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Preface

Terrain models have always appealed to military personnel, planners, landscape
architects, civil engineers, as well as other experts in various earth sciences.
Originally, terrain models were physical models, made of rubber, plastic, clay, sand,
etc. Since the later 1950s, the computer has been introduced into this area and the
modeling of terrain surface has since then been carried out numerically or digitally,
leading to the current discipline — digital terrain modeling.

Digital terrain modeling is a process to obtain desirable models of the land surface.
Such models have found wide applications, since its origin in the late 1950s, in various
disciplines such as mapping, remote sensing, civil engineering, mining engineering,
geology, geomorphology, military engineering, land planning, and communications.
Therefore, digital terrain modeling has become a discipline receiving increasing
attention.

It is encouraging that more literature is now available in this discipline. After
30 years of development, the first book in this area, entitled Terrain Modelling in
Surveying and Civil Engineering, was published by Whittles Publishing in 1990,
which was edited by Prof. G. Petrie of Glasgow University together with his former
student Tom Kennie. This book has been serving as the text book in this area since its
publication. On the other hand, as one could imagine, some of the materials in this
book have become outdated during another 10 years of rapid development. A revision
of this book was desirable. This became difficult after the retirement of Prof. Petrie
and Tom Kennie’s leaving of the academic community.

Therefore, Zhilin Li, as a former Ph.D. student of Prof. G. Petrie at Glasgow
University, felt obliged to do something. He talked to Qing Zhu of Wuhan University
and decided to write a book. In 2000, a book entitled Digital Elevation Model was
written in Chinese and published by the then Wuhan Technical University of Surveying
and Mapping Press (now Wuhan University Press). This book was largely based on
some of the materials from the Ph.D. thesis of Zhilin Li (1990) and the research
work of both Zhilin and Qing, thus some traditional topics such as contouring and
interpolation are either very simplified or completely neglected. This book has been
well received in China and is widely used as a textbook for postgraduate students in
geo-information. As a result, Zhilin and Qing were presented an “Excellent Textbook
Award” (second prize) by the Ministry of Education of China in 2002.

xv
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xvi PREFACE

However, the omission of some traditional topics made it deficient as a textbook
and there was an urgent need for a revision of this book. At that critical moment, Chris
Gold joined the Hong Kong Polytechnic University in 2000 and became a colleague
of Zhilin. This presented Zhilin and Qing with a golden opportunity to cooperate
with Chris not only to revise the book but also to produce an English edition. Chris
happily accepted an offer to be one of the coauthors as he has been working in terrain
modeling using triangulation and Voronoi diagrams for nearly 30 years and had a lot
of materials to be included. As a result, the current English edition is produced, which
is indeed more a rewritten book than a revised version.

This book contains 15 chapters. Apart from the introduction, Chapters 2 and 3 are
about sampling and data acquisition. Chapters 4 to 6 are about the theories, methods,
and algorithms for digital terrain modeling. Chapters 7 and 8 are on quality control
and accuracy of digital terrain modeling. Chapters 9 to 12 are about presentation
of DTMs, in databases, in contour form and in other forms of computer graphics.
Chapters 13 and 14 are about interpretation and applications. Chapter 15 discusses
some extensions of digital terrain models for specific problems, to present an opinion
on where the research in this area will lead. Chapters 9, 11, and 15 are newly added
to make the original edition more complete. There are major revisions in all other
chapters.

As the authors of this book, we are pleased to present you with this volume.
However, we must do justice to the many who have contributed to the various earlier
versions. We appreciate Prof. G. Petrie’s assistance to Zhilin while writing his Ph.D.
dissertation. We would like to express our thanks to Valerie Gold (Chris’s wife) for
editing the language; to Prof. D. Li of Wuhan University for his encouragement of the
writing of this book; to a number of our students for producing some of the diagrams;
and to the publisher for making this volume available to you. We hope you like it.
Last but not the least, we would also like to thank Lingyun Liu, Yijun Zhang, and
Valerie Gold (i.e., our wives) for their support.

Z. Li, Q. Zhu, and C. Gold
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CHAPTER 1

Introduction

1.1 REPRESENTATION OF DIGITAL TERRAIN SURFACES

People live on Earth and learn to cope with its terrain. Civil engineers design and
construct buildings on it; geologists try to study its underlying construction; geo-
morphologists are interested in its shape and the processes by which the landscape
was formed; and topographic scientists are concerned with measuring and describing
its surface and presenting it in different ways, for example, using maps, orthoimages,
perspective views, etc. Despite these differences in emphasis and interest, these
specialists have a common interest, that is, they wish the surface of the terrain to
be represented conveniently and with a certain accuracy.

1.1.1 Representation of Terrain Surfaces

People have tried every means to represent phenomena on the terrain that they have
been familiar with since ancient times, and painting may be the oldest representation.
A painting offers some general information (e.g., shape and color) about the terrain
which it depicts; however, the metric quality (or accuracy) is extremely low and, thus,
it cannot be used for engineering purposes.

Another ancient but effective terrain representation is maps, which are still widely
used today. Maps have played as important a role in the development of society as
language. Indeed, maps have been used to represent the environments during the
history of civilization.

In ancient times, semi-symbolic and semi-pictorial descriptions were used to
depict the actual three-dimensional (3-D) terrain surface. Again, the metric quality
(or accuracy) was very low. Modern maps employ a well-designed symbol system
and a well-established mathematical basis for representation so that they possess

1
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2 DIGITAL TERRAIN MODELING: PRINCIPLES AND METHODOLOGY

three major characteristics:

1. measurability warranted by the mathematical rules
2. overview provided by generalization
3. intuition by symbolization.

A contoured topographic map is perhaps the most familiar way of representing
terrain. On a topographic map, all features present on the terrain are projected orthog-
onally onto a 2-D horizontal datum. Detail is then reduced in scale and represented
by lines and symbols. Terrain height and morphological information are represented
by contour lines. The use of such maps can be traced back to the 18th century. It is
believed by many that the contour map is one of the most important inventions in the
history of mapping due to its convenience and intuition to perceive. Figure 1.1 is an
example of the contour map.

Essentially, a map is a scientific generalization and abstraction of features on
the terrain. Typically, and perhaps most importantly, topographic maps make use of
2-D representation for 3-D reality. There is always a gulf between the 2-D repre-
sentation and the 3-D reality. Because of this gulf, cartographers have been devoting
themselves to the 3-D representation of terrain topography for years. Scenography,
hachuring, shading and hypermetric tints (color layers) have been traditionally used
on topographic maps; however, only shading is still widely in use because it can be
easily generated by computers. Figure 1.2 is an example of a topographic map with
shading.

Compared to various line drawings, images have some advantages: for instance,
they are more detailed and easier to understand. Therefore, as soon as photography was
invented, it was used extensively to record the colorful world we live in. Since 1849,

Figure 1.1 Contour map of a small island.

 



DITM: “tf1732_c001” — 2004/10/25 — 12:37 — page 3 — #3

INTRODUCTION 3

photographs, and later aerial photographs, have been used for terrain representation.
However, in an aerial photograph, one dimension of the 3-D surface, the height,
is essentially absent, so that a single aerial photograph cannot be used to derive
information about the true heights of ground points. The rectified aerial images can
be used as a plan in some sense. However, 3-D surfaces can be reconstructed by using
a pair of aerial photographs with a certain percentage of overlap (i.e., 60% normally).
This technique is called photogrammetry.

Satellite images have been used to complement aerial photography since the
1970s. Many satellite systems take overlapping images of the terrain so that these
images can also be used to construct 3-D models. SPOT and, more recently, IKONOS
are two examples. Figure 1.3 is an example of IKONOS satellite images. However,
the resolution of satellite images is still not compatible with aerial images.

Figure 1.2 A topographic map with shading.

Figure 1.3 An IKONOS image of Hong Kong with 4 m resolution. The color plate can be viewed at
http://www.crcpress.com/e_products/downloads/download.asp?cat_no=TF1732.
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4 DIGITAL TERRAIN MODELING: PRINCIPLES AND METHODOLOGY
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Figure 1.4 A classification scheme of representation of digital terrain surfaces.

Terrain can also be represented by a perspective view. The process of representing
a surface in this way includes projecting it onto a plane and removing those lines
that are not visible from the point of projection. One such product is the so-called
block diagram and another is the perspective contour diagram. For easy production,
a digital model of the terrain surface is essential.

1.1.2 Representation of Digital Terrain Surfaces

Since the middle of the 20th century, various digital terrain representation techniques
have been developed with the development of computing technology, modern math-
ematics, and computer graphics. Nowadays, the use of the computer has become
a significant landmark in the information era. Indeed, computers have become an
important means for the representation of digital terrain surface.

Digital terrain surfaces can be represented mathematically and graphically.
Fourier series and polynomials are common mathematic representations. Regular
grid, irregular grid, contouring and the sectional diagram are common graphic
representations. Figure 1.4 illustrates these.

1.2 DIGITAL TERRAIN MODELS

In representing the terrain surface, the digital terrain model (DTM) is one of the
most important concepts. This section will discuss this concept, starting from the
general model.

1.2.1 The Concept of Model and Mathematical Models

A “Model is an object or a concept which is used to represent something else. It is
reality scaled down and converted to a form which we can comprehend” (Meyer 1985).
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A model may have a few specific purposes such as prediction and control, etc.,
in which case, the model only needs to have just enough significant detail to satisfy
these purposes. The model may be used to represent the original situation (system or
phenomenon) or it may be used to represent some proposed or predicted situation.

Thus, the word model usually means a representation and in many situations it
is used to describe the system at hand. Consequently, there are strong differences of
opinion as to the appropriate use of the word model. For example, it may be applied
to a photogrammetric replication of a piece of the terrain surface which has been
photographed or it may suggest a perspective view of the piece of terrain.

Generally speaking, there are three types of models:

1. conceptual
2. physical
3. mathematical.

The conceptual model is the model borne in a person’s mind about a situation or
an object based on his knowledge or experience. Often this particular type of model
forms the primary stage of modeling and will be followed later by a physical or
mathematical model. However, if the situation or object is too difficult to represent
in any other way, then the model will remain conceptual.

A physical model is usually an analog model. An example of this kind of model
would be a terrain model made of rubber, plastic, or clay. A stereo model of terrain
based on optical or mechanical projection principles, which is widely used in photo-
grammetry, would also fall into this category. A physical model is usually smaller
than the real object in geosciences.

A mathematical model represents a situation, object, or phenomenon in
mathematical terms. In other words, a mathematical model is a model whose com-
ponents are mathematical concepts, such as constants, variables, functions, equations,
inequalities, etc.

Mathematical models may be divided into two types (Saaty and Alexander 1981):

1. quantitative models, based on a number system
2. qualitative models, based on set theory, etc., and not reducible to numbers.

Also, a problem may be either deterministic or subject to changes and therefore
probabilistic. Therefore, mathematical models may also be classified into

1. functional models, which are those intended to solve deterministic problems
2. stochastic models, which are those used to solve probabilistic problems.

One very important question about mathematical models is “what kind of benefit
can one have by using mathematical models” or “why should we make use of
mathematical models?” Saaty and Alexander (1981) give the following reasons:

1. Models permit abstraction based on logical formation using a convenient language
expressed in a shorthand notation, thus enabling one to better visualize the main
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elements of a problem while at the same time satisfying communication, decreasing
ambiguity, and improving the chance of agreement on the results.

2. They allow one to keep track of a line of thought, focusing attention on the important
parts of the problem.

3. They help one to generalize or apply the results of solving problems on the other
areas.

4. They provide an opportunity to consider all the possibilities, to evaluate alternatives,
and to eliminate the impossible ones.

5. They are tools for understanding the real world and discovering natural laws.

Next, comes the question “what kind of mathematical models should be used?”
This is related to the problem of how to judge the goodness or value of a mathematical
model. Meyer (1985) provides six criteria for the evaluation of mathematical models:

1. accuracy: the output of the model is correct or very nearly correct
2. descriptive realism: based on correct assumptions
3. precision: the prediction of the model is definite numbers, functions, or geometric

figures
4. robustness: relative immunity to errors in the input data
5. generality: applicability to a wide variety of situations
6. fruitfulness: the conclusions are useful, or inspiring and pointing the way to other

good models.

To this list, Li (1990) has added one more criterion, namely, simplicity: the smallest
possible number of parameters are used in the model.

This is based on the fact that complicated models are not always needed
even though a phenomenon may be complicated and is also in accordance with the
principle of parsimony (Cryer 1986).

1.2.2 The Terrain Model and the Digital Terrain Model

Terrain models have always appealed to military personnel, planners, landscape
architects, civil engineers, as well as other experts in various earth sciences. Originally,
terrain models were physical models, made of rubber, plastic, clay, sand, etc.
For example, during the Second World War, many models were made by the American
Navy and reproduced in rubber (Baffisfore 1957). In the recent Folklands War in 1982,
the British forces in the field used sand and clay models extensively to plan military
operations.

The introduction of mathematical, numerical, and digital techniques to terrain
modeling owes much to the activities of photogrammetrists working in the field of
civil engineering. In the 1950s, photogrammetry had begun to be used widely to collect
data for highway design. Roberts (1957) first proposed the use of the digital computer
with photogrammetry as a new tool for acquiring data for planning and design in
highway engineering. Miller and Laflamme (1958) of Massachussetts Institute of
Technology (MIT) described the development in detail. They selected and measured
from stereo models the 3-D coordinates of the terrain points along designed roads
and formed digital profiles in the computer to assist road design. They also introduced
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the concept of the digital terrain model. The definition given by them is as follows:

The digital terrain model (DTM) is simply a statistical representation of the con-
tinuous surface of the ground by a large number of selected points with known X, Y ,
Z coordinates in an arbitrary coordinate field.

Compared to traditional analog representation, a DTM has the following specific
features:

1. A variety of representation forms: In digital form, various forms of representations
can be easily produced, such as topographic maps, vertical and cross sections, and
3-D animation.

2. No accuracy loss of data over time: As time goes by, paper maps may be deformed,
but the DTM can keep its precision owing to the use of digital medium.

3. Greater feasibility of automation and real-time processing: In digital form, data
integration and updating are more flexible than in analog form.

4. Easier multi-scale representation: DTM can be arranged in different resolutions,
corresponding to representations at different scales.

