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Preface

2nd Edition

This second edition of Geometric Design of Linkages revises and updates our for-
mulation of the kinematic theory of linkages. Four new chapters have been added
that present the analysis and synthesis of multiloop planar and spherical linkages,
and the synthesis theory for spatial serial chains.

An introduction to linkage graphs and linkage enumeration has been added to
Chapter 1 to provide background for the new chapters on the synthesis of multiloop
linkages, and the use of the Dixon determinant to analyze planar multiloop linkages
has been added to Chapter two.

Chapters three, four, and five are the same as before with corrections of minor
errors. Chapter six is new and presents a methodology for the synthesis of pla-
nar six-bar and eight-bar linkages by constraining three-degree-of-freedom 3R open
chains or 6R closed chains, respectively. Examples are provided that demonstrate
the technique.

Chapter seven is the same as Chapter six in the previous edition but now includes
a section on the analysis of multiloop spherical linkages. Chapters eight and nine are
the same as Chapters seven and eight in the previous edition, again with corrections
of minor errors,. The new Chapter 10 parallels the new Chapter six and presents a
way to design spherical six-bar and eight-bar linkages by constraining 3R open and
6R closed spherical chains.

Chapters 11, 12, and 13 are the same as Chapters 9, 10, and 11 in the previ-
ous edition. Chapters 14 and 15 on the synthesis of spatial serial chains are new
and were the result of research with Haijun Su and Alba Perez-Gracia. Chapter 14
formulates and solves using numerical homotopy the synthesis equations for five-
degree-of-freedom serial chains that can position a wrist center on specific algebraic
surfaces, termed reachable surfaces. Chapter 15 introduces the Clifford algebra of
dual quaternions and its use in formulating the synthesis equations for general spa-
tial serial chains. Chapter 16 is the same as Chapter 12 in the previous edition.
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viii Preface

I continue to benefit from the contributions of teachers, colleagues, and students
toward a geometric synthesis theory for linkage systems, recently from Jeff Ge,
Mohan Bodduluri, John Dooley, Pierre Larochelle, Andrew Murray, Fangli Hao,
Curtis Collins, Alba Perez-Gracia, Haijun Su, Nina Robson, Duanling Li, and my
coauthor Gim Song Soh. In addition, I am grateful for the continued inspiration of
Qizheng Liao and Bernard Roth.

Finally, I gratefully acknowledge the support of the Engineering Design Program
of the National Science Foundation that has made this book possible.

Irvine, CA, J. Michael McCarthy
September 2010

First Edition

This book is an introduction to the mathematical theory of design for articulated
devices that rely on simple mechanical constraints to provide a complex workspace
for a workpiece or end-effector. Devices ranging from windshield wipers to robot
manipulators and mechanical hands are examples of these systems each of which
has a skeleton of links connected by joints called a linkage. The function or task for
the device is defined as a set of positions to be reached by the end-effector. The goal
is to determine the dimensions of all of the devices that can achieve a specific task.
Formulated in this way the design problem is purely geometric in character.

This text blends two approaches to this design problem in order to develop the
intuition needed to move from planar to spatial linkage design. One approach con-
siders the geometric configurations of points and lines generated as a moving body
is displaced through a finite set of positions. This is the foundation for graphical
methods for planar linkage synthesis and can be generalized to spherical and spatial
linkage design. A separate approach focuses directly on solving the nonlinear con-
straint equations that characterize a mechanical connection. This provides conve-
nient equations for planar and spherical linkage design, and is crucial to addressing
the geometric challenge of spatial linkage design.

This unified formulation requires a range of mathematical tools. The basic lan-
guage is vector algebra and matrix theory, which should be familiar to junior and
senior university students. However, something among the techniques ranging from
graphical constructions, spherical trigonometry, complex vectors, and quaternions to
line geometry and dual vector algebra is certain to be unfamiliar. For this reason, the
presentation is designed to introduce these techniques, and additional background
is provided in appendices.

The first chapter presents an overview of the articulated systems that we will
be considering in this book. The generic mobility of a linkage is defined, and we
separate them into the primary classes of planar, spherical, and spatial chains.

The second chapter presents the analysis of planar chains and details their move-
ment and classification. Chapter three develops the graphical design theory for pla-



Preface ix

nar linkages and introduces many of the geometric principles that appear in the
remainder of the book. In particular, geometric derivations of the pole triangle and
the center-point theorem anticipate analytical results for the spherical and spatial
cases.

Chapter four presents the theory of planar displacements, and Chapter five
presents the algebraic design theory. The bilinear structure of the design equations
provides a solution strategy that emphasizes the geometry underlying linear algebra.
The five-position solution includes an elimination step that is probably new to most
students, though it is understood and well received in the classroom.

Chapters six and seven introduce the properties of spherical linkages and de-
tail the geometric theory of spatial rotations (now Chapters seven and eight, 2nd
edition). Chapter eight presents the design theory for these linkages (now Chapter
nine), which is analogous to the planar theory. This material exercises the student’s
use of vector methods to represent geometry in three dimensions. Perpendicular
bisectors in the planar design theory become perpendicular bisecting planes that in-
tersect to define axes. The analogue provides students with a geometric perspective
of the linear equations that they are solving.

Chapter nine introduces the analysis of spatial linkages including open chains
that are closely related to robot manipulators (now Chapter 11). The complexity of
spatial linkages requires the introduction of new techniques. However, we maintain
a point of view that emphasizes the similarity to the planar and spherical theories.
For example, the constraint equations of planar and spherical linkages are shown to
be special cases of those for spatial linkages.

Chapter 10 develops the geometry of spatial displacements (now Chapter 12).
Here, we find that the screw triangle and the center-axis theorem must be formulated
using lines rather than points. Dual vector algebra is introduced to provide vector
operations for calculations with the Plücker coordinates of lines. The result is that
geometric calculations with line coordinates are identical to the more familiar vector
calculations with point coordinates.

Chapter 11 presents the design theory for spatial chains, and Chapter 12 intro-
duces the geometry of linear combinations of lines that arise in the construction of
spatial linkage systems (now Chapters 13 and 16). While the design techniques for
planar linkages are well developed, there is room for much more work in the design
and use of spatial linkages.

I am pleased to express my gratitude for the contribution of many teachers and
colleagues whose work over the years has developed and clarified linkage design
theory. This book includes results of the insight, commitment, and hard work by
Jeff Ge, Mohan Bodduluri, John Dooley, Pierre Larochelle, Andrew Murray, Fangli
Hao, Curtis Collins, Alan Ruth, Shawn Ahlers, and Alba Perez. I have also benefit-
ted from the insight of Qizheng Liao and the inspiration of Bernard Roth. Finally,
the support by the Division of Design, Manufacturing, and Industrial Innovation
of the National Science Foundation that has made this book possible is gratefully
acknowledged.

Irvine, CA, J. Michael McCarthy
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Chapter 1
Introduction

A mechanical system, or machine, generally consists of a power source and a mech-
anism for the controlled use of this power. The power may originate as the flow of
water or the expansion of steam that drives a turbine and rotates an input shaft to the
mechanism. It may be that instead the turbine rotates a generator and the resulting
electricity is used to actuate a distant electric motor connected to the mechanism in-
put. Another power source is the expansion of pressurized fluid or burning air–fuel
mixture against a piston in order to drive its linear movement inside a cylinder. The
purpose of the mechanism is to transform this input power into a useful application
of forces combined with a desired movement. For this reason, machines are often
defined abstractly as devices that transform energy from one form, such as heat or
chemical energy, into another form, usually work.

In this book our focus is on devices that transform an input rotary or linear motion
into more general movement. We assume that a power source is available that can

determining the mechanical constraints that provide a desired movement. This is
known as the kinematic synthesis, or geometric design, of a mechanism.

though it usually contains other specialized components, such as springs, ratchets,

ment. Gears and cams generally rotate or translate, though with important torque
and timing properties. And the other components are used to apply forces. There-
fore, because our goal is to obtain a desired movement, we focus on the design of
linkages.

1.1 Linkages

A linkage is a collection of interconnected components, individually called links.
The physical connection between two links is called a joint. This definition is gen-
eral enough to encompass gears and cams where the joint is formed by direct contact

©

A mechanism is often described as assembled from gears, cams, and linkages,

1

provide the force and torque needed to drive the system. The primary concern is

brakes, and clutches, as well. Of these it is the linkage that provides versatile move-
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2 1 Introduction

between two gear teeth or between a cam and follower. However, we limit our atten-
tion to joints that do not include the type of rolling and sliding contact that is found
in gears and cams. In fact, the linkages that we study can be viewed as constructed
from two elementary joints, the rotary hinge, called a revolute joint (denoted by
R), and the linear slider, or prismatic joint (denoted by P). These joints allow one-
degree-of-freedom movement between the two links that they connect. The config-
uration variable for a hinge is the angle measured around its axis between the two
bodies, and for a slider it is the distance measured along the linear slide of the joint.

Other joints are available to form linkages, such as the universal joint, the ball-
in-socket, and a circular cylinder on a rod. In these cases, it is possible to iden-
tify an equivalent assembly of hinges and sliders that provide the same geometric
constraint. The universal joint, or T joint, can be viewed as constructed from two
revolute joints that are at right angles to each other. This joint allows a two-degree-
of-freedom movement between the two links that it connects. The ball-in-socket
joint, or S joint, is formed from three revolute joints with concurrent axes. This joint
allows three-degree-of-freedom rotational movement and is often found in robot
wrists with each joint actuated. Finally, the cylindric joint, or C joint, is constructed
by mounting a hinge on a slider so that the axis of the hinge is parallel to the direc-
tion of the slider. This joint allows two-degree-of-freedom movement.

These joints constrain the trajectories of points in one link to lie on simple ge-
ometric objects in the other link, assuming that the links do not bend or distort as
they move. For example, the revolute joint constrains points in one body to follow
circular trajectories relative to the other link, and a slider generates linear trajecto-
ries. The T and S joints both constrain these trajectories to lie on a sphere, while
the cylindric joint forces them to lie on a cylinder. This feature leads to algebraic
equations that characterize the mechanical constraint imposed by a linkage on the
movement of a floating link, or workpiece. The design problem consists of solving
these equations for a specified set of task positions for the workpiece.

1.2 Mobility

An important characteristic of an assembly of bodies forming a linkage is the
generic mobility of the system. This is, generally speaking, the number of indepen-
dent parameters such as joint angles and slide distances that are needed to specify
the configuration of the linkage ignoring any deformation of the links. It is also
known as the dimension of the configuration space of the system. The generic mo-
bility of a linkage is the sum of the unconstrained degree of freedom for the links in
the system less the constraints imposed by the joints.

In a linkage assembled from n bodies, one link is designated as the fixed frame,
or ground, against which the movement of the remaining links is measured. This
link has no freedom of movement. Thus, the unconstrained degree of freedom for a
linkage constructed from n links is (n−1)K, where K is the number of parameters
required to specify the position of a single link. In three-dimensional space K = 6
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because three orientation parameters and three coordinates for a reference point are
required to locate this body relative to the ground link. A body that can only rotate
in space has K = 3; and one constrained to planar movement also has K = 3.

Revolute and prismatic joints, and joints constructed from them, reduce the di-
mension of the configuration space of a system by introducing constraint equations
among the configuration parameters. These joints are said to impose holonomic con-
straints on the system. In contrast, nonholonomic constraints, such as the contact of
a rolling wheel or knife edge on a surface, do not reduce the dimension of the con-
figuration space of the system. They restrict the instantaneous movement from one
configuration to the next. The number of constraint equations imposed by a joint is
u = K− f , where f is known as the freedom allowed by the joint. Thus, the number
of constraint equations imposed by j joints is ∑

j
i=1(K− fi), where fi is the freedom

of the ith joint.
The generic mobility of a linkage is the difference between the unconstrained

freedom of the links and the number of constraints imposed by the joints, that is,

F = (n−1)K−
j

∑
i=1

(K− fi) = K(n− j−1)+
j

∑
i=1

fi. (1.1)

This mobility formula places a lower bound on the degree of freedom of a linkage.
The mobility may actually be greater due to special dimensions and internal sym-
metries in the linkage. An interesting example is the spatial 4R closed chain known
as Bennett’s linkage, which moves with one degree of freedom though this formula
predicts that it is a structure with mobility F =−2. Such linkages are termed over-
constrained (Waldron [141]).

If a linkage consists of a series of links separated by individual joints forming a
serial open chain, then there is always one more link than the number of joints. This
means that n = j+1 and the mobility formula simplifies to

F =
j

∑
i=1

fi. (1.2)

Thus, the mobility of a serial open chain is simply the sum of the freedom at each
joint.

We now consider separately the cases of planar, spherical, and spatial linkages.

1.2.1 Planar Linkages

A planar linkage has the property that all of its links move in parallel planes. Most
linkages found in practice are, in fact, planar linkages. A body moving in the plane
is located by the x and y components of a reference point and a rotation angle φ

measured relative to ground. Thus, its unconstrained degree of freedom is K = 3.
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Fig. 1.1 The planar 4R linkage.

The only joints compatible with this movement are revolute joints with axes that
are perpendicular to the plane, prismatic joints that move along lines parallel to it,
and the direct contact joints of gears and cams that have lines of action parallel to
the plane. Of the joints that we are considering, only the R and P joints can be used
for planar linkages. Both of these joints have freedom f = 1. Thus, the mobility
formula for planar linkages is

F = 3n−2 j−3. (1.3)

If the links are arranged to form a single-loop closed chain, then j = n and the
mobility formula becomes

F = n−3. (1.4)

It is easy to see that the four-bar linkage, which is a closed chain formed by four
links and four joints, has mobility F = 4− 3 = 1. Figure 1.1 is an example of a
planar 4R closed chain. Another example is the RRRP slider-crank linkage.

It is interesting to consider how many joints j are needed to constrain a planar
assembly of n links to a generic mobility of one. Set F = 1 in (1.3) and solve for j
to obtain

j =
3
2

n−2. (1.5)

Clearly, n must be even, and we find, for example, that a one-degree-of-freedom
six-bar linkage must have j = 7 revolute joints. Figure 1.2 shows the two classes of
single-degree-of-freedom six-bar linkages.
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(a) (b)

Fig. 1.2 Examples of the two classes of six bar linkages: (a) the Watt six-bar linkage; and (b) the
Stephenson six-bar linkage.

1.2.2 Linkage Graphs

A linkage consists of links connected by joints, which can be represented as a graph
the links as vertices and the joints as edges. A graph with n vertices and j edges is
called an (n, j) graph, and following Tsai [138] we call the associated linkage an
(n, j) linkage, usually termed an n-bar linkage.

Figure 1.3 shows a serial chain formed by four bodies including the ground frame
which are connected by three revolute joints. Also shown is its linkage graph con-
sisting of four vertices connected by three edges. Two 3R serial chains connected to
the same workpiece form a 6R closed chain, Figure 1.4.

M

θ1

F
θ2

θ3

C2

C3

0 1 2 3

F M

a12

a23

C1

Fig. 1.3 A planar 3R serial chain formed from four links and three revolute joints, and its linkage
graph.

The graph of a simple closed loop linkage has the same number of vertices as
joints, and it divides the plane into inner and outer regions, or faces, F such that

F = j−n+2. (1.6)

This is Euler’s equation, which relates the number of faces, edges, and vertices
of a polyhedron. This equation applies to linkage graphs that are obtained by the
projection of a polyhedron onto a plane.
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Fig. 1.4 A planar closed chain formed by two 3R serial chains connected to the same workpiece,
and its linkage graph.

The faces of a linkage graph are the loops of the linkage. However, the outside
face is usually not counted, so the graph is considered to consist of L = F−1 loops.
Thus, we obtain the relationship

L = j−n+1. (1.7)

We find that the four-, six-, eight- and ten-bar linkages given by (4,4), (6,7), (8,10)
and (10,13) graphs have consecutively one, two, three, and four loops.

The enumeration of the graphs associated with a given set of links and joints
is a useful design tool known as type synthesis. Tsai [138] presents atlases for the
graphs associated with a variety of (n, j) linkages. Table 1.1 lists the number of
distinct graphs associated with each of four different linkage types.

Table 1.1 Number of distinct linkage graphs for four-, six-, eight-, and ten-bar linkages.

(n, j) Loops (L) Graphs

(4,4) 1 1
(6,7) 2 2
(8,10) 3 16
(10,13) 4 230

A linkage graph can be viewed as a specialized application of constraint graphs
used in geometric modeling, Bouma et al. [6]. A constraint graph maps geometric
objects to vertices and geometric relationships to edges to provide a versatile tool
for characterizing mechanical assemblies. For a four-bar linkage, the links and joints
are represented as lines and points and form the vertices of the constraint graph. The
distances between points, angles between lines, and the incidence of a point on a line
form the edges of the constraint graph, Figure 1.5.
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A subgraph of a constraint graph is called a cluster if the coordinates of all of its
vertices can be computed once one pair of vertices is determined. For example, in
Figure 1.5 the vertices PO, LOC, and PC form the cluster COC. The reduced constraint
graph that identifies clusters as vertices and shared geometric elements as edges
becomes the linkage graph. This relationship between the constraint graph and the
linkage graph provides a way to add dimensional information to the linkage graph,
Li et al. [65].

Fig. 1.5 A planar four-bar linkage (a) defined in terms of lines and points (b) is represented by the
constraint graph (c). The constraint graph separates into clusters linked by points to become the
linkage graph.

1.2.3 Spherical Linkages

Each of the links of a spherical linkage is constrained to rotate about the same fixed
point in space, which means that the trajectories of points in each link lie on con-
centric spheres. The orientation of a link can be defined by three rotation angles
often termed roll, pitch, and yaw. For convenience, we visualize yaw as a longitude
angle on a globe, and pitch as latitude. Then the roll angle is the rotation about an
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axis through a given longitude and latitude. These three parameters are sufficient to
define the orientation of a rigid body in space and, as in the plane, K = 3.

Only revolute joints assembled so their axes intersect the same fixed point are
compatible with the geometric constraint of spatial rotation. Because this joint has
freedom f = 1, the mobility formula for spherical linkages becomes

F = 3n−2 j−3. (1.8)

The spherical four-bar linkage has four revolute joints with axes that radiate from
the fixed center point, see Figure 1.6. It has mobility F = 1.

!

"

#

$

%&

Fig. 1.6 The spherical 4R linkage.

1.2.4 Spatial Linkages

A spatial linkage is characterized by the feature that at least one link in the system
moves between two general positions in space. Six parameters are needed to specify
the location of this link, three for the coordinates of a reference point and three for
the orientation of the body about this point. Therefore, K = 6 and we have

F = 6(n− j−1)+

(
j

∑
i=1

fi

)
. (1.9)
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For the case of a single-loop closed chain, where j = n, the mobility formula be-
comes

F =

(
j

∑
i=1

fi

)
−6. (1.10)

Thus, a spatial single-loop closed chain must have seven one-degree-of-freedom
joints in order to have mobility F = 1. Notice that of these seven at most three can
be prismatic joints, because these joints constrain only the translational freedom of
the body. The spatial four-bar linkage constructed with four cylindric joints, denoted
4C, has mobility F = 8−6 = 2.

1.2.5 Platform Linkages

An important class of linkages consists of multiple serial chains that have their end-
links connected to form a single floating link, or platform. Planar and spherical 4R
linkages can each be viewed as platform linkages constructed from a pair of RR
open chains. Similarly, the spatial 4C closed chain is obtained by rigidly connecting
the end-links of two CC open chains. The 5TS platform linkage consists of a single
floating link supported by five separate TS chains (Figure 1.7). The mobility of these
systems is easily determined.

Moving Platform

Fixed Pivots

Fig. 1.7 The spatial 5TS platform linkage.

Consider a platform supported by c serial open chains connecting it to ground.
Divide the platform among the c chains and let the mobility of the ith chain including
its piece of the platform be Fi. Rejoining the end-links of these chains to form a
single platform is the same as removing c− 1 bodies from the system. Thus, the
mobility of a platform manipulator can be calculated to be
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F =
c

∑
i=1

Fi−K(c−1) = K−
c

∑
i=1

(K−Fi). (1.11)

A convenient interpretation of this equation is obtained by introducing the degree of
constraint Ui = K−Fi imposed by the ith open chain. If the mobility of a chain is
greater than the unconstrained degree of freedom K, that is, Fi > K, then the chain
does constrain the platform and Ui = 0. Let the degree of constraint of the platform
itself be U = K−F . Then (1.11) can be written as

U =
c

∑
i=1

Ui. (1.12)

The degree of constraint imposed on the platform is the sum of the degrees of con-
straint of its supporting chains. For example, the TS open chain has five degrees of
freedom, therefore it has one degree of constraint. Thus, the 5TS platform has five
degrees of constraint, or one degree of freedom.

The formula (1.12) defines the maximum constraint that the supporting chains
can impose. Special dimensions and symmetries can reduce this degree of constraint
increasing the freedom of movement of the system.

1.3 Workspace

The workspace of a robot arm is the set of positions, consisting of both a reference
point and the orientation about this point, that are reachable by its end effector. A
robot is designed so its end effector has unconstrained freedom of movement within
its workspace. However, this workspace does have boundaries, defined in part by
the extreme reach allowed by the chain. The shape and size of the workspace for a
robot is a primary consideration in its design.

The workspace of a linkage is defined by identifying a specific link as the work-
piece. Then the workspace is the set of positions that this workpiece can reach. For
serial open chains and platform linkages the dimension of the workspace is exactly
the generic mobility F of the system, when F ≤K. If the mobility F of the linkage is
greater than the unconstrained freedom K, then the system is said to have redundant
degrees of freedom.

1.4 Linkage Design

Linkage design is often divided into three categories of tasks, called motion gen-
eration, function generation, and point-path generation. Our approach, presented in
later chapters, is based on techniques developed for motion generation. In this case,
it is assumed that the designer has identified positions that represent the desired
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movement of a workpiece. This can be viewed as specifying positions that are to lie
in the workspace of the linkage. Thus, a discrete representation of the workspace
is known, but not the design parameters of the linkage. The constraint equations of
the chain evaluated at each of the task positions provide design equations that are
solved to determine the linkage.

This approach can also be applied to the design of linkages for function gener-
ation. In this case the goal is to coordinate an output crank rotation or slide with
a specific input crank rotation or slide. Specialized design procedures have been
developed for function generation for various linkage systems. However, we can
transform this into a motion generation problem by holding the input link fixed and
allowing the ground link to move. By doing this we obtain a set of task positions
for the output link relative to the input link, which are defined by the desired coor-
dinated set of input and output joint parameters. We use these positions to design
another open chain that connects the input and output links. The result is a closed
chain with the desired coordination between the input and output links.

The last category, point-path generation, is a classical problem in linkage design
where the primary concern has been the generation of straight-line paths. It is possi-
ble to transform a path generation design problem into a motion generation problem
by simply adding specifications for the orientation of a reference frame at each lo-
cation of the moving point. However, this reduces the number of points that can be
used to approximate a desired path. In particular, we will see that a planar 4R link-
age can be designed to reach as many as five arbitrary task positions. In contrast, it
is known that, by ignoring the orientation of the coupler, a four-bar linkage can be
designed so the trajectory of point on the coupler passes through as many as nine
specified points; see Roth and Freudenstein [108] and Wampler et al. [146]. Unfor-
tunately, this is a difficult design problem even in the plane, and the theory for more
general linkage systems has not been developed.

1.4.1 Approximate Straight-Line Mechanisms

One of the interesting problems in classical mechanism theory was the design of
a linkage to generate straight-line motion. We take a moment here to present three
important planar 4R linkages distinguished by the near straight-line movement of a
point on the floating link. Let vertices of the quadrilateral formed by the linkage be
labeled OABC in a clockwise manner, such that O and C are the fixed pivots and A
and B are the moving pivots; and let the link lengths be labeled a = |OA|, b = |CB|,
g = |OC|, and h = |AB|.

1. Watt’s linkage: Let the tracing point P be a distance x along the coupler AB of
length h measured from A. If the link lengths OA and BC satisfy the ratio x/(h−
x) = a/b and the fixed link has length g2 = h2+(a+b)2, then the point P follows
a near straight-line movement over part of its path. See Figure 1.8.

2. Robert’s linkage: Let the link lengths satisfy the relations a = b and g = 2h, and
locate the tracing point P to form an isosceles triangle of side x = a with the two
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Fig. 1.8 Watt’s straight-line linkage: x = h/2, b = a.

moving pivots. The result is that P moves on a nearly straight line along the part
of its path between the two fixed pivots. The height d can be varied to modify
this path. See Figure 1.9.

Fig. 1.9 Robert’s straight-line linkage.

3. Chebyshev’s linkage: Chebyshev’s linkage has dimensions g = 2h and a = b =
2.5h. In this case locate the point P midway between the two moving pivots to
trace a near straight-line movement. See Figure 1.10.
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Fig. 1.10 Chebyshev’s straight-line linkage: a = 2.5h, b = 2.5h, g = 2h.

1.5 Summary

This chapter has introduced the linkage systems that are the focus of the mathemati-
cal theory that follows. Linkages are classified by the type and number of joints that
form the assembly. Joints that can be constructed from hinges and sliders to form
planar, spherical, and spatial linkages provide a remarkably wide range of devices.
The mobility formula defines the generic degree of freedom of a linkage, which is
the dimension of its workspace. The size and shape of this workspace characterizes
the performance of the device. The goal of the design theory presented in the fol-
lowing chapters is to formulate and solve the constraint equations that ensure that
the workspace for a given open chain includes a discrete task space prescribed by
the designer.

1.6 References

Dimarogonas [24] and Hartenberg and Denavit [46] present historical accounts of
the origins of the theory of machines and mechanisms. The concept of a kinematic
chain was introduced by Reuleaux [101] who also identified the central role played
by the joints in classifying devices. A systematic notation to define kinematic chains
constructed from elementary joints was introduced by Denavit and Hartenberg [22].
Freudenstein and Dobryankyj [36] and Crossley [17] applied graph theory to the
problem of identifying all the linkage assemblies available for a certain number of
links and type of joint. Crossley [18] described spatial linkages and the larger variety
of joints available for these systems. Harrisberger [44] formulated a classification
theory for spatial linkages and with Soni [45] enumerated the spatial four-bar link-

h
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AB

C

P

2h

2.5h
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ages. See Kota [57] for more information about systematic enumeration of linkage
systems.

Tsai[138] shows how graph theory is used in the design of linkages. Dai[19,
20] uses linkage graphs to describe the operation of metamorphic linkages. Li[65]
shows that linkage graphs are related to constraint graphs in geometric modeling.
See Hoffman[6] for a description of constraint graphs and geometric solvers.

Exercises

1. Determine the degree of freedom of the system formed by two planar 3R manip-
ulators that hold the same workpiece.

2. Determine the degree of freedom of the system formed by a spatial 6R robot that
(i) rotates a hinged lever; (ii) rubs a block against a planar surface.

3. Consider a linkage with c independent closed loops, show that c = j+1−n, and
the mobility formula can be written as F = ∑ fi−6c.

4. Show that while the planar and spherical 4R linkages have mobility F = 1, the
spatial 4R Bennett linkage should not move at all.

5. The mobility formula assumes that a joint is a connection between two links.
However, often three or more links are shown connected at one joint. Show that
if p links appear connected at one joint, that the mobility formula requires the
connection be counted as p−1 joints.

6. Show that if a truss is a linkage with mobility F = 0, then its joint forces can be
determined by elementary static analysis.

7. Let the links of a mechanism be the vertices of a graph, and its joints the edges.
Show that there are only two nonisomorphic graphs of planar six-bar linkages
with F = 1, the Watt and Stephenson chains.

8. Determine the number of revolute joints that a planar eight-bar linkage must so
F = 1. Show that there are 16 nonisomorphic graphs for these linkages.

9. Enumerate the F = 1 spatial four-bar linkages that can be assembled using R, P,
T, S, and C joints.



Chapter 2
Analysis of Planar Linkages

In this chapter we consider assemblies of links that move in parallel planes. Any
one of these planes can be used to examine the movement since the trajectories of
points in any link can be projected onto this plane without changing their properties.
Our focus is on linkages constructed from revolute joints with axes perpendicular to

RR, PR, and RP open chains and the closed chains constructed from them, as well
as the 3R and RPR planar robots. We determine the configuration of the linkage as
a function of the independent joint parameters and the physical dimensions of the
links.

2.1 Coordinate Planar Displacements

A revolute joint in a planar linkage allows rotation about a point, and a prismatic
joint allows translation along a line. These movements are represented by transfor-
mations of point coordinates in the plane.

Consider the rotation of a link about the revolute joint O located at the origin of
the fixed coordinate frame F . Let x = (x,y)T be the coordinates of a point measured
in the frame M of the link. If the moving frame has its origin also located at O,
and the angle between the x-axes of these two frames is θ , then the coordinates
X = (X ,Y )T of this point in F are given by the matrix equationX

Y
1

=

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

x
y
1

 . (2.1)

We introduce the extra column in this matrix to accommodate translations typical
of prismatic joints as part of the matrix operation.

In particular, consider a prismatic joint that has the x-axis of F as its line of
action. Let the distance between the origins of M and F along this line be s. Then

©
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this plane and prismatic joints that move along lines parallel to it. We examine the
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we have X
Y
1

=

1 0 s
0 1 0
0 0 1

x
y
1

 . (2.2)

A translation along a prismatic joint parallel to the y-axis is defined in the same way
as X

Y
1

=

1 0 0
0 1 s
0 0 1

x
y
1

 . (2.3)

The matrices in these equations define the three coordinate displacements of planar
movement. Planar displacements are constructed from these three basic transforma-
tions.

We now introduce the notation [Z(θ)], [X(s)], and [Y (s)] for these coordinate
displacements, so we have

X = [Z(θ)]x, X = [X(s)]x, and X = [Y (s)]x, (2.4)

respectively. Notice that we do not distinguish symbolically between the coordi-
nates X that are two-dimensional and those that have 1 as a third component. Some
authors to refer to the former as vectors and the latter as affine points. We do not
need this general distinction, and therefore will take the time to make the difference
clear when needed in the context of our calculations.

2.1.1 The PR Open Chain

The benefit of this matrix formulation can be seen in considering the movement of a
PR open chain. This chain consists of a link that slides along the linear guide of a P-
joint relative to the ground. An end-link is attached to the slider by a revolute joint,
Figure 2.1. We now determine the movement of a coordinate frame M attached to
the end-link relative to a fixed frame F .

Fig. 2.1 The PR and RR open chain robots.
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First, locate F so that its x-axis is parallel to the slide of the P-joint and denote its
origin by O. Locate M in the end-link so that its origin is centered on the revolute
joint, which we denote by A, and with its x-axis aligned initially with the x-axis of
F .

The configuration of the PR chain is defined by the slide s from O to A, and the
rotation angle θ about O measured from the x-axis of F to the x-axis of M. The
transformation of coordinates from M to F is given by the matrix product

X = [X(s)][Z(θ)]x, (2.5)

or X
Y
1

=

cosθ −sinθ s
sinθ cosθ 0

0 0 1

x
y
1

 . (2.6)

The set of planar displacements [D], given by

[D] = [X(s)][Z(θ)], (2.7)

is the workspace of the PR open chain. This matrix equation defines the kinematics
equations for the chain.

An important question in the analysis of an open chain is what parameter values
s and θ are needed to reach a given displacement [D] in the workspace of the chain.
Assuming the elements of the matrix

[D] =

a11 a21 px
a21 a22 py
0 0 1

 (2.8)

are known, equation (2.7) can be solved to determine these parameters. Notice that
py = 0 is required for the displacement [D] to be in the workspace reachable by the
PR chain. It is now easy to see that s and θ can be determined from the elements of
[D] by the formulas

s = px and θ = arctan
a21

a11
. (2.9)

Its important to note here that the arctan function must keep track of the signs of
both a21 and a11 so the correct value for θ is obtained in the range 0 to 2π .

The arctan function in calculators often incorporates the assumption that the de-
nominator of the fraction a21/a11 is positive. If this denominator is actually negative,
as occurs when θ is in the second and third quadrants, then π must be added to the
angle returned by the calculator in order to obtain the correct result.
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2.1.2 The RR Open Chain

A planar RR open chain has a fixed revolute joint O that connects a rotating link,
or crank, to the ground link. A second revolute joint A connects the crank to the
end-link, or floating link, Figure 2.1.

Position the fixed frame F so that its origin is the fixed pivot O and its x-axis is
directed toward A when the crank OA is in the zero position. Introduce the moving
frame M in the end-link, so that its origin is located at A and its x-axis is also
directed, initially, along the segment OA.

Let θ1 be the angle measured from F to OA as the linkage moves, and let θ2 be
the angle measured from OA to M. Then the position of M relative to F is defined
by the composition of coordinate displacements

X = [Z(θ1)][X(a)][Z(θ2)]x, (2.10)

where a = |A−O| is the length of the crank. Expanding this equation we obtainX
Y
1

=

cos(θ1 +θ2) −sin(θ1 +θ2) acosθ1
sin(θ1 +θ2) cos(θ1 +θ2) asinθ1

0 0 1

x
y
1

 . (2.11)

Notice that the position of the floating link of an RR chain is equivalent to a trans-
lation by the vector d = (asinθ1,asinθ1)

T followed by a rotation by the angle
σ = θ1 +θ2.

The workspace of the RR chain is given by the set of displacements

[D] = [Z(θ1)][X(a)][Z(θ2)]. (2.12)

This defines the kinematics equations of the RR chain. For a given position [D] the
parameter values θ1 and θ2 that reach it are obtained by equating (2.8) to the matrix
in (2.11). The result is that the angles θ1 and σ = θ1 +θ2 are given by

θ1 = arctan
py

px
and σ = arctan

a21

a11
. (2.13)

Notice that the elements px and py must satisfy the relation

a =
√

p2
x + p2

y . (2.14)

in order for [D] to be in the workspace of this chain.
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2.1.3 The RPR and 3R Chains

If the distance a between the joints of an RR chain is allowed to vary, then we
obtain the structure of a three-degree-of-freedom planar manipulator. This variation
in length can be introduced either by a prismatic joint, forming an RPR open chain,
or by a revolute joint to form a 3R open chain, Figure 2.2. The formulas for the RR
chain can be used to analyze the RPR and 3R chains with minor modifications.

Fig. 2.2 The RPR and RRR open robots.

For the RPR, the link length a can be identified with the slide parameter s of the
prismatic joint. The result is that (2.12) with a = s defines the workspace of the RPR
chain. Equations (2.14) and (2.13) define the values for s, θ1, and θ2 needed to reach
a given goal displacement.

For the 3R case, we have an elbow joint E inserted between O and A. Let the
lengths of the two links be a1 = |E−O| and a2 = |A−E|. Denote the rotation
angle about the elbow joint by θ2 which is measured from OE counter-clockwise
to EA. The rotation of the end-link around A is now denoted by θ3. The kinematics
equations of this chain become

[D] = [Z(θ1)][X(a1)][Z(θ2)][X(a2)][Z(θ3)]. (2.15)

The variable length s = |A−O| is given by the cosine law of the triangle4OEA,

s2 = a2
1 +a2

2 +2a1a2 cosθ2. (2.16)

The positive sign for the cosine term in this equation arises because θ2 is an exterior
angle of the triangle4OEA. Notice that s must lie between the values |a2−a1| and
a1 +a2.

For a given position [D] of the end-link, we can determine the length s as we did
for the RPR chain using (2.14). This allows us to compute the elbow joint angle as

θ2 = arccos
p2

x + p2
y−a2

1−a2
2

2a1a2
. (2.17)
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The arccosine function yields two values for this angle ±θ2. We can compute the
joint angle θ1 using (2.13), however, we must account for the presence of the angle
ψ = ∠EOA, which is given by

ψ = arctan
a2 sinθ2

a1 +a2 cosθ2
. (2.18)

The result is
θ1 = arctan

py

px
−ψ. (2.19)

Finally, θ3 is obtained from the fact that the rotation of the end-link is σ = θ1+θ2+
θ3 in (2.13), which yields

θ3 = arctan
a21

a11
−θ1−θ2. (2.20)

Notice that two sets of values θ1 and θ3 are obtained depending on the sign of θ2.
These are known as the elbow-up and elbow-down solutions.

2.2 Position Analysis of the RRRP Linkage

The RRRP linkage is called a slider-crank and consists of a rotating crank linked
to a translating slider by a connecting rod, or coupler. It is a fundamental machine
element found in everything from automotive engines to door-closing mechanisms.
We can also view this device as a platform linkage, in which case the coupler is a
workpiece supported by an RR and a PR chain.

Denote the fixed and moving pivots of the input crank by O and A, respectively,
and let B be the revolute joint attached to the slider. Position the fixed frame F so
that its origin is O and orient it so that its x-axis is perpendicular to the direction of
slide, Figure 2.3. The input crank angle θ is measured from the x-axis of F around
O to OA, and the travel s of the slider is measured along the y-axis to B.

The length of the driving crank is r = |A−O|, and the length of the coupler is
L = |B−A|. The distance e to the linear path of the pivot B is called the offset.
Notice that the dimensions r, L, and e are always positive.

2.2.1 The Output Slide

To analyze this linkage, we determine the output slide s as a function of the input
crank angle θ . The linkage moves so the pivots A and B remain the constant distance
L apart. The coordinates of these pivots in F are given by

A =

{
r cosθ

r sinθ

}
and B =

{
e
s

}
. (2.21)
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Fig. 2.3 The dimensions characterizing a slider-crank, or RRRP, linkage.

Thus, the length L = |B−A| of the coupler provides the constraint equation

(B−A) · (B−A) = L2. (2.22)

Substitute (2.21) into this expression and collect the coefficients of s to obtain the
quadratic equation

s2− (2r sinθ)s+(r2 + e2−2er cosθ −L2) = 0. (2.23)

The quadratic formula yields the roots

s = r sinθ ±
√

L2− e2 +2er cosθ − r2 cos2 θ . (2.24)

Thus, for a given input crank angle θ there are two possible values of the slide
s. They are, geometrically, the intersection of a circle of radius L centered on A
with the line through B parallel to the y-axis of F . These two solutions define the
two assemblies of the RRRP linkage. The positive solution generally has the slider
moving above the crank, while the negative solution has it below.

2.2.2 The Range of Crank Rotation

We now consider the values of the crank angle θ for which a solution for the slider
position s exists. The condition that the solution be a real number is

L2− e2 +2er cosθ − r2 cos2
θ ≥ 0. (2.25)

Set this to zero to obtain a quadratic equation in cosθ that defines the minimum and
maximum angular values for the crank angle θ , and obtain the roots

θmin = arccos
e+L

r
and θmax = arccos

e−L
r

. (2.26)
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Notice that the arccosine function returns two values for these limiting angles that
are reflections through the x-axis of F .

If cosθmin > 1, then the lower limit θmin to the crank rotation angle does not
exist. In which case the crank can reach θ = 0 and pass into the lower half-plane of
F . Thus, the condition that no lower limit exist is

S1 = L− r+ e > 0. (2.27)

Similarly, if cosθmax < −1 then the upper limit does not exist, and the crank can
reach θ = π . This yields the condition

S2 = L− r− e > 0. (2.28)

The signs of the parameters S1 and S2 identify four types of slider-crank linkage
depending on the input rotation of the crank:

1. A rotatable crank: S1 > 0 and S2 > 0, in which case neither limit θmin nor θmax
exists, and the input crank can fully rotate.

2. A 0-rocker: S1 > 0 and S2 < 0, for which θmax exists but not θmin, and the input
crank rocks through θ = 0 between the values ±θmax.

3. A π-rocker: S1 < 0 and S2 < 0, which means that θmin exists but not θmax, and
the input crank rocks through θ = π between the values ±θmin.

4. A rocker: S1 < 0 and S2 < 0, in which case both upper and lower limit angles
exist, and the crank cannot pass through either 0 or π . Instead, it rocks in one of
two separate ranges: (i) θmin ≤ θ ≤ θmax, or (ii) −θmax ≤ θ ≤−θmin.

The conditions S1 > 0 and S2 > 0 for a fully rotatable crank can be combined to
define the formula

S1S2 = (L− r+ e)(L− r− e) = (L− r)2− e2 > 0. (2.29)

Notice that because e is always positive, L− r must be positive for S2 to be positive.
This allows us to conclude that

L− r > e (2.30)

is the condition that ensures that the crank of the RRRP linkage can fully rotate.
The parameters S1 or S2 can take on zero values as well. In these cases, the pivots

O, A, and B line up along the x-axis of F , and the slider-crank linkage is said to fold.

2.2.3 The Coupler Angle

Let φ denote the angle around the moving pivot A measured counterclockwise from
the line extending along the crank OA to the segment AB defining the coupler. Then
the coordinates of the pivot B = (e,s)T are also given by the vector
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B =

{
r cosθ +Lcos(θ +φ)
r sinθ +Lsin(θ +φ)

}
. (2.31)

We equate the two vectors defining B to obtain

r cosθ +Lcos(θ +φ) = e,

r sinθ +Lsin(θ +φ) = s. (2.32)

These equations are called the loop equations of the slider-crank because they
capture the fact that the linkage forms a closed loop. Solve these equations for
Lsin(θ +φ) and Lcos(θ +φ) and use the arctan function to obtain

θ +φ = arctan
s− r sinθ

e− r cosθ
. (2.33)

This equation provides the value for φ associated with each solution for the slide s
defined in (2.24).

2.2.4 The Extreme Slider Positions

The maximum translation of the slider, smax, is reached when the coupler angle φ

is equal to zero. In this instance the pivots O, A, and B fall on a line, so that r+L
forms the hypotenuse of a right triangle. This yields

smax =
√

(r+L)2− e2. (2.34)

The crank angle θ1 associated with smax is obtained from the loop equations (2.32)
as

θ1 = arctan
smax

e
. (2.35)

Notice that the parameter smax can be positive or negative, because the linkage can
be assembled with the slider above over below the x-axis.

The minimum translation of the slider, smin, occurs with the coupler angle φ is
equal to π . In this configuration the pivots A and B are on opposite sides of O and
L− r is the hypotenuse of the triangle, so smin is given by

smin =
√

(L− r)2− e2. (2.36)

While smax always exists, smin exists only if this square root is real. There are two
cases L− r > 0 and L− r < 0. In the first case the crank is fully rotatable and the
associated crank angle is

θ2 = π + arctan
smin

e
. (2.37)
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The minimum slide results when the pivot A rotates to the position such that O lies
between it and B. If L− r < 0 then A and B are on the same side of O and the crank
angle is

θ2 = arctan
smin

e
. (2.38)

Notice that these extreme configurations can be reflected through the x-axis.
If the crank of the slider-crank is fully rotatable, then the angular travel of the

crank as the slider moves from smax to smin is |θ2− θ1|. The angular travel of the
return from smin to smax is |2π− (θ2−θ1)|. The ratio of these two ranges of travel
is known as the time ratio

rt =
|θ2−θ1|

|2π− (θ2−θ1)|
. (2.39)

Notice that if the offset e is nonzero then the time ratio is less than 1. This means that
the crank rotates a smaller angular distance as it pulls the slider to smin, than it does
when it pushes it out again to smax. This operation is known as quick return because
for a constant angular velocity the slider moves slowly toward smax and quickly as
it returns to smin.

2.2.5 The RRPR Linkage

A slider-crank linkage is often used in an inverted configuration in which the P-joint
is connected to the floating link, Figure 2.4. In this form, the prismatic joint may be
the piston of a linear actuator that drives the rotation of the crank OA. This system
is analyzed as follows.

Fig. 2.4 The inverted slider-crank, or RRPR, linkage.

Let the driving RR crank be OA with length r = |A−O|, as before. Position the
frame F with its origin at O and its x-axis directed toward C, which denotes the fixed
pivot of the RP chain. The length of the ground link OC is g = |C−O|. Consider
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the line through C perpendicular to the direction of the slider and the line through
A parallel this direction. Let the intersection of these two lines be the point B. The
length e = |B−C| is the joint offset, and s = |A−B| is the slide distance of the
prismatic joint. Denote the input crank angle by θ and let ψ be the angle measured
about C to the segment CB.

These conventions allow us to introduce the intermediate parameters b and β

given by
b =

√
s2 + e2 and tanβ =

s
e
. (2.40)

The cosine law for the triangle4COA yields the relation

b2 = g2 + r2−2rgcosθ . (2.41)

Substitute s2 + e2 to obtain

s =
√

g2 + r2− e2−2rgcosθ . (2.42)

This defines the joint slide s for a given crank angle θ . Notice that this equation can
also be solved to determine θ for a given slide:

cosθ =
g2 + r2− e2− s2

2rg
. (2.43)

This latter situation arises when the slider is the piston in a linear actuator driving
the RR crank.

The rotation angle ψ of the RP crank is determined using the fact that the coor-
dinates of the pivot A can be written in two ways

A =

{
r cosθ

r sinθ

}
=

{
g+bcos(ψ +β )

bsin(ψ +β )

}
. (2.44)

These equations yield the formula

ψ +β = arctan
r sinθ

r cosθ −g
. (2.45)

Notice that β is determined from s by (2.40).
The range of movement of the cranks and the sliding joint for this linkage can be

analyzed in the same way as shown above for the RRRP linkage.

2.3 Position Analysis of the 4R Linkage

Given a planar 4R closed chain, we can identify an input RR crank and an output
RR crank, Figure 2.5. Let the fixed and moving pivots of the input crank be O and
A, respectively, and that the fixed and moving pivots of the output crank be C and



26 2 Analysis of Planar Linkages

B. The distances between these points characterize the linkage:

a = |A−O|, b = |B−C|, g = |C−O|, h = |B−A|. (2.46)

Fig. 2.5 The link lengths that define a 4R linkage.

To analyze the linkage, we locate the origin of the fixed frame F at O, and orient
it so that the x-axis passes through the other fixed pivot C. Let θ be the input angle
measured around O from the x-axis of F to OA. Similarly, let ψ be the angular
position of the output crank CB.

2.3.1 Output Angle

The relationship between the input angle θ of the driving crank and the angle ψ of
the driven crank is obtained from the condition that A and B remain a fixed distance
apart throughout the motion of the linkage. Since h = |B−A| is constant, we have
the constraint equation

(B−A) · (B−A)−h2 = 0. (2.47)

The coordinates of A and B in F are given by

A =

{
acosθ

asinθ

}
and B =

{
g+bcosψ

bsinψ

}
. (2.48)

Substitute these coordinates into (2.47) to obtain

b2 +g2 +2gbcosψ +a2−2(acosθ(g+bcosψ)+absinθ sinψ)−h2 = 0. (2.49)

Gathering the coefficients of cosψ and sinψ , we obtain the constraint equation for
the 4R chain as

A(θ)cosψ +B(θ)sinψ =C(θ), (2.50)

h
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where

A(θ) = 2abcosθ −2gb,

B(θ) = 2absinθ ,

C(θ) = g2 +b2 +a2−h2−2agcosθ . (2.51)

The solution to this equation is

ψ(θ) = arctan
(

B
A

)
± arccos

(
C√

A2 +B2

)
. (2.52)

Equations of the form (2.50) arise many times in the analysis of linkages, so we
present its solution in Appendix A for easy reference, see (A.1).

Notice that there are two angles ψ for each angle θ . This arises because the
moving pivot B of the output crank can be assembled above or below the diagonal
joining the moving pivot A of the input crank to the fixed pivot C of the output
crank. The angle δ = arctan(B/A) defines the location of this diagonal, and ε =
arccos(C/

√
A2 +B2) is the angle above and below this diagonal that locates the

output crank.
The argument of the arccosine function must be in the range −1 to +1, which

places a solvability constraint on the coefficients A, B, and C. Specifically, for a
solution to exist we must have

A2 +B2−C2 ≥ 0. (2.53)

If this constraint is not satisfied, then the linkage cannot be assembled for the spec-
ified input crank angle θ .

2.3.2 Coupler Angle

Let φ denote the angle of the coupler measured about A relative to the segment OA,
so θ +φ measures the angle to AB from the x-axis of F . The coordinates of B can
also be defined in terms of φ as

B =

{
acosθ +hcos(θ +φ)
asinθ +hsin(θ +φ)

}
. (2.54)

Equating the two forms for B, we obtain the loop equations of the four-bar linkage

acosθ +hcos(θ +φ) = g+bcosψ,

asinθ +hsin(θ +φ) = bsinψ. (2.55)

For a given value of the drive crank θ , determine ψ using (2.52) then cos(θ + φ)
and sin(θ +φ) are given by
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cos(θ +φ) =
g+bcosψ−acosθ

h
and sin(θ +φ) =

bsinψ−asinθ

h
. (2.56)

Thus, the value of the coupler angle is obtained as

φ = arctan
(

bsinψ−asinθ

g+bcosψ−acosθ

)
−θ . (2.57)

Notice that a unique value for φ is associated with each of the two solutions for the
output angle ψ .

2.3.2.1 An Alternative Derivation

It is useful here to present a direct calculation of the coupler angle φ associated
with a given crank angle θ . The derivation is identical to that above for the output
angle. However, our standard frame is now F ′, positioned with its origin at A and
its x-axis along the vector O−A. In this coordinate frame, the pivots B and C have
the coordinates

F ′B =

{
hcos(φ −π)
hsin(φ −π)

}
and F ′C =

{
a+gcos(π−θ)

gsin(π−θ)

}
. (2.58)

The constraint (B−C) · (B−C) = b2 yields the equation

A(θ)cosφ +B(θ)sinφ =C(θ), (2.59)

where

A(θ) = 2ah−2ghcosθ ,

B(θ) = 2ghsinθ ,

C(θ) = b2−a2−g2−h2 +2agcosθ . (2.60)

This equation is solved in exactly the same way as before (A.1). It results in two val-
ues for φ for each crank angle θ . The output angle ψ associated with each of these
coupler angles can be determined from the loop equations of the linkage written for
C in F ′.

This equation for the coupler angle is used in solutions for four and five position
synthesis of a planar 4R linkage.

2.3.3 Transmission Angle

The angle ζ between the coupler and the driven crank at B is called the transmission
angle of the linkage. If the only external loads on the linkage are torques on the input
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and output cranks, then the forces FA and FB acting on the coupler at the moving
pivots must oppose each other along the line AB, Figure 2.6. Thus, the force FB is
directed at the angle ζ relative to the driven crank, and sinζ measures the component
of FB that is transmitted as useful output torque. The cosζ component is absorbed
as a reaction force at the fixed pivot of the driven crank.

Fig. 2.6 The coupler is a two-force member connecting the input and output cranks.

To determine ζ in terms of θ , equate the cosine laws for the diagonal d = |A−C|
for the triangles4COA and4ABC. Since ζ is the exterior angle at B, we have

d2 = g2 +a2−2agcosθ = h2 +b2 +2bhcosζ . (2.61)

The result is

cosζ =
g2 +a2−h2−b2−2agcosθ

2bh
. (2.62)

2.3.4 Coupler Curves

As a linkage moves, points in the coupler trace curves in the fixed frame. The pa-
rameterized equation of this curve is obtained from the kinematics equations of the
driving RR chain. Let x = (x,y)T be the coordinates of a coupler point in the frame
M located at A with its x-axis along AB. The coordinates X= (X ,Y )T in F are given
by the matrix equationX(θ)

Y (θ)
1

=

cos(θ +φ) −sin(θ +φ) acosθ

sin(θ +φ) cos(θ +φ) asinθ

0 0 1

x
y
1

 . (2.63)

The coupler angle φ is a function of θ , thus the coupler curve is parametrized by the
crank angle θ .

The algebraic equation for this curve, eliminating θ , is obtained by defining the
coordinates of X from two points of view. Let the coupler triangle 4XAB (Figure
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2.7) have lengths r and s given by

r = |X−A|=
√

x2 + y2 and s = |X−B|=
√

(x−h)2 + y2. (2.64)

If λ is the angle to AX in F , and µ is the angle to BX, then we have

X−A =

{
r cosλ

r sinλ

}
and X−B =

{
scos µ

ssin µ

}
. (2.65)

Rearrange these equations to isolate A and B, and substitute into the identities A ·
A = a2 and (B−C) · (B−C) = b2 to obtain

X2 +Y 2−2Xr cosλ −2Y r sinλ + r2 = a2,

X2 +Y 2−2Xscos µ−2Y ssin µ + s2−2gscos µ−2Xg+g2 = b2. (2.66)

The algebraic equation of the coupler curve is obtained by eliminating λ and µ from
these two equations.

Fig. 2.7 The trajectory of a point in the floating link is known as a coupler curve of the 4R chain.

First, note that if α is the interior angle of the coupler triangle 4XAB at A,
then λ = α +θ +φ . Similarly, if β is the exterior angle of this triangle at B, then
µ = β +θ +φ , or equivalently

µ−λ = β −α. (2.67)

The angle γ = β −α is the interior angle of the coupler triangle at X given by the
cosine law as

cosγ =
r2 + s2−h2

2rs
. (2.68)

Substitute µ = λ + γ into (2.66) and rearrange these equations to obtain
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A1 cosλ +B1 sinλ =C1,

A2 cosλ +B2 sinλ =C2, (2.69)

where

A1 = 2rX , A2 = 2s(cosγ(X−g)+Y sinγ),

B1 = 2rY, B2 = 2s(−sinγ(X−g)+Y cosγ),

C1 = X2 +Y 2 + r2−a2, C2 = (X−g)2 +Y 2−b2 + s2. (2.70)

Eliminate λ in these equations by solving linearly for x = cosλ and y = sinλ . Then
impose the condition x2 + y2 = 1. The result is

(C1B2−C2B1)
2 +(A2C1−A1C2)

2− (A1B2−A2B1)
2 = 0. (2.71)

Notice that Ai and Bi are linear in the coordinates X and Y , and Ci are quadratic.
Therefore, this equation defines a curve of degree six. See Hunt [50] for a detailed
study of this curve, known as a tricircular sextic, and a description of its properties.

2.4 Range of Movement

2.4.1 Limits on the Input Crank Angle

The formula that defines the output angle ψ for a given input angle θ has a solution
only when A2 +B2−C2 ≥ 0. When this condition is violated, the crank is rotated
to a positioned in which the mechanism cannot be assembled. The maximum and
minimum values for θ are obtained by setting this condition to zero, which yields
the quadratic equation in cosθ

4a2g2 cos2
θ−4ag(g2 +a2−h2−b2)cosθ

+
(
(g2 +a2)− (h+b)2)((g2 +a2)− (h−b)2)= 0. (2.72)

The roots of this equation are the upper and lower limiting angles θmax and θmin that
define the range of movement of the input crank,

cosθmin =
(g2 +a2)− (h−b)2

2ag
, cosθmax =

(g2 +a2)− (h+b)2

2ag
. (2.73)

These equations are the cosine laws for the two ways that the triangle 4AOC
can be formed with the coupler AB aligned with the output crank CB, Figure 2.8.
This alignment is what limits rotation of the input crank. The cosine function does
not distinguish between±θ so there are actually two limits for each case±θmin and
±θmax above and below OC.



32 2 Analysis of Planar Linkages

Fig. 2.8 The angles θmin and θmax are the limits to the range of movement of the input link.

The arccosine function yields a real angle only if its argument is between−1 and
1. This provides conditions that determine whether these crank limits exist.

2.4.1.1 The Lower Limit: θmin

If θmin does not exist, then the crank has no lower limit to its movement and it rotated
through θ = 0 to reach negative values below the segment OC. Thus, cosθmin > 1
is the condition that there is no lower limit to the input crank rotation, that is,

(g2 +a2)− (h−b)2

2ag
> 1. (2.74)

This simplifies to yield
(g−a)2− (h−b)2 > 0. (2.75)

Factor the difference of two squares to obtain

(g−a+h−b)(g−a−h+b)> 0,
T1T2 > 0, (2.76)

where
T1 = g−a+h−b and T2 = g−a−h+b. (2.77)

Thus, T1 and T2 must both be either positive or negative for there to be no lower
limit to the rotation of the input crank.
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2.4.1.2 The Upper Limit: θmax

If θmax does not exist, then the crank has no upper limit to its movement and it will
be able to rotate through θ = π . Thus, cosθmax <−1, or

(g2 +a2)− (h+b)2

2ag
<−1, (2.78)

is the condition that this limit does not exist. This inequality simplifies to

(h+b)2− (g+a)2 > 0, (2.79)

which factors to become

(h+b−g−a)(h+b+g+a)> 0,
T3T4 > 0, (2.80)

where
T3 = h+b−g−a, and T4 = h+b+g+a. (2.81)

The sum of the link lengths T4 is always positive. Therefore, the condition that there
is no upper limit to the rotation of the input crank is T3 > 0.

2.4.1.3 Input Crank Types

We can now identify four types of movement available to the input crank of a 4R
linkage:

1. A crank: T1T2 > 0 and T3 > 0, in which case neither θmin nor θmax exists, and
the input crank can fully rotate.

2. A 0-rocker: T1T2 > 0 and T3 < 0, for which θmax exists but not θmin, and the
input crank rocks through θ = 0 between the values ±θmax.

3. A π-rocker: T1T2 < 0 and T3 > 0, which means that θmin exists but not θmax, and
the input crank rocks through θ = π between the values ±θmin.

4. A rocker: T1T2 < 0 and T3 < 0, which means that both upper and lower limiting
angles exist, and the crank cannot pass through either 0 or π . Instead, it rocks in
one of two separate ranges: (i) θmin ≤ θ ≤ θmax, or (ii) −θmax ≤ θ ≤−θmin.

2.4.2 Limits on the Output Crank Angle

The range of movement of the output crank can be analyzed in the same way. The
limiting positions occur when the input crank OA and coupler AB become aligned,
see Figure 2.9. The limits ψmin and ψmax are defined by the equations
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cosψmin =
(h+a)2− (g2 +b2)

2bg
, cosψmax =

(h−a)2− (g2 +b2)

2bg
. (2.82)

Note that in this case ψ is the exterior angle, which changes the sign of the cosine
term in the cosine law formula.

Fig. 2.9 The angles ψmin and ψmax are the limits to the range of motion of the output link.

Examining the existence of solutions to arccosine in (2.82), we find that the con-
dition for no lower limit ψmin is

(h+a−g−b)(h+a+g+b)> 0,
(−T2)(T4)> 0, (2.83)

where T2 and T4 are the same parameters used above for the input crank. Because
T4 is always greater than zero, the condition that there be no lower limit to the range
of movement of the output crank is T2 < 0.

Similarly, in order for there to be no upper limit ψmax, we have

(g−b−h−a)(g−b+h−a)> 0,
(−T3)(T1)> 0. (2.84)

Again, the parameters T3 and T1 are the same as were defined above and there is no
upper limit to the movement of the output crank when T1T3 < 0.

2.4.2.1 Output Crank Types

We can now identify four types of movement available to the output crank of a
four-bar linkage:
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1. A rocker: T1T3 > 0 and T2 > 0. In this case both limits ψmin and ψmax exist, and
the crank cannot not pass through either 0 or π . Instead, it rocks in one of two
separate ranges: (i) ψmin ≤ ψ ≤ ψmax, or (ii) −ψmax ≤ ψ ≤−ψmin.

2. A 0-rocker: T1T3 < 0 and T2 > 0, for which ψmax exists but not ψmin, and the
output crank rocks through ψ = 0 between the values ±ψmax.

3. A π-rocker: T1T3 > 0 and T2 < 0, which means that ψmin exists but not ψmax,
and the output crank rocks through ψ = π between the values ±ψmin.

4. A crank: T1T3 < 0 and T2 < 0. Then neither limit ψmin nor ψmax exists, and the
output crank can fully rotate.

2.4.3 The Classification of Planar 4R Linkages

A planar 4R linkage is classified by the movement of its input and output cranks. For
example, a crank-rocker has a fully rotatable input link, and an output link that rocks
between two limits. On the other hand a rocker-crank has an input link that rocks
and an output link that fully rotates. The combinations of positive and negative signs
for the parameters T1, T2, T3 identify eight basic linkage types. These parameters can
take zero values as well, in which case the linkage folds.

2.4.3.1 The Eight Basic Types

The link lengths a, b, g, and h for a 4R chain define the three parameters T1, T2, and
T3. Our classification scheme requires only the signs of these parameters, therefore
we assemble the array (sgnT1,sgnT2,sgnT3). The eight possible arrays identify the
eight basic types of 4R linkages.

We separate the linkage types into two general classes depending upon the sign
of the product T1T2T3. If T1T2T3 > 0 then the linkage is called Grashof ; otherwise,
it is called nonGrashof. There are four Grashof and four non-Grashof linkage types.

We consider the Grashof cases first:

1. (+,+,+): Because T1T2 > 0 and T3 > 0 the input link can fully rotate. Similarly,
because T1T3 > 0 and T2 > 0 the output link is a rocker with two output ranges.
This linkage is a crank-rocker.

2. (+,−,−): With T1T2 < 0 and T3 < 0 the input is a rocker, and with T1T3 < 0 and
T2 < 0 the output is a crank. This defines the rocker-crank linkage.

3. (−,−,+): In this case, T1T2 > 0 and T3 > 0, so the input link is a crank, and
T1T3 < 0 and T2 < 0, which means that the output link is also a crank. This
defines the double-crank linkage.

4. (−,+,−): T1T2 < 0 and T3 < 0 define the input as a rocker, and with T1T3 > 0
and T2 > 0 the output is also a rocker. This defines the Grashof double-rocker
linkage type.

Now consider the nonGrashof cases:
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5. (−,−,−): Here we have T1T2 > 0 and T3 < 0, and the input link rocks through
the value θ = 0. With T1T3 > 0 and T2 < 0, the output link rocks through the
value ψ = 0. This type of linkage is termed a 00 double-rocker.

6. (+,+,−): In this case, the input rocks through θ = 0. However, with T1T3 < 0
and T2 > 0 the output rocks through ψ = π . This linkage is called a 0π double-
rocker.

7. (+,−,+): With T1T2 > 0 and T3 > 0 the input link rocks through π , and because
T1T3 < 0 and T2 < 0 the output link rocks through 0. This is the π0 double-rocker.

8. (−,+,+): Finally, the input again rocks through π , as does the output, defining
the ππ double-rocker.

The parameters associated with these linkages are listed in Table 2.1.

Table 2.1 Basic Planar 4R Linkage types

Linkage type T1 T2 T3

1 Crank-rocker + + +
2 Rocker-crank + − −
3 Double-crank − − +
4 Grashof double-rocker − + −
5 00 double-rocker − − −
6 0π double-rocker + + −
7 π0 double-rocker + − +
8 ππ double-rocker − + +

2.4.4 Grashof Linkages

If a linkage is to be used in a continuous operation, the input crank should be able
to fully rotate so that it can be driven by a rotating power source. A study of the
configurations of a 4R linkage lead Grashof to conclude that, for a shortest link of
length s and longest link of length l, the shortest link will fully rotate if

s+ l < p+q, (2.85)

where p and q are the lengths of the other two links. This is known as Grashof’s
criterion and linkages that have a rotatable crank are called Grashof linkages.

There are four linkage types that satisfy Grashof’s criterion. If the input or output
link is the shortest, then we have the crank-rocker or the rocker-crank, respectively.
If the ground link is the shortest, then both the input and output links will fully rotate
relative to the ground; this is the double-crank linkage. Finally, if the floating link
is the shortest link, then the input and output links are rockers; this is the Grashof
double-rocker. By examining Table 2.1, it is easy to see that these four linkage types
satisfy the condition
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T1T2T3 > 0, (2.86)

which can be shown to be equivalent to Grashof’s criterion.
The rockers of each of the Grashof linkage types are distinguished by the fact

that both upper and lower limits exist. The means that they have two distinct angular
ranges of movement, one in the upper half plane and one in the lower relative to the
fixed link. If the linkage is assembled so that the rocker is in one angular range,
then it cannot reach the other range without disassembly. Thus, Grashof linkages
have two distinct sets of configurations called assemblies. The linkage can move
between the configurations in only one of these assemblies and cannot reach the
others.

2.4.5 Folding Linkages

If any one of the parameters T1, T2, or T3 has the value zero, then the linkage can
take a configuration in which all four joints lie on a line. The linkage is said to fold.

If we consider the positive, negative, and zero values for the array (T1,T2,T3),
then we find that there are 27 types of planar 4R linkages, 19 of which fold. Fur-
thermore, the number of parameters Ti that are zero defines the number of folding
configurations of the linkage. It is often useful to have a linkage fold. However,
while it is easy to drive the linkage into a folded configuration, it may be difficult to
get it out of the this configuration.

Consider, for example, the parallelogram linkage defined by a = b and g = h.
This linkage has T2 = 0 and T3 = 0. Thus, it has two folding configurations, which
occur for the input crank angles of θ = 0,π . Another doubly folding example is the
kite linkage with g = a and h = b, which yields T1 = 0 and T2 = 0. This linkage
folds when θ = 0, at which point the output link can freely rotate because the joints
A and C coincide; the second folding position occurs when ψ = π .

There is one triply folding case, the rhombus linkage, for which a = b = g = h.
This linkage is a combination of the parallelogram and kite linkages. It folds at the
two configurations θ = 0,π like the parallelogram. When θ = 0 the output link is
free to rotate because the joints A and C coincide as with the kite linkage. The
third folding configuration occurs when ψ = π . The linkage can also reach this
configuration with θ = π , in which case it is the input crank that can freely rotate
because O and B coincide.

Linkages that have small values for any of the parameters Ti are termed near
folding. These linkages have configurations in which the joints can lie close to a
line. In nearly folded configurations the transmission angle of the linkage is near 0
or π , and the output crank is difficult to move using the input crank.
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2.5 Velocity Analysis

The velocity analysis of a linkage determines the angular rates of the various joint
parameters as a function of the configuration of the linkage and the input joint rate.
This analysis can be used in combination with the principle of virtual work to pro-
vide an important technique for determining the force and torque transmission prop-
erties of these systems.

2.5.1 Velocity of a Point in a Moving Link

Points x fixed in a moving link M trace trajectories X(t) = [T (t)]x in the fixed frame
F . The velocity of a point along its trajectory is the time derivative of its coordinate
vector, that is, V = Ẋ. Of importance to us is the relationship between this velocity
and the movement of the linkage as a whole.

The usual convention in velocity calculations is to focus on the trajectories in F
rather than coordinates in M of the moving point. For this reason, the trajectory of
the of a segment AB fixed in M is defined by coordinates A and B measured in F .
A general trajectory X of M has the property that r = |X−A| and α = ∠BAX are
constants, because the three points A, B, and X are part of the same link.

Let the orientation of M be defined by the angle θ of AB measured relative to the
x-axis of F . Then we can determine the relative position vector X−A as

X−A =

{
r cos(θ +α)
r sin(θ +α)

}
. (2.87)

The time derivative of this vector yields

V = Ẋ = Ȧ+ θ̇ [J](X−A), where [J] =
[

0 −1
1 0

]
. (2.88)

This defines the velocity of a general point in terms of the velocity of a reference
point and the rate of rotation of the body. We now show that θ̇ [J] is directly related
to the angular velocity of this link.

Each body in a planar linkage rotates about an axis that is perpendicular to the
plane of movement. Denote this direction by~k = (0,0,1)T . Then the usual vector
cross product yields~k×~ı =~ and~k×~ = −~ı, where~ı and~ are unit vectors along
the x- and y-axes of the fixed frame F . We now define the angular velocity of the
link AB to be the vector

wAB = θ̇~k. (2.89)

where θ defines the orientation of AB in F. Notice that for any vector y, the angular
velocity vector satisfies the identity

wAB×y = θ̇ [J]y. (2.90)
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This allows us to write equation (2.88) for the velocity of a point in the form

V = Ȧ+wAB× (X−A). (2.91)

The angular velocity vector can be viewed as an operator that computes the compo-
nent of velocity that arises from the rotation of the link.

Notice that if the link AB simply rotates about A, then Ȧ = 0, and we have

V = wAB× (X−A). (2.92)

In this case, the velocity of a point X is directed 90◦ to the line joining it to A.

2.5.2 Instant Center

It interesting to note that there is a point in every moving link that has zero velocity.
This point I, known as the instant center, is found by setting (2.91) to zero, that is,

Ȧ+wAB× (I−A) = 0. (2.93)

Take the cross product by wAB and solve for I to obtain

I−A =
wAB× Ȧ
wAB ·wAB

. (2.94)

This calculation uses the vector identity a× (b× c) = b(a · c)− c(a ·b).
The geometric meaning of I is found by substituting Ȧ from (2.93) into (2.91) to

obtain
V = wAB× (X− I). (2.95)

Compare this to (2.92) to see that the distribution of velocities in this link, at this
instant, is the same as is generated by a rotation about the instant center I.

2.6 Velocity Analysis of an RR Chain

The kinematics equations of an open chain define the set of positions it can reach as
a function of its joint parameters. If each of these parameters is given as a function
of time, then we obtain a curve in its workspace that defines the trajectory of the
end-link. The time derivative of the kinematics equations defines the velocity along
this trajectory.

The 3×3 transform [D] = [A,P] for planar open chains separate into a 2×2 ro-
tation matrix [A] and a 2×1 translation vector P. The translation vector P is defined
by the position of reference point in the end-link. The orientation φ of this link is the
sum of the relative rotation angles at each joint. Thus, the velocity of any trajectory
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X(t) of any point in the end-link is given by the equation

V = Ṗ+wM× (X−P), (2.96)

where wM is, the angular velocity vector of the end-link, is the sum of the angular
velocities at each joint.

2.6.1 The Jacobian

For an RR chain let θ1(t) and θ2(t) be the rotation angles at each joint. We can
compute

w = (θ̇1 + θ̇2)~k and Ṗ =

{
−aθ̇1 sinθ1
aθ̇1 cosθ1

}
. (2.97)

These two equations are considered to define the velocity of the end-link as a whole,
as opposed the velocity of trajectories traced by its points. The Ṗ and φ̇ are assem-
bled into a vector and (2.97) is written in the matrix form

{
Ṗ
φ̇

}
=

−asinθ1 0
acosθ1 0

1 1

{θ̇1
θ̇2

}
(2.98)

In robotics literature this 3×2 matrix is called the Jacobian of the RR chain. Given
a desired velocity for the end effector, we can solve these equations to obtain the
required joint rates θ̇1 and θ̇2.

Another form of the Jacobian is obtained by considering the trajectory of a gen-
eral point x in M given by

X(t) = [D(t)]x = [Z(θ1)][X(a)][Z(θ2)]x. (2.99)

Compute the velocity V = Ẋ then eliminate the M-frame coordinates using x =
[D−1]X. The result is

V = Ẋ = [Ḋ][D−1]X. (2.100)

The matrix [S] = [Ḋ][D−1] can be viewed as operating on a trajectory X(t) to com-
pute its velocity V.

For the RR chain, we use (2.11) and compute

[S] =

 0 −θ̇1− θ̇2 aθ̇2 sinθ1
θ̇1 + θ̇2 0 −aθ̇2 cosθ1

0 0 0

 . (2.101)

The upper left 2× 2 matrix is (θ̇1 + θ̇2)[J], which is the matrix that we have asso-
ciated with the angular velocity of the end-link. The third column is the velocity of
the trajectory Y(t) that passes through the origin of F . Assemble this into the matrix
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equation {
v
φ̇

}
=

0 asinθ1
0 −acosθ1
1 1

{θ̇1
θ̇2

}
. (2.102)

This alternative form for the Jacobian is the focus of our study in the last chapter of
this text.

2.6.2 The Centrode

We now compute the instant center for the instantaneous movement of the end-link
of the RR chain. From (2.94) we have

I = P+
wM× Ṗ
wM ·wM

. (2.103)

Simplify this equation and introduce the vector~e = (cosθ1,sinθ1)
T to obtain

I = a
(

θ̇2

θ̇1 + θ̇2

)
~e. (2.104)

This shows that the instant center lies on the line through the two revolute joints of
the RR chain.

Equation (2.103) defines an instant center for every configuration of the chain.
If the joint angles θ1 and θ2 are related by a function f (θ1,θ2) = 0, then the set of
instant centers forms a curve in F known as the centrode.

Other planar open chains can be analyzed in the same way to relate the velocity
of the end-link to the rate of change of the configuration parameters.

2.7 Velocity Analysis of a Slider-Crank

If the input crank to an RRRP linkage is driven at the rate θ̇ , then we can determine
the rotation rate φ̇ of the coupler link, and the linear velocity ṡ of the slider using
the velocity loop equations. These equations are obtained by computing the time
derivative of the loop equations (2.32)

θ̇

{
−r sinθ

r cosθ

}
+(θ̇ + φ̇)

{
−Lsin(θ +φ)
Lcos(θ +φ)

}
= ṡ
{

0
1

}
. (2.105)

Rearrange the terms so this equation takes the form[
0 Lsin(θ +φ)
1 −Lcos(θ +φ)

]{
ṡ
φ̇

}
= θ̇

{
−r sinθ −Lsin(θ +φ)
r cosθ +Lcos(θ +φ)

}
. (2.106)
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Notice that to solve these equations we must have previously determined the param-
eters φ and s. Then Cramer’s rule yields

ṡ
θ̇
=

r sinφ

sin(θ +φ)
and

φ̇

θ̇
=

r sinθ +Lsin(θ +φ)

Lsin(θ +φ)
. (2.107)

It is useful to note that we can obtain the slider velocity directly from the con-
straint (2.23) and avoid the need to determine φ or φ̇ . To do this, simply compute
the time derivative of this constraint equation to obtain

ṡ(s− r sinθ)− θ̇r(scosθ − esinθ) = 0. (2.108)

The result is
ṡ
θ̇
=

r(scosθ − esinθ)

s− r sinθ
. (2.109)

This equation is used to determine the mechanical advantage of this linkage.

2.7.1 Mechanical Advantage

The ratio of the static force generated at the slider to the input torque applied at
the crank is known as mechanical advantage. We compute this using the principle
of virtual work which states that the work done by input forces and torques must
equal the work done by output forces and torques during a virtual displacement.
For the RRRP linkage, we assume the weight of each link and the friction in each
joint are negligible compared to the applied forces and torques. In which case, the
principle of virtual work requires that the work done by the torque applied to the
input crank must equal the work done by the slider on an external load during a
virtual displacement.

A virtual displacement is a small movement of the system over which the applied
forces and torques are considered to be constant. This small movement is easily
defined in terms of the velocities of each link. The angular velocity of the input crank
θ̇ acting over a small increment of time δ t generates the virtual crank displacement
δθ = θ̇ δ t. Similarly, a virtual displacement of the slider is δ s = ṡδ t.

Let the input torque to the crank be T = Fin p~k, where Fin is a force applied
perpendicular to the link at a distance p along it. Then the virtual work of this torque
is Fin pδθ . The virtual work done by the slider as it applies a force F = Fout~ along
its direction of movement is Fδ s. Thus, we have

Foutṡδ t = Fin pθ̇ δ t. (2.110)

Because the virtual time increment δ t is not zero, we can equate coefficients to
obtain the relationship
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Fout
Fin

=
θ̇

ṡ
=

p(s− r sinθ)

r(scosθ − esinθ)
. (2.111)

This ratio defines the mechanical advantage of the slider-crank. Notice that it de-
pends on the configuration of the linkage, as well as the ratio p/r, which defines the
point of application of the input force Fin.

This formula has an interesting geometric interpretation. Let I be the intersection
of the line through the crank OA and the line y = s that locates the slider. We now
determine the distances |IA| and |IB| from the geometry of the linkage and obtain

|IA|= r− s
sinθ

and |IB|= e−
( s

sinθ

)
cosθ . (2.112)

Thus, we find that the mechanical advantage for the slider-crank can be written as

Fout
Fin

=
p|IA|
r|IB|

. (2.113)

Decreasing the distance |IB| increases the mechanical advantage. In fact, as tanθ

approaches s/e, the extreme position of the slider, the distance |IB| approaches zero,
and the mechanical advantage becomes very large.

2.8 Velocity Analysis of a 4R Chain

The velocity loop equations of the 4R chain are obtained by computing the time
derivative of the loop equations (2.55) to obtain

θ̇

{
−asinθ

acosθ

}
+(θ̇ + φ̇)

{
−hsin(θ +φ)
hcos(θ +φ)

}
= ψ̇

{
−bsinψ

bcosψ

}
. (2.114)

For a given input angular velocity θ̇ , these equations are linear in the angular ve-
locities φ̇ and ψ̇ of the coupler and output link. Notice that we must have already
determined the angles φ and ψ . Assemble these equations into the matrix equation[

−bsinψ hsin(θ +φ)
bcosψ −hcos(θ +φ)

]{
ψ̇

φ̇

}
= θ̇

{
−asinθ −hsin(θ +φ)
acosθ +hcos(θ +φ)

}
. (2.115)

Solve this equation to determine the velocity ratios

ψ̇

θ̇
=

asinφ

bsin(θ +φ −ψ)
and

φ̇

θ̇
=

asin(ψ−θ)−hsin(θ +φ −ψ)

hsin(θ +φ −ψ)
. (2.116)
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2.8.1 Output Velocity Ratio

We now examine the velocity properties of the 4R chain in terms of the angular ve-
locity vectors wO = θ̇~k and wC = ψ̇~k, where~ı,~, and~k are the unit vectors along the
coordinate axes of a three dimensional frame. The time derivative of the constraint
equation (B−A) · (B−A) = b2 yields

(Ḃ− Ȧ) · (B−A) = 0. (2.117)

Since Ḃ = wC× (B−C) and Ȧ = wO×A, this can be written as(
ψ̇~k× (B−C)− θ̇~k×A

)
· (B−A) = 0. (2.118)

Interchange the dot and cross operations and expand this equation to obtain

ψ̇~k ·B× (B−A)− θ̇~k ·A× (B−A)− ψ̇~k ·C× (B−A) = 0. (2.119)

Notice that the cross products A× (B−A) and B× (B−A) are equal, and, in fact,
any point on the line LAB: Y(t) = A+ t(B−A) yields the same result. In particular,
both A and B can be replaced by the point I = r~ı, which is the intersection of LAB
with the x-axis. Since C = g~ı, this equation takes the form

~k ·
(
ψ̇(r−g)− θ̇r

)
~ı× (B−A) = 0. (2.120)

It is now easy to see that the output velocity ratio is given by

ψ̇

θ̇
=
−r

g− r
. (2.121)

The distance r to the point I along the x-axis can be computed by finding the
parameter t that satisfies the relation ~ · (A + t(B−A)) = 0. Substitute this into
r =~ı · (A+ t(B−A)) to obtain

r =
absin(θ −φ)

bsinφ −asinθ
. (2.122)

Notice that the velocity ratio between the output and input links can be viewed as
instantaneously equivalent to the speed ratio between two gears in contact at the
instant center I that have the radii g− r and r respectively, see Figure 2.10.

2.8.2 Coupler Velocity Ratio

A similar relationship for the coupler velocity ratio is obtained by computing the
velocity of B in the fixed frame using vector operations. Combining this with the
fact that Ḃ · (B−C) = 0, we obtain a geometric representation of the velocity ratio.
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Fig. 2.10 The angular velocities of the input and output links are instantaneously equivalent to
gears in contact at the instant center I.

The coupler has the angular velocity wA = (φ̇ + θ̇)~k, so the velocity of B is given
by

Ḃ = Ȧ+wA× (B−A). (2.123)

Since Ȧ = θ̇~k×A, this equation becomes

Ḃ = θ̇~k×A+(φ̇ + θ̇)~k× (B−A) = θ̇~k×B+ φ̇~k× (B−A). (2.124)

Substitute this into the condition Ḃ · (B−C) = 0 to obtain(
θ̇~k×B+ φ̇~k× (B−A)

)
· (B−C) = 0. (2.125)

Notice that B can be replaced by any point on the line LCB: Y(t) = B+ t(B−C)

because ~k× t(B−C) · (B−C) = 0. In particular, consider the point J that is the
intersection of LCB with the line LOA that joins O and A. Let~e be the unit vector in
the direction A, so A = a~e and J = r~e. Substitute this into (2.125) and obtain(

θ̇r+ φ̇(r−a)
)
~k×~e · (B−C) = 0. (2.126)

For this equation to be zero, the coupler velocity ratio must satisfy the relation
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φ̇

θ̇
=

r
a− r

. (2.127)

Thus, the angular velocity ratio between the coupler and input link is instantaneously
equivalent to the speed ratio of two gears in contact at J with radii of a− r and a,
respectively, Figure 2.11.
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Fig. 2.11 The angular velocities of the input and coupler links are instantaneously equivalent to
gears in contact at the instant center J.

The value of r defining J along the line LOA is obtained by solving for t such
that~e⊥ · (B+ t(B−C)) = 0. Note that~e⊥ = (−sinθ ,cosθ)T is the unit vector per-
pendicular to~e. Then, substitute the result into the relation r =~e · (B+ t(B−A)) to
compute r.

2.8.3 Kennedy’s Theorem

We have seen that the output velocity ratio of a 4R linkage can be viewed as gen-
erated instantaneously by a pair of gears connecting the input and output links. The
points in contact along the pitch circles of the two gears, Q on the input link and P
on the output link, must have the same velocity, that is, Q̇ = Ṗ. The point in F that
coincides with these two points is the instant center I. We now show that an instant
center with this property exists for any two links moving relative to a ground frame
F .
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Consider the movement of two independent links and let their instant centers in
F be O and C. We now ask whether there are points, Q on one and P on the other,
that have both the same coordinates I = (X ,Y )T in F and the same velocity.

Let g = |C−O| be the distance between the instant centers, and let Q−O =
(r cosθ ,r sinθ)T and P−C = (g+k cosψ,k sinψ)T be the relative vectors locating
Q and P. The velocities of these points are

Q̇ = θ̇

{
−r sinθ

r cosθ

}
, Ṗ = ψ̇

{
−k sinψ

k cosψ

}
. (2.128)

If Q = P = (X ,Y )T , then Y = r sinθ = k sinψ , and to have the same velocity

Ṗ− Q̇ =

{
−ψ̇Y + θ̇Y

ψ̇(r cosθ −g)− θ̇r cosθ

}
=

{
0
0

}
. (2.129)

The first component of this equation shows that Y = 0. Set θ = ψ = 0 and let r and k
take positive and negative values so that X = r = k+g. From the second component
of (2.129) we find that r must satisfy the equation

ψ̇(r−g)− θ̇r = 0,

that is,
ψ̇

θ̇
=

r
r−g

. (2.130)

Thus, I = (r,0)T is the desired instant center. The fact that the point I must lie on
the line joining the O and C is known as Kennedy’s theorem.

2.8.4 Mechanical Advantage in a 4R Linkage

The relationship between an applied input torque and the torque generated at the
output crank of a 4R linkage is easily determined by considering the equivalent
set of gears and the principle of virtual work. From the velocity ratios determined
above, we have the virtual displacement of the output crank defined as

δψ = ψ̇δ t = θ̇
r

r−g
δ t, (2.131)

where r is the distance to the instant center I from the fixed pivot O of the drive
crank.

The virtual work of the input torque TO = TO~k is TOδθ . Similarly, the virtual
work of the output torque, TC = TC~k, is TCδψ . From the principle of virtual work
we obtain

TOδθ = TCδψ, or TOθ̇ δ t = TC
r

r−g
θ̇ δ t. (2.132)
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The virtual time increment δ t is nonzero, so we equate coefficients to obtain the
relationship

TC
TO

=
r−g

r
. (2.133)

Note that the distance r has a sign associated with its direction along the x-axis from
O. The conclusion is that the torque ratio of a linkage is the inverse of its velocity
ratio, which is exactly the torque ratio of the equivalent gear train. Notice that the
value of this torque ratio changes with the configuration of the linkage.

Let the input torque be generated by a couple, which is a pair of forces in opposite
directions but of equal magnitude FO separated by the perpendicular distance a,
so MO = aFO. Similarly, let the output torque result in a couple with magnitude
MC = bFC. Then, the ratio of output force FC to input force FO is obtained from
(2.133) as

FC
FO

=
a
b

(
r−g

r

)
. (2.134)

This ratio is called the mechanical advantage of the linkage. For a given set of
dimensions a and b the mechanical advantage is directly proportional to the velocity
ratio of the input and output links.

2.9 Analysis of Multiloop Planar Linkages

The study of mulitiloop planar linkages is covered in detail in a later chapter. Here
we summarize how to use Dixon’s determinant to solve for the configuration angles
that define the assemblies of the linkage (Wampler [148]).

2.9.1 Complex Loop Equations

Given an input angle θ0, the vector equations for each independent loop L of a planar
linkage can be written as

Fk : αk +
2L

∑
j=1

βk j cosθ j +
2L

∑
j=1

γk j sinθ j = 0, k = 1, . . . ,2L. (2.135)

Here, αk, βk j, and γk j are real quantities that depend on the dimensions of the links,
and θ j denotes the rotation angle of link j. Because the input angle θ0 is known,
we absorb it into the coefficients of αk, and these 2L equations are solved for 2L
configuration angles θ j.

Combine the loop equations (2.135) into a single complex equation by using
complex vectors x = x+ iy, where i2 =−1, rather than vectors x = (x,y). Introduce
the complex vector Θ j = eiθ j , j = 1, . . . ,2L, so the 2L loop equations become
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Ck : ck0 +
2L

∑
j=1

ck, jΘ j = 0, k = 1, . . . ,L. (2.136)

We obtain a second set of loop equations by computing the complex conjugates

C ?
k : c?k0 +

2L

∑
j=1

c?k, jΘ
−1
j = 0, k = 1, . . . ,L. (2.137)

These equations combine to provide a set of 2L complex equations for 2L complex
configuration angles Θ j that are solved using the Dixon determinant.

2.9.2 The Dixon Determinant

Suppress the joint angle Θ2L, so we have 2L complex equations in 2L−1 variables
Θ j, labeled Ck and C ?

k . These equations form the first row of the Dixon determinant.
The second row consists of the same functions but with the variable θ1 replaced by
α1. Similarly, row three has Θ1 and Θ2 replaced by α1 and α2. This continues for
the remaining rows in the determinant, so that we obtain

∆(Θ1,Θ2, . . . ,Θ2L−1)

=

∣∣∣∣∣∣∣∣∣
C1(Θ1,Θ2, . . . ,Θ2L−1) . . . C ?

L (Θ1,Θ2, . . . ,Θ2L−1)
C1(α1,Θ2, . . . ,Θ2L−1) . . . C ?

L (α1,Θ2, . . . ,Θ2L−1)
...

C1(α1,α2, . . . ,α2L−1) . . . C ?
L (α1,α2, . . . ,α2L−1)

∣∣∣∣∣∣∣∣∣ . (2.138)

his determinant is zero when Θ1,Θ2, . . . ,Θ2L−1 satisfy the loop equations, because
the elements in the first row become zero.

Insight into the structure of the determinant ∆ is obtained by noting that the
complex equations for each loop k have the form

Ck : ck0 + ck,2Lx+
2L−1

∑
j=1

ck, jΘ j and C ?
k : c?k0 + c?k,2Lx−1 +

2L−1

∑
j=1

c?k, jΘ
−1
j , (2.139)

where x denotes the suppressed variable Θ2L. These equations maintain this form
when α j replaces Θ j. Thus, we can row reduce ∆ by subtracting the second row
from the first row, then the third from the second, the fourth from the third, and so
on to obtain
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c1,1(Θ1−α1) c∗1,1(Θ
−1
1 −α

−1
1 ) . . . c∗L,1(Θ

−1
1 −α

−1
1 )

c1,2(Θ2−α2) c∗1,2(Θ
−1
2 −α

−1
2 ) . . . c∗L,2(Θ

−1
2 −α

−1
2 )

...
...

...
c1,2L−1(Θ2L−1−α2L−1) c∗1,2L−1(Θ

−1
2L−1−α

−1
2L−1) . . . c∗L,2L−1(Θ

−1
2L−1−α

−1
2L−1)

C1(α1,α2, . . . ,α2L−1) C ?
1 (α1,α2, . . . ,α2L−1) . . . C ?

L (α1,α2, . . . ,α2L−1)

∣∣∣∣∣∣∣∣∣∣
. (2.140)

Because Θ j−α j = −Θ jα j(Θ
−1
j −α

−1
j ), we can divide out these extraneous roots

(Θ−1
j −α

−1
j ) to define the determinant

δ =
∆(Θ1,Θ2, . . . ,Θ2L−1)

∏
2L−1
k=1 (Θ−1

k −α
−1
k )

, (2.141)

that is,

δ =

∣∣∣∣∣∣∣∣∣∣

−c1,1Θ1α1 c∗1,1 . . . c∗L,1
−c1,2Θ2α2 c∗1,2 . . . c∗L,2

...
−c1,2L−1Θ2L−1α2L−1 c∗1,2L−1 . . . c∗L,2L−1
C1(α1,α2, . . . ,α2L−1) C ?

1 (α1,α2, . . . ,α2L−1) . . . C ?
L (α1,α2, . . . ,α2L−1)

∣∣∣∣∣∣∣∣∣∣
. (2.142)

This determinant is a polynomial of the form

δ = aT [W ]t = 0, (2.143)

where a = (a1,a2)
T contains the monomials formed from α j, t = (t1, t2)

T are
formed from monomials of Θ j, and [W ] is the 2L×2L matrix is given by

[W ] =

[
D1x+D2 AT

A s(D∗1x−1 +D∗2)

]
, (2.144)

where D1 and D2 are diagonal matrices and the elements of A obey the relations ai j
= sa?ji and s = (−1)L−1.

The vectors of monomials a = (a1,a2)
T and t = (t1, t2)

T in (2.143) are generated
as follows. Starting with a, find all combinations

(2L−1
L−1

)
of distinct variables of

degree L− 1 from the set (α1,α2, . . . ,α2L−1)
T . Assemble these into the vector a1,

and then form a2 using the complement of degree L corresponding to each monomial
in a1. The vector t is obtained in the same way.

Values Θ j that satisfy the loop equations (2.136) and (2.137) also yield δ = 0 for
arbitrary values of the auxiliary variables α j. Thus, solutions for these loop equa-
tions must also satisfy the matrix equation

[W ]t = 0. (2.145)

This equation has nonzero solutions only if det[W ] = 0. Expand this determinant to
obtain a polynomial in x =Θ2L.

The structure of [W ] yields
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[W ]t =
[(

D1 0
A −D∗2

)
x−
(
−D2 −AT

0 D∗1

)]
t = [Mx−N]t = 0. (2.146)

Notice that the values of x that satisfy det[W ] = 0 are the roots of the characteristic
polynomial p(x) = det(Mx−N) of the generalized eigenvalue problem

Nt = xMt. (2.147)

Each value of x = Θ2L has an associated eigenvector t, which yields the values of
the remaining joint angles Θ j, j = 1,2, . . . ,2L−1.

2.9.3 Tangent Sorting

For each value of the input angle Θ0, the solution of the Dixon determinant yields
multiple roots for the configuration angles ~Θ = (Θ1, . . . ,Θ2L). Each root defines one
way that the linkage can be assembled. For example, a six-bar linkage can have as
many as six values for Θ j, or six assemblies, for each input angle. An eight-bar
linkage can have as many as 20 assemblies. Presented here is a way to sort these
roots to define these assemblies.

