines connect each vertex with its mode in the
mean shift process

136 L. Shapira and A. Shamir

Fig. 7. The mean-shift algorithm on a manifold mesh. Each step the geodesic neighborhood is
changed (top) and a new patch is parametrized (bottom)

Using the local geodesic maps for averaging the geodesic neighborhood of a
point solves both these problems for mean-shift on manifolds. Using the convex
map, the weighted average of the neighborhood will always fall inside the map, and
consequently can be mapped back to the manifold mesh. Furthermore, the map itself
preserves distances from the center point as required by the algorithm (see Fig. 7).

5 Conclusion and Future Work

We have presented a new type of parametrization of manifold meshes which we
call local-geodesic. This type of parametrization is targeted at preserving geodesic
distances from one central point to other points in its geodesic neighborhood. This
results in a type of local perspective map similar to the point of view of an Ant living
on the manifold.

Local Geodesic Parametrization: An Ant’s Perspective 137

As an example for successful usage of this type of parametrization we presented
the mean-shift process of points on a manifold mesh. In future we would like to
pursue other applications and uses for local geodesic parametrization. We are also
working on methods to constrain the center point to stay exactly in the middle of
the patch and to distribute the error between geodesic and Euclidean distance more
evenly over the patch.

References

1. D. Comaniciu and P. Meer. Mean shift: A robust approach towards feature space analy-
sis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:603–619, May
2002.

2. J. Erickson and S. Har-Peled. Optimally cutting a surface into a disk. In Proceedings of
the 18th Annual ACM Symposium on Computational Geometry, pages 244–253, 2002.

3. M. Floater. Parametrization and smooth approximation of surface triangulations. Com-
puter Aided Geometric Design, 14:231–250, 1995.

4. M. Floater. Mean value coordinates. Computer Aided Geometric Design, 20:19–27, 2003.
5. M. Floater and K. Hormann. Surface parameterization: a tutorial and survey. In

N.A. Dodgson, M.S. Floater, and M.A. Sabin (eds.) Advances on Multiresolution in Geo-
metric Modelling. Springer, Heidelberg, 2005, 157–186.

6. R. Kimmel and J.A. Sethian. Computing geodesic paths on manifolds. volume 95, pages
8431–8435, July 1998.

7. Y. Lee, H.S. Kim, and S. Lee. Mesh parameterization with a virtual boundary. In Comput-
ers and Graphics (Special Issue of the 3rd Israel-Korea Binational Conf. on Geometric
Modeling and Computer Graphics), volume 26, pages 677–686, 2002.

8. B. Levy and J.-L. Mallet. Non-distorted texture mapping for sheared triangulated meshes.
In Proceedings of the 25th annual conference on Computer graphics and interactive tech-
niques, pages 343–352, 1998.

9. A. Shamir. Feature-space analysis of unstructured meshes. In Proceedings IEEE Visual-
ization 2003, pages 185–192, Seattle, Washington, 2003.

10. A. Shamir, L. Shapira, and D. Cohen-Or. Mesh analysis using geodesic mean shift. The
visual Computer, 22:1–10, 2006.

11. A. Sheffer. Spanning tree seams for reducing parameterization distortion of triangulated
surfaces. In Proceedings of the International Conference on Shape Modeling and Appli-
cations 2002 (SMI’02), pages 61–66, 2002.

12. A. Sheffer and E. de Sturler. Surface parameterization for meshing by triangulation flat-
tening. In Proceedings of the 9th International Meshing Roundtable, pages 161–172,
2000.

13. E. W. Weisstein. Manifold. From MathWorld–A Wolfram Web Resource. http://
mathworld.wolfram.com/Manifold.html, 2004.

14. G. Zigelman, R. Kimmel, and N. Kiryati. Texture mapping using surface flattening via
multi-dimensional scaling. IEEE Transactions on Visualization and Computer Graphics,
8(2):198–207, April 2002.

Tensor-Fields Visualization Using a Fabric-like
Texture Applied to Arbitrary Two-dimensional
Surfaces

Ingrid Hotz, Louis Feng, Bernd Hamann, and Kenneth Joy

Institute for Data Analysis and Visualization (IDAV), Department of Computer Science,
University of California, Davis, CA 95616, USA
{ihotz, zfeng, bhamann, kijoy}@ucdavis.edu

Summary. We present a visualization method for the exploration of three-dimensional tensor
fields. The representation of the tensor field on a one-parameter family of two-dimensional
surfaces as stretched, compressed and bent piece of fabric reflects the physical properties of
stress and strain tensor fields. The texture parameters as the fiber density and fiber direction are
controlled by tensor field. The surface family is defined as a set of isosurfaces extracted from
an additional scalar field. This field can be a “connected” scalar field, for example, pressure
or a scalar field representing some symmetry or inherent structure of the dataset. The texture
generation consists basically of three steps. The first is the transformation of the tensor field
into a positive definite metric. In the second step, we generate a spot noise texture as input for
the final fabric generation. Shape and density of the spots are controlled by the eigenvalues
of the tensor field. This spot image incorporates the entire information defined by the three
eigenvalue fields. In the third step we use line integral convolution (LIC) to provide a contin-
uous representation that enhances the visibility of the eigendirections. This method supports
an intuitive distinction between positive and negative eigenvalues and supports the additional
visualization of a connected scalar field.

1 Introduction

Tensor data play an important role in mathematical, physical, and several technical
disciplines. Mathematical, a tensor is a linear function that relates different vectorial
quantities. Its high dimensionality makes it very complex and difficult to understand.
Since the physical interpretation and significance of its mathematical features are
highly application-specific, we focus on symmetric tensor fields of second order that
are similar to stress and strain tensor fields. Such fields appear, for example, in ge-
omechanics and solid state physics, which are our major application areas. Here ten-
sors are used, for example, to express the response of a material to forces. In contrast
to other types of tensors, like diffusion tensors, these tensor fields are characterized
by the property that they have positive and negative eigenvalues. The sign of the
eigenvalues indicates regions of expansion and compression, and it is therefore of

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 139
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

140 I. Hotz et al.

special interest. To understand field behavior it is important to express this behavior
in an intuitive way.

We extend a methointerpreting these tensor fields as distortions of a flat met-
ric [8]. A deformation of a fabric-like texture leads to a continuous representation
of the main features of the tensor field, regions of compression and tension. Due to
occlusion this method is basically restricted to two-dimensional slices of a higher-
dimensional domain. We now use a similar approach to investigate three-dimensional
datasets, visualizing a tensor field on a family of arbitrary two-dimensional surfaces.
By defining these surfaces as a one-parameter family of isosurfaces it is possible to
represent an additional related scalar field, e.g., pressure. Another way to define the
surfaces could be based on the geometry of the problem. The texture on the surfaces
is generated by blurring a three-dimensional input texture along the tensor lines of
the tensor field, projected onto the surfaces. The result is a fabric-like texture that is
dense in regions of compression and sparse in regions of expansion. The input tex-
ture consists of three-dimensional “spots” whose sizes and local densities reflect the
eigenvalues of the tensor field. It is precomputed using a reaction-diffusion method.

2 Related Work

Even though several visualization techniques exist for tensor fields, they only cover
a few specific applications. Many of these methods are extensions of vector field
visualization methods, which focus on a technical generalization without providing
an intuitive physical interpretation of the resulting images. They often concentrate
on the representation of eigendirections and neglect the importance of eigenvalues.
Therefore, in many application areas traditional two-dimensional plots are still being
used, which represent the interaction of two scalar variables only.

A basic way to represent a tensor field uses “icons.” They illustrate the char-
acteristics of a field at selected points. One simple example icon that represents a
symmetric tensor is the ellipsoid. The principal axes of the ellipsoid are aligned to
the eigendirections, scaled according to the corresponding eigenvalues (see, for ex-
ample, Kriz et al. [11] or Haber [3]). Ellipsoid-based methods are very common for
medical applications to visualize results of diffusion magnetic resonance imaging
(MRI). More complex glyphs were constructed by Leeuw et al. [12] showing addi-
tional features using flow probes. An improvement of these icon methods using a
reaction-diffusion simulation, introduced by Kindlmann et al. [10], generates a pat-
tern that is closely related to ellipsoids. There, the packing of the texture spots is gen-
erated automatically by the simulation. A more advanced but still discrete approach
uses hyperstreamlines. This approach is strongly related to streamline methods used
for vector field visualization. Hyperstreamlines were introduced by Delmarcelle and
Hesselink [2] and were adapted in a geomechanical context by Jeremic et al. [9].
Given a point in the field, one eigenvector field is used to generate a vector field
streamline. The other two eigendirections and eigenvalues are represented by the
cross section along the streamline. This method extracts more information than icons,
but still leaves the problem of choosing appropriate seed points to the user. Thus, both

Tensor-Field Visualization Using a Fabric-like Texture 141

methods have limited value for the exploration of complete data sets and are limited
to low-resolution visualization due to cluttering.

An adaptation of hyperstreamlines to diffusion tensors of MRI data was used by
Zhukov and Barr [25] with the goal of tracing anatomical fibers. Their method is
based on the assumption that there exist one large and two small eigenvalues inside
the fibers, and fiber direction corresponds to the dominant eigenvector. An approach
that arose in a similar context is an adaptation of direct volume rendering to dif-
fusion tensor fields presented by Kindlmann et al. [20]. After a classification of a
field with respect to anisotropy, it is divided into three categories: linear, planar and
spherical [21]. This property is then used to define barycentric coordinates of a trans-
fer function over a triangular domain that highlights regions of different anisotropic
properties. Approaches like this one are specially designed for the visualization of
diffusion tensors that only have positive eigenvalues; thus, they are not appropriate
for stress, strain or gradient tensor fields.

To generate a more global view, a widely accepted solution for vector field analy-
sis and visualization is the reduction of the field to its topological structure. Methods
based on such an approach generate topologically similar regions that lead to a nat-
ural separation of a field. The concept of topological segmentation was also applied
to two-dimensional tensor fields [4, 5, 17] and has recently been extended to three-
dimensional tensor fields [24]. The topological skeleton consists of field singularities
and connecting separatrices. For tensor fields the singularities of interest are those de-
generate points where the tensor has multiple eigenvalues. Although the eigenvector
field can be reconstructed on the basis of topological structure there is no information
about the eigenvalues, and physical interpretation is difficult.

Another class of visualization methods provides a continuous representation,
based on textures. The first researchers to use a texture to visualize a tensor field
in a medical context were Ou and Hsu [14]. A method similar to LIC adapted to
tensor fields was proposed by Zheng and Pang [23]. Here, a white-noise texture is
blurred according to the tensor field. In contrast to LIC images, the convolution filter
is a two-dimensional area determined by the local tensor field. This visualization is
especially powerful for showing the anisotropy of a tensor field with only positive
eigenvalues.

A geometrical approach was followed by Hotz et al. [6]. This approach uses a
metric interpretation of a tensor field to emphasize the physical meaning of tensors
behaving similarly to stress, strain, or gradient tensors. For two-dimensional fields
an isometric embedding is used to visualize the resulting metric locally [7]. Using
a deformation of a fabric-like texture makes possible a global representation of the
metric [8].

3 Mathematical Background and Notation

A tensor is a geometrical entity that generalizes the concept of scalars, vectors, and
linear operators in a way that is independent of any chosen coordinate system. It
is the mathematical idealization of a geometric or physical quantity that expresses

142 I. Hotz et al.

a linearized relation between multidimensional variables. For example, the stress,
strain, or elasticity tensors express the response of a material to an applied force.

The tensors we are interested in are tensors of second order defined over three-
dimensional Cartesian space. Using a fixed coordinate basis, each tensor can be rep-
resented by a 3 × 3 matrix, given by nine independent scalars: T = (tij). A tensor
T is called symmetric if tij = tj i for i, j = 1, . . ., n. It is called antisymmetric if
tij = −tj i for i, j = 1, . . ., n. Every tensor can be decomposed into a symmet-
ric part S and an antisymmetric part A: T = S + A, where sij = 1

2 (tij + tj i) and
aij = 1

2 (tij − tj i). In many applications, the tensor fields are already symmetric by
definition. We restrict ourselves to symmetrical tensor fields in this paper.

A symmetric tensor S is uniquely characterized by its eigenvalues λ1, λ2, and
λ3 and its corresponding eigenvectors w1, w2, and w3, implied by the characteristic
equation Swi = λiwi . For symmetric tensors the eigenvalues are always real, and
the eigenvectors are mutually orthogonal.

4 Method Overview

To support an intuitive exploration on the entire three-dimensional tensor dataset we
define a family of surfaces that move through the volume, controlled by one pa-
rameter. The tensor field restricted to these surfaces is represented by a deformed
fabric-like texture illustrating the forces on the surface. The texture is stretched or
compressed and bent according to the tensor field. Positive eigenvalues, which in-
dicate tension, are illustrated by a texture with low density or a stretched piece of
fabric. Correspondingly, negative eigenvalues are represented by a dense texture.
Our method consists of three steps, which are described in more detail in the next
sections. The three steps are:

1. Interpretation of the tensor field as distortion of a flat metric:
This step corresponds to a transformation of the tensor field into a metric. The
resulting metric reflects the physical meaning of the tensor field.

2. Definition of a family of surfaces:
To define the surfaces we support two different approaches. The first integrates
an additional related scalar field (e.g., pressure or the determinant of the tenors
field). The second approach uses some underlying geometry of the numerical
simulation to define an artificial family of surfaces.

3. Texture generation:
Using a fabric-like texture we have enough flexibility to integrate all character-
istics of the tensor field. The direction of the fibers reflect the eigenvector fields,
their density, thickness, and length represents the eigenvalues. We compute the
texture using LIC. The specific definition of the input noise image determines
the density of the fabric. The texture is computed in two steps:
(a) Generation of the three-dimensional spot input image, e.g., using a reaction-

diffusion approach.

Tensor-Field Visualization Using a Fabric-like Texture 143

(b) Blurring the input texture according to the two eigenvector fields of the ten-
sor field projected onto the surfaces to generate two fiber textures.

(c) Overlay of the two fiber textures on the surfaces (as defined in step 2).

5 Metric Definition

For the fabric texture generation we need a tensor field with positive eigenvalues. An
interpretation of the original tensor field as a distortion of a flat metric supports an
intuitive mapping onto the space of positive definite tensor fields without loosing the
information carried by the sign of the eigenvalues. We summarize the basic steps for
this mapping, for more details we refer to [8].

Considering a stress or strain tensor field or the symmetrical part of the gradient
tensor field of a vector field, positive eigenvalues lead to a separation of particles or
expansion of a probe. Eigenvalues equal to zero imply no change in distance, and
negative eigenvalues indicate convergence of particles or compression of the probe.
For a tensor field T defined on a domain D this behavior can be expressed by a
time-dependent metric g of the underlying parameter space D with components gik :

ds2(t) =
∑

ik

(aδik + sik · t︸ ︷︷ ︸
= gik

) dxi dxk, (1)

where δik is the Kronecker-delta symbol. The constant a plays the role of a unit
length, and t is a time variable that can be used as a scaling factor. In our implemen-
tation, we use a more general mapping that supports more flexibility in the visualiza-
tion, but still represents the same properties. We use a transformation based on three
steps:

1. Diagonalization of the tensor field:

T �→ T′ = U · T · UT = diag (λ1, λ2, λ3) , (2)

where U is the diagonalization matrix.
2. Transformation and scaling of the eigenvalues, to define the metric g′ according

to the eigenvector basis:

T′ �→ g′ = diag (F (λ1), F (λ2), F (λ3)) , (3)

where F : [−λmax, λmax] → IR+ is a positive monotone function, with λmax =
max{|λi(P)|;P ∈ D, i = 1, 2, 3}.

3. Definition of the metric g in the original coordinate system by inverting the di-
agonalization step defined by (2):

g = UT · g′ · U. (4)

If the mapping F is linear, these three steps can be combined into one step, and F
can be applied to the tensor components, independently of the chosen basis. Since
the visual perception of texture attributes is nonlinear, a linear approach is not al-
ways a good choice. For the definition of the function F there are a variety of pos-
sibilities. The only restriction we apply to F is monotony to guarantee a one to one

144 I. Hotz et al.

−4 −2 0 2 4
 0

 0.5

 1

 1.5

 2

 2.5

1−1/M

M

Fig. 1. Example of a nonsymmetric transformation function F for two different slopes at the
origin

mapping. A class of functions that have proved to produce good results is given by
F : [−λmax, λmax] → [a

M
, aM], where

F(−λ) = a2/F (λ). (5)

The constant a defines the unit, aM the maximum, and a
M

the minimum value for
F withM > 1 and a > 0. Functions with this property can be constructed using an
anti-symmetric function f as exponent:

F(λ) = a · exp(σ · f (λ)), where f (−λ) = −f (λ). (6)

An example for such a function with a = 1 F(λ; c, σ) = exp(σ arctan(c · λ)) is
shown in Fig. 1. The constant c determines the slope of the function at the origin.

6 Surface Definition and Tensor Projection

To explore the entire three-dimensional volume D we define a family of surfaces
{Sq, q ∈ I } with Sq ⊂ D, for all q ∈ I where I is an interval representing the
parameter space with ⋃

q∈I
Sq = D. (7)

These surfaces can be given explicitly based, for example, on a geometric property
or symmetry inherent to the data. A simple possibility is to move planes, cylinders
or parts of spheres through the volume. Another option it to define the surfaces im-
plicitly using isosurfaces of an additional scalar field S:

S(x, y, z) = q, (8)

where q is an isovalue between a minimal and maximum value.
To compute the textures for the surfaces we project the tensor field onto the sur-

faces (Fig. 2). If we use isosurfaces, the unit surface normals are given by the gradient
of the scalar field S:

Tensor-Field Visualization Using a Fabric-like Texture 145

Surfa
ce

S(x,y,z)=q

a1

Tensor T

a2

N

Tangent Plane

Tensor Projection

Fig. 2. Projection of the tensor onto the surface S

N =
⎛

⎝
nx
ny
nz

⎞

⎠ = gradS

|gradS| = 1
√
S2
x + S2

y + S2
z

⎛

⎝
Sx
Sy
Sz

⎞

⎠ , (9)

where nx, ny, nz are the components of the normal, and Sx = ∂S
∂x

, Sy = ∂S
∂y

, and

Sz = ∂S
∂z

the partial derivatives of the scalar function S. The projection T′ of the
tensor T onto the surface defined by N is given by

T′ = P · T · PT . (10)

The projection tensor P is

P = 1 − NNT =
⎛

⎝
(1 − n2

x) −nxny −nxnz
−nxny (1 − n2

y) −nynz
−nxnz −nynz (1 − n2

z)

⎞

⎠ , (11)

where 1 is the unit tensor. It is symmetric (PT =P). The projected tensor T′ has
one eigenvector in direction of the surface normal N with eigenvalue zero and two
orthogonal eigenvectors, lying in the tangent plane. The eigenvectors of the projected
tensor T′ are in general not eigenvectors of the original tensor T.

7 Texture Generation

To visualize the properties of the resulting metric we use a texture that resembles
a piece of fabric. The texture is stretched or compressed and bent according to the
metric. To generate the texture we use LIC, a method originally developed for vector
field visualization [1, 16]. LIC blurs a noise image along the vector field or integral
curves. Blurring results in a high correlation of the pixels along field lines, whereas
perpendicular to them almost no correlation appears. The resulting image leads to a
very effective depiction of flow direction everywhere, even in a dense vector field.
We compute a LIC image for both eigendirection fields on the surface. Finally, we
overlay these images, choosing everywhere the pixel value with the larger intensity
to obtain the fabric-like texture, see Fig. 3.

146 I. Hotz et al.

(a) (b)

Fig. 3. Overlay of two LIC images to illustrate two direction fields, without integrating the
eigenvalues; constant input image and constant convolution length. (a) White noise image;
(b) sparse noise image

(a) (b) (c)

Fig. 4. Different input images. (a) Spot noise image with changing density; (b) spot noise
image with changing spot size; (c) spot noise image generated with isotropic reaction

7.1 Input Texture Definition

Besides the direction field we need for each LIC image a specific noise input. The
parameters of this input image determine the properties of the texture. The standard
white noise input is the input that supports the highest resolution, but it is not flexible
enough to represent a stretched or compressed structure. For this reason, we use
sparse input images with lower density and larger spot size even if we obtain a lower
resolution. A regular, homogeneous input spot image results in a piece of fabric with
constant density and fiber width. An impression of a stretching or compressing can
be achieved by changing density, width, and length of the fibers. Figures 4 and 5
show examples of different input images and their impact on fiber structure.

7.2 Fiber Density and Fiber Width: Forces Orthogonal to the Fibers

Stretching and compressing forces orthogonal to the fiber direction are directly re-
lated to the eigenvalues of the orthogonal eigenvector field. The change of the fiber
density and fiber width can be controlled by the density and spot-size of the input

Tensor-Field Visualization Using a Fabric-like Texture 147

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Effect of changing image parameters; one eigenvector field of a simple synthetic ten-
sor field. In (a)–(c), only the input image is changed corresponding to the eigenvalues of the
orthogonal eigenvector field; (a) change of density; (b) change of spot size; (c) change of den-
sity and spot size. Image (d) illustrates the effect of changing the convolution length, where
the parameters of the input noise image are constant. Image (e) shows a combination of the
three parameters (density, spot size, and convolution length). Images (f)–(h) show a combina-
tion of both eigenvector fields. In images (g) and (h), only density and spot size are changed;
(i) shows a combination of the three parameters

spot texture. For each direction field wi , i = 1, 2, on the surface, we define a specific
density di and spot size ri , i = 1, 2:

di(x, y, z) = d0 · 1
F(λj)

ri(x, y, z) = r0 · F(λj)
, with j =

{
2 if i = 1
1 if i = 2

, (12)

where the function F is defined by (3), λ1 and λ2 are the two eigenvalues of the
projected tensor field, d0 and r0 define the “unit density,” and the “unit-radius” of
the circular spots, respectively. The density and spot size are spatially varying and
depend on the definition of the surfaces. Since the change of the texture parameters
in direction of the integration is hardly noticeable we can combine the two textures
by using ellipses instead of circles and a direction-dependent density. The resulting
texture still depends on the definition of the surface. This means that every time we
define a new set of surfaces we have to recompute all input textures.

An alternative construction of the spot textures on the surfaces is the generation
of a three-dimensional input image, where the spots are replaced by ellipsoids whose
principal axes and radii ri = r0F(λi) are defined by the metric g given by (4).
The texture on the surface then results from an intersection of the surface with the

148 I. Hotz et al.

three-dimensional texture. The direction-dependent radius can be expressed by the
tensor r, i.e.,

r = r0 · g = r0 · UT ·
⎛

⎝
F(λ1) 0 0

0 F(λ2) 0
0 0 F(λ3)

⎞

⎠ · U. (13)

The direction-dependent density is defined by the tensor d with the same principal
directions but inverse eigenvalues, i.e.,

d = d0 · UT ·
⎛

⎝
1/F (λ1) 0 0

0 1/F (λ2) 0
0 0 1/F (λ3)

⎞

⎠ · U. (14)

The parameters r0 and d0 define a unit radius and unit density. Using this approach
the input texture only has to be computed once, independently of the surface defini-
tion, and this operation can be done in a preprocessing step.

7.3 Fiber Length: Forces Along the Fibers

Stretching and compressing forces parallel to the fibers changes length. This effect
can most easily be controlled by the filter length used for the convolution, and it is
merely influenced by the parameters of the input spot texture. We define for each
direction field a spatially varying convolution length

li = l0 · F(λi), (15)

where l0 is a constant defining the unit length.

7.4 Color and Color Intensity

In addition to these three “structural” parameters, color intensity can be used to en-
hance the impression of compression and stretching. We use red for compression
and green for tension. We apply a continuous color map ranging from red for the
smallest negative eigenvalues, white for zero eigenvalues, and to green for positive
eigenvalues.

7.5 Input Texture Computation

To synthesize the input texture an algorithm is needed that places ellipsoids with
varying radii and direction-dependent density in the three-dimensional domain. “Re-
action diffusion” is a method that generates a texture with the desired properties au-
tomatically. Using a reaction-diffusion approach, a large variety of patterns arising
from local nonlinear interactions of two chemicals can be generated. This mecha-
nism was first discussed by Alan Turing [18] to describe the biological process of

Tensor-Field Visualization Using a Fabric-like Texture 149

morphogenesis in biological cells. The basic assumption is that two concurrently
operating processes define the biological patterns. The two processes are diffusion,
which transports chemicals form points of higher concentration to points of lower
concentration, and reaction, which produces or destroys a chemical. Reaction diffu-
sion has been used in many different computer graphics applications, including, for
example, the generation of natural texture patterns [13, 19, 22] and for vector field
visualization [15]. An application very similar to ours was described by Kindlmann
et al. [10], who used reaction diffusion to visualize diffusion tensor fields. We pro-
vide an overview of the method in the following. For more detail we refer to the
referenced papers [10, 13, 15, 19, 22].

Reaction Diffusion

Reaction diffusion of two chemicals can be described by a set of two nonlinear partial
differential equations describing the concentrations of the chemicals c1 and c2 as
a function of time. The change of the concentration is determined by two terms
representing the diffusion, and the reaction of the chemicals:

∂cl

∂t
= dl∇2cl︸ ︷︷ ︸

diffusion

+ Rl(c1, c2)︸ ︷︷ ︸

reaction
+ dissipation

, l = 1, 2. (16)

The constants dl are the diffusion rates for the chemicals, and ∇2cl is the Lapla-
cian of the concentrations. The functions Rl , l = 1, 2, control the reaction of the
two chemicals determining the resulting “Turing patterns.” We choose a set of func-
tions proposed by Turing and used by Kindlmann et al. [10] for the visualization of
diffusion tensor fields:

R1 = k(16 − c1c2) (17)

R2 = k(c1c2 − c2 − 12 + β) (18)

Here, k is the reaction rate relative to the diffusion. The value β is the decay rate
of c2; it is a random value in a small interval around zero. This value is the source
of slight irregularities in the concentrations which lead to the pattern formation. As
initial condition for the concentrations we chose c1 = c2 = 4 everywhere. Further,
we apply periodic boundary conditions.

Equation (16) describes a uniform diffusion rate in all directions at all positions.
It generates a texture with spherical bubbles of constant size and density. A gen-
eralization, resulting in an ellipsoid pattern, uses anisotropic spatial varying diffu-
sion. This is achieved by replacing the scalar diffusion rate d by a diffusion tensor
matrixD.

∂c

∂t
= ∇(D∇c)+ R. (19)

The radii of the ellipsoids are proportional to the square root of the eigenvalues of
D, oriented parallel to the principal directions of D. To generate ellipsoids with the

150 I. Hotz et al.

aspect ratio radii as defined in (13) we use the diffusion tensor

D = r2
0 · UT ·

⎛

⎝
F 2(λ1) 0 0

0 F 2(λ2) 0
0 0 F 2(λ3)

⎞

⎠ · U. (20)

The size of the spots can be adjusted by changing the parameter k in (17). If we
assume that the spatial change of the Diffusion tensor occurs on a much lower scale
than the change of the chemical concentration, we can treatD as a constant in (19).

Discretization

In our implementation, we represent the concentration c as a three-dimensional array
C of discrete samples Ci,j,k . The Laplacian is approximated using finite differences

∂2c

∂x2
" Ci+1,j,k + Ci−1,j,k − 2Ci,j,k

h2
(21)

and defined similarly for the other dimensions.
In three dimensions, the Laplacian can be expressed as a convolution of the

concentration array with a 3 × 3 × 3 mask. Together with the anisotropic diffu-
sion tensor D the convolution mask M has the following form for an uniform and
equidistant grid:

z = k + 1 :
⎛

⎝
0 Dyz/2 0

−Dxz/2 Dzz Dxz/2
0 −Dyz/2 0

⎞

⎠ ,

z = k :
⎛

⎝
−Dxy/2 Dyy Dxy/2
Dxx −2 trace(D) Dxx
Dxy/2 Dyy/2 −Dxy/2

⎞

⎠ , and

z = k − 1 :
⎛

⎝
0 −Dyz/2 0

Dxz/2 Dzz −Dxz/2
0 Dyz/2 0

⎞

⎠ .

(22)

Convolution with the maskM is computation of the weighted sum of the concentra-
tion values of the neighboring voxels, see Fig. 6:

(M ∗ C)i,j,k =
∑

x=i−1,i,i+1
y=j−1,j,j+1
z=k−1,k,k+1

Mxyz Cx,y,z. (23)

For the simulation of the reaction-diffusion process we use forward Euler integra-
tion of the finite-difference equations. The discretized reaction diffusion equation is
given as

Ct+�t = Ct +�t (M ∗ C + R(C)). (24)

Here, the index t specifies the concentration at some time t , and �t is the time-step
used in the integration.

Tensor-Field Visualization Using a Fabric-like Texture 151

Fig. 6. The 27 voxels involved in the convolution operation with mask M

7.6 Convolution

The next step concerns the creation of two fiber textures using line convolution. The
noise input is the ellipsoid image generated with reaction diffusion. The direction
field for the integration is defined by the eigenvectors of the tensor field projected
onto the set of surfaces. For integration we use a Runge–Kutta method of fourth
order. The LIC image is computed using “Fast-LIC” as proposed by Hege et al. [16].
The convolution length depends on the eigenvalues of the tensor field. It is defined
by (15).

7.7 Visualization

We show the texture on one surface that is moved through the volume, defined by an
isovalue or other parameter. We use two approaches to represent the surfaces:

• Volume rendering based on a transfer function illustrating the volume only in an
ε-neighborhood of the chosen isovalue

• Explicit extraction and visualization of the surfaces

8 Results and Conclusions

We have used two data sets of stress fields being the results of applying different load
combinations to a solid block. These datasets are well-understood and therefore ap-
propriate to evaluate our method. The tensor field resulting from the numerical sim-
ulation is continuous inside each cell, but not on cell boundaries. In Figs. 7 and 8, we
show two-dimensional planar slices through a one-point and two-point load dataset.
These images were generated using a specific input noise texture for each eigenvec-
tor field. The input textures consist of circular spots of varying size, density and for
Fig. 8 also color. Figure 9 shows results for the same dataset when using only one
input texture generated with reaction diffusion. These images provide also a good
representation of the tensor field, but the features are not as clearly visible when com-
pared with the corresponding results based on the spot noise input. Figure 10 shows

152 I. Hotz et al.

(a) (b) (c)

Fig. 7. yz-plane slice of single top-load data set, where a force is applied in z-direction. Images
(a) and (b) illustrate the two eigenvector fields separately; in (c) they are overlaid. Spot size
and density are changed according to eigenvalues

(a) (b)

Fig. 8. xz-plane slice of a two-force dataset. (a) represents one of the two spot noise input
textures for the final image. (b) The lower left circle corresponds to the pushing and the right
to the pulling force

(a) (b)

Fig. 9. xz-plane slice of (a) a one-force and (b) a two-force dataset using three-dimensional
spot noise input generated with diffusion reaction

Tensor-Field Visualization Using a Fabric-like Texture 153

(a) (b)

Fig. 10. Representation of several curved surfaces to explore the three-dimensional domain
for the two-point load dataset

examples of textures on curved surfaces for the two-point load dataset. All images
support a good visual segmentation of regions of compression and expansion.

The interpretation of a tensor field as a distortion of a flat metric can be used
to produce visualizations based on the physical effect of the tensor field. Using a
three-dimensional input texture simplifies texture generation for arbitrary surfaces
substantially. Having a precomputed input texture, the three-dimensional domain can
be examined easily using different sets of surfaces. Reaction diffusion is capable of
generating input textures with the desired properties with automatic placement and
packing of spots. There are also disadvantages when using reaction diffusion. The
generated features are not as “crisp” as they are when compared to spot noise input.
The determination of appropriate parameters in the reaction-diffusion equation is not
intuitive, and its numerical computation is very time-consuming. A more efficient
algorithm for reaction-diffusion simulation was proposed by Witkin and Kass [22].
We plan to investigate other ways to generate three-dimensional input textures, ways
that are less expensive and produce crisp features.

Acknowledgments

This work was supported by the National Science Foundation under contracts ACI
9624034 (CAREER Award) and ACI 0222909, through the Large Scientific and Soft-
ware Data Set Visualization (LSSDSV) program under contract ACI 9982251, and a
large Information Technology Research (ITR) grant. We gratefully acknowledge the
support of the W.M. Keck Foundation provided to the UC Davis Center for Active
Visualization in the Earth Sciences (CAVES) We thank the members of the Visual-
ization and Computer Graphics Research Group at the Institute for Data Analysis
and Visualization (IDAV) at the University of California, Davis.

154 I. Hotz et al.

References

1. Brian Cabral and Leith Leedom. Imaging vector fields using line integral convolution. In:
SIGGRAPH 1993 Conference Proceedings, 1993, pages 263–272.

2. Thierry Delmarcelle and Lambertus Hesselink. Visualization of second order tensor fields
and matrix data. In: Proceedings of the Visualization 1992 Conference, 1992, pages
316–323.

3. Robert B. Haber. Visualization techniques for engineering mechanics. Computing
Systems in Engineering, 1(1), 1990, pages 37–50.

4. Lambertus Hesselink, Thierry Delmarcelle and James L. Helman . Topology of second-
order tensor fields. Computers in Physics, 9(3), 1995, pages 304–311.

5. Lambertus Hesselink, Yuval Levy and Yingmei Lavin. The topology of symmetric,
second-order 3D tensor fields. IEEE Transactions on Visualization and Computer Graph-
ics, 3(1), 1997, pages 1–11.

6. Ingrid Hotz. Visualizing second order symmetric tensor fields by metric surfaces. In:
Work in Progress of the Conference IEEE Visualization, 2001.

7. Ingrid Hotz. Isometric embedding by surface reconstruction from distances. In: Proceed-
ings of the IEEE Visualization 2002 Conference, 2002, pages 251–258.

8. Ingrid Hotz, Louis Feng, Hans Hagen, Bernd Hamann, Boris Jeremic and Kenneth Joy.
Physically based methods for tensor field visualization. In: Proceedings of the IEEE Vi-
sualization 2004 Conference, 2004, pages 123–130.

9. B. Jeremic, Gerik Scheuermann and Jan Frey. Tensor visualization in computational ge-
omechanics. International Journal for Numerical and Analytical Methods in Geomechan-
ics, 26, 2002, pages 925–944.

10. Gordon Kindlmann, David Weinstein and David Hart. Strategies for direct volume render-
ing of diffusion tensor fields. IEEE Transactions on Visualization and Computer Graphics,
6(2), 2000, pages 124–138.

11. Ron D. Kriz, Edward H. Glaessgen and J.D. MacRae. Visualization blackboard: visualiz-
ing gradients in composite design and fabrication. IEEE Computer Graphics and Appli-
cations, 15, 1995, pages 10–13.

12. W. C. de Leeuw and J. J. van Wijk. A probe for local flow field visualization. In: Proceed-
ings of the Visualization 1993 Conference, 1993, pages 39–45.

13. James D. Murray. Mathematical biology I. An introduction, 3rd edition in 2 volumes.
Springer, Berlin, 2002, ISBN: 0-387-95223-3.

14. J. Ou and E. Hsu. Generalized line integral convolution rendering of diffusion tensor
fields. In: Proceedings of the 9th Scientific Meeting and Exhibition of the International
Society for Magnetic Resonance in Medicine (ISMRM), 2001, page 790.

15. Allen R. Sanderson and Chris R. Johnson and Robert M. Kirby. Display of vector fields
using a reaction-diffusion model. In: Proceedings of the IEEE Visualization 2004, pages
115–122, 2004.

16. Detlev Stalling and Hans-Christian Hege. Fast and resolution independent line integral
convolution. In: SIGGRAPH 1995 Conference Proceedings, 1995, pages 149–256.

17. Xavier Tricoche, Gerik Scheuermann and Hans Hagen. Tensor topology tracking: a visu-
alization method for time-dependent 2D symmetric tensor fields. In: A. Chalmers and
T.-M. Rhyne, editors, EG 2001 Proceedings vol. 20(3) of Computer Graphics Forum.
2001, pages 461–470.

18. Alan Turing. The chemical basis of morphogenesis. Philosophical Transactions of the
Royal Society London B, 237, 1952, pages 37–72.

19. Greg Turk. Generating textures on arbitrary surfaces using reaction diffusion. In: proceed-
ings SIGGRAPH 1991, volume 25, pages 289–298. Addison Wesley, 1991.

Tensor-Field Visualization Using a Fabric-like Texture 155

20. David M. Weinstein, Gordon L. Kindlmann and Eric C. Lundberg. Tensorlines: advection-
diffusion based propagation through diffusion tensor fields. In: proceedings IEEE Visual-
ization 1999 conference,1999, pages 249–254.

21. Carl-Fredrik Westin, Sharon Peled, Hakon Gudbjartsson, Ron Kikinis and Ferenc A.
Jolesz. Geometrical diffusion measures for MRI from tensor basis analysis. In: ISMRM
1997, 1997, page 1742.

22. Andrew Witkin and Michael Kass. Reaction-diffusion textures. In: Proceedings SIG-
GRAPH 1991, vol. 25, pages 299–308. Addison Wesley, 1991.

23. Xiaoqiang Zheng and Alex Pang. HyperLIC. In: Proceedings of the IEEE Visualization
2003 Conference, 2003, pages 249–256.

24. Xiaoqiang Zheng and Alex Pang. Topological lines in 3D tensor fields. In: Proceedings
of the IEEE Visualization 2004 Conference, 2004.

25. Leonid Zhukov and Alan H. Barr. Oriented tensor reconstruction: tracing neural pathways
from diffusion tensor MRI. In: Proceedings of the IEEE Visualization 2002 Conference,
2002, pages 387–394.

Flow Visualization via Partial Differential Equations

Tobias Preusser1, Martin Rumpf2, and Alex Telea3

1 Center for Complex Systems and Visualization, University of Bremen,
Universitätsallee 29, 28359 Bremen, Germany
tp@cevis.uni-bremen.de

2 Institute for Numerical Simulation, Bonn University, Nussallee 15, 53115 Bonn, Germany
martin.rumpf@ins.uni-duisburg.de

3 Department of Mathematics and Computer Science, Eindhoven University, Den Dolech 2,
Eindhoven, Netherlands
alext@win.tue.nl

Summary. The visualization of stationary and time-dependent flow is an important and chal-
lenging topic in scientific visualization. Its aim is to represent transport phenomena governed
by vector fields in an intuitively understandable way. In this paper, we review the use of meth-
ods based on partial differential equations (PDEs) to post-process flow datasets for the purpose
of visualization. This connects flow visualization with image processing and mathematical
multi-scale models. We introduce the concepts of flow operators and scale-space and explain
their use in modeling post processing methods for flow data. Based on this framework, we
present several classes of PDE-based visualization methods: anisotropic linear diffusion for
stationary flow; transport and diffusion for non-stationary flow; continuous clustering based
on phase-separation; and an algebraic clustering of a matrix-encoded flow operator. We illus-
trate the presented classes of methods with results obtained from concrete flow applications,
using datasets in 2D, flows on curved surfaces, and volumetric 3D fields.

1 Introduction

A great variety of different approaches for the visualization of vector field data has
been presented in the past. The methodology ranges from simple discrete arrow plots
applied to steady two-dimensional vector fields to advanced hardware-accelerated
volumetric techniques for visualizing multivariate data for three-dimensional, un-
steady flow problems and multi-scale feature detection and tracking techniques for
complex time-dependent CFD problems.

The recent increase of the number of flow visualization techniques has been
driven by two main factors. On one hand, the exponential growth in size of datasets
produced by CFD simulations requires flow visualization methods to be able to dis-
play more data in shorter time. On the other hand, specific application fields, rang-
ing from weather simulation, meteorology, and ground water flow, to automotive,
aerodynamics, and machine design, have each their own particular requirements and
questions to be answered regarding flow datasets. As a central and generally accepted

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 157
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

158 T. Preusser et al.

high-level goal, flow visualization should provide intuitively better receptible meth-
ods which give overall as well as detailed views on the flow patterns and behavior.

Given the above, several classifications of flow visualization methods have been
recently proposed from different points of view. In their State of the Art report,
Laramee et al. [20] have classified flow visualization into direct, dense texture-based,
geometric, and feature-based methods, following a model of the flow data in dis-
crete samples, continuous (dense) scalar fields, geometric integral primitives, and
application-specific feature-based representations. A second overview of flow visu-
alization methods is given by Weiskopf and Erlebacher [45]. Here, three classifi-
cations of flow visualization methods are proposed: based on the visual primitive
used (points, curves, or features); based on the density of the produced image (sparse
vs. dense, texture-based); and finally based on the data structure (2D, 2.5D, and 3D
methods) and discretization (on various grid types). A more recent report of Laramee
et al. [21] presents a comparison of major visualization techniques evaluated from
the point of view of a specific application – the understanding of swirl and tumble
flow data. Here, visualizations are classified into texture-based methods, clustering
approaches, analyses of the vector field topology, and feature-tracking approaches.

In this paper, we give an overview of flow visualization methods based on partial
differential equations (PDEs) [9,12,13]. These methods use a particular model of the
flow data, as follows. The flow domain is seen as a subset of the continuous IR2 or
IR3 space. The visualization process is described now in terms of a continuous, phys-
ical process, such as diffusion, advection, or phase separation. The particular type of
PDE and its boundary conditions are used as instruments to model different visual-
ization questions, such as: Which are the laminar, transient, and turbulent regions?
How does the material density vary in time in the dataset? How does the flow look
like on small spatial scales (flow details) as opposed to a global, coarse scale (flow
overview)? Once the type and parameters of the proper PDE are established, the flow
domain is discretized, usually by a finite-element or finite-difference scheme, and the
underlying PDE is solved with appropriate solvers for the resulting equation or sys-
tem of equations. Finally, the solution is displayed, thereby answering the initial set
of visualization questions that target the flow data.

The above leads us to an outline of several characteristics of PDE-based flow
visualization methods. For this, we shall use the terminology employed by the clas-
sifications presented in [20, 21, 45]. First, PDE-based flow visualizations are dense
methods, by definition. Second, they work in all dimensions where flow visualiza-
tion is of interest, i.e. 2D, 2.5D (curved surfaces embedded in 3D), and 3D. Third,
they are applicable to both steady and unsteady (time-dependent) flow datasets. In
terms of actual visual representation, PDE-based methods are naturally closely re-
lated to texture-based methods. Although the results of PDE-based methods can be
displayed using also other techniques, such as slice planes, streamlines [12], and iso-
surfaces [9], their inherent continuous, dense nature makes them natural candidates
for using 2D and 3D texture-based display techniques. In this sense, PDE-based
methods can be seen as a front-end, that translate a given direct flow representation
(vector field plus additional scalar quantities such as pressure or concentration) to a

Flow Visualization via Partial Differential Equations 159

second dense, usually scalar, representation, which is then visualized by a texture-
driven back-end. On a high level, this translation, encoded in the PDE, enriches the
data with application and question-specific semantics, in order to emphasize the spe-
cific aspects of the flow the user is interested in. Conversely, many texture-based
visualization methods implemented using (programmable) graphics hardware have
at their core a model based on an advection ordinary differential equation (ODE),
as described further in Sect. 2. Finally, in terms of data discretization (grid type), all
PDE-based methods can essentially be used on any grid, given a suitable underlying
finite element discretization implemented on that grid (cf. Sect. 8).

From another point of view, PDE-based methods share many common aspects
with multi-scale flow visualization methods. Overall, the main goal of such methods
is to provide a multi-scale representation of the flow field, such that users can subse-
quently navigate between detailed, low-level views of the flow and global, overview
pictures thereof. Several multi-scale methods exist in flow visualization [20, 45].
Clustering methods [14, 35] group similar flow dataset points together based on a
task or application-dependent similarity measure, or correlation. Energy minimiza-
tion techniques can be used to produce streamline visualizations at several levels of
detail, represented by different streamline spatial densities [18, 19, 38]. PDE-based
methods bring several powerful tools for defining the multi-scale, based on scale
space theory (cf. Sect. 3), and are able to accommodate several scale notion defini-
tions, ranging from continuous to discrete.

Given this close connection between PDE-based and texture-based flow visual-
ization, we give first an overview of the texture-based methods in Sect. 2 followed by
a brief introduction to the basic multi-scale methods in image processing, which mo-
tivate the approaches to be discussed here. Next, in Sect. 3 we review the connections
to scale-space methodology from image processing. Together with the differential
operator defined in Sect. 4, this leads to the presentation of the anisotropic diffu-
sion method in Sect. 5. The extension of this model towards time-dependent flow
fields is discussed in Sect. 6. In the remaining, we review clustering methods based
on PDE techniques and we start with the model based on anisotropic phase sepa-
ration in Sect. 7. A discussion of hierarchical multi-scale clustering using algebraic
multigrid (AMG) methods follows in Sect. 9. Section 10 closes this article drawing
conclusions.

2 Review of Texture Based Flow Visualization

Texture-based flow visualization is a notion generally used for those methods that
output a full spatial coverage of the flow field to be described, in the region of in-
terest chosen by the user. By full coverage, we mean that the discreteness of the
output data is limited to the one inherent to the image, or texture primitives used in
the visualization. Given this dense representation of the flow field, the texture im-
age will mostly encode some continuous color, luminance, or transparency variation
that conveys insight into the flow data. Often, the above continuous signal is nat-
urally generated by physically-based methods. Texture-based methods differ, thus,

160 T. Preusser et al.

mainly in how, and what, they generate and encode in the output texture. We outline
below the most important classes of texture-based methods, and refer for an in-depth
overview to [20].

The spot noise method proposed by van Wijk [18] pioneered the use of textures
in flow visualization. Elliptic splats of intensity based on a noise function and which
are oriented along the field are blended together on 2D or 3D surface domains. The
original first order approximation of the flow was improved by de Leeuw and van
Wijk in [8] by using higher order polynomial deformations of the spots in areas of
significant vorticity. By animating the intensity, spots appear to move along flow
streamlines. Several applications of spot noise were presented in the context of smog
prediction and turbulent flows [6], non-continuous flow visualization [22], and flow
topology [7].

Line Integral Convolution (LIC) methods represent the second major class of
texture-based visualizations. Introduced by Cabral and Leedom [2], LIC integrates
the fundamental ODE describing streamlines forward and backward in time at ev-
ery discrete domain point. White noise is convolved, using a Gaussian kernel, along
these particle paths. The resulting value gives the intensity of the starting pixel. The
resulting texture exhibits strong correlations along streamlines and weak correlation
across, giving the perception of streamline-like filaments of varying intensity. Es-
sentially, LIC is equivalent to a diffusion process along the vector field. Hege and
Stalling [17] increased the performance of LIC by reusing portions of the convo-
lution integral already computed on points along a given streamline. Forssell [11]
proposed a similar method on surfaces, whereas Max et al. [24] approach flow vi-
sualization by texturing iso-surfaces. UFLIC [31] extended LIC to unsteady flows.
Interrante and Grosch [16] generalized line integral convolution to 3D in terms of
volume rendering of line filaments. Multivariate flow fields are visualized with LIC
using a color mapping technique called color weaving [39]. OLIC [43] and its fast
version FROLIC [29] add up- and downstream cues to the basic LIC by varying the
intensity along the streamline. Finally, we mention 3D LIC, which uses texture-based
volume rendering to compute and display LIC visualizations for 3D flow fields [27].
Again, the above is just a short overview of a wealth of existing LIC techniques. For
a more detailed overview, see [20].

Yet another class of texture-based methods are the ones based on texture ad-
vection. Here, the visualization primitive is directly supported by the graphics unit
or GPU. Consequently, the term texture in these methods often refers to the graph-
ics hardware term. GPU-based methods are classified based on the primitive they
advect, or warp (pixel or polygon) and the advection direction (forward or back-
ward). Max and Becker [23] presented one of the first texture-advection methods us-
ing triangles. Image-based flow visualization (IBFV) proposes an injection of noise
(stored as textures), advecting it by warping a polygon mesh, and blending the result
for smooth visualization, with applications in 2D [41], curved surfaces [42], and
3D volumes [34]. Lagrangian–Eulerian Advection (LEA) is another such model,
where particle positions are advected individually (Lagrangian step) and the color
texture is updated in-place (Eulerian step) [17, 47]. Recently, the above (and other)
frameworks, were united in UFAC (Unsteady flow advection-convolution), using an

Flow Visualization via Partial Differential Equations 161

implementation based on programmable GPUs [46]. Interestingly, the emergence of
the “framework” for GPU-based methods as a collection of tightly-woven concep-
tual, modeling, and implementational aspects seems to be driven by the large impor-
tance of the implementational aspect in the whole process, in contrast to, e.g. LIC
methods.

Especially for 3D velocity fields, particle tracing is a very popular tool. However,
even relatively many seed particles released by the user can hardly cope with the
complexity of 3D vector fields. Zöckler et al. [33] use pseudo randomly distributed,
illuminated and transparent streamlines to give a denser and more receptible repre-
sentation, which shows the overall structure and enhances important details.

Most notably every subclass of texture-based method seems to produce visualiza-
tions that carry an easily recognizable visual signature. For example, it is easy to tell
spot-noise from LIC; the various IBFV and LEA methods have also a distinct visual
appearance, probably due to the specific noise functions used; illuminated stream-
lines are also a class apart; reaction-diffusion methods create regular repetitive pat-
terns which noise-injection methods cannot replicate. We believe that a perceptual
classification of texture-based flow visualizations would bring valuable insight in the
effectiveness (and limitations) of such methods and lead to a better understanding of
flow data, although we are not aware of any such classification.

3 A Brief Introduction to Scale Space Methods
in Image Processing

Textures used in various flow visualization approaches can be regarded as images
and thus the type of flow post processing above discussed can be considered as image
processing. In the last two decades powerful PDE based image processing methods
for several fundamental tasks in imaging such as segmentation and de-noising have
been introduced. In particular so called scale space methods introduce a natural scale
of image representations. Most of the methods in flow post processing lack such a
perspective of multiple scales. They have in common that the generation of a coarser
scale requires a re-computation. For instance, if we ask for a finer or coarser scale
of the line integral convolution patterns, the computation has to be restarted with a
coarser initial image intensity. In case of spot noise larger spots have to be selected
and their stretching along the field has to be increased. To motivate our PDE based
approach, let us briefly review scale space methods based on anisotropic nonlinear
diffusion in imaging.

Discrete diffusion type methods have been known for a long time. Perona and
Malik [26] have introduced a continuous diffusion model which allows the de-
noising of images together with the enhancement of edges. Alvarez et al. [1] have
established a rigorous axiomatic theory of diffusive scale space methods. The re-
covery of lower dimensional structures in images is analyzed by Weickert [44], who
introduced an anisotropic nonlinear diffusion method where the diffusion matrix de-
pends on the so called structure tensor of the image.

162 T. Preusser et al.

In PDE-based scale-space methods of image processing we consider a function
u : IR+

0 ×�→ IR which solves the parabolic problem

∂tu−A[u] = f (u) in IR+ ×� ,
u(0, ·) = u0 on � ,

(1)

for given initial density u0 : � → [0, 1]. Here, the differential operator A[·] is
defined by

A[u] := div (a(∇uε)∇u)
and we prescribe Neumann boundary conditions a(∇uε)∇u · ν = 0, where “·” de-
notes the scalar product in IR+ and a : IRn → IR is the diffusion coefficient that
controls the amount of spatial diffusion (blurring) in a given direction in IRn. For the
sake of robustness and well-posedness, a pre-smoothed version of the current den-
sity uε = χε ∗u is used. In our setting we interpret the density as an image intensity,
a scalar grey scale or a vector valued color. Thus, the solution family u(·) can be
regarded as a family of images {u(t)}t∈IR+

0
, where the time t serves as a scale pa-

rameter. Let us remark that by the trivial choice a = 1 and f (u) = 0 we obtain the
standard linear heat equation with its isotropic smoothing and coarsening effect.

In image de-noising, u0 is a given noisy initial image and the goal is to remove
this noise while keeping the important content of the given image. Thus, the diffusion
is supposed to be controlled by the gradient of the image intensity. Large gradients
mark edges in the image, which should be enhanced, whereas small gradients indi-
cate areas of approximately equal intensity. For that purpose we prescribe a diffusion
coefficient

a = g(‖∇uε‖)
where g : IR+

0 → IR+ is a monotone decreasing function with limd→∞ g(d) = 0
and g(0) = δ ∈ IR+, e. g. g(d) = δ

1+‖d‖2 . A suitable choice for the pre-smoothing
is Gaussian filtering or the convolution with the heat equation kernel. That is, we
define uε = ũ(t = ε2/2) where ũ is the solution of the heat equation with initial data
u. Then ε is the variance of the corresponding Gaussian filter. The function f may
serve as a penalty which forces the scale of images to stay close to the initial image,
e. g. choosing f (u) = γ (u0 − u) where γ is a positive constant. Figure 1 gives an
example of image smoothing and edge enhancement by nonlinear diffusion.