1.2.3 Digital Elevation Models and Digital Terrain Models

In a sense, the DTM was defined as a digital (numerical) representation of the terrain.
Since Miller and Laflamme (1958) coined the original term, other alternatives have
been brought into use. These include digital elevation models (DEMs), digital height
models (DHMs), digital ground models (DGMs), as well as digital terrain elevation
models (DTEMs). These terms originated from different countries. DEM was widely
used in America; DHM came from Germany; DGM was used in the United Kingdom;
and DTEM was introduced and used by USGS and DMA (Defense Mapping Agency)
(Petrie and Kennie 1987).

In practice, these terms (DTM, DEM, DHM, and DTEM) are often assumed to
be synonymous and indeed this is often the case. But sometimes they actually refer
to different products. That is, there may be slight differences between these terms.
Li (1990) has made a comparative analysis of these differences as follows:

1. Ground: “the solid surface of the earth”; “a solid base or foundation”; “a surface
of the earth”; “bottom of the sea”; etc.

2. Height: “measurement from base to top”; “elevation above the ground or recognized
level, especially that of the sea”; “distance upwards”; etc.

3. Elevation: “height above a given level, especially that of sea”; “height above the
horizon”; etc.

4. Terrain: “tract of country considered with regarded to its natural features, etc.”;
“an extent of ground, region, territory”; etc.

From these definitions, some of the differences between DGM, DHM, DEM,
and DTM begin to manifest themselves. So, a DGM more or less has the meaning
of “a digital model of a solid surface.” In contrast to the use of ground, the terms
height and elevation emphasize the “measurement from a datum to the top” of an
object. They do not necessarily refer to the altitude of the terrain surface, but in
practice, this is the aspect that is emphasized in the use of these terms. The meaning
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of “terrain” is more complex and embracing. It may contain the concept of “height”
(or “elevation”), but also attempts to include other geographical elements and natural
features. Therefore, the term DTM tends to have a wider meaning than DHM or
DEM and will attempt to incorporate specific terrain features such as rivers, ridge
lines, break lines, etc. into the model (Li 1990).

Indeed, the term terrain means different things to specialists in different areas
and so does the term DTM. Surveyors study DTM from the viewpoint of terrain
representation and are especially interested in the topography of the terrain and objects
in the terrain. The ideal DTM in their mind could be the new generation of topographic
maps, of course, in digital form.

Specialists in other geosciences combine the non-topographic information with
topographic information to construct the DTM according to their own specific needs.
For example, at the very beginning, Miller and Laflamme (1958) intended to add
geotechnical information to regular grid nodes of the strip area for computer-assisted
highway design. Generally, a DTM could contain the following four groups of
(topographic and nontopographic) information as follows:

1. Landforms, such as elevation, slope, slope form, and the other more complicated
geomorphological features that are used to depict the relief of the terrain.

2. Terrain features, such as hydrographic features (i.e., rivers, lakes, coast lines),
transportation networks (i.e., roads, railways, paths), settlements, boundaries, etc.

3. Natural resources and environments, such as soil, vegetation, geology, climate, etc.
4. Socioeconomic data, such as the population distribution in an area, industry and

agriculture and capital income, etc.

From the discussion above, the definition of the DTM may be generalized as:
A DTM is an ordered set of sampled data points that represent the spatial distribution
of various types of information on the terrain. The mathematical expression could be
something like:

KP = f (uP , vP ), K = 1, 2, 3, . . . ,m, P = 1, 2, 3, . . . , n (1.1)

where KP is one attribute value of the kth type of terrain feature at the location of
point P (which can be a single point, but is usually a small area centered by P );
uP , vP is the 2-D coordinate pair of point P ; m (m ≥ 1) is the total number of
terrain information types; and n is the total number of sampled points. For example,
suppose soil type is categorized as ith type of terrain information, then the DTM of
this component is expressed as

IP = fi(uP , vP ), P = 1, 2, 3, . . . , n. (1.2)

A DTM is a digital representation of the spatial distribution of one or more
types of terrain information and is represented by 2-D locations plus a mathematical
representation of terrain information. It is commonly regarded as a 2.5-D repre-
sentation of the terrain information in 3-D geographical space.

In Equation (1.1), when m = 1 and the terrain information is height, then the
result is the mathematical expression of DEM. Obviously, DEM is a subset of DTM
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and the most fundamental component of DTM. However, DEM usually refers to the
elevation data organized in the form of a matrix. In fact, other terms such as DGM,
DHM, and DTEM have all been superseded by DEM to refer to terrain models with
elevation information only. In the context of this book, we are interested in terrain
information much more than just the elevation, although the socioeconomic informa-
tion and resources and environmental information are not considered. Therefore, the
term DTM will be used throughout this book.

1.3 DIGITAL TERRAIN MODELING

1.3.1 The Process of Digital Terrain Modeling

The process for the construction of a DTM surface is called digital terrain modeling.
It is also a process of mathematical modeling. In such a process, points are sampled
from the terrain to be modeled with a certain observation accuracy, density, and distri-
bution; the terrain surface is then represented by the set of sample points. If attributes
on locations on the digital surface other than the sample points need to be obtained,
interpolation is then applied by forming a DTM surface from the sampled data points.
Other attributes could be the height value, slope and aspect, and so on.

Figure 1.5 of Li (1990) describes the whole process of digital terrain modeling.
It can be seen clearly that there are six different stages, in each of which one or
more actions are needed to move to the next one. A total of 12 actions (tasks) are
listed in the figure although actually, a specific DTM project may need only some
of them. In fact, some actions are omitted in this book, such as feasibility study,
project planning and design, contracting and shipment. In other words, this book deals
mainly with the theoretical and methodological aspects of digital terrain modeling.
The chapters are organized following the data flow shown in Figure 1.5.

1.3.2 Development of Digital Terrain Modeling

In the late 1950s, Miller and Laflamme (1958) introduced DTM into civil engineering.
They also made use of DTM to monitor the changes in Earth’s surface (e.g., subsidence
and erosion). Furthermore, they suggested automated data acquisition by scanning
stereo pairs of aerial photographs.

Since the 1960s, DTM has been an important research area for the International
Society for Photogrammetry and Remote Sensing, as photogrammetrists are usually
DTM producers. In the 1960s and early 1970s, the main research was on surface
modeling and contouring from DEM. At this stage, many interpolation methods were
proposed such as different types of moving averages (Schuts 1976), HIFI (height
interpolation by finite element) (Ebner et al. 1980), projective interpolation, and even
Kriging. Many triangulation methods have been proposed (e.g., McCullagh and Ross
1980; Gannapathy and Dennehy 1982; Christensen 1987). For contouring, threading
and smoothing methods were studied (e.g., Yeoli 1977; Elfick 1979). It has been
gradually recognized that sampling interval is the single critical factor. From the
1970s focus has shifted to quality control and sampling strategies. Both experimental
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Figure 1.5 The process of digital terrain modeling (Li 1990).

studies and theoretical analysis have been conducted to produce mathematical models
for the prediction of DTM accuracy (e.g., Makarovic 1972; Kubik and Botman
1976; Ackermann 1979; Frederiksen 1980; Li 1993b). The progressive sampling
proposed by Makarovic (1973, 1979) is a typical example of sampling strategies used
in photogrammetry. Determination of optimum sampling intervals has also been tried
(Frederiksen et al. 1986; Balce 1987; Li 1990) and it relies heavily on the reliability
of mathematical models for predicting DTM accuracy (e.g., Torlegard et al. 1986;
Li 1992a, 1993a,b, 1994). From the late 1980s, large-scale production came into
practice (e.g., Toomey 1988).

Analytical plotters are the most widely used machines for DTM data acquisi-
tion. The invention of the analytical plotter is attributed to Helava (1958). The
concept was first used in AP1 and AP2 in the early 1960s. In the late 1980s, image-
matching techniques (Heleva and Chapelle 1972; Masry 1974; Keating and Wolf
1976; Sarjakoski 1981) were developed in photogrammetry and automated data
acquisition has been made possible since then.

In the 1990s, with the development of geographical information systems (GIS),
DTM has become an important part of a national geospatial data infrastructure.
DTM is used more and more in geospatial information science and technology.
Indeed, DTM has found wide application in all geosciences and engineering, such as

1. planning and design of civil, road, and mine engineering
2. 3-D animation for military purposes, landscape design, and urban planning
3. analysis of catchments and hydraulic simulation
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4. analysis of visibility between objects on the terrain surface
5. terrain analysis and volume computation
6. geomorphological and soil erosion analysis
7. remote sensing image interpretation and processing
8. various types of geographical analysis
9. others.

1.4 RELATIONSHIPS BETWEEN DIGITAL TERRAIN MODELING
AND OTHER DISCIPLINES

To discuss the relationships between digital terrain modeling and other disciplines,
it is necessary to examine who are involved in the business. As discussed previously,
the early development of digital terrain modeling involved photogrammetrists and
civil engineers. Scientists in computational geometry and applied mathematics are
involved in the development of modeling algorithms, and scientists in computing
technology are involved in data management and system development. Nowadays,
specialists from various geo-disciplines are involved in the applications of DTMs.
Therefore, digital terrain modeling comprises four major components, that is, data
acquisition, modeling, data management, and application development. However,
they are not in a linear connection. For example, photogrammetry is a tool for
data acquisition for terrain modeling; however, DTM is also applied to photogram-
metry for ortho-rectification of aerial photographs and satellite images. Therefore,
the inter-relationships are like those shown in Figure 1.6.

1. In “data acquisition,” photogrammetry, surveying (including global positioning
system [GPS] surveying), remote sensing, and cartography (mainly digitization of
contour maps) are the main disciplines.

2. In “computation and modeling,” photogrammetry, surveying, cartography,
geography, computational geometry, computer graphics, and image processing
are the main disciplines.

Data acquisition  Applications

Data
manipulation and
management

Computation
and modeling

Digital terrain
modeling  

Figure 1.6 Relationships between digital terrain modeling and other disciplines.
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3. In “data management and manipulation,” spatial database technique, data coding
and compression techniques, data structuring, and computer graphics, are the main
disciplines.

4. In “applications,” all geosciences are involved, including surveying, photogram-
metry, cartography, remote sensing, geography, geomorphology, civil engineering,
mining engineering, geological engineering, landscape design, urban planning,
environmental management, resources management, facility management,
and so on.

Indeed, DTM has also found wide application in military engineering (such
as flight simulation, battle simulation, tank route planning, missile and airplane
navigation, etc.).

Apart from these applications in science, technology, and engineering, DTM has
also found wide use in computer games. That is, DTM in involved in our daily life.
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CHAPTER 2

Terrain Descriptors and Sampling Strategies

To model a piece of terrain surface, first a set of data points needs to be acquired
from the surface. Indeed, data acquisition is the primary (and perhaps the single most
important) stage in digital terrain modeling. For this, two stages are distinguished, that
is, sampling and measurement. Sampling refers to the selection of the location while
measurement determines the coordinates of the location. Sampling will be discussed
in this chapter while measurement methods will be discussed in the next chapter.
Three important issues related to acquired DTM source (or raw) data are density,
accuracy, and distribution. The accuracy is related to measurements. The optimum
density and distribution are closely related to the characteristics of the terrain surface.
For example, if a terrain is a plane, then three points on any location will be sufficient.
This is not a realistic assumption and, therefore, an analysis of the terrain surface
precedes the discussion of sampling strategies in this chapter.

2.1 GENERAL (QUALITATIVE) TERRAIN DESCRIPTORS

In general, two basic types of descriptors may be distinguished:

1. qualitative descriptors, which are expressed in general terms, so that they are
referred to as general descriptors

2. quantitative descriptors, which are those specified by numeric descriptors.

In this section, a brief discussion of general descriptors is given and numeric
descriptors are described in the next section. As discussed in Chapter 1, different
groups of people are concerned with different attributes of the terrain surface. There-
fore, a variety of general descriptors can be found based on these different interests.
However, some of them are irrelevant to the concern of digital terrain modeling.
Indeed, those that indicate the roughness and the coverage of terrain surface are more

13
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important in the context of terrain surface modeling. The following are some of these
descriptors:

1. Descriptors based on terrain surface cover: Vegetation, water, desert, dry soil,
snow, artificial or man-made features (e.g., roads, buildings, airports, etc.),
and so on.

2. Descriptors based on genesis of landforms: Two such forms have been distinguished
(Demek 1972), each of which has its own special characteristics —
• endogenetic forms: formed by internal forces, including neotectonic forms,

volcanic forms, and those forms resulting from deposition of hot springs
• exogenetic forms: formed by external forces, including denudation forms,

fluvial forms, karst forms, glacial forms, marine forms, and so on.
3. Descriptors based on physiography: Generalized regions according to the structure

and characteristics of its landforms, each of which is kept as homogenous as
possible and has dominant characteristics, for example, high mountains, high
plateau, mountains, low mountains, hills, plateau, etc.

4. Descriptors based on other classifications.

Those descriptors are so broad that they can only provide the user with some very
general information about a particular landscape and thus they can only be used for
general planning but not for project design. To design a particular project, more
precise numeric descriptors are essential.

2.2 NUMERIC TERRAIN DESCRIPTORS

The complexity of a terrain surface may be described by the concepts of roughness
and irregularity and characterized by different numerical parameters.

2.2.1 Frequency Spectrum

A surface can be transformed from the space domain to the frequency domain by
means of a Fourier transformation. The terrain surface in its frequency domain is
characterized by the frequency spectrum. The estimation of such a spectrum from
equally spaced discrete (profile) data has been discussed by Frederiksen et al. (1978).
The spectrum can be approximated by the following expression:

S(F ) = E × Fa (2.1)

where F denotes the frequency at which the spectrum magnitude is S(F ) and E and
a are constants (i.e., characteristic parameters), which are two statistics expressing
the complexity of the terrain surface (or profiles) over all of the area. Thus, they can
be considered as parameters to provide more detailed information about the terrain
surface, although still general in some sense.

Different values for E and a can be obtained from different types of terrain
surfaces. According to the study carried out by Frederiksen (1981), if the parameter a
is greater than 2, the landscape is hilly with a smooth surface, and if the value of
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a is smaller than 2, it indicates a flat landscape with a rough surface since the surface
contains large variations with high frequency (short wavelength). The value of a
provides us with general topographic information.

2.2.2 Fractal Dimension

Fractal dimension is another statistical parameter which can be used to characterize
the complexity of a curve or a surface. The discussion will start with the concept of
effective dimension.

It is well known that in Euclidean geometry, a curve has a dimension of 1 and
a surface has a dimension of 2 regardless of its complexity. However, in reality,
a very irregular curve is much longer than a straight line between the same points,
and a complex surface has a much larger area than a plane over the same area. In the
extreme, if a line is so irregular that it fills a plane fully, then it becomes a plane,
thus having a dimension of 2. Similarly, a surface could have a dimension of 3.