Assume that for the kth value of the input angle Θ0 we calculate the configuration
angles ~Θ k

i , i = 1, . . . ,m that define m assemblies of the linkage. When we increment
Θ0 and solve the loop equations, we to obtain ~Θ k+1

i , and our goal is to sort these
roots so to match those of ~Θ k

i .
Use Newton’s method to approximate the loop equations by computing the Jaco-

bian [∇C ], in order to obtain

[∇C (~Θ k
i )](~Ψ − ~Θ k

i ) = 0, (2.148)

where ~Ψ is an approximation to ~Θ k+1
i in the assembly that we seek. Solve these

equations to obtain ~Ψ , and select from the available roots ~Θ k+1
i the one that is closest

to ~Ψ , in order to match the assemblies.
The configurations traced by one assembly of a multiloop linkage is called a

circuit. The solution of (2.148) identifies a value Ψ on the tangent to the ith circuit
through ~Θ k

i . This allows rapid and exact calculation of the configuration angles for
each assembly of a multiloop planar linkage for a range of values of the input angle.

2.10 Summary

This chapter presented the position and velocity analysis of planar open chains and
the closed chain slider-crank and four-bar linkages. Conditions on the existence of
solutions to the input-output equations for the closed chains provide a classifica-
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tion scheme for these devices based on the range of movement of their cranks. The
velocity analysis of these systems lead to the introduction of instant centers and
Kennedy’s theorem, which can be used to compute the mechanical advantage of the
linkage. The position analysis of multiloop planar linkages using complex number
coordinates and the Dixon determinant elimination method were also discussed.

2.11 References

The position and velocity analysis of planar open chains follows the approach used
in robotics as found in Craig [15] and Paul [92]. The analysis of planar linkages
including the study of accelerations and dynamic forces can be found in many text-
books. See, for example, Waldron and Kinzel [144], Erdman and Sandor [30], Ma-
bie and Reinholtz [70], Mallik et al. [71], and Shigley and Uicker [114]. For fur-
ther study of the dynamics of these systems see Krishnaprasad and Yang [58] and
Sreenath et al. [125]. The strategy used to classify planar slider-crank and 4R link-
ages follows Murray and Larochelle [87]. The closed form kinematic analysis of
planar multiloop mechanism was presented by Wampler [148]. Also see Nielsen
and Roth [90], and Wampler [147].

Exercises

1. Consider the PRRP elliptic trammel formed from two PR chains connected so
that the directions of the two sliders are at right angles in the ground link. Derive
the coupler angle φ as a function of the input slider translation s and show that a
general coupler curve is an ellipse.

2. Oldham’s coupling is an RPPR linkage with the directions of the two sliders ori-
ented at a right angle to form the coupler link. Analyze this linkage to determine
the output crank angle ψ as a function of the input angle θ .

3. The Scotch yoke mechanism is an RRPP linkage with the ways of the sliders at
right angles. Analyze this linkage to determine the output slide s as a function of
the input θ .

4. Derive the algebraic equation of the coupler curve of an RRRP linkage and show
that it is a quartic curve.

5. Analyze (i) Watt’s linkage, (ii) Robert’s linkage, (iii) Chebyshev’s linkage, and
determine the coupler angle φ as a function of the input crank angle θ . Generate
the coupler curve of the point that traces an approximately straight line.

6. Derive the algebraic form of the 4R coupler curve and show that its highest de-
gree terms are (x2 + y2)3, and that those of fifth and fourth degree contain the
factors (x2 + y2)2 and x2 + y2, respectively. These features identify this curve to
as a tricircular sextic.
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7. Select a coupler point X on a 4R linkage OABC. Construct the triangle4OCY
that is similar to the coupler triangle4ABX. Show that the coupler curve traced
by X has a double point at its intersections with the circle circumscribing4OCY.

8. Show that the centrode for an RR chain becomes a circle when φ̇ = µθ̇ and
µ is constant. Because this curve lies in the fixed frame F it is called the fixed
centrode.

9. Transform the coordinates of the centrode of an RR chain to the moving frame
M by m = [T−1]I. This defines a curve known as the moving centrode. Show that
for φ̇ = µθ̇ and constant µ , the moving centrode is a circle.





Chapter 3
Graphical Synthesis in the Plane

The geometric principles that are fundamental to linkage design can be found in
simple and efficient graphical constructions for RR and PR chains. As the floating
link of one of these chains reaches various task positions, points in it define sets of
corresponding points in the fixed frame. The design problem is to find a circle for the
RR chain and a straight line for the PR chain that passes through these corresponding
points. This usually results in multiple RR and PR chains that can be combined to
form slider-crank or four-bar linkages.

3.1 Displacement of a Planar Body

The positions of moving body M can be specified by simply drawing the body in

M in F are a point D and a directed line segment~e, which we denote by M : (D,~e).
Consider two positions of M, that is, M1 : (~e1,D1) and M2 : (~e2,D2). The dis-

placement of M from the first position to the second position consists of the trans-
lation of D from D1 to D2 along the segment D1D2 = ~d12 combined with a rotation
that carries~e1 to~e2 defined by the angle φ12 measured in a counterclockwise sense.
See Figures 3.1 and 3.2.

3.1.1 The Pole of a Displacement

The displacement between two positions M1 and M2 can be achieved by a pure
rotation about a special point P12 called the pole of the displacement. The pole has
the property that it is located in exactly the same place in the ground frame F ,
whether the moving body is in position M1 or M2.

To find P12, we first consider the point of intersection C of the line through D1

along ~e1 and the line through D2 along ~e2. Notice that the angle between these

©
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D2

D1 M1

M2

C

P12

!12

!12

Fig. 3.1 The location of the displacement pole P12 when CD1 and CD2 have the same signs relative
to~e1 and~e2.

Fig. 3.2 The location of the pole P12 when CD1 and CD2 have opposite signs relative to ~e1 and~e2.

lines about C is the rotation angle φ12 of the displacement. Now construct the circle
through the vertices of the triangle4CD1D2; see Appendix B for this construction.
Let the angle ∠D1CD2 at C measured counterclockwise be denoted by κ . C is said
to view the segment D1D2 in the angle κ . Notice that every point on the circular arc
that contains C views D1D2 in the same angle. The points on the opposite circular
arc view D1D2 in the angle κ +π .

If the segments CD1 and CD2 are directed along~e1 and~e2, respectively, then κ =
φ12, see Figure 3.1. This remains true if both segments CD1 and CD2 are directed
opposite to ~e1 and ~e2. On the other hand, if CD1 is directed along ~e1 and CD2 is
directed along −~e2, as shown in Figure 3.2, or equivalently CD1 =−~e1 and CD2 =
~e2, then φ12 = κ +π .

Now consider the perpendicular bisector V = (D1D2)⊥ which intersects the two
arcs of this circle in points P and P′. Let P be the intersection with the arc that
contains C. If κ = φ12, then P is the pole P12 of the displacement. If φ12 = κ +π ,
then P′ is the pole P12. In either case, a rotation about P12 by φ12 carries the segment
P12D1 into P12D2, and the line~e1 into~e2.

M1

M2

φ12

D2

D1

C

P12 φ12
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3.1.2 Determining the Position of a Point

For any point Q in a moving body let Q1 and Q2 denote its corresponding points
in positions M1 and M2. We can use Q1 and the pole P12 to construct the point Q2,
using the fact that the displacement from M1 to M2 is a rotation about P12. Join Q1

to P12 to define the line L1, and then duplicate the angle ∠D1P12D2 from this line
around P12 to define L2; see Appendix B. Simply measure the distance P12Q1 along
the line L2 in order to define Q2, Figure 3.3. This procedure is reversed to determine
Q1 from Q2, in which case we construct the angle −φ12 about P12 from L2 to define
L1.

D2

!12
!12

D1 M1

M2

Q1

Q2

C

P12

Fig. 3.3 A general point Q1 is displaced by a pure rotation about P12 by the angle φ12 to the point
Q2.

An alternative technique for rotating Q1 about P12 to Q2 uses the fact that a rota-
tion by the angle φ12 can be achieved by a pair of reflections through lines separated
by the angle φ12/2. Consider the line L joining D1 to the pole P12 and the perpen-
dicular bisector V = (D1D2)⊥. These lines lie at the angle φ12/2 around P12. Two
reflections, one through L and a second through V, will move Q1 to its displaced
position Q2.

3.1.3 An Alternative Construction for the Pole

We now use the fact that every point in the displaced body must move in a circle
about the pole P12 in order to define an alternative construction for this point. The
two points D1 and D2 and the perpendicular bisector V = (D1D2)⊥ are already
known. (See Appendix B for the construction of a perpendicular bisector.) Now
choose another point A in the moving body and identify its corresponding points A1
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and A2 in F . The perpendicular bisector of the segment A1A2 must pass through the
pole, which means that its intersection with V is the desired point P12.

Because this must be true for any point Q in the moving body, we find that P12
is the intersection of the perpendicular bisectors of all segments Q1Q2 generated by
two positions of M.

3.1.4 The Pole Triangle

If we have three positions Mi, i = 1,2,3, for a moving body M, we can consider
the displacements in pairs and determine the poles P12, P23, P13 and the associated
relative rotation angles φ12, φ23, φ13. It is easy to see that the displacement given
by T13 : (φ13,P13) is obtained by the sequence of two displacements T12 : (φ12,P12)
followed by T23 : (φ23,P23). Thus, we have

φ13 = φ23 +φ12. (3.1)

The three poles P12, P23, and P13 form a triangle, known as the pole triangle.
See Figure 3.4. We now show that the vertex angles of the pole triangle are directly
related to the relative rotation angles φi j.

Fig. 3.4 The pole triangle associated with the three positions M1, M2, and M3.

Consider the point in the moving body M that coincides with the pole P23 when
the body is in position M2, Figure 3.5. Notice that in position M3 this point is fixed
in place by definition of the pole of the displacement T23. Now consider its location
in position M1 denoted by P1

23 and called the image pole. P1
23 moves to the location

P23 after a rotation by φ12 about P12 and after a rotation by φ13 about P13. Thus,

M2

M1

M3 D2

D1

D3 P12

P13

P23

12
2

13
2

23
2
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P1
23 must be the reflection of P23 through the side N1 = P12P13 of the pole triangle.

Furthermore, N1 bisects the rotation angle φ12 as well as the rotation angle φ13.

Fig. 3.5 The pole P23 and its image P1
23 are reflections through the side P12P13 of the pole triangle.

We can distinguish two cases: (i) the pole P13 is to the left of the directed line
segment P23P12, or (ii) P13 is to the right of P23P12. In the first case the sum of the
angles φ12 and φ23 is less than 2π , and in the second case their sum is greater than
2π .

1. If φ12+φ23 < 2π , then the interior angles of the pole triangle at P12 and P23 are the
angles φ12/2 and φ23/2, and the exterior angle at P13 is φ13/2 = φ12/2+φ23/2.

2. If φ12+φ23 > 2π , then φ12/2 and φ23/2 are the exterior angles of the pole triangle
at P12 measured from N1 to the segment P12P23, and κ = φ12/2+ φ23/2− π is
the interior angle at P13. The angle φ13/2 = κ + π measured counterclockwise
around P13.

The pole triangle provides a geometric way to determine the rotation angle and
pole of a displacement T13, given the rotation angles and poles of two relative dis-
placements T12 and T23.

3.2 The Geometry of an RR Chain

The displacement of the end-link of an RR chain is the result of a rotation first
about the moving pivot W 1 followed by a rotation about the fixed pivot G. This is
equivalent to the composition of rotations about the relative poles P12 and P23, and
we find that the dyad triangle4W 1GP12 has the same properties as the pole triangle.

P12

P13

P23

P23
1

12
2

13
2

23
2

12

13
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3.2.1 The Dyad Triangle

Consider the displacement of the floating link of an RR chain from position M1 to
position M2. Let W 1 and W 2 be the corresponding points of the moving pivot in the
two positions, and let G be the fixed pivot. The pole P12 of the relative displacement
of the M forms a triangle with W 1 and G, called the dyad triangle. We now examine
the geometry of this triangle.

Let L1 and L2 be the lines joining G to the two positions W 1 and W 2 of the
moving pivot. The angle β12 between these two lines is the rotation angle of the
crank. Choose the direction ~e1 defining the orientation of M1 to be along L1. This
allows us to identify the relative rotation of the floating link around W 2 as the angle
α12 between L2 and~e2, see Figure 3.6.

Fig. 3.6 The fixed and moving pivots G and W 1 of an RR chain and the pole P12 form the dyad
triangle4W 1GP12.

The relative rotation φ12 of the end-link between positions M1 and M2 is the sum
of the relative rotations about the fixed and moving pivots, that is,

φ12 = β12 +α12. (3.2)

Now identify the point R12 on the perpendicular bisector V12 = (W 1W 2)⊥ that
corresponds to the location of the moving pivot when the crank angle is β12/2,
that is, ∠W 1GR12 = β12/2. Notice that R12 lies on the arc of the circle through
W 1 and W 2 around G. The angle measured counterclockwise from P12W 1 to the
perpendicular bisector V12 must be one-half the rotation of the end-link, φ12/2.
There are two forms for the triangle 4W 1GP12 depending on the location of P12
relative to G along V12. It lies either on the same side as the point R12, or on the
opposite side. We have the two cases:

P12
G

M2

M1W1

W2

β12
2

φ12

α12

β12

φ12
2

α12
2
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1. If P12 is on the same side of G as R12, then β12/2 < φ12/2 and α12 +β12 is less
than 2π . In this case the interior angles of the dyad triangle at W 1 and G are
∠P12W 1G = α12/2 and ∠W 1GP12 = β12/2, respectively, and the exterior angle
at P12 between the segment P12W 1 and V12 is φ12/2 = α12/2+β12/2.

2. If P12 is on the opposite side of G as R12, then the sum α12 +β12 is greater than
2π , and φ12/2 > π . The angles α12/2 and β12/2 are the exterior angles of the
dyad triangle at W 1 and G, and κ = α12/2+ β12/2− π is the interior angle at
P12. Thus, we have φ12/2 = κ +π measured counterclockwise around P12.

3.2.2 The Center-Point Theorem

We now examine the case of three positions M1, M2, and M3 of the floating link of
an RR chain. A result fundamental to Burmester’s techniques for the design of these
chains is that the angle ∠Pi jGPjk is directly related to the crank rotation angle βik.

We know from the geometry of the dyad triangle that ∠W 1GP12 is either β12/2
or β12/2+π depending on the location of P12 relative to G. Similarly, for the dyad
triangle4W 2GP23 we have that ∠W 2GP23 is either β23/2 or β23/2+π . Now, notice
that ∠W 1GP12 = ∠P12GW 2. Considering each of the possible cases for the angle
∠P12GP23 = ∠P12GW 2 +∠W 2GP23, we see that this angle must be either β13/2 or
β13/2+π . Thus, G views the segment P12P23 in either the angle β13/2 or β13/2+π ,
see Figure 3.7.

Fig. 3.7 The fixed pivot G of an RR chain views the poles P12 and P23 in the angle β13/2, where
β13 is the crank rotation from position M1 to M3.

This generalizes to the following result central to Burmester’s theory of linkage
synthesis:
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Theorem 1 (The Center-Point Theorem). The center point G of an RR chain that
reaches three positions Mi, Mj, and Mk views the relative poles Pi j and Pjk in the
angle βik/2 or βik/2+π , where βik is the crank rotation angle from position Mi to
Mk.

Another way of saying this is that βik is the central angle of the circle circum-
scribing the triangle 4Pi jGPjk measured counterclockwise from Pi j to Pjk. For a
given set of task positions the relative poles Pi j are known, and this theorem pro-
vides a condition on the possible locations of center points.

3.3 Finite-Position Synthesis of RR Chains

We now consider the design of RR chains that reach a specific set of task positions
Mi. The positions are specified by drawing each reference point Di and direction
vector~ei, i = 1, . . . ,n, on the background plane F .

The fixed pivot G of the RR chain is located in F and attached by a link to the
moving pivot W in the moving body M. The moving pivot defines the corresponding
points W i, i = 1, . . . ,n, in each of the task positions. The points W i must lie on a
circle about G, because the crank connecting the G and W has a constant length.
Thus, the goal of the design process is to find points in the moving body that have n
corresponding positions on a circle.

3.3.1 Two Precision Positions

3.3.1.1 Select a Moving Pivot

Given two positions M1 : (~e1,D1) and M2 : (~e2,D2), a moving pivot W 1 has a second
position W 2 in F . The fixed pivot G must lie on the perpendicular bisector of the
segment W 1W 2, Figure 3.8. Any point on this line can be chosen as the fixed pivot
of the chain with W 1 as the moving pivot. This yields the following construction for
an RR chain that can reach two task positions:

1. Select any point in the moving body as the moving pivot W 1 and determine its
second position W 2 located in F .

2. Construct the perpendicular bisector V12 = (W 1W 2)⊥. Any point on this line can
be used as the fixed pivot G.

For each choice of a moving pivot W 1 there is a one-dimensional set of fixed pivots
G. Thus, there is a three-dimensional set of RR chains compatible with the two
positions.
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Fig. 3.8 The fixed pivot G of an RR chain lies on the perpendicular bisector of the segment W 1W 2.

3.3.1.2 Select a Fixed Pivot

Rather than select the moving pivot, it is may be preferable to select the fixed pivot
G and construct the associated moving pivot. To do this, we locate the pole P12
and determine the relative rotation φ12 of the displacement from M1 : (~e1,D1) to
M2 : (~e2,D2). For a specific choice of the fixed pivot G the line V = GP12 must be
the perpendicular bisector to the segment W 1W 2 for all possible moving pivots W 1,
Figure 3.9. This leads to the following construction for the moving pivot:

1. Construct the pole P12 and the relative rotation angle φ12 from the two given
positions M1 and M2.

2. Select any point in F as the fixed pivot G and draw the line V = GP12.
3. Duplicate the angle φ12/2 on either side of V around P12 to determine the lines

L1 and L2.
4. Choose any point on L1 as the moving pivot W 1. The circle about P12 with radius

P12W 1 intersects L2 in the corresponding point W 2.

The two-dimensional set fixed pivots combines with the one-dimensional set mov-
ing pivots on the line L1 to yield a three-dimensional set of RR chains that reach a
two position task.

3.3.2 Three Precision Positions

3.3.2.1 Select a Moving Pivot

Given three positions Mi : (~ei,Di), i = 1,2,3, the moving pivot W 1 for M1 moves to
the points W 2 and W 3 in the other two positions. The desired fixed pivot G is the

W 2

W 1 M1

M2

Q 1

Q 2

P12

G
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Fig. 3.9 Given the fixed pivot G the moving pivot W 1 lies on a line through P12 at the angle φ12/2
to the GP12.

center of the circle through4W 1W 2W 2, Figure 3.10. The construction for the fixed
pivot given a moving pivot is

1. Select an arbitrary point W 1 in F to be the moving pivot and determine the cor-
responding point W 2 and W 3 in positions M2 and M3.

2. Construct the perpendicular bisectors V12 = (W 1W 2)⊥ and V23 = (W 2W 3)⊥.
3. The intersection of these lines is the fixed pivot G.

Notice that for every choice of the moving pivot there is a unique fixed pivot. Thus,
there is a two-dimensional set of RR chains compatible with three task positions.

3.3.2.2 Select a Fixed Pivot

In order to determine a moving pivot W 1 given the fixed pivot for a three position
task we construct poles P12 and P13 and rotation angles φ12 and φ13, Figure 3.11.
Join G to these poles to define lines V12 and V13 that are the perpendicular bisectors
of segments W 1W 2 and W 1W 2, respectively. The moving pivot W 1 is constructed as
follows:

1. Construct the poles P12 and P13 and the rotation angles φ12 and φ13.
2. Select a fixed pivot G and join it to the poles P12 and P13 by the lines V12 and

V13.
3. Duplicate the angle φ12/2 on either side of V12 to define the lines L1 and L2, and

the angle φ13/2 on either side of V13 to define the lines M1 and M2.
4. The intersection of the lines L1 and M1 is the moving pivot W 1.

Thus, three-position synthesis yields a unique moving pivot for each fixed pivot.
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M2
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M3 D2

D1

D3 W 1

W 2

W 3

G

Fig. 3.10 For three specified positions the fixed pivot G is the center of the circle through W 1, W 2,
and W 3.

Fig. 3.11 For three specified positions the moving pivot W 1 can be constructed using the selected
fixed pivot G and the pole triangle.
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3.3.3 Four Precision Positions

Given four positions for the moving body, the moving pivot takes the positions
W i, i = 1,2,3,4. In general, these four points will not lie on a circle. However, there
are points in the moving body M that do have four corresponding points W i on a cir-
cle. Burmester introduced graphical techniques to find the centers for these circles,
which define the desired RR chains.

The tool for this construction is the opposite-pole quadrilateral, which is con-
structed from four of the six relative displacement poles, Pi j, i < j = 1,2,3,4. The
six poles are assembled into three opposite-pole pairs that have no repeating sub-
script, that is, P12P34, P13P24, and P14P23. An opposite-pole quadrilateral is formed
by identifying any two opposite-pole pairs as diagonals of the quadrilateral. For ex-
ample, the opposite-pole pairs P12P34 and P14P23 are the diagonals of the opposite-
pole quadrilateral Q : P12P23P34P14. We can now state the following theorem:

Theorem 2 (Burmester’s Theorem). The center point of an RR chain that can
reach four specified positions in the plane views opposite sides of an opposite-pole
quadrilateral obtained from the relative poles of the given positions in angles that
are equal, or differ by π .

Proof. From the center-point theorem we know that a center point G must view
the segment Pi jPik in the crank rotation angle β jk/2 or β jk/2+π . An opposite-pole
quadrilateral is constructed so that opposite sides have the form Pi jPik and Pm jPmk.
Thus, G must view opposite sides of the opposite-pole quadrilateral in the angle
β jk/2 or β jk/2+π , or one side in the angle β jk/2 and the other in β jk/2+π . ut

The following construction uses the opposite-pole quadrilateral to generate a cen-
ter point, Figure 3.12.

Theorem 3 (Construction of Center Points). Points that satisfy Burmester’s theo-
rem are obtained as follows:

1. Construct the opposite-pole quadrilateral Q : P12P23P34P14 using the relative
poles of the four task positions.

2. Choose an arbitrary angle θ and rotate the segment P12P23 by this angle about
P12 to obtain P′23. Construct a new location of P34 on a circle about P14 such that
P′34 maintains its original distance to P′23. The result is a new configuration Q′ of
the quadrilateral Q.

3. The pole G of the displacement of the segment P′23P′34 relative to its original
location P23P34 satisfies Burmester’s theorem and is a center point.

Proof. Let G be the intersection of the perpendicular bisectors V1 = (P23P′23)
⊥ and

V2 = (P34P′34)
⊥ that are used to define the pole of the displacement of the segment

P23P34. The input RR chain formed by P12P23 has the dyad triangle 4P23P12G. Let
κ be the rotation of P23P34 to P′23P′34 around G, then G must view the segment P12P23
in the angle κ/2 or κ/2+π , depending on form of the dyad triangle. Similarly, the
geometry of the dyad triangle4P34P14G requires that G view the segment P14P34 in
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either κ/2 or κ/2+π . Thus, the pole G views the opposite sides P12P23 and P14P34
in angles that are equal, or differ by π . The same argument shows that G views the
other two sides P23P34 and P12P14 in angles that are equal, or differ by π . Thus, G
satisfies Burmester’s theorem. ut

Once a center point is obtained by this construction, any three of the four posi-
tions can be used to construct the associated moving pivot. The result is an RR chain
that reaches the four specified positions.

Notice that for a given increment of rotation of the crank P12P23 of the opposite-
pole quadrilateral there are actually two center points, one for each assembly of the
quadrilateral as a linkage. The relative poles obtained from all of the configurations
of the opposite-pole quadrilateral form a cubic curve known as the center-point
curve.

P12

P23

P34

P14

G

Fig. 3.12 A fixed pivot G for four specified positions is constructed using the quadrilateral formed
by the poles P12P23P34P14.

3.3.4 Five Precision Positions

Burmester’s theorem can be used to identify center points for RR chains that reach
five specified task positions for a moving body. This is equivalent to finding points
W i, i = 1, . . . ,5, that lie on a circle. Given Mi : (~ei,Di), i = 1, . . . ,5, construct two
opposite-pole quadrilaterals Q14 : P12P23P34P14 and Q15 : P12P23P35P15. Associated
with each opposite-pole quadrilateral is a center-point curve. The intersection of
these two curves is a finite number of points that are the desired center points, known
as Burmester points. We will see later that there are at most four Burmester points,
therefore there can be at most four RR chains that reach the five task positions.
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While the constructions for two- and three-position synthesis are easy and con-
venient, four- and five-position synthesis problems are more efficiently solved using
the algebraic techniques presented in a later chapter.

3.4 The Geometry of the PR and RP Chains

A PR chain consists of a prismatic joint connected by a link to a revolute joint,
which in turn is attached to a moving body. The prismatic joint guides the moving
pivot of the PR chain along a line in the fixed frame.

The design of a PR chain that reaches a specified set of goal positions Mi, i =
1, . . . ,n, requires finding the moving pivot W 1 that has corresponding positions W i,
i = 1, . . . ,n, that lie on a straight line. Because every point in the connecting link
of the PR chain has a trajectory parallel to the slider, it is the direction of this line
that is important, not its location. Notice that the moving body can rotate as required
about the hinged R joint of the chain.

The RP chain has a prismatic joint attached to the moving body and a revolute
joint as the connection to the fixed frame. From the point of view of the moving
body the various positions of the revolute joint G must lie on a line in all the goal
positions. This is an inversion of the design problem for the PR chain.

3.4.1 Finite-Position Synthesis of PR Chains

3.4.1.1 Two Precision Positions

Given two positions of the moving body M1 and M2, we select the moving pivot W 1

and find the corresponding position W 2. These two points define the direction of the
prismatic joint parallel to W 1W 2. For any choice of a moving pivot there is a unique
PR chain. Thus, there is a two-dimensional set of PR chains that reach two specified
positions.

It is possible to choose the direction of the prismatic joint and determine the
associated moving pivot. Let the pole of the relative displacement from M1 to M2 be
P12 and determine the relative rotation angle φ12.

1. Draw a line~s in the direction of the slider and drop a perpendicular line V from
the pole P12 to~s.

2. Now duplicate the angle φ12/2 on either side of V to define the lines L1 and L2.
3. The two positions of the moving pivot W 1 and W 2 are the intersections of L1 and

L2 with~s.
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3.4.1.2 Three Precision Positions

For three task positions Mi, i = 1,2,3, we seek a moving pivot W 1 that has the
property that the three corresponding points W 1, W 2, and W 3 lie on a straight line
in F . We now show that to have this property W 1 views the side P13P12 of the pole
triangle in φ23/2.

Theorem 4 (The Slider-Point Theorem). Given three positions M1, M2, and M3,
a point that has three corresponding positions W 1, W 2, and W 3 on a line ~s has
the property that the angle measured counterclockwise from Pik to Pi j around W i is
∠PikW iPi j = φ jk/2, where φ jk is the relative rotation for each displacement.

Proof. If the points W 1, W 2, and W 3 lie on a line, then the perpendicular bisectors
V12, V13 are parallel to each other and perpendicular to the line along ~s. Recall
from the properties of a pole that the angle measured counterclockwise from Pi jW i

to the perpendicular bisector Vi j is φi j/2. Let Vi j be the midpoint of the segment
W iW j, and consider the two right triangles 4P12V12W 1 and 4P13V13W 1 that share
the vertex W 1. Assume first that φ12 +φ23 < 2π , which means that φ13/2 > φ12/2.
Then considering the various configurations available for these triangles we find
∠P13W 1P12 = φ23/2. On the other hand, if φ12 +φ23 > 2π , then φ13/2 > π and the
vertex angle of the triangle4P13V13W 1 at P13 is φ13−π . This case yields the same
result ∠P13W 1P12 = φ23/2. ut

The points that view the segment P13P12 in the angle φ23/2 form a circle C1.
This circle can be obtained as the reflection through of N1 = P12P13 of the C ∗ that
circumscribes the pole triangle4P12P23P13. We can define similar circles C2 and C3
as reflections of C ∗ through the line N2 = P12P23 and N3 = P13P23, respectively.

The three circles Ci, i= 1,2,3, intersect each other at the point H called the ortho-
center of the pole triangle. This point is also the intersection of the altitudes dropped
from each vertex of the pole triangle to the opposite side. Each line~s through H in-
tersects the three circles Ci in the points W i, i = 1,2,3. These three points are the
three locations of the moving pivot of an PR chain as the slider moves along the line
~s.

The following construction yields the moving pivot W 1 that has three positions
on a line~s:

1. Given three positions, determine the pole triangle 4P12P23P13 and construct its
circumcircle C ∗.

2. Reflect this circle through the side N1 = P12P13 to obtain C1, which is the set of
points available to be the moving pivot W 1.

3. Construct the orthocenter H of the pole triangle as the intersection of the altitudes
of the pole triangle.

4. Either choose a line ~s through H and find its intersection with C1 to determine
W 1, or choose W 1 on C1 and construct~s as its join with H.

5. The remaining positions W 2 and W 3 are obtained as the intersection of~s with the
circles C2 and C3.
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The result is that for three positions of the moving body there is a one-dimensional
set of PR chains.

3.4.1.3 Four Precision Positions

Given four positions of the moving body, we have six poles that can be assem-
bled into six pole triangles. Choose two of these triangles, for example4P12P23P13
and 4P12P24P14, and construct their two orthocenters H123 and H124. The line
~s = H123H124 joining these orthocenters contains the four corresponding points
W i, i = 1, . . . ,4. To determine W 1, intersect ~s with the circle C1 described in the
previous section. The remaining points W 2, W 3, and W 4 are obtained from the in-
tersections with the appropriate circles Ci, i = 2,3,4.

Thus, there is a single PR chain that can reach four arbitrary positions of a moving
body.

3.4.2 Finite-Position Synthesis of RP Chains

To design an RP chain, we invert the design process for a PR chain. Our goal is
to construct the point G that has the inverted positions gi, i = 1, . . . ,n, lying on a
straight line as seen from the moving body. Each inverted location gi is constructed
using the pole and rotation angle of the relative inverse displacement obtained from
the task positions.

3.4.2.1 Two Precision Positions

Given two positions of the moving body M1 and M2, we can compute the relative
pole P12. Choose any point in the plane to be g1, which coincides with G in posi-
tion M1. Compute the second position g2 by a rotation of −φ12 about P12. The line
through these two points determines the direction of the prismatic joint in M. There
is a unique RP chain for each choice of the fixed pivot.

Rather than select the point G, we can choose the direction of the line~s parallel
to the prismatic joint. The construction is essentially identical to that for a PR chain:

1. Draw a line~s in the direction of the slider and drop a perpendicular line V from
the pole P12 to~s.

2. Now duplicate the relative inverse rotation angle −φ12/2 on either side of V to
define the lines L1 and L2.

3. The inverted positions of the fixed pivot g1 and g2 are the intersections of L1 and
L2 with~s.
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3.4.2.2 Three Precision Positions

For three task positions Mi, i = 1,2,3, we now seek fixed points that have the in-
verted locations g1, g2, and g3 that lie on a straight line in M. The pole triangle
associated with the relative inverse displacements is4P12P1

23P13. It is the reflection
through the side N1 = P12P13 of the pole triangle4P12P23P13 obtained from the task
positions.

The slider-point theorem shows g1 must view the side P12P13 of the pole triangle
in the relative inverse rotation angle −φ23/2. Similarly, g2 must view P12P1

23 in the
angle −φ13/2 and g3 must view P13P1

23 in the angle −φ12/2.
Introduce the circumcircle K ∗ of the image pole triangle4P12P1

23P13. This circle
is reflected through the side N1 = P12P13 to define K1. This circle is the reflection
of the circle C1 obtained in the previous section, and happens to be the circumcircle
C ∗ of the original pole triangle. In fact, it is the circle C1 that forms the circumcircle
of the inverted pole triangle, now denoted by K ∗. The point g2 lie on the circle K2
that is the reflection of K ∗ through the line N2 = P12P1

23. And finally, g3 lies on the
circle K3 that is the reflection of K ∗ through the line N3 = P13P1

23.
The three circles Ki, i = 1,2,3, intersect each other at the orthocenter h of the

image pole triangle. Each line~s through h intersects the three circles Ki in the points
gi. These are the inverted locations of the fixed pivot G that lie on the line~s.

Thus, we have the following construction for the inverted point g1 that has with
three corresponding positions on a line~s as seen from M:

1. Given three positions, determine the inverted pole triangle4P12P1
23P13 and con-

struct its circumcircle K ∗.
2. Reflect this circle through the side N1 = P12P13 to obtain K1 that is the set of

available points for g1.
3. Construct the orthocenter h of the pole triangle as the intersection of the altitudes

to4P12P1
23P13.

4. Either choose a line ~s through h and find its intersection with K1 to determine
g1, or choose g1 and construct~s as its join with h.

5. In F the fixed pivot G is g1 the direction of ~s in each position is obtained by
constructing the location of h in each of the positions M2 and M3.

The result is a one-dimensional set of PR chains given three task positions for
the moving body.

3.4.2.3 Four Precision Positions

The construction for the RP chain through four specified positions is the same as
for the PR chain presented above. The only difference is the use of the image pole
triangles4P12P1

23P13 and4P12P1
24P14. Construct the two orthocenters h123 and h124.

Then the line~s joining these orthocenters contains the four corresponding points gi,
i = 1, . . . ,4. To determine g1 intersect~s with the circle K1 as shown in the previous
section. The result is a unique RP chain.
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3.5 The Design of Four-Bar Linkages

Planar four-bar linkages are formed by connecting the end-links of any two of the
RR, PR, and RP chains. If both chains are designed to reach a given set of task
positions, then the four-bar chain can be assembled in each of these positions.

The 4R linkage is constructed by rigidly connecting the floating links of two RR
chains, Figure 3.13. Because as many as four RR chains may exist that can reach
five positions, at most

(4
2

)
, or six, 4R linkages exist that also reach these positions.

For fewer than five task positions, the dimensionality of the space of 4R linkages is
twice the dimensionality of solutions for the RR chains.

A2

A1 M1

M2

B1

B2

P12

O

C

Fig. 3.13 Two-position synthesis of a 4R chain is obtained by constructing two different RR open
chains and connecting their end-links.

The RRRP linkage is formed by connecting the floating links of an RR and PR
chain. For four task positions there is a one dimensional set of RRRP linkages. They
are obtained from the single PR chain and the one dimensional set of RR chains
obtained from the center-point curve. For the cases of two and three task positions
there are, respectively, five- and three-dimensional sets of RRRP chains.

A two-dimensional set of double-slider PRRP linkages can be constructed for
three task positions. Two task positions have an associated four-dimensional set of
these linkages.

Four-bar linkages have one degree of freedom, and therefore require only one
actuator. However, the interaction of the two chains forming the linkage can generate
singular configurations that introduce limits to the movement of the system.
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3.6 Summary

In this chapter we have presented graphical techniques for the design of planar RR
and PR chains. The geometry of the pole triangle and the center-point theorem that
arise in this study are central to the geometric theory of linkage design. In the fol-
lowing chapters we develop an algebraic formulation to broaden the application
of these results, and to lay the foundation for their generalization to the design of
spherical and spatial linkages.

3.7 References

Our approach to the design of linkages is called the design of a guiding linkage
by Hall [42], rigid body guidance by Suh and Radcliffe [134], motion generation
by Sandor and Erdman [112], and finite-position synthesis by Roth [106]. It is
inspired by ideas introduced by Ludwig Burmester [7] for planar movement and
Arthur Schoenflies [113] for spatial movement. Also see Beyer [4]. The texts by
Hartenberg and Denavit [46], Hall [42], and Kimbrell [56] provide detailed devel-
opment of graphical linkage synthesis. The use of the opposite-pole quadrilateral to
construct the center-point curve can be found in Luck and Modler [69].

Exercises

1. Figure 3.14 shows two goal positions for the cover of a box. (i) Construct the
pole of the displacement; then (ii) design a 4R linkage to move the cover from
one position to the other. Place the fixed pivots inside the box and attach the
moving pivots outside the boundary of the cover.

M1

M2

Fig. 3.14 Design a 4R linkage to move the cover.
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2. Use three-position synthesis to design a 4R linkage to move the scoop in Fig-
ure 3.15 from the first position to the third. Choose the intermediate position M2
so that it clears the obstacle.

M1

M3

Fig. 3.15 Design a 4R linkage to move the scoop so it clears the obstacle.

3. Reflect a point A∗ through each side of the pole triangle 4P12P23P13 to obtain
Ai, i = 1,2,3. Show that these points are correspond to the same point A in M
for each of the positions Mi, i = 1,2,3. The point A∗ is called the cardinal point
associated with a point in M.

4. Show that the circle that circumscribes a pole triangle is the set of cardinal points
for those that have three positions on a straight line.

5. Show that the orthocenter H∗ of the pole triangle is the cardinal point for a point
that has its three positions Hi, i = 1,2,3, on the circumscribing circle of the pole
triangle.

6. Assume that five points are given as five of the six relative position poles asso-
ciated with four task positions, Mi, i = 1, . . . ,4. Suppose the missing pole is P24.
Construct this pole as the common vertex of the two pole triangles 4P24P41P12
and4P24P34P23.

7. Let the points P12, P23, P34, and P14 be the relative poles for four positions Mi,
i = 1, . . . ,4. For a fifth point to be the pole P13 it must form the two pole triangles
4P12P23P13 and P14P34P23. Show that P13 must view the opposite sides of the
quadrilateral Q : P12P23P34P14 in angles that are equal, or differ by π . The set of
points with this property is called the pole curve.



Chapter 4
Planar Kinematics

In this chapter we study the geometry of planar displacements. The position of a
moving body is defined by a coordinate transformation. Associated with each of
these transformations is an invariant point called the pole of the displacement. We
examine the relationship between relative positions of points in the moving body
and the location of this pole. We also consider the triangle formed by the poles of
two displacements and the pole of their composite displacement. The geometry of
this triangle describes the relationship between the three displacements.

4.1 Isometry

between points in the body are unchanged. A transformation with this property is
called an isometry. The measurement of distance is given by the usual distance
formula, which is also known as the Euclidean metric in the plane.

Consider the two points P = (Px,Py)
T and Q = (Qx,Qy)

T in a fixed frame F . The
distance between these points is the magnitude of the vector Q−P, given by

|Q−P|=
√

(Qx−Px)2 +(Qy−Py)2. (4.1)

Square both sides of this formula to obtain the Pythagorean theorem

|Q−P|2 = (Qx−Px)
2 +(Qy−Py)

2. (4.2)

Using vector notation, this equation can be written

|Q−P|2 = (Q−P) · (Q−P), (4.3)

where the dot denotes the scalar product between two vectors. It is useful to consider
the vector Q−P as a column matrix, so that the scalar product can also be written
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as the matrix product
|Q−P|2 = (Q−P)T (Q−P). (4.4)

In order to study the movement of a body we attach a coordinate frame M to it and
determine the position of this frame relative to a fixed coordinate frame F . Assume
that initially M coincides with F . Then a displacement of the body moves M so it
takes the position M′ relative to F . This displacement is defined by a transformation
of coordinates from M′ to F . In addition, because the transformation is an isometry,
the distances between points in M′ are the same as when measured in F . Planar
displacements are composed of planar translations and rotations.

4.1.1 Planar Translations

Let the coordinates of a point in the moving body M be denoted by the vector x =
(x,y)T , and let the coordinates of the same point in F be X = (X ,Y )T . If the moving
frame M coincides initially with F , then for every point in M we have X = x. Now
add a constant vector d = (dx,dy)

T to the coordinates of all the points in the body in
order to translate it to a new position M′ relative to F , that is,

X = x+d. (4.5)

The vector x defines a point in the initial position and X is the coordinate vector of
this point after M is translated to the new position M′.

To see that a translation is an isometry, we compute the distance between two
points before and after the translation. If p and q are the coordinates of two points
in M, then in the position M′ we have P = p + d and Q = q + d. Compute the
distance |Q−P| to obtain

|Q−P|= |(q+d)− (p+d)|= |q−p|. (4.6)

Thus, the distance between these points is the same before and after the translation.

4.1.2 Planar Rotations

The rotation of a body relative to the fixed frame F can occur around any point.
However, for now we consider only rotations about the origin O of F . Let M be
aligned initially with F , then a rotation about O introduces an angle φ between the
x-axis of F and the x-axis of the rotated frame M′. Thus, a rotation changes the
direction of the unit vectors~ı = (1,0)T and~= (0,1)T along the x and y axes of M
so they are directed along the coordinate axes of M′.

Let ex and ey be the unit vectors along the x- and y-axes of M′, then
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ex = cosφ~ı+ sinφ~ and ey =−sinφ~ı+ cosφ~. (4.7)

The rotation from M to M′ transforms the vector x = x~ı+ y~ into

X = X~ı+Y~= xex + yey. (4.8)

This can be written in matrix form as{
X
Y

}
=

[
cosφ −sinφ

sinφ cosφ

]{
x
y

}
, (4.9)

or
X = [A(φ)]x. (4.10)

Notice that the first column of the 2× 2 matrix [A(φ)] is simply ex and the second
column is ey. All planar rotations about the origin of F can be written in this way,
and the matrix [A(φ)] is called a rotation matrix and φ the rotation angle.

We now show that rotations preserve the distances between points. Let p and q
be the coordinates of two points in M, and let P and Q be their coordinates in F
when M is rotated to the position M′. We can compute

|Q−P|2 = (Q−P)T (Q−P) = ([A]q− [A]p)T ([A]q− [A]q)

= (q−p)T [AT ][A](q−p). (4.11)

The last step uses the linearity of matrix multiplication, [A]q− [A]p = [A](q−p).
Notice that |Q−P|= |q−p| only if the matrix [A] has the property

[AT ][A] = [I], (4.12)

where [I] denotes the 2× 2 identity matrix. This is equivalent to saying that the
transpose of [A] is also its inverse, that is, [A−1] = [AT ]. Matrices with this property
are called orthogonal, because their columns must be orthogonal unit vectors. The
columns of [A(φ)] in (4.9) are the orthogonal unit vectors ex and ey, so a planar
rotation is an isometry.

The product of two planar rotations [A(φ1)] and [A(φ2)] is the rotation of angle
φ1 +φ2, that is,

[A(φ1)][A(φ2)] = [A(φ1 +φ2)]. (4.13)

From this relation, we see that the inverse of [A(φ)] is the rotation by the angle −φ ,
and [A(φ)T ] = [A(−φ)].

4.1.3 Planar Displacements

A general planar displacement consists of rotation of the coordinate frame M to M′

followed by a translation of M′ to a position M′′. Rather than distinguish between
its initial and final positions, M and M′′, we assume that the moving frame is always
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aligned initially with F , and denote the final position by M, Figure 4.1. Thus, the
displacement that defines the position of the moving frame M relative to the fixed
frame F is the coordinate transformation{

X
Y

}
=

[
cosφ −sinφ

sinφ cosφ

]{
x
y

}
+

{
dx
dy

}
, (4.14)

or
X = [A(φ)]x+d. (4.15)

It is convenient to assemble the rotation matrix and translation vector into the single
3×3 matrix [T ], so equation (4.14) takes the formX

Y
1

=

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

x
y
1

 , (4.16)

or
X = [T ]x. (4.17)

The context of our calculations will make it clear whether we consider the coordi-
nate vectors X and x have a third component of 1. We use the matrix-vector pair [T ]
= [A(φ),d] to define the position of the moving frame M relative to F .

F
M

X

x

d

!

Fig. 4.1 The fixed and moving frames defining a planar displacement.

4.1.3.1 Complex Vectors

Complex numbers provide a convenient way to manipulate the coordinates of points
in the plane. Let the coordinate vector X be the complex number X = X + iY , where
i is the imaginary unit (i2 =−1). A translation by the vector d is defined by complex
addition, so X = x+d. Rotation by the angle φ is achieved by multiplication by the
complex exponential eiφ , X = eiφ x. Thus, a general planar displacement is defined
by the equation
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X = eiφ x+d. (4.18)

The advantage of using complex numbers lies in the ease of manipulating the
complex exponential eiφ , as opposed to the rotation matrix [A(φ)]. For example, the
product of two rotations eiφ1 and eiφ2 is seen to be ei(φ1+φ2), and the inverse of eiφ is
e−iφ .

4.1.4 The Composition of Two Displacements

Two planar displacements can combine to define a third displacement called the
composition of the two displacements. Consider [T1] to define the displacement from
F to M1, so we have

X = [A1]y+d1 = [T1]y. (4.19)

Notice that y is in M1 and X is in F . If the displacement [T2] defines the position of
M2 relative to M1, then we have

y = [A2]x+d2 = [T2]x, (4.20)

where x is in M2. The composite displacement from F to M2 is obtained by direct
substitution

X = [A1A2]x+d1 +A1d2 = [T1][T2]x. (4.21)

This computation defines a product operation [T3] = [T1][T2] for displacements given
by

[T1][T2] = [A1,d1][A2,d1] = [A1A2,d1 +A1d2]. (4.22)

The inverse displacement is obtained by solving for x in M in terms of the point
X in F , that is,

x = [A(φ)T ]X− [A(φ)T ]d = [T−1]X. (4.23)

Thus, the inverse of a displacement [T ] = [A(φ),d] is

[T−1] = [A(φ)T ,−A(φ)T d]. (4.24)

The composition of a displacement with its inverse yields the identity displacement
[I] = [I,0].

4.1.4.1 Changing Coordinates of a Displacement

Consider the planar displacement X = [T ]x that defines the position of M relative to
F . We now consider the transformation [T ′] between the frames M′ and F ′ that are
displaced by the same amount from both M and F . In particular, let [R] = [B,c] be
the displacement that transforms the coordinates between the primed and unprimed
frames, that is, Y = [R]X and y = [R]x are the coordinates in F ′ and M′, respectively.
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Then, from X = [T ]x we can compute

Y = [R][T ][R−1]y. (4.25)

Thus, the original displacement [T ] is transformed by the change of coordinates into
[T ′] = [R][T ][R−1].

4.1.5 Relative Displacements

Consider two positions M1 and M2 of a rigid body defined by the displacements [T1]
and [T2] relative to F . Let X = [T1]x and Y = [T2]x, where both M1 and M2 initially
coincide with F . The transformation [T12] that carries the coordinates X of M1 in F
into the coordinates Y of M2 in F is defined by

Y = [T12]X,

or

[T2]x = [T12][T1]x. (4.26)

Thus, [T12] is given by
[T12] = [T2][T−1

1 ]. (4.27)

This defines the relative displacement from M1 to M2 measured in F .
The relative rotation and translation components of [T12] = [A12,d12] are de-

termined by the rotation and translation components of [T1] = [A1,d1] and [T2] =
[A2,d2]. Expand the composition of these displacements to obtain

[T12] = [A12,d12] = [A2AT
1 ,d2−A2AT

1 d1]. (4.28)

If the rotation angles of these displacements are φ1 and φ2, respectively, then we see
that the rotation angle of [A12] is φ12 = φ2−φ1.

For a set of positions [Ti] = [A(φi),di], i= 1, . . . ,n, of a moving body M measured
in F , we have the relative displacement [Tjk] = [Tk][T−1

j ] given by

[Tjk] = [A jk,d jk] = [AkAT
j ,dk−AkAT

j d j], (4.29)

where
φ jk = φk−φ j, (4.30)

is the relative rotation angle.
The complex exponential simplifies the calculation of the rotation terms in these

transformation equations. In particular, the relative displacement [T12] = [eiφ12 ,d12]
is given by
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[T12] = [T2][T−1
1 ] = [eiφ2 ,d2][e−iφ1 ,−e−iφ1d1]

= [eiφ12 ,d2− eiφ12d1]. (4.31)

4.1.6 Relative Inverse Displacements

The inverse [T−1] of a displacement [T ] defines the position of F measured relative
to the moving frame M. Given two positions of a moving body M1 and M2 defined
by the displacements [T1] and [T2], then [T−1

1 ] and [T−1
2 ] define displacements that

locate the fixed frame in two positions F1 and F2 relative to M. We now consider the
relative inverse displacement from F1 to F2 in M.

Let X be a point in F that corresponds to x in M1 and y in M2. Then, we have x =
[T−1

1 ]X and y = [T−1
2 ]X. The relative displacement [T †

12] transforms the coordinates
in F1 to coordinates in F2 measured in M, that is,

y = [T †
12]x,

or

[T−1
2 ]x = [T12][T−1

1 ]x. (4.32)

Thus, [T †
12] is given by

[T †
12] = [T−1

2 ][T1]. (4.33)

This is called the relative inverse displacement. The formula for the rotation and
translation terms of [T †

12] is obtained as

[T †
12] = [A†

12,d
†
12] = [AT

2 A1,−AT
2 (d2−d1)]. (4.34)

Notice that this is not the inverse of the relative displacement [T12], which would be
[T1][T−1

2 ].
Associated with the set of positions Mi, i = 1, . . . ,n, is the set of relative inverse

displacements [T †
ik ]. Each of these transformation is defined from the point of view

of the moving frame M. We can choose a specific position Mj in F and transform
the coordinates of the inverse displacement [T †

ik ] to obtain

[T j
ik] = [Tj][T

†
ik ][T

−1
j ]. (4.35)

This is known as the image of the relative inverse transformation for position Mj in
F .

If Mj is one of the frames of the relative inverse displacement, that is j = i, then
we have

[T i
ik] = [Ti]([T−1

k ][Ti])[T−1
i ] = [Ti][T−1

k ] = [T−1
ik ]. (4.36)
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This is also true for j = k. Thus, for j = i or j = k, the image of the relative inverse
displacement [T j

ik] is the inverse of the relative displacement.

4.2 The Geometry of Displacement Poles

An important feature of any transformation is the set of points that it leaves in-
variant. For a general planar displacement there is a single point that has the same
coordinates in M and in F . This point is called the pole of the displacement. A planar
displacement is equivalent to a pure rotation about this pole.

4.2.1 The Pole of a Displacement

Let P be the coordinates of a point that are unchanged by the planar displacement
[T ] = [A(φ),d], that is,

P = [A(φ)]P+d. (4.37)

We can solve this equation to determine the coordinates of P as

P = [I−A(φ)]−1d. (4.38)

Notice that if the displacement is a pure translation, then A = I and [I−A] is not
invertible. In this instance the pole is said to be at infinity in the direction orthogonal
to d.

For the case of a nontrivial 2×2 rotation matrix [A], the matrix [I−A] is always
invertible. This is not the case when [A] is a 3×3 rotation matrix, as we will see for
spatial rotations.

The pole p of the inverse displacement [T−1] = [AT ,−AT d] can be determined
by substituting the inverted rotation and translation into (4.38). The calculation

p =−[I−AT (φ)]−1[AT ]d = [I−A(φ)]−1d = P (4.39)

shows that [T ] and its inverse [T−1] have the same pole P.
The formula (4.38) can be used to define the translation component of the dis-

placement in terms of the coordinates of the pole, that is,

d = [I−A(φ)]P. (4.40)

Thus, a planar displacement [T ] = [A(φ),d] can be defined directly in terms of a
rotation angle φ and pole P such that

[T (φ ,P)] =
[
A(φ), [I−A(φ)]P

]
. (4.41)
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Let the translation vector d be defined in terms of the coordinates of the pole, so
the coordinate transformation (4.14) becomes

X = [A(φ)]x+[I−A(φ)]P. (4.42)

Rewrite this equation in terms of vectors X−P and x−P measured relative to the
pole to obtain

X−P = [A(φ)](x−P). (4.43)

This shows that the displaced position X of any point x is obtained by rotating the
vector x−P by the angle φ . Thus, a general planar displacement is a pure rotation
about its pole.

4.2.2 Perpendicular Bisectors and the Pole

Because the relative vectors x−P and X−P are related by pure rotation (4.43) their
magnitudes |X−P| and |x−P| must be equal. This is equivalent to the statement

(X−P)2− (x−P)2 = 0. (4.44)

Consider this to be the difference of two squares using the scalar product and factor
to obtain

(X−x) ·
(

X+x
2
−P
)
= 0. (4.45)

Notice that V = (X+ x)/2 is the midpoint of the segment X− x, and V−P is the
vector from the pole to V. This allows us to interpret (4.45) geometrically as stating
that V−P is the perpendicular bisector of X−x. Thus, because this equation is true
for any point x, we find that the pole P lies on the perpendicular bisector of every
segment joining the initial and final positions of points in a displaced body.

This last result provides another way to compute the pole of a planar displace-
ment. Let r, R and s, S be two sets of initial and final positions of points associated
with a displacement [T ]. Then these points satisfy (4.45) and we have

(R− r) ·
(

R+ r
2
−P
)
= 0,

(S− s) ·
(

S+ s
2
−P
)
= 0. (4.46)

These two equations expand to define two linear equations in the coordinates of P,
which are easily solved.

For a general point x in M the triangle4xPX is isosceles with the rotation angle
φ at the vertex P. The altitude of this triangle is the perpendicular bisector V−P,
therefore
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tan
φ

2
=
|X−V|
|V−P|

. (4.47)

Introduce the operator~k×, which performs a rotation by 90◦ in the plane. Then we
have

X−V = tan
φ

2
~k× (V−P). (4.48)

Replace the midpoint V by its definition in terms of the vectors x and X in order to
obtain Rodrigues’s equation in the plane,

X−x = tan
φ

2
~k× (X+x−2P). (4.49)

4.2.3 Pole of a Relative Displacement

The pole of the relative displacement from M1 to M2 is an important tool in
linkage design. This pole P12 is found by applying (4.38) to the transformation
[T12] = [A(φ12),d12]. This can be written in terms of the components of the two
displacements [T1] and [T2] as

P12 = [I−A(φ12)]
−1(d2−A(φ12)d1). (4.50)

Recall that φ12 is measured from the x-axis of M1 to the x-axis of M2.

F
!2

!1

M2 M1

P12

d1

d2

Fig. 4.2 The relative pole P12 of the two positions M1 and M2.

The relative translation vector d12 is given in terms of the pole P12 by the relation
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d12 = [I−A(φ12)]P12. (4.51)

This can be substituted into the transformation equation (4.29) and simplified to
yield

X2−P12 = [A(φ12)](X1−P12). (4.52)

Thus, the relative displacement is a pure rotation about the relative pole, Figure 4.2.
From the fact that the magnitudes of X1−P12 and X1−P12 are equal we have

(X2−P12)
2− (X1−P12)

2 = 0, (4.53)

which can be manipulated into the form

(X2−X1) ·
(

X2 +X1

2
−P12

)
= 0. (4.54)

Thus, the relative pole P12 lies on the perpendicular bisector of the segment X2−X1.
For a general pair of positions Mj and Mk defined by transformations [Tj] and

[Tk] we have
P jk = [I−A jk]

−1(dk−A jkd j). (4.55)

The relative displacement [Tjk] is a rotation about the pole P jk.

4.2.4 The Pole of a Relative Inverse Displacement

The pole pik of the relative inverse displacement [T †
ik ] is located in M and given by

(4.50) as
pik = [I−A†

ik]
−1d†

ik =−[Ak−Ai]
−1(dk−di). (4.56)

The relative angle of rotation about pik is −φik, where φik = φk−φi is the angle of
Mk relative to Mi.

We now compute the point in F that corresponds to pik when the body is in
position Mj. This point P j

ik is the image of the pole pik, and is called the image pole
in the jth position. A formula for P j

ik is obtained by using the transformation [Tj] =
[A j,d j] to compute

P j
ik = [Tj]pik = [Ai j−A jk]

−1(dk−di)+d j. (4.57)

When j = i, the image pole Pi
ik is given by

Pi
ik = [I−Aik]

−1(dk−di)+di = [I−Aik]
−1(dk−Aikdi) = Pik. (4.58)

Thus, the image pole Pi
ik is the pole Pik for all k. A similar calculation shows that

Pk
ik = Pik for all positions i.
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4.3 The Pole Triangle

4.3.1 The Pole of a Composite Displacement

The poles of two displacements [Ta] and [Tb] form a triangle with the pole of their
composition [Tc] = [Tb][Ta]. Let α and β be the rotation angles of [Ta] and [Tb],
respectively, and let γ be the rotation angle for [Tc]. If we write these transformations
in terms of the coordinates of the poles, we have[

A(γ), [I−A(γ)]C
]
=
[
A(β ), [I−A(β )]B

][
A(α), [I−A(α)]A

]
. (4.59)

Expand this expression and equate the rotation and translation terms to obtain

[A(γ)] = [A(β )][A(α)] = [A(β +α)],

[I−A(γ)]C = [I−A(β )]B+[A(β )][I−A(α)]A. (4.60)

The first equation states that γ = β +α . The second provides a formula for the pole
C in terms of the coordinates of the poles B and A. We will see that this second
equation is the formula for a planar triangle with α/2 and β/2 as the angles at the
vertices A and B.

The computation of the product [Tc] = [Tb][Ta] is simplified by using complex
vectors, that is,

[eiγ ,(1− eiγ)C] = [eiβ ,(1− eiβ )B][eiα ,(1− eiα)A], (4.61)

which expands to yield

eiγ = eiβ eiα ,

(1− eiγ)C = (1− eiβ )B+ eiβ (1− eiα)A. (4.62)

We have already seen that the rotation terms yield γ = α +β . The second equation
is the complex number form of the equation of a triangle formed by the poles A, B,
and C, Figure 4.3.

Fig. 4.3 The triangle formed by three points A, B, and C.

C

B A

γ
2

β
2

α
2



4.3 The Pole Triangle 87

4.3.1.1 The Composite Pole Theorem

A fundamental result in the geometry of planar displacements is the relationship be-
tween the vertex angles of the triangle formed the poles of a composite displacement
and its two factors and the rotation angles of these displacements.

Theorem 5 (The Composite Pole Theorem). The pole C of a composite displace-
ment [T (γ,C)] = [T (β ,B)][T (α,A)] forms a triangle with the poles B and A. If
α +β < 2π , then α/2 and β/2 are the interior angles at the vertices A and B, re-
spectively, and γ/2 is the exterior angle at C. If α + β > 2π , then α/2 and β/2
are the exterior angles at A and B. Denote by κ the interior angle at C, then
γ/2 = κ +π .

Proof. The two cases are distinguished by the location of C relative to the segment
BA. If the sum of α and β is less than 2π , then C lies to the left of the directed
segment BA, in which case the angle ∠ABC is less than π . If the sum of α and β

is greater than 2π , then the angle ∠ABC is greater than π and C lies to the right of
BA. We consider these cases separately:

Case 1. α +β < 2π

In this case the angles α/2 and β/2 are the interior angles of4ABC at the vertices
B and A. The exterior angle at C is γ/2 = α/2+β/2. The vector C−B defining
one side of this triangle can be obtained by rotating the vector A−B by the angle
β/2 and rescaling it using the law of sines. The result is

C−B =

(
sin α

2

sin(π− γ

2 )

)
eiβ/2(A−B). (4.63)

Use the identities

sinα/2 =
−1
2i

(1− eiα)e−iα/2 and sin(
π− γ

2
) = sinγ/2 (4.64)

to obtain the formula

(1− eiγ)C = (1− eiβ )B+ eiβ (1− eiα)A. (4.65)

This equation is identical to (4.62) and defines the vertex C in terms of the vertices
A and B and their interior angles.

Case 2. α +β > 2π

In this case the angles α/2 and β/2 are the exterior angles at the vertices B and A.
The interior angle at C is κ = α/2+ β/2− π . The side C−B of this triangle is
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obtained by rotating A−B by the angle β/2 and then rescaling its length by using
the sine law. The result is

C−B =−
(

sin(π− α

2 )

sinκ

)
eiβ/2(A−B). (4.66)

Now, notice that sin(π−α/2) = sinα/2, therefore this equation becomes identical
to (4.63) for γ/2 = κ +π , that is, sin(γ/2−π) =−sinγ/2.

The result is that in both cases we obtain (4.65), which is exactly the equation
defining the composite translation (4.62). ut

Fig. 4.4 The pole triangle4P12P23P13 with sides N1, N2, and N3.

4.3.2 The Triangle of Relative Displacement Poles

Given three positions of a body Mi, i = 1,2,3, we have the three relative displace-
ments [T12], [T23], and [T13] between pairs of these positions. The product [T23][T12]
is the relative displacement [T13] as can be seen from

[T23][T12] = ([T3][T−1
2 ])([T2][T−1

1 ]) = [T3][T−1
1 ] = [T13]. (4.67)

Thus, the three relative displacement poles are related by the composite pole theo-
rem, and we have

(1− eiφ13)P13 = (1− eiφ23)P23 + eiφ23(1− eiφ12)P12. (4.68)

This is the equation of the pole triangle.
For a general set of three positions Mi, Mj, and Mk we have the relative transfor-

mations [Tik] = [Tjk][Ti j] and the pole triangle

(1− eiφik)Pik = (1− eiφ jk)P jk + eiφ jk(1− eiφi j)Pi j. (4.69)

φ12
2

φ23

φ13

2

2

P12

P13

P23

N2

N3

N1



4.3 The Pole Triangle 89

The composite pole theorem shows that each of the poles Pi j, P jk, and Pik views
the opposite side of the triangle of relative poles in angles directly related to one-half
of the associated relative rotation angle, Figure 4.4.

4.3.3 The Image Pole Triangle

Consider relative inverse displacements associated with three positions Mi, Mj, and
Mk. Let M be in position Mi and transform coordinates to obtain the image of the
relative inverse displacements, [T i

i j], [T
i
jk], and [T i

ik]. Notice that

[T i
ik] = [T i

jk][T
i

i j]. (4.70)

The composite pole theorem yields the equation of the image pole triangle

(1− e−iφik)Pi
ik = (1− e−iφ jk)Pi

jk + e−iφ jk(1− e−iφi j)Pi
i j. (4.71)

Compare this to the pole triangle for three relative displacements (4.69). Recall that
Pi

ik = Pik and Pi
i j = Pi j are the poles of the original relative displacements. Thus, the

image pole Pi
jk is the reflection of P jk through the line joining Pi j and Pik, Figure 4.5.

Fig. 4.5 A comparison of the image pole triangle4Pi
i jPi

jkPi
ik in position Mi with the pole triangle

4Pi jP jkPik.

4.3.4 The Circumscribing Circle

The equation of the circle that circumscribes the triangle4ABC can be obtained as
follows. The basic principle we use is that a general point X on the circle forms the
angle ∠AXB that is equal to φ = ∠ACB or φ +π .

Pij

Pik

Pjk

φij
2

φjk
2

Pjki

2

2

φik
φjk

φij

2

φik
2
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The cosine of the angle φ at C can be computed from the vectors A−C and
B−C using the formula

cosφ =
(A−C) · (B−C)

|A−C||B−C|
. (4.72)

The sine of this angle is obtained by using the determinant of the matrix [A−C,B−
C], that is,

sinφ =

∣∣A−C, B−A
∣∣

|A−C||B−C|
. (4.73)

Notice that we are using vertical bars to denote the determinant of a matrix. Thus,
we have

tanφ =

∣∣A−C, B−C
∣∣

(A−C) · (B−C)
=

LAB

CAB
. (4.74)

The same formula defines the angle ∠AXB, and because tanφ = tan(φ + π), we
have

C :

∣∣A−X, B−X
∣∣

(A−X) · (B−X)
=

LAB

CAB
, (4.75)

or
C :

∣∣A−X, B−X
∣∣CAB− (A−X) · (B−X)LAB = 0. (4.76)

This is the equation of the circle through the three points A, B, and C.
The radius R of this circle is obtained from the identity 2Rsinφ = |B−A| and

(4.73),

R =
1
2
|B−A||A−C||B−C|∣∣A−C, B−C

∣∣ . (4.77)

As an example, we compute the equation of the circumscribing circle of the pole
triangle4P12P23P13, given by∣∣P13−P23, P12−P23

∣∣
(P13−P23) · (P12−P23)

=
L23

C23
. (4.78)

Thus, we obtain

C :
∣∣P13−X, P12−X

∣∣C23− (P13−X) · (P12−X)L23 = 0 (4.79)

as the equation of this circle.

4.4 Summary

This chapter has presented the algebraic form the geometric concepts introduced in
the previous chapter. Of particular importance are the definition of a relative dis-
placement and the properties of the pole triangle. It is interesting that these concepts
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are relatively easy to understand graphically, while they are difficult to define alge-
braically. However, we need this latter approach in order to obtain similar results for
spatial rotations and general spatial displacements.

4.5 References

The geometric theory presented here can be found in Hartenberg and Denavit [46]
as well as in Bottema and Roth [5]. The results on the equation of a triangle are
drawn from [78], while the complex vector formulation follows Erdman and Sandor
[30].

Exercises

1. Determine the 3× 3 homogeneous transform [T12] that defines the planar dis-
placement by constructing the matrix equation using homogeneous coordinates
[A2,B2,C2] = [T12][A1,B1,C1]. Solve this equation for [T12], using the coordi-
nates in Table 4.1 (Suh and Radcliffe [134]).

Table 4.1 Point coordinates defining two planar positions.

Point M1 M2

Ai (2,4,1)T (5,1,1)T

Bi (2,6,1)T (7,1,1)T

Ci (1,5,1)T (6,2,1)T

2. Show that the coordinates of the pole P= (px, py)
T of a displacement [T ] = [A,d]

are given by

px =
dx
2 sin φ

2 −
dy
2 cos φ

2

sin φ

2

and py =
dx
2 cos φ

2 +
dy
2 sin φ

2

sin φ

2

. (4.80)

3. Given two displacements [T1] = [A1,d1] and [T2] = [A2,d2], derive a formula for
the coordinates of the pole P12 of the relative displacement [T12].

4. Let two planar positions be M1 = (0◦,1,1) and M2 = (60◦,3,2), and determine
the relative position pole P12 for these two displacements (Suh and Radcliffe
[134]).

5. Complete the derivation of the equation of the planar triangle using complex
numbers to obtain (4.65).

6. Given the coordinates A = (3,3)T and B = (1,1)T and interior angles α = 30◦

and β = 60◦, compute the coordinates of the point C.
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7. Let C i be the reflection of the circumscribing circle of the pole triangle through
the side Ni = Pi jPik. Show that the three circles C i, i = 1,2,3, intersect in the
orthocenter of the pole triangle.

8. Given three positions and the associated pole triangle4P12P23P13 determine the
image pole triangle 4P1

12P1
23P1

13 for M in position M1. Show that this triangle
has P1

12 = P12, P1
13 = P13 and that P1

23 is the reflection of P23 through the side
N1 = P12P13.



Chapter 5
Algebraic Synthesis of Planar Chains

In this chapter we examine the design of RR, PR and RP planar open chains that
reach a specified set of task positions. A constraint equation is defined for each
chain that characterizes the set of positions that it can reach. This relationship is
inverted by considering the positions as known and the fixed and moving pivots of
the chain as unknowns. The result is a set of design equations that are solved to
design the chain.

Two of these chains can be connected to the moving body to form a one-degree-

generator which provides coordinated movement of the input and output links. Such
a connection, however, limits the movement of the two chains and can interfere with
the smooth travel of the workpiece through the task positions. Techniques used to
avoid this problem are known as solution rectification.

5.1 A Single Revolute Joint

A revolute, or hinged, joint provides pure rotation about a point. Given two positions
of a rigid body, M1 and M2, we can locate a revolute joint such that it moves the body
between the two positions. This is easily done by locating the hinged joint at the pole
of the relative displacement.

Let the two positions be specified by the transformations [T1] = [A(φ1),d1] and
[T2] = [A(φ2),d2]. Then, locate the revolute joint G at the relative pole

G = [I−A(φ12)]
−1(d2−A(φ12)d1), (5.1)

where φ12 = φ2−φ1. Notice that this joint does not exist if the relative displacement
is a pure translation.

The point g in the moving body M that is to be connected to the hinge G is
the pole of the relative inverse displacement [T †

12], which is obtained from (4.39) to
define

©

J.M. McCarthy and G.S. Soh, Geometric Design of Linkages, Interdisciplinary Applied 93

of-freedom planar four-bar linkage. This closed chain can be used as a function

Mathematics 11, DOI 10.1007/978-1-4419-7892-9_5,
  Springer Science+Business Media, LLC 2011



94 5 Algebraic Synthesis of Planar Chains

g =−[A2−A1]
−1(d2−d1). (5.2)

The locations of the point G in F and g in M are uniquely defined by the two task
positions. In the following sections we show that we can design an RR chain that
reaches as many as five task positions.

5.2 The Geometry of RR Chains

An RR chain consists of a fixed revolute joint located at a point G = (x,y)T in F
connected by a link to a moving revolute joint located at w in M. Let [T ] = [A,d] be
a displacement that locates M. Then the point W in F that coincides with w is given
by

W = [A]w+d. (5.3)

Clearly, W = (λ ,µ)T must lie on a circle about the fixed pivot G, that is,

(W−G) · (W−G) = (λ − x)2 +(µ− y)2 = R2, (5.4)

where R is the length of the link. This geometric constraint characterizes the RR
chain.

5.2.1 Perpendicular Bisectors

Let n positions of the end-link of an RR chain be defined by the transformations
[Ti], i = 1, . . . ,n. The coordinates Wi of the moving pivot must satisfy (5.4) for each
position Mi, and we have the n equations

(Wi−G) · (Wi−G) = |Wi|2−2Wi ·G+ |G|2 = R2, i = 1, . . . ,n. (5.5)

Subtract the first equation from the others to cancel the terms |G|2 and R2. The result
is

(Wi−W1) ·G− 1
2
(|Wi|2−|W1|2) = 0, i = 2, . . . ,n. (5.6)

We now show that (5.6) defines the perpendicular bisector of the segment joining
W1 to Wi. Rewrite the second term in this equation as

Wi ·Wi−W1 ·W1 = (Wi +W1) · (Wi−W1). (5.7)

Introduce the midpoint V1i = (Wi +W1)/2 and substitute this into (5.6) to obtain

(Wi−W1) · (G−V1i) = 0. (5.8)
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Thus, G−V1i is perpendicular to the vector Wi−W1 and passes through its mid-
point, Figure 5.1. This is an algebraic expression of the fact that the perpendicular
bisectors of all chords of a circle must pass through its center.

The pole P1i of the relative displacement [T1i] of the end-link of the RR chain
also lies on the perpendicular bisector of Wi−W1. This means that we can replace
the vector G−V1i in (5.8) by G−P1i to obtain

(Wi−W1) · (G−P1i) = 0, i = 2, . . . ,n. (5.9)

P12

G

M2

M1

!12

F

W1

W2

!12
 2

"12

Fig. 5.1 The fixed pivot G lies on the perpendicular bisector of the segment W1W2 formed by two
positions of the moving pivot.

5.2.2 The Dyad Triangle

The displacement of the end-link from M1 to Mi is the composite of a rotation of
angle α1i about W1 followed by a rotation β1i about G. The result is a rotation by
φ1i about the pole P1i. Thus, [T1i] is given by

[T (φ1i,P1i)] = [T (β1i,G)][T (α1i,W1)]. (5.10)

This equation can be obtained from the kinematics equations of the RR chain, see
equation (E.4). The composite pole theorem connects the geometry of the triangle
4W1GP1i, called the dyad triangle, and the rotation angles α1i, β1i, and φ1i.

Expand (5.10) using the notation of complex vectors to obtain

eiφ1i = ei(β1i+α1i),

(1− eiφ1i)P1i = (1− eiβ1i)G+ eiβ1i(1− eiα1i)W1. (5.11)
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The first equation shows that φ1i = β1i +α1i. The second equation is the equation of
the dyad triangle4W1GP1i. Thus, from the composite pole theorem we have:

1. If α1i + β1i < 2π , then the interior angles at W1 and G are α1i/2 and β1i/2,
respectively; and the exterior angle at P1i is φ1i/2.

2. If α1i + β1i > 2π , then α1i/2 and β1i/2 are the exterior angles at W1 and G,
respectively. Denote by κ the interior angle at P1i, then φ1i/2 = κ +π .

5.2.3 The Center-Point Theorem

Consider three positions M1, M2, and M3 of the floating link of an RR chain with
the corresponding positions Wi, i = 1,2,3, of the moving pivot. The crank rotation
angle around G between each of these positions is βi j = ∠WiGW j; clearly, β13 =
β23 +β12.

The geometry of the dyad triangle tells us that the angle ∠W1GP12 is either
β12/2 or β12/2+π , depending on the location of P12 relative to G. Similarly, for
the dyad triangle 4W2GP23 we have that ∠W2GP23 is either β23/2 or β23/2+π .
Notice that ∠W1GP12 = ∠P12GW2. Considering each of the possible cases for
∠P12GP23 =∠P12GW2+∠W2GP23, we see that this angle must be either β13/2 or
β13/2+π . Thus, G views the segment P12P23 in either the angle β13/2 or β13/2+π ,
see Figure 5.2.

Fig. 5.2 The two dyad triangles4W1GP12 and4W1GP13 define a third triangle P12GP13.

This generalizes to the theorem already presented in chapter 3, which is the foun-
dation for Burmester’s approach to RR chain design:

Theorem 6 (The Center-Point Theorem). The center point of an RR chain that
reaches positions Mi, Mj, and Mk views the relative displacement poles Pi j and P jk
in the angle βik/2 or βik/2+π , where βik is the crank rotation angle from position
Mi to Mk.
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We now determine the equation of the triangle formed by G and the two poles
P12 and P23. Let the vector P12−G be the base of the triangle with interior angles
at vertices P12 and G given by δ/2 and β13/2. Then the exterior angle γ/2 at P23 is
given by γ/2 = δ/2+β13/2, and the equation of the triangle (4.62) yields

(1− eiγ)P23 = (1− eiβ13)G+ eiβ13(1− eiδ )P12. (5.12)

Substitute for δ and solve for G to obtain

C : G =
P23− eiβ13P12

1− eiβ13
+

(
P23−P12

1− eiβ13

)
eiγ . (5.13)

If we fix β13 and let γ vary in this equation, then we obtain a circle with center C
given by

C =
P12− eiβ13P23

1− eiβ13
. (5.14)

This circle has the property that the central angle measured from P12 to P23 is β13.
Thus, any point G on this circle views the segment P12P23 in either β13/2 or β13/2+
π .

5.3 Finite Position Synthesis of RR Chains

In order to design an RR chain we identify a set of task positions Mi, i = 1, . . . ,n,
for the end-link of the chain. This means that the displacements [Ti], i = 1, . . . ,n, are
known, and the angles φ1i and the relative poles P1i can be determined at the outset.
The unknowns are the two coordinates of the fixed pivot G = (x,y)T and the two
coordinates of the moving pivot W1 = (λ ,µ)T , four in all.

5.3.1 The Algebraic Design Equations

The equations (5.9) can be formulated in a way that yields a convenient set of alge-
braic design equations for an RR chain. Starting with the relation

Wi−P1i = [A(φ1i)](W1−P1i), (5.15)

we subtract W1−P1i from both side to obtain

Wi−W1 = [A(φ1i)− I](W1−P1i). (5.16)

Substitute this into (5.9) to obtain the equations

D1i : (G−P1i) · [A(φ1i)− I](W1−P1i) = 0, i = 2, . . . ,n, (5.17)
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which we call the design equations for the RR chain.
Notice that when n = 5, we have four design equations in four unknowns. Thus,

an RR chain can be designed to reach five arbitrarily specified precision positions.

5.3.1.1 The Bilinear Structure

The design equations (5.17) are quadratic in the four unknowns G = (x,y)T and
W1 = (λ ,µ)T . However, they have the important property that they are linear when
considered separately in the unknowns x, y and λ , µ . This structure provides a con-
venient strategy for the solution the five position problem.

However, before considering five-position synthesis, we examine the subprob-
lems of design for two-, three- and four-precision positions. In these cases, the bi-
linear structure provides alternative solutions that we describe as “select the fixed
pivot” or “select the moving pivot.” These solution strategies correspond to the two
ways the design equations can be used to design RR chains.

Let the coordinates of the relative pole be P1i = (pi,qi)
T . Then we can expand

(5.17) to obtain{
x− pi
y−qi

}T [cosφ1i−1 −sinφ1i
sinφ1i cosφ1i−1

]{
λ − pi
µ−qi

}
= 0, i = 2, . . . ,n. (5.18)

If we select the fixed pivot G then the coordinates x, y are known, and we can collect
the coefficients of λ and µ to obtain the design equations

Ai(x,y)λ +Bi(x,y)µ =Ci(x,y), i = 2, . . . ,n, (5.19)

where

Ai(x,y) = (cosφ1i−1)(x− pi)+ sinφ1i(y−qi),

Bi(x,y) =−sinφ1i(x− pi)+(cosφ1i−1)(y−qi),

Ci(x,y) = (cosφ1i−1)(pi(x− pi)+qi(y−qi))+ sinφ1i(piy−qix).

The coordinates of the moving pivot (λ ,µ) are obtained by solving this set of linear
equations.

On the other hand, if we select the moving pivot W1, then λ , µ are known, and
we can collect the coefficients of x and y to obtain

A′i(λ ,µ)x+B′i(λ ,µ)y =C′i(λ ,µ), i = 2, . . . ,n, (5.20)

where

A′i(λ ,µ) = (cosφ1i−1)(λ − pi)− sinφ1i(µ−qi),

B′i(λ ,µ) = sinφ1i(λ − pi)+(cosφ1i−1)(µ−qi),

C′i(λ ,µ) = (cosφ1i−1)(pi(λ − pi)+qi(µ−qi))− sinφ1i(piµ−qiλ ).
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Thus, the fixed pivot coordinates x, y are obtained by solving a set of linear equa-
tions, as well.

5.3.2 Parameterized Form of the Design Equations

The equations of the dyad triangle provide a set of design equations that include the
crank rotation angles β1i. These equations provide a way to select a crank angle in
the design process.

For a set of task positions Mi, i = 1, . . . ,n, we have the n−1 dyad triangle equa-
tions

(1− eiφ1i)P1i = (1− eiβ1i)G+ eiβ1i(1− eiα1i)W1, i = 2, . . . ,n, (5.21)

which are linear in the in the unknown complex vectors G= x+ iy and W1 = λ + iµ .
If the crank angles β1i are specified, then the rotation angles α1i = φ1i − β1i are
known as well.

5.3.3 Two Precision Positions

If two positions M1 and M2 of the end-link are specified, then the displacements
[T1] = [A(φ1),d1] and [T2] = [A(φ2),d2] are given. The relative rotation angle φ12
and the pole P12 can be determined. Because n = 2, there is a single design equation

(G−P12) · [A(φ12)− I](W1−P12) = 0. (5.22)

To design the RR chain we can select either the fixed or moving pivot, and still have
a free parameter.

5.3.3.1 Select the Fixed Pivot

Choose values for the coordinates of the fixed pivot G = (x,y)T , then (5.19) yields
the equation

A2(x,y)λ +B2(x,y)µ =C2(x,y), (5.23)

for the coordinates W1 = (λ ,µ)T of the moving pivot. This is a single equation
relating λ and µ . Simply choose one and compute the other.
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5.3.3.2 Select the Moving Pivot

The bilinearity of the design equations allows us to select values for the coordinates
W1 = (λ ,µ)T of the moving pivot, and use (5.20) to define

A′(λ ,µ)x+B′(λ ,µ)y =C′(λ ,µ). (5.24)

This is the equation of the perpendicular bisector of the segment W1W2. Any point
on this line can be used as the center point G.

5.3.3.3 Select the Crank Angle

The equation of the dyad triangle can be used to specify the crank angle β12 between
the two positions M1 and M2. In this case (5.22) yields a linear equation in the
complex vectors G = x+ iy and W1 = λ + iµ:

(1− eiφ12)P12 = (1− eiβ12)G+ eiβ12(1− eiα12)W1. (5.25)

Recall that α12 = φ12−β12. We can choose either of the vectors G or W1 and solve
this equation for the other one. Notice that the free parameter that existed in the
previous solutions has been used here to define the crank angle β12.

5.3.4 Three Precision Positions

For the case of three specified positions of the floating link, we have the three dis-
placements [Ti] = [A(φi),di], i = 1,2,3. Compute the relative angles φ12, φ13 and the
poles P12, P13 in order to obtain the pair of design equations

(G−P1i) · [A(φ1i)− I](W1−P1i) = 0, i = 2,3. (5.26)

These equations yield a unique solution for either the fixed pivot G or the moving
pivot W1 for an arbitrary choice of the other.

5.3.4.1 Select the Fixed Pivot

Choose values for the coordinates of G and assemble the two design equations
(5.19) into the matrix equation[

A1(x,y) B1(x,y)
A2(x,y) B2(x,y)

]{
λ

µ

}
=

{
C1(x,y)
C2(x,y)

}
. (5.27)

Solve these equations to obtain a unique moving pivot W1.
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5.3.4.2 Select the Moving Pivot

We may specify the coordinates of W1 = (λ ,µ)T and write the design equations
(5.20) in matrix form to obtain[

A′1(λ ,µ) B′1(λ ,µ)
A′2(λ ,µ) B′2(λ ,µ)

]{
x
y

}
=

{
C′1(λ ,µ)
C′2(λ ,µ)

}
. (5.28)

These equations define the two perpendicular bisectors D12 and D13 that intersect
at the point G, see Figure 5.3.
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Fig. 5.3 The fixed pivot G is the intersection of the two bisectors V12 and V23.

5.3.4.3 Select the Crank Angles

The relative displacements from M1 to M2 and from to M3 yield the two dyad trian-
gle equations[

(1− eiβ12) eiβ12(1− eiα12)

(1− eiβ13) eiβ13(1− eiα13)

]{
G

W1

}
=

{
(1− eiφ12)P12
(1− eiφ13)P13

}
. (5.29)

Choose values for the crank angles β12 and β13 and compute α1i = φ1i−β1i. Then
Cramer’s rule yields unique coordinate vectors G and W1.

Another approach to this problem uses the center-point theorem to determine the
fixed pivot G that has selected values for the crank angles β12 and β13. To be the
desired fixed pivot G must view the sides P13P23 and P12P23 of the pole triangle in
the angles β12/2 and β13/2, respectively.
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This is achieved by determining the circle that has the segment P12P23 as a chord
with arc length β13. From (5.13) we have

C13 : G =
P23− eiβ13P12

1− eiβ13
+

(
P23−P12

1− eiβ13

)
eiγ . (5.30)

In the same way, the circle that has the P13P23 as a chord with arc length β12 is given
by

C12 : G =
P23− eiβ12P13

1− eiβ12
+

(
P23−P13

1− eiβ12

)
eiγ . (5.31)

The circles C13 and C12 have the point P23 in common, and the second intersec-
tion is the desired fixed pivot G. Let C13 and C12 be the centers of these circles and
note that

(G−C13)
2 = (P23−C13)

2, (G−C12)
2 = (P23−C12)

2. (5.32)

From these relations, we can compute

(G−P23) · (C2−C1) = 0. (5.33)

Thus, for a given set of values for β12 and β13 the fixed pivot G is the reflection of
P23 through the line joining the centers of the two circles, C13 and C12.

5.3.5 Four Precision Positions

In order to find RR cranks that reach four design positions we must find points
Wi, i = 1,2,3,4, that lie on a circle. Clearly, an arbitrary point will not satisfy this
condition. However, this does not mean that no such points exist. In fact, there is a
cubic curve of moving pivots called the circle-point curve that have four positions
on a circle. The centers of all of these circles form the center-point curve.

5.3.5.1 The Center-Point Curve

Given four specified positions Mi, i = 1,2,3,4, we can determine the relative dis-
placements [T1i] = [A(φ1i,d1i)] and define the matrix form of the design equationsA2(x,y) B2(x,y)

A3(x,y) B3(x,y)
A4(x,y) B4(x,y)

{λ

µ

}
=

C2(x,y)
C3(x,y)
C4(x,y)

 . (5.34)

There is a solution for the moving pivot W1 only if these three equations are linearly
dependent.
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For these equations to have a solution, the fixed pivot G must be selected so the
3×3 augmented coefficient matrix [M] = [Ai,Bi,Ci] is of rank two. This means that
the determinant |M| equals zero, which yields a cubic polynomial

R(x,y) : |M|= a30y3 +(a21x+a20)y2 +(a12x2 +a11x+a10)y

+a03x3 +a02x2 +a01x+a00 = 0. (5.35)

This polynomial defines a cubic curve in the fixed frame, and any point on this curve
may be chosen as the center point G for the RR chain. This is the center-point curve.

Formulas for the coefficients in (5.35) are obtained by noting that each of the
elements of [M] are linear in the components of G = (x,y)T . Introducing the column
vectors ai, bi, and ci, we have

det[M] =
∣∣a1x+b1y+ c1, a2x+b2y+ c2, a3x+b3y+ c3

∣∣= 0. (5.36)

The linearity of the determinant allows us to expand this expression to define the
coefficients of the center-point curve as

a30 = |b1b2b3|,
a21 = |a1b2b3|+ |b1a2b3|+ |b1b2a3|,
a20 = |b1b2c3|+ |b1c2b3|+ |c1b2b3|,
a12 = |a1a2b3|+ |a1b2a3|+ |b1a2a3|,
a11 = |a1b2c3|+ |a1c2b3|+ |b1a2c3|+ |b1c2a3|+ |c1a2b3|+ |c1b2a3|,
a10 = |b1c2c3|+ |c1b2c3|+ |c1c2b3|,
a03 = |a1a2a3|,
a02 = |a1a2c3|+ |a1c2a3|+ |c1a2a3|,
a01 = |a1c2c3|+ |c1a2c3|+ |c1c2a3|,
a00 = |c1c2c3|. (5.37)

5.3.5.2 Burmester’s Theorem

The center-point theorem provides a geometric condition that characterizes center
points for four precision positions. Given four positions, there are six relative dis-
placement poles Pi j, i < j =1,2,3,4, and the center-point theorem requires that a
fixed pivot G view the pole pairs Pi jPik and Pm jPmk in the angle β jk/2 or β jk/2+π .

Burmester [7] assembled the six relative poles into the three complementary pairs
P12P34, P13P24, and P14P23 such that each pair has the numbers 1 through 4 in its
indices. He then introduced the opposite-pole quadrilateral that has any two of these
complementary pairs as its diagonals, Figure 5.4. This construction ensures that the
opposite sides of the opposite-pole quadrilateral have the form needed to apply the
center-point theorem. The result is Burmester’s theorem presented in the chapter 3,
which we repeat here:
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Theorem 7 (Burmester’s Theorem). The center point G of an RR chain that can
reach four specified positions in the plane views opposite sides of an opposite-pole
quadrilateral obtained from the relative poles of the given positions in angles that
are equal, or differ by π .

Proof. Burmester’s definition of the opposite-pole quadrilateral ensures that oppo-
site sides have the form Pi jPik and Pm jPmk. The center-point theorem states that G
must view Pi jPik in the angle β jk/2 or β jk/2+π , where β jk is the angle from po-
sition Mj to Mk. Similarly, it must view the Pm jPmk in either β jk/2 or β jk/2+ π .
Consider the various combinations to see that G views these sides in angles that are
equal, or differ by π . ut

M4

M3

M2

M1

P12

P23

P34

P14

Fig. 5.4 The opposite-pole quadrilateral obtained from four planar positions.

Burmester’s theorem provides a way to derive the center-point curve in terms of
the coordinates of the relative displacement poles. Let the opposite-pole quadrilat-
eral be formed with vertices Q : P12P23P34P14, and assume the fixed pivot G views
P23P12 in the angle κ . Then G must view P34P14 in either κ or κ +π .

We determine the angle ∠P12GP23 = κ by separately determining sinκ and
cosκ . Introduce, for the moment, a third coordinate direction ~k perpendicular to
the plane, and consider our coordinate vectors to be three-dimensional with zeros as
the third component. This allows us to compute sinκ using the vector cross product

~k · (P12−G)× (P23−G) = sinκ|P12−G||P23−G|. (5.38)

This quantity is the determinant of the 2×2 matrix [P12−G,P23−G], so we have
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sinκ|P12−G||P23−G|=
∣∣P12−G, P23−G

∣∣ . (5.39)

The cosine of κ is obtained using the dot product

cosκ|P12−G||P23−G|= (P12−G) · (P23−G). (5.40)

Divide these two equations, and substitute P12 = (p2,q2)
T , P23 = (a1,b1)

T to obtain

tanκ =
(b1−q2)x+(a1− p2)y+ p2b1−q2a1

x2 + y2− (p2 +a1)x− (q2 +b1)y+ p2a1 +q2b1
=

L12

C12
. (5.41)

The numerator in this equation is a linear function of the coordinates x, y, and the
denominator is the equation of a circle.

A similar calculation yields the angle ∠P14GP34, which must be either κ or
κ +π . However, since tanκ = tan(κ +π), we have

tanκ =
(b2−q4)x+(a2− p4)y+ p4b2−q4a2

x2 + y2− (p4 +a2)x− (q4 +b2)y+ p4a2 +q4b2
=

L34

C34
, (5.42)

where the coordinates of the relative poles are P14 = (p4,q4)
T and P34 = (a2,b2)

T .
Equate (5.41) and (5.42) to obtain a formula for the center-point curve, given by

R(x,y) : L12C34−L34C12 = 0. (5.43)

It is easy to see that the cubic terms of R(x,y) in (5.35) are

a30y3 +a21y2x+a12yx2 +a03x3

=
(
(b1−q2−b2 +q4)x+(a1− p2−a2 + p4)y

)
(x2 + y2). (5.44)

The factor x2 + y2 in this term identifies this cubic polynomial as a circular cubic.
This also means that the ten coefficients ai j are not independent. In fact, it is easy to
see that

a30 = a12 = a1− p2−a2 + p4, a03 = a21 = b1−q2−b2 +q4. (5.45)

5.3.5.3 The Parameterized Center-Point Curve

Burmester’s theorem is also the basis for a derivation of a parameterized version of
the center-point curve. The construction presented in chapter 3 uses the opposite-
pole quadrilateral Q : P12P23P34P14 to generate points that satisfy Burmester’s the-
orem. We formulate this construction analytically in terms of the dyad triangle for
the RR chain P12P23 and compute the center points G as the relative displacement
poles of the segment P23P34, Figure 5.5.

Identify the vertices of the opposite-pole quadrilateral Q with the pivots of a 4R
linkage so O = P12, A = P23, B = P34, and C = P14. The formulas in chapter 2 are
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Fig. 5.5 The dimensions of an opposite-pole quadrilateral considered as a four-bar linkage.

used to determine the angles at each vertex. Let θ be the interior angle at P12, then
we can determine the coupler angle φ(θ) at P23 using equation (2.57).

Rotate the segment P12P23 an angle ∆θ from the initial configuration of Q. This
requires a corresponding rotation of angle ∆φ of the segment P23P34 about P23. The
composition of these two displacement is a relative rotation of angle κ = ∆θ +∆φ

about the pole G (Figure 5.6), given by

[T (κ,G)] = [T (∆θ ,P12)][T (∆φ ,P23)]. (5.46)

This composition yields the dyad triangle equation

(1− ei(∆θ+∆φ))G = (1− ei∆θ )P12 + ei∆θ (1− ei∆φ )P23. (5.47)

Let θ0 and φ0 be the initial values for these angles in Q, then we have

∆θ = θ −θ0, ∆φ = φ(θ)−φ0. (5.48)

The result is that this equation defines a point G on the center-point curve for every
value of the parameter θ .

To complete this formulation, we need the initial configuration angles θ0 and φ0,
which are computed by using formulas (5.39) and (5.40) to obtain

θ0 = arctan

( ∣∣P14−P12, P23−P12
∣∣

(P14−P12) · (P23−P12)

)
(5.49)

and

φ0 = arctan

( ∣∣P23−P12, P34−P23
∣∣

(P23−P12) · (P34−P23)

)
. (5.50)

A benefit of this parameterization is that a center-point curve can be classified
by the linkage type of the opposite-pole quadrilateral Q that generates it. In par-
ticular, center-point curves generated by nonGrashof opposite-pole quadrilaterals
have a single circuit, while those generated by Grashof opposite-pole quadrilater-
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Fig. 5.6 A center point G is the pole of the displacement of the coupler P23P34 of the opposite-pole
quadrilateral when driven as a four-bar linkage.

als have two circuits. Furthermore, all three opposite-pole quadrilaterals that can be
constructed from the six relative poles generate the same curve.