Fig. 1. The image on the left is successively smoothed by nonlinear diffusion. With increasing
scale more and more fine-scale details vanish while the significant content is retained and
enhanced

Flow Visualization via Partial Differential Equations 163

e1,...,n−1

e0

B(v)

v1,...,n−1
⊥

v

Fig. 2. The coordinate transformation B(v)

4 A Flow Aligned Differential Operator

Above, we have modeled an edge aligned operator A[·], which enabled the fea-
ture sensitive de-noising of images. For the subsequent use, let us now define a
streamline-aligned differential operator for flow fields. For a given vector field
v : � → IRn we model linear diffusion in the direction of the vector field and a
Perona–Malik type diffusion orthogonal to the field. Let us suppose that v is contin-
uous and v = 0 on �. Then there exists a family of continuous orthogonal mappings
B(v) : � → SO(n) such that B(v)v = ‖v‖e0 , where {ei}i=0,...,n−1 is the standard
base in IRn (cf. Fig. 2).

We consider a diffusion tensor a(v,∇uε) which we define as

a(v, d) = B(v)T
(
α(‖v‖)

g(‖d‖)Idn−1

)

B(v) ,

where α : IR+ → IR+ controls the linear diffusion in vector field direction, i. e. along
streamlines, and the above introduced edge enhancing diffusion coefficient g(·) acts
in the orthogonal directions (Idn−1 is the identity matrix in dimension n− 1).

We may either choose a linear function α or, in case of, e.g. a velocity field which
spatially varies over several orders of magnitude, we select a monotone function α
(cf. Fig. 2) with α(0) > 0 and lims→∞ α(s) = αmax .

The differential operator based on this diffusion tensor is finally given by

A[v, u] := div (a(v,∇uε)∇u) . (2)

It encodes a strong coupling along the velocity field and in case of steep gradients in
u a weak coupling in directions perpendicular to the field.

5 Anisotropic Diffusion for Stationary Flow

We shall now make use of the differential operator defined in Sect. 4 to define a
diffusion process, which generates texture patterns aligned to a flow field. These pat-
terns will grow upstream and downstream, whereas the edges tangential to them are
successively enhanced. Still there is some diffusion perpendicular to the field which
supplies us for evolving time with a scale of progressively coarser representation of
the flow field.

164 T. Preusser et al.

f(u)

11
2

0

α(s)

s

αmax

Fig. 3. Left: Graph of the velocity dependent linear diffusion coefficient α(·). Right: Graph of
the scalar contrast enhancing right-hand side f (·)

In general it does not make sense to consider a specific initial image for such a
diffusion process. As initial data u0 we thus choose some random noise of an ap-
propriate frequency range. If we run the evolution (1) for vanishing right-hand side
f the image contrast will unfortunately decrease due to the diffusion along stream-
lines. The asymptotic limit will turn out to be an averaged grey value. Therefore, we
strengthen the image contrast during the evolution, selecting an appropriate continu-
ous function f : [0, 1] → IR+ (cf. Fig. 3) with

(F1) f (0) = f (1) = 0 ,
(F2) f < 0 on (0, 0.5), and f > 0 on (0.5, 1) .

Neglecting the diffusive term of the evolution at a first glance we realize that this
right-hand side pushes values below the average value 0.5 towards the zero and
accordingly values above 0.5 towards 1. A more detailed analysis of the contrast
enhancement including the diffusive term is discussed in Sect. 6.1. However, well-
known maximum principles ensure that the interval of grey values [0, 1] is not en-
larged running the nonlinear diffusion. Here the property (F1) is of great importance.

Finally, we end up with the method of nonlinear anisotropic diffusion to visualize
complex vector fields. Thereby we solve the nonlinear parabolic problem

∂tu− A[v, u] = f (u) (3)

starting from some random initial data u(0, ·) = u0 and obtain a scale of images
representing the vector field in an intuitive way (cf. Fig. 4).

5.1 Enhancing the Resulting Texture

If we ask for point-wise asymptotic limits of the evolution, we expect an almost ev-
erywhere convergence to u(∞, ·) ∈ {0, 1} due to the choice of the contrast enhanc-
ing function f . Analytically, 0.5 is a third, but unstable fixed point of the dynamics,
which, thus, will not turn out to be locally dominant numerically.

The space of asymptotic limits significantly influences the richness of the devel-
oping vector field aligned structures. We may ask how to further enrich the pattern
which is settled by anisotropic diffusion. This turns out to be possible by increas-
ing the set of asymptotic states. We no longer restrict the considerations to a scalar
density u but consider a vector valued u : � → [0, 1]2 and a corresponding sys-
tem of parabolic equations. The coupling is given by the nonlinear diffusion coef-
ficient g(·) which now depends on the norm ‖∇u‖ of the Jacobian of the vector

Flow Visualization via Partial Differential Equations 165

Fig. 4. A vector field from a 2D magneto-hydrodynamics simulation (MHD) is visualized by
nonlinear diffusion. A discrete white noise is considered as initial data. We run the evolution
on the left for a small and on the right for a large constant diffusion coefficient α

Fig. 5. Different snapshots from the multi-scale based on anisotropic diffusion are depicted for
a 2D MHD simulation vector field (cf. Fig. 4). Here we consider a two-dimensional diffusion
problem and interpret the resulting density as a color in a blue/green color space

valued density ∇u and the right-hand side f (u). We define f (u) = h(‖u‖)u with
h(s) = f̃ (s)/s for s = 0, where f̃ is the old right-hand side from the scalar case,
and h(0) = 0. Furthermore we select an initial density which is now a discrete white-
noise with values in B1(0) ∩ [0, 1]2 . Thus, the contrast enhancing now pushes the
point wise vector density u either to the 0 or to some value on the sphere sector
S1 ∩ [0, 1]2. Again a straightforward application of the maximum principle ensures
u(t, x) ∈ B1(0) ∩ [0, 1]2 for all t and x ∈ �.

Figure 5 shows an example for the application of the vector valued anisotropic
diffusion method applied to a 2D flow field from a MHD simulation. The field shows
the dynamics of an electrically conducting fluid. The performed clustering outlines
the so-called magnetic domains (thick clusters), i.e. domain regions where the fluid
circulates, and current sheets (thin, closed clusters bordering the magnetic domains),
which contain most of the current. Furthermore, Fig. 6 shows results of this method
applied to several time steps of a convective flow field. An incompressible Bénard
convection is simulated in a rectangular box with heating from below and cooling
from above. The formation of convection rolls will lead to an exchange of temper-
ature. We recognize that the presented method is able to nicely depict the global
structure of the flow field, including its saddle points, vortices, and stagnation points
on the boundary.

166 T. Preusser et al.

Fig. 6. Convective patterns in a 2D flow field are displayed and emphasized by the method of
anisotropic nonlinear diffusion. The images show the velocity field of the flow at different time
steps. Thereby the resulting alignment is with respect to streamlines of this time dependent
flow

5.2 3D Flow Fields

The anisotropic nonlinear diffusion operator (2) has been formulated for arbitrary
space dimension. It results in a scale of vector field aligned patterns which we
then have to visualize. In 2D this has already been done in a straightforward manner
in the above figures. In 3D we have somehow to break up the texture-volume and
open up the view to inner regions. Otherwise we must confine ourselves with some
pattern close to the boundary representing solely the shear flow.

Here we can benefit from the vector valued diffusion. Since for m = 2 the non-
trivial asymptotic limits are in mean equally distributed on S1 ∩ [0, 1]2, we can we
reduce the image-content and focus on a ball shaped neighborhoodBδ(ω) of a certain
point ω ∈ S1 ∩ [0, 1]2 . Now we can either use a volume rendering to visualize this
type of sub-volumes or look at iso-surfaces of the function

σ(x) = ‖u(x)− ω‖2 .

Then the parameter δ2 allows us to depict the boundary of the pre-image of Bδ(ω)
with respect to the mapping u (cf. Fig. 7).

5.3 Flow Fields on 2D Surfaces

So far we considered vector fields on domains which are subsets of the 2D or 3D
Euclidean space. It is straight-forward to extend the methodology to tangential flow
fields on surfaces, such as weather-map wind-fields over the earth, flow fields on
stream-surfaces, or vector fields from differential geometry. We have to replace the
Euclidean gradient ∇ and the divergence operator div by their geometric counterparts
∇M and divM respectively. Here the index M indicates that we are working with the
tangential gradient and divergence on the surface or manifold M. Proceeding as in
Sect. 4 the differential operator describing the given flow field is given by

A[u] := divM(a(∇Muε)∇Mu)

Flow Visualization via Partial Differential Equations 167

Fig. 7. The incompressible flow in a water basin with two interior walls and an inlet (on the
left of the box) and an outlet (on the right of the box) is visualized by the anisotropic non-
linear diffusion method. Iso-surfaces show the pre-image of ∂Bδ(ω) under the vector valued
mapping u for some point ω on the sphere sector. From top left to bottom right the radius δ is
successively increased. A color ramp blue–green–red indicates an increasing absolute value
of the velocity. The diffusion is applied to initial data which is a relatively coarse grain random
noise

Fig. 8. The principal directions of curvature of a minimal surface are visualized using the
anisotropic diffusion equation on surfaces

for C2 functions u on the manifold M. As an illustration Fig. 8 shows the visualiza-
tion of the principal directions of curvature on a minimal surface.

5.4 Flow Segmentation

The above applications already show the capability of the anisotropic nonlinear dif-
fusion method to outline the flow structure not only locally. In particular for larger
evolution times in the diffusion process the topological skeleton of a vector field
becomes clearly visible. We will now investigate a possible flow segmentation by

168 T. Preusser et al.

means of the anisotropic diffusion. Let us restrict to the two-dimensional case of
an incompressible flow with vanishing velocity v at the domain boundary ∂�. Then
topological regions are separated by homoclinic, respectively heteroclinic orbits con-
necting critical points in the interior of the domain and stagnation points on the
boundary. Critical points, by definition points with vanishing velocity v = 0, may
either be saddle points or vortices. Furthermore we assume critical points to be non-
degenerate, i. e. ∇v is regular. Saddle points are characterized by two real eigenvalues
of ∇v with opposite sign, whereas at vortices we obtain complex conjugate eigen-
values with vanishing real part. Stagnation points on ∂� are similar to saddles. For
details we refer to [15].

In each topological region there is a family of periodic orbits close to the hetero-
clinic, respectively homoclinic orbit. This observation gives reason for the following
segmentation algorithm. At first, we search for critical points in � and stagnation
points on ∂�. We calculate the directions which separate the different topological
regions. In case of saddle points these are the eigenvectors of ∇v. Next, we succes-
sively place an initial spot in each of the sectors and perform an appropriate field
aligned anisotropic diffusion.

Let us suppose that a single sector is spanned by vectors {w+, w−} where the
sign ± indicates incoming and outgoing direction. The method described by (3)
would lead to a closed pattern along one of the above closed orbits for time t large
enough. To fill out the interior region we modify the diffusion by selecting an orien-
tation for a “one sided” diffusion (cf. Fig. 9). That is, we select a unique normal v⊥
to v and consider the diffusion matrix

a(v,∇uε) = B(v)T
(
α

G((∇uε · v⊥)+)
)

B(v) ,

where α is a positive constant and (s)+ := max{s, 0} . Furthermore we consider a
non negative, concave function f : IR+

0 → IR+
0 with f (0), f (1) = 0 as a source

term in the diffusion equation. If the orientation of {w+, w−} coincides with that
of {v, v⊥} , then linear diffusion in the direction towards the interior will fill up the
complete topological region. A segmentation of multiple topological regions at the

v

v⊥

Fig. 9. A sketch of the four sectors at a critical point (indicated by red disk), the initial spot
(blue disk) for the diffusion calculation and the oriented system {v, v⊥}

Flow Visualization via Partial Differential Equations 169

Fig. 10. Several time-steps from the nonlinear diffusion segmentation applied to a velocity
field from a Bénard convection are shown. We have placed the seed-points as close as possible
in terms of the grid size in the sectors spanned by the eigenvalues of the Jacobian ∇v of the
velocity. Only to emphasize the evolution process a single grey-scale image from the diffusion
calculation is underlying the sequence of segmentation time steps

same time is possible, if we carefully select the sectors where we release initial spots.
Figure 10 shows different time steps of the segmentation applied to a convective
incompressible flow.

6 Transport and Diffusion for Non-stationary Flow Fields

So far, the above anisotropic diffusion method generates streamline type patterns,
which are aligned to trajectories of the vector field for a fixed given time. I. e. for a
time-dependent vector field v : IR+ ×�→ IRd on a computational domain� ⊂ IRd

and d = 2, 3, we have been considering integral lines {x(s) | s ∈ IR} with d
ds
x(s) =

v(t, x(s)) for a fixed time t . Thus, the method intuitively visualizes the vector field
freezed at time t but offers only very limited insight in the actual transport process
governed by the underlying time-dependent flow field.

To ensure that our visualization actually displays this process we have to consider
the true transport problem and its particle lines. Hence we take into account the
particle motion obeying the equation d

dt
x(t) = v(t, x(t)) and the induced transport of

a given density u(t, x). The fact that such a purely advected density u stays constant
along particle trajectories leads to the conservation law

D

dt
u := d

dt
u(t, x(t)) = ∂

∂t
u+ ∇u · v = 0

which means a vanishing of the material derivative.
In addition to this conservation law, we have to incorporate a mechanism for the

generation, the growth and enhancement of flow aligned patterns. Here we pick up
the previous model (3) and consider a simultaneous anisotropic nonlinear diffusion
process with linear diffusion along the particle line and sharpening in the perpen-
dicular direction. Let us emphasize here that this diffusion process acts in forward
and backward direction of the particle line. Thus, a careful control of the parame-
ters is indispensable to avoid an artificial propagation in downwind direction with
the accompanying visual impression of a wrong velocity. In the next section we will
discuss in detail a suitable balance of parameters.

170 T. Preusser et al.

Altogether our basic transport diffusion model for time-dependent vector fields
looks as follows: On the computational domain � ⊂ IRd we consider for a given
vector field v : IR+ ×�→ IRd the boundary and initial value problem:

∂tu+∇u · v −A[v, u] = f (u) in IR+ ×�,
(A∇u) · ν = 0 on IR+ × ∂�,
u(0, ·) = u0 in �,

where A[v, u] is the diffusion tensor (2) already known from the anisotropic diffu-
sion for steady flow fields. The initial data u0 is again assumed to be a white noise
of appropriate frequency. Still the role of the right-hand side f is to ensure contrast
enhancement. Consequently we apply functions f which fulfill the properties (F1),
(F2) mentioned previously.

The new model generates and stretches patterns along the flow field and trans-
ports them simultaneously. The resulting motion texture is characterized by a dense
coverage of the domain with streakline type patterns, which do not have a fixed in-
jection point but move in time with the fluid (cf. Fig. 11). The method is applicable
in any dimension, in particular on 3D domains and 2D surfaces as for the static flow
case before, although we have not performed such computations yet.

Fig. 11. Three successive time-steps of the transport diffusion process generating directed
patterns of a Bénard convection (cf. Sect. 6.1). The additional coloring indicates the speed of
the flow field. Red colors indicate high velocity, whereas blue colors indicate low velocity. To
emphasize the transport of patterns we have magnified the marked sections of the images in
the lower row

Flow Visualization via Partial Differential Equations 171

6.1 Balancing Parameters

In general, transport and diffusion are contrary processes. Our goal in mind – the
generation and transport of patterns which simultaneously diffuse along the flows –
there has to be a careful weighting of the parameters that steer the transport and
the diffusion respectively. Otherwise the diffusion may overrun the transport, result-
ing in a process that is rather diffusion than transport with some pattern generating
diffusion.

Let us suppose the temporal resolution of the given vector-field data is of size τ .
It is well known that the solution of the heat equation at a time t corresponds to
the convolution of the initial data with a Gaussian kernel of variance

√
2t . Since the

diffusion tensor a(v) invokes linear diffusion with a coefficient α(‖v(x)‖) in the di-
rection of the velocity v(x) for every x ∈ �, we consider the corresponding variance

D(α(x)) := √
2τα(x)

to be a measure for the diffusion within the transport diffusion process for the time τ .
Of course a measure for the corresponding expected transport distance is

T (x) := τ ‖v(x)‖ .
Typically T (·) is more or less fixed, since τ is in general prescribed by the un-

derlying CFD data. Thus, we would like to adjust α locally such that D is balanced
with T . To this end we introduce a balancing parameter η ∈ IR+ and consider the
balancing condition

D(α(x)) = ηT (x).
Roughly speaking we then have the following relations:

η % 1 Transport dominates the model,

η = 1 Transport ≈ Diffusion,

η ' 1 Diffusion dominates the model.

Hence, choosing η < 1 fixed, and solving the balance condition for α(x), we get
a suitable diffusion coefficient

α(‖v‖)(x) = η2 ‖v(x)‖2 τ

2

as a function on the domain � which instead of the one defined in Sect. 4 is inserted
into the diffusion tensor a(v,∇uε) of our transport diffusion model.

Let us furthermore study the amplification of certain frequencies of the initial
image due to the right-hand side of our model. Our focus will be on the influence of
the shape of f on the contrast enhancing property of the model. To this end let us
consider a much simpler setting of a high frequency initial data given by

u0(x) = 1

2

[
sin

(x

ε

)
+ 1

]

172 T. Preusser et al.

and restrict ourselves to a simple diffusion equation along a (one-dimensional)
streamline, which is given by

∂tu− α�u = f (u) in [0, 1].
We consider the linearization of f around 1

2

f̃ (u) = γ
(

u− 1

2

)

,

where γ is the slope of the original f at 1/2. Now let us take into account the ansatz

u(t) = b(t)
(
u0(x)− 1

2

)
+ 1

2 for the evolution of a one-dimensional image-density.

Inserting the ansatz into the linear diffusion-equation we obtain

1

2

[
b′ +

(α

ε2 − γ
)
b
]

sin
(x

ε

)
= 0

and so
b(t) = exp

[(
γ − α

ε2

)
t
]
.

This means that frequencies above
√
α/γ are damped, whereas frequencies below

this threshold are amplified. Given an upper threshold 1/ε for the frequencies which
we want to amplify, we choose

γ = α

ε2
.

Finally, we construct our nonlinear right-hand side f (·) in such a way that the slope
at 1/2 equals γ .

6.2 A Blending Strategy for Long-Term Animation

With the anisotropic diffusion model for steady flow fields we have generated a
whole scale of representations. Here, the scale was identified with the time t of the
evolution process. But as proposed in the last section, the scale parameter is now
coupled to the actual transport process in our transport diffusion model. In particu-
lar for long-time visualization purposes this coupling leads to unsatisfactory results.
Because due to the nature of our model, we are unable to freeze the scale and solely
consider the evolution of suitable patterns at that specific scale in time, which would
be the optimum process.

The solution we propose here is a compromise based on the blending of different
results from the transport diffusion evolution started at successive time-points. First,
we select a suitable interval for the scale parameter [s0, s1] with s1 > s0 > 0 around
our preferred multi-scale resolution for the resulting images. Based on a smooth
blending function ψ : IR → [0, 1] having support in (−1, 1) and such that

ψ(t) = ψ(−t) = 1 − ψ(1 − t),
ψ(0) = 1,

Flow Visualization via Partial Differential Equations 173

Resulting intensity

s0 s1 Time t

Process 1 Process 2 Process 3

Fig. 12. The weighting factors in the blending operation together with the overlapping
scale/time intervals of the considered transport diffusion processes are shown in a diagram
over time

we can construct a partition of unity {ψi} on the real line IR. That is, we define
ψi(t) = ψ(2t−(i+1)(s0+s1)

s1−s0). Now, for all i = 0, 1, . . . we separately solve the above

transport diffusion problem for different starting times ti = i (
s1−s0

2) always con-
sidering some white noise of a fixed frequency range as initial data and denoting
the resulting solution by ui . For negative time we suppose a suitable extrapolation
of the velocity field to be given. Finally, applying blending of at least two different
solutions we compute

u(t, x) =
∑

i

ψi(t)ui(t, x) .

This intensity function is well defined for arbitrary times and characterized by the
initially prescribed scale parameter interval.

We use this construction for an animation of the flow over a certain time interval
(cf. Fig. 12 for a graph of the blending functions). Such an animation involves all
solutions ui for which the blending function ψi has a non vanishing overlap with
the given time interval. Other constructions of a partition of unity and corresponding
blending functions are near at hand and especially multiple overlaps can be consid-
ered which requires the blending of more than two intensity functions at the same
time. We emphasize that the application of this blending technique does not intro-
duce any inaccuracy, because for any time t the resulting image u(t, x) consists of
images ui(t, x) showing streaklines at time t and at slightly varying scale.

7 Continuous Clustering via Anisotropic Phase Separation

So far, we have discussed the generation of flow aligned multi scale textures. Let us
now look the hierarchical clustering of flow data, ranging from small clusters show-
ing strong local coherence of the flow to large global cluster sets gathering large flow
patterns. As before, we will discuss this task in the framework of continuous models.
Before we detail the application of such a model for the actual flow clustering let us
review the underling physical model for the coarsening of structures in metal alloys,
which goes back to Cahn and Hilliard [5].

174 T. Preusser et al.

7.1 The Cahn–Hilliard Model

The Cahn–Hilliard model was introduced to describe phase separation and coars-
ening in binary alloys. Phase separation occurs when a uniform mixture of the al-
loy is quenched below a certain critical temperature underneath which the uniform
mixture becomes unstable. As a result a micro-structure of two spatially separated
phases with different concentrations develops. In later stages of the evolution on a
much slower time scale than that of the initial phase separation the structures become
coarser: either by merging of particles or by growing of bigger particles at the cost
of smaller ones. This coarsening can be understood as a clustering, where the system
mainly tries to decrease the surface energy of the particles which leads to coarser
and coarser structures during the evolution. In the basic Cahn–Hilliard model this
surface energy is isotropic. There are no preferred directions of the interfaces. Hence
the particles tend to be ball shaped (cf. Fig. 13).

In the following paragraph we briefly outline the basic concept of the Cahn–
Hilliard model. For more details we refer to the review papers by Elliott [10] and
Novick-Cohen [25]. The model is based on a Ginzburg–Landau free energy which
is a functional in terms of the concentration difference u of the two material compo-
nents. The Ginzburg–Landau free energy E is defined to be

E(u) :=
∫

�

{
�(u)+ γ

2
|∇u|2

}
,

where � is a bounded domain. The first term �(u) is the chemical energy density
and typically has a double-well form. In this paper we take

�(u) = 1

4

(
u2 − β2)2

with a constant β ∈ (0, 1] (cf. Fig. 14). We note that the system is locally in one of
the two phases if the value of u is close to one of the two minima ±β of � .

Now, the diffusion equation for the concentration u is given by

∂u

∂t
−�w = 0

Fig. 13. Three time-steps of the original Cahn–Hilliard phase separation

Flow Visualization via Partial Differential Equations 175

ρ

Ψ

Fig. 14. Chemical energy as function of concentration

on IR+ ×�, wherew is the local chemical potential difference, which is given as the
variational derivative of E with respect to u

w = δE

δu
= −γ�u+� ′(u).

As boundary and initial conditions we request ∂νw = ∂νu = 0, where ν is the outer
normal on ∂�, and u(0, ·) = u0(·) for some initial concentration distribution u0.

Starting with a random perturbation of a constant state ū0, which has a values
in the unstable concave part of � , we observe the following: In the beginning the
chemical energy decreases rapidly whereas the gradient energy increases. This is due
to the fact that during phase separation u attains values which are at large portions of
the domain close to the minima of the chemical energy� . Since regions of different
phase are separated by transition zones with large gradients of u, the gradient energy
increases during phase separation. In the second stage of the evolution – the actual
clustering – when the structures become coarser, the total amount of transition zones
decreases. Correspondingly the amount of gradient energy becomes smaller again.

7.2 Anisotropic Interface Energy

Let us now turn to the clustering model for flow data. We introduce a cluster mapping
u : IR+

0 × � → IR which will be the solution of an appropriate evolution problem.
Thereby, time will again serve as the scale parameter leading from fine cluster gran-
ularity to successively coarser clusters. For fixed scale t our definition of the set of
clusters C(t) is

C(t) = {x | u(t, x) ≥ 0}.
This set splits up into the connected components of C(t)

C(t) =
⋃

i

Ci (t).

176 T. Preusser et al.

The evolution problem steering the clusters via the quantity u should satisfy the
following properties:

• The number of clusters generically decreases in time.
• The shape of the cluster components strongly corresponds to correlations in the

data field.
• The volume fraction covered by C(t) is approximately constant in t , i. e. |C(t)|

|�| ≈
� for� ∈ (0, 1).
These conditions motivate us to pick up the physical Cahn–Hilliard model with

the double-well separation potential �(u), a separation energy Es = ∫

� es(u) and
energy density es(u) = �(u). Among all u with

∫

�
u = ū0 = const. the energy Es

attains its minimum if u has the values ±β only. This leads to a binary decomposition
of the domain into two parts, where one part corresponds to {x | u(x) = β}. However
this set can have many connected components and may even be very unstructured.
Furthermore there is no mechanism which enforces a successive coarsening and thus
a true multi-scale of clusters.

We remedy this behavior by introducing a term which penalizes the occurrence
of many disconnected cluster components with high interfacial area. To this end we
choose a gradient energy E∂ = ∫

�
e∂ with local energy density e∂ that penalizes

rapid spatial variations of u. In order to have flexibility to choose an anisotropic and
inhomogeneous gradient energy, an appropriate definition of an interfacial energy
density is given by

e∂(∇u) = γ

2
a∇u · ∇u,

where γ is a scaling coefficient and a ∈ IRn×n is some symmetric positive definite
matrix that may depend on the space variable and other quantities involved.

In the following we will refer to the set ∂{x | u(x) = 0} as the interface. The
orientation of the interface can be described by its normal which, in the case that
∇u = 0, is given by the normalized gradient

ν = ∇u
‖∇u‖ .

For a = Id all gradients of u and hence, all interfaces are penalized equally inde-
pendent of their orientation. But with respect to our clustering intention we consider
an anisotropic energy density which strongly depends on the orientation of the local
interface and thereby on the direction of ∇u.

For a given static vector-field v : �→ IRn a natural clustering should emphasize
the coherence along the induced streamlines. Thus, interfaces aligned across stream-
lines have to be penalized significantly by the gradient energy whereas interfaces
oriented along streamlines are tolerated. We choose the diffusion tensor similar to
the ones used above (cf. Sect. 4)

a(v) := B(v)T
(

1 0
0 α(‖v‖)Idn−1

)

B(v)

Flow Visualization via Partial Differential Equations 177

Since interfaces that cross streamlines shall have larger energy we choose a positive
function α with α ≤ 1.

Altogether we have defined the energy

E(u) :=
∫

�

{
�(u)+ γ

2
a∇u · ∇u

}

and proceed as for the basic Cahn–Hilliard model. We define the first variation of the
energy and arrive at the potential

w = � ′(u)− γA[v, u],

where A = div(a(v)∇u) is defined as in the previous sections.
Let us continue as before and assume that the evolution of the cluster mapping

u is governed by diffusion where the corresponding flux linearly depends on the
negative gradient of the first variation of energy. Thus, we choose ∂tu−�w = 0 as
above and end up with the following fourth order differential equation:

∂tu−� (
� ′(u)− γA[v, u]) = 0

with boundary conditions ∂νu = ∂νw = 0 and prescribed initial data u(0, ·) = u0(·).
After an initial short period of phase separation it is mainly the interfacial energy
contribution which is successively reduced.

As in the texture generation approaches it does not make sense to consider certain
initial data, if no a priori information on the clustering is known. Consequently we
choose a constant value ū0 plus some random perturbations as initial data u0. The
constant ū0 depends on the volume fraction� of the domain which shall be covered
by the clusters, i.e. by the sets {x | u(t, x) ≥ 0}. Therefore, we choose ū0 = �β −
(1 −�)β.

During the evolution very rapidly cluster patterns will grow without any pre-
scribed location and orientation. This is in order to decrease Es = ∫

� �(u) which
forces the solution to obtain values close to ±β in most of the domain �. After this
starting phase the clusters orient themselves in an anisotropic way to decrease the
amount of the anisotropic gradient energy E∂ . In addition they become coarser and
coarser due to the fact that smaller particles shrink and larger ones grow. In particu-
lar one observes that a large particle being surrounded by smaller ones grows to the
expense of the smaller ones. This implies that as time evolves locally only the main
features of the clusters will be kept (Fig. 15).

Finally we obtain a scale u(t, ·) of cluster mappings and induced cluster sets
C(t). They represent a successively coarser representation of simulation data and
continuously enhances coherences in the underlying simulation dataset, where the
cluster set C(t) will cover a volume of approximate size �|�|.

178 T. Preusser et al.

Fig. 15. Top: Successive stages of the continuous clustering of a Bénard convective flow field.
Bottom: Effect of increasing anisotropy α. The computations are based on a grid of resolution
2572

8 Remarks on the Finite Element Implementation

So far, we have not yet discussed discretization in space and time of the above in-
troduced continuous time-dependent partial differential equations. Hence, we deal
with the variational formulation of the different PDE problems introduced above.
We propose to consider a finite element discretization in space and a semi-implicit
backward Euler scheme in time.

The semi-implicit temporal discretization means that the nonlinear diffusion ten-
sor A and the nonlinear term on the right-hand side f (u) as well as the derivatives
of the non convex potential ψ are evaluated at the old time-steps.

For the spatial discretization we can restrict the numerical considerations to reg-
ular hexahedral grids in 2D and 3D. On these grids we have bilinear, respectively
trilinear finite element spaces. However below we will use triangular elements as
well. In any case we can base numerical integration on the lumped-masses product
(·, ·)h [36] for the L2 product and a midpoint quadrature rule for the bilinear form
(A∇ ·,∇ ·).

Finally, in each step of the discrete evolution we have to solve a single system
of linear equations for the vector of nodal values for the density function u and the
chemical potential w, respectively. In case we need pre-smoothed data, we consider
a single discrete, implicit time-step for the computation of the heat equation with the
density being smoothed as initial data.

Flow Visualization via Partial Differential Equations 179

9 Clustering Based on Hierarchical Decomposition
of a Differential Operator

In the previous section we have discussed a continuous physical model for the clus-
tering of flow fields. Instead of involving methods adapted from continuum mechan-
ics, we might ask for a direct hierarchical decomposition of the differential operators
A from Sect. 4, which represent diffusion processes strongly aligned to the flow field.

9.1 Review of Algebraic Multigrid

The idea we develop in this section uses algebraic multigrid (AMG) methodology to
decompose the corresponding discrete operator. AMG methods were first introduced
in the early 1980s [2, 3, 28] for the solution of discrete linear systems AU = F of
equations coming from the discretization of linear differential equations A[u] = f

on domains � with suitable boundary conditions. We refer to [37] for a detailed
introduction. Thereby U is supposed to be a finite element approximation of the
continuous solution u and A the finite element stiffness matrix corresponding to A.
Finally, F is the corresponding discrete right-hand side.

The development of AMG was led by the idea to mimic classical (geometric)
multigrid methods for applications where a hierarchy of nested meshes is either not
available at all, or cannot reflect particular properties such as strength of diffusion of
the discretized operator appropriately on coarse grid levels.

Consequently one has to work with the matrix A and its algebraic structure. The
general procedure is sketched in Fig. 16. AMG tries to coarsen this matrix indepen-
dently from any underlying fine grid discretization, where n is the number of degrees
of freedom. It computes a sequence of prolongation matrices P l which encodes how
coarse scale (l) basis functions are combined using the basis functions on the finer
scale (l − 1). This induces a sequence of corresponding matrices Al , defined by the
so-called Galerkin projection Al := RlAl−1P l , where the restriction Rl is given

Fig. 16. General AMG construction. From the fine scale matrix A0 input, AMG computes
prolongations P l , restrictions Rl , and coarse scale matrices Al on successively coarser scales
l = 1, . . . , L

180 T. Preusser et al.

as the transpose of the prolongation P l (Rl := (P l)T). The prolongation matrices
{P l}l=1,...,L are computed using information from the matrix Al−1 on the previous
level l−1 only. The sequence of prolongation matrices allows for the construction of
a problem-dependent basis {�l,i}. One constructs a coarser basis {�l,i} which cap-
tures the appropriate features relevant for the approximation of the corresponding
continuous problem.

9.2 AMG for Flow Field Clustering

The theory and design of efficient AMG tools is rather involved. However, we em-
phasize that our flowing clustering requires just basic AMG capabilities. We per-
form no specific tuning of the AMG for flow clustering. Let us apply the method
to the concrete discrete finite element matrix A of the differential operator A. This
stiffness-matrix A can be regarded as a description of the structure of the flow field
v, because as in the operator A the flow alignment is encoded in this matrix. Indeed,
the matrix simultaneously represents dominant flow patterns as well as successively
finer, more detailed flow structures.

With the AMG we find a tool which is able to represent flow patterns in a hier-
archical multi-scale fashion. AMG delivers a set of descriptions of the flow-induced
coupling in terms of matrices Al for l = 0, . . . , L, ranging from detailed (A0 = A)
to very coarse (AL).

Let us illustrate how AMG works using two simple examples. Consider the flow
fields v1(x) = (−1, 1) and v2(x) = (1, 1) on the square domain � = [−1; 1]2 ⊂
IR2. We can define a simple diffusion tensor

a(v) = BT
(‖v‖ + ε 0

0 ε

)

B := BT
(√

2 + 0.001 0
0 0.001

)

B,

whereB is a rotation of ∓45 degrees and we chose a small diffusion value ε = 0.001
orthogonal to the direction of the vector field v. We need a non-zero diffusion value
in this direction too. Indeed, the diffusion value couples neighbor domain points (or
element nodes, in the discretized version). Having a non-zero diffusion across the
field v to be clustered ensures that we shall obtain thick clusters on coarse scales,
as described later. Having a relatively large diffusion along the field v ensures that
these clusters will be much larger in the direction of the field than across, which is
the desired result. The choice of the ε value is not important as long as it stays a
few orders of magnitude smaller than the average value of ‖v‖. We then consider the
corresponding differential operator A[u] = div(a∇u) and apply the AMG method
to the matrix which results from the discretization of A on a regular triangulation.
Figure 17 shows the coupling strengths encoded in the matrices Al for the first three
finest levels l = 0, 1, 2, for the fields v1 = (1, 1) and v2 = (−1, 1), using a blue-to-
red colormap. For the same fields, Fig. 18 shows selected basis functions on the four
coarsest decomposition levels.

For the actual flow field clustering application we consider the differential oper-
ator A[u] = div(a(v)∇u) where the diffusion tensor is

Flow Visualization via Partial Differential Equations 181

Fig. 17. Color-coded coupling strength (zoomed in) on the computational grid. Three finest
levels (left to right) are shown for the fields v1 = (−1, 1) (bottom row) and v2 = (1, 1) (top
row). The white arrows show the field direction

Fig. 18. For the two vector fields v1 = (−1, 1) (bottom row) and v2 = (1, 1) (top row)
basis functions on the four coarsest levels are shown. Obviously the basis functions are clearly
aligned to the flow field (cf. Fig. 17)

a(v) := B(v)T
(
α(‖v‖) 0

0 Idn−1

)

B(v)

and B(v) is the same rotation as above.

182 T. Preusser et al.

When we apply the AMG algorithm to the matrix A ∈ IRn,n corresponding
to the above differential operator, we obtain a sequence of prolongation matrices
P l ∈ IRnl−1,nl as output, where nl for l = 0, . . . , L are the decreasing numbers of
remaining unknowns and n0 = n. The entries in each column i = 1, . . . , nl of P l

give the coefficients of the linear combination of the finer basis functions�l−1,j for
j = 1, . . . , nl−1 corresponding to the coarser basis function�l,i on level l. In other
words, each matrix Al delivered by the AMG, starting with the initial, finest one
A0 = A down to the coarsest one AL, approximates the fine grid operator using the
(matrix-dependent) basis {�l,i}i=1,...,nl :

Alij = A�l,i ·�l,j =
∫

�

a(v)∇�l,i · ∇�l,j ,

where �l,i is the nodal vector corresponding to the function �l,i , i. e. denoting the
initial basis functions with �j we have �l,i = ∑

j=1,...,n(�
l,i)j�

j .
Hence, the following simple recursive recipe can be used to calculate the multi-

scale of basis functions�l,i

�l,i :=
∑

j=1,...,nl−1

P lji�
l−1,j ∀i = 1, . . . , n; l = 1, . . . , L

�0,i := �i ∀i1, . . . , n
Figure 18 already indicates that the shapes of the basis functions clearly show the
strength of the local coupling. The AMG method clusters vertices along a streamline
already on a fine scale, since they are strongly coupled. Vertices not aligned to the
flow are clustered on coarser scales, since their coupling is relatively weaker.

9.3 From Basis Functions to Clusters

But as usual with finite elements, the supports of basis functions on a given scale are
overlapping. Therefore, we need to derive a multi-scale of domain decompositions
from the set of basis functions to partition the domain into disjoint clusters. Such a
domain decomposition

Dl := {Dl,i}i=1,...,nl

can easily be defined for every l = 0, . . . , L as follows:

Dl,i := {x ∈ � |�l,i(x) ≥ �l,j (x) ∀j = 1, . . . , nl}
In other words, a domain Dl,i on level l is the set of points where the basis �l,i is
dominant on that level.

Now, several observations can be made:

• The domains on different scales need not be strictly spatially nested – the sup-
ports of the shape functions are, but the decomposition arising from the maxi-
mum property is not. However, the domains are clearly aligned to the flow field.

Flow Visualization via Partial Differential Equations 183

• All domains on a given level l have comparable sizes and the average domain
size is reduced by a factor, roughly equal to 2, from level l to level l + 1. These
properties are inherited from the bottom-up coarsening scheme used by the AMG
method.

• The clustering of the field v1 = (−1, 1) (Fig. 17 top row) is perfectly aligned with
the field (cf. the basis functions in Fig. 18 top row). However, the clustering of the
field v2 = (1, 1), although very similar, is less regular (Figs. 17 and 18 bottom
row). This is the unavoidable impact of the underlying operator discretization
(which is here a mesh containing triangles). Since v2 is perpendicular to the ini-
tial mesh edges, this is the worst-case scenario. However, even in this case, the
constructed domains are still very much aligned with the field.

• The supports of the basis functions, respectively the induced domains on a given
level, do not have exactly the same size (area), since AMG cannot evaluate (inte-
grate) the mass of the basis functions. Indeed it does not employ any geometric
nodal information, but only a matrix of coupling strengths. However these re-
strictions cause no practical problems for visualizing real-world datasets.

Finally we can show the color-coded domains and in addition velocity-colored
curved arrow icons (cf. [12, 35]). For every domain Dl,i , we draw one such icon,
using a streamline seeded at the point where the corresponding basis is maxi-
mum. Figure 19 shows the decomposition of a magneto-hydrodynamics (MHD) flow
dataset.

9.4 Clustering 3D Flow Fields

Our method works identically for 3D (volumetric) vector fields. The only difference
is the use of tetrahedral, instead of triangular, meshes. However, direct visualization
of a color-coded domain decomposition, as in the 2D case, is not effective due to the
volumetric occlusion. Hence, we use a few post-processing steps. For every domain
Dl,i on a given level l, we construct a closed triangle mesh that bounds Dl,i . Next,
we smooth these meshes using, e.g. a Laplacian filter or a windowed sinc filter [30].
As a result, the meshes become slightly smaller, which allows us to better separate
them visually. Next, we implement an interactive navigation scheme in which do-
mains Dl,i can be made half or completely transparent by a mouse click. Users can
interactively “carve” into the flow volume to, e.g. remove uninteresting areas and
bringing inner flow structures into sight, see Fig. 20. Alternatively, we can visual-
ize the flow at a given level of detail using the same colored arrow glyphs as in the
2D case. Figure 20 shows the first three coarsest decomposition levels of a 3D helix
flow and of a 3D laminar flow with v = (1, 1, 1) respectively. We use the interac-
tive technique sketched above to remove the outer domains and to expose the more
interesting inner flow structure. The remaining smoothed domains are shown in the
top row of Fig. 20 for the helix flow and in the bottom trow of Fig. 20 for the laminar
flow (compare the latter with the 2D field in Fig. 17). In the center row of Fig. 20
the same domains as in the top row are shown, but this time half transparent and
equipped with an arrow icon.

184 T. Preusser et al.

Fig. 19. For the vector field from a magneto-hydrodynamics simulation (MHD) shown in
Figs. 4 and 5 the hierarchical decomposition is shown. From top to bottom the clusters on
the five coarsest levels are indicated with a color-coding (left). The origins of the cluster-
corresponding basis functions serve as the starting point for the integration of trajectories
(right)

Flow Visualization via Partial Differential Equations 185

Fig. 20. Helix flow, selected domains (top row), half-transparent domains with arrow icons
(middle row). Diagonal flow, selected domains (bottom row)

Finally, we consider the incompressible flow in a water basin with two interior
walls, an inlet and an outlet – the same dataset as shown in Fig. 7. Figure 21 shows
several multi-scale levels, visualized with curved arrow icons. These images show
that our method scheme works in 3D just as well as in 2D.

9.5 Clustering Vector Fields on 2D Surfaces

For the clustering approach we considered vector fields on Euclidean domains so far.
Since we have seen in Sect. 5.3 that we can extend to differential operator towards
surfaces, we can apply the same generalization to the AMG clustering as well.
Again we replace the Euclidian gradient and divergence operators by their geometric
counter parts and apply the AMG to a discretization of

A[u] := −divM(A∇Mu).

186 T. Preusser et al.

Fig. 21. For the water basin dataset (cf. Fig. 7) we show the three coarsest levels of the hierar-
chical decomposition

Fig. 22. Climate dataset decomposition, five coarsest levels (left to right). Domains (top row)
and flow texture overlaid with curved arrow icons (bottom row)

The finite element discretization is now completely analogous to the above Euclidean
case. In fact, we use exactly the same code for all our applications. We approximate
the surface M by a triangulation Mh and compute in the same way as on flat do-
mains the stiffness matrix A corresponding to the operator A.

As an illustration, we show the multi-scale decomposition of the average wind
stress field on the surface of the Earth in Fig. 22 (the dataset is taken from [42]).
The flow texture in the bottom row was produced with the IBFV method described
in [42].

10 Conclusions

We have presented an overview of flow field visualization methods using partial dif-
ferential equations (PDEs). These methods cover a broad area between pure sim-
ulation of physical processes based on such equations, and pure post-processing of
such simulation data obtained by other techniques. PDE-based visualization methods
have a number of strong advantages. First, they are dense methods that produce vi-
sualizations where every point of the considered spatial domain is represented. This
naturally associates them with, and brings them close to, texture-based visualization

Flow Visualization via Partial Differential Equations 187

methods. Second, PDE-based visualizations can naturally target any spatial dimen-
sion, e.g. from 2D to time-dependent 3D datasets, in a uniform modeling and com-
putational framework. Third, one can use existing, well-proven and well understood
numerical techniques to solve the underlying PDE discretizations, yielding an over-
all robust approach to data visualization. Fourth, many such methods have a natural
support of the multiscale notion, being able to capture and represent flow data de-
tails at different spatial scales. Often, time serves as the parameter controlling the
scale. However, probably the most attractive aspect of PDE-based visualizations is
their ability to model a wide range of phenomena and data enhancement operations,
ranging from simple filtering to sophisticated multiscale feature-preserving decom-
position techniques, in a well-founded mathematical way, that leads to novel and
insightful visualizations.

References

1. L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel. Axioms and fundamental equations
of image processing. Arch. Ration. Mech. Anal., 123 (3):199–257, 1993.

2. A. Brandt. Algebraic multigrid theory: the symmetric case. In Preliminary Procs. of the
Intl. Multigrid Conf., Copper Mountain, Colorado, April 1983.

3. A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic multigrid for sparse matrix
equations. In D. J. Evans, editor, Sparsity and Its Applications. Cambridge University
Press, Cambridge, 1984.

4. B. Cabral and L. Leedom. Imaging vector fields using line integral convolution. In
J. T. Kajiya, editor, Computer Graphics (SIGGRAPH ’93 Proceedings), volume 27, pages
263–272, Aug. 1993.

5. J. Cahn and J. Hilliard. Free energy of a non-uniform system I. Interfacial free energy.
J. Chem. Phys., 28:258–267, 1958.

6. W. de Leeuw. Divide and conquer spot noise. In Proceedings of Supercomputing 97
(CD-ROM). ACM SIGARCH and IEEE, 1997.

7. W. de Leeuw and R. van Liere. Multi-level topology for flow visualization. Comput.
Graph., 24(3):325–331, 2000.

8. W. C. de Leeuw and J. J. van Wijk. Enhanced spot noise for vector field visualization. In
Proceedings Visualization ’95, 1995.

9. U. Diewald, T. Preusser, and M. Rumpf. Anisotropic diffusion in vector field visualization
on euclidean domains and surfaces. IEEE Trans. Vis. Comput. Graph., 6(2):139–149,
2000.

10. C. M. Elliott. The Cahn–Hilliard model for the kinetics of phase separation. Num. Math.,
pages 35–73, 1988.

11. L. Forssell. Visualizing flow over curvilinear grid surfaces using line integral convolution.
In Proceedings IEEE Visualization ’94, pages 240–246, 1994.

12. H. Garcke, T. Preusser, M. Rumpf, A. Telea, U. Weikard, and J. J. van Wijk. A phase field
model for continuous clustering on vector fields. IEEE TVCG, 7(3):230–241, 2000.

13. M. Griebel, A. Schweitzer, T. Preusser, M. Rumpf, and A. Telea. Flow field clustering
via algebraic multigrid. In Proceedings of IEEE Visualization 2004, 2004.

14. B. Heckel, G. Weber, B. Hamann, and K. I. Joy. Construction of vector field hierarchies.
Proceedings IEEE Visualization ’99, pages 19–25, 1999.

188 T. Preusser et al.

15. J. L. Helman and L. Hesselink. Visualizing Vector Field Topology in Fluid Flows. IEEE
Comput. Graph. Appl., 11(3):36–46, 1991.

16. V. Interrante and C. Grosch. Stragegies for effectively visualizing 3D flow with volume
LIC. In Proceedings IEEE Visualization ’97, pages 285–292, 1997.

17. B. Jobard, G. Erlebacher, and Y. M. Hussaini. Lagrangian-eulerian advection for unsteady
flow visualization. In Proceedings of IEEE Visualization ’01, San Diego, CA, October
2001.

18. B. Jobard and W. Lefer. Creating evenly-spaced streamlines of arbitrary density. In
W. Lefer, M. Grave (eds.), Visualization in Scientific Computing ’97, 1997.

19. B. Jobard and W. Lefer. The motion map: Efficient computation of steady flow anima-
tions. In Proceedings IEEE Visualization ’97, pages 323–328, 1997.

20. R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and D. Weiskopf. The state
of the art in flow visualization: Dense and texture-based techniques. Comput. Graph.
Forum, 23(2):203–221, 2004.

21. R. S. Laramee, D. Weiskopf, J. Schneider, and H. Hauser. Investigating swirl and tumble
flow with a comparison of visualization techniques. In Proceedings of IEEE Visualization
’04, pages 51–58, 2004.

22. H. Löffelmann, T. Kuνcera, and E. Gröller. Visualizing Poincaré maps together with the
underlying flow. In Mathematical Visualization, pages 315–328. Springer, Berlin, 1998.

23. N. Max and B. Becker. Flow visualization using moving textures. In Proceedings of the
ICASE/LaRC Symposium on Visualizing Time-Varying Data, pages 77–87, 1995.

24. N. Max, R. Crawfis, and C. Grant. Visualizing 3D Velocity Fields Near Contour Surface.
In Proceedings IEEE Visualization ’94, pages 248–254, 1994.

25. A. Novick-Cohen. The Cahn–Hilliard equation: mathematical and modelling perspec-
tives. Adv. Math. Sci. Appl., 8:965–985, 1998.

26. P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. IEEE
Trans. Pattern Anal. Mach. Intell., 12:629–630, 1990.

27. C. Rezk-Salama, P. Hastreiter, C. Teitzel, and T. Ertl. Interactive exploration of volume
line integral convolution based on 3D texture mapping. In Proceedings IEEE Visualiza-
tion ’99, pages 233–240, 1999.

28. J. W. Ruge and K. Stüben. Efficient Solution of Finite Difference and Finite Element
Equations by Algebraic Multigrid. In D. J. Paddon and H. Holstein, editors, Multigrid
Methods for Integral and Differntial Equations, The Institute of Mathematics and its Ap-
plications Conference Series. Clarendon, Oxford, 1985.

29. R. Wegenkittl and E. Gröller. Fast oriented line integral convolution for vector field visu-
alization via the internet. In Proceedings IEEE Visualization ’97, pages 309–316, 1997.

30. W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit: An Object-Oriented
Approach to 3D Graphics. Prentice Hall, New Jersey, 1995.

31. H. W. Shen and D. L. Kao. UFLIC: a line integral convolution algorithm for visualizing
unsteady flows. In Proceedings IEEE Visualization ’97, pages 317–323, 1997.

32. D. Stalling and H.-C. Hege. Fast and resolution independent line integral convolution. In
SIGGRAPH 95 Conference Proceedings, pages 249–256. ACM SIGGRAPH, Addison-
Wesley, New York, 1995.

33. D. Stalling, M. Zöckler, and H.-C. Hege. Fast display of illuminated field lines. IEEE
Trans. Vis. Comput. Graph., 3(2), 1997. ISSN 1077-2626.

34. A. Telea and J. J. van Wijk. 3D IBFV: Hardware-accelerated 3d flow visualization. Pro-
ceedings IEEE Visualization ’03, pages 223–240, 2003.

35. A. C. Telea and J. J. van Wijk. Simplified representation of vector fields. Proceedings
IEEE Visualization ’99, pages 35–42, 1999.

Flow Visualization via Partial Differential Equations 189

36. V. Thomée. Galerkin – Finite Element Methods for Parabolic Problems. Springer, Berlin,
1984.

37. U. Trottenberg, C. W. Osterlee, and A. Schüller. Multigrid, Appendix A: An Introduction
to Algebraic Multigrid by K. Stüben, pages 413–532. Academic, San Diego, 2001.

38. G. Turk and D. Banks. Image-guided streamline placement. In Computer Graphics
(SIGGRAPH ’96 Proceedings), 1996.

39. T. Urness, V. Interrante, I. Marusic, E. Longmire, and B. Ganapathisubramani. Effectively
visualizing multi-valued flow data using color and texture. In Proceedings IEEE Visual-
ization ’03, pages 115–122, 2003.

40. J. J. van Wijk. Spot noise-texture synthesis for data visualization. In T. W. Sederberg,
editor, Computer Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 309–318,
July 1991.

41. J. J. van Wijk. Image based flow visualization. Computer Graphics (Proc. SIG-
GRAPH ’02), ACM, pp. 263–279, 2001.

42. J. J. van Wijk. Image based flow visualization for curved surfaces. Proceedings IEEE
Visualization ’03, pages 123–130, 2003.

43. R. Wegenkittl, E. Gröller, and W. Purgathofer. Animating flow fields: Rendering of ori-
ented line integral convolution. In CA ’97: Proceedings of the Computer Animation, pages
15–21, 1997.

44. J. Weickert. Anisotropic diffusion in image processing. Teubner, Stuttgart, 1998.
45. D. Weiskopf and G. Erlebacher. Flow visualization overview. In Handbook of Visualiza-

tion, pages 261–278. Elsevier, Amsterdam, 2005.
46. D. Weiskopf, G. Erlebacher, and T. Ertl. A texture-based framework for spacetime-

coherent visualization of time-dependent vector fields. In Proceedings IEEE Visualization
’03, pages 107–114, 2003.

47. D. Weiskopf, G. Erlebacher, M. Hopf, and T. Ertl. Hardware-accelerated lagrangian-
eulerian texture advection for 2D flow visualizations. In Proceedings of the Vision Mod-
eling and Visualization Conference 2002 (VMV-02), pages 439–446, 2002.