In fractal geometry, which was introduced by Mandelbrot (1981), the dimension-
ality of an object is defined by necessity (i.e., practical need), leading to the so-called
effective dimension. This can be explained by taking the example of the shape of the
Earth’s surface when viewed from different distances.

1. If it is viewed from an infinite distance, the Earth appears as a point, thus having a
dimension of 0.

2. If it is viewed from a position on the Moon, it appears to be a small ball, thus having
a dimension of 3.

3. If the viewer comes nearer, for example, to a distance above the Earth’s surface of
about 830 km (the altitude of the SPOT satellite’s orbit), the height information is
extractable but not in detail. Thus, in general terms, the observer can see a mainly
smooth surface with a dimension of nearly 2.

4. If the Earth’s surface is viewed on the ground, then the roughness of the surface
can be seen clearly, thus the effective dimension of the surface should be greater
than 2.

In fractal geometry, the effective dimension could be a fraction, leading to the
jargon fractal dimension or fractal. For example, the fractal dimension of a curve
changes between 1 and 2, and that of a surface between 2 and 3. The fractal dimension
is calculated as follows:

L = C × r1−D (2.2a)

where r is the scale of measurement (a principal unit), L is the length of measure-
ment, C is a constant, andD is interpreted as the fractal dimension of the curve line.
When measuring a fractal dimension of curve surface, r becomes the principal unit of
surface used for measurement and the resultant area is A instead of L; the expression
becomes

A = C × r2−D (2.2b)

Figure 2.1 shows an example of Koch line with a fractal dimension of 1.26. The
process of curve generation is as follows: (a) draw a line with its length as a unit;
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(a)

(b)

(c)

Figure 2.1 A complex Koch line having a fractal dimension of 1.26. (a) A line with unit.
(b) Divided into three line segments and mid-segment split into two. (c) Process
repeated.

Figure 2.2 Relationship between curvatures and complexity: the curvatures of the
left two lines are 0 as the radius is infinite while the line on the right side has large
curvatures as the radiuses are small.

(b) divide the line into three segments; (c) the middle segment will be replaced by two
polylines with length equal to 1

3 unit. The same procedure is repeatedly applied to all
line segments. As a result, the line will become more and more complex, resulting in
a fractal dimension of 1.26.

From the discussion above, it can be concluded that a fractal dimension approach-
ing 3 indicates a very complex and probably rough surface, while a simple (near
planar) surface has a fractal dimension value near 2.

2.2.3 Curvature

The terrain surface can be synthesized by combing terrain form elements, defined
as relief unit of homogenous plan and profile curvatures (see Chapter 13 for more
details). Suppose a profile can be expressed as y = f (x), then the curvature at position
x can be computed as follows:

c = d2y/dx2

[1+ (dy/dx)2]3/2 (2.3)

In this formula, curvature c is inversely proportional to the radius of the curve (R),
that is, a large curvature is associated with a small radius (Figure 2.2). Thus, intuitively,
it can be seen that the larger the curvature, the rougher is the surface. Therefore,
curvatures can also be used as a measure for the roughness of the terrain. This criterion
has already been used for terrain analysis (e.g., Dikau 1989).

This is a comparatively useful method for planning DTM sampling strategies.
However, a rather large volume of data (that of a DTM) needs to be available to allow
the curvature values to be derived — which leads to a chicken-and-egg situation
at the stage.
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2.2.4 Covariance and Auto-Correlation

The degree of similarity between pairs of surface points can be described by a cor-
relation function. This may take many forms like covariance or an auto-correlation
function. The auto-correlation function is described as follows:

R(d) = Cov(d)

V
(2.4)

where R(d) is the correlation coefficient of all the points with horizontal interval d,
Cov(d) is the covariance of all the points with horizontal interval d, and V is the
variance calculated from all the (N ) points. The mathematical functions are as follows:

V =
∑N
i=1 (Zi −M)2
N − 1

(2.5)

Cov(d) =
∑N
i=1 (Zi −M)(Zi+d −M)

N − 1
(2.6)

where Zi is the height of point i, Zi+d is the elevation of the point with an interval
of d from point i, M is the average height value of all the points, and N is the total
number of points.

When the value of d changes, Cov(d) and R(d) will also change because the
height difference of two points with different d values is different. Covariance and
auto-correlation values can be plotted against the distance between pairs of data
points. Figure 2.3 is an example of auto-correlations varying with d. In general, if the
value of d increases, the values of Cov(d) and R(d) will decrease. The curve is
usually described (Kubik and Botman 1976) by the exponential function:

Cov(d) = V × e−2d/c (2.7)

and the Gaussian model:
Cov(d) = V × e−2d2/c2

(2.8)

where c is the parameter indicating the correlation distance at which the value of
covariance approaches 0. Therefore, the smaller the value of c, the less similar are
the surface points.

The value of similarity is also an indicator of the complexity of the terrain surface.
The relationship between them is that the smaller the similarity over the same given
distance, the more complex is the terrain surface.

2.2.5 Semivariogram

The variogram is another parameter used to describe the similarity of a DTM surface,
similar to (auto-)covariance. The expression for its computation is as follows:

2γ (d) =
∑N
i=1 (Zi − Zi+d)2

N
(2.9)
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Figure 2.3 Two auto-correlation functions, whose values decrease with an increase in distance
between points from 1 to 0.

where γ (d) is called the semivariogram. Similar to covariance, the value of γ (d)will
vary with distance. But the change in direction is opposite to the case of covariance.
That is, γ (d) will increase with an increase in the value of d. The values of γ (d) can
also be plotted against d , resulting a curved line. Such a curve can be approximated
by an exponential function as follows:

γ (d) = A× db (2.10)

whereA and b are two constants, i.e. the two parameters for the description of terrain
roughness. A larger b indicates a smother terrain surface. When b is approaching zero,
the terrain is very rough. Some examples of semivariograms are given in Figure 8.6.

Indeed, Frederiksen et al. (1983, 1986) used the semivariogram to describe ter-
rain roughness in digital terrain modeling. They also tried to connect this variable
to the covariance used by Kubik and Botman (1976).

2.3 TERRAIN ROUGHNESS VECTOR: SLOPE, RELIEF,
AND WAVELENGTH

The numerical descriptors discussed in Section 2.2 are essentially statistical. They
are computed from a sample of terrain points from the project area. Usually, some
profiles are used as the sample and then a parameter is calculated from these profiles.
However, there are some problems associated with this approach. One of these is that
the parameters calculated from the selected profiles can be different from those derived
from the whole surface. If one tries to compute these for the whole surface, then a
sample from the whole surface is necessary. In this case, the original purpose of having
a terrain descriptor for project planning and design is lost. For these reasons, Li (1990)
recommended slope and wavelength as the main descriptors for DTM purposes.

2.3.1 Slope, Relief, and Wavelength as a Roughness Vector

The parameters for roughness or complexity of a terrain surface used in geomorphol-
ogy have also been reviewed by Mark (1975). It was found that roughness cannot be
completely defined by any single parameter, but must be a roughness vector or a set
of parameters.
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Figure 2.4 The relationship between slope, wavelength, and relief: (a) their full relationship
and (b) simplified diagram.

In this set of parameters, relief is used to describe the vertical dimension
(or amplitude of the topography), while the terms grain and texture (the longest
and shortest significant wavelengths) are used to describe the horizontal variations
(in terms of the frequency of change). The parameters for these two dimensions are
connected by slope. Thus, relief, wavelength, and slope are the roughness parameters.
The relationship between them can be illustrated in Figure 2.4. It can clearly be
seen that the slope angle at a point on the wave varies from position to position.
The following mathematical equation may be used as an approximate expression
of their relationship (for a more rigorous definition, see Chapter 13):

tan α = H

W/2
= 2H

W
(2.11)

where α denotes the average value of the slope angle, H is the local relief value
(or the amplitude), and W is the so-called wavelength. It is clear that if two of them
are known, then the third can be computed from Equation (2.11). For the reasons
to be discussed in the next section, slope and wavelength together are recommended
as the terrain roughness vector for DTM purposes.

2.3.2 The Adequacy of the Terrain Roughness
Vector for DTM Purposes

From both the theoretical and the practical points of view, slope, altitude, and
wavelength are the important parameters for terrain description.

In geomorphology, Evan (1981) states

a useful description of the landform at any point is given by altitude and the surface
derivatives, i.e. slope and convexity (curvature) . . . Slope is defined by a plane tangent
to the surface at a given point and is completely specified by the two components:
gradient (vertical component) and aspect (plane component) . . .Gradient is essentially
the first vertical derivative of the altitude surface while aspect is the first horizontal
derivative.

Further, land surface properties are specified by convexity (positive and negative
convexity — concavity). These are the changes in gradient at a point (in profile)
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and the aspect (in the plane tangential to the contour passing through the point).
In other words, they are second derivatives. These five attributes (altitude, gradient,
aspect, profile convexity, and plane convexity) are the main elements used to describe
terrain surfaces. Among them, slope, comprising of both gradient and aspect, is the
fundamental attribute.

Gradient should be measured at the steepest direction. However, when taking the
gradient of a profile or in a specific direction, it is actually the vector of the gradient
and aspect that is obtained and used. Therefore, the term slope or slope angle is used
in this context to refer to the gradient in any specific direction.

The importance of slope has also been realized by others. As quoted by Evans
(1972), Strahler (1956) pointed out that “slope is perhaps the most important aspect
of surface form, since surfaces may be formed completely from slope angles . . . .”
Slope is the first derivative of altitude on the terrain surface. It shows the rate of
change in height of the terrain over distance.

From the practical point of view, using slope (and relief) as the main terrain
descriptor for DTM purposes can be justified for the following reasons:

1. Traditionally, slope has been recognized as very important and used in surveying
and mapping. For example, map specifications for contours are given in terms of
slope angle all over the world.

2. In the determination of vertical contour intervals (CIs) for topographic maps, slope
and relief (height range) are the two main parameters considered. For example,
Table 2.1 is a classification system adopted by the Chinese State Bureau of Sur-
veying and Mapping (SBSM) in its specifications for 1:50,000 topographic maps.

3. In DTM practice, many researchers (e.g., Ackermann 1979; Ley 1986; Li 1990,
1993b) have noted the high correlation between DTM errors and the mean slope
angle of the region.

2.3.3 Estimation of Slope

To use slope together with wavelength or relief to describe terrain, two problems
related to the estimation of its values need to be considered, that is, availability and
variability.

By availability we mean that slope values should be available or estimated before
sampling takes place, to assist in the determination of sampling intervals. If a DTM
exists in an area, then the slope values for DTM points can be computed and the
average can be used as the representative (Zhu et al. 1999). Otherwise, slope may be
estimated from a stereo model formed by a pair of aerial photographs with overlap
(see Chapter 3) or from contour maps. The method proposed by Wentworth (1930)
is still widely used to estimate the average slope of an area from the contour maps.

Table 2.1 Terrain Classification by Means of Slope and Relief

Terrain Type CI (m) Slope (◦) Relief (Height Range) (m)

Plain 10 (5) <2 <80
Upland 10 2–6 80–300
Hill 20 6–25 300–600
Mountain 20 >25 >600
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The average slope value (α) of a homogeneous are can be estimated as follows:

α = arctan

(
 H × !L

A

)
(2.12)

where H is the contour interval,!L is the total length of contours in the area andA
is the size of the area. If there is no contour map for such an area, then the slope may
be estimated from an aerial photograph. Some of the methods that are available for
measurement of slope from aerial photographs have been reviewed by Turner (1997).

By variability we mean that slope values may vary from place to place so that
the slope estimate that is representative for one area may not be suitable for another.
In this case, average values may be used as suggested by Ley (1986). If slope varies
too greatly in an area, then the area should be divided into smaller parts for slope
estimation. Different sampling strategies could be applied to each area.

2.4 THEORETICAL BASIS FOR SURFACE SAMPLING

After estimating slope and relief (height range), the wavelengths of terrain variation
can be computed. These parameters are used to determine the sampling strategy
and intervals for data acquisition. First, some theories related to surface sampling
are discussed.

2.4.1 Theoretical Background for Sampling

From the theoretical point of view, a point on the terrain surface is 0-D, thus without
size, while a terrain surface comprises an infinite number of points. If full information
about the geometry of a terrain surface is required, it is necessary to measure an infin-
ite number of points. This means that it is impossible to obtain full information about
the terrain surface. However, in practice, a point measured on a surface represents
the height over an area of a certain size; therefore, it is possible to use a set of finite
points to represent the surface. Indeed, in most cases, full or complete information
about the terrain surface is not required for a specific DTM project, so it is necessary
only to measure enough data points to represent the surface to the required degree of
accuracy and fidelity.

The problem a DTM specialist is concerned with is how to adequately represent the
terrain surface by a limited number of elevation points, that is, what sampling interval
to use with a known surface (or profile). The fundamental sampling theorem that is
being widely used in mathematics, statistics, engineering, and other related disciplines
can be used as the theoretical basis. The sampling theorem can be stated as follows:

If a function g(x) is sampled at an interval of d, then the variations at frequencies
higher than 1/(2d) cannot be reconstructed from the sampled data.

That is, when sampling takes two samples (i.e., points) from each period of waves
with the highest frequency in the function g(x), the original g(x) can be completely
reconstructed with the sampled data. In the case of terrain modeling, if a terrain profile
is long enough to be representative of the local terrain, it can then be represented by the
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Figure 2.5 The relationship between the least sampling interval and the highest functional
frequency. Left: sampling interval is less than half the functional frequency
so that full reconstruction is possible; right: sampling interval is larger than half
the functional frequency so that information about the function is lost.

sum of its sine and cosine waves. If it is assumed that the number of terms in this sum
is finite, there is, therefore, a maximum frequency value, F , for this set of sinusoidal.
According to the sampling theorem, the terrain profile can be completely reconstruc-
ted if the sampling interval along the profile is smaller than 1/(2F) (see Figure 2.5,
left). Therefore, extending this idea to surfaces, the sampling theorem can also be
used to determine the sampling interval between profiles to obtain adequate inform-
ation about a terrain surface. In contrast, if a terrain profile is sampled at an interval
of d , then the terrain information with a wavelength less than 2d will be completely
lost (Figure 2.5, right). Therefore, as Peucker (1972) has pointed out, “a given regular
grid of sampling points can depict only those variations of the data with wave lengths
of twice the sampling interval or more.”