5.3.5.4 The Circle-Point Curve

For each point of the center-point curve we have a solution to the design equation
(5.19), which yields a moving pivot W1. These points form the circle-point curve.
We can obtain an equation for this curve directly by using (5.20) to define the matrix
equation A′2(λ ,µ) B′2(λ ,µ)

A′3(λ ,µ) B′3(λ ,µ)
A′4(λ ,µ) B′4(λ ,µ)

{x
y

}
=

C′2(λ ,µ)
C′3(λ ,µ)
C′4(λ ,µ)

 . (5.51)

These equations have a solution for the fixed pivot G= (x,y)T only if the augmented
coefficient matrix [M′] has rank two. Here, as above, the elements of [M′] are linear
functions of coordinates of the moving pivot W1 = (λ ,µ) and can be assembled
into column vectors, so we have

det[M′] =
∣∣a′1λ +b′1µ + c′1, a′2λ +b′2µ + c′2, a′3λ +b′3µ + c′3

∣∣= 0. (5.52)

The expansion of this determinant yields a polynomial R(λ ,µ) that has the same
form as R(x,y) in (5.35). The coefficients of R(λ ,µ) are given by (5.37) using a′,
b′ and c′.

If the four displacements of M relative to F are inverted, then we can compute the
circling-point curve simply as the center-point curve of the inverted displacements.
In this case, the curve is defined in the moving reference frame M. We can then
transform these coordinates to the fixed frame in the first position to obtain the
curve of moving pivots W1.
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This result is achieved by determining the opposite-pole quadrilateral for the
relative inverse displacements with M in position M1. Form the quadrilateral Q†

from the image poles P1
12P1

23P1
34P1

14. Recall that P1
12 = P12 and P1

14 = P14. The
image poles P1

23 and P1
34 are the reflections of P23 and P34 through the lines

P12P13 and P13P14, respectively. Thus, the inverted opposite-pole quadrilateral
Q† : P12P1

23P1
34P14 has the same dimensions as the original opposite-pole quadrilat-

eral Q.
The circle-point curve is constructed by applying Burmester’s theorem to the

quadrilateral Q†. Using the equations (5.39) and (5.40), we can derive the equivalent
to equations (5.41) and (5.42). The result is a circular cubic curve that defines the
moving pivots W1.

A parameterized version of the circle-point curve is obtained using the same pro-
cedure as above for the center-point curve. In fact, because the dimensions of Q and
Q† are the same, the only difference is the initial configuration of the quadrilateral.
Compute new the values for θ0 and φ0 using P1

23 and P1
34 in equations (5.49) and

(5.50), then (5.47) yields the circle-point curve.

5.3.6 Five Precision Positions

Given five task positions for the moving body, we obtain four design equations
(5.17) that are quadratic in four unknowns G = (x,y)T and W1 = (λ ,µ)T . We use
a two-step procedure to eliminate the variable in these equations. The goal is a sin-
gle polynomial in one unknown. The solutions of this polynomial are then used
to determine the remaining unknowns. We also solve this problem by finding the
intersections of two center-point curves.

5.3.6.1 Algebraic Elimination

Let the coordinates of the relative poles be P1i = (pi,qi)
T , and expand the design

equations (5.17) for the case n = 5. Assemble these equations into four linear equa-
tions in the two unknowns (λ ,µ)

A2(x,y) B2(x,y)
A3(x,y) B3(x,y)
A4(x,y) B4(x,y)
A5(x,y) B5(x,y)

{λ

µ

}
=


C2(x,y)
C3(x,y)
C4(x,y)
C5(x,y)

 . (5.53)

In order for this system of equations to have a solution the rank of the 4× 3
augmented coefficient matrix [M] = [Ai,Bi,Ci] must be two. For this to occur, each
the four 3× 3 minors of this matrix must equal zero. Let R j be the determinant of
the 3×3 matrix formed by removing row 5− j; so R1 is the computed from the first
three rows, R2 from the first two and last row, and so on. The result is four cubic
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polynomials in x and y

R j(x,y) : a30, jy3 +(a21, jx+a20, j)y2 +(a12, jx2 +a11, jx+a10, j)y

+a03, jx3 +a02, jx2 +a01, jx+a00, j = 0, j = 1,2,3,4. (5.54)

Thus, our four equations in four unknowns are transformed into four equations in
two unknowns. The next step eliminates y to obtain a single polynomial in x.

At this point we assume that determinants R j have the structure of a general
cubic polynomial in two variables. Collect the coefficients of y in each R j to define

R j : d j0y3 +d j1y2 +d j2y+d j3 = 0, j = 1,2,3,4. (5.55)

The coefficient d jk is a polynomial in x of degree k.
Assemble these polynomials into a matrix equation with the vector of unknowns

(y3,y2,y)T , given by d10 d11 d12
...

...
...

d40 d41 d42


y3

y2

y

=−


d13

...
d43

 . (5.56)

This equation has a solution only if the rank of the 4× 4 augmented coefficient
matrix [D] = [d0,d1,d2,d3], where d j = (d1 j,d2 j,d3 j,d4 j)

T , is three. This means
that the determinant |D| of this matrix must be zero.

The determinant |D| is a polynomial in the single variable x. The degree of this
polynomial is the sum of the degrees of each of the columns of [D], that is, 0+1+
2+3 = 6. Thus, we obtain a single sixth-degree polynomial in x

P(x) : |D|=
6

∑
i=0

aixi = 0. (5.57)

It happens that a5 = a6 = 0 and P(x) is a quartic polynomial. This is due to the
circular cubic structure (5.45) of the polynomials R j. This quartic polynomial has
four roots of which zero, two, or four will be real. Thus, there can be as many as
four RR chains that reach five positions.

To determine the RR chains that reach five task positions, first formulate the
polynomial P(x) and determine its roots xi, i = 1,2,3,4. For each real root xi, solve
(5.56) to determine the coordinate yi. This defines as many as four fixed pivots
Gi = (xi,yi)

T . Determine the associated moving pivots W1
i = (λ ,µ)T by solving

two of the linear constraint equations (5.17).

5.3.6.2 Intersecting Two Center-Point Curves

Five task positions determine ten relative displacement poles Pi j, i < j = 1, . . . ,5.
Consider the two opposite-pole quadrilaterals Q14: P12P23P34P14 and Q15: P12P23P35P15.
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A fixed pivot compatible with five positions lies on the center-point curve defined
by Q14 and on the center-point curve defined by Q15. This provides another way to
determine the fixed pivot G.

The opposite-pole quadrilaterals Q14 and Q15 share the side P12P23, Figure 5.7.
Thus, the pivot G must satisfy the two equations

G =
P12(1− ei∆θ1)+P23(1− ei∆φ1)ei∆θ1

1− ei(∆φ1+∆θ1)
(5.58)

and

G =
P12(1− ei∆θ2)+P23(1− ei∆φ2)ei∆θ2

1− ei(∆φ2+∆θ2)
. (5.59)

The angles ∆φ1 and ∆φ2 are functions of ∆θ1 and ∆θ2 defined by the dimensions
of the two opposite-pole quadrilaterals.

Fig. 5.7 The reference configuration for the planar compatibility platform.

Notice that equations (5.58) and (5.59) define the same point G when

∆θ1 = ∆θ2 and ∆φ1 = ∆φ2. (5.60)

The first condition is satisfied by using the same parameter θ to drive P12P23 for
both curves. The second condition requires that the triangle 4P23P34P35 have the
same shape in each solution configuration. Thus, the fixed pivots G are the poles
of the displacement of 4P23P34P35 to each of the assemblies of the platform, Fig-

P12

P14

P15
P23

P34

P35

θ0,2

θ0,1

φ0,2
φ0,1

a

h2

h1

g1

g2

b1

b2
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ure 5.8. We call this assembly of relative displacement poles the planar compatibil-
ity platform and obtain the following theorem:

P12

P14

P15
P23

P34

P35

G

Fig. 5.8 The relative displacement poles of the assemblies of the planar compatibility platform
define the fixed pivots G.

Theorem 8 (The Planar Compatibility Platform). The fixed pivot of an RR chain
compatible with five specified planar positions is a pole of the displacement of the
planar compatibility platform from its original configuration another of its assem-
blies.

The analysis of the two 4R linkages in this platform yields two equations of the
form

Ai cosφ +Bi sinφ =Ci, i = 1,2. (5.61)

that are easily solved as shown in (A.11). This 3RR platform is known to have six
assemblies. One is the initial configuration, therefore we obtain a relative pole to
each of the remaining five assemblies. However, one of these is the pole P13, thus
the remaining four are the desired fixed pivots.

5.4 The Design of PR Chains

A PR chain consists of a prismatic joint in the fixed frame F connected by a slider
to a revolute joint in the moving frame M. Let the trajectory of the moving pivot W
lie on the line L: Y(t) = R+ tS, which must be parallel to the guide of the prismatic
joint. The condition that W lie on L is simply that the vector W−R be aligned with
the direction S. This is expressed by the equation∣∣S, W−R

∣∣= 0. (5.62)
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This constraint characterizes the PR chain.

5.4.1 The Design Equations

In order to design a PR chain to reach a the task positions Mi, i = 1, . . . ,n, we must
find a moving pivot W1 such that the corresponding points Wi, i = 1, . . . ,n, all lie
on a line L in F . Any line parallel to L can be used as the guide for the prismatic
joint.

The points Wi and L: Y(t) = R+ tS are related by the constraint equations∣∣S, Wi−R
∣∣= 0, i = 1, . . . ,n. (5.63)

Subtract the first equation from those remaining to obtain∣∣S, Wi−W1
∣∣= 0, i = 2, . . . ,n. (5.64)

Notice that R has cancelled in these equations. This is because the point W1 is
sufficient to locate the line L.

Now recall from our derivation of the design equations for an RR chain that

Wi−W1 = [A(φ1i)− I](W1−P1i). (5.65)

Substitute this into (5.64) to obtain the design equations∣∣S, [A(φ1i)− I](W1−P1i)
∣∣= 0, i = 2, . . . ,n. (5.66)

The unknowns in these equations are the direction S of the guide and the coordinates
of the moving pivot W1.

The design equations are homogeneous in the components of S, which means
that if S is a solution then kS is also a solution. Therefore, only one component of S
is independent, so we set S = (1,m)T , where m is the slope of L. The components of
W1 = (λ ,µ)T are independent unknowns. Thus, the design equations have a total
of three unknowns, m, λ , and µ . We will see in what follows that the three design
equations obtained from four task positions define one PR chain.

5.4.1.1 The Bilinear Structure

The design equations are linear in m and separately linear in λ and µ . This bilin-
ear structure allows us to follow a solution procedure similar to that used for RR
chains. However, the different number of unknowns introduces an asymmetry into
the analysis.

The coefficients of m can be isolated by introducing the vectors Ci = [A(φ1i)−
I](W1−P1i). Then (5.66) can be written as
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m, −1

][
C2, . . . , Cn

]
= 0, (5.67)

where the components of Ci = (Ai,Bi)
T are given by

Ai = (cosφ1i−1)λ − sinφ1iµ− ((cosφ1i−1)pi− sinφ1iqi),

Bi = sinφ1iλ +(cosφ1i−1)µ− (sinφ1i pi +(cosφ1i−1)qi). (5.68)

Note that the components of the poles are given by P1i = (pi,qi)
T .

We can also collect coefficients of λ and µ , so (5.66) becomes

Diλ +Eiµ +Fi = 0, i = 2, . . . ,n, (5.69)

where

Di = m(cosφ1i−1)− sinφ1i,

Ei =−msinφ1i− (cosφ1i−1),
Fi =−m((cosφ1i−1)pi− sinφ1iqi)+(sinφ1i pi +(cosφ1i−1)qi). (5.70)

We now determine the solutions to these equations for the cases n = 2,3,4.

5.4.2 Two Positions

For two specified positions for the moving body, we have the single design equation[
m, −1

]
C2 = mA2−B2 = 0. (5.71)

This equation is solved by selecting either a point W1 or a direction m.
In the first case, given values for components of W1 = (λ ,µ)T the components of

the vector C2 = (A2,B2)
T are specified, and equation (5.71) has the single unknown

m. Thus, this slope is uniquely determined.
If instead we select a direction m, then (5.71) becomes a linear equation in λ and

µ

D2λ +E2µ +F2 = 0. (5.72)

Choose either λ or µ and solve for the other.
The result is a two-dimensional set of PR chains, which are obtained by selecting

either the moving pivot W1 or a direction m and one component of W1.

5.4.3 Three Positions

When three positions of the moving body are specified, we have two design equa-
tions that form the matrix equation
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m, −1

][
C2, C3

]
= 0. (5.73)

This equation has a solution if the 2×2 coefficient matrix [C2,C3] has rank 1, that
is, when ∣∣[A(φ12)− I](W1−P12), [A(φ13)− I](W1−P13)

∣∣= 0. (5.74)

This provides a condition on the selection of the moving pivots W1.
To simplify (5.74), we introduce the identity

[A(φ1i)− I] = 2sin
φ1i

2
[J][A(

φ1i

2
)], (5.75)

where [J] is a rotation by 90◦. This combines with the linearity of the determinant
to yield ∣∣∣[A( φ12

2 )](P12−W1), [A( φ13
2 )](P13−W1)

∣∣∣= 0. (5.76)

Multiply both columns by [A(φ12/2)]T , so (5.74) finally takes the form∣∣∣P12−W1, [A( φ23
2 )](P13−W1)

∣∣∣= 0. (5.77)

This determinant is zero when the two columns are colinear vectors. Therefore,
the rotation by φ23/2 around W1 must bring P13−W1 into alignment with P12−
W1. Thus, W1 must view the segment P12P13 in the angle φ23/2, and (5.77) is the
equation of a circle. This is an algebraic proof of the slider-point theorem.

Expand equation (5.77) to obtain the circle C1 given by

C1 : λ
2 +µ

2 +a11λ +a12µ +a13 = 0. (5.78)

Any point on this circle may be chosen as the pivot W1, in which case the first
design equation (5.71) can be solved to determine m.

Rather than select W1, we can choose the direction m and obtain the pair of linear
equations

D2λ +E2µ +F2 = 0,
D3λ +E3µ +F3 = 0. (5.79)

The solution of these equations defines a unique point W1 associated with a given
direction m.

The result is one PR chain for each direction m or point on the circle C1. This is
a one-dimensional set of solutions.
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5.4.4 Four Positions

If four task positions for the moving body are specified, then the design equations
become [

m, −1
][

C2, C3, C4
]
= 0. (5.80)

In order for this equation to have a solution, the three minors of the matrix
[C2,C3,C4] must be simultaneously zero. This provides three conditions on the co-
ordinates of the point W1, each of which has the same form as (5.77).

The condition |C2,C3| = 0 yields the circle described in the previous section.
Setting the other two minors to zero, we obtain

|C2,C4|=
∣∣∣P12−W1, [A( φ24

2 )](P14−W1)
∣∣∣= 0,

|C3,C4] =
∣∣∣P13−W1, [A( φ34

2 )](P14−W1)
∣∣∣= 0. (5.81)

This defines two additional circles,

C2 : λ
2 +µ

2 +a21λ +a22µ +a23 = 0,

C3 : λ
2 +µ

2 +a31λ +a32µ +a33 = 0, (5.82)

which combine with C1 above to determine the components of W1 = (λ ,µ)T .
Collect the coefficients of µ and write the three circle equations as the matrix

equation 1 a12 λ 2 +a11λ +a13
1 a22 λ 2 +a21λ +a23
1 a32 λ 2 +a31λ +a33

µ2

µ

1

=

0
0
0

 . (5.83)

This system of equations has a solution if the determinant |C| of the coefficient
matrix is zero. This determinant can be simplified by subtracting the first row from
the other two to obtain a linear equation in λ , given by∣∣∣∣a22−a12 (a21−a11)λ +a23−a13

a32−a12 (a31−a11)λ +a33−a13

∣∣∣∣= 0. (5.84)

Solve this equation for λ and then (5.83) for µ in order to determine the point W1.
Using this point, the design equations (5.80) yield the direction m for the slider. The
result is a unique PR chain that can reach four specified positions.

5.5 The Design of RP Chains

An RP chain consists of a revolute joint G in the fixed frame F connected to a
prismatic joint in the moving frame M. The prismatic joint follows a fixed line in M.
From the point of view of M, the point G must follow the line L: y(t)= r+ts parallel
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to the guide of the prismatic joint as the body moves through a set of positions Mi.
Let g be the coordinates of G measured in M. The condition that g lie on L is simply
that g− r must be aligned with s, which is given by∣∣s, g− r

∣∣= 0. (5.85)

This constraint characterizes an RP chain.

5.5.1 The Design Equations

In order for the end-link of an RP chain to reach the task positions Mi, i = 1, . . . ,n,
we must find a point G in F that has its corresponding n points gi, i = 1, . . . ,n, in M
on a line L. Any line parallel to L can be used as the guide for the prismatic joint.

Let the n positions of the moving body be defined by the transformations [Ti],
i = 1, . . . ,n, so we have the inverse transformations gi = [T−1

i ]G. Then, the points
gi and the line L: y(t) = r+ ts in M are related by the equations∣∣s, gi− r

∣∣= 0, i = 1, . . . ,n. (5.86)

Subtract the first equation from those remaining to obtain∣∣s, gi−g1
∣∣= 0, i = 2, . . . ,n. (5.87)

Now introduce the relative inverse transformation [T †
1i] = [A†

1i,d
†
1i] so that this equa-

tion becomes ∣∣s, [A†
1i− I](g1−p1i)

∣∣= 0, i = 2, . . . ,n, (5.88)

where p1i is the pole of the relative inverse displacement in M. This is simply the
inverted version of the PR design equation (5.66).

Consider the moving frame to be in position M1 and transform coordinates to the
frame F . This requires multiplying (5.88) by [A1], so we obtain∣∣[A1]s, [A1][A

†
1i− I](g1−p1i)

∣∣= 0, i = 2, . . . ,n. (5.89)

Let S= [A1]s be the direction of the line L in F . Notice that [A1](g1−p1i) =G−P1i,
where P1i is the relative pole in F . We obtain the RP design equations in the form∣∣S, [A†

1i− I](G−P1i)
∣∣= 0, i = 2, . . . ,n. (5.90)

Note that [A1][A
†
1i][A

T
1 ] = [A†

1i], because planar rotations commute.
This set of equations is identical in form to those for the PR chain, and their

analysis is the same except for one fundamental difference. The relative inverse
rotation [A†

1i] is the inverse of the relative rotation [A1i], which means that the rotation
angles φ

†
1i are −φ1i. From this we conclude that the circles derived in the previous
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section for PR chains will be reflected through through the segments P1iP1k. Use
these circles and the design procedure for PR chains to design RP chains.

5.6 Planar Four-Bar Linkages

The design equations developed in this chapter determine RR, PR and RP chains
that reach a specified set of positions. These chains can be connected in pairs to
construct various four-bar linkages, each of which has one degree of freedom. The
connection between two chains also allows us to coordinate the movement of the
input and output links in order to design a linkage known as a function generator.

The coupling between two open chains introduces limits on their relative move-
ment that can interfere with the smooth travel of the floating link between the spec-
ified positions. For example, a Grashof linkage may reach one set of task positions
in one assembly and the other positions in the other assembly. This is referred to as
the branching problem.

In what follows, we consider the solution to the branching problem for 4R chains,
and then present a strategy for the design of function generators.

5.6.1 Solution Rectification

Filemon [32] introduced a construction for the moving pivot of the input crank of a
4R linkage that ensures that the linkage moves smoothly through the task positions.
This construction assumes that an output crank CB = GoutW1

out has been selected.
It is then possible to determine how this crank rotates to reach each of the design
positions. Viewed from the coupler, this link sweeps out two wedge shaped regions
centered on W1

out, Figure 5.9. Filemon showed that all that is necessary is that we
choose the moving pivot W1

in of the input crank outside of these regions. Recall that
the limit positions of the input crank OA = GinW1

in of a 4R linkage occur when the
coupler AB = W1

inW1
out lines up with the output crank.

5.6.1.1 Filemon’s Construction

We will focus on three-position synthesis to develop rectification theory, though it
can be applied more generally. For positions defined by the displacements [T1], [T2],
and [T3] we have the design equations (5.28). For any choice of the output moving
pivot W1

out, we can determine a unique fixed pivot Gout.
The positions that Gout can take relative to the moving frame are computed using

the relative inverse displacements [T 1
1i] with M in position M1, that is,

Gi
out = [T 1

1i]Gout. (5.91)
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Fig. 5.9 Filemon’s construction uses the three positions of the output crank to define a wedge-
shaped region; the input moving pivot is selected from outside this region.

Recall that [T 1
1i] = [T−1

1i ].
Now consider the angle α12 measured from G1

out to G2
out around W1

out. Similarly,
we have α23 = ∠G2

outW1
outG

3
out measured around W1

out. These angles combine to
form the wedge swept by the driven crank relative the moving frame M. Assume
these angles are between π and −π , then the angle τ of this wedge is the sum
α12 +α23 if these angles have the same sign. If these angles have different signs
then τ is the angle with the largest absolute value.

Choose the input moving pivot W1
in from outside of this wedge-shaped region.

The resulting 4R linkage will pass through the design positions before the coupler
lines up with the output crank, which defines the limit to the movement of the input
crank.

5.6.1.2 Waldron’s Construction

Waldron [142, 143] shows that if the output pivot W1
out rotates so that any of the

angles α12, α23, or α13 is greater than or equal to π , then there is no solution to
Filemon’s construction. This lead him to consider the points that view each side of
the image pole triangle in π/2 and define the three-circle diagram.

The poles of the relative inverse displacements [T 1
12], [T

1
23], and [T 1

13] define the
image pole triangle 4P12P1

23P13. The center-point theorem applied to the image
pole triangle yields the result the moving pivot W1

out views the sides of this triangle
the rotation angle −αik/2 of the coupler relative to the RR chain. Thus, for a point
W and side P1

i jP1
jk of the image pole triangle, we have the relation

M1

F

W1

g3

α12

α23

τ

g1

g2
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P12

P13

P23

P231
C12 C13

C23

Fig. 5.10 Waldron’s three-circle diagram identifies regions of driven moving pivots that ensure
that Filemon’s construction yields useful driving pivots.

cos
αik

2
=

(P1
i j−W) · (P1

jk−W)

|P1
i j−W||P1

jk−W|
. (5.92)

The points that have αik/2 = π/2 lie on the circles

Cik : (P1
i j−W) · (P1

jk−W) = 0. (5.93)

The diameters of these circles are the segments P1
i jP1

jk.
The three circles C12, C23, and C13 bound regions of points for which αi j >

π/2. Points outside of these circles, as well as points in regions where they overlap
can be used as moving pivots W1

out, Figure 5.10. For these points the output crank
GoutW1

out has a solution for Filemon’s construction. The result is a 4R linkage that
moves through the three specified positions before it reaches a limit to the range of
movement of the input crank.

5.6.2 Function Generation

A four-bar linkage is often designed to coordinate the movement of the input
and output links. Suppose that we are given a table of coordinated angular val-
ues θi,ψi, i = 1, . . . ,n, for the input and output cranks of a 4R linkage, or θi,si for
the input and output of a slider-crank. We can apply the design theory developed in
preceding sections to find a linkage that provides this functional relationship.
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5.6.2.1 The 4R Chain

Select fixed pivots O and C for the input and output cranks of this linkage. Let
g = |C−O| be the distance between these points, Figure 5.11. Let F be a reference
frame located at O with its x-axis along the line OC. Assume the angles θi and ψi
are measured relative to the x-axis of F . Introduce the line LO through O at the angle
θ1.

Fig. 5.11 A 4R function generator has a prescribed set of input and output angles θi, and ψi.

We now invert this problem by defining the exterior angles θ̄i = π − θi at O,
Figure 5.12. Introduce the coordinate frame F ′ attached to the input crank so that its
x-axis is aligned with LO such that θ̄1 is the angle to OC. The angles θ̄i and ψi can
now be viewed as the joint angles of the RR open chain formed by OC as it moves
in F ′. Using the kinematics equations of this chain, we compute the n positions

[Di] = [Z(θ̄i)][X(g)][Z(ψi)], i = 1, . . . ,n. (5.94)

The positions [Di] can now be used to design an RR chain AB to close the 4R chain.
The result is a 4R chain that has the desired set of coordinated angles θi and ψi,

i = 1, . . . ,n. Clearly, n ≤ 5, because this is the maximum number of positions for
which solutions exist to the finite position problem.

5.6.2.2 The RRRP Chain

The same strategy can be used to design a slider-crank that has the input angle θ

coordinated with an output slide s. Let θi and si, i = 1, . . . ,n, be the desired table of
values. Select a fixed pivot O and the direction S. Introduce a fixed frame F at O
with its x-axis perpendicular to S, where e is the offset distance from O to the guide
S. We assume the angles θi are measured from the x-axis of F , and si are measured
along the y-axis. Let LO be the line through O at the angle θ1 to the x-axis of F .

We invert the problem and determine the exterior angles θ̄i = π−θi and introduce
the frame F ′ with its x-axis along LO at the angle θ̄1. In this frame the kinematic
equations of the RP chain can be written as
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Fig. 5.12 Holding the input crank fixed the output crank takes positions M1, . . . ,Mi for each of the
prescribed input and output angles.

[Di] = [Z(θ̄i)][X(e)][Y (si)], i = 1, . . . ,n. (5.95)

The positions [Di] can be used to design the RR chain connecting the input and
output cranks of the RRRP linkage. Again, at most five sets of coordinated input
angles and output slides can be specified.

5.7 Summary

This chapter has presented algebraic techniques for the design of planar RR, PR, and
RP chains. The results are a direct reflection of the graphical constructions presented
earlier. In fact, many of the graphical results are simply reproduced here in algebraic
form. This provides a transition to the formulation we need for the design of spatial
linkages. Because the geometric principles are the same, it is useful to appeal to
understanding gained in planar synthesis theory to provide insight to the design of
spherical and spatial chains.

5.8 References

The algebraic formulation of linkage design was introduced by Freudenstein and
Sandor [37] using a complex vector formulation and is developed in detail in Erd-
man and Sandor [30]. See also Waldron and Kinzel [144]. The polynomial elim-
ination procedure used to solve the RR and PR design equations was inspired by
Innocenti [52] and Liao [66]. Computer implementations of planar linkage syn-
thesis originated with Kaufman’s KINSYN [54], and include Waldron and Song’s
RECSYN [145], Erdman and Gustafson’s LINCAGES [28], and Ruth’s SphinxPC
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[109]. Ravani and Roth [100] present an optimization approach to linkage synthesis
that allows more that five task positions.

Exercises

1. Use the positions listed in Table 5.1 to design two RR chains to form a 4R linkage
(Sandor and Erdman [112]).

Table 5.1 Three positions

Mi θi dx,i dy,i

1 293◦ 1.55 −0.90
2 138◦ 1.75 −0.30
3 348◦ 0.80 1.60

2. Use the positions in Table 5.2 to determine the pole triangle4P12P23P13. Deter-
mine the equation of the circle that circumscribes this pole triangle (Sandor and
Erdman [112]).

Table 5.2 Three more positions

Mi θi dx,i dy,i

1 0◦ 0 0
2 22◦ −6 11
3 68◦ −17 13

3. Design a slider-crank linkage to guide the workpiece through the three positions
in Table 5.2.

4. Design a 4R linkage that moves a workpiece through the three positions in Table
5.2.

5. Determine the equation of the curve of moving pivots W1 that lie on circles of
the same radius R. Show that this is a tricircular sextic.

6. Show that if the opposite-pole quadrilateral has the shape of a kite, then the
center-point curve degenerates into a circle and a line.

7. Determine the center-point and circle-point curves for the positions listed in Ta-
ble 5.3 (Suh and Radcliffe [134]).

8. Determine the Burmester points for the five positions listed in Table 5.4 (Sandor
and Erdman [112]).
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Table 5.3 Four positions

Mi θi dx,i dy,i

1 0◦ 1.0 1.0
2 0◦ 2.0 0.5
3 45◦ 3.0 1.5
4 90◦ 2.0 2.0

Table 5.4 Five positions

Mi θi dx,i dy,i

1 0◦ 0 0
2 10◦ 1.5 .8
3 20◦ 1.6 1.5
4 60◦ 2.0 3.0
5 90◦ 2.3 3.5





Chapter 6
Multiloop Planar Linkages

In this chapter, we will formulate the systematic design of multiloop planar link-
ages in a way that combines with traditional robotics and four-bar linkage synthesis
theory to obtain innovative articulated robotic systems. First, we will show how
mechanical constraints can be introduced to a planar 3R serial chain to guide the
movement of its end effector through a set of five specified task positions to obtain
a six-bar linkage, as illustrated in Figure 6.1. Then, we will show how mechanical
constraints can be introduced to a planar 6R loop to obtain an eight-bar linkage. An

ple for each six- and eight-bar linkage respectively to illustrate the design process.

M3

F

M1

M2

M4

M5

M3

F C3

M1

M2

M4

M5

Fig. 6.1 A planar 3R serial chain is constrained by two RR chains to define a six-bar linkage.

6.1 Synthesis of Six-Bar Linkages

A planar 3R chain consists of four links and three revolute joints Ci, i = 1,2,3 as
shown in Figure 6.2. We assume that this chain has full mobility in the plane with
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its configuration defined joint angles θ1, θ2, and θ3, and can reach a specified set of
task positions.

M

a12 θ1

F
θ2

a23

θ3

C1

C2

C3

B1

B3

B2

B0

0 1 2 3

Fig. 6.2 A schematic of a planar 3R serial chain. The graph of this chain forms a straight line with
a vertex for each link in the manipulator.

Our goal is to add constraints consistent with the task positions. While any of the
constraints PR, RP, and RR can be used, our focus is on RR constraints, Figure 6.3.

C2

C1

C3

G

W
C2

C1

C3

G

W

Fig. 6.3 Examples of constrained 3R serial chain.

A planar six-bar linkage consists of six links and seven joints and has two topo-
logically distinct configurations. These are called the Watt and Stephenson six-bar
chains, Figure 6.4. Inversions of these chains yield the Watt I, Watt II, Stephenson
I, Stephenson II, and Stephenson III linkages.

6.1.1 Adding RR Constraints

We design a six-bar linkage by adding constraints to 3R serial chain to obtain a one-
degree-of-freedom linkage. We will focus on the synthesis of RR constraints, but
PR or RP chains can be used to constrain the 3R chain using the same methodology.
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Watt Chain

Stephenson Chain

Watt I Watt II

Stephenson IIIStephenson IIStephenson I

Fig. 6.4 The Watt and Stephenson six-bar chains, and the different forms obtained by selecting
different links as the base.

In order to identify the ways to add RR constraints to a 3R serial chain, we denote
links of the 3R chain, as Bi, i = 0,1,2,3. An RR chain cannot constrain consecutive
links, therefore the two links that can be connected by the first RR constraint are (i)
B0B2, (ii) B0B3, or (iii) B1B3. Once the first constraint is attached, the second RR
constraint can be connected either to one of the original links, or to the link created
by the first RR constraint.

Stephenson IIIa

Stephenson IIIb

Stephenson IIb
0 1 2 3

0 1 2 3

0 1 2 3

Fig. 6.5 The linkage graphs show the synthesis sequence for the three constrained 3R chains in
which the two RR chains are attached independently.

Figure 6.5 shows the various systems that result from independent RR constraints
applied to a 3R chain. Notice that while two RR chains can connect B3 to ground,
there are no other cases in which the two RR cranks are connected to the same
bodies. The result is three six-bar linkages, the Stephenson IIb, Stephenson IIIa,
and Stephenson IIIb. The notation “a” and “b” is used to distinguish the input crank,
which we consider to be the first link of the 3R chain.
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Stephenson I

Stephenson IIa

Watt Ia

Watt Ib

Step 2

Step 1

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

4

4

4

4

Fig. 6.6 The linkage graphs show the synthesis sequence for the four constrained 3R chains in
which the second RR chain connects to the first RR chain.

We now consider the case in which the second RR chain is connected to the new
link B4 of the first RR chain. Figure 6.6 shows that we obtain the following four
topologies, which can be identified as (i) (B0B2,B3B4) known as a Watt Ia linkage,
(ii) (B0B3,B1B4), the Stephenson I, (iii) (B0B3,B2B4), the Stephenson IIa, and (iv)
(B1B3,B0B4), the Watt Ib linkage.

6.1.2 The RR Synthesis Equation

In order to size the two RR constraints for the 3R backbone chain, we generalize the
RR synthesis equations from the earlier chapter.

Let [Bl, j], j = 1, . . . ,5, be the five positions of the lth moving link, and [Bk, j],
j = 1, . . . ,5, the five positions of the kth moving link measured in a world frame F .
Let g be the coordinates of the R joint attached to the lth link measured in the link
frame Bl . Similarly, let w be the coordinates of the other R joint measured in the
link frame Bk. The five positions taken by these points in the moving frame as the
two bodies move relative to each other are given by

G j = [Bl, j]g and W j = [Bk, j]w. (6.1)
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Now introduce the relative displacements

[R1 j] = [Bl, j][Bl,1]
−1 and [S1 j] = [Bk, j][Bk,1]

−1, (6.2)

so these equations become

G j = [R1 j]G1 and W j = [S1 j]W1, (6.3)

where [R11] = [S11] = [I] are the identity transformations.
The points G j and W j define the ends of a rigid link of length R; therefore we

have the constraint equations

([S1 j]W1− [R1 j]G1) · ([S1 j]W1− [R1 j]G1) = R2. (6.4)

These five equations can be solved to determine the five design parameters of the RR
constraint, G1 = (u,v,1)T , W1 = (x,y,1)T , and R. We will refer to these equations
as the general synthesis equations for the planar RR link.

To solve the general synthesis equations, it is convenient to introduce the dis-
placements

[D1 j] = [R1 j]
−1[S1 j] = [Bl,1][Bl, j]

−1[Bk, j][Bk,1]
−1, (6.5)

so we obtain

([D1 j]W1−G1) · ([D1 j]W1−G1) = R2, j = 1, . . . ,5. (6.6)

Subtract the first of these equations from the remaining ones to cancel R2 and the
square terms in the variables u,v and x,y. The resulting four bilinear equations can
be solved algebraically to obtain the desired pivots.

6.1.3 Algebraic Elimination

The general synthesis equations (6.6) can be solved using the algebraic elimination
procedure presented previously. Recall that this consists of constructing four bilinear
equations and extracting four 3×3 minors Mj to obtain four cubic polynomials in x
and y, given by

R j : d j0y3 +d j1y2 +d j2y+d j3 = 0, j = 1, . . .4, (6.7)

where the coefficient dk j is a polynomial in x of degree k. The four polynomials R j
are assembled into the matrix equation

R = [D(x)]m =

d10(x) d11(x) d12(x) d13(x)
...

...
...

...
d40(x) d41(x) d42(x) d43(x)




y3

y2

y
1

=


0
0
0
0

 . (6.8)
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As we have seen, this equation can be solved for a non-zero m = (y3,y2,y,1), only
if the resultant matrix [D(x)] had a determinant equal zero.

Here we present a method to compute the roots of det[D(x)] = 0 using the eigen-
value technique described in [72]. For convenience, rename x as λ , and expand
[D(λ )] in matrix polynomial form as

[D(λ )] = [D0]+ [D1]λ +[D2]λ
2 +[D3]λ

3, (6.9)

where D0, D1, D2, and D3 are 4×4 matrices.
The roots of detD(λ ) = 0 are the finite eigenvalues of the generalized system

[B]x = λ [A]x, (6.10)

where A, B, and x are given by

[A] =

I4 0 0
0 I4 0
0 0 D3

 , [B] =

 0 I4 0
0 0 I4
−D0 −D1 −D2

 , x =


m

λm
λ 2m

 , (6.11)

where I4 is the 4×4 identity matrix and 0 is a 4×4 matrix of zeros. The solution of
this eigenvalue problem yields four finite solutions.

For each real value of λ we computes its eigenvector and obtain a value for y.
Notice that each eigenvector x is defined up to a constant multiple µ , therefore, it is
convenient to determine the coordinate of y by computing the ratio of elements of
x, such as

y =
x3

x4
=

µy
µ

. (6.12)

The remaining variables u and v are obtained by solving two of the four bilinear
synthesis equations formulated from Eq (6.6).

6.1.4 The Number of Six-Bar Linkage Designs

The synthesis of an RR constraint yields as many as four designs; therefore two
constraints can yield 16 designs. However, our process always has one link of the
3R chain as one of the solutions, so there are at most 12 designs.

The Stephenson I structure has all 12 designs. The Stephenson II has two differ-
ent sets of designs that differ in the workpiece link, and so yields 24 designs. The
Stephenson III also has two ways to connect to the end effector, one of which yields
12 designs and the other six, a total of 18.

The Watt I has two different sets of designs that differ in the input crank, and
both sets include a link on the 3R chain for both RR constraints, so there are 2×9
candidates. The result is as many as 72 different six-bar linkage designs obtained
using this process.
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6.2 Analysis of a Six-Bar Linkage

Given any six-bar linkage, we can perform closed-form kinematic analysis to sim-
ulate its movement using complex vectors and the Dixon determinant. Our focus in
this section is on the Watt Ia six-bar, but the approach can be applied to all of the
six-bar linkages obtained from our synthesis methodology. All that is needed are the
loop equations for the linkage.

Fig. 6.7 The joint angle and link length parameters for the Watt Ia six-bar linkage.

6.2.1 Complex Loop Equations

Consider the general Watt Ia linkage shown in Figure 6.7. Introduce a coordinate
frame F such that the base pivot of the 3R chain, C1, is the origin with its x-axis
directed toward G1. Let the configuration angles θi, i = 1,2, . . . ,5 be as shown in
Figure 6.7.

Using the notation in Figure 6.7, we formulate the vector equations of the loops
formed by C1C2W1G1 and C1C2C3W2G2G1, that is,

F1 : l1 cosθ1 +b1 cos(θ2− γ)−b2 cos(θ4 +η)− l0 = 0,
F2 : l1 sinθ1 +b1 sin(θ2− γ)−b2 sin(θ4 +η) = 0,
F3 : l1 cosθ1 + l2 cosθ2 + l3 cosθ3− l4 cosθ4− l5 cosθ5− l0 = 0,
F4 : l1 sinθ1 + l2 sinθ2 + l3 sinθ3− l4 sinθ4− l5 sinθ5 = 0. (6.13)

Select the angle θ1 as the input to the six-bar linkage, then these four equations Fi
determine the joint angles θ j, j = 2,3,4,5.

Now introduce the complex numbers Θ j = eiθ j , so the four loop equations (6.13)
become two complex loop equations,

F

θ1

C2

C1

C3

G1

G2

W2

W1

θ4

θ5

γ

η
b2

b1
l1

l2

l3

l4

l5

θ2

θ3

l0
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C1 : l1Θ1 +b1Θ2e−iγ −b2Θ4eiη − l0 = 0,
C2 : l1Θ1 + l2Θ2 + l3Θ3− l4Θ4− l5Θ5− l0 = 0. (6.14)

Take the complex conjugate of these two equations to define

C ?
1 : l1Θ

−1
1 +b1Θ

−1
2 eiγ −b2Θ

−1
4 e−iη − l0 = 0,

C ?
2 : l1Θ

−1
1 + l2Θ

−1
2 + l3Θ

−1
3 − l4Θ

−1
4 − l5Θ

−1
5 − l0 = 0. (6.15)

We now solve the four complex loop equations (6.14) and (6.15) for the complex
configuration angles Θ j, j = 2,3,4,5 using the Dixon determinant.

6.2.2 The Dixon Determinant

Suppress Θ3, so we have four complex equations in the three variables Θ2, Θ4 and
Θ5. We formulate the Dixon determinant by inserting each of the four functions C1,
C ?

1 , C2, C ?
2 as the first row, and then sequentially replacing the three variables by

α j in the remaining rows, to obtain

∆(C1,C
?
1 ,C2,C

?
2 )

=

∣∣∣∣∣∣∣∣
C1(Θ2,Θ4,Θ5) C ?

1 (Θ2,Θ4,Θ5) C2(Θ2,Θ4,Θ5) C ?
2 (Θ2,Θ4,Θ5)

C1(α2,Θ4,Θ5) C ?
1 (α2,Θ4,Θ5) C2(α2,Θ4,Θ5) C ?

2 (α2,Θ4,Θ5)
C1(α2,α4,Θ5) C ?

1 (α2,α4,Θ5) C2(α2,α4,Θ5) C ?
2 (α2,α4,Θ5)

C1(α2,α4,α5) C ?
1 (α2,α4,α5) C2(α2,α4,α5) C ?

2 (α2,α4,α5)

∣∣∣∣∣∣∣∣ . (6.16)

This determinant is zero when Θ j, j = 2,4,5, satisfy the loop equations, because the
elements of the first row become zero.

Notice that each complex loop equation has the form

Ck : ck0 + ck3x+ ∑
j=2,4,5

ck, jΘ j and C ?
k : c?k0 + c?k3x−1 + ∑

j=2,4,5
c?k, jΘ

−1
j , (6.17)

where x denotes the suppressed variable Θ3. Clearly, the equations maintain this
form when α j replaces Θ j. Now row reduce ∆ by subtracting the second row from
the first row, then the third from the second, and the fourth from the third, to obtain∣∣∣∣∣∣∣∣

c12(Θ2−α2) c∗12(Θ
−1
2 −α

−1
2 ) c22(Θ2−α2) c∗22(Θ

−1
2 −α

−1
2 )

c14(Θ4−α4) c∗14(Θ
−1
4 −α

−1
4 ) c24(Θ4−α4) c∗24(Θ

−1
4 −α

−1
4 )

c15(Θ5−α5) c∗15(Θ
−1
5 −α

−1
5 ) c25(Θ5−α5) c∗25(Θ

−1
5 −α

−1
5 )

C1(α2,α4,α5) C ?
1 (α2,α4,α5) C2(α2,α4,α5) C ?

2 (α2,α4,α5)

∣∣∣∣∣∣∣∣ . (6.18)

This determinant contains extraneous roots of the form Θ j = α j, which we can
remove by dividing out the factor (Θ−1

j −α
−1
j ) using Θ j −α j = −Θ jα j(Θ

−1
j −
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α
−1
j ), in order to define the determinant

δ =
∆(C1,C

?
1 ,C2,C

?
2 )

(Θ−1
2 −α

−1
2 )(Θ−1

4 −α
−1
4 )(Θ−1

5 −α
−1
5 )

, (6.19)

that is,

δ =

∣∣∣∣∣∣∣∣
−c12Θ2α2 c∗12 −c22Θ2α2 c∗22
−c14Θ4α4 c∗14 −c24Θ4α4 c∗24
−c15Θ5α5 c∗15 −c25Θ5α5 c∗25

C1(α2,α4,α5) C ?
1 (α2,α4,α5) C2(α2,α4,α5) C ?

2 (α2,α4,α5)

∣∣∣∣∣∣∣∣ . (6.20)

This determinant expands to form a polynomial of the form

δ = aT [W ]t = 0, (6.21)

where a and t are vectors of monomials,

a =



α2
α4
α5

α4α5
α2α5
α2α4


and t =



Θ2
Θ4
Θ5

Θ4Θ5
Θ2Θ5
Θ2Θ4


. (6.22)

The 6×6 matrix [W ] is given by

[W ] =

[
D1x+D2 AT

A −(D∗1x−1 +D∗2)

]
. (6.23)

The matrices [D1] and [D2] are 3×3 diagonal matrices, given by

[D1] =

b1b2l3l5e−i(γ+η) 0 0
0 −b1b2l3l5ei(γ+η) 0
0 0 0

 , [D2] =

d1 0 0
0 d2 0
0 0 d3

 ,
(6.24)

where

d1 =(l1Θ1− l0)(b1b2l5e−i(γ+η)−b2l2l5e−iη),

d2 =(l0− l1Θ1)(b1b2l5ei(γ+η)−b1l4l5eiγ),

d3 =(l1Θ1− l0)(b2l2l5e−iη −b1l4l5eiγ).

And the 3×3 matrix [A] is given by
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[A]

=

 0 b1b2l2
5ei(γ+η) −b2

2l2l5 +b1b2l4l5ei(γ+η)

−b1b2l2
5e−i(γ+η) 0 b1b2l2l5e−i(γ+η)−b2

1l4l5
b2

2l2l5−b1b2l4l5e−i(γ+η) −b1b2l2l5ei(γ+η) +b2
1l4l5 0

 .
(6.25)

A set of values Θ j that satisfy the loop equations (6.14) and (6.15) will also yield
δ = 0, which will be true for arbitrary values of the auxiliary variables α j. Thus,
solutions for these loop equations must also satisfy the matrix equation

[W ]t = 0. (6.26)

The matrix [W ] has the structure

[W ]t =
[(

D1 0
A −D∗2

)
x−
(
−D2 −AT

0 D∗1

)]
t = [Mx−N]t = 0. (6.27)

Because [W ] is a square matrix, this equation has non-zero solutions only if det[W ] =
0. Expanding this determinant, we obtain a polynomial in x =Θ3.

Notice that the values of x = Θ3 that satisfy det[W ] = 0 are also eigenvalues
of the characteristic polynomial p(x) = det(Mx−N) of the generalized eigenvalue
problem

[N]t = x[M]t. (6.28)

Each value of x =Θ3 has an associated eigenvector t, which yields the values of the
remaining joint angles Θ j, j = 2,4,5.

It is useful to notice that an eigenvector t = (t1, t2, t3, t4, t5, t6)T is defined only up
to a constant multiple, µ . Therefore, it is convenient to determine the values Θ j by
the computing the ratios,

Θ2 =
t5
t3

=
µΘ2Θ5

µΘ5
, Θ4 =

t6
t1

=
µΘ2Θ4

µΘ2
, Θ5 =

t4
t2

=
µΘ4Θ5

µΘ4
. (6.29)

For a given input angle, a six-bar linkage can have as many as six roots for the
configuration variables Θ j, j = 2,3,4,5. Each of these roots defines an assembly of
the six-bar linkage.

6.2.3 Sorting Assemblies

As we analyze a six-bar linkage for a sequence of input angles Θ k
1 , there are as many

as six sets of configuration angles ~Θ = (Θ2,Θ3,Θ4,Θ5)i, i = 1, . . . ,6 that define the
assemblies of the linkage associated with each input angle. In order to sort the roots
among the assemblies, we use the Jacobian of the loop equations.

Compute the derivative of the loop equations (6.14) and (6.15) to obtain
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∇C1 : l1Θ̇1 +b1Θ̇2e−iγ −b2Θ̇4eiη = 0,

∇C2 : l1Θ̇1 + l2Θ̇2 + l3Θ̇3− l4Θ̇4− l5Θ̇5 = 0,

∇C ?
1 : − l1Θ̇1Θ

−2
1 −b1Θ̇2eiγ

Θ
−2
2 +b2Θ̇4e−iη

Θ
−2
4 = 0,

∇C ?
2 : − l1Θ̇1Θ

−2
1 − l2Θ̇2Θ

−2
2 − l3Θ̇3Θ

−2
3 + l4Θ̇4Θ

−2
4 + l5Θ̇5Θ

−2
5 = 0. (6.30)

Factor out the derivative vector ~̇Θ = (Θ̇1,Θ̇2,Θ̇3,Θ̇4,Θ̇5), and obtain the Jacobian
matrix

[∇C (~Θk)] =


l1 b1e−iγ 0 −b2eiη 0
l1 l2 l3 −l4 −l5

−l1Θ
−2
1 −b1eiγΘ

−2
2 0 b2e−iηΘ

−2
4 0

−l1Θ
−2
1 −l2Θ

−2
2 −l3Θ

−2
3 l4Θ

−2
4 l5Θ

−2
5

 . (6.31)

In order to sort the roots to among assemblies of the six-bar linkage, we approx-
imate the complex loop equations using the Jacobian, and obtain

[∇C (~Θ k
i )](~Ψ − ~Θ k

i ) = 0, (6.32)

where Ψ approximates the value ~Θ k+1
i associated with the input angle Θ

k+1
1 and

is near the assembly defined by ~Θ k
i . It is then a matter of identifying which of the

root ~Θ k+1
i is closest to Ψ on the ith circuit, in order to match the assemblies. This

provides a rapid and exact method to determine a sequence of configuration angles
for each assembly in order to animate the six-bar linkage.

6.3 Example: A Steering Linkage

As an example of our six-bar linkage design methodology, we consider a steering
linkage. Generally, a steering linkage controls the direction of the two wheels around
king-pin axes attached to the frame of a vehicle. Our goal is a design that does
not use a king-pin, and, instead, allows the wheels to move laterally relative to the
vehicle frame as they change direction. This is intended for a gravity racer in which
extra stability in turning reduces the need for braking.

For this design, we use a Watt Ia linkage, see Figure 6.8. We will add the RR
constraints G1W1, and G2W2 to the 3R backbone chain C1C2C3 to obtain the Watt
Ia linkage.

Step 1.

The task positions that define the positions of the left wheel, [Ti], i = 1, . . . ,5 are
given in Table 6.1. These positions provide coordinated tracking of the front wheels
with turning radius shown in the table.
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Fig. 6.8 A 3R chain, C1C2C3, constrained by two RR chains, G1W1 and G2W2, to form a Watt
Ia linkage.

Table 6.1 Five task positions for the end effector of the 3R chain (dimensions in mm)

Task Position (φ ,x,y) Turning radius

1 (43.9◦,−325,1511) -1895
2 (20.0◦,−432,1562) -4724
3 (0◦,−559,1588) no turn
4 (−15.9◦,−689,1542) 4724
5 (−29.1◦,−751,1473) 1895

The dimensions of the 3R chain are chosen to be a12 = a23 = 274mm. The loca-
tion of the base and moving pivots of the 3R chain, [G] and [H], are specified by the
translation vectors (0◦,−153,1241) and (0◦,−133,0), respectively. Use this data to
formulate the inverse kinematics equations of the 3R chain and solve for the config-
uration angles q j = (θ1,θ2,θ3) j, j = 1, . . . ,5, that reach the specified task positions
[Tj], j = 1, . . . ,5.

Notice that the inverse kinematics equations yield two sets of configuration an-
gles corresponding to a 3R chain with its elbow up and elbow down. In this example,
we chose the elbow configuration defined by the coordinates C1 = (−153,1241),
C2 = (6.6,1463.7), and C3 = (−229.2,1603.2)

The five configurations of the 3R chain provide the coordinate transformations
for each link relative to the ground frame. Compute [B1 j] = [R(θ1 j),C1 j], which
defines the five positions of the first link in F . The positions of the second and third
links are given by

[B2 j] =[R(θ1 j +θ2 j),C2 j],

and [B3 j] =[R(θ1 j +θ2 j +θ3 j),C3 j], j = 1, . . . ,5. (6.33)

F

M

Δφ

W

Δθ2

G

H

a12 W1

G1
G2

W2

R1

R2

B2

B3

B4

a23

Δθ1

Δθ3
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Table 6.2 Step 1. Select the joint coordinates for the 3R chain; Step 2. Solve for the first RR chain;
Step 3. Solve for the second RR chain; The selected values are highlighted in bold (dimensions in
mm)

Step 1 C1 C2 C3

(−153,1241) (6.6,1463.7) (−229.2,1603.2)

Step 2 G1 W1

1 (−153,1241) (6.6,1463.7)
2 (−93.6,936.0) (−64.9,918.0)
3 (−84.3,1294.9) (150.7,1570.3)
4 (74.5,861.6) (172.6,805.0)

Step 3 G2 W2

1 (−148.9,1442.1) (−198.2,1735.8)
2 (424.6,962.0) (−244.2,1668.3)
3 (−221.7,1794.7) (−197.7,1669.5)
4 (150.7,1570.3) (−229.2,1603.2)

The 15 coordinate transformations [Bi j] form the tasks requirements that can be used
to synthesize the planar RR constraints.

Step 2.

Using the five positions B2 j, j = 1, . . . ,5 of the link B2 relative to the ground frame,
assemble the design equations for an RR chain, denoted G1W1 in Figure 6.8. In this
case, we obtain (6.6) with [D1i] = [B2i][B21]

−1, i = 1, . . . ,5. The solution yields the
values listed in Table 6.2.

Notice that the RR chain formed by C1C2 is among the computed RR constraints.
This means we must choose of the remaining three sets to be the first constraint
G1W1. Because real solutions to the design equations occur in pairs, the presence
of the RR chain C1C2, guarantees at least one real solution to this set of design
equations.

Step 3.

The RR chain G1W1 introduces a new link B4, which takes the positions [B4 j], j =
1, . . . ,5, when the end effector is in each of the specified task positions. This defines
the coordinate transformations [B4 j] = [R(θ4 j),G1 j]

Using the positions of the end effector of the 3R chain and the positions of the
link B4, we assemble the design equations for an RR constraint G2W2. The solution
to these equations are shown in Table 6.2. In this case, the chain C2C3 appears
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Fig. 6.9 The example solution for a Watt Ia linkage reaching each of the five task positions.

among the solutions, which guarantees a second real solution. Thus, this design
process results in at least one real Watt 1a six-bar linkage.

Analysis

In order to animate the movement of this system, solve the loop equations of the
six-bar linkage for a sequence of input angles interpolated between those defined by
the task positions. Let these input angles θ k

1 , k = 1 . . . ,N, then, for each value, θ k
1 ,

solve the loop equations (6.14) and (6.15) to determine the remaining configuration
angles Θ k = (θ k

2 ,θ
k
3 ,θ

k
4 ,θ

k
5 )

T .
Recall that there can be as many as six roots for each Θ k, only one of which

corresponds to the assembly of the six-bar linkcage specified in each of the task
positions. Identify the root Θ k for the correct assembly by formulating and solving
the approximation to the loop equations (6.32). This calculation can be checked
against the known configurations at each of the task positions. The results for our
design are shown in Table 6.3.

Table 6.3 Analysis solutions for the steering mechanism

θ1 θ2 θ3 θ4 θ5

1 16.26◦ 111.28◦ −43.06◦ 66.37◦ −63.49◦

2 31.19◦ 118.18◦ −36.16◦ 70.35◦ −55.85◦

3 53.76◦ 126.41◦ −27.93◦ 83.67◦ −39.56◦

4 81.50◦ 136.38◦ −17.96◦ 106.03◦ −16.23◦

5 101.28◦ 144.20◦ −10.14◦ 125.43◦ 2.08◦

Figure 6.9 shows the six-bar linkage that results when the pivots highlighted
in Table 6.2 are selected for the design. In order to complete the steering linkage
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provide a mirror-image of this six-bar linkage, and connect the input cranks to the
steering wheel. The result is a single degree-of-freedom 14-bar linkage, Figure 6.10.
This linkage achieves five Ackermann steering positions and extends the outside
wheel to increase the reaction to the roll-over moment during a turn.

Fig. 6.10 The 14-bar steering system formed by the six-bar linkage and its mirror image at the
front wheels which are connected by a driving crank and two coupler links.

6.4 Synthesis of a Planar Eight-Bar Linkage

Two 3R serial chains that share an end effector form a planar 6R loop with three
degrees of freedom, Figure 6.11. The graph of this linkage is a hexagon. We will an
design eight-bar linkage by adding two RR constraints to a 6R loop, Figure 6.12. It is
known that there are sixteen topologically distinct eight-bar linkages, as compared
to two for six-bar linkages. Inversions of these topologies yields a large number
different design options for an eight-bar linkage.
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Fig. 6.11 The graph of the planar 6R loop forms a hexagon with a vertex for each link.
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Fig. 6.12 Examples of eight-bar linkages obtained by adding two RR constraints to a 6R loop.

6.4.1 Adding RR Constraints

In order to design an eight-bar chain, we choose a 6R loop that moves through the
task positions, and then attach two RR constraints. Notice that RP and PR chains
can be used instead of the RR chain to constrain the 6R loop, in which case the
design equations for these constraints are used in what follows. The selection of the
6R loop provides the designer the freedom to choose the two connections to ground
and the two connections to the moving workpiece. We choose not to add a constraint
to ground in order to avoid a third ground pivot.

The various ways that two RR constraints can be added to a 6R loop are labeled
by listing the links that are connected. Denote the ground link as B0, the three links
of the left 3R chain as Bi, i = 1,2,3, and the links of the right 3R chain as Bi,
i = 4,5,6, which means that B3 = B6. Because we cannot constrain two neighboring
links and prefer not to constrain a link to ground, the first RR constraint is one of the
six cases (i) B1B3, (ii) B1B4, (iii) B1B5, (iv) B2B4, (v) B2B5, and (vi) B3B4, Figure
6.13.

As we saw in the design of a six-bar linkage, the second RR constraint can be
attached independently to existing links of the 6R loop, as well as the case where the
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Fig. 6.13 There are six ways to add the first RR chain.

second RR constraint is attached to new link of the first RR constraint. In the first
case, we choose two of the six constraint to obtain

(6
2

)
= 15 eight-bar structures.

In addition to this, there are two cases where both RR constraints attached to the
same bodies is possible, (i) B1B5, and (ii) B2B4. The 17 eight-bar structures are
shown in Figure 6.14. We label these structures by denoting as Bij the RR constraint
connecting Bi and B j, so the structure with constraints Bij and Bkl is BijBkl. Using
this notation, the eight-bar linkage B14B15 has RR constraints B1B4 and B1B5.

Let the link introduced by the first RR constraint be denoted B7, then we have
15 eight-bar structures that arise from the attachment of the second RR constraint
to B7. These can be enumerated by considering that there are three ways to attach
the second RR constraint, if the first constraint is one of the three, B1B4, B1B5, and
B2B4; and two ways, if the first constraint is one of the three B1B3, B2B5 and B3B4.
Thus, there are 3×3+3×2=15 eight-bar structures, Figure 6.15.

6.4.2 The Number of Eight-Bar Linkage Designs

This design process yields 32 eight-bar structures available to a designer. Recall that
the synthesis of an RR chain for a five-position task yields as many as four design
candidates, so two RR constraints can yield as many as 16 candidates for a particular
eight-bar structure. However, this occurs only for the case B15B24.

There are 17 cases where one of the existing links of the 6R loop arises in the
synthesis of one of the RR constraints. For these structures, there are at most 12
design candidates. There are 12 cases in which the synthesis of both RR constraints
includes two links of the 6R loop, which means that there are at most nine design
candidates. Finally, the two cases B24B24, and B15B15 have RR chains attached to
the same bodies, which means that there are at most

(4
2

)
= 6 design candidates.

Thus, this design process can yield as many as 340 (1× 16+ 17× 12+ 12×
9+ 2× 6) eight-bar linkage design candidates. Comparing the linkage graphs in
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Fig. 6.14 The 17 eight-bar linkage structures obtained from the independent attachment of two RR
constraints to a 6R loop. The number in parentheses identifies the associated eight-bar topology.

Figures 6.14 and 6.15 to the 16 eight-bar topologies in Figure 6.16, we see that
these structures are inversions of the topologies 3, 4, 7, 8, 9, 10, 11, and 16.
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Fig. 6.15 The 15 eight-bar linkage structures obtained when the second RR constraint is attached
to the link of the first RR constraint in a 6R loop. The number in parentheses identifies the associ-
ated eight-bar topology.

6.5 Analysis of an Eight-bar Linkage

The analysis of an eight-bar linkage to determine its configurations as a function of
an input angle follows the analysis presented for a six-bar linkage using complex
vectors and the Dixon determinant. For the purposes of this presentation, we focus
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Fig. 6.16 The sixteen topologies available for eight-bar linkages.

on the B14B25 eight-bar linkage, but the approach can be applied to all of the eight-
bar topologies. All that is needed is the loop equations for the linkage.
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Fig. 6.17 The joint angle and link length parameters for the B14B25 eight-bar linkage.
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6.5.1 Complex Loop Equations

Consider the B14B25 linkage shown in Figure 6.17. Introduce a coordinate frame
F such that the base pivot of the 6R loop, C1, is the origin with its x-axis di-
rected toward C4. The input angle is θ1 and the output configuration angles are
~θ = (θ2,θ3,θ4,θ5,θ8,θ10) shown in Figure 6.17.

The vector loop equations for the three loops (i)C1G1W1C4, (ii) C1C2G2W2C5C4,
and (iii) C1C2C3C6C5C4 are given by

F1 : b1 cos(θ1− γ)+ l8 cosθ8− l7 cos(θ4 +η)− l0 = 0,
F2 : b1 sin(θ1− γ)+ l8 sinθ8− l7 sin(θ4 +η) = 0,
F3 : l1 cosθ1 +b4 cos(θ2−β )+ l10 cosθ10− l9 cos(θ5 + ε)− l4 cosθ4− l0 = 0,
F4 : l1 sinθ1 +b4 sin(θ2−β )+ l10 sinθ10− l9 sin(θ5 + ε)− l4 sinθ4 = 0,
F5 : l1 cosθ1 + l2 cosθ2 + l3 cosθ3− l4 cosθ4− l5 cosθ5− l0 = 0,
F6 : l1 sinθ1 + l2 sinθ2 + l3 sinθ3− l4 sinθ4− l5 sinθ5 = 0.

(6.34)
For each value of the input angle these six equations define the six configuration
angles.

Now introduce the complex vectors Θ j = eiθ j , so the six equations (6.34) become
three complex loop equations,

C1 = b1Θ1e−iγ + l8Θ8− l7Θ4eiη − l0,
C2 = l1Θ1 +b4Θ2e−iβ + l10Θ10− l9Θ5eiε − l4Θ4− l0,
C3 = l1Θ1 + l2Θ2 + l3Θ3− l4Θ4− l5Θ5− l0.

(6.35)

The complex conjugate of these equations yields

C ∗1 = b1Θ
−1
1 eiγ + l8Θ

−1
8 − l7Θ

−1
4 e−iη − l0,

C ∗2 = l1Θ
−1
1 +b4Θ

−1
2 eiβ + l10Θ

−1
10 − l9Θ

−1
5 e−iε − l4Θ

−1
4 − l0,

C ∗3 = l1Θ
−1
1 + l2Θ

−1
2 + l3Θ

−1
3 − l4Θ

−1
4 − l5Θ

−1
5 − l0.

(6.36)

We solve the six complex loop equations (6.35) and (6.36) for the complex config-
uration angles ~Θ = (Θ2,Θ3,Θ4,Θ5,Θ8,Θ10), using the Dixon determinant.

6.5.2 The Dixon Determinant

Suppress Θ3, so we have six complex equations in the five variables Θ2, Θ4, Θ5, Θ8,
and Θ10. The Dixon determinant constructed with the six functions C1, C ∗1 , C2, C ∗2 ,
C3, C ∗3 as the first row. For the successive rows replace the five configuration angles
by the variables αi, to obtain
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∆(C1,C
∗
1 ,C2,C

∗
2 ,C3,C

∗
3 )

=

∣∣∣∣∣∣∣∣∣
C1(Θ2,Θ4,Θ5,Θ8,Θ10) . . . C ∗3 (Θ2,Θ4,Θ5,Θ8,Θ10)
C1(α2,Θ4,Θ5,Θ8,Θ10) . . . C ∗3 (α2,Θ4,Θ5,Θ8,Θ10)

...
...

C1(α2,α4,α5,α8,α10) . . . C ∗3 (α2,α4,α5,α8,α10)

∣∣∣∣∣∣∣∣∣ . (6.37)

This determinant is zero when Θ j, j = 2,4,5,8,10 satisfy the loop equations, be-
cause the elements of the first row become zero.

As we did in the analysis of the six-bar linkage, we use the properties of the
general form of the loop equations and row reduce the Dixon determinant, to obtain∣∣∣∣∣∣∣∣∣

c12(Θ2−α2) . . . c∗32(Θ
−1
2 −α

−1
2 )

c14(Θ4−α4) . . . c∗34(Θ
−1
4 −α

−1
4 )

...
...

C1(α2,α4,α5,α8,α10) . . . C ?
3 (α2,α4,α5,α8,α10)

∣∣∣∣∣∣∣∣∣ . (6.38)

This determinant contains extraneous roots of the form Θ j = α j, which we can
remove by dividing out the factor (Θ−1

j −α
−1
j ) using Θ j −α j = −Θ jα j(Θ

−1
j −

α
−1
j ), in order to define

δ =
∆(C1,C

∗
1 ,C2,C

∗
2 ,C3,C

∗
3 )

∏i=2,4,5,8,10(Θ
−1
i −α

−1
i )

. (6.39)

This determinant expands to define a polynomial of the form

δ = a[W ]t = 0, (6.40)

where the vectors a and t are defined as follows.
The vector a =

{
a1 a2

}
is constructed from monomials of αi, such that a1 is

combinations αiα j of the variables (α2,α4,α5,α8,α10), and a2 is its complement
αkαlαm, given by

aT
1 =



α2α4
α2α5
α2α8
α2α10
α4α5
α4α10
α5α8
α5α10
α8α10


, aT

2 =



α5α8α10
α4α8α10
α4α5α10
α4α5α8
α2α8α10
α2α5α8
α2α4α10
α2α4α8
α2α4α5


. (6.41)

Similarly the t = (t1, t2)
T is constructed from the monomials Θi, such that
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t1 =



Θ2Θ4
Θ2Θ5
Θ2Θ8
Θ2Θ10
Θ4Θ5
Θ4Θ10
Θ5Θ8
Θ5Θ10
Θ8Θ10


, t2 =



Θ5Θ8Θ10
Θ4Θ8Θ10
Θ4Θ5Θ10
Θ4Θ5Θ8
Θ2Θ8Θ10
Θ2Θ5Θ8
Θ2Θ4Θ10
Θ2Θ4Θ8
Θ2Θ4Θ5


. (6.42)

The result is that (6.40) takes the form

{
a1 a2

}[D1x+D2 AT

A D∗1x−1 +D∗2

]{
t1
t2

}
= 0, (6.43)

where matrices [D1] and [D2[ are diagonal, and [A] is Hermitian, which means ai j =
a∗ji.

There are 10 ways to form the products αiα j from the variables (α2,α4,α5,α8,α10),
which means there are many as 20 monomials in a = (a1,a2). However, for our
equations, α4α8 and its complementary α2α5α10 are not in the monomial list be-
cause they have zero coefficients. Thus, we have 18 monomials instead of 20.

A set of values Θ j that satisfy the loop equations (6.35) and (6.36) also yield
δ = 0, which will be true for arbitrary values of the auxiliary variables α j. Thus
solutions for these loop equations must also satisfy

[W ]t =
[

D1x+D2 AT

A D∗1x−1 +D∗2

]{
t1
t2

}
= 0. (6.44)

Because [W ] is a square matrix, this equation has non-zero solutions only if det[W ] =
0, which is a polynomial in λ =Θ3.

The structure [W ] allows us to write it in the form of a generalized eigenvalue
problem [(

D1 0
A D∗2

)
λ −

(
−D2 −AT

0 −D∗1

)]{
t1
t2

}
= [Mλ −N]t = 0. (6.45)

The eigenvalues of this system are the solutions of the characteristic polynomial
p(x) = det[Mλ −N]. For each eigenvalue λ = Θ3, we can solve (6.45) to obtain
an associated eigenvector t that defines the values of the remaining joint angles
Θ j, j = 2,4,5,8,10.

Because the eigenvector t = (t1, t2, . . . , t18)
T is defined up to a constant multiple

µ , we obtain the values of Θ j by computing the ratios

Θ2 =
t18

t5
=

µΘ2Θ4Θ5

µΘ4Θ5
, Θ4 =

t18

t2
=

µΘ2Θ4Θ5

µΘ2Θ5
, Θ5 =

t18

t1
=

µΘ2Θ4Θ5

µΘ2Θ4
,

Θ8 =
t17

t1
=

µΘ2Θ4Θ8

µΘ2Θ4
, Θ10 =

t16

t1
=

µΘ2Θ4Θ10

µΘ2Θ4
. (6.46)
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For a given value of the input angle Θ1, there are as many as 18 roots for the con-
figuration variables ~Θ = (Θ2,Θ3,Θ4,Θ5,Θ8,Θ10). Each of these roots defines an
assembly for the eight-bar linkage.

6.5.3 Sorting Assemblies

For a sequence of input angles Θ k
1 , we can obtain a set of as many as 18 roots ~Θ k

i , i=
1, . . . ,18, for each input angle. In order to sort the solutions of the Dixon determinant
among the assemblies of the eight-bar linkage, construct an approximation to the
loop equations in the same way as discussed previously for the analysis of a six-bar
linkage.

Compute the derivatives of the loop equations (6.35) and (6.36), and construct
the Jacobian

[∇C (~Θ k)] =

b1e−iγ 0 0 −l7eiη 0 l8 0
l1 b4e−iβ 0 −l4 −l9eiε 0 l10
l1 l2 l3 −l4 −l5 0 0

−b1eiγΘ
−2
1 0 0 l7e−iηΘ

−2
4 0 −l8Θ

−2
8 0

−l1Θ
−2
1 −b4eiβΘ

−2
2 0 l4Θ

−2
4 l9e−iεΘ

−2
5 0 −l10Θ

−2
10

−l1Θ
−2
1 −l2Θ

−2
2 −l3Θ

−2
3 l4Θ

−2
4 l5Θ

−2
5 0 0

 .
(6.47)

The approximation to the loop equations of the eight-bar linkage in the ith is
given by

[∇C (~Θ k
i )](~Ψ − ~Θ k

i ) = 0. (6.48)

The solution of these equations yields Ψ that is on the tangent to the ith circuit at
~Θ k

i . The root ~Θ k+1
i that is closest to Ψ is the root that matches the ith assembly.

6.6 Example: A Convertible Sofa

As an example of our planar eight-bar linkage design methodology, we consider the
deployment linkage for a convertible sofa. The current deployment linage may pull
the user toward the bed causing back strain. Our goal is a new design that deploys
smoothly without this reverse movement.

For this design, we use a B14B25 linkage, see Figure 6.18. The backbone 6R
loop is defined by C1C2C3C6C5C4. We add the RR constraint G1W1 that connects
links B1B4 and a second constraint G2W2 that connects B2B5.
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Fig. 6.18 The geometry of the B14B15 eight-bar linkage to be designed as the deployment linkage
for convertible sofa .

Step 1.

The task positions that define the desired deployed positions of the bed, [Ti], i =
1, . . . ,5 , are given in Table 6.4. These positions define movement of the bed as it
unfolds from the base of the sofa.

Table 6.4 Five task positions for the design of the convertible sofa (dimensions in cm)

Task Position (φ ,x,y)

1 (0◦,−4,6.1)
2 (−49◦,−5.4,18.5)
3 (−53◦,−14,24)
4 (−42◦,−20,22.4)
5 (0◦,−28.6,13.6)

The dimensions of the left 3R chain are chosen to be a12 = a23 = 16.28cm. The
location of the base and moving pivots of this 3R chain, [G] and [H], are specified by
the translation vectors (0◦,−6,0) and (0◦,4,0) respectively. The dimensions of the
right 3R chain are chosen to be a45 = a56 = 18.00cm, and base and moving pivots
are defined by the translation vectors (0◦,2,0) and (0◦,0,0) respectively.

Use this data to formulate the inverse kinematics equations of the 6R loop and
solve for the configuration angles q j = (θ1,θ2,θ3,θ4,θ5,θ6), j = 1, . . . ,5, that reach
the specified task positions. There are four solutions corresponding to the elbow up
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and elbow down configurations for the left and right 3R chains. In this example, we
choose the elbow configuration defined by the coordinates for Ci listed in Table 6.5.

The five positions of the 6R loop provide the coordinate transformations for each
link relative to the ground frame. Compute [B1 j] = [R(θ1 j),C1 j], which defines the
five positions of the first link in F . The positions of the second, third, fourth, fifth,
and sixth links are given by

[B2 j] =[R(θ1 j +θ2 j),C2 j],

[B3 j] =[R(θ1 j +θ2 j +θ3 j),C3 j],

[B4 j] =[R(θ4 j),C4 j],

[B5 j] =[R(θ4 j +θ5 j),C5 j], and
[B6 j] =[R(θ4 j +θ5 j +θ6 j),C6 j], j = 1, . . . ,5. (6.49)

Step 2.

Using the five positions B1 j, j = 1, . . . ,5 of the link B1 and B4 j, j = 1, . . . ,5 of
the link B4, assemble the design equations for an RR chain, denoted G1W1 in
Figure 6.18. In this case, we obtain (6.6) with [D1 j] = [B1,1][B1, j]

−1[B4, j][B4,1]
−1,

i = 1, . . . ,5. The solution yields the values listed in Table 6.5.
Notice that the RR chain formed by C1C4 is among the computed RR constraints,

therefore only one solution is available for this design.

Step 3.

The synthesis of G2W2 can occur in parallel with Step 2 because it does not rely on
the result of the new link B7 formed by the RR chain G1W1.

Using the positions of the link B2 and the positions of the link B5, we assemble
the design equations for an RR constraint G2W2. The solution to these equations
are shown in Table 6.5. In this case, the chain C3C6 appears among the solutions,
which guarantees a second real solution. Thus, this design process also results in at
least one real B14B25 eight-bar linkage.

Analysis

In order to animate the movement of this system, solve the loop equations of the
eight-bar linkage for a sequence of input angles interpolated between those defined
by the task positions. Let these input angles θ k

1 , k = 1 . . . ,N, then, for each value, θ k
1 ,

solve the loop equations (6.35) and (6.36) to determine the remaining configuration
angles Θ k = (θ k

2 ,θ
k
3 ,θ

k
4 ,θ

k
5 ,θ

k
8 ,θ

k
10)

T .
There can be as many as eighteen roots for each Θ k because the det[Mλ −N] for

this linkage is of dimension 18, only one of which corresponds the assembly of the
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Table 6.5 Step 1. Select the joint coordinates for the 6R loop; Step 2. Solve for the first RR chain;
Step 3. Solve for the second RR chain; The selected values are highlighted in bold (dimensions in
cm)

Step 1 C1 C2 C3 C4 C5 C6

(−6,0) (8.2,8.0) (−8,6.1) (2,0) (11.5,15.3) (−4,6.1)

Step 2 G1 W1

1 Complex Solution
2 Complex Solution
3 (−6,0) (2,0)
4 (0.84,1.02) (6.85,4.55)

Step 3 G2 W2

1 (−8,6.1) (−4,6.1)
2 Complex Solution
3 Complex Solution
4 (0.87,5.37) (4.35,5.38)

eight-bar specified in each of the task positions. Identify the root Θ k for the correct
assembly by formulating and solving the approximation to the loop equations (6.48).
This calculation can be checked against the known configurations at each of the task
positions. The results for our design are shown in Table 6.6. Figure 6.19 shows an
image sequence of the resulting eight bar linkage reaching each of the task positions.

Table 6.6 Analysis solution for the sofabed mechanism.

θ1 θ2 θ3 θ4 θ5 θ8 θ10

1 29.52◦ 186.78◦ 0◦ 58.27◦ 210.78◦ 30.44◦ 0.23◦

2 46.97◦ 143.78◦ −49◦ 55.40◦ 168.20◦ 10.57◦ −48.64◦

3 84.36◦ 137.52◦ −53◦ 86.92◦ 160.46◦ 1.14◦ −55.89◦

4 102.53◦ 145.66◦ −42◦ 105.17◦ 163.80◦ −1.57◦ −56.03◦

5 129.49◦ 176.35◦ 0◦ 134.47◦ 177.60◦ −6.32◦ −54.77◦

6.7 Summary

In this chapter, we present a design procedure for single degree-of-freedom planar
six-bar and eight-bar linkages that guide a workpiece through five task positions.
This was done by adding two RR chains to an existing backbone chains. Starting
with a 3R serial chain, the addition of two RR constraints yields a planar six-bar
linkage, which yields seven different six-bar structures and as many as 72 design
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Fig. 6.19 The image sequence of the chosen planar eight-bar linkage design reaching each of the
five task positions.

candidates. The planar eight-bar linkage is obtained by adding two RR constraints
to a 6R loop, and yields thirty-two different eight-bar structures with as many 340
design candidates.

The design and analysis of a six-bar linkage for use as a steering linkage is pre-
sented as an example. Similarly, the design and analysis of an eight-bar linkage for
use in the deployment of a convertible sofa is presented in detail.

6.8 References

The dimensional synthesis for planar multiloop mechanism can be found in Soh
et al. [116], and Soh and McCarthy [117, 118, 119, 120]. Erdman [29], Erdman
and Sandor [30], and Chase [9] used the complex vector formulation to synthesize
different types of planar six-bar linkages. Tsai [138] describes the use of graph
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theory on planar multiloop mechanisms. Mirth and Chase [83], and Foster and Cipra
[35] examine circuits and branches of planar multiloop mechanisms.

Exercises

1. Design a Watt Ia linkage that moves a foot pedal through the five positions in
Table 6.7 using the given 3R chain. How many design candidates are obtained?

Table 6.7 Five task positions and the 3R chain for an adjustable foot pedal linkage (dimensions in
mm)

Task Position (φ ,x,y) Pivots Coordinates

1 (40◦,79,−216) C1 (0,0)
2 (42◦,104,−208) C2 (43.2,−165.1)
3 (43.5◦,130,−203) C3 (12.7,−175.3)
4 (45◦,152,−198)
5 (48◦,180,−191)

2. Analyze the the various design candidates for the above problem. How many of
the design candidates pass smoothly through all five task positions?

Fig. 6.20 The Stephenson IIb Linkage.

3. Formulate the closed-form solution to the Stephenson IIb linkage as shown in
Figure 6.20 using complex number coordinates and the Dixon determinant.

4. Compare the computation time for the two methods for the algebraic solution of
the design equations of an RR crank. Use the data in Table 6.7.

5. Design a B14B24 eight-bar linkage that moves a surgical tool around a remote
center at each of the five positions listed in Table 6.8. You are free to choose your
own 6R chain. How many design candidates are obtained?



154 6 Multiloop Planar Linkages

Table 6.8 Five task positions for a remote center surgical tool (dimensions in mm)

Task Position (φ ,x,y)

1 (55◦,−77,54)
2 (30◦,−47,81)
3 (0◦,0,94)
4 (−30◦,47,81)
5 (−55◦,77,54)

Fig. 6.21 The B14B24 eight-bar linkage.

6. Formulate the closed-form solution to the B14B24 linkage as shown in Figure
6.21 using complex number coordinates and the Dixon determinant. Now analyze
the various design candidates. How many of the design candidates pass smoothly
through all five task positions?



Chapter 7
Analysis of Spherical Linkages

In this chapter we examine spherical linkages. These linkages have the property that
every link in the system rotates about the same fixed point. Thus, trajectories of
points in each link lie on concentric spheres with this point as the center. Only the
revolute joint is compatible with this rotational movement and its axis must pass
through the fixed point. We study the spherical RR and 3R open chains and the 4R
closed chain and determine their configuration as a function of the joint variables
and the dimensions of the links.

7.1 Coordinate Rotations

A revolute joint in a spherical linkage allows spatial rotation about its axis. To de-
fine this rotation, we introduce a fixed frame F and a moving frame M attached to
the moving link. The coordinate transformation between these frames defines the
rotation of the link.

Consider a link connected to ground by one revolute joint. Let the O be directed
along the axis of this joint and choose A to define the other end of the link. Both

vectors defines the size of this link.

c, its z-axis directed along O, and its y-axis directed along the vector O×A. This
convention ensures that A has sinα as its positive x-component. Attach the moving
frame M to OA so that in the initial configuration it is aligned with F . As the crank
rotates, the angle θ measured counterclockwise about O from the x-axis of F to the
x-axis of M defines the rotation of the link.

The orientation of OA is defined by transformation between coordinates x =
(x,y,z)T in M to X = (X ,Y,Z)T in F , given by the matrix equation

©

Choose an initial configuration and locate the fixed frame F so its origin is at

J.M. McCarthy and G.S. Soh, Geometric Design of Linkages, Interdisciplinary Applied 155

O and A are unit vectors that originate at the center c. The angle α between these

Mathematics 11, DOI 10.1007/978-1-4419-7892-9_7,
  Springer Science+Business Media, LLC 2011
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Y
Z

=

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

x
y
z

 , (7.1)

or
X = [Z(θ)]x. (7.2)

The notation [Z(·)] represents a rotation about the z-axis.
We can define similar matrices [X(·)] and [Y (·)] to represent rotations about the

x-axis and y-axis, given by

[X(α)] =

1 0 0
0 cosα −sinα

0 sinα cosα

 and [Y (α)] =

 cosα 0 sinα

0 1 0
−sinα 0 cosα

 . (7.3)

These coordinate rotation matrices are useful in the analysis of spherical linkages.
An important property of rotation matrices is that their inverse is obtained by

computing the matrix transpose. This means that

[Z(θ)−1] = [Z(θ)T ] =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 . (7.4)

For the coordinate rotations [X(·)], [Y (·)], and [Z(·)] this transpose operation simply
moves the negative sign from one sine element to the other. In fact, the inverse is the
rotation in the negative angular direction, that is, [Z(θ)−1] = [Z(−θ)].

7.1.1 The Composition of Coordinate Rotations

Let a = (sinα,0,cosα)T be the coordinates in M of the vector A in the link OA
above. Notice that a can be defined by rotating the unit vector~k = (0,0,1)T about
the y-axis, so we have

a = [Y (α)]~k. (7.5)

Substitute this into (7.2) to obtain A after a rotation by θ , which is given by the
composition of two coordinate rotations

A = [Z(θ)][Y (α)]~k. (7.6)

This equation can be read from right to left as the rotation of~k by the angle α around
y followed by a rotation by θ around z.
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7.1.2 The RR Open Chain

A spherical RR chain consists of a crank OA with fixed axis O and moving axis
A connected to a floating link. Define the initial configuration of this chain so the
fixed frame F has its z-axis is aligned with O and its y-axis directed along O×A.
Attach the moving frame M to the floating link so that its z-axis aligned with A and
its y-axis is aligned with F in the initial configuration.

The rotation of the crank θ1 about O is measured from the x-axis of F to the plane
of the crank OA. The rotation angle θ2 of the floating link is measured about A from
the plane of OA to the x-axis of M. We now have the orientation of M relative to F
defined by the matrix transformation

X = [Z(θ1)][Y (α)][Z(θ2)]x. (7.7)

The set of rotations reachable by the end-link of the RR chain is defined by

[R] = [Z(θ1)][Y (α)][Z(θ2)], (7.8)

or

[R] =

cθ1cαcθ2− sθ1sθ2 −cθ1cαsθ2− sθ1cθ2 cθ1sα

sθ1cαcθ2 + cθ1sθ2 −sθ1cαsθ2 + cθ1cθ2 sθ1sα

−sαcθ2 sαsθ2 cα

 , (7.9)

where s and c denote the sine and cosine functions. This matrix equation forms the
kinematics equations of the RR chain and defines its workspace.

We now consider whether a specified rotation [R] is in the workspace of this RR
chain. Suppose that we know the elements of [R], which we denote by

[R] =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 . (7.10)

Equate this to (7.9) and examine the third column and third row to see that

θ1 = arctan
a23

a13
and θ2 = arctan

a32

−a31
. (7.11)

Notice that the elements of the given orientation [R] must satisfy the condition

α = arctan

√
a2

31 +a2
32

a33
, (7.12)

where α is the angular length of OA. This characterizes the workspace of the spher-
ical RR chain.
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7.1.3 The 3R Open Chain

If the angular length α of an RR chain is allowed to vary, then we obtain a three-
degree-of-freedom spherical robot. We can control this change in length by a revo-
lute joint E inserted between O and A. The result is a spherical 3R open chain.

Let the angular lengths of the links OE and EA be α1 and α2, respectively. If φ

is the dihedral angle measured about the E from the plane of OE to EA, then α is
given by the spherical cosine law (C.5) as

cosα = cosα1 cosα2− sinα1 sinα2 cosφ . (7.13)

Notice that α lies between |α2−α1| and α1 +α2.
For a given rotation [R] that defines the orientation of the end-link M, we can

compute α using equation (7.12). We can also use (7.11) to determine the angle θ1
measured to the plane of OA and the angle θ2 from this plane to M.

Let ψ1 be the rotation of the crank OE and let ψ2 be the angle measured from
EA to the x-axis of M. The interior angle of the spherical triangle 4OEA at O is
θ1−ψ1, and the interior angle at A is θ2−ψ2. Use the sine and sine–cosine laws in
(C.5) to compute

sinσ sin
(
π− (θ1−ψ1)

)
= sinα2 sinφ ,

sinσ cos
(
π− (θ1−ψ1)

)
=−(sinα1 cosα2 + cosα1 sinα2 cosφ). (7.14)

Notice that π appears in these equations because θ1−ψ1 is the interior, not exterior,
angle at O. However, because sin(π−θ) = sinθ and cos(π−θ) =−cosθ , we have

θ1−ψ1 = arctan
(

sinα2 sinφ

sinα1 cosα2 + cosα1 sinα2 cosφ

)
. (7.15)

To determine θ2−ψ2, we use the sine law and sine–cosine law in (C.18) to obtain

sinσ sin
(
π− (θ2−ψ2)

)
= sinα1 sinφ ,

−sinσ cos
(
π− (θ2−ψ2)

)
= sinα2 cosα1 + cosα2 sinα1 cosφ . (7.16)

Solve these equations to obtain

θ2−ψ2 = arctan
(

sinα1 sinφ

sinα2 cosα1 + cosα2 sinα1 cosφ

)
. (7.17)

The joint angle φ at E is that provides the desired angular length α is found from
(7.13) to be

φ = arccos
(

cosα1 cosα2− cosσ

sinα1 sinα2

)
. (7.18)

The result is a set of values for ψ1 and ψ2 associated with each of the solutions ±φ .
These are known as the elbow-down and elbow-up solutions for the 3R chain.
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7.2 Position Analysis of a 4R Linkage

A spherical 4R linkage is constructed by connecting the end-links of two spherical
RR chains, Figure 7.1. This linkage is defined by the axes of the revolute joints,
which are lines through the origin c. We choose one of the two directions along
each of these lines to be the unit vectors that define the linkage. Denote by O and
A the unit vectors along fixed and moving axes of the input crank, and by C and B
the fixed or moving axes of the output crank. The quadrilateral OABC on the unit
sphere characterizes the spherical 4R linkage. Notice that there are actually sixteen
spherical quadrilaterals that define the same spherical 4R linkage. In what follows,
we consider each axis to be directed toward the z > 0 half-plane of the fixed frame
F . However, the derivations apply to all sixteen cases.

!

"

#

$

Coupler

Driving Crank Driven Crank

Fig. 7.1 A spherical 4R linkage is a spherical quadrilateral with angular dimensions α , β , γ , and
η .

7.2.1 The Coordinates of O, A, B, and C

Given the spherical quadrilateral OABC that defines a spherical 4R linkage, we can
compute the angular lengths of each of the links to be

α =arccos(O ·A), β = arccos(C ·B),
γ =arccos(O ·C), η = arccos(A ·B). (7.19)

These dimensions completely define the movement of the linkage.
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Attach a fixed frame F with its origin at c, oriented so its z-axis is along O and
its y-axis is directed along the vector O×C. This ensures that the fixed axis C lies
in the positive x direction of the xz coordinate plane. Let θ define the angle of the
input crank about O, and ψ the angle of the output crank around C, both measured
counterclockwise from the xz plane.

In F , we have the coordinates of O and C defined by

O =~k and C = [Y (γ)]~k. (7.20)

The coordinates of A are the same as those given in (7.6). It is the coordinates of B
that require some consideration.

Introduce a frame F ′ with its z-axis along C. Then the coordinates B′ in F ′ of the
axis B are defined by an expression similar to (7.6), that is,

B′ = [Z(ψ)][Y (β )]~k. (7.21)

Because the frame F ′ is rotated relative to F by the angle γ about the y-axis, we
obtain the coordinates for B as

B = [Y (γ)][Z(ψ)][Y (β )]~k. (7.22)

In what follows, we use these equations for O, A, B, and C to determine the output
crank angle ψ and coupler angle φ as a functions of the input crank angle θ .

7.2.1.1 Loop Equations

It is useful at this point to notice that the coordinates for B can also be defined in
terms of the angle φ of the coupler AB relative to the input crank OA.

Introduce a frame M′ with its z-axis along A and its y axis in the direction O×A.
The coordinates B′ are defined by an equation similar to (7.21), given by

B′ = [Z(φ)][Y (η)]~k. (7.23)

The transformation from F to the frame M′ is defined by the composite rotation
[Z(θ)][Y (α)], given in (7.6). Thus,

B = [Z(θ)][Y (α)][Z(φ)][Y (η)]~k. (7.24)

The loop equations for the 4R linkage are obtained by equating (7.22) and (7.24).

7.2.2 The Output Angle

The angular dimension η between the moving axes A and B of a spherical 4R link-
age is constant throughout the movement of the linkage. This provides the constraint
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equation
A ·B = cosη , (7.25)

which we use to determine the output angle ψ as a function of the input angle θ .
The coordinates of A and B, defined in (7.6) and (7.22), are

A =

cosθ sinα

sinθ sinα

cosα

 , B =

 cosγ cosψ sinβ + sinγ cosβ

sinψ sinβ

−sinγ cosψ sinβ + cosγ cosβ

 . (7.26)

Substitute this into (7.25) to obtain

cθsα(cγcψsβ + sγcβ )+ sθsαsψsβ + cα(−sγcψsβ + cγcβ ) = cη , (7.27)

where s and c denote the sine and cosine functions.
Collect the coefficients of cosψ and sinψ in this equation, so this constraint

equation takes the form

A(θ)cosψ +B(θ)sinψ =C(θ), (7.28)

where

A(θ) = cosθ sinα cosγ sinβ − cosα sinγ sinβ ,

B(θ) = sinθ sinα sinβ ,

C(θ) = cosη− cosθ sinα sinγ cosβ − cosα cosγ cosβ . (7.29)

This equation has the solution given by

ψ(θ) = arctan
(

B
A

)
± arccos

(
C√

A2 +B2

)
. (7.30)

For reference, see (A.1). Notice that there are two output angles ψ associated with
each input angle θ , Figure 7.2.

The two output angles ψ result from the fact that the spherical triangle 4ABC
can be assembled with B on either side of the diagonal AC. The angle δ =
arctan(B/A) locates the diagonal AC, and κ = arccos(C/

√
A2 +B2) is the angle

above and below this diagonal that locates the driven crank.
The argument of the arc-cosine function must be in the range −1 to +1, which

means that the link lengths and the input angle θ must combine so

A(θ)2 +B(θ)2−C(θ)2 ≥ 0. (7.31)

If this constraint is not satisfied, then the linkage cannot be assembled for the spec-
ified value of θ .
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Fig. 7.2 A spherical 4R linkage has two solutions for the output angle ψ for each value of the
input angle θ .

7.2.2.1 Hooke’s Coupling

A special case of a spherical linkage known as Hooke’s coupling is found in most
automobiles connecting the output shaft of the transmission to the drive shaft. This
linkage introduces an angle γ between the input and output axes. The dimensions of
the input and output cranks and the coupler are α = β = η = π/2. In this case the
constraint equation (7.27) simplifies to become

cosθ cosγ cosψ + sinθ sinψ = 0. (7.32)

This can be written in the form

tanθ tanψ =−secγ, (7.33)

which is the input-output equation for Hooke’s coupling.