Iterative Twofold Line Integral Convolution
for Texture-Based Vector Field Visualization

Daniel Weiskopf

Institute of Visualization and Interactive Systems, University of Stuttgart
weiskopf@vis.uni-stuttgart.de

Summary. Iterative twofold convolution is proposed as an efficient high-quality two-stage fil-
tering method for dense texture-based vector field visualization. The first stage employs a com-
pact filter, evaluated via Lagrangian particle tracing. This stage facilitates a flexible design of
filters and is a means of avoiding numerical diffusion. The second stage uses semi-Lagrangian
texture advection with iterative alpha blending to efficiently implement a large-scale exponen-
tial filter. A discussion of frequency-space properties and adequate sampling rates shows that
this order of convolution operations permits large integration step sizes without loss of quality.
Twofold convolution can be used for steady and unsteady vector fields, dye and noise advec-
tion, as well as vector fields on flat manifolds or curved surfaces. The proposed approach is
prepared for an efficient GPU implementation to achieve interactive visualizations.

1 Introduction

Vector field visualization plays an important role in computer graphics and in various
scientific and engineering disciplines alike. For example, the analysis of computa-
tional fluid dynamics (CFD) simulations in the aerospace and automotive industries
relies on effective visual representations. Another field of application is the visual-
ization of surface shape by emphasizing principal curvature vector fields [6].

This paper focuses on texture-based vector field representations that densely
cover the domain with particle traces. The fundamental idea is to introduce high
correlation along particle traces by filtering an input noise texture along these traces,
which can, e.g., be achieved by Line Integral Convolution (LIC) [2]. This correlation
along lines is needed for the human observer to be able to recognize them.

Filtering is an important operation in various applications. Texture filtering [8] is
a typical example in the field of computer graphics. Filtering techniques, in general,
have to address the following issues: (1) quality and properties of the filter, (2) accu-
racy of the computation, and (3) efficiency of the computation. This paper covers all
three issues in the specific context of convolution along curves.

The starting point for the discussion is iterative alpha blending, which is of-
ten used for interactive vector field visualization [10, 19]. This kind of filtering
method just operates on data for the current time step and, therefore, is very fast and

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 191
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

192 D. Weiskopf

memory-friendly, which is particularly important for time-dependent vector fields.
However, iterative alpha blending is affected by rather bad quality due to the restric-
tion to an exponential filter kernel (see Appendix A) and numerical diffusion from
semi-Lagrangian advection [21]. In contrast, direct convolution with completely La-
grangian particle tracing [22] is not subject to these problems but is much more
costly.

The objective of this paper is to combine the performance benefits of iterative
alpha blending with the high quality and flexibility of Lagrangian particle tracing.
This goal is achieved by introducing iterative twofold convolution, which consists of
two convolution stages. The first stage applies a user-specified compact filter kernel,
based on Lagrangian particle tracing. The subsequent iterative alpha blending works
on the prefiltered texture and is responsible for a large-scale exponential filter.

After briefly reviewing previous work in Sect. 2, a continuous description of
the filter process is presented, including a discussion of filters in frequency space
(Sect. 3). Section 4 focuses on a discrete numerical solution and pays special atten-
tion to sampling aspects in order to avoid aliasing artifacts. It is shown that the idea of
twofold convolution can be used for steady and unsteady vector fields, dye and noise
advection, as well as vector fields on flat manifolds or curved surfaces (Sect. 5). A de-
tailed discussion of performance behavior, memory footprint, and obtained visualiza-
tion quality follows in Sect. 6. Section 7 demonstrates that the proposed approach is
prepared for an efficient GPU implementation to achieve interactive visualizations.
The paper closes with a short conclusion and an outlook on possible future work.

2 Previous Work

A large body of research has been published on noise-based and dense vector field
visualization. Comprehensive presentations can be found in the review articles by
Sanna et al. [15], Laramee et al. [11], and Erlebacher et al. [4]. Spot noise [18] and
Line Integral Convolution (LIC) [2] are early texture-synthesis techniques for dense
flow representations and serve as the basis for many subsequent papers that provide
a variety of extensions and improvements to these original methods. Many recent
techniques are based on the closely related concept of texture advection, of which
the basic idea is to represent a dense collection of particles in a texture and transport
this texture along the vector field [13]. Lagrangian–Eulerian Advection (LEA) [10]
employs a Lagrangian integration of particle positions and an Eulerian advection
of particle colors. Image Based Flow Visualization (IBFV) [19] is a variant of 2D
texture advection in which a second texture is blended into the advected texture at
each time step. While LEA and IBFV employ iterative alpha blending to compute the
line integral convolution with an exponential filter, a permanent recomputation of the
complete integral is used within a spacetime framework for texture-based vector field
visualization [22].

Jobard et al. [10] combine the LEA method with LIC postfiltering to remove
aliasing artifacts. Similarly, Okada and Lane [14] apply LIC twice in the form of
“double LIC.” Both articles contain the same basic idea as this paper – the subsequent

Iterative Twofold Line Integral Convolution 193

application of two convolution steps. However, they focus on other aspects of vector
field visualization and, therefore, do not discuss the mathematical background, the
quality issues of filter design, and efficiency improvements, as it is done in this paper.
In another related paper, Hege and Stalling [9] express the convolution integral as a
linear combination of repeated integrals to derive a general Fast LIC algorithm for
piecewise polynomial filter kernels.

The performance and quality of filtering has been extensively investigated in the
context of texture filtering; see, e.g., the survey by Heckbert [8]. Particularly inter-
esting is the efficient computation of convolution with large filter kernels, without
the time-consuming transformation to and from Fourier space. Affine filters, for ex-
ample, can be realized by repeated integration [7], which generalizes the idea of
summed-area tables [3]. A related method implements large linear filters by adding
up the translated outputs of sum-box filters [16]. Unfortunately, most optimization
strategies for 2D texture filtering cannot be directly applied to convolution along
curved lines because crucial underlying assumptions cannot be met.

3 Continuous Twofold Convolution Along Straightened Lines

Line integral convolution [2, 17] evaluates the integral

D(r) =
s0+Le∫

s0−Ls
k̃(s − s0)T (σ (s)) ds , (1)

to compute a gray-scale value in the visualization image D at position r. Vectors
are generally denoted by boldface letters and, typically, exist in 2D or 3D Cartesian
space. The filter kernel is described by k̃(s) and has support [−Ls,Le]. The stream-
line is parameterized by arc length s and yields the position σ (s0) = r. A streamline
is computed from a given vector field u by solving the ordinary differential equation

dσ (τ)

dτ
= u(σ (τ)) , (2)

with the initial condition σ (τ0) = r. In general, τ does not provide an arc-length
parametrization. However, τ can be transformed to an arc-length parameter s by
reparametrization. Arc-length parametrization can be directly obtained from the al-
ternative definition of a streamline according to

dσ (s)

ds
= u(σ (s))

|u(σ (s))| , (2a)

with the initial value σ (s0) = r. Here, the streamline is traced in a normalized vector
field.

For the time being, the original definition of line integral convolution is reformu-
lated to facilitate a direct application of Fourier and convolution theory. A continuous

194 D. Weiskopf

vector field can be straightened in a neighborhood of r if there is no critical point at
r [5]. The idea of straightening is adopted for single streamlines that are treated in-
dividually and independently. It is assumed that the straightening process results in
a continuous deformation of the original streamline so that σ (s) becomes a straight
line along the x axis, still parameterized by arc length. When this straightening is
feasible for the complete domain of the line integral, the original equation (1) can be
rewritten as

d(x) =
x+Le∫

x−Ls
k̃(ξ − x)t (ξ) dξ .

The lower-case letters d and t indicate the analogs of the respective upper-case terms
from (1) after straightening. By replacing

k(x) = k̃(−x) ,

and thanks to the finite support of k(x), the LIC computation is obtained as 1D
convolution:

d(x) = [t ∗ k](x) =
∫ ∞

−∞
k(x − ξ)t (ξ) dξ . (3)

Twofold convolution applies a second convolution operation to an already filtered
image. Since convolution is associative, twofold convolution with kernels k and κ ,

d = (t ∗ k) ∗ κ = t ∗ (k ∗ κ) ,

can be regarded as a single convolution of the input texture t with the combined
kernel k̂ = (k ∗ κ).

In this paper, the second-stage convolution is always based on iterative alpha
blending and, therefore, the filter kernel κ is fixed to an exponential function. As
shown in Appendix A and [4], the first-order approximation of the normalized expo-
nential filter β exp(−βx) corresponds to an iterative alpha blending with α = β�x,
where �x is the discretization step length along the x axis. The exponential filter is
defined for all positive values x and can be described by the Fourier transform pair

fexp(x) = e−2πν0xH(x) ←→ Fexp(ν) = 1

2π

ν0

ν2 + ν2
0

+ −i

2π

ν

ν2 + ν2
0

, (4)

with 2πν0 = β, and without normalization. H(x) is the Heaviside function. Ap-
pendix B derives the Fourier transform of the exponential filter. In general, upper-
case letters denote a function in frequency space and lower-case letters in the time
domain. The complex modulus of Fexp(ν) – its power spectrum – is

|Fexp(ν)| = 1

2π

1
√

ν2 + ν2
0

. (5)

Figure 1 illustrates modulus, real, and imaginary parts of the Fourier transform of
the exponential function. Note that the real part of Fexp(ν) is a Lorentz function.

Iterative Twofold Line Integral Convolution 195

−0.5

0

0.5

1

Fexp(ν)/2π

−8 −4 0 4 8
ν

(Fexp)

| Fexp |

(Fexp)

Fig. 1. Modulus, real, and imaginary parts of the Fourier transform Fexp(ν) for the exponential
filter fexp(x) = exp(−2πν0x)H(x) with ν0 = 1

The frequency domain is adequate to assess the quality of a filter kernel in the
context of dense vector field visualization. The fundamental idea behind any dense
representation is to introduce high correlation along streamlines and no correlation
perpendicular to streamlines. In this way, information about different streamlines is
optimally encoded – in the form of missing correlation between these lines. In con-
trast, correlation along lines is needed for the human observer to be able to recognize
these curves.

The convolution equation (3) does not change the frequency spectrum perpen-
dicular to the x axis, i.e., the spectrum of the input texture remains invariant for any
direction that is perpendicular to the x direction. Therefore, the input texture should
contain high frequencies to achieve uncorrelated neighboring streamlines. The in-
put texture is usually generated as band-limited noise to avoid aliasing artifacts in
a discrete setting (see Sect. 4). The convolution process targets a removal of high
frequencies – it serves as a low-pass filter along streamlines. The convolution theo-
rem relates convolution in the time domain to multiplication in frequency space,

f (x) ∗ g(x) ←→ F(ν)G(ν) .

Although the input texture t is band-limited, it usually contains a rather high max-
imum frequency. A final low-frequency image can only be obtained with a filter
kernel that has a sufficiently fast fall-off in frequency space.

Twofold convolution provides flexibility in choosing the filter function k and the
combined kernel k̂. This is important because the exponential kernel κ has a rather
slow fall-off characteristic: Its power spectrum, (5), diminishes inversely with fre-
quency only to the first power. Therefore, methods that only employ an exponential

196 D. Weiskopf

filter retain much high-frequency noise along streamlines. An important benefit of
twofold convolution is that the additional kernel k can be chosen to design an overall
filter with a better fall-off behavior. The Bartlett (or triangular) window, which has
finite support in the time domain, is a typical example for such a filter kernel. The
Fourier transform pair of the normalized Bartlett function of total width 2w is

fbartlett(x) =
{
w−|x|
w2 if |x| ≤ w

0 if |x| > w ←→ Fbartlett(ν) = sinc2(wν) ,

with sinc(x) = sin(πx)/(πx) [1].
The power spectrum of the Bartlett window attenuates inversely with frequency

to the second power. Therefore, the Fourier transform of the combined filter, which
is the product of the Fourier transforms of the exponential and Bartlett functions,
has an even more pronounced fall-off. Other kernels, such as Hamming or Gaussian
windows, could also be applied to reduce high frequencies. All these filters have
in common a continuous kernel function. In contrast, the exponential filter has a
discontinuous onset at its origin, which contributes much high-frequency energy.
A purely iterative computation of the exponential filter, however, does not permit to
change this fact.

Actual filter design can be performed in two different ways. The three filter ker-
nels are related to each other according to k̂ = (k ∗κ). Only κ is fixed to an exponen-
tial function. Either the overall filter k̂ can be specified, or the first-stage convolution
filter k. From a user-given k̂, k is best determined in frequency space, in which con-
volution corresponds to an easily invertible multiplication.

4 Discretization and Sampling

A vector field visualization algorithm usually discretizes the continuous convolution
process to compute images numerically. The discretization typically comprises two
elements: (1) the approximation of the convolution integral by a Riemann sum, and
(2) an explicit integration scheme for (2) to compute streamlines σ (s) as basis for
straightening.

We first address the approximation of the integral according to the Riemann sum

d(x) ≈
∑

j

k(x − ξj)t (ξj)�ξ .

Here, a constant sampling rate �ξ is assumed so that the sampling positions are
equidistant, i.e., ξj = j�ξ . The summation involves a sampling of the input texture
and, therefore, the sampling theorem has to be applied to ensure an adequate sam-
pling rate. According to the sampling theorem, the sampling frequency has to be at
least the Nyquist frequency νnyquist = 2νmax, where νmax is the maximum frequency
of the band-limited signal.

Twofold convolution first applies the filter k to the input texture t , and then the
filter κ to the result of the first convolution. Therefore, the first convolution step is

Iterative Twofold Line Integral Convolution 197

governed by the Nyquist frequency 2νt , where νt is the maximum frequency of t . The
input texture t is typically created in a preprocessing step, based on accurate filtering.
Therefore, νt should be well known, and the sampling rate for the first convolution
can be set to �ξ = 1/(2νt).

The second convolution, implemented as iterative alpha blending, applies the fil-
ter κ to the result of the first convolution stage, t̂ = t ∗ k. The maximum frequency
of this input data is given by the minimum of νt and νk , where νk is the maximum
frequency of the kernel function k. The kernel k is typically chosen so that νk is much
smaller than νt . In practice, νk is often set to the frequency at which the contribution
to the Fourier transform K becomes negligible. Accordingly, the sampling distance
for the second convolution computation can be set to �x = 1/(2νk), which is larger
than for the first convolution step. Twofold convolution allows us to use larger inte-
gration steps for iterative alpha blending when compared to previous methods that
rely on the exponential filter only. To achieve precise results, the actual blending
equation is not based on standard alpha blending, d(x) = αt̂(x)+(1−α)d(x−�x),
but on the more accurate expression

d(x) = αt̂(x)+ e−αd(x −�x) , with α = β�x , (6)

which is derived in Appendix A. The data flow for the complete twofold convolution
process is depicted in Fig. 2.

The other numerical issue concerns the explicit integration scheme that solves
the ordinary differential equation (2) to determine streamlines and the corresponding
straightening. When taking into account the straightening of the actual nD vector
field, the term (x −�x) in (6) corresponds to the backward integration of a particle
trace for one integration step. The often-used Euler integration just needs the vector
field at the current time step (this is true even for time-dependent data, see Sect. 5).
The evaluation of d(x − �x) corresponds to accessing the display texture d at the
previous time step. Since the display texture is stored in discrete form on a uniform
grid (i.e., a texture) and (x−�x) usually does not correspond to grid point positions,
the access requires an interpolation scheme. Tensor-product linear interpolations are
usually employed for resampling.

The great advantage of this semi-Lagrangian advection scheme is that the display
texture d , the input texture t̂ , and the vector field need to be stored only for the current

Blending

Advected Texture

Semi−Lagrangian
Advection

Input Texture

First Stage
Convolution

Fig. 2. Dataflow for twofold convolution

198 D. Weiskopf

integration step. Previous computations can be overridden and data from earlier time
steps can be released from memory. A major disadvantage is numerical diffusion,
caused by a continuous resampling of the display field [21].

The degree of artificial diffusion increases with the number of resampling op-
erations. Twofold integration significantly reduces this artifact by decreasing the
number of integration and resampling steps during iterative alpha blending. Fur-
thermore, direct convolution for the first convolution stage has to evaluate all pre-
vious positions in t along the support of the filter kernel k and, therefore, anyway
requires a completely Lagrangian integration, which is not affected by numerical
diffusion.

Another beneficial feature of twofold integration is the possibility to reuse results
of streamline computation. The direct convolution for the first stage covers a finite
distance in space – the support of k – in which several finely spaced streamline
locations are computed. The second convolution with the exponential filter just needs
a single backward particle-tracing step. The extent of this backward integration lies
within already computed streamline positions from the first convolution.

The Bartlett window can be used to illustrate this behavior. The Fourier transform
of the Bartlett window of total width 2w has its first zero crossing at νbartlett = 1/w.
Assuming νbartlett as (approximate) maximum frequency, the integration step size for
the exponential filter should be�x = w/2. This is one half of the maximum distance
that has been computed during the Lagrangian integration, which covers a distance
w in positive and negative directions.

Other compact filters k have a similar qualitative behavior. In any case, the accu-
rately computed streamlines from the first convolution stage can be directly used for
an accurate semi-Lagrangian integration of the second convolution.

5 Extended Scenarios

This section extends the fields of application of twofold convolution beyond the vi-
sualization of LIC-like streamlines.

The first extension eliminates the restriction to an arc-length parametrization of
streamlines. For example, the magnitude of the vector field can be used as a mea-
sure for the velocity of the parametrization in order to visualize different speeds by
different lengths of streamline streaks. This extension does not require any modifi-
cation of the actual convolution methods. Only particle tracing is slightly changed to
take into account a varying spacing of streamline positions. A side effect is that the
spatial frequency of the input texture t is modified by straightening. The maximum
frequency after straightening should be used to determine the sampling distance dur-
ing convolution in order to avoid aliasing.

This sampling distance can be easily computed for a velocity-based stream-
line parametrization. A single Euler step of streamline integration covers a length
h |u|, where u is the current vector field value and h the Euler step size. Let
umax be the maximum magnitude of the vector field. Then, humax is the maximum

Iterative Twofold Line Integral Convolution 199

integration distance, which must not exceed the reciprocal of the Nyquist frequency
of the input texture, νnyquist. Consequently, the Euler step size should be chosen as
h = 1/(νnyquistumax) to avoid aliasing. An analogous reasoning is possible for any
other particle tracing scheme.

Critical points of a vector field are another aspect that has not been covered so
far. Streamline straightening breaks down at critical points because streamline inte-
gration cannot cross these points. A possible solution would be to stop the complete
integration and convolution process at critical points, but this solution has not yet
been implemented.

Another extension includes the visualization of time-dependent vector fields.
IBFV [19] and LEA [10] produce streakline-like structures for unsteady flow
fields [4]. Analogously, twofold convolution can be readily applied to time-dependent
vector fields. The only modification concerns the computation of convolution lines.
Here, the time dependency of the vector field has to be taken into account to
compute streaklines instead of streamlines. A closely related extension allows for
time-dependent input (noise) textures. Their time dependency has to be considered
during the first convolution stage by sampling at adequate spatial and temporal
locations.

A fundamental problem of streakline-based convolution is the fact that streak-
lines can cross each other. At a fixed time, a neighboring point B on a streakline
that ends at point A may be the ending point for a completely different streakline.
For example, a rotating uniform 2D flow (cos τ, sin τ) (where τ is time) leads to
circular streaklines of constant radius. These circular streaklines exist at any point
of the domain and, therefore, densely cross each other. In this case, the model of
correlation along curves breaks down because neighboring points on curves do not
receive a related value from the convolution integral. This problem affects not only
twofold convolution, but any streakline-oriented noise-based vector field visualiza-
tion. A good solution is to reduce the density of the visual representation similarly
to Oriented LIC (OLIC) [20]. A sparse input texture leads to sparse and individ-
ually distinguishable streaklines after convolution. In this case, the display of a
streakline is not “diluted” by neighboring texels. This approach is particularly ef-
fective for short streaklines – streaklets – which reduce the probability of mutual
crossing.

Dye advection is an example for an extremely sparse vector field representation.
Similarly to dye advection in IBFV and LEA, either a very slow fall-off of the expo-
nential filter is chosen or no fade-out is applied at all. Otherwise, there is no change
required for dye advection via twofold convolution.

Finally, twofold convolution can be extended to vector fields on curved surfaces.
Adopting the idea of image-space advection [12], a 3D vector field is first projected
onto the image plane. In the second step, 2D vector field visualization is applied
to the projected vector field. This 2D visualization can directly be generated by
twofold convolution working on the image plane. However, the use of hybrid image-
space/object-space Lagrangian integration is favorable for the first convolution stage
because of several quality improvements described in previous work [23].

200 D. Weiskopf

6 Discussion of Costs and Quality

This section discusses the performance behavior and memory footprint of twofold
convolution. Issues of visualization quality are also taken into account.

Performance characteristics are considered first. A constant filter length and a
constant sampling rate are assumed for the first convolution stage (i.e., the direct
convolution). Therefore, the total number of sampling steps per convolution is fixed
to ndirect. Then, the total computation time for this part is estimated as

ndirect × (taccum + tODE) ,

where tODE is the time needed for one numerical integration step for the ordinary
differential equation (ODE) from (2) and taccum is the time for one accumulation
operation for the Riemann sum of the convolution integral. The second part reuses
the above ODE computation and just executes one alpha-blending operation. The
total time for this part is estimated as tblend.

To roughly compare these performance costs to those for purely iterative alpha
blending, the following assumptions are made. As illustrated for the Bartlett win-
dow in Sect. 4, a symmetric filter kernel k of total width 2w is assumed to result
in a sampling distance w/2 for the second convolution stage. With the same ODE
integration step size as above, we have to perform purely iterative alpha blending
(ndirect/4) times to cover the same distance as before. Accordingly, the total time for
purely iterative alpha blending would be

1

4
ndirect × (tblend + tODE) .

Neglecting the difference between tblend and taccum, the estimates for computation
times approximately form a 1:4 ratio for purely iterative alpha blending vs. twofold
convolution. A comparison with completely Lagrangian schemes is not possible be-
cause Lagrangian integration hardly supports exponential filters.

The memory footprint of twofold convolution is determined by the following as-
pects. Memory arrays in nD (for an nD vector field) are required to store accumulated
gray-scale values and intermediate coordinates from Lagrangian ODE integration.
A constant and very small number of these arrays is needed. Details are discussed for
an actual GPU implementation in Sect. 7. Purely iterative alpha blending has com-
parable memory requirements. For time-dependent vector fields and input (noise)
textures, however, twofold convolution has a higher memory footprint because it
needs access to both types of nD data structures for the time span covered by the
first convolution stage. These memory costs can be controlled by the size of the filter
kernel k.

The last part of this section covers visualization quality. Compared to purely it-
erative alpha blending, twofold convolution has two important advantages: flexible
filter design and reduced numerical diffusion. The exponential filter leads to inappro-
priate high-frequency noise along streamlines or streaklines. This problem is greatly
reduced by smoother filters within twofold convolution.

Iterative Twofold Line Integral Convolution 201

Analogously to filter design in frequency space, the flexibility in choosing kernel
functions can also be useful for filter design in the time domain. This design approach
plays an important role in sparse representations that follow the idea of OLIC [20].
Here, the input texture consists of isolated injection points that are transformed into
distinguishable streaklines after convolution. The texture input is similar to a collec-
tion of δ impulses and, therefore, the intensity profile along a streakline reflects the
impulse response of the filter. As this response is described by the kernel function, a
filter design in the time domain allows us to directly control the visual representation
of streaklines.

The other quality aspect is connected to numerical diffusion by semi-Lagrangian
advection. This diffusion is not only along streamlines or streaklines but also perpen-
dicular to them. This artifact removes high frequencies perpendicular to convolution
curves and thus reduces the information contents of the visualization. Essentially,
the resolution of the vector field representation is decreased and fine details could be
glossed over. In contrast, twofold integration significantly reduces numerical diffu-
sion by decreasing the number of resampling steps during iterative alpha blending.

Twofold convolution is related to postfiltering for LEA [10], where a LIC fil-
ter for a time-independent “frozen” vector field is applied after an iterative alpha
blending based on LEA. As pointed out by Erlebacher et al. [4], LEA generates (in-
verse) streaklines. Both streaklines and pathlines are different from streamlines for
unsteady flow. Twofold convolution computes streaklines in both convolution stages
and therefore achieves an appropriate overall convolution along consistent curves. In
addition, twofold convolution can reuse ODE integration results for the large expo-
nential filter, which is not possible with LEA postfiltering. Similarly, “double LIC”
by Okada and Lane [14] neither reuses ODE results nor exploits a reduced sampling
rate for the second convolution computation.

7 Implementation and Results

The GPU implementation of twofold convolution is based on C++ and DirectX 9.0,
and was tested on Windows XP machines with ATI Radeon 9800 XT (256 MB), ATI
Radeon X800 XT Platinum Edition (256 MB), and NVIDIA GeForce 6800 Ultra
(256 MB) GPUs. GPU states and programs (i.e., vertex and pixel shader programs)
are configured within effect files. A change of this configuration can be incorpo-
rated by modifying the clear-text effect files, without recompiling the C++ code.
Shader programs are partly formulated with high-level shading language (HLSL),
partly as assembler-level programs. Most elements of the visualization algorithms
take place on a texel-by-texel level. This essentially reduces the role of the surround-
ing C++ program to allocating memory for the required textures and executing the
pixel shader programs by drawing single domain-filling quadrilaterals. The shader
programs require the functionality of a DirectX 9.0 compliant GPU.

Lagrangian integration in Cartesian 2D space makes use of a previous implemen-
tation that already supports arbitrary user-defined filter kernels [22]. Any texture-
related data is stored in 2D textures; a time-dependent vector field is represented

202 D. Weiskopf

by a stack of 2D textures. Multi-pass rendering is employed to compute particle
tracing and simultaneously accumulate the gray-scale contributions to the convolu-
tion integral. Intermediate positions along particle traces are held in a coordinate
array, accumulated gray-scale values in a property texture. Both textures are updated
according to ping-pong rendering, utilizing render-to-texture functionality. Alterna-
tively, multi-pass rendering can be replaced by a loop in the pixel shader that com-
putes the complete particle trace and the convolution integral in a single render pass
on a Shader Model 3 compliant GPU such as an NVIDIA GeForce 6800 Ultra. The
second convolution stage accesses a coordinate array with previously computed par-
ticle positions and applies alpha blending based on the property texture. The property
texture has 16-bit resolution to allow for an adequate accuracy for the Riemann sum
of a large number of samples along a convolution curve. A 16-bit texture format is
also used to represent coordinate arrays and the vector field, while 8-bit resolution is
sufficient for input noise textures.

The implementation of the first convolution stage for vector fields on curved
surfaces is adopted from previous work [23]. 32-bit floating-point textures are used
to represent coordinates during particle integration, 16-bit textures are used for the
accumulated gray-scale values and the flow data alike, and the input noise is held in
an 8-bit texture. The second convolution stage works directly on the image plane and
is analogous to the second stage for 2D Cartesian vector field visualization.

Figure 3 shows results of GPU-based dense 2D vector field visualization, based
on various parameter settings. Histogram equalization is applied to all images. The
vector field originates from a numerical simulation of convection flow on a uniform
grid. Low-pass filtered white noise (Fig. 3a) is used as input texture. Figure 3b shows
the intermediate result of the first stage of twofold convolution. Here, a Bartlett win-
dow is applied with sampling at 2×10 positions (the factor 2 indicates that the filter
kernel is symmetric). Figure 3c displays the final visualization generated by twofold
convolution. In contrast, Figs. 3d–f are produced by purely iterative alpha blending.
Figure 3d uses the same small sampling distance as in the first stage of twofold con-
volution to avoid aliasing artifacts; the alpha blending factor is modified to resemble
Fig. 3c. Therefore, Figs. 3c,d should be examined for a faithful comparison between
twofold convolution and purely iterative alpha blending. This comparison demon-
strates that iterative blending provides rather poor quality and, therefore, supports
the theoretical discussion of quality from Sect. 6. Figure 3e uses the same large sam-
pling distance and alpha factor as for the second stage of twofold convolution; severe
aliasing artifacts occur due to missing prefiltering. Finally, Fig. 3f employs the same
sampling rate as in (b) and (d), along with the alpha value from (e); this leads to very
short streaks.

Figure 4 shows results of sparse 2D vector field visualization. The same flow
field and visualization methods are used as in Fig. 3. Histogram equalization is ap-
plied to all images as well. Only the input texture is different – it contains a rather
small number of white blobs. In this way, a visualization is achieved in the tradition
of OLIC [20]. Figure 4a displays the input texture. Figure 4b shows the intermedi-
ate result of the first stage of twofold convolution (Bartlett window of size 2×10).
Figure 4c displays the result of twofold convolution, while Figs. 4d–f are produced

Iterative Twofold Line Integral Convolution 203

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Dense vector field visualization. Image (a) shows the input noise, (b) the result of
the first stage of twofold convolution, and (c) the final visualization generated by twofold
convolution. Pictures (d)–(f) are produced by purely iterative alpha blending. Image (d) uses
a small sampling distance along with a wide exponential filter to resemble (c), picture (e) uses
a larger sampling distance, and (f) employs a narrow exponential filter with a small sampling
distance

by purely iterative alpha blending. As before, Fig. 4d uses a small sampling distance
along with a modified exponential filter to resemble the result of twofold convolution.
Figure 4e employs the same sampling distance as for the second stage of twofold con-
volution, which leads to aliasing. Short streaks are generated by a narrow exponential

204 D. Weiskopf

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Moderately sparse vector field visualization. Image (a) shows the input image, (b) the
result of the first stage of twofold convolution, and (c) the final visualization generated by
twofold convolution. Pictures (d)–(f) are produced by purely iterative alpha blending. Im-
age (d) uses a small sampling distance along with a wide exponential filter to resemble (c),
picture (e) uses a larger sampling distance, and (f) employs a narrow exponential filter with a
small sampling distance

filter with small sampling distance in Fig. 4f. Again, a comparison between twofold
convolution and purely iterative alpha blending should be based on Figs. 4c,d. Nu-
merical diffusion caused by semi-Lagrangian texture advection is a most noticeable
artifact in Fig. 4d, while Fig. 4c provides clearly defined streaks.

Iterative Twofold Line Integral Convolution 205

Fig. 5. Dense vector field visualization on a curved surface, using twofold convolution

Figure 5 illustrates dense vector field visualization on curved surfaces. The vector
field originates from an industrial 3D simulation of air flow around an automobile.
The tangential component of this vector field is extracted at the surface to obtain
input data for surface flow visualization. The visualization is based on twofold con-
volution, where the first convolution stage uses a Bartlett window with sampling at
2×14 positions.

Figure 6 compares different methods for vector field visualization on surfaces.
Here, the same data set is shown as in Fig. 5 – only the base surface is added and
the viewpoint is changed. Figure 6a shows the intermediate result of the first stage
of twofold convolution. Here, a Bartlett window is applied with sampling at 2×14
positions. Figure 6b presents the final result of twofold convolution. For compari-
son, Figs. 6c,d show purely iterative blending with the same alpha factor as in (b).
Figure 6c is affected by aliasing artifacts because the same large sampling distance
is used as for the second convolution stage in (b). Figure 6d is based on a smaller
sampling distance, which results in short streaks.

Table 1 shows performance measurements for different GPU-based 2D vector
field visualization methods and various parameter settings. The measurements were
conducted on a Windows XP machine with ATI Radeon 9800 XT GPU (256 MB).
The first convolution stage makes use of a Bartlett window that is evaluated at either
2×10 or 2×20 sampling positions. The row “twofold convolution” describes the
overall performance for twofold convolution, including the two convolution stages
and the final display with histogram equalization. The line “iterative blending (raw)”
shows the performance of purely iterative alpha blending with semi-Lagrangian tex-
ture advection, including the final display. Here, the performance is independent of
the filter length because only a single texture-advection step is executed.

206 D. Weiskopf

(a) (b)

(c) (d)

Fig. 6. Dense vector field visualization on curved surfaces. Image (a) shows the intermediate
result of the first stage of twofold convolution, image (b) the final result of twofold convolution
after the second convolution stage. Pictures (c) and (d) are produced by purely iterative alpha
blending. Image (c) uses the same blending factor and the same large sampling distance as for
the second convolution stage in (b), which leads to aliasing. Image (d) is based on a smaller
sampling distance and the same blending factor as in (b), resulting in short streaks

Table 1. Performance of GPU-based 2D vector field visualization in frames per second on an
ATI Radeon 9800 XT GPU

Domain size 5122 10242

Filter length 2 × 10 2 × 20 2 × 10 2 × 20

Twofold convolution 64.9 41.8 16.9 10.7
Iterative blending (raw) 688.0 688.0 192.9 192.9
Iterative blending (normalized) 137.6 68.8 38.6 19.3

Iterative Twofold Line Integral Convolution 207

As discussed in Sect. 6, purely iterative alpha blending has to be performed
(ndirect/4) times to cover the same distance as twofold advection. This fact is taken
into account in the row “iterative blending (normalized).” A fair comparison between
twofold convolution and iterative blending should consider this normalized perfor-
mance of alpha blending. Then, the performance numbers roughly show a 1:2 ratio
for twofold convolution vs. purely iterative blending, which is even more balanced
than the theoretical estimate from Sect. 6. The deviation from the estimate can be pri-
marily explained by the additional overhead for the display of intermediate results in
purely iterative blending. At large, the performance measurements demonstrate that
twofold convolution achieves a rendering speed comparable to the fastest known
vector field visualization methods.

Similarly to the Cartesian 2D case, the performance of twofold convolution on
curved surfaces is primarily determined by the costs for the first convolution stage.
As an example, the visualization from Fig. 6b is rendered with 5.1 frames per second
on a 9502 viewport (ATI Radeon X800 XT Platinum Edition GPU).

8 Conclusion

Iterative twofold convolution has been introduced as an efficient high-quality two-
stage filtering method for dense texture-based vector field visualization. The first
stage applies a user-specified compact filter kernel, based on Lagrangian particle
tracing. This stage facilitates a flexible design of filters and avoids numerical diffu-
sion. The second stage applies iterative alpha blending to implement a large-scale
exponential filter.

A discussion of frequency-space properties and adequate sampling rates has
shown that this order of convolution operations is beneficial because it facilitates
large integration step sizes. It has been demonstrated that the idea of twofold convo-
lution can be used for steady and unsteady vector fields, dye and noise advection, as
well as vector fields on Cartesian 2D domains and on curved surfaces. Finally, the
proposed approach fits nicely into existing GPU-based visualization techniques and
therefore facilitates interactive vector field visualization.

In future work, twofold convolution could be incorporated in existing GPU-based
3D vector field visualization methods [24].

A Exponential Filter and Iterative Alpha Blending

This section shows that a first-order approximation of the normalized exponen-
tial filter β exp(−βx)H(x) corresponds to iterative alpha blending, where H(x) is
the Heaviside function. A closely related derivation can be found in an article by
Erlebacher et al. [4].

A scenario with straightened streamlines is assumed, as laid out in Sect. 3. This
setting implies a vector field with normalized magnitude, pointing along the positive
x axis. Applying the exponential filter to the convolution equation (3),

208 D. Weiskopf

d(x) =
∫ ∞

−∞
k(x − ξ)t (ξ) dξ =

∫ ∞

−∞
k(ξ)t (x − ξ) dξ =

∫ ∞

0
βe−βξ t (x − ξ) dξ ,

leads to the Riemann sum

d(x) ≈
∞∑

j=0

βe−βj�ξ t (x − j�ξ)�ξ ,

after sampling with equidistant rate �ξ . Based on this approximation, the image is
evaluated at the subsequent sampling position downstream the vector field,

d(x +�ξ) =
∞∑

j=0

βe−βj�ξ t (x − (j − 1)�ξ)�ξ

=
∞∑

j=−1

βe−β(j+1)�ξ t (x − j�ξ)�ξ ,

to obtain the recursion relation

d(x +�x) = αt(x +�x)+ e−αd(x) , with α = β�x .

First-order approximation of the exponential function leads to the alpha blending
equation

d(x +�x) = αt(x +�x)+ (1 − α)d(x) .

Either one of the two previous blending equations can be the basis for a recursive
computation of exponential filtering. It is not possible to evaluate the underlying
infinite sum because d(x) is not available for x → −∞. In fact, the sum is truncated
by setting a recursion beginning d(x0) = 0 at starting point x0. Nevertheless, for
x > x0, the truncated computation of d(x) converges to the infinite sum.

B Fourier Transform of the Exponential Filter

In this section, the Fourier transform of the exponential filter is computed. To be
more specific, the Fourier transforms of the functions

f : R −→ R , x �−→ f (x) = e−2πν0|x|

and

g : R −→ R , x �−→ g(x) = e−2πν0xH(x)

Iterative Twofold Line Integral Convolution 209

are considered. Starting with f , we have to evaluate

F(ν) =
∫ ∞

−∞
e−2πν0|x|e−2π iνx dx

=
∫ ∞

−∞
e−2πν0|x| (cos(2πνx)− i sin(2πνx)) dx

=
∫ ∞

0
e−2πν0x(cos(2πνx)+ i sin(2πνx)) dx

+
∫ ∞

0
e−2πν0x(cos(2πνx)− i sin(2πνx)) dx

= 2
∫ ∞

0
e−2πν0x cos(2πνx) dx .

The integral of the exponentially damped cosine function yields

∫

e−�x cos(ωx) dx = e−�x

ω2 +�2
[ω sin(ωx)−� cos(ωx)]

after integration by parts. Accordingly, the definite integral is
∫ ∞

0
e−�x cos(ωx) dx = �

ω2 +�2
.

Therefore, the Fourier transform of f is the Lorentz function

F(ν) = 1

π

ν0

ν2 + ν2
0

.

The Fourier transform of g is similar:

G(ν) =
∫ ∞

0
e−2πν0xe−2π iνx dx =

∫ ∞

0
e−2πν0x(cos(2πνx)− i sin(2πνx)) dx .

The cosine term, once again, leads to a Lorentz function.Analogously, the integral of
the exponentially damped sine function yields

∫

e−�x sin(ωx) dx = − e−�x

ω2 +�2 [� sin(ωx)+ ω cos(ωx)] ,

with the definite integral
∫ ∞

0
e−�x sin(ωx) dx = ω

ω2 +�2 .

Finally, the Fourier transform of g is

G(ν) = 1

2π

ν0

ν2 + ν2
0

+ −i

2π

ν

ν2 + ν2
0

.

210 D. Weiskopf

Acknowledgments

The data set used for Figs. 5 and 6 was provided by the BMW Group. Thanks to
Simon Stegmaier for fruitful discussions on texture advection. Special thanks to
Bettina A. Salzer for proof-reading.

References

1. D. Brook and R. J. Wynne. Signal Processing: Principles and Applications. Edward
Arnold, London, 1988.

2. B. Cabral and L. C. Leedom. Imaging vector fields using line integral convolution. In
Proc. ACM SIGGRAPH 1993, pages 263–270, 1993.

3. F. C. Crow. Summed-area tables for texture mapping. Computer Graphics (Proc. ACM
SIGGRAPH 1984), 18(3):207–212, 1984.

4. G. Erlebacher, B. Jobard, and D. Weiskopf. Flow textures: High-resolution flow visual-
ization. In C. D. Hansen and C. R. Johnson, editors, The Visualization Handbook, pages
279–293. Elsevier, Amsterdam, 2005.

5. T. Frankel. The Geometry of Physics: An Introduction. Cambridge University Press, New
York, 2001.

6. G. Gorla, V. Interrante, and G. Sapiro. Texture synthesis for 3D shape representation.
IEEE Transactions on Visualization and Computer Graphics, 9(4):512–524, 2003.

7. P. S. Heckbert. Filtering by repeated integration. Computer Graphics (Proc. ACM SIG-
GRAPH 1986), 20(4):315–321, 1986.

8. P. S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and Applications,
6(11):56–67, 1986.

9. H.-C. Hege and D. Stalling. Fast LIC with piecewise polynomial filter kernels. In H.-C.
Hege and K. Polthier, editors, Mathematical Visualization, pages 295–314. Springer,
Heidelberg, 1998.

10. B. Jobard, G. Erlebacher, and M. Y. Hussaini. Lagrangian-Eulerian advection of noise
and dye textures for unsteady flow visualization. IEEE Transactions on Visualization and
Computer Graphics, 8(3):211–222, 2002.

11. R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and D. Weiskopf. The state
of the art in flow visualization: Dense and texture-based techniques. Computer Graphics
Forum, 23(2):143–161, 2004.

12. R. S. Laramee, J. J. van Wijk, B. Jobard, and H. Hauser. ISA and IBFVS: Image space
based visualization of flow on surfaces. IEEE Transactions on Visualization and Com-
puter Graphics, 10(6):637–648, 2004.

13. N. Max and B. Becker. Flow visualization using moving textures. In Proc. ICASW/LaRC
Symposium on Visualizing Time-Varying Data, pages 77–87, 1995.

14. A. Okada and D. Lane.Enhanced line integral convolution with flow feature detection. In
Proc. IS&T/SPIE Electronic Imaging 1997, pages 206–217, 1997.

15. A. Sanna, B. Montrucchio, and P. Montuschi. A survey on visualization of vector fields
by texture-based methods.Recent Res. Devel. Pattern Rec., 1:13–27, 2000.

16. J. Shen, W. Shen, S. Castan, and T. Zhang. Sum-box technique for fast linear filtering.
Signal Processing, 82(8):1109–1126, 2002.

17. D. Stalling and H.-C. Hege. Fast and resolution independent line integral convolution. In
Proc. ACM SIGGRAPH 1995, pages 249–256, 1995.

Iterative Twofold Line Integral Convolution 211

18. J. J. van Wijk. Spot noise – texture synthesis for data visualization. Computer Graphics
(Proc. ACM SIGGRAPH 1991), 25(4):309–318, 1991.

19. J. J. van Wijk. Image based flow visualization. ACM Transactions on Graphics, 21(3):
745–754, 2002.

20. R. Wegenkittl, E. Gröller, and W. Purgathofer. Animating flow fields: Rendering of ori-
ented line integral convolution. In Computer Animation 1997, pages 15–21, 1997.

21. D. Weiskopf. Dye advection without the blur: A level-set approach for texture-based
visualization of unsteady flow. Computer Graphics Forum (Proc. Eurographics 2004),
23(3):479–488, 2004.

22. D. Weiskopf, G. Erlebacher, and T. Ertl. A texture-based framework for spacetime-
coherent visualization of time-dependent vector fields. In Proc. IEEE Visualization 2003,
pages 107–114, 2003.

23. D. Weiskopf and T. Ertl. A hybrid physical/device-space approach for spatio-temporally
coherent interactive texture advection on curved surfaces. In Proc. Graphics Interface,
pages 263–270, 2004.

24. D. Weiskopf, T. Schafhitzel, and T. Ertl.Real-time advection and volumetric illumination
for the visualization of 3D unsteady flow. In Proc. Eurovis (EG/IEEE TCVG Symposium
on Visualization), pages 13–20, 2005.

Constructing 3D Elliptical Gaussians
for Irregular Data

Wei Hong, Neophytos Neophytou, Klaus Mueller, and Arie Kaufman

Center for Visual Computing and Department of Computer Science, Stony Brook University
{weihong, nneophyt, mueller, ari}@cs.sunysb.edu

Summary. Volumetric datasets obtained from scientific simulation and partial differential
equation solvers are typically given in the form of non-rectilinear grids. The splatting tech-
nique is a popular direct volume rendering algorithm, which can provide high quality ren-
dering results, but has been mainly described for rectilinear grids. In splatting, each voxel is
represented by a 3D kernel weighted by the discrete voxel value. While the 3D reconstruc-
tion kernels for rectilinear grids can be easily constructed based on the distance among the
aligned voxels, for irregular grids the kernel construction is significantly more complicated.
In this paper, we propose a novel method based on a 3D Delaunay triangulation to create 3D
elliptical Gaussian kernels, which then can be used by a splatting algorithm for the rendering
of irregular grids. Our method does not require a resampling of the irregular grid. Instead, we
use a weighted least squares method to fit a 3D elliptical Gaussian centered at each grid point,
approximating its Voronoi cell. The resulting 3D elliptical Gaussians are represented using a
convenient matrix representation, which allows them to be seamlessly incorporated into our
elliptical splatting rendering system.

1 Introduction

Direct volume rendering is an important technology in the fields of computer graph-
ics, as well as scientific and medical visualization. It allows the user to comprehend
and visualize a volumetric dataset directly, without requiring the generation of a
polygonal iso-surface. Volumetric datasets are commonly classified as rectilinear or
non-rectilinear, according to their grid structure. Here, both the curvilinear and the
unstructured grids belong to the class of non-rectilinear grids, while cubic grids are
the simplest case of rectilinear grids. The volumetric datasets obtained from scientific
simulation and partial differential equation solvers are typically given in the form of
non-rectilinear grids.

The straightforward method to visualize non-rectilinear grids is to resample them
into a rectilinear grid [1], where usual rendering methods readily apply. However, as a
non-rectilinear grid may consist of cells of drastically different sizes, the resampling
approach may either cause a loss of important information or result in a huge dataset.
Thus, several techniques have been developed for the direct volume rendering of

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 213
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

214 W. Hong et al.

non-rectilinear grids, i.e., ray casting, cell projection, and splatting. Ray casting is
the most popular direct volume rendering technique where volume rendered images
are generated by casting rays from the viewer’s eye, through the screen pixels, into
a 3D volume, and compositing the contributions of all sample points taken along
each ray into the corresponding screen pixel. Many algorithms for the ray casting
of non-rectilinear grids have been developed [2–4]. Since a non-rectilinear grid may
be composed of cells of drastically different sizes, sampling with a constant interval
along a ray is not desirable. Therefore, sample points are usually taken at the intersec-
tions of rays and cells, which tends to be very time-consuming. In the cell projection
technique [5], a cell in a volume is projected onto the screen, and its contribution to
the pixels under its projection extent is calculated and composited with the contri-
butions from the previously projected primitives. Cell projection algorithms need to
obtain the proper cell visibility ordering to generate the correct compositing result.
Here, the cell visibility ordering itself is not trivial and can be rather time consuming.

The splatting technique has become quite popular for directly rendering volu-
metric datasets of various grid structures. The original algorithm, first proposed by
Westover [6] for rectilinear grids, projects each voxel onto the image plane and com-
posites the result into an accumulation image. As each voxel is projected onto the im-
age plane, the voxel’s energy is spread over the image raster using the 2D projection
of a 3D reconstruction kernel, which is centered at the voxel’s projection point. For
regular grids, the 3D reconstruction kernel, also called a splat, is spherically symmet-
ric and centered at a voxel. Since the splat is reconstructed into a 2D image raster, it
can be implemented as a 2D reconstruction kernel called a “footprint function,” con-
taining the integration of the 3D kernel along the projection direction. By ways of
2D texture mapping, rectilinear grids can be quickly rendered with a single polygon
per voxel and using a single Gaussian kernel for all voxels. The direct extension of
this technique to non-rectilinear grids is not straightforward, because the appropriate
kernels for non-rectilinear grids are not easy to calculate. In this case, the splats are
arbitrary ellipsoidal kernels, with their shape being defined by the local grid structure.

Both ray-casting and cell projection algorithms have been extended for the vol-
ume rendering of non-rectilinear grids. Recently, graphics hardware has been used
to accelerate ray-casting [7] and cell projection [8, 9] algorithms for irregular grids.
However, both of these modalities have some limitations. For the cell projection al-
gorithm, the piecewise linear interpolation may result in banding at cell boundaries,
degrading the quality of the resulting image. In addition, cell projection approaches
are limited by the cell visibility sorting, which prevents the current graphics hard-
ware from running at full capacity. For ray-casting algorithms, the ray-cell intersec-
tion test, the identification of the face of the cell through which a ray exists, and the
interpolation from the surrounding grid points are very expensive operations. Even
the hardware accelerated ray-casting algorithm [7] can not achieve interactive ren-
dering speed.

In an attempt to overcome these problems, we propose a new approach that
utilizes splatting, in conjunction with arbitrarily shaped elliptical Gaussians, for
the rendering of irregularly gridded data. Our splatting approach offers the follow-
ing advantages: (1) its smooth and overlapping kernel functions will reconstruct a

Constructing 3D Elliptical Gaussians for Irregular Data 215

smooth representation of the grid-sampled signal, without the artifacts of the piece-
wise linear representations of the cell projection approaches; (2) it promises to be
more efficient than ray casting due to the ease of footprint rasterization, especially
when implemented in hardware; (3) it is also more efficient than other splatting ap-
proaches for irregular grids, since the space-filling kernels are only required at the
grid points, and thus the rendering complexity matches that of the grid. Finally, apart
from non-rectilinear gridded data, our method also supports collections of scattered
data points.

The main topic of this paper is the method for constructing arbitrarily oriented
elliptical Gaussians from irregular grid topologies. Once the 3D reconstruction ker-
nels are found, the software rendering is straightforward. We can either use the sheet
buffer algorithm for composited rendering [10], or we can just splat the whole kernel
for X-ray type rendering.

2 Previous Work

Only a limited amount of work has been done so far on how to use the splatting
algorithm for the rendering of irregular grids. Meredith and Ma [11] proposed a
spherical Gaussian splat-based rendering method for irregular data. In this method,
they use an octree with roughly the same number of data points stored at each leaf
node. No connectivity information is stored for the data points. For any given viewing
parameters, they calculate the projected size of any octree node on the screen. Then
they divide the screen area based on the number of data points within that octant to
calculate the approximate kernel size. This method can only give a rough estimate of
the kernel size.

Mao et al. [12, 13] presented a method that resamples irregular grids with a set
of new points whose energy support extents in the 3D physical space can be ap-
proximated by spheres or ellipsoids. To approximate the scalar field represented in
the original grid as accurately as possible without using too many sample points, an
adaptive 3D stochastic sampling method called Poisson sphere/ellipsoid sampling
is employed. Then, after the new splat distribution has been calculated, the original
splatting algorithm can be used to render the irregular grid. The disadvantage of this
method is that the original grid must be resampled to compute the scalar value for
the new sample points. The error caused by this non-regular resampling potentially
degrades the quality of the resulting images. In addition, this method also generates
considerably more splats than the original number of grid points. For example, the
NASA Blunt Fin dataset with resolution of 40 × 32 × 32 is resampled with 79,971
sphere points and 5, 041 ellipsoid points, which more than doubles the number of
points. Moreover, this method cannot be used to render scattered data.

Jang et al. [14] developed a procedure, based on the Voronoi cell describing the
region around a point, to place and orient Gaussian kernels to give more uniform
coverage in non-uniform cells. However, they did not specify how they construct
these splats. This method also need to resample the original non-uniform cells. Jang
et al. [15] performed a global optimization method to fit radial basis functions (RBFs)

216 W. Hong et al.

to irregular data. In this paper, we propose a method to construct 3D ellipsoidal
kernels for irregular grids without the need for an error prone resampling of the
original grid, since our 3D reconstruction kernels are still centered at the original
grid points. Instead, a weighted least squares method is used to fit a single ellipsoidal
kernel to the Voronoi cell at each grid point, which is a local optimization method.
In our method, we do not interpolate any additional data points.

3 Creating 3D Elliptical Gaussian

The shape of a 3D elliptical Gaussian kernel centered at the origin can be modeled
via the implicit equation of an ellipsoid:

Ax2 + By2 + Cz2 + 2Dxy + 2Exz+ 2Fyz− 1 = 0 (1)

This equation has six unknowns and represents a quadric surface. The quadric surface
can be represented by using matrix notation, giving rise to a 3×3 symmetric quadric
matrix Q:

Q =
∣
∣
∣
∣
∣
∣

A D E

D B F

E F C

∣
∣
∣
∣
∣
∣

(2)

The quadric surface represented by Q can be easily translated, scaled, and rotated
by multiplying it with a transformation matrix. Given a 3 × 3 affine transformation
matrix M, the transformed quadric surfaceQ

′
is given by:

Q
′ = (M−1)t ·Q ·M−1 (3)

With this representation we can create an arbitrarily oriented elliptical Gaussian by
applying the scaling and rotation transformations contained in matrix S = {a, b, c}
and R on a unit sphere, respectively, as described in the following equation:

Q = (R−1)t · (S−1)t · I · S−1 · R−1 = R · (S−1)2 · Rt (4)

Here I is the identity matrix which represents the unit sphere, and (S−1)2 = {1/a2,

1/b2, 1/c2} is a diagonal matrix, which can be thought of as a scaling matrix. It
represents an axis aligned ellipsoid. The rotation matrix R is an orthogonal matrix
representing the ellipsoid orientation, which can be defined by three rotation angles
α, β, and γ along the three axes. Instead of directly fitting an ellipsoid using (1),
we fit the scaling matrix S and rotation matrix R separately, using (4). S and R are
decided by the three scaling factors and the three rotation angles, respectively. Due to
this matrix representation, the resulting ellipsoidal kernel can easily be incorporated
into our rendering algorithm, which represents the elliptical splats using a rotation
and a scaling matrix.