2.4.2 Sampling from Different Points of View

Points on a terrain surface can be viewed in various ways from the differing view-
points inherent in subjects such as statistics, geometry, topographic, science, etc.
Therefore, different sampling methods can be designed and evaluated according to
each of these different viewpoints as follows (Li 1990):

1. statistics-based sampling
2. geometry-based sampling
3. feature-based sampling.

From the statistical point of view, a terrain surface is a population (called
a sample space) and the sampling can be carried out either randomly or systematically.
The population can then be studied by the sampled data. In random sampling, any
sampled point is selected by a chance mechanism with known chance of selection.
The chance of selection may differ from point to point. If the chance is equal
for all sampled points, it is referred to as simple random sampling. In systematic
sampling, the points are selected in a specially designed way, each with a chance of
100% probability of being selected. Other possible sampling strategies are stratified
sampling and cluster sampling. However, they are not suitable for terrain modeling
and thus are omitted here.

From the geometric point of view, a terrain surface can be represented by different
geometric patterns, either regular or irregular in nature. The regular pattern can be
subdivided into 1-D or 2-D patterns. If sampling is conducted with a regular pattern

 



DITM: “tf1732_c002” — 2004/10/22 — 16:36 — page 23 — #11

TERRAIN DESCRIPTORS AND SAMPLING STRATEGIES 23

that is only regular in one dimension, then the corresponding method is referred to as
profiling (or contouring). A 2-D regular pattern could be a square or a regular grid,
or a series of contiguous equilateral triangles, hexagons, or other regularly shaped
geometric figures.

From the viewpoint of features, a terrain surface is composed of a finite number
of points, and the information content of these points may vary with their positions.
Therefore, surface points are classified into two groups, one of which comprises
feature-specific (F-S) (or surface-specific) points (and lines) while the other com-
prises random points. An F-S point is a local extrema point on the terrain surface,
such as peaks, pits, and passes. These points may not only present their own elevation
values but also provide more topographic information to their surroundings. Peaks are
the summits of mountains and hills, so they have a set of points of lower height around
them. By contrast, pits are the bottoms of valleys (holes), so they have a set of greater
height values around them. That is, F-S points are more important because they not
only contain the coordinate information about themselves, but also implicitly repres-
ent some information about their surroundings. Thus, F-S points represent surface
features with higher or more significant information content than the average points.
The lines connecting certain types of F-S points are referred to as feature-specific
lines, such as ridge lines, course lines (rivers, valleys, ravines, etc.), break lines, and
so on. Figure 2.6 shows the F-S points and lines. Ridge lines are the lines connect-
ing pairs of points such that the points on them are local maxima (see Figure 2.7).
Similarly, course lines are linking pairs or strings of points so that the points defined
by them are local minima.

The crossing points of these two types of lines are referred to as passes. They
are, therefore, the points that, at the same time, can be a maxima elevation in one
direction and a minima in the other direction.

From the morphological point of view, a terrain surface is characterized
completely by its slope angles. Therefore, the importance of F-S points comes from
the fact that at these points, slope changes not only in direction but also in sign and
magnitude. For example, at peaks, it changes from positive to negative and at pits, it
changes from negative to positive. There are also two other types of points where the
slope changes its vertical angle but not its sign. They are convex and concave points.

Ridge lines

Course line
Peak

Figure 2.6 Terrain feature points and lines.

 



DITM: “tf1732_c002” — 2004/10/22 — 16:36 — page 24 — #12

24 DIGITAL TERRAIN MODELING: PRINCIPLES AND METHODOLOGY

40
30 20(a) (b)

A B C E F

A B C E F
20

30

40

Figure 2.7 Points (e.g., C) on a ridge line being local maxima.
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Figure 2.8 Slope changes at F-S points (peaks, pits, and convex and concave points).
(a) Peak (+ ⇒ −). (b) Pits (− ⇒ +). (c) Convex point (α 	= β). (d) Concave
point (α 	= β).

If a slope is viewed as an up–down transition, the slope change is from gentle to
steep at a convex point and from steep to gentle at a concave point. Figure 2.8 shows
such points. The convex and concave points are also invariably F-S points, connected
to become linear features. If there is a special case where the slope change is very
sudden, then these linear features are referred to as break lines.

2.5 SAMPLING STRATEGY FOR DATA ACQUISITION

2.5.1 Selective Sampling: Very Important Points plus Other Points

Selective sampling mimics field surveying. That is, all very important points (VIPs)
discussed in Section 2.4.2 are selected, thereby ensuring that data are reasonably
comprehensive in coverage. In addition, some others are selected to make the sampled
data have a certain density. This method has the distinct advantage that fewer points
can represent the surface with high fidelity.

However, in sampling using the photogrammetric method (see Chapter 3), this is
not an efficient way of selecting data points because it requires substantial interpre-
tation of the stereo model (i.e., reconstructed terrain surface from a pair of aerial
photographs) by a trained operator. In practice, no automated procedure can be
implemented on the basis of this strategy. So, it is not popular in certain mapping
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organizations (e.g., military survey organizations) where speed of data acquisition is
of prime importance.

2.5.2 Sampling with One Dimension Fixed: Contouring and Profiling

In analog photogrammetry, stereo models are constructed from a pair of aerial
photographs and direct measurement of contours from the reconstructed stereo model
is the most common practice. The height value is fixed for each contour and float
marks (one for the left photograph and the other for the right photograph, both of
which should coincide if they are just on the surface of the stereo model) are moved
on the surface of the stereo model, which is realized by a combination of movement
in X and Y directions, driven by two mechanical wheels.

The term contouring means that the data sampling is along contours. This is
exactly the same as the traditional contour measurement on the stereo model. The
only difference is that in the DTM data sampling, all points on the contour lines are
recorded in digital form and point recording could be selective along a contour line.

In contouring, the height value inZ dimension, is fixed when measuring a contour
line. On the other hand, if the fixed dimension is X, then the movement of floating
marks on the stereo model surface is on the YZ plane. The result is a profile on the
YZ plane. The process to obtain a profile in digital form is called profiling. Of course,
profiling could be in any direction apart from the XZ and YZ planes.

2.5.3 Sampling with Two Dimensions Fixed: Regular Grid and
Progressive Sampling

As the name implies, regular grid sampling ensures that the data points are obtained
in the form of a regular grid. This can be achieved by setting the fixed intervals in
bothX and Y directions to form the plane grid. Then, all points on the grid nodes are
measured.

But in terms of sampling, a heavy redundancy of data is required to ensure that all
slope discontinuities are detected or that changes in the topography are represented
in an adequate manner.

To solve the problem of data redundancy in regular grid sampling, Makarovic
(1973) designed a modified strategy, which he called progressive sampling. In this
procedure, the sampling is carried out in a grid pattern whose interval changes
progressively from coarse to fine over an area.

The procedure is as follows. First, a set of grid points is measured at a low density,
then the elevation values at these data points are analyzed by an on-line computer.
In turn, the computer generates the locations of new points to be sampled in the
next run. The procedure is repeated until some prior criteria are satisfied.

For such criteria, Makarovic (1973) proposed initially to use the second differ-
ences of elevation values computed along both rows and columns of the measured
(sampled) coarse grid. Several additional or alternative criteria have also been
proposed later (Makarovic 1975), such as the so-called random-variation, parabolic,
distance, and contour criteria. Of course, other criteria may also be used as the basis
of the sampling strategy for a particular type of terrain.
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Progressive sampling can solve part of the redundancy problem that is inherent
in regular grid sampling, but still there are shortcomings, as Makarovic (1979) noted:

1. The sampled data points exhibit a high degree of redundancy in the proximity of
abrupt changes in the terrain surface.

2. Pertinent features may be lost in the first run with its wide (coarse) spacing.
These cannot be recovered by the following sampling runs.

3. The tracking path is rather long, which decreases efficiency.

2.5.4 Composite Sampling: An Integrated Strategy

The idea of progressive sampling sounds great. Indeed, it was implemented by some
photogrammetric systems such as the analytical plotter. However, in practice, it was
not widely implemented due to the reasons mentioned in the previous section.

A more natural line of thinking is to combine a regular grid sampling with selective
sampling, because the former is very efficient in measurement and the latter is very
effective in surface representation. Such a combination is referred to as composite
sampling. In this way, abrupt changes — specific features on the terrain such as ridges,
break lines, etc. — are sampled selectively. And the values and F-S points — peaks,
passes and hollows — are added to the regular grid-sampled data.

Indeed, there are two types of composite sampling. The first one is mentioned
already, and the second one is a combination of selective and progressive sampling.
It has proved in practice that the use of composite sampling may solve many problems
encountered in regular grid sampling and progressive sampling.

2.6 ATTRIBUTES OF SAMPLED SOURCE DATA

In the context of digital terrain modeling, sampling is the process of selecting those
points that have to be measured in certain positions. The operation can be characterized
by two parameters, that is, distribution and density. Measurement is to determine the
X, Y coordinates of a point and is concerned with accuracy. Sampling can take place
before or after measurement. Sampling after measurement is to select points from
a set of measured data points, usually with great density. Therefore, accuracy can
also be included in the attribute set for the sampled data, called DTM source data,
raw data, or simply source data.

2.6.1 Distribution of Sampled Source Data

The distribution of sampled data is usually specified by the terms of location and
pattern. The location is defined in terms of two positional coordinates, that is,
longitude and latitude in a geographical coordinate system or easting and northing
in a grid coordinate system. Regarding pattern, a variety of these are available for
selection, such as regular or rectangular grids. These patterns can be classified in
different ways. Figure 2.9 shows one such classification.
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Regular 2-D data are produced by means of regular grid or progressive sampling.
The resulting pattern could be a rectangular grid, a square grid, or a hierarchical
(or progressive) structure of these two. The square grid is most commonly used.
The hierarchical structured data, sampled by means of progressive sampling, can be
decomposed into a normal square grid.

Data that are regular in one dimension are produced by sampling with one dimen-
sion fixed (X, Y , or Z). That is, such a pattern is generated by using contouring or
profiling.

There are other special regular patterns, for instance, equilateral triangles and
hexagons, etc. However, it seems that these structures are not as widely used as
profiled or regular grid data.

As has been discussed before, data patterns can be divided into two categories,
that is, regular and irregular patterns. Regular patterns have been discussed above.
Irregular patterns may generally be classified into three groups, that is, random,
cluster, and string data. By random data we mean that the measured points are
located randomly, that is, not in any specific form. By clustered data we mean that
the measured points are clustered, which is often the case in geology. String data are
not located in a regular pattern, yet they follow certain features (such as break lines).

Data pattern

Random

Strings

Special

1-D regular

2-D regular

VIPs and representatives 

Break and feature line

Hexagons

Regular triangles

Contouring

Profile

Square grid 

Regular grid

Figure 2.9 Patterns of sampled data points.
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The data sets that are sampled along rivers, break lines, or feature lines all belong to
this pattern. Actually, it is not an independent pattern, but rather a supplemental one
that is F-S. For example, the pattern of the data resulting from composite sampling is
usually a combination of string data with regular grid data.

2.6.2 Density of Sampled Source Data

Density is another attribute of sampled data. It can be specified by measures like the
distance between two points, the number of points per unit area, the cutoff frequency
(Nyquist), and so on.

The distance between two sampled points is usually referred to as the sampling
interval (or distance or spacing). If the sampling interval varies with position, then
an average value can be used. This measure is specified by a number with a unit, for
instance, 20 m. Another measure that could be used in terrain modeling practice is
the number of points per unit area, for example, 500 points per square kilometer.

If the sampling interval is transformed from space domain to frequency domain,
then the cutoff frequency (the maximum frequency that the sampled data represent)
can be obtained. From another point of view, the required maximum frequency can
also be used as a measure of data density because the sampling interval can also
be obtained from it (the value of maximum frequency). Figure 2.10 sketches the
frequency of a curve. The frequency at point B can be considered as the cutoff.
In fact, the swing of point A is already near 0 and the value at point A may also be
regarded as cutoff frequency in some sense.

2.6.3 Accuracy of Sampled Source Data

The accuracy of sampled data largely depends on the methods used for measurement,
such as the mode of measurement, instruments used, and technique adopted.
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Figure 2.10 Cutoff frequency: the swing approaching 0.
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Technique means the field survey, photogrammetry, or map digitization. Generally
speaking, data acquired by field survey are usually the most accurate and data
acquired by map digitization are less accurate. Of course, there are always excep-
tions. For example, if the instruments used for field surveying are of very low accuracy
but the existing maps are at large scale and digitized by a very accurate instrument,
then the data digitized from maps may be more accurate than those acquired by field
survey. Therefore, there are conditions to the above general statement, that is, whether
the techniques are compatible in terms of scale.

By instrument we mean the type of instrument, which in turn implies potential
accuracy limitation. Highly accurate results can be obtained only when the instruments
used for measurement are of high quality.

Mode of measurement refers to either static or dynamic mode. Dynamic mode
means that measurement is carried out dynamically. In the field survey using GPS,
the GPS receiver is in motion, either carried by a surveyor or in a vehicle. In photo-
grammetry, the measurement is carried out when the float marks are still in motion.
In digitization, points are recorded while the cursor is in motion. In dynamic mode,
the data acquired are usually of much lower accuracy.

There will be more discussion on data measurement and the accuracy of measured
data using different techniques in the next chapter.
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CHAPTER 3

Techniques for Acquisition
of DTM Source Data

In Chapter 2, sampling strategies were discussed, on the selection of points on the
terrain (or reconstructed stereo model) surface. In this chapter, the techniques used
for actual measurement of such selected positions are presented.

3.1 DATA SOURCES FOR DIGITAL TERRAIN MODELING

Data sources means the materials from which data can be acquired for terrain
modeling and DTM source data means data acquired from data sources of digital
terrain modeling. Such data can be measured by different techniques:

1. field surveying by using total station theodolite and GPS for direct measurement
from terrain surfaces

2. photogrammetry by using stereo pairs of aerial (or space) images and photogram-
metric instruments

3. cartographic digitization by using existing topographic maps and digitizers.

3.1.1 The Terrain Surface as a Data Source

The continents occupy about 150 million km2, accounting for 29.2% of the Earth’s
surface. Relief varies from place to place, ranging from a few meters in flat areas to
a few thousand meters in mountainous areas. The highest peak of the Earth is about
8,884 m at Mt Everest. Most oceans are kilometers deep while some trenches in the
Pacific plunge in excess of 10,000 m. In this book, terrain means the continental part
of the Earth’s surface.