7.2.3 The Coupler Angle

We now determine the coupler angle φ , using the loop equations of the 4R chain.
Equating the two ways (7.22) and (7.24) to define the coordinates of the moving
axis B, we have

[Z(θ)][Y (α)][Z(φ)][Y (η)]~k = [Y (γ)][Z(ψ)][Y (β )]~k. (7.34)

Multiply both sides of this equation by [Z(θ)−1] = [Z(θ)T ] and expand to obtain
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sφsη

−sαcφsη + cαcη

=

 cθcγcψsβ + cθsγcβ + sθsψsβ

−sθcγcψsβ − sθsγcβ + cθsψsβ

−sγcψsβ + cγcβ

 (7.35)

The first two components of this equation allow us to determine

cφ =
sβcθcγcψ + cθsγcβ + sβ sθsψ− sαcη

cαsη
,

sφ =
−sβ sθcγcψ− sθsγcβ + sβcθsψ

sη
. (7.36)

The arctan function yields a unique angle φ given values for the angles θ and ψ .
This provides a reliable way to determine the coupler angle φ associated with each
of the two output angles ψ for a given input crank angle θ .

7.2.3.1 An Alternative Derivation

A formula for φ can be obtained directly in terms of the crank angle θ independent
of the output angle ψ . To do this we use the fact that the angular dimension β of the
output crank CB is constant during the movement of the linkage.

Consider the frame F ′ positioned so its z-axis is along A and its y-axis is along
the vector A×O. In this frame, the axes B and C have the coordinates

F ′B =

sηc(φ −π)
sηs(φ −π)

cγ

 and F ′C =

 cαsγc(π−θ)+ sαcγ

sγs(π−θ)
−sαsγc(π−θ)+ cαcγ

 . (7.37)

The condition B ·C = cosβ yields the equation

A(θ)cosφ +B(θ)sinφ =C(θ), (7.38)

where

A(θ) = sinη(cosα sinγ cosθ − sinα cosγ),

B(θ) =−sinη sinγ sinθ ,

C(θ) = cosβ − cosη(sinα sinγ cosθ − cosα cosγ). (7.39)

This is solved in the same way as before to define

φ(θ) = arctan
(

B
A

)
± arccos

(
C√

A2 +B2

)
. (7.40)

The result is two values for φ for each value of the input angle θ . We use this
equation to determine the coupler angle in our solutions for four- and five-position
synthesis for a spherical 4R linkage.
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7.2.4 Coupler Curves

As the linkage moves, a point in the coupler traces a curve on a sphere in the fixed
frame. This curve can be generated as a function of the input angle θ as follows.
Let M be a reference frame attached to the coupler so its z-axis is aligned with the
moving pivot A and its y-axis is along A×B. Let a point in the coupler have the
coordinate vector x measured in M. Its coordinates in F are given by the matrix
equation

X(θ) = [Z(θ)][Y (α)][Z(φ)]x. (7.41)

Recall that the coupler rotation angle φ depends on θ . To trace the coupler curve,
compute X as θ varies through its range of movement. The points on this curve
separate into sets that are given by the two different solutions for φ .

See Chiang [12] for the derivation and analysis of the algebraic equation of the
spherical coupler curve, which when projected on a plane is a curve of eighth degree.

7.2.5 The Transmission Angle

The exterior angle ζ between the coupler and the output crank at the moving axis
B is called the transmission angle. To determine ζ in terms of the input angle θ ,
we equate the spherical cosine laws for the triangles 4COA and 4ABC. Let the
diagonal shared by these triangles have the angular length δ , so that cosδ = A ·C.
Notice that θ is the interior angle at O, so we have the identities

cosδ =cosγ cosα + sinγ sinα cosθ ,

=cosβ cosη− sinβ sinη cosζ . (7.42)

Solving for cosζ , we obtain the formula

cosζ =
cosβ cosη− cosγ cosα− sinγ sinα cosθ

sinβ sinη
. (7.43)

If the only external loads on the linkage are an input torque applied to the crank
OA and an output torque applied by the crank CB, then the joint reaction forces FA
and FB acting on the coupler must act along the segment AB. The usual assumption
in the static analysis of a spherical linkage is that the joints A and B do not sup-
port forces along their axes, which means that FA and FB must be tangent to the
unit sphere. Because these forces cannot be directed along AB and tangent to the
sphere at the same time, they must both be zero. The conclusion is that under these
conditions there are no internal reaction forces only reaction moments.

Let the internal reaction moments at joints A and B be denoted by MA and MB.
In order to be in static equilibrium these moments must be equal and opposite in
sign, that is, MA =−MB. Since a hinge does not support a moment along its axis,
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these vectors must be perpendicular to the plane through AB, which means that they
are perpendicular to the plane of the coupler.

Now consider the components of the moment MB in the frame M′ that has its
z-axis along B and its y-axis in the direction B×C. Because MB must lie in the
xy-plane of this frame and be perpendicular to the plane of the coupler, we have

MB =

MB cosζ

MB sinζ

0

 . (7.44)

Only the component MB sinζ contributes to the external torque on the driven crank.
Thus, sinζ determines the magnitude of the moment on the coupler that is trans-
mitted to the output crank. The component MB cosζ is absorbed by the reaction
moment at the fixed axis of the output crank.

7.3 Range of Movement

The condition that defines whether or not a spherical linkage can be assembled for a
given input crank angle yields a formula for the range of movement of this crank in
terms of the link dimensions. A similar analysis yields the range of movement for
the output crank. This results in a classification of spherical 4R linkages based on
the angular lengths of its links.

7.3.1 Limits on the Input Crank Angle

A solution exists for an output angle ψ for a given input θ only if the condition
(7.31) is satisfied. The extreme values available for θ are defined by A2+B2−C2 =
0, where A, B, and C are given by (7.29). This is a quadratic equation in cosθ that
has the solutions

cosθmin =
cos(η−β )− cosα cosγ

sinα sinγ
, cosθmax =

cos(η +β )− cosα cosγ

sinα sinγ
.

(7.45)
These equations are the spherical cosine laws for the triangles formed by the two
ways that the coupler link can align with the output link. These configurations define
the range of movement of the input crank. Because the cosine function does not
distinguish between positive and negative angles, an additional pair of limits exist
reflected through the xz-plane of F . These negative limits apply when the crank
passes through 0 or π into the lower half-plane.

The angular limits θmin and θmax exist only if the dimensions of the links com-
bine so (7.45) takes values between −1 and 1. This provides conditions that define
whether or not limits exist to the rotation of the input crank.
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7.3.1.1 The Lower Limit: θmin

If cosθmin > 1, then the limiting angle θmin does not exist, and the input crank can
rotate through θ = 0 into the lower half-plane. Thus, the condition that there is no
lower limit is

cos(η−β )− cosα cosγ

sinα sinγ
> 1,

or

cos(η−β )> cos(γ−α). (7.46)

Because the cosine function decreases as the absolute value of its argument in-
creases, we can replace this by the equivalent condition

(γ−α)2 > (η−β )2. (7.47)

Subtract the right side of this inequality from the left side and factor the difference
of two squares to obtain

(γ−α +η−β )(γ−α−η +β )> 0,
T1T2 > 0, (7.48)

where
T1 = γ−α +η−β and T2 = γ−α−η +β . (7.49)

Thus, the condition that there is no lower limit to the range of movement of the
input crank is simply that both T1 and T2 have the same sign, either positive or
negative. If the signs of these parameters are opposite to each other, then the input
crank cannot reach the value θ = 0.

7.3.1.2 The Upper Limit: θmax

If cosθmax < −1, then the upper limit θmax does not exist, and the input crank can
rotate smoothly through θ = π into the lower half-plane. Therefore, the condition
that there is no upper limit to the crank rotation is

cos(η +β )− cosα cosγ

sinα sinγ
<−1, (7.50)

which simplifies to the relation

cos(η +β )< cos(γ +α). (7.51)
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The angular distances that characterize the spherical quadrilateral are always pos-
itive. However, the sum of any two can be greater than π , though not greater than
2π . We ensure that the absolute value of the argument to cosine is in the range
from 0 to π by replacing cos(η + β ) by −cos(π − (η + β )) and cos(γ +α) by
−cos(π− (γ +α)). The inequality becomes

cos(π− (η +β ))> cos(π− (γ +α)), (7.52)

which allows us to define the equivalent relationship

(π− γ−α)2 > (π−η−β )2. (7.53)

This can be simplified to become

(η +β − γ−α)(2π−η−β − γ−α)< 0,
T3T4 < 0, (7.54)

where
T3 = η +β − γ−α and T4 = 2π−η−β − γ−α. (7.55)

The range of movement of the input crank does not have an upper limit if T3 and T4
have the same sign. If these signs are opposite to each other, then the crank cannot
reach the angular value θ = π .

7.3.1.3 Input Crank Types

We can now identify four types of movement available to the input crank of a spher-
ical four-bar linkage:

1. A crank: T1T2 > 0 and T3T4 > 0, in which case neither limit θmin nor θmax exists,
and the input crank can fully rotate.

2. A 0-rocker: T1T2 > 0 and T3T4 < 0, for which θmax exists but not θmin, and the
input crank passes through θ = 0 rocking between the values ±θmax.

3. A π-rocker: T1T2 < 0 and T3T4 > 0, which means that θmin exists but not θmax,
and the input crank rocks through θ = π between the values ±θmin.

4. A rocker: T1T2 < 0 and T3T4 < 0, which means that both upper and lower limit
angles exist, and the crank cannot pass through either 0 or π . Instead, it rocks in
one of two separate ranges: (i) θmin ≤ θ ≤ θmax, or (ii) −θmax ≤ θ ≤−θmin.

7.3.2 Limits on the Output Crank Angle

The range of movement of the output crank is defined by the two configurations in
which the input crank and coupler link can become aligned. The limits ψmin and
ψmax are obtained by applying the spherical cosine law to the triangles formed by



168 7 Analysis of Spherical Linkages

the linkage in these two configurations:

cosψmin =
cosγ cosβ − cos(η +α)

sinγ sinβ
, cosψmax =

cosγ cosβ − cos(η−α)

sinγ sinβ
.

(7.56)
As we saw previously, the cosine does not distinguish between positive and negative
angles, so we obtain two sets of limits. One set limits the angular range of the output
crank when it is above the half-plane defined by OC, and the other set limits rotation
below this half-plane.

The limiting angles (7.56) exist only if these formulas yield values that are be-
tween −1 and 1. This allows us to characterize the movement of the output crank in
terms of the dimensions of the linkage.

7.3.2.1 The Lower Limit: ψmin

If cosψmin > 1, then the limiting angle ψmin does not exist, and the output crank can
move smoothly through ψ = 0. Thus, the condition that there is no lower limit to
the movement of the output crank is

cosγ cosβ − cos(η +α)

sinγ sinβ
> 1, (7.57)

which can be written as

−cos(η +α)>−cos(γ +β ). (7.58)

Replace −cos(η +α) and −cos(γ +β ) by cos(π− (η +α)) and cos(π− (γ +β ))
to obtain

cos(π− (η +α))> cos(π− (γ +β )). (7.59)

This is equivalent to the inequality

(π− (γ +β ))2 > (π− (η +α))2, (7.60)

which simplifies to yield

(η +α− γ−β )(2π−η−α− γ−β )> 0,
(−T2)(T4)> 0. (7.61)

Thus, the parameters defined above also provide insight to the rotation of the output
crank. If the T2 and T4 have opposite signs, then there is no lower limit to the rotation
of this crank. This lower limit exists if T2T4 > 0.
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7.3.2.2 The Upper Limit: ψmax

If cosψmax < −1, then there is no upper limit ψmax to the movement of the output
crank. Thus, we have the condition

cosγ cosβ − cos(η−α)

sinγ sinβ
<−1, (7.62)

which ensures that output crank can move smoothly through ψ = π . Simplify this
equation to obtain

cos(η−α)> cos(γ−β ). (7.63)

As we have seen above, this is equivalent to the condition

(γ−β )2− (η−α)2 > 0, (7.64)

which becomes

(γ−β +η−α)(γ−β −η +α)> 0,
(T1)(−T3)> 0. (7.65)

The result is that the output crank passes through ψ = π when T1 and T3 have oppo-
site signs. The upper limit ψmax exists when T1T3 > 0.

7.3.2.3 Output Crank Types

We can identify the four types of output cranks:

1. A rocker: T1T3 > 0 and T2T4 > 0, in which case both limits ψmin and ψmax exist,
and the output crank rocks in one of two separate ranges: (i) ψmin ≤ ψ ≤ ψmax,
or (ii) −ψmax ≤ ψ ≤−ψmin.

2. A 0-rocker: T1T3 > 0 and T2T4 < 0, in which case ψmax exists but not ψmin, and
the output crank passes through θ = 0 rocking between the values ±ψmax.

3. A π-rocker: T1T3 < 0 and T3T4 > 0, which means that ψmin exists but not ψmax,
and the output crank rocks through ψ = π between the values ±ψmin.

4. A crank: T1T2 ≤ 0 and T3T4 ≤ 0, which means that neither ψmin nor ψmax exists,
and the output crank can fully rotate.

7.3.3 Classification of Spherical 4R Linkages

A spherical linkage is described in terms of the movement of its two cranks in the
same way as a planar linkage. For example, a crank-rocker has a fully rotatable input
crank and a rocker as the output crank. By assigning positive and negative signs to
the four parameters Ti, i= 1,2,3,4, we obtain 16 types of spherical four-bar linkage.
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We separate these linkage types into those with T4 > 0 and those with T4 < 0.
In the first case, the sum of the angular dimensions of the four links is less than
2π . Spherical linkages in this class lie on one side of the sphere. If T4 > 0, then
the link dimensions to add up to greater than 2π and the linkage wraps around the
sphere. Within these two general classes we can identify spherical versions of the
eight basic types found in the plane.

7.3.3.1 The Eight Basic Types, T4 > 0

Given a spherical four-bar linkage with angular dimensions α , β , γ , and η , we
compute the four parameters Ti, i = 1,2,3,4. Assume for the moment that T4 > 0.
Then the signs of the three parameters T1, T2, and T3 define the same linkage type
on the sphere as they do on the plane. In particular, the combination T1T2T3T4 > 0
defines Grashof linkages, while T1T2T3T4 < 0 defines nonGrashof linkages, and
there are four Grashof and four nonGrashof linkage types.

We consider the Grashof cases first:

1. (+,+,+,+): Because T1T2 > 0 and T3T4 > 0 the input link can fully rotate.
Similarly, because T1T3 > 0 and T2T4 > 0 the output link is a rocker with two
output ranges. This linkage is the spherical crank-rocker.

2. (+,−,−,+): With T1T2 < 0 and T3T4 < 0 the input is a rocker, and with T1T3 < 0
and T2T4 < 0 the output is a crank. Thus, this is a spherical rocker-crank linkage.

3. (−,−,+,+): In this case, T1T2 > 0 and T3T4 > 0, so that the input link is a crank,
and T1T3 < 0 and T2T4 < 0, which means that the output link is also a crank. This
defines the spherical double-crank linkage.

4. (−,+,−,+): T1T2 < 0 and T3T4 < 0 define the input as a rocker, and with T1T3 >
0 and T2T4 > 0 the output is a rocker as well. Thus, this defines the spherical
Grashof double-rocker linkage.

And the following are the remaining nonGrashof cases:

5. (−,−,−,+): Here we have T1T2 > 0 and T3T4 < 0. Therefore, the input link
rocks through the value θ = 0. With T1T3 > 0 and T2T4 < 0, we see that the
output link also rocks through the value ψ = 0. This type of linkage is termed a
00 spherical double rocker.

6. (+,+,−,+): In this case, the input again rocks through θ = 0. However, with
T1T3 < 0 and T2T4 > 0 the output rocks through ψ = π . This linkage is called a
0π spherical double rocker.

7. (+,−,+,+): With T1T2 > 0 and T3T4 > 0 we see that the input link rocks through
π , and because T1T3 < 0 and T2T4 < 0 the output link rocks through 0. This is the
π0 spherical double rocker.

8. (−,+,+,+): Finally, the input again rocks through π , as does the output, which
we term the ππ spherical double rocker.

This classification is summarized in Table 7.1.
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7.3.3.2 The Linkages Types for T4 < 0

If the parameter T4 is negative, then we have eight linkage types that wrap around
the sphere. However, the movement of the input and output cranks for each of these
cases corresponds to one of the eight basic types presented above. This correspon-
dence is identified by simply negating each of the parameters T1, T2, and T3. For
example, the spherical linkage of type (+,+,+,−) has the same input and out-
put crank movement as that given by (−,−,−,+), which is a 00 spherical double
rocker.

To see that this is true, notice that the input crank movement is defined by the
signs of the products T1T2 and T3T4, and the output crank movement by the signs
of T1T3 and T2T4. It is easy to see that if T4 < 0 then both T3 and T2 must be
negated in order for T3T4 and T2T4 to maintain the same signs. We can ensure that
the signs of the products T1T2 and T1T3 are unchanged by also negating T1. Thus,
the linkage type (sgnT1,sgnT2,sgnT3,+) has the same crank movement as the type
(−sgnT1,−sgnT2,−sgnT3,−).

Table 7.1 Basic Spherical 4R Linkage types

Linkage type T1 T2 T3 T4

1 Crank-rocker + + + +
2 Rocker-crank + − − +
3 Double-crank − − + +
4 Grashof double rocker − + − +
5 00+ double rocker − − − +
6 0π+ double rocker + + − +
7 π0+ double rocker + − + +
8 ππ+ double rocker − + + +
9 Crank-rocker − − − −

10 Rocker-crank − + + −
11 Double-crank + + − −
12 Grashof double rocker + − + −
13 00− double rocker + + + −
14 0π− double rocker − − + −
15 π0− double rocker − + − −
16 ππ− double rocker + − − −

7.3.4 Grashof Linkages

Grashof’s criterion for planar linkages can be extended to spherical linkages. How-
ever, in order to uniquely identify the longest and shortest links, Chiang [12] defines
a model linkage that can be selected from the 16 equivalent spherical linkages. It has
the property that the sum of each pair of consecutive link angles is less than or equal
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to π . Using this model linkage, we have a spherical version of Grashof’s criterion

s+ l < p+q, (7.66)

where s and l are the angular lengths of the shortest and longest links, and p and q
are the angles of the other two links. If this condition is satisfied, then the shortest
link will fully rotate relative to its neighbors.

As for planar linkages, any of the four links of the spherical linkage may be the
shortest link. If the input or output link is the shortest, then we have a crank-rocker or
rocker-crank. If the ground link is the shortest, then both the input and output links
will fully rotate relative to the ground. This is the double-crank linkage. Finally,
if the floating link is the shortest link, then the input and output links are rockers,
which is the Grashof double rocker. Examining Table 7.1, it is easy to see that these
four linkage types satisfy the condition

T1T2T3T4 > 0. (7.67)

This is equivalent to Grashof’s criterion.
Like planar Grashof linkages, the two solutions for the output angle φ for a given

input angle θ define independent assemblies for the spherical Grashof linkage. The
configurations reachable in one assembly are separate from those reachable in the
other assembly. To move from one set to the other the linkage must be disassembled.

7.3.5 Folding Linkages

The classification above considers only positive and negative values for the param-
eters Ti, i = 1,2,3,4. If any of these parameters is zero, then a configuration exists
with all four joints of the linkage OABC aligned in a plane, and the spherical linkage
is said to fold. The number of parameters Ti that are zero is the number of folding
configurations of the linkage.

If we consider that the parameters Ti, i = 1,2,3,4, can take the values (+,0,−),
then there are 81 types of spherical 4R linkages, 65 of which fold. The ability to fold
can be useful, however, the position analysis equations often break down in these
configurations.

7.4 Angular Velocity

The velocities of points in a spherical linkage are generated by the spatial rotation
of the links. Thus, the time derivative of a rotation matrix defines these velocities
and the angular velocity of the link.
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The angular velocity of a rotating body can be visualized as the rate of a con-
tinuous rotation about an axis. Because this axis may also move in space, we must
develop the definition of angular velocity with some care.

Let the orientation of a body M be defined by the rotation matrix [A(t)], so that
we have the trajectory X(t) = [A(t)]x for any point x in M. The velocity of this point
is V = Ẋ = [Ȧ(t)]x. In order to focus on coordinates in F we make the substitution

V = Ẋ = [Ȧ(t)][A(t)T ]X = [Ω(t)]X. (7.68)

The matrix [Ω ] is called as the angular velocity matrix and defines the rate of change
of orientation of the moving body. It can be viewed as an operator that computes the
velocity V by operating on a trajectory X(t).

The angular velocity matrix is skew-symmetric, that is, [Ω T ] =−[Ω ]. Therefore,
we can identify a vector w such that for any other vector y, [Ω ]y = w× y. This
vector w is the angular velocity vector of the body. For a link connected to ground
by a revolute joint, this vector is directed along the joint axis, as we would expect.

For a link undergoing a general rotation [A(t)], we can find the points I that have
zero velocity by solving the equation

[Ω(t)]I = 0. (7.69)

Clearly, these points lie on the line along the angular velocity vector w, which is
called the instantaneous rotation axis.

7.5 Velocity Analysis of an RR Chain

The velocity of trajectories traced by the end-link of a spherical RR chain are com-
puted using the angular velocity matrix [Ω ] constructed from its kinematics equa-
tions

[Ω(θ1,θ2)] =
d
dt
([Z(θ1)[Y (α)][Z(θ2)])([Z(θ1)][Y (α)][Z(θ2)])

T

= θ̇1[K]+ θ̇2[Z(θ1)[Y (α)][K][Y (α)T ][Z(θ1)
T ], (7.70)

where [K] is the skew-symmetric matrix defined so [K]y =~k×y. Thus, the angular
velocity vector of the end-link is

w = θ̇1~k+ θ̇2[Z(θ1)[Y (α)]~k. (7.71)

This vector can be written in the form of a matrix equation

w =

wx
wy
wz

=

0 cosθ1 sinα

0 sinθ1 sinα

1 cosα

{θ̇1
θ̇2

}
. (7.72)
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This matrix is called the Jacobian of the spherical RR chain. It relates the angular
velocity of the end-link to the joint rates, θ̇1 and θ̇2.

7.6 Velocity Analysis of the 4R Linkage

The time derivative of the loop equations (7.35) provides relationships among the
angular velocities ψ̇ , φ̇ , and θ̇ . Expanding this derivative, we obtain

φ̇

−cαsηsφ

sηcφ

sαsηsφ

= θ̇

−sθ(cγcψsβ + sγcβ )+ cθ(sψsβ )
−cθ(cγcψsβ + sγcβ )− sθ(sψsβ )

0


+ ψ̇

−cθcγsψsβ + sθcψsβ

sθcγsψsβ + cθcψsβ

sγsψsβ

 . (7.73)

The first two components of these equations provide linear equations that define the
angular velocities of the coupler and output crank, φ̇ and ψ̇ , in terms of the angular
velocity of the input crank θ̇ .

7.6.1 The Output Velocity Ratio

To obtain further insight to the relationship between the angular velocities θ̇ and
ψ̇ , we derive it in another way. Compute the derivative of the constraint equation
A ·B = cosη to obtain

Ȧ ·B+A · Ḃ = 0. (7.74)

In order to determine Ȧ and Ḃ we use the angular velocity vectors wO and wC of
the input and output crank, which are given by

wO = θ̇O and wC = ψ̇C. (7.75)

Recall that O and C are unit vectors.
Now substitute Ȧ = wO×A and Ḃ = wC×B into (7.74) to obtain the relation

(θ̇O×A) ·B+A · (ψ̇C×B) = 0. (7.76)

Interchange the dot and cross operations in this equation and collect terms to obtain

(θ̇O− ψ̇C) ·A×B = 0. (7.77)

Substitute O =~k and C = cosγ~k+ sinγ~ı so we have
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θ̇~k− ψ̇(cosγ~k+ sinγ~ı)

)
·A×B = 0. (7.78)

Finally, using the relations~k =~ı×~ and~ı =~×~k, we write this equation in the form(
θ̇~ı− ψ̇(cosγ~ı− sinγ~k)

)
·~× (A×B) = 0. (7.79)

The vector kI =~× (A×B) is the intersection of the coupler plane AB and the
xz coordinate plane. Let the coordinates of this vector be I = (sinρ,0,cosρ)T , then
from (7.79) we have

ψ̇

θ̇
=

sinρ

sin(ρ− γ)
. (7.80)

7.6.2 The Coupler Velocity Ratio

A similar relationship can be derived for the velocity ratio of the coupler. To do this,
we compute the velocity of Ḃ using the relation

Ḃ = Ȧ+wAB× (B−A), (7.81)

where wAB is the angular velocity of the coupler in F . This angular velocity is the
sum of the angular velocity wA = φ̇A of the coupler relative to the crank OA and
the angular velocity wO = θ̇O of the crank relative to F , that is,

wAB = θ̇O+ φ̇A (7.82)

Now, from the fact that Ḃ = wC×B, we have the condition

Ḃ ·C =
(
Ȧ+wAB× (B−A)

)
·C = 0. (7.83)

Recall O =~k and introduce the unit vector ~e in the plane of the input crank, so
A = cosα~k+ sinα~e, then this equation becomes

(θ̇~k×A+(θ̇~k+ φ̇(cosα~k+ sinα~e))× (B−A)) ·C = 0. (7.84)

Cancel the~k×A terms and interchange the dot and cross products to obtain(
(θ̇ + φ̇ cosα)~k+ φ̇ sinα~e

)
·B×C = 0. (7.85)

Finally, define the unit vector ~e⊥ =~k×~e and use the relations~k =~e×~e⊥ and ~e =
−~k×~e⊥ to write this equation in the form(

(θ̇ + φ̇ cosα)~e− φ̇ sinα~k
)
·~e⊥× (B×C) = 0. (7.86)

The vector kJ =~e⊥× (B×C) defines the line of intersection of the plane of the
input crank OA with the plane of the output crank BC. If the coordinates of the unit
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vector along this line are J = cosρ~k+ sinρ~e, then from (7.86) we obtain

φ̇

θ̇
=

sinρ

sin(α−ρ)
. (7.87)

7.6.3 Instantaneous Rotation Axis

The output velocity ratio of the spherical four-bar linkage can be viewed as gener-
ated instantaneously by a pair of bevel gears connecting the input and output cranks.
The gears have axes O and C and are in contact at the point I on the spherical sec-
tion of their pitch cones. We now show that this is a general characteristic for two
bodies rotating about the same point in a fixed frame F .

Let the two bodies have the instantaneous rotation axes O and C that are sep-
arated by the angle γ . We ask if there is a point Q in one and P in the other, that
coincide with the same point I = (X ,Y,Z)T and have the same velocity in F . This is
the property of points in contact on the pitch circle of the two gears.

Let ρ be the angle from O to Q and κ the angle from C to P, so we have

Q =

sinρ cosθ

sinρ sinθ

cosρ

 , P =

 cosγ sinκ cosψ + sinγ cosκ

sinκ sinψ

−sinγ sinκ cosψ + cosγ sinκ

 . (7.88)

The velocities of these points are obtained by computing the derivatives

Q̇ = θ̇

−sinρ sinθ

sinρ cosθ

0

 , Ṗ = ψ̇

−cosγ sinκ sinψ

sinκ cosψ

−sinγ sinκ sinψ

 . (7.89)

If P and Q are to be in contact, then Y = sinκ sinθ = sinρ sinψ , and if they are to
have the same velocity, then

Ṗ− Q̇ =

 −ψ̇ cosγY + θ̇Y
ψ̇ sinκ cosψ− θ̇ sinρ cosθ

−ψ̇ cosγY

=

0
0
0

 . (7.90)

The first and third components of this equation show Y = 0, which means that θ =
ψ = 0 or π . Let θ =ψ = 0 and allow the angles ρ and κ to take positive and negative
values, then (7.88) shows that ρ− γ = κ .

Finally, the second component of (7.90) yields the relation that defines ρ ,

ψ̇

θ̇
=

sinρ

sin(ρ− γ)
. (7.91)

Thus, I derived in the previous section is the point that has zero relative velocity in
both the input and output cranks. The fact that this instantaneous relative rotation
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axis must lie in the plane defined by the two instantaneous rotation axes O and C is
the spherical version of Kennedy’s theorem.

A similar analysis of the coupler velocity ratio shows that the axis J is the instan-
taneous relative rotation axis of the coupler relative to ground.

7.6.4 Mechanical Advantage

The relationship between the torque applied to the input crank and the torque at
output crank of a spherical four-bar linkage is obtained using the principle of virtual
work. In the absence of gravity and frictional loads, this principle equates the virtual
work of torque applied to the input crank to the virtual work done by the output
crank.

A virtual displacement of the input or output crank is defined to be the angular
displacement that occurs when it rotates at a constant angular velocity for a virtual
time period δ t. This yields the virtual displacements

δ~θ = θ̇Oδ t and δ~ψ = ψ̇Cδ t. (7.92)

Let TO = TOO be the torque applied to the driving crank and TC = TCC be the out-
put torque at the driven crank. Then the principle of virtual work yields the relation

TO ·δ~θ = TC ·δ~ψ. (7.93)

Substitute (7.92) into this equation to obtain

TOθ̇ δ t = TCψ̇δ t. (7.94)

Since the virtual time increment is nonzero, we can cancel δ t to obtain the torque
ratio

TC
TO

=
θ̇

ψ̇
=

sin(ρ− γ)

sinρ
. (7.95)

The second equality is the output velocity ratio (7.80). Thus, the torque ratio of a
spherical four-bar linkage is the inverse of its velocity ratio. Notice that this ratio
changes as the configuration of the linkage changes.

Let the input torque be generated by a couple defined such that TO = aFO. Simi-
larly, let the output torque be a couple such that TC = bFC. Then the ratio of output
force FC to input force FO is given by

FC
FO

=
a
b

sin(ρ− γ)

sinρ
. (7.96)

This ratio is called the mechanical advantage of the linkage. For a given set of
dimensions a and b the mechanical advantage is proportional to the velocity ratio of
the input and output cranks.
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7.7 Analysis of Multiloop Spherical Linkages

The analysis of multiloop spherical linkages is covered in detail in a later chapter.
Here we note that our analysis procedure follows Wampler [149] and consists of
decomposing the spherical linkage into a sequence of structures that are analyzed
separately. This reduces the analysis of a multiloop spherical linkage to the analysis
of specific types of spherical component structures.

7.8 Summary

This chapter has presented the position and velocity analysis of the spherical 3R
open chain that forms a robot wrist and spherical 4R closed chain. The results follow
closely those developed in the earlier chapter on planar linkages. The instantaneous
rotation axis and Kennedy’s theorem provide a convenient way to determine the
mechanical advantage of a spherical linkage.

7.9 References

The fundamental reference for spherical linkages is Chiang [12]. Craig [15] and Tsai
[136] present the analysis of robot wrists and the Hunt [50] and Crane and Duffy
[16] examine spherical 4R linkages. The classification of spherical linkages is taken
from Murray [86].

Exercises

1. Use the equations of spherical trigonometry to determine the joint angles of a
spherical triangle with sides α12 = 120◦, α23 = 80◦, and α13 = 135◦ (Crane and
Duffy [16]).

2. Analyze the spherical linkage α = 40◦, η = 70◦, β = 85◦, and γ = 70◦. Let the
input crank angle be θ = 75◦ (Crane and Duffy [16]).

3. A 4R linkage with an output link angle β = π/2 is considered the spherical
version of a slider-crank, since the moving pivot moves on a great circle of the
sphere. Derive the input/output equations for this linkage.

4. Derive the algebraic equation of the coupler curve of a spherical 4R linkage.
5. Determine the output velocity ratio for Hooke’s coupling. Under what condition

is this ratio constant.
6. Prove the general version of Kennedy’s theorem that the three instantaneous ro-

tation axes for three rotating bodies must lie in a plane.



Chapter 8
Spherical Kinematics

In this chapter we consider spatial displacements that are pure rotations in three-
dimensional space. These are transformations that have the property that one point
of the moving body M has the same coordinates in F before and after the displace-
ment. Because the distance between this fixed point and points in M are constant,
each point in the moving body moves on a sphere about this point. If the origins
for both the fixed and moving frames are located at this fixed point, then the spatial
displacement is defined by a 3×3 rotation matrix. The study of spherical kinemat-
ics benefits from both the properties of linear transformations and the geometry of
a sphere.

8.1 Isometry

A spatial displacement preserves the distance between every pair of points in the

displacement is the composition of a translation and a rotation.
Let P = (Px,Py,Pz)

T and Q = (Qx,Qy,Qz)
T be the coordinate vectors of two

points in three-dimensional space. The distance between these points is the magni-
tude of their relative position vector Q−P,

|Q−P|=
√
(Qx−Px)2 +(Qy−Py)2 +(Qz−Pz)2, (8.1)

which is also called the Euclidean metric. Using vector notation, this formula takes
the same form as that used for planar kinematics, that is,

|Q−P|2 = (Q−P) · (Q−P) = (Q−P)T (Q−P). (8.2)

The second equality is the matrix form of the vector scalar product.
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8.1.1 Spatial Translations

As we saw in the plane, the addition of a vector d = (dx,dy,dz)
T to the coordinates

of all the points in a body, such that X = x+d, is called a translation. Let the points
p and q be translated so P = p+d and Q = q+d, then we can compute

|Q−P|= |(q+d)− (p+d)|= |q−p|. (8.3)

Thus, translations preserve the distance between points.

8.1.2 Spatial Rotations

A spatial rotation has the same basic properties as a planar rotation, though now
applied to three-dimensional vectors. A rotation takes M from a position initially
aligned with F and reorients it, while keeping the origins of the two frames located
at the same point c. Let~ı,~, and~k be the unit vectors along the coordinate axes of F .
The rotation changes the direction of each of these vectors. Let these new directions
be given by the orthogonal unit vectors ex, ey, and ez, such that ex× ey = ez. This
last condition ensures that ex, ey, and ez form a right-handed frame like~ı,~, and~k.
A point with coordinates x = (x,y,z)T = x~ı+ y~+ z~k before the rotation will have
coordinates X after the rotation, given by

X = X~ı+Y~+Z~k = xex + yey + zez. (8.4)

Let the components of ex be (ex,1,ex,2,ex,3)
T . A similar definition for ey and ez

allows us to form the matrix equationX
Y
Z

=

ex,1 ey,1 ez,1
ex,2 ey,2 ez,2
ex,3 ey,3 ez,3

x
y
z

 , (8.5)

or
X =

[
ex, ey, ez

]
x = [A]x. (8.6)

All spatial rotations are represented by matrices constructed in this way, which are
known as rotation matrices.

8.1.2.1 Distances

We now show that rotations preserve distances between points. Let p and q be the
coordinates of two points before the rotation, and let P = [A]p and Q = [A]q be their
coordinates after the rotation. We compute
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|Q−P|2 = (p−q)T [AT ][A](p−q)T . (8.7)

Notice that this equality is satisfied only if [AT ][A] = [I].
This condition is always true for matrices constructed from orthogonal unit vec-

tors as in (8.6), which can be seen from the computation

[AT ][A] =

eT
x

eT
y

eT
z

[ex, ey, ez
]
=

eT
x ex eT

x ey eT
x ez

eT
y ex eT

y ey eT
y ez

eT
z ex eT

z ey eT
z ez

= [I]. (8.8)

Important examples are the coordinate rotations [X(·)], [Y (·)], and [Z(·)] presented
in (7.3) and (7.1) in the previous chapter.

In general, a spatial rotation is a linear transformation that preserves the distances
between points and the orientation of the reference frames. Matrices [A] that satisfy
the condition (8.8) are termed orthogonal. However, in order to preserve the orien-
tation of the coordinate frame we must add the requirement that the determinant |A|
be positive. From the calculation

det([AT ][A]) = |A|2 = 1 (8.9)

we see that an orthogonal matrix can have a determinant of either +1 or −1. Those
with |A| = +1 are rotations. Those with |A| = −1 are reflections. An example of a
reflection is the matrix 1 0 0

0 1 0
0 0 −1

 . (8.10)

The columns of this matrix are orthogonal unit vectors, and its transpose is its in-
verse. However, it changes the orientation of the frame by reversing the direction of
the z-axis relative to the xy-plane.

8.1.2.2 Angles

A spatial rotation preserves the relative distances between three points P, Q, and R.
Therefore, it preserves the angle κ = ∠QRP. In order to show this, it is useful to
recall that the sine and cosine of the angle about R from P to Q can be computed
from the relative vectors P−R and Q−R by the formulas

sinκ =
(P−R)× (Q−R) ·N
|P−R||Q−R|

, cosκ =
(P−R) · (Q−R)

|P−R||Q−R|
, (8.11)

where N is the unit vector in the direction of (P−R)× (Q−R).
Now let the triangle4QRP be the result of a rotation by [A], so we can make the

substitutions P−R = [A](p− r), Q−R = [A](q− r), and N = [A]n in (8.11). Note
that for rotation matrices only, we have the identity
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([A]x)× ([A]y) = [A](x×y). (8.12)

This allows us to factor [A] from the vector product in sinκ and obtain

(P−R)× (Q−R) ·N = (p− r)× (q− r) ·n, (8.13)

where [A] cancels in the scalar product because [AT ][A] = [I]. For the same reason
[A] cancels in the expression for cosκ . The conclusion is that these formulas apply
without change to coordinates in M and in F , and therefore the angle κ is the same
before and after the rotation.

If the point R = (0,0,0)T = c is the origin of F , then (8.11) simplifies to define
the angle between the vectors P and Q as

sinκ =
P×Q ·N
|P||Q|

, cosκ =
P ·Q
|P||Q|

. (8.14)

And we have that ∠PcQ=∠pcq for any two points p and q in the moving body.

8.1.3 Spatial Displacements

A spatial displacement consists of a spatial rotation [A] of the moving frame M from
its initial position to a new orientation M′ followed by a translation d to M′′. The
initial position of M is aligned with F , and its final position is aligned with M′′. As
we did in the plane, we let F and M be the initial and final positions, and define the
spatial displacement of M relative to F by the transformation [T ] = [A,d].

Clearly, if d = 0, then the displacement is a spatial rotation about the origin of F .
Therefore, the orientation of M relative to F is defined by the rotation matrix [A].
Below we consider spatial displacements that are equivalent to pure rotations about
other points in F . The properties of these rotational displacements are the same as
for rotations about the origin of F , which are our focus of study in what follows.

8.1.4 Composition of Rotations

Consider two rotation matrices [A1] and [A2]. Their product [A1][A2] is an orthogonal
matrix, as can be determined from the computation

([A1][A2])
T ([A1][A2]) = [AT

2 ][A
T
1 ][A1][A2] = [I]. (8.15)

This is a rotation matrix because its determinant is the product of the determinants
of [A1] and [A2].

The orientation of M defined by this product results from the orientation of a
frame M′ relative to F defined by the equation X = [A1]y, combined with the orien-
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tation of M relative to M′ given by y = [A2]x. Compose these two rotations by direct
substitution for y, and the result is the orientation of M relative to F , given by

X = [A3]x = [A1][A2]x. (8.16)

The composite rotation is obtained from the matrix product.
The inverse [A−1] of a rotation [A] is the rotation defined such that the composi-

tion [A−1][A] is the identity. Therefore, [AT ] = [A−1] is the inverse rotation.

8.1.4.1 Changing Coordinates of a Rotation Matrix

Consider the rotation X = [A]x of M relative to F . We now determine the rotation
matrix [A′] between a pair of fixed and moving frames F ′ and M′ that are rotated by
the same matrix [R] relative to the original frames. Coordinates Y and y in the new
frames are related to the original coordinates by Y = [R]X and y = [R]x. Therefore,
we have

X = [A]x =[RT ]Y = [A][RT ]y,

or

Y =[R][A][RT ]y. (8.17)

Thus, the original matrix [A] is transformed by the change of coordinates into [A′] =
[R][A][RT ].

8.1.5 Relative Rotations

Consider two orientations M1 and M2 of a body relative to F defined by the rotation
matrices [A1] and [A2]. Let X be the coordinates in F of a point x in M when in the
orientation M1. Similarly, let Y be the coordinates of the same point when M is in
orientation M2. Then we have X = [A1]x and Y = [A2]x, respectively. The relative
rotation matrix [A12] that transforms the coordinates X into Y is defined by

Y = [A12]X. (8.18)

Substitute for X and Y in order to obtain

[A2]x = [A12][A1]x. (8.19)

Equating the matrices on both sides of this equation, we see that [A12] is given by

[A12] = [A2][AT
1 ]. (8.20)
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This defines the orientation of M2 relative to M1 measured in the frame F .
Relative rotations are easy to compute for coordinate rotations [X(·)], [Y (·)],

and [Z(·)]. Consider, for example, two orientations of M defined by the z-rotations
[Z(θ1)] and [Z(θ2)]. The relative rotation is given by

[Z(θ2)][Z(θ1)
T ] = [Z(θ2)][Z(−θ1)] = [Z(θ2−θ1)] = [Z(θ12)], (8.21)

where θ12 = θ2−θ1. This calculation uses the fact that the inverse of a coordinate
rotation is just the rotation by the negative value of the rotation angle.

In general, given a set of orientations Mi, i = 1, . . . ,n, we have the relative rota-
tions defined by

[Ai j] = [A j][AT
i ]. (8.22)

8.1.6 Relative Inverse Rotations

For two orientations M1 and M2 of a body, we can determine the inverse orientations
F1 and F2 of the fixed frame F as viewed from M. These are defined by the inverse
rotations [A−1

1 ] and [A−1
2 ]. Let X be a point in F that corresponds to a point x when

M is in orientation M1, or equivalently, when F coincides with F1. Let this X corre-
spond to y in M when in orientation M2, which is the same as when F aligns with F2
as viewed from M. These coordinates are related by the equations x = [A−1

1 ]X and
y = [A−1

2 ]X. The relative inverse rotation [A†
12] transforms the coordinates x into y

by

y =[A†
12]x,

or

[A−1
2 ]X =[A†

12][A
−1
1 ]X. (8.23)

Thus, we have
[A†

12] = [AT
2 ][A1]. (8.24)

This rotation defines the rotation of F from F1 into F2 as viewed from the moving
frame M. Notice that this is not the inverse of the relative rotation matrix [A12],
which is [A−1

12 ] = [A1][AT
2 ].

For a general set of orientations Mi, i = 1, . . . ,n, we have the relative inverse
rotations

[A†
i j] = [AT

j ][Ai]. (8.25)

The relative inverse rotation is defined from the point of view of the moving
frame M. We can choose a specific orientation Mj and transform its coordinates to
the fixed frame. In particular, transform the relative inverse rotation [A†

ik] to Mj in F
by the rotation [A j], to obtain
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[A j
ik] = [A j][A

†
ik][A

T
j ]. (8.26)

This is known as the image of the relative inverse rotation for position Mj in F .
Notice that if Mj is one of the orientations of the relative inverse rotation, say

j = i, then

[Ai
ik] = [Ai][A

†
ik][A

T
i ] = [Ai][AT

k ][Ai][AT
i ] = [Ai][AT

k ] = [AT
ik]. (8.27)

This result is also obtained for j = k. Thus, in these cases the image of the relative
inverse rotation is the inverse of the relative rotation.

8.2 The Geometry of Rotation Axes

Every rotation has an axis, which is the set of points that are invariant under the
transformation. The geometric properties of these axes are fundamental tools in the
synthesis of spherical RR chains.

8.2.1 The Rotation Axis

The points that remain fixed during a rotation [A] form its rotation axis. To find these
points we consider the transformation equation

X = [A]X. (8.28)

This shows that a fixed point X is the solution to

[I−A]X = 0. (8.29)

This equation has the solution X = 0, which tells us that origin is a fixed point, as
expected. For there to be other fixed points, the determinant of the coefficient matrix
must be zero, that is, |I−A|= 0.

It happens that this condition is satisfied for all spatial rotation matrices. Another
way of saying this is that these matrices always have λ = 1 as an eigenvalue. Notice
that if S is a nonzero solution, then every point P = tS on the line through the origin
and S is also a solution. This line of points is the rotation axis.

8.2.1.1 Cayley’s Formula

In order to obtain an explicit equation for the rotation axis we first derive Cayley’s
formula for a spatial rotation matrix. Consider the points x and X in F that represent
the initial and final positions obtained from the rotation X = [A]x. Using the fact that
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|x|= |X|, we compute

X ·X−x ·x = (X−x) · (X+x) = 0. (8.30)

This equation states that the diagonals X− x and X+ x of the rhombus formed by
the vertices O, x, X, and x+X must be perpendicular.

The diagonals X−x and X+x are also given by the equations

X−x = [A− I]x and X+x = [A+ I]x. (8.31)

Substitute for x on the right side of these two equations in order obtain

X−x = [A− I][A+ I]−1(X+x) = [B](X+x). (8.32)

The matrix [B] operates on the diagonal X+x to rotate it 90◦ and change its length.
The result is the other diagonal X−x. From the fact that

(X+x)T [B](X+x) = 0, (8.33)

we can see that [B] must have the form

[B] =

 0 −bz by
bz 0 −bx
−by bx 0

 . (8.34)

This matrix is skew-symmetric, which means that [BT ] =−[B].
The elements of [B] can be assembled into the vector b = (bx,by,bz)

T that has
the property that for any vector y,

[B]y = b×y, (8.35)

where × is the usual vector product. The vector b is called Rodrigues’s vector and
(8.32) is often written as

X−x = b× (X+x). (8.36)

The equation [B] = [A− I][A+ I]−1 can be solved to obtain Cayley’s formula for
rotation matrices

[A] = [I−B]−1[I +B]. (8.37)

This shows that the nine elements of a 3× 3 rotation matrix depend on three in-
dependent parameters. Another way to say this is that the set of rotation matrices
SO(3) is three-dimensional.

We now solve (8.29) explicitly to determine a nonzero point S on the rotation
axis. Substitute Cayley’s formula for [A] into this equation to obtain[

I− [I−B]−1[I +B]
]

X = 0, (8.38)

which simplifies to
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[B]X = 0. (8.39)

Since [B]X = b×X, it is clear that X = b is a solution. Thus, Rodrigues’s vector
defines the rotation axis.

We denote by S the unit vector in the direction of Rodrigues’s vector b, and use
it to identify the rotation axis of [A].

8.2.2 Perpendicular Bisectors and the Rotation Axis

The angle between the rotation axis S and vectors through the origin c to any point x
in the moving body is preserved by the rotation. This means that ∠xcS equals ∠XcS
and we have

S ·X = S ·x. (8.40)

This equation states that the component of any point x in the direction of the rotation
axis S is unchanged by the rotation [A]. This can be made explicit by computing

S ·X−S ·x = S · (X−x) = 0. (8.41)

Thus, the vector joining the initial position of a point x to its final position X is
perpendicular to the direction of the rotation axis.

In order to examine this relation (8.41) in more detail, choose the pair of corre-
sponding points p and P and consider the set of points Y that satisfy the equation

Y · (P−p) = 0. (8.42)

This defines a plane through the origin, because Y = 0 satisfies this equation. Fur-
thermore, the midpoint V of the segment P−p lies on this plane because

V · (P−p) =
P+p

2
· (P−p) =

P ·P−p ·p
2

= 0. (8.43)

The last equality simply restates that |P|= |p|.
This shows that the plane defined by (8.42) is perpendicular to the segment pP

and passes through its mid-point V. So it is the perpendicular bisector of the vector
P−p. Thus, we see that the rotation axis lies on the perpendicular bisector of all
vectors X−x for every point x in the moving body.

8.2.2.1 Constructing the Rotation Axis

This result provides a convenient way to determine the rotation axis. Choose two
points p and q and determine their transformed positions P = [A]p and Q = [A]q.
The perpendicular bisectors of the segments P−p and Q−q are
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Y · (P−p) =0,
Y · (Q−q) =0. (8.44)

The rotation axis is the line of intersection of these two planes, and we have the
solution Y = S given by

S =
(P−p)× (Q−q)
|(P−p)× (Q−q)|

. (8.45)

8.2.3 The Rotation Angle

The plane defined by 4xcS rotates about S in order to reach its final position con-
taining4XcS, Figure 8.1. The dihedral angle φ between these two planes is called
the rotation angle of [A]. It can be determined from the two vectors S×x and S×X
that are perpendicular to these respective planes, as well as perpendicular to S. Com-
pute the sine and cosine of the angle between these vectors using (8.14),

sinφ =
(S×x)× (S×X) ·S
|S×x||S×X|

, cosφ =
(S×x) · (S×X)

|S×x||S×X|
. (8.46)

The numerator of sinφ simplifies to (S×x) ·X, so we have

φ = arctan
(

(S×x) ·X
(S×x) · (S×X)

)
. (8.47)

!
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Fig. 8.1 The rotation axis and two positions of a general point.
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8.2.3.1 Rodrigues’s Equation

Consider the projections of the points x and X onto the plane perpendicular to the
rotation axis S through c, which we denote by x∗ and X∗, respectively. The isosceles
triangle4x∗cX∗ has the rotation angle φ as its vertex angle. The altitude V∗ of this
triangle is the projection of the midpoint of the segment X−x. Therefore, we have

tan
φ

2
=
|X∗ −V∗|
|V∗|

. (8.48)

Notice that the vectors X∗ −V∗ and V∗ are related by the equation

X∗ −V∗ = tan
φ

2
S×V∗, (8.49)

where the vector product by S rotates V∗ by 90◦.
We expand this relation to obtain Rodrigues’s equation. First, notice that

S×V∗ = S× X∗+x∗

2
= S× X+x

2
. (8.50)

The components of x and X in the direction S are canceled by the vector product
with S. Next, we have

X∗ −V∗ = X∗ − X∗+x∗

2
=

X∗ −x∗

2
=

X−x
2

, (8.51)

because the components of x and X along S cancel. Combining these results, we
obtain

X−x = tan
φ

2
S× (X+x). (8.52)

This is another derivation of Rodrigues’s equation. However, in this case, we see
that the magnitude of Rodrigues’s vector is tan(φ/2), that is, b = tan(φ/2)S.

8.2.4 The Rotation Defined by φ and S

A rotation matrix [A] is characterized by its rotation axis S and rotation angle φ .
Cayley’s formula combines with the definition of Rodrigues’s vector to yield an
explicit formula for [A(φ ,S)]. Because b = tan(φ/2)S, we have that the matrix [B]
is given by

[B] = tan
φ

2

 0 −sz sy
sz 0 −sx
−sy sx 0

 , (8.53)

where S = (sx,sy,sz)
T . Thus, Cayley’s formula yields
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[A(φ ,S)] = [I− tan
φ

2
[S]]−1[I + tan

φ

2
[S]], (8.54)

which can be expanded to obtain

[A(φ ,S)] = [I]+ sinφ [S]+ (1− cosφ)[S2]. (8.55)

This equation defines the rotation matrix in terms of its rotation axis and the angle
of rotation about this axis.

Important examples of (8.55) are the coordinate rotations [X(θ)], [Y (θ)], and
[Z(θ)], which are rotations by the angle θ about the axes~ı= (1,0,0)T ,~= (0,1,0)T ,
and~k = (0,0,1)T , respectively.

8.2.4.1 Inverse Rotations

The rotation matrix [A] and its inverse [AT ] have the same rotation axis S. This is
easily seen by multiplying [A]S = S by [AT ] to obtain S = [AT ]S. We now compute
[A(φ ,S)T ] using (8.55). Notice that [ST ] =−[S] and [S2]T = [S2], so we have

[AT ] = [I]− sinφ [S]+ (1− cosφ)[S2], (8.56)

where φ is the rotation angle of [A]. Let φ ′ be the rotation angle of [AT ]. Then we
see from sinφ ′ =−sinφ and cosφ ′ = cosφ that φ ′ =−φ . Thus, the inverse rotation
is simply the rotation by the negative angle around the same axis.

8.2.4.2 A Change of Coordinates

Equation (8.55) provides a convenient way to understand the change of coordinates
of a rotation matrix. Consider the transformation [A′] = [R][A(φ ,S)][RT ], where [A]
is defined in terms of its rotation angle and axis. Then we have

[A′] =[R]
(
[I]+ sinφ [S]+ (1− cosφ)[S2]

)
[RT ]

=[I]+ sinφ([R][S][RT ])+(1− cosφ)([R][S2][RT ]). (8.57)

It is easy to show that [S′] = [R][S][RT ] is the skew symmetric matrix associated with
the vector S′ = [R]S, and we have

[A′] = [I]+ sinφ [S′]+ (1− cosφ)[S′2]. (8.58)

Thus, a change of coordinates [R][A(φ ,S)][RT ] leaves the rotation angle unchanged,
and transforms the rotation axis by [R], so [A′] = [A(φ , [R]S)].
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8.2.5 Eigenvalues of a Rotation Matrix

In this section we consider the matrix equation (8.29) in more detail. The matrix
[I−A] can be considered to be [λ I−A], where λ = 1. This leads us to consider the
eigenvalue equation

[A]X = λX, (8.59)

which has a solution only if the determinant |λ I−A| is zero. This yields the char-
acteristic polynomial

λ
3− (a11 +a22 +a33)λ

2 +(M11 +M22 +M33)λ −1 = 0, (8.60)

where Mi j is the minor of the submatrix of [A] obtained by removing row i and
column j.

Rotation matrices have the property that each element is equal to its associated
minor, that is,

Mi j = ai j. (8.61)

This follows directly from the fact that the inverse of a rotation matrix is its trans-
pose.

We use this to simplify (8.60) to obtain

λ
3− (a11 +a22 +a33)λ

2 +(a11 +a22 +a33)λ −1 = 0. (8.62)

It is now easy to check that λ = 1 is a root of this polynomial for all rotation matri-
ces. This means that |I−A|= 0, so (8.29) always has solutions other than X = 0.

To obtain the other two roots of (8.62), divide by (λ −1) to obtain

λ
2− (a11 +a22 +a33−1)λ +1 = 0. (8.63)

The roots of this equation are λ = eiφ and λ = e−iφ , where the angle φ is given by

φ = arccos
(

a11 +a22 +a33−1
2

)
. (8.64)

8.2.6 Rotation Axis of a Relative Rotation

For two orientations defined by the rotations [A1] and [A2] we have the relative ro-
tation matrix [A12] = [A2][AT

1 ]. This matrix transforms the coordinates X1 of point x
in M in orientation M1 into the coordinates X2 when the body is in M2, that is,

X2 = [A12]X1. (8.65)

The axis of rotation S12 satisfies the condition (8.40), which in this case becomes
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S12 ·X2 = S12 ·X1, (8.66)

or
S12 · (X2−X1) = 0. (8.67)

Thus, the relative rotation axis S12 lies on the perpendicular bisector of all segments
joining corresponding points in orientations M1 and M2.

Let P1 and P2 and Q1 and Q2 be a pair of corresponding points in orientations
M1 and M2. Then S12 is the solution to the pair of equations

S12 · (P2−P1) =0,

S12 · (Q2−Q1) =0, (8.68)

given by

S12 =
(P2−P1)× (Q2−Q1)

|(P2−P1)× (Q2−Q1)|
. (8.69)

The relative rotation angle φ12 about S12 is the dihedral angle between the planes
containing4X1OS12 and4X1OS12, which by (8.47) is

φ12 = arctan
(

(S12×X1) ·X2

(S×X1) · (S×X2)

)
. (8.70)

Finally, we see from (8.55) that the relative rotation [A12] is defined in terms of its
rotation angle φ12 and axis S12 by the formula

[A(φ12,S12)] = [I]+ sinφ12[S12]+ (1− cosφ12)[S2
12]. (8.71)

8.2.7 Rotation Axis of a Relative Inverse Rotation

Given the two orientations M1 and M2, we can compute the inverse rotations [AT
1 ]

and [AT
2 ] that define the orientations F1 and F2 of the fixed frame relative to M. The

relative inverse rotation is given by [A†
12] = [AT

2 ][A1]. The rotation axis s12 of [A†
12]

is computed using the formulas above, but it now lies in M. Let φ
†
12 be the relative

rotation angle.
In general, we can transform the relative inverse rotation [A†

ik] to the fixed frame
F when M is in orientation Mj by the computation

[A j
ik] = [A j][A

†
ik][A

T
j ]. (8.72)

This transforms the coordinates of sik to

S j
ik = [A j]sik, (8.73)

which is the image of the relative inverse rotation axis.
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For the two cases j = 1 and j = 2 we have

[A1
12] = [A2

12] = [AT
12]. (8.74)

Thus, the relative inverse rotation angle is φ
†
12 =−φ12. The rotation axis s12 is trans-

formed to the fixed frame such that

S12 = [A1]s12 = [A2]s12, (8.75)

which is what we expect for a relative rotation axis.

8.2.8 Rotational Displacements

We now consider spatial displacements that are rotations but around points other
than the origin of F . In particular, we determine the condition under which the
displacement [T ] = [A,d] has a nonzero fixed point c. We seek the points X such
that

X = [A]X+d, (8.76)

or
[I−A]X = d. (8.77)

We have already seen that |I − A| = 0. Therefore, this equation does not have a
solution, in general, and there are no fixed points. However, we can determine a
condition that the translation vector d must satisfy in order for a solution to exist.

Substitute Cayley’s formula for [A], as was done in (8.39). The result can be
simplified to the form

b×X =
1
2
(b×d−d). (8.78)

The left side of this equation is orthogonal to the Rodrigues’s vector b. This means
that the right side must be orthogonal to b as well. Thus, we obtain the condition

b · (b×d−d) = 0, or b ·d = 0. (8.79)

This is clearly satisfied when d= 0. However, we now see that a spatial displacement
has a fixed point when the translation vector is orthogonal to the rotation axis.

In this case, we can solve (8.78) by computing

b× (b×X) = b× 1
2
(b×d−d), (8.80)

which simplifies to yield

X =
b× (d−b×d)

2b ·b
. (8.81)



194 8 Spherical Kinematics

Not only is the point X = c fixed under this displacement, but every point on the line
L : Y = c+ tS is fixed as well. Therefore, the displacement is a pure rotation about
the axis L, and we call it a rotational displacement.

8.3 The Spherical Pole Triangle

8.3.1 The Axis of Composite Rotation

There is an important geometric relationship between the axes of two rotations [A]
and [B] and the axis of their product [C] = [B][A]. This is easily derived by using Ro-
drigues’s equation (8.52) to represent each of the rotations. Let [C] have the rotation
axis C and rotation angle γ , so we have Rodrigues’s vector tan(γ/2)C. Similarly, let
Rodrigues’s vectors for [A] and [B] be tan(α/2)A and tan(β/2)B, respectively.

We now consider the composite rotation [B][A] as the transformation y = [A]x,
followed by the transformation X = [B]y. Thus, for [A] we have

y−x = tan
α

2
A× (y+x). (8.82)

And for the rotation [B] we have

X−y = tan
β

2
B× (X+y). (8.83)

The vector y can be eliminated between these two equations to yield

X−x = tan
γ

2
C× (X+x),

where

tan
γ

2
C =

tan β

2 B+ tan α

2 A+ tan β

2 tan α

2 B×A

1− tan β

2 tan α

2 B ·A
. (8.84)

This result is known as Rodrigues’s formula for the composition of rotations.

8.3.1.1 A Spherical Triangle

We now show that (8.84) is the equation of the spherical triangle formed by A, B,
and C, with interior angles α/2 and β/2 at A and B, and the exterior angle γ/2 at
C, Figure 8.2.

Introduce the planes EA and EB through the center of the sphere, which define the
sides AC and BC of the spherical triangle. These planes intersect along the vector C
and lie at the dihedral angle γ/2 relative to each other. Let nA be the unit vector in
the direction C×A normal to EA, and let nB be the unit vector along B×C normal
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Fig. 8.2 The spherical triangle 4ABC with interior angles α/2 and β/2 at A and B, and γ/2 as
its exterior angle at C.

to EB. Using these conventions we have

nA×nB = sin
γ

2
C and nB ·nA = cos

γ

2
, (8.85)

where γ/2 is the exterior angle at the vertex C. We now compute C in terms of the
vertices A and B and their interior angles.

We can expand nA and nB in terms of the unit vectors B, v, and n, where n is the
unit vector in the direction B×A and v = n×B. If δ is the angle measured from B
to A in the AB plane, that is, cosδ = B ·A, then we have

nA =sin
α

2
(cosδv− sinδB)+ cos

α

2
n,

nB =− sin
β

2
v+ cos

β

2
n. (8.86)

Computing the scalar and vector products in (8.85) we obtain

sin
γ

2
C =sin

β

2
cos

α

2
B+ sin

α

2
cos

β

2
A+ sin

β

2
sin

α

2
B×A,

cos
γ

2
=cos

α

2
cos

β

2
− sin

α

2
sin

β

2
B ·A. (8.87)

Divide these two equations to obtain

tan
γ

2
C =

tan β

2 B+ tan α

2 A+ tan β

2 tan α

2 B×A

1− tan β

2 tan α

2 B ·A
. (8.88)

AB

C

α
2

β
2

γ
2

n

δ
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Compare this equation with (8.84) to see that Rodrigues’s formula is the equation
of the triangle formed by the rotation axes of [A], [B], and [C] with interior angles
α/2 and β/2 at the vertices A and B, and the exterior angle γ/2 at C.

8.3.1.2 The Composite Axis Theorem

The rotation axes of the composition of rotations [C] = [B][A] form a spherical tri-
angle 4ABC with vertex angles directly related to the rotation angles α , β , and γ .
We examine this triangle using equation (8.87).

Notice that α/2 and β/2 take values between zero and π , therefore the sine
of these angles are always positive. Thus, the vector part of (8.87) has a positive
component along B×A. The component along B is positive for β < π and negative
for β > π . We now introduce the convention that C is directed so it always has
a positive component along B. This allows sin(γ/2) to take positive and negative
values. Notice that if sin(γ/2) is negative, then γ/2 > π .

Because A = cosδB+ sinδv, we have

sin
γ

2
C =

(
sin

β

2
cos

α

2
+ sin

α

2
cos

β

2
cosδ

)
B+ sin

α

2
cos

β

2
sinδv

+ sin
β

2
sin

α

2
B×A. (8.89)

Introduce the angle τ so that cosτ = B ·C. Then we have

sin
γ

2
cosτ = sin

β

2
cos

α

2
+ sin

α

2
cos

β

2
cosδ . (8.90)

Our convention for the direction of C ensures that cosτ is always positive, so we
have the two cases:

Case 1. sin(γ/2)> 0, that is, γ < 2π .

In this case the vertex C has a positive component along B×A. The derivation above
shows that α/2 and β/2 are the interior angles of 4ABC at the vertices A and B.
The angle γ/2 is the exterior angle at C.

Case 2. sin(γ/2)< 0, that is, γ > 2π .

In this case the vertex C lies below the AB plane and has a component directed
opposite to B×A. The angles α/2 and β/2 are the exterior angles of 4ABC at A
and B, respectively. If the angle κ is the interior angle at C, then γ/2 = κ +π .

We collect these results in the following theorem:
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Theorem 9 (The Composite Axis Theorem). The axis C of a composite rotation
[C] = [B][A] forms a triangle with the axes B and A of the rotations [B] and [A],
respectively. If sin(γ/2) > 0, then the interior angles of this triangle at A and B
are α/2 and β/2, respectively. If sin(γ/2) < 0, then α/2 and β/2 are the exterior
angles at these vertices. In this case, if κ is the interior angle at C, then γ/2= κ+π .

8.3.1.3 Quaternions and the Spherical Triangle

W. R. Hamilton [43] introduced quaternions to generalize to three dimensions the
geometric properties of complex numbers. A quaternion is the formal sum of a scalar
q0 and a vector q = (qx,qy,qz)

T , written as Q = q0 +q.
Quaternions can be added together, and multiplied by a scalar, componentwise

like four-dimensional vectors. A new operation, invented by Hamilton, defines the
product of two quaternions P = p0 +p and Q = q0 +q by the rule

R = PQ = (p0 +p)(q0 +q) = (p0q0−p ·q)+(q0p+ p0q+p×q), (8.91)

where the dot and cross denote the usual vector operations.
The conjugate of the quaternion Q = q0 +q is Q∗ = q0−q, and the product QQ∗

is the positive real number

QQ? = (q0 +q)(q0−q) = q2
0 +q ·q = |Q|2. (8.92)

The scalar |Q| is called the norm of the quaternion.
We are interested in quaternions of norm equal to 1. These so-called unit quater-

nions can be written in the form

Q = cos
θ

2
+ sin

θ

2
S, (8.93)

where S=(sx,sy,sz)
T is a unit vector. The quaternion product of A(α/2)= cos(α/2)+

sin(α/2)A and B(β/2)= cos(β/2)+sin(β/2)B yields the unit quaternion C(γ/2)=
B(β/2)A(α/2), given by

cos
γ

2
+ sin

γ

2
C =

(
cos

β

2
cos

α

2
− sin

β

2
sin

α

2
B ·A

)
+
(

sin
β

2
cos

α

2
B+ sin

α

2
cos

β

2
A+ sin

β

2
sin

α

2
B×A

)
. (8.94)

Compare this equation to (8.87) to see that quaternion multiplication yields one
vertex of a spherical triangle from the other two. We conclude that each rotation
[A(φ ,S)] can be identified with a quaternion S(φ/2) = cos(φ/2)+ sin(φ/2)S.



198 8 Spherical Kinematics

8.3.2 The Triangle of Relative Rotation Axes

For three orientations Mi, Mj, and Mk of a moving body, we can construct the relative
rotations [Ai j], [A jk], and [Aik]. Notice that the relative rotation [Aik] is given by the
product [A jk][Ai j], as is seen from

[Aik] = [Ak][AT
i ] =

(
[Ak][AT

j ]
)(
[A j][AT

i ]
)
= [A jk][Ai j]. (8.95)

Rodrigues’s formula for this composition of rotations yields

tan
φik

2
Sik =

tan φ jk
2 S jk + tan φi j

2 Si j + tan φ jk
2 tan φi j

2 S jk×Si j

1− tan φ jk
2 tan φi j

2 S jk ·Si j

. (8.96)

This is the equation of the spherical triangle formed by the relative rotation axes
4Si jS jkSik. The composite-axis theorem defines the relationship between the vertex
angles of this triangle and the relative rotation angles φi j/2, φ jk/2, and φik/2. For
example, if Sik lies above the plane through Si jS jk, then the interior angles at Si j
and S jk are φi j/2 and φ jk/2, respectively, and the exterior angle at Sik is φik/2,
Figure 8.3. This triangle is analogous to the planar pole triangle and is called the
spherical pole triangle.

Fig. 8.3 The spherical pole triangle.

8.3.3 The Spherical Image Pole Triangle

We now consider the inverse rotations associated with the orientations Mi, Mj, Mk,
given by [AT

i ], [A
T
j ], and [AT

k ]. The relative inverse rotation [A†
ik] is the composition
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of the relative inverse rotations [A†
jk][A

†
i j], as can be seen from

[A†
ik] = [AT

k ][Ai] =
(
[AT

k ][A j]
)(
[AT

j ][Ai]
)
= [A†

jk][A
†
i j]. (8.97)

We can transform each relative inverse rotation to the fixed frame F for M aligned
with Mm, that is, we compute

[Am
ik] = [Am][A

†
ik][A

T
m]. (8.98)

We obtain the composition of the relative inverse rotations as seen from F ,

[Am
ik] = [Am

jk][A
m
i j]. (8.99)

Rodrigues’s formula for this composition defines the triangle of image relative rota-
tion axes, which is known as the spherical image pole triangle.

Let m = i, for example, and notice that Si
i j = Si j and Si

ik = Sik, and we have the
image pole triangle4Si jSi

jkSik. The relative inverse rotation angles are the negatives
of the relative rotation angles. Therefore, φ

†
ik = −φik. Thus, if the spherical pole

triangle has φi j/2 as its interior angle at Si j, then the image pole triangle4Si jSi
jkSik

has −φ12/2 as its associated interior angle. The result is that the axis Si
jk is the

reflection of S jk through the plane defined by Si jSik, Figure 8.4.

Fig. 8.4 The image pole Si
jk is the reflection of S jk through the side Si jSik of the spherical pole

triangle.
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8.4 Summary

This chapter has presented the geometric theory of spatial rotations. Of fundamental
importance is the spherical pole triangle, which is the analog of the planar pole
triangle. Notice that Hamilton’s quaternions can be viewed as the generalization of
complex vectors, and that they provide a convenient tool for computations using
the spherical triangle. The similar form of the planar and spherical results provides
an avenue for visualizing three-dimensional geometry using intuition drawn from
plane geometry.

8.5 References

The kinematic theory of spatial rotations can be found in Bottema and Roth [5].
Crane and Duffy [16] present a detailed development of the trigonometric formulas
for spherical triangles. Cheng and Gupta [11] discuss the history of the various rep-
resentations of the rotation matrix. The interesting history surrounding Hamilton’s
quaternions and Rodrigues’s formula is described by Altmann [1].

Exercises

1. Determine the rotation axis S and angle φ for the rotation [A] = [X(30◦)][Y (30◦)][Z(30◦)]
(Sandor and Erdman [112]).

2. Let the axis of a rotation be along the vector q = (2,2,2
√

2)T and let the rotation
angle be φ = 30◦. Determine the rotation matrix [A(φ ,S)] (Sandor and Erdman
[112]).

3. Table 8.1 gives four locations of a pair of points P and Q. Determine the three
relative rotation matrices [A12], [A13], and [A14] (Suh and Radcliffe [134]).

Table 8.1 Point coordinates defining four orientations

Mi Pi Qi

1 (0.105040,0.482820,0.869397)T (−0.464640,−0.676760,0.571057)T

2 (0.090725,0.541283,0.835931)T (−0.133748,−0.751642,0.645868)T

3 (0.104155,0.620000,0.777658)T (0.161113,−0.702067,0.693646)T

4 (0.096772,0.725698,0.681173)T (0.400762,−0.564306,0.721769)T

4. Prove that each element of a rotation matrix is equal to its associated minor.
5. Show that the change of coordinates [R][A][RT ] of a rotation matrix [A] has the

rotation axis [R]S, where S is the rotation axis of [A].
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6. Let c1 = sx sin(φ/2), c2 = sy sin(φ/2), c3 = sz sin(φ/2) and c4 = cos(φ/2) denote
the components of a unit quaternion. Use (8.54) to obtain a formula for [A(φ ,S)]
with each element quadratic in ci.

7. Derive Rodrigues’s formula for the composition of rotations (8.84).
8. Consider a spherical pole triangle 4S12S23S13. Show that the first position of a

point Q1 reflects through the side N1 : S12S13 to the cardinal point Q∗ and that
the corresponding points Qi reflect through the sides Ni to the same point.





Chapter 9
Algebraic Synthesis of Spherical Chains

In this chapter we formulate the design theory for spherical RR chains. The axes of
the two revolute joints must lie in the same plane, and therefore intersect in a point.
The floating link of this system moves in pure rotation about this point.

Two RR chains can be connected to form a one-degree-of-freedom spherical 4R
linkage. The result is that the coupler is guided along a general rotational movement.
Notice that the axes of the four revolute joints must pass through the same point.
While it would seem difficult to ensure that the four axes intersect in one point, in
practice the internal forces of the system tend to align the axes so that the linkage
moves smoothly.

The synthesis theory for spherical linkages follows the same geometric principles
as the planar theory. Intuition gained from working in the plane can be used to guide
the design process for spherical linkages.

9.1 A Single Revolute Joint

A revolute joint cannot rotate a body between two general positions in space.

[T12] = [A12,d12] is a rotational displacement, then a revolute joint aligned with the
rotation axis of this displacement provides the desired movement.

Let the two spatial positions M1 and M2 be defined by [T1] and [T2], so we have
the relative displacement [T12] = [T2][T−1

1 ]. If the relative translation vector d12 is
orthogonal to the rotation axis S12, that is, d12 ·S12 = 0, then we can determine a
fixed point c by (8.81)

c =
b12× (d12−b12×d12)

2b12 ·b12
, (9.1)

where b12 = tan(φ12/2)S12 is Rodrigues’s vector for the relative rotation. The line
L12: Y(t) = c+ tS12 is the axis of the revolute joint.

©
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A point in the moving body that lies on this axis, as seen from the moving frame
M, is found from the relative inverse rotational displacement [T †

12] = [T−1
2 ][T1] =

[A†
12,d

†
12]. This point defines the line L†

12: y(t) = c† + ts12 in M that coincides with
the line L12 to form the revolute joint.

9.2 Spherical Displacements

If three or more spatial positions Mi, i = 1, . . . ,n, are to be reachable by the floating
link of a spherical chain, then the relative displacements [T1 j], j = 2, . . . ,n, must each
be rotational displacements. Furthermore, the axes of these displacements must pass
through the same point c. If this occurs, then the axes of the relative displacements
have the form L1 j: Y(t) = c+ tS1 j, j = 2, . . . ,n. The relative translation vectors d1 j
can now be written as

[I−A1 j]c = d1 j, j = 2, . . . ,n. (9.2)

Substitute this into the transformation equation Y j = [A1 j]Y1 +d1 j to obtain

Y j− c = [A1 j](Y1− c), j = 2, . . . ,n. (9.3)

Spatial displacements that can be put into this form are called spherical displace-
ments. The change of coordinates X = Y− c transforms these equations into pure
rotations about the origin of F . In what follows, we assume this transformation
and consider the positions Mi, i = 1, . . . ,n, to be specified by pure rotations [Ai],
i = 1, . . . ,n.

9.2.0.1 Longitude, Latitude, and Roll Angles

There are many ways to parameterize the set of rotation matrices. For example, al-
most any combination of three coordinate rotations can be used to define a general
rotation. Here we introduce a set of parameters that is analogous to the x and y trans-
lation and rotation φ used to define planar positions. They are the longitude, latitude,
and roll angles that define the orientation of M relative to F . These parameters allow
us to use a globe to illustrate the orientation of each task position, Figure 9.1.

Locate the fixed frame F at the center of a globe so its y-axis is directed to-
ward the north pole and its z-axis passes through intersection of the prime meridian,
0◦ longitude, and the equator, 0◦ latitude. Longitude and latitude coordinates α , β

locate a point X on the surface of the globe such that its coordinates are

X = R

sinα cosβ

sinβ

cosα cosβ

 , (9.4)
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Fig. 9.1 Longitude, latitude, and roll coordinates defining orientation relative to a global frame.

where R is the distance from the origin c. We can compute longitude and latitude
angles for a vector X = (X ,Y,Z)T using the formulas

α = arctan
X
Z
, β = arctan

Y√
X2 +Z2

, R =
√

X2 +Y 2 +Z2. (9.5)

The orientation of the moving frame M can now be defined in terms of the longi-
tude θ and latitude φ of its z-axis, and the roll ψ about this axis. The rotation matrix
[A] is given by the composition of coordinate rotations

[A(θ ,φ ,ψ)] = [Y (θ)][X(−φ)][Z(ψ)], (9.6)

that is,

[A] =

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

1 0 0
0 cosφ sinφ

0 −sinφ cosφ

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

 . (9.7)

Notice that we have used the identities cos(−φ) = cosφ and sin(−φ) = −sinφ in
[X(−φ)].

We often draw the moving frame on the surface of the unit sphere, though it
is understood that the origins of both the moving and fixed frames, M and F , are
located at the center of the sphere.

9.3 The Geometry of Spherical RR Chains

A spherical RR chain consists of a floating link connected to a crank by a revolute
joint, which in turn is connected to ground by a revolute joint, Figure 9.2. The axes

Z

Y

X

θ
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of the two joints lie in the same plane, and therefore intersect. We align this point of
intersection with the origin of F so that the floating link M moves in pure rotation
with no translation component in F . Let the unit vector directed along the fixed joint
axis be denoted by G, and let the unit vector along the moving axis in M be w. The
coordinates W in F of the moving axis are given by

W = [A]w, (9.8)

where [A] represents the rotation of M relative to the fixed frame F .

G

W

F

M
!

Fig. 9.2 The spherical RR chain with G as the fixed axis, W as the moving axis, and ρ is the
angular dimension of the chain.

The angular length ρ of the RR chain is constant during the movement, so we
have the condition

G ·W = |G||W|cosρ. (9.9)

This must be true for any rotation [A] of the end-link. This constraint characterizes
the spherical RR chain.

9.3.1 Perpendicular Bisectors

Let n orientations of the frame M in the end-link of a spherical RR chain be defined
by the rotations [Ai], i = 1, . . . ,n. Each vector Wi, which locates the moving axis in
F for M in orientation Mi, satisfies (9.9). Therefore,

G ·Wi = |G||Wi|cosρ, i = 1, . . . ,n. (9.10)



9.3 The Geometry of Spherical RR Chains 207

Because |W1| = |Wi|, we can subtract the first equation from the remaining n− 1
and obtain

P1i : G · (Wi−W1) = 0, i = 2, . . . ,n. (9.11)

Recall from (8.30) that this is the equation of the perpendicular bisector P1i to
each segment Wi−W1. Equation (9.11) states that all of these planes pass through
G. This is an algebraic expression of the fact that the moving axes Wi lie on right
circular cone with G as its axis. The equations of these perpendicular bisectors form
the design equations for a spherical RR chain.

9.3.2 The Spherical Dyad Triangle

The movement of a spherical RR chain can be viewed as a rotation about the moving
pivot W1 by the angle α1i that is followed by a rotation about G by the angle β1i. The
composition of these two rotations yields the rotation φ1i about the relative rotation
axis S1i that moves the end-link M from orientation M1 to Mi, that is,

[A(φ1i,S1i)] = [A(β1i,G)][A(α1i,W1)]. (9.12)

Rodrigues’s formula yields the equation of the spherical dyad triangle 4W1GS1i
as

tan
φ1i

2
S1i =

tan β1i
2 G+ tan α1i

2 W1 + tan β1i
2 tan α1i

2 G×W1

1− tan β1i
2 tan α1i

2 G ·W1
. (9.13)

The spherical triangle4W1GS1i has two configurations relative to the plane con-
taining the axes G and W1. In order to distinguish these configurations let R1i be
the point that coincides with the moving pivot W when the crank angle is β1i/2. We
can now view S1i as being on the same, or opposite, side of G along the perpendic-
ular bisector P1i as the point R1i. If S1i is on the same side as R1i, then it is above
the plane through GW1 and the sum of the joint angles α +β is less than 2π , see
Figure 9.3. If S1i is on the side opposite to R1i, then S1i is below the plane through
GW1 and α +β is greater that 2π , Figure 9.4. In this case, if κ is the interior angle
at S1i, then φ1i/2 = κ +π .

9.3.2.1 Quaternion Equations

We can use Hamilton’s quaternions to define the spherical dyad triangle. Introduce
the quaternions G(β1i/2)= cos(β1i/2)+sin(β1i/2)G and W 1(α1i/2)= cos(α1i/2)+
sin(α1i/2)W1 that represent rotations about the fixed and moving axes. The quater-
nion product yields

S1i(
φ1i

2
) = G(

β1i

2
)W 1(

α1i

2
), (9.14)
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Fig. 9.3 The spherical dyad triangle 4W1GS1i formed by the fixed axis G, the moving axis W1,
and the rotation axis S1i.

Fig. 9.4 The spherical dyad triangle4W1GS1i with S1i below the GW1 plane.

where S1i(φ1i/2) = cos(φ1i/2)+sinφ1i/2S1i defines the relative rotation of the end-
link. Separate the scalar and vector parts of this quaternion to obtain

cos
φ1i

2
= cos

β1i

2
cos

α1i

2
− sin

β1i

2
sin

α1i

2
G ·W1,

sin
φ1i

2
S1i = sin

β1i

2
cos

α1i

2
G+ sin

α1i

2
cos

β1i

2
W1 + sin

β1i

2
sin

α1i

2
G×W1.

(9.15)

Notice that (9.13) is obtained by dividing the vector equation by the scalar equation.

W1G

S1i

α
2

β
2

1i
2

n

ρ

Wi

W1G

S1i

αβ

n

κ

1i
2

22

ρ
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9.3.3 The Center-Axis Theorem

For three orientations of the moving body M1, M2, and M3 we have three positions
of the moving pivot Wi, i = 1,2,3. The crank rotation angle about G between each
of these positions is the dihedral angle βi j between the planes defined by GWi and
GW j. Notice that β13 = β23 +β12.

Recall that the plane P12 contains GS12 and bisects the segment W1W2. This
means that the angle ∠W1GS12 equals β12/2 or β12/2+π , depending on the loca-
tion of S12 above or below the plane through GW1. Similarly, because P23 bi-
sects the segment W2W3, we have that the angle ∠W2GS23 is either β23/2 or
β23/2 + π . Notice that ∠W1GS12=∠S12GW2. Considering each of the possible
cases for ∠S12GS23=∠S12GW2 +∠W2GS23, we see that this angle must be either
β13/2 or β13/2+π . Thus, G views the two relative rotation axes S12 and S23 in the
angle β13/2 or β13/2+π , Figure 9.5.

This generalizes to yield a spherical version of the planar center-point theorem:

Theorem 10 (The Center-Axis Theorem). The center axis G of an RR chain that
reaches orientations Mi, Mj, and Mk views the relative rotation axes Si j and S jk in
the dihedral angle βik/2 or βik/2+ π , where βik is the crank rotation angle from
position Mi to Mk.

This theorem provides the foundation for the generalization of Burmester’s tech-
niques to spherical RR chain design.

Fig. 9.5 The center axis G views the relative rotation axes S12 and S23 in the angle β13/2 =
β12/2+β23/2.

S12

S23

W1

W2

W3

β12
2

β23
2

G

γ
2

δ
2
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9.3.3.1 The Dihedral Angle at G

The center-axis theorem provides a formula to compute the crank angle βik given
the relative rotation axes Si j and S jk. Consider the vectors G×Si j and G×S jk that
are normal, respectively, to the planes containing GSi j and GS jk. The angle between
these vectors is given by (8.47) as

βik

2
= arctan

(
(G×Si j) ·S jk

(G×Si j) · (G×S jk)

)
. (9.16)

We use this equation to compute βik for a given set of relative rotation axes Si j and
S jk. This equation remains true whether G views these axes in βik/2 or βik/2+π ,
because tanκ = tan(κ +π).

Alternatively, we can specify βik in this equation and obtain

Cik : (G×Si j) · (G×S jk) tan
βik

2
− (G×Si j) ·S jk = 0, (9.17)

which is a quadric cone on which the fixed axes G must lie.
Another approach to defining the crank rotation angle βik is to use the quaternion

form of the spherical triangle. Assume that the spherical triangle 4Si jGS jk is the
pole triangle for the composite rotation

[A(γ,S jk)] = [A(βik,G)][A(δ ,Si j)]. (9.18)

Associated with this is the quaternion equation

S jk(
γ

2
) = G(

βik

2
)Si j(

δ

2
). (9.19)

Multiply both sides by the conjugate S∗i j(δ/2) to obtain

G(
βik

2
) = S jk(

γ

2
)S∗i j(

δ

2
), (9.20)

which expands to yield the scalar and vector equations

cos
βik

2
= cos

γ

2
cos

δ

2
+ sin

γ

2
sin

δ

2
S jk ·Si j,

sin
βik

2
G = sin

γ

2
cos

δ

2
S jk− sin

δ

2
cos

γ

2
Si j− sin

γ

2
sin

δ

2
S jk×Si j. (9.21)

For a given set of relative rotation axes Si j and S jk, we can choose arbitrary values
for γ and δ and obtain the axis G and the rotation angle βik.

On the other hand, if we specify βik, then we can determine δ as a function of γ

from the scalar equation of (9.21). Notice that this equation has the form
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Acos
δ

2
+Bsin

δ

2
=C, (9.22)

where

A = cos
γ

2
, B = sin

γ

2
S jk ·Si j, and C = cos

βik

2
. (9.23)

The solution is
δ (γ) = 2arctan

B
A
±2arccos

C√
A2 +B2

. (9.24)

Substitute this into the vector equation of (9.21) in order to obtain a cone of fixed
axes G parameterized by γ . Each of these axes views Si jS jk in the dihedral angle
βik/2 or βik/2+π .

9.4 Finite Position Synthesis of RR Chains

9.4.1 The Algebraic Design Equations

The equations of the perpendicular bisectors P1i can be modified to provide a con-
venient set of algebraic design equations for a spherical RR chain. If n task ori-
entations Mi, i = 1, . . . ,n, are specified for the end-link of the chain, then we can
determine the relative rotation matrices [A1i], i = 2, . . . ,n, such that Wi = [A1i]W1.
This allows us to write the equations of the perpendicular bisectors (9.11) as

P1i : G · [A1i− I]W1 = 0, i = 2, . . . ,n. (9.25)

This is a homogeneous bilinear equation in the six unknown coordinates for G =
(x,y,z)T and W1 = (λ ,µ,ν)T . In what follows we solve these equations to obtain a
spherical RR chain that reaches five task orientations.

To see the structure of these design equations in more detail, we use (8.55) to
write [A1i] in terms of its rotation axis S1i and rotation angle φ1i. Introducing φ1i/2
into the resulting equation for [A1i− I], we obtain

[A1i− I] = 2sin
φ1i

2
cos

φ1i

2

(
[S1i]+ tan

φ1i

2
[S1i]

2
)
. (9.26)

Write the components of the rotation axis such that S1i = (pi,qi,ri)
T . Then a typical

equation (9.25) isx
y
z


T
− tan φ1i

2 (r2
i +q2

i ) −ri + tan φ1i
2 qi pi qi + tan φ1i

2 ri pi

ri + tan φ1i
2 qi pi − tan φ1i

2 (r2
i + p2

i ) −pi + tan φ1i
2 riqi

−qi + tan φ1i
2 ri pi pi + tan φ1i

2 riqi − tan φ1i
2 (q2

i + p2
i )


λ

µ

ν

= 0.

(9.27)
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If the vector G = (x,y,z)T is considered to be known, then these equations are linear
and homogeneous in the components of W1 = (λ ,µ,ν)T . In the same way, if W1 is
known, then these equations are linear and homogeneous in the components of G.
This structure provides a convenient strategy for solving these equations.

9.4.1.1 The Bilinear Structure

The solution of the design equations for spherical RR chains follows closely the
results for planar RR chains. As in the plane, these equations are linear separately
in the coordinates of the fixed and moving axes. This bilinear structure allows us to
consider selecting the fixed axis or the moving axis as part of the solution process.

If we select the fixed axis G, then x, y, z are known, and we can collect coeffi-
cients of λ , µ , ν to obtain the design equations

Aiλ +Biµ +Ciν = 0, i = 2, . . . ,n, (9.28)

where

Ai =− tan
φ1i

2
(r2

i +q2
i )x+(ri + tan

φ1i

2
qi pi)y+(−qi + tan

φ1i

2
ri pi)z,

Bi = (−ri + tan
φ1i

2
qi pi)x− tan

φ1i

2
(r2

i + p2
i )y+(pi + tan

φ1i

2
riqi)z,

Ci = (qi + tan
φ1i

2
ri pi)x+(−pi + tan

φ1i

2
riqi)y− tan

φ1i

2
(q2

i + p2
i )z. (9.29)

This is a set of n−1 linear homogeneous equations in the components of the moving
axis W1.

Rather than select the fixed axis, we can specify a moving axis W1 = (λ ,µ,ν)T

and collect the coefficients of (x,y,z) to obtain

A′ix+B′iy+C′i z = 0, i = 2, . . . ,n, (9.30)

where

A′i =− tan
φ1i

2
(r2

i +q2
i )λ +(−ri + tan

φ1i

2
qi pi)µ +(qi + tan

φ1i

2
ri pi)ν ,

B′i = (ri + tan
φ1i

2
qi pi)λ − tan

φ1i

2
(r2

i + p2
i )µ +(−pi + tan

φ1i

2
riqi)ν ,

C′i = (−qi + tan
φ1i

2
ri pi)λ +(pi + tan

φ1i

2
riqi)µ− tan

φ1i

2
(q2

i + p2
i )ν . (9.31)

We solve these n−1 equations to determine the coordinates of the fixed axis G.
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9.4.2 Parameterized Form of the Design Equations

The movement of the end-link of an RR chain from orientation M1 to each of the
orientations Mi, i = 2, . . . ,n, is defined by the composite rotations

[A(φ1i,S1i)] = [A(β1i,G)][A(α1i,W1)], i = 2, . . . ,n, (9.32)

where β1i and α1i are the rotation angles about the fixed and moving axes, respec-
tively. The quaternion form of these equations are

S(
φ1i

2
) = G(

β1i

2
)W 1(

α1i

2
), i = 2, . . . ,n. (9.33)

The scalar and vector parts of these quaternions provide design equations in which
the joint rotation angles β1i and α1i appear explicitly. They are used to design spher-
ical RR chains for selected crank rotation angles.

9.4.3 Two Specified Orientations

If two orientations M1 and M2 are specified for the end-link of a spherical RR chain,
then we have the rotations [A1] and [A2]. From these rotations we construct the
relative rotation matrix [A12] and obtain the relative rotation angle φ12 and axis S12.
This is the information that we need to form the single design equation

G · [A(φ12,S12)− I]W1 = 0. (9.34)

We may choose either the fixed or moving axis and solve for the other.

9.4.3.1 Select the Fixed Axis

If we specify the coordinates G= (x,y,z)T , then the design equation (9.28) becomes

A2λ +B2µ +C2ν = 0. (9.35)

This is the equation of a plane through the origin of F . Any vector in this plane can
be used as a moving pivot W1. Set ν equal to 1, so this plane defines a line in the
z = 1 plane. We can then choose either λ or µ and solve for the other.

9.4.3.2 Select the Moving Axis

A similar result is obtained if we choose the moving axis W1 = (λ ,µ,ν)T . In this
case the design equation (9.30) becomes
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A′2x+B′2y+C′2z = 0. (9.36)

This equation defines the perpendicular bisector to the segment W1W2. Set z = 1,
so this equation defines a line in the z = 1 plane. Then choose either x or y and solve
for the other.

9.4.3.3 Select the Crank Angle

The quaternion equation of the dyad triangle can be used to design a spherical RR
chain with a specified crank rotation angle β12. The parameterized design equation
is

S(
φ12

2
) = G(

β12

2
)W 1(

α12

2
). (9.37)

For the specified orientations, we can determine the quaternion S(φ12/2). We now
assume that we have specified the fixed axis G and the crank angle β12, so we have
the quaternion G(β12/2). Multiply this equation on the left by the conjugate G∗ to
obtain a formula defining the moving axis W1 and the rotation angle α12,

W 1(
α12

2
) = G∗(

β12

2
)S(

φ12

2
). (9.38)

Recall that the conjugate G∗ is obtained by negating its vector part, or equivalently,
by negating the angle β12.

We can select W1 and α12 instead. Then G and β12 are determined by multiplying
(9.37) on the right by the conjugate W 1∗.

9.4.4 Three Specified Orientations

Given three task orientations M1, M2, and M3, we have three rotation matrices
[Ai], i = 1,2,3, which we use to construct the relative rotations [A(φ12,S12)] and
[A(φ13,S13)]. The result is the two design equations

G · [A(φ12,S12)− I]W1 = 0,

G · [A(φ13,S13)− I]W1 = 0. (9.39)

Selecting one axis, these equations yield a unique solution for the other.

9.4.4.1 Select the Fixed Axis

For a selected direction of the fixed axis G, the design equations (9.28) can be
assembled into the matrix equation
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A2 B2 C2
A3 B3 C3

]λ

µ

ν

=

{
0
0

}
. (9.40)

This equation is solved by forming the two vectors D1 = (A1,B1,C1)
T and D2 =

(A2,B2,C2)
T . The result is

W1 = kD1×D2, (9.41)

where k is used to normalize this to a unit vector.