The irregular grids are always described in terms of their grid structure. However,
in our algorithm we are only interested in the grid points. In that respect, we treat
an irregular grid as a volumetric point cloud. Our algorithm only uses these grid
points as input for generating the 3D ellipsoidal kernels. In the following sections, we
describe our approach to fit the 3D ellipsoidal kernel using the matrix representation.

Constructing 3D Elliptical Gaussians for Irregular Data 217

3.1 Guide Points

As is well known, the dual of the Delaunay triangulation is the Voronoi diagram,
which consists of cells around the data points such that any location in a particular
cell is closer to that cell’s generating point than to any other. Thus, the shape of the
Voronoi cell can give us a clue about the shape of the reconstruction kernel. The
main idea of our algorithm is to fit elliptical Gaussian kernels to the grid points by
approximating their Voronoi cells. We show a 2D example in Fig. 1, in which the
Voronoi cell of grid point V0, shown in red, is approximated with an ellipse, shown
in blue. The Voronoi cell of V0 is obtained by connecting the circumcenters between
pairs of Delaunay triangles that are adjacent and both incident to V0.

As the first step of our algorithm, we apply the 3D Delaunay triangulation algo-
rithm to the input grid points. Through the 3D Delaunay triangulation, we obtain for
each grid point a list of tetrahedra incident to it. The circumcenters of these tetrahe-
dra are the vertices of the Voronoi cell generated for that grid point, i.e., the cell’s
generating point. In the ideal case, each circumcenter is shared by four reconstruc-
tion kernels, with each of these contributing 25% to it. This would mean that the
elliptical Gaussian kernel passes through these circumcenters with the 0.25-valued
iso-contour. Furthermore, in this ideal case, the 0.5-valued iso-contour of the Gaus-
sian kernel should pass through the midpoints of the edges joining the cell’s generat-
ing point. However, in the general case these edge midpoints do not capture the shape
of the Voronoi cell as well as the circumcenters. This is illustrated in Fig. 2, where

V4V5

V3

V1

V2

V0

V8

C1

C2

C3

C4

C5

C6

C7

C8

V6

V7

Fig. 1. A Voronoi cell is approximated by an ellipse shown in two-dimensions. V0 is the grid
point for which the Voronoi cell is constructed, V1, . . . , V8 are neighboring grid points, and
Ci is the circumcenter of triangle V0ViVi+1

218 W. Hong et al.

Fig. 2. In more general cases, as shown here, the edge midpoints do not capture the shape of a
Voronoi cell as well as the circumcenters

the edge midpoints are shown as red dots, and the ellipse fitted from these midpoints
is also shown in red. The ellipse fitted from the circumcenters is shown in blue. From
this example, we can see that the blue ellipse approximates the Voronoi cell, shown
in green, much better than the red ellipse. Therefore, we use the circumcenters of
the incident tetrahedra as guide points for fitting the ellipsoid that approximates the
0.25-valued iso-contour of an elliptical Gaussian kernel.

If a tetrahedron is almost flat, its circumcenter is located far away from this tetra-
hedron. In this case, the Voronoi cell is an inferior shape for fitting the grid points
kernel. Thus, if the circumcenter is too far away from the center grid point, we use the
circumcenter of the triangle opposite to the center point as the contour guide point.

For each such guide point, we use its corresponding solid angle in the tetrahedron
as the weight. Thus, for each grid point we have a list of weighted guide points
associated with it. This list of the weighted guide points are then fed to a weighted
least squares algorithm to fit the elliptical Gaussian kernels.

3.2 Initial Guess

Before we use the least squares method to fit an ellipsoid at each grid point based on
the generated weighted guide points, we analyze the guide points using the Principal
Component Analysis (PCA) [16] method to estimate the ellipsoid defined by the
guide points. A PCA analysis of the guide points performs an eigen-decomposition
of the covariance matrix of the guide points. This produces three eigenvalues and
corresponding eigenvectors, which in 3D define a local orthogonal coordinate system
related to the ellipsoid induced by the guide points.

Suppose the given grid point is v and the related N guide points are ui, i =
1, 2, . . . , N . We use the following equation to compute the covariance matrixM:

Constructing 3D Elliptical Gaussians for Irregular Data 219

M =
N∑

i=1

(ui − v)(ui − v)t (5)

whereM is a 3 × 3 matrix. From this 3 × 3 covariance matrix, we can compute the
three eigenvalues and the corresponding eigenvectors. We use the three eigenvalues
as the initial guess for the three scaling factors. The corresponding eigenvectors form
a rotation matrix, which yields the initial guess for the three rotation angles. The
PCA analysis makes the minimization process convergence faster by providing a
good guess of the ellipsoid.

3.3 Energy Function

Given a set of weighted guide points (wi, ui), i = 1, 2, . . . , N , in order to use the
weighted least squares method to fit them with (4), we need to design an energy
function for minimization. For this purpose, we use the sum of the weighted distances
from the guide points to the quadric surfaceQ. This yields the energy function:

E(a, b, c, α, β, γ) =
N∑

i=1

(wi × d2
i) (6)

where wi is the weight of the guide point ui , and di is the distance from point ui
to the ellipsoid Q, which is the length of the shortest line segment connecting ui
to any point on Q. For a given guide point ui = (xi, yi, zi), Hart [17] proposed an
algorithm to compute the closest point u′i = (x ′i , y ′i , z′i) on an axis-aligned ellipsoid
defined by equation f (x, y, z) = (x/a)2 + (y/b)2 + (z/c)2 − 1 = 0. As we know,

the vector
−−→
u′iui is normal to the surface defined by f (x, y, z) at u′i , which satisfies

the following equation:

xi − x = t x
a2
, yi − y = t y

b2
, zi − z = t z

c2
(7)

Plugging this equation into f (x, y, z) confines the point to the ellipsoid, producing:

a2x2
i

(t + a2)2
+ b2y2

i

(t + b2)2
+ c2z2

i

(t + c2)2
= 1 (8)

This equation is equivalent to a sixth degree polynomial, obtained by multiplying
through by the denominators. The largest root of this polynomial corresponds to the
closest point on the ellipsoid. There are no closed formulas for the roots of such
polynomials. We use a Newton’s iteration method to find the largest root. When we
obtain the largest root t0 of this polynomial, the closest point u′i = (x ′i , y ′i , z′i) on the
surface of the ellipsoid is obtained by plugging t0 into (7), which yields the following
equation:

x ′i =
a2xi

t0 + a2
, y ′i =

b2yi

t0 + b2
, z′i =

c2zi

t0 + c2
(9)

Then, the distance from the point ui to the ellipsoid is exactly the distance between
ui and u′i .

220 W. Hong et al.

To compute the distance from guide point ui to an arbitrary oriented ellipsoid
Q = R · (S−1)2 · Rt , we transform Q and ui to Q′ = (S−1)2 and u′i = R−1ui

respectively by applying matrix R−1, whereQ′ is an axis aligned ellipsoid centered
on the origin. Then, the distance from ui to Q is the distance from u′i to Q′ in the
new coordinate system, which can be computed using the above equations. Next, we
employ an iterative method to compute the minimum of E.

3.4 Minimization

The energy function of (6) is a very common unconstrained minimization problem.
Powell [18] proposed a minimization method to solve this kind of problem without
calculating derivatives. Powell’s method ensures convergence in a finite number of
steps, for a positive definite quadratic function, by making use of some properties
of conjugate directions. However, this method sometimes results in search directions
that become linearly dependant. The simplest way to avoid linear dependance of the
search directions with Powell’s basic procedure, retaining quadratic convergence, is
to reset the search directions to the columns of the identity matrix after every n or
n+ 1 iterations, where n is number of unknowns in the system. However, the restart-
ing may slow down convergence, because information built up about the function is
periodically thrown away. Thus, we use a modification of Powell’s basic procedure
proposed by Brent in [19] to solve the minimization problem. In consequence, we
obtain the scaling matrix S and the rotation matrix R of the 0.25-valued iso-contour
for each elliptical Gaussian kernel, which give the shape and orientation of the ellip-
tical Gaussian kernel.

4 Evaluation

The straightforward way to evaluate the resulting 3D elliptical Gaussian kernel con-
figuration is to resample the irregular grid data into a N ×N ×N regular grid R. In
the ideal case, if the grid point is inside one of the tetrahedron, the contributions from
all kernels to this point sum to one. In practice, the contributions from all kernels to
a grid point do not always sum to one. Therefore, the volume rendering image gen-
erated with the splatting algorithm may look blotchy. Normalizing the reconstructed
value at each grid point by the contribution of reconstruction kernels can alleviate
the problem.

The sum of the contributions of all kernels to each grid point can be used to eval-
uate the quality of the fitted 3D elliptical Gaussian kernels. Suppose the set of regular
grid points inside the tetrahedra mesh is V . The standard deviation is computed as
follows:

S =
√∑

v∈V (Cv − 1.0)2

|V | (10)

where Cv is the sum of the contributions from the reconstruction kernels to grid
point v. The standard deviation S with a small value indicates a better quality of the
reconstruction kernel ensemble, constructed via our fitting procedure.

Constructing 3D Elliptical Gaussians for Irregular Data 221

5 Rendering

Our rendering system uses the sheet-buffered image aligned splatting algorithm in-
troduced in [10, 20] and further refined in [21] for the 4D case. The system was
extended in order to rasterize ellipsoids of varying size and orientation. Following
this method, the elliptical kernels of the volume are sliced into image aligned sheet
buffers. The slices are then shaded per-pixel and composited front-to-back onto the
final image. The ellipsoids are defined by a 3 × 3 rotation matrix and a diagonal
3 × 3 scaling matrix, as produced by the fitting algorithm described above. Similar
to 3D and 4D regular splatting where this method was used, it produces crisp fully
shaded images. The process, however, is slightly more demanding when rendering
unstructured grids using elliptical splats, because the produced sheet buffers have to
be normalized before shading and compositing.

6 Implementation and Results

In this section, we present some implementation details and testing results. Our al-
gorithm is implemented using C++ on the Windows platform, and the CGAL C++
library (www.cgal.org) is used to perform the 3D Delaunay triangulation in the
preprocessing step. All of the experiments have been conducted on a 3.0 GHz Intel
Pentium IV PC running Windows XP with 1 GB RAM. We list the datasets used in
the experiments, the kernel fitting time, and the standard deviation, and max weight
in Table 1. Our fitting algorithm can, on average, fit 1,300 points per minute.

We use the NASA Blunt Fin dataset with 40,960 grid points in our first experi-
ment. To perform the numerical comparisons, we use the fitted 3D elliptical Gaussian
kernels to resample it into a regular grid. One slice of the resampled regular grid is
shown in Fig. 3 with two images: (a) the weight image of that slice, and (b) the den-
sity image with normalization applied. Both the weight image and the density image
look smooth, but somewhat fuzzy at the boundary. The weight image is the key for
quality evaluation. The more homogeneous the quality of resulting kernels is the bet-
ter. We show the 3D elliptical Gaussian kernels in Fig. 4a using a surface rendering
method. Figure 4b is the volume rendered image using our software splatting algo-
rithm for elliptical splats. We observe that there are some large elliptical Gaussian
kernels located at the boundary, which cause the fuzziness of the volume rendering
at the boundary.

Table 1. Kernel fitting times (in minutes), standard deviation, and max weight for two different
datasets

Dataset Points Tetrahedra Fitting time Standard deviation Max weight

Blunt Fin 40,960 187,395 27.8 0.57 2.85
Combustion 47,025 215,040 40.8 0.48 3.15

222 W. Hong et al.

(a)

(b)

Fig. 3. Blunt Fin dataset: (a) Weight image and (b) density image for one slice of the regular
grid samples evaluated using the fitted 3D elliptical Gaussian kernels of the corresponding
irregular grid

(a) (b)

Fig. 4. Blunt Fin dataset: (a) The ensemble of fitted 3D elliptical Gaussian kernels, and (b) a
volume rendered image using the elliptical splatting algorithm

Constructing 3D Elliptical Gaussians for Irregular Data 223

(a)

(b)

Fig. 5. Combustion Chamber dataset: (a) Weight image and (b) density image for one slice
of the regular grid samples evaluated using the fitted 3D elliptical Gaussian kernels of the
corresponding irregular grid

The Combustion Chamber dataset is from the Visualization Toolkit (Vtk). It con-
sists of 47,025 grid points. One slice of the resampled regular grids is shown in
Fig. 5. The resulting elliptical Gaussian kernels and volume rendered image with the
splatting algorithm for the Combustion Chamber are shown in Fig. 6.

224 W. Hong et al.

(a) (b)

Fig. 6. Combustion Chamber dataset: (a) The ensemble of fitted 3D elliptical Gaussian ker-
nels, and (b) a volume rendered image using the elliptical splatting algorithm

7 Conclusion and Future Work

In this paper, we have presented a method to construct an ensemble of 3D elliptical
Gaussian kernels for irregular data. Our method does not resample the irregular grids
to generate regular grids. Instead, we create the 3D elliptical kernels centered on
the original grid points using a weighted least squares method to fit ellipsoids. We
perform PCA on the guide points to provide an initial guess for the minimization
process to obtain faster convergence. The resulting kernels are arbitrarily oriented
elliptical Gaussians modeled via a matrix representation. The kernels are seamlessly
incorporated into our splatting rendering system.

Our method has some limitations. The quality of the resulting kernels is affected
by the shape of the Voronoi cells. It would require some amount of resampling in
locations that are not covered well by the resulting kernels. In this case, the global
optimization methods will do better. Our experiment results show that the boundaries
of the irregular grids are not preserved well, appearing somewhat fuzzy. Two meth-
ods are possible to be used to solve this problem. One method is to subdivide the
boundary tetrahedron. But this would require the resampling of more points and thus
more splats would be generated. Another method is to add a layer of “ghost splats”
outside the tetrahedra mesh to solve this problem. In future work, we would like to
study where to place these ghost splats in order to preserve the boundary well. In our
current implementation, the rendering is implemented using software. In subsequent,
we would like to exploit the power of GPUs to accelerate the rendering. Here, the
main feature of floating point blending will be highly beneficial.

Constructing 3D Elliptical Gaussians for Irregular Data 225

References

1. Fruhauf, T.: Raycasting of nonregularly structured volume data. Eurographics, 13(3),
C294–C303 (1994)

2. Garrity, M.: Raytracing irregular volume. Comput. Graph., 24(5), 35–40 (1990)
3. Ramamoorthy, S. and Wilhelms, J.: An analysis of approaches to ray-tracing curvilinear

grids. Tech. Report UCSC-CRL-92-07, University of California, Santa Cruz (1992)
4. Farias, R. and Silva, T.C.: Out-of-core of large, unstructured grids. IEEE Comput. Graph.

Appl., 21(4), 42–50 (2001)
5. Max, N., Hanrahan, P., and Crawfis, R.: Area and volume coherece for efficient visualiza-

tion of 3D scalar functions. Comput. Graph., 24(5), 27–33 (1990)
6. Westover, L.: Footprint evaluation for volume rendering. Comput. Graph., 24(4), 367–376

(1990)
7. Weiler, M., Kraus, M., Merz, M., and Ertl, T.: Hardware-based ray casting for tetrahedral

meshes. In: Proceedings of IEEE Visualization, 333–340 (2003)
8. Röttger, S., Kraus, M., and Etrl, T.: Hardware-accelerated volume and isosurface render-

ing based on cell-projection. In: Proceedings of IEEE Visualization, 109–116 (2000)
9. Weiler, M., Kraus, M., and Ertl, T.: Hardware-based view independant cell projection. In:

Proceedings of IEEE Symposium on Volume Visualization, 13–22 (2002)
10. Mueller, K., Möller, T., and Crawfis, R.: Splatting without the blur. In: Proceedings of

IEEE Visualization, 363–371 (1999)
11. Meredith, J. and Ma, K.L.: Multiresolution view-dependent splat based volume rendering

of large irregular data. In: Proceedings of the IEEE symposium on parallel and large-data
visualization and graphics (2001)

12. Mao, X., Hong, L., and Kaufman, A.: Splatting of curvilinear volumes. In: Proceedings
of IEEE Visualization, 61–68 (1995)

13. Mao, X.: Splatting of non rectilinear volumes through stochastic resampling. IEEE Trans.
Vis. Comput. Graph., 2(2), 156–170 (1996)

14. Jang, J., Shaw, C., Ribarsky, W., and Faust, N.: View-dependent multiresolution splatting
of non-uniform data. In: Eurographics–IEEE Visualization Symposium, 125–132 (2002)

15. Jang, Y., Weiler, M., Hopf, M., Huang, J., Ebert, D.S., Gaither, K.P., and Ertl, T.: Interac-
tively visualizing procedurally encoded scalar fields. In: Joint Eurographics–IEEE TCVG
Symposium on Visualization (2004)

16. Jolliffe, I.T.: Principal component analysis. Springer, New York, (1986)
17. Hart, J.: Computing distance betwwen point and ellipsoid. Graphics Gems IV. Academic,

Boston, MA, 113–119 (1994)
18. Powell, M.J.D.: An efficient method for finding the minimum of a function of several

variables without calculating derivatives. Comp. J. 7, 303–307 (1964)
19. Brent, R.P.: Algorithms for minimization without derivatives. Dover, Mineola, NY (1973)
20. Mueller, K. and Crawfis, R.: Eliminating popping artifacts in sheet buffer-based splatting.

In: Proceedings of IEEE Visualization, 239–245 (1998)
21. Neophytou, N. and Mueller, K.: Space–time points: Splatting in 4D. In: Symposium on

Volume Visualization and Graphics, 97–106 (2002)

From Sphere Packing to the Theory of Optimal
Lattice Sampling

Alireza Entezari, Ramsay Dyer, and Torsten Möller

Simon Fraser University, Burnaby, BC, Canada
{aentezar, rhdyer, torsten}@cs.sfu.ca

Summary. In this paper we introduce reconstruction kernels for the 3D optimal sampling
lattice and demonstrate a practical realisation of a few. First, we review fundamentals of mul-
tidimensional sampling theory. We derive the optimal regular sampling lattice in 3D, namely
the Body Centered Cubic (BCC) lattice, based on a spectral sphere packing argument. With
the introduction of this sampling lattice, we review some of its geometric properties and its
dual lattice. We introduce the ideal reconstruction kernel in the space of bandlimited func-
tions on this lattice. Furthermore, we introduce a family of box splines for reconstruction on
this sampling lattice. We conclude the paper with some images and results of sampling on
the BCC lattice and contrast it with equivalent samplings on the traditionally used Cartesian
lattice. Our experimental results confirm the theory that BCC sampling yields a more accurate
discrete representation of a signal comparing to the commonly used Cartesian sampling.

1 Introduction

With the advent of the theory of digital signal processing various fields in science
and engineering have been dealing with discrete representations of continuous phe-
nomena. As scientific computing algorithms mature and find applications in a variety
of scientific, medical and engineering fields, the question of the accuracy of the dis-
crete representations gains an enormous importance. The theory of optimal sampling
deals with this issue: given a fixed number of samples, how can one capture the most
information from the underlying continuous phenomena. Such a sampling pattern
would constitute the most accurate discrete representation.

While virtually all image and volume processing algorithms are based on the
Cartesian sampling, it has been well known that this sampling lattice is suboptimal.
Yet, only recently advances have been made by introducing reconstruction filters for
the 2D optimal lattice (e.g., the Hexagonal lattice). Our paper introduces novel recon-
struction filters for the Body Centered Cubic (BCC) lattice, the analogous optimal
sampling lattice in 3D, that are based on the geometric structure of the underlying
lattice. This should pave the way for a more mainstream adaption of the BCC lattice
for the discrete representation and processing of three-dimensional phenomena.

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 227
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

228 A. Entezari et al.

An introduction to multidimensional sampling theory can be found in Dudgeon
and Mersereau [5]. A lattice can be viewed as a periodic sampling pattern. Periodic
sampling of a function in the spatial domain gives rise to a periodic replication of the
spectrum in the Fourier domain. The lattice that describes the centers of the replicas
in the Fourier domain is called the dual, reciprocal, or polar lattice. Reconstruction in
the spatial domain amounts to eliminating the replicas of the spectrum in the Fourier
domain while preserving the primary spectrum. Therefore, the ideal reconstruction
function is the inverse Fourier transform of the characteristic function of the Voronoi
cell of the dual lattice.

In Sect. 2 we will give a rigorous introduction to multidimensional sampling the-
ory and derive the relationship between the sampling pattern in the spatial and the
frequency domain. This will allow us to derive the notion of the optimal sampling lat-
tice in Sect. 3. Section 4 will discuss and derive geometric aspects of the BCC and the
FCC lattices, setting the stage for deriving nearest neighbor, linear and cubic recon-
struction filters in Sect. 5. A practical implementation of the linear reconstruction fil-
ter is derived in Sects. 6 and 7 discusses our experimental evaluation. Finally, Sects. 8
and 9 summarize our contributions and point to some open problems, respectively.

2 Multidimensional Sampling Theory

Let f ∈ L2(R
n) be a multivariate function for which the Fourier transform exists

and let f̂ : R
n → C be its Fourier transform:

f̂ (ω) =
∫

f (x)e−2πiω·xdx

Given the fact that f̂ ∈ L2(R
n) also, the inversion formula

f (x) =
∫

f̂ (ω)e2πiω·xdω

recovers the original function f almost everywhere.1 If the original function is also
continuous, the reconstruction equality holds everywhere [7].

We are interested in the regular sampling of a function and its reconstruction
from the discrete set of samples. In this paper we shall refer to reconstruction in
the space of functions with a compact support in their Fourier representations (i.e.,
bandlimited functions).

The sampling operation is defined over the space of square integrable functions
(L2(R)) equipped with the usual inner product:

〈f, g〉 =
∫

f (x)g(x)dx.

1 Reconstruction takes the mean value of the left and the right limit at the points of
discontinuity.

From Sphere Packing to the Theory of Optimal Lattice Sampling 229

Assuming sample values are produced by a sampling device which is characterized
by a function, g, called its impulse response.2 The sampling operation, takes a func-
tion that is an element of L2 and returns a number. This operation can be modeled
by the following functional:

L2 �→ R : f �→ 〈f, g〉 .
The ideal impulse response (i.e., sampling function) is referred to as Dirac’s delta

(generalized) function which is the point evaluation functional defined by the follow-
ing functional equation:

δ[f] = f (0) (1)

for all continuous functions f . Formally this symbol in an integral behaves as the
limit of integrals of a sequence of integrable functionsKr that have the properties:

∫

Kr(x)dx = 1 for all r > 0

lim
r→0

Kr(x) = 0 for all x = 0.

Examples of such kernels consist of Dirichlet, Fejér, Gaussian and Poisson kernels.
It is customary to say that in the limit these kernels behave like the delta function:

δ[f] = lim
r→0

∫

Kr(x)f (x)dx = f (0)

for all continuous functions f . Therefore the behavior of the functional in (1) can
be considered as the behavior of the above limit. As a notational convenience, the
operation of δ on a function f is defined as:

∫

δ(x)f (x)dx � δ[f]

even though, such a function δ(x) does not exist. Since Dirac’s generalized function
is not a function in the classical setting, the symbolic introduction of Dirac’s delta
function is merely for the ease of notation.

A regular sampling pattern can be viewed as a point lattice. An n-dimensional
point lattice is characterized by a set of n basis vectors {Tj }1≤j≤n. A point is on the
lattice if and only if it is described by a linear combination with integer coefficients
of the basis vectors. The matrix, T = [T 1T 2 . . .T n], whose columns are the basis
vectors is called the sampling matrix and any lattice point t is given by t = T p for
some p ∈ Z

n. Figure 1 illustrates a two-dimensional lattice. The impulse response
of such a sampling lattice is:

∏∏T (x) =
∑

k∈Zn

δ(x − T k) (2)

2 In the medical imaging community the impulse response is sometimes referred to as the
excitation function.

230 A. Entezari et al.

Fig. 1. A two-dimensional lattice with T = [
T 1T 2

]
, where T 1 = [4, 1]- and T 2 = [1, 2]-

This equation is again a symbolic equation that eases the notation. The corresponding
definition, then, is:

∫

∏∏T (x)f (x)dx � lim
r→0

∫ ∑

k∈Zn

Kr(x − T k)f (x)dx (3)

for all continuous functions f with bounded support.

The corresponding functional that defines the ∏∏T is:
∫

∏∏T (x)f (x)dx =
∑

k∈Zn

f (T k) (4)

Therefore the function that is obtained by the sampling device is:

fs(x) = ∏∏T (x)f (x) (5)

We observe that ∏∏T is a periodic function with period T : ∏∏T (x + T m) = ∏∏T (x)

for m ∈ Z
n.

In order to study the effect of the sampling operator on the Fourier representation
of the underlying function, we need to derive the Fourier transform (FT) of ∏∏T .
Without claiming any of the convergence properties of the Fourier transform for the
shah function, we transform the shah as:

ˆ∏∏T (ω) =
∫

∏∏T (x)e
−2πiω·xdx.

Since the exponential functions are continuous, (4) yields:

ˆ∏∏T (ω) =
∑

k∈Zn

e−2πiω·(Tk).

From Sphere Packing to the Theory of Optimal Lattice Sampling 231

Note that ˆ∏∏T is periodic with the periodicity matrix T̃ = T −-, since for any
m ∈ Z

n:

ˆ∏∏T (ω + T −-m) =
∑

k∈Zn

e−2πi(ω+T −-m)·(Tk)

=
∑

k∈Zn

e−2πi
[
ω·(Tk)+(T −-m)·(Tk)

]

=
∑

k∈Zn

e−2πi
[
ω·(Tk)+(m-T −1T k)

]

=
∑

k∈Zn

e−2πi
[
ω·(Tk)+(m-k)

]

=
∑

k∈Zn

e−2πiω·(T k)e−2πim·k

=
∑

k∈Zn

e−2πiω·(T k) since e−2πim·k = 1 for all m, k ∈ Z
n

= ˆ∏∏T (ω).

Theorem 1. The Fourier transform of a Shah function ∏∏T (x) over a lattice T as
defined in (2) can be described as another Shah function ∏∏

T̃ (ω) over the dual lattice

T̃ = T −- with ˆ∏∏T (ω) = ∏∏

T̃ (ω)

Proof. To prove this theorem we note that the ˆ∏∏T is T̃ periodic. LetΩ = T̃ [− 1
2 ,

1
2)
n

be one period of the domain R
n. Therefore, all we need to show is that:

∫

Ω

ˆ∏∏T (ω)g(ω)dω = g(0) =
∫

δ(ω)g(ω)dω (6)

for all continuous g : R
n �→ C with bounded support.

For the choice of the kernelKr in (3), we resort to the Poisson kernel. The family
of functions Pr : R

n �→ C, 0 < r < 1 defined by:

Pr(ω) =
∑

k∈Zn

r‖k‖e2πiω·(T k)

where ‖k‖ = ∑n
i=1 |ki | for k = [k1 . . . kn]-.

Expanding the right-hand side of the above equation we have:

Pr(T̃ ω) =
∑

k∈Zn

r‖k‖e2πiω·k

=
∑

k1,k2,...,kn∈Z

r |k1|r |k2| . . . r |kn|e2πiω1k1e2πiω2k2 . . . e2πiωnkn

= (
∑

k1∈Z

r |k1|e2πiω1k1)(
∑

k2∈Z

r |k2|e2πiω2k2) . . . (
∑

kn∈Z

r |kn|e2πiωnkn)

= Pr (ω1)Pr(ω2) . . . Pr (ωn)

232 A. Entezari et al.

In other words, the multidimensional Poisson kernel is a separable kernel and there-
fore we can use the following one-dimensional results from [1]:

Pr(ω) =
∑

k∈Z

r |k|e2πiωk

Pr(ω) ≥ 0
∫

[− 1
2 ,

1
2)

Pr (ω)dω = 1

Furthermore, [1]:

lim
r→1

∫

Pr(ω)g(ω)dω = g(0) =
∫

δ(ω)g(ω)dω

Since Pr(ω) is positive and bounded,Pr(ω) ≥ 0 and by the Fubini theorem we have:
∫

[− 1
2 ,

1
2)
n

Pr (T̃ ω)dω =
∫ 1

2

− 1
2

Pr(ω1)dω1

∫ 1
2

− 1
2

Pr(ω2)dω2 . . .

∫ 1
2

− 1
2

Pr(ωn)dωn = 1.

Moreover, for any continuous function g : R
n �→ C we have:

lim
r→1

∫

Ω

Pr(ω)g(ω)dω =

= lim
r→1

∫

ω1

. . .

∫

ωn

Pr(ω1, . . . , ωn)g(ω1, . . . , ωn)dωn . . . dω1

= lim
r→1

∫

ω1

. . .

∫

ωn−1

Pr(ω1, . . . , ωn−1)g(ω1, . . . , ωn−1, 0)dωn−1 . . . dω1

...

= lim
r→1

∫

ω1

Pr (ω1)g(ω1, 0, . . . , 0)dω1 = g(0)

Hence, we conclude by the dominated convergence theorem that:

lim
r→1

∫

Ω

Pr(ω)g(ω)dω =
∫

Ω

ˆ∏∏T (ω)g(ω)dω = g(0)

Since ˆ∏∏T is T̃ periodic, we have:

ˆ∏∏T (ω) = ∏∏

T̃ (ω).

This equality is again a symbolic equality and its meaning is only defined under an
integral:

∫
ˆ∏∏T (ω)f (ω)dω =

∫

∏∏

T̃ (ω)f (ω)dω (7)

for all continuous functions f with bounded support.
In conclusion, the Fourier transform of ∏∏T is yet another shah function on the

reciprocal lattice ∏∏

T̃ . ��

From Sphere Packing to the Theory of Optimal Lattice Sampling 233

In order to find the Fourier transform of the sampled function fs as in (5), one
can use the Convolution-Multiplication theorem to show:

f̂s (ω) = (ˆ∏∏T ∗ f̂)(ω) = (∏∏

T̃ ∗ f̂)(ω)
The important observation from this result is that the two lattices represented by T

and T̃ are duals of each other through the Fourier transform.

3 The Optimal Lattice Sampling

The main result of the previous section was that sampling a function f on a lattice
T , brings about the replication of the Fourier Transform of f on the dual lattice
T̃ = T −-. Due to this reciprocal relationship, the sparsest sampling matrix T will
have to produce the densest packing of the replicas of the spectrum on the dual
lattice T̃ . Therefore, in order to distribute the samples in the spatial domain in the
most economical (sparse) fashion, the dual lattice T̃ needs to be as densely packed
as possible.

In the typical three-dimensional case, usually there is no knowledge of a direc-
tion of preferred resolution for sampling the underlying function f and the function
is assumed to be qualitatively isotropic. This means that f has a spherically uni-
form spectrum. With this assumption, the dense packing of the spectra in the Fourier
domain can be addressed by the sphere packing problem. Consequently the best sam-
pling lattice in 3D is dual to the lattice that attains the highest sphere packing density.

The sphere packing problem [3] can be traced back to the early seventeenth cen-
tury. Finding the densest packing of spheres is known as the Kepler problem. The
fact that the face centered cubic (FCC) packing attains the highest density of lat-
tice packings was first proven by Gauß in 1831 [3]. Further, the Kepler conjecture –
that the FCC packing is an optimal packing of spheres in 3D even when the lattice
condition is not imposed – was not proven until 1998 by a lengthy computer-aided
proof [6].

In two dimensions however, the hexagonal packing structure can be easily shown
to attain the optimal density of packing. Since the two-dimensional hexagonal lattice
is self-dual, the optimal sampling in 2D is a hexagonal lattice. Consequently, by
sampling a 2D function f on a hexagonal lattice, its Fourier domain representation
is replicated on the dual hexagonal lattice; similarly by sampling a function on the
commonly used Cartesian lattice, its Fourier domain representation is replicated on
the dual Cartesian lattice.

Figure 2 illustrates the optimality of hexagonal sampling vs. Cartesian sampling.
An equivalent spatial domain sampling density is used for both the Cartesian and the
hexagonal sampling lattice. The Fourier domain replication is shown for the Carte-
sian lattice in Fig. 2a and for the hexagonal lattice in Fig. 2b. It is apparent that the
area of the main spectrum (in red) that is captured in the hexagonal case is larger than
that of the Cartesian case. This means that with the equivalent sampling density in
the spatial domain, the hexagonal sampling captures more of the frequency content

234 A. Entezari et al.

(a) Cartesian replication of the
spectrum

(b) Hexagonal replication of the
spectrum

Fig. 2. Hexagonal sampling captures higher frequencies with equal sampling density

of the spectrum of f and in the process of band limiting the underlying signal for
sampling, we can allow a larger baseband to be captured. This means that more infor-
mation can be captured with the same number of samples. The increased efficiency
of the optimal sampling lattice in 2D is about 14% and in 3D it is about 30%.

While the optimal regular sampling theory is attractive for its theoretical advan-
tages, it hasn’t been widely employed in practice due to the lack of signal processing
theory and tools to handle such a sampling lattice.

4 The BCC Lattice

A lattice can be viewed as an infinite array of points in which each point has sur-
roundings identical to those of all the other points [2]. In other words, every lattice
point has the same Voronoi cell and we can refer to the Voronoi cell of the lattice
without ambiguity. The lattice points form a group under vector addition in the Eu-
clidean space.

The BCC lattice is a sublattice of the Cartesian lattice. The BCC lattice points
are located on the corners of the cube with an additional sample in the center of the
cube as illustrated in Fig. 3. An alternative way of describing the BCC lattice is to
start with a Cartesian lattice (i.e., Z

3) and retain only those points whose coordinates
have identical parity.

The simplest interpolation kernel on any lattice is the characteristic function of
the Voronoi cell of the lattice. This is usually called nearest neighbor interpolation.
More sophisticated reconstruction kernels involve information from the neighboring
points of a given lattice point. With this in mind, we focus in the next section on the
geometry and the polyhedra associated with the BCC lattice.

From Sphere Packing to the Theory of Optimal Lattice Sampling 235

(a) (b)

Fig. 3. The BCC lattice. A neighborhood of 35 points is displayed on the left, while a simple
neighborhood of nine points is displayed on the right

4.1 Polyhedra Associated with the BCC Lattice

Certain polyhedra arise naturally in the process of constructing interpolation filters
for a lattice. The Voronoi cell of the lattice is one such example. The Voronoi cell of
the Cartesian lattice is a cube and the Voronoi cell of the BCC lattice is a truncated
octahedron as illustrated in Fig. 4a.

We are also interested in the cell formed by the immediate neighbors of a lattice
point. The first neighbors of a lattice point are defined by the Delaunay tetrahedral-
ization of the lattice; a point q is a first neighbor of p if their respective Voronoi
cells share a (nondegenerate) face. The first neighbors cell is the polyhedron whose
vertices are the first neighbors. Again, this cell is the same for all points on the lattice.

For example, by this definition there are six first neighbors of a point in a Carte-
sian lattice; the first neighbors cell for the Cartesian lattice is the octahedron. For the
BCC lattice there are fourteen first neighbors for each lattice point. The first neighbor
cell is a rhombic dodecahedron as illustrated in Fig. 4b.

The geometry of the dual lattice is of interest when we consider the spectrum of
the function captured by the sampling operation. The Cartesian lattice is self dual.
However, the dual of the BCC lattice is the FCC lattice. The FCC lattice is a sublattice
of Z

3 and is often referred to as the D3 lattice [3]. In fact D3 belongs to a general
family of lattices, Dn, sometimes called checkerboard lattices. The checkerboard
property implies that the sum of the coordinates of the lattice sites is always even.
We will use this property to demonstrate the zero crossings of the frequency response
of the reconstruction filters at the FCC lattice sites.

The Voronoi cell of the FCC lattice is the rhombic dodecahedron as illustrated in
Fig. 4c. Its characteristic function is the frequency response of the ideal reconstruc-
tion filter for the BCC lattice. Figure 4d shows the first neighbors cell of the FCC
lattice; the cuboctahedron.

236 A. Entezari et al.

(a) (b)

(c) (d)

Fig. 4. The Voronoi cell of the BCC lattice is the truncated octahedron (a), and its first neighbor
cell is the rhombic dodecahedron (b). For the FCC lattice, the rhombic dodecahedron is the
Voronoi cell (c), and the cuboctahedron is the first neighbor cell (d)

5 Reconstruction Filters

The kernel for the nearest neighbor interpolation in 1D is the Box function. It is the
characteristic function of the Voronoi cell of the samples on the real line. The nearest
neighbor interpolation on the BCC lattice is similarly defined in terms of the Voronoi
cell of the lattice which is a truncated octahedron (Fig. 4a). In this scheme, a point in
space is assigned the value of the sample in whose Voronoi cell it is located. Since
the Voronoi cell tiles the space, its characteristic function induces an interpolation
scheme for that lattice. Based on the fact that the periodic tiling of the Voronoi cell
yields the constant function in the spatial domain, Van De Ville et al. [12] proves
by means of the Poisson summation formula that the frequency response of such a
kernel does in fact vanish at the aliasing frequencies.

From Sphere Packing to the Theory of Optimal Lattice Sampling 237

5.1 Ideal Interpolation

As noted earlier, sampling a function on a periodic lattice replicates the spectrum of
the function in the Fourier domain on the dual lattice. When the space of bandlimited
functions is the space of choice for reconstruction, the ideal interpolation function
is the one that removes the replicates of the spectrum in the Fourier domain. This
proves that the Fourier transform of the ideal interpolation function is the charac-
teristic function of the Voronoi cell of the dual lattice; hence, convolving by the
ideal interpolation function, leaves out the main spectrum and eliminates all of the
replicas.

The ideal reconstruction function for the Cartesian lattice has a Fourier transform
that is the characteristic function of a cube and the one for the BCC lattice has Fourier
transform which is the characteristic function of a rhombic dodecahedron. Therefore,
in order to find the ideal interpolation function for the BCC lattice we need to find a
function whose Fourier transform is constant on the rhombic dodecahedron in Fig. 4c
and is zero everywhere else.

As it is not easy to derive this function directly, to construct an explicit func-
tion we decompose the rhombic dodecahedron into simpler objects that are easy to
construct in the dual domain. Figure 5 illustrates the decomposition of the rhom-
bic dodecahedron into four three-dimensional parallelepipeds. These parallelepipeds
share the origin and each are formed by three vectors from the origin. For a rhombic
dodecahedron oriented as in Fig. 4c we define the set of vectors:

ξ1 =
⎡

⎣
−1
−1

1

⎤

⎦ , ξ2 =
⎡

⎣
−1

1
−1

⎤

⎦ , ξ3 =
⎡

⎣
1

−1
−1

⎤

⎦ , ξ4 =
⎡

⎣
1
1
1

⎤

⎦ .

(a) (b) (c)

Fig. 5. The rhombic dodecahedron, the Voronoi cell of the FCC lattice, can be decomposed
into four parallelepipeds

238 A. Entezari et al.

Any three of these four vectors form one of the parallelepipeds in the decompo-
sition of the rhombic dodecahedron illustrated in Fig. 5. One can observe that:

ξ1 + ξ2 + ξ3 + ξ4 =
⎡

⎣
0
0
0

⎤

⎦ (8)

that is attributed to the symmetries of the rhombic dodecahedron.
Since a parallelepiped can be constructed by a linear transform from a cube, we

can start by constructing a cube in the Fourier domain:

F{sinc(x)sinc(y)sinc(z)} = B(ωx)B(ωy)B(ωz)

where sinc(x) = sin(πx)
πx . Rewriting the above equation in terms of a 3D extension of

sinc:
F{sinc3D(x)} = B3D(ω).

Let ξ i , ξ j , ξ k denote the vectors forming a parallelepiped. Then the matrix T =
[ξ i |ξ j |ξ k] transforms the unit cube to the parallelepiped. If χT denotes the charac-
teristic function of the parallelepiped formed by the columns of T , then:

χT (ω) = B3D(T
−1ω).

In order to get χT in the Fourier domain, we use the multidimensional scaling lemma
in the Fourier transform:

F{sinc3D(T
-x)} = det T χT (ω).

That means the spatial domain form of a constant parallelepiped formed by T in the
Fourier domain is:

F{sinc(ξ i · x)sinc(ξ j · x)sinc(ξk · x)} = det T χT (ω). (9)

This equation represents a parallelepiped that is centered at the origin; in order to
represent the parallelepipeds in Fig. 5 we need to shift them so that the origin is at
the corner of each parallelepiped. The shift is along the antipodal diagonal of the
parallelepiped by half the length of the antipodal diagonal. The shift in the Fourier
domain can be achieved by a phase shift in the space domain. Therefore, the space
domain representation of a parallelepiped formed by T with its corner at the ori-
gin is

F{e−2πi 1
2 (ξ i+ξ j+ξk)·xsinc(ξ i · x)sinc(ξ j · x)sinc(ξ k · x)} = det T χoT (ω).

where χoT is the characteristic function of the parallelepiped with its corner at the
origin.

From Sphere Packing to the Theory of Optimal Lattice Sampling 239

Now we can write the space domain representation of the rhombic dodecahedron
in Fig. 4c.

sincBCC(x) =
eπiξ 4·xsinc(ξ1 · x)sinc(ξ2 · x)sinc(ξ3 · x)+
eπiξ 3·xsinc(ξ1 · x)sinc(ξ2 · x)sinc(ξ4 · x)+
eπiξ 2·xsinc(ξ1 · x)sinc(ξ3 · x)sinc(ξ4 · x)+
eπiξ 1·xsinc(ξ2 · x)sinc(ξ3 · x)sinc(ξ4 · x)

=
4∑

j=1

eπiξ j ·x
∏

k =j
sinc(ξ k · x).

(10)

Claim. sincBCC(x) is a real valued function

Proof. In order to show that sincBCC(x) is a real valued function we subtract it from
its conjugate:

sincBCC(x)− sincBCC(x) =
4∑

j=1

(e−πiξ j ·x − eπiξ j ·x)
∏

k =j
sinc(ξ k · x) =

4∑

j=1

(2i sin(πξ j · x))
∏

k =j
sinc(ξk · x) =

4∑

j=1

(2πi(ξ j · x)sinc(ξ j · x))
∏

k =j
sinc(ξ k · x) =

4∑

j=1

2πi(ξ j · x)
∏

sinc(ξ k · x) =

2πi((ξ1 + ξ2 + ξ3 + ξ4) · x)
∏

sinc(ξ k · x) = 0

due to symmetries of the rhombic dodecahedron illustrated in (8).
As a corollary to this claim, using the fact that sincBCC(x) = .{sincBCC(x)} =

1
2 (sincBCC(x)+ sincBCC(x)) we simplify the sincBCC(x) to:

sincBCC(x) =
4∑

j=1

cos (πξ j · x)
∏

k =j

sinc(ξk · x). (11)

240 A. Entezari et al.

5.2 Linear Box Spline

de Boor et al. [4] analytically define the box splines, in n-dimensional space, by
successive directional convolutions. They also describe an alternative geometric de-
scription of the box splines in terms of the projection of higher dimensional boxes
(nD cubes). A simple example of a one-dimensional linear box spline is the triangle
function which can be obtained by projecting a 2D box along its diagonal axis down
to 1D. The resulting function (after proper scaling) is one at the origin and has a
linear fall off toward the first neighbors as illustrated in Fig. 6a.

The properties and behaviors of box splines are studied in [4]. For example, the
order of the box splines can be determined in terms of the difference in dimension
between the higher dimensional box and the lower dimensional projection. For in-
stance, the triangle function is a projection of a 2D cube into 1D, hence it is a first
order box spline.

Our construction of box splines for the BCC lattice is guided by the fact that
the rhombic dodecahedron (the first neighbors cell of the BCC lattice) is the three-
dimensional shadow of a four-dimensional hypercube (tesseract) along its antipodal
axis. This fact will be revealed in the following discussion. This construction is rem-
iniscent of constructing a hexagon by projecting a three-dimensional cube along its
antipodal axis; see Fig. 6b for the 2D case.

Integrating a constant tesseract of unit side length along its antipodal axis yields
a function that has a rhombic dodecahedron support (see Fig. 3b), has the value two3

(a) (b)

Fig. 6. (a) One-dimensional linear box spline (triangle function). (b) The two-dimensional
hexagonal linear box spline

3 Note that the BCC sampling lattice has a sampling density of two samples per unit volume.

From Sphere Packing to the Theory of Optimal Lattice Sampling 241

at the center and has a linear fall off toward the 14 first neighbor vertices. Since it
arises from the projection of a higher dimensional box, this filter is the first order
(linear) box spline interpolation filter on the BCC lattice.

Let B denote the Box distribution. The characteristic function of the unit tesseract
is given by a product of these functions:

T (x, y, z,w) = B(x)B(y)B(z)B(w). (12)

Let v = 〈1, 1, 1, 1〉 denote a vector along the antipodal axis. In order to project along
this axis, it is convenient to rotate it so that it aligns with the w axis. Let

R = 1

2
[ρ1ρ2ρ3ρ4] =

1

2

⎡

⎢
⎢
⎢
⎣

−1 −1 1 1

−1 1 −1 1

1 −1 −1 1

1 1 1 1

⎤

⎥
⎥
⎥
⎦

(13)

This rotation matrix transforms v to 〈0, 0, 0, 2〉.4 Let x = 〈x, y, z,w〉; now the linear
kernel is given by

LRD(x, y, z) =
∫

T (R-x) dw.

Substituting in (12) we get

LRD(x, y, z) =
∫ 4∏

i=1

B(1
2
ρi · x) dw. (14)

We illustrate an analytical evaluation of this integral in Sect. 6.

5.3 Cubic Box Spline

By convolving the linear box spline filter kernel with itself we double its vanishing
moments in the frequency domain. Hence the result of such an operation will have
a cubic approximation order [10]. As noted by de Boor et al. [4], the convolution of
two box splines is again a box spline.

An equivalent method of deriving this function would be to convolve the tesseract
with itself and project the resulting distribution along a diagonal axis (this commuta-
tion of convolution and projection is easy to understand in terms of the corresponding
operators in the Fourier domain – see Sect. 5.4). Convolving a tesseract with itself
results in another tesseract which is the tensor product of four one-dimensional
triangle functions.

4 By examining (13), one can see that each vertex of the rotated tesseract, when projected
along the w axis, will coincide with the origin or one of the vertices of the rhombic dodec-

ahedron:
〈
± 1

2 ,± 1
2 ,± 1

2

〉
, 〈±1, 0, 0〉, 〈0,±1, 0〉 or 〈0, 0,±1〉.

242 A. Entezari et al.

Let denote the triangle function. Then convolving the characteristic function
of the tesseract yields

Tc(x, y, z,w) = (x) (y) (z) (w). (15)

Following the same 4D rotation as in the previous section, we obtain a space domain
representation of the cubic box spline filter kernel:

CRD(x, y, z) =
∫ 4∏

i=1

 (
1

2
ρi · x) dw. (16)

Again, we will illustrate in Sect. 6 how to evaluate this integral analytically.

5.4 Frequency Response

From the construction of the rhombic dodecahedron discussed earlier, we can
analytically derive the frequency response of the linear function described by (14).

From (12), it is evident that the frequency domain representation of the
characteristic function of the tesseract is given by the product of four sinc
functions:

T̃ (ωx, ωy, ωz, ωw) = sinc(ωx)sinc(ωy)sinc(ωz)sinc(ωw).

While in the previous section the origin was assumed to be at the corner of the
tesseract, for the simplicity of derivation, we now consider a tesseract whose
center is at the origin. The actual integral, computed in (14) or (16) will not
change.

By the Fourier slice-projection theorem, projecting the tesseract in the spatial
domain is equivalent to slicing T̃ perpendicular to the direction of projection. This
slice runs through the origin. Again we make use of the rotation (13) to align the
projection axis with the w axis. Thus in the frequency domain we take the slice
ωw = 0.

It is convenient to introduce the 3 × 4 matrix

� = 1

2
[ξ1ξ2ξ3ξ4] =

1

2

⎡

⎣
−1 −1 1 1
−1 1 −1 1

1 −1 −1 1

⎤

⎦ (17)

given by the first three rows of the rotation matrix R of (13). The frequency response
of the linear kernel can now be written as

L̃RD(ωx, ωy, ωz) =
4∏

i=1

sinc(
1

2
ξ i · ω), (18)

where ω = 〈
ωx, ωy, ωz

〉
.

From Sphere Packing to the Theory of Optimal Lattice Sampling 243

The box spline associated with this filter is represented by the � matrix. The
properties of this box spline can be derived based on this matrix according to the
theory developed in [4]. For instance, one can verify C0 smoothness of this filter
using �.

We can verify the zero crossings of the frequency response at the aliasing fre-
quencies on the FCC lattice points. Due to the checkerboard property for every ω on
the FCC lattice, ξ4 ·ω = (ωx+ωy+ωz) = 2k for k ∈ Z; therefore, sinc(1

2 ξ4 · ω) = 0
on all of the aliasing frequencies. Since ξ4 ·ω = −ξ1 ·ω− ξ2 ·ω− ξ3 ·ω, at least one
of the ξ i · ω for i = 1, 2, 3 needs to be also an even integer and for such i we have
sinc(1

2ξ i · ω) = 0; therefore, there is a zero of order at least two at each aliasing
frequency, yielding a C0 filter.

The cubic box spline filter can be similarly derived by projecting a tesseract
composed of triangle functions. Again, the frequency response can be obtained via
the Fourier slice-projection theorem.

Since convolution corresponds to multiplication in the dual domain, the fre-
quency response of (15) is

T̃c(ωx, ωy, ωz, ωw) = sinc2(ωx)sinc2(ωy)sinc2(ωz)sinc2(ωw).

By rotating and taking a slice as before we obtain:

C̃RD(ωx, ωy, ωz) =
4∏

i=1

sinc2(
1

2
ξ i · ω). (19)

We can see that the vanishing moments of the cubic kernel are doubled from the
linear kernel. We could also have obtained (19) by simply multiplying (18) with
itself, which corresponds to convolving the linear 3D kernel with itself in the spatial
domain.

The box spline matrix for the cubic kernel is �′ = [�|�]. One can verify the
C2 continuity of this box spline using �′ and the theory in [4].

6 Implementation

In this section we describe a method to evaluate the linear and the cubic kernel
analytically.

Let H denote the Heaviside distribution. Using the fact that B(x) = H(x) −
H(x − 1) we can expand the integrand of the linear kernel ((14)) in terms of Heav-
iside distributions. After simplifying the product of four Box distributions in terms
of H, we get sixteen terms in the integrand. Each term in the integrand is a product
of four Heaviside distributions. Since x, y, z are constants in the integral and the
integration is with respect to w, we group the x, y, z argument of each H and call it
ti , using the fact that H(1

2x) = H(x), we can write each term in the integrand as:

I =
∫ b

a

H(w + t0)H(w + t1)H(w + t2)H(w + t3) dw.

244 A. Entezari et al.

The integrand is nonzero only when all of the Heaviside distributions are nonzero
and since the integrand will be constant one we have:

I = max(0, b − max(a,max(−ti))).

Similarly, for the cubic kernel in (16) we substitute (x) = R(x) − 2R(x −
1) + R(x − 2), where R denotes the ramp function. We obtain eighty one terms,
each of which is a product of four ramp functions. Using R(1

2x) = 1
2R(x), we can

write each term in the integrand as a scalar fraction of:

I =
∫ b

a

R(w + t0)R(w + t1)R(w + t2)R(w + t3) dw.

This simplifies to a polynomial times four Heaviside distributions that we can
evaluate analytically:

I =
∫ b

a

4∏

i=1

(w + ti)H(w + ti) dw

=
∫ b

c

4∏

i=1

(w + ti) dw.

where c = min(b,max(a,max(−ti))) and one can compute the integral of this
polynomial analytically.

6.1 Simplification of the Linear Kernel

An alternative method of deriving the linear kernel can be obtained through a
geometric argument.

All of the polyhedra discussed in Sect. 4 are convex and therefore may be de-
scribed as the intersection of a set of half spaces. Further, each face is matched by
a parallel antipodal face; this is due to the group structure of the lattice. If a point a

is in the lattice and vector b takes it to a neighbor then a + b is in the lattice; then
the group property enforces a − b be a point in the lattice as well, hence the an-
tipodal symmetry. As a consequence the polyhedra lend themselves to a convenient
description in terms of the level sets of piecewise linear functions.

Consider the rhombic dodecahedron, for example. Each of its twelve rhombic
faces can be seen to lie centered on the edges of a cube such that the vector from the
center of the cube to the center of its edge is orthogonal to the rhombic face placed
on that edge.