The Earth’s surface is covered by natural and cultural features, apart from water.
Vegetation, snow/ice, and desert are the major natural features. Indeed, in the polar
regions and some high mountainous areas, terrain surfaces are covered by ice and
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snow all the time. Settlements and transportation networks are the major cultural
features.

For terrain surfaces with different types of coverage, different measurement
techniques may be used because some techniques may be less suitable for some areas.
For example, it is not easy to directly measure the terrain surface in highly moun-
tainous areas. For this, photogrammetric techniques using aerial or space images are
more suitable.

3.1.2 Aerial and Space Images

Aerial images are the most effective way to produce and update topographic maps.
It has been estimated that about 85% of all topographic maps have been produced by
photogrammetric techniques using aerial photographs. Aerial photographs are also
the most valuable data source for large-scale production of high-quality DTM.

Such photographs are taken by metric cameras mounted on aerial planes.
Figure 3.1(a) is an example of an aerial camera. The cameras are of such high met-
ric quality that image distortions due to imperfections of camera lens are very small.
Four fiducial marks are on the four corners (see Figure 3.2) or sides of each photograph
and are used to precisely determine the center (principal point) of the photograph.
The standard size of aerial photographs is 23 cm × 23 cm.

Aerial photographs can be classified into different types based on different criteria:

Color: Color (true or false) and monochromatic photographs.
Attitude of photography: Vertical (i.e., main optical axis vertical), titled (≤3◦),

and oblique (>3◦) photographs. Commonly used aerial photographs are titled
photographs.

Angular field of view: Normal, wide-angle and super wide-angle photography
(see Table 3.1). In practice, over 80% of modern aerial photographs belong to the
wide-angle category.

H

f

Aerial photo
(negative)

(a) (b)

Aerial photo
(positive)

Perspective
center (lens)

Main optical
axis

Figure 3.1 Aerial camera and aerial photography. (a) An aerial camera. (Courtesy of Zeiss.)
(b) Geometry of aerial photography.
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Figure 3.2 Different types of fiducial marks.

Table 3.1 Types of Aerial Photographs Based on Angular
Field of View

Super-Wide Wide Normal
Type Angle Angle Angle

Focal length ≈85 mm ≈150 mm ≈310 mm
Angular field of view ≈120◦ ≈90◦ ≈60◦

The principle of photography is described by the following mathematical
formula:

1

u
+ 1

v
= 1

f
(3.1)

where u is the distance between the object and the lens, v is the distance between
the image plane and the lens, and f is the focal length of the lens. In the case of
aerial photography, the value of u is large, about a few thousand meters. Therefore,
1/u approaches 0 and v approaches f . That is, the image is formed at a plane very
close to the focal plane. Figure 3.1(b) illustrates the geometry of aerial photography.
The ratio f /H determines the scale of the aerial photograph, where H is the flying
height of the airplane (thus the camera):

1

S
= f
H

(3.2)

Traditionally, aerial photographs are in analog form and the images are recorded
on films. If images in digital form are required, then a scanning process is applied.
Experimental studies show that a pixel size as large as 30 µm is sufficient to retain
the geometric quality of analog images. On the other hand, aerial images can also
be directly recorded by an electronic device to form digital images, using a CCD
(charge-coupled device) camera. However, the optical principle of imaging is the
same as analog photography.
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There is another type of aerial image obtained by airborne scanners. However,
they are not widely used for acquisition of data for digital terrain modeling. On the
other hand, scanned space images, particularly those from SPOT satellite system, are
widely used for the generation of small-scale DTM over large areas. However, with
high-resolution images such as IKONOS 1-m resolution images, space images will
find more applications in DTM generation.

These images are all obtained by passive systems, where the sensors record
the electromagnetic radiations reflected by the terrain surface and objects on the
terrain surface. It is also possible to use active systems, which send off electro-
magnetic waves, and then to receive the waves reflected by terrain surfaces and
objects on the terrain surface. Radar is such a system. As radar images are a poten-
tial source for medium- and small-scale DTM over large areas, the use of them for
DTM data acquisition will be discussed later at some length although they are still
not widely used.

3.1.3 Existing Topographic Maps

Every country has topographic maps and these may be used as another main data
source for digital terrain modeling. In many developing countries, these data sources
may be poor due to the lack of topographic map coverage or the poor quality of the
height and contour information contained in the map. However, in most developed
countries and even some developing countries like China, most of the terrain is covered
by good-quality topographic maps containing contours. Therefore, these form a rich
source of data for digital terrain modeling provided that the limitations of extracting
height data from contour maps are kept in mind.

The largest scale of topographic maps that cover the whole country with con-
tour lines is usually referred to as the basic map scale. This may also vary from
country to country. For example, the basic map scales for China, United Kingdom,
and United States are 1:50,000, 1:10,000, and 1:24,000, respectively. This indic-
ates the best quality of DTM that can be obtained from existing contour maps.
There are usually some other topographic maps at scales smaller than the basic
map scale. Of course, such smaller-scale topographic maps have a higher degree
of generalization and thus lower accuracy. Table 3.2 shows the characteristics of
such maps.

One important concern with topographic maps is the quality of the data contained
in them, especially the metric quality, which is then specified in terms of accuracy.
The fidelity of the terrain representation given by a contour map is largely determined
by the density of contour lines and the accuracy of the contour lines themselves.

Table 3.2 Topographic Maps at Different Scales (Konecny et al. 1979)

Topographic Map Scale Characteristics

Large- to medium-scale maps >1:10,000 Representation true to plan
Medium- to small-scale maps 1:20,000–1:75,000 Representation similar to plan
General topographic map <1:100,000 High degree of generalization

or signature representation
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Table 3.3 Map Scales and Commonly
Used Contour Intervals
(Konecny et al. 1979)

Scale of the Interval between
Topographic Map Contour Lines (m)

1:200,000 25–100
1:100,000 10–40
1:50,000 10–20
1:25,000 5–20
1:10,000 2–10

Table 3.4 Map Scales and Commonly Used Contour Intervals

Country Scale Height Accuracy (m)

Germany 1:5,000 0.4+ 3× tanα

Switzerland 1:10,000 1.0+ 3× tanα
Britain 1:10,000/1:10,560

√
1.82 + (3× tanα)2

Italy 1.8+ 12.5× tanα
Norway 2.5+ 7.5× tanα
Switzerland 1.0+ 7.5× tanα
Israel 1:25,000 1.5+ 5.0× tanα
Germany 0.8+ 5.0× tanα
Finland 1.5+ 3.0× tanα
The Netherlands 0.3+ 4.0× tanα

Switzerland
1:50,000

1.5+ 10× tanα
United States 1.8+ 15× tanα

One important measure of contour density is the vertical contour interval, or simply
contour interval (CI). The commonly used contour intervals for different map scales
are shown in Table 3.3.

The accuracy requirements of a contour map are given by the map specifications.
Examples of the specifications for the accuracy of contours for different map scales
used in different countries are given in Table 3.4 (Imhof 1965; Konecny et al. 1979),
α is the slope angle. In general, it is expected that the height accuracy of any point
interpolated from contour lines will be about 1/2 to 1/3 of the CI.

3.2 PHOTOGRAMMETRY

3.2.1 The Development of Photogrammetry

The word photogrammetry comes from the Greek words photos (meaning light),
gramma (meaning that which is drawn or written), and metron (meaning to measure).
It originally signified “measuring graphically by means of light” (Whitmore and
Thompson 1966).
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Table 3.5 The Characteristics of the Four Stages of Photogrammetry (Li et al. 1993)

Stages of Development in Photogrammetry
Components and
Parameters Analog Numerical Analytical Digital

Input component Analog Analog Analog Digit
Model component Analog Analog Analytical Analytical
Output component Analog Digit Digit Digit

Degree of “hardness” 3 2 1 0
Degree of flexibility 0 1 2 3

The development of photogrammetry can be traced back to the middle of the
19th century.

In 1849, A. Laussedat, an officer in the Engineering Corps of the French Army,
embarked on a determined effort to prove that photography could be used with
advantage in the preparation of topographic maps . . . In 1858, Laussedat experimented
with a glass-plate camera in the air, first supported by a string of kites. Laussedat also
made a few maps with the aid of a ballon. (Whitmore and Thompson 1966)

With his pioneering work, Laussedat is regarded by many as the “father of
photogrammetry.”

In early times, maps were made by graphic methods. The credit for the develop-
ment of measurement instruments goes to two members of the Geographical Institute
of Vienna — A. von Hubl and E. von Orel, who developed the stereocomparator
and stereoautograph. It is also said that a stereocomparator was developed independ-
ently by Zeiss in 1901. In the early stages, these were all optical instruments. Later,
optical–mechanical and mechanical projections were adopted to improve the accuracy
of measurement. In the late 1950s, the computer was introduced in photogrammetry.
The first attempt was to record the output digitally, resulting in numerical photo-
grammetry, then optical–mechanical projections were replaced by the computational
model, resulting in analytical photogrammetry (Helava 1958). From the early 1980s,
images in digital form were in use, resulting in digital or softcopy photogrammetry
(Sarjakoski 1981).

In summary, photogrammetry has undergone four stages of development, that is,
analog, numerical, analytical, and digital photogrammetry. The characteristics of
these four stages are given in Table 3.5. Some examples of such instruments are
shown in Figure 3.3.

3.2.2 Basic Principles of Photogrammetry

The fundamental principle of photogrammetry is to make use of a pair of stereo
images (or simply stereo pair) to reconstruct the original shape of 3-D objects, that is,
to form the stereo model, and then to measure the 3-D coordinates of the objects on
the stereo model. Stereo pair refers to two images of the same scene photographed at
two slightly different places so that they have a certain degree of overlap. Figure 3.4 is
an example of such a pair. Actually, only in the overlapping area can one reconstruct
the 3-D models (see Figure 3.5).
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(a) Optical plotter (b) Optical-mechanical plotter

(c) Analytical plotter (d) Digital photogrammetric system 

Figure 3.3 Some examples of photogrammetric instruments (a) Optical plotter (photo courtesy
of Bruce King), (b) Optical-mechanical plotter (photo courtesy of Bruce King), (c)
Analytical plotter, (d) Digital photogrammetric system (courtesy of 3D Mapper).

(a) (b)

Figure 3.4 A pair of stereo images with 60% overlap, partially displayed on screen (courtesy
of 3D Mapper).

In aerial photography, there is generally a 60% overlap degree in the flight direc-
tion and 30% between the flight strips. Each photograph is characterized by six
orientation elements, three angular elements (one for each of X, Y , and Z axes) and
three translations (X, Y , and Z coordinates in a coordinate system, usually geodetic
coordinate system). Any two images with overlap can be used to generate a stereo
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S1 S2

a� a�

A

Z

X

Y

Figure 3.5 A stereo model is formed by projecting image points from a stereo pair.

model. With space images, the percentage of overlap is not that standardized but
as long as overlaps exist, they can be used to reconstruct stereo models. However,
for scanned images, each strip must have six orientation elements to be determined.
Here, aerial photographs are used as an illustration, as they are more used widely for
DTM data acquisition.

Imagine that the left and right photographs of a stereo pair are put in two projectors
that are identical to the camera which was used for photography, and the positions
and orientations of these two projectors are restored to the same situations as when
the camera took the two photographs. Then, the light rays projected from the two
photographs through the two projectors will intersect in the air to form a 3-D model
(i.e., a stereo model) of the objects on the photographs. However, the scale of the stereo
model will certainly not be 1:1. Practically, the model can be reduced to a manageable
scale by reducing the length of the base line (i.e., the distance between the two
projectors). In this way, the operator can measure 3-D points on the stereo model.
This is the basic principle of analog photogrammetry and is shown in Figure 3.5.
In this figure, S1 and S2 are the projection centers, a′ and a′′ are the two image points
on the left and right images, respectively. The light rays from S1a′ and S2a′′ intersect
at point A which is on the stereo model.

The relationship between an image point, the corresponding ground point,
and the projection center (camera) is described by an analytical function, called the
colinearity condition, that is, these three points on a straight line. The mathematical
expression is as follows:

x = −f a1(XA −XS)+ b1(YA − YS)+ c1(ZA − ZS)

a3(XA −XS)+ b3(YA − YS)+ c3(ZA − ZS)

y = −f a2(XA −XS)+ b2(YA − YS)+ c2(ZA − ZS)

a3(XA −XS)+ b3(YA − YS)+ c3(ZA − ZS)

(3.3)
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where X,Y ,Z is a geodesic coordinate system; S–xy is a photocoordinate system;
x, y is the pair of image coordinates; A is point on the ground; S is the perspective
center of the camera;XS, YS,ZS is the set of ground coordinates of projection center S
in the geodetic coordinate system; XA, YA, ZA is the set of ground coordinates of
point A in the geodetic coordinate system; f is the distance from S to the photo,
that is, the focal length of the camera; and ai , bi , and ci (i = 1, 2, 3) are the functions
of the three angular orientation elements (i.e., φ, ω, κ) as follows:

a1 = cosφ cos κ + sin φ sinω sin κ

b1 = cosφ sin κ + sin φ sinω cos κ

c1 = sin φ cosω

a2 = − cosω sin κ

b2 = cosω cos κ

c2 = sinω

a3 = sin φ cos κ + cosφ sinω sin κ

b3 = sin φ sin κ − cosφ sinω cos κ

c3 = cosφ cosω

(3.4)

If the six orientation elements for each photograph are known, then when the
coordinates of the image points a′, a′′ are measured, the ground coordinates of A,
(i.e.,XA,YA,ZA) can be computed from Equation (3.3). The six orientation elements
can be determined by mounting GPS receivers on the airplane or by measuring a few
control points (both on the ground and on images) and using Equation (3.3).

In analytical photogrammetry, the measurement of image coordinates is still
carried out by the operator. However, in digital photogrammetry, images are in
digital form and thus the coordinates of a point are determined by row and column
numbers. When given an image point on the left image, the system will search the
corresponding point on the right image (called conjugate point) automatically by a
procedure called image matching. Then, ground coordinates can be computed accord-
ingly. Such an automated system is called a Digital Photogrammetric Workstation
(DPW). Figure 3.3(d) is an example of such a system.

To use DPW, images must be in digital form already. If not, a scanning process
needs to be applied to convert images from analog to digital form. However, a very
high-quality photogrammetric scanner is required to avoid distortion. A pixel size of
about 20 µm is usually used because the experimental tests shows that there is no
significant difference between the images scanned with 15 and 30 µm.