9.4.4.2 Select the Moving Axis

For a selected moving axis W1, we have from (9.30) the equations for the fixed axis
G given by [

A′2 B′2 C′2
A′3 B′3 C′3

]x
y
z

=

{
0
0

}
. (9.42)

These equations define the perpendicular bisectors to the segments W1W2 and
W1W3. The two planes intersect in the axis G. Solve these equations in the same
way as shown above for the moving axis.

9.4.4.3 Select the Crank Angle

Given three orientations Mi, i= 1,2,3, we have the spherical pole triangle4S12S23S13.
The center-axis theorem shows that G views the sides S13S23 and S12S23 in the an-
gles β12/2 and β13/2, respectively. Given the crank angles β12 and β13, we can use
(9.17) to determine two quadric cones that intersect to define G. They are

C12 : (G×S13) · (G×S23) tan
β12

2
− (G×S13) ·S23 = 0,

C13 : (G×S12) · (G×S23) tan
β13

2
− (G×S12) ·S23 = 0. (9.43)

The simultaneous solution of these equations yields the desired fixed pivot G. The
moving pivot W1 is then calculated using (9.41).

Another approach is to use the quaternion equations of the triangles 4S13GS23
and4S12GS23, given by

G(
β12

2
) = S23(

γ1

2
)S∗13(

δ1

2
),

G(
β13

2
) = S23(

γ2

2
)S∗12(

δ2

2
). (9.44)



216 9 Algebraic Synthesis of Spherical Chains

For the specified angles β12 and β13 these equations can be used to determine pa-
rameterized equations of the quadric cones C12(γ1) and C13(γ2). This is done by
solving the scalar equations of the quaternions to determine the angles δ1 and δ2
in terms of γ1 and γ2 using (9.24). The parameterized version of the cone C12(γ1)
can be substitute into the algebraic equation for C13 to obtain an equation for γ1 that
identifies the desired G.

9.4.5 Four Specified Orientations

In the previous section we found that for three task orientations every fixed axis is
in one-to-one correspondence with a moving axis. Geometrically, this results from
the fact that the perpendicular bisectors of the segments W1W2 and W1W3 always
intersect in a line. In the case of four task orientations, the perpendicular bisector
of W1W4 must also pass through this line. However, this cannot happen in general.
This does not mean that there are no axes that have this property. In fact, there is a
cubic cone of axes G that are centers for four moving axes W1, i = 1,2,3,4, that we
can use to form RR chains that reach four orientations. This is the center-axis cone.
The available moving axes form a cubic cone known as the circling-axis cone.

9.4.5.1 The Center-Axis Cone

Given four orientations Mi, i = 1,2,3,4, we have the relative rotations [A(φ1i,S1i)]
and the design equations A2 B2 C2

A3 B3 C3
A4 B4 C4

λ

µ

ν

=

0
0
0

 , (9.45)

where Ai, Bi, and Ci are given by (9.28). In order to have a solution the 3×3 coeffi-
cient matrix [M] = [Ai,Bi,Ci] of this equation must have the determinant |M| equal
to zero. This yields a cubic polynomial

R(x,y,z) : |M|= a30y3 +(a21x+a20z)y2 +(a12x2 +a11xz+a10z2)y

+a03x3 +a02x2z+a10xz2 +a00z3 = 0. (9.46)

This polynomial defines a cubic cone in the fixed frame, and any line on this cone
may be chosen as a fixed axis G for the spherical RR chain. It is known as the
center-axis cone.

The coefficients ai j can be obtained by noting that each element of the coefficient
matrix [M] is linear in x, y, z, therefore |M| has the form

|M|=
∣∣a1x+b1y+ c1z, a2x+b2y+ c2z, a3x+b3y+ c3z

∣∣= 0, (9.47)
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where ai, bi, and ci are constants defined by the task orientations. The linearity of
the determinant allows an expansion that is identical to that presented in (5.37).

9.4.5.2 The Burmester–Roth Theorem

Roth [104] generalized Burmester’s planar synthesis theory to spatial displacements
in a way that included the design of spherical RR chains. He showed how to con-
struct the spherical equivalent of Burmester’s opposite-pole quadrilateral, that we
call the complementary-axis quadrilateral, Figure 9.6. The fundamental result is
that center axes must view opposite sides of the complementary-axis quadrilateral
in angles that are equal or differ by π . This provides a way to generate the equation
of the center-axis cone directly from the coordinates of the relative rotation axes.

Fig. 9.6 The spherical complementary-axis quadrilateral Q: S12S23S34S14.

Four task orientations define six relative rotation axes Si j, i < j = 1,2,3,4. Fol-
lowing Burmester’s definition of the planar opposite-pole quadrilateral, Roth de-
fines the three complementary pairs of relative rotation axes, S12S34, S13S24 and
S14S23. The spherical complementary-axis quadrilateral is constructed from two
sets of complementary pairs so that the pairs are opposite to each other along the
diagonals of the quadrilateral. The fundamental result is the following:

Theorem 11 (The Burmester–Roth Theorem). The center axis G of a spheri-
cal RR chain that can reach four specified orientations views opposite sides of a
complementary-axis quadrilateral constructed from the relative rotation axes of the
given orientations in angles that are equal, or differ by π .

Proof. The definition of the complementary-axis quadrilateral ensures that opposite
sides have the form Si jSik and Sm jSmk. The center-axis theorem states that G views
Si jSik in the dihedral angle β jk/2 or β jk/2+π , where β jk is the crank rotation of
from position Mj to Mk. Similarly, it must view the Sm jSmk in β jk/2 or β jk/2+π .
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Consider the various combinations to see that G views these sides in angles that are
equal, or differ by π . ut

This theorem provides a convenient derivation for the center-axis cone in terms
of the coordinates of the relative rotation axes of the complementary-axis quadrilat-
eral. Let the vertices of this quadrilateral be S12S23S34S14. Then the dihedral angle
κ between the planes containing GS12 and GS23 must be the same as the angle be-
tween the planes GS14 and GS34, or differ by π . We compute tanκ = tan(κ +π) to
obtain

tanκ =
G×S12 ·S23

(G×S12) · (G×S23)
=

L12

C12
,

tanκ =
G×S14 ·S34

(G×S14) · (G×S34)
=

L34

C34
. (9.48)

Equate these expressions to obtain an equation for the center-axis cone, given by

R(x,y,z) : L12C34−L34C12 = 0. (9.49)

This is a homogeneous cubic polynomial in the coordinates of G.

9.4.5.3 The Parameterized Center-Axis Cone

The Burmester-Roth theorem reduces the problem of finding center axes to finding
those axes that view opposite sides of the complementary-axis quadrilateral in an-
gles that are equal, or differ by π . Just as we did in the plane, we can use this to
obtain a construction for center axes, Figure 9.7.

Theorem 12 (Construction of Center Axes). The axes that satisfy the Burmester–
Roth theorem are obtained as follows:

1. Construct the complementary-axis quadrilateral Q: S12S23S34S14 using the four
task orientations.

2. Rotate the segment S12S23 by an angle θ about S12 and determine the new con-
figuration Q′ in order to obtain S′23 and S′34.

3. The axis G of the rotation of S′23S′34 from its original location S23S34 satisfies the
Burmester–Roth theorem and is a center axis.

Proof. Let G be the intersection of the perpendicular bisectors V1 = (S23S′23)
⊥ and

V2 = (S34S′34)
⊥. Then G is the axis of rotation of the segment S23S34 by an angle

κ to the position S′23S′34. The input crank formed by S12S23 has the dyad triangle
4S23S12G and G must view the S12S23 in the angle κ/2 or κ/2+π . Similarly, the
geometry of the dyad triangle 4S34S14G requires that G view the segment S14S34
in either κ/2 or κ/2+ π . Thus, G views the opposite sides S12S23 and S14S34 in
angles that are equal, or differ by π . The same argument shows that G views the
other two sides S23S34 and S12S14 in angles that are equal, or differ by π . Thus, G
satisfies Burmester’s theorem. ut
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Fig. 9.7 Construction of the center-axis G using the spherical complementary-axis quadrilateral.

This construction yields a parameterized equation for the center-axis cone. The
rotation of the coupler segment S23S34 from its initial configuration Q to another
configuration Q′ is the composite of a rotation by ∆φ = φ −φ0 about S23, followed
by a rotation of ∆θ = θ −θ0 about S12. This composite rotation is given by

[G(β ,G)] = [A(∆θ ,S12)][A(∆φ ,S23)]. (9.50)

Rodrigues’s formula yields the equation for the relative rotation axis G as

tan
β

2
G =

tan ∆θ

2 S12 + tan ∆φ

2 S23 + tan ∆θ

2 tan ∆φ

2 S12×S23

1− tan ∆θ

2 tan ∆φ

2 S12 ·S23
. (9.51)

The coupler angle φ(θ) is determined from the driving crank rotation θ , using equa-
tion (7.36). We compute θ = θ0 and φ = φ0 in the initial configuration Q from the
formulas

tanθ0 =
(S12×S14) ·S23

(S12×S14) · (S12×S23)
, tanφ0 =

(S23×S12) ·S34

(S23×S12) · (S23×S34)
. (9.52)

The result is a formula (9.51) that generate the center-axis cone by varying the
parameter θ .

9.4.5.4 The Circling-Axis Cone

Associated with each point on the center-axis cone is a solution of the design equa-
tions (9.45), which yields a moving axis W1. These axes form another cubic cone,
called the circling-axis cone. We can compute this cone directly from the design
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equations (9.30). For a four position task, we haveA′2 B′2 C′2
A′3 B′3 C′3
A′4 B′4 C′4

x
y
z

=

0
0
0

 . (9.53)

These equations have a solution for the fixed axis G only if the determinant of the
coefficient matrix [M′] is zero. Thus, the coordinates of the moving axis W1 must
satisfy the condition

|M′|=
∣∣a′1λ +b′1µ + c′1ν , a′2λ +b′2µ + c′2ν , a′3λ +b′3µ + c′3ν

∣∣= 0. (9.54)

An expansion similar to (5.37) yields the algebraic equation of the circling-axis
cone.

If the four task orientations Mi, i = 1,2,3,4, are inverted, then the circling-axis
cone can be computed as the center-axis cone for the inverted movement. In this
case, the cone is defined in the moving frame M. We then transform the coordinates
of this curve to the fixed frame in the first orientation M1 to obtain the set of moving
pivots W1.

The complementary-axis quadrilateral for the inverted relative displacements in
position M1 is constructed from the image poles S1

12, S1
23, S1

34, and S1
14. Recall that

S1
12 = S12 and S1

14 = S14, and further that S1
23 and S1

34 are the reflections of S23 and
S34 through the planes containing S12S13 and S14S13, respectively. Thus, the image
quadrilateral Q† : S12S1

23S1
34S14 has the same dimensions as the complementary-

axis quadrilateral Q, and the same ground link S12S14, Figure 9.8.

Fig. 9.8 The image complementary-axis quadrilateral Q† is obtained from Q by reflecting S23
through the plane S12S13 and S34 through S14S13.

The circling-axis cone can now be determined by applying the Burmester–Roth
theorem to the image quadrilateral Q†. The result is a parameterized equation for
the moving axes W1.

n

γ

S12

S14

S23 S34

S13
S231

S341
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9.4.6 Five Specified Orientations

Given five spatial orientations of a rigid body, we can determine as many as six
spherical RR chains that can reach these positions. The solution procedure follows
closely the solution of the planar design equations for five positions. We solve the
design equations (9.25) using a two-step elimination procedure that yields a sixth
degree polynomial. We can also solve this problem by finding the intersections of
two center-axis cones.

9.4.6.1 Algebraic Elimination

Collect the coefficients of λ , µ , ν in the design equations to obtain
A2 B2 C2
A3 B3 C3
A4 B4 C4
A5 B5 C5


λ

µ

ν

=

0
0
0

 , (9.55)

where Ai, Bi, and Ci are defined in (9.28). In order for this system of equations to
have a solution the rank of the 4×3 coefficient matrix [M] must be two.

Let R j be the determinant of the 3×3 matrix formed from [M] by removing row
5− j, so R1 is computed using the first three rows, R2 is obtained from the first two
and last row, and so on. The result is four homogeneous cubic polynomials in x, y,
and z, identical in structure to the center-axis cone (9.49),

R j(x,y,z) : a30, jy3 +(a21, jx+a20, jz)y2 +(a12, jx2 +a11, jxz+a10, jz2)y

+a03, jx3 +a02, jx2z+a01, jxz2 +a00, jz3 = 0, j = 1,2,3,4. (9.56)

In the next step, we dehomogenize these equations by setting z = 1, and eliminate y
to obtain a single polynomial in x.

The polynomials R j are homogeneous in x, y, and z, which means that if G =
(x,y,z)T is a solution of these equations, then G′ = k(x,y,z)T is a solution as well.
Therefore, we can set z = 1 and solve for the unique values of x and y, and simply
recall that G = k(x,y,1)T is also a solution.

In each of the polynomials R j collect the coefficients of y so that it has the form

R j : d j0y3 +d j1y2 +d j2y+d j3 = 0, j = 1,2,3,4. (9.57)

Each coefficient d jk is a polynomial in x of degree k.
Assemble the coefficients of these polynomials into a matrix that multiplies the

vector (y3,y2,y,1)T , given by
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...

...
...

...
d40 d41 d42 d43




y3

y2

y
1

=


0
0
0
0

 . (9.58)

These four equations have a solution for the unknowns (y3,y2,y) only if the rank of
the 4× 4 coefficient matrix [D] = [d j0,d j1,d j2,d j3] is three. Thus, this matrix has
the determinant |D|= 0.

The determinant |D| is a polynomial in the single variable x. The degree of this
polynomial is the sum of the degrees of each of the columns of [D], that is, 0+1+
2+3 = 6. Therefore, this step of the solution reduces the four cubic polynomials in
x, y to a single sixth-degree polynomial

P(x) : |D|=
6

∑
i=0

aixi = 0. (9.59)

This polynomial has six roots for which zero, two, four, or six may be real. Thus,
there can be as many as six spherical RR chains that reach the five orientations.

To determine the spherical RR chains that reach five specified orientations, first
formulate the polynomial P(x) and determine its roots xi, i = 1, . . . ,6. For each real
root xi, solve (9.58) to determine the coordinate yi. This defines as many as six fixed
axes Gi = (xi,yi,1)T , called Burmester axes. To determine the associated moving
axis W1

i , choose two of the constraint equations (9.25) and solve for λ , µ , and ν .

9.4.6.2 Intersecting Two Center-Axis Cones

An alternative solution for the fixed axes of spherical RR chains can be obtained
using the parameterized form of the center-axis cone. The five task orientations
define ten relative rotation axes Si j, i< j = 1, . . . ,5. From these we can construct two
complementary-axis quadrilaterals Q14: S12S23S34S14 and Q15: S12S23S35S15. A
fixed axis compatible with five orientations must lie on the center-axis cone defined
by Q14 and on the center-axis cone defined by Q15. Thus, the desired axes are the
intersections of these two cones.

The complementary-axis quadrilaterals Q14 and Q15 share the same side S12S23.
Therefore, the equations of the two center-axis cones are given by

tan
κ

2
G =

tan ∆θ1
2 S12 + tan ∆φ1

2 S23 + tan ∆θ1
2 tan ∆φ1

2 S12×S23

1− tan ∆θ1
2 tan ∆φ1

2 S12 ·S23
(9.60)

and

tan
κ

2
G =

tan ∆θ2
2 S12 + tan ∆φ2

2 S23 + tan ∆θ2
2 tan ∆φ2

2 S12×S23

1− tan ∆θ2
2 tan ∆φ2

2 S12 ·S23
. (9.61)
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The angles ∆φ1 and ∆φ2 are functions of ∆θ1 and ∆θ2 defined by the dimensions
of the two complementary-axis quadrilaterals.

The two equations (9.60) and (9.61) define the same axis G when

∆θ1 = ∆θ2 and ∆φ1 = ∆φ2. (9.62)

The first condition is satisfied by using the same parameter θ to drive S12S23 for both
quadrilaterals. The second condition requires that the spherical triangle4S23S34S35
have the same shape in each solution configuration. Thus, the fixed axis G is an axis
of the relative rotation of the triangle 4S23S34S35 to each of the assemblies of the
platform formed by the three RR chains S12S23, S14S34, and S15S35, Figure 9.9. This
assembly of relative rotation axes is called the spherical compatibility platform and
have the following theorem.

Fig. 9.9 The reference configuration of the spherical compatibility platform.

Theorem 13 (The Spherical Compatibility Platform). The fixed axis of an RR
chain that can reach with five specified orientations is a relative rotation axis of the
spherical compatibility platform from its original configuration to one of its other
assemblies.
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The analysis of this platform yields the two constraint equations

Ai cosφ +Bi sinφ =Ci, i = 1,2, (9.63)

one for each of the 4R chains Q14 and Q15. The solution of these equations shown
in (A.11) yields an eighth degree polynomial. This means that the spherical 3RR
platform can have as many as eight assemblies. One is the original configuration,
so there are seven relative rotation axes for the displacement to the other seven
assemblies. One of these axes is S13, and the remaining six are the desired fixed
axes.

9.5 Spherical 4R Linkages

In general, the design of a spherical RR chain yields multiple solutions that can be
assembled in pairs to form one-degree-of-freedom 4R closed chain linkages, Fig-
ure 9.10. It is also possible to design the coupling between two RR chains in order
to coordinate the movement of the input and output cranks. This is known as a
spherical function generator.

!in

"

#

!out

Gin Gout

Win

Wout

Fig. 9.10 The spherical 4R linkage.

Connecting the end-links of two RR chains constrains the range of movement
of the individual chains. This can interfere with the smooth travel of the coupler
between the task orientations. This is called the branching problem. A solution rec-
tification strategy exists for spherical linkages that is analogous to the planar theory.

In the following sections we present the spherical version of solution rectification
and then present discuss the design strategy for spherical function generators.
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9.5.1 Solution Rectification

Bodduluri [80] shows that Filemon’s construction generalizes to apply to spherical
4R linkage synthesis. Assume, as before, that the driven crank GoutW1

out has been
determined. The output crank, when viewed from the coupler in each of the design
positions, is seen to sweep two wedge shaped regions centered on W1

out. If the input
moving axis W1

in is chosen outside of these wedges, then the linkage will not jam
between the design positions.

It is possible for this wedge to include the entire space. If this happens, then
there are no solutions to Filemon’s construction. A spherical version of Waldron’s
construction identifies output cranks that ensure that this does not occur. The result
is a spherical 4R chain that moves smoothly through the task orientations.

9.5.1.1 Spherical Filemon’s Construction

We focus our development on design for three task orientations. Given an output
moving crank GoutW1

out, the inverted positions of Gout are obtained using the in-
verse of the relative rotations

gi
out = [AT

1i]G. (9.64)

Let α12 and α23 be the angles measured around W1
out from g1

out to g2
out and from

g2
out to g3

out, respectively. They are dihedral angles between the planes Li defined
by the axes W1

outgi
out, Figure 9.11. Assume that these angles are between π and

−π . The angle τ of the wedge swept by movement of the output crank is the sum
α12 +α23, if these angles have the same sign. If these angles have different signs,
then τ is the angle with the largest absolute value.

Select the moving pivot W1
in outside of this wedge-shaped region, then the re-

sulting spherical 4R linkage must pass through the design positions before it hits a
singular configuration. This is the spherical version of Filemon’s construction.

9.5.1.2 Spherical Waldron’s Construction

Filemon’s construction fails when the angle τ is greater than or equal to π , because
in this case the wedges cover space and there are no input moving axes that avoid
singular configurations. Waldron’s planar solution to this problem generalizes to the
spherical case. The goal is a condition on the design of the output crank GoutW1

out
that ensures that there is a solution to Filemon’s construction.

Given three task orientations, we have the pole triangle 4S12S23S13. Inverting
the relative rotations to define the movement of the base frame relative to the cou-
pler, we obtain the image pole triangle 4S12S1

23S13 in the first position M1. The
center-axis theorem requires the moving axis W1

out to view the side S1
i jS1

jk in the
rotation angle −αik/2 of the crank relative to the coupler. Thus, we have
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!12
gout1

gout3

!23

Wout

L1

L2

L3

"

gout2
Win

Fig. 9.11 The spherical version of Filemon’s construction: The planes L1 and L3 bound the region
excluded from selection for driving moving pivots Win.

cos(
αik

2
) =

(W×S1
i j) · (W×S1

jk)

|W×S1
i j||W×S1

jk|
. (9.65)

If an output moving axis W1
out has any one of the angles αik greater than or

equal to π , then there is no solution to Filemon’s construction. The points that have
αik/2 = π/2 lie on the quadric cones

Cik : (W×S1
i j) · (W×S1

jk) = 0. (9.66)

The three cones Cik pass through the sides S1
i jS1

jk of the image pole triangle in a
configuration analogous to Waldron’s three-circle diagram. In this case the cones
are general quadrics and are not circular.

These cones define regions within which an output axis W1
out has coupler rota-

tion angles α jk all less than π . This guarantees that Filemon’s construction yields a
region from which an input axis W1

in can be selected.

9.5.2 Function Generation

A spherical four-bar linkage can be designed to provide coordination between the
input and output angular values θi, ψi, i = 1, . . . ,n, Figure 9.12. To do this, we
arbitrarily select the fixed axes O and C for the input and output cranks of this
linkage. Let γ = arccos(O ·C) be the angle between these axes. Denote by PO the
plane through O that makes the dihedral angle θ1 with the plane containing OC.
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Fig. 9.12 Coordinated input and output angles for a spherical 4R function generator.

Following the approach we used for planar function generators, we define the
exterior angles θ̄i = π − θi around O. Introduce the coordinate frame F ′ attached
the input crank so that its y-axis is perpendicular to the plane PO. Then θ̄1 is the
angle from measured PO to OC. The angles θ̄i and ψi are the joint angles of the
spherical RR open chain formed by OC as it moves relative to F ′, Figure 9.13. The
kinematics equations of this RR chain define the task orientations, given by

[Ai] = [Z(θ̄i)][X(γ)][Z(ψi)], i = 1, . . . ,n. (9.67)

Use these orientations [Ai] to design a spherical RR chain AB to close the 4R chain.
The result is a spherical 4R chain that has the desired set of coordinated angles

θi and ψi, i = 1, . . . ,n, between the input and output links. Notice that we can obtain
a design for at most five coordinated values for these angles.

9.6 Summary

This chapter has presented the synthesis theory for spherical RR chains. The alge-
braic formulation of the design equations and their solution parallels the results pre-
sented for planar RR chains. Furthermore, the center-axis theorem leads to Roth’s
generalization of Burmester’s planar constructions. And the quaternion equation for
a spherical triangle generalizes the complex vector equation for a planar triangle. We
also obtain spherical versions for Filemon and Waldron’s constructions for solution
rectification. The analogue between the planar and spherical RR design theories
provides insight to spatial linkage analysis and design.

O

Cθ1

θ2

θi

1

2

i

γ

P0
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Fig. 9.13 Hold the input crank fixed and consider the output crank as the floating link of an RR
chain to define task positions.

9.7 References

Dobrovolskii [26] is credited with the initial formalization of the synthesis theory
for spherical linkages. The similarity of the geometry of planar and spherical link-
ages lead Meyer zur Capellen et al. [82] to present parallel formulations for their
analysis. Suh and Radcliffe [133, 134] describe a constraint equation based for-
mulation for spherical linkage synthesis. Roth [105, 106] generalized Burmester’s
planar constructions to space, which include the spherical results in this chapter as
a special case. Dowler et al. [27] provide an example of spherical linkage design.
The text by Chiang [12] is devoted to the analysis and design theory for spherical
linkages. Computer-based design tools for these linkages are described Larochelle
et al. [61], Ruth [110], and Furlong et al. [38].

Exercises

1. Consider the location of the continent of Africa 150 million years ago as M1 and
its location today as M2. The longitude and latitude of points Pi and Qi in the two
locations are given in Table 9.1. Determine the relative rotation matrix [A12].

2. Design a 4R linkage to move the African continent between the two positions
defined by Table 9.1.

3. Generate the center-point curve for the relative orientations [A12], [A13], and [A14]
defined by the points Pi and Qi in Table 8.1.

4. A spherical linkage support for a feeding device is to locate a spoon at the
longitude, latitude, and roll coordinates M2 = (−22.5◦,−5◦,−30◦) and M4 =

O

C1

C2
Ci

1 2 i

θ1
θ2

θi
P0

F
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Table 9.1 Longitude and latitude for two positions of points on the African continent

Point M1 M2

P (35◦,−13◦)T (50◦,12◦)T

Q (−22◦,−41◦)T (18◦,−36◦)T

(25◦,20◦,−10◦) to pick up and deliver food, respectively. Select positions M1 to
provide a desired scooping movement and M3 so that food is not lost in transit.
Generate the center-point curve and design a spherical 4R linkage.





Chapter 10
Multiloop Spherical Linkages

In this chapter, the design procedure introduced for the synthesis of planar six- and
eight-bar linkages is applied to the synthesis of spherical six- and eight-bar linkages.
The process begins with the specification of a spherical 3R chain or a spherical 6R
loop and five task orientations. The synthesis equations for RR chains are solved to
constrain the spherical 3R serial chain to design a spherical six-bar linkage, and to
constrain the 6R loop to design an eight-bar linkage. The result is one degree-of-
freedom spherical linkages that move through the five task positions.

10.1 Synthesis of Spherical Six-bar Linkages

A spherical 3R serial chain consists of three revolute joints that pass through a fixed

case, consisting of four vertices 0, 1, 2, and 3. Each edge connecting two vertices
represents a revolute joint Ci.

A spherical six-bar linkage consists of six links and seven joints, and has two
topologically distinct configurations called the spherical Watt and Stephenson six-
bar chains. See Figure 10.2 and Figure 10.3.

As in the plane, these two topologies yield the Watt I, Watt II, Stephenson I,
Stephenson II, and Stephenson III linkages depending on which of the links is se-
lected as ground. Furthermore, the movement of the linkage is defined by the seven
lines through the origin that define the joint axes, and it is possible to connect these
axes on either side of the origin, Figure 10.4. This yields 27 = 128 ways to construct
the same spherical six-bar linkage.

The ways in which two spherical RR chains can be added to the spherical 6R
loop are the same in the planar case. See Figure 6.5 and 6.6, and Section 6.1.1.

©

J.M. McCarthy and G.S. Soh, Geometric Design of Linkages, Interdisciplinary Applied

point in space, Figure 10.1. The graph of this chain is the same as in the planar
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Fig. 10.1 The spherical 3R serial chain and its graph with a vertex for each link.

Fig. 10.2 The spherical Watt six-bar chain.

10.1.1 The Spherical RR Synthesis Equation

Our design process for a spherical six-bar linkage consists in sizing two spherical
RR chains that constrain the spherical backbone chain to one degree of freedom. To
do this, we formulate the synthesis equations for spherical RR constraint to accom-
modate the case when both links it connect change orientations.

Let [Bl, j], j = 1, . . . ,5, define five orientations of the lth moving link, and [Bk, j],
j = 1, . . . ,5, define five orientations of the kth moving link measured in a world
frame F . Let g be the coordinates of the R joint attached to the lth link measured in
the link frame Bl . Similarly, let w be the coordinates of the other R joint measured
in the link frame Bk. The five positions of these points as the two links move relative
to each other are given by

G j = [Bl, j]g and W j = [Bk, j]w. (10.1)
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Fig. 10.3 The spherical Stephenson six-bar chain.

Ζ4

Ζ3
Ζ2

Ζ1 Ζ4

Ζ3

Ζ2

Ζ1

Fig. 10.4 This illustrates two of the sixteen ways that the same four-bar linkage can be assembled.
In this case, the directions of axes Z3 and Z4 are reversed.

Now introduce the relative displacements

[R1 j] = [Bl, j][Bl,1]
−1 and [S1 j] = [Bk, j][Bk,1]

−1, (10.2)

so we have
G j = [R1 j]G1 and W j = [S1 j]W1, (10.3)

where [R11] = [S11] = [I] are the identity transformations.
The points G j and W j define the ends of a rigid link of angular length ρ; there-

fore we have the constraint equations

[R1 j]G1 · [S1 j]W1 = ‖G j‖‖W j‖cosρ. (10.4)
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These five equations can be solved to determine the design parameters of the spher-
ical RR constraint, G1 = (u,v,w), W1 = (x,y,z), and ρ . We will refer to these equa-
tions as the general synthesis equations for the spherical RR link.

To solve the synthesis equations, it is convenient to introduce the displacements

[D1 j] = [R1 j]
T [S1 j], (10.5)

so these equations become

G1 · [D1 j]W1 = ‖G j‖‖W j‖cosρ. (10.6)

Subtract the first of these equations from the remaining ones to cancel the scalar
terms ‖G j‖‖W j‖cosρ , and the square terms in the variables u, v, w and x, y, z. The
resulting four bilinear equations can be solved algebraically by setting w = z = 1 to
obtain the desired pivots.

10.1.2 Algebraic Elimination

The general synthesis equations (10.6) are solved using the same algebraic elimina-
tion procedure presented previously for planar RR chains. We construct four bilinear
equations, dehomogenize by setting w = z = 1, and extract four 3×3 minors Mj to
obtain four cubic polynomials in x and y, given by

R j : d j0y3 +d j1y2 +d j2y+d j3 = 0, j = 1, . . . ,4, (10.7)

where each coefficient d jk is a polynomial in x of degree k. The four polynomials
R j are assembled into the matrix equation

R = [D(x)]m =

d10(x) d11(x) d12(x) d13(x)
...

...
...

...
d40(x) d41(x) d42(x) d43(x)




y3

y2

y
1

=


0
0
0
0

 . (10.8)

As we have seen, this equation can be solved for a non-zero m = (y3,y2,y,1), only
if the resultant matrix [D(x)] had a determinant equal to zero.

This determinant can be expanded to obtain a sixth degree polynomial, or formed
as a generalized eigenvalue problem (6.10) both of which yield at most six finite
roots. Solve these either of these equations for x and y, and then solve bilinear form
of the synthesis equations (10.6) to obtain u and v. The result is as as many as six
solutions for G1 = (u,v,1) and W1 = (x,y,1).
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10.1.3 The Number of Spherical Six-Bar Linkage Designs

The synthesis of a spherical RR constraint yields as many as six designs; therefore
two constraints can yield as many as 36 designs. However, this process always yields
one link of the 3R spherical chain, so there are at most 30 candidates.

The Stephenson I topology yields all 30 candidate designs. The Stephenson II
has two ways to select the link that is the end effector, which yields 60 designs. The
Stephenson III also has two ways to define the end effector link, one with 30 designs
and the other with 15, for a total of 45 candidate linkages.

The Watt I chain has two sets of designs depending on the input crank, and both
sets has an existing link of the 3R chain for both RR constraints, so there are 2×25
candidates. The result is as many as 185 different spherical six-bar linkage designs.

Combining this with the 128 ways to construct a particular spherical six-bar link-
age, and we have as many as 23680 (185×128) designs.

10.2 Analysis of a Spherical Six-Bar Linkage

In order to animate the movement of a spherical six-bar linkages we determine its
configuration angles for a series of input crank angles. For each input angle, we
formulate the loop equations of component structures of the six-bar linkage.

For the cases of the Watt I, Stephenson I, and Stephenson IIIa, we obtain a se-
quence of spherical triangles that are analyzed to determine the configuration an-
gles of the six-bar linkage. For the Stephenson II and Stephenson IIIb, we analyze a
spherical pentad, Figure 10.5
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(b) The two-loop spherical pentad.

Fig. 10.5 Component structures used to analyze a multiloop spherical linkage.
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10.2.1 Watt I Spherical Linkage

The analysis of a Watt I linkage decomposes into the analysis of two spherical tri-
angles, Figure 10.6. Let the input crank be C1C2, which means the coordinates C2
are known. The spherical triangle C2W1G1 is analyzed to determine the joint axis
W1.

Given the joint angles of the first component triangle, we can determine the co-
ordinates of C3 and G2. This yields a second component triangle C3W2G2 that is
analyzed to determine the joint axis W2.

C1

C2

C3

G1

W1

θ1

G2

W2

G1

W1

C2
G2

C3 W2

W2C3

G2

Fig. 10.6 The Watt I linkage is analyzed using the loop equations for two spherical triangle com-
ponents.
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Fig. 10.7 The Stephenson II linkage analyzed using the loop equations for a pentad component.

10.2.2 Stephenson II Spherical Linkage

The spherical Stephenson II linkage with C1C2 as the input crank defines a spherical
pentad for a given value of the input angle θ1. This is because for a given value of
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θ1, the coordinates of C2 and G2 are known. The result is that this spherical six-bar
reduces to the spherical pentad structure shown in Figure 10.7.

10.2.3 Component Loop Equations

The loop equations of the component structures of a spherical linkage provide the
equations that we use to analyze multiloop spherical linkages.

Let Zi, i = 1, . . . ,k to be unit vectors that define the directions of each joints of a
component, such as spherical triangle, pentad or three-loop structure. Let θi be joint
angles that define rotation about the local z-axis at Zi. Introduce the angular length
αi j between any two pivots Zi and Z j, and align the local y-axis is in the direction
Zi×Z j, so αi j is the angle of rotation about this axis.

10.2.3.1 The Spherical Triangle

Using this notation, the component loop equations for a spherical triangle obtain

[Z(θ1)][Y (α12)][Z(θ2)][Y (α23)][Z(θ3)][Y (α31)] = I. (10.9)

Multiply this equation on the right by [Y (α31)]
T , and then select the (3,3) compo-

nents to eliminate both θ1 and θ3. This is done by pre- and post- multiplying by the
unit vector~k, in order to and obtain the scalar equation

f (θ2) =~k · ([Y (α12)][Z(θ2)][Y (α23)]− [Y (α31)]
T )~k = 0. (10.10)

The result is a constraint equation that defines θ2.

10.2.3.2 The Spherical Pentad

The loop equations for the pentad are obtained in the same way, but now we have
two loops (i) Z5Z1Z2Z3, and (ii) Z6Z1Z2Z4, which yield the loop equations

[Z(θ5)][Y (α51)][Z(θ1)][Y (α12)][Z(θ2)][Y (α23)][Z(θ3)][Y (α35)] = I,

[Z(θ6)][Y (α61)][Z(θ1 +β1)][Y (α12)][Z(θ2 +β2)][Y (α24)][Z(θ4)][Y (α46)] = I.
(10.11)

The angle β1 in the second of these equations is the offset between these loops
measured around Z1 from Z6 to Z5. Similarly, β2 is the offset around Z2 measured
from Z3 to Z4.

These equations can be simplified in the same way as described above for the
spherical triangle. Multiply the first equations on the right by [Y (α35)]

T , and the
second by [Y (α46)]

T . Select the (3,3) components to eliminate the variables θ3 and
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θ5 from the first equation, and θ4 and θ6 from the second equation, to obtain

F1 :~k · ([Y (α51)][Z(θ1)][Y (α12)][Z(θ2)][Y (α23)]− [Y (α35)]
T )~k = 0,

F2 :~k · ([Y (α61)][Z(θ1 +β1)][Y (α12)][Z(θ2 +β2)][Y (α24)]− [Y (α46)]
T )~k = 0.

(10.12)

The result is two equations in the unknowns θ1 and θ2.

10.2.4 Eigenvalue-Based Elimination

The loop equations of the spherical pentad yield a system of constraint equations fi,
i = 1,2 that contain sines and cosines of the two joint angles, θi. Convert these con-
straint equations to polynomials by introducing the variables xi = tan(θi/2), such
that

cosθi =
1− x2

i

1+ x2
i

and sinθi =
2xi

1+ x2
i
, i = 1,2. (10.13)

Substitute these equations into the constraint equations to obtain two polynomials
(p1, p2) = 0 in the two unknowns x1 and x2.

In order to solve the polynomial system (p1, p2), we introduce two additional
polynomials p3 = x1 p1 and p4 = x1 p2. The monomials of the polynomial system
(p1, p2, p3, p4) can be assembled into the vector m = (y0,y1,y2)

T such that y0 =
(1,x1,x2

1,x
3
1), y1 = x2y0, and y2 = x2

2y0. This polynomial system takes the form

[K]m = 0, (10.14)

where [K] is a 4×12 matrix having full row rank.
The polynomials (10.14) are solved as follows. Construct the two sets of 8

monomials m1 = (y0,y1) and m2 = (y1,y2). Notice that they satisfy the identities
x2m1−m2 = 0, so we obtain the system of 12 equations

{
Km

x2m1−m2

}
=

 K0 K1 K2
x2I4 −I4 0

0 x2I4 −I4

y0
y1
y2

= 0, (10.15)

where [I4] is the 4× 4 identity matrix and [Ki] is the coefficient submatrix of [K]
associated with the monomial vector yi.

We now extract the subsystem of equations that forms a generalized eigenvalue
problem with m1 = (y0,y1) as its eigenvector. This is done by multiplying the equa-
tions (10.15) by a matrix that eliminates the coefficients of y2, that is
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0 I4 0
I4 0 K2

] K0 K1 K2
x2I4 −I4 0

0 x2I4 −I4

y0
y1
y2

=

[(
I4 0
0 K2

)
x2−

(
0 I4
−K0 −K1

)]{
y0
y1

}
= 0.

(10.16)
This reduces the system of 12 polynomial equations to the 8×8 generalized eigen-
value problem [(

I4 0
0 K2

)
x2−

(
0 I4
−K0 −K1

)]{
y0
y1

}
= 0. (10.17)

For each eigenvalue x2 we obtain an associated eigenvector m1. Notice that the scale
factor µ of m1 can be determined from the value of the component 1 in y0. Divide
by µ to obtain the value of the joint angle x1.

10.2.5 Sorting Assemblies

As we analyze a spherical six-bar linkage for a sequence of input angles Θ k
1 ,

there are as many as eight sets of configuration angles ~Θ = (Θ2,Θ3,Θ4,Θ5,θ6)i,
i = 1, . . . ,8 that define the assemblies of the linkage associated with each input an-
gle. In order to sort the roots among the assemblies, we use the Jacobian of the loop
equations.

In order to sort the roots among assemblies of the six-bar linkage, we compute
the derivative of the complex loop equations (10.12) and assemble the equation

[∇F (~Θ k
i )](~Ψ − ~Θ k

i ) = 0, (10.18)

where Ψ approximates the value ~Θ k+1
i associated with the input angle Θ

k+1
1 and

is near the assembly defined by ~Θ k
i . It is then a matter of identifying which of the

root ~Θ k+1
i is closest to Ψ on the ith circuit, in order to match the assemblies. This

provides a rapid and exact method to determine a sequence of configuration angles
for each assembly in order to animate the six-bar linkage.

10.3 Example: A Spherical Six-Bar Walker

As an example of the spherical six-bar linkage design process, we design a spherical
Stephenson IIb linkage to guide the leg movement for a simple walking machine,
Figure 10.8. The leg is to be attached to a ball joint at the hip, and the linkage guides
the leg movement around this hip so that it moves along the forward direction.
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Fig. 10.8 A spherical 3R chain, C1C2C3, constrained by two spherical RR chains, G1W1 and
G2W2, to form a spherical Stephenson IIb linkage.

Table 10.1 Five task orientations for the end effector of the spherical 3R chain defined as longitude
θ , latitude φ , and roll ψ .

Task Orientation (θ ,φ ,ψ)

1 (54◦,7◦,−156◦)
2 (53◦,25◦,−155◦)
3 (9◦,50◦,−133◦)
4 (−32◦,5◦,−103◦)
5 (24◦,−11◦,−146◦)

Step 1.

The task orientations that define the movement of the leg, [Ti], i = 1, . . . ,5 are given
in Table 10.1. These orientations guide the walker in a straight line while in contact
with the ground and then lift and return to take another step.

The dimensions of the spherical 3R chain are chosen to be α12 = 29.1◦ and α23 =
10.5◦. The location of the base and moving pivots of the spherical 3R chain are
specified by the orientation [G], (0◦,0◦,0◦), and [H], (31.3◦,11.3◦,0◦), respectively.
Use this data to formulate the inverse kinematics equations of the spherical 3R chain
and solve for the configuration angles q j = (θ1,θ2,θ3) j, j = 1, . . . ,5, that reach the
specified task orientations [Tj], j = 1, . . . ,5.

Notice that the inverse kinematics equations yield two sets of configuration an-
gles corresponding to a spherical 3R chain with its elbow up and elbow down.
In this example, we chose the configuration defined by the vectors C1 = (0,0,1),
C2 = (0.48,−0.10,0.87), and C3 = (0.48,−0.28,0.83).

The five configurations of the spherical 3R chain provide the coordinate trans-
formations for each link relative to the ground frame. Compute [B1 j] = [G][Z(θ1)],
which defines the jth orientation of the first link in F . The orientations of the second
and third links are given by
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[B2 j] =[G][Z(θ1)][X(α12)][Z(θ2)],

and [B3 j] =[G][Z(θ1)][X(α12)][Z(θ2)][X(α23)][Z(θ3)], j = 1, . . . ,5. (10.19)

These transformations form the task requirements for the synthesis of the two RR
constraints.

Step 2.

Use the five orientations B3 j, j = 1, . . . ,5 of link B3 relative to ground to form the
design equations for the first spherical RR constraint G1W1, Figure 10.8. Solve the
design equations (10.6) with [D1i] = [B3i][B31]

−1, i = 1, . . . ,5 to obtain the values
listed in Table 10.2. In this case, it can happen that the design equations may yield
only complex solutions, which means that the original task positions or the dimen-
sions of the spherical 3R chain must be adjusted.

Table 10.2 Step 1. Select the joint coordinates for the spherical 3R chain; Step 2. Solve for the
first spherical RR chain; Step 3. Solve for the second spherical RR chain; The selected values in
normalized form are highlighted in bold.

Step 1 C1 C2 C3

(0,0,1) (0.48,−0.10,0.87) (0.48,−0.28,0.83)

Step 2 G1 W1

1 (−0.23,−0.97,0.01) (−0.55,−0.75,0.37)
2 (−0.17,−0.76,0.62) (−0.56,0.30,0.77)
3 (0.10,−0.79,0.60) (−0.56,0.73,0.38)
4 (0.21,−0.17,0.96) (0.63,−0.35,0.70)
5 Complex Complex
6 Complex Complex

Step 3 G2 W2

1 Complex Complex
2 Complex Complex
3 (0.48,−0.10,0.87) (0.48,−0.28,0.83)
4 Complex Complex
5 Complex Complex
6 (0.54,−0.25,0.80) (0.39,0.00,0.92)

Step 3.

For the Stephenson IIb, the second spherical RR constraint G2W2 connects B3 to
B1 and does not depend on the first constraint. Use the orientations obtained for the
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link B1 and B3 to assemble the design equations for G2W2. The solutions to these
equations are shown in Table 10.2. The chain C2C3 appears among these solutions,
and guarantees the existence of least one more real solution.

Analysis

In order to animate the movement of the walker linkage, we solve the component
loop equations of the spherical pentad for a sequence of input angles. Let these
input angles be θ k

1 , k = 1 . . . ,N, then, for each value, θ k
1 , solve the component loop

equations (10.12) to determine the remaining configuration angles Θ k = (θ k
4 ,θ

k
5 )

T .
There can be as many as eight roots for each Θ k, only one of which corresponds

the assembly of the spherical six-bar specified in each of the task orientations. Iden-
tify the root Θ k for the correct assembly by formulating and solving the approxi-
mation to the component loop equations (10.18), in order to match the assemblies.
This calculation can be checked against the known configurations at each of the task
orientations.

The results for our design are shown in Table 10.3. Figure 10.9 shows the image
sequence of the chosen design passing through each of the specified task orientations
and on a simple walking machine in the shape of a spider.

Table 10.3 Analysis results for the walker spherical six-bar linkage

θ1 θ4 θ5

1 30.54◦ −93.05◦ −114.23◦

2 47.04◦ −95.09◦ −106.26◦

3 63.54◦ −96.95◦ −99.50◦

4 97.07◦ −100.13◦ −90.68◦

5 147.37◦ −102.01◦ −93.12◦

6 214.81◦ −94.48◦ −119.02◦

7 282.24◦ −83.79◦ −141.45◦

8 304.89◦ −78.06◦ −150.79◦

9 327.54◦ −80.12◦ −148.43◦

10 352.74◦ −86.93◦ −135.33◦

10.4 Synthesis of a Spherical Eight-Bar Linkage

Our procedure for the synthesis of a spherical eight-bar linkage is identical to the
procedure presented earlier for a planar eight-bar linkage. We start with a spherical
6R closed chain that is specified by the designer and a set of five task positions, and
then solve for two RR constraints that guide the system through the given task.
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Fig. 10.9 The animation of the spherical Stephenson IIb linkage as it moves through task orienta-
tions, and the illustration of the use of this linkage for a simple walking machine.

The 6R loop is formed by two 3R chains that share the same end effector, Figure
10.10. The ways in which the two spherical constraints can be added to the spherical
6R loop are the same as that in the planar case. See Figure 6.15 and 6.14, and Section
6.4.1. As in the planar case, we limit our designs to two connections to the ground
link B0, so the designer specifies these base attachment points.

10.4.1 The Number of Spherical Eight-Bar Linkage Designs

The graph of a spherical eight-bar linkage is the same as that for a planar eight-bar
linkage, which allows us to use the notation introduced previously to identify as
BijBkl a spherical eight-bar linkage has the RR constraints BiB j and BkBl .
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Fig. 10.10 A workpiece supported by two spherical 3R chains forms a 6R spherical loop. The
graph of this chain is a hexagon with a vertex associated with each link.

Because the synthesis of a spherical RR constraint yields as many as six solu-
tions, the synthesis of two RR constraints yields as many as 36 design candidates.
However, this occurs only for the structure B15B24. Considering the remaining
structures, we find that 17 cases have at most 30 design candidates each, 12 have at
most 25 candidates each, and the structures B24B24, and B15B15 have 15 candi-
dates each.

Thus, this design process yields as many as 876 spherical eight-bar linkage de-
sign candidates. Because the spherical eight-bar linkage has the same sixteen topolo-
gies as the planar eight-bar linkage, Figure 6.16, we see that this process yields the
eight-bar topologies 3, 4, 7, 8, 9, 10, 11, and 16.

Fig. 10.11 The decomposition of a B14B37 linkage into a spherical triangle and pentad given the
input angle θ1.
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10.5 Analysis of a Spherical Eight-bar Linkage

The analysis of a spherical eight-bar linkage follows the same process as described
for the spherical six-bar linkage. Once the input crank is specified the coordinates
of pivots attached to this crank are known and the linkage becomes a structure. The
analysis of this structure involves identifying a sequence of component structures
that are analyzed separately.

Consider the B14B37 eight-bar linkage shown in Figure 10.11. Let the input
crank be C1C2, which means the coordinates of the points C2 and G1 are known.
This allows us to isolate the spherical triangle G1W1C4, which defines the joint
angle around W1.

Once W1 is computed, we have G2 and C5 well. This isolates the spherical pen-
tad shown in Figure 10.11, which is analyzed to determine the configuration of the
eight-bar linkage.

(a) The three-loop spherical struc-
ture, denoted type 3A

(b) The three-loop spherical struc-
ture, denoted type 3B

Fig. 10.12 Two three-loop component structures constructed from three binary links and four
ternary links.

The analysis of our spherical eight-bar linkages can be summarized as follows.
Let the input link be C1C2, then the sequences of component structures necessary
to analyze spherical eight-bar linkages are

1. A sequence of three spherical triangles for cases B14B27, B14B57, B15B47,
B24B17, B14B15, B14B24, and B24B24;

2. A spherical triangle followed by a spherical pentad for the cases B14B37,
B14B13, B14B25, and B14B34;

3. A spherical pentad followed by a spherical triangle for case B15B15;
4. A type 3B three-loop spherical chain for cases B15B27, B15B37, B13B57,

B13B47, B25B17, B25B47, B24B37, B24B57, B34B17, B34B27, B15B24,
B15B27, B15B34, B13B25, B13B24, and B25B34; and

5. A type 3C three-loop spherical chain for cases B15B13, B15B25, B13B34,
B25B24, and B24B34.
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Wampler [149] shows how to derive the loop equations for the three-loop compo-
nent structures Type 3A, 3B and 3C, Figures 10.12, and 10.13 and how to general-
ize the eigenvalue-based elimination technique to analyze these spherical three-loop
structures.

Fig. 10.13 The three-loop structure, denoted type 3C, has one quaternary link.

10.6 Example: An Eight-Bar Door Hinge Linkage

As an example of our spherical eight-bar linkage design process, consider a linkage
designed to open a car door in a new way. Our goal is a linkage that guides the door
through a standard opening movement for part of the movement and then lifts the
door and places it onto the top of the car.

Fig. 10.14 The joint angle and link length parameters for the (8, 10) spherical eight-bar linkage.



10.6 Example: An Eight-Bar Door Hinge Linkage 247

Step 1.

For this design, we choose to design a B14B37 eight-bar linkage, Figure 10.14,
using the five task orientations specified in Table 10.4. Let the 6R loop be defined
by the coordinates of the pivots C1C2C3C6C5C4 listed in Table 10.5.

Table 10.4 Five task orientations for the end effector of the spherical 6R loop chain defined as
longitude θ , latitude φ , and roll ψ .

Task Position (θ ,φ ,ψ)

1 (90◦,−60◦,90◦)
2 (70◦,−7◦,77.7◦)
3 (25.2◦,−1◦,59.8◦)
4 (−0.8◦,−11◦,41.9◦)
5 (−53.8◦,−26◦,13.5◦)

The dimensions of the first spherical 3R chain are chosen to be α12 = α23 = 50◦.
The location of the base and moving pivots of this spherical 3R chain are specified
by the orientation [G], (90◦,−60◦,0◦), and [H], (0◦,0◦,0◦), respectively.

Similarly, the dimensions of the second spherical 3R chain are chosen to be α45 =
α56 = 60◦. The location of its base and moving pivots are specified by the orientation
[G], (100◦,−30◦,0◦), and [H], (−50◦,0◦,0◦), respectively.

The inverse kinematics equations of the 6R loop defined by these two 3R chains
yield the configuration angles q j = (θ1,θ2,θ3,θ4,θ5,θ6), j = 1, . . . ,5, that reach the
task orientations [Tj], j = 1, . . . ,5. Notice that there are four sets of solutions for q
corresponding to elbow up and elbow down solutions for both spherical 3R chains.

The five configurations of the 6R loop provide the coordinate transformations for
each link relative to the ground frame. Compute [B1 j] = [G1][Z(θ1 j)], which defines
the five positions of the first link in F . The positions of the second, third, fourth,
fifth, and sixth links are given by

[B2 j] =[G1][Z(θ1 j)][X(α12)][Z(θ2 j)],

[B3 j] =[G1][Z(θ1 j)][X(α12)][Z(θ2 j)][X(α23)][Z(θ3 j)],

[B4 j] =[G2][Z(θ4 j)],and
[B5 j] =[G2][Z(θ4 j)][X(α45)][Z(θ5 j)]. (10.20)

This provides the task orientation data used for formulating the synthesis equations
for the two spherical RR constraints.

Step 2.

Use the orientations B1 j, for link B1 and B4 j for link B4 to assemble the design
equations for a spherical RR chain G1W1, Figure 10.14. In this case, we obtain
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Table 10.5 Step 1. Select the joint coordinates for the 6R loop; Step 2. Solve for the first spherical
RR chain; Step 3. Solve for the second spherical RR chain; The selected values are highlighted in
bold.

Step 1 C1 C2 C3

(0.5,−0.87,0) (0.32,−0.56,−0.77) (0.5,−0.87,0)

Step 1 C4 C5 C6

(0.85,−0.5,−0.15) (0.54,0.16,−0.83) (0.99,−0.17,0)

Step 2 G1 W1

1 (0.82,−0.38,0.43) (−0.34,0.93,0.17)
2 (0.5,−0.87,0) (0.85,−0.50,−0.15)
3 Complex Complex
4 Complex Complex
5 Complex Complex
6 Complex Complex

Step 3 G2 W2

1 Complex Complex
2 Complex Complex
3 (−0.20,−0.68,0.70) (−0.26,0.38,0.89)
4 (0.05,0.30,0.95) (0.41,−0.59,0.70)
5 Complex Complex
6 Complex Complex

(10.6) with [D1 j] = ([B1, j][B1,1]
−1)T [B4, j][B4,1]

−1, i = 1, . . . ,5. The solution to these
equations are in Table 10.5.

The design equations yield two solutions for G1W1, one of which is the existing
RR chain C1C4. This means we have only one choice for this RR constraint.

Step 3.

The RR chain G1W1 introduces a new link B7, which takes the orientations [B7 j], j =
1, . . . ,5, when the end effector is in each of the specified task orientations.

Using the orientations of the end effector of the spherical 6R loop and the orienta-
tions of the link B7, we assemble the design equations for a spherical RR constraint
G2W2. The solution to these equations are listed in Table 10.5. Notice that it can
happen that there are only complex solutions for these design equations. In this case,
the task positions or 6R loop may have to be adjusted.
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Analysis

In order to animate the movement of this B14B37 eight-bar linkage, we formu-
late the component loop equations of the spherical triangle (10.10) followed by the
spherical pentad (10.12). Let θ k

1 , k = 1 . . . ,N be the input crank angles, then we solve
these loop equations to determine the configuration angles Θ k = (θ k

4 ,θ
k
5 ,θ

k
6 )

T .

Table 10.6 Analysis results for the eight-bar hinge linkage

θ1 θ4 θ5 θ6

1 287.11◦ 103.86◦ 128.63◦ −37.62◦

2 312.29◦ 87.13◦ 71.87◦ −27.31◦

3 337.47◦ 74.90◦ 18.15◦ −27.06◦

4 7.31◦ 64.02◦ −7.21◦ −43.89◦

5 37.14◦ 57.92◦ −8.98◦ −69.72◦

6 53.10◦ 57.31◦ −7.22◦ −83.50◦

7 69.06◦ 58.69◦ −6.05◦ −95.23◦

8 99.84◦ 66.25◦ −9.00◦ −105.13◦

9 130.63◦ 78.50◦ −13.00◦ −97.13◦

There can be as many as 2× 8 = 16 roots for each Θ k, only one of which cor-
responds the assembly of the spherical eight-bar specified in each of the task ori-
entations. Identify the root Θ k for the correct assembly by formulating and solving
the approximation to the component loop equations in the same way as presented in
(10.18).

10.7 Summary

In this chapter we have extended the dimensional synthesis results for planar six-
and eight-bar linkages to the design of spherical linkages. Similar to planar linkages,
we can design spherical six-bar linkages by adding two RR chains to a spherical
3R serial chain. This yields as many as 185 six-bar design candidates. To design
spherical eight-bar linkages, we add two RR constraints to a spherical 6R loop and
obtain as many as 876 eight-bar design candidates. Example designs are presented
for a spherical six-bar linkage to guide the leg of a walking machine, and for a
spherical eight-bar linkage to guide a novel car door hinge.

We also presented the analysis of spherical six- and eight-bar linkages. This is
achieve by identifying a sequence of component structures that are analyzed to ob-
tain a system of polynomial equations. An eigenvalue elimination technique is pre-
sented for the solution of these equations for the pentad structure.
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Fig. 10.15 Animation of the B14B37 spherical eight-bar linkage moving through each of the task
orientations.

10.8 References

The dimensional synthesis for spherical multiloop mechanism can be found in Soh
and McCarthy [121, 123, 122]. Hernadez et al. [47] design spherical Stephenson
six-bar linkage for use as a robot wrist mechanism. Tsai [138] describes the use of
graph theory in the design of linkages and enumerates the spherical six-bar linkage
topologies.
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Exercises

1. Use the task orientations in Table 10.4 to design a spherical Watt Ia six-bar door
opening linkage. Choose an arbitrary spherical 3R chain. How many design can-
didates are obtained?

2. Analyze the the various design candidates for the above problem. How many of
the design candidates pass smoothly through all of the five task orientations?

3. Design a spherical B34B17 eight-bar door opening linkage for the task orienta-
tions in Table 10.4, Figure 10.16. Choose an arbitrary spherical 6R chain. How
many design candidates are obtained?

C2

C1

C3

C4

C5

C6

G1

W1

G2

W2

Fig. 10.16 The spherical B34B17 eight-bar linkage.

4. In how many ways can a particular design candidate for a spherical B34B17
eight-bar linkage be assembled? Determine the maximum number of linkages
obtained for this particular structure.

5. Formulate the closed-form solution to the B34B17 linkage shown in Figure 10.16
using eigenvalue-based elimination [149]. Analyze the design candidates and de-
termine how many pass through all five task orientations.





Chapter 11
Analysis of Spatial Chains

In this chapter we study spatial linkages. These systems have at least one link that
moves through a general spatial displacement. We examine the TS and CC chains
that are important to our design theory, as well as the TPS and TRS chains that
appear in robotics. In addition, we study the 3R wrist which is actually a spherical
linkage, however, it provides a convenient parameterization of the S-joint that is an
important part of our spatial open chains. We determine the joint angles for these
chains that position the end-effector in a desired location.

We then analyze the RSSR closed chain, which is closely related to both the
planar and spherical 4R linkages, as well as the spatial 4R linkage, known as Ben-
nett’s linkage. We then examine the RSSP linkage, which is a spatial version of the
slider-crank. Finally, we consider the spatial 4C closed chain. Remarkably, planar
and spherical 4R linkages are also special cases of the 4C linkage.

11.1 The Kinematics Equations

links in order to measure the joint parameters. While it is relatively easy to define
these link frames for planar and spherical linkages, the assignment of frames for
spatial linkages can be difficult. In addition, minor changes in the coordinate frame
convention can yield different constraint equations. To standardize this process, we
use the Denavit–Hartenberg convention to assign reference frames to the links in a
spatial linkage.

11.1.1 Joint Axes

The general link of a spatial linkage is considered to be defined by two skew lines,
which we denote here by S1 and S2. Let S1 pass through the point p in the direction
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S1. Similarly, let S2 pass through q in the direction S2. Then these two lines are
defined by the equations

S1 : X(t) = p+ tS1 and S2 : Y(s) = q+ sS2, (11.1)

where t and s are arbitrary parameters. These lines are generally easy to identify
because they are the axes of the joints that connect the link to the rest of the system.

We position the standard link frame B so that its z-axis is aligned with S1, and its
x-axis is along the common normal N directed from S1 to S2. This defines a unique
position for the origin c of this frame along S1.

In order to construct this coordinate frame we must be able to locate the common
normal to two lines.

11.1.2 The Common Normal

The points of intersection c on S1 and r on S2 with the common normal N have
the property that they minimize the distance d(t,s) = |X(t)−Y(s)| for all points
on these lines. The parameter values t ′, s′ that define c and r can be computed by
setting the partial derivatives of d2(s, t) to zero. In what follows, we obtain the same
result using the fact that N is perpendicular to both S1 and S2.

Now introduce the parameters t = t ′ and s = s′ that define the intersection points
c and r on S1 and S2, so we have

c = p+ t ′S1 and r = q+ s′S2. (11.2)

The vector r− c is given by

r− c = aN = q−p+ s′S2− t ′S1, (11.3)

where a = |r− c| and N is the unit vector along S1×S2 directed from c to r.
Determine t ′ by computing the cross product of this equation with S2 and then

the dot product with N. Similarly, s′ is obtained by computing the cross product with
S1, then the dot product with N. The results are

t ′ =
(q−p)×S2 ·N

S1×S2 ·N
and s′ =

(q−p)×S1 ·N
S1×S2 ·N

. (11.4)

Substitute t ′ and s′ into (11.1) to define the points c and r.
The angle α is measured from S1 to S2 around N, and is given by

tanα =
S1×S2 ·N

S1 ·S2
. (11.5)
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In these calculations, we can set N to be the unit vector in the direction S1×S2 in
order to determine these points. Then if needed, we change the sign of N so a is
positive.

11.1.3 Coordinate Screw Displacements

To study the relative movement at each joint of a spatial linkage, we introduce three
4×4 matrices that we call coordinate screw displacements. Each of these matrices
defines a translation along one coordinate axis combined with a rotation about that
axis. This is the movement allowed by an RP open chain that has the axis of the
revolute joint parallel to the guide of the slider. This assembly is called a cylindric
joint, or C-joint, because trajectories traced by points in the moving body lie on
cylinders about the joint axis.

Let S1 be the axis of a cylindric joint that connects a link S1S2 to ground. Locate
the fixed frame F so that its z-axis is along S1 and its origin is the point p. Attach
the link frame B so that its z-axis is along S1 and its x-axis is along the common
normal N from S1 and S2. The displacement of B relative to F consists of a slide d
and rotation θ along and around the z-axis of F . Combine the rotation matrix and
translation vector for this displacement to form the 4× 4 homogeneous transform,
given by 

X
Y
Z
1

=


cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 d
0 0 0 1




x
y
z
1

 , (11.6)

or
X = [Z(θ ,d)]x. (11.7)

This defines the transformation of coordinates x in B to X in F that represents the
movement allowed by a cylindric joint. Notice that we do not distinguish between
point coordinate vectors with and without the fourth component of 1. In what fol-
lows the difference should be clear from the context of our calculations.

The transform [Z(θ ,d)] is the coordinate screw displacement about the z-axis.
We can define similar screw displacements [X(·, ·)] and [Y (·, ·)] about the x- and
y-axes,

[X(θ ,d)] =


1 0 0 d
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1

 , [Y (θ ,d)] =


cosθ 0 sinθ 0
0 1 0 d

−sinθ 0 cosθ 0
0 0 0 1

 . (11.8)

We use these coordinate screw displacements to formulate the kinematics equations
for spatial linkages.

It is useful to note that the inverse of a coordinate screw displacement can be
obtained by negating its parameters. For example,
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[Z(θ ,d)−1] = [Z(−θ ,−d)] =


cosθ sinθ 0 0
−sinθ cosθ 0 0

0 0 1 −d
0 0 0 1

 . (11.9)

Notice that [Z(θ ,d)−1] is not the transpose of [Z(θ ,d)].

11.1.4 The Denavit–Hartenberg Convention

A spatial open chain can be viewed as a sequence of joint axes Si connected by
common normal lines, Figure 11.1. Let Ai j be the common normal from joint axis
Si to S j. The Denavit–Hartenberg convention attaches the link frame Bi such that
its z-axis is directed along the axis Si and its x-axis is directed along the common
normal Ai j. This convention leaves undefined the initial and final coordinate frames
F and M. These frames usually have their z-axes aligned with the first and last axes
of the chain. However, their x-axes can be assigned any convenient direction.

Fig. 11.1 Joint axes S1, S2, and S3 and the link frames B1 and B2.

This assignment of standard frames Bi allows us to define the 4×4 transforma-
tion [D] that locates the end-link of a spatial open chain as the sequence of transfor-
mations

[D] = [Z(θ1,d1)][X(α12,a12)][Z(θ2,d2)] · · · [X(αn−1,n,an−1,n)][Z(θn,dn)], (11.10)

where αi j and ai j are the twist angle and offset between the axes Si and S j. This
matrix equation defines the kinematics equations of the open chain.

The 4× 4 transform [Tj] = [X(αi j,ai j)][Z(θ j,d j)] is the transformation from
frame Bi to B j. Equation (11.10) is often written as

[D] = [T1][T2] · · · [Tn]. (11.11)

S1

a12

A12

B1
x

z
α12

S2
S3

A23
a23

α23

B2z

θ1

d1

θ2

d2

x
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Notice that [T1] = [Z(θ1,d1)].

11.2 The Analysis of Spatial Open Chains

A robot manipulator is often designed as spatial open chain in which each joint
is actuated. The kinematics equations of the open chain define the position of the
end-effector for a given set of values for the joint parameters. It is also necessary
to be able to compute the joint parameter values that provide a desired position for
end-effector. This is known as the inverse kinematics problem in robotics.

11.2.1 The 3R Wrist (S-Joint)

The spherical 3R open chain that is designed so the second axis is perpendicular to
both the first and third axes can reach every orientation in space. We use this 3R
chain to parameterize an S-joint. This chain is also used as the wrist of a robot ma-
nipulator and is of sufficient importance that we formulate its kinematics equations
separately. We then assemble it into RS and TS chains.

11.2.1.1 The Kinematics Equations

Introduce the frame F with its z-axis aligned with S1 and its origin at the wrist
center a. Let A12 be the common normal to the axes S1 and S2. Introduce the link
frame B1 with its z-axis along S1 as its its x-axis in the direction A12. The angle φ1
is measured from the x-axis of F to A12. Thus, the transformation between these
frames is defined by the coordinate screw displacement

[T1] = [Z(φ1,0)]. (11.12)

Let A23 be the common normal to the axes S2 and S3. Introduce the link frame B2
such that S2 is its z-axis and A23 is its x-axis. The transformation [X(π/2,0)] rotates
the frame B1 around A12 to align its z-axis with S2 and [Z(φ2,0)] rotates this frame
into B2. Thus, the transformation between these two frames is

[T2] = [X(
π

2
,0)][Z(φ2,0)]. (11.13)

The end-effector frame M has its z-axis aligned with S3, and φ3 is the angle
measured from A23 to its x-axis. The transformation from B2 to M consists of a
rotation by π/2 about A23 to align S2 with S3 followed by a rotation about S3 by the
angle φ3. Thus, we have
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[T3] = [X(
π

2
,0)][Z(φ3,0)]. (11.14)

The kinematics equations of this chain are given by

[W ] = [T1][T2][T3], (11.15)

or 
a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
0 0 0 1



=


cφ1cφ2cφ3 + sφ1sφ3 −cφ1cφ2sφ3 + sφ1cφ3 cφ1sφ2 0
sφ1cφ2cφ3− cφ1sφ3 −sφ1cφ2sφ3− cφ1cφ3 sφ1sφ2 0

sφ2cφ3 −sφ2sφ3 −cφ2 0
0 0 0 1

 . (11.16)

Notice that this transformation defines a pure rotation parameterized by the three
angles φi, i = 1,2,3.

11.2.1.2 Inverse Kinematics

If the orientation of M in a 3R wrist is known, then we have the rotation matrix
[A]. The kinematics equations [W ] = [A,0] can be solved to determine the angles φi,
i = 1,2,3. Equate the elements of the third column of (11.16) to obtaina13

a23
a33

=

cφ1sφ2
sφ1sφ2
−cφ2

 . (11.17)

This equation yields

φ1 = arctan
a23

a13
and φ2 =±arccos(−a33). (11.18)

The elements of the third row of (11.16) yield

φ3 = arctan
−a32

a31
. (11.19)

Notice that while we have unique solutions for φ1 and φ3, the angle φ2 has two
solutions. Both values ±φ2 position the end-effector M in the desired orientation.
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11.2.2 The RS Chain

The RS chain guides the center point a of the spherical joint in a circle around the
axis R1 of the revolute joint. In order to analyze this chain we replace the S-joint by
the equivalent 3R wrist, such that the first axis of the wrist intersects R1 in a right
angle at c. The distance a = |a− c| is the length of the crank.

11.2.2.1 The Kinematics Equations

We position the base frame F so that its origin is at c and its z-axis is aligned with
R1. Let N be the common normal between R1 and S1 of the wrist. Because R1 and
S1 intersect at c, N passes through c perpendicular to these two lines. Introduce the
link frame A1 at c that has R1 as its z-axis and its x axis aligned with N. The rotation
θ1 of the base revolute joint is measured from the x-axis of F to that of A1, and we
have

[R1] = [Z(θ1,0)]. (11.20)

The transformation from A1 to the link frame B1 of the 3R wrist consists of a
rotation by π/2 about N that brings R1 into alignment with S1, followed by a screw
displacement along S1 of distance a and angle φ1. For convenience, we separate this
into the product [C][T1] where

[C] = [X(
π

2
,0)][Z(0,a)], (11.21)

is a constant matrix. Then we have [T1] = [Z(φ1,0)] as was defined above in (11.15)
for the 3R wrist. The result is that the kinematics equations for the RS chain are
given by

[D] = [R1][C][T1][T2][T3]. (11.22)

11.2.2.2 Inverse Kinematics

If the position of the end-effector M is known, then the elements of 4× 4 trans-
form [D] = [A,P] are specified. Notice that because the wrist transformation [W ] =
[T1][T2][T3] is a pure rotation, it does not affect the displacement term in the product
[R1][C], which is its fourth column. We equate these columns of [D] and [R1][C] to
obtain px

py
pz

=

 a sinθ1
−a cosθ1

0

 (11.23)

and
θ1 = arctan

px

−py
. (11.24)

This defines the transformation [R1]. Because [C] is known, we can compute
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[W ] = [C−1][R−1
1 ][D] (11.25)

and use the inverse kinematic analysis for the 3R wrist to determine the angles φi,
i = 1,2,3. The result is the set of joint parameter values needed to place the end-
effector of the RS chain in the desired position M.

11.2.3 The TS Chain

We now consider the position analysis of the TS open chain. Figure 11.2. Crane
and Duffy use the term T-joint for a pair of revolute joints with axes R1 and R2 that
intersect at right angles. This joint is often called Hooke’s joint and it is used as the
gimbal mount for a gyroscope. Replace the S-joint by the equivalent 3R wrist such
that the first axis of the wrist passes through the center c of the T-joint and is at a
right angle to the second axis R2. The distance a = |a−c| is the length of this chain.

Gimbal joint

Spherical joint

Fig. 11.2 The TS open chain robot.

11.2.3.1 The Kinematics Equations

The RR chain that defines the T-joint is identical to the first two joints of the 3R
wrist. As we have done previously, position F with its origin at c and its z-axis along
R1. Introduce the frame A1 with its origin at c and its x-axis along the common nor-
mal N12 to the axes R1 and R2. The transformation from F to A1 is [R1] = [Z(θ1,0)]
given above.

Let the N23 be the common normal between R2 and S1. Attach the frame A2 with
its x-axis along N23. The transformation [R2] from A1 to A2 is
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[R2] = [X(
π

2
,0)][Z(θ2,0)]. (11.26)

The transformation from A2 to the link frame B1 of the 3R wrist is achieved by the
same transformation [C][T1] described above for the RS chain. Thus, the kinematics
equations of the TS chain become

[D] = [R1][R2][C][T1][T2][T3]. (11.27)

11.2.3.2 Inverse Kinematics

Given the position of the floating link M, we have the elements of the 4×4 matrix
[D] = [A,P]. Because the wrist transformation [W ] = [T1][T2][T3] is a pure rotation,
it does not affect the displacement term in the product [R1][R2][C]. We equate the
fourth columns of [D] and [R1][R2][C] to obtainpx

py
pz

=

a cosθ1 sinθ2
a sinθ1 sinθ2
−a cosθ2

 . (11.28)

From this equation we can compute

θ1 = arctan
py

px
and θ2 = arctan

py

−pz sinθ1
. (11.29)

Now the transformations [R1], [R2], and [C] are known, so we have

[W ] = [C−1][R−1
2 ][R−1

1 ][D]. (11.30)

The inverse kinematic analysis for the 3R wrist determines the values of the angles
φi, i = 1,2,3. This determines the joint parameter values needed to position the end-
effector of the TS chain as required.

11.2.4 The TPS and TRS Chains

If the length a of the TS chain is allowed to vary, then we obtain a six-degree-of-
freedom open chain that is often used as the structure for a robot arm. This variation
can be introduced by a prismatic joint to form a TPS chain, or by a revolute joint to
form a TRS chain.

The kinematics equations for the TS chain (11.27) can also be viewed as the
kinematics equations for the TPS robot with the understanding that the length a is
now a joint variable s. In order to solve the inverse kinematics for this chain we
determine

s =
√

p2
x + p2

y + p2
z . (11.31)
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The remaining joint parameters are obtained using the formulas above for the TS
chain.

For the TRS chain, we have an elbow joint E inserted between the base point c
and the wrist center a. Let E be parallel to the joint R2 and introduce e as the point
on E closest to the base point c. The distance a1 = |e− c| defines the length of the
first link R2E. Now let the axis S1 of the first joint of the wrist intersect E at a right
angle at e. The distance a2 = |a− e| is the length of the second link.

The triangle4cea is in the plane perpendicular to E, and the exterior angle θ3 at
e of the elbow joint controls the length s = |a− c|. The kinematics equations of the
TS chain can be modified to include this elbow joint by redefining the matrix [C],
such that

[C] = [X(0,a1)][Z(θ3,0)][X(
π

2
,0)][Z(0,a2)]. (11.32)

The first two matrices define the transformation to the elbow joint E which is parallel
to R2. The second two matrices are the same as the original matrix [C] but now
adapted to the new joint axis.

The inverse kinematics solution for the TRS chain is essentially the same as that
of the TPS chain. We compute the length s using (11.31). The joint angle θ3 is
obtained from the cosine law of the triangle4cea,

θ3 = arccos
s2−a2

1−a2
2

2a1a2
. (11.33)

This yields two values ±θ3 for the elbow joint. The formula for the joint angle θ1 is
the same as in (11.29). However, the equation for θ2 must be adjusted to accommo-
date the angle ψ = ∠eca, which is given by

ψ = arctan
a2 sinθ3

a1 +a2 cosθ3
, (11.34)

The new formula for θ2 is

θ2 = arctan
py

−pz sinθ1
−ψ. (11.35)

Once θ1, θ2, and θ3 are known, we can use (11.30) to isolate the wrist transforma-
tion. Then the inverse kinematics solution for the 3R wrist completes the analysis.

11.2.5 The CC Chain

A CC open chain is formed by a link that is connected to ground by a fixed cylindric
joint and to an end-effector a moving cylindric joint, Figure 11.3. Denote the axis
of the base joint by O and the axis of the moving joint by A. The common normal
N to these two axes identifies points c on O and r on A.
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Fixed Cylindric Joint Moving Cylindric Joint

Fig. 11.3 The CC open chain robot.

Locate the fixed frame F at the base of this chain so that its z-axis lies on O. The
displacement of this joint is measured by the distance d between c and the origin of
F , and the rotation angle θ is measured from the x-axis of F to the common normal
line N. Similarly, place the moving frame M in the end-effector so its z-axis lies on
A. The displacement at this joint is measured by the distance c from r to the origin
of M and the angle φ from N to the x-axis of M.

11.2.5.1 The Kinematics Equations

Now introduce the link frame B that has its z-axis aligned with O and its x-axis along
N. Let a = |r− c| be the length of the crank and let α be the twist angle measured
around N from O to A. Then, the screw displacement [X(α,a)] rotates the axis O
about N and aligns it with A. The result is the kinematics equations of the CC chain
are given by

[D] = [Z(θ ,d)][X(α,a)][Z(φ ,c)]. (11.36)

If the slide distances d and c are constrained to be constant, then these kinematics
equations become those of a spatial RR chain. The kinematics equations for the
spatial RP, PR, and PP chains are obtained in the same way by constraining the
appropriate rotation angle or slide distance of the fixed and moving C-joints to be a
constant.

11.2.5.2 Inverse Kinematics

Let the desired position of the end-effector of a CC chain be specified by [D] =
[A,P]. We expand the right side of (11.36) to obtain equations that define the values
of the joint parameters θ , d, φ and c, that is,
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[A,P] =


cθcφ − sθcαsφ −cθsφ − sθcαcφ sθsα csθsα +acθ

sθcφ + cθcαsφ −sθsφ + cθcαcφ −cθsα −ccθsα +asθ

sαsφ sαcφ cα ccα +d
0 0 0 1

 . (11.37)

In this equation s and c denote the sine and cosine functions.
Equate the third and fourth columns of these two matrices to obtaina13

a23
a33

=

 sinθ sinα

−cosθ sinα

cosα

 ,

px
py
pz

=

 csinθ sinα +acosθ

−ccosθ sinα +asinθ

ccosα +d

 . (11.38)

The crank rotation θ is determined from the first equation to be

θ = arctan
a13

−a23
. (11.39)

Once θ is known, the parameters c and d are obtained from the second equation as

c =
px−acosθ

sinθ sinα
and d = pz−

px−acosθ

sinθ sinα
cosα. (11.40)

Finally, we determine the angle φ by equating the third rows of (11.36) and obtain

φ = arctan
a31

a32
. (11.41)

These relations prescribe the configuration of the CC chain for a specified location
of the end-effector.

11.3 Velocity Analysis of Spatial Open Chains

The kinematics equations of an open chain define the trajectory X(t) = [D(t)]x of
points in the end-link. The velocity of this trajectory is given by V = Ẋ(t) = [Ḋ(t)]x.
Substitute x = [D−1]X(t), so we have

V = [Ḋ][D−1]X = [S]X. (11.42)

Using the fact that the 4× 4 homogeneous transform [D(t)] = [A(t),d(t)] consists
of a rotation matrix [A] and translation vector d we compute

V = [Ȧ][AT ]X− [Ȧ][AT ]d+ ḋ = [Ω ](X−d)+ ḋ, (11.43)

where [Ω ] is the angular velocity matrix of the moving link. Introduce the angu-
lar velocity vector w, so that this equation becomes the familiar definition of the
velocity of a point in a moving body,
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V = w× (X−d)+ ḋ. (11.44)

The 4×4 matrix [S] = [Ḋ][D−1] is a generalization of the angular velocity matrix.
It has the general form

[S] =
[

Ω d×w+ ḋ
000 0

]
. (11.45)

The components of this matrix are assembled into the six-vector

T=

{
w

d×w+ ḋ

}
, (11.46)

called the twist of the moving body.
The axis of this twist L : P(t) = c+ts is directed along the angular velocity vector

w = |w|s, and through the point

c =
w× (d×w+ ḋ∗)

w ·w
, (11.47)

where ḋ∗ = ḋ− (s · ḋ)s. This line is the instantaneous screw axis of the motion.
Substitute P(t) into (11.44) to see that the velocity of these points are directed along
the line L.

The set of instantaneous screw axes generated as a body moves in space is called
its axode. In the following section we compute the twist for a general spatial open
chain.

11.3.1 Partial Twists of an Open Chain

Using the Denavit-Hartenberg convention, the kinematics equations for six-degree-
of-freedom open chain can be written in the form

[D] = [Z(θ1,d1)][X(α12,a12)][Z(θ2,d2)] · · · [X(α56,a56)][Z(θ6,d6)]. (11.48)

Only six of the twelve joint parameters θi, di, i = 1, . . . ,6, are variable. The param-
eters αi j and ai j define the angle of twist and length of each link.

Let the joint angles θi, i = 1, . . . ,6 be variable and the joint slides constant, that
is, ḋi = 0. The analysis is the same if any of the slides are variable and the joint
angles are constant. Compute the partial derivative matrices

[Si] =

[
∂D
∂θi

]
[D−1], (11.49)

so we have
[S] = θ̇1[S1]+ θ̇2[S2]+ · · ·+ θ̇6[S6]. (11.50)

Each matrix [Si] has the form
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[Si] = [Di][K][D−1
i ], (11.51)

where
[Di] = [Z(θ1,d1)][X(α12,a12)] · · · [X(αi−1,i,ai−1,i)] (11.52)

is the transformation to the ith joint of the chain. The 4× 4 matrix [K] in each of
these terms is

[K] =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 . (11.53)

Let the transformation [Di] consist of the rotation matrix [Ai] and translation vec-
tor di, and compute

[Si] =

[
Ai di

000 1

][
K 0

000 0

][
AT

i −[AT
i ]di

000 1

]
=

[
AiKAT

i −AiKAT
i di

000 0

]
. (11.54)

Here [K] is the upper left 3×3 submatrix of (11.53) that performs the cross product
by~k, that is, [K]y =~k×y. Thus, the elements of each [Si] can be assembled into the
partial twist Si = (Si,di×Si)

T , where Si = [Ai]~k. The result is that (11.50) can be
written as

T=

{
w

d×w+ ḋ

}
=

[
S1 S2 · · · S6

d1×S1 d2×S2 · · · d6×S6

]
θ̇1
...

θ̇6

 . (11.55)

The 6×6 matrix in this equation is closely related to the Jacobian defined for a robot
manipulator.

11.3.2 The Jacobian of a Spatial Open Chain

The Jacobian of a six-degree-of-freedom open chain relates the joint rates θ̇i to
the velocity of its end-effector M. This velocity is usually defined as the six-vector
V = (ḋ,w)T , where d locates the origin of M and w is its angular velocity.

Notice that V can be obtained from the screw T in (11.46) by subtracting d×w
from the second 3-vector component and then interchanging the two sets of vectors,
that is,

V =

{
ḋ
w

}
=

[
0 I
I 0

]({
w

d×w+ ḋ

}
−
{

0
d×w

})
. (11.56)

Using the identity w = θ̇1S1 + · · ·+ θ̇6S6 we obtain
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{
ḋ
w

}
=

[
(d1−d)×S1 (d2−d)×S2 · · · 0

S1 S2 · · · S6

]
θ̇1
...

θ̇6

 , (11.57)

where di− d is the vector from the origin of M to the ith joint axis. Notice that
d6 = d. Therefore, this term cancels. This is the Jacobian of the spatial open chain.

11.4 The RSSR Linkage

The spatial RSSR four-bar linkage can be constructed by rigidly connecting the end-
links of two RS chains. The resulting system has two degrees of freedom, because
the sum of the freedom at each joint is eight. One of these degrees of freedom is the
rotation of the coupler about the axis joining the two S-joints. This freedom is inde-
pendent of the configuration of the input and output cranks, and can be arbitrarily
specified. In what follows, we focus on the constraint equations that relate the crank
rotations of the chain.

Let the lines O and C be the axes of the two revolute joints and let N be their
common normal. We assume that the two S-joints rotate in planes perpendicular to
the axes O and C. If c1 and c2 are the points of intersection of N with the two axes,
then we locate these cranks at the distances p and q from c1 and c2, respectively.
The length of the ground link is g = |c2−c1| and its twist angle γ is measured from
O to C around N.

We locate the fixed frame F so that its origin is c1, its z-axis is along O, and its
x-axis is along N. Let the radius of the input crank be a, then the coordinates a of
the center of the input S-joint are given by

a = [Z(θ , p)](a~ı), (11.58)

where θ is the rotation angle of the input crank.
To determine the coordinates b of the center of the output S-joint, we introduce

the frame F ′ with its origin at c2, its z-axis aligned with C, and its x-axis along N. In
this frame we have b′ = [Z(ψ,q)](b~ı) where b is the radius of the crank and ψ is the
output rotation angle. It is now easy to see that the coordinates of b in F are given
by

b = [X(γ,g)][Z(ψ,q)](b~ı). (11.59)

Thus, the coordinates of the S-joints are given by

a =

acosθ

asinθ

p

 and b =

 bcosψ +g
bcosγ sinψ−qsinγ

bsinγ sinψ +qcosγ

 . (11.60)
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11.4.1 The Output Angle

The input and output crank of the RSSR linkage must move in a way that maintains
a constant distance h between the centers a and b of the two S-joints. This yields
the constraint equation for the chain as

(b−a) · (b−a) = h2. (11.61)

Substitute (11.60) into this equation to obtain

A(θ)cosφ +B(θ)sinφ =C(θ), (11.62)

where

A(θ) = 2bacosθ −2bg,

B(θ) = 2bacosγ sinθ +2bpsinγ,

C(θ) = g2 +q2 +a2 +b2 + p2−h2−2agcosθ +2qasinγ sinθ −2qpcosγ.
(11.63)

This equation is solved, as shown in (A.1), to yield

ψ(θ) = arctan
B
A
± arccos

C√
A2 +B2

. (11.64)

Note that there are two output crank angles ψ for each input θ .
We now show that the constraint equations for the planar and spherical 4R chains

can be obtained as special cases of (11.62).

11.4.1.1 Planar 4R Linkage

A planar 4R linkage can be viewed as an RSSR linkage that has parallel revolute
axes O and C, which means that γ = 0. In order to have the cranks in the same plane
we set p = q. The result is the coefficients of (11.62) become

A(θ) = 2bacosθ −2bg,

B(θ) = 2basinθ ,

C(θ) = g2 +a2 +b2−h2−2agcosθ . (11.65)

Compare these coefficients with (2.50) to see that this is the constraint equation of
a planar 4R linkage.
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11.4.1.2 Spherical 4R Linkage

A spherical 4R linkage can be considered to be an RSSR linkage in which the axes
O and C intersect, which means that g = 0. Set the location of the revolute joints at
the distance p = q = 1 from the point of intersection c of the two axes. This allows
us to define the angular dimensions α and β of the input and output links such that

a = tanα and b = tanβ . (11.66)

The coupler angle η is defined by the triangle4acb, with sides of lengths |a−c|=
1/cosα and |b− c|= 1/cosβ , respectively. The cosine law yields the relation

h2 =
1

cos2 α
+

1
cos2 β

− 2cosη

cosα cosβ
. (11.67)

Substitute these formulas for a, b, and h and the values for g, p, and q into the
equations (11.63). The term 2/cosα cosβ cancels in all three coefficients to yield

A(θ) = sinβ sinα cosθ ,

B(θ) = sinβ sinα cosγ sinθ + sinβ cosα sinγ,

C(θ) = cosη + sinα cosβ sinγ sinθ − cosγ cosα cosβ . (11.68)

Compare these coefficients to those derived in (7.27). The difference between the
two sets is due to different conventions for measuring the input and output angles.
Denote by θ ′ and ψ ′ the input and output angles used in (7.27). Then substitute
θ = θ ′ −π/2 and ψ = ψ ′ −π/2 into (11.68) and notice that sinθ becomes −cosθ ′

and cosθ becomes sinθ ′. This also changes A into B′ and B into −A′. The result is
that these coefficients are transformed into those in (7.27).

11.4.1.3 Spatial 4R Linkage (Bennett’s Linkage)

An interesting special case of the RSSR is the spatial 4R chain, called Bennett’s
linkage. For this linkage, the base revolute joints must be located along the common
normal line N of their axes, which means that p = q = 0. Furthermore, the opposite
sides of the linkage must be equal, so g = h and a = b.

We replace the S-joints with revolute joints that have axes A and B. These axes
are positioned at a and b so that the input crank OA and the output crank CB have
the same twist angle α . Furthermore, the twist angle along the floating link AB must
be γ , which is the twist angle of the ground link OC. The result is an assembly of
four joints that have consecutive common normals that intersect, and opposite sides
that have the same dimensions.

Even with these constraints, the linkage will not move unless the dimensions
satisfy the additional relationship
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a
sinα

=
g

sinγ
(11.69)

known as Bennett’s condition.
Substitute p = q = 0, g = h, and a = b into (11.62) to obtain the equation

(acosθ −g)cosψ +(acosγ sinθ)sinψ = a−gcosθ . (11.70)

Divide this equation by a and substitute g/a = sinγ/sinα in order to obtain the
constraint equation for Bennett’s linkage,

A(θ)cosψ +B(θ)sinψ =C(θ), (11.71)

where

A(θ) = sinα cosθ − sinγ,

B(θ) = sinα cosγ sinθ ,

C(θ) = sinα− sinγ cosθ . (11.72)

The solution of this equation yields ψ as a function of θ .
It is useful to examine another approach to the solution of (11.71). Introduce the

parameters u = tan(θ/2) and v = tan(ψ/2) so we have

cosθ =
1−u2

1+u2 , sinθ =
2u

1+u2 , cosψ =
1− v2

1+ v2 , sinψ =
2uv

1+ v2 . (11.73)

Substitute these formulas into (11.71) to obtain

u2(sinα + sinγ)−2sinα cosγuv+ v2(sinα− sinγ) = 0. (11.74)

The solution of this quadratic equation for the ratio v/u yields

tan ψ

2

tan θ

2

=
sinα cosγ± cosα sinγ

sinα− sinγ
, (11.75)

which shows that this ratio remains constant as the linkage moves.

11.5 The RSSP Linkage

The RSSP linkage is the spatial version of a slider-crank linkage. Let O be the axis
of the R-joint and let a be the center of the S-joint for the input RS crank. The output
link is the slider of the PS chain. Let b be the center of the output S-joint b. Then its
path is a line C that we consider to be the guide of the P-joint. The common normal
N between O and C defines the points c1 and c2, respectively, on these lines.
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Locate the base frame F with its origin at c1, its z-axis along O, and its x-axis
along N. In this frame the coordinates of a are the same as are given in (11.60). The
coordinates of b are given by

b = [Z(γ,g)](s~k) =

 g
−ssinγ

scosγ

 . (11.76)

The fact that the distance between the two pivots a and b is the constant length h
yields the constraint equation for the RSSP chain as

s2 +2(asinγ sinθ − pcosγ)s+(g2 +a2 + p2−h2−2agcosθ) = 0. (11.77)

For each value of the input crank θ we solve this quadratic equation to obtain two
values for the location s of the output slider.

There are several interesting special cases for this linkage.

11.5.0.4 The Planar RRRP

The planar slider-crank occurs when the axes O and C are at right angles and the
revolute joint is located in the xy-plane. This means that γ = π/2 and p = 0. In this
case, equation (11.77) becomes

s2 +2(asinθ)s+(g2 +a2−h2−2agcosθ) = 0. (11.78)

Compare this to the constraint equation of the planar slider-crank (2.23). Notice that
because r = a, L = h, and e = g, these equations are the same.

11.5.0.5 The Symmetric RSSP

If the axis O of the input RS crank intersects the guide C of the slider, then slider
moves in the yz-plane as the input crank rotates about the z-axis. In this case g = 0
and the constraint equation takes the form

s2 +2(asinγ sinθ − pcosγ)s+(a2 + p2−h2) = 0. (11.79)

Notice that because sinθ = sin(π−θ), this equation is the same for positions of the
input crank that are symmetric relative to the yz-plane. The result is a movement of
the output link that is a symmetric function of the input crank angle.
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11.5.0.6 The Sinusoidal RSSP

Choose the dimensions of the symmetric RSSP so that the constant term is zero, that
is,

h2 = a2 + p2. (11.80)

Then (11.79) has one solution s = 0 and a second solution

s = 2pcosγ−2asinγ sinθ , (11.81)

which is a sinusoidal function of the input angle θ of amplitude A = 2asinγ .

11.6 The 4C Linkage

A 4C closed chain is formed by connecting the end-links of two CC chains. Each
of the four cylindric joints has two degrees of freedom for a total of eight joint
freedoms, which means that the chain has degree of freedom of two. The two inde-
pendent parameters are the slide d and rotation θ of the input crank its fixed axis.
See Figure 11.4.

Fig. 11.4 The 4C linkage.

O
A

B

C
a

c

α d

g

γ

N

L1

L2

θ

b

β

h η



11.6 The 4C Linkage 273

11.6.0.7 The Link Dimensions

Let the fixed and moving axes of the input crank be O and A, respectively. Denote
the common normal between these lines by L1 and its points of intersection by a1
on O and r1 on A. This crank has length a = |r1− a1| and the twist angle angle α

measured about L1 from O to A. For convenience assemble these parameters into
the ordered pair α̂ = (α,a).

Let C and B be the fixed and moving axes of the output crank. In this case, let L2
be the common normal and a2 and r2 its points of intersection with the axes C and
B. The length of this crank is b = |r2−a2| and its twist angle is β measured around
L2. Collect these parameters into the ordered pair β̂ = (β ,b).

The floating link is formed by the common normal M between the moving axes A
and B, which defines points b1 and b2. The distance h = |b2−b1| and angle η from
A to B define its dimensions, denoted by η̂ = (η ,h). The ground link of the chain is
defined by the common normal N between the base joints O and Cand c1 and c2 be
the points of intersection with these axes. Its dimensions are given by γ̂ = (γ,g).