So the interior of the rhombic dodecahedron that encloses the unit cube in this
way can be described as the intersection of the twelve half spaces

±x ± y ≤ √
2, ±x ± z ≤ √

2, ±y ± z ≤ √
2. (20)

From Sphere Packing to the Theory of Optimal Lattice Sampling 245

Now consider the pyramid with apex at the center of the polyhedron and whose base
is a face f with unit outward normal n̂f . Notice that for any point p within this
pyramid, the scalar product p · n̂f is larger than p · n̂f ′ , where n̂f ′ is the outward
normal for any other rhombic face f ′. Thus if we define a function

φ : R
3 −→ R

φ : p �−→ max
n̂f

p · n̂f , (21)

its level sets are rhombic dodecahedra. We can use the axial symmetries of the half
spaces (20) to write the function (21) for the rhombic dodecahedron in the compact
form

φ(x, y, z) = max(|x| + |y|, |x| + |z|, |y| + |z|).
For a fixed s, all the points in the space with φ(x, y, z) < s are the interior of

the rhombic dodecahedron, φ(x, y, z) = s are on the rhombic dodecahedron and
φ(x, y, z) > s are on the outside of the rhombic dodecahedron. Therefore for all
s ≥ 0 the function φ(x, y, z) describes concentric rhombic dodecahedra that are
growing outside from the origin linearly with respect to s.

Using this fact, one can derive the function that is two at the center of the rhom-
bic dodecahedron and decreases linearly to zero at the vertices, similar to the linear
kernel described in (14), to be:

LRD(x, y, z) = 2 max(0, 1 − max(|x| + |y|, |x| + |z|, |y| + |z|)). (22)

7 Results and Discussion

The optimality properties of the BCC sampling imply that the spectrum of a Carte-
sian sampled volume matches the spectrum of a BCC sampled volume with 29.3%
fewer samples [11]. On the other hand, given equivalent sampling density per vol-
ume, the BCC sampled volume outperforms the Cartesian sampling in terms of
information captured during the sampling operation. Therefore, in our test cases,
we are comparing renditions of a Cartesian sampled dataset against renditions of
an equivalently dense BCC sampled volume as well as against a BCC volume with
30% fewer samples.

In order to examine the reconstruction schemes discussed in this paper, we have
implemented a ray-caster to render images from the Cartesian and the BCC sampled
volumetric datasets.5 The normal estimation, needed for shading, was based on
central differencing of the reconstructed continuous function both in the Cartesian
and BCC case. Central Differencing is easy to implement and there is no reason to
believe that it performs any better or worse than taking the analytical derivative of
the reconstruction kernel [9].

5 In order to ensure fair comparison of Cartesian vs. BCC sampling we should compare our
new reconstruction filters with filters based on the octahedron of first neighbors cell (see

246 A. Entezari et al.

(a) BCC 32 × 32 × 63 (b) Cartesian 40 × 40 × 40

(c) BCC, 30% reduced (d) Cartesian, 30% increased

Fig. 7. Comparison of BCC and Cartesian sampling of the Marschner–Lobb data set, cubic
reconstruction

We have chosen the synthetic dataset first proposed in [8] as a benchmark for
our comparisons. The function was sampled at the resolution of 40× 40 × 40 on the
Cartesian lattice and at an equivalent sampling on the BCC lattice of 32×32×63. For
the sake of comparison with these volumes a 30% reduced volume of 28 × 28 × 55
samples on the BCC lattice along with a volume of 30% increased sampling resolu-
tion of 44 × 44 × 44 for the Cartesian sampling was also rendered. The images in
Fig. 7 are rendered using the cubic box spline on the BCC sampled datasets and the
tri-cubic B-spline on the Cartesian sampled datasets. The images in Fig. 8 document

Sect. 4.1). However, tri-linear filtering is the common standard in volume rendering and
since tri-linear filters are superior to the octahedron based filters, we will compare our new
filters to the tensor-product spline family instead.

From Sphere Packing to the Theory of Optimal Lattice Sampling 247

(a) BCC 32 × 32 × 63 (b) Cartesian 40 × 40 × 40

(c) BCC 30% reduced (d) Cartesian, 30% increased

Fig. 8. Angular error of the computed normal vs. the exact normal of the cubic reconstruction
in Fig. 7. Angular error of 30◦ mapped to white

the corresponding error images that are obtained by the angular error incurred in
estimating the normal (by central differencing) on the reconstructed function. The
gray value of 255 (white) denotes the angular error of 30◦ between the computed
normal and the exact normal.

The optimality of the BCC sampling is apparent by comparing the images
Figs. 7a and 7b as these are obtained from an equivalent sampling density over the
volume. While the lobes are mainly preserved in the BCC case, they are smoothed
out in the case of Cartesian sampling. This is also confirmed by their corresponding
error images in Fig. 8. The image in Fig. 7c is obtained with a 30% reduction in
the sampling density over the volume of the BCC sampled data while the image in
Fig. 7d is obtained with a 30% increase in the sampling density over the volume of

248 A. Entezari et al.

the Cartesian sampled data. One could match the quality in Fig. 7c with Fig. 7b and
the Fig. 7d with the Fig. 7a, this pattern can also be observed in the error images of
Fig. 8. This matches our predictions from the theory of optimal sampling.

We also examined the quality of the linear kernel on this test function. The ren-
ditions of the test function using the linear kernel on the BCC lattice and tri-linear
interpolation on the Cartesian lattice are illustrated in Fig. 9. Since 98% of the energy
of the test function is concentrated below the 41st wavenumber in the frequency do-
main [8], this sampling resolution is at a critical sampling rate and hence a lot of
aliasing appears during linear reconstruction. We doubled the sampling rate on each
dimension and repeated the experiment in Fig. 10. Figure 11 demonstrates the errors
in the normal estimation. Due to the higher sampling density, the errors in normal

(a) BCC 32 × 32 × 63 (b) Cartesian 40 × 40 × 40

(c) BCC: Error image (d) Cartesian: Error image

Fig. 9. (a, b) Comparison of BCC and Cartesian sampling of the Marschner–Lobb data set,
linear reconstruction. (c, d) The corresponding error images map an angular error of 30◦ to
white

From Sphere Packing to the Theory of Optimal Lattice Sampling 249

(a) BCC 64 × 64 × 126 (b) Cartesian 80 × 80 × 80

(c) BCC, 30% reduced (d) Cartesian, 30% increased

Fig. 10. Linear reconstruction of the Marschner–Lobb data set at a higher resolution

estimation are considerably decreased; hence we have mapped the gray value 255
(white) to 5◦ of error.

Renditions of the Marschner–Lobb function with this higher sampling resolution
using cubic reconstruction and the corresponding error images are illustrated in
Fig. 12 and in Fig. 13.

Throughout the images in Fig. 7 through Fig. 13, one can observe the superior
fidelity of the BCC sampling compared to the Cartesian sampling.

Real volumetric datasets are scanned and reconstructed on the Cartesian lat-
tice; there are filtering steps involved in scanning and reconstruction that tune the
data according to the Cartesian sampling so the spectrum of the captured data is

250 A. Entezari et al.

(a) BCC 64 × 64 × 126 (b) Cartesian 80 × 80 × 80

(c) BCC, 30% reduced (d) Cartesian, 30% increased

Fig. 11. Angular error images for linear reconstruction at a higher resolution as shown in
Fig. 10. Angular error of 5◦ mapped to white (255)

antialiased with respect to the geometry of the Cartesian lattice. Therefore, the ul-
timate test of the BCC reconstruction can not be performed until there are optimal
BCC sampling scanners available.

However, for examining the quality of our reconstruction filters on real world
datasets we used a Cartesian filter to resample the Cartesian datasets on the BCC
lattice. While prone to the errors of the reconstruction before resampling, we have
produced BCC sampled volumes of the tooth and the UNC brain datasets with 30%
reduction in the number of samples. The original tooth volume has a resolution of
160 × 160 × 160 and the BCC volume after the 30% reduction has a resolution of
113 × 113 × 226; similarly for the UNC dataset, the original Cartesian resolution of
256 × 256 × 145 was reduced by 30% to the BCC resolution of 181 × 181 × 205.
The result of their rendering using the linear and the cubic box spline in the BCC

From Sphere Packing to the Theory of Optimal Lattice Sampling 251

(a) BCC 64 × 64 × 126 (b) Cartesian 80 × 80 × 80

(c) BCC, 30% reduced (d) Cartesian, 30% increased

Fig. 12. The cubic reconstruction of the Marschner–Lobb data set at a higher resolution

case and the tri-linear and tri-cubic B-spline reconstruction in the Cartesian case is
illustrated in Figs. 14 and 15. These images were rendered at a 5122 resolution on an
SGI Altix with sixty-four 1.5 GHz Intel Itanium processors running Linux.

8 Conclusion

In this paper we have derived an analytic description of linear and cubic box splines
for the body centered cubic (BCC) lattice. Using geometric arguments, we have
further derived a simplified analytical form of the linear box spline in (22), which
is simple and fast to evaluate (simpler than the trilinear interpolation function for
Cartesian lattices).

Further we have also derived the analytical description of the Fourier transform
of these novel filters and by demonstrating the number of vanishing moments we

252 A. Entezari et al.

(a) BCC 64 × 64 × 126 (b) Cartesian 80 × 80 × 80

(c) BCC, 30% reduced (d) Cartesian, 30% increased

Fig. 13. Angular error images for cubic reconstruction at a higher resolution as shown in
Fig. 12. Angular error of 5◦ mapped to white (255)

have established the numerical order of these filters. We believe that these filters will
provide the key for a more widespread use of BCC sampled lattices.

Our images support the theoretical results of the equivalence of Cartesian lattices
with BCC lattices of 30% fewer samples.

9 Future Research

As we have obtained the linear interpolation filter from projection of the tesseract,
we can obtain odd order splines by successive convolutions of the linear kernel (or
alternatively – projecting a tesseract which is the tensor product of higher order
one-dimensional splines). However, the even order splines and their analytical forms
do not seem to be easily derived. We are currently investigating this case.

From Sphere Packing to the Theory of Optimal Lattice Sampling 253

(a) BCC 30% reduced, linear box spline,
12 s

(b) Cartesian, tri-linear, 13 s

(c) BCC 30% reduced, cubic box spline,
190 min

(d) Cartesian, tri-cubic B-spline, 27 s

Fig. 14. The tooth dataset

The ease of deriving the frequency response of these interpolation filters lends
itself to a thorough error analysis on this family.

Further, the computation of the cubic box spline in (16) currently entails the
evaluation of 81 terms. This makes the evaluation of the cubic kernel computation-
ally expensive. We are currently investigating simplifications similar to that of the
linear kernel discussed in Sect. 6.1.

Except for the first order box spline, the spline family are approximating filters,
hence research on exact interpolatory filters, similar to those of Catmull–Rom for
the BCC lattice is being explored.

254 A. Entezari et al.

(a) BCC 30% reduced, linear box spline,
11 s

(b) Cartesian, tri-linear, 12 s

(c) BCC 30% reduced, cubic box spline,
170 min

(d) Cartesian, tri-cubic B-spline, 24 s

Fig. 15. The UNC dataset

References

1. P. Brémaud. Mathematical Principles of Signal Processing. Springer, Berlin, 2002.
2. G. Burns. Solid State Physics. Academic, New York, 1985.
3. J.H Conway and N.J.A. Sloane. Sphere Packings, Lattices and Groups, 3rd edition.

Springer, Berlin, 1999.
4. C. de Boor, K Höllig, and S Riemenschneider. Box Splines. Springer, Berlin, 1993.
5. D. E. Dudgeon and R. M. Mersereau. Multidimensional Digital Signal Processing, 1st

edition. Prentice-Hall, Englewood-Cliffs, NJ, 1984.
6. T.C. Hales. Cannonballs and honeycombs. Notices of the AMS, 47(4):440–449, April

2000.
7. C. Lanczos. Discourse on Fourier Series. New York, Hafner, 1966.

From Sphere Packing to the Theory of Optimal Lattice Sampling 255

8. S.R. Marschner and R.J. Lobb. An evaluation of reconstruction filters for volume
rendering. In R. Daniel Bergeron and Arie E. Kaufman, editors, Proceedings of the IEEE
Conference on Visualization 1994, pages 100–107, Los Alamitos, CA, USA, October
1994. IEEE Computer Society Press.

9. T. Möller, R. Machiraju, K. Mueller, and R. Yagel. A comparison of normal estimation
schemes. In Proceedings of the IEEE Conference on Visualization 1997, pages 19–26,
October 1997.

10. G. Strang and G.J. Fix. A Fourier analysis of the finite element variational method. In
Construct. Aspects of Funct. Anal., pages 796–830, 1971.

11. T. Theußl, T. Möller, and E. Gröller. Optimal regular volume sampling. In Proceedings
of the IEEE Conference on Visualization 2001, pages 91–98, Oct. 2001.

12. D. Van De Ville, T. Blu, M. Unser, W. Philips, I. Lemahieu, and R. Van de Walle.
Hex-splines: A novel spline family for hexagonal lattices. IEEE Transactions on Image
Processing, 13(6):758–772, June 2004.

Reducing Interpolation Artifacts by Globally
Fairing Contours

Martin Bertram and Hans Hagen

TU Kaiserslautern, FB Informatik, P.O. Box 3049, 67653 Kaiserslautern, Germany
{bertram, hagen}@informatik.uni-kl.de

Summary. We propose an iterative fairing method for scalar fields reducing the artifacts of
bi- and trilinear interpolation. Our method reconstructs a two-dimensional scalar field from
interpolation constraints optimizing the smoothness of its contours (isolines) based on vari-
ational principles. It generalizes to the trivariate case and is used to increase the quality of
data sets employing a cubic B-spline representation. In contrast to filtering methods, our ap-
proach preserves the level of detail, enhancing features supported by the data while reducing
interpolation artifacts.

1 Introduction

Visualization of data defined on regular grids is mostly based on (multi-)linear in-
terpolation. Examples are view-dependent rendering of piecewise linear elevation
models and volume rendering of trilinearly interpolated computer tomography data.
In regions of high geometric complexity, multilinear interpolation introduces arti-
facts that are particularly visible in extracted contours, like elevation lines and iso-
surfaces. Besides of lacking smoothness, small topological features of these contours
are often damaged by the interpolation method. In this work, we demonstrate that in-
terpolation artifacts can be reduced significantly without eliminating such features.
We present a contour fairing-method providing a bicubic B-spline representation of
two-dimensional scalar fields. Our algorithm generalizes to the trivariate case and is
used to increase the quality when resampling data sets at higher resolution.

Fairness of a scalar field can be defined reciprocal to the magnitude of its princi-
pal curvatures. Smooth interpolation based on cubic B-Splines, for example, provides
fair curves, surfaces, and volumes. However, the contours of such representations are
not as smooth as they could be, see Fig. 1. Many small contour components of high
curvature do not represent features supported by data and could be merged to larger
and smoother components. An approach is needed for fairing each individual con-
tour of an interpolating scalar field. While fairing techniques for parametric curves
and surfaces are well known, we consider the problem of fairing implicitly defined

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 257
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

258 M. Bertram and H. Hagen

(a) (b) (c)

(d) (e) (f)

Fig. 1. Contours of an analytic function (a) sampled on a 10 × 10-grid. (b) Bilinear inter-
polation; (c) bicubic interpolation; (d) sinc interpolation; (e) our interpolating method (five
iterations); (f) our approximating method (five iterations, w = 0.5)

geometry. In the present work, we propose a global optimization process minimizing
the variation of the scalar field’s gradient along all individual contours. The method
can be combined with interpolation as shown in Fig. 1e or approximation, see Fig. 1f.

These are the contents of our work: In Sect. 2, we summarize related work.
Section 3 presents our contour fairing approach for scalar fields, extending an earlier
approach [2]. As basis functions, we use bicubic B-splines with dyadic refinement
by knot insertion. In Sect. 4, we provide numerical examples and conclude our work
in Sect. 5.

2 Related Work

Following the initial idea of marching cubes [10], a variety of different contouring
schemes have been proposed for trilinear volume data. Efficient methods extract mul-
tiple contours in one pass for volume rendering purposes [7]. Isosurfaces can also be
extracted from hierarchical octree representations [17], facilitating level-of-detail.

An important breakthrough is the extraction of topologically correct isosurfaces
with respect to the trilinear interplant [9, 12]. Topological analysis of scalar fields
provides critical points where the topology of contours changes when a passing a
certain isovalue [14]. Unfortunately, the topology of a trilinear interplant is often
different from the topology of an original scalar field prior to discretization. The
question arises how to find the best reconstruction of the original shape consistent
with the discrete data.

Image processing techniques like anisotropic diffusion [6,15] are capable of rec-
ognizing local features, but they modify the data. Such approaches are mostly useful

Reducing Interpolation Artifacts by Globally Fairing Contours 259

when the data is contaminated with noise. Fairing techniques of this kind are also
applicable to the fairing of geometric shapes [4, 5].

Variational modeling [8, 16] provides useful fairing methods for parametric sur-
faces. Our challenge is to apply these methods to implicit geometries that do not have
a parametric domain. Fairing a single extracted isosurface with nonlinear constraints
imposed by the volume grid is feasible [11]. Besides variational principles, wavelets
can be used for fairing of parameterized contours, as well [1].

In the present work, we contribute two fairing methods for the contours of a
sampled scalar field based on interpolation and least-squares fitting. The methods
are based on an earlier approach [2] using a local C1-continuous basis blended into
a global representation. The methods presented here are based on cubic B-splines
with dyadic refinement. We provide examples for the bivariate case. An extension
to three dimensions is possible by fairing different sets of slices in a volume. This
has already proven to work well for a more efficient but less accurate discrete fairing
method [3].

3 Fairing Contours of a Scalar Field

Parametric curves and surfaces can be smoothed based on variational modeling
[8, 16]. In this section, we adapt these techniques to the fairing of implicitly de-
fined geometries, like isolines. We obtain fair contours by minimizing their curvature
within a prescribed space of basis functions representing the underlying scalar field.

3.1 Linear Optimization

Given some ordinates fi with associated parameters (si, ti), we intend to construct
an interpolating scalar field f (s, t), satisfying

f (si , ti) = fi . (1)

A straightforward construction, such as interpolation with bicubic splines, uses the
same number of (proper) basis functions ψi as the number of interpolation con-
straints. In this case, a linear system of equations,

Ac = f, aij = ψj (si, ti) (2)

provides the coefficients representing

f (s, t) =
∑

i

ci ψi(s, t).

If the number of basis functions is greater than the number of constraints, then
there exist some degrees of freedom for optimizing the scalar field’s shape. A well-
known optimization method is thin-plate energy minimization,

260 M. Bertram and H. Hagen

‖f ‖2
tp = < f, f >tp −→ min,

< f, g >tp :=
∫ ∫

fssgss + 2fstgst + fttgtt ds dt,
(3)

where fss , fst , and ftt denote second order partial derivatives of f . We note that
this functional is only an approximation to the energy of a thin elastic surface. Bicu-
bic splines satisfy this optimization a priori. If other basis functions are used, the
minimum within the spanned space can be found by solving a system of equations.

If it is sufficient to approximate the ordinates fi (assuming these are not exact
due to some uncertainty), then the thin-plate minimization can be combined with
least-squares fitting,

rf := (1 −w)
∑

i

|f (si , ti)− fi |2 + w < f, f >tp −→ min. (4)

The constant w ∈ (0, 1) allows to put more emphasis on either accuracy or smooth-
ness. The coefficients satisfying (4) are determined by a linear system of equations,

((1 −w)ATA +wE) c = (1 −w)AT f, (5)

where eij =<ψi,ψj>tp and A is the (nonsquare) matrix of (2). The system of equa-
tions for such an optimization problem is typically found by the necessary constraints
∂rf
∂ck

= 0, where rf is the residual to be minimized.
In cases where the ordinates fi are exact values that need to be interpolated, these

constraints can be worked into the system Ec = 0 using Lagrangian multipliers.
A more efficient approach uses a transformed set of basis functions, such that the
interpolation constraints are a priori satisfied by the construction. The rank of the
system corresponds then to the number of degrees of freedom.

In our approach, we use two sets of basis functions,� and � , where � contains
one basis function for every interpolation constraint and � provides the remaining
degrees of freedom used for fairing. We construct these bases such that

f (s, t) =
∑

i:φi∈�
fiφi(s, t) +

∑

k:ψk∈�
ckψk(s, t),

φi(sj , tj) = δij , and

ψk(sj , tj) = 0.

(6)

Using this representation, the coefficients ck minimizing (3) need to be deter-
mined. Again, the constraints ∂

∂ck
< f, f >tp= 0 necessary for optimization provide

a linear system of equations,

Ec = −Gf, where

eij =< ψi,ψj >, and gij =< ψi, φj > . (7)

The matrix E is positive definite, since for any vector x = 0,

xEx =
∑

i

∑

j

xixj < ψi,ψj > = ‖
∑

i

xiψi‖2 > 0, (8)

Reducing Interpolation Artifacts by Globally Fairing Contours 261

provided that the functions ψi are linearly independent. The solution of this system
provides the remaining coefficients c representing f in (6), minimizing (3) among
all choices of c.

The above optimization approach can be implemented for different choices of
inner products, as well. In the following section, we construct an inner product
whose norm minimizes the curvature of the scalar field’s isolines. This construction
is adopted from [2] with a few modifications.

3.2 Fairing Contours

Consider an interpolating scalar field f (x, y), satisfying f (xi, yi) = fi . Selecting a
certain isovalue α, we intend to smooth the corresponding isoline composed of all
points (x, y) satisfying f (x, y) = α. We note that the following deliberations also
generalize to volumes, where contours are surfaces.

Suppose that we get hold of a parametric representation of the contour associated
with isovalue α, say gα(s), such that

f (gα(s)) = α. (9)

Using this parametric form, fairing the contour can be achieved by minimizing its
second derivative,

∫

‖g′′α(s)‖2 ds −→ min. (10)

In the case of an arc-length parametrization, this is equivalent to minimizing the
variation ns := ∂n

∂s
of the contour’s normal vector n along gα(s), see Fig. 2:

∫

‖ns(s)‖2 ds −→ min,

n(s) = ∇f (gα(s))
‖∇f (gα(s))‖

(11)

Δ g’

Δ n

Δ s

g(s)

n
g’

Fig. 2. Variation of g′ and n are equal in absolute value

262 M. Bertram and H. Hagen

The variation of the vector n has two components, n′⊥ = (n · ∇)n orthogonal and
n′‖ = (n× ∇)n tangential to the contour:

(n′⊥)i =
3∑

k=1

nk
∂ni

∂nk
,

(n′‖)ij =
3∑

k=1

3∑

l=1

εjkl nk
∂ni

∂nl
,

εjkl =

⎧
⎪⎨

⎪⎩

1 if ijk ∈ {123, 231, 312}
−1 if ijk ∈ {321, 213, 132}
0 else.

(12)

In the two-dimensional case, the tangential component n′‖ is a vector, since its
components are only nonzero for j = 3. In three dimensions it is a matrix. In both
cases, its magnitude can be defined by a norm taking the square root of the sum of
all squared scalar components. Now, we substitute n′‖ for ns in (11) and obtain

∫

‖(n× ∇)n‖2 ds −→ min. (13)

To combine all contours of a scalar field into a single optimization process, we
need to integrate over the isovalues α as well. To emphasize certain regions in the
optimization process, a nonnegative weighting function w(s, α) is multiplied with
the normal variation,

∫ ∫

w(s, α) ‖(n× ∇)n‖2 ds dα −→ min. (14)

Assuming that each contour is given in arc-length parametrization, this is equiv-
alent to

∫ ∫

w̃(x, y) ‖(n×∇)n‖2 dx dy −→ min,

w̃(gα(s)) := w(s, α),

(15)

where x and y are parameters of the scalar field and the weighting function is now
redefined for this domain.

The residual norm corresponding to this optimization problem is induced by a
scalar product, which can be used in a (nonlinear) optimization algorithm. In numer-
ical experiments, we observed that the normalization of the gradient can be skipped,
improving convergence rates. Hence, we substitute ∇f for the contour normal n and
obtain with

‖(n× ∇)∇f ‖2 = ‖n1 (fxy, fyy)
T − n2 (fxx, fxy)

T ‖2

= (n1fxy − n2fxx)
2 + (n1fyy − n2fxy)

2
(16)

Reducing Interpolation Artifacts by Globally Fairing Contours 263

the scalar product

< f, g >n =
∫ ∫

w
(
(n1fxy − n2fxx)(n1gxy − n2gxx)

+ (n1fyy − n2fxy)(n1gyy − n2gxy)
)
dx dy.

(17)

If the normal field n(x, y) = (n1(x, y), n2(x, y))
T is known from a previous

estimate for the scalar field f , then above scalar product used in (7) provides a lin-
ear optimization method. Since n depends on f , an iterative algorithm with linear
optimization steps is required.

3.3 Nonlinear Fairing Algorithm

Our iterative fairing algorithm works as follows: The first estimate f (0) is obtained
by thin-plate energy minimization. To compute f (i+1) from f (i), we first sample
the gradient field from the previous estimate, n(i) := ∇f (i) (without normalization).
Then, we compute f (i+1) from the optimization process using

< f, g > := < f, g >n(i) + ε
∫ ∫

fxgx + fygy dx dy, (18)

where ε is a small number, say 0.001. We need to add a small portion of slope min-
imization to increase numerical stability, since our optimization method does not
converge to a unique solution, otherwise. This is due to the fact that the contour
geometry does not carry any information about the corresponding isovalues, and
multiple solutions with same contour geometry exist, see Fig. 3. All scalar products
between basis functions need to be estimated by numerical integration.

Our algorithm requires smooth basis functions with nonzero second-order deriva-
tives. In our implementation, we used cubic B-splines with two segments per grid
cell to obtain enough degrees of freedom. For a row of n grid points located at
x = 0, 1, · · · , n− 1, the corresponding knot vector is

t0 = · · · = t3 = 0,

ti = (i − 3)/2 (i = 4, · · · , 2n),
t2n+1 = · · · = t2n+4 = n− 1.

(19)

The corresponding B-splines N4
i , (i = 0,· · ·, 2n) are depicted in Fig. 4.

Fig. 3. Multiple solutions exist, when smoothing isolines without considering corresponding
isovalues

264 M. Bertram and H. Hagen

Fig. 4. B-splines N4
i

for a row of five grid points (eight segments after refinement)

Fig. 5. Transformed basis functions � (red) and � (black)

A simple basis transform provides the two sets � and � used for interpolation
and optimization, respectively:

φ0 = N4
0 ,

φi = 1.5 N4
2i+1, (i = 1, · · · , n− 2),

φn−1 = N4
2n,

ψ0 = N4
1 ,

ψi = N4
2i − 0.25 (N4

2i−1 +N4
2i+1), (i = 1, · · · , n− 1),

ψn = N2n−1.

(20)

These functions, shown in Fig. 5, have compact support and satisfy

φi(j) = δij (i, j = 0, · · · , n− 1),

ψi(j) = 0 (i = 0, · · · , n; j = 0, · · · , n− 1).
(21)

In the two-dimensional case, we use the tensor-products�×� for interpolation
and the functions in � × � , � × �, and � × � for optimization. A scalar field
defined bym×n grid points will be represented by (2m+1)× (2n+1) coefficients.
For the trivariate case, the method would be rather slow. Here we suggest to apply the
bivariate approach to three canonical sets of slices, as described earlier for a similar
method [3].

Reducing Interpolation Artifacts by Globally Fairing Contours 265

If interpolation is not required, our fairing method can be combined with least-
squares fitting, based on (5). In this case, all basis functions are associated with
degrees of freedom and no specific basis transform is required. In applications where
the given data is not contaminated with noise or some uncertainty, however, the in-
terpolative approach is recommended.

4 Numerical Examples

Figures 1, 6, and 7 provide a comparison of the contours obtained by stan-
dard interpolation methods and our fairing approach. Besides bilinear and bicu-
bic interpolation, sinc-functions [13] are often used for interpolation since they

(a) (b) (c)

(d) (e) (f)

Fig. 6. (a) Analytic X-function on 7× 7-grid; (b) bilinear interpolation; (c) bicubic interpola-
tion; (d) sinc interpolation; (e) our interpolating method (five iterations); (f) our approximating
method (five iterations, w = 0.5)

(a) (b) (c)

Fig. 7. (a) Sinc interpolation of a discrete point set, (b) bicubic interpolation, (c) optimized
contours (five iterations)

266 M. Bertram and H. Hagen

correspond to box functions in Fourier domain and provide an optimal reconstruc-
tion from uniformly sampled data. The univariate sinc interplant can be defined as a
convolution,

fsinc(x) =
∑

i

fi sinc((x − i)π),

sinc(x) =
{
sin(x)
x

if x = 0,

1 else.

(22)

Due to the infinite support of these basis functions, the sinc interplant may be com-
puted using the Fourier transform. To avoid problems at the boundaries of our data
sets, we assumed zero values at all grid points outside the domain.

The examples show that the sinc interplant mostly represents contour lines better
than the bicubic interplant, despite of its energy-minimization property. In particular,
diagonal features like those in Fig. 6 are better represented by sinc functions. The
drawback of these is that often over- and undershoots occur, since exact localization
in both frequency and time-domain is not possible (uncertainty principle). When
using our contour fairing approach, these over- and undershoots are reduced to a
minimum, showing that most contour lines generated are supported by the data. If
we relax the interpolation constraints in order to get a least-squares approximation,
the contours become even smoother.

Figure 8 shows the approximation results of the first three iterations. Computa-
tion times for data sets of different size are summarized in Table 1. These examples

(a) (b) (c)

Fig. 8. Convergence of our iteration scheme: (a) first, (b) second, and (c) third iteration

Table 1. Computation times in milliseconds for thin-plate energy minimization and for each
iteration of the fairing process. The total number of basis functions is the number of vertices
plus the number of degrees of freedom (dofs)

No. vertices No. dofs Thin-plate min. Iteration time

25 96 69 92
49 146 181 250
64 225 259 352
100 341 537 723

Reducing Interpolation Artifacts by Globally Fairing Contours 267

were computed on a Linux PC equipped with a 2.4 GHz processor, using only 16
samples per grid cell for numerical integration of the inner products. Most of the
computation time is used up by this integration. Due to compact support of the basis
functions, however, the time used for numerical integration is linear in the number
of grid points. The systems of equations are sparse and require only small solution
times. The method could be accelerated by precomputing the basis functions on the
integration grid and by implementing the integration on a GPU.

We found that five iterations were sufficient to obtain good results with both
methods. The computation times for the approximating method were slightly larger,
since the systems are larger compared to the interpolating method (Fig. 9). The times
for thin-plate minimization were given for comparison. Of course, thin-plate mini-
mization can be obtained more efficiently by cubic spline interpolation at the coarse
level, followed by knot insertion. This is due to the fact that bicubic surfaces mini-
mize thin-plate energy a priori.

The quality of our fairing methods can be measured in the L2-sense (taking the
square root of the average squared error), in case that a continuous function repre-
senting a data set is available. To judge the quality of contour lines, we define Ar to

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Approximative results for different choices of w in (4). (a, d, g) w = 0.1; (b, e, h)
w = 0.5; (c, f, i) w = 0.9. For w→ 0 the results equal those of the interpolating method

268 M. Bertram and H. Hagen

Table 2. Approximation results of O- and X-data sets based on three different norms. L2 and
d2 are measured in percent of one grid unit, where a∞ denotes the percentage of the domain
area where no matching contour is found

Method O : L2 O : d2 O : a∞ X : L2 X : d2 X : a∞
Bilinear 6.51 17.26 5.81 5.38 18.09 7.80
Bicubic 4.35 13.66 20.23 3.90 12.61 12.95
Sinc 2.98 10.15 22.97 4.20 12.78 26.14
Interpol. fairing 2.33 9.31 22.49 2.96 9.15 19.06
Approx. w = 0.1 2.29 9.59 21.71 2.70 9.52 14.08

be the subset of the domainD where the distance between corresponding isolines in
the exact data forig and its reconstruction freco is no larger than a radius r:

Ar = {p ∈ D | ∃q ∈ D : forig(q) = freco(p) ∧ ‖p − q‖ ≤ r} (23)

For all points in Ar , the distance between the reconstructed contour through this
point and the matching original contour is bounded by r . We denote d2 as the L2-
norm of these distances taken from all points in Ar . Let A∞ be the complement of
Ar and a∞ denote its relative area within the domain. The radius r is chosen to be
half a grid unit. The values obtained by these norms are summarized for the O- and
X-data sets in Table 2.

The reconstruction results show that our interpolating approach and also the ap-
proximation based on small fairing weights, e.g., w = 0.1, provide small L2 and
d2 values. The area A∞ where no matching contours are found is mostly located
in regions with small slopes. The size of this region does not provide much insight,
but it can be used in combination with the d2-values. The good performance of the
bilinear interplant in terms of locating close contours may be due to the piecewise
linear shape of the example data sets.

5 Conclusions and Future Work

We presented two iterative variational-modeling algorithms reducing interpolation
artifacts of discretized scalar fields. Our methods find an interpolating (or approxi-
mating) scalar field for gridded data minimizing the curvature of all contours. The
methods can be used for resampling or to improve the quality in regions of high
geometric complexity. Of course, the size of reconstructed details is limited by the
Nyquist frequency, i.e., by half the rate of discretization.

Numerical examples show that the visual quality of gridded data can be improved
significantly in the two-dimensional case. The method generalizes to three dimen-
sions, but it may be more efficient to use the bivariate approach for fairing the slices
of a three-dimensional data set. When implemented on a GPU, the approach may be
efficient enough to be used interactively.

Reducing Interpolation Artifacts by Globally Fairing Contours 269

References

1. M. Bertram, D.E. Laney, M.A. Duchaineau, C.D. Hansen, B. Hamann, and K.I. Joy,
Wavelet representation of contour sets, In: Proceedings of IEEE Visualization 2001,
pp. 303–310, 566.

2. M. Bertram, Fairing scalar fields by variational modeling of contours, In: Proceedings of
IEEE Visualization 2003, pp. 387–392.

3. M. Bertram, Volume refinement fairing isosurfaces, In: Proceedings of IEEE Visualization
2004, pp. 449–505.

4. U. Clarenz, U. Diewald, and M. Rumpf, Nonlinear anisotropic diffusion in surface pro-
cessing, In: Proceedings of IEEE Visualization 2000, pp. 397–405, 580.

5. M. Desbrun, M. Meyer, P. Schroeder, and A. Barr, Implicit fairing of irregular meshes
using diffusion and curvature flow, In: Proceedings of ACM Siggraph, 1999, pp. 317–324.

6. U. Diewald, T. Preus̈er, and M. Rumpf, Anisotropic diffusion in vector field visualization
on euclidean domains and surfaces, IEEE Transactions on Visualization and Computer
Graphics, vol. 6, no. 2, 2000, pp. 139–149.

7. T. Gerstner, Fast multiresolution extraction of multiple transparent isosurfaces, In: Pro-
ceedings of VisSym’01, Joint Eurographics and IEEE TCVG Symposium on Visualiza-
tion, 2001, pp. 35–44, 336.

8. H. Hagen, G. Brunnett, and P. Santarelli, Variational principles in curve and surface de-
sign, Surveys on Mathematics for Industry, vol. 3, no. 1, 1993, pp. 1–27.

9. A. Lopes and K. Brodlie, Improving the robustness and accuracy of the marching cubes
algorithm for isosurfacing, IEEE Transactions on Visualization and Computer Graphics,
vol. 9, no. 1, 2003, pp. 16–29.

10. W.E. Lorensen and H.E. Cline, Marching cubes: a high resolution 3D surface construc-
tion algorithm, In: Proceedings of ACM Siggraph, 1987, pp.163–169.

11. G.M. Nielson, G. Graf, R. Holmes, A. Huang, and M. Phielipp, Shrouds: optimal separat-
ing surfaces for enumerated volumes, In: Proceedings of VisSym’03, Joint Eurographics
and IEEE TCVG Symposium on Visualization, 2003, pp. 75–84, 287.

12. G.M. Nielson, On marching cubes, IEEE Transactions on Visualization and Computer
Graphics, vol. 9, no. 3, 2003, pp. 283–297.

13. F. Stenger, Numerical methods based on sinc and analytic functions, Springer, New York,
1993.

14. G.H. Weber, G. Scheuermann, and B. Hamann, Detecting critical regions in scalar fields,
In: Proceedings of VisSym’03, Joint Eurographicsand IEEE TCVG Symposium on Visu-
alization, 2003, pp. 85–94, 288.

15. J. Weickert, Anisotropic diffusion in image processing, ECMI Series, Teubner, Stuttgart,
1998.

16. W. Welch and A. Witkin, Variational surface modeling, In: Proceedings of ACM Sig-
graph, 1992, pp.157–166.

17. R. Westermann, L. Kobbelt, and T. Ertl, Real-time exploration of regular volume data by
adaptive reconstruction of isosurfaces, The Visual Computer, vol.1̇5, 1999, pp. 100–111.

Time- and Space-Efficient Error Calculation
for Multiresolution Direct Volume Rendering

Attila Gyulassy1, Lars Linsen1,2, and Bernd Hamann1

1 Institute for Data Analysis and Visualization (IDAV), University of California, Davis,
Davis, CA 95616, USA
{aggyulassy, hamann}@cs.ucdavis.edu

2 Department of Mathematics and Computer Science,
Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany
linsen@uni-greifswald.de

Summary. Multiresolution data representations are crucial for viewing large volumetric
datasets interactively. When data is too large to fit into texture memory, or into main memory, a
“cut” must be made through the multiresolution data hierarchy to attain a subset of the data that
satisfies the memory requirements. Ideally, a subset is chosen such that the error made when
visualizing the subset (compared to a visualization of the full data set) is smaller than that of
any other subset of the same size. For real-time applications it is computationally too expensive
to calculate the exact error during runtime. Further, computing error in a preprocessing step
is usually not practical due to a large number of possible different configurations each requir-
ing its own error computation. For example, when coupling a multiresolution representation
with a direct volume rendering technique, screen-space error depends on the transfer function
and viewing direction, making impossible its precomputation. We present an algorithm that
stores an intermediate form of the error, which allows us to approximate screen-space error
efficiently. The input for our algorithm is any spatially subdivided multiresolution representa-
tion of grid-aligned scalar or multivariate volume data. We focus on octree- and wavelet-based
multiresolution techniques. For each level in the multiresolution hierarchy, the algorithm esti-
mates screen-space error “on the fly,” with respect to the current transfer function and viewing
direction. The error is approximated by means of a two-dimensional histogram of error pairs.
We have extended previous methods by presenting an approach that balances computational
and memory costs with approximation quality of the error estimate.

1 Introduction

Visualization of volumetric datasets is a common task used in many fields, including
medicine, physics, and other sciences. Complexity is introduced in this task by the
fact that datasets sometimes are too large to fit into texture memory, or main memory.
Therefore, data reduction schemes are required to enable interactive exploration and
visualization. We refer to the subset that is selected as a “cut” of the data structure.
Three steps summarize the main tasks involved in the visualization of large data

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 271
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

272 A. Gyulassy et al.

using multiresolution approximation methods: (1) Compress the original data to a
more manageable size; (2) select the optimal cut such that it minimizes screen-space
error while maintaining interactive exploration; and (3) render the cut in an efficient
way. For interactive visualization, frame-rates of at least ten frames per second are
desirable. Therefore, the algorithm that selects the cut must be efficient. Also, the
algorithm must not have a large memory overhead, since the primary goal is to use
available memory to attain as high-quality a representation of the original data as
possible. Furthermore, interactive modification of the transfer function is desirable.

Several studies have shown that it is possible to compress large datasets and
thereby reduce the I/O and memory footprint. Nguyen and Saupe [8] showed that
it is possible to attain quality compression of volumetric datasets using blockwise
wavelet representations. Guthe and Straßer [2] demonstrated that using such com-
pression methods and graphics hardware, it is possible to render large datasets at
interactive frame rates. Unlike these methods, however, our algorithm can be applied
to any data representation, including compressed representations, as long as the rep-
resentation is hierarchical/nested, i.e., it maintains the property that high-resolution
levels are spatially contained in low-resolution levels. Such representations include
tree- and wavelet-based structures.

Selection of the cut is important when using multiresolution representations,
since different cuts yield different screen-space errors when applying visualization
methods. If the error associated with a node in the representation is known, then it
is possible to make a decision about the importance of refining the resolution of that
node. We present an algorithm that estimates screen-space error efficiently and sup-
ports interactive modification of the transfer function. The key observation motivat-
ing the algorithm presented in this paper is that there exists an intermediate form of
the error that can be exploited to make possible lazy evaluation of the actual screen-
space error. The intermediate form of the error can be computed independently of
the chosen transfer function and viewing direction. Specifically, instead of storing
the actual error (in color space) associated with each node in the data hierarchy, we
store a precalculated histogram of values and deviations, such that the error can be
reconstructed for any transfer function and viewing direction without processing the
entire dataset again.

We show that with our algorithm one can attain substantially higher framerates
for a guaranteed error bound by minimizing the size of the cut required for that error.
Alternately, given a fixed amount of memory, we show that our algorithm selects a
near-optimal cut for minimizing screen-space error.

2 Previous Work

The algorithm presented here combines techniques described by Guthe and
Straßer [2] and LaMar et al. [6]. LaMar et al. presented an algorithm that makes use
of the fact that there are fewer unique error pairs in a large data set than occurrences

Error Calculation for Volume Rendering 273

of such pairs. An error pair (a, b) is a pair of values out of the range of the considered
data field. (An error pair (a, b) occurs when value a is used instead of the correct
value b.) Their algorithm considers byte datasets that have the property that there
exist only 256 distinct values and 2562 = 216 possible error pairs, whereas in a data
set over a uniform rectilinear grid, e.g., of size 5123, there are already 5123 = 227

entries of data values. Therefore, storing a 2D table for each nonleaf node in the
representation, where the table contains for each error pair (a, b) entries

“Q(a, b) = number of times error pair (a, b) occurs,”

makes calculation of the actual error at runtime faster. Several optimizations were
introduced to reduce the size of this table, including halving the size of the table by
reflecting with respect to the table’s diagonal, and run-length encoding. Even though
this method provides a fast method for recalculating error, it introduces large storage
overhead, as each nonleaf node in the hierarchy has to contain a large data structure
representing this table. In addition, there is a high cost of calculating the error at
each node, since the entire table must be traversed. Also, this method is restricted to
byte datasets. Previous studies [4, 5] developed the error metrics necessary for error
calculation.

Guthe and Straßer [2] took a different approach to calculating the error for each
node in the hierarchy. In their algorithm, each node in the data hierarchy stores only a
small histogram of the maximum deviation for each value in that node. Furthermore,
the method bins values into eight groups. Therefore, instead of dealing with a 2562

table, a single eight-entry array is used. In reconstructing the error, however, all pos-
sible combinations of the values must be considered to find a conservative estimate
of the error. In practice, the n2 complexity of this operation can be avoided by stor-
ing another small table of the “maximum” and “minimum colors” and opacities for
each bin. While this approach is computationally inexpensive and memory-efficient,
it creates an overly conservative estimation of error. Indeed, the maximum color is
compared with the minimum color of every other element, and then scaled by the
number of items binned, which greatly overshoots the actual error. Therefore, this
method overestimates the error associated with a node in such a way that it could
produce an inferior cut of the multiresolution representation.

We present a new, hybrid approach, which uses a histogram similar to the one
used by LaMar et al. [6], but also applies a binning procedure, such as described by
Guthe and Straßer [2], see Fig. 1. In this way, we obtain a closer approximation of
the actual error, while keeping the data structure and computation overheads small.
Furthermore, our binning approach enables us to work on any multivariate dataset,
not only on byte data.

Other methods [1, 3, 11] can be used to calculate the error associated with levels
in a hierarchy. However, these methods rely on a fixed transfer function. Therefore,
whenever the transfer function is modified, the entire dataset must be traversed. This
characteristic prohibits interactive modification of the transfer function.

274 A. Gyulassy et al.

Fig. 1. For each node in the data hierarchy, (a) shows the table generated by LaMar et al. [6],
(c) shows the binning method of Guthe and Straßer [2], and (b) shows how our algorithm
combines the two methods

3 Error Estimation

Our algorithm presented here utilizes a conservative error estimation to select the cut
through the multiresolution representation of a dataset. The cut consists of the nodes
that are kept in memory for the purpose of rendering. The error can be measured by
the root-mean-square (RMS) difference between the images generated by rendering
the actual and approximating data, called the screen-space error. The error in a single
pixel is defined as

errorcolor(x) =
∣
∣
∣
∣

∫ d

0
Opacityh(x) ∗ Color(Valueh(x)) dx

−
∫ d

0
Opacityl (x) ∗ Color(Valuel (x)) dx

∣
∣
∣
∣ .

The function Opacityh refers to the function that defines the progressive visibility
along the ray, parameterized by x for the high-resolution data representation;V alueh
refers to the value returned by interpolation of the high-resolution data. Similarly,
Opacityl and Valuel refer to the corresponding functions for the low-resolution data.
The integral is evaluated over the interval (0, d), where d is the far cut plane.

In our conservative estimate, we approximate this value by the integral of the
errors along the ray projected from that pixel convolved with the progressive opacity
function, i.e.,

errorapprox(x) =
∫ d

0

∣
∣Opacityh(x) ∗ Color(Valueh(x))

−Opacityl (x) ∗ Color(Valuel (x))
∣
∣ dx .

Considering the triangle inequality, errorcolor(x) ≤ errorapprox(x).
We further simplify this equation by using the opacity in each node instead of the

progressive opacity, so that the error contributed by each node is view-independent.
Therefore, a conservative estimate of the error contributed by each node is sufficient

Error Calculation for Volume Rendering 275

to compute a conservative estimate of the final screen-space error of the image. The
error of a particular node in the cut is also useful for determining whether or not to
refine the cut at that node.

3.1 View-Independent Error at a Node

For simplicity, we first only consider a piecewise-constant interpolation of the data.
Also, we consider only one color channel at a time so that the transfer function is
scalar-valued. We combine the error contributions of each channel after they have
been computed independently. As is done by LaMar et al. [6], we can use two differ-
ent error norms for calculating the absolute error at a node in the data representation.
The L∞-error defines the error as the maximum of the errors under that node, i.e.,

errorL∞ = max
p∈B {|Color(Valueh(p))− Color(Valuel(p))|} , (1)

wherep refers to points of the original data that reside inside nodeB of the hierarchy.
This error calculates the largest deviation in color that can occur inside a node. The
RMS error averages the errors under that node, i.e.,

errorRMS =
√
√
√
√

1

n

∑

p∈B
(Color(Valueh(p))− Color(Valuesl(p)))2 , (2)

where n is the total number of points p ∈ B. For simplicity, we limit our discussion
to errorRMS. To calculate this error, however, we need to use the entire data structure.
We can rewrite this error as

errorRMS =
√

1

n

∑

i

(Color(ai)− Color(bi))2 ∗Q(ai, bi) , (3)

where {(ai, bi)} = {(Valueh(pi),Valuel (pi))|pi ∈ B} and Q(ai, bi) is the number
of times that the error pair (ai, bi) appears inside node B. In the case of byte data,
it is possible to represent Q explicitly as a table that is significantly smaller than
n for blocked data, and we can efficiently compute the error at a node using this
histogram. However, for real-valued data, no guarantees can be made concerning
the number of unique error pairs (ai, bj). Therefore, the size of Q is only bounded
by n. Straightforward storage of the table Q would be inefficient. Instead, we fix
a histogram size for Q, binning error pairs. Q represents a table of bins, each bin
(ai, bj) counting the number of occurrences of error pairs in its range. We reconstruct
a conservative error efficiently from this histogram.

At each node in the hierarchy, we store such a table Q of error pairs. We define
the tableQ at nodeB asQ(ai, bj) = m, wherem is the number of points p ∈ B such
that Valuel (p) ∈ [ai, ai+1) and Valueh(p) ∈ [bj , bj+1). Each bin in the histogram
stores the number of occurrences of error pairs whose values fall within a range of
values. Figure 2 shows how this table is created for the lowest nonleaf node in the
multiresolution hierarchy.

276 A. Gyulassy et al.

0.0
0.0

2.0

4.0

6.0

4.02.0 6.0
1.50.0

0.6

1.0 2.1 2.0

3.9

5.8

3.4

0

1

0 1

21

3

0

1

1.0 1.5 2.0

4.02.250.5

3.00.0 5.8

Fig. 2. Two levels in a quad-tree hierarchy. Data points (left) display low-resolution Valuel(p)
on top, and high-resolution Valueh(p) on the bottom, and the two values together form an error
pair. A 3 × 3 histogram (right) associated with the low-resolution node stores the number of
occurrences of error pairs. We assume piecewise-constant interpolation, with the data ranging
in value in the interval [0.0, 6.0]

0.0 2.0 4.0 6.0

256

128

0

192
156

110
122

70C
ol

or
(y

)

1.5

0.0
0.0

2.0

4.0

6.0

2.0 4.0 6.0

5.4

1

0 0

0

0

00

0

0

Fig. 3. Error pairs (left) are used to populate the histogram (middle). To reconstruct the error
associated with bin [0.0, 2.0) × [4.0, 6.0) we determine the maximally possible difference
in those ranges in the transfer function (right), MaxError() = 122. We assume piecewise-
constant interpolation of the data

To compute the error at a given node B, we reference the table Q of error pairs
associated with that node. We use the form of the error given by (3) to generate our
error formula as

errorRMS =
√
√
√
√

1

n

∑

i,j

(MaxError([ai, ai+1), [bj , bj+1)))2 ∗Q(ai, bj) , (4)

where MaxError([ai, ai+1), [bj , bj+1)) is the largest possible error in color that can
occur in the intervals [ai, ai+1) and [bj , bj+1). We apply the transfer function to
compute the maximum and minimum colors for each interval. We define MaxEr-
ror as

MaxError([a, b), [c, d)) = max(Color([a, b)) ∪ Color([c, d))) (5)

−min(Color([a, b)) ∪ Color([c, d))) .
The variables a, b, c, and d represent values in the domain of the transfer function.
Here, Color([a, b)) returns a range of color values in the interval [a, b). Figure 3

Error Calculation for Volume Rendering 277

illustrates MaxError. The transfer function is piecewise-linear. Therefore, all ex-
trema occur either at the endpoints of the intervals, or at data points of the trans-
fer function. We extract extreme values by sweeping through the transfer function
inside the intervals [ai, ai+1) and [bj , bj+1). The maximal error is computed as the
difference between the maximum color value and the minimum color value. We scale
the maximum error in a node by the maximum distance inside the node to obtain a
conservative estimate of the error. The maximum distance in a node in a standard
rectilinear grid is the diagonal length

√
3.

The error formulation in (6) is defined for piecewise-constant interpolation ap-
plied to a dataset. To maintain a conservative error estimate when using trilinear
interpolation, the histogram Q of a node B must be modified. Q(ai, bj) repre-
sents the number of nodes Bi contained in B, where the minimum function value
is in the range ai , and the maximum function value is in the range bj . To recon-
struct the error, MaxError now returns the maximum color difference in the range
[min(ai, bj),max(ai, bj)]. When the dimension of Q is N × 1, this method re-
duces to the one presented in [2]. For our results, we have used this formulation of
error.

The calculation of the maximum error of a bin is an expensive operation. How-
ever, a major improvement can be made when each tableQ has the same range and
size at every node. In this case, a single 2D table can be calculated representing the
maximum difference between colors for each bin in the histogramQ. Therefore, the
(i, j)-th element holds the maximum color difference for a bin (ai, bj) in table Q.
This drastically reduces the amount of calculation necessary for each node, since
this only needs to be calculated once whenever the transfer function is modified. The
result is stored in a table for subsequent look-ups.

Increasing histogram size improves the accuracy of the error estimation, as it
reduces the range of each bin, and therefore the maximum error associated with that
bin. Table 1 shows the space overhead associated with different histogram sizes.
The maximum acceptable histogram size at each node depends on the size of the
blocks, and also on data size. A large histogram can lead to severe storage overhead.
Indeed, for efficient estimation of the error, it is important to keep the error estimation
structure in memory. Therefore, the size of the histogram must be balanced with
performance considerations.

Table 1. Increasing histogram size leads to larger memory overhead associated with multiple
block sizes. The numbers are the percentages of the total memory used to store histograms

Histogram size 22 (%) 82 (%) 642 (%) 2562 (%)

323 0.012 0.195 12.500 200.000
643 0.002 0.024 1.560 25.000
1283 <0.001 0.003 0.195 3.120
2563 <0.001 <0.001 0.024 0.391

278 A. Gyulassy et al.

3.2 View-Dependent Error

Another consideration in calculating error is visibility of a node. Two factors con-
tribute to visibility: projected solid angle and opacity.