3.3 RADARGRAMMETRY AND SAR INTERFEROMETRY

In practice, synthetic aperture radar (SAR), is widely used to acquire images. Images
acquired by SAR are very sensitive to terrain variation. This is the basis for three types
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of techniques, that is, radargrammetry, interferometry, and radarclinometry (Polidori
1991). Radargrammetry acquires DTM data through the measurement of parallax
while SAR interferometry acquires DTM data through the determination of phase
shifts between two echoes. Radarclinometry acquires DTM data through shape from
shading. Radarclinometry makes use of a single image and the height information is
not accurate enough for DTM. Therefore, it is omitted in this section.

3.3.1 The Principle of Synthetic Aperture Radar Imaging

SAR is a microwave imaging radar developed in the 1960s to improve the resolution
of traditional (real aperture) radar based on the principle of Doppler frequency shift.

Imaging radar is an active sensor — providing its own illumination in the form of
microwaves. It receives and records echos reflected by the target, and then maps the
intensity of the echo into a grey scale to form an image. Unlike optical and infrared
imaging sensors, imaging radar is able to take clear pictures day and night under all
weather conditions.

Figure 3.6 shows the geometry of the imaging radar often employed for Earth
observation. The radar is onboard a flying platform such as an airplane or a satellite.
It transmits a cone-shaped microwave beam (pulses) (1 to 1000 GHz) to the ground
continuously with a side-looking angle θ0 in the direction perpendicular to the flying
track (azimuth direction). Each time, the energy sent by the imaging radar forms
a radar footprint on the ground. This area may be regarded as consisting of many
small cells. The echo backscattered from each ground cell within the footprint is
received and recorded as a pixel in the image plane according to the slant range
between the antenna and the ground cell (as shown in Figure 3.7). During the flying
mission, the area swept by the radar footprint forms a swath of the ground, thus a radar
image of the swath is obtained (Curlander and Mcdonough 1991; Chen et al. 2000).

The angular fields in the flying direction (ωh) and the cross-track direction (ωv)
are related to the width (ω) and the length (L) of the radar antenna of the radar,
respectively, as shown in Equation (3.5). The Swath WG can be approximated by
Equation (3.6).

ωv = λ

w

ωh = λ
L

(3.5)

WG ≈ λRm

w cos η
(3.6)

where λ is the wavelength of the microwave used by the radar system; Rm is the slant
range from the center of the antenna to the center of the footprint; and η is the incident
angle of radar beam pulses.

The minimum distance between two distinguishable objects is called the resolu-
tion of the radar image, which is the most important measure of radar image quality.
Apparently, the smaller this value, the higher the resolution. The resolution of a radar
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Figure 3.6 Radar imaging geometry.
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Figure 3.7 Projection of radar image.

image for Earth observation is defined by the azimuth resolution in the flying direction
( x) and by the slant range resolution in the slant rage direction ( R) or the ground
range resolution in the cross-track direction ( y), as shown in Figure 3.8. According
to the electromagnetic (EM) wave theory, the azimuth resolution is:

 x = Rλ
L

(3.7)

where R is the slant range, λ is the wavelength of the microwave, and L is the length
of the aperture of the radar antenna. Here,  x is the width of the footprint, as shown
in Figure 3.8. The slant range and ground range resolutions are:

 R = cτp
2

(3.8)

 y =  R

sin θi
= cτp

2 sin θi
(3.9)
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Figure 3.8 Resolution of radar images.

where c is the speed of light; τp is the pulse duration; and θi is the side-looking
angle.

Equations (3.7) to (3.9) show that the slant range resolution (or ground range
resolution) is characterized only by the property of the microwave and the look
angle and they have nothing to do with the position and size of the antenna.
However, the azimuth resolution ( x) is dominantly determined by the position
and size of the antenna. If a C-band microwave (λ = 5.66 cm) real aperture radar
onboard the satellite (ERS-1/2) is employed to take images with an azimuth res-
olution of 10 m from 785 km away, the required length of its aperture is longer
than 3 km. It seems impossible for any flying platform to carry such a long
antenna. In other words, the azimuth resolution of radar images is too low for many
applications.

To improve the resolution of radar images, SAR was developed in the 1960s. It is
based on the principle of the Doppler frequency shift caused by the relative movement
between the antenna and the target (Fritsch and Spiller 1999). Figure 3.9 shows the
imaging geometry of synthetic aperture radar while it is being used to take a side-look
image of the ground.

Assuming that a real aperture imaging radar with aperture lengthLmoves from a to
b, then to c, the slant range from any point, for example, target O, to the antenna varies
fromRa toRb, then to Rc.Ra > Rb, andRb < Rc, which means that at first the antenna
is flying nearer and nearer to the point object until the slant range becomes the shortest
Rb, then it gets further away. The variation of slant range R will cause the frequency
shift of the echo backscattered from target O, varying from an increase to a decrease.
By precisely measuring the phase delay of the received echoes, tracing its frequency
shift, and then synthesizing the corresponding echoes, the azimuth resolution can be
sharpened, as the area of the intersection of the three footprints shown in Figure 3.9.
Compared to the azimuth resolution of the full footprint width described earlier, the
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Figure 3.9 Imaging geometry of SAR.

azimuth resolution ( x) of the SAR is much improved (Curlander and Mcdonough
1991), that is,

 x = L
2

(3.10)

Indeed, it means that the azimuth resolution ( x) of an SAR is only determined
by the length of the real aperture of an antenna, independent of the slant range R
and the wavelength λ. As a result, it is possible to acquire images with 5-m azimuth
resolution by an SAR with a 10-m real aperture length onboard ERS-1/2.

Combined with some advanced range compressing techniques, an SAR whether
on an aircraft or on a space platform can take high-quality images (with high resolution
in both azimuth direction X and slant range direction R) day and night under all
weather conditions. After processing, each pixel of the SAR image contains not only
the grey value (i.e., amplitude image) but also the phase value related to the radar slant
range. These two components can be expressed by a complex number. Therefore, the
SAR image can also be called a radar complex image. Figure 3.10 shows an example
of an amplitude image and Figure 3.11 illustrates the plane coordinate system of
the SAR image and the complex number expression of the pixel. It is the use of phase
information that makes interferometric SAR (InSAR) technologically special.

3.3.2 Principles of Interferometric SAR

SAR images (amplitude images) have been widely used for reconnaissance and envi-
ronmental monitoring in remote sensing. In such cases, the phase component recorded
simultaneously by the SAR has been overlooked for a long time. In 1974, Graham
first reported that a pair of SAR images of the same area taken at slightly different
positions can be used to form an interferogram and the phase differences recorded
in the interferogram can be used to derive a topographic map of the Earth’s surface
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Figure 3.10 An example of the SAR image of Yan’an (C-band, by ERS-1 on August 9,
1998).
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Figure 3.11 Complex number table of pixels.

(Graham 1974). This technology is called InSAR or SAR interferometry. As InSAR
is new, discussions will be more detailed.

At present, InSAR is a signal processing technique rather than an instrument.
It derives height information by using the interferogram, φ(x, r), which records the
phase differences between two complex radar images of the same area taken by two
SARs on board the same platform or by a single SAR revisited, as shown in Figure 3.12
and Figure 3.13, where B and α are the baseline and baseline orientation angles
with respect to the horizon, respectively. Let Ŝ1(x, r) be the complex image taken
at position A1 with its phase component $1(x, r) and Ŝ2(x, r) taken at position A2
with its phase component $2(x, r). According to radiowave propagation theory, the
phase delay measured by an antenna is directly proportional to the slant range from
the antenna to a target point, that is,

$ = 2πR

λ
(3.11)
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By subtracting$1(x, r) from$2(x, r), the differences form an interferogram φ(x, r)
(see more detailed discussion later).

φ =  $ = $2 −$1 = 2× π ×Q× δR
λ

(3.12)

where Q = 1 when the two antennas are mounted on the same flying platform, one
transmitting wave but both receiving echoes simultaneously to form one-pass inter-
ferometry like TOPSAR (Zebker and Villasenor 1992); otherwise, Q = 2. That is,
if the two SAR complex images are acquired at two different places by the same radar,
thenQ = 2.

Fromφ(x, r), the slant rangedifference (δR)betweenR1 (thedistance froma target
point O to A1) and R2 (the distance from O to A2) can be calculated by the following
formula:

δR = R1 − R2 = λ

2πQ
φ (3.13)

where λ is the wavelength. As λ is in centimeters, the slant range difference is
measured in centimeters.
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When B 
 R1, the difference between two slant ranges can be approximated
by the baseline component in the slant direction (i.e., the so-called parallel baseline).
Mathematically,

δR ≈ B‖ = B sin(θ − α) (3.14)

where θ is the side-looking angle. From Figure 3.12, it is not difficult to obtain the
following relationship:

sin(θ − α) = R
2
1 + B2 − R2

2

2BR1
= R

2
1 + B − (R1 + δR)2

2BR1
(3.15)

After the side-looking angle is determined by Equations (3.12) to (3.14), the height h
of the point O can be derived from the following equations:

θ = sin−1
(
λφ

4πB

)
+ α (3.16)

h = H − R1 × cos θ (3.17)

where α is the angle of the baseline with respect to the horizontal line,H is the flying
height (from radar antenna to reference tatum) and h is the height of the point O
(from O to the same reference datum).

From the previous discussions it can be seen that the key issues of heighting with
InSAR are (a) the precise computation of the phase difference and (b) the precise
estimation of the baseline. Of course, there are other processes involved. Figure 3.14
shows the whole process for DTM data acquisition by InSAR. As the baseline can
be determined by GPS data on board, the following discussion concentrates on the
computation of phase differences.

First, two SAR complex images are used, one referred to as the master image
and the other as the slave image. These two images may have different orientations
because the antennas may have slightly different attitudes at different times. Therefore,
they need to be transformed to the same coordinate system and resampled into pixels
with the same size in terms of ground distance so that they could match each other.
These two processes can be performed simultaneously and the whole process is called
co-registration. Commonly, polynomials are used as the mathematical function for
such a transformation and bilinear interpolation is used for resampling.

Matching + 

Phase unwraping

Geometric
transformation

Master image

Slave image

Terrain interferogram

Base data

resampling

DEM

Figure 3.14 The process of DTM data acquisition by InSAR.
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Figure 3.15 An example of InSAR interferogram (western coastline area of Taiwan, generated
by use of a pair of ERS-1/2 Tandem SAR image data: ERS-1: 1996.3.15 and
ERS-2: 1996.3.16).

The next step is to solve the coefficients (unknowns) of the polynomials. In doing
so, some points (called tie points) on both images are selected as control points
(i.e., with known x, y coordinates). The normal practice is to select some well-defined
feature points such as road intersections. If such points are not available, then a grid
with fixed x, y intervals is set, superimposed onto the master image, and these nodes
are selected as tie points. The corresponding points on the slave image are found by
using image-matching technique.

After images are co-registered, the phase image can be used to produce the inter-
ferogram (see Figure 3.15). The value of each pixel in the interferogram is in fact
the phase difference of the conjugate pixels. It is computed by multiplying the two
conjugate complex numbers, for example, Ŝ1(i) and Ŝ2(i) as follows:

G =
N∑
i

Ŝ1(i) · Ŝ∗2 (i) (3.18)

and

φo = tan−1[G] ∈ [−π ,π) (3.19)

where “∗” represents the conjugate complex numbers, and N is the total number of
pixels of the moving window, which means that a moving average is applied for the
reduction of phase noise.

However, this is not the whole story. Actually, the difference, δR, in slant range
from the ground point P to the two antennas at A1 and A2 corresponds to a number
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Figure 3.16 Contour diagram of DTM of the same area as shown in Figure 3.15 (produced
from DTM generated by InSAR).

of whole waves (φu) plus a residual φo, that is,

φ = φu + φo = φo + 2πk (3.20)

where k is the integral number of microwave cycles. However, the value of k cannot
be determined. This is a cycle ambiguity problem, solved by a process called phase
unwrapping, which makes use of information about the phase differences in neigh-
boring pixels. This topic will not be discussed further, but interested readers may
refer to the article by Goldstein et al. (1988). Figure 3.15 shows the interferogram
of an area along the western coastline of Taiwan. The ground resolution is about
20 m× 20 m. The interferogram fringes look similar to contour lines, which actually
reflect the undulation of the Earth’s surface (Figure 13.16).

In fact, apart from terrain variations, phase information also includes several
other types of information, that is, atmospheric effect and other noise. These are
not desired components in the generation of interferograms and should be removed
beforehand. More information about such processes could be found in a paper by
Zebker et al. (1997).

3.3.3 Principles of Radargrammetry

Similar to photogrammetry, radargrammetry forms a stereo model for 3-D mea-
surement. The difference is that in radargrammetry, two SAR images collected with
the unique side-looking geometry (as shown in Figure 3.6) are used to form the
stereo model. Only the intensity information of SAR images is used for radargram-
metric measurement, unlike InSAR which works principally with interferometric
phase information. The 3-D reconstruction is still performed in a way similar to
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Figure 3.17 Stereo configuration of radargrammetry.

photogrammetry, relying on the following key issues:

1. determining the sensor–object stereo model
2. searching for corresponding pixels from two overlapping SAR images using image-

matching techniques
3. determining 3-D coordinates by solving the intersection problem.

Figure 3.17 shows the general stereo configuration of radargrammetry, in which
two SAR images are acquired with different radar look angles along two different flight
paths (airplane tracks or satellite orbits). To satisfy the requirement of stereoscopy,
a sufficient overlap between two SAR images is guaranteed.

Suppose O–XYZ is a geodetic coordinate system, then some rigorous formulae
can be derived for radar stereo computation. As seen in Figure 3.17, there is a plane
formed by the two-sensor positions (S1, S2) and the object position (P). This implies
that the object position is determined by the intersection of two radar rays with
different look angles, leading to a coplanarity condition expressed by

�S1 + �R1 − �S2 − �R2 = 0 (3.21)

where �S1 and �S2 denote the 3-D position vectors of sensors 1 and 2, respectively, while
�R1 and �R2 denote the sensor–object vectors of two radar rays. The above conditions

can be interpreted as the intersection of range spheres and Doppler cones (Leberl
1990), and thus we have two range equations and two Doppler equations given as
follows:

Range equations:
| �P − �S1| = | �R1| = R1 (3.22a)

| �P − �S2| = | �R2| = R2 (3.22b)
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Doppler equations:
�V1 · ( �P − �S1) = 0 (3.22c)

�V2 · ( �P − �S2) = 0 (3.22d)

where �V1 and �V2 denote the 3-D velocity vectors of sensors 1 and 2, respectively.
Equations (3.22c) and (3.22d) represent the general case of zero-Doppler projection
(see Leberl 1990 for non-zero-Doppler projection).