11.6.1 The Kinematics Equations

Position the fixed frame F with its origin at c1, its z-axis along O and its x-axis along
N. Introduce the link frame T1 with its origin at a1 and its x-axis aligned with L1.
The displacement of the input crank is given by the screw displacement of T1 along
O of distance d = |a1− c1| and angle θ is measured from the x-axis of F to L1. We
assemble these joint parameters into the pair θ̂ = (θ ,d).

The position of the coupler relative to the input crank is defined by attaching the
frame M with its origin at b1, its z-axis along A, and its x-axis aligned with M. The
distance c = |b1− r1| is the slide of the moving joint, and φ is its rotation angle
measured from L1 to M. Assemble the joint parameters into the pair φ̂ = (φ ,c).
These definitions yield the kinematics equations of the input crank OA as

[Din] = [Z(θ ,d)][X(α,a)][Z(φ ,c)]. (11.82)

Let the frame F ′ be located on the output crank CB so that its origin is c2, its
z-axis is C, and its x-axis is L2. We can attach link frames T2 and M′ in exactly the
same way to obtain the kinematics equations for this crank as

[Dout] = [Z(ψ,e)][X(β ,b)][Z(ζ , f )], (11.83)

where ψ̂ = (ψ,e) and ζ̂ = (ζ , f ) define the rotation angle and sliding distance at
the fixed and moving joints, respectively.

To define the kinematics equations of the 4C closed chain, we introduce trans-
formation [X(γ,g)] from F to F ′ and the transformation [X(η ,h)] from M to M′.
The result is that the coordinate transformation [T ] that locates the frame M′ in F is
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defined in two ways, that is,

[T ] = [Din][X(η ,h)] = [X(γ,g)][Dout]. (11.84)

Substitute (11.82) and (11.83) into this equation to obtain the kinematics equations
of the 4C chain.

11.6.2 The Spherical Image

Associated with a 4C linkage is the spherical linkage with joint axes formed by the
direction vectors O, A, B, and C of the lines O, A, B, and C. This linkage is known
as the spherical image of the 4C chain. We follow a slightly different derivation and
obtain the same constraint equation for this spherical 4R chain.

11.6.2.1 The Output Angle

The direction vectors A and B of the moving axes of the spherical image can be
obtained from the third column of the transformations [Din] and [X(γ,g)][Dout],
respectively. These computations yield

A =

 sinθ sinα

−cosθ sinα

cosα

 , B =

 sinψ sinβ

−cosγ cosψ sinβ − sinγ cosβ

−sinγ cosψ sinβ + cosγ cosβ

 . (11.85)

The fact that A ·B = cosη for all positions of the linkage yields the constraint equa-
tion

A(θ)cosψ +B(θ)sinψ =C(θ), (11.86)

where

A(θ) = cosθ sinα cosγ sinβ − cosα sinγ sinβ ,

B(θ) = sinθ sinα sinβ ,

C(θ) = cosη− cosθ sinα sinγ cosβ − cosα cosγ cosβ . (11.87)

This constraint equation is the same as was derived previously as (7.27). Solve this
equation to determine the output angle ψ as a function of the crank angle θ .

11.6.2.2 The Coupler Angle

The kinematics equations provide two ways to define the direction B. It is the third
column of [X(γ,g)][Dout] and the third column of [Din][X(η ,h)]. Focusing only on
the coordinate rotations, we can write this as
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[Z(θ)][X(α)][Z(φ)][X(η)]~k = B, (11.88)

where B is defined above in (11.85), To simplify this equation, introduce the notation
Y = [X(α)][Z(φ)][X(η)]~k, so we have

[Z(θ)]Y = B, or Y = [Z(θ)]T B, (11.89)

which yields the relations sφsη

−cαcφsη− sαcη

−sαcφsη + cαcη

=

 cθ(sψsβ )− sθ(cγcψsβ + sγcβ )
−sθ(sψsβ )− cθ(cγcψsβ + sγcβ )

−sγcψsβ + cγcβ

 . (11.90)

Solving for φ from the first and second components of these vectors, we obtain

sinφ =
cθ(sψsβ )− sθ(cγcψsβ + sγcβ )

sinη
,

cosφ =
sθ(sψsβ )+ cθ(cγcψsβ + sγcβ )+ sαcη

cαsη
. (11.91)

These equations yield the appropriate coupler angle φ for either solution selected
for the output angle ψ .

11.6.3 The Vector Loop Equation

We now formulate equations that define the output slides e at C, f at B, and the
coupler slide c at A in terms of the rotation angle θ and sliding distance d of the input
crank OA. To do this, we equate the fourth columns of the kinematics equations and
obtain the vector loop equations of the 4C chain.

Introduce the notation Pin and Pout for the fourth columns of the left and
right sides of the kinematics equations, that is, of the matrices [Din][X(η ,h)] and
[X(γ,g)][Dout], respectively. Expansion of these equations yields

Pin =

acθ +h(cθcφ − sθsφcα)
asθ +h(sθφ + cθcφcα)

d +hsαsφ

+ c

 sθsα

−cθsα

cα

 (11.92)

and

Pout =

g+bcψ

bsψcγ

bsψsγ

+ e

 0
−sγ

cγ

+ f

 sψsβ

−cψsβcγ− cβ sγ

−cψsβ sγ + cβcγ

 . (11.93)

Because Pin = Pout, we can construct the matrix equation
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cθsα −sγ −cψsβcγ− cβ sγ

−cα cγ −cψsβ sγ + cβcγ

c
e
f


=

acθ +h(cθcφ − sθsφcα)−g−bcψ

asθ +h(sθφ + cθcφcα)−bsψcγ

d +hsαsφ −bsψsγ

 . (11.94)

If the angles φ and ψ have been determined, then this equation can be solved to
obtain a unique set of joint sliding distances c, e, and f .

11.6.3.1 The Planar 4R

It is useful to see how the vector loop equations (11.94) become the loop equations
for the planar 4R when all four joint axes are parallel. Let α = β = γ = η = 0. Then
(11.94) becomes 0 0 0

0 0 0
−1 1 1

c
e
f

=

acθ +h(cθcφ − sθsφ)−g−bcψ

asθ +h(sθφ + cθcφ)−bsψ

d

 . (11.95)

These equations can be written in the form

acosθ +hcos(θ +φ) = g+bcosψ,

asinθ +hsin(θ +φ) = bsinψ,

e+ f = c+d. (11.96)

Compare with (2.55) to see that the equations are the same. Notice that movement
of this linkage in the plane perpendicular to the joint axes is independent of sliding
movement along these axes.

11.7 The 5TS Spatial Linkage

The platform linkage constructed from five parallel TS chains is a one-degree-of-
freedom linkage, Figure 11.5. The workspace of this system is the intersection of
the workspaces of the individual TS chains. In order to define this workspace we
use an implicit formulation based on the geometric constraints imposed by each of
the TS chains.

For the five TS chains, let Bi be the center of the ith T-joint in F and let pi be
the center of the ith S-joint measured in M, so Pi = [D]pi locates this point in F . A
displacement [D] of the platform is in the workspace of this linkage if it maintains
constant lengths Ri for the five chains. This means that [D] must satisfy the set of
constraint equations
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Fig. 11.5 The 5TS platform linkage.

F =


([D]p1−B1) · ([D]p1−B1)−R2

1
...

([D]P5−B5) · ([D]p5−B5)−R2
5

= 0. (11.97)

The analytical solution of these equations, known as solving the direct kinematics
of a platform, is beyond the scope this text.

A numerical solution can be obtained by introducing an extra TPS chain to ac-
tuate the linkage. This chain does not impose any constraints on the platform but
does push it along the path allowed by the five supporting TS chains. Suppose a
displacement [D] = [A,d] satisfies the equations (11.97), then we can compute the
slide s of the actuating leg from the equation

([D]p6−B6) · ([D]p6−B6)− s2 = 0. (11.98)

We now formulate the solution as a root-finding problem. The time-derivative of
the ith constraint equation can be written in the form

([D]pi−Bi) · ([Ḋ]pi)−RiṘi = 0, (11.99)

where Ṙi = 0 for i = 1, . . . ,5 and Ṙ6 = ṡ. Substitute pi = [D−1]Pi to obtain

Ḟ =


(P1−B1) · ([S]P1)

...
(P6−B6) · ([S]P6)− sṡ

= 0, (11.100)

where [S] = [ḊD−1]. The operation [S]Pi computes the velocity of the point Pi as
the platform M moves. Recall that this is equivalent to the formula
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Ṗi = w× (Pi−d)+ ḋ, (11.101)

where w is the angular velocity vector of M and ḋ is the velocity of its origin.
Substitute this into (11.100) to obtain

Ḟ =


(P1−B1) ·

(
w× (P1−d)+ ḋ

)
...

(P6−B6) ·
(
w× (P6−d)+ ḋ

)
− sṡ

= 0. (11.102)

This can be rewritten as the matrix equation

[
P1−B1 . . . P6−B6

P1× (P1−B1) . . . P6× (P6−B6)

]T {ḋ+d×w
w

}
=


0
...

sṡ

 . (11.103)

The six-vector Pi = (Pi−Bi,Pi× (Pi−Bi))
T is known as the Plücker vector of the

line along the ith leg. The matrix [Γ ] formed by these Plücker vectors is the Jacobian
of this platform linkage.

For a given position [D0] of the platform and actuator rate ṡ, we solve (11.103)
to determine the angular velocity w and velocity ḋ of the platform. This provides an
approximation to the solution [D(t)] = (I +[S]t)[D0]. The result is an algorithm to
trace the trajectory of the floating link.

When the matrix [Γ ] loses rank, the linkage is said to be in a singular configura-
tion. This is discussed in more detail in the last chapter.

11.8 Summary

This chapter has presented the direct and inverse kinematic analysis of the 3R wrist,
the RS, TS, and CC open chains, as well as the TPS and TRS robots. The veloc-
ity analysis of these systems yields the Jacobian of robotic theory. The analysis of
the RSSR linkage yields the results for planar and spherical 4R linkages as special
cases. It also provides the constraint equation for the spatial 4R closed chain, known
as Bennett’s linkage. We also analyzed the RSSP, which has several special cases in-
cluding the planar slider-crank. The analysis of the 4C linkage was presented which
also specializes to the spherical and planar 4R linkages. Finally, we outlined a nu-
merical solution for the analysis of the 5TS platform. An analytical solution exists
for this system (Su et al. [127]) but it is beyond the scope of our work.
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11.9 References

The analysis of spatial open chains is found in robotics texts by Craig [15], Crane
and Duffy [16], and Tsai [136]. Also see Crane and Duffy’s analysis of the CCC
manipulator. The analysis of the RSSR and RSSP linkages is taken from Hunt [50].
The analysis of a 4C linkage presented here follows Suh and Radcliffe’s [134] anal-
ysis of the RCCC linkage. A classification of the platform manipulator systems can
be found in Faugere and Lazard [31], and Husty [51] presents a general algorithm
for the analysis of these systems.

Exercises

1. Let a spatial RR open chain have length a = 10 and angle of twist α = 90◦.
Determine the kinematics equations of the chain. Let P = (0,0,−10)T be a point
in the end-link of this chain, and determine its coordinates in F when θ = 90◦

and φ = 180◦ (Mabie and Reinholtz [70]).
2. Consider the TS chain with length a = 4. Set the joint angles to the values θ1 =

60◦, θ2 = 120◦, and φ1 = 135◦, φ2 = −60◦, φ3 = 45◦, and determine the 4× 4
transform that locates the end-link (Kinzel and Waldron 1999).

3. Derive the Jacobian for a TS chain.
4. Consider an RSSR linkage that has the fixed axes in the directions O=~k and C=

~ı. Let a0 = (0,0,0)T and a1 = (0,1,0)T be the endpoints of the input crank, and
b0 = (2,0,0)T and b1 = (2,0,1)T the end points of the output crank. Determine
the input-output equation for this linkage (Suh and Radcliffe [134]).

5. An RSSP linkage has ~ as the direction of its input fixed axis, O. Let a0 =
(0,2,4)T and a1 = (0,1,4)T be the endpoints of the input crank in a reference po-
sition, and let h = 10 be the length of the coupler. Finally, let the output moving
pivot follow the line L= t~. Analyze this linkage to determine the output slide s
as a function of the input crank rotation θ (Sandor and Erdman [112]).

6. Analyze the Bennett linkage with twist angles α = 30◦ and γ = 60◦. Consider
the same linkage with α = −30◦. Show that the output functions of these two
linkages are different (Hunt [50]).

7. Consider the 4C linkage with dimensions α̂ = (30◦,2), η̂ = (55◦,4), β̂ =
(45◦,3), and γ̂ = (60◦,5). Determine the joint angles and offsets of this linkage
for the input θ̂ = (θ ,0) (Suh and Radcliffe [134]).





Chapter 12
Spatial Kinematics

In this chapter we develop the geometry of spatial displacements defined by coor-
dinate transformations consisting of spatial rotations and translations. We consider
the invariants of these transformations and find that there are no invariant points.
Instead there is an invariant line, called the screw axis. Thus, the geometry of lines
becomes important to our study of spatial kinematics. We find that a configuration of
three lines, called a spatial triangle, generalizes our results for planar and spherical
triangles to three-dimensional space.

A convenient set of coordinates for lines, known as Plücker coordinates, are in-
troduced, then generalized to yield screws. Dual vector algebra manipulates these
coordinates using the same rules as the usual vector algebra. This yields a screw
form of Rodrigues’s formula that defines the screw axis of a composite displace-
ment in terms of the screw axes of the two factor displacements.

12.1 Spatial Displacements

translation. This transformation takes the coordinates x = (x,y,z)T of a point in the
moving frame M and computes its coordinates X = (X ,Y,Z)T in the fixed frame F ,
by the formula

X = T (x) = [A]x+d, (12.1)

where [A] is a 3× 3 rotation matrix and d is a 3× 1 translation vector. A spatial
displacement preserves the distance between points measured in both M and F .
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12.1.1 Homogeneous Transforms

The transformation that defines a spatial displacement is not a linear operation. To
see this compute T (x+ y). The result does not equal to T (x)+T (y). This can be
attributed to the inhomogeneous translation term in (12.1). A standard strategy to
adjust for this inhomogeneity is to add a fourth component to our position vectors
that will always equal 1. Then we have the 4×4 homogeneous transform{

X
1

}
=

[
A d

000 1

]{
x
1

}
, (12.2)

which we write as
X = [T ]x. (12.3)

Notice that we have not distinguished between the point coordinates that have a 1
as their fourth component. In general, these vectors will have three components.
Please assume the addition of the fourth component, when it is appropriate for the
use of these 4×4 transforms. We use [T ] = [A,d] to denote the 4×4 homogeneous
transform with rotation matrix [A] and translation vector d.

12.1.2 Composition of Displacements

The set of matrices that have the structure shown in (12.2) form a matrix group,
denoted by SE(3), with matrix multiplication as its operation. The matrix product of
[T1] = [A1,d1] and [T2] = [A2,d2] yields

[T3] = [A1,d1][A2,d2] = [A1A2,d1 +A1d2]. (12.4)

It is easy to see that the 4× 4 transform [T3] has the same structure as (12.2) with
A3 = A1A2 as its rotation matrix and d3 = d1 +[A1]d2 as its translation vector.

The composition of the displacements [T1] = [A1,d1] and [T2] = [A2,d2] can be
interpreted as follows. Let [T1] define the position of a frame M′ relative to F such
that X = [A1]y+d1. Then the position of M relative to M′ is defined by [T2] such
that y = [A2]x+d2. Thus, the position of M relative to F is given by

X = [A1A2]x+d1 +A1d2. (12.5)

Compare this equation to (12.4) to see that the product of two homogeneous trans-
forms defines this composition of displacements.

Similarly, the matrix inverse [T ]−1 = [A,d]−1 defines the inverse displacement

[T−1] = [A,d]−1 = [AT ,−AT d]. (12.6)

It is easy to use (12.4) to check that [A,d][AT ,−AT d] = [I].
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12.1.2.1 Changing Coordinates of a Displacement

Consider the displacement X = [T ]x that defines the position of M relative to F .
We now consider the transformation [T ′] between the frames M′ and F ′ that are
displaced by the same amount from both M and F . In particular, let [R] = [B,c] be
the displacement that transforms the coordinates between the primed and unprimed
frames, that is, Y = [R]X and y = [R]x are the coordinates in F ′ and M′, respectively.
Then, from X = [T ]x we can compute

Y = [R][T ][R−1]y. (12.7)

Thus, the original matrix [T ] is transformed by the change of coordinates into [T ′] =
[R][T ][R−1].

12.1.3 Relative Displacements

For a set of displacements [Ti] = [Ai,di], i = 1, . . . ,n, the relative displacement be-
tween any two is given by

[Ti j] = [Tj][T−1
i ]. (12.8)

If Xi = [Ti]x denotes the coordinates in F for points in position Mi, then we have

X j = [Ti j]Xi. (12.9)

Notice that both Xi and X j are measured in the fixed reference frame F ; they are the
coordinates of corresponding points of M in positions Mi and Mj.

12.1.3.1 Relative Inverse Displacements

The relative inverse displacement [T †
ik ] between two inverse positions Fi and Fk is

given by
[T †

ik ] = [T−1
k ][Ti]. (12.10)

Notice that this is not the inverse of the relative displacement [Tik], which would be
[T−1

ik ] = [Ti][T−1
k ].

The relative inverse displacement [T †
ik ] is defined from the point of view of the

moving frame M. However, we can choose a specific position Mj and transform this
displacement by [Tj], to obtain

[T j
ik] = [Tj][T

†
ik ][T

−1
j ]. (12.11)

This is known as the image of the relative inverse transformation for position Mj in
F .
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Notice that if Mj is one of the frames used in computing the relative inverse
displacement, for example j = i, then we have

[T i
ik] = [Ti]([T−1

k ][Ti])[T−1
i ] = [Ti][T−1

k ] = [T−1
ik ]. (12.12)

This same result is obtained when j = k. Thus, for j = i or j = k the image of the
relative inverse displacement [T j

ik] is the inverse of the relative displacement.

12.1.4 Screw Displacements

We now consider the invariants of spatial displacements. If a point C has the same
coordinates before and after a spatial displacement [T ], then it satisfies the equation

C = [T ]C, or [I−T ]C = 0, (12.13)

which simplifies to
[I−A]C = d. (12.14)

Recall that all spatial rotations have 1 as an eigenvalue. Therefore, the 3×3 matrix
[I−A] is singular. Thus, a spatial displacement has no fixed points.

While there are no fixed points, there is a line, called the screw axis, that re-
mains fixed during a spatial displacement. To determine this line, we decompose
the translation component of the displacement [T ] = [A,d] into vectors parallel and
perpendicular to the rotation axis S of [A], that is,

d = d∗+ kS, where k = d ·S. (12.15)

The displacement [T ] can now be written as the composition of the rotational dis-
placement [R] = [A,d∗] and the translation [S] = [I,dS],

[T ] = [S][R] = [I,kS][A,d∗] = [A,d∗+ kS] = [A,d]. (12.16)

Notice that all spatial displacements can be decomposed in this way.
We have already seen in (8.81) that a rotational displacement [R] = [A,d∗] has a

fixed point is given by

C =
b× (d∗ −b×d∗)

2b ·b
, (12.17)

where b = tan(φ/2)S is Rodrigues’s vector of the rotation [A]. Now consider the
line S through this point in the direction of the rotation axis of [A], defined by

S : P(t) = C+ tS. (12.18)

Points on this line remain fixed during the rotational displacement [R] = [A,d∗].
Furthermore, the translation [S] = [I,kS] slides points along this line the distance k.
This line remains fixed during the displacement. Thus, a general spatial displace-
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ment consists of a rotation by φ about this line and the sliding distance k along it.
This is called a screw displacement and the line S is called the screw axis.

12.1.5 The Screw Matrix

It is often convenient to define a spatial displacement in terms of its screw axis S and
the angle φ and slide k around and along it. We have already determined a formula
for a rotation matrix [A(φ ,S)] in terms of its rotation axis and angle. From (12.16)
we see that the translation vector is given by

d = [I−A]C+ kS. (12.19)

Now use the notation φ̂ = (φ ,k) for the rotation and slide of the screw displacement
and define the screw matrix

[T (φ̂ ,S)] = [A(φ ,S), [I−A]C+ kS]. (12.20)

This is the 4×4 homogeneous transform with elements defined in terms of the screw
parameters of the displacement.

This form of a spatial displacement allows us to write the transformation of x in
M to X in F as

X−C = [A](x−C)+ kS, (12.21)

which shows directly that the displacement consists of a rotation about C followed
by a translation along the screw axis S.

12.2 Lines and Screws

The geometry of the screw axis of a spatial displacement is best studied using
Plücker’s coordinates that define the line directly. Plücker coordinates for a line are
six-vectors assembled from the direction of the line and its moment about the origin
of the reference frame. The generalization of these coordinates, called a screw, is
familiar from the study of elementary statics and dynamics where it appears as a the
pair formed by the resultant force and moment on a body.

12.2.1 Plücker Coordinates of a Line

Consider the line S through two points C and Q in space, given by the parameterized
equation

S : P(t) = C+ tS, (12.22)
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where C has been selected as a reference point on the line, and S is the unit vector
along Q−C. To eliminate the free parameter t in the definition of S, we introduce
the Plücker coordinates of the line

S=

{
S

C×S

}
. (12.23)

The vector C×S is the moment of the line about the origin of the reference frame.
Notice that these coordinates do not depend on the choice of the reference point C,
because any other point C′ = C+ kS yields the same moment C′ ×S = C×S.

A general pair of vectors W = (W,V)T can be the Plücker coordinates of a line
only if W ·V = 0. This is equivalent to saying that there must be a vector C such
that

C×W = V. (12.24)

Solve this equation by computing the vector product of both sides by W to obtain

C =
W×V
W ·W

. (12.25)

This formula defines the coordinates for the reference point directly in terms of the
Plücker coordinates of the line.

Plücker coordinates are homogeneous, which means that W = wS defines the
same line as the unit vector S. For convenience, we normalize our the Plücker coor-
dinates so S= (S,C×S), where |S|= 1.

12.2.2 Screws

A general pair of vectors W = (W,V)T for which W ·V 6= 0 and |W| = w 6= 1
is called a screw. We can associate with any screw W a line S, called the axis of
the screw. To do this, decompose the second vector V into components parallel and
perpendicular to W, so we have V= pwW+V∗. Since W ·V∗= 0, we can determine
a point C such that C×W = V∗. This is given by

C =
W×V∗

W ·W
=

W×V
W ·W

. (12.26)

Notice that the vector product with W automatically eliminates the component of V
in the direction W.

The line S = (W,C×W)T is the axis of the screw W. Let W = wS. Then the
components of this screw can be written in the form

W =

{
wS

wC×S+wpwS

}
. (12.27)

The parameter w = |W| is called the magnitude of the screw, and
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pw =
W ·V
W ·W

(12.28)

is its pitch. Lines are often called zero-pitch screws.

12.2.3 Dual Vector Algebra

We now introduce dual vector algebra, which allows us to manipulate the pairs of
vectors that define lines and screws using the same operations as vector algebra.

12.2.3.1 The Dual Magnitude of a Screw

A multiplication operation can be defined so that a general screw W, given by
(12.27), can be obtained as the product of the pair of scalars ŵ = (w,wpw) with
the pair of vectors S = (S,C×S). This operation is formulated by introducing the
dual unit ε that has all the properties of a real scalar with the additional feature that
ε2 = 0. Using this symbol, we define the dual number

ŵ = (w,wpw) = w+ εwpw. (12.29)

Notice that we do not distinguish symbolically between the dual number written as
a pair of numbers or written using the dual unit ε . Similarly, we can define the dual
vector

S= (S,C×S)T = S+ εC×S. (12.30)

Again, we do not distinguish between the screw written as a pair of vectors or a dual
vector.

Now multiply the dual scalar ŵ and the components of the dual vector S and
impose the rule ε2 = 0 to obtain

ŵS= (w+ εwpw)(S+ εC×S) = wS+ ε(wC×S+wpwS). (12.31)

Compare this to (12.27) to see that this equation defines a general screw W. The
dual number ŵ = w+ εwpw is the dual magnitude of the screw W.

12.2.3.2 Dual Numbers

The set of dual numbers â = a+ εa◦, where a and a◦ are real numbers and ε2 = 0,
has all the properties of complex numbers. Addition and subtraction are obtained
componentwise, and multiplication is performed as though these numbers were
polynomials in ε . Division is defined so that for â = a+ εa◦ and b̂ = b+ εb◦, we
have
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b̂
â
=

(b+ εb◦)(a− εa◦)
(a+ εa◦)(a− εa◦)

=
b
a
+ ε

b◦a−ba◦

a2 . (12.32)

Notice that if the dual number has a zero real part then this division operation is
undefined. Such numbers are known as pure dual numbers. See Appendix D for a
summary of the properties of dual numbers.

12.2.3.3 The Dual Scalar Product

The linearity of the scalar product of vectors allows us to define the dual scalar
product as

W ·V = (W+ εW◦) · (V+ εV◦) = W ·V+ ε(W ·V◦+W◦ ·V). (12.33)

This equation can be written in matrix form by introducing the 6× 6 matrix [Π ]
defined by

[Π ]V =

[
0 I
I 0

]{
V
V◦
}
=

{
V◦
V

}
. (12.34)

The second component of the dual scalar product (12.33) is WT [Π ]V, and we have

W ·V = (WT V,WT [Π ]V) (12.35)

as the matrix form of the dual scalar product.
Notice that if a screw is given by W= ŵS, where S is the Plücker coordinates of

its axis, then we can compute

W ·W = ŵ2(S ·S) = ŵ2. (12.36)

This is because S ·S= 1 for normalized Plücker coordinates. For this reason Plücker
vectors are often called unit screws.

The dual magnitude of a screw W = (W,W◦)T can be computed using the dual
scalar product to obtain

|W|= (W ·W)1/2. (12.37)

Furthermore, the axis of a screw W can be found by dividing by its dual magnitude,
that is,

S=
W

|W|
=

W+ εW◦

w+ εwpw
=

1
w

W+ ε
1
w
(W◦ − pwW). (12.38)

This yields the same screw axis as was defined above.

12.2.3.4 The Dual Vector Product

The linearity of the vector vector product allows its extension to dual vectors as
well. Consider the two screws W = (W,W◦)T and V = (V,V◦)T , and compute
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W×V = (W+ εW◦)× (V+ εV◦) = W×V+ ε(W×V◦+W◦ ×V). (12.39)

In what follows we show that this screw has as its axis the common normal to the
axes of the screws W and V.

12.2.4 Orthogonal Components of a Line

Let the Plücker coordinates of the x, y, and z axes of the fixed frame F be
I = (~ı,o×~ı)T , J = (~,o×~)T , and K = (~k,o×~k)T , where o is the origin of F . We
now determine the orthogonal components of a general line measured against these
coordinate lines.

Consider the line S that intersects the z-axis K in a right angle at a distance d
from o, such that it lies at an angle θ measured from the x-axis I. The direction of S
is S = cosθ~ı+ sinθ~, and its moment term is (o+d~k)×w. Therefore, we have

S=

{
cosθ~ı+ sinθ~

(o+d~k)× (cosθ~ı+ sinθ~)

}
=

{
cosθ~ı

cosθo×~ı−d sinθ~ı

}
+

{
sinθ~

sinθo×~+d cosθ~

}
. (12.40)

Thus, the coordinates of S can be written as the sum of two screws. The first screw
has the dual magnitude (cosθ ,−d sinθ) and the line I as its axis. The second screw
has the dual magnitude (sinθ ,d cosθ) and J as its axis.

12.2.4.1 The Dual Angle

We now introduce the dual angle θ̂ = θ + εd, which measures the angle θ and
distance d around and along the axis K from the x-axis I to the line S, Figure 12.1.
The cosine and sine functions of this dual angle are defined such that

cos θ̂ = cosθ − εd sinθ , sin θ̂ = sinθ + εd cosθ . (12.41)

Equation (12.40) can now be written in the form

S= cos θ̂ I+ sin θ̂J, (12.42)

where the screws cos θ̂ I and sin θ̂J are the orthogonal components of S in the frame
F .

The dual scalar product can be used to compute the component of S along the
line I,

S · I= S ·~ı+ ε(S ·o×~ı+C×S ·~ı) = cos θ̂ . (12.43)
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Fig. 12.1 The dual angle θ̂ to a line S in the reference frame R formed by the mutually orthogonal
lines I, J, and K.

This calculation uses the fact that S×~ı =−sinθ~k and that the component of C−o
along ~k is d. Thus, the dual scalar product allows us to calculate the dual angle
between any two lines about their common normal. In fact, for general screws W
and V, we have

W ·V = |W||V|cos θ̂ , (12.44)

where |W| and |V| are the dual magnitudes of these screws and θ̂ is the dual angle
between their axes.

12.2.4.2 The Intersection of Two Lines

We now consider the meaning of a zero value for the dual scalar product between
two screws, that is, W ·V = 0. Let the dual magnitudes of these screws be |W| =
w(1+ ε pw) and |V|= v(1+ ε pv), so we have

W ·V = wv(1+ ε pw)(1+ ε pv)(cosθ − εd sinθ). (12.45)

This shows that W ·V = 0 implies that cos θ̂ = 0, which means that θ̂ = (π/2,0).
Thus, the axes of the two screws must intersect in right angles.

Two screws that satisfy the weaker condition WT [Π ]V = 0 are said to be recip-
rocal. Notice that this is equivalent to the requirement that W ·V = k, where k is a
real constant. Expand this relation to obtain

WT [Π ]V = w ·v◦+w◦v = wv
(
(pw + pv)cosθ −d sinθ

)
= 0. (12.46)

Thus, the condition that two screws are reciprocal is

d tanθ = pw + pv. (12.47)
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K
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o

S

R

θ

d
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Applying this condition to two lines for which pw = pv = 0, we see that to be recip-
rocal the lines must be parallel (θ = 0), or they must intersect (d = 0).

12.2.4.3 The Common Normal

The dual vector product between two lines defines a screw that has the common
normal between the lines as its axis. To see this, we first consider the dual vector
product between the coordinate axes I and J. By direct computation we obtain

I×J=~ı×~+ ε
(
~ı× (o×~)+(o×~ı)×~

)
=~ı×~+ εo× (~ı×~) = K. (12.48)

The simplification of the dual component in this equation uses the identity for triple
vector products

a× (b× c)+b× (c×a)+ c× (a×b) = 0, (12.49)

which in our case yields the relation

−o× (~×~ı) =~ı× (o×~)+~× (~ı×o). (12.50)

Similar calculations show that J×K= I and K× I= J.
Consider a general pair of lines S= (S,C×S)T and L= (W,Q×W)T . Let N be

the common normal between these lines, and let p and r be its points of intersection
with S and L, respectively, Figure 12.2. Now use these two points to define the
moment terms in the Plücker coordinates for these lines, so we have S= (S,p×S)T

and L= (W,r×W)T . We can now compute the vector product

S×L= (S+ εp×S)× (W+ εr×W),

= S×W+ ε
(
S× (r×W)+(p×S)×W

)
. (12.51)

Notice that r = p+dN, where N is the direction of the common normal. Substitute
this into the equation above, and use the vector identity (12.49) to obtain

S×L= sinθN+ ε(cosθN+ sinθ o×N) = sin θ̂N. (12.52)

Thus, the dual vector product is an operation that computes the common normal to
two given lines. Furthermore, for general screws W and V we have

W×V = |W||V|sin θ̂N, (12.53)

where |W| and |V| are the dual magnitudes of W and V.
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Fig. 12.2 Two general lines S and L define a common normal line N.

12.2.5 The Spatial Displacement of Screws

A spatial displacement [T ] = [A,d] transforms the coordinates of points that form
a line. By applying this transformation to two points on the line we obtain a 6× 6
transformation [T̂ ] for Plücker coordinates. This transformation applies to general
screws as well.

Consider the line x= (x,p×x)T for which every point is displaced by the 4×4
homogeneous transform [T ] = [A,d] to define a new line X= (X,P×X)T . We now
determine the associated transformation [T̂ ] that acts directly on Plücker coordinates
such that

X= [T̂ ]x. (12.54)

Let q be a point on the line x a unit distance from p, so x = q−p. Then, we can
compute the new coordinates P and Q to define the line X{

X
P×X

}
=

{
Q−P

P× (Q−P)

}
=

{
[A]x

[D][A]x+[A](p×x)

}
. (12.55)

This calculation uses the skew-symmetric matrix [D] defined by [D]y = d× y for
any y. Thus, we obtain [T̂ ] as the 6×6 matrix

[T̂ ] =
[

A 0
DA A

]
. (12.56)

The inverse of this transformation is easily obtained as

[T̂−1] =

[
AT 0

AT DT AT

]
. (12.57)

Note that because [D] is skew-symmetric, we have [D+DT ] = 0.
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12.2.5.1 The Transformation of Screws

The transformation [T̂ ] defined by (12.56) applies to general screws as well. To see
this, consider the screw w = (w,v)T and compute [T̂ ]w to obtain{

W
V

}
=

{
[A]w

[D][A]w+[A]v

}
. (12.58)

Clearly, the transformation of the direction w = ks of the screw is the same as for
lines, that is,

W = wS = w[A]s = [A]w. (12.59)

Therefore, we focus attention on the term V = [D][A]w+[A]v.
Let w be written in terms of its axis s = (s,p× s)T , so we have w = (ws,wp×

s+wpws)T , where w is the magnitude and pw the pitch of w. Clearly, we have

[D][A](ws) = wd×S. (12.60)

We can now compute

[A]v = [A](wp× s+wpws) = w([A]p)×S+wpwS. (12.61)

Combining these results we have

V = [D][A]w+[A]v = P×W+ pwW, (12.62)

where P = [A]p+d. Thus, for a general screw w in M we obtain

W = [T̂ ]w. (12.63)

The transformation [T̂ ] preserves the magnitude and pitch of screws.
The matrix form of the dual scalar product makes it easy to show that the trans-

formation [T̂ ] preserves the dual magnitude of a screw. In particular, we show that
W ·W = w ·w by the calculation

W ·W = ([T̂ ]w) · ([T̂ ]w) =
(
wT [A]T [A]w,wT [T̂ ]T [Π ][T̂ ]w

)
=
(
wT w,wT [Π ]w

)
= w ·w. (12.64)

This computation uses the identities [A]T [A] = [I] and [T̂ ]T [Π ][T̂ ] = [Π ].
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12.3 The Geometry of Screw Axes

12.3.1 The Screw Axis of a Displacement

We have seen that for every spatial displacement there is a fixed line, called its screw
axis. Here we show that the Plücker coordinates S= (S,V) of this screw axis satisfy
the condition

S= [T̂ ]S. (12.65)

This shows that the screw axis is an invariant of the 6×6 transformation matrix [T̂ ].
We rewrite (12.65) as the equation

[I− T̂ ]S= 0, (12.66)

and seek solutions other than S= 0. This is easily done if we separate it into the pair
of 3×1 vector equations

[I−A]S = 0 and [I−A]V− [DA]S = 0. (12.67)

We already know how to determine the vector S = (sx,sy,sz)
T , which is the rotation

axis of the rotation matrix [A].
Notice that because [A]S = S, the second equation of (12.67) can be written as

[I−A]V = [D]S. (12.68)

Now [D]S = d×S must be orthogonal to S. Therefore, it does not have a component
in the direction of the null space of [I−A], which is S. This means that we can solve
this equation for V.

Substitute Cayley’s formula for [A], and simplify to obtain

[B]V =
1
2
[I−B][S]d; (12.69)

for convenience we have introduced [D]S = −[S]d. Using the fact that [B] =
tan(φ/2)[S], we can write this equation as

[S]V =
1

2tan φ

2

[S][I−B]d = C. (12.70)

Finally, multiply both sides by [S] and simplify to obtain

V =
−1

2tan φ

2

[S2][I−B]d. (12.71)

Because S ·V = 0, we see that S= (S,V)T are the Plücker coordinates of a line.
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The reference point C for S is determined by C= S×V, which is given in (12.70)
above. The line S= (S,C×S)T is exactly the screw axis that was formulated earlier
for the a spatial displacement [T ] = [A,d].

12.3.2 Perpendicular Bisectors and the Screw Axis

A spatial displacement preserves the distances and angles between all points in the
moving body. Therefore, it preserves the dual angles between lines in the body. In
particular, the dual angle α̂ between the screw axis S of a displacement and the axis
of a general screw must be the same before and after the displacement, Figure 12.3.

Fig. 12.3 Corresponding positions of lines x and X lie at the same dual angle α̂ relative to the
screw axis S of a spatial displacement.

This is seen by letting x be the coordinates of a screw in the initial position, so we
have X= [T̂ ]x as its coordinates after the displacement. From the fact that S= [T̂ ]S,
we can compute

S ·X= ([T̂ ]S) · ([T̂ ]x) = S ·x. (12.72)

Thus, the screw axis S forms the same dual angle α̂ with the axes of both x and its
corresponding screw X.

This allows us to compute

S · (X−x) = 0, (12.73)

which shows that the axis of the difference of any two corresponding screws X− x
must intersect S in a right angle.

S

x

X

a α

a

α

N1

N2

d
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12.3.2.1 The Screw Perpendicular Bisector

We now examine equation (12.73) in detail. To do this focus on the pair of cor-
responding screws x = p and X = P and consider all the screws Y that satisfy the
equation

Y · (P−p) = 0. (12.74)

For example, the screw (P+p)/2 is a member of this set, as can be seen from the
calculation

P+p

2
· (P−p) =

P ·P−p ·p
2

= 0. (12.75)

Recall from (12.64) that |P|= |p|.
Let D be the common normal to the lines p and P with points of intersection c1

on p and c2 on P. Introduce the line V that passes through the midpoint c of the
segment c2−c1 and is directed along the bisector of the directions p and P. Finally,
let N=D×V, so D, V, and N are the coordinate axes of a reference frame R located
at c. See Figure 12.4.

Fig. 12.4 The screws P+p and P−p have V and N as their respective axes.

If we denote the dual angle between p and P by η̂ = (η ,h), then we can write
the components of these screws as

p= |p|
(

cos
η̂

2
V− sin

η̂

2
N
)

and P= |p|
(

cos
η̂

2
V+ sin

η̂

2
N
)
. (12.76)

This allows us to compute

P+p= 2|p|cos
η̂

2
V. (12.77)

The line V is the axis of the midpoint screw. Furthermore, from

p P

p

D
c2

c1 h

η

h
2

V
P

η
2

N
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P−p= 2|p|sin
η̂

2
N (12.78)

we see that N is the axis of the screw difference P−p.
Thus, the set of screws Y that satisfy (12.74) must have axes that intersect N in

right angles. This defines a two parameter family of screws that we call a screw
perpendicular bisector.

12.3.2.2 Constructing the Screw Axis

The equation (12.73) shows that the screw axis S must lie on the screw perpendicular
bisector for all segments X−x in the moving body. This provides a convenient way
to construct the screw axis of a displacement. Consider two specific segments P−p
and Q−q formed by the two screws p, q and their corresponding screws P = [T̂ ]p
and Q= [T̂ ]q. This defines two screw perpendicular bisectors

Y · (P−p) = 0 and Y · (Q−q) = 0. (12.79)

Let N1 be the axis of P−p, and let N2 be the axis of Q−q. Then the screw axis of
the displacement S must intersect both of these axes in right angles. Thus, S must
be the common normal to the axes N1 and N2.

The algebra of dual vectors allows us to compute S from the dual vector product
of the screws P−p and Q−q, that is,

S=
(P−p)× (Q−q)

|(P−p)× (Q−q)|
. (12.80)

This provides a direct way to compute the screw axis of a spatial displacement from
data that define the positions of two screws.

12.3.2.3 The Dual Displacement Angle

We can determine the dual angle φ̂ of a spatial displacement using any screw p and
its corresponding displaced screw P = [T̂ ]p. This is done by computing the dual
scalar and vector products

sin φ̂ =
(S×p)× (S×P) ·S
|(S×p) · (S×P)|

, cos φ̂ =
(S×p) · (S×P)

|(S×p) · (S×P)|
. (12.81)

Thus, we have

tan φ̂ =
(S×p) ·P

(S×p) · (S×P)
. (12.82)

The simplification in the numerator is obtained using dual vector identities that are
identical to those of vector algebra.
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12.3.3 Rodrigues’s Equation for Screws

We now examine in more detail the geometric relationship between the screw axis S
of a displacement [T̂ ] and the initial and final positions of a general screw. Because
X= [T̂ ]x, we have X ·X−x ·x= 0, which can also be written as

(X−x) · (X+x) = 0. (12.83)

This can be interpreted as stating that the axes of the diagonals of a screw rhombus
must intersect at right angles. In what follows, we will determine the components of
these diagonals and obtain a screw version of Rodrigues’s equation.

Let the common normals between the screw axis S and the axes of the corre-
sponding screws x and X be the lines N1 = (N1,r1×N1)

T and N2 = (N2,r2×N2)
T ,

where ri are the respective points of intersection with S, Figure 12.5. Also intro-
duce the lines V1 and V2, given by Vi = S×Ni. Then x and X can be expanded into
components

x= |x|(cos α̂S− sin α̂V1), X= |x|(cos α̂S− sin α̂V2). (12.84)

From these equations we obtain the screws X−x and X+x as

X−x=−|x|sin α̂(V2−V1),

X+x= |x|
(
2cos α̂S− sin α̂(V2 +V1)

)
. (12.85)

Fig. 12.5 The components of the screws X+x and X−x can be determined in the S, N, V frame.

To simplify (12.85), we introduce the line N through the midpoint c of the seg-
ment r2− r2 along S. Choose the direction of N so that it bisects the rotation angle
φ , that is, so N is aligned with the vector (N1 +N2)/2. We complete the frame at
c by introducing V, given by V = S×N. In the S, N, V frame the lines N1 and N2

S

2

x

X

α

α
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N2
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become

N1 = cos
φ̂

2
N− sin

φ̂

2
V, N2 = cos

φ̂

2
N+ sin

φ̂

2
V. (12.86)

Notice that V2−V1 = S× (N2−N1) = 2sin(φ̂/2)S×V. Therefore,

X−x= 2|x|sin α̂ sin
φ̂

2
N. (12.87)

From the fact that V1 +V2 = S× (N1 +N2) = 2cos(φ̂/2)V, we have

X+x= 2|x|
(

cos α̂S− sin α̂ cos
φ̂

2
V
)
. (12.88)

From equations (12.87) and (12.88) we obtain the screw form of Rodrigues’s equa-
tion as

X−x= tan
φ̂

2
S× (X+x). (12.89)

The screw B= tan(φ̂/2)S is known as Rodrigues’s screw.

12.4 The Spatial Screw Triangle

12.4.1 The Screw Axis of a Composite Displacement

Rodrigues’s equation can be used to derive a formula that defines the screw axis of
a composite displacement in terms of the screw axes of the two individual displace-
ments.

Let [T (α̂,A)] be the displacement with screw axis A and rotation angle and slide
distance α̂ = (α,a). Given another displacement [T (β̂ ,B)], we can compute the
composite displacement by matrix multiplication

[T (γ̂,C)] = [T (β̂ ,B)][T (α̂,A)]. (12.90)

Our goal is to obtain a formula for the screw axis C and the dual angle γ̂ in terms of
β̂ , B and α̂ , A.

The displacement [T (α̂,A)] has the associated 6× 6 transformation [T̂ (α̂,A)]

that transforms screws x in M to y in M′. The displacement [T (β̂ ,B)] also has an
associated 6×6 transformation [T̂ (β̂ ,B)] that transforms screws y in M′ to X in F .
This sequence of displacements can be written using Rodrigues’s equation (12.89)
to yield
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y−x= tan
α

2
A× (y+x),

X−y = tan
β

2
B× (X+y). (12.91)

We eliminate the screw y in these equations in order to obtain a formula for the
screw axis C and dual angle γ̂ .

The following calculations use dual vector algebra and follow exactly the deriva-
tion for the spherical version of Rodrigues’s formula. The first step is to introduce
X in the first equation and x in the second, so we have

y−x= tan
α̂

2
A×

(
X+x− (X−y)

)
,

X−y = tan
β̂

2
B×

(
X+x+(y−x)

)
. (12.92)

Add these equations and use (12.91) to obtain

X−x= (tan
β̂

2
B+ tan

α̂

2
A)× (X+x)− tan

α̂

2
A×

(
tan

β̂

2
B× (X+y)

)
+ tan

β̂

2
B
(

tan
α̂

2
A× (y+x)

)
. (12.93)

Triple product identities for dual vectors that are identical to those for vectors sim-
plify this equation to yield

X−x= tan
γ̂

2
C× (X+x), (12.94)

where

tan
γ̂

2
C=

tan β̂

2 B+ tan α̂

2 A+ tan β̂

2 tan α̂

2 B×A

1− tan β̂

2 tan α̂

2 B ·A
. (12.95)

This is Rodrigues’s formula for screws.

12.4.2 The Spatial Triangle

We now show that (12.95) is the equation of an assembly of three lines A, B, and C
known as a spatial triangle. Introduce the common normal N directed from the line
B to A. Now introduce the common normals NA and NB directed from A and B to
C, respectively. The lines A, B, and C form the vertices of the spatial triangle, and
the common normals N, NA, and NB form its sides, Figure 12.6.

Let the interior dual angle between the sides NA and N be α̂/2. Similarly, let
the interior dual angle between the sides N and NB be β̂/2. We now show that for
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Fig. 12.6 The spatial triangle formed from the lines A, B, and C and their common normals N,
Na, and Nb.

this configuration the line C and exterior dual angle γ̂/2 are defined by Rodrigues’s
formula (12.95).

From these definitions we see that

NA×NB = sin
γ̂

2
C and NA ·NB = cos

γ̂

2
. (12.96)

A formula for C is easily obtained by determining NA and NB explicitly in terms of
A and B.

Let V = N×B complete the reference frame formed by N, B, and V. The line
NB intersects B and lies parallel to the NV plane at the angle β̂/2 relative to N.
Therefore,

NB = cos
β̂

2
N− sin

β̂

2
V. (12.97)

Note that N and V are computed from the given lines A and B.
Introduce the line T = N×A. Then a computation similar to (12.97) yields the

coordinates of T as
T=−sin δ̂B+ cos δ̂V. (12.98)

The line NA lies parallel to the TN plane such that the dual angle measured from
NA to N is α̂/2. Thus, NA is given by

NA = sin
α̂

2
T+ cos

α̂

2
N. (12.99)
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12.4.2.1 The Equation of the Spatial Triangle

We now compute the scalar and vector products in (12.96) to obtain

sin
γ̂

2
C= cos

α̂

2
sin

β̂

2
B+ sin

α̂

2
cos

β̂

2
A+ sin

α̂

2
sin

β̂

2
B×A,

cos
γ̂

2
= cos

α̂

2
cos

β̂

2
− sin

α̂

2
sin

β̂

2
B ·A. (12.100)

Notice that B ·A= T ·V = cos δ̂ . Dividing these two equations, we obtain

tan
γ̂

2
C=

tan β̂

2 B+ tan α̂

2 A+ tan β̂

2 tan α̂

2 B×A

1− tan β̂

2 tan α̂

2 B ·A
. (12.101)

Equation (12.101) defines the coordinates of the line C in terms of those of A
and B and their interior dual angles β̂/2 and α̂/2, respectively. Comparing this to
(12.95) we see immediately that Rodrigues’s formula is the equation of the spatial
triangle formed by the three screw axes A, B, and C.

12.4.3 The Composite Screw Axis Theorem

The screw form of Rodrigues’s equation is separated into two parts by the dual unit
ε . The real part is simply Rodrigues’s equation for the composition of rotations. We
have seen that this defines a spherical triangle 4ABC, which we call the spherical
image of the spatial triangle4ABC.

We have already seen that there are two forms of the spherical image 4ABC
depending on the magnitude of the rotation angles α , β , and γ .

1. If sin(γ/2)> 0, that is, γ < 2π , then the vertex C has a positive component along
B×A. In this case α/2 and β/2 are the interior angles of4ABC at the vertices
A and B. The angle γ/2 is the exterior angle at C.

2. If sin(γ/2) < 0, that is, γ > 2π , then the vertex C is directed opposite to the
vector B×A. The angles α/2 and β/2 are the exterior angles of 4ABC at A
and B, respectively. If the angle κ is the interior angle at C, then γ/2 = κ +π .

The dual part of Rodrigues’s formula (12.95) is linear in the slide parameters of
the dual angles. This means that the spatial configuration of lines can be adjusted by
changing the slide parameters a and b without changing the directions of any of the
lines A, B, or C. Thus, we have the following theorem:

Theorem 14 (The Composite Screw Axis Theorem). The axis C of a composite
displacement [TC] = [TB][TA] forms a spatial triangle with the screw axes B and A of
the displacements [TB] and [TA]. If sin(γ/2)> 0, then the interior dual angles of this
triangle at A and B are α̂/2 and β̂/2, respectively. If sin(γ/2) < 0, then α̂/2 and
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β̂/2 are the exterior dual angles at these vertices. In this case, if κ̂ is the interior
dual angle at C, then γ̂/2 = κ̂ +π .

12.4.4 Dual Quaternions and the Spatial Triangle

W. K. Clifford [13] generalized Hamilton’s quaternions to obtain hypercomplex
numbers known as dual quaternions (Yang and Freudenstein [154]). A dual quater-
nion P̂ is the formal sum of a dual number p̂0 = (p, p◦) and a screw P = (p,a),
written as P̂ = p̂0 +P. Dual quaternions can be added together componentwise, and
multiplied by a scalar like eight-dimensional vectors. They can also be multiplied
by dual scalars like four-dimensional vectors of dual numbers.

Furthermore, Clifford extended Hamilton’s product for quaternions to a product
for dual quaternions, given by the formula

R̂ = P̂Q̂ = (p̂0 +P)(q̂0 +Q)

= (p̂0q̂0−P ·Q)+(q̂0P+ p̂0Q+P×Q). (12.102)

The scalar and vector products are operations between dual vectors.
The conjugate of a dual quaternion Q̂ = q̂0 +Q is Q̂∗ = q̂0−Q, and the product

Q̂Q̂∗ is the dual number

Q̂Q̂∗ = (q̂0 +Q)(q̂0−Q) = q̂2
0 +Q ·Q= |Q̂|2. (12.103)

The dual number |Q̂| is called the norm of the dual quaternion.
We are interested in dual quaternions Q̂ of unit norm, which means that |Q̂|= 1.

These unit dual quaternions can be written in the form

Q̂ = cos
φ̂

2
+ sin

φ̂

2
S, (12.104)

where S= (S,C×S)T is the Plücker coordinate vector of a line.
Now consider the product of the two unit dual quaternions Â = cos(α̂/2) +

sin(α̂/2)A and B̂ = cos(β̂/2)+ sin(β̂/2)B, that is,

Ĉ = cos
γ̂

2
+ sin

γ̂

2
C=

(
cos

β̂

2
+ sin

β̂

2
B
)(

cos
α̂

2
+ sin

α̂

2
A
)
. (12.105)

Expanding this product, we obtain

cos γ̂ + sin γ̂C=
(

cos
β̂

2
cos

α̂

2
− sin

β̂

2
sin

α̂

2
B ·A

)
+
(

sin
β̂

2
cos

α̂

2
B+ sin

α̂

2
cos

β̂

2
A+ sin

β̂

2
sin

α̂

2
B×A

)
. (12.106)
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Compare this to (12.100) to see that dual quaternion multiplication computes the
Plücker coordinates of one vertex of a spatial triangle and its associated exterior dual
angle from the Plücker coordinates of the other two vertices and their interior dual
angles. Thus, the algebra of dual quaternions provides a useful tool for exploiting
the geometry of the spatial triangle.

12.4.5 The Triangle of Relative Screw Axes

Given three positions Mi, Mj, and Mk for a moving body, we have the three relative
transformations [T̂i j] = [T̂j][T̂−1

i ], [T̂jk] = [T̂k][T̂−1
j ], and [T̂ik] = [T̂k][T̂−1

i ]. From the
fact that

[T̂ik] = [T̂jk][T̂i j], (12.107)

we can use Rodrigues’s formula for screws to obtain

tan
φ̂ik

2
Sik =

tan φ̂ jk
2 S jk + tan φ̂i j

2 Si j + tan φ̂ jk
2 tan φ̂i j

2 S jk×Si j

1− tan φ̂ jk
2 tan φ̂i j

2 S jk ·Si j

. (12.108)

The spatial triangle formed by the three relative screw axes Si j, Sik, and S jk is anal-
ogous to the pole triangle for three planar displacements and is called the screw
triangle, Figure 12.7.

Fig. 12.7 The screw triangle formed by the screw axes Si j , S jk, and Sik.
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12.5 Summary

This chapter has developed the basic geometric properties of spatial rigid displace-
ments. The central role played by the screw axis of a displacement lead to the intro-
duction of line geometry, screws, and dual vector algebra. We obtain the screw form
of Rodrigues’s formula and see that it is the equation of a spatial triangle formed by
three lines and their common normals. Its properties generalize results for the planar
and spherical pole triangles.

12.6 References

The kinematics of spatial displacements is developed in detail in Roth [104, 105] and
Bottema and Roth [5]. Dimentberg [25] introduced the algebra of dual vectors and
Yang [155] applied it to the analysis of spatial linkages. Also see Woo and Freuden-
stein [152]. Yang and Freudenstein [154] formulated dual quaternion algebra for
use in spatial kinematic theory. Pennock and Yang [93] use dual-number matrices
to solve the inverse kinematics of robots. Fischer [34] presents the kinematic, static,
and dynamic analysis of spatial linkages using dual vectors and matrices.

Exercises

1. A spatial displacement has as its axis the line through the origin in the direction
S = (0,cos(45◦),sin(45◦))T . Let the rotation and slide around and along this axis
be (45◦,

√
2). Determine the 4×4 homogeneous transform.

2. Determine the spatial displacement [D] = [T1][T2][T2] defined by a sequence of
transformations: (i) [T1], a translation by (5,4,1)T ; (ii) [T2], a rotation by 30◦

about the x-axis; and (iii) [T3], a rotation by 60◦ about the unit vector through the
point (2,0,2)T (Crane and Duffy [16]).

3. Determine the 4× 4 homogeneous transform [T12] from the initial and final po-
sitions of four points by constructing the matrix equation using homogeneous
coordinates, [A2,B2,C2,D2] = [T12][A1,B1,C1,D1]. Solve this equation for [T12]
using the coordinates in Table 12.1 (Sandor and Erdman [112]).

Table 12.1 Point coordinates defining two spatial positions

Point M1 M2

Ai (0,3,7)T (1.90,11.23,7.19)T

Bi (2,7,10)T (3.29,14.44,11.29)T

Ci (0,5,10)T (4.26,13.41,8.84)T

Di (−2,5,7)T (3.92,9.83,8.59)T



306 12 Spatial Kinematics

4. Use the coordinates in Table 12.1 to determine the screw axis S and rotation and
slide around and along this axis for the displacement [T12].

5. Given the screw axis S and rotation and slide φ and d let N1 and N2 be
two lines that intersect S at right angles that are separated by the dual angle
φ̂/2 = (φ/2,d/2). Show that this displacement is equivalent to the sequence of
reflections through N1 and then N2 (Bottema and Roth [5]).

6. Show that Rodrigues’s screw B can be computed from the initial and final posi-
tions of two lines p, P and q, Q to obtain B= (P−p)×(Q−q)/(P−p) ·(Q+q).

7. Show that three positions Pi, i = 1,2,3, of a point can be obtained from the
reflection of a cardinal point P∗ through the three sides of the screw triangle
defined by three specified spatial positions.

8. Obtain three positions Li, i = 1,2,3, of a line by the reflection of a cardinal line
L∗ through the three sides of the screw triangle.



Chapter 13
Algebraic Synthesis of Spatial Chains

In this chapter we consider the design of spatial TS, CC, and RR chains. Our ap-
proach is the same as that used to design planar and spherical linkages. For each
chain we determine the geometric constraints that characterize the chain, and for-
mulate design equations that are solved for a given set of task positions.

The maximum number of task positions that can be prescribed decreases with the
degree of freedom of the chain. In particular, the five-degree-of-freedom TS chain
can reach as many as seven specified task positions, the four-degree-of-freedom CC
chain can reach five positions, and the two-degree-of-freedom spatial RR can only
reach three positions.

of task positions. However, in practice, the use of fewer task positions can increase
the dimension of the set of solutions providing flexibility to address other aspects
of the design. This feature of spatial linkage design has yet to be exploited in a
systematic way.

Gimbal joint

Spherical joint

Fig. 13.1 The TS spatial open chain.
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13.1 The Geometry of a TS Spatial Chain

A TS chain is a link connected to ground by a T-joint, also known as a gimbal
mount, and to an end-link by a spherical joint, Figure 13.1. The revolute joints that
make up the T-joint are often oriented to provide a slew rotation about a vertical
axis combined with an elevation rotation about a horizontal axis. The S-joint can
be constructed as a ball-in-socket or as a 3R wrist. In either case it is assumed to
provide full orientation freedom of the floating link about its center.

Let the center of the T-joint be the fixed point B, and let the center of the S-joint
coincide with a point p in M that has coordinates P = [T ]p in F . Then the TS chain
constrains the floating link to move so that the point P lies on a sphere about B, that
is,

(P−B) · (P−B) = R2, (13.1)

where R is the length of the crank. This constraint characterizes the geometry of the
TS chain.

13.1.1 Perpendicular Bisectors

Let the task for this chain be defined by n spatial positions Mi, i = 1, . . . ,n, of the
end-link, which means that we have the 4×4 transforms [Ti], i = 1, . . . ,n. The con-
straint equation (13.1) must be satisfied by the coordinates Pi, i = 1, . . . ,n, of the
moving pivot in each position. Therefore, we have

(Pi−B) · (Pi−B) = R2, i = 1, . . . ,n. (13.2)

Notice that this equation remains correct even for point coordinate vectors Pi and B
that are homogeneous with the fourth component normalized to 1. We now manip-
ulate these constraints to obtain the design equations for the TS chain.

Subtract the first of constraint equations (13.2) from those remaining to obtain

(Pi−P1) ·B− 1
2
(Pi ·Pi−P1 ·P1) = 0, i = 2, . . . ,n. (13.3)

We factor the second term to obtain (Pi−P) · (Pi +P)/2, so this set of equations
becomes

(Pi−P1) · (B−V1i) = 0, i = 2, . . . ,n, (13.4)

where V1i is the midpoint of the segment Pi−P. These equations state that the fixed
pivot B lies on the perpendicular bisecting plane of each of the segments Pi−P.
This is an algebraic expression of the geometric fact that the perpendicular bisector
of any chord of a sphere passes through its center. We use these equations as our
design equations for the TS chain.
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13.1.2 The Design Equations

As we have done previously, choose the first position M1 of the task as a ref-
erence position, and determine the n− 1 relative displacements [T1i] = [Ti][T−1

1 ],
i = 2, . . . ,n. This allows us to define the positions Pi of the moving pivot in terms of
P1, so we have

D1i : ([T1i− I]P1) ·
(

B− 1
2
[T1i + I]P1

)
= 0, i = 2, . . . ,n. (13.5)

Notice that this equation assumes that P1 and B are normalized homogeneous coor-
dinates.

Introduce the relative rotation matrix [A1i] and relative translation vector d1i, so
that [T1i] = [A1i,d1i]. Then, given the relative screw axis S1i, we have the identity

d1i = [I−A1i]C1i +d1iS1i, (13.6)

where C1i is a point on the screw axis and d1iS1i is the slide along this axis. This
allows us to compute

[T1i− I]P1 = [A1i− I](P1−C1i)+d1iS1i

and

[T1i + I]P1 = [A1i + I](P1−C1i)+d1iS1i +2C1i. (13.7)

Substitute these equations into (13.5) to obtain

([A1i− I](P1−C1i)+d1iS1i)

·
(
(B−C1i)−

1
2
[A1i + I](P1−C1i)−

1
2

d1iS1i

)
= 0. (13.8)

Expanding this expression, we obtain after some cancellation

D1i : (B−C1i) · [A1i− I](P1−C1i)+d1iS1i · (B−P1)−
d2

1i
2

= 0,

i = 2, . . . ,n. (13.9)

This form of the design equations shows that they are bilinear in the unknown com-
ponents of the vectors B and P1.

Let the components of the fixed and moving pivots be denoted by B = (x,y,z)T

and P1 = (u,v,w)T . Then seven spatial positions yield six design equations in these
six unknown components. Collect these equations into the matrix equation
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...

...
...

...
A7(x,y,z) B7(x,y,z) C7(x,y,z) D7(x,y,z)




u
v
w
1

=


0
...
0

 . (13.10)

We solve these equations in the sections that follow.

13.1.3 Four Specified Spatial Positions

Before determining the solution to the general case, it is interesting to consider the
design of TS chains to reach four task positions. In this case we have three bilinear
equations in the six components of the fixed point B and the moving point P1. We
can choose to select either of these points and solve the resulting linear equations
for the other.

Suppose, for example, that we select the moving point P1 = (λ ,µ,ν)T . Then we
can gather the coefficients of the design equations (13.5) into the matrix equation

A′2 B′2 C′2 D′2
A′3 B′3 C′3 D′3
A′4 B′4 C′4 D′4




x
y
z
1

=

0
0
0

 . (13.11)

This equation has a unique solution B = (x,y,z)T , which is the center of the sphere
that passes through the four points Pi, i = 1,2,3,4.

13.1.3.1 The RS Chain

Notice that if the rank of the coefficient matrix in (13.11) is two, not three, then the
four points Pi, i = 1,2,3,4, lie on a circle and do not define a sphere. This can be
viewed as the condition for the design of an RS chain that reaches the four positions.
Each of the four 3× 3 minors yields a cubic polynomial in λ , µ , ν that defines a
cubic surface in F . These four surfaces intersect in a finite number of points that
are the moving pivots P1 with four positions on a circle. Solve (13.11) to obtain the
associated fixed pivot.

13.1.4 Seven Specified Spatial Positions

The solution of the TS design equations for seven positions follows the same pro-
cedure as that used to solve the planar RR design equations. Considering (13.10) as
six linear equations in three unknowns, we see that there is a solution only if each of
the fifteen 4×4 minors of the 6×4 matrix [M] = [Ai,Bi,Ci,Di] is zero. Computing
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each of these determinants we obtain 15 quartic polynomials in x, y, z,

R j :
35

∑
i=1

a jixlymzn = 0, l,m,n = 0, . . . ,4, l +m+n≤ 4, j = 1, . . . ,15. (13.12)

Each R j has 35 terms.

13.1.4.1 Eliminate x and y

Rewrite these polynomials so that z is absorbed into the coefficients and only x and
y appear explicitly, that is,

R j : d j1x4 +d j2x3y+d j3x2y2 +d j4xy3 +d j5y4 +d j6x3 +d j7x2y

+d j8xy2 +d j9y3 +d j10x2 +d j11xy+d j12y2 +d j13x+b j14y

+d j15 = 0, j = 1, . . . ,15. (13.13)

Note that the total degree of any term is at most 4. Assemble these these polynomials
Ri, i = 1, . . . ,15, into the matrix equation

[M15×15]V = 0, (13.14)

where V is the vector of 15 power products

V = (x4,x3y,x2y2,xy3,y4,x3,x2y,xy2,y3,x2,xy,y2,x,y,1)T . (13.15)

This equation has a solution only if the determinant of the coefficient matrix is zero,
that is,

|M15×15|= 0. (13.16)

This determinant is a polynomial of degree 20, because it has five columns of con-
stant terms, four columns of first-degree terms, three of degree two, two of degree
three, and one of degree four, which yields the degree 4+6+6+4 = 20.

13.1.4.2 Reduction of the Constant Terms

The first five columns of constant terms in the determinant of [M15×15] can be row
reduced by Gaussian elimination to yield
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|M15×15|=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1,1 c1,2 c1,3 c1,4 c1,5 c1,6 · · · c1,15
0 c2,2 c2,3 c2,4 c2,5 c2,6 · · · c2,15
0 0 c3,3 c3,4 c3,5 c3,6 · · · c3,15
0 0 0 c4,4 c4,5 c4,6 · · · c4,15
0 0 0 0 c5,5 c5,6 · · · c5,15
0 0 0 0 0 c6,6 · · · c6,15
...

...
...

...
...

...
...

0 0 0 0 0 c15,6 · · · c15,15

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (13.17)

In general, the five constants, c1,1, c2,2, c3,3, c4,4, c5,5, must be nonzero, for otherwise
the determinant of [M15×15] is always zero. Thus, the polynomial defining the TS
chains is given by the 10×10 determinant

|M10×10|=

∣∣∣∣∣∣∣∣∣
c6,6 c6,7 · · · c6,15
c7,6 c7,7 · · · c7,15

...
...

...
c15,6 c15,7 · · · c15,15

∣∣∣∣∣∣∣∣∣= 0. (13.18)

This 20th degree polynomial can be generated and solved using algebraic manipu-
lation software on a personal computer.

The real roots of the polynomial defined by (13.18) yields as many as 20 values
for z. For each real root z j = Bz, j, we solve (13.14) to obtain V j, which in turn yields
x j = Bx, j and y j = By, j. The result is as many as 20 points B j that are the fixed pivots
of the TS chains.

For a given fixed pivot B j use (13.10) to compute the associated moving pivot
P1. The length of the link joining these two pivots is R j, which is obtained using
(13.1).

13.2 The Geometry of a CC Chain

A spatial CC chain has a fixed C-joint connected by a link to a moving C-joint and
allows the end-link four degrees of freedom, Figure 13.2. Let G be the axis of the
base joint of the chain and W the axis of the moving joint. Then the link connecting
these axes maintains a constant distance r and a constant twist angle ρ along the
common normal between the fixed axis G and every location Wi of the moving axis.
This means that the dual angle ρ̂ = (ρ,r) remains constant as the chain moves.

The spatial positions of the floating link are defined by the 4× 4 homogeneous
transforms [T ] = [A,d]. Associated with this transform is the 6× 6 transformation
[T̂ ] for screws. If w is the Plücker coordinate vector of the moving axis in M, then
in F we have the corresponding locations of the moving axis, given by

Wi = [T̂i]w, (13.19)
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Fixed cylindric joint

Moving cylindric joint

Fig. 13.2 The CC open chain.

for each position [T̂i] of M.
In order to maintain a constant dual angle ρ̂ the coordinates G and Wi must

satisfy the constraint equations

G ·Wi = |G||Wi|cos ρ̂, i = 1, . . . ,n. (13.20)

Because |w|= |Wi| for each of the positions of w, we see that the right side of these
equations are identical. Subtract the first equation from those remaining to obtain

G · (Wi−W1) = 0, i = 2, . . . ,n. (13.21)

Compare these equations to (12.73) to see that G lies on the screw perpendicular
bisector of each segment Wi−W1.

Now introduce the relative transformations [T̂1i] = [T̂i][T̂−1
1 ] such that Wi =

[T̂1i]W
1. Then we obtain

G · [T̂1i− I]W1 = 0, i = 2, . . . ,n. (13.22)

These are the design equations for a CC chain.

13.2.1 Direction and Moment Equations

Let the Plücker vectors of the fixed and moving axes be G= (G,B×G)T and W =
(Wi,Pi×Wi)T , where B is a reference point on the fixed axis and Pi is the reference
point for the moving axis. We now separate the dual scalar product of the design
equations into the two sets of equations

G · [A1i− I]W1 = 0, GT [Π ][T1i− I]W1 = 0, i = 2, . . . ,n. (13.23)
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The first set determines the directions of the axes of the CC chain and are called the
direction equations. The second set defines the points B and P1 that locate the fixed
and moving axes and are called the moment equations.

13.2.1.1 The Direction Equations

The direction equations for the design of a CC chain are bilinear and homogeneous
in the direction vectors G and W1,

P1i : G · [A1i− I]W1 = 0, i = 2, . . . ,n. (13.24)

In fact, they are exactly the equations for the design of a spherical RR chain. The
solution to these equations presented in chapter 8 yields a finite number of the di-
rections for the axes of a CC chain that reaches five task positions.

13.2.1.2 The Moment Equations

For convenience let the moment terms of the fixed and moving axes be denoted by
R = B×G and V1 = P1×W1. Then the moment equations can be written as

M1i :
{

G
R

}T [D1iA1i A1i− I
A1i− I 0

]{
W1

V1

}
= 0, i = 2, . . . ,n. (13.25)

The 6×6 matrix in this equation is [Π ][T̂1i− I].
The vectors G and W1 are known from the direction equations (13.24). There-

fore, the moment equations are linear in the unknown components of R and V1, that
is,

R · [A1i− I]Wi +G · [A1i− I]V1 +G · [D1iA1i]W1 = 0, (13.26)

or
Li ·R+Mi ·V1 +Ni = 0, i = 2, . . . ,n, (13.27)

where

Li = [A1i− I]Wi, Mi = [A1i− I]T G, Ni = G · [D1iA1i]W1. (13.28)

We must add to these equations the requirements that G ·R = 0 and W1 ·V1 = 0, so
G= (G,R)T and W1 = (W1,V1)T are Plücker coordinates of lines. This yields the
matrix equation 

GT 0
0 W1T

LT
2 MT

2
...

...
LT

n MT
n


{

R
V1

}
=



0
0
−N2

...
−Nn


. (13.29)
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Solve these equations for the moments R and V1. Then the reference points B and
P1 on G and W1 are given by

B =
G×R
G ·G

and P1 =
W1×V1

W1 ·W1 . (13.30)

13.2.2 Five Specified Spatial Positions

Given five spatial positions of the moving body, we know that the direction equa-
tions (13.24) can be solved to determine up to six pairs of directions G and W1. For
n = 5, the moment equations (13.29) become

GT 0
0 W1T

LT
2 MT

2
...

...
LT

5 MT
5


{

R
V1

}
=



0
0
−N2

...
−N5


. (13.31)

Solve these six linear equations to define the unique set of moments R, V for each of
the directions obtained for G and W1. The six fixed axes G are known as Burmester
lines and are the spatial analogue to the Burmester points in the plane. Thus, as
many as six CC chains are obtained that reach five spatial task positions.

13.2.3 The Transfer Principle

We have seen that algebra of dual vectors has all of the properties of vector algebra.
In fact, every calculation using vectors has an analogous calculation using dual vec-
tors. This is easily verified, or it can be viewed as the result of the differentiability
of the rational operations and trigonometric functions that make up vector alge-
bra, Appendix D. The relationship between these two algebras is called the transfer
principle.

What is interesting about the transfer principle is the connection that it provides
between the geometry of points and the geometry of lines. Geometric facts in point
geometry that are defined using vector equations become geometric facts in line
geometry obtained from the dual-vector versions of the same equations. We have
already seen that Rodrigues’s formula for screws (12.95) is the dual-vector form of
Rodrigues’s formula for rotation axes (8.84). Similarly, the the screw perpendicular
bisector (13.21) is the equation of a perpendicular bisecting plane (9.11) written
using dual vectors. In fact, the substitution of dual vectors transforms the entire
design theory for spherical RR chains into the design theory for CC chains.
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In what follows we focus on geometric results for CC chains that arise from
the spatial dyad triangle and the central-axis theorem. The relationship between
these results and the identical results for the spherical and planar RR design theories
provides a unifying framework for spatial design theory.

Fig. 13.3 The spatial dyad triangle for the CC chain.

13.2.4 The Spatial Dyad Triangle

The displacement of the end-link of a CC chain from position Mi to Mj can be
viewed as the result of a screw displacement by α̂i j about the moving axis Wi fol-
lowed by a screw displacement by β̂i j about the fixed axis G. This results in a relative
displacement from Mi to Mj by the amount φ̂i j about the screw axis Si j defined by
the transformation equation

[T (φ̂i j,Si j)] = [T (β̂i j,G)][T (α̂i j,W
i)]. (13.32)

Rodrigues’s formula for screws yields the equation of the spatial triangle formed by
Si j, G, and Wi,

tan
φ̂i j

2
Si j =

tan β̂i j
2 G+ tan α̂i j

2 Wi + tan β̂i j
2 tan α̂i j

2 G×Wi

1− tan β̂i j
2 tan α̂i j

2 G ·Wi
. (13.33)

Thus, the internal angles at Wi and G are α̂i j/2 and β̂i j/2, respectively, and the
external angle at Si j is φ̂i j/2, Figure 13.3.
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13.2.5 The Central-Axis Theorem

Consider the CC chain that guides a body through positions Mi, Mj, and Mk, which
means that we have locations Wi, W j, and Wk of the moving axis, and

G · (W j−Wi) = 0 and G · (Wk−Wi) = 0. (13.34)

This states that G lies on the screw perpendicular bisectors of these segments.
Let Li and L j be the common normal lines between G and the two lines Wi and

W j. The dual angle β̂i j between these common normals is the dual crank rotation
angle about the fixed pivot. Introduce the midpoint screw Mi j = (Wi +W j)/2 that
has the axis Vi j. Notice that Vi j bisects the dual angle β̂i j.

Similarly, we consider the position Wk and construct its common normal Lk to
G. The dual crank angle β̂ jk is measured from the line L j to Lk. Let V jk be the axis
of the midpoint screw M jk = (W j +Wk)/2. The dual angle between the lines Vi j
and V jk is easily seen to be

β̂i j

2
+

β̂ jk

2
=

β̂ik

2
. (13.35)

The relative screw axis Si j of the displacement from position Mi to Mj must also
lie on the screw perpendicular bisector. Therefore,

Si j · (W j−Wi) = 0. (13.36)

This means that Si j and S jk have the lines Vi j and V jk, respectively, as common
normals with the fixed axis G.

We can now compute the dual angle β̂ik in terms of the relative screw axes Si j
and S jk and the fixed axis using the formula

tan
β̂ik

2
=

G×Si j ·S jk

(G×Si j) · (G×S jk)
. (13.37)

Thus, a central axis G views the relative screw axes Si j and S jk in the dual angle
β̂ik/2 or β̂ik/2+π . This latter possibility arises because the tangent function of both
angles are equal. We restate this as a theorem.

Theorem 15 (The Central-Axis Theorem). The central axis G of a CC chain that
reaches the spatial positions Mi, Mj, and Mk views the relative screw axes Si j and
S jk in the dual angle β̂ik/2 or β̂ik/2+π , where β̂ik is the crank rotation angle from
position Mi to Mk.
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13.2.6 Roth’s Theorem

Given four positions of a body Mi, i = 1,2,3,4, we can determine six relative ro-
tation axes Si j, i < j = 1,2,3,4. Collect the axes into pairs of complementary axes
for which no subscript is repeated, that is, S12S34, S13S24, and S14S23. Two sets of
complementary axes are used to construct a spatial quadrilateral with the four lines
as vertices and their common normals as sides. The normal lines connecting com-
plementary pairs of axes are the diagonals of this complementary-screw quadrilat-
eral. The six relative screw axes define three complementary-screw quadrilaterals,
S12S13S34S24, S12S14S34S23, and S13S14S24S23.

Theorem 16 (Roth’s Theorem). The central axis G of a spatial CC chain that can
reach four spatial positions views opposite sides of a complementary-screw quadri-
lateral constructed from the relative screw axes of the given positions in dual angles
that are equal, or differ by π .

Proof. The definition of the complementary-screw quadrilateral ensures that oppo-
site sides have the form Si jSik and Sm jSmk. The central-axis theorem states that G
views Si jSik in the dual angle β̂ jk/2 or β̂ jk/2+π , where β̂ jk is crank rotation angle
and slide from position Mj to Mk. Similarly, it must view the Sm jSmk in β̂ jk/2 or
β̂ jk/2+π . The result is that G views the two sides in dual angles that are equal, or
differ by π . ut

13.2.6.1 The Parameterized Central-Axis Congruence

Roth’s theorem reduces the problem of finding fixed axes, or central axes, to finding
those axes that view opposite sides of complementary-screw quadrilateral in equal
dual angles. The following construction generates these points.

Theorem 17 (Construction of Central Axes). The axes that satisfy Roth’s theorem
are obtained as follows:

1. Use the four spatial task positions to construct the complementary-screw quadri-
lateral Q: S12S23S34S14 and consider it to form a 4C linkage.

2. Rotate and slide the side S12S23 about S12 by the dual angle θ̂ and determine the
new configuration Q′. This yields a new location S′23S

′
34 for the coupler of this

chain.
3. The screw axis G of the displacement of S′23S

′
34 relative to its original location

S23S34 satisfies Roth’s theorem and is a central axis.

Proof. Let G be the intersection of the screw perpendicular bisectors V1 =(S23S
′
23)
⊥

and V2 = (S34S
′
34)
⊥. Then G is the screw axis of the displacement of the segment

S23S34 by the dual angle κ̂ to the position S′23S
′
34. The input CC chain formed by

S12S23 has the spatial dyad triangle 4S23S12G and G must view the S12S23 in the
dual angle κ̂/2 or κ̂/2 + π . Similarly, the geometry of the spatial dyad triangle
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4S34S14G requires that G view the segment S14S34 in either κ̂/2 or κ̂/2+π . Thus,
G views the opposite sides S12S23 and S14S34 in angles that are equal, or differ by
π . The same argument shows that G views the other two sides S23S34 and S12S14 in
angles that are equal, or differ by π . Thus, G satisfies Roth’s theorem. ut

The movement of the coupler S23S34 of the complementary-screw quadrilateral
from its position in Q to another position specified by θ̂ can be obtained as a com-
posite displacement. First displace this link about the axis S23 by the coupler angle
∆φ̂ = (φi−φ0,ci− c0). Follow this with the displacement about the axis S12 by the
drive angle ∆θ̂ = (θi−θ0,di−d0). The result is the transformation equation

[T (κ,G)] = [T (∆θ̂ ,S12)][T (∆φ̂ ,S23)]. (13.38)

Rodrigues’s formula yields the equation for the central axis G as

tan
κ̂

2
G=

tan ∆θ̂

2 S12 + tan ∆φ̂

2 S23 + tan ∆θ̂

2 tan ∆φ̂

2 S12×S23

1− tan ∆θ̂

2 tan ∆φ̂

2 S12 ·S23

. (13.39)

The coupler angle φ̂ is obtained from the analysis of the 4C linkage for each value
of the crank parameter θ̂ .

The initial dual angle θ̂0 of this linkage is determined directly from the screws
S12×S14, and S12×S23. The result is

tan θ̂0 =
(S12×S14) ·S23

(S12×S14) · (S12×S23)
. (13.40)

A similar equation defines the initial dual angle φ̂0 obtained using the screws S12×
S23 and S23×S34.

Equation (13.39) defines the set of lines G known as the central-axis congruence,
which is parameterized by the dual angle θ̂ = (θ ,d). For each value θ we obtain
a single direction for G. Values for d displace this line to form a plane of parallel
lines. The result is a two-dimensional set of lines in space assembled as planes of
parallel lines.

13.2.7 The Spatial Compatibility Platform

Five spatial positions of a body determine ten relative screw axes Si j, i< j = 1, . . . ,5.
Consider the two complementary-screw quadrilaterals Q14 : S12S23S34S14 and Q15 :
S12S23S35S15. A fixed axis compatible with five positions must lie on the central-
axis congruence generated by Q14 and on the central-axis congruence generated by
Q15. Thus, these lines are the intersection of these two congruences.

Both complementary-screw quadrilaterals Q14 and Q15 are driven by the crank
S12S23, therefore we have
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Fig. 13.4 The spatial platform.

tan
κ̂

2
G=

tan ∆θ̂1
2 S12 + tan ∆φ̂1

2 S23 + tan ∆θ̂1
2 tan ∆φ̂1

2 S12×S23

1− tan ∆θ̂1
2 tan ∆φ̂1

2 S12 ·S23

. (13.41)

and

tan
κ̂

2
G=

tan ∆θ̂2
2 S12 + tan ∆φ̂2

2 S23 + tan ∆θ̂2
2 tan ∆φ̂2

2 S12×S23

1− tan ∆θ̂2
2 tan ∆φ̂2

2 S12 ·S23

. (13.42)

The angles ∆φ̂1 and ∆φ̂2 are functions of ∆θ̂1 and ∆θ̂2 defined by the dimensions
of the two complementary-screw quadrilaterals.

It is easy to see that equations (13.41) and (13.42) define the same screw axis
G when the two quadrilaterals Q14 : S12S23S34S14 and Q15 : S12S23S35S15 are dis-
placed such that

∆θ̂1 = ∆θ̂2 and ∆φ̂1 = ∆φ̂2. (13.43)
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The first equation is satisfied by using the same dual angle parameter θ̂ to drive
S12S23 for both screw quadrilaterals. The second equation requires that the spatial
triangle 4S34S23S35 have the same shape in each solution configuration. Thus, the
fixed axis G is the screw axis of the relative displacement of this spatial triangle
from its initial position to each of the assemblies of the 3CC platform formed by
the chains S12S23, S14S34, and S15S35, Figure 13.4. This assembly of relative screw
axes is called the spatial compatibility platform and we have the following theorem:

Theorem 18 (Murray’s Compatibility Platform Theorem). The fixed axis of a
CC chain that can reach five spatial task positions is a screw axis of the displacement
of the spatial compatibility platform from its initial configuration to one of its other
assemblies.

Analysis of the spatial compatibility platform separates into the analysis of its
spherical image, which is identical to the spherical 3RR platform analyzed in chap-
ter 8, and the solution of two sets of 4C vector loop equations discussed in chapter
9. The zero, two, four, or six axes obtained from the spherical image combine with
the linear solution of the loop equations to yield zero, two, four, or six CC chains
that reach five spatial task positions.

13.3 The Geometry of Spatial RR Chains

A spatial RR chain connects a floating link to ground using two revolute joints, Fig-
ure 13.5. Notice that the axes of these joints must be skew to each other in space,
because parallel axes define a planar RR chain, and intersecting axes define a spher-
ical RR chain.

Let G be the fixed axis and W the moving axis. Because a revolute joint allows
only pure rotation, the common normal L between G and W intersects the fixed axis
in the same point B for all positions of the chain. The same is true for the moving
axis where the point P on the common normal to W traces a circle around B.

In order to define a spatial RR chain we need the directions G and W of the
two lines and the coordinates of the points B and P on their common normal. Thus,
there are ten design parameters that define this chain. We now determine the design
equations.

13.3.1 The Constraint Equations

The RR chain combines the constraints of both the CC chain and the TS chain.
It requires that the axes G = (G,B×G)T and Wi = (Wi,Pi ×Wi)T maintain a
constant dual angle ρ̂ = (ρ,R) in all positions of the chain, while at the same time
the distances between B and the points Pi remain constant. In addition, we have the
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Fixed revolute joint
Moving revolute joint

Fig. 13.5 A spatial RR open chain.

constraint that the relative vector Pi−B must lie on the common normal between G
and Wi in each position.

For n task positions, the geometry of the CC chain provides direction and moment
constraint equations:

P1i : G · [A1i− I]W1 = 0,

M1i : R · [A1i− I]Wi +G · [A1i− I]V1 +G · [D1iA1i]W1 = 0,
i = 2, . . . ,n. (13.44)

The geometry of the TS chain provides the distance constraint

D1i : (B−C1i) · [A1i− I](P1−C1i)+d1iS1i · (B−P1)−
d2

1i
2

= 0,

i = 2, . . . ,n. (13.45)

And finally, we have the equations

Ni : G · (Pi−B) = 0, Wi · (Pi−B) = 0, i = 1, . . . ,n. (13.46)

that ensure that B and Pi are on the common normal between G and Wi in each
position.

13.3.1.1 Redundancy of the Moment Constraints

We now show that the direction, distance, and common normal constraint equations
combine to satisfy the moment constraints. To do this we begin with (13.21) and
compute
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G · (Wi−W1) = 0,

G · (Pi×Wi−P1×W1)+B×G · (Wi−W1) = 0. (13.47)

The first equation yields the direction constraints P1i that the angle ρ between these
axes must be constant. The second equation is the moment constraint M1i and we
combine terms to obtain

(Pi−B) ·G×Wi− (Pi−B) ·G×W1 = 0. (13.48)

Notice that G×Wi = sinρLi, where Li is the direction of the common normal to G
and Wi. The normal constraints Ni require that Pi−B = RLi. Therefore, we have

(RLi) · (sinρLi)− (RL1) · (sinρL1) = 0. (13.49)

Thus, the moment constraint equations are identically satisfied.
For n task positions we have 2(n−1) angle and distance constraints and 2n com-

mon normal constraints. Thus, for three specified positions, n = 3, there are ten
equations in the ten unknown design parameters for the RR chain. We formulate a
solution to these equations below.

Fig. 13.6 The spatial dyad triangle for the spatial RR chain.
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13.3.1.2 The Spatial Dyad Triangle Constraints

The constraint equations for the RR chain can be simplified by examining the geom-
etry of the dyad triangles associated with each specified position, see Figure 13.6.

Let u1i be the point of intersection of the common normal from the fixed axis
G to each screw axis S1i. Similarly, let v1i be the intersection of each screw axis
with its the common normal to W1. The geometry of the dyad triangle yields the
relation |u1i− v1i| = d1i/2, where d1i is the slide associated with the displacement
from position M1 to Mi. The component of B−P1 in the direction S1i clearly equals
u1i−v1i. The result is a simplified version of the distance constraint

D1i : S1i · (B−P1)− d1i

2
= 0, i = 2, . . . ,n. (13.50)

This can also be obtained by showing that

(B−C1i) · [A1i− I](P1−C1i) = 0 (13.51)

for RR chains, which simplifies (13.45) to yield the new constraint.
We now simplify the common normal constraints. The geometry of the RR dyad

triangle shows that B and P1 must be on the common normals to S1i from G and
W1. We use this to eliminate the dependence on Pi. Keep the first set of equations

N1 : G · (P1−B) = 0, W1 · (P1−B) = 0. (13.52)

However, for the remaining equations we introduce the matrix [I−S1iST
1i], which is

an operator that cancels the components of the vectors B−C1i and P1−C1i in the
direction S1i. The result is

Ni : G · [I−S1iST
1i](B−C1i) = 0, W1 · [I−S1iST

1i](P
1−C1i) = 0. (13.53)

These equations state that the components that are not in the direction S1i must
be perpendicular to both G and W1. This is simply another version of the normal
constraint.

13.3.2 Three Specified Spatial Positions

In order to design a spatial RR chain that reaches three task positions M1, M2, and
M3, we must solve the ten design equations
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P12 : G · [A12− I]W1 = 0,

P13 : G · [A13− I]W1 = 0,

D12 : S12 · (B−P1)− d12

2
= 0,

D13 : S13 · (B−P1)− d13

2
= 0,

N1 : G · (P1−B) = 0, W1 · (P1−B) = 0,

N2 : G · [I−S12ST
12](B−C12) = 0, W1 · [I−S12ST

12](P
1−C12) = 0,

N3 : G · [I−S13ST
13](B−C13) = 0, W1 · [I−S13ST

13](P
1−C13) = 0. (13.54)

The relative screw axes S12 = (S12,C12×S12) and S13 = (S13,C13×S13) are known
from the task positions. The unknowns are the six point coordinates B = (x,y,z)T

and P1 = (u,v,w)T and the four parameters that define the directions of G and W1.
Tsai and Roth [135] show that these equations can be solved to obtain two RR chains
that form a Bennett linkage.

To solve these equations we introduce a special coordinate system associated
with the two relative displacement screws S12 and S13. These two screw axes lie on
the two-system of relative screw axes generated by the movement of a Bennett link-
age. In the principal frame of this two-system we find that six of the ten equations
are identically satisfied and the number of variables is reduced to four.

13.3.2.1 The Cylindroid

The set of relative screw displacements S(β ,α) generated by an RR chain is
obtained from the product of the two dual quaternions Ĝ(β/2) = cos(β/2) +
sin(β/2)G and Ŵ 1 = cos(α/2)+ sin(α/2)W1, which yields

sin
φ̂

2
S= sin

β

2
cos

α

2
G+ sin

α

2
cos

β

2
W1 + sin

β

2
sin

α

2
G×W1,

cos
φ̂

2
= cos

β

2
cos

α

2
− sin

β

2
sin

α

2
G ·W1. (13.55)

Notice that in these equations the angles α and β are real, not dual, angles.
Huang [49] reports the interesting result that if the angles β and α of the RR

chain are constrained such that
tan α

2

tan β

2

= k, (13.56)

where k is an arbitrary constant, then the axes S(β ,α) in (13.55) trace a cylindroid.
Recall from (11.75) that this is a characteristic of the movement of Bennett’s link-
age.

A cylindroid is a ruled surface traced by the axes of the real linear combination
of two independent screws, known as a two-system. The geometry of the cylindroid
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is well known, see Hunt [50]. In particular, it has a natural set of principal axes that
simplify its description.

13.3.2.2 The Two-System

We now construct the two-system defined by the screws

Sa = sin
φ̂12

2
S12, Sb = sin

φ̂13

2
S13, (13.57)

which are obtained from the three specified positions. The RR chain that we are
seeking must generate this two-system.

A general screw in this two-system is given by

F= aSa +bSb, (13.58)

where a and b are real constants. The screws Sa and Sb can be written in the form

Sa = sin
φ12

2
(1,Pa)S12, Sb = sin

φ13

2
(1,Pb)S13, (13.59)

where
Pa =

d12

2 tan φ12
2

and Pb =
d13

2 tan φ13
2

(13.60)

are the pitches of the two screws. We can absorb the scalar magnitudes of these
screws into the constants a and b, so the equation of the two-system becomes

F= a(1,Pa)S12 +b(1,Pb)S13. (13.61)

Now introduce the common normal K between the axes S12 and S13. Let S12 = I
and J= K× I, so the line S13 is given by

S13 = cos δ̂ I+ sin δ̂J. (13.62)

The dual angle δ̂ = (δ ,d) locates this axis in the frame I, J, and K. Substitute this
into equation (13.61) to obtain

F= a(1,Pa)I+b(1,Pb)(cos δ̂ I+ sin δ̂J)

=
(
a+bcosδ ,aPa +b(Pb cosδ −d sinδ )

)
I+
(
bsinδ ,b(Pb sinδ +d cosδ )

)
J.

(13.63)

The axis of each screw F intersects K and is parallel to the plane defined by I and J.
Let φ̂ = (φ ,z) denote the dual angle from I to each axis. Then we have

F= f (1,P)(cos φ̂ I+ sin φ̂J)

= f (cosφ ,−zsinφ +Pcosφ)I+ f (sinφ ,zcosφ +Psinφ), (13.64)
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where f is the magnitude of F. Equate the real and dual components of equations
(13.63) and (13.64) to obtain

f
{

cosφ

sinφ

}
=

[
1 cosδ

0 sinδ

]{
a
b

}
(13.65)

and

f
[
−sinφ cosφ

cosφ sinφ

]{
z
P

}
=

[
Pa Pb cosδ −d sinδ

0 Pb sinδ +d cosδ

]{
a
b

}
. (13.66)

Solve the first of these matrix equations for (a,b)T , and substitute into the second
equation in order to obtain{

z(φ)
P(φ)

}
=

[
−sinφ cosφ

cosφ sinφ

][
Pa (Pb−Pa)cotδ −d
0 Pb +d cotδ

]{
cosφ

sinφ

}
. (13.67)

This result defines the pitch P and the offset z of each screw in the two-system as a
function of the angle φ measured around K from I= S12.