Projected solid angle refers to the amount of screen space that a node and its
subhierarchy occupy when projected. When a node occupies less than a pixel of
screen space, its screen-space error is very small. Conversely, when the screen space
of a node is large, even smaller errors are noticed. Therefore, a new view-dependent
error function can be defined as

errornode = errorRMS · φ ,
where φ is the projected solid angle of the node. Since the actual value of the pro-
jected solid angle is expensive to calculate, we approximate it by using the distance
d from the camera to the node, i.e.,

errornode = errorRMS · α · r
2

d2
,

where r is the maximum radius of the node and α is a constant.
Opacity is difficult to calculate efficiently, especially since it relies on the transfer

function and on the viewing direction. The error methods discussed so far are used to
select the nodes that in the working set, needed for rendering. To calculate opacity, a
front-to-back calculation must take place to eliminate nodes that are occluded. One
possible way to perform this task, without calculating the entire working set, is to
process nodes front-to-back and subdivide them in that order. Therefore, a node is
only considered for subdivision according to the previously defined error metric once
all nodes in front of it satisfy a particular error condition.

Following this approach, only the nodes in the final working set are considered.
Unfortunately, the size of this set is no longer bounded, as there is no limit on the
number of subdivision levels of nodes in the front. As a result, the memory bound
for the working set may be exceeded with a suboptimal selection of nodes. Due to
the complexity involved in calculating opacity while selecting a cut of the multires-
olution representation, occlusion culling is usually employed only during rendering,
once the cut has been selected. Guthe and Straßer [2] used such a method to avoid
rendering occluded blocks.

3.3 Cut Selection

Assuming that the error for each node is known, the overall procedure for selecting
nodes and rendering performs these steps:

Preprocessing:

1. Initialize multiresolution data structure.
2. Calculate histograms in bottom-up manner

Error Calculation for Volume Rendering 279

Runtime:

1. Initialize the cut with the top level node
2. While space left in memory:

• Find node with largest error
• Subdivide this node and add children to the cut

3. Render the cut

The greedy algorithm selects the node with the largest error, and subdivides
it. As a termination condition we either use the amount of free memory left or
a particular error threshold not to be exceeded. In either case, the algorithm ter-
minates, since space consumption increases and error decreases as we refine the
cut.

4 Multiresolution Representation

Our algorithm can be applied to any nested multiresolution representation, i.e.,
a representation that satisfies the multiresolution analysis criteria presented by
Rodler [10]. In particular, the multiresolution representation must subdivide the
entire data space, with nodes at each higher level in the representation spatially
bounding their child nodes. Furthermore, the accuracy of the representation must
not decrease as the cut is refined. Therefore, the error of each child of a node must
be smaller than or equal to the error at that node.

There are many representations that satisfy these requirements. Some commonly
used ones are octrees and wavelet-based representations. For simplicity, our algo-
rithm was implemented using an octree representation.While octrees are attractive
due to their simplicity, several studies have shown that wavelet-based representations
are efficient as well. In particular, when using wavelets, it is possible to compress the
original data, to alleviate some of the difficulties in large dataset rendering. Haar
wavelets are the most commonly used wavelets. Park and Ihm [9] attained both com-
pression and increased performance by using that representation. Indeed, Rodler [10]
presented several more complicated wavelet transforms. However, the Haar wavelet
transform is the most appropriate method for most multiresolution techniques, due
to its simplicity and efficiency.

5 Rendering

Rendering of volumetric data is a well studied topic. Very large datasets, however,
pose additional challenges. Levoy [7] implemented a scheme for interactive raycast-
ing. However, his method involves massively parallel rendering. Still, the optimal
performance for raycasting a 5123 dataset with 96 processors was less than two

280 A. Gyulassy et al.

frames per second. Although CPU performance has increased dramatically over re-
cent years, straightforward raycasting of large datasets is not practical for interactive
visualization on PCs.

Some of the fastest techniques for rendering volumetric data on a standard PC
utilize 3D texture hardware. LaMar et al. [5] showed how to improve image qual-
ity by using object-aligned slices. Westermann [11] showed that it is possible to use
texture hardware for multiresolution representations. Guthe and Straßer [2] attained
about ten-frames-per-second performance for a 40 GB dataset, using their error esti-
mation technique combined with texture hardware. Therefore, once errors are calcu-
lated and a cut is determined, any of the previous techniques could be used to render
the data.

6 Results and Discussion

Our algorithm provides an improved method for estimating screen-space error as-
sociated with levels in a multiresolution data representation. Our method balances
storage overhead, processing time, and quality of estimation. Using this improved
selection strategy, we pick a better cut through the multiresolution representation,
meaning that the same-sized cut yields lower error.

In Sect. 3, we showed that the storage overhead for this method is dependent on
the size of the histograms used and the size of the dataset. Therefore, we can balance
speed of the algorithm with the memory footprint.

Figure 4 shows that, given an error threshold, increasing the histogram size es-
timates the error of a cut with higher accuracy. In this case, we wish to find the
smallest cut such that the error threshold is satisfied. For a “nice” dataset, i.e., a data
set with smoothly changing function values, the error approximation improves with
size of the histogram in a reasonable manner. However, with sparse noise inserted
into the dataset, we see a substantial improvement with increased histogram size.
One advantage of our method is that small perturbations in the dataset do not signif-
icantly increase the estimated error, in contrast to the algorithm presented in Guthe
and Straßer [2] (Table 2).

We performed our analysis for the human skull dataset, which has size 2563 and
integer data values in the range [0, 255]. This dataset has both high-frequency and
low-frequency regions, and therefore is suitable for analysis purposes. Results were
generated with a 2 GHz Pentium 4 processor with 512 Mb of main memory. The
dataset was divided into 323 blocks and rendered using a straightforward raycasting
method. Recalculation of the error when changing the transfer function required less
than 1 ms. The recalculation of the error does not scale with dataset size, it scales only
with the size of the blocks and the size of the cut. Therefore, interactive modification
of the transfer function is possible.

As expected, increasing the size of the cut improves the accuracy of the final
image. As more data is used, the error decreases. However, the real benefit of this

Error Calculation for Volume Rendering 281

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100
Error %

o

f
N

o
d

es 256x256
64x64
8x8
8x1 (deviation)

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100
Error %

o

f
N

o
d

es 256x256
64x64
8x8
8x1 (deviation)

Fig. 4. Increasing error tolerance decreases the size of the cut needed to satisfy the error
condition. Error is measured as percentage of the maximum error, which is the error asso-
ciated with the coarsest resolution. “8 × 1 (deviation)” refers to the algorithm presented by
Guthe and Straßer [2]. Left: Application to “nice” artificial dataset consisting of distances to
points distributed in the domain. Right: Application to same dataset with some sparse noise
inserted

Table 2. RMS errors associated with image generated by our algorithm for each histogram
size. The last column is the RMS error of the image generated by Guthe and Straßer [2] using
eight bins

Histogram size 42 162 642 Guthe and Straßer [2]

RMS error 6.20 5.71 4.68 6.29

selection strategy is this: When the cut size is held constant, using a larger histogram
reduces the final error by selecting a better cut. Figure 5 shows the inverse relation-
ship between histogram size and screen-space error.

282 A. Gyulassy et al.

(a) (b)

(c) (d)

Fig. 5. (a) Dataset at full resolution. Images (b), (c), and (d) show a cut of 63 nodes selected
by our strategy using histogram sizes of 642, 162, and 42, respectively

7 Conclusions and Future Work

We have presented a cut selection strategy for multiresolution direct volume ren-
dering of large data that supports interactive modification of a transfer function. We
have improved previous methods [2, 6], since our method can deal with any scalar-
valued dataset, using an improved error estimation scheme. Our histogram approach
is memory-efficient and can be used in any multiresolution direct volume render-
ing method. An important property of our approach is that the size of a histogram
determines accuracy of rendering results. Therefore, we can balance computational
and memory costs with quality. Although the histograms we showed in the previous
section are square, it is possible to attain good results with nonsquare histograms.
Our results suggest that it is possible to tune the histogram size automatically for a
particular architecture and dataset size.

We plan to extend this algorithm to calculate errors for time-varying volumetric
data. Another possible future research area is error calculation for vector fields.

Error Calculation for Volume Rendering 283

Acknowledgments

This work was supported by the National Science Foundation under contract ACI
9624034 (CAREER Award), through the Large Scientific and Software Data Set Vi-
sualization (LSSDSV) program under contract ACI 9982251, through the National
Partnership for Advanced Computational Infrastructure (NPACI) and a large Infor-
mation Technology Research (ITR) grant; and the National Institutes of Health under
contract P20 MH60975-06A2, funded by the National Institute of Mental Health and
the National Science Foundation. We thank the members of the Visualization and
Computer Graphics Research Group at the Institute for Data Analysis and Visualiza-
tion (IDAV) at the University of California, Davis.

References

1. Imma Boada, Isabel Navazo, and Roberto Scopigno. Multiresolution volume visualiza-
tion with a texture-based octree. The Visual Computer, 17(3):185–197, 2001.

2. Stefan Guthe and Wolfgang Straßer. Advanced techniques for high-quality multi-
resolution volume rendering. Computers and Graphics, 28(1):51–58, 2004.

3. Stefan Guthe, Michael Wand, Julius Gonser, and Wolfgang Straßer. Interactive rendering
of large volume data sets. In Proceedings of the conference on Visualization ’02, pages
53–60. IEEE Computer Society, 2002.

4. Eric LaMar, Bernd Hamann, and Kenneth I. Joy. Multiresolution techniques for inter-
active texture-based volume visualization. In VIS ’99: Proceedings of the conference on
Visualization ’99, pages 355–361, Los Alamitos, CA, USA, 1999. IEEE Computer Soci-
ety Press.

5. Eric C. LaMar, Mark A. Duchaineau, Bernd Hamann, and Kenneth I. Joy. Multiresolution
techniques for interactive texturing-based rendering of arbitrarily oriented cutting-planes.
In W.C. de Leeuw and R. Van Liere, editors, Proceedings of VisSym 00 The Joint Euro-
graphics and IEEE TCVG Conference on Visualization, pages 105–114. Springer, Berlin,
2000.

6. Eric C. LaMar, Bernd Hamann, and Kenneth I. Joy. Efficient error calculation for mul-
tiresolution texture-based volume visualization. In Gerald Farin, Bernd Hamann, and
Hans Hagen, editors, Hierachical and Geometrical Methods in Scientific Visualization,
pages 51–62. Springer, Heidelberg, 2003.

7. Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Ap-
plications, 8(3):29–37, 1988.

8. Ky Giang Nguyen and Dietmar Saupe. Rapid high quality compression of volume data
for visualization. Computer Graphics Forum, 20(3):C49–C56, 2001.

9. Sanghun Park and Insung Ihm. Wavelet-based 3D compression scheme for interactive
visualization of very large volume data. Computer Graphics Forum, 18(1):3–15, 1999.

10. Flemming Friche Rodler. Wavelet based 3D compression with fast random access for very
large volume data. In Proceedings of the 7th Pacific Conference on Computer Graphics
and Applications, page 108. IEEE Computer Society, 1999.

11. Rüdiger Westermann. A multiresolution framework for volume rendering. In Arie
Kaufman and Wolfgang Krüger, editors, 1994 Symposium on Volume Visualization, pages
51–58, 1994.

Massive Data Visualization: A Survey

Kenneth I. Joy

Institute for Data Analysis and Visualization, University of California, Davis
kijoy@ucdavis.edu

Summary. Today’s scientific and engineering problems require a different approach to
address the massive data problems in organization, storage, transmission, visualization, ex-
ploration, and analysis. Visual techniques for data exploration are now common in many
scientific, engineering, and business applications. However, the massive amount of data
collected through simulation, collection and logging is inhibiting the use of conventional vi-
sualization methods. We need to discover new visualization methods that allow us to explore
the massive multidimensional time-varying information streams and turn overwhelming tasks
into opportunities for discovery and analysis.

1 Introduction

Scale is the grand challenge of visualization! We face a situation where the problem
analyst is continually overwhelmed with massive amounts of information from mul-
tiple sources, where the relevant information content exists in a few “nuggets.” The
visualization challenge is to create new methods that allow the analyst to visually ex-
amine this massive, multidimensional, multisource, time-varying information stream
and make decisions in a time critical matter.

The definition of “massive” is a moving target, because it changes over time
as computational resources and algorithmic methods improve. We will apply the
term “massive” to information streams that overwhelm some critical computation or
display resource necessary for analysis. The most common application of this term
is to information streams that do not fit into local disk or main memory, although
many researchers apply the term to data that cannot be displayed on a “single display
device.”

Various approaches have been used to address the problems of scale. There is
a continual effort to construct computer systems that can store and process massive
amounts of data, and design display systems that can display data at ever increasing
resolution. However, our ability to collect and generate data is increasing at a faster
rate than the projected increase in computational and display power, and we wish to

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 285
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

286 K.I. Joy

focus on methods that can address the problems of scale independent of computer
system and display advances. These methods can be classified as follows:

• Compression and simplification – Reduce the size of the information stream by
utilizing data compression methods or by simplifying the data to remove redun-
dant or superfluous items.

• Multiresolution methods – Design multiresolution hierarchies to represent the in-
formation at varying resolutions, allowing the user (or the application) to dictate
the resolution displayed.

• Memory external methods – Create innovative methods that store the data exter-
nally and develop methods that access relevant data subject to the interactivity
required by the user.

• Abstraction – Create new visual metaphors that display data in new ways.

Many areas outside of traditional visualization are also critical in meeting the
challenge of scale, including an understanding of application areas. Visualization
research must reach out to encompass issues from numerical methods, data analy-
sis, software engineering, database methods, networking, image processing, cogni-
tive and perceptual psychology, human–computer interaction, and machine learning
to address the problems before us. We must also develop evaluation techniques to
“measure” scalability so new tools can be analyzed.

This paper attempts a partial survey of the methods used to address scale in
visualization systems. We do not attempt to reproduce existing surveys for compres-
sion [13, 51, 70], but focus on simplification, multiresolution techniques, memory-
external methods, and visual scalability through abstraction.

2 Driving Problems

Our interest in massive data is driven by the many domains in which people ac-
tively collect data. Simulation applications are driven by problems in computational
fluid dynamics, engineering analysis, high-energy physics, and microprocessor de-
sign. Technical advances are now producing massive time-varying data in medi-
cal, biomedical and biological imaging applications. Bioinformatics data collections
(e.g., The Human Genome Project) will provide massive multidimensional data to
be analyzed. The Sloan Digital Sky Survey is collecting 8 TB per year of astronom-
ical data, and satellites turned towards the Earth collect vast amounts of image data
as well. The dramatically decreasing cost and increasing capabilities of sensors have
led to an explosion in the collection of real-world data. Dynamic processes, arising in
business or telecommunication, generate massive streams of sensor data, web click
streams, network traffic logs, or credit card transactions.

Consider the various data types that possibly affect the domain examined by the
problem analyst. These could include the following:

• Textual data – Massive textual data from documents, speeches, e-mails, or web
pages now influence the problem domain. This data can be truly massive, contain

Massive Data Survey 287

billions of items per day, and much of it must be analyzed in a time-critical
manner [34, 76, 77].

• Simulation data – Terascale simulations are now producing tens of terabytes of
output for several-day runs on the largest computer systems. As an example,
the Gordon–Bell-Prize-winning simulation of a Richtmyer–Meshkov instability
in a shock-tube experiment [54], produces isosurfaces of the mixing interface
with 460 million unstructured triangles using conventional extraction methods.
The pipeline necessary to visualize these massive datasets is described well by
Duchaineau et al. [19] (Fig. 1).

• Databases – Many corporate and government entities have constructed huge
databases containing a wealth of information. We require new algorithms for
the efficient discovery of previously unknown patterns in these large databases.

• Geospatial data – consider the data collected by satellites that image the earth.
We now have satellites that can create images at less than 1-m resolution and that
can collectively image the land surface of the planet in a very short time. These
images must be examined in a time-critical matter.

• Sensor data – the revolution in miniaturization for computer systems has allowed
us to produce a myriad of compact sensors. The sensors can collect data about
their environment (location, proximity, temperature, light, radiation, etc.), can
analyze this data, and can communicate between themselves. Collections of sen-
sors can produce very large streaming sets of data.

• Video and image data – Image and video data are being used more and more to
enhance the effectiveness of the security in high-risk operations. Content analy-
sis, combined with massive recording capabilities, is also being used as a power-
ful tool for improving business processes and customer service. This streaming
data paradigm creates new opportunities for visualization applications.

(a) (b)

Fig. 1. Scientific Simulations can produce massive isosurface data using conventional tech-
niques (courtesy, M. Duchaineau)

288 K.I. Joy

Each of these categories can produce massive data streams containing informa-
tion that is applicable to a specific application domain. The grand challenge in the
area of scalability is to develop new tools to distill the relevant nuggets of information
from these widely disparate information streams, creating an explorable information
space that can be examined by analytic or visual means to influence the decision of
the data analyst. We must provide mechanisms that can visualize connections be-
tween the relevant information in the information streams, and allow the problem
analyst to make decisions based on the totality of the information.

3 How Do We Explore Massive Data?

Nearly all methods to explore large, complex datasets rely on two methods: data
transformations and visual transitions. To transform a massive dataset into an “ex-
plorable” format, most researchers create a set of simple transformations that can
be repeatedly applied to the data. To display meaningful visualization without
screen clutter, the researcher must develop alternation visual metaphors and ab-
stractions to illustrate the data. These transformations and abstractions are simi-
lar to the “zooms” presented by Bosch et al. [10] and Stolte et al. [71–73] Their
framework utilizes multiple zooming panels for both data in visual abstractions.
They think of multiscale visualizations as a graph, were each node corresponds to
a particular data representation and visual abstractions, and each edge represents
a zoom. Zooming in the multiscale visualization is equivalent of traversing this
graph.

In the case of massive multidimensional abstract data, consider the (possibly infi-
nite) set of data and visual representations of this information. Together, these repre-
sent the nodes of our graph. To explore this information, we need to establish edges
between these nodes, and establish methods to find paths through this massive graph.
What we wish to find, of course, are the representations that satisfy the basic prin-
ciples we desire: uncluttered visualizations, maximal information, maximal decision
support, etc.

Given an information stream that must be explored, we can view the “visual-
ization process” as a huge, possibly infinite, graph. Each node of this graph contain
a representation of the data, and a visual representation method to be used on the
data. The edges of the graph represent transitions between two data representations,
two visual representations, or two data-representation/visual-representation pairs. In
many scientific and engineering applications, the visual representation is given by a
representation of three-dimensional space, and only the data transitions must be gen-
erated. In applications that work with abstract data, there is no inherited geometry,
and visual metaphors and transitions are paramount. We will use this “transforma-
tion” and “transition” model throughout this paper.

Massive Data Survey 289

4 Simplification Methods

Simplification and multiresolution methods for meshes, especially polygonal sur-
face meshes, has dominated the research literature for several years. Most methods
attempt to simplify the data through elementary data transformations.

In the case of triangle mesh simplification, most algorithms create a simple data
transformation by first removing a contiguous set of triangles from the mesh, creat-
ing a hole. The hole is then retriangulated, resulting in a mesh with fewer triangles.
These simple data transformations are measured by use of an “error estimation” strat-
egy and ordered by a priority scheme, creating a complex data transformation that
(hopefully) preserves the features of the mesh, while producing a simplified mesh
that can be examined. These data transformations can be classified into three cate-
gories: algorithms that simplify a mesh by removing vertices; algorithms that sim-
plify a mesh by removing edges; and algorithms that simplify a mesh by removing
higher-level simplices (Fig. 2).

Schroeder et al. [67] and Renze and Oliver [65] have developed algorithms that
simplify a mesh by removing vertices and the triangles containing a vertex. They use
a recursive loop-splitting procedure to generate a triangulation of the hole, while
Renze and Oliver fill the hole by using an unconstrained Delaunay triangulation
algorithm.

Hoppe [36, 37] and Hoppe and Popović [63] describe a progressive-mesh repre-
sentation, which effectively removes individual edges and their associated triangles.
The “edge-collapse” operation forces a retriangulation of the resulting hole. They
place edges in a priority queue, ordered by the expected energy cost of its collapse.
As edges are collapsed, the priorities of the edges in the neighborhood of the transfor-
mation are recomputed and reinserted into the queue. The result is an initial coarse
representation of the mesh, and a linear list of edge-collapse operations, each of
which can be regenerated to produce finer representations of the mesh. Other edge-
collapse algorithms have been described by Xia and Varshney [78], who use the
constructed hierarchy for view-dependent simplification and rendering of models,
and by Garland and Heckbert [27], who utilize quadratic error metrics for efficient
calculation of the hierarchy.

(a) (b) (c)

Fig. 2. Various simplifications of a dataset representing a set of teeth (courtesy, Mike Garland)

290 K.I. Joy

(a) (b) (c)

Fig. 3. Simplification by triangle collapse: Individual triangles are identified and collapsed to
a point. The collapse point is based upon a best-fit quadratic polynomial to the surface in the
neighborhood of the triangle

(a) (b) (c)

Fig. 4. Tetrahedral collapse algorithm: The method of Trotts et al. [74] is used on a skull
dataset. Isosurfaces from the original mesh is shown in (a), an intermediate mesh in (b), and a
coarse mesh in (c)

Hamann [32, 33], and Gieng et al. [28, 29] have developed algorithms that sim-
plify triangle meshes by removing triangles. These algorithms order the triangles
using weights based partially on the curvature of a surface approximation, partially
on the changes in the topology of the mesh due to a triangle collapse, and partially
due to a predicted error estimate of a collapse operation. Figure 3 illustrates the re-
sults of their method.

These surface algorithms have been lifted to tetrahedral meshes by several re-
searchers [12, 69, 74] Staadt and Gross [69] have extended the progressive mesh
algorithm of Hoppe [36] to tetrahedral meshes. Trotts et al. [74] use a strategy simi-
lar to the triangle collapse algorithm of Gieng et al. (Fig. 4). Chopra and Meyer [12]
identify individual tetrahedra T and remove the immediate neighbors of T . They
force a retriangulation of the hole by simulating a collapse of the tetrahedron T to a
point.

Cignoni et al. [14] treat the tetrahedral mesh problem by using a top-down,
Delaunay-based procedure. The mesh is refined by selecting a data point whose
associated function value is poorly approximated by an existing mesh, and the mesh
is modified locally to preserve the Delaunay property.

Massive Data Survey 291

Error approximation for the elementary data transformation steps vary among the
algorithms. Vertices to be removed by Schroeder et al. [67] are identified through a
distance-to-simplex measure. The data reduction problem is formulated in terms of
a global mesh optimization problem by Hoppe [39], ordering the edges according to
an energy minimization function. The most frequently used measure is the quadric
error metric, introduced by Garland and Heckbert [27].

Error approximation between meshes is addressed by several researchers. Cohen
et al. [18] utilize an edge collapse-strategy to simplify polygonal models. They or-
der the edges by using the distances between corresponding points of the mapping.
A similar technique by Hoppe [38] is used for error calculations in level-of-detail
rendering of terrain modeling. Klein et al. [46] calculate the Hausdorff distance be-
tween two meshes.

5 Multiresolution Methods

Several of the simplification methods of the previous section can also be used in a
multiresolution manner. For example, the progressive mesh representation of Hoppe
[36] can be used to create an initial coarse representation of a mesh, together with
a linear list of edge-collapse operations. These can be used to regenerate various
resolutions of the mesh by collapsing and expanding appropriate edges.

Many multiresolution geometry schemes exist for terrain rendering. Systems that
use a regular grid approach are built on a hierarchy of right triangles [22, 53], while
triangulated irregular networks (TINs) [23, 38, 68] work to solve this problem by
not restricting triangulations to a regular grid. Both schemes have advantages and
disadvantages.

Several researchers have based terrain rendering on regular grids. Lindstrom
et al. [49] present a method based upon an adaptive 4–8 mesh, using longest-edge
bisection (LEB) as a fundamental operation to refine the mesh. They use a bottom-
up vertex-reduction method to reduce the size of the mesh for display purposes.
Duchaineau et al. [20] present a system for visualizing terrain also based upon a LEB
paradigm. Their system uses a dual-queue management system that splits and merges
cells in the hierarchy according to the visual fidelity of the desired image. Lindstrom
and Pascucci [50] describe a framework for out-of-core rendering and management
of terrain surfaces. They present a view-dependent refinement method along with a
scheme for organizing the terrain data to improve coherence and reduce the number
of paging events from external storage to main memory. Again, they organize the
mesh using a longest-edge bisection strategy, using triangle stripping, view frustum
culling and smooth blending of geometry. Pajarola [58] utilizes a restricted quadtree
triangulation, similar to an adaptive 4–8 mesh for terrain visualization.

Cignoni et al. [15–17] have demonstrated the ability to display both adaptive
geometry and texture of large terrain datasets in real-time. They utilize a quadtree
texture hierarchy and a bintree of triangle patches (TINs) for the geometry. The tri-
angle patches are constructed off-line with high-quality simplification and triangle
stripping algorithms. Hierarchical view frustum culling and view-dependent texture

292 K.I. Joy

(a) (b)

Fig. 5. Hwa et al. [40] display massive texture on terrain using a multiresolution system based
on 4–8 textures. These illustrations show two views of a 120k × 120k texture mapped onto
terrain data from the State of Washington

and geometry refinement are both performed each frame. Textures are managed as
rectangular tiles, resulting in an quadtree representation of the textures. The render-
ing system traverses the texture quadtree until acceptable error conditions are met,
and then selects corresponding patches in the geometry bintree system. Once the tex-
ture has been chosen, the geometry is refined until the geometry space error is within
tolerance.

Hwa et al. [40] adaptively texture a dynamic terrain mesh using an adaptive 4–8
mesh structure coupled with a diamond data structure and queues for processing both
geometry and texture. Results of their technique are showing in Fig. 5. Their method
can process massive textures in a multiresolution out-of-core fashion for interactive
rendering of textured terrain.

Multiresolution methods can also be constructed around a novel data structure.
The refinement of a tetrahedral mesh via longest edge bisection is described in detail
in several papers.

Gregorski et al. utilizes a novel longest-edge-bisection mesh to build a multireso-
lution hierarchy of a volume dataset. They combine coarse-to-fine and fine-to-coarse
refinement schemes for this mesh to create an adaptively refinable tetrahedral mesh.
This adaptive mesh supports a dual priority queue split/merge algorithm similar to
the ROAM system [20] for view-dependent terrain visualization. Sets of tetrahedra
that share a common refinement edge are grouped into diamonds, which function
as the unit of operation in the mesh hierarchy and simplify the process of refining
and coarsening the mesh. At runtime, the split/merge refinement algorithm is used
to create a lower resolution dataset that approximates the original dataset to within
a given error tolerance. The lower resolution dataset is a set of tetrahedra, possi-
bly from different levels of the hierarchy, that approximate the volume dataset to
within this isosurface error tolerance. The isosurface is extracted from the tetrahedra
in this lower resolution representation using linear interpolation. The authors have
shown this method to be useful for fly-throughs of both static and dynamic three-
dimensional datasets.

Massive Data Survey 293

Abello and Vitter [3] provide an excellent presentation of external memory algo-
rithms and their use in visualization. Abello and Korn [1,2] present a multiresolution
method to display massive digraphs. Their method changes many graph nodes into
a single node depending on the available screen space to display the graph. They
utilize out-of-core methods to access relevant portions of the data.

6 External Memory Methods

External memory algorithms [75], also known as out-of-core algorithms, have been
rising to the attention of the computer science community in recent years as they
address, systematically, the problem of the nonuniform memory structure of mod-
ern computers. This issue is particularly important when dealing with large data-
structures that do not fit in main memory since the access time to each memory unit
is dependent on its location. New algorithmic techniques and analysis tools have been
developed to address this problem in the case of geometric algorithms [3, 4, 30, 52]
and visualization [11]. Closely related issues emerge in the area of parallel and dis-
tributed computing where remote data transfer can become a primary bottleneck in
the computation. In this context, space-filling curves are often used as a tool to de-
termine, very quickly, data distribution layouts that guarantee good geometric local-
ity [31, 56, 59].

Space filling curves [66] have been also used in the past in a wide variety of
applications [5] because of their hierarchical fractal structure as well as for their well
known spatial locality properties. The most popular is the Hilbert curve [35] which
guarantees the best geometric locality properties [57]. The pseudo-Hilbert scanning
order [7,8,45] generalizes the scheme to rectilinear grids that have different number
of samples along each coordinate axis. Recently Lawder [47,48] explored the use of
different kinds of space-filling curves to develop indexing schemes for data storage
layout and fast retrieval in multidimensional databases.

Balmelli et al. [6] use the Z-order (Lebesgue) space-filling curve to navigate ef-
ficiently a quad-tree data-structure without using pointers (see Fig. 6). Out-of-core
computing [75] addresses specifically the issues of algorithm redesign and data lay-
out restructuring, necessary to enable data access patterns with minimal out-of-core
processing performance degradation (Fig. 7). Research in this area is also valuable
in parallel and distributed computing, where one has to deal with the similar issue of
balancing processing time with data migration time. The solution of the out-of-core
processing problem is typically divided into two parts:

1. Algorithm analysis to understand the data access patterns of the problem and
“redesigning” the data to maximize locality

2. Storage of the data in secondary memory with a layout consistent with the ac-
cess patterns of the algorithm, amortizing the cost individual I/O operations over
several memory access operations

In the case of hierarchical visualization algorithms for volumetric data, the 3D
input hierarchy is traversed to build derived geometric models with adaptive levels

294 K.I. Joy

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6. (a–e) The first five levels of resolution of the 2D Lebesgue space-filling curve. (f–j)
The first five levels of resolution of the 3D Lebesgue space-filling curve

Fig. 7. Hwa et al. utilize an out-of-core storage system of bintree elements by utilizing a
method based upon a Sierpinski curve. The Sierpinski curve arises naturally from the indexing
of a bintree

of detail. The shape of the output models are then modified dynamically with incre-
mental updates of their level of detail. The parameters that govern this continuous
modification of the output geometry are dependent on runtime user interaction, mak-
ing it impossible to determine, a priori, what levels of detail will be constructed. For
example, parameters can be external, such as the viewpoint of the current display
window or internal, such as the isovalue of an isocontour or the position of an or-
thogonal slice. The general structure of the access pattern can be summarized into
two main points: (1) the input hierarchy is traversed coarse to fine, level by level
so that the data in the same level of resolution is accessed at the same time and (2)
within each level of resolution the data is mainly traversed coherently in regions that
are in close geometric proximity.

Pascucci and Frank [60] have introduced a new static indexing scheme that
induces a data layout satisfying both requirements (1) and (2) for the hierarchical
traversal of n-dimensional regular grids. In their method, the order of the data is in-
dependent of the out-of-core blocking factor so that its use in different settings (e.g.,
local disk access or transmission through a network) does not require any large data

Massive Data Survey 295

Fig. 8. Streaming meshes. Triangles of the mesh are sorted by one coordinate, then input in
order. This allows processing of a contiguous portion of the mesh, and out-of-core storage
(courtesy, M. Isenburg and P. Lindstrom)

reorganization. Conversion from the standard Z-order indexing to the new index-
ing scheme can be implemented with a simple sequence of bit-string manipulations.
In addition, their algorithm requires no data replication, avoiding any performance
penalty for dynamic updates or any inflated storage typical of most hierarchical and
out-of-core schemes.

Isenburg et al. [42–44] utilize a streaming mesh paradigm to process massive
meshes. They first sort the triangles of a mesh according to a selected coordinate.
They can then input triangles up to the capacity of the system’s main memory and
process these triangles. Triangles that are no longer necessary can be discarded and
new triangles can be input in order. They have used this methodology to perform
simplification algorithms. The processing order on the dragon model is shown in
Fig. 8.

7 Visual Scalability

Visual scalability refers to the capability of data exploration tools to display massive
data, in terms of either the number or the dimension of individual data elements,
on a display device. The quality of visual displays, the visual metaphors used in the
display of information, the techniques used to interact with the visual representations,
and the perception capabilities of the human cognitive system, all affect the methods
used to present information.

296 K.I. Joy

Many visualization problems arise from the complexity and dynamic nature
of datasets. The effective display of this information is beyond the capability of
current presentation techniques. The sheer size of the data makes it very difficult to
effectively generate global views and one must generate novel interaction methods,
coupled with innovative visual metaphors to allow the program analyst to explore
the data.

Eick and Karr [21] proposed a scalability analysis and concluded that many vi-
sual metaphors do not scale effectively, even for moderately sized datasets. Scat-
terplots for example, one of the most useful graphical techniques for understanding
relationships between two variables, can be overwhelmed by a few thousand points.

“Focus+Context” refers to display methods that focus on detail while the less-
important data is shown in a smaller representation (Fig. 9). Interesting approaches
include fish-eye views [26,61] and Magic Lens filters [9]. The table lens [64] applies
fish-eye techniques to table-oriented data. Plaisant has proposed the SpaceTree [62],
a tree-browser which adds dynamic rescaling of branches of the tree to best fit the
available screen space. Munzner et al. have illustrated similar concepts in TreeJux-
taposer [55]. Hierarchical Parallel Coordinates [24, 25], a multiresolution version of
Parallel Coordinates [41], uses multiple views at different levels of detail for repre-
sentation of large-scale data.

Fig. 9. Focus+Context views (courtesy, T.J. Jankun-Kelly)

Massive Data Survey 297

8 Conclusions

The research in massive data exploration is only in its infancy. The grand challenge
problem, to explore dynamic multidimensional massive data streams, is still largely
unexplored. We must extend the state-of-the-art in visual and data transformations to
be able to explore these complex information streams. We must develop new interac-
tion methods to explore massive data in a time-critical matter. We must develop new
techniques for information fusion that can integrate the relevant nuggets of informa-
tion from multisource multidimensional information streams. We must develop new
methods to address the complexity of information, and create a seamless integration
of computational and visual techniques to create a proper environment for analy-
sis. We also must augment our methods to consider visual limits, human perception
limits, and information content limits.

There is much to do.

Acknowledgments

This work was supported by the National Science Foundation under contracts ACR
9882251 and ACR 0222909, and by Lawrence Livermore National Laboratory un-
der contract B523818. Thanks to Valerio Pascucci and Mark Duchaineau for their
valuable assistance.

References

1. ABELLO, J., AND KORN, J. Visualizing massive multi-digraphs. In INFOVIS 2000:
Proceedings of the IEEE Symposium on Information Vizualization 2000 (2000), IEEE
Computer Society, p. 39.

2. ABELLO, J., AND KORN, J. Mgv: A system for visualizing massive multidigraphs. IEEE
Trans. Vis. Comput. Graph. 8, 1 (2002), 21–38.

3. ABELLO, J., AND VITTER, J. S., Eds. External memory algorithms and visualization.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American
Mathematical Society Press, Providence, RI, 1999.

4. ARGE, L., AND MILTERSEN, P. B. On showing lower bounds for external-memory
computational geometry problems. In External Memory Algorithms and Visualization,
J. Abello and J. S. Vitter, Eds., DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society Press, Providence, RI, 1999.

5. ASANO, T., RANJAN, D., ROOS, T., AND WELZL, E. Space filling curves and their use
in the design of geometric data structures. Lecture Notes in Computer Science, vol. 911.
Springer, Berlin, 1995, pp. 36–44.

6. BALMELLI, L., KOVAνcEVIĆ, J., AND VETTERLI, M. Quadtree for embedded surface
visualization: Constraints and efficient data structures. In IEEE International Conference
on Image Processing (ICIP) (Kobe Japan, October 1999), pp. 487–491.

7. BANDOU, Y., AND KAMATA, S.-I. An address generator for a 3-dimensional pseudo-
hilbert scan in a cuboid region. In International Conference on Image Processing, ICIP99
(1999), vol. I.

298 K.I. Joy

8. BANDOU, Y., AND KAMATA, S.-I. An address generator for an n-dimensional pseudo-
hilbert scan in a hyper-rectangular parallelepiped region. In International Conference on
Image Processing, ICIP 2000 (2000), pp. 707–714.

9. BIER, E., STONE, M., AND PIER, K. Enhanced illustration using magic lens filters. IEEE
Comput. Graph. Appl. 17, 6 (1997), 62–70.

10. BOSCH, R., STOLTE, C., TANG, D., GERTH, J., ROSENBLUM, M., AND

HANRAHAN, P. Rivet: a flexible environment for computer systems visualization. SIG-
GRAPH Comput. Graph. 34, 1 (2000), 68–73.

11. CHIANG, Y., AND SILVA, C. T. I/O optimal isosurface extraction. In IEEE Visualization
1997 (Nov. 1997), R. Yagel and H. Hagen, Eds., IEEE, pp. 293–300.

12. CHOPRA, P., AND MEYER, J. Tetfusion: An algorithm for rapid tetrahedral mesh simpli-
fication. In VIS 2002: Proceedings of the conference on Visualization 2002 (Washington,
DC, USA, 2002), IEEE Computer Society.

13. CHUI, C. K. An introduction to wavelets. Wavelet Analysis and its Applications, vol. 1.
Academic, New York, 1992.

14. CIGNONI, P., DE FLORIANI, L., MONTONI, C., PUPPO, E., AND SCOPIGNO, R. Mul-
tiresolution modeling and visualization of volume data based on simplicial complexes.
In 1994 Symposium on Volume Visualization (Oct. 1994), A. Kaufman and W. Krueger,
Eds., ACM SIGGRAPH, pp. 19–26.

15. CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F., PONCHIO, F., AND

SCOPIGNO, R. BDAM: Batched dynamic adaptive meshes for high performance ter-
rain visualization. In Proceedings of the 24th Annual Conference of the European As-
sociation for Computer Graphics (EG-03) (Oxford, UK, Sept. 1–6 2003), P. Brunet
and D. Fellner, Eds., vol. 22, 3 of Computer Graphics forum, IEEE Computer Soci-
ety/Blackwell, Malden, pp. 505–514.

16. CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F., PONCHIO, F., AND

SCOPIGNO, R. Interactive out-of-core visualization of very large landscapes on com-
modity graphics platforms. In ICVS 2003, Lecture Notes in Computer Science. Springer,
New York, pp. 21–29.

17. CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F., PONCHIO, F., AND

SCOPIGNO, R. Planet–sized batched dynamic adaptive meshes (P-BDAM). In Pro-
ceedings IEEE Visualization (Conference held in Seattle, WA, USA, Oct. 2003), IEEE
Computer Society, IEEE Computer Society Press, pp. 147–155.

18. COHEN, J., MANOCHA, D., AND OLANO, M. Simplifying polygonal models using suc-
cessive mappings. In IEEE Visualization 1997 (Nov. 1997), R. Yagel and H. Hagen, Eds.,
IEEE, pp. 395–402.

19. DUCHAINEAU, M. A., PORUMBESCU, S., BERTRAM, M., HAMANN, B., AND JOY,
K. I. Dataflow and remapping for wavelet compression and view-dependent optimization
of billion-trangle isosurfaces. In Approximation and Geometrical Methods for Scientific
Visualization, G. Farin, H. Hagen, and B. Hamann, Eds., Springer, Heidelberg, 2002,
pp. 1–17.

20. DUCHAINEAU, M. A., WOLINSKY, M., SIGETI, D. E., MILLER, M. C., ALDRICH,
C., AND MINEEV-WEINSTEIN, M. B. ROAMing terrain: Real-time optimally adapting
meshes. In IEEE Visualization 1997 (Nov. 1997), R. Yagel and H. Hagen, Eds., IEEE
Computer Society Press, Los Alamitos, CA, pp. 81–88.

21. EICK, S., AND KARR, A. Visual scalability. Int. J. Comput. Graph. Stat. 11, 1 (Mar.
2002), 22–43.

22. EVANS, W., KIRKPATRICK, D., AND TOWNSEND, G. Right triangular irregular net-
works. Tech. Rep. TR97-09, The Department of Computer Science, University of Ari-
zona, May 30 1997.

Massive Data Survey 299

23. FOWLER, R. J., AND LITTLE, J. J. Automatic extraction of irregular network digi-
tal terrain models. Computer Graphics (SIGGRAPH 1979 Proc.) 13, 2 (Aug. 1979),
pp. 199–207.

24. FUA, Y.-H., WARD, M. O., AND RUNDENSTEINER, E. A. Hierarchical parallel coordi-
nates for exploration of large datasets. In IEEE Visualization 1999 (Vis 1999) (Washing-
ton, Brussels, Tokyo, Oct. 1999), IEEE, pp. 43–50.

25. FUA, Y.-H., WARD, M. O., AND RUNDENSTEINER, E. A. Structure-based brushes: A
mechanism for navigating hierarchically organized data and information spaces. IEEE
Trans. Vis. Comput. Graph. 6, 2 (2000), 150–159.

26. FURNAS, G. W. Generalized fisheye views. In CHI 1986: Proceedings of the SIGCHI
conference on Human factors in computing systems (New York, USA, 1986), ACM,
pp. 16–23.

27. GARLAND, M., AND HECKBERT, P. S. Surface simplification using quadric error met-
rics. In SIGGRAPH 1997: Proceedings of the 24th annual conference on Computer
graphics and interactive techniques (1997), ACM/Addison-Wesley, pp. 209–216.

28. GIENG, T. S., HAMANN, B., JOY, K. I., SCHUSSMAN, G. L., AND TROTTS, I. J.
Smooth hierarchical surface triangulations. In Proceedings of Visualization 1997 (Oct.
1997), H. Hagen and R. Yagel, Eds., IEEE Computer Society Press, Los Alamitos, CA,
pp. 379–386.

29. GIENG, T. S., HAMANN, B., JOY, K. I., SCHUSSMAN, G. L., AND TROTTS, I. J. Con-
structing hierarchies for triangle meshes. IEEE Trans. Vis. Comput. Graph. 4, 2 (1998),
145–161.

30. GOODRICH, M. T., TSAY, J.-J., VENGROFF, D. E., AND VITTER, J. S. External-
memory computational geometry. In Proceedings of the 34th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 1993) (Palo Alto, CA, November 1993).

31. GRIEBEL, M., AND ZUMBUSCH, G. W. Parallel multigrid in an adaptive pde solver
based on hashing and space-filling curves. Parallel Comput. 25 (1999), 827–843.

32. HAMANN, B. A data reduction scheme for triangulated surfaces. Comput. Aided Geomet-
ric Des. 11 (1994), 197–214.

33. HAMANN, B., AND CHEN, J.-L. Data point selection for piecewise linear curve approx-
imation. Computer-Aided Geometric Design 11, 3 (June 1994), 289–301.

34. HAVRE, S., HETZLER, B., AND NOWELL, L. Themeriver: Visualizing theme changes
over time. In INFOVIS 2000: Proceedings of the IEEE Symposium on Information Vizual-
ization 2000 (Washington, DC, USA, 2000), IEEE Computer Society, p. 115.

35. HILBERT, D. Über die stetige abbildung einer linie auf ein flachenstück. Mathematische
Annalen 38 (1891), 459–460.

36. HOPPE, H. Progressive meshes. In SIGGRAPH 1996 Proc. (Aug. 1996), pp. 99–108.
37. HOPPE, H. View-dependent refinement of progressive meshes. In SIGGRAPH 1997 Proc.

(Aug. 1997).
38. HOPPE, H. Smooth view-dependent level-of-detail control and its application to terrain

rendering. In Proceedings of IEEE Visualization 1998 (Jan. 1998), IEEE, Piscataway, NJ,
1998, pp. 35–42.

39. HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND STUETZLE, W. Mesh
optimization. In Computer Graphics (SIGGRAPH 1993 Proceedings) (Aug. 1993), J. T.
Kajiya, Ed., vol. 27 (4), pp. 19–26.

40. HWA, L. M., DUCHAINEAU, M. A., AND JOY, K. I. Adaptive 4-8 texture hierarchies. In
VIS 2004: Proceedings of the conference on Visualization 2004 (Washington, DC, USA,
2004), IEEE Computer Society, pp. 219–226.

300 K.I. Joy

41. INSELBERG, A., AND DIMSDALE, B. Parallel coordinates for visualizing multi-
dimensional geometry. In Computer Graphics 1987 (Proceedings of CG International
1987), T. L. Kunii, Ed., Springer, Berlin, pp. 25–44.

42. ISENBURG, M., AND LINDSTROM, P. Streaming meshes. In Proceedings of IEEE Visu-
alization 2005 (2005), IEEE Computer Society Press, pp. 231–238.

43. ISENBURG, M., LINDSTROM, P., GUMHOLD, S., AND SNOEYINK, J. Large mesh
simplification using processing sequences. In Proceedings of IEEE Visualization 2003
(2003), IEEE Computer Society Press, pp. 465–472.

44. ISENBURG, M., LINDSTROM, P., AND SNOEYINK, J. Streaming compression of triangle
meshes. In Proceedings of Eurographics Symposium on Geometry Processing (2005),
pp. 111–118.

45. KAMATA, S.-I., AND BANDOU, Y. An address generator of a pseudo-hilbert scan in a
rectangle region. In International Conference on Image Processing, ICIP97 (1997), vol. I,
pp. 707–714.

46. KLEIN, R., LIEBICH, G., AND STRASSER, W. Mesh reduction with error control. In
Proceedings of IEEE Visualization 1996 (Oct. 1996), IEEE Computer Society Press, Los
Alamitos, CA, pp. 311–318.

47. LAWDER, J. K. The Application of Space-filling Curves to the Storage and Retrieval
of Multi-Dimensional Data. PhD thesis, School of Computer Science and Information
Systems, Birkbeck College, University of London, 2000.

48. LAWDER, J. K., AND KING, P. J. H. Using space-filling curves for multi-dimensional
indexing. In proceedings of the 17th British National Conference on Databases (BNCOD
17) (July 2000), B. Lings and K. Jeffery, Eds., vol. 1832 of Lecture Notes in Computer
Science. Springer, Berlin, pp. 20–35.

49. LINDSTROM, P., KOLLER, D., RIBARSKY, W., HUGHES, L. F., FAUST, N., AND

TURNER, G. Real-Time, continuous level of detail rendering of height fields. In
SIGGRAPH 96 Conference Proceedings (New Orleans, LA, 04–09 Aug. 1996),
H. Rushmeier, Ed., Annual Conference Series, ACM SIGGRAPH, Addison Wesley,
pp. 109–118.

50. LINDSTROM, P., AND PASCUCCI, V. Visualization of large terrains made easy. In Pro-
ceedings Visualization 2001 (2001), T. Ertl, K. Joy, and A. Varshney, Eds., IEEE Com-
puter Society Technical Committee on Visualization and Graphics Executive Committee,
pp. 363–370.

51. MALLAT, S. A wavelet tour of signal processing. Academic, San Diego, 1998.
52. MATIAS, Y., SEGAL, E., AND VITTER, J. S. Efficient bundle sorting. In SODA 2000:

Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms
(2000), Society for Industrial and Applied Mathematics, pp. 839–848.

53. MIRANTE, A., AND WEINGARTEN, N. The radial sweep algorithm for constructing
triangulated irregular networks. IEEE Comput. Graph. Appl. 2, 3 (May 1982), 11–13,
15–21.

54. MIRIN, A. A., COHEN, R. H., CURTIS, B. C., DANNEVIK, W. P., DIMITS, A. M.,
DUCHAINEAU, M. A., ELIASON, D. E., SCHIKORE, D. R., ANDERSON, S. E.,
PORTER, D. H., WOODWARD, P. R., SHIEH, L. J., AND WHITE, S. W. Very high reso-
lution simulation of compressible turbulence on the IBM-SP system. Supercomputing 99
Conference (Nov. 1999).

55. MUNZNER, T., GUIMBRETIRE, F., TASIRAN, S., ZHANG, L., AND ZHOU, Y. Treejux-
taposer: scalable tree comparison using focus+context with guaranteed visibility. ACM
Trans. Graph. 22, 3 (2003), 453–462.

56. NIEDERMEIER, R., REINHARDT, K., AND SANDERS, P. Towards optimal locality in
meshindexings, 1997.

Massive Data Survey 301

57. NIEDERMEIER, R., AND SANDERS, P. On the manhattan-distance between points on
space-filling mesh-indexings. Technical Report iratr-1996-18, Universität Karlsruhe, In-
formatik für Ingenieure und Naturwissenschaftler, 1996.

58. PAJAROLA, R. Large scale terrain visualization using the restricted quadtree trian-
gulation. In Proceedings Visualization 98 (Los Alamitos, CA, 1998), IEEE, Com-
puter Society Press, pp. 19–26, 515. Extended version available as technical report
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/2xx/292.ps.

59. PARASHAR, M., BROWNE, J., EDWARDS, C., AND KLIMKOWSKI, K. A common data
management infrastructure for adaptive algorithms for pde solutions. In SuperComputing
97 (1997).

60. PASCUCCI, V., AND FRANK, R. J. Global static indexing for real-time exploration of
very large regular grids. In Supercomputing 2001: Proceedings of the 2001 ACM/IEEE
conference on Supercomputing (CDROM) (New York, NY, USA, 2001), ACM, p. 2.

61. PLAISANT, C., CARR, D., AND SHNEIDERMAN, B. Image-browser taxonomy and
guidelines for designers. IEEE Softw. 12, 2 (1995), 21–32.

62. PLAISANT, C., GROSJEAN, J., AND BEDERSON, B. B. Spacetree: Supporting explo-
ration in large node link tree, design evolution and empirical evaluation. In INFOVIS
2002: Proceedings of the IEEE Symposium on Information Visualization (InfoVis 2002)
(Washington, DC, USA, 2002), IEEE Computer Society, p. 57.

63. POPOVIĆ, J., AND HOPPE, H. Progressive simplicial complexes. In SIGGRAPH 97 Con-
ference Proceedings (Aug. 1997), T. Whitted, Ed., Annual Conference Series, ACM SIG-
GRAPH, Addison Wesley, pp. 217–224.

64. RAO, R., AND CARD, S. K. The table lens: merging graphical and symbolic representa-
tions in an interactive focus+context visualization for tabular information. In CHI 1994:
Proceedings of the SIGCHI conference on Human factors in computing systems (New
York, NY, USA, 1994), ACM, pp. 318–322.

65. RENZE, K. J., AND OLIVER, J. H. Generalized unstructured decimation. IEEE Comput.
Graph. Appl. 16, 6 (Nov. 1996), 24–32.

66. SAGAN, H. Space-filling curves. Springer, New York, 1994.
67. SCHROEDER, W. J., ZARGE, J. A., AND LORENSEN, W. E. Decimation of triangle

meshes. Computer Graphics (SIGGRAPH 1992 Proc.) 26, 2 (July 1992), 65–70.
68. SILVA, C. T., MITCHELL, J. S. B., AND KAUFMAN, A. E. Automatic generation

of triangular irregular networks using greedy cuts. In Proceedings of IEEE Visualiza-
tion (1995), IEEE Computer Society, IEEE Computer Society Press, Los Alamitos, CA,
pp. 201–208.

69. STAADT, O. G., AND GROSS, M. H. Progressive tetrahedralizations. In Proceedings of
Visualization 98 (Oct. 1998), D. Ebert, H. Hagen, and H. Rushmeier, Eds., IEEE Com-
puter Society Press, Los Alamitos, CA, pp. 397–402.

70. STOLLNITZ, E. J., DEROSE, T. D., AND SALESIN, D. H. Wavelets for computer graph-
ics: theory and applications. Morgann Kaufmann, San Francisco, CA, 1996.

71. STOLTE, C., TANG, D., AND HANRAHAN, P. Multiscale visualization using data cubes.
In INFOVIS 2002: Proceedings of the IEEE Symposium on Information Visualization
(InfoVis 2002) (2002), IEEE Computer Society, p. 7.

72. STOLTE, C., TANG, D., AND HANRAHAN, P. Polaris: A system for query, analysis, and
visualization of multidimensional relational databases. IEEE Trans. Vis. Comput. Graph.
8, 1 (2002), 52–65.

73. STOLTE, C., TANG, D., AND HANRAHAN, P. Query, analysis, and visualization of hier-
archically structured data using polaris. In KDD 2002: Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining (2002),
ACM, pp. 112–122.

302 K.I. Joy

74. TROTTS, I. J., HAMANN, B., JOY, K. I., AND WILEY, D. F. Simplification of tetra-
hedral meshes. In Proceedings of Visualization 98 (Oct. 1998), D. Ebert, H. Hagen, and
H. Rushmeier, Eds., IEEE Computer Society Press, Los Alamitos, CA, pp. 287–296.