In essence, these four equations represent the stereo model of radargrammetry.
Before commencing stereo measurements, some parameters in the model should be
solved or refined. In particular, the positions and velocities of the flying sensors should
be determined, and each component of the vectors is generally modeled as a function
(e.g., polynomial) of imaging time. Although the track or orbit data from differen-
tial GPS (DGPS) or orbit determination techniques may provide the input for such
modeling, their accuracies are not always sufficient for accurate 3-D reconstruction.
Therefore, based on the least-squares approach, the refinement of the stereo model
using several ground control points (GCPs) can be performed to improve the accuracy
of the parameters (Toutin 2000).

Existing studies indicate that a larger intersection angle between two SAR images
results in a larger parallax and an equivalently higher geometric sensitivity to ground
elevation, but makes image matching difficult due to a larger radiometric dissimilarity
caused by different radar illumination directions (Leberl et al. 1986a, b; Toutin and
Gray 2000). Therefore, a careful selection of intersection angle is needed to balance
between geometric sensitivity and radiometric similarity.

Since the launch of the Canadian RADARSAT satellite in 1995, most experi-
mental studies on radargrammetry have been carried out using radar images acquired
in multi-modes. These experiments with different stereo configurations showed
inconsistent accuracy of about 20 to 70 m in elevation results (Toutin 2000, 2002).
Indeed, it has been found that the accuracy of DTM by radargrammetry is affected
by the following factors:

1. terrain features such as topographic slopes
2. geographical conditions and geometric distortions in relation to radar looking angles
3. intersection angles.

Figure 3.18 shows an example of a DTM generated from a pair of ERS-1 SAR images
acquired along two adjacent descending orbits over Hong Kong. There is only a 30%
overlap (i.e., around 30 km) and the intersection angle is about 4.5◦.

3.4 AIRBORNE LASER SCANNING (LIDAR)

The use of lasers as remote sensing instruments has an established history going
back 30 years. Through the 1960s and 1970s various experiments demonstrated the
power of using lasers in remote sensing including lunar laser ranging, satellite laser
ranging, atmospheric monitoring, and oceanographic studies (Flood 2001). Due to
advancements in reliability and resolution over the past decades, the airborne laser
scanning (ALS) system is becoming an important operational tool in remote sensing,
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Figure 3.18 DTM generated from an ERS-1 SAR stereo pair over Hong Kong by radar-
grammetry: (a) ERS-1 SAR image on March 2, 1996; (b) ERS-1 SAR image
on March 18, 1996; and (c) DTM generated using two SAR images as shown
in (a) and (b).

photogrammetry, surveying, and mapping (Ackermann 1996). The ALS system,
usually called airborne LIDAR (Light Detection And Ranging) in the commercial
sector, is an active remote system. The usefulness of ALS systems has been demon-
strated by a number of applications where traditional photogrammetric methods fail
or become too expensive, for example, the acquisition of terrain elevation data over
areas with dense vegetation (Kraus and Pfeifer 1998), acquisition of 3-D city data
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(a) (b)

Figure 3.19 An example of 3-D city model acquired by LIDAR (Courtesy of GeoLas Consulting)
(a) Aerial photograph. (b) 3D model acquired by laser scanning; both acquired by
the LiteMapper system (www.LiteMapper.com).

Figure 3.20 Principle of airborne laser scanning (Courtesy of GeoLas Consulting).

(Haala et al. 1998), or the surveying and modeling of power lines. An overview
of resources on existing ALS systems has been produced by Baltsavias (1999a,b).
An example of a 3-D model acquired by LIDAR is given in Figure 3.19.

 

www.LiteMapper.com
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3.4.1 Basic Principle of Airborne Laser Scanning

ALS is a complex integrated system, consisting of a laser range finder (LRF),
a computer system to control the on-line data acquisition, a storage medium, a scan-
ner, and a GPS/INS system for determining the position and orientation of the system.
The basic scanning principle is illustrated in Figure 3.20.

As LIDAR is an active system, it sends off electromagnetic energy and records
the energy scattered back from the terrain surface and the objects on the terrain
surface. It is the type of materials hit by the pulses which determines the intensity
of the returning signals. The wavelength of the laser lies in, or just above, the visual
range of the electromagnetic spectrum, that is, in the range of 1040 to 1060 nm. The
formulae (Baltsavias 1999a,b) governing the height determination by laser ranging
will be given in this section. The formulae presented here relate mostly to pulse
lasers. When they refer to continuous-wave lasers (CW lasers), it will be explicitly
mentioned. For the sake of simplicity, it is assumed that

1. the roll and pitch angles are 0
2. the system scans along a plane perpendicular to the flight direction, with scanning

lines equidistant
3. the terrain is flat (unless mentioned otherwise)
4. the area scanned consists of n overlapping parallel strips of equal length
5. the flying speed and height are constant.

3.4.1.1 Range and Range Resolution

Pulse laser:

R = c t
2

 R = c t
2

(3.23)

where R is the range distance between sensor and object (m);  R is the range
resolution (cm); t is the time interval between sending and receiving a pulse
(or echo) (ns); c is the speed of light, ≈300,000 km/s; and  t is the resolution
of time measurement (ns).

Time t is measured by a time interval counter relative to a specific point on the
pulse, for example, the leading edge (i.e., the rising side of the pulse). Since the leading
edge is not well defined (no rectangular pulses), time is measured for a point on the
leading edge, where the signal voltage has reached a predetermined threshold. This
is accomplished with a threshold trigger circuit to start and stop the time counting.

For CW lasers, the range and range resolution are as follows:

CW laser:

R = 1

4π

c

f
ϕ  R = 1

4π

c

f
 ϕ (3.24)

where f is the frequency (Hz); ϕ is the phase (for CW lasers) (rad); and  ϕ is the
phase resolution (for CW lasers) (rad).
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3.4.1.2 Maximum Unambiguous Range

For pulse lasers, the maximum unambiguous range depends on two major factors:

1. the maximum range (number of bits) of the time interval counter
2. the pulse rate.

To avoid confusion in the time interval counter, it is usually required that no pulse
be transmitted until the echo of the previous pulse has been received. For example,
for a pulse rate of 25 kHz, the maximum unambiguous range is 6 km.

In practice, these two factors have never had any effect on the maximum range
(and flying height). In contrast, the maximum range is limited by other factors
such as the intensity of the laser power, the divergence of the laser beam, the trans-
mission rate of the atmosphere, the reflectance rate of the target, the sensitivity of the
detector, and the influence of flying height and attitude errors on the 3-D positional
accuracy. For CW laser, the maximum unambiguous range is

CW laser:

Rmax = λlong

2
(3.25)

where λlong refers to the long wavelength corresponding to the low frequency of a
CW laser.

For example, a CW laser employs two frequencies, 1 and 10 MHz. The low
frequency corresponds to a wavelength of 300 m, then the maximum unambiguous
range is 150 m. This does not imply that the flying height over ground must be limited
to 150 m. In fact, the flying height can be increased by making use of other supple-
mentary information. If all other conditions are kept constant, the maximum range is
typically proportional to the square root of reflectivity and of intensity of the laser.

Accuracy of laser ranging is

σR ∼ 1√
S/N

(3.26)

where σR is the ranging precision (m) and S/N is the signal-to-noise ratio.
For CW lasers, the accuracy of the ranging is proportional to the square root

of the signal bandwidth (measurement rate), as the latter is inversely proportional to
the average number of cycles required for one measurement. That is,

for pulse laser:

σRpulse ∼
c

2
trise

√
Bpulse

PRpeak

for CW laser:

σRcw ∼
λshort

4π

√
Bcw

PRav

where σRpulse is the pulse laser ranging precision (m); trise is the rise (from 10% to
90% of its maximum value) time of the pulse (ns); Bpulse is the noise input bandwidth
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(a)

(b)

(c)

Figure 3.21 DTM obtained from DSM using filtering (Courtesy of GeoLas Consulting) (Top:
Aerial photo; middle: scanned data; Bottom: DSM from laser data).

(pulse lasers) (Hz); PRpeak is the peak power (applies only to pulse lasers) (W); σRcw

is the CW laser ranging precision (m); Bcw is the noise input bandwidth (CW lasers)
(Hz); PRav is the average power (applies to pulse and CW lasers) (W); and λshort is
the short wavelength corresponding to the high frequency of a CW laser.

3.4.2 From Laser Point Cloud to DTM

The ALS system produces data that can be characterized as sub-randomly distributed
3-D point clouds. The processing of ALS data often aims at either the removal of
unwanted measurements (in the form of either erroneous measurements or objects)
or the modeling of data for a given specific model (e.g., a DTM) as a subset of
a measured digital surface model (DSM).

In the process of acquiring ALS data, the following steps are involved, that is,
filtering, classification, and modeling. Filtering refers to the removal of unwanted
measurements to find a ground surface from a mixture of ground and vegetation
measurements. The unwanted measurements can, depending on applications, be char-
acterized as noise, outliers, or gross errors. Classification means to find a specific
geometric or statistic structure, such as buildings or vegetation. Generalization of
classified objects is referred to as modeling. Figure 3.21 shows a DTM obtained from
DSM using filtering.
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The separation of objects from the ground surface (Axelsson 1999) is a general
process common to most applications, if not all. Once objects are separated from
the ground surface, height variation of the terrain surface is obtained.

The flying height of most existing ALS systems is in the range of 20 to 6000 m
(typically 200 to 300 m) and the height accuracy is in the range of 10 to 60 cm
(typically 15 to 20 cm) while planimetric accuracy is 0.1 to 3 m (typically 0.3 to 1 m).

3.5 CARTOGRAPHIC DIGITIZATION

There are basically two cartographic digitization techniques, that is, vector-based line
following or raster-based scanning. Digitization can be done either manually or by
automated devices, giving four possible solutions as shown in Figure 3.22.

Manual line following is the most widely used method. Semiautomated devices
for line following are available but they are very expensive and thus not popular.
Manual raster scanning means to superimpose a regular grid onto the map and then
record whether contours pass through these grid cells. This is not a practical method.
Automated scanning is also a popular method for cartographic digitization.

3.5.1 Line-Following Digitization

In manual line-following digitization, either a mechanically based digitization system
or a solid-state digitizing tablet can be used — nowadays usually the latter, an example
of which is shown in Figure 3.23. In either case, the digitization is done manually.
The map is carefully put onto the digitizer table. A cursor with cross-hairs is used to
trace the contour lines by hand and to record the coordinates. Manual line-following
digitization can be done in two ways, that is, either stream or point mode.

With point mode digitization, each time the operator presses a button, the x,
y coordinates of the cursor’s position will be recorded. Therefore, each time, a decision
needs to be made by the operator on which point is to be measured. Usually, the
measurement is carried out in stationary (i.e., static) mode to give the best accuracy.
The main advantage of point mode manual digitization is that the operator controls
the selection of points to reduce data volume. However, this is a tedious process.

Automated

Manual

Line following

Scanning

Manual line following

Automated line
following

Manual scanning

Automated scanning

Figure 3.22 Cartographic digitization methods.
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Figure 3.23 An example of tablet digitizer.

Stream mode means that the tracing/measurement process is carried out dynam-
ically and is thus less accurate. In this mode, while the cursor is moving along the
contour lines, point coordinates are recorded, either on a time or on a distance basis.
The disadvantages of stream tracing is that the operator does not need to do the line
following. However, data redundancy is a big problem. Another concern with this
mode is the fidelity of the results to the original line because data points will be recor-
ded at certain intervals irrespective of whether the cursor is following the line well or
is quite deviated from the line, which often happens at the turns of curves.

To overcome the problems encountered in manual line-following digitization,
automated line following devices such as Laser-Scan’s Fastrak and Lasertrak systems
have been developed to remove the need for manual movement of the cursor during
measurement. However, an operator is still required to supervise the system and to
execute various operations such as the initial positioning of the device on contours;
guiding the device through areas of closely packed contours and cliffs; inserting
contour elevation values, etc. Given the level of manual interventions required,
the method is usually referred to as semiautomated digitization. Unfortunately, all
semiautomated line-following digitizers are very expensive and beyond the means
of many small mapping organizations. Therefore, this method will not be discussed
further in this section.

Data obtained by digitization are in the digitizer coordinate system and must be
transformed into a geodetic coordinate system. The normal practice is to digitize
a few map grid notes as control points and then apply an affine transform to convert
digitized data points into the geodetic system employed for the map.

3.5.2 Raster Scanning

Raster scanners make fully automated digitization possible. In raster scanning, each
line scan is divided into resolution units, for example, 25 µm × 25 µm, and for
each unit, the scan provides a return as to whether or not a contour line is present.
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Figure 3.24 Illustration of drum (left) and flat-bed (right) scanners.

Each response is recorded the same way, for example, 0 if nothing is present and 1
if there is a line. Or the data can also be recorded as a grey image.

Scanners can be categorized into two types based on the platform, that is, flat-bed
and drum scanners. Figure 3.24 illustrates these scanners. Based on the arrangement
of detectors, they can be classified as point, line, and area scanners.

If a drum scanner is used, the map to be scanned is wrapped on the drum. With
the rotation of the drum as moves in the y direction and the scanner-head’s moves in
the x direction, the whole map can be scanned. The working principle of the flat-bed
scanner is similar. In this case, the moves in the y direction are achieved by movement
along two rails.

Scanners for cartographic scanning are of high resolution. As a result, the amount
of data is huge and there is a great deal of redundancy. Then vectorization follows,
which can be manual or automated. Manual vectorization means to display the
scanned map on a screen and then to carry out line-following digitization on screen.
Automated vectorization is done completed with algorithms.

3.6 GPS FOR DIRECT DATA ACQUISITION

GPS are a popular technique for direct measurement of the Earth’s surface. They
are replacing the traditional theodolites and total stations. In this section, the basic
principle of traditional ground surveying is also briefly discussed for comparison.

3.6.1 The Operation of GPS

The GPS has three parts, that is, the space segment, ground control segment, and
user segment (see Figure 3.25).

Space segment refers to the GPS satellite constellation, which consists of
24 satellites and some spares. Figure 3.26 shows such a configuration. The satellites
are about 20,000 km above the Earth’s surface and they continuously broadcast
measurement signals and navigation messages to GPS users.