13.3.2.3 The Principal Axes

The principal axes of the two-system are the axes of the screws that have the maxi-
mum and minimum values for the pitch P(φ). We determine these axes by comput-
ing the derivative of (13.67), which is

d
dφ

{
z
P

}
=

[
−(Pb−Pa)cotδ +d (Pb−Pa)+d cotδ

(Pb−Pa)+d cotδ (Pb−Pa)cotδ −d

]{
sin2φ

cos2φ

}
. (13.68)

Set the second equation equal to zero to determine the angle φ = σ that locates the
screws with extreme values of pitch, that is,

tan2σ =
−(Pb−Pa)cotδ +d
(Pb−Pa)+d cotδ

. (13.69)

Notice that this equation defines two values, φ = σ and φ = σ +π/2, which identify
the principal screws of the two-system. Their axes X and Y are the principal axes.

Determine the offset z(σ) from (13.67) and assemble the dual angle σ̂ =(σ ,z(σ))
to locate the principal screws of the two-system. The result is

X= cos σ̂ I+ sin σ̂J and Y =−sin σ̂ I+ cos σ̂J. (13.70)

We use the coordinate system X, Y, K to reformulate our design equations for the
RR chain.

The angle φ = τ to the screw with extreme values for the offset z from S12 is
obtained from the first equation of (13.68) as
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tan2τ =
(Pb−Pa)+d cotδ

(Pb−Pa)cotδ −d
. (13.71)

This defines two angles φ = τ and φ = τ + π/2. Notice that tan2σ tan2τ = −1,
therefore the angles σ and τ differ by 45◦. This means that the screws with the
maximum and minimum offset along K are directed at 45◦ to the principal axes.

Thus, with the specification of the three task positions comes a coordinate frame
F ′ aligned with the principal axes of the two-system constructed from sin φ̂12S12
and sin φ̂13S13. Transform the coordinates of the RR design problem so that the
three positions are defined relative to F ′. If [R] is the 4×4 transform that defines the
position of F ′, then the new positions M′1, M′2, M′3 are defined by the transformations
[T ′i ] = [R][Ti][R−1].

13.3.3 Bennett Linkage Coordinates

We now introduce a set of coordinates originally used to capture the symmetry inher-
ent in a Bennett linkage (Yu [156]). These coordinates are adapted to the tetrahedron
formed by the joints of a Bennett linkage, which is centered on the principal axes of
our cylindroid, Figure 13.7. These coordinates reduce the number of design param-
eters from ten to four and at the same time identically satisfy six of the constraint
equations. The result is four nonlinear equations in four unknowns, which we solve
numerically.

Fig. 13.7 The coordinate frame adapted to a Bennett linkage.
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Let the points at the four vertices of the tetrahedron be denoted by B, P1, Q,
and C1, and denote the edges defined by B−C1 and P1−Q by E1 and E2. The
tetrahedron is oriented so that the common normal to E1 and E2 is aligned with the
axis K of the cylindroid. The dimensions of the Bennett linkage ensure that in this
configuration K bisects both segments B−C1 and P1−Q. Let the lengths of these
edges be 2a = |B−C1| and 2b = |P1−Q| and let c and κ be the distance and angle
between E1 and E2 measured along and around K. Finally, the tetrahedron is located
so that the principal axis X is midway between E1 and E2 and it bisects the angle κ .
These four parameters completely specify the tetrahedron, that is, we have

B =

acos κ

2
asin κ

2
− c

2

 , P1 =

 bcos κ

2
−bsin κ

2
c
2


and

Q =

−bcos κ

2
bsin κ

2
c
2

 , C1 =

−acos κ

2
−asin κ

2
− c

2

 . (13.72)

The axes of the Bennett linkage are perpendicular to each of the four faces of this
tetrahedron. Thus, we have

G = kg(Q−B)× (P1−B) = kg

 2bcsin κ

2
2bccos κ

2
4abcos κ

2 sin κ

2


and

W1 = kw(B−P1)× (C1−P1) = kw

 −2acsin κ

2
2accos κ

2
4abcos κ

2 sin κ

2

 . (13.73)

The constants kg and kw normalize these vectors. Notice that the screws G= (G,B×
G)T and W1 = (W1,P1×W1) depend only on the four parameters a, b, c, and κ .

Using these coordinates, the six design equations that define the common nor-
mal constraints Ni, i = 1,2,3, are identically satisfied. This leaves the four design
equations

P12 : G · [A′12− I]W1 = 0, D12 : S′12 · (B−P1)− d′12
2

= 0,

P13 : G · [A′13− I]W1 = 0, D13 : S′13 · (B−P1)−
d′13
2

= 0. (13.74)

These equations can be expanded using algebraic manipulation software and solved
numerically to determine the values of a, b, c, and κ . Notice that by determin-
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ing these parameters we actually define a Bennett linkage that guides the coupler
through the three specified positions.

13.4 Platform Linkages

The design theory associated with each of the TS, CC, and RR spatial chains yields
multiple solutions for a finite set of task positions. Thus, it is possible to connect the
end-links of various solutions together and obtain a platform linkage with a reduced
number of degrees of freedom. We have already seen that the 5TS and 4C linkages
have one and two degrees of freedom, respectively. These chains can be also be
combined to define the 3TS-CC and a TSRR linkages, both with one degree of
freedom. As in the cases of planar and spherical linkages, the combination of chains
introduces constraints on the range of movement of the individual cranks that can
affect the smooth movement of the coupler or platform. The analysis of this problem
for general spatial platforms is the focus of much research. Currently, there is little
rectification theory for spatial linkage design.

13.4.1 The 4C Spatial Linkage

Our solutions for CC chains can yield as many as six of these chains for a five
position task. Thus, we can form up to 15 two-degree-of-freedom 4C linkages to
accomplish this task. While the design theory for this linkage is the generalization
of the planar and spherical 4R design theories, its use depends on the development of
computer-aided design and simulation systems that allow the designer to visualize
and plan its movement in space.

13.4.2 The 5TS Spatial Linkage

The solution of the constraint equations for a TS chain that can reach seven specified
goal positions may yield many as 20 of these chains. Thus, there can be as many as
15504 5TS linkages that can reach seven specified positions. The analysis of these
linkages to determine their smooth movement through the goal positions is required
to complete the design.
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13.4.3 Function Generation

Spatial open chains can be connected in a way that coordinates the input and output
parameters to form spatial function generators. Here we show that RSSR and RSSP
function generators can be designed using the theory presented in the previous sec-
tions.

Suppose that we have a table of n input angular values θi and output angles ψi
for the RSSR, and output slides si for the RSSP linkage. Following the strategy used
for both the plane and the sphere, invert this problem to consider the movement of
the output link relative to the input link and design the TS chain that reaches the
specified positions.

For both the RSSR and the RSSP linkages, we select two skew lines O and C to
be the axes of the fixed joints. Let γ̂ = (γ,g) be the dual angle between O and C.
Denote the common normal between O and C by N, and have it intersect O at the
point c.

13.4.3.1 The RSSR linkage

For the RSSR linkage, the lines O and C are the axes of the fixed revolute joints.
Let θi and ψi, i = 1, . . . ,n, be the desired table of values. Now convert the input
angles θi to exterior angles θ̄i = π−θi. Let PO be the line through c orthogonal to
O and oriented such that θ̄1 = π−θ is the angle measured from PO around O to N.
Introduce a new fixed frame F ′ that has its origin at c, its z-axis is along O and its
x-axis along PO.

The angles θ̄i and ψi can now be viewed as the joint angles of the spatial RR
open chain formed by OC in F ′. The kinematics equations of this RR chain define
task positions in F ′, given by

[Di] = [Z(θ̄i,0)][X(γ,g)][Z(ψi,0)], i = 1, . . . ,n. (13.75)

Our design results yield TS chains that reach as many as seven positions [Di]. The
TS chain design combines with the selected RR chain to form an RTSR linkage, or
equivalently an RSSR linkage, that has the desired set of coordinated angles θi and
ψi.

13.4.3.2 The RSSP linkage

For the RSSP linkage, the line O is the axis of the revolute joint and C is the guide
for the prismatic joint. Let θi and si, i= 1, . . . ,n, be the desired table of values. As we
did above, invert the design problem and determine the exterior angles θ̄i = π−θi.
Let PO be the line through c orthogonal to O, and oriented such that θ̄1 = π − θ

is the angle measured from PO around O to N. Locate the frame F ′ with its origin
at c, its z-axis is along O, and its x-axis is along PO. In this frame the kinematic
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equations of the spatial RP chain are given by

[Di] = [Z(θ̄i,0)][X(γ,g)][Z(0,si)], i = 1, . . . ,n. (13.76)

The positions [Di] are used to design a TS chain that connects the input crank and
output slider. The result is an RTSP linkage, or equivalently an RSSP linkage, that
provides the desired coordination between the crank angles θi and the slider trans-
lations si.

13.5 Summary

This chapter has developed the design theory for TS, CC and spatial RR open chains.
These chains can be combined to form the 5TS, 4C and spatial 4R spatial linkages,
as well as RSSR and RSSP function generators. The focus on these chains reflects
the attention they have received in the design literature. There are other chains avail-
able for spatial linkages, for example the CS and spatial RPR chains, for which the
design theory is not as well-developed.

13.6 References

Suh [132] and Chen and Roth [10] introduced the geometric design of spatial link-
ages as the solution of sets of constraint equations. This approach is presented in
detail in the text Suh and Radcliffe [134]. Our results for the design of TS chains
draw on the work by Innocenti [52] and Liao [66]. For CC chains, we use [77, 78]
and Murray [85]. See Ahlers [79] for the design of a CC robot that approximate
a specified trajectory. Tsai and Roth [135] solved the design equations for spatial
RR chains. Our formulation follows Perez [97], who uses the principal frame of the
cylindroid to simplify these equations.

Exercises

1. Determine the two spatial RR chains that reach the three positions specified in
Table 13.1 (Tsai and Roth [135]).

2. Determine the four CC chains that reach the five positions specified in Table 13.2
(Murray and McCarthy [85]).

3. Determine the 20 TS chains that reach the seven positions listed in Table 13.3
(Innocenti [52]).
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Table 13.1 Three spatial positions

Mi Si Ci (θi,di)

1 (0,0,1)T (0,0,0)T (0,0)
2 (0,0,1)T (0,0,0)T (40◦,0.80)
3 (sin30◦,0,cos30◦)T (0,1,0)T (70◦,0.60)

Table 13.2 Five spatial positions

Mi Si Ci (θi,di)

1 (0,0,1)T (0,0,0)T (0,0)
2 (0.04,0.10,0.90)T (0.94,0.52,−0.41)T (133◦,1.38)
3 (0.15,−0.04,0.10)T (−0.61,0.84,0.12)T (70.6◦,1.90)
4 (0.43,−0.25,0.87)T (0.73,0.69,−0.16)T (87.9◦,−1.12)
5 (0.40,−0.02,−0.92)T (5.90,0.10,2.60)T (25.2◦,2.56)

Table 13.3 Seven spatial positions

Mi di (long., lat., roll)

1 (0,0,0)T (0◦,0◦,0◦)
2 (1,−0.74,−0.13)T (6.18◦,4.28◦,−97.93◦)
3 (0.32,−0.51,−0.80)T (−83.26◦,−18.23◦,73.61◦)
4 (−0.18,−1.78,−1.04)T (−170.03◦,39.54◦,−50.94◦)
5 (−1.26,0.84,−1.50)T (−84.74◦,−29.18◦,150.3◦)
6 (−3.59,2.73,−2.03)T (−8.30◦,5.04◦,−68.25◦)
7 (−0.05,0.57,−1.48)T (118.3◦,−33.80◦,139.0◦)





Chapter 14
Synthesis of Spatial Chains with Reachable
Surfaces

In this chapter, we consider the design of spatial serial chains that guide a body
such that a point in the body moves on a specific algebraic surface. The problem
originates with Schoenflies [113], who sought points that remained in a given con-
figuration for a given set of spatial displacements. Burmester [7] applied this idea to
planar mechanism design by seeking the points in a planar moving body that remain
on a circle. Chen and Roth [10] generalized this problem to find points and lines in
a moving body that take positions on surfaces associated with the articulated chains
used to build robot manipulators.

Our focus is on serial chains that support a spherical wrist. The center of this wrist

ways of assembling these articulated chains, we obtain seven reachable algebraic
surfaces, and the problem reduces to computing the dimensions of these chains from
a set of polynomial equations.

14.1 Spatial Serial Chains

In this chapter, we focus on five degree-of-freedom spatial serial chains that in-
clude a spherical wrist. The surface traced by a point P at the wrist center under the
movement of two remaining joints is called its reachable surface. Considering only
revolute and prismatic joints, we can enumerate the seven possibilities:

1. the PPS chain, for which the wrist center, P, lies on a plane—notice that the
angle between the slide can be any angle α except zero; similarly, the distance ρ

between the slides can be any value because a prismatic joint guides all points in
the body in the same direction;

2. the TS chain that has P on a sphere—recall that the T joint is constructed from
two perpendicular intersecting revolute joints, that is, with link angle α = π/2
and length ρ = 0;
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Table 14.1 The basic serial chains and their associated reachable surfaces.

Case Chain Angle Length Surface

1 PPS α 6= 0 ρ plane
2 TS α = π/2 ρ = 0 sphere
3 CS α = 0 ρ circular cylinder
4 RPS α 6= 0 ρ circular hyperboloid
5 PRS α 6= 0 ρ elliptic cylinder
6 right RRS α = π/2 ρ circular torus
7 RRS α ρ general torus

3. the CS chain for which P lies on a cylinder—the C joint is constructed from a PR
chain for which the direction of the prismatic slide is parallel to the axis of the
revolute joint, that is, α = 0; note that ρ can be any value;

4. the RPS chain that guides P on the surface of a right circular hyperboloid—the
link angle α can be any value except zero;

5. the PRS chain in which the angle between the prismatic slide and the axis of the
revolute is not zero guides P on an elliptic cylinder—the link angle α can be any
value except zero;

6. the “right” RRS chain in which the revolute joints are perpendicular but do not
intersect has P trace a right circular torus—the linkage angle α = φ/2; and

7. the general RRS chain in which the revolute joint axes are neither perpendicular
nor intersecting guides the wrist center on a general circular torus—the linkage
angle cannot be α = 0,π/2.

The result is seven articulated chains and the associated algebraic surfaces that
are reachable by their wrist centers, Table 14.1. The algebraic equations of these
surfaces are used to formulate the synthesis equations for these seven spatial serial
chains. In what follows, we determine the number of free parameters for each chain,
the associated number of task positions that define these parameters, and assemble
the synthesis equations. These equations can be solved using polynomial continua-
tion.

14.2 Linear Product Decomposition

The synthesis equations for the seven spatial serial chains described above result in
polynomial systems of very high degree. Bézout’s theorem states that the number of
solutions to a polynomial system is less than or equal to the degree of the polynomial
system, which is obtained by multiplying the degrees of each of the polynomials
in the system. In what follows, we find that the synthesis equations of these serial
chains have so much internal structure that the total degree overestimates the number
of solutions by two orders of magnitude.
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In order to efficiently use polynomial continuation techniques to find all of the
solutions to our synthesis equations, it is useful to have a better estimate for the
number of solutions than the total degree. Here we present the linear product decom-
position of a polynomial system and then use it to determine a bound on the number
of solutions for each of our systems of synthesis equations. The linear product de-
composition also serves as a convenient start system for polynomial continuation
algorithms.

Morgan et al. [84] show that a “generic” system of polynomials that includes
every monomial of a specified system of polynomials will have at least as many
solutions as the specified polynomial system. The linear product decomposition of
a specified system of polynomials is a way of constructing this generic polynomial
system that includes all of the monomials of the specified system, so that it allows
convenient computation of the number of roots. Each polynomial in the linear prod-
uct decomposition consists of polynomials formed by the products of linear com-
binations of the variables and all of the monomials of the corresponding original
polynomial.

Let 〈x,y,1〉 represent the set of linear combinations of parameters x, y, and 1,
which means that a typical term is αx+ βy+ γ ∈ 〈x,y,1〉, where α , β , and γ are
arbitrary constants. Using this notation, we define the product 〈x,y,1〉〈u,v,1〉 as the
set of linear combinations of the product of the elements of the two sets, that is,

〈x,y,1〉〈u,v,1〉= 〈xu,xv,yu,yv,x,y,u,v,1〉. (14.1)

This product commutes, which means that 〈x〉〈y〉 = 〈y〉〈x〉, and it distributes over
unions, such that 〈x〉〈y〉∪〈x〉〈z〉= 〈x〉(〈y〉∪〈z〉) = 〈x〉〈y,z〉. Furthermore, we repre-
sent repeated factors using exponents, so 〈x,y,1〉〈x,y,1〉= 〈x,y,1〉2.

In order to illustrate the construction of the linear product decomposition con-
sider the synthesis equations of the TS chain presented in the previous chapter, given
by

(Pi−B) · (Pi−B) = R2, i = 1, . . . ,7, (14.2)

where the dot denotes the vector dot product. Now subtract the first equation from
the rest in order to eliminate R2. This reduces the problem to six equations in the
unknowns z = (x,y,z,u,v,w), given by

S j(z) = (P j+1 ·P j+1−P1 ·P1)−2B · (P j+1−P1) = 0, j = 1, . . . ,6. (14.3)

We now focus attention on the monomials formed by the unknowns.
Recall that Pi = [Ai]p+di, where [Ai] and di are known, so it is easy to see that

2B · (P j+1−P1) ∈ 〈u,v,w〉〈x,y,z,1〉. (14.4)

It is also possible to compute

P j+1 ·P j+1−P1 ·P1 = 2d j+1 · [A j+1]p−2d1 · [A1]p+d2
j+1−d2

1 ∈ 〈x,y,z,1〉. (14.5)
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Thus, we find that each of the equations in (14.3) has the monomial structure given
by

〈x,y,z,1〉∪ 〈u,v,w〉〈x,y,z,1〉 ⊂ 〈x,y,z,1〉〈u,v,w,1〉. (14.6)

This allows us to construct a generic set of polynomials as a product of linear factors
that contains our synthesis equations as a special case, that is,

Q(z) =


(a1x+b1y+ c1z+d1)(e1u+ f1v+g1w+h1)

...
(a6x+b6y+ c6z+d6)(e6u+ f6v+g6w+h6)

= 0, (14.7)

where the coefficients are known constants. This is the linear product decomposition
of the synthesis equations for the TS chain.

This linear product decomposition provides a convenient way to determine a
bound on the number of solutions for the original polynomial system. This is done
by assembling all combinations of the linear factors, one from each equation, that
can be set to zero and solved for the unknown parameters. The number of combina-
tions that yield solutions is the LPD bound for the original polynomial system.

In the example above, select three factors aix+ biy+ ciz+ di = 0 from the six
equations, and combine these with the three factors eiu+ fiv+ giw+ hi = 0 in the
remaining equations. A solution of this set of six linear equations is a root of (14.7).
Thus, we find that this system has

(6
3

)
= 20 solutions, which matches the known

result for (14.3).
In the following sections, we determine the synthesis equations for each of the

seven spatial serial chains with a reachable surface. We evaluate its total degree,
compute its linear product decomposition bound, and then numerically solve a
generic problem to find the number of articulated chains that reach a specified set of
displacements.

14.3 The Plane

The PPS serial chain has the property that the wrist center P is constrained to lie on
a plane (Figure 14.1). A point P = (X ,Y,Z) lies on a plane with the surface normal
G = (a,b,c) if it satisfies the equation

aX +bY + cZ−d = G ·P−d = 0. (14.8)

The parameter d is the product of the magnitude |G| and the signed normal distance
to the plane.

Given a set of spatial displacements, Q̂i, i = 1, . . . ,n, we have the images Pi =
[T (Q̂i)]p of a single point p in the moving frame M. We seek both the plane P :
(G,d) and the point p = (x,y,z), so each Pi lies on this plane.

There are seven parameters in this problem. However, the components of G are
not independent because only its direction is important to defining the plane, not
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G

P

Fig. 14.1 A plane as traced by a point at the wrist center of a PPS serial chain.

its magnitude. A convenient way to constrain this magnitude is to choose a vector
m and a scalar e, and require that m ·G = e. Add to this six equations obtained by
evaluating (14.8) on six arbitrary displacements, given by

G ·Pi−d = 0, i = 1, . . . ,6. (14.9)

Subtract the first of these equations from the remaining to eliminate d, and the result
is the polynomial system

P j : G · (P j+1−P1) = 0, j = 1, . . . ,5,
C : m ·G−1 = 0. (14.10)

This is a set of five quadratic equations and one linear equation in the six unknowns
z = (a,b,c,x,y,z). The total degree of this system of polynomials is 25 = 32, which
means that for six arbitrary displacements there are most 32 points in the moving
body that have six positions on a plane.

The linear combinations of monomials that contain the plane equations (14.10)
are given by

P j ∈ 〈a,b,c〉〈x,y,z,1〉| j = 0, j = 1, . . . ,5,
C ∈ 〈a,b,c,1〉= 0. (14.11)

This is the linear product decomposition (LPD) of the polynomial system. The root
count for this linear product decomposition is given by the combinations of linear
factors that can be set to zero and solved for the unknown parameters. In this case,
we have

(5
2

)
= 10 roots, which means that there are at most 10 points in the moving

body that have six positions on a plane.
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In this case, direct elimination of the parameters yields a univariate polynomial of
degree 10, which shows that this LPD bound is exact (DiGregorio [23] and Ragha-
van [102]). Once the plane P and point p are defined, then it is possible to determine
a PPS chain that guides this point through the specified positions.

14.4 The Sphere

We now return to our opening example in which a point P = (X ,Y,Z) is constrained
to lie on a sphere of radius R around the point B = (u,v,w), Figure 14.2. This means
that its coordinates satisfy the equation

(X−u)2 +(Y − v)2 +(Z−w)2−R2 = (P−B)2−R2 = 0. (14.12)

We now consider Pi to be the image of a point p = (x,y,z) in a moving frame M that
takes positions in space defined by the displacements Q̂i, i = 1, . . . ,n.

P

B

R

Fig. 14.2 A sphere traced by a point at the wrist center of a TS serial chain.

This problem has seven parameters, and therefore we can evaluate (14.12) on n=
7 displacements. We reduce these equations to the set of six quadratic polynomials,

S j : (P j+12−P12
)−2B · (P j+1−P1) = 0, j = 1, . . . ,6. (14.13)

This system has total degree of 26 = 64.
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We have already seen that the system (14.13) has the linear product decomposi-
tion

S j ∈ 〈x,y,z,1〉〈u,v,w,1〉| j = 0, j = 1, . . . ,6. (14.14)

From this we can compute the LPD bound
(6

3

)
= 20. Parameter elimination yields

a univariate polynomial of degree 20, so we see that this bound is exact. Innocenti
[52] presents an example that results in 20 real roots. Also see Liao and McCarthy
[66] and Raghavan [103].

The conclusion is that given seven arbitrary spatial positions there can be as many
as 20 points in the moving body that have positions lying on a sphere. For each real
point, it is possible to determine an associated TS chain.

14.5 The Circular Cylinder

In order to define the equation of a circular cylinder, let the line L(t) = B+ tG be its
axis. A general point P on the cylinder lies on a circle about the point Q closest to
it on the axis L(t). See Figure 14.3. Introduce the unit vectors u and v along G and
the radius R of the cylinder, respectively, so we have

P−B = du+Rv, (14.15)

where d is the distance from B to Q. Compute the cross product of this equation
with G, in order to cancel d before squaring both sides. The result is

((P−B)×G)2 = R2G2. (14.16)

In this calculation we use the fact that (v×G)2 = G2.
Another version of the equation of the cylinder is obtained by substituting d =

(P−B) ·u into (14.15) and squaring both sides to obtain

(P−B)2− ((P−B) ·G)2 1
G ·G

−R2 = 0. (14.17)

Notice that we allow G to have an arbitrary magnitude. This form of the cylinder
is related to the equation of the circular hyperboloid, which is discussed in the next
section.

Equation (14.16) has 10 parameters: the radius R and three each in the vectors
P = (X ,Y,Z), B = (u,v,w), and G = (a,b,c). However, because only the direction
of G is important to the definition of the cylinder, its three components are not
independent. We set the magnitude of G as we did above for the equation of the
plane. Choose an arbitrary vector m and scalar e and require the components of G
to satisfy the constraint,

C1 : G ·m− e = 0. (14.18)
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Fig. 14.3 The circular cylinder reachable by a CS serial chain.

The components of the point B are also not independent, but for a different reason.
It is because any point on the line L(t) can be selected as the reference point B. We
identify this point by requiring B to lie on a specific plane U : (n, f ), that is,

C2 : B ·n− f = 0, (14.19)

where n and f are chosen arbitrarily to avoid the possibility that the line L(t) may
lie on U .

Eight more polynomials are obtained by evaluating (14.17) with P specified as
the image of p = (x,y,z) for eight spatial displacements, that is, Pi = [T (Q̂i)]p, i =
1, . . . ,8. The result is

((Pi−B)×G)2−R2G2 = 0, i = 1, . . . ,8. (14.20)

Subtract the first equation from the remaining to eliminate R:

((P j+1−B)×G)2− ((P1−B)×G)2 = 0, j = 1, . . . ,7. (14.21)

Expand the terms in this equation to obtain the system of polynomials

Pi : (P j+1×G)2− (P1×G)2−2((P j+1−P1)×G) · (B×G) = 0,
j = 1, . . . ,7,

C1 : G ·m− e = 0,
C2 : B ·n− f = 0. (14.22)
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This is a set of seven polynomials of degree four and two linear equations. The total
degree is 47 = 16384. See Nielsen and Roth [89] and Su et al. [129] for additional
details about this problem.

We now consider the monomial structure of polynomial system (14.22). The
polynomials Pi are linear combinations of monomials in the set generated by

(〈x,y,z,1〉〈a,b,c〉)2∪〈x,y,z,1〉〈a,b,c〉〈u,v,w〉〈a,b,c〉. (14.23)

The products commute, 〈a〉〈b〉 = 〈b〉〈a〉, and they distribute over unions, 〈a〉〈b〉∪
〈a〉〈c〉= 〈a〉(〈b〉∪ 〈c〉) = 〈a〉〈b,c〉—therefore (14.23) becomes

〈a,b,c〉2(〈x,y,z,1〉2∪〈x,y,z,1〉〈u,v,w〉), (14.24)

which can be written as

〈a,b,c〉2〈x,y,z,1〉〈x,y,z,u,v,w,1〉. (14.25)

This shows that the polynomial system (14.22) has the monomial structure

P j ∈〈a,b,c〉2〈x,y,z,1〉〈x,y,z,u,v,w,1〉| j = 0, j = 1, . . . ,7,
C1 ∈〈u,v,w,1〉= 0,
C2 ∈〈a,b,c,1〉= 0. (14.26)

In order to estimate the number of roots we see that to specify G = (a,b,c) we must
combine C2 with two terms 〈a,b,c〉 from the seven polynomials Pi. Because this
term is squared, the number of choices is increased by a factor of 22 = 4. For the
remainder of the parameters, we can choose from zero to three of the terms 〈x,y,z,1〉
from the remaining five polynomials to define p = (x,y,z). The third term in what is
left and C1 define the remaining parameters. This yields the LPD bound of

22
(

7
2

) 3

∑
i=0

(
5
i

)
= 2184, (14.27)

which is much reduced from the total degree of 16 384.
For polynomial systems with a large number of roots, elimination is not attrac-

tive, but we may find all solutions using polynomial continuation. We used the soft-
ware PHC (Verschelde [140]) and POLSYS-GLP (Su et al. [130]) to compute the
roots for random test cases and determined that the exact root count for this problem
is 804. Clearly, there is more structure in this system of polynomials than what is
shown in the linear product decomposition.

Thus, we find that for eight arbitrary spatial positions we can find as many as
804 points in the moving body each of which has all eight positions on a circular
cylinder. For each of these points, we can determine an associated CS chain.
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14.6 The Circular Hyperboloid

A circular hyperboloid is generated by rotating one line around another, so that every
point on the moving line traces a circle around the fixed line, which is the axis of the
hyperboloid, Figure 14.4. Of all of these circles there is one with the smallest radius,
R, and its center B = (u,v,w) is the center of the hyperboloid. Let G = (a,b,c) be
the direction of the axis, and denote its Plücker coordinates G= (G,B×G). A unit
vector N perpendicular to G though B is the common normal between the axis G
and one of the generated lines, H. The generator is located at the distance R along
N, and lies at an angle α around N relative to the axis G.

R

B

P

N
( b ) top view along -G

H

B !

P
H

G

d

R

( c ) front view along -N

GxN

HG
P

( a )

N

GxN

Fig. 14.4 The circular hyperboloid traced by the wrist center of an RPS serial chain.

If point P is a point on the generator H, then its d measured along the axis G from
G is given by

d =
(P−B) ·G√

G ·G
. (14.28)

Notice that we are not assuming that G is a unit vector. The magnitude of P−B is
now computed to be

(P−B)2 = R2 +d2 +(d tanα)2. (14.29)

Substitute d into this equation to obtain the equation of a circular hyperboloid

(P−B)2− ((P−B) ·G)2
(

1+ tan2 α

G ·G

)
−R2 = 0. (14.30)
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When α = 0, this equation becomes the equation of a cylinder presented in the
previous section.

Figure 14.4(a) shows the RPS chain associated with the circular hyperboloid.
The R joint axis is G, and its P joint axis is in the direction α measured around the
common normal. The point P is the center of the S joint, and lies at the distance R
in the direction N of the common normal.

Expand equation (14.30) and collect terms to obtain

k0P ·P+2K ·P− (P ·G)2−ζ = 0, (14.31)

where we have introduce the parameters k0, K = (k1,k2,k3), and ζ defined by

k0 =
G ·G

1+ tan2 α
, K = (B ·G)G− k0B, ζ = (B ·G)2− k0B ·B+ k0R2. (14.32)

Given values for ζ , k0, K, and G, we can compute B by solving the linear equationsk1
k2
k3

=

a2− k0 ab ac
ab b2− k0 ac
ac bc c2− k0

u
v
w

 . (14.33)

Then the length and twist parameters, R and α , are obtained from the formulas

α = arccos

(√
k0

G ·G

)
, R =

√
ζ − (B ·G)2 + k0B ·B

k0
. (14.34)

Thus, the 11 dimensional parameters ζ , k0, K, G, and P define a circular hyper-
boloid.

As we have done previously, we set the length of G by choosing an arbitrary
vector m and scalar e to define the constraint

C : G ·m− e = 0. (14.35)

This means that given 10 arbitrary displacements [Ti] = [Ai,di], we can map a
point p = (x,y,z) to its displaced positions Pi = [Ti]p, i = 1, . . . ,10. Evaluating the
equation of the hyperboloid on these 10 points, we obtain

k0Pi ·Pi +2K ·Pi− (Pi ·G)2−ζ = 0, i = 1, . . . ,10. (14.36)

Subtract the first of these equations from the remaining in order to eliminate ζ and
define the system of polynomials

H j : k0(P j+12−P12
)+2K · (P j+1−P1)− (P j+1 ·G)2 +(P1 ·G)2 = 0,

j = 1, . . . ,9,
C : G ·m− e = 0. (14.37)
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This is a system of nine fourth–degree polynomials H j and one linear equation C ,
which has a total degree of 49 = 262144. See Nielsen and Roth [89] and Kim and
Tsai [55] for other formulations of this problem.

A better bound on the number of solutions can be obtained by considering the
monomial structure of these equations. Recall that the term P j+12−P12 is linear
in x, y, and z, because the quadratic terms cancel; see (14.5). This means that the
polynomials H j have the monomial structure

H j ∈ 〈k0〉〈x,y,z,1〉∪ 〈k1,k2,k3〉〈x,y,z,1〉∪ (〈x,y,z,1〉〈a,b,c〉)2. (14.38)

This simplifies to yield the linear product decomposition for the system (14.37) as

H j ∈ 〈a,b,c〉2〈x,y,z,1〉〈x,y,z,k0,k1,k2,k3,1〉| j, j = 1, . . . ,9,
C ∈ 〈a,b,c,1〉. (14.39)

This structure allows us to count the number of roots from the number of admissible
sets of linear equations that yield solutions for the unknown parameters. In this case
we obtain

LPD = 22
(

9
2

) 3

∑
j=0

(
7
j

)
= 9216. (14.40)

The result is that for ten arbitrary spatial positions we can find as many as 9 216
points that have all 10 positions on a circular hyperboloid. For each of these points
we can find an associated RPS chain.

14.7 The Elliptic Cylinder

An elliptic cylinder is generated by a circle that has its center swept along a line
L(t) = B+ tS1 such that the vector through the center normal to the plane of the
circle maintains a constant direction S2 at an angle α relative to the direction S1 of
L(t); see Figure 14.5. The major axis of the elliptic cross-section is the radius R of
the circle and the minor axis is Rcosα . This surface is generated by the wrist center
a PRS chain that has its P joint aligned with the axis L(t) and its R joint positions
so that its axis is along S2.

Consider a general point on the cylinder P, and let Q be the center of the circle.
The point Q moves along the axis L(t), which has the Plücker coordinates S1 =
(S1,B×S1). The distance from the reference point B to Q is denoted by d. These
definitions allow us to express the location of P relative to B as

P−B = dS1 +Ru, (14.41)

where u is a unit vector in the direction S1×S2. Compute the cross product with S1
to eliminate d, and the cross product with S2 to obtain
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Fig. 14.5 The elliptic cylinder reachable by a PRS serial chain.

S2× ((P−B)×S1) = R(S2 ·S1)u. (14.42)

The magnitude of this vector identity yields our equation of the elliptic cylinder(
S2×

(
(P−B)×S1

))2
= R2(S1 ·S2)

2. (14.43)

This equation has 13 dimensional parameters: the radius R, three each for the direc-
tions S1, S2, and the points P and B. Notice that if S1 = S2 = G this simplifies to the
equation of a circular cylinder.

There are actually only 10 independent parameters in (14.43), and we can deter-
mine three additional linear constraints. First, note that it is the directions of S1 and
S2 that matter, not their magnitudes. We specify these magnitudes by introducing
two arbitrary planes Vk : (mk,ek), k = 1,2. In general, the lines through the origin
parallel to Si must intersect these planes, respectively. We select these points of
intersection to be Si; that is, we require

Ck : mk ·Sk− ek = 0, k = 1,2. (14.44)

Next, we note that any point along the line S1 can serve as the reference point B for
the axis of the cylinder. We determine B by specifying an arbitrary plane U : (n, f ).
In general, the line G must intersect this plane, and we select this point at B. Thus,
B satisfies the linear equation
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C3 : n ·B− f = 0. (14.45)

Notice that n is the unit normal to the plane and f the directed distance from the
origin to the plane.

We now consider the images of a point p = (x,y,z) generated by 10 spatial dis-
placements, that is Pi = [T (Q̂i)]p, i = 1, . . . ,10. Evaluate the equation of the elliptic
cylinder on these 10 points to obtain(

S2×
(
(Pi−B)×S1

))2−R2(S1 ·S2)
2 = 0, i = 1, . . . ,10. (14.46)

Subtract the first of these equations from the remaining to obtain the system of
polynomials

E j : (S2× ((P j+1−B)×S1))
2− (S2× ((P1−B)×S1))

2 = 0, j = 1, . . . ,9,
Ck : mk ·Sk− ek = 0, k = 1,2,
C3 : n ·B− f = 0. (14.47)

The result is nine polynomials of degree six, and three linear equations. The total
degree of this polynomial system is 69 = 10,077,696.

The total degree of this system can be reduced as follows. Expand the triple
product

S2× ((P−B)×S1) =(S1 ·S2)(P−B)− ((P−B) ·S2)S1

=(S1 ·S2)(P− (P ·K)S1 +Q), (14.48)

where
K =

S2

S1 ·S2
and Q = (B ·K)S1−B. (14.49)

Add to this the constraints

S1 ·S1 = 1, K ·S1 = 1, Q ·K = 0. (14.50)

This combines with the other constraints to reduce the degree of these polynomials
to four, so we have

(P− (P ·K)S1 +Q)2

= P2 +(P ·K)2 +Q2−2(P ·S1)(P ·K)+2P ·Q−2(P ·K)(Q ·S1). (14.51)

The result is a new version of the polynomial system
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E ′j : (P j+1− (P j+1 ·K)S1 +Q)2− (P1− (P1 ·K)S1 +Q)2 = 0,

j = 1, . . . ,9,
C ′1 : S1 ·S1−1 = 0,
C ′2 : K ·S1−1 = 0,
C ′3 : Q ·K = 0, (14.52)

which has total degree (23)(49) = 2097152.
As we have done previously, we examine the monomial structure of the equa-

tions E ′j . Let S1 = (a,b,c), K = (k1,k2,k3), and Q = (q1,q2,q3), and recall that the

quadratic terms in P j+12−P12 cancel, as does the term Q2. Thus, the polynomials
E ′j have the monomial structure

〈x,y,z,1〉∪ 〈x,y,z,1〉2〈k1,k2,k3〉2∪〈x,y,z,1〉2〈k1,k2,k3〉〈a,b,c〉
∪ 〈x,y,z,1〉〈q1,q2,q3〉∪ 〈x,y,z,1〉〈k1,k2,k3〉〈a,b,c〉〈q1,q2,q3〉. (14.53)

This leads to the linear product decomposition for this polynomial system

E ′j ∈〈x,y,z,1〉〈x,y,z,q1,q2,q3,1〉〈k1,k2,k3,1〉〈k1,k2,k3,a,b,c,1〉| j = 0,

j = 1, . . . ,9,

C ′1 ∈〈a,b,c,1〉2 = 0,
C ′2 ∈〈k1,k2,k3,1〉〈a,b,c,1〉= 0,
C ′3 ∈〈k1,k2,k3,1〉〈q1,q2,q3,1〉= 0. (14.54)

The LPD bound for this system is 247 968, and it was solved using POLSYS GLP
on 128 nodes of the Blue Horizon supercomputer at the San Diego Supercomputer
Center. The result was 18 120 real and complex solutions, each which defines the
RPS chains.

14.8 The Circular Torus

A circular torus is generated by sweeping a circle around an axis so that its center
traces a second circle. Let the axis be L(t) = B+ tG, with Plücker coordinates G=
(G,B×G). See Figure 14.6. Introduce a unit vector v perpendicular to this axis so
that the center of the generating circle is given by Q−B = ρv. Now define u to
be the unit vector in the direction G—then a point P on the torus is defined by the
vector equation

P−B = ρv+R(cosφv+ sinφu), (14.55)

where φ is the angle measured from v to the radius vector of the generating circle.
An algebraic equation of the torus is obtained from (14.55) by first computing

the magnitude
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Fig. 14.6 The circular torus traced by the wrist center of a right RRS serial chain.

(P−B)2 = ρ
2 +R2 +2ρRcosφ . (14.56)

Next compute the dot product with u, to obtain

(P−B) ·u = Rsinφ . (14.57)

Finally, eliminate cosφ and sinφ from these equations, and the result is

G2((P−B)2−ρ
2−R2)2 +4ρ

2((P−B) ·G)2 = 4ρ
2G2R2. (14.58)

This is the equation of a circular torus. It has 11 parameters, the scalars ρ and R,
and the three vectors G, P, and B.

In contrast to what we have done previously, here we set the magnitude of G to
a constant, in order to simplify the polynomial (14.58),

G : G ·G = 1. (14.59)

Unfortunately, this doubles the number of solutions, since −G and G define the
same torus—however, it reduces this polynomial from degree six to degree four.

Let [Ti] = [Ai,di] be a specified set of displacements, so we have the 10 positions
Pi = [Ti]p of a point p = (x,y,z) that is fixed in the moving frame M. Evaluating
(14.58) on these points, we obtain the polynomial system

Ti : ((Pi−B)2−ρ
2−R2)2 +4ρ

2((Pi−B) ·G)2−4ρ
2R2 = 0, i = 1, . . . ,10,

G : G ·G−1 = 0. (14.60)

The total degree of this system is 2(410) = 2097152.
In order to simplify the polynomials Ti we introduce the parameters
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H = 2ρG and k1 = B2−ρ
2−R2, (14.61)

which yields the identity

4ρ
2R2 = H2

(
B2− H2

4
− k1

)
. (14.62)

Substitute these relations into Ti to obtain

T ′
i : ((Pi)2−2Pi ·B+ k1)

2 +((Pi−B) ·H)2−H2
(

B2− H2

4
− k1

)
= 0.

i = 1, . . . ,10, (14.63)

It is difficult to find a simplified formulation for these equations, even if we subtract
the first equation from the remaining in order to cancel terms.

Expanding the polynomial T ′
i and examining each of the terms, we can identify

the linear product decomposition

T ′
i ∈ 〈x,y,z,h1,h2,h3,1〉2〈x,y,z,h1,h2,h3,u,v,w,k1,1〉2. (14.64)

This allows us to compute the LPD bound on the number of roots as

LPD = 210
6

∑
j=0

(
10
j

)
= 868352. (14.65)

Our POLSYS GLP algorithm obtained 94,622 real and complex solutions for a ran-
dom set of specified displacements. However, this problem needs further study to
provide an efficient way to evaluate and sort the large number of right RRS chains.

14.9 The General Torus

A general torus is defined by sweeping a circle that has a general orientation in
space about an arbitrary axis. See Figure 14.7. Let S1 = (S1,B×S1) be the Plücker
coordinates of the line that forms the axis of the torus, and let S2 = (S2,Q× S2)
define the line through the center of the circle that is perpendicular to the plane of the
circle. These two lines define a common normal N, and we choose its intersection
with S1 and S2 to be the reference points B and Q, respectively. The normal angle
and distance between these lines around and along their common normal are denoted
by α and ρ . Finally, we identify the center of the circle as lying a distance d along
S2 measured from Q.

In this derivation, we constrain S1 and S2 to be unit vectors, in order to reduce
the degree of the resulting equation. This allows us to define the unit vector in the
common normal direction as n = (S1×S2)/sinα , so we obtain a general point P
on the torus from the vector equation
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Fig. 14.7 The general torus reachable by the wrist center of an RRS serial chain.

P−B = ρn+dS2 +R(cosφn+ sinφ(S2×n)). (14.66)

The algebraic equation for the torus is obtained by first computing

(P−B)2 = ρ
2 +d2 +R2 +2ρRcosφ (14.67)

and
(P−B) · (v×n) = Rsinφ . (14.68)

Notice that S2×n is

S2×
S1×S2

sinα
=

1
sinα

(S1− cosαS2). (14.69)

Now eliminate φ between these two equations to obtain

((P−B)2−ρ
2−d2−R2)2+

4ρ2

sin2
α
((P−B) ·S1−d cosα)2−4ρ

2R2 = 0. (14.70)

This equation has the four scalar parameters ρ , α , d, and R, and the three vector
parameters P, B, and S1. These 13 parameters combine with the constraint that
|S1|= 1 to yield 12 independent parameters.

In order to simplify the use of equation (14.70), we introduce the parameters

k1 =B ·B−ρ
2−R2−d2,

k2 =(B ·S1 +d cosα)
2ρ

sinα
,

k3 =4ρ
2R2,

H =
2ρ

sinα
S1. (14.71)

These parameters allow us to write (14.70) in the form
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(P2−2P ·B+ k1)
2 +(P ·H− k2)

2− k3 = 0. (14.72)

This is a quartic polynomial in the three scalars k1, i = 1,2,3 and three vectors P,
B, and H.

Given a set of displacements Q̂i, i = 1, . . . ,12, we evaluate (14.72) on the points
Pi = [T (Q̂i)]p, i = 1, . . . ,12. Subtract the first of these equations from the remaining
to cancel k3 and obtain

G T j : (P j+12−2P j+1 ·B+ k1)
2− (P12−2P1 ·B+ k1)

2

+(P j+1 ·H− k2)
2 +(P1 ·H− k2)

2 = 0, j = 1, . . . ,11. (14.73)

The total degree of this system of polynomials is 411 = 4 194 304.
We can refine the estimate of the number of roots of this polynomial system by

using the linear product decomposition. Expanding the polynomial G T j, we obtain
the terms

P j+14−P14 ∈〈x,y,z,1〉3,
(2P j+1 ·B)2− (2P1 ·B)2 ∈〈x,y,z,1〉2〈u,v,w〉2,

−4P j+12
(P j+1 ·B)+4P12

(P1 ·B) ∈〈x,y,z,1〉3〈u,v,w〉,

2k1(P j+12−P12−2P j+1 ·B+2P1 ·B) ∈〈x,y,z,1〉〈u,v,w,1〉〈k1〉,
(P j+1 ·H))2− (P1 ·H)2 ∈〈x,y,z,1〉2〈h1,h2,h3〉2

−2k2(P j+1 ·H−P1 ·H) ∈〈x,y,z,1〉〈h1,h2,h3〉〈k2〉. (14.74)

Notice that the quartic terms in the first expression cancel. We combine these mono-
mials into the linear product decomposition:

G T j : 〈x,y,z,1〉2〈u,v,w,h1,h2,h3,1〉〈x,y,z,u,v,w,h1,h2,h3,k1,k2,1〉| j,
j = 1, . . . ,11.

(14.75)

This allows us to compute the LPD bound of 448 702.
The parallel POLSYS GLP homotopy solver computed 42 615 solutions, and

each real solution can be used to design an RRS chain to reach the specified dis-
placements. The distribution and utility of these solutions requires further study.

14.10 Polynomial Continuation Algorithms

Our concern is finding all of the solutions of the n polynomial equations in n un-
knowns that form the synthesis equations for a spatial serial chain. As we have seen,
the synthesis equations for the PPS and TS chains can be solved by direct elimina-
tion of the unknown parameters to obtain a univariate polynomial. However, the
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Table 14.2 Total degree, LPD bound, and number of solutions to the design equations

Case Surface Total Degree LPD Bound Number of Roots

1 plane 32 10 10
2 sphere 64 20 20
3 circ. cylinder 16,384 2,184 804
4 circ. hyperboloid 262,144 9,216 1,024
5 elliptic cylinder 2,097,152 247,968 18,120
6 right torus 2,097,152 868,352 94,622
7 general torus 4,194,304 448,702 42,615

remaining chains yield systems of polynomials that are too complicated to solve
by direct parameter elimination; therefore we use polynomial continuation to solve
these equations.

Polynomial continuation solves a polynomial system P(z) = 0 by starting with a
polynomial system Q(z) = 0 that has the same structure as P(z) and a known set of
solutions. A good example of a start system Q(z) is obtained from the linear project
decomposition of P(z). The system Q(z) is continuously transformed into P(z) such
that the solutions of Q(z) = 0 move to become the solutions of P(z) = 0. This can
be viewed as the numerical solution of a set of ordinary differential equations where
the solutions of Q(z) are the initial conditions.

To see how this is done, consider the array of polynomials P(z) that form any of
our synthesis equations,

P(z) =


S1(z)
S2(z)

...
Sn(z)

= 0, (14.76)

where z = (z1,z2, . . . ,zn) is the design parameter vector. Now construct the convex
combination homotopy map

H(λ ,z) = (1−λ )Q(z)+λP(z), (14.77)

where λ ∈ [0,1) is the real-valued homotopy parameter. The coefficients of our
polynomial system P(z)= 0 are real; however, its solutions z need not be. Therefore,
the homotopy H(λ ,z) must be viewed as an array of n complex functions in n
complex variables z together with a single real variable λ .

For each root of the start system Q(z) = 0, denoted by z = a j, j = 1, . . . ,N,
the homotopy equation H(λ ,z) = 0 has an associated zero curve γa, which is the
connected component of H−1(0) containing the start point (0,a j). The zero curve
leads either to a point (1,za) where P(za) = 0, or diverges to a root “at infinity.”

Each zero curve can be parameterized by its arc length s, so γa has the form
(λ (s),z(s)). Tracking this curve involves numerical computation of points yi ≈
(λ (si),z(si)), where {si} is an increasing sequence of arc lengths. Along the zero
curve γa, we have the identity H(γ(s),z(s)) = 0; therefore we can compute
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d
ds

H(λ ,z) =
[
Hλ Hz

]{dλ/ds
dz/ds

}
= 0, (14.78)

where [JH ] = [Hλ ,Hz] is the n×(n+1) matrix of partial derivatives of the homotopy
H(λ ,z). Notice that the vector v = (dλ/ds,dz/ds)T is tangent to the zero curve γa
and is in the null space of the Jacobian matrix [JH ].

The unit vector vi in the direction of increasing arc length at a point yi on γa is
used to predict a value for the next point y0

i+1, that is

y0
i+1 = yi +(si+1− si)vi, (14.79)

where si+1−si is the chosen arc-length step. The predicted value of y0
i+1 is corrected

using the Taylor series expansion of the homotopy given by

H(y0
i+1)+ [JH(y0

i+1)](y
1
i+1−y0

i+1)≈ 0, (14.80)

which yields the correction formula

y1
i+1 = y0

i+1− [JH(y0
i+1)]

†H(y0
i+1). (14.81)

The dagger denotes the Moore-Penrose pseudoinverse of the n× (n+ 1) Jacobian
matrix. Geometrically, this iteration of the correction formula moves yk

i+1 toward
the zero curve γa along a normal direction.

The predictor can be improved by interpolation at previously computed points
along the zero curve, and a projective transformation can be used to bound the arc
length of all of the paths so that none diverge to infinity. Finally, an “end-game”
strategy can improve the calculation of y near γ = 1. See Wise et al. [151] and
Sommese and Wampler [115] for details.

14.11 Summary

In this chapter, we have formulated the synthesis equations for a set of seven spatial
serial chains that can position a spherical wrist center on an algebraic surface. We
show how to generate a linear product decomposition and obtain the linear product
bound for the number of solutions to these equations. Finally, we present the basic
formulation of polynomial continuation algorithms that can be used to solve these
equations. Table 14.2 lists the number of solutions for the polynomial systems for
each of the seven spatial serial chains.
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14.12 References

This chapter is based of the work of Su et al. [128], which expands the work by
Chen and Roth [10]. It was Schoenflies [113] who introduced the problem of seeking
points and lines in a moving body that take positions on surfaces associated with the
spatial serial chains and Burmester [7] who used it for linkage design—also see
Suh and Radcliffe [134]. Nielsen and Roth [89] and Husty [51] apply polynomial
elimination methods to robotic systems. Our discussion of numerical polynomial
homotopy is based on Wise et al. [151] and Tsai and Morgan [137]. Bernshtein [3]
and Morgan et al. [84] analyze the bounds on the number of solutions of systems of
polynomials, also Verschelde and Haegemans [139]. The POLSYS GLP algorithm
is described in Su et al. [130]. See Sommese and Wampler [115] for the theory and
applications of the Bertini polynomial continuation software to a range of robotics
problems.



Chapter 15
Clifford Algebra Synthesis of Serial Chains

In this chapter we formulate design equations for a spatial serial chain using the
matrix exponential form of its kinematics equations. These equations define the
position and orientation of the end effector in terms of rotations about the joint axes
of the chain. Because the coordinates of these axes appear explicitly, we can specify
a set of task positions, and solve these equations to determine the location of the
joints. At the same time we are free to specify joint parameters or certain dimensions
to ensure that the resulting robotic system has certain features. The structure of

+(P3),
known as dual quaternions.

15.1 The Product-of-Exponentials Form of the Kinematics
Equations

The synthesis equations for a spatial serial chain are obtained from the matrix ex-
ponential form of its kinematics equations. This form of the kinematics equations
replaces the Denavit-Hartenberg parameters with the coordinates of the n joint axes
Si, i= 1, . . . ,n. It is the coordinates of these axes that are the unknowns of the design
problem.

Consider a displacement defined such that the moving body rotates the angle
φ and slides the distance k around and along the screw axis S = (S,C× S). Let
µ = k/φ , then we can introduce the screw J= (S,V) = (S,C×S+µS), where µ is
called the pitch of the screw. The components of J define the 4×4 twist matrix

J =


0 −sz sy vx
sz 0 −sx vy
−sy sx 0 vz

0 0 0 0

 , (15.1)
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Fig. 15.1 Local frames for a serial chain.

and we find that the 4× 4 homogeneous transform representing a rotation φ and a
translation k about and along an axis S, [T (φ ,k,S)], is defined as the matrix expo-
nential

[T (φ ,k,S)] = eφJ . (15.2)

The matrix exponential takes a simple form for the matrices [Z(θi,di)] and
[X(αi,i+1,ai,i+1)]. The screws defined for these two transformations are K= (~k,ν~k)
and I = (~ı,λ~ı), where ν = di/θi and λ = ai,i+1/αi,i+1 are their respective pitches.
Thus, we have

[Z(θi,di)] = eθiK and [X(αi,i+1,ai,i+1)] = eαi,i+1I , (15.3)

and the kinematics equations become

[D] = [G]eθ1Keα12Ieθ2K · · ·eαn−1,nIeθnK [H]. (15.4)

This is one way to write the product of exponentials form of the kinematics equa-
tions. In the next section, we modify this slightly for use as our design equations.

15.1.1 Relative Displacements

If we choose a reference position for the end-effector, denoted by [D0], then the
associated joint angle vector ~θ0 can be determined, as well as the world frame coor-
dinates of each of the joint axes. The transformation [D0] is often selected to be the
configuration in which the joint parameters are zero and is called the zero reference
position by Gupta [41].

The displacement of the serial chain relative to this reference configuration is
defined by [D(∆~θ)] = [D(~θ)][D(~θ0)]

−1 and yields a convenient formulation for the
kinematics equations. Assume that [D0] is a general position of the end-effector
defined by joint parameters ~θ0, so ∆~θ = ~θ −~θ0. Then, using the usual kinematics

S1
S2

S3

A12

A23
a23

B2

B1

x
q1

q2

x

a12d1

d2

a23

a12
z

z
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equations, we have

[D(∆~θ)] =
(
[G][Z(θ1,d1)] · · · [Z(θn,dn)][H]

)(
[G][Z(θ10,d10)] · · · [Z(θn0,dn0)][H]

)
)−1. (15.5)

In order to expand this equation, we introduce the partial displacements

[Ai0] = [G][Z(θ10,d10)][X(α12,a12)] · · · [X(αi−1,i,ai−1,i)], (15.6)

where, for example,

[A10] = [G], and [A20] = [G][Z(θ10,d10)][X(α12,a12)].

Now insert the identity [Z(θi,0)]
−1[Ai0]

−1[Ai0][Z(θi0)] = [I] after the first n−1 joint
transforms [Z(θi,di)] in equation (15.5), in order to obtain the sequence of terms

[T (∆θi,Si)] = [Ai0][Z(θi,di)][Z(θi,0)]
−1[Ai0]

−1 = [Ai0][Z(∆θi,∆di)][Ai0]
−1. (15.7)

The result is the relative transformation that takes the form

[D(∆~θ)] = [T (∆θ1,S1)][T (∆θ2,S2)] · · · [T (∆θn,Sn)], (15.8)

where Si are the Plücker coordinates of each joint axis obtained by transforming
the joint screw K to the world frame by the coordinate transformations defined in
(15.7).

Using the exponential form the transformations [T (∆θi,Si)], we write the relative
kinematics equations (15.8) as

[D(∆~θ)] = e∆θ1S1e∆θ2S2 . . .e∆θnSn , (15.9)

where the matrices Si are defined as

Si = Ai0KA−1
i0 . (15.10)

The product-of-exponentials form of the kinematics equations (15.4) is now ob-
tained as

[D] = [D(∆~θ)][D0] = e∆θ1S1e∆θ2S2 · · ·e∆θnSn [D0]. (15.11)

The difference between this equation and (15.4) is that here the coordinates of the
joint axes of the serial chain are defined in the world frame.

15.2 The Even Clifford Algebra C+(P3)

The Clifford algebra of the projective three-space P3 is a sixteen-dimensional vector
space with a product operation that is defined in terms of a scalar product, McCarthy
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[76]. The elements of even rank form an eight-dimensional subalgebra C+(P3) that
can be identified with the set of 4×4 homogeneous transforms.

The typical element of C+(P3) can be written as the eight-dimensional vector
given by

Â = a0 +a1i+a2 j+a3k+a4ε +a5iε +a6 jε +a7kε, (15.12)

where the basis elements i, j, and k are the well-known quaternion units, and ε is
called the dual unit. The quaternion units satisfy the multiplication relations

i2 = j2 = k2 =−1, i j = k, jk = i, ki = j, and i jk =−1. (15.13)

The dual number ε commutes with i, j, and k, and multiplies by the rule ε2 = 0.
In our calculations, it is convenient to consider the linear combination of quater-

nion units to be a vector in three dimenions, so we use the notation A = a1i+a2 j+
a3k and A◦= a5i+a6 j+a7k; the small circle superscript is often used to distinguish
coefficients of the dual unit. This allows us to write the Clifford algebra element
(15.12) as

Â = a0 +A+a4ε +A◦ε. (15.14)

Now collect the scalar and vector terms so that this element takes the form

Â = (a0 +a4ε)+(A+A◦ε) = â+A. (15.15)

The dual vector A= A+A◦ε can be identified with the pairs of vectors that define
lines and screws.

Using this notation. the Clifford algebra product of elements Â = â+A and B̂ =
b̂+B takes the form

Ĉ = (b̂+B)(â+A) = (b̂â−B ·A)+(âB+ b̂A+B×A), (15.16)

where the usual vector dot and cross products are extended linearly to dual vectors.

15.2.1 Exponential of a Vector

The product operation in the Clifford algebra allows us to compute the exponential
of a vector θS, where |S|= 1, as

eθS = 1+θS+
θ 2

2
S2 +

θ 3

3!
S3 + · · · . (15.17)

Using (15.16) we can write S = 0+S and compute

S2 = (0+S)(0+S) =−1, S3 =−S, S4 = 1, and S5 = S, (15.18)

which means that we have
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eθS =

(
1− θ 2

2
+

θ 4

4!
+ · · ·

)
+

(
θ − θ 3

3!
+

θ 5

5!
+ · · ·

)
S = cosθ + sinθS. (15.19)

This is the well-known unit quaternion that represents a rotation around the axis S
by the angle φ = 2θ . The rotation angle φ is double that given in the quaternion,
because the Clifford algebra form of a rotation requires multiplication by both Q =
cosθ + sinθS and its conjugate Q∗ = cosθ − sinθS. In particular, if x and X are
the coordinates of a point before and after the rotation, then we have the quaternion
coordinate transformation equation

X = QxQ∗. (15.20)

For this reason the quaternion is often written in terms of one-half the rotation angle,
that is, Q = cos φ

2 + sin φ

2 S

15.2.2 Exponential of a Screw

The Plücker coordinates S= (S,C×S) of a line can be identified with the Clifford
algebra element S= S+ εC×S. Similarly, the screw J= (S,V) = (S,C×S+µS)
becomes the element J = S+ εV = (1+ µε)S. Using the Clifford product we can
compute the exponential of the screw θJ,

eθJ = 1+ J+
θ 2

2
J2 +

θ 3

3!
J3 + · · · . (15.21)

Notice that S2 =−1; therefore

J2 =− (1+µε)2 =−(1+2µε), J3 =−(1+3µε)S,

J4 =1+4µε, and J5 = (1+5µε)S, (15.22)

and we obtain

eθJ =

(
1− θ 2

2
+

θ 4

4!
+ · · ·

)
+

(
θ − θ 3

3!
+

θ 5

5!
+ · · ·

)
S (15.23)

−θ µε

(
θ − θ 3

3!
+ · · ·

)
+θ µε(1− θ 2

2
+ · · ·)S

=(cosθ −d sinθε)+(sinθ +d cosθε)S. (15.24)

Let d = θ µ be the slide along the screw axis associated with the angle θ . At this
point it is convenient to introduce the dual angle θ̂ = θ +dε , so we have the identi-
ties

sin θ̂ = sinθ +d cosθε and cos θ̂ = cosθ −d sinθε, (15.25)

which are derived using the series expansions of sine and cosine.
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Equation (15.24) introduces the unit dual quaterion, which is identified with spa-
tial displacements. To see the relationship we factor out the rotation term to obtain

Q̂ = cos θ̂ + sin θ̂S= (1+ tε)(cosθ + sinθS), (15.26)

where
t = dS+ sinθ cosθC×S− sin2

θ(C×S)×S. (15.27)

This vector is one-half the translation d = 2t of the spatial displacement associated
with this dual quaternion in the same way that we saw that the rotation angle is
φ = 2θ . This is because the transformation of line coordinates x to X by the rotation
φ around an axis S with the translation d involves multiplication by both the Clifford
algebra element Q̂ = cos θ̂ + sin θ̂S and its conjugate Q̂∗ = cos θ̂ − sin θ̂S, given by

X= Q̂xQ̂∗. (15.28)

For this reason the unit dual quaternion is usually written in terms of the half rotation
angle and half displacement vector,

Q̂ = cos
φ̂

2
+ sin

φ̂

2
S=

(
1+

1
2

dε

)(
cos

φ

2
+ sin

φ

2
S
)
, (15.29)

where

d = 2
(

k
2

S+ sin
φ

2
cos

φ

2
C×S− sin2 φ

2
(C×S)×S

)
. (15.30)

Notice that we introduced the slide along S given by k = φ µ , so we have the dual
angle φ̂ = φ + kε .

15.2.3 Clifford Algebra Kinematics Equations

The exponential of a screw defines a relative displacement from an initial position
to a final position in terms of a rotation around and slide along an axis. This means
that the composition of Clifford algebra elements defines the relative kinematics
equations for a serial chain that are equivalent to (15.9).

Consider the nC serial chain in which each joint can rotate through an angle θi
around, and slide the distance di along, the axis Si, for i = 1, . . . ,n. Let ~θ0 and ~d0 be
the joint parameters of this chain when in the reference configuration, so we have

∆~̂θ = (~θ + ~dε)− (~θ0 + ~d0ε) = (∆θ̂1,∆θ̂2, . . . ,∆θ̂n). (15.31)

Then, the movement from this reference configuration is defined by the kinematics
equations
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D̂(∆~̂θ) =e
∆θ̂1

2 S1e
∆θ̂2

2 S2 · · ·e
∆θ̂n

2 Sn ,

=

(
c

∆θ̂1

2
+ s

∆θ̂1

2
S1

)(
c

∆θ̂2

2
+ s

∆θ̂2

2
S2

)
· · ·

(
c

∆θ̂n

2
+ s

∆θ̂n

2
Sn

)
.

(15.32)

Note that s and c denote the sine and cosine functions, respectively.

15.3 Design Equations for a Serial Chain

The goal of our design problem is to determine the dimensions of a spatial serial
chain that can position a tool held by its end-effector in a given set of task positions.
The location of the base of the robot, the position of the tool frame, as well as the
link dimensions and joint angles are considered to be design variables.

15.3.1 Specified Task Positions

Identify a set of task positions [Pj], j = 1, . . . ,m. Then, the physical dimensions
of the chain are defined by the requirement that for each position [Pj] there be a
joint parameter vector ~θ j such that the kinematics equations of the chain satisfy the
relations

[Pj] = [D(~θ j)], i = 1, . . . ,m. (15.33)

Now choose [P1] as the reference position and compute the relative displacements
[Pj][P1]

−1 = [P1 j], j = 2, . . . ,m.
For each of these relative displacements [P1 j] we can determine the dual unit

quaternion P̂1 j=cos
∆φ̂1 j

2 + sin
∆φ̂1 j

2 P1 j, j = 2, . . . ,m. The dual angle ∆φ̂ 1 j defines
the rotation about and slide along the axis P1 j that defines the displacement from
the first to the jth position. Now writing equation (15.32) for the m− 1 relative
displacements, we obtain

P̂1 j = e
∆θ̂1 j

2 S1e
∆θ̂2 j

2 S2 · · ·e
∆θ̂n j

2 Sn , j = 2, . . . ,m. (15.34)

The result is 8(m− 1) design equations. The unknowns are the n joint axes Si, i =
1, . . . ,n, and the n(m−1) pairs of joint parameters ∆θ̂i j = ∆θi j +∆di jε .
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15.3.2 The Independent Synthesis Equations

The eight components of the unit Clifford algebra kinematics equations (15.34) are
not independent. It is easy to see that a dual unit quaternion satisfies the identity

Q̂Q̂∗ = e
∆φ̂

2 Se−
∆φ̂

2 S = 1, (15.35)

which imposes two constraints. Thus, only six of the eight synthesis equations ob-
tained for each relative task position are independent, which means that there are
only 6(n− 1) independent synthesis equations for an n position task. Furthermore,
the axis S has unit magnitude, which means that only four of its six components are
independent.

In order to count the number of independent equations and unknowns in the
Clifford algebra synthesis equations, it is useful to identify the relationship between
the constraints on a dual unit quaternion and the constraints on the dual unit vector
that generates it.

Property 1 (Normality Condition). The dual quaternion arising from the product of
dual quaternions has unit magnitude if and only if each factor is the exponential of
a dual unit vector.

Proof. For the screw displacement Q̂ = e
∆φ

2 S the unit condition yields

Q̂Q̂∗=
(

c
∆φ̂

2
+ s

∆φ̂

2
S

)(
c

∆φ̂

2
− s

∆φ̂

2
S

)
= c

∆φ̂

2
c

∆φ̂

2
+s

∆φ̂

2
s

∆φ̂

2
S ·S. (15.36)

Notice that if S ·S= 1, then

Q̂Q̂∗ = c
∆φ̂

2
c

∆φ̂

2
+ s

∆φ̂

2
s

∆φ̂

2
= c

∆φ

2

2
+ s

∆φ

2

2
= 1. (15.37)

Now, for a dual quaternion obtained as the composition of transformations about n
joint axes, we have

Q̂Q̂∗ =
(

e
∆φ1

2 S1 · · ·e
∆φn

2 Sn

)(
e

∆φ1
2 S1 · · ·e

∆φn
2 Sn

)∗
. (15.38)

Expand this product and use the associative property of the Clifford algebra to obtain

Q̂Q̂∗ = e
∆φ1

2 S1 · · ·(e
∆φn

2 Sne
−∆φn

2 Sn) · · ·e
−∆φ1

2 S1 , (15.39)

such that the terms e
∆φn

2 Sne
−∆φn

2 Sn equal 1 when Sn ·Sn = 1. The result is

Q̂Q̂∗ = 1 ⇐⇒ Si ·Si = 1, i = 1, . . . ,n. (15.40)

ut
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This condition shows that six of the eight components of the dual quaternion
kinematics equations combine with the normal conditions on the Plücker coordi-
nates of the joint axes to define the minimum set of independent synthesis equations
for the serial chain problem.

15.3.3 Counting the Equations and Unknowns

Consider a spatial serial chain that consists of r revolute joints and p prismatic
joints. A purely prismatic joint is defined by the unit vector S that defines the slide
direction, so it has two independent parameters. The revolute joint axis is defined by
Plücker coordinate vectors Si = S+C×Sε that have four independent components
due to the normal conditions

|S|= 1 and S · (C×S) = 0. (15.41)

Thus, the joint axes that define this chain have K = 6r + 3p components, minus
2r+ p Plücker constraints, which yields 4r+2p independent unknowns.

Revolute and prismatic joints each have a single joint parameter, either a rotation
angle or slide distance, which means that our chain has (r + p)(m− 1) unknown
joint parameters that define the m relative positions.

Subtracting the number of equations from the number of unknowns, we obtain

E =4r+2p+(r+ p)(m−1)−6(m−1)
=(3r+ p+6)+(r+ p−6)m, (15.42)

where E is the excess of unknowns over equations. This excess can be made to equal
zero for chains with degree of freedom dof = r+ p≤ 5, in which case we specify

m =
3r+ p+6− c

6− (r+ p)
, (15.43)

task positions. If fewer than this number of task positions are defined, or if the chain
has six or more degrees of freedom, then we are free to select values for the excess
design parameters. In (15.43) we have added c to denote any extra constraint that
may be imposed on the axes. Table 15.1 presents the maximum number of positions
that can be defined for some chains with five degrees of freedom.

It is interesting to notice that because the composition of displacements has struc-
ture of semidirect product, rotations are obtained only from operating rotations only.
This means that a counting scheme can be generated specifically for the rotations
by considering only the rotation component of the dual quaternion only. The result
is the maximum number of task rotations is given by

mR =
3+ r
3− r

. (15.44)
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In some cases with r =1 or 2, the rotation part of the design equations can be
used to determine the directions of these axes independently. Perez and McCarthy
[97] call these chains “orientation limited.”

Table 15.1 The number of task positions that determine the structural parameters for five-degree-
of-freedom serial chains.

Chain K Task positions Total Equations

PRPRP 21 15 91
RPRPR 24 17 104
RRRRP 27 19 117
RRRRR 30 21 130

15.3.4 Special Cases: T, S and PP Joints

The counting formula in (15.43) is used for revolute and prismatic joints assembled
in serial chains. The RR and RRR chains can be further specialized by introduc-
ing geometric constraints between their joint axes to define the universal joint and
spherical joint, respectively. Also two consecutive prismatic joints span the group
of displacements TP, planar translations on plane P, and they form a special type of
joint that we call PP. We are going to show how in some of these cases, the number
of design parameters is less than those considering directly the geometric constraints
on the axes.

15.3.4.1 The T Joint

Consider the RR chain formed by axes Si and Si+1. If we require these axes to
intersect in a right angle, then we obtain Hooke’s joint, also called a universal joint,
which we denote by a T following Crane and Duffy [16]. This geometric constraint
is defined by the dual vector equation

T : Si ·Si+1 = 0, (15.45)

which expands to define the two constraints

T : Si ·Si+1 = 0 and Si ·S◦i+1 +S◦i ·Si+1 = 0. (15.46)

The design equations for the RRR chain, for instance, are easily transformed into
design equations for the TR chain by including these two constraint equations with
the appropriate indices.
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15.3.4.2 The S Joint

In the same way, a sequence of three revolute joints, and RRR chain, can be con-
strained such that they intersect in a point, and the pairs in sequence are perpen-
dicular. This is a common construction for an active spherical joint, denoted by S,
which allows full orientation freedom around the intersection point. However, for
synthesis applications it can be shown that any three axes create the same spherical
joint.

Label three axes Si, Si+1, and Si+2. Then the equations that define this joint
consist of the dual vector constraints

S : Si ·Si+1 = 0, Si ·Si+2 = 0 and Si+1 ·Si+2 = 0, (15.47)

If we write the spherical joint as the dual quaternion product of these individual
axes,

Ŝ(θ1,θ2,θ3) = Ŝ1(θ1)Ŝ2(θ2)Ŝ3(θ3), (15.48)

when expanded, we obtain

Ŝ(θ1,θ2,θ3) = α4 +α1S1 +α2S2 +α3S3, (15.49)

where each αi appears as combinations of the joint variables,

α1 = sin
θ1

2
cos

θ2

2
cos

θ3

2
+ cos

θ1

2
sin

θ2

2
sin

θ3

2
,

α2 = cos
θ1

2
sin

θ2

2
cos

θ3

2
− sin

θ1

2
cos

θ2

2
sin

θ3

2
,

α3 = sin
θ1

2
sin

θ2

2
cos

θ3

2
+ cos

θ1

2
cos

θ2

2
sin

θ3

2
,

α4 = cos
θ1

2
cos

θ2

2
cos

θ3

2
− sin

θ1

2
sin

θ2

2
sin

θ3

2
. (15.50)

Now we show any directions S1, S2, S3 can be used to define the spherical joint.
Equate (15.48) to a goal displacement P̂ = (pw + ε p0

w)+(P+ εP0),

Ŝ(θ1,θ2,θ3) = P̂, (15.51)

and solve linearly for the combinations of joint variables in the αi factors using the
real part of the dual quaternion equation,

[
S1 S2 S3 ~0
0 0 0 1

]
α1
α2
α3
α4

=

{
P
pw

}
, (15.52)

where we write the scalar term as the fourth row. The values obtained for the joint
angles,
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α1 = S1 ·P, α2 = S2 ·P, α3 = S3 ·P, α4 = pw, (15.53)

are related by the following expression,

R : (S1 ·P)2 +(S2 ·P)2 +(S3 ·P)2 + p2
w = 1. (15.54)

If we notice that 1− p2
w = P ·P, this expression can be written as

R ′ : (S1 ·P)S1 +(S2 ·P)S2 +(S3 ·P)S3 = P, (15.55)

which states that the vector sum of the projections of P on the three joint directions
is equal to P. This equation holds for any three perpendicular directions.

We now substitute the expressions of the joint variables in the dual part of
(15.51). Notice that due to the fact that the last component of the dual quaternion in
(15.49) is equal to zero, a spherical joint cannot perform the most general relative
displacement.

If we express the dual part of each joint axis as S0
i = c×Si, where c is the com-

mon intersection point, the dual part of the equations becomes

M : (S1 ·P)c×S1 +(S2 ·P)c×S2 +(S3 ·P)c×S3 = P0, (15.56)

and this is equal to

M ′ : c× ((S1 ·P)S1 +(S2 ·P)S2 +(S3 ·P)S3) = P0. (15.57)

Observe that the expression in parentheses is the left-hand side of (15.55). Use
this to obtain

M ′′ : c×P = P0. (15.58)

This set of three equations specifies two out of the three coordinates of the point. At
least two relative positions need to be defined to fully specify this point. However,
as noted previously, they cannot be general positions if we want an exact solution.

Summarizing, for the spherical joint, only the coordinates of the intersection
point c and the three joint angles are design variables. This gives a different counting
from the one obtained by solving for three perpendicular and intersecting revolute
joints.

15.3.4.3 The PP Joint

When a serial robot is to be designed with two consecutive prismatic joints, these
can be made to be coplanar, since the location of a prismatic joint is not a design
parameter. The set of displacements produced by the two prismatic joints forms the
subgroup TP of planar translations on a plane P. The subgroup has dimension 2,
and two more parameters are needed to define the direction normal to the plane; for
synthesis purposes, the location of the plane is again arbitrary.
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We could create the PP joint by using two prismatic joints, which is a total of four
joint parameters plus two joint slides. We are going to show that both directions do
not appear independently in the equations. Let S1 and S2 be the directions of the two
prismatic joints. We create the displacements of the PP joint as the dual quaternion
product

Ŝ(d1,d2) = Ŝ1(d1)Ŝ2(d2). (15.59)

When expanded, it yields

Ŝ0(d1,d2) = 1+ ε

(
d1

2
S1 +

d2

2
S2

)
. (15.60)

We solve linearly for the joint variables d1 and d2 in the dual part of the design
equations, [ 1

2 S1
1
2 S2
]{d1

d2

}
= P0. (15.61)

For the system to have a solution, the determinant of the augmented matrix must
be zero. This yields the simplified design equation

M : (S1×S2) ·P0 = 0. (15.62)

The parameters of the prismatic joints always appear as a cross product, and we can
substitute it by the common normal, S1×S2 = N. Within the plane defined by N,
any two independent directions can be used to define the joint axes.

Summarizing, for synthesis purposes, the design parameters for two consecutive
prismatic joints are the two slides and the vector N defining the normal direction to
S1 and S2. It coincides with the parameters needed to define the subgroup TP.

Other cases in which the number of design parameters is less than those obtained
by imposing extra constraints on the joint axes can be found in a similar way.

15.4 Assembling the Design Equations

The structure of the Clifford algebra design equations provides a systematic ap-
proach to assembling the design equations for a broad range of serial chains. The
strategy is to formulate the design equations for the nC serial chain, and then (i)
restrict the joint variables to form prismatic or sliding joints, and (ii) impose geo-
metric conditions on the axes to account for specific geometry and to form Hooke’s
or spherical joints. The result is a systematic way of defining the design equations
for a broad range of chains. Here we present the procedure for the 3C serial chain,
but it has been implemented in our numerical solver for the 2C, 4C, and 5C cases as
well.
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15.4.1 The 3C Chain

The Clifford algebra form of the relative kinematics equations for the 3C chain can
be written as

D̂(∆~̂θ) =

(
c

∆θ̂1

2
+ s

∆θ̂1

2
S1

)(
c

∆θ̂2

2
+ s

∆θ̂2

2
S2

)(
c

∆θ̂3

2
+ s

∆θ̂3

2
S3

)
,

(15.63)

where Si = Si+S◦i ε define the joint axes in the reference position, and ∆θ̂i = ∆θi+
∆di define the rotation and slide of the cylindric joint around the ith axis.

Expand the right side of (15.63) using the Clifford product to obtain

D̂(∆~̂θ) =(ĉ1ĉ2− ŝ1ŝ2S1 ·S2 + ŝ1ĉ2S1 + ĉ1ŝ2S2 + ŝ1ŝ2S1×S2)(ĉ3 + ŝ3S3),

= ĉ1ĉ2ĉ3− ŝ1ŝ2ĉ3S1 ·S2− ŝ1ĉ2ŝ3S1 ·S3− ĉ1ŝ2ŝ3S2 ·S3− ŝ1ŝ2ŝ3S1×S2 ·S3

+ ŝ1ĉ2ĉ3S1 + ĉ1ŝ2ĉ3S2 + ĉ1ĉ2ŝ3S3 + ŝ1ŝ2ĉ3S1×S2 + ŝ1ĉ2ŝ3S1×S3

+ ĉ1ŝ2ŝ3S2×S3 + ŝ1ŝ2ŝ3((S1×S2)×S3− (S1 ·S2)S3). (15.64)

For convenience, we have introduced the notation ĉi = cos ∆θ̂i
2 and ŝi = sin ∆θ̂i

2 .
Equation (15.64) can be written in matrix form to emphasize that it is the linear

combination of the eight monomials formed as products of the joint angles, which
we assemble into an array in reverse lexicographic order obtained by reading right
to left,

V̂ = (ĉ1ĉ2ĉ3, ŝ1ĉ2ĉ3, ĉ1ŝ2ĉ3, ĉ1ĉ2ŝ3, ŝ1ŝ2ĉ3, ŝ1ĉ2ŝ3, ĉ1ŝ2ŝ3, ŝ1ŝ2ŝ3)
T . (15.65)

To do this, we must introduce the vector form of the dual unit quaternion Q̂ =

cos ∆θ̂

2 + sin ∆θ̂

2 S given by

Q̂ =


sin ∆θ̂

2 (Sx +S◦xε)

sin ∆θ̂

2 (Sy +S◦yε)

sin ∆θ̂

2 (Sz +S◦z ε)

cos ∆θ̂

2

=

{
sin ∆θ̂

2 S

cos ∆θ̂

2

}
. (15.66)

Collecting terms in (15.64), we obtain the matrix equation

D̂(∆~̂θ)

=

[
0 S1 S2 S3 S1×S1 S1×S3 S2×S3 −(S1 ·S2)S3 +(S1×S2)×S3
1 0 0 0 −S1 ·S2 −S1 ·S3 −S2 ·S3 −S1×S2 ·S3

]
V̂.

(15.67)

The Clifford algebra notation is compact in that each column of this matrix ac-
tually forms a column of four dual coefficients, or eight real coefficients if we write
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the dual components of the dual quaternion after the real components, forming an
eight-dimensional vector. Similarly, each of the monomials in V̂ expands into four
real terms, which we can list as

M =

(
V,

∆d1

2
V,

∆d2

2
V,

∆d3

2
V
)
, (15.68)

where V is the array of real parts of V̂. Thus, (15.67) expands to an 8× 32 matrix
equation. The number k of joint variable monomials in an nC serial chain is given
by

k = (n+1)2n. (15.69)

Thus, these equations become 8× 12 for 2C, 8× 80 for 4C, and 8× 192 for 5C
chains.

The kinematics equations (15.67) can be used directly for the design of a 3C
chain. In what follows, we specialize these equations to obtain design equations for
a variety of special serial chains.

15.4.2 RCC, RRC, and RRR Chains

The ith cylindric joint in the 3C chain is converted to a revolute joint simply by set-
ting ∆di = 0. This can be done in seven different ways to define three permutations
of the RRC chain, three permutations of the RRC chain, and the RRR chain.

For example, the monomials in (15.67) that define the RCC, CRC, and CCR
chains are given by

RCC : M =
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∆d2

2
V,

∆d3

2
V
)
,

CRC : M =

(
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2
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2
V
)
,

CCR : M =
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2
V,

∆d2

2
V
)
. (15.70)

Similarly, the RRC, RCR and CRR chains have the monomials

RRC : M =

(
V,

∆d3

2
V
)
,

RCR : M =

(
V,

∆d2

2
V
)
,

CRR : M =

(
V,

∆d1

2
V
)
. (15.71)

Finally, the RRR chain is defined by the monomial list
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RRR : M = V. (15.72)

Notice that if an nC chain is specialized to have r revolute joints, then the number
of monomials is given by

k = (n− r+1)2n. (15.73)

15.4.3 PCC, PPC, and PPP Chains

A two-step process is required to convert the ith cylindric joint to a prismatic joint.
The first step is to set ∆θi = 0. The second step consists in specializing the joint
axis Si = Si, so that its dual part is zero. This latter constraint arises because the
pure translation defined by a prismatic joint depends only on the direction, not the
location in space, of its axis.

In order to define the monomials for the three permutations of the PCC chain, we
introduce W1 = (c1c2c3,c1s2c3,c1c2s3,c1s2s3), and similarly define W2 and W3,
where the subscript i indicates that we make si = 0. This allows us to define the
arrays of monomials
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)
. (15.74)

The monomials for the three permuations of the the PPC chain are easily deter-
mined by introducing the set of monomials W12 = (c1c2c3,c1c2s3), and similarly
W13 and W23,

PPC : M =
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2
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CPP : M =
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. (15.75)

Finally, the PPP chain is defined by the monomial list

PPP : M =

(
(c1c2c3),

∆d1

2
(c1c2c3),

∆d2

2
(c1c2c3),

∆d3

2
(c1c2c3)

)
. (15.76)

The number of monomials in an nC chain with p of the joints restricted to be
prismatic is seen to be
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k = (n+1)2n−p. (15.77)

Table 15.2 summarizes the constraints needed to transform the C joint into the
most common types of joints. Notice that for the spherical joint and other special
cases, we use the approach of adding constraints between consecutive joint axes.
This will not yield the minimum set of joint parameters, but it gives satisfactory
results with the numerical solver.

Table 15.2 Constraints that specialize C joints to R, P, T and S joints.

Joint Axes Constraints

R Si ∆di = 0
P Si ∆θi = 0
C Si none
T Si, Si+1 ∆di = 0 , ∆di+1 = 0, Si ·Si+1 = 0
S Si, Si+1, Si+2 ∆di = 0 , ∆di+1 = 0, ∆di+2 = 0,

Si ·Si+1 = 0, Si+1 ·Si+2 = 0, Si ·Si+2 = 0

This approach to the formulation of the design equations for special cases of the
CCC chain can be extended to any nC chain.

15.5 The Synthesis of 5C and Related Chains

In this section, we present a numerical synthesis algorithm that uses the Clifford
algebra exponential design equations for the 5C serial chain, see Figure 15.2. The
special cases of this chain include robots with up to five joints and up to ten degrees
of freedom.

Fig. 15.2 The 5C serial robot.
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The design equations for a specific serial robot are be obtained from the 5C robot
equations by imposing conditions on some of the axes or joint variables. The kine-
matics equations for the 5C robot are given by

Q̂5C = e
∆θ̂1

2 S1e
∆θ̂2

2 S2e
∆θ̂3

2 S3e
∆θ̂4

2 S4e
∆θ̂5

2 S5 , (15.78)

or

Q̂5C =

(
cos

∆θ̂1

2
+ sin

∆θ̂1

2
S1

)(
cos

∆θ̂2

2
+ sin

∆θ̂2

2
S2

)
· · ·(

cos
∆θ̂5

2
+ sin

∆θ̂5

2
S5

)
. (15.79)

The kinematics equations for a serial chain consisting of revolute R, prismatic P,
universal T, cylindrical C, or spherical S joints can be obtained from the 5C robot
using the approach presented in the previous section. For example, the kinematics
equations of the TPR serial chain are obtained by requiring the axes S1 and S2 to
be perpendicular and coincident, which is obtained by setting the joint variables d1,
d2, θ3, and d4 to zero. The extra joint is eliminated by setting θ5 and d5 to zero.
Other joints, like the helical H and planar E joints can also be modeled by imposing
constraints on the axes and joint parameters.

In order to facilitate the specialization of the general 5C robot to a specific serial
chain topology,the kinematics equations are organized as a linear combination of the
products of joint angles and slides, which form the monomials of these equations
with coefficients that are given by the structural parameters of the chain. In this
way, the kinematics equations of the 5C serial chain are a linear combination of 192
monomials, which can be organized into six sets of 32 products of sines and cosines
of the ∆θi joint angles, given by

V = (s1s2s3s4s5,(s1s2s3s4c5)5,(s1s2s3c4c5)10,(s1s2c3c4c5)10,

(s1c2c3c4c5)5,c1c2c3c4c5), (15.80)

where ci = cos ∆θi
2 , si = sin ∆θi

2 . The notation () j denotes j permutations of each
set of sines and cosines. The remaining five sets of monomials are obtained by
multiplying V by the joint slides ∆di

2 , so we have a total set of monomials M, where

M =

(
V,

∆d1

2
V,

∆d2

2
V,

∆d3

2
V,

∆d4

2
V,

∆d5

2
V
)
. (15.81)

The kinematics equations of the 5C robot can now be written as the linear combina-
tion

Q̂5C =
192

∑
i=1

Kimi, mi ∈M. (15.82)
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The coefficients Ki are 8-dimensional vectors containing the structural variables
defining the joint axes.

This equation is adjusted to accommodate a revolute or prismatic joint inserted as
the jth joint axis by selecting the nonzero components of the vector M. Notice that
if the jth C joint is restricted to be a revolute joint, then the slide ∆d j is zero, which
eliminates 32 components in M. Similarly, if this joint is replaced by a prismatic
joint the angle becomes ∆θ j = 0, which eliminates 16 terms from the vector V.

In order to construct these equations, start with the array L5C = {1,2, . . . ,192} of
indices that denote the components of M for the general 5C chain, sorted as shown
above. Next define the arrays LR j , LPj and LCj that denote the nonzero components
of M for the cases when joint j is either a revolute, prismatic, or cylindric joint,
given by

LR j =

{
i :
(

cos
∆θ j

2
∧ sin

∆θ j

2

)
∈ mi∨

∆d j

2
/∈ mi

}
,

LPj =

{
i :
(

∆d j

2
∧ cos

∆θ j

2

)
∈ mi∨ sin

∆θ j

2
/∈ mi

}
,

LCj =

{
i :
(

∆d j

2
∧ cos

∆θ j

2
∧ sin

∆θ j

2

)
∈ mi

}
, (15.83)

where ∧ and ∨ are the logical or and logical and operations, respectively. Finally,
compute the array of indices L for a specific serial chain topology by intersecting
the arrays obtained for all of the joints, that is,

L =
5⋂

j=1

(LR j ∪LPj ∪LCj), (15.84)

where LPj = /0 and LCj = /0 if j is a revolute joint, for example.
The kinematics equations for the specific serial chain is now given by

Q̂ = ∑
i∈L

Kimi. (15.85)

The synthesis equations for the chain are obtained by equating the kinematics
equations in (15.85) to the set of task positions P̂1i, that is,

Q̂ = P̂1i, i = 2, . . .m, (15.86)

where the maximum number of task positions, m, is obtained for the chosen topol-
ogy using equations (15.43) and (15.44). Additional constraint equations may be
added to account for the specialized geometry of T and S joints or for any other
geometric constraint present in the robot.

These synthesis equations are solved to determine the joint axes Si in the refer-
ence configuration, as well as for values for the joint variables that ensure that the
serial chain reaches each of the task positions.



376 15 Clifford Algebra Synthesis of Serial Chains

15.5.1 The Synthesis Process

It is possible to automate the generation of the synthesis equations as cases of the
four classes of 2C, 3C, 4C, and 5C related serial chains. The synthesis equations can
then be solved numerically given a random start value. The input data consists of
a set of task positions and topology of the serial chain. The topology of the chains
is used to construct its kinematics equations Q̂. These equations are set equal to
the task positions P̂1i to yield the synthesis equations as the difference Q̂− P̂1i, i =
2, . . . ,m. The numerical solver finds values for the components of the joint axes and
joint variables that minimize this difference.

It is not necessary that the numerical solver use the minimum set of design equa-
tions as defined by (15.43). In fact, it is convenient to use all 8(m−1)+ c synthesis
equations. For the cases of 3R, 4R, and 5R serial chains this approach introduces
2, 8, and 30 redundant equations, respectively. Experience shows that the additional
equations enhance the convergence of the numerical algorithm.

15.6 Example: Design of a CCS Chain

In order to demonstrate the kinematic synthesis of spatial serial chains we begin by
identifying a goal trajectory that was determined using the Bézier interpolation of
a set of spatial key frames. From this trajectory we select twelve positions shown
in Figure 15.3 to define the task. Next we specify the topology of the chain to be
the seven-degree-of-freedom CCS serial chain. Notice that this is the special case
of a 5C serial chain, obtained by requiring the last three C joints to be restricted to
revolute joints with axes that intersect in a single point.

Fig. 15.3 The 12 positions defining the task.
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The CCS chain consists of a shoulder and elbow that allow both rotation and
translation about and along the axes, combined with a spherical wrist Figure 15.4.
In addition, we constrain the joint angles of the shoulder C joint to have specific
values for the rotation and translation in each of the task positions. See Table 15.3
for the task positions and the angle specification.

Fig. 15.4 The CCS serial chain.

Table 15.3 Task positions and values for the first joint angles

Task Dual quaternion coordinates

1 (0.02,−0.15,0.58,0.80,0.66,−0.30,0.09,−0.14)
2 (0.06,−0.37,0.38,0.85,0.77,−0.38,0.20,−0.31)
3 (−0.03,−0.44,−0.90,0.03,−0.38,0.77,−0.34,0.67)
4 (0.41,−0.29,−0.41,0.76,0.32,0.37,0.14,0.04)
5 (−0.04,−0.43,−0.90,0.05,−0.39,0.74,−0.30,0.64)
6 (0.28,−0.01,−0.36,0.89,−0.07,−0.06,0.11,0.06)
7 (0.36,0.35,0.48,0.72,−0.43,−0.54,−0.12,0.56)
8 (−0.18,0.79,0.03,0.58,−0.73,−0.94,−0.51,1.07)
9 (−0.29,−0.54,0.55,0.57,0.87,−0.26,1.106,−0.87)

10 (−0.93,−0.19,0.26,0.19,0.27,−0.07,0.10,1.09)
11 (−0.37,0.09,0.73,0.56,0.37,−0.78,−0.51,1.04)

Joint Parameters Values

θ1 j(π/11), j = 1, . . . ,11
d1 j(0.02), j = 1, . . . ,11

For this example, we run the Java software twice to obtain two different solutions.
The first solution took two iterations of the solver with a total time of 91 seconds.
The second solution took 61 seconds and one iteration. See Table 15.4 for the co-
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ordinates of the joint axes. Figure 15.5 shows one of the resulting robots moving
along the desired task.

Table 15.4 CCS chains designed to perform the specified task.

Solution Joint Axis Value

1 1 (0.14,0.49,0.86,−3.59,−0.45,0.85)
2 (−0.24,0.92,0.29,−2.44,−0.73,0.26)

wrist (0.23,1.21,−0.12)

2 1 (0.72,−0.50,0.48,0.40,0.03,−0.57)
2 (−0.10,0.52,−0.85,−2.53,0.17,0.41)

wrist (0.05,0.72,−0.94)

15.7 Planar Serial Chains

We now specialize the kinematics equations defined above to the case of planar
serial chains. It is convenient for our purposes to focus on chains consisting only of
revolute joints, the nR chain.