75. VITTER, J. S. External memory algorithms and data structures: dealing with massive
data. ACM Comput. Surv. 33, 2 (2001), 209–271.

76. WISE, J. A., THOMAS, J. J., PENNOCK, K., LANTRIP, D., POTTIER, M., SCHUR, A.,
AND CROW, V. Visualizing the non-visual: spatial analysis and interaction with informa-
tion for text documents. Morgan Kaufmann, San Francisco, CA, USA, 1999, pp. 442–450.

77. WONG, P. C., AND THOMAS, J. Visual analytics. IEEE Comput. Graph. Appl. 24, 5
(2004), 20–21.

78. XIA, J. C., AND VARSHNEY, A. Dynamic view-dependent simplification for polygo-
nal models. In Proceedings of IEEE Visualization 1996 (1996), IEEE Computer Society
Press, pp. 327–334.

Compression and Occlusion Culling for Fast
Isosurface Extraction from Massive Datasets

Benjamin Gregorski1, Joshua Senecal1, Mark Duchaineau1,
and Kenneth I. Joy2

1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
7000 East Avenue, Livermore, CA 94551, USA
bfgregorski@ucdavis.edu, senecal1@llnl.gov, duchaine@llnl.gov

2 Institute for Data Analysis and Visualization, Department of Computer Science, University
of California Davis, One Shields Avenue, Davis, CA 95616, USA
kijoy@ucdavis.edu

Summary. We present two algorithms for data compression and occlusion culling that im-
prove interactive, adaptive isosurface extraction from large volume datasets. Our algorithm,
based on hierarchical tetrahedral meshes defined by longest edge bisection, allows arbitrary
isosurfaces to be adaptively extracted at interactive rates from losslessly compressed volumes
where the region of interest, determined at runtime by user interaction, is decompressed on-
the-fly. For interactive applications, we exploit frame-to-frame coherence between consecutive
views to simplify the mesh structure in occluded regions and eliminate occluded triangles sig-
nificantly reducing the complexity of the visualized surface and the underlying multiresolution
volume representation. We extend the use of hardware accelerated occlusion queries to adap-
tive isosurface extraction applications where the surface geometry and topology change with
the level-of-detail and view-point and the user can select an arbitrary isovalue for visualization.

1 Introduction

Isosurface extraction from rectilinear datasets is a well-known problem and sig-
nificant research has been done to improve the quality of the extracted isosurface,
see [23, 28]. Unfortunately, the complexity of these isosurfaces varies considerably
and somewhat independently of the original volume’s size. In Duchaineau et al. [3],
isosurfaces extracted from a single timestep of a large fluid dynamics dataset con-
tained 460 million triangles and exceeded the original volume’s storage require-
ments. Additionally, the visual complexity of the isosurface was very high with as
many as 50 occluded surfaces per screen space pixel. The size and complexity of this
surface makes it virtually impossible to interactively visualize by extracting and ren-
dering the entire triangle mesh. Furthermore, most volume datasets contain several
isosurfaces of interest and extracting the triangle mesh for each isosurface and then
rendering it is simply not practical.

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 303
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

304 B. Gregorski et al.

One solution to this visualization problem is to directly extract the isosurfaces
from a volume in an on-demand fashion using multiresolution volumetric techniques
that allow visualization quality and interactivity to be balanced efficiently. Gregorski
et al. [10] developed a view-dependent isosurface extraction algorithm based on
longest-edge bisection (LEB) of tetrahedral meshes that allows the extraction of
arbitrary isosurfaces. These LEB meshes have been used extensively in scientific
visualization for adaptively reconstructing ultrasound data [30], performing isocon-
touring with controlled topology simplification [8], rendering multiple transparent
and opaque isosurfaces [7], and visualizing large polygonal models [2]. One can ef-
fectively deal with large datasets through the use of a hierarchical data layout based
on space filling curves [10, 20, 29]. This method, however, provides only a partial
solution because it does not address the problems of storing these large volumes and
effectively rendering extremely complex isosurfaces with high depth complexity. In
this paper we address these issues using a fast and efficient data compression algo-
rithm (Sect. 4) that follows the tetrahedral mesh hierarchy defined by LEB and an
occlusion culling algorithm (Sect. 5) that uses the diamonds of the mesh hierarchy
and hardware occlusion queries to determine and simplify occluded regions.

Our compression algorithm follows the LEB hierarchy and replaces the cubical
blocks of an octree, frequently used in compression algorithms, with the diamond
shapes developed in Gregorski et al. [10] and used by Linsen et al. [21] for hier-
archical representation of large datasets. These meshes have the advantage that the
number of elements is increased by a factor of 2 with each refinement rather than
the factor of 8 associated with octree refinement. A top-down traversal of the mesh
hierarchy uses the data values and gradient components at the vertices of a refine-
ment edge to predict the data at the split vertex. In general, the magnitudes of these
predicted values are smaller than the original magnitudes meaning that the resulting
data has reduced entropy and is easier to compress. This prediction scheme follows
the data access pattern dictated by LEB refinement. Combined with the z-order data
layout scheme of Pascucci et al. [29], it ensures that reconstruction masks are of min-
imal size and that data needed for reconstruction is accessed in a coherent manner.
Furthermore, it ensures that the decompression can be confined to local regions of
the volume which is essential for visualization of massive datasets. The delta val-
ues used for runtime reconstruction are compressed in chunks and stored in z-order.
Hierarchy levels are created from subsampled versions of the dataset. Thus, as finer
(higher resolution) levels of the volume are reconstructed, values at coarser levels do
not need to be updated (as they must be when wavelet lifting schemes are used).

Using the diamonds of the mesh hierarchy to determine occluded regions allows
occlusion culling to be utilized regardless of the isosurface being visualized. This is
extremely important for isosurface visualization applications where a large number
of very different isosurfaces are visualized. In these applications, the precomputa-
tion of visible sets or bounding-object hierarchies used for occlusion culling in static
environments is not practical due to the large number of different surfaces that can
be visualized. Since diamonds are also the unit of refinement, it is straightforward to
determine how the mesh must be refined or simplified as regions become visible or
occluded. As the diamond hierarchy does not have a nested parent–child relationship

Compression and Occlusion Culling 305

that allows for front-to-back rendering, we use frame-to-frame coherence between
successive view-points to create an initial set of occluders against which hardware
occlusion tests are performed. As the user moves the camera around an isosurface,
the visible and occluded regions of the volume are determined, and the mesh is dy-
namically refined and coarsened accordingly.

Section 3 reviews the mesh refinement, our hierarchical data layout algorithm,
and the precomputed data needed to drive the refinement process. Sections 4 and 5
describe the data compression and occlusion culling algorithms and results are given
in Sect. 6.

2 Related Work

Visualization of massive isosurfaces is still difficult because of the large storage re-
quirements of the volumes from which they are extracted. Widely available compres-
sion libraries such as gzip and bzip are computationally too expensive to be used for
these interactive applications. Traditional hierarchical compression algorithms based
on wavelet decompositions update data values as the level of detail changes forc-
ing the isosurface to be reextracted from a larger number of elements, thus increas-
ing the cost of the visualization. In order to be effective for interactive applications,
we need a decompression algorithm that is fast, follows the hierarchy given by the
mesh refinement to leverage memory coherence, and is localized to the region of
interest.

Isosurfaces extracted from massive volumes contain millions of triangles and
almost always have a depth complexity far greater than one. When viewing an iso-
surface at a high resolution, extracting and rendering a large number of occluded
triangles consumes a large amount of processing, memory, and rendering resources.
CPU resources are wasted because the mesh is refined in the occluded regions, in-
creasing the size of the runtime data structures and the amount of data loaded from
disk. GPU resources are wasted because a large number of invisible triangles are
stored and rendered.

Occlusion culling prevents these invisible triangles from being extracted and ren-
dered. This allows valuable system resources to be allocated to the visible regions of
the surface. By preventing additional, invisible triangles from being extracted, occlu-
sion culling saves a large amount of vertex processor work. It can also save fragment
processor work because query geometry is rendered without texturing or complex
shading whereas the occluded surface geometry is generally rendered with a more
complex shader. Occlusion culling’s main drawback is that it does not work well
for all polygonal models and isosurfaces because they can have regions with low
occlusion such as surfaces with small, thin features. In these situations, the cost of
performing the occlusion queries can outweigh the cost of rendering and storing the
additional geometry and cause an overall slowdown in performance.

Compression techniques for interactive visualization have been utilized in the
context of volume rendering by Guthe et al. [12], where wavelets and mpeg style en-
coding are used to compress time-varying volumes, and by Lum et al. [24] where

306 B. Gregorski et al.

quantization of DCT coefficients is used. Westermann et al. [34] use octrees to
perform adaptive isosurface extraction. The cracks in the isosurface that occur in the
transition between octree levels are fixed with triangle fans. Guthe and Strasser [13]
use wavelet based compression to adaptively render volume datasets using texture
hardware. In their method, an octree decomposition breaks the volume into a hier-
archy of 23k blocks and linear spline wavelets are used to transform the data. Arith-
metic and Huffman coding are used to compress the wavelet coefficients. Schneider
and Westermann [16] use a hierarchical vector quantization scheme for compressing
static and time-varying volumes. The dataset is divided into blocks of 43 elements
and each block is encoded hierarchically. Their algorithm can reconstruct the data on
the graphics card removing the overhead of CPU decompression.

Software based occlusion methods precompute a visibility database to help de-
termine occluded areas. El-Sana et al. [5] divide a dataset against a grid and deter-
mine a solidity value for each cell. A cell’s visibility is based on the solidity values
of the cells that intersect the line segment between the view point and the cell’s
center. The hierarchical occlusion map developed by Zhang et al. [36] is used to
select occluders from a database. Occluders are rendered as white polygons on a
black background. An estimated depth buffer is constructed to allow occluded re-
gions to be detected. Modern graphics hardware has the ability to perform occlu-
sion queries and to report the number of pixels affected by some geometry. This
feature has been used extensively for occlusion culling in large polygonal environ-
ments, see [1, 9, 14, 15, 35]. Because hardware occlusion queries have rasterization
and read back overhead, Staneker et al. [33] introduced Occupancy Maps, an effi-
cient, software-based occlusion test to reduce the number of occlusion queries per-
formed.

Occlusion culling methods have also been extended to isosurface extraction from
volume datasets and to volume rendering applications. Livnat and Hansen [22] tra-
verse an octree decomposition of the dataset front-to-back and use a hierarchical
visibility test based on coverage masks to determine occluded regions. As occluded
regions are determined during the traversal, blocks of the volume are culled and no
isosurface is extracted from them. In Zhang et al. [37], the dataset is decomposed into
a set of blocks, and ray casting is used to select a group of blocks that are occlud-
ers which are then rendered to create a mask of covered screen pixels. The remaining
unoccluded blocks, as determined by this mask, are rendered. Isosurfaces can also be
visualized directly from volume datasets using direct volume rendering techniques
such as those by Lum et al. [25] and [26]. The advantage of these algorithms is that
they do not require the overhead of multiresolution data structures and space for stor-
ing explicit isosurface geometry. Their disadvantage is that they are fill-limited and
their performance is directly related to the size of the rendered image and available
texture memory. We extract isosurfaces directly from the tetrahedral mesh and ren-
der explicit geometry. This can provide a better balance between the geometry and
fill sections of the graphics pipeline. Recent work by Li et al. [19] and Gao et al. [6]
has extended occlusion culling techniques to volume rendering applications where
transparent and opaque surfaces are rendered.

Compression and Occlusion Culling 307

3 Mesh Refinement and Preprocessing

In this section we review LEB mesh refinement [10] and its relationship with the
z-order space filling curve [29] used for data layout. The mesh refinement begins
with the root diamond: a cube divided into six tetrahedra around its major diagonal.
Refinement occurs around cube diagonals, face diagonals, and edges of the mesh.
Figure 1 shows the three types of polyhedral shapes or diamonds that occur around
the diagonals and edges of the mesh. The basic unit of refinement is the diamond.
All tetrahedra in a diamond are refined at the same time by inserting a new vertex
called the split vertex at the midpoint of the diamond’s split edge which is the edge
shared by all tetrahedra in the diamond. See [10] for a complete description of this
procedure.

Split and merge operations are used to refine and coarsen the mesh. When a
diamond is split, the split vertex is inserted and each tetrahedron in the diamond
is split into two child tetrahedra. Splitting and merging diamonds ensures that the
mesh is always crack-free. The split/merge process is implemented with two error-
based priority queues [4, 10], the split queue and the merge queue, which contain all
diamonds that can be split and merged, respectively. At the start of each frame, error
values are recomputed for all diamonds in the split and merge queues that contain
the isosurface. Given an error threshold E, diamonds in the split queue with an error
greater than E are refined, and diamonds in the merge queue with an error less than
E are coarsened. Diamonds whose error is equivalent to E are never merged and are
only split when it is necessary to maintain the continuity of the mesh. Thus, it is not
possible to have a situation where a diamond is continuously split and merged.1

Figure 2 illustrates the connection between LEB refinement and the z-order space
filling curve. Each (i, j, k) index of a point P in the dataset corresponds to a z −
order index on the one-dimensional z-order curve. Conversion between (i, j, k) and
z− order indices is straightforward and given in Pascucci et al. [29]. Note that each
data point, except for the points at the vertices of the root diamond, is the split vertex
of a diamond. The order of the points introduced by each level of mesh refinement
is essentially the same as that given by the z-order curve. The only difference is that
the mesh refinement operates on (2k + 1)3 grids, and the z-order curve works on

Fig. 1. From left to right: diamond shapes for phases 2, 1, and 0 of the mesh refinement. The
split or refinement edge is the bold, circle-segment dashed line. The diamonds occur around
cube diagonals, face diagonals, and edges of the mesh

1 As with similar error based refinement algorithms, this assumes that there are no ambigui-
ties in the floating point comparisons.

308 B. Gregorski et al.

32

0

3

1
0

4

5
6

7

9

10

11
12

13

14
15

8

2

0
1

Fig. 2. Two-dimensional example of hierarchical z-order and mesh refinement for a 4 × 4
dataset. Top, from left to right: levels 2 (blue), 1 (green), and 0 (black) of the hierarchi-
cal z-order curve showing the points introduced at each level and their order on the one-
dimensional curve. Bottom, left to right: levels 2, 1, and 0 of the LEB mesh. The solid circles
indicate the data points introduced by the LEB refinement at each hierarchy level. The dashed
circles and arrows show how mesh points with at least one index equal to (2k) are wrapped
around the dataset to where the index equals 0

(2k)3 grids. This is not a problem because the z-order curve tiles the dataset in all
spatial dimensions causing an index I to map to I mod 2k. Thus index 2k on the
mesh boundary maps to index 0. The correspondence between the mesh hierarchy
and the z-order curve gives excellent disk and memory coherence making them well
suited for adaptive, out-of-core visualization of large datasets.

The following information is computed in a preprocessing step:

1. The isosurface error, minimum data value, and maximum data value of the region
enclosed by each diamond in the mesh.

2. The normalized gradient vector at each data point. The gradient is used as a
texture coordinate to perform diffuse lighting and to highlight the regions or-
thogonal to the viewing direction.

For a tetrahedron T , the isosurface error is the maximum difference between the
isosurface generated using the scalar values at T ’s vertices and the true isosurface
passing through T . A diamond D’s error, eiso, is the max of its tetrahedras’ errors.
At runtime, a sphere with radius eiso, centered at D’s split vertex, is projected onto
the view screen and its size in pixels is the view-dependent error.

The storage of the minimum, maximum, and error values is reduced by grouping
sets of tetrahedra into chunks of 64 tetrahedra called subtrees, see [11]. This reduces
the overall error of a tetrahedron, the granularity of the mesh refinement, and the size
of the runtime data structures. All tetrahedra in a subtree are contoured at the same
time. For a 1,0243 byte dataset, the size of these values is reduced by a factor of 64
from 3 to 50 MB, and they are stored uncompressed. This reduced storage comes at
the cost of an increased number of tetrahedra that do not contain the isosurface being
contoured. The data compression algorithm described in Sect. 4 is used for the data

Compression and Occlusion Culling 309

values and gradient components. Gradients are precomputed because it is expensive
to compute gradients via differencing at runtime due to adjacent data points being
far away on the z-order curve.

4 Data Compression

Hierarchical prediction algorithms, such as the JPEG 2000 algorithm,
√

2 meshes
[21], and wavelet transforms based on octrees [13] traverse a dataset in a fine-to-
coarse manner building successive, filtered approximations of the original data. One
problem with wavelet based techniques is that the function values at vertices change
as the vertex moves between levels in the hierarchy. When a vertex V is added,
function values at the vertices needed to reconstruct V ’s value must be updated be-
fore V ’s value is computed. While this may be satisfactory for volume rendering
applications where overlapping grids can be used for hardware accelerated texture
mapping, for isosurface applications, to prevent cracks, the isosurface must be re-
extracted from the elements that use updated values. As regions of the mesh are
coarsened, function values must be updated to the appropriate level of the hierarchy.
This increases the amount of work that must be done in each frame and makes it
more difficult to maintain consistent frame rates as the level-of-detail is changed.
The alternative is subsampled hierarchies. Here the values do not change because the
coarser resolutions are created by selecting a reduced set of individual data points
from the finer resolution without considering neighboring values. We use hierarchies
based on subsampling and exploit their static properties so that the error bound can
be quickly tightened and the isosurface can be extracted from regions of interest at a
high resolution.

Our data compression algorithm is divided into three phases. First, the original
volume is traversed along the LEB hierarchy, and the function value and gradient
components at a diamond’s split vertex are predicted using difference from linear
along a diamond’s split edge. Gradients are quantized component-wise with 8 bit
per component in order to have a meaningful delta for data prediction. Next, these
deltas are passed to an encoder which builds a set of codes used for compression.
Finally, the stream of deltas is arranged in hierarchical z-order, divided into pages,
and compressed.

For multiresolution visualization, it is important to use hierarchical prediction
that follows the mesh refinement. This ensures that the data needed for reconstruction
can be located efficiently at runtime. Decompressing a region at a high resolution
occurs in a small, localized space around the region and in similarly localized spaces
at coarser levels. In this paper we consider selective, local refinement applications,
such as view-dependent refinement, where the needed regions change at the user’s
discretion and must be located immediately without having to reconstruct the whole
volume. Thus, the encoded data stream must not only be progressive with respect
to the overall quality of the dataset but also must allow random access to spatially
coherent blocks located across the levels of the hierarchy.

310 B. Gregorski et al.

SV0 SV0

SV1 SV1

V

Fig. 3. The value at a vertex V , which is also the split vertex of a diamond, is predicted as the
average of the values at its split edge vertices SV0 and SV1

Embedded coders and bit-plane coders such as zero-tree coding [32] and SPIHT
[31] provide good compression and excellent bit-rates and allow for progressive
transmission, but they are not well suited for selective, local refinements where only
a subregion of the original data is needed. This is because they encode the most
important wavelet coefficients first and the least important ones last; the goal being
to represent the whole dataset as accurately as possible with the fewest number of
bits. However, in view-dependent and region-of-interest refinement, the needed co-
efficients change and are not known until runtime. Thus, we cannot use an algorithm
that requires a globally fixed ordering and must instead use an algorithm that follows
the mesh hierarchy’s local refinement. Data prediction using data values along the
split edges accomplishes this while maintaining small reconstruction masks neces-
sary for good performance.

Our data prediction algorithm, based on difference from linear prediction along
a diamond’s split edge, is illustrated in Fig. 3. If DSV0 and DSV1 are the data values
and gradient components at the vertices of the split edge, then we define the predicted
value to be

Dp = (DSV0 +DSV1)

2
, (1)

and the encoded delta value is

δ = DV −Dp. (2)

This simple predictor handles boundary conditions easily because the diamonds on
the faces of the volume are always phase one and zero diamonds, and the diamonds
on the edges (except for the corners which are not predicted) are phase zero dia-
monds, see Fig. 1. Figure 4 shows histograms of the data before and after prediction.

After data prediction, the original data has been converted to a representation
that is easier to compress since the transformed data’s coefficient magnitudes are
clustered toward smaller values than those of the original data. Thus, there are a
larger runs of zeros in the most significant bits of the coefficients indicating that the
transformed data has more redundancy. For example, in an 8-bit transform coeffi-
cient, such as 00000101, the high-order bits 000001 are more compressible than the

Compression and Occlusion Culling 311

0 25 50 75 100 125 150 175 200 225 250

Value

1

100

10000

1e+06

1e+08

C
ou

nt

Raw Data
Transformed Data

Histograms for 1024x1024x1024 Buckyball

Transformed Data
Raw Data

Histograms for 512x512x512 PPM

0 25 50 75 100 125 150 175 200 225 250

Value

1

100

10000

1e+06

1e+08

C
ou

nt

Fig. 4. Histograms of the magnitudes of raw and transformed values (data and quantized gra-
dient components) for the Buckball and PPM datasets (8-bit) on a logarithmic scale

remaining bits 01.2 Histograms showing the distribution of the data values before
and after data prediction are shown in Fig. 4.

To exploit this property of the transformed data, we use lead-1 encoding. If the
transformed data values require 8 bit for representation (signed data), there are 128
different coefficient magnitudes and 256 possible values. Instead of encoding all pos-
sible coefficient magnitudes, we encode the position of the magnitude’s leading 1.
The remaining bits of the magnitude and the sign bit are passed through uncom-
pressed. For 8-bit transform coefficients, the number of symbols that need to be rep-
resented is reduced to 9 from 256, i.e., the eight possible positions of the leading 1
and the zero coefficient vs. the 256 possible values that can be represented with 8 bit.
The codes for the leading 1 position are generated using the Huffman algorithm. The
compressed output consists of the codeword followed by the sign bit if the magni-
tude is nonzero and the remaining low-order bits after the leading one. The encoding
process uses one value of context to generate the codes. Given the sequence of trans-
formed values generated by the prediction process, the encoder creates a table of
leading-1 counts based upon the previous and current lead-1 positions. This 2D ta-
ble of counts is used by the encoder to build the Huffman codes for the leading 1
positions. An encoding and decoding table is required for each previous leading 1
position.

Lead-1 encoding and Huffman codes were chosen for several reasons. First, en-
coding and decoding can be done with direct table lookups which is very fast. Sec-
ond, the number of symbols that need to be encoded is greatly reduced, minimizing
the size of the encoding and decoding tables. Lead-1 encoding reduces the number
of symbols that need to be encoded thus reducing the size of the codes and the table
size. An entry in the decoding table stores the length of the codeword that indexes
to that entry and the leading 1 position indicated by the code. This information is
packed into a single byte which ensures that the decoding tables can fit in cache
memory. Lastly, when compared with other types of coders such as arithmetic and

2 Only lossless compression is considered since our test datasets have already been quantized
before entering the visualization pipeline.

312 B. Gregorski et al.

Table 1. Compressed and uncompressed sizes of datasets in megabytes. The Data and Grad
columns show the compression ratios for just the data and gradients respectively. As expected,
the original data values compress much better than the gradient components

Dataset Uncomp Comp Data+Grad Data Grad

Bucky 1,0243 4,096 1,334 3.071 5.51 2.6
PPM 5123 512 284.9 1.797 2.43 1.65
Engine 2563 64 24.6 2.6 4.35 2.22
XMasTree 5123 640 378.1 1.707 4.06 1.42

arithmetic-type encoders, lead-1 encoding offers an acceptable compression ratio
with superior speed and throughput.

The data being compressed is the data value and quantized gradient components
at each vertex. The transformed coefficients are stored in hierarchical z-order. To
allow for local decompression, the transformed coefficients are divided into pages
of 4 × 2p elements, and each page is encoded separately. A lookup table is used at
runtime to find the disk offset for loading a page. Given an index P(i,j,k) for a point
P , the data value and gradient at P are reconstructed as follows:

1. Convert the (i, j, k) index P(i,j,k) to its z-order index Pz. Using Pz, locate the
disk pageDP that contains P , and decompressDP to get the delta values asso-
ciated with DP ’s data points.

2. Since the deltas are stored in z-order, we know the z-order index Pz for all points
in DP . For each point in DP , compute its (i, j, k) index P(i,j,k) from Pz.

3. Given that P(i,j,k) is the split vertex of a diamond, compute the (i, j, k) indices
of the vertices necessary to reconstruct the value at P .

4. Fetch the surrounding values needed for reconstruction and compute the original
data value. This may require recursive decompression as necessary to obtain all
of the surrounding values.

The data values di needed to reconstruct the data at a point P(i,j,k) all have
z-order indices zi such that zi <Pz. This means that they come from coarser lev-
els of the mesh and from earlier positions (relative to the file offset) in the data file
than P . Since z-order stores the data points first by level-of-detail and then by spatial
proximity within each level, accessing the data at the split edge vertices needed for
reconstruction exploits the storage order’s coherence properties. Compression results
for test datasets are given in Table 1.

5 Occlusion Culling

Since a dataset typically contains a large number of interesting isosurfaces whose
topology and geometry can vary greatly with level-of-detail and isovalue, our oc-
clusion culling algorithm is based upon the mesh hierarchy and not the extracted
isosurface geometry. Occlusion queries on modern graphics hardware allow one to

Compression and Occlusion Culling 313

render geometry and determine the number of samples that pass the stencil and depth
tests. There is a noticeable delay between the time when an occlusion query is issued
and the time when the results are available since the query geometry must be ren-
dered and the query results read back from the graphics card. Staneker et al. [33]
show that the query latency time is related to the number of rasterized pixels of the
query geometry. One of the keys to using hardware occlusion queries efficiently is
to fill this time gap with useful computations. The cost and efficient use of occlu-
sion queries is also detailed in the specifications for GL NV occlusion query and
GL ARB occlusion query. To minimize this delay, we use a two-pass algorithm that
first initiates occlusion queries for the diamonds in the split and merge queues that
contain the isosurface and then reads the query results and computes the diamonds’
error values.

Using diamonds instead of tetrahedra for occlusion culling allows us to quickly
eliminate regions of refinement with a single test. Since a diamond’s children are
not contained within its convex hull, the occlusion queries cannot be performed top-
down.3 Furthermore, since we maintain a hierarchy of diamonds but not of tetrahe-
dra, we cannot render the isosurface front-to-back to generate the depth buffer for the
occlusion queries. Instead we exploit the isosurface’s coherence between successive
views to generate a set of occluders from which a depth buffer is created.

Our occlusion culling algorithm works as follows:

1. At frame 0, the mesh contains only the root diamond which is assumed to be
visible.

2. To exploit frame-to-frame coherence, at the start of a frame fi , we render the
isosurface geometry from frame fi−1 using fi ’s viewing parameters. The geom-
etry from fi−1 provides a good initial guess for the set of occluders and gives the
correct depth buffer for them. The occlusion queries in frame fi are performed
against this depth buffer.

3. An occlusion query is then initiated for all diamonds in the split and merge
queues that are in the view frustum, contain the isosurface, and were occluded
in frame fi−1. This is done by rendering the diamond’s bounding box.4 Queries
are performed on occluded diamonds every frame. Visible diamonds are allowed
to remain visible for several frames before occlusion tests are performed.

4. After the queries have been issued, the results are read back, and occluded dia-
monds are given an error of zero. Occluded diamonds are never split and they
are the first ones to be merged.

5. The triangles extracted from the tetrahedra added to the mesh in frame fi are
rendered to fill the holes caused by rendering fi−1’s isosurface at fi ’s viewpoint.

Our method allows visible regions to remain visible for several frames. This
greatly reduces the number of occlusion tests performed per frame and randomizes

3 A tetrahedron’s children are contained in its convex hull, but because diamonds are groups
of tetrahedra around a split edge, not all of a diamond’s tetrahedra are contained in the
convex hull of a parent diamond.

4 The bounding boxes are rendered with backface culling on because only the front three
quads or six triangles need to be drawn.

314 B. Gregorski et al.

when the queries are performed. Empirical testing indicates that allowing diamonds
to remain visible for 5–7 frames provides a good balance between the number of
occlusion queries and invisible diamonds marked as visible. Our occlusion culling
method is conservative because diamonds marked as visible can become occluded
for a few frames before an occlusion test is performed and because we render bound-
ing boxes to determine a diamonds’s visibility. Thus, some occluded triangles will
be extracted and rendered.

When the isovalue is changed, the currently extracted isosurface can no longer be
used as a valid set of occluders. When the isovalue is changed by the user, the mesh
is reinitialized with the root diamond. All cached triangles, outstanding occlusion
queries, and other data structures are cleared, and the new isosurface is extracted
starting from this base configuration. The depth buffer given by the new isosurface
can now be used for occlusion queries, and the refinement continues as described
above in Sect. 5. As new error values are computed and new occluded regions are
discovered, the mesh structure refines around the visible region of the new isosurface
and coarsens everywhere else.

6 Results

Our test machine is a 2 GHz Pentium with 1 GB of main memory and a GeForce4 Ti
4600 graphics card. We have tested our algorithms on several large volume datasets.
The buckyball dataset is a synthetic dataset made from Gaussian functions. The
1,0243 dataset was made by a 2×2×2 tiling of a 5123 dataset. The PPM (Piecewise
Parabolic Method) dataset is a 5123 chunk from timestep 273 of the Richtmyer–
Meshkov simulation dataset from Lawrence Livermore National Laboratory [27].
The engine dataset is originally 256 × 256 × 128 and has been resampled to 2563

with the cell aspect ratios appropriately adjusted at runtime. For the Christmas Tree
CT dataset [17], we are using the high resolution version of the near isotropic and
rotated dataset. Its initial dimensions are 512 × 512 × 499. The region containing
the base plate has been removed, and the volume has been padded to make it 5123.
As stated by Lee et al. [18], the extension and padding of the dataset comes with a
small increase in entropy. Because it contains a large number of small, thin features,
this dataset is not a good candidate for occlusion culling and was only used for data
compression tests. All isosurfaces were extracted from the compressed volumes.

Each dataset includes the actual data and three bytes for a quantized gradient,
one byte for each component. The four values are predicted independently, and one
encoding table is used for compression. Tests using separate encoding tables for
each component or separate tables for the data and gradients did not yield significant
improvements in compression. Compression results are shown in Table 1. For sev-
eral test datasets, we have lossless compression ratios between 1.7:1 to 3.1:1 for the
data and gradient components which is comparable to the lossless compression rates
for large volume datasets given in [13]. The amount of main memory available for
uncompressed data was limited to the lesser of 512 MB or (1/2) of the uncompressed
dataset size. As described in Sect. 4, the dataset is compressed in chunks of 4 × 2p

Compression and Occlusion Culling 315

elements to allow for local decompression. The chunk of main memory allocated for
decompressed data is divided into pages of 4 × 2p elements and managed with a de-
mand paging algorithm that uses an LRU replacement strategy. Decompressed data
is cached in main memory, and compressed data is read from disk and decompressed
as needed.

To test the performance of our runtime decompression and reconstruction algo-
rithms, we recorded measurements over several interaction sessions in which the
viewing position, isovalue, and error level were all changed at some point. Decom-
pression takes n input bytes, where n is the size of the compressed page, and pro-
duces 4 × 2p deltas; the time to load data from disk is not considered. Over these
test runs the decompression speed ranged from 10–110 MB s−1 with the average de-
compression speed between 50–70 MB s−1. The reconstruction rate is measured as
decompression time plus the time to compute the actual data and gradients using
the deltas. This includes the time to invert the z-order indices, compute the vertices
needed for reconstruction and fetch their associated data and gradients. It also in-
cludes the time to load data from disk since this significantly affects the performance
of out-of-core algorithms. The reconstruction speed is dictated by the time to load
data from disk and the cost of fetching the needed data for the split edge vertices.
Reconstructing a single point requires two memory lookups or a total of 2p+1 ac-
cesses to reconstruct one page. For example, the buckyball dataset was compressed
with p = 12. It contains 218 pages, each uncompressed disk page contains 4 ∗ 212 or
214 bytes, and 213 lookups are required to reconstruct one page. Table 2 summarizes
the performance results of our data reconstruction algorithm. Performance is given
in megabytes per second, data points per second, and disk pages per second to show
the overall raw performance of the algorithm as well as its performance with respect
to metrics more pertinent to our application where data points are reconstructed in
fixed sized chunks.

To further evaluate our data compression and reconstruction algorithms, we ex-
tracted isosurfaces using occlusion culling from the same viewpoint using com-
pressed and uncompressed volumes. The results, shown in Table 3, indicate that iso-
surface extraction from compressed volumes achieves nearly the same performance
as isosurface extraction from uncompressed volumes while using a fraction of the
disk storage. This shows that our data compression and reconstruction algorithms can
be effectively used for multiresolution visualization applications. Furthermore, since

Table 2. Reconstruction performance measurements for Buckyball and PPM datasets in
megabytes per second (MB s−1), data points per second (DP s−1), and pages per second
(Pages s−1). The differences between the minimum and maximum performance values are
caused by memory coherence and the speed of external storage

Dataset p Minimum Maximum Average

MB s−1 DP s−1 Pages s−1 MB s−1 DP s−1 Pages s−1 MB s−1 DP s−1 Pages s−1

Bucky 12 0.66 174K 42 11.9 3.12M 761 10.1 2.65M 646
PPM 12 1.38 326K 79 12.7 3.32M 810 5.8 1.52M 371
PPM 11 0.25 66K 32 12.4 3.24M 1582 6.7 1.75M 854

316 B. Gregorski et al.

Table 3. Comparison of contouring using occlusion culling from uncompressed and com-
pressed volumes. Total time for isosurface extraction and the number of split/merge iterations
are shown. The number of split/merge iterations differs between compressed and uncom-
pressed volumes because the a fixed amount of time is allocated per frame for the split/merge
process and the number of operations performed depends upon a large number of factors

Dataset Uncompressed Compressed Disk pages
loaded

Compressed data
loaded (MB)Time (s) Iters Time (s) Iters

PPM (Fig. 8) 20 87 22 80 3,153 19.85
Buckyball (Fig. 6) 20.9 93 23.4 94 2,369 9.4

our algorithm progressively refines the isosurface over time, the user is provided with
immediate visual feedback in the form of a coarse isosurface that is continuously be-
ing refined and can be interacted with as the visualization quality is incrementally
improved.

The time to perform an occlusion query includes the time to issue the query,
render the query geometry, and read back the results. As described earlier, to use
occlusion queries efficiently, the time the graphics card spends rendering the query
geometry must be filled with useful computations. To measure the time needed for
rendering the query geometry, we tested two occlusion query algorithms. The first
(Occ 1) issues an occlusion query and immediately reads back the results, and the
second (Occ 2), a two pass algorithm, issues all queries first so that when the results
are read back the query geometry has finished rendering and the results are imme-
diately available. The average time to issue an occlusion query was (3–4)× 10−6 s.
The average time to request the occlusion query results from the graphics system
takes on average (7–8)× 10−6 and (1–2)× 10−6 s for Occ 1 and Occ 2 respectively.
Since Occ 1 requests the query results immediately after issuing the occlusion query,
the difference between these two results indicates that rendering the query geome-
try takes about 6 × 10−6 s. To analyze the performance of these two algorithms, we
extracted high resolution isosurfaces from the Engine, PPM and Buckyball datasets
using both algorithms and rotated them around a predefined axis to ensure that oc-
cluded regions became visible as often as possible. Issuing multiple occlusion queries
before reading the results improved overall performance by 25–40%. The results are
given in Table 4. As expected, reading the query results directly after issuing the
query (Occ 1) requires significantly more time. The actual time to issue the occlu-
sion queries is the same in both algorithms, however, it occupies a larger percentage
of the overall frame time in Occ 2 because reading the query results takes signifi-
cantly less time in the Occ 2 algorithm than in the Occ 1 algorithm.

To test the performance of our occlusion culling algorithm we extracted isosur-
faces from the same viewpoint with and without occlusion culling. The isosurfaces
were extracted at low error bounds, about 1

2 a pixel in screen space tolerance, to gen-
erate high resolution surfaces with a large number of triangles. At lower resolutions
with fewer triangles, occlusion culling’s benefits diminish, and the extra overhead
can decrease overall performance. This is because occlusion culling renders a small

Compression and Occlusion Culling 317

Table 4. Comparison of different occlusion query algorithms using the Engine (Error= 0.5,
Isovalue= 90), PPM (Error= 0.5, Isovalue = 227), and Bucky (Error= 0.5, Isovalue = 130)
datasets. The Occ issue and Occ query columns show the percentage of the frame spent issuing
the queries and requesting the query results

Dataset Triangles Diamonds Frames per second Occ issue (%) Occ query (%)

Occ No occ Occ No occ Occ 1 Occ 2 No Occ Occ 1 Occ 2 Occ1 Occ 2

Engine 1.2M 2.67M 48K 89K 3.0–4.0 4.0–5.0 3.0–4.0 18 27 35 8.5
PPM 1.6M 4.05M 78K 102K 2.5–3.0 3.5–4.5 1.0–1.5 15 20 28 5.5
Bucky 1.75M 4.08M 95K 132K 2.2–2.7 3.3–3.9 0.6–1.3 11 14 18 4.7

Fig. 5. High resolution isosurface from the engine dataset, Isovalue = 80, Error = 0.5. Occlu-
sion culling results are given in Table 5

Fig. 6. High resolution rendering of the 1,0243 synthetic buckyball dataset, Isovalue= 80,
Error= 0.5. Occlusion culling results are given in Table 5

amount of geometry to try and eliminate a large amount of geometry. Thus the
amount of geometry eliminated must be large enough to justify the overhead of the
occlusion test. At lower resolutions with fewer triangles, each occlusion test elimi-
nates less geometry. Occlusion culling results for the images shown in Figs. 5–8 are
summarized in Table 5. These figures show the extracted isosurface from the initial
viewpoint used for view-dependent rendering and occlusion culling and a second

318 B. Gregorski et al.

Fig. 7. Isosurface from the PPM dataset: Isovalue = 228, Error= 0.50. Occlusion culling re-
sults are given in Table 5

Fig. 8. PPM isosurface extracted using occlusion culling: Isovalue = 225, Error= 0.55. Re-
sults are given in Tables 3 and 5

Table 5. Occlusion culling performance for isosurfaces in Figs. 5–8. Top and bottom rows
show values without and with culling. Results are the average of several runs using the same
error and isosurface value

Dataset Error Triangles Diamonds Occlusion FPS
tests per frame

Engine (2563) 0.50 2.61M 87K – 4.4
0.50 867K (33%) 47K (54%) 8–9K 5.8

PPM (Fig. 7) 0.50 4.4M 215K – 2.5
0.50 1.38M (31%) 148K (69%) 15–19K 4.6

PPM (Fig. 8) 0.55 3.98M 170K – 3.0
0.55 1.22M (31%) 122K(72%) 13–18K 5.0

Buckyball (1,0243) 0.50 2.99M 156K – 3.3
0.50 1.1M, (37%) 100K (64%) 15–18K 4.2

Compression and Occlusion Culling 319

viewpoint that shows the regions of the isosurface removed by occlusion culling.
For our test datasets, occlusion culling reduced the number of extracted triangles
by 50–70% and the number of diamonds in the mesh by 30–50%. The extracted
isosurface geometry, vertices and normals, and triangle indices are stored in vertex
buffer objects (VBOs). Since a large number of triangles are kept between frames,
this allows for fast, asynchronous rendering.

Depending on the viewpoint, the engine has a depth complexity between 2 and 6,
and the buckyball has a depth complexity between 2 and 8. For these datasets, occlu-
sion culling greatly reduces the number of triangles, diamonds, and overall system
resource usage. The reduction in mesh size reduces the number of error calculations
that needs to be performed, the number of data pages that needs to be decompressed,
and the amount of isosurface geometry that must be extracted and stored. The bene-
fits of occlusion culling are limited by the time to perform the queries, i.e., setting up
and rasterizing the bounding box geometry, and the readback speed from the graphics
card. In future graphics systems the performance of occlusion queries should im-
prove greatly. Compared to the engine and buckyball datasets, isosurfaces from the
PPM dataset are much more complex. They generally contain a larger number of tri-
angles when compared to isosurfaces from similarly sized volumes at the same error
bound, and they have high depth complexity and a large number components and
small features where occlusion culling can perform poorly. As described in Sect. 2,
occlusion culling works best for surfaces that contain larger occluded regions where
the cost of performing the occlusion query is outweighed by the cost of refining the
mesh structure and extracting the isosurface.

7 Conclusions and Future Work

We have presented new data compression and occlusion culling algorithms for fast
isosurface extraction from massive datasets. Our fast and efficient compression algo-
rithm reduces the storage requirements of these massive volumes and our occlusion
culling algorithm reduces the number of triangles in the extracted isosurfaces. The
synergistic combination of these two algorithms allows large isosurfaces consisting
of millions of triangles to be visualized at interactive rates from massive, compressed
datasets.

We utilize a hierarchical tetrahedral mesh structure based on longest-edge bisec-
tion to form an adaptive volume representation. The adaptive representation is the
basis for a hierarchical prediction technique used to compress the volume data and
its precomputed, quantized gradients. A fast coder based on lead-1 encoding and
Huffman codes achieves 1.7:1 to 3.1:1 compression with 2.4:1 to 5:1 compression
for the data and 1.65:1 to 2.6:1 compression for the gradients. Occlusion culling,
performed using the diamond representation of the mesh, allows unseen portions of
the volume to be culled and simplified, thus reducing the number of rendered trian-
gles and runtime computation. Frame-to-frame coherence is utilized to create a good
initial set of occluders from which an approximate depth buffer is created. Hardware

320 B. Gregorski et al.

occlusion queries are performed against this set of occluders and the mesh is quickly
refined and coarsened in the visible and occluded regions.

Our future work is focused on developing new predictors, better methods for
quantizing and compressing the gradients, and new shading techniques. Since the
accuracy of the predictor can greatly improve the compression performance, new
predictors that can further reduce the entropy without a large computation cost are
desired. While our technique provides good lossless compression for the data, the
compression of the quantized gradients is not nearly as good. New techniques for
predicting the gradients for compression and quantizing the gradients for accurate
prediction are needed to improve the compression performance. The compression of
the gradients is necessary because they are needed for shading. New shading tech-
niques, based on other surface and volume properties such as curvature and sec-
ond derivatives, that do not require gradients or can use lower quality gradients are
needed to improve the quality of the visualization and reduce the gradient’s storage
overhead.

Acknowledgments

The Christmas Tree dataset was obtained from Department of Radiology, University
of Vienna and the Institute of Computer Graphics and Algorithms, Vienna University
of Technology. This work was performed under the auspices of the US Department
of Energy by University of California Lawrence Livermore National Laboratory un-
der contract No. W-7405-Eng-48. This work was supported by the National Sci-
ence Foundation under contracts ACR 9982251 and ACR 0222909, through the Na-
tional Partnership for Advanced Computing Infrastructure (NPACI) and by Lawrence
Livermore National Laboratory under contract B523818. We thank the members
of the Visualization and Graphics Research Group at the Center for Image Pro-
cessing and Integrated Computing (CIPIC) at the University of California, Davis.
Joshua Senecal’s work was supported in part by a United States Department of Ed-
ucation Government Assistance in Areas of National Need (DOE–GAANN) grant
#P200A980307.

The engine dataset was obtained from http://www.volvis.org. The
buckyball dataset was obtained from Oliver Kreylos at UC Davis.

References

1. Dirk Bartz, Dirk Staneker, Wolfgang Strasser, Briam Cripe, Tom Gaskins, Kristanni Or-
ton, Michael Carter, Andreas Johannsen, and Jeff Trom. Jupiter: A toolkit for interactive
large model visualization. In Proceedings of IEEE Symposium on Parallel and Large
Data Visualization and Graphics, 2001.

2. Paolo Cignoni, Fabio Hanovelli, Enrico Gobbetti, Fabio Marton, Federico Ponchio, and
Roberto Scopigno. Adaptive tetrapuzzles: efficient out-of-core construction and visual-
ization of gigantic multiresolution polygonal models. In SIGGRAPH 2004 Conference
Proceedings, 2004.

Compression and Occlusion Culling 321

3. Mark A. Duchaineau, Serban Porumbescu, Martin Bertram, Bernd Hamann, and
Kenneth I. Joy. Dataflow and re-mapping for wavelet compression and view-dependent
optimization of billion-triangle isosurfaces. In G. Farin, H. Hagen, and B. Hamann, ed-
itors, Hierarchical Approximation and Geometrical Methods for Scientific Visualization.
Springer, Berlin, 2002.

4. Mark A. Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Miller, Charles Aldrich,
and Mark B. Mineev-Weinstein. ROAMing terrain: real-time optimally adapting meshes.
In Proceedings of IEEE Visualization 1997, pages 81–88, 1997.

5. J. El-Sana, N. Sokolovsky, and C. Silva. Integrating occlusion culling with view-
dependent rendering. In Proc. of IEEE Visualization, 2001.

6. Jinzhu Gao, Jian Huang, Han-Wei Shen, and James Arthur Kohl. Visibility culling us-
ing plenoptic opacity functions for large volume visualization. In Proceedings of IEEE
Visualization 2003, pages 341–348, 2003.

7. Thomas Gerstner. Fast Multiresolution Extraction Of Multiple Transparent Isosurfaces.
In Data Visualization 2001 Proceedings of VisSim 2001, Annual Conference Series.
Springer, 2001.

8. Thomas Gerstner and Renato Pajarola. Topology preserving and controlled topology sim-
plifying multiresolution isosurface extraction. In Proceedings of IEEE Visualization 2000,
pages 259–266. IEEE Computer Society Press, 2000.

9. Naga K. Govindaraju, Brandon Lloyd, Sung-Eui Yoon, Avneesh Sud, and Dinesh
Manocha. Interactive shadow generation in complex environments. In Proceedings of
SIGGRAPH 2003, pages 501–510, 2003.

10. Benjamin Gregorski, Mark A. Duchaineau, Peter Lindstrom, Valerio Pascucci, and
Kenneth I. Joy. Interactive view-dependent rendering of large isosurfaces. In Proceedings
of the IEEE Visualization 2002, 2002.

11. Benjamin Gregorski, Joshua Senecal, Mark Duchaineau, and Kenneth I. Joy. Adaptive
extraction of time-varying isosurfaces. In IEEE Transactions on Visualization and Com-
puter Graphics, available as LLNL UCRL UCRL-JP-200087, 2004.

12. Stefan Guthe and Wolfgang Staser. Real-time decompression and visualization of ani-
mated volume data. In Proceedings of IEEE Visualization 2001, pages 349–358, 2001.

13. Stefan Guthe, Michael Wand, Julius Gonser, and Wolfgang Staser. Interactive rendering
of large volume data sets. In Proceedings of IEEE Visualization 2002, pages 53–60, 2002.

14. Haeyoung Ha. Out-of-core interactive display of large meshes using an oriented bound-
ing box-based hardware depth query. Master’s thesis, University of California, Davis,
September 2003. Available as Department of Computer Science Technical Report CSE-
2003-25.

15. K. Hillesland, B. Salomon, A. Lastra, and D. Manocha. Fast and simple occlusion culling
using hardware-based depth queries. Technical Report UNC-CH-TR02-039, Computer
Science Department, University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina, 2002.

16. Schneider J. and Rudiger Westermann. Compression domain volume rendering. In Pro-
ceedings of IEEE Visualization 2003, pages 293–300, 2003.

17. Armin Kanitsar, Thomas Theußl, Lukas Mroz, Milos Srámek, Anna Vilanova Bartrolı́,
Balázs Csébfalvi, Jirı́ Hladùvka, Dominik Fleischmann, Michael Knapp, Rainer
Wegenkittl, Petr Felkel, Stefan Guthe, Werner Purgathofer, and Meister Eduard Gröller.
Christmas tree case study: computed tomography as a tool for mastering complex real
world objects with applications in computer graphics. In Proceedings of the 13th IEEE
Visualization 2002 Conference (VIS-02), pages 489–492, Piscataway, NJ, October 27–
November 1 2002. IEEE Computer Society.

322 B. Gregorski et al.

18. Haeyoung Lee, Mathieu Desbrun, and Peter Schroder. Progressive encoding of complex
isosurfaces. In Proceedings of SIGGRAPH 2003, pages 471–476, 2003.

19. Wei Li, Klaus Mueller, and Ari Kaufman. Empty space skippping and occlusion clippinf
for texture-based volume rendering. In Proceedings of IEEE Visualization 2003, pages
317–326, 2003.

20. Peter Lindstrom and Valerio Pascucci. Visualization of large terrains made easy. In Pro-
ceedings of IEEE Visualization 2001, pages 363–370. IEEE Computer Society Press,
2001.

21. Lars Linsen, Jevan T. Gray, Valerio Pascucci, Mark A. Duchaineau, Bernd Hamann, and
Kenneth I. Joy. Hierarchical large-scale volume representation with ‘3rd-root-of-2’ subdi-
vision and trivariate b-spline wavelets. In Geometric Modeling for Scientific Visualization.
Springer, Heidelberg, 2003.

22. Y. Livnat and C. Hansen. View Dependent Isosurface Extraction. In Proceedings of IEEE
Visualization 1998, pages 175–180. IEEE Computer Society Press, 1998.

23. Adriano Loes and Ken Brodlie. Improving the robustness and accuracy of the marching
cubes algorithm for isosurfacing. IEEE Transactions on Visualization and Computer
Graphics, volume 9(1), January–March 2003.

24. Eric Lum, Kwan-Liu Ma, and John Clyne. Texture hardware assisted rendering of time-
varying volume data. In Proceedings of IEEE Visualization 2001, pages 263–270, 2001.

25. Eric B. Lum and Kwan-Liu Ma. Rendering isosurfaces directly from 3D textures. Techni-
cal Report CSE-2003-10, Computer Science Department, University of California Davis,
2003.

26. Eric B. Lum, Brett Wilson, and Kwan-Liu Ma. High quality lighting and efficient pre-
integration for volume rendering. In Proceedings of IEEE TVCG Symposium on Visual-
ization, 2004.

27. Arthur A. Mirin, Ron H. Cohen, Bruce C. Curtis, William P. Dannevik, Andris M. Dimits,
Mark A. Duchaineau, D. E. Eliason, Daniel R. Schikore, S. E. Anderson, D. H. Porter, ,
and Paul R. Woodward. Very high resolution simulation of compressible turbulence on the
IBM-SP system. In Proceedings of SuperComputing 1999. (Also available as Lawrence
Livermore National Laboratory technical report UCRL-MI-134237), 1999.

28. Gregory M. Nielson. Mc*: star functions for marching cubes. In Proceedings of IEEE
Visualization, pages 59–66, 2003.

29. Valerio Pascucci. Multi-resolution indexing for out-of-core adaptive traversal of regular
grids. In G. Farin, H. Hagen, and B. Hamann, editors, Proceedings of the NSF/DoE Lake
Tahoe Workshop on Hierarchical Approximation and Geometric Methods for Scientific
Visualization. Springer, Berlin, 2002. (Available as LLNL technical report UCRL-JC-
140581).

30. Tom Roxborough and Gregory M. Nielson. Tetrahedron based, least squares, progressive
volume models with application to freehand ultrasound data. In Proceedings Visualization
2000, pages 93–100. IEEE Computer Society Press, 2000.

31. Amir Said and William A. Pearlman. A new fast and efficient image codec based on set
partitioning in hierarchical trees. In IEEE Transactions on Circuits and Systems for Video
Technology, volume 6, pages 243–250, June 1996.

32. J. M. Shapiro. Embedded image coding using zerotrees of wavelets coeefficients. IEEE
Transactions on Signal Processing, volume 41, pages 3445–3462, December 1993.

33. D. Staneker, D. Bartz, and M. Meissner. Improving occlusion query efficiency with oc-
cupancy maps. In Proc. of Symposium on Parallel and Large Data Visualization and
Graphics, pages 111–118, 2003.

Compression and Occlusion Culling 323

34. R. Westermann, L. Kobbelt, and T. Ertl. Real-time exploration of regular volume data by
adaptive reconstruction of isosurfaces. The Visual Computer, volume 15, pages 100–111,
1999.

35. Sung-Eui Yoon, Brian Salomon, and Dinesh Manocha. Interactive view-dependent ren-
dering with conservative occlusion culling in complex environments. In Proceedings of
IEEE Visualization 2003, 2003.

36. H. Zhang, D. Manocha, T. Hudson, and K. Hoff III. Visibility culling using hierarchical
occlusion maps. In Proceedings of SIGGRAPH, pages 77–88, August 1997.

37. Xiaoyu Zhang, Chandrajit Bajaj, and Vijaya Ramachandran. Parallel and out-of-core
view-dependent isocontour visualization. In Proceedings of the Joint Eurographics -
IEEE TCVG Symposium on Visualizatation (VisSym-02), Vienna, Austria, May 27–29
2002. Springer.

Volume Visualization of Multiple Alignment of Large
Genomic DNA

Nameeta Shah1,2, Scott E. Dillard1, Gunther H. Weber1,2, and Bernd Hamann1,2

1 Institute for Data Analysis and Visualization (IDAV), Department of Computer Science,
University of California, Davis, One Shields Avenue, Davis, CA 95616-8562, USA
{nyshah,sedilla,ghweber,bhamann}@ucdavis.edu

2 Visualization Group, National Energy Research Scientific Computing Center (NERSC),
Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA

Summary. Genomes of hundreds of species have been sequenced to date, and many more
are being sequenced. As more and more sequence data sets become available, and as the
challenge of comparing these massive “billion basepair DNA sequences” becomes substan-
tial, so does the need for more powerful tools supporting the exploration of these data sets.
Similarity score data used to compare aligned DNA sequences is inherently one-dimensional.
One-dimensional (1D) representations of these data sets do not effectively utilize screen real
estate. As a result, tools using 1D representations are incapable of providing informatory
overview for extremely large data sets. We present a technique to arrange 1D data in 3D
space to allow us to apply state-of-the-art interactive volume visualization techniques for data
exploration. We demonstrate our technique using multi-millions-basepair-long aligned DNA
sequence data and compare it with traditional 1D line plots. The results show that our tech-
nique is superior in providing an overview of entire data sets. Our technique, coupled with
1D line plots, results in effective multi-resolution visualization of very large aligned sequence
data sets.

1 Introduction

The human genome consists of about three billion basepairs, of which only a small
percentage is well-understood. In order to decipher the rest of the genome, and to
understand general principles of genome structure and function, biologists look for
overrepresented patterns in the genomes. Another approach to understanding genetic
code is through comparison of genomes, or parts of genomes, of different species.
Although many techniques for visualization of DNA sequences have been developed
and various tools exist for visualization of alignment data, there exists a need for
visualization techniques that can handle very large data sets.

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 325
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

326 N. Shah et al.

Human AATTCCGATGGGAACTACTGGATC-CGG

Chimp AATTCCAATGGGAA--ACTGGATCCCGG

Mouse AAATCCG---GAAACCACTGG----AGG

Rat A--TCCG---GAAACCACTGG----AGG

All 6316663111626631666661110266

(6-100%, 3-50%, 2-33%, 1-17%)

Primates 1111110111111100111111110111

(1-100%, 0-0%)

Rodents 1001111000111111111110000111

(1-100%, 0-0%)

Fig. 1. Multiple alignment of four species: human, chimp, mouse, and rat, and sum-of-pairs
similarity scores for three different plots. (A sum-of-pair similarity score is computed by
adding one for every basepair consisting of the same base, considering all possible distinct
species pair)

1.1 Multiple Alignment

Currently, biologists compare genomes of many species at different evolutionary
distances by examining multiple alignments [7]. A multiple alignment is a set
of sequences in a “rectangular arrangement,” where each row consists of one se-
quence padded by gaps, such that the columns highlight similarity/conservation
between positions (http://www.cryst.bbk.ac.uk/BCD/bcdgloss.
html). Figure 1 shows an example of a multiple alignment of four sequences,
where the characters A, T, C and G represent the bases adenine, thymine, cyto-
sine and guanine, respectively. Below the alignment we show similarity scores for
the multiple alignment. The similarity score for each column shows the level of
conservation among sequences, considering all possible pairwise comparisons of
characters (six in the case of four species). Different schemes are used to calculate
similarity scores, including entropy, sum-of-pairs, weighted sum-of-pairs, parsi-
mony, etc. (http://lepo.it.da.ut.ee/˜mremm/kurs/multali.htm).
We assume that similarity scores are provided as input for our visualization
purposes.

1.2 Related Work

Comparison of biological sequences is a very important aspect of genome research.
Fractal-based visualization using chaos automata and iterated function systems [1]
and space-filling curves [4, 12] have been used for identifying patterns, similarities
and dissimilarities in biological sequences. PATTVision is a 3D visualization tool
that uses texture mapping for viewing patterns in multiple sequences [23]. Arc di-
agrams have been used to visualize shared patterns among sequences [22]. These
methods are effective for relatively small-sized sequences consisting of up to few

Volume Visualization of Multiple Alignment of Large Genomic DNA 327

thousand basepairs. Alignment is one of the most extensively used techniques for
comparing DNA sequences. With larger sequences being aligned, text-based align-
ment viewers are inadequate, and alignment visualization using line-based glyphs
in 3D space have been developed as a response [5, 6]. Currently, several tools for
the visualization of alignment data are publicly available. One highly popular and
successful tool is VISTA [16]. VISTA represents the level of conservation between
species as a curve calculated by sliding a window of predefined size over the given
alignment and computing the average similarity score over the window. VISTA
shows pairwise similarity scores. Phylo-VISTA [19] extends the VISTA concept
to the visualization of multiple (more than two) alignments. Other commonly used
tools like MultiPipMaker [18] and SynPlot [9] also use 1D line or dot plots. Vari-
ous genome browsers [11, 14, 26] also use textual display and 1D line plots to show
alignment scores. SequenceJuxtaposer [21] uses “focus+context” techniques to pro-
vide interactive multiresolution navigation of sequences up to two million basepairs
in total.

1.3 Motivation

With advancements in sequencing technology, increases in computational power, and
the development of better computational methods, it is now possible to align several-
million-basepair-long sequences. It is clear that the need exists, or will exist in the
very near future, to develop new visualization techniques to support the interactive,
visual exploration for such extremely large sequence data. The basic principle or the
Visual Information Seeking Mantra is [20]:

Overview first, zoom and filter, then details-on-demand.

As the size of a typical alignment reaches several million basepairs, all existing tech-
niques for visualization of alignment data fail to provide a good overview of an entire
data set that will highlight regions of interest for further focus. Our work is driven by
the need for visually presenting large 1D data sets in their entirety such that interest-
ing features of the data for more detailed exploration are clearly visible.

Earlier work by Wong et al. [27] used space-filling Hilbert curves to transform
sequential data into 2D space. This transformation allows one to display one million
basepairs using a 1,000×1,000 pixel image. Application of digital image processing
filters to such images reveals interesting patterns in the data. This work motivated us
to represent multiple alignment data in 3D space, embedded in a fixed volume by us-
ing 3D space-filling curves. This approach allows us to apply various volume visual-
ization techniques to render the data. We use hardware-accelerated volume rendering
with maximal intensity projection [10] for visualization. In general, choosing a trans-
fer function for volume rendering is not a trivial task. In our application, however,
we specify a transfer function based on parameters relevant from the perspective of
the driving biological problem.

328 N. Shah et al.

2 Our Approach

With current multiple alignment algorithms, million-basepair alignments are be-
coming increasingly common. Techniques are required to examine such large data
sets that contain more data points than there are screen pixels. “Focus+context”
approaches have been effectively utilized in such cases where the most important
data is given more screen space and is displayed in more detail than the rest of the
data, which is still displayed at lower-resolution to provide context. This method is
not very helpful when a user might need to examine the complete data set to locate
interesting features in the data. Our goal is to make better use of the screen real estate
to provide more screen area per data element.

2.1 From 1D Sequential Data to 3D Volume Data

A naı̈ve approach for arranging sequential data in 3D space is using a scanline traver-
sal in 2D planes and stacking these planes in perpendicular direction. In a 643 vol-
ume grid, for example, such an arrangement will place the 0th position (mapped
to (0, 0, 0) in 3D space) and 4, 096th position (mapped to (0, 0, 1) in 3D space) next
to each other. When two positions that are distant in the 1D sequence happen to be
adjacent in a 3D arrangement, interpretation of data/visuals is difficult. To mitigate
this problem, a 3D arrangement that maximizes spatial coherence should be used.
Work by Keim et al. [13] and Voorhies [25] has shown that a Hilbert curve-based
mapping is among the most coherent space-filling-curve-based approaches. Coher-
ence is defined as the amount by which neighboring pixels (voxels in our case) are
at sequential positions on the curve [27]. Figure 4 shows a 3D Hilbert curve. We
map a score at position i in a multiple alignment to a position in 3D space using the
algorithm described by Max [15].

2.2 Volume-Based Visualization

Once the 1D alignment data is transformed to volume data, we apply volume
rendering to the data. In the following, we describe the details of volume-based
visualization.

Color Channels

Consider a multiple alignment of sequences of four species: human, chimp, mouse
and rat, see Fig. 1. Biologists are interested in:

• Conserved features in all four species
• Primate-specific features
• Rodent-specific features

Volume Visualization of Multiple Alignment of Large Genomic DNA 329

C
ol

or
 I

nt
en

si
ty

Similarity Score
Threshold

Color Ramp

1.0

100%0

Fig. 2. Transfer function

These features can be identified by considering the following three different sim-
ilarity plots and comparing them:

• A similarity plot for all four species
• A similarity plot for human and chimp (primates)
• A similarity plot for mouse and rat (rodents)

In this scenario, we can take advantage of three color channels, red, green and
blue, to visualize three similarity plots: We map the first similarity plot to the red
channel, the second plot to the green channel and the third plot to the blue channel.
This approach allows a user to compare common and distinct features of all plots.
Different colors highlight different features of the data. For example, blue represents
a primate-specific feature absent in rodents, green represents a rodent-specific fea-
ture absent in primates, and cyan represents a feature specific to both primates and
rodents. Further, white (the combination of all colors) represents a region conserved
among all species.

Transfer Function

A separate transfer function is associated with each color channel. We use a linear
transfer function like the one shown in Fig. 2. We use a user-defined similarity score
threshold, below which everything is rendered transparently. The slope of the func-
tion is adjustable.

Maximal Intensity Projection

The Hilbert curve transforms a 1D sequence into a 3D volume that is just as large in
Z direction as in X and Y directions. When this volume is projected on to 2D screen
space, there is a substantial overlap of data. If the data is rendered fully opaquely,
then the frontmost layer will be the only visible output, occluding the rest of the
data. A back-to-front rendering allows for alpha blending and transparency, so that
uninteresting areas of the data are drawn transparently and do not occlude anything.
The user can freely rotate the data, in order to avoid arrangements in which inter-
esting features occlude each other. But it is possible that a feature in the data may

330 N. Shah et al.

be completely surrounded by opaque voxels, so that rotation alone will not reveal
it (Fig. 7c). We employ a maximal intensity projection that maps the intensity of a
voxel to its screen depth. This depth is then used as input to the Z-buffer algorithm,
common to most graphics hardware available today. This method guarantees that
highly conserved regions in the DNA are always displayed before less conserved
regions. Data is still occluded, but it is assumed that the user is more interested in
regions of high conservation rather than regions of less conservation (Fig. 7d). In sit-
uations where this assumption is false, the user may invert the data for display, which
is effectively a minimal intensity projection.

2.3 Annotations

For analysis of multiple alignment data, biologists often need additional biological
information, such as information concerning a known gene model. For example, it is
desirable to show the start and end coordinates of a gene, exons (the protein coding
part of a gene), etc. This information can be provided in the form of annotations next
to genome sequences. Thus, in addition to displaying similarity plots of a multiple
alignment, displaying annotations is a major aspect of genomic data visualization.
We draw annotations as “pipes” following the 3D Hilbert curve (Fig. 4). As the size
of an annotation grows larger so does the number of pipes we draw. This method
may clutter the display and slow down interaction. We handle this problem by us-
ing a multiresolution Hilbert curve. Figure 3 shows a Hilbert curve drawn in 2D

Fig. 3. Multiresolution Hilbert curve embedded in 2D space. The black curve is a high-
resolution Hilbert curve; a lower-resolution version is shown in red

Volume Visualization of Multiple Alignment of Large Genomic DNA 331

Fig. 4. Annotations. Left: annotations drawn using multiresolution Hilbert curve; right: an-
notations drawn using high-resolution Hilbert curve. Purple and orange pipes represent two
different sets of annotations

Fig. 5. Effective use of screen real estate. Three annotations of sizes 63, 54, and 63 separated
by 565 and 11,260 basepairs, respectively, on 2,097,151-basepair-long sequence are distinctly
visible in 3D space (in orange cube). But the first two merge in a 1D representation (in orange
rectangle)

space using two resolutions. The black curve is a high-resolution curve with 15 line
segments; the red curve is a lower-resolution version with just three segments. The
image on the left-hand side in Fig. 4 shows annotations drawn using a multiresolu-
tion Hilbert curve approach. The image on the right-hand side uses the same annota-
tions drawn as a high-resolution Hilbert curve. We draw lower-resolution curves as
pipes with large diameters to show that they cover a greater volume. We plot over-
lapping annotations by drawing multiple Hilbert curves with a slight offset (Fig. 4).
As a result of our volume-based visualization approach annotations can also be dis-
played at a higher resolution. Consider a 2,097,151-basepair-long genome sequence
with three annotations of sizes 63, 54, and 63 basepairs and separated by 565 and
11,260 basepairs, respectively. The first two annotations, when displayed using a
traditional 1D plot at 1,000-pixel resolution, would occupy the same pixel position
on the screen, and the two annotations would be indistinguishable. Using our 3D
visualization method all three annotations can be seen distinctly (Fig. 5).

332 N. Shah et al.

3 Implementation

The adaptation of volume rendering techniques to modern commodity graphics hard-
ware has made it easy and affordable to achieve interactive framerates. The mas-
sive parallelism of a modern GPU is well suited to evaluating the relatively simple
transfer function millions of times per second, while the SIMD architecture allows
for three channels of data to be processed as quickly as one. Using an NVidia 5900
FX graphics processor, our implementation displays 15 frames s−1 for a 643 data set
(∼260,000 basepairs), where each frame consists of 800 × 800 pixels.

3.1 Volume Renderer

We render images using view-perpendicular slices with a back-to-front ordering ap-
proach. This approach allows us to incorporate transparency into the transfer func-
tion. We use a fragment program to evaluate the transfer function [2]. This program
compares the value at each voxel with the three thresholds (for the three color chan-
nels.) If a value is above the threshold, that color channel is activated for that voxel.
If no value is above the threshold, the voxel is transparent rather than black. The
color ramp (see Fig. 2) can be increased to yield a smooth transition between states.
In this case, values near the threshold will be only slightly visible while values much
greater than the threshold will clearly stand out. The maximal intensity projection is
evaluated within the fragment program. A specific color channel, or the sum of all
three, is mapped to the Z-buffer.

3.2 User Interface

We provide a user interface for our volume renderer that allows a biologist to explore
intuitively large alignment data. We describe the specifics in the following.

Volume Rendering Controls

A user can choose thresholds for three color channels, which will automatically set
the transfer function. Any of the three channels, or the sum of all three, can be chosen
for the maximal intensity projection. A box filter of variable size can be applied to
the similarity score data for smoothing.

Annotation Controls

Multiple sets of annotations can be loaded and displayed with our prototype sys-
tem. User-defined colors are associated with each set of annotations. In addition, the
diameters of the pipes can be adjusted.

Volume Visualization of Multiple Alignment of Large Genomic DNA 333

Navigation Controls

A Hilbert curve is fractal in nature [17]. As a result, a data string embedded in
a 3D volume can be organized using an octree-like structure. For navigation pur-
poses, a currently displayed sequence portion, which always has the shape of a cube,
is divided into octants. A user can then select an octant for zooming in. It is also
possible to shift the selected octant by half of its size in both direction. To provide a
context for the currently displayed sequence portion, the bounding box of the volume
corresponding to the complete sequence can be displayed.

A 3D representation of inherently 1D data poses problems for navigation in 3D
space. A user must know the 1D position of the underlying (sequence) data, but one
can lose one’s orientation when navigating in 3D space. We tackle this problem by
using a 1D representation of the sequence shown next to the volume display. This
representation allows a biologist to keep track of the position within the sequence in
a more traditional fashion. This additional display consists of two bars, see Fig. 6,
where the upper bar corresponds to the complete sequence and the lower bar cor-
responds to the displayed portion of a sequence. A highlighted region in the upper
bar represents the displayed portion of the complete sequence and is connected to
the lower bar, indicating the correspondence of the displayed sequence portion to the
complete sequence.

Annotations are also displayed using rectangles on the lower bar. Selecting an
octant for zooming in can be accomplished by clicking on the corresponding octant
in the volumetric image, or by clicking on the corresponding part of the 1D bar
representing the displayed portion of the sequence. Zooming out leads a user to the
next lower level of detail. The 1D sequence representation can also be used to move a
marker through the 3D display volume. This marker is symbolized by a vertical line
in the 1D sequence display. Dragging this line by using a mouse moves the marker
through the volume along the Hilbert curve. We show the similarity score for all

Fig. 6. Control for navigation on original 1D data sequence. The upper bar corresponds to the
complete sequence, and the lower bar corresponds to the displayed portion of a sequence. A
highlighted region in the upper bar represents the displayed portion of the complete sequence
and is connected to the lower bar, showing the correspondence of the displayed sequence
portion to the complete sequence. The highlighted region in the lower bar denotes the selected
octant. Yellow rectangles are the annotations. 1D plots for all three channels are drawn as red,
blue and green curves. The background color is the same as the corresponding color of the
voxel in the volume. The similarity score for all three channels is shown at the marker position
using a bar graph as shown in the square on the right-hand side

334 N. Shah et al.

three channels at the marker position using a bar graph as shown in the square on the
right-hand side of Fig. 6. We also show 1D plots for all three channels and we use
the color in the volume as background for the line plot.

4 Results

We have applied our method to multiple alignment datasets that were created using
MLAGAN [3]. We have used these two test datasets:

1. Stem Cell Leukemia (SCL) dataset.
The SCL dataset is a multiple alignment DNA sequence data set of sequences
from five species: human, mouse, chicken, pufferfish and zebrafish. All
sequences contain the SCL gene. The alignment consists of 150,000 basepairs.
These sequences were aligned in order to discover regulatory elements of the
SCL gene. Regulatory elements are short DNA sequences consisting between 6
and 12 basepairs. They are generally found in a region in front of a gene called
promoter. The underlying assumption is that they are conserved in evolutionary
distant species because regulatory elements are functionally important.

2. Cystic Fibrosis Transmembrane Conductance (CFTR) dataset.
The CFTR dataset is a multiple alignment DNA data set of sequences from 12
species: human, chimp, baboon, cat, dog, cow, pig, mouse, rat, chicken, fugu-
fish and zebrafish. The sequences are from the region containing a gene coding
the CFTR regulator, and nine other genes. The alignment is four million base-
pairs long. This alignment can help biologists with the discovery of regulatory
elements as well as their identification of subclass-specific features.

We compare volume-based visualizations of these datasets with 1D similar-
ity plots and SequenceJuxtaposer. Most of the currently available tools including
genome browsers like UCSF, Ensembl and NCBI use line plots and yield similar
results to the 1D plots we compare our results with. We are not aware of any other
tools that can handle well alignment data as large as four million basepairs.

Figure 7 shows the visualization of the SCL dataset. We visualize three similar-
ity plots: the similarity plot for all five species, which is mapped to the red channel;
the similarity plot for human–mouse–chicken, which is mapped to the green chan-
nel; and the similarity plot for the two fish species, which is mapped to the blue
channel. The resolution of the displayed volume is 643 (Fig. 7c,d). Yellow pipes
show exons (protein-coding parts of a gene) for the human sequence. In Phylo-
VISTA plots, exons are shown as purple bars below the plot. Two bars exist: an
upper one showing exons of the human sequence and a bottom one showing ex-
ons of the mouse sequence (Fig. 7b). A box filter with a width of 50 was used to
smooth data for all three similarity scores. A threshold of 25% was used for all plots.
We also generated a visualization of the SCL dataset using SequenceJuxtaposer [21]
(Fig. 7a).

Volume Visualization of Multiple Alignment of Large Genomic DNA 335

Fig. 7. Using volume rendering to discover a regulatory region for the SCL gene: (a) Red lines
show differences among the five sequences. This image was generated using SequenceJuxta-
poser. (b) 1D plots created with Phylo-VISTA. (c) The volume-rendered image with yellow
pipes showing annotations. The 3D representation occludes some of the interesting features
of the data. (d) The white regions in the volume-rendered image correspond to regions that
are highly conserved in all sequences. The volume-rendered representation using maximal
intensity projection allows users to detect these regions instantaneously, without the need to
compare multiple plots. (e) 1D line representation obtained by overlaying all three similarity
plots. White lines show conserved regions

336 N. Shah et al.

Red lines in Fig. 7a show differences among the five sequences. It is diffi-
cult to find regions of high similarity looking at this picture. White spots in the
volume-rendered image (Fig. 7d) indicate regions of high conservation in all three
similarity plots. These spots are seen as peaks in all three corresponding Phylo-
VISTA plots (Fig. 7b). Green spots are conserved regions in the human–mouse–
chicken plot that are absent in the fish plot. Similarly, blue spots are fish-specific
conserved regions. The conserved regions seen in these images contain the regula-
tory elements of the SCL gene [8]. In order to compare three 1D plots a user has
to inspect them by eye and determine whether there are peaks in different plots at
the same position. This analysis approach may create problems, especially when
one pixel represents the similarity score for more than one column in a multiple
alignment. In the case of the volume-rendered image, a user needs to consider only
the color to compare all three plots at once. Of course, the same color scheme can
be applied to 1D plots, and this is show in Fig. 7e. One can see that the four white
peaks are barely visible in this plot whereas the corresponding four white spots in the
volume-rendered image are strikingly visible. One of the issues in volume rendering
is occlusion as can be seen in Fig. 7c, where the high similarity regions are hidden
inside the volume. We handle this problem by using maximal intensity projection, as
a result of which the high-similarity regions show through (Fig. 7d).

Figure 8 shows a visualization of the CFTR dataset. This figure shows only one
plot for the similarity among all 12 species, mapped to the red channel. The res-
olution of the volume is 2563. The sequence data fills 25% of the volume. White
pipes show genes, and purple pipes indicate the exons of the human sequence. The
data was smoothed using a box filter of width 50. The threshold was 25%. The corre-
spondence between the 3D and 1D plots is illustrated by thick gray lines. The middle
image shows the entire dataset. Exons and their conservation are much more clearly
and distinctly visible in the 3D plot than in the 1D plot. The red spots in the first
half of the dataset indicate conservation among all species. The top and the bottom
images show zoomed-in views from different viewpoints of the same circled part of
the middle image. The circled part in the top image indicates conservation of the first
exon of a gene and the promoter region. The image to its right shows a zoomed-in
view. The conserved region seen in this right-most top image contains regulatory el-
ements of CAV2 gene [24]. Similarly, the bottom images show the conservation of
regulatory elements of the CAPZA2 gene [24].

Figures 9 and 10 show the visualization of the CFTR dataset. Three different sim-
ilarity plots are used in the volume visualization. The similarity plot for primates (hu-
man, chimp, baboon), artiodactyls (cow, pig) and carnivores (cat, dog) are mapped to
the red channel. The green channel is used to display the similarity plot for primates,
and the blue channel for showing the similarity plot of carnivores and artiodactyls.
Figure 9a shows the entire dataset. We use different thresholds for different channels:
70% for red, 90% for green and 80% for blue. The 3D visualization reveals many
more features when compared to the 1D plot. Larger primate-specific (green) and
artiodactyls-carnivores-specific (blue) regions can be identified from both 3D and
1D plots. In the 3D plot, we can see a white spot in an otherwise blue–green region
(shown with the red arrow). This feature of the dataset is not visible in the 1D plot

Volume Visualization of Multiple Alignment of Large Genomic DNA 337

Fig. 8. Visualizing the CFTR data set: The red spots indicate similarities among all species in
a region corresponding to the CAPZA2 gene. In the volume-rendered image, exons and their
conservation are much more clearly and distinctly visible than in the 1D plot

338 N. Shah et al.

Fig. 9. Visualizing three different similarity scores for the CFTR data set. Larger primate-
specific (green) and artiodactyls-carnivores-specific (blue) regions can be seen in both 3D and
1D plots. (a) A white spot in an otherwise blue–green region (indicated by the red arrow).
The black arrow indicates the corresponding region in 1D plot with the feature not visible.
(b, c) Zoomed-in views with the feature in the 3D plots being invisible in 1D plots. (Figure
continued on next page)

(indicated by the black arrow). As we zoom-in further (Fig. 9b,c), the spot remains
visible in the 3D plots but not in the 1D plots. In Fig. 10d, we start seeing a white
line in the 1D plot, which becomes more distinctly visible when we zoom-in further
(Fig. 10e). This conserved region is in a noncoding region that is far away from any
gene but can potentially be a distant regulatory element. Thus, our 3D representation
allowed us to detect an interesting feature immediately that would have been missed
by looking at just 1D plots.

Volume Visualization of Multiple Alignment of Large Genomic DNA 339

Fig. 10. Zoomed-in views of three different similarity scores for the CFTR data set. (d) A
feature visible in the 3D plot is visible as a thin, white line in the corresponding 1D plot. (e)
A feature visible in the 3D plot is clearly visible in the 1D plot after zooming-in

340 N. Shah et al.

5 Conclusions

We have presented a volume-based visualization technique for analyzing multiple
alignment data. Our results demonstrate that 3D representations and visualizations
of genome data are quite effective and utilize 3D display space efficiently. As a result,
we can convey information more compactly, especially for billion-basepair sequence
data.

Although developed for a particular biological application, our method can be
applied to other kinds of massive sequential 1D data sets. Other volume-based visu-
alization techniques, like isosurfacing or plane slicing, etc. could also be used when
appropriate for a given application.

Acknowledgments

This work was supported by the National Science Foundation under contracts ACI
9624034 (CAREER Award), through the Large Scientific and Software Data Set Vi-
sualization (LSSDSV) program under contract ACI 9982251, through the National
Partnership for Advanced Computational Infrastructure (NPACI) and a large Infor-
mation Technology Research (ITR) grant; the National Institutes of Health under
contract P20 MH60975-06A2, funded by the National Institute of Mental Health and
the National Science Foundation; by the Director, Office of Science, USA. Depart-
ment of Energy under contract DE-AC03-76SF00098; and the Lawrence Berkeley
National Laboratory through a Laboratory Directed Research Development (LDRD)
project. We thank Chris Co and Oliver Kreylos for their helpful suggestions. We also
thank the members of the Visualization and Graphics Research Group at the Institute
for Data Analysis and Visualization (IDAV) at the University of California, Davis,
and the members of the Genome Sciences Department and the NERSC Visualization
Group of the Lawrence Berkeley National Laboratory for their support.

References

1. Dan Ashlock and Jim Golden. Ch.11 Evolutionary Computation and Fractal Visualization
of Sequence Data. Morgan Kaufmann, 2002.

2. Bob Beretta, Pat Brown, Matt Craighead, Cass Everitt, Evan Hart, Jon Leech, Bill
Licea-Kane, Bimal Poddar, Jeremy Sandmel, Jon Paul Schelter, Avinash Seetharamaiah,
and Nick Triantos. GL ARB fragment program Specification. Online OpenGL Exten-
sion Registry, August 2003.

3. Michael Brudno, Chuong Do, Gregory Cooper, Michael F. Kim, Eugene Davydov, Eric
D. Green, Arend Sidow, and Serafim Batzoglou. Lagan and multi-lagan: efficient tools
for large-scale multiple alignment of genomic DNA. Genome Research, 13(4):721–731,
2003.

4. Hsuan T. Chang, Neng-Wen Lo, Wei C. Lu, and Chung J. Kuo. Visualization and com-
parison of DNA sequences by use of three-dimensional trajectories. In Proceedings of
the First Asia-Pacific Bioinformatics Conference on Bioinformatics 2003, pages 81–85,
Adelaide, Australia, 2003.

Volume Visualization of Multiple Alignment of Large Genomic DNA 341

5. Ed Huai-hsin Chi, Phillip Barry, Elizabeth Shoop, John Carlis, Ernest Retzel, and
John Riedl. Visualization of biological sequence similarity search results. In Gregory
M. Nielson and Deborah Silver, editors, Proceedings of IEEE Visualization 1995, IEEE
Visualization, Annual Conference Series, pages 44–51, Atlanta, USA, 1995. IEEE, IEEE
Computer Society Press.

6. Ed Huai-hsin Chi, John Riedl, Elizabeth Shoop, John V. Carlis, Ernest Retzel, and Phillip
Barry. Flexible information visualization of multivariate data from biological sequence
similarity searches. In Roni Yagel and Gregory M. Nielson, editors, Proceedings of IEEE
Visualization 1996, IEEE Visualization, Annual Conference Series, pages 133–140, San
Francisco, USA, 1996. IEEE, IEEE Computer Society Press.

7. Kelly A. Frazer, Laura Elnitski, Deanna M. Church, Inna Dubchak, and Ross C. Hardison.
Cross-species sequence comparisons: A review of methods and available resources.
Genome Research, 13(1):1–12, 2003.

8. Berthold Göttgens, Linda M. Barton, Michael A. Chapman, Angus M. Sinclair, Bjarne
Knudsen, Darren Grafham, James G.R. Gilbert, Jane Rogers, David R. Bentley, and
Anthony R. Green. Transcriptional regulation of the stem cell leukemia gene (scl) com-
parative analysis of five vertebrate scl loci. Genome Research, 12(5):749–759, 2002.

9. Berthold Göttgens, James G R. Gilbert, Linda M. Barton, Darren Grafham, Jane Rogers,
David R. Bentley, and Anthony R. Green. Long-range comparison of human and mouse
scl loci: Localized regions of sensitivity to restriction endonucleases correspond precisely
with peaks of conserved noncoding sequences. Genome Research, 11(1):87–97, 2001.

10. W. Heidrich, M. McCool, and J. Stevens. Interactive maximum projection volume ren-
dering. In Gregory M. Nielson and Deborah Silver, editors, Proceedings of IEEE Visual-
ization 1995, IEEE Visualization, Annual Conference Series, pages 11–18, Atlanta, USA,
1995. IEEE, IEEE Computer Society Press.

11. T. Hubbard, D. Barker, E. Birney1, G. Cameron, Y. Chen, L. Clark, T. Cox, J. Cuff,
V. Curwen, T. Down, R. Durbin, E. Eyras, J. Gilbert, M. Hammond, L. Huminiecki,
A. Kasprzyk, H. Lehvaslaiho, P. Lijnzaad, C.Melsopp, E. Mongin, R. Pettett, M. Pocock,
S. Potter, A. Rust, E. Schmidt, S. Searle, G. Slater, J. Smith, W. Spooner, A. Stabenau,
J. Stalker, E.Stupka, A. Ureta-Vidal, I. Vastrik, and M. Clamp. The ensembl genome
database project. Nucleic Acids Research, 30(1):38–41, 2002.

12. H. Joel Jeffrey. Chaos game representation of gene structure. Nucleic Acids Research,
18(8):2163–2170, 1990.

13. Daniel A. Keim, Mihael Ankerst, and Hans-Peter Kriegel. Recursive pattern: A technique
for visualizing very large amounts of data. In Gregory M. Nielson and Deborah Silver,
editors, Proceedings of IEEE Visualization 1995, IEEE Visualization, Annual Conference
Series, pages 279–288, Atlanta, Georgia, 1995. IEEE, IEEE Computer Society.

14. W. James Kent, Charles W. Sugnet, Terrence S. Furey, Krishna M. Roskin, Tom
H. Pringle, Alan M. Zahler, and David Haussler. The human genome browser at UCSC.
Genome Research, 12(6):996–1006, 2002.

15. Nelson L. Max. Visualizing Hilbert curves. IEEE visualization 1998. In David S. Ebert,
Holly Rushmeier, and Hans Hagen, editors, Proceedings of IEEE Visualization 1998,
IEEE Visualization, Annual Conference Series, pages 447–450, North Carolina, USA,
1998. IEEE, IEEE Computer Society Press.

16. C. Mayor, M. Brudno, J. R. Schwartz, A. Poliakov, E. M. Rubin, Kelly A. Frazer, Lior S.
Pachter, and Inna Dubchak. VISTA: visualizing global DNA sequence alignments of
arbitrary length. Bioinformatics, 16(11):1046–1047, 2000.

17. Hans Sagan. Space-Filling Curves. Springer-Verlag, 1994.
18. S. Schwartz, L. Elnitski, M. Li, M. Weirauch, C. Riemer, A. Smit, E. D. Green, R. C.

Hardison, W. Miller, and NISC Comparative Sequencing Program. Multipipmaker and

342 N. Shah et al.

supporting tools: Alignments and analysis of multiple genomic DNA sequences. Nucleic
Acids Research, 31(13):3518–3524, 2003.

19. Nameeta Shah, Olivier Couronne, Len A. Pennacchio, M. Brudno, Serafim Batzoglou,
E. W. Bethel, E. M. Rubin, Bernd Hamann, and Inna Dubchak. Phylo-vista: interac-
tive visualization of multiple DNA sequence alignments. Bioinformatics, 20(5):636–643,
2004.

20. Ben Shneiderman. The eyes have it: A task by data type taxonomy for information visual-
izations. In Proceedings of IEEE Symposium on Visual Languages 1996, pages 336–343.
IEEE Computer Society, 1996.

21. James Slack, Kristian Hildebrand, Tamara Munzner, and Katherine St. John. Sequence-
juxtaposer: Fluid navigation for large-scale sequence comparison in context. In Robert
Giegerich and Jens Stoye, editors, German Conference on Bioinformatics, volume 53 of
LNI. GI, 2004.

22. Rhazes Spell, Rachael Brady, and Fred Dietrich. BARD: A visualization tool for biologi-
cal sequence analysis. In Tamara Munzner and Stephen North, editors, IEEE Symposium
on Information Visualization, 2003, pages 219–226. IEEE Computer Society, 2003.

23. Praveen Thiagarajan and Guang Gao. Visualizing biosequence data using texture map-
ping. In Pak Chung Wong and Keith Andrews, editors, IEEE Symposium on Information
Visualization, 2002, pages 103–109. IEEE Computer Society Press, 2002.

24. J. W. Thomas, J. W. Touchman, R. W. Blakesley, G. G. Bouffard, S. M. Beckstrom-
Sternberg, E. H. Margulies, M. Blanchette, A. C. Siepel, P. J. Thomas, J. C. Mcdowell,
B. Maskeri, N. F. Hansen, M. S. Schwartz, R. J. Weber, W. J. Kent, D. Karolchik,
T. C. Bruen, R. Bevan, D. J. Cutler, S. Schwartz, L. Elnitski, J. R. Idol, A. B. Prasad,
S.-Q Lee-Lin, V. V. B. Maduro, T. J. Summers, M. E. Portnoy, N. L. Dietrich, N. Akhter,
K. Ayele, B. Benjamin, K. Cariaga, C. P. Brinkley, S. Y. Brooks, S. Granite, X. Guan,
J. Gupta, P. Haghighi, S.-L Ho, M. C. Huang, E. Karlins, P. L. Laric, R. Legaspi,
M. J. Lim, Q. L. Maduro, C. A. Masiello, S. D. Mastrian, J. C. Mccloskey, R. Pearson,
S. Stantripop, E. E. Tiongson, J. T. Tran, C. Tsurgeon, J. L. Vogt, M. A. Walker,
K. D. Wetherby, L. S. Wiggins, A. C. Young, L.-H Zhang, K. Osoegawa, B. Zhu, B. Zhao,
C. L. Shu, P. J. De Jong, C. E. Lawrence, A. F. Smit, A. Chakravarti, D. Haussler, P. Green,
W. Miller, and E. D. Green. Comparative analyses of multi-species sequences from tar-
geted genomic regions. Nature, 424(14):788–793, 2003.

25. Douglas Voorhies. Space-filling curves and a measure of coherence. In James Arvo,
editor, Graphics Gems II, Graphics Gems, pages 26–30. Academic Press, 1991.

26. David L. Wheeler, Colombe Chappey, Alex E. Lash, Detlef D. Leipe, Thomas L. Madden,
Gregory D. Schuler, Tatiana A. Tatusova, and Barbara A. Rapp. Database resources of
the national center for biotechnology information. Nucleic Acids Research, 28(1):10–14,
2000.

27. Pak Chung Wong, Kwong Kwok Wong, Harlan Foote, and Jim Thomas. Global visual-
ization and alignment of whole bacterial genomes. IEEE Transactions on Visualization
and Computer Graphics, 9(3):361–377, 2003.

Model-Based Visualization: Computing Perceptually
Optimal Visualizations

Jarke J. van Wijk

Department of Mathematics and Computer Science, Technische Universiteit Eindhoven,
The Netherlands
vanwijk@win.tue.nl

Summary. Visualization is often more an art than a science. Here a model-based approach to
visualization is promoted in order to make steps forward in this respect. The main ingredients
of this approach are the derivation of a quantitative model of the perception of (certain aspects
of) a visualization, the definition of an optimal visualization, followed by its computation.
Some examples of this approach are presented, with optimal zooming and panning as main
example. Advantages and problems are discussed. In conclusion, we think this approach to be
challenging and promising, although we acknowledge that it is not an easy route.

1 Introduction

The development of effective novel visualization methods and techniques is hard. It
requires creativity, knowledge, experience, and effort. Traditionally, the focus was
on the creative part, the development of a new idea itself. In the early days of visual-
ization, many problems were not addressed yet, and each first solution was welcome.
However, now that the field is getting more mature, the demands are getting higher.
Just a new idea, followed by parameter tuning until nice images result is not enough,
comparisons and validation are needed to convince the community that the new idea
is an improvement indeed.

Validation afterwards is always important to achieve higher quality visualization
methods. In this paper we want to attract attention to another approach that can lead
to a higher quality: Model-based Visualization.

The visualization pipeline consists of many steps. One step is crucial: The step
from the image on the screen to the perception and cognition of the user. If this
step fails, everything else is useless. Hence, a good understanding of the relation
between visual stimuli and their perception is vital to obtain effective visualization
methods [9]. We propose to take this further. If we have a quantitative model of the
relation between stimulus and perception, and if we know what should be perceived,
we might be able to calculate the corresponding optimal stimulus.

In the following we elaborate on this. In the next section we present the steps to
be followed, followed by some examples where this approach has been used. One

T. Möller et al. (eds.), Mathematical Foundations of Scientific Visualization, Computer 343
Graphics, and Massive Data Exploration, Mathematics and Visualization,
DOI: 10.1007/978-3-540-49926-8, c© 2009 Springer-Verlag Berlin Heidelberg

344 J.J. van Wijk

of these is the calculation of optimal zoom-pan trajectories, which was the main
inspiration for the ideas presented here. In the last section we discuss the advantages
and disadvantages of the approach, and suggest possible applications.

2 Approach

The approach consists of the following steps:

1. Define a model V (d, v) of the visualization. Given a data-set d and a setting of
visualization parameters v, the result is a visualization V (d, v). A visualization
here is something that can be perceived: an image, an animation, or just some
aspect of it, such as a color or line width.

2. Define which aim is pursued in a perceptual sense, i.e., state what qualities an
optimal visualization should have.

3. Define a model P(V (d, v), p) for the perception of a visualization, where p
refers to free parameters in the model.

4. Define a quantityQ(P(V (d, v), p), d) to be optimized as a function of v.
5. Compute v such thatQ is optimal.
6. Find good values for p.

We defined these steps based on a generalization of earlier work we have done.
The results we obtained, as well as the positive feedback on our work, made us
wonder if the approach taken could be used for other problems as well. We were
obviously not the first to use this approach, the same pattern can be found in other
cases.

2.1 Zooming and Panning

The problem we have attacked seemed simple, but turned out to be non-trivial [7,8].
Here we give a short overview, in the original papers much more detail can be found.
Given a large 2D information space, the user must be enabled to focus on different
areas with different scales. Suppose we want to offer the viewer a smooth animation
from one view to another view, such that he can understand the relation between the
two views. One way to solve this problem is to use some heuristics, invent possible
trajectories of the virtual camera, and validate these afterwards. Our challenge was
to find an optimal solution.

The first step was the precise definition of the visualization problem. In this case,
a view can be defined by a center point c = (cx, cy) and a width w. When two views
are given, defined by (ci , wi), with i = 0, 1, an animation from the first to the second
can be defined by functions c(s) andw(s), s ∈ [0, S], where the parameter s is along
a path from the first to the second view, and S denotes the final value. The functions
c(s) and w(s) denote the path of a virtual camera and the width shown along the
path. An animation can now be defined by setting

s = V t, t ∈ [0, S/V],

Model-Based Visualization 345

where V denotes the constant animation speed, and t wall clock time, for instance
in seconds. Assuming a straight path between the start and end view, this can be
reduced to:

c(s) = c0 + c1 − c0

‖c1 − c0‖ u(s), u ∈ [u0, u1],

with u0 = 0 and u1 = ‖c1 − c0‖.
where the parameter u(s) denotes panning along a straight line. Functions u(s) and
w(s), s ∈ [0, S], must be found such that at least

u(0) = u0, w(0) = w0,

u(S) = u1, w(S) = w1.

Secondly, we defined what properties an optimal animation should have. We
claim this can be summarized in two words: The optimal path should be smooth
and efficient. Smoothness is a constraint. The path should be at least continuous in
the first order, in the sense that no sudden steps are made or abrupt changes in direc-
tion occur. Also, when the camera moves along the path, the viewer should get the
impression of a uniform and constant motion of the projected image on the screen.
Efficiency is the aspect to be optimized: We want to go from the first view to the
second as quick as possible, without detours.

Thirdly, we defined a relation between the motion of the virtual camera and the
perception of the motion of the image. The average velocity of the moving image is
given by

V 2
RMS = V 2

(
1

w2 u̇
2 + 1

6w2 ẇ
2
)

.

We generalize this in the form of a metric on (u,w) space:

ds2 = ρ2

w2
du2 + 1

ρ2w2
dw2.

This metric gives the distance ds traveled, when u and w are changed with du and
dw. The parameter ρ represents a trade-off between zooming and panning. A high
value indicates that zooming has little impact, a low value indicates that panning has
less impact.

Fourth, we made our perceptual aim explicit. Both smoothness and efficiency
can be achieved by using the shortest path in (u,w) space, i.e., the geodesic. Each
step along the path should have the same length, where length is measured using the
metric. Also, we want to make the overall motion as short as possible, hence we use
the geodesic.

The fifth step is to calculate the optimal solution. In this particular case, we
could find an analytic solution for the optimal path for arbitrary parameters using

346 J.J. van Wijk

10 20 30 40 50
u

10

20

30

w ρ2= 1.6

Fig. 1. Paths and iso-distance curves in (u, w) space

differential geometry. The path of the camera (u(s),w(s)), s ∈ [0, S], u0 = u1 is
given by

u(s) = w0

ρ2 cosh r0 tanh(ρs + r0)− w0

ρ2 sinh r0 + u0,

w(s) = w0 cosh r0/ cosh(ρs + r0),
S = (r1 − r0)/ρ,

ri = ln(−bi +
√

b2
i + 1), i = 0, 1, and

bi = w2
1 −w2

0 + (−1)iρ4(u1 − u0)
2

2wiρ2(u1 − u0)
, i = 0, 1.

Figure 1 shows sets of geodesic paths, starting from u = 0 and w = 10 in dif-
ferent directions, for a certain value of ρ. Furthermore, in each plot a set of contours
is shown as thin lines. Each contour represents a set of points at an equal distance
from the start point. Both the paths and the contours are parts of ellipses, where ρ
determines their shapes.

The last step is to select good values for the free perceptual parameters. In this
case, we had introduced two: The overall velocity V and the trade-off parameter ρ.
We have done a first user experiment to obtain insight in preferred values forV and ρ.
Figure 2 shows a scatterplot of the results. The variation in individual preferences
was considerable. The average values (V = 0.90, and ρ = 1.42) can be used as
default values, for an optimal result per user the settings of these parameters can be
made customizable.

2.2 Other Examples

The overall approach sketched can be found also in other research. One area is the
use of color. Color has been studied intensively, and much knowledge is available on

Model-Based Visualization 347

0

0,5

1

1,5

2

2,5

0 0,5 1 1,5 2 2,5 3
ρ

V

roundtrip tour average

Fig. 2. Scatterplot of V and ρ values found

its perception. Color scales are often used for the representation of single-parameter
distributions. Levkowitz and Herman [3] have studied how optimal color scales can
be calculated, based on a set of requirements and knowledge on color perception.
They required that a color scale preserves the order of the values, the difference in
perceived colors should match the difference between the corresponding values, and
the scale should be continuous. Furthermore, given a start and end color, they defined
an optimal scale as a scale with a maximum number of distinct perceived colors along
the scale, i.e., the scale should be as long as possible in a perceptual sense. Next, the
constraints, criteria, and perceptual aspects are modeled mathematically, followed
by a numerical optimization. This led to a new type of color scale, with a larger
perceptual length than a standard gray scale. These scales and several others were
evaluated in an experiment, where the users had to find features in medical images.
For this particular task, the new color scale did not yield a better performance.

Another area where optimization is often used is in graph drawing [1]. Here,
upfront aesthetical and perceptual aspects of the drawings are defined, next, a lay-
out is calculated such that these are met as well as possible. One example is the
minimization of the number of crossing edges, but also the spring embedder or force-
directed approach falls in this category. The general idea behind this approach is as
follows. In principle, nodes should be located at a large distance from each other,
while nodes that are endpoints of an edge should be close. This can be achieved by
using repulsive forces between all nodes, and attracting springs between nodes that
share an edge. Nodes are moved according to the forces, until a minimal energy in
the system is achieved. Different requirements on what is considered optimal lead to
different force models, and hence to different lay-outs. Figure 3 (from [5]) shows left
the result of a standard electromagnetic repulsion model and linear springs, leading
to a uniform distribution of the nodes. On the right the result of an alternative model,
proposed by Noack [4], is shown. The aim here is to emphasize the clusters in the
graph, which can be achieved if a linear repulsion force and a constant attraction
force is used.

348 J.J. van Wijk

Fig. 3. Force-directed graph lay-outs, with a standard (left) and a modified force model (right)
[4, 5]

3 Discussion

We have proposed to develop optimal visualizations by modeling the perception, fol-
lowed by an optimization of some perceptual aim, and we have given some examples.
This approach has many advantages:

• It can yield good results that are widely applicable. For our zoom-pan problem
we were able to define zoom-pan trajectories for arbitrary start and end-views,
which were appreciated by the viewers.

• The perceptual model used or developed can be reused as a foundation for other
problems as well. In our second paper on zooming and panning [8] we showed
how the original ideas could be used for user-driven navigation, and extended to
cope with rotation and scaling also.

• The perceptual parameters that have to be set are natural and orthogonal. At least
in our case, the V parameter relates to the overall speed, while ρ denotes the
trade-off between zooming and panning. Users could easily specify an personal
optimal setting.

However, we cannot claim that this approach will always yield superior results. The
following problems can be identified:

• Finding robust quantitative models of perceptual aspects is hard. The perception
literature is vast, but hard to digest for computer scientists, few of us have the
broad background and vision of Colin Ware [9]. Cooperation with experts in
these fields will be vital here. Also, for many use-cases no models are available,
and will have to be developed.

• Inclusion of cognitive aspects is even harder. In our zoom-pan case, users re-
marked that their preference would for instance depend on the complexity of the
map shown, their familiarity with it, the task at hand, etc. Quantification of such
aspects is harder than the average optic flow.

Model-Based Visualization 349

• Discarded aspects can spoil the results. When optimizing, one gets what one
asks, but this is not always what is wanted. A simple example is 2D curve fitting.
Interpolating a smooth curve through a sequence of points is trivial, and many
techniques are available for this. However, such techniques usually do not enforce
that the curve should not intersect itself, leading to unexpected results.

• Visualizations are complex. In the examples given, the aspects optimized were
relatively simple: The path of a camera, a color scale, a lay-out of points. How-
ever, a complete visualization is a mixture of a large number of aspects. For
instance, when viewing an iso-surface in 3D, decisions have to be made on the
projection used, the lighting, the shading properties. These are controlled by not
too many parameters, but the complexity of the resulting image is great and does
not lend itself well to (analytic) computations.

• Validation remains necessary. In the case of Levkowitz and Herman [3] an op-
timal color scale was computed, but a user experiment did not show that it was
superior.

• Optimization is expensive. In the zoom-pan case, we were lucky that we could
find an analytical optimal solution. In more complex cases, one has to step back to
numerical optimization. Brute-force optimization methods are computationally
expensive, fast methods require expertise and tuning on the problem at hand.
And, a generic hard problem is to find global optima instead of getting stuck in
local ones.

• Finally, effective visualizations should be useful, accurate and clear, but to define
this mathematically precise is extremely hard [6]. However, just optimizing per-
ceptual and cognitive aspects is not enough, if the visualization is flawed then its
perceptual quality is essentially no longer important.

This last list is long, and probably not exhaustive. Does this mean that the proposed
approach is not effective and should be avoided? We don’t think so. We have shown
that it does work, at least for a simple case. More important, we think this direction
could lead to an advancement of our field in general. Visualizing data nowadays is an
art, rather than a science. With this approach, the level of discussion is raised. Instead
of discussing on particular implementations or choices for color and geometry, the
focus shifts to the aims and requirements of the viewer. Instead of discussing how to
do it, the approach aims at understanding what really goes on and what is important.
A challenge for our field is to hunt for the laws of visualization, and we expect that
perceptual models will play an important role in this.

Given the problems mentioned when this approach is applied, for the time be-
ing its application will be limited to relatively simple problems. Nonetheless, simple
problems occur often in real-world applications, so good solutions are welcome here.
An example are the attributes of line graphs. The default result of a standard spread-
sheet is often disappointing, and can be improved upon. How to pick the color, line
width, and line style such that an optimal result is achieved? Scatterplots are another
interesting case. An icon has position, color, and shape as attributes. How can these
be tuned, such that the underlying data is conveyed as clearly as possible? On a more
general level, can we use quantitative models of Gestalt Theory, such as given in [2],

350 J.J. van Wijk

to get effective visualizations? Wattenberg and Fisher [10] have proposed to use a
multi-scale approach to analyze information graphics. Can this concept be used to
compute better visualizations? Many challenging problems lie ahead of us, and we
hope to have given a stimulus to pursue this path further.

References

1. G. di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph Drawing – Algorithms for
the visualization of graphs. Prentice Hall, Upper Saddle River, NJ, 1998.

2. S. Lehar. Directional harmonic theory: A computational gestalt model to account for
illusory contour and vertex formation. Perception, 32(4):423–448, 2003.

3. H. Levkowitz and G.T. Herman. Color scales for image data. IEEE Computer Graphics
and Applications, 12(1):72–80, 1992.

4. A. Noack. An energy model for visual graph clustering. In G. Liotta, editor, Proceedings
of the 11th International Symposium on Graph Drawing (GD 2003), LNCS 2912, pages
425–436. Springer, Berlin, 2003.

5. F. van Ham and J.J. van Wijk. Interactive visualization of small world graphs. In M. Ward
and T. Munzner, editors, Proceedings of the IEEE Symposium on Information Visualiza-
tion 2004 (INFOVIS2004), pages 199–206, 2004.

6. J.J. van Wijk. The value of visualization. In C. Silva, E. Gröller, and H. Rushmeier,
editors, Proceedings IEEE Visualization 2005, 2005.

7. J.J. van Wijk and W.A.A. Nuij. Smooth and efficient zooming and panning. In T. Munzner
and S. North, editors, Proc. of the IEEE Symposium on Information Visualization 2003
(INFOVIS2003), pages 15–22, 2003. Best paper award.

8. J.J. van Wijk and W.A.A. Nuij. A model for smooth viewing and navigation of large
2D information spaces. IEEE Transactions on Visualization and Computer Graphics,
10(4):447–458, 2004.

9. C. Ware. Information Visualization – Perception for Design, 2nd edition. Morgan
Kaufmann, San Francisco, 2004.

10. M. Wattenberg and D. Fisher. A model of multi-scale perceptual organization in informa-
tion graphics. In T. Munzner and S. North, editors, Proceedings of the IEEE Symposium
on Information Visualization 2003 (INFOVIS2003), pages 23–30, 2003.

	cover-large.tif
	front-matter.pdf
	fulltext.pdf
	fulltext_2.pdf
	fulltext_3.pdf
	fulltext_4.pdf
	fulltext_5.pdf
	fulltext_6.pdf
	fulltext_7.pdf
	fulltext_8.pdf
	fulltext_9.pdf
	fulltext_10.pdf
	fulltext_11.pdf
	fulltext_12.pdf
	fulltext_13.pdf
	fulltext_14.pdf
	fulltext_15.pdf
	fulltext_16.pdf
	fulltext_17.pdf
	fulltext_18.pdf