The control segment consists of ground stations that ensure the satellites are
working properly. It consists of one master control station (MCS) located at Schriever
(formerly Falcon) AFB in Colorado, five monitor stations (Hawaii, Kwajalein,
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Figure 3.25 GPS segments (Reprinted from The Aerospace Corporation 2003 with
permission).

Figure 3.26 The GPS satellite constellation (Reprinted from Garmin 2003 with permission).

Ascension Island, Diego Garcia, and Colorado Springs), and three ground anten-
nas (Ascension Island, Diego Garcia, and Kwajalein). The locations of the monitor
stations are precisely determined and each has a GPS receiver to receive signals
from all satellites in view so as to monitor them continuously. The master con-
trol station gathers tracking and other related information collected at the monitor
stations so that satellite orbits can be predicted and corrected and the health status
of the satellites determined. Such information forms part of the navigation message,
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which is then sent to the transmission stations to be uploaded to all satellites. Such
messages are continuously broadcasted by satellites and GPS receivers can receive
them anytime.

The user segment consists of receivers, used by users for different applications.
The receivers can be hand-held, mounted in cars, installed on aircraft, ships, tanks,
submarines, cars, and trucks, or put on a tripod, which is the case in field surveying.
A GPS receiver consists of hardware and software for receiving signals from satellites,
and for decoding, storing, and processing these signals.

3.6.2 The Principles of GPS Measurement

The basic principle of GPS-based measurement is range intersection. To determine
an unknown position in 3-D space, three distances from three known points are
needed. Figure 3.27 illustrates this principle. If one knows that the point (say P) to
be determined is d away from a known point, say A, one can only know that P is
located somewhere on the sphere which is centred at A and has a radius of d. With two
distances from two known points, two such spheres can be formed and one can then
know that P is somewhere on the circle formed by the intersection of the two spheres.
With three distances, the position of P can be determined exactly because the three
spheres intersect at two points, one of which will obviously be wrong.

In the case of GPS, the positions of satellites are all known at any time because the
orbit of each satellite is monitored and controlled by ground stations. To determine
the location of a GPS receiver, one needs to measure at least three distances from
the receiver to three GPS satellites. Therefore, to GPS users, the key issue is to
measure distances from the receiver to the satellites.

As one can imagine, it is impossible to measure these distances using traditional
equipment. The solution is to make electromagnetic waves that travel at the speed of
light. Suppose a satellite sends a signal to a GPS receiver and it takes t sec for the
GPS receiver to receive the signal, then the distance between the GPS receiver and
the satellite is

D = c × t (3.27)

Two points

Figure 3.27 The positioning principle of GPS (Reprinted from McElroy 1992 with permission).
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where D is the distance, t is the travelling time, and c is the velocity of light, that is,
299,792,458 m/sec.

Now the issue becomes how to determine the time required for the signal to travel
from satellite to the receiver. The current practice is to have a clock onboard the
satellite and a clock in the receiver. Then, Equation (3.27) should be rewritten as
follows

D = c × (Ts − Tr) (3.28)

where Ts represents the time when the satellite transmits the signal and Tr represents
the time when the signal reaches the GPS receiver.

From Equation (3.28), it can be noted that a tiny error in either clock will cause
significant error in the distance computed. This requires that the clocks both onboard
the satellites and in the receiver be extremely accurate. This would certainly make GPS
receivers very expensive and thus make GPS application less popular. The solution
to this problem is to assume an error between the clock in the GPS receiver and the
clocks onboard the satellites but the error is constant to this particular GPS receiver
because satellites are equipped with extremely accurate atomic clocks and satellite
clock errors can be corrected by applying the correction parameters contained in the
navigation message. Assuming this, one could then treat such an error as an unknown.
With such an extra unknown (in addition to the X, Y , Z coordinates of the receiver),
one needs to measure another distance in addition to the three required for position
determination. That is, a total of four satellites need to be observed to determine the
position of a point.

To make the measurement with higher accuracy, DGPS is widely used. The basic
idea is to determine the difference of coordinates between two points (say A and B),
one of which (say A) is known precisely. In this way, one GPS receiver is on each point
and both receivers simultaneously receive signals from the same set of satellites over
a period of time. The reason why accuracy can be improved by such an arrangement is
that the satellite clock error and atmospheric effects are cancelled if one subtracts the
range (called pseudo-range) from point A to a satellite from the range from point B
to the same satellite.

3.6.3 The Principles of Traditional Surveying Techniques

Traditional surveying techniques determine the position (coordinates) of a point
through the measurement of distances and angles. The traditional instruments are
theodolites and computerized total stations.

Figure 3.28 shows two typical examples of a traditional surveying problem.
In Figure 3.28(a), the 3-D coordinates of point A are known. Through measurement
of the vertical angle, distance (between A and P), and a bearing, the position of point P
can be determined.

In Figure 3.28(b), the 3-D coordinates of points A and B are known. Through
the measurement of horizontal angles and distances (between A and P and between
B and P), the position of point P can be determined.
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Figure 3.28 Two typical problems in traditional surveying. (a) From a known point A to determine
the position of P. (b) From two known points A and B to determine the position of P.

Table 3.6 A Comparison of Various DTM Acquisition Methods

Acquisition Accuracy Application
Method of Data Speed Cost Domain

Traditional surveying High (cm–m) Very slow Very high Small areas
GPS survey Relatively high Slow Relatively high Small areas

(cm–m)
Photogrammetry Medium to high Fast Relatively low Medium to

(cm–m) large areas
Space photogrammetry Low to medium (m) Very fast Low Large areas
InSAR Low (m) Very fast Low Large areas
Radargrammetry Very low (10 m) Very fast Low Large areas
LIDAR High (cm) Fast High Medium to

large areas
Map digitization Relatively low (m) Slow High Any area size
Map scanning Relatively low (m) Fast Low Any area size

3.7 A COMPARISON BETWEEN DTM DATA
FROM DIFFERENT SOURCES

It should be pointed out that these data acquisition methods all have advantages
and disadvantages. Therefore, when choosing a method, various aspects such as the
purpose, accuracy requirements, conditions of the equipment, and availability of
source materials should be considered. To assist in decision making, a comparison
between these methods in various aspects, such as efficiency, cost, and accuracy,
would be useful (see Table 3.6).

In terms of the accuracy of measurement, a millimeter-level can be reached by
ground survey and centimeter-level by photogrammetry and meter-level by digi-
tization from maps. The accuracy of photogrammetric data depends on the images
used. In the case of space photogrammetry using satellite images, the accuracy could
be very low, depending on the resolution. For example, if SPOT images with 10-
m resolution is used, then the accuracy is 5 to 10 m. InSAR is a good technique
for deformation (i.e., relative change) measurement and with it an accuracy of 1 cm
can be reached. However, for DTM data acquisition (i.e., absolute heights on ter-
rain surface), the accuracy is only about 5 m. The accuracy of radargrammetric
data is even lower. Both with ground survey and in photogrammetric (as well as
InSAR and radargrammetric) techniques, terrain feature points can be obtained if
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desired. Therefore, high fidelity to the original surface can be preserved by the
digital data.

In terms of efficiency, ground surveying is more labor intensive and there-
fore is only suitable for modeling a small area, when high accuracy is required.
On the other hand, most of the processes in photogrammetric technique have
already been automated nowadays. Therefore, data acquisition is more effi-
cient. Indeed, photogrammetric technique is suitable for medium- and large-size
areas. For cartographic digitization, the raster scanning process can easily be
automated but human interference is still needed during the raster and vector
conversions.

In terms of availability, in developed and most developing countries, some
contours maps are available. Such maps are the major source for digital terrain
modeling. In many countries, the national DTMs have been generated from existing
contour maps.
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CHAPTER 4

Digital Terrain Surface Modeling

In the previous chapter, techniques for the acquisition of DTM source data were
discussed. Also, surface modeling could be applied for the reconstruction of terrain
surface. This is the topic of this chapter.

4.1 BASIC CONCEPTS OF SURFACE MODELING

4.1.1 Interpolation and Surface Modeling

A digital terrain model is a mathematical (or digital) model of the terrain surface.
It employs one or more mathematical functions to represent the surface according to
some specific methods based on the set of measured data points. These mathematical
functions are usually referred to as interpolation functions. The process by which the
representation of the terrain surface is achieved is referred to as surface reconstruction
or surface modeling and the actual reconstructed surface is often referred to as the
DTM surface. Therefore, terrain surface reconstruction can also be considered as
DTM surface construction or DTM surface generation. After this reconstruction,
height information for any point on the model can be extracted from the DTM surface.

The concept of interpolation in DTM is a little different from that of surface
reconstruction. The former includes the whole process of estimating the elevation
values of new points, which may in turn be used for surface reconstruction, while
the latter emphasizes the process of actually reconstructing the surface, which may
not involve interpolation. To clarify this matter further, surface reconstruction only
covers those topics concerned with “how the surface is reconstructed and what kind
of surface will be constructed.” For example, should it be a continuous curved surface
or should it consist of a linked series of planar facets?

In contrast, interpolation has a much wider scope. It may include surface recon-
struction and the extraction of height information from the reconstructed surface;
it may also include the formation of contours either from randomly located points or

65
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from a measured set of elevation values obtained in a regular grid pattern. In both of
these latter cases, the measured values are honored in the resulting DTM surface and
the interpolation process takes place only after surface reconstruction, either to extract
height information for specific points or to construct contoured plots. Interpolation
methods will be discussed in Chapter 6.

4.1.2 Surface Modeling and DTM Networks

It will be discussed later that regular-grid networks and triangular irregular networks
(TINs) have been widely used for surface modeling. Here, some clarifications need
to be made before the detailed discussions.

A network is a data structure implemented in a special pattern for surface
modeling. A network is concerned mostly with the inter-relationship of the data
points in the positional (planimetric) sense but not necessarily in the third dimension.
This is the main difference between network and the DTM surface that is constructed
from the network and comprises a series of sub-surfaces that may or may not have
continuity in the first derivative. The topological relation for a regular grid is built-in
(i.e., it is implicit) due to the special characteristics of the regular grid itself so that
this difference is not appreciated or shown clearly. In contrast, in the case of triangle-
based modeling, the distinction is very clear — the topological relationship needs to
be sorted out to form a triangular network; then, the third dimension can be added to
the network to form a continuous surface comprising a series of contiguous triangular
facets.

4.1.3 Surface Modeling Function: General Polynomial

To model an area on terrain surface, a mathematical function needs to be used. There
are many possibilities as discussed in Chapter 1. The function can be expressed in
frequency or in space domain. In space domain, the general mathematical expression

Table 4.1 Polynomial Function Used for Surface Reconstruction

Descriptive No. of
Individual Terms Order Terms Terms

Z = a0 Zero Planar 1
+a1X + a2Y First Linear 2
+a3X 2 + a4Y 2 + a5XY Second Quadratic 3
+a6X 3 + a7Y 3 + a8X 2Y + a9XY 2 Third Cubic 4
+a10X 4 + a11Y 4 + a12X 3Y + a13X 2Y 2 + a14XY 3 Fourth Quartic 5
+a15X 5 + a16Y 5 + a17X 4Y+ Fifth Quintic 6

a18X 3Y 2 + a19X 2Y 3 + a20XY 4
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Figure 4.1 Surface shapes of the first 4 terms of general polynomial function.

is as follows:

Z = f (X,Y ) (4.1)

The most widely used function for the realization of this expression is the general
polynomial function as shown in Table 4.1 (Petrie and Kennie 1990).

A graphic representation of first 4 terms is shown in Figure 4.1. It is clear that
each individual term of the general polynomial function has its own characteristics
in terms of shape. A surface with unique characteristics can be constructed by using
certain specific terms.

For the generation of the actual surface in a specific modeling program, it is not
necessary (and in practice it is impossible) to use all of the terms inherent in this
function. In practice, only a few terms are used, the selection of these being decided
upon by the system designer and implementor. Only in a few cases is it possible for
the user to select which terms in the function might be most appropriate for modeling
the specific piece of terrain in question.

4.2 APPROACHES FOR DIGITAL TERRAIN SURFACE MODELING

After introducing these general concepts, alternative approaches for terrain surface
modeling will be discussed.
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4.2.1 Surface Modeling Approaches: A Classification

Surface modeling approaches may be classified based on various criteria, such as the
basic geometric unit used for modeling, the type of source data used for modeling,
and so on.

For the basic geometric unit used in modeling, the following approaches can be
identified:

1. point-based modeling
2. triangle-based modeling
3. grid-based modeling
4. a hybrid approach combining any two of the above three items.

In actual applications, the triangle-based and grid-based modeling are more widely
used and are considered as the two basic approaches. Since point-based modeling
is not practical (and is therefore not widely used) and hybrid modeling is usually
converted into the triangle-based approach, grid-based surface modeling is usually
used to handle data covering rolling terrain over a large area. But it has less relevance
(or application) for broken terrain with steep slopes, numerous break lines, sharp
terrain discontinuities, etc.

According to the type of source data used, modeling can be divided into two types:

1. direct construction from measured data
2. indirect construction from derived data.

DTM surface can be constructed directly from (original) source data, for example,
by using a square grid, by using regular triangles, or through triangulation in the case
of randomly located data. In the case of DTM surface construction indirectly from
derived data, an interpolation is applied to the source data to form a regular grid and
then the surface is reconstructed from the grid data. Such an interpolation process
is often referred to as random-to-grid interpolation.

4.2.2 Point-Based Surface Modeling

If the zero order term in the polynomial is used for DTM surface realization, then
the result is a horizontal (or level) planar, as shown in Figure 4.2. At every point,
a horizontal (or level) planar surface can be constructed. If the planar surface con-
structed from an individual data point is used to represent the small area around the
data point (also referred to as the region of influence of this point in the context of
geographical analysis), then the whole DTM surface can be formed by a series of such
contiguous discontinuous surface. The resulting overall surface will be discontinuous
(see Figure 4.2a).

For each individual horizontal planar sub-surface, the mathematical expression is
simply as follows:

Zi = Hi (4.2)
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(a) (b)

Figure 4.2 Discontinuous DTM surfaces resulting from point-based modeling: (a) sampled data
with a square grid and (b) sampled data with a hexagon pattern.

where Zi is the height on the level plane surface for an area around point I and Hi is
the height of point I.

This approach is very simple. The only difficulty is to define the boundaries
between the adjacent areas. The commonly used approach for boundary definition
is to employ a Voronoi diagram of the data points, which will be discussed later in
Section 4.3.2. Since this approach forms a series of sub-surfaces based on the height of
individual