The Plücker coordinates of the axis of a typical revolute joint in a planar chain
are given by J = (~k,C×~k), where~k = (0,0,1) is directed along the z-axis of the
base frame, and C = (cx,cy,0) is the point of intersection of this axis with the x-y
plane. The associated twist matrix Ĵ is

Ĵ =


0 −1 0 −cy
1 0 0 cx
0 0 0 0
0 0 0 0

 . (15.87)

Let the transformation to the base of the chain be a translation by the vector
G = (gx,gy,0). Then he zero configuration of the nR planar chain has the points Ci,
i = 1, . . . ,n, on the joint axes Ji distributed along a line parallel to the x-axis Figure
15.6, such that

C1 =

gx
gy
0

 , C2 =

gz +a12
gy
0

 , . . . , Cn =

gx +a12 +a23 + · · ·+an−1,n
gy
0

 .

(15.88)
Substituting these points into (15.87), we obtain a twist matrix Ĵi for each revolute
joint and the product of exponentials kinematics equations

[D(~θ)] = e∆θ1 Ĵ1e∆θ2 Ĵ2 · · ·e∆θnĴn [D0]. (15.89)
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Fig. 15.5 A solution CCS serial chain.
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Fig. 15.6 A planar 3R chain in the reference configuration.

The zero frame transformation [D0] can be defined by introducing [C], which is the
translation by the vector c = (a12 + a23 + · · ·+ an−1,n)~ı along the chain in the zero
configuration, so we have

[D0] = [G][C][H]. (15.90)

The matrix exponential defining the rotation about J by the angle ∆θ is given by

e∆θ Ĵ =


cos∆θ −sin∆θ 0 (1− cos∆θ)cx + sin∆θcy
sin∆θ cos∆θ 0 −sin∆θcx +(1− cos∆θ)cy

0 0 1 0
0 0 0 1

 . (15.91)

This matrix defines a displacement consisting of a planar rotation about the point C,
called the pole of the displacement.

15.7.1 Complex Vector Kinematics Equations

It is convenient at this point to introduce the complex numbers ei∆θ = cos∆θ +
isin∆θ and C = cx + icy to simplify the representation of the displacement (15.91).

Let X1 = x+ iy be the coordinates of a point in the world frame in the first posi-
tion and X2 =X + iY its coordinates in the second position. Then this transformation
becomes

X2 = ei∆θ X1 +(1− ei∆θ )C. (15.92)

The complex numbers [ei∆θ ,(1− ei∆θ )C] define the rotation and translation that
form the planar displacement e∆θ Ĵ . The point C is the pole of the displacement, and
the translation vector D associated with this displacement is given by

D = (1− ei∆θ )C. (15.93)

The composition of the exponentials eθ1Ĉ1 and eθ2Ĉ2 that define rotations about
the points C1 and C2, respectively, yields

eφ P̂ = eθ1Ĉ1eθ2Ĉ2 , (15.94)

C1

a12 a23

C2 C3

F M
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or

[eiφ ,(1− eiφ )P] = [eiθ1 ,(1− eiθ1)C1][eiθ2 ,(1− eiθ2)C2]

= [ei(θ1+θ2),(1− eiθ1)C1 + eiθ1((1− eiθ2)C2]. (15.95)

Here P denotes the pole of the composite displacement.
The complex form of the relative kinematics equations (15.9) is seen to be

[D(∆~θ)] = [ei∆θ1 ,(1− ei∆θ1)C1][ei∆θ2 ,(1− ei∆θ2)C2] · · · [ei∆θn ,(1− ei∆θn)Cn].
(15.96)

If we define the relative displacement of the end-effector to be [D] = [ei∆φ ,(1−
ei∆φ )P], then we can expand this equation and equate the rotation and translation
components to obtain

ei∆φ =ei∆θ1ei∆θ2 · · ·ei∆θn = ei(∆θ1+∆θ2+···+∆θn),

(1− ei∆φ )P =(1− ei∆θ1)C1 + ei∆θ1(1− ei∆θ2)C2 + · · ·

+ ei(∆θ1+∆θ2+...+∆θn−1)(1− ei∆θn)Cn. (15.97)

These complex vector equations can be used to design planar nR serial chains.
We will see shortly that they are exactly Sandor and Erdman’s standard form equa-
tions. However, in the next section we introduce an equivalent set of design equa-
tions using the Clifford algebra form of the kinematics equations.

15.7.2 The Even Clifford Algebra C+(P2)

The even Clifford algebra of the projective plane P2 is a generalization of complex
numbers. It is a vector space with a product operation that is linked to a scalar
product. The elements of this Clifford algebra can be identified with the complex
vectors that define points in the plane, and with rotations and translations of these
coordinates.

Using homogeneous coordinates of points in the projective plane as the vectors
and a degenerate scalar product, we obtain an eight-dimensional Clifford algebra,
C(P2). This Clifford algebra has an even subalgebra, C+(P2), which is a set of four-
dimensional elements of the form

A = a1iε +a2 jε +a3k+a4. (15.98)

The basis elements iε , jε , k and 1 satisfy the following multiplication table:
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iε jε k 1
iε 0 0 − jε iε
jε 0 0 iε jε
k jε −iε −1 k
1 iε jε k 1

. (15.99)

Notice that the set of Clifford algebra elements z = x+ky formed using the basis
element k (k2 =−1) is isomorphic to the usual set of complex numbers. This means
that we have ekθ = cosθ + k sinθ .

Translation by the vector d= dx+kdy and rotation by the angle φ are represented
by the Clifford algebra elements

T (d) = 1+
1
2

diε and R(φ) = ekφ/2, (15.100)

and a general planar displacement D = T (d)R(φ) is given by

D =

(
1+

1
2

diε
)

ekφ/2. (15.101)

A displacement defined to be a rotation by ∆θ about a point C has the associated
Clifford algebra element

D =

(
1+

1
2
(1− ek∆θ )Ciε

)
ek∆θ/2, (15.102)

which is the Clifford algebra version of the matrix exponential (15.91). Expand this
equation to obtain the four-dimensional vector

D =
1
2
(e−k∆θ/2− ek∆θ/2)Ciε + ek∆θ/2

=−sin
∆θ

2
C jε + ek∆θ/2

= cy sin
∆θ

2
iε− cx sin

∆θ

2
jε + sin

∆θ

2
k+ cos

∆θ

2
. (15.103)

The components of this vector form the kinematic mapping used by Bottema and
Roth [5] to study planar displacements. Also see Ravani and Roth [100].

15.7.3 Clifford Algebra Kinematics Equations

The relative kinematics equations of an nR planar chain (15.96) can be written in
terms of the Clifford algebra elements (15.103) to define
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−sin
∆φ

2
P jε + ek∆φ/2 =

(
−sin

∆θ1 j

2
C1 jε + ek∆θ1/2

)(
−sin

∆θ2

2
C2 jε + ek∆θ2/2

)
· · ·
(
−sin

∆θn

2
Cn jε + ek∆θn/2

)
. (15.104)

Expand this equation and equate coefficients of the basis elements to obtain

ek∆φ/2 = ek(∆θ1+∆θ2+···+∆θn)/2,

sin
∆φ

2
P = sin

∆θ1

2
C1e−k(∆θ2+···+∆θn)/2 + ek∆θ1/2 sin

∆θ2

2
C2e−k(∆θ3+···+∆θn)/2

+ · · ·+ ek(∆θ1+∆θ2+···+∆θn−1)/2 sin
∆θn

2
Cn. (15.105)

These equations are equivalent to the complex vector equations presented above. In
fact, multiplication of (15.105) by ek∆φ/2 yields the equations (15.97). Note that we
must replace k by the usual complex number i.

15.8 Design Equations for the Planar nR Chain

The goal of our design problem is to determine the dimensions of the planar nR
chain that can position a tool held by its end-effector in a given set of task positions.
The location of the base of the robot, the position of the tool frame, as well as the
link dimensions and joint angles are considered to be design variables.

15.8.1 Relative Kinematics Equations for Specified Task Positions

Identify a set of planar task positions [Pj], j = 1, . . . ,m. Then, the physical dimen-
sions of the chain are defined by the requirement that for each position [Pj] there be
a joint parameter vector ~θ j such that the kinematics equations of the chain yield

[Pj] = [D(~θ j)], i = 1, . . . ,m. (15.106)

Now choose [P1] as the reference position and compute the relative displacements
[Pj][P1]

−1 = [P1 j], j = 2, . . . ,m. This formulation of the linkage design equations can
be found in Suh and Radcliffe [134]. The result is the relative kinematics equations

[P1 j] = e∆θ1 j Ĵ1e∆θ2 j Ĵ2 · · ·e∆θn j Ĵn , j = 2, . . . ,m, (15.107)

where
∆~θ j = ~θ j−~θ1 = (∆θ1 j, . . . ,∆θn j).

The complex number form of (15.107) yields the equations
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ei∆φ j =ei(∆θ1 j+∆θ2 j+...+∆θn j),

(1− ei∆φ j)P1 j =(1− ei∆θ1 j)C1 + ei∆θ1 j(1− ei∆θ2 j)C2 + . . .

+ ei(∆θ1 j+∆θ2 j+...+∆θn−1, j)(1− ei∆θn j)Cn, j = 2, . . . ,m,
(15.108)

where ∆φ j = φ j− φ1 and P1 j is the pole of the relative displacement [P1 j]. These
are the equations we use to design the planar nR chain.

In terms of elements of the Clifford algebra we obtain the equivalent set of design
equations,

ek∆φ j/2 = ek(∆θ1 j+∆θ2 j+···+∆θn j)/2,

sin
∆φ j

2
P1 j = sin

∆θ1 j

2
C1e−k(∆θ2 j+...+∆θn j)/2 + ek∆θ1 j/2 sin

∆θ2 j

2
C2e−k(∆θ3 j+...+∆θn j)/2

+ . . .+ ek(∆θ1 j+∆θ2 j+...+∆θn−1, j)/2 sin
∆θn j

2
Cn, j = 2, . . . ,m.

(15.109)

The equations (15.109) allow the introduction of sin ∆θi j
2 and cos ∆θi j

2 as algebraic
unknowns, so these equations can be solved for the various joint angles as well as
the coordinates of the joints. This is demonstrated below in our algebraic solution
of the five-position synthesis of a planar RR chain.

15.8.2 The Number of Design Positions and Free Parameters

If we specify m task positions, then equations (15.108) provide m− 1 rotation and
2(m−1) translation equations. The unknowns consist of the n(m−1) relative joint
angles and the 2n coordinates Ci, i = 1, . . . ,n.

It is useful to notice that the rotation equations are solved independently, which
means that they determine m−1 of the relative joint angles. Thus, we have 2(m−1)
translation equations to solve for (n−1)(m−1) joint variables and 2n coordinates
Ci, that is,

E = 2n+(n−1)(m−1)−2(m−1) = m(n−3)+n+3, (15.110)

where E excess of unknowns over equations.
Notice that except for n = 1 and n = 2 the excess of variables over equations is

greater than zero. For n = 1, we see that m = 2 yields an exact formula for what is
equivalent to the pole of a relative displacement. For n = 2, we find that an exact
solution is possible for m = 5, which is Burmester’s result that a RR chain can be
designed to reach five specified positions (Burmester [7], Hartenberg and Denavit
[46]).
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Now consider the case n = 3, which has six unknown coordinates Ci, i = 1,2,3,
and 2(m−1) joint variables that are determined by 2(m−1) equations. The excess is
E = 6 no matter how many positions are specified. In order to formulate this design
problem, we specify the m−1 relative joint angles around C1. This is equivalent to
adding m−1 design equations, which means that (15.110) takes the form E = 6−
(m−1). The result is that given seven positions m = 7, we obtain a set of equations
that determine the six coordinates Ci, i = 1,2,3.

C1

F
M1

M2

12

2

D1

D2

C2

22

Fig. 15.7 Two positions of a planar RR chain.

15.8.3 The Standard-Form Equations

The synthesis of planar RR chains is the primary step in the design of four-bar
linkages, which are constructed by joining the end links of two RR chains to form
the floating link, or coupler. Specializing the relative kinematics equations (15.108)
to this case, we obtain

ei∆φ j = ei(∆θ1 j+∆θ2 j),

(1− ei∆φ j)P1 j = (1− ei∆θ1 j)C1 + ei∆θ1 j(1− ei∆θ2 j)C2, j = 2, . . . ,m. (15.111)

We now show that this is the standard-form equation used by Sandor and Erdman
for planar mechanism synthesis.

The standard-form equation is obtained by equating the relative displacement
vector between two positions to the difference of vectors along the chain in the two
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positions. See Figure 15.7. Let C1 be the fixed pivot and C2 the moving pivot when
the tool frame of the RR chain is aligned with the first position.

Introduce the relative vectors W = C2−C1 and Z = D1−C2, where D1 is the
translation vector to the first task position. We can now form the vector equations

D1 = C1 +W+Z,

D2 = C1 +Wei∆θ12 +Zei(∆θ12+∆θ22),

· · ·

Dm = C1 +Wei∆θ1m +Zei(∆θ1m+∆θ2m). (15.112)

Recall that multiplication by the complex exponential rotates a vector by an angle
measured relative to the x-axis of the fixed frame.

Subtract the first equation from the remaining m to obtain

δ1 j = W(ei∆θ1 j −1)+Z(ei(∆θ1 j+∆θ2 j)−1), j = 2, . . . ,m, (15.113)

where δ1 j = D j−D1. Notice that the rotation of the jth task frame relative to the
first position is

∆φ j = ∆θ1 j +∆θ2 j. (15.114)

Sandor and Erdman [112] call equation (15.113) the standard-form equation and
they use it to formulate a range of linkage synthesis problems based on the planar
RR chain.

Now substitute the definition of the relative vectors W, Z, and δi j back into the
standard-form equation to obtain

D j−D1 = (C2−C1)(ei∆θ1 j −1)+(D1−C2)(ei(∆θ1 j+∆θ2 j)−1),

and simplify to obtain

D j−D1ei∆φ j = (1− ei∆θ1 j)C1 + ei∆θ1 j(1− ei∆θ2 j)C2, j = 1, . . . ,m. (15.115)

In order to show that this equation is identical to (15.111), we compute the pole P1 j
in terms of the translation vectors D j and D1.

Let [D j] = [eiφ j ,D j], j = 1, . . . ,m, and compute

[D1 j] = [D j][D1]
−1 = [ei(φ j−φ1),D j−D1ei(φ j−φ1)]. (15.116)

Now the pole P1 j of this relative displacement is defined as the point that has the
same coordinates before and after the displacement, which means that it satisfies the
condition

P1 j = ei(φ j−φ1)P1 j +D j−D1ei(φ j−φ1). (15.117)

Thus, we obtain
(1− ei∆φ j)P1 j = D j−D1e∆φ j , (15.118)
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and substituting this into (15.115), we find that the relative kinematics equations
(15.111) are exactly Sandor and Erdman’s standard-form equations.

15.8.4 Synthesis of 3R Serial Chains

The planar 3R robot has three degrees of freedom and can reach any set of positions
within its workspace boundary. The design equations for m task positions take the
form

ei∆φ j = ei(∆θ1 j+∆θ2 j+∆θ3 j),

(1− ei∆φ j)P1 j = (1− ei∆θ1 j)C1 + ei∆θ1 j(1− ei∆θ2 j)C2 + ei(∆θ1 j+∆θ2 j)(1− ei∆θ3 j)C3,

j = 2, . . . ,m. (15.119)

We consider the design of this chain for three, five, and seven task positions with
the condition that the relative joint angles around C1 be specified by the designer.

15.8.4.1 Three Task Positions

If we specify three task positions, the result is four translation design equations,
or two complex equations, which determine the six coordinates of Ci and the
2(3− 1) = 4 relative joint angles around C1 and C2. The joint angles around C3
are determined by the rotation design equations.

If we specify the four unknown relative joint angles and C1, then these four de-
sign equations are linear in the coordinates of C2 and C3. The result is two complex
linear equations in two complex unknowns,

κ12 = ei∆θ12(1− ei∆θ22)C2 + ei(∆θ12+∆θ22)(1− ei∆θ32)C3,

κ13 = ei∆θ13(1− ei∆θ23)C2 + ei(∆θ13+∆θ23)(1− ei∆θ33)C3, (15.120)

where κ1 j are the known complex numbers

κ1 j = (1− ei∆φ j)P1 j− (1− ei∆θ1 j)C1. (15.121)

15.8.4.2 Five Task Positions

If five task positions are specified, then we have eight translation design equations
in fourteen unknowns, the six coordinates Ci and eight relative joint angles. Now
specify the coordinates of C1 and the four relative angles around it to define six
parameters. The result is the four complex equations
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κ12 = ei∆θ12(1− ei∆θ22)C2 + ei(∆θ12+∆θ22)(1− ei∆θ32)C3,

· · ·

κ15 = ei∆θ15(1− ei∆θ25)C2 + ei(∆θ15+∆θ25)(1− ei∆θ35)C3, (15.122)

where κ1 j are known complex numbers defined by (15.121). These equations
have exactly the same structure as Sandor and Erdman’s standard-form equations
(15.115) for five-position synthesis and are solved in the same way.

15.8.4.3 Seven task positions

If seven task positions are specified as well as the six relative joint angles around C1,
then we obtain 12 translation design equations in the twelve unknowns consisting
of the six joint coordinates Ci, and six relative joint angles around C2. The result is
six complex equations

(1− ei∆φ2)P12 = (1− ei∆θ12)C1 + ei∆θ12(1− ei∆θ22)C2 + ei(∆θ12+∆θ22)(1− ei∆θ32)C3,

· · ·

(1− ei∆φ7)P17 = (1− ei∆θ17)C1 + ei∆θ17(1− ei∆θ27)C2 + ei(∆θ17+∆θ27)(1− ei∆θ37)C3.
(15.123)

This problem has been solved using homotopy continuation by Subbian and Flugrad
[131].

15.8.5 Single DOF Coupled Serial Chains

Krovi et al. [59] expand the standard-form equations to nR chains in which the joints
are coupled by cable transmissions so the system has one degree of freedom. They
call the chain a single-degree-of-freedom coupled serial chain, or SDCSC. We for-
mulate an equivalent form of their design equations using the relative kinematics
equations (15.108).

Consider a planar nR serial chain in which each joint is connected to ground
through a series of cables and pulleys located at each joint. Let each pulley have the
same diameter and the cables routed through the links so they form parallelogram
linkages. The result is n drive pulleys at the base of the chain that control the angle
αi of the ith link relative to the x-axis of the world frame, which means that each
joint angle is given by

θi = αi−αi−1. (15.124)

We now introduce a single drive angle β such that each joint angle is given by the
relation θi = Riβ , where Ri denotes a constant speed ratio. The relations (15.124)
yield that the transmission matrix [C] to the base drive angles is given by
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α1
α2
...

αn

=


1 0 · · · 0
1 1 · · · 0
... · · ·

...
1 1 · · · 1




R1
R2,

...
Rn

β , (15.125)

or
~α = [C][R]β , (15.126)

where [R] is the column matrix formed by the speed ratios. Our formulation dif-
fers slightly from Krovi et al. [59] in that we have added the drive variable β and
therefore an additional speed ratio R1.

Consider the design of an nR chain in which the speed ratios Ri, i = 1, . . . ,n, are
specfied. Substitute these speed ratios into the rotation term of the design equations
(15.108) to obtain

ei∆φ j = ei(R1+R2+···+Rm)∆β j , j = 2, . . . ,m, (15.127)

where ∆β j = β j − β1 is the relative rotation of the drive angle. We find for each
relative task position that

∆β j =
∆φ j

R1 +R2 + · · ·+Rn
. (15.128)

Substitute this into the translation terms of (15.108) to define a linear equation in
the coordinates Ci, i = 1, . . . ,n, for each relative task position,

(1− ei∆φ j)P1 j =(1− eiR1∆β j)C1 + eiR1∆β j(1− eiR2∆β j)C2 + · · ·

+ ei(R1+R2+···+Rn−1)∆β j(1− eiRn∆β j)Cn, j = 2, . . . ,m. (15.129)

Given m = n+1 task positions, we can solve these equations for the n complex un-
knowns Ci. The result is a coupled serial nR chain designed to reach n+1 arbitrarily
specified task positions.

15.9 Algebraic Solution of the RR Design Equations

In this section we solve the standard-form equations for five-position synthesis using
the Clifford algebra design equations given by

− sin
∆φ j

2
P1 j jε + ek∆φ j/2

= (−sin
∆θ1 j

2
C1 jε + ek∆θ1 j/2)(−sin

∆θ2 j

2
C2 jε + ek∆θ2 j/2),

j = 2,3,4,5. (15.130)
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For convenience we relabel the coordinates of the fixed and moving pivots so that
C1 = G = (gx,gy) and C2 = W = (wx,wy). Similarly, label the joint angles θ1 = β

and θ2 = α , then we have

−sin
∆φ j

2
P1 j jε + ek∆φ j/2 = (−sin

∆β j

2
G jε + ek∆β j/2)(−sin

∆α j

2
W jε + ek∆α j/2),

j = 2,3,4,5. (15.131)

We now formulate these equations in component form.

15.9.1 Matrix Form of the RR Design Equations

Expand and collect the components of the Clifford algebra elements in the design
equations (15.131) to define the arrays

s ∆φ j
2 px j

s ∆φ j
2 py j

s ∆φ j
2

c ∆φ j
2

=


s ∆β j

2 c ∆α j
2 gy + c ∆β j

2 s ∆α j
2 wy− s ∆β j

2 s ∆α j
2 (gx−wx)

−s ∆β j
2 c ∆α j

2 gx− c ∆β j
2 s ∆α j

2 wx− s ∆β j
2 s ∆α j

2 (gy−wy)

s ∆β j
2 c ∆α j

2 + c ∆β j
2 s ∆α j

2

c ∆β j
2 c ∆α j

2 − s ∆β j
2 s ∆α j

2

 ,

j = 2,3,4,5, (15.132)

where s and c denote the sine and cosine functions. This equation can be written in
the matrix form

s ∆φ j
2 px j

s ∆φ j
2 py j

s ∆φ j
2

c ∆φ j
2

=


gy wy wx−gx 0
−gx −wx wy−gy 0

1 1 0 0
0 0 −1 1




s ∆β j
2 c ∆α j

2

c ∆β j
2 s ∆α j

2

s ∆β j
2 s ∆α j

2

c ∆β j
2 c ∆α j

2

 ,

j = 2,3,4,5. (15.133)

This matrix equation can be inverted to define the joint variables in terms of the
joint coordinates G and W, that is,

1
R2


−(wy−gy) wx−gx W · (W−G) 0

wy−gy −(wx−gx) −G · (W−G) 0
wx−gx wy−gy gxwy−gywx 0
wx−gx wy−gy gxwy−gywx R2




s ∆φ j
2 px j

s ∆φ j
2 py j

s ∆φ j
2

c ∆φ j
2

=


s ∆β j

2 c ∆α j
2

c ∆β j
2 s ∆α j

2

s ∆β j
2 s ∆α j

2

c ∆β j
2 c ∆α j

2

 ,

(15.134)
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where R is the distance between the two joints, that is, R2 = (W−G)2. This solves
the inverse kinematics problem for the RR chain.

The joint variables can be eliminated from this equation using the identity

sin ∆β j
2 sin ∆α j

2

cos ∆β j
2 sin ∆α j

2

=
sin ∆β j

2 cos ∆α j
2

cos ∆β j
2 cos ∆α j

2

. (15.135)

The result is a set of four quadratic design equations

D j : (gxwy−gywx)c
∆φ j

2
+(gxwx +gywy)s

∆φ j

2

+gx(−px jc
∆φ j

2
+ py js

∆φ j

2
)+gy(−py jc

∆φ j

2
− px js

∆φ j

2
)

+wx(px jc
∆φ j

2
+ py js

∆φ j

2
)+wy(py jc

∆φ j

2
− px js

∆φ j

2
)

+(p2
x j + p2

y j)s
∆φ j

2
= 0, j = 2,3,4,5. (15.136)

These equations are bilinear in the unknowns gx, gy, wx, and wy, so we can collect
their coefficients to define the linear equationsA2 B2 C2

...
...

...
A5 B5 C5


wx

wy
1

=


0
...
0

 , (15.137)

where

A j = (px j−gy)c
∆φ j

2
+(py j +gx)s

∆φ j

2
,

B j = (py j +gx)c
∆φ j

2
+(−px j +gy)s

∆φ j

2
,

Cj = (p2
x j + p2

y j)s
∆φ j

2
− (gx px j +gy py j)c

∆φ j

2
+(gx py j−gy px j)s

∆φ j

2
. (15.138)

These equations are solved by computing the four 3× 3 minors Mj obtained by
removing row j. This yields the four polynomials R j(gx,gy) obtained previously
for the synthesis of planar RR chains. They are solved in the same way to determine
as many as four design candidates for the RR chain GW.

15.10 Summary

The exponential form of the kinematics equations of the chain are reformulated us-
ing Clifford algebra exponentials to obtain an efficient and systematic set of design
equations. The design equations for a spatial serial chain are shown to be obtained
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as a specialization of the design equations for an nC serial chain. This process yields
130 equations in 130 unknowns for the design of a 5R chain that reaches 21 task
positions. As an example, we formulate and solve the design equations for a CCS
serial chain so that it reaches a 12-position task. The complete solution to these
synthesis equations have not been achieved as yet.

15.11 References

This chapter is based on the work of Perez and McCarthy [97]. McCarthy [76] de-
scribes the use of Clifford algebras in kinematics that is a generalization of the com-
plex number formulation of Sandor and Erdman [112]—also see Krovi et al. [59]
and Perez and McCarthy [95]. Herve [48] used subgroups of the Lie group of rigid
body displacements to formulate robotic systems with desired workspace proper-
ties. Wenger [150] describes the benefits of new serial chain topologies that allow
reconfiguration within the workspace. Lee and Mavroidis [62, 63] formulate and
solve the design equations for a 3R spatial chain that reaches four arbitrarily spec-
ified positions. Perez and McCarthy [96] formulate and solve the Clifford algebra
synthesis equations for spatial serial chains.



Chapter 16
Platform Manipulators

In this chapter we consider six-degree-of-freedom systems consisting of a platform
supported by multiple serial chains, called parallel, or platform, manipulators. Walk-
ing machines, mechanical fingers manipulating an object, and vehicle simulator
platforms are all examples of platform manipulators. The Jacobian of these systems
defines the contribution of each actuator to the resultant force and torque applied to
the platform.

Our focus is on platform manipulators that have the property that each actuator
generates a pure force acting on the platform. For these systems the columns of the
Jacobian are the Plücker vectors of lines in space. And singular configurations are
associated with linearly dependent sets of lines, that we called line-based singular-
ities. Our goal is a geometric classification of these line-based singularities.

16.1 Introduction

Merlet [81] introduced a classification of line-based singularities, drawn from the

triangular simplified symmetric manipulator, which has a structure similar to Figure
16.1. He was able to identify these configurations by inspection of the various ways
in which the axes of the linear actuators could form linearly dependent sets of lines.
A similar approach was used by Collins and Long [14] to analyze a pantograph-
based hand-controller; also see the study by Notash [91] of uncertainty configura-
tions in parallel manipulators.

This geometric method of analysis provides insight to the structure of the Jaco-
bian matrix for these systems, which may often be complex, and can by-pass the
computation of the determinant to identify singular configurations. It draws on clas-
sical results of line geometry, which can be found in Jessop [53], Salmon [111], and
Woods [153], tailored to the features of these robotic systems.
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F

M

F1

F4F3
F2

F5F6

c1

c2c3

Fig. 16.1 An example of a Stewart platform. A singular configuration occurs when the lines Fi
become linearly dependent.

16.1.1 Twists and Wrenches

The angular velocity w and linear velocity ḋ of a moving body are three-dimensional
vectors that can be assembled into a six-vector, called a twist. Similarly, the resultant
force f and torque t acting on a body can be assembled into another six-vector, called
a wrench, Figure 16.2.

The screw Jacobian of a serial chain defines the twist of the end-effector in terms
of the partial twists at each joint of the chain. The principle of virtual work shows
that this Jacobian also relates the wrench at the end-effector to the torque applied at
each actuator.

16.1.1.1 Twists

The velocity of the end-link M of an open chain is obtained from its kinematics
equations [D(θ̄)] = [A(θ̄),d(θ̄)] by computing

[S] = [Ḋ(t)][D(t)−1] =

[
ȦAT −ȦAT d+ ḋ
0 0 0 0

]
. (16.1)
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Fig. 16.2 A wrench W = (f,p× f+ t)T acting on twist T= (w,q×w+v)T .

This matrix is termed an element of the Lie algebra so(3) by Murray et al. [88]. From
the components of [S] we construct the angular velocity vector w and linear velocity
v = ḋ(t). The six-vector T= (w,q×w+v)T is called the twist of the motion.

This matrix takes a particularly simply form for the link transformation matrix
[Ti] = [Z(θi,di)][X(αi j,ai j)] used in the kinematics equations for a serial chain. As-
sume for the moment that both θi and di are variable, then we have

[Si] = ([Żi][Xi j])([Zi][Xi j])
−1 =


0 −θ̇i 0 0
θ̇i 0 0 0
0 0 0 ḋi
0 0 0 0

 . (16.2)

From this equation we see that the twist associated with a revolute joint is Si =
(θ̇i~k,0)T and for a prismatic joint it is Si = (0, ḋi~k)T .

The kinematics equations of a robot arm allow the expansion of (16.1) in terms
of the partial twists S j associated with each joint parameter θ j, given by

T=

{
w

q×w+v

}
= [S1,S2, . . . ,S6]

˙̄
θ , (16.3)

where
S j = [T̂1] · · · [T̂j]K. (16.4)

Note that here K= (~k,0)T for a revolute joint and K= (0,~k)T for a prismatic joint.
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Each of the m serial chains supporting a platform manipulator has the platform
as its end-effector. Therefore, each chain contributes to the same twist T. Let S(i)j be
the jth partial screw on the ith chain. Then we have the m equations

T= [S
(i)
1 ,S

(i)
2 , . . . ,S

(i)
6 ] ˙̄

θ
(i), i = 1, . . . ,m. (16.5)

Phillips [98, 99] uses the terminology motion screw for a twist. The term joint
screw is also used to describe the instantaneous movement allowed by a joint.

16.1.1.2 Wrenches

The resultant force and torque f and t exerted at a point p on an end-effector by the
actuators of a serial chain can be assembled into the screw W, given by

W =

{
f

p× f+ t

}
, (16.6)

called a wrench. A wrench for which t = 0 is a pure force. In this case F= (f,p× f)T

is the Plücker vector of the line of action of the force. The screw M = (0, t)T is a
pure torque.

The total wrench W applied to a platform supported by m serial chains is the sum
of the individual wrenches

W =
m

∑
i=1

W(i). (16.7)

We use the term actuator screw for wrenches that represent the force-torque con-
tribution of an actuator. Philips refers to the normalized version of this wrench as an
action screw.

16.1.2 Virtual Work

The work done by a wrench W = (f,p× f+ t)T as it moves through a twist T =
(w,q×w+v)T over a virtual time period δ t is given by

δW =
(
f · (q×w+v)+(p× f+ t) ·w

)
δ t

=
(
f ·v+ t ·w− (p−q) · (w× f)

)
δ t = W δ t. (16.8)

The instantaneous quantity W is sometimes called the infinitesimal work or the rate
of work done. We call it the virtual work of W acting on T with the understanding
that it is associated with a virtual time period.

To simplify the computation of virtual work, we follow Kumar [60] and use the
6×6 matrix [Π ] (12.34) to interchange the vector components of a screw, that is,
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[Π ]S=

[
0 I
I 0

]{
s
u

}
=

{
u
s

}
. (16.9)

Lipkin and Duffy [68] describe this as the transformation of a screw from ray coor-
dinates to axial coordinates.

For convenience, we introduce the notation Ť = [Π ]T to simplify the equations
that follow. This notation allows us to write the virtual work in the form

WT Ť= f ·v+ t ·w− (p−q) · (w× f). (16.10)

If the virtual work of a wrench acting on a twist is zero, then the two screws are said
to be reciprocal.

Consider for example a pure force applied to a body connected to ground by a
revolute joint. In this case we have F= (f,p× f)T and the twist S= (θ̇S, θ̇q×S)T .
The virtual work is

FT Š=−θ̇(p−q) · (S× f). (16.11)

Notice that this virtual work is zero if the lines F and S intersect, or are parallel.

16.2 The Jacobian of a Platform Manipulator

The Jacobian for a single serial chain manipulator is defined by Craig [15] and
Murray et al. [88]. See (11.57). For our purposes we use the closely related matrix
(11.55) that defines the twist Ť as

Ť= [Š1, Š2, . . . , Š6] = [J] ˙̄
θ . (16.12)

This is termed the screw Jacobian by Tsai [136]. The difference between this matrix
and the usual Jacobian lies solely in the choice of reference point for the partial
twists. The screw Jacobian uses the origin of the fixed frame F rather than the origin
of the moving frame M.

The principle of virtual work yields the important result that the Jacobian also
relates joint torques τ̄ = (τ1, . . . , τ6)

T of a serial chain to the resultant wrench W
on the end-effector. To see this we compute the virtual work done by each of the
actuators θ̇iτiδ t and equate their sum to the virtual work done by W on the end-
effector twist T. The result is

τ̄
T ˙̄

θδ t =WT Ťδ t. (16.13)

Substitute (16.12) into this equation and equate the coefficients of ˙̄
θδ t to obtain

τ̄ = [JT ]W. (16.14)

For a platform manipulator supported by m serial chains, we have the set of
equations
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Ť=
[
Š
(i)
1 , Š

(i)
2 , . . . , Š

(i)
6

]
˙̄
θ
(i)

= [J(i)] ˙̄
θ
(i)
, i = 1, . . . ,m, (16.15)

where T, the twist of the platform, is the same for each serial chain. Let the resultant
wrench applied by the ith supporting chain of a platform manipulator be W(i). Then
we have the joint torques τ̄(i) = (τ

(i)
1 , . . . , τ

(i)
6 )T , i = 1, . . . ,m, given by

τ̄
(1) = [J(1)T ]W(1), τ̄

(2) = [J(2)T ]W(2), . . . , τ̄
(m) = [J(m)T ]W(m). (16.16)

Invert each of these equations to determine the applied wrench W(i) in terms of the
applied joint torques τ̄(i), that is,

W(i) = [J(i)T ]−1
τ̄
(i) = [F

(i)
1 ,F

(i)
2 , . . . ,F

(i)
6 ]τ̄(i). (16.17)

The wrench F
(i)
j represents the contribution of the jth actuator of the ith chain.

The resultant force and torque applied to the platform is the sum

W =
m

∑
i=1

W(i) =
[
[J(1)T ]−1, [J(2)T ]−1, . . . , [J(m)T ]−1

]
τ̄(1)

...
τ̄(m)

 . (16.18)

Substitute [J(i)T ]−1 from (16.17) into this to obtain

W =
[
F
(1)
1 ,F

(1)
2 , . . . ,F

(1)
6 ; . . . ;F(m)

1 ,F
(m)
2 , . . . ,F

(m)
6

]
τ̄(1)

...
τ̄(6)

 , (16.19)

or
W = [Γ ]τ̄. (16.20)

The matrix [Γ ] is called the Jacobian of the platform manipulator. The transpose of
[Γ ] defines the joint rates of the manipulator in terms of the desired twist.

The wrench W depends on the configuration of each of the serial chains support-
ing the platform manipulator. If the rank of [Γ ] is less than six then the manipulator
is said to be in a singular configuration.

16.3 Conditions for Line-Based Singularities

We now focus our attention on platform manipulators that have a total of six actu-
ators, and introduce conditions that ensure that the actuator screws are pure forces.
For these systems it is possible to characterize singular configurations in terms of
the geometry of linearly dependent sets of lines. We call these line-based singulari-
ties. For serial chains consisting of hinges and sliders, we find a convenient way to
determine the lines of action of these forces.
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Each arm supporting the platform of the manipulator system is assumed to have
the structure of a serial robotic arm that can allow six-degree-of-freedom movement
of the platform. We further assume that each arm has at least one joint at which
a nonzero torque is applied. Otherwise, it does not contribute to defining singular
configurations. Thus, our platforms are supported by at most six serial chains.

Finally, we require that each of the m the serial chains has an unactuated spher-
ical wrist. The center ci of this wrist is considered to be the point of attachment of
the ith chain to the platform. This ensures that each chain applies only a pure force
to the platform, which means that no column of the Jacobian [Γ ] has a torque term.
Thus, each column is the Plücker vector of a line. Systems that satisfy these condi-
tions must have at least three supporting serial chains to resist an external force and
torque, and 3≤ m≤ 6.

These kinematic conditions are typical of many platform manipulator systems,
particularly those based on the 6TPS Stewart platform, for example Figure 16.1.
Figure 16.3 shows the structure and actuation schemes for platform manipulators
that have purely line-based singularities. The point of attachment on the platform
and base can be generally located, and it is possible to apply the actuator forces
with one or more serial chains. Figure 16.4 shows a 3RRRS platform manipulator
that has line-based singularities.

(a) (b) (c)

(d) (e) (f)

Fig. 16.3 The six basic designs and actuation schemes for platform manipulators with line-based
singularities. The circles denote the actuator forces of supporting chains.

16.3.1 Locating the Lines of Action

If the first three joints of the supporting serial chain are constructed using revolute
or prismatic joints, then their axes combine with the attachment point c to locate the
axes of the forces Fi, i = 1,2,3, of the chain. This makes it possible to determine the
line of action of these forces by inspection.
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c1

c3 c2

S3(3)

S2(3)

S1(3)
S1(1)

S2(1)

S3(1)
S1(2)

S2(2)

S3(2)

Fig. 16.4 The 3-RRRS platform manipulator has line-based singularities.

To show this, we first derive a fundamental relationship between the actuator
screws Fi and joint screws S j for a general six-degree-of-freedom serial chain.

Theorem 19 (The Reciprocal Screw Theorem). The actuator screws Fi of a six-
degree-of-freedom spatial serial chain are reciprocal to the each of the partial twists
S j for i 6= j.

Proof. The actuator screws Fi are the columns of the 6× 6 matrix [JT ]−1 obtained
from (16.14). Using the identity [JT ]−1 = [J−1]T , we have

[J−1] =

F
T
1
...
FT

6

 . (16.21)

Now compute

[J−1][J] =

F
T
1
...
FT

6

 [Š1, Š2, . . . , Š6] = [I]. (16.22)

Thus, FT
i Š j = 0 for i 6= j. Each actuator screw Fi generates zero virtual work when

it acts on the joint screw S j for i 6= j, that is, these screws are reciprocal. ut

In our case the forces Fi = (f,p× f)T and axes S j = (s,r× s)T are the Plücker
vectors of two lines. This means that the condition that these screws are reciprocal
FT

i Š j = 0 is also the condition (16.11) that the lines intersect, or are parallel.
Consider the line of action of F1, which is generated by an actuator at the first

joint. It must intersect the five axes S2, . . . ,S6. Notice that for our systems the last
three axes intersect in the attachment point c. Each line Fi must pass through this
point. Furthermore, consider the plane defined by c and S3. The axis S2 intersects
this plane in a point p. The line joining c and p is uniquely determined, and must be
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the line of action of F1. It may happen that S2 is parallel to the plane defined by S3
and c. In this case F1 is the line in the plane through c parallel to S2, which is said to
intersect S2 at infinity. A similar construction yields the line of action for the force
generated by each actuator of the chain.

16.4 Classification of Line-Based Singularities

A platform manipulator is in a singular configuration when any one of the lines of
action of the forces on the platform becomes linearly dependent on the others. We
say that the singularity is of type n if this line F is dependent on no fewer than n
other lines. In what follows, we describe the geometry of linearly dependent sets
of lines that define the singular configurations for platform manipulators. Merlet’s
notation (Merlet [81]) is used for the general classes, though we include additional
subcases. Figures 16.5 and 16.6 provide illustrations of these various distributions
of lines.

A platform manipulator with six actuated joints has a Jacobian of the form

W = [F1,F2, . . . ,F6]


τ1
...

τ6

= [Γ ]τ̄, (16.23)

where the actuated joints are now numbered i = 1, . . . ,6. Notice that if the platform
meets the conditions above, then the columns of this Jacobian have the form Fi =
(fi,pi × fi)

T which are the Plücker vectors of the forces applied to the platform.
These actuator screws define the line of action of the forces and have the property
that each is reciprocal to itself, that is, FT

i F̌i = 0.

16.4.1 Type-1 Singularities

If any one of the six actuator screws F in a platform manipulator is linearly depen-
dent on one of the remaining five, denoted by F1, then the system is in a type-1
singularity. This is equivalent to the condition that

T1 : F= k1F1 (16.24)

for some scalar k1. It is easy to see that for this to occur F and F1 must define the
same line.
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16.4.2 Type-2 Singularities

A type-2 singularity occurs when one of the actuator screws F is linearly dependent
on two others, denoted by F1 and F2, and not on either one independently. This
means that nonzero scalars k1 and k2 exist such that

T2 : F= k1F1 + k2F2. (16.25)

In general, this equation defines a set of screws known as a two-system. However,
we are concerned only with actuator screws F that are Plücker vectors of a line.
Thus, we have the additional requirement

FT F̌= k2
1(F

T
1 F̌1)+2k1k2(F

T
1 F̌2)+ k2

2(F
T
2 F̌2) = 0. (16.26)

Since F1 and F2 are lines, the terms FT
i F̌i are zero, and we find that F cannot be a line

unless FT
1 F̌2 = 0. This means that the two lines F1 and F2 must intersect, (16.11).

When this is true, the lines of T2 lie in the plane defined by F1 and F2 and pass
through their point of intersection. This is known as a pencil of lines.

16.4.2.1 Type 2a

Two skew lines are often identified as a linearly dependent set of lines, however,
because two skew lines cannot generate a third line that is linearly dependent on
both of them, they are not, strictly speaking, a type-2 singularity. A third line must
actually coincide with one of the two lines, as in the type-1 singularity.

16.4.2.2 Type 2b

A type-2 singularity requires that F1 and F2 intersect in a point p. In this case the
two lines define a plane, and T2 is the pencil of lines in this plane through p. There
are two cases.

1. If F1 and F2 are not parallel, then p is a finite point and all the lines of T2 pass
through p.

2. If F1 and F2 are parallel, then they are said to intersect at infinity and T2 consists
of the lines parallel to F1 and F2.

16.4.3 Type-3 Singularities

When one actuator screw F is dependent on three other actuator screws F1, F2,
and F3, the platform manipulator is in a type-3 singularity. This occurs when ki,
i = 1,2,3, exist, so F is given by
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Fig. 16.5 A classification of sets of lines linearly dependent on one, two, and three given lines.

T3 : F= k1F1 + k2F2 + k3F3. (16.27)

The requirement that F also be a line yields the relation

FT F̌= 2k1k2(F
T
1 F̌2)+2k1k3(F

T
1 F̌3)+2k2k3(F

T
2 F̌3) = 0. (16.28)

Notice that we have dropped the terms FT
i F̌i = 0. Equation (16.28) is easily solved

to obtain

k3 =
−k1k2(F

T
1 F̌2)

k1(F
T
1 F̌3)+ k2(F

T
2 F̌3)

. (16.29)

This result combines with (16.27) to define T3 as a one-dimensional set of lines that
is known to be a quadric surface Q.

Another view of this quadric Q is obtained by considering the lines L = (s,r×
s)T that intersect F1, F2, and F3, given by the matrix equation[

F1, F2, F3
]T

Ľ= 0. (16.30)

Any line L satisfying this equation intersects all the lines of T3 that form Q,
and therefore must lie on Q. This provides a convenient way to derive its alge-
braic expression in terms of the point coordinates r = (x,y,z)T . Given the lines
Fi = (fi,pi× fi), we write (16.30) in the form
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Fig. 16.6 A classification of sets of lines linearly dependent on four and five given lines.


(
(p1− r)× f1

)T(
(p2− r)× f2

)T(
(p3− r)× f3

)T


sx

sy
sz

= 0. (16.31)

This equation has a solution for s = (sx,sy,sz)
T only if the determinant of the coef-

ficient matrix is zero. This determinant can be expressed as the triple product

Q :
(
(p1− r)× f1

)
·
(
(p2− r)× f2

)
×
(
(p3− r)× f3)

)
= 0. (16.32)

The cubic terms cancel because (r× f1) · (r× f2)× (r× f3) = 0, and (16.32) is the
equation of the quadric surface Q. The lines L and F define the two separate sets of
rulings on this quadric, known as reguli.

16.4.3.1 Type 3a

In general, the set of lines T3 is the regulus of lines F defined by (16.29) lying on
the quadric Q defined by (16.32).
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16.4.3.2 Type 3b

If any two of the three lines F1, F2, and F3 intersect, then the quadric Q degenerates
to a pair of planes. To see this, let p = p2 = p3. Then (16.32) takes the form(

(r−p) · (p−p1)× f1
)(
(r−p) · f2× f3

)
= 0, (16.33)

which is the product of two linear equations in the coordinates of r = (x,y,z)T .
These equations define the two planes

P1 : (r−p) · (p−p1)× f1 = 0,
P2 : (r−p) · f2× f3 = 0. (16.34)

We can distinguish three cases:

1. If the planes are distinct and not parallel, then their intersection is a finite line,
denoted by L. This line must pass through the point of intersection p of F2 and F3
and intersect F1 in a point a. The set T3 consists of all the lines through a in P1
and all those through p in P2. This case includes the situation when two of the
lines lines, say F1 and F2, both intersect the third line F3. The two planar pencils
are defined by the pairs of lines F1 and F3, and F2 and F3.

2. If the planes are distinct and parallel, then their intersection L is at infinity. This
occurs when two of the three lines are parallel. In this case T3 is two planes of
parallel lines.

3. If the three lines lie in one plane, then the quadric degenerates to two coincident
planes. In this case, T3 consists of all lines in that plane.

16.4.3.3 Type 3c

If the three lines F1, F2, and F3 intersect in the same point p= p1 = p2 = p3, then the
quadric degenerates to a bundle of lines through p. There are two cases depending
on whether this point is finite or at infinity.

1. If the point of intersection p is not at infinity, then equation T3 is the set of all
lines through p.

2. If the three lines are parallel, then the point of intersection p is at infinity. Then
all lines in space parallel to these three lines form T3.

16.4.4 Type-4 Singularities

The type-4 singularities occur when one actuator screw F is linearly dependent on
no fewer than four other actuator screws, that is,

T4 : F= k1F1 + k2F2 + k3F3 + k4F4. (16.35)
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This is a two-dimensional set of lines known as a linear congruence.
We analyze this set of lines by considering the screws S = (s,u)T that are re-

ciprocal to all four lines Fi, i = 1,2,3,4, and therefore are reciprocal to the entire
set T4. The screws S must satisfy the four linear conditions ST F̌i = 0, i = 1,2,3,4,
which we write in matrix form as[

F̌1, F̌2, F̌3, F̌4
]T

S= 0. (16.36)

Let [A] be the 4× 4 submatrix formed from the first four columns of the 4× 6
coefficient matrix in (16.36), and let b1 and b2 be the fifth and sixth columns, so we
have [F̌1, F̌2, F̌3, F̌4]

T = [A,b1,b2]. Equation (16.36) can now be solved to determine

S1 =

−[A
−1]b1
1
0

 and S2 =

−[A
−1]b2
0
1

 . (16.37)

Actually, any linear combination L = sS1 + tS2 of these two screws will satisfy
(16.36). This is known as two-system of screws.

We now consider whether or not the two-system spanned by S1 and S2 contains
any lines. This is determined by the roots of the quadratic equation

LT Ľ= s2(ST
1 Š1)+2st(ST

1 Š2)+ t2(ST
2 Š2) = 0. (16.38)

If the roots are imaginary, then there are no real lines in the two-system, in which
case T4 is called an elliptic linear congruence. If there are two real roots, then two
lines exist that intersect every line of T4, which is termed a hyperbolic linear con-
gruence. Finally, if (16.38) yields a double root, then T4 is a parabolic linear con-
gruence.

16.4.4.1 Type 4a

If the two roots of (16.38) are imaginary, then the two-system generated by S1 and
S2 contains no lines. In this case, the set of lines T4 is an elliptic linear congruence.
Hunt [50] shows that these lines form concentric hyperboloids about the common
normal to the axes of the two screws S1 and S2. The relationship between these
screws and the distribution of the lines of T4 deserves further study.

16.4.4.2 Type 4b

If the two roots of (16.38) are real and distinct, then two lines La and Lb exist that
intersect the entire set of lines T4, termed a hyperbolic congruence. Assume that
these two lines are skew. Then we have two cases depending on whether or not one
of these lines lies at infinity. A line at infinity has the Plücker vector of the form
L= (0,v)T . This is also described as a screw with infinite pitch.
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1. If the two lines La and Lb are finite and skew, then (16.35) is the set of lines that
intersect these two lines.

2. If one of the lines, say Lb, is at infinity, then it has the form Lb = (0,v)T . In
this case, La intersects the set of parallel planes orthogonal to v, through Lb, in a
series of points. The congruence consists of the pencil of lines through this point
on each parallel plane.

The cases in which the two lines La and Lb intersect each other are usually identified
separately. We consider these cases below.

16.4.4.3 Type 4c

If (16.38) has a double root, then we have a double line L = La = Lb. In this case,
the set T4 is known as a parabolic linear congruence. We can distinguish two cases,
depending on whether or not this double line is at infinity.

1. Each point on the finite line L is the vertex of a planar pencil of lines. Each pencil
lies in a different plane passing through the line L.

2. If the two lines coincide at infinity, that is, La = Lb = (0,v)T , then all lines in
planes orthogonal to v form the congruence.

16.4.4.4 Type 4d

The situations in which the two lines of the hyperbolic congruence intersect are
termed degenerate. We identify four subcases depending on whether one or both of
the lines are finite or at infinity.

1. If the two lines defined by (16.38) intersect, then T4 consists of all the lines in the
plane defined by the two lines La and Lb, and all lines in space that pass through
their point of intersection.

2. If the lines La and Lb are parallel, which means that they intersect at a point at
infinity, then T4 consists of all lines in the plane containing these two lines, and
all lines in space parallel to them.

3. If one line La is finite and the other line Lb = (0,v)T is at infinity, then La is
contained entirely in one of the parallel planes orthogonal to v. In this case the
congruence consists of the lines parallel to La, together with all lines in the plane
that contains La.

4. If both lines lie at infinity, then we have La = (0,va)
T and Lb = (0,vb)

T , in which
case the congruence is formed by all lines in the direction s = va× vb. For this
to occur the four lines Fi, i = 1,2,3,4, must be parallel, which means that they
form a type-3c.2 singular configuration. Thus, we conclude that this case cannot
occur independently.
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16.4.5 Type-5 Singularities

The final singularity that we consider occurs when an actuator screw is a linear
combination of the remaining five actuator screws. In this case, we have

T5 : F= k1F1 + k2F2 + k3F3 + k4F4 + k5F5. (16.39)

Let the six minors of the 6×5 matrix [F ] = [F1,F2,F3,F4,F5] be denoted by Mi—
the ith minor is the determinant of the 5×5 matrix obtained by removing row i from
[F ]. Thus, the set of lines T5 satisfy the linear equation

M1 f1 +M2 f2 +M3 f3 +M4 f4 +M5 f5 +M6 f6 = 0. (16.40)

This is the equation of a linear complex. Assemble the six coefficients Mi into the
screw M=(M4,M5,M6,M1,M2,M3)

T with axis L = (s,r× s)T and pitch µ; that is,
M = (s,r× s+ µs)T . Then (16.40) can be written in terms of M and F = (f,p× f)
to obtain

MT F̌= LT F̌+µs · f = 0. (16.41)

Let the distance from L to F along their common normal be d and the angle about
the common normal be α . Then (16.41) reduces to

MT F̌=−d sinα +µ cosα = 0, or d tanα = µ. (16.42)

This equation shows that lines of this complex that are a distance d from the axis L
lie at the angle α = arctan(µ/d) about the common normal.

16.4.5.1 Type 5a

In general, the complex T5 is the set of lines tangent to helices with the line L,
described above, as its axis. If the radius of the helix is d, then its lead is 2πd2/µ ,
Woods [153].

16.4.5.2 Type 5b

If the components of the screw M are such that they form the Plücker coordinates of
a line, that is, MT M̌ = 0, then T5 is a special linear complex. There are two cases
depending on whether or not M is at infinity.

1. If M is a real line, then T5 consists of all lines in space that intersect M.
2. If M has the form M= (0,v)T , which means that it lies at infinity, then T5 con-

sists of all lines in the set of parallel planes orthogonal to v. This means that the
common normal to every pair of lines in the complex is parallel to the direction
v.
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16.5 Examples Singularities

Singularities occur in platform manipulators either as a result of a singular config-
uration within a supporting chain or due to interdependence of actuator screws on
separate chains. For the systems we are considering the serial chain singularities can
be only of type 1 or 2, that is, either two actuator screws fall on the same line, or
three lie on the same plane.

If we assume that no supporting chain is in a singular configuration, then we can
determine the following examples of singular configurations in the basic platform
designs shown in Figure 16.3:

1. A type-1 singularity occurs when any two forces Fi and F j applied at the attach-
ment points ci and c j align with the segment cic j.

2. A type-2b.1 has the lines of action of three forces in the same plane and passing
through the same point. This can occur in designs a, b, c, and e as follows. Let
ci be the attachment point of a supporting chain that that has two actuators. The
lines of action of the two forces at ci define a plane. If any other attachment point
c j lies in this plane, and if the line of action of a force F j at this point lies along
the segment cic j, then the configuration is singular.

3. The type-3c.1 singularity has the lines of action of four forces passing though
one point. This is easily seen in designs b and d. Let ci be the point supported by
three actuator screws. This point has the lines of action of three actuator screws
passing through it. The singularity occurs when the line of action of a force at
another attachment point c j lies along the segment cic j.

4. The degenerate hyperbolic congruence of type-4d.1 can also be seen in designs
b and d. In this case the lines of action of five forces intersect two lines. Let ci be
the point supported by the chain with three actuators. Then the singularity occurs
when the lines of action of the forces at two other attachment points c j and ck lie
in the plane defined by the triangle 4cic jck. The five actuator screws intersect
the two edges of the platform.

5. The type-5b.1 singularity occurs when all six lines of action of the forces on the
platform pass through the same line. This is easily seen in designs a and b. For
design a the plane of the platform must coincide with both planes formed by the
actuator screws at two attachment points. For design b the actuator screws of the
one and two actuator supporting chains must lie in the plane of the platform. In
both cases, all six actuator screws intersect the line formed by an edge of the
platform.

16.6 Summary

This chapter has examined platform manipulators that have Jacobians in which each
column is a Plücker vector of a line. Each of these lines represents the force of an
actuator on the platform and singular configurations for these systems occur when
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these lines are linearly dependent. This is called a line-based singularity. A type-n
singularity occurs when the line of action of one actuator force is a linear combi-
nation of at least n other actuator forces on the platform. The geometric description
these linear combinations of lines provides insight to the geometry of singular con-
figurations.

16.7 References

Song and Waldron [124] present the design of walking machines and Mason and
Salisbury [75] consider the design and control of mechanical hands. The platform
used for vehicle simulators is described by Stewart [126], also see Fichter [33].
Chablat et al. [8] and Li et al. [64] demonstrate different approaches to the design
of specialized parallel platforms that optimize position and velocity performance
throughout the workspace. Our formulation for the Jacobian of these systems fol-
lows Kumar [60].

The results in this chapter are a special case of a broader study of screws intro-
duced by Ball [2]. Hunt [50] provides a survey of linearly dependent sets of screws
important to mechanism theory. Gibson and Hunt [39, 40] and Martinez and Duffy
[73, 74] provide a more detailed look at these screw systems. Phillips [98, 99] pro-
vides a machine-based perspective of screw theory.

Exercises

1. Determine the Jacobian for the 3-RRS platform robot shown in Figure 16.4.
2. Consider the TRS robot that is connected to a platform such that the spherical

joint is unactuated. Determine the line of action of each of the actuator screws
from the condition that it must intersect the remaining five joint axes.

3. Formulate the linear combination of the Plücker coordinates of two lines F1 and
F2 and show that their linear combination is, in general, a screw not a line. De-
termine the condition that ensures that it is a line.

4. Show that the set of lines reciprocal to three arbitrary lines is a quadric surface
that also contains these lines.

5. Consider a cube held by a four fingered grip such that it applies only normal
forces to each of the faces. Determine the set of twists allowed by arbitrarily
located fingers. Under what conditions do the applied forces become linearly
dependent.

6. Show that the lines of the complex T5 are orthogonal to the velocities of points
in a body moving so its twist has the axis L and pitch µ .



Appendix A
Solving Constraint Equations

A.1 The 4R Linkage Constraint

The analysis of planar and spherical 4R linkages, the spatial RSSR, and Bennett’s
linkage all yield a constraint equation between the output angle ψ and the input
angle θ that takes the form

A(θ)cosψ +B(θ)sinψ =C(θ). (A.1)

There are two ways to solve this equation the trigonometric solution and the tan-
half-angle technique.

The trigonometric solution begins by dividing both sides of (A.1) by
√

A2 +B2.
This allows us to introduce the angle δ such that

cosδ =
A√

A2 +B2
and sinδ =

B√
A2 +B2

. (A.2)

Notice that δ = arctan(B/A). The left side of (A.1) takes the form

cosδ cosψ + sinδ sinψ = cos(ψ−δ ). (A.3)

Thus, the right side must be the cosine of an angle κ ,

cosκ =
C√

A2 +B2
. (A.4)

Because κ and its negative have the same cosine, we have that δ +κ and δ −κ are
both solutions to (A.1). This combines with the definition of δ to yield

ψ = arctan
(

B
A

)
± arccos

(
C√

A2 +B2

)
. (A.5)
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Notice that the angle κ exists only if −1 ≤ cosκ ≤ 1. Therefore, C2 ≤ A2 +B2, or
equivalently, A2 +B2−C2 ≥ 0 must be satisfied for a solution to exist.

In this formulation δ is the angle to a diagonal of the quadrilateral formed by the
linkages. The angle κ is measured on either side of this diagonal to define the output
angle ψ .

The tan-half-angle technique uses a transformation of variables to convert sinψ

and cosψ into algebraic functions. Introduce the parameter y = tan(ψ/2), which
allows us to define

cosψ =
1− y2

1+ y2 and sinψ =
2y

1+ y2 . (A.6)

Substitute this into (A.1) to obtain

(A+C)y2−2By− (A−C) = 0. (A.7)

This equation is solved using the quadratic formula to obtain

tan
ψ

2
=

B±
√

A2 +B2−C2

A+C
. (A.8)

In order to have a real solution we must have A2 +B2−C2 ≥ 0. This is the same
condition obtained above for the trigonometric solution.

The constraint equations for these linkages are each special cases of a general
equation that we can write as

(a1 cosθ+a2 sinθ −a3)cosψ +(b1 cosθ +b2 sinθ −b3)sinψ

−(c1 cosθ + c2 sinθ − c3) = 0, (A.9)

where ai, bi, and ci are constants. Introduce the tan-half-angle parameters x =
tan(θ/2) and y = tan(ψ/2) so we have

((a1+c1 +a3 + c3)x2−2(a2 + c2)x− (a1 + c1−a3− c3))y2

−2((b1 +b3)x2−2b2x− (b1−b3))y

−((a1− c1 +a3− c3)x2−2(a2− c2)x− (a1− c1−a3 + c3)) = 0. (A.10)

This is a biquadratic equation in the unknowns x and y.

A.2 The Platform Constraint Equations

The 3RR planar and 3RR spherical platforms can be viewed formed from two 4R
linkages OAB1C1 and OAB2C2 driven by the same crank OA. Let θ be the angle
of the input crank OA and let φ be the angle of the coupler at A. The constraint
equations for the two 4R linkages yield
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A1(θ)cosφ +B1(θ)sinφ =C1(θ),

A2(θ)cosφ +B2(θ)sinφ =C2(θ). (A.11)

We now present two ways to solve these equations. The first eliminates sinφ and
cosφ linearly, and the second uses the resultant to solve simultaneous biquadratic
equations.

For the first solution let x = cosφ and y = sinφ and solve the resulting linear
equations using Cramer’s rule to obtain

x =
C1B2−C2B1

A1B2−A2B1
and y =

A2C1−A1C2

A1B2−A2B1
. (A.12)

In order for these equations to define a solution φ they must satisfy the identity
x2 + y2 = 1. This yields an equation in cosθ and sinθ , given by

(C1B2−C2B1)
2 +(A2C1−A1C2)

2− (A1B2−A2B1)
2 = 0. (A.13)

Introduce the tan-half-angle parameter x = tan(θ/2) so this equation becomes the
polynomial P(x) = 0. For each root x j of P(x), compute θ j and determine the coef-
ficients Ai j, Bi j, and Ci j of the platform equations (A.11). Solve either one equations
determine φ j.

An alternative approach transforms (A.11) into a pair of biquadratic equations
by introducing the tan-half-angle parameters x = tan(θ/2) and y = tan(ψ/2). This
yields the equations

D1y2 +E1y+F1 = 0,

D2y2 +E2y+F2 = 0, (A.14)

where

Di = d1ix2 +d2ix+d3i,

Ei = e1ix2 + e2ix+ e3i,

Fi = f1ix2 + f2ix+ f3i. (A.15)

To solve these equations, we introduce a second pair of equations obtained by mul-
tiplying both by y and assemble the four equations into the matrix equation

0 D1 E1 F1
0 D2 E2 F2

D1 E1 F1 0
D2 E2 F2 0




y3

y2

y
1

=


0
0
0
0

 . (A.16)

This equation can be solved for the vector (y3,y2,y,1)T only if the coefficient ma-
trix [M] has determinant zero. Expand this determinant to obtain an eighth-degree
polynomial P(x) in the parameter x. The roots of this polynomial define x j for which
(A.16) can be solved to determine y j.





Appendix B
Graphical Constructions

The following constructions use a straightedge to draw lines and a compass to con-
struct circles and measure distances. They are useful in the graphical synthesis of
planar RR chains.

B.1 Perpendicular Bisector

Given two points P1 and P2, we construct the perpendicular bisector L of the seg-
ment P1P2, Figure B.1, as follows:

1. Construct circles C1 and C2 centered on P1 and P2 with radii equal to or greater
than one-half the length of P1P2.

2. C1 and C2 intersect in two points. Join these points to form the perpendicular
bisector L.

P2

P1

L

C2

C1

Fig. B.1 Construction of the perpendicular bisector L of the segment P1P2.

415
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B.2 Circle Through Three Points

Given the triangle4P1P2P3, the center C of the circle that circumscribes this trian-
gle, Figure B.2, is given by the construction:

1. Construct the perpendicular bisectors L1 and L2 to the segments P1P2 and P2P3.
2. The intersection of the lines L1 and L2 defines the center C of the circle through

the three points.

P1

P2P3

L1

L2

C

Fig. B.2 Construction of the circle through three points P1, P2, and P3.

B.3 Duplication of an Angle

Consider two lines L1 and L2 that intersect in an angle α at the point P. The line
M2 that makes the same angle with another line M1 about a point Q, Figure B.3, is
constructed as follows:

1. Draw a circle CP such that it intersects L1 and L2 in points S and T .
2. Construct a circle CQ with the same radius about Q and denote by U one of the

intersections with M1.
3. Measure the distance ST and construct the circle with this radius about U . Its

intersection with CQ is a point V . Join Q to V to define the line M2. The circles
intersect in two points, so choose the one that provides the same orientation for
M2 as L2 relative to L1.
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Fig. B.3 Duplication of the angle α about the point P from the line M1 to determine the line M2.

R

S

Q*

CR CS

Q

L

Fig. B.4 Reflection of the point Q through the line L.

B.4 Reflection of a Point Through a Line

In order to find the reflection of the point Q through the line L, Figure B.4, we use
the construction:

1. Select two points R and S on L and construct the circles CR and CS with radii RQ
and SQ, respectively.

2. The circles CR and CS intersect in two points. One is Q and the other is its reflec-
tion Q∗.

α

α

P

S

T

U

V

L2

L1

M1

Q

M2

CP

CQ





Appendix C
Spherical Trigonometry

Consider the spherical triangle 4S1S2S3, where the axes are labeled in a counter-
clockwise sense around the triangle, see Figure C.1. Associated with the side SiS j
we can define the normal vector Ni j = Si×S j/|Si×S j|. The angular dimension αi j
of this side is defined by the equations

cosαi j = Si ·S j. (C.1)

Thus, we can compute the three angles α12, α23, and α31, which we consider to have
a positive magnitude between 0 and π , thus αi j = α ji. The sense of the angles αi j
will be determined as needed relative to the normal vector Ni j.

Fig. C.1 The frame F1 has its x-axis along N12 and its z-axis along S1.

At each vertex Si we denote the exterior dihedral angle by φi, which is defined
by the formula

tanφi =
Nki×Ni j ·Si

Nki ·Ni j
=

Sk×Si ·S j

(Sk×Si) · (Si×S j)
. (C.2)
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The indices (i, j,k) in this equation are any one of the three cyclic permutations
(1,2,3), (2,3,1), or (3,1,2).

In the following derivations, we distinguish the F-frame equations from the B-
frame. These are simply two different ways to formulate the same equations. We
will label as Fi the frame that has its z-axis along the vertex Si and the normal vector
Ni j as its x-axis. The frame Bi will also have Si as its z-axis, but its x-axis will now
be the normal vector Nki.

C.1 The F-Frame Formulas

Our goal is to obtain trigonometric identities for the triangle 4S1S2S3. We begin
with the frame F1, aligned with the side S1S2, so the z-axis is along S1 and N12 is
the x-axis. In this frame, we can determine two equations for the coordinates of S3
in terms of the dimensions of the triangle. The first is defined by the sequence of
rotations

1S3 = [Z(π−φ1)][X(α31)]~k, (C.3)

where π−φ1 is the interior angle at S1, and α31 = α13 is the angular length of the
side S1S3. Recall that~k = (0,0,1)T . The superscript preceding S3 denotes the coor-
dinate frame F1 in which we are computing these coordinates. The second equation
is given by

1S3 = [X(α12)][Z(φ2)][X(α23)]~k. (C.4)

Expand these equations to obtain

1S3 =

sinα31 sinφ1
sinα31 cosφ1

cosα31

=

 sinα23 sinφ2
−(sinα12 cosα23 + cosα12 sinα23 cosφ2)

cosα12 cosα23− sinα12 sinα23 cosφ2

 . (C.5)

The three identities obtained by equating the components of these two vectors are
known, respectively, as the sine law, the sine–cosine law, and the cosine law of the
spherical triangle.

A different set of relations for this triangle can be obtained by introducing the
coordinate frame F2 with its z-axis along S2 and its x-axis directed along N23. We
now consider the two definitions of S1 in this frame. The first is the sequence of
rotations

2S1 = [Z(π−φ2)][X(α12)]~k. (C.6)

The second way to determine S1 in F2 is given by

2S1 = [X(α23)][Z(φ3)][X(α31]~k. (C.7)

Expanding these equations, we obtain the identity
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2S1 =

sinα12 sinφ2
sinα12 cosφ2

cosα12

=

 sinα31 sinφ3
−(sinα23 cosα31 + cosα23 sinα31 cosφ3)

cosα23 cosα31− sinα23 sinα31 cosφ3

 . (C.8)

Notice that these equations can be obtained from (C.5) by permuting the indices
(1,2,3) to form (2,3,1).

Finally, we can obtain a third set of identities by computing the components of
S2 in the frame F3 located with its z-axis along S3 and its x-axis along N31. The
same derivation as above yields the identities

3S2 =

sinα23 sinφ3
sinα23 cosφ3

cosα31

=

 sinα12 sinφ1
−(sinα31 cosα12 + cosα31 sinα12 cosφ1)

cosα31 cosα12− sinα31 sinα12 cosφ1

 . (C.9)

Notice that these equations can be obtained from (C.8) by again applying the cyclic
permutation (1,2,3) 7→ (2,3,1).

Crane and Duffy [16] introduce the symbols (X̄ j,Ȳj, Z̄ j) defined byX̄ j
Ȳj
Z̄ j

=

 sinα jk sinφ j
−(sinαi j cosα jk + cosαi j sinα jk cosφ j)

cosαi j cosα jk− sinαi j sinα jk cosφ j

 . (C.10)

Comparing this to our equations above, we have

1S3 =

X̄2
Ȳ2
Z̄2

 , 2S1 =

X̄3
Ȳ3
Z̄3

 , and 3S2 =

X̄1
Ȳ1
Z̄1

 . (C.11)

Also from our calculations above, we have

jSi =

sinαi j sinφ j
sinαi j cosφ j

cosαi j

 . (C.12)

Thus, we obtain Crane and Duffy’s compact form for these identities:X̄k
Ȳk
Z̄k

=

sinαi j sinφ j
sinαi j cosφ j

cosαi j

 , (C.13)

where the indices (i, j,k) are any one of the cyclic permutations (1,2,3), (2,3,1),
or (3,1,2).
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C.2 The B-Frame Formulas

We now perform the same analysis but with a different set of reference frames. Let
B1 be the reference frame aligned with side S3S1, so its z-axis is along S1 and its
x-axis is the normal vector N31, Figure C.2. In this case, we determine two equations
for the coordinates of S2, rather than S3 as we did above. The first equation is defined
by the sequence of rotations

1S2 = [Z(φ1)][X(α12)]~k. (C.14)

The superscript preceding S2 denotes the coordinate frame B1. The second equation
is given by

1S2 = [X(−α31)][Z(π−φ3)][X(α23)]~k. (C.15)

Expand these equations to obtain

1S2 =

 sinα12 sinφ1
−sinα12 cosφ1

cosα12

=

 sinα23 sinφ3
sinα31 cosα23 + cosα31 sinα23 cosφ3
cosα31 cosα23− sinα31 sinα23 cosφ3

 . (C.16)

The three identities obtained by equating the components of these two vectors are
alternative forms for the sine law, the sine–cosine law, and the cosine law of the
spherical triangle.

Fig. C.2 The frame B1 has its x-axis along N31 and its z-axis along S1.

Following the same procedure, we obtain the B-frame versions of 2S3 and 3S1.
We can also get these results using the permutations (2,3,1) and (3,1,2) of the
indices (1,2,3). This results in the formulas

2S3 =

 sinα23 sinφ2
−sinα23 cosφ2

cosα23

=

 sinα31 sinφ1
sinα12 cosα31 + cosα12 sinα31 cosφ1
cosα12 cosα31− sinα12 sinα31 cosφ1

 (C.17)
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and

3S1 =

 sinα31 sinφ3
−sinα31 cosφ3

cosα31

=

 sinα12 sinφ2
sinα23 cosα12 + cosα23 sinα12 cosφ2
cosα23 cosα12− sinα23 sinα12 cosφ2

 . (C.18)

Crane and Duffy introduce symbols (Xj,Yj,Z j) defined by the equationsXj
Yj
Z j

=

 sinαi j sinφ j
−(sinα jk cosαi j + cosα jk sinαi j cosφ j)

cosα jk cosαi j− sinα jk sinαi j cosφ j

 . (C.19)

Comparing these equations to our results above, we see that

1S2 =

 X3
−Y3
Z3

 , 2S3 =

 X1
−Y1
Z1

 , and 3S1 =

 X2
−Y2
Z2

 . (C.20)

Also from our calculations above, we have

iS j =

 sinαi j sinφi
−sinαi j cosφi

cosαi j

 . (C.21)

In Crane and Duffy’s notation these identities becomeXk
Yk
Zk

=

sinαi j sinφi
sinαi j cosφi

cosαi j

 , (C.22)

where the indices (i, j,k) are any one of the cyclic permutations (1,2,3), (2,3,1),
or (3,1,2). Notice that we have canceled the negative signs in the y-components of
these equations.

C.3 Summary

The result of this analysis is two sets of three vector identities relating the vertex
angles and sides of a spherical triangle. The first set of equations is (C.5), (C.8),
and (C.9). The second set is (C.16), (C.17), and (C.18). The notation of Crane and
Duffy allows these sets of equations to be written compactly as (C.13) and (C.22),
respectively.

It is important to notice that associated with this triangle 4S1S2S3 is its po-
lar triangle 4N12N23N31. We may analyze this triangle in exactly the same way
as above to obtain two more sets of three vector identities. See Crane and Duffy
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for a complete listing of these identities, and for similar identities for the spherical
quadrilateral, pentagon, hexagon, and heptagon.



Appendix D
Operations with Dual Numbers

The standard form of a screw W = (ks,kc× s+ kps)T is simplified by defining the
multiplication between the ordered pair (k,kp) and the line L= (s,c× s)T so that

W = (ks,kc× s+ kps)T = (k,kp)(s,c× s)T . (D.1)

We view this as a product of the dual scalar k̂ = (k,kp) and the dual vector L =
(s,c× s)T . The dual vector is equivalent to a vector of dual scalars, so (D.1) implies
that the product of two dual scalars â = (a,a◦) and b̂ = (b,b◦) is given by

âb̂ = (a,a◦)(b,b◦) = (ab,a◦b+ab◦). (D.2)

This may be taken as the definition of multiplication operation for dual numbers.
However, in what follows we will define it in a way that extends easily to functions
F(â) of a dual number.

Consider the function a(ε) of a real parameter ε . Define the dual number â as-
sociated with a(ε) to be the pair constructed from this function and its derivative
a′(ε), both evaluated at ε = 0, that is, a(0) = a and a′(0) = a◦. Therefore,

â =
(

a(ε),
da
dε

)∣∣∣
ε=0

= (a,a◦). (D.3)

While there are many choices for a(ε), the simplest is a(ε) = a+ εa◦.
Using this approach, we define the addition and subtraction of two dual numbers

as the dual numbers associated with the functions a(ε)+b(ε) and a(ε)−b(ε), that
is,

â+ b̂ = (a+b,a◦+b◦) and â− b̂ = (a−b,a◦ −b◦). (D.4)

We can now see that (D.2) is the dual number obtained from the function

a(ε)b(ε) = (a+ εa◦)(b+ εb◦) = ab+ ε(ab◦+a◦b)+ ε
2a◦b◦ (D.5)

by evaluating it and its derivative at ε = 0. A similar computation yields the division
of two dual numbers as

425
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â
b̂
=
(a

b
,

a◦b−ab◦

b2

)
. (D.6)

A differentiable function of a dual number F(â) can be evaluated using the chain
rule to obtain

F(â) =
(

F(a(ε)),F ′(a(ε))
da(ε)

dε

)∣∣∣
ε=0

=
(
F(a),F ′(a)a◦

)
. (D.7)

For example, in order to evaluate â1/2 we consider the function F(â) = (a+εa◦)1/2

and compute

F(a) = a1/2, F ′(a)a◦ =
1
2

a−1/2a◦. (D.8)

Thus, we have

â1/2 =
(

a1/2,
a◦

2a1/2

)
. (D.9)

Other examples are the trigonometric functions of a dual angle θ̂ = (θ ,d), given by

cos θ̂ = (cosθ ,−d sinθ),

sin θ̂ = (sinθ ,d cosθ),

tan θ̂ =
(

tanθ ,
d

cos2 θ

)
. (D.10)

These computations show that the set of dual numbers forms a commutative ring
that we can use to define dual vectors and dual matrices. The result is dual vector
algebra, which is used to manipulate the coordinates of lines and screws.



Appendix E
Kinematics Equations

E.1 The Planar RR Chain

We now show how to use the kinematics equation of a planar RR chain to obtain
the relative displacement [T (φi j,Pi j)] of the end-link as the composition of rotations
about the fixed and moving pivots. The kinematics equations of an RR chain define
the displacement [D] of M relative to F as the composition of local transformations

[D(α,β )] = [G][Z(β )][X(a)][Z(α)][H]. (E.1)

The 3×3 matrices [Z(β )] and [Z(α)] define rotations about the z-axis and [X(a)] is a
pure translation along the x-axis. The transformations [G] and [H] are displacements
from F to the fixed pivot and from the moving pivot to M.

Compute the relative displacement of the moving body M from position i to
position j, given by

[Di j] = [D j][D−1
i ]

= [G][Z(β j)][X(a)][Z(α j)][H][H−1][Z(αi)
−1][X(a)−1][Z(βi)

−1][G−1].

(E.2)

Define the relative angles αi j = α j−αi and βi j = β j−βi and introduce the identity
displacement [I] = [Z(βi)

−1][G−1][G][Z(βi)] in this equation to obtain

[Di j] =
(
[G][Z(βi j)][G−1]

)(
[G][Z(βi)][X(a)][Z(αi j)][X(a)−1][Z(βi)

−1][G−1]
)

= [T (βi j,G)][T (αi j,Wi)], (E.3)

where

[T (βi j,G)] = [G][Z(βi j)][G−1],

[T (αi j,Wi)] = [G][Z(βi)][X(a)][Z(αi j)][X(a)−1][Z(βi)
−1][G−1]. (E.4)
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We now show that the transformations [T (βi j,G)] and [T (αi j,Wi)] are rotations
about the respective poles G and Wi. First notice that

G = [G]~k and Wi = [G][Z(βi)][X(a)]~k, (E.5)

where ~k = (0,0,1)T is the homogeneous coordinates of the origin of F . We now
show that the pole of the displacement [D][A][D−1], where [A] is a rotation matrix
and [D] = [B,b] is a general planar displacement, is [D]~k = b. The composition of
displacements [D][A][D−1] becomes

[D][A][D−1] = [B,b][A,0][BT ,−BT b]

=
[
BABT , [I−BABT ]b

]
=
[
A, [I−A]b

]
. (E.6)

The equality of the rotation matrices [B][A][BT ] = [A] results from the addition of
planar rotations. This is the definition of a planar displacement in terms of its pole.

Thus, equation (E.3), which equates the relative displacement of the floating link
of an RR dyad to the composition of rotations about its fixed and moving axes, is
the transformation equation associated with the planar dyad triangle.

A similar derivation yields the equation

[Di j] = [T (αi j,W j)][T (βi j,G)], (E.7)

where

[T (βi j,G)] = [G][T (βi j)][G−1], (E.8)

[T (αi j,W j)] = [G][Z(β j)][X(a)][Z(αi j)][X(a)−1][Z(β j)
−1][G−1]. (E.9)

Invert equation (E.1) of an RR dyad to obtain the position of the fixed frame
relative to the moving frame

[D(α,β )−1] = [H−1][Z(α)−1][X(a)−1][Z(β )−1][G−1]. (E.10)

For the pair of positions Mi and Mk of the moving body, we have the inverse relative
displacements [T †

ik ] = [T−1
k ][Ti], where

[D†
ik] = [H−1][Z(αk)

−1][X(a)−1][Z(βk)
−1][G−1][G][Z(βi)][X(a)][Z(αi)][H].

(E.11)
An analysis identical to that discussed above for RR dyads yields the equation

[D†
ik] = [T (−αik,w)][T (−βik,gi)] = [T (−βik,gk)][T (−αik,w)]. (E.12)

The transformation [T (−αik,w)] is a displacement with the moving pivot w in M as
its pole. Similarly, [T (−βik,gi)] is a displacement with pole gi, that is, the point in
M corresponding to the fixed pivot in the ith position.

We now compute [D j
ik] using the first equation in (E.12),
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[D j
ik] = [Tj][T (−αik,w)][T (−β jk,gi)][T−1

j ]. (E.13)

This transformation [Tj][T (−αik,w)][T−1
j ] changes the coordinates of the moving

pivot w to W j. Similarly, [Tj][T (−β jk,gi)][T−1
j ] transforms the point gi in M to Gi

in F , so we have
[D j

ik] = [T (−αik,W j)][T (−βik,Gi)]. (E.14)

E.2 The Spherical RR Chain

The kinematics equation of a spherical RR chain can be used to derive the relative
rotation [R(φi j,Si j)] of the end-link M as the composition of rotations about the
fixed and moving axes of the chain. The kinematics equations define the orientation
[R] of M relative to F as the product of local transformations

[R(α,β )] = [G][Z(β )][X(ρ)][Z(α)][H], (E.15)

where [Z(β )] and [Z(α)] are coordinate rotations about z-axis, and [X(ρ)] is the
coordinate rotation around the x-axis. The rotations [G] and [H] are transformations
from F to the fixed axis G and from the moving axis W to M, respectively.

The relative rotation [Ri j] of M from orientation Mi to Mj is given by

[Ri j] = [R j][RT
i ]

= [G][Z(β j)][X(ρ)][Z(α j)][H][HT ][Z(αi)
T ][X(ρ)T ][Z(βi)

T ][GT ]. (E.16)

Define the relative angles αi j = α j −αi and βi j = β j − βi, and introduce the
identity [I] = [Z(βi)

T ][GT ][G][Z(βi)] to obtain

[Ri j] =
(
[G][Z(βi j)][GT ]

)(
[G][Z(βi)][X(ρ)][Z(αi j)][X(ρ)T ][Z(βi)

T ][GT ]
)

= [A(βi j,G)][A(αi j,Wi)], (E.17)

where

[A(βi j,G)] = [G][Z(βi j)][GT ]

[A(αi j,Wi)] = [G][Z(βi)][X(ρ)][Z(αi j)][X(ρ)T ][Z(βi)
T ][GT ]. (E.18)

We now show that [A(βi j,G)] and [A(αi j,Wi)] are rotations about poles G and
Wi, respectively. First notice that

G = [G]~k and Wi = [G][Z(βi)][X(ρ)]~k, (E.19)

where~k = (0,0,1)T . In light of these relations, all we have to show is that the rota-
tion matrix [B][A][BT ] has [B]S as its rotation axis if the rotation [A] has the rotation
axis S. To see this, simply check the definition
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[BABT − I][B]S = [BA−B]S = [B][A− I]S = 0. (E.20)

The last equality results because S is the rotation axis of [A].
Thus, (E.18) equates the relative rotation to the composition of rotations about

the fixed and moving axes and defines the spherical dyad triangle.
A similar derivation yields the equivalent relation

[Ri j] = [A(αi j,W j)][A(βi j,G)], (E.21)

where

[A(βi j,G)] = [G][Z(βi j)][GT ],

[A(αi j,W j)] = [G][Z(β j)][X(ρ)][Z(αi j)][X(ρ)T ][Z(β j)
T ][GT ]. (E.22)

Now consider the inverse relative rotation [R†
ik] = [RT

k ][Ri] for the spherical RR
chain, given by

[R†
ik] = [HT ][Z(αk)

T ][X(ρ)T ][Z(βk)
T ][GT ][G][Z(βi)][X(ρ)][Z(αi)][H]. (E.23)

An analysis identical to that discussed above yields the identities

[R†
ik] = [A(−αik,w)][A(−βik,gi)] = [A(−βik,gk)][A(−αik,w)]. (E.24)

The rotation [A(−αik,w)] has the moving axis w in M as its rotation axis. Similarly,
[A(−βik,gi)] has as its rotation axis gi, which is the fixed axis for the dyad in the ith
position of M.

Transform these equations to F with M in position Mj to define

[R j
ik] = [R j][A(−αik,w)][A(−βik,gi)][RT

j ]. (E.25)

The transformation [R j][A(−αik,w)][RT
j ] changes the coordinates of the moving

pivot w to W j. Similarly, [R j][A(−βik,gi)][RT
j ] transforms the point gi in M to Gi in

F , so we have
[R j

ik] = [A(−αik,W j)][A(−βik,Gi)]. (E.26)

E.3 The CC Chain

Here we show that the kinematics equations of the CC chain can be used to define
the relative transformation [Di j] as the composition of screw displacements about
the fixed and moving axes of the chain. The kinematics equation equates the spatial
displacement [D] of the moving body M to the sequence of relative displacements
along the chain,

[D(α̂, β̂ )] = [G][Z(β̂ )][X(ρ̂)][Z(α̂)][H], (E.27)
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where [Z(β̂ )] and [Z(α̂)] are the coordinate screw displacements about the fixed and
moving axes, and [X(ρ̂)] is a screw displacement along the crank.

The relative transformation [Di j] of M as it moves from position Mi to Mj is given
by

[Di j] = [D j][D−1
i ]

= [G][Z(β̂ j)][X(ρ̂)][Z(α̂ j)][H][H−1][Z(α̂i)
−1][X(ρ̂)−1][Z(β̂i)

−1][G−1].
(E.28)

We simplify this expression by defining α̂i j = α̂ j − α̂i, and introduce the identity
[I] = [Z(β̂i)

−1][G−1][G][Z(β̂i)] = I to obtain

[Di j] =
(
[G][Z(β̂i j)][G−1]

)(
[Z(β̂i)][X(ρ̂)][Z(α̂i j)][X(ρ̂)−1][Z(β̂i)

−1][G−1]
)

= [T (β̂i j,G)][T (α̂i j,W
i)], (E.29)

where

[T (β̂i j,G)] = [G][Z(β̂i j)][G−1],

[T (α̂i j,W
i)] = [G][Z(β̂i)][X(ρ̂)][Z(α̂i j)][X(ρ̂)]−1[Z(β̂i)

−1][G−1]. (E.30)

We now show that the transformations [T (β̂i j,G)] and [T (α̂i j,W
i)] are screw

displacements about the axes G and Wi measured in F . To see this, consider k to be
the screw along the z-axis of the fixed frame. Then G and Wi are obtained from the
screw transformations

G= [Ĝ]k and Wi = [Ĝ][Ẑ(β̂i)][X̂(ρ̂)]k. (E.31)

Notice that the screw transformation [B̂][Â][B̂−1] has the screw axis [B̂]S, because

[B̂ÂB̂−1− I][B̂]S= [B̂Â− B̂]S= [B̂][Â− I]S= 0. (E.32)

The last equality arises because S is the screw axis of [Â].
Therefore, we can conclude that (E.30) is the matrix transformation associated

with the spatial dyad triangle.
A similar derivation yields the equation

[Di j] = [T (α̂i j,W
j)][T (β̂i j,G)], (E.33)

where

[T (β̂i j,G)] = [G][Z(β̂i j)][G−1],

[T (α̂i j,W
j)] = [G][Z(β j)][X(ρ̂)][Z(α̂i j)][X(ρ̂)−1][Z(β̂ j)

−1][G−1]. (E.34)
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4C closed chain

design, 330
position analysis, 272

4R closed chain
constraint equation, 411
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as a 4C, 276
as an RSSR, 268
classification, 35
coupler curve, 29
coupler velocity ratio, 44
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Grashof, 35
kite, 37
mechanical advantage, 47
nonGrashof, 35
output velocity ratio, 44
parallelogram, 37
position analysis, 25
range of movement, 31
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position analysis, 269
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as an RSSR, 269

classification, 169
coupler velocity ratio, 175
design, 224
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C joint, 2
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opposite-pole quadrilateral, 66, 103
orientation, 182
orthocenter, 69, 92
orthogonal matrix, 77, 181
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P joint, 2
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screw, 296
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transformation, 292

Plücker vector, 278
platform manipulators, 393
point-path generation, 10
pole curve, 74
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circumscribing circle, 90
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relative, 88
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spherical image, 198
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polynomial systems, 343, 355
PP joint, 368
PR planar open chain
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principal screws, 327
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coordinate transformation, 361
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norm, 197
product, 197
unit, 197, 361
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R joint, 2
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rate of work done, 396
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reachable surface, 335, 336, 338, 354

circular cylinder, 341
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circular torus, 349
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reciprocal screw theorem, 400
reciprocal screws, 397
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reflections, 181
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spatial, 283, 358
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relative inverse rotation, 184
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revolute joint, 2, 93, 203
Robert’s linkage, 11
robot manipulator, 257, 335
rocker-crank linkage
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spherical, 170
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Rodrigues’s formula
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for screw axes, 300, 302

Rodrigues’s vector, 186
rotation, 181

planar, 55, 76
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rotation angle, 77, 188
rotation axis, 185
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image, 192
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rotation matrix, 281
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composition, 182
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inverse, 190
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Roth’s theorem, 318
Roth, B., 11, 52, 73, 91, 122, 200, 217, 228,
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design equations, 116
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RPR open chain, 19
RR planar open chain
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four positions, 102
parameterized, 99
three positions, 100
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geometry, 59, 94
Jacobian, 40
position analysis, 18
velocity analysis, 39

RR spatial open chain
constraint equations, 321
design equations, 324
dyad triangle, 324
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RR spherical open chain
design equations, 207, 211, 232

five orientations, 221
four orientations, 216
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position analysis, 157
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RRPR planar closed chain
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RRR planar open chain
design equations
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three positions, 387
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RRRP planar closed chain

as an RSSP, 271
classification, 22
design, 72
mechanical advantage, 42
position analysis, 20
range of movement, 21
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RS open chain
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sinusoidal, 272
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S joint, 2, 367
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Sandor, G. N., 52, 73, 91, 121, 152, 385, 392
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screw, 285, 286

axis, 288
axis of, 286
components, 289
magnitude, 286
pitch, 287, 357
reciprocal, 290
unit, 288

screw axis, 284, 294
construction, 297

screw displacement, 284, 285
screw matrix, 285
screw transformation, 293
screw triangle, 299

relative, 304

serial chain, 335
3C chain, 370
5C chain, 373
CCS chain, 376
CS chain, 336, 342, 343
PCC chain, 372
planar, 378
PPC chain, 372
PPP chain, 372
PPS chain, 338, 340
PRS chain, 336
RCC chain, 371
right RRS chain, 336, 350, 351
RPS chain, 336, 344, 349
RRC chain, 371
RRR chain, 371
RRS chain, 336, 352, 353
TS chain, 335, 340, 341

Shigley, J. E., 52
singular configurations, 278, 398

platform manipulators, 401
serial chains, 409
type-1, 401
type-2, 402
type-3, 402
type-4, 405
type-5, 408

six-bar linkage design
adding planar RR constraints, 126
adding spherical RR constraints, 231
number of linkage designs, 130, 235
planar, 125
position analysis, 131, 235
sorting assemblies, 134, 239
spherical, 231

skew-symmetric matrix, 186
slider-crank, 20

inverted, 24
slider-point theorem, 69, 114
Soh, G. S., 152, 250
Song, S. M., 121, 410
Soni, A. H., 13
spatial triangle, 300, 302–304
spherical cosine law, 158, 164, 420, 422
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spherical sine law, 158, 420, 422
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spherical wrist, 335
Sreenath, N., 52
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spherical, 231
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straight-line linkages, 11
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Suh, C. H., 73, 228, 279, 332, 383

T joint, 2, 366
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planar 4R, 48
spherical 4R, 177

TPS open chain, 261
trajectory
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transfer principle, 315
translation

planar, 55, 76
spatial, 180

translation vector, 281
transmission angle

planar 4R, 28, 37
spherical 4R, 164

tricircular sextic, 52
trigonometric solution, 411
TRS open chain, 261
TS open chain

design equations, 309
four positions, 310
seven positions, 310

geometry, 308
position analysis, 260

Tsai, L. W., 14, 152, 178, 250, 279, 325, 332,
397

twist, 265, 394
partial, 265, 395

two-system, 325, 326, 406
principal screws, 327

Uicker, J. J., 52
universal joint, 2, 366

velocity analysis
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planar 4R, 43
planar RR, 39
planar slider-crank, 41
spatial open chains, 264
spherical 4R, 174
spherical RR, 173

virtual displacement, 42, 177
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planar, 118
spherical, 225

Waldron, K. J., 3, 52, 118, 121, 410
walking machines, 393
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Watt’s chain

planar, 126
spherical, 231

Watt’s linkage, 11
Wenger, P., 392
Woo, L., 305
Woods, F. S., 393, 408
workspace, 10, 157
workspace of a linkage, 10
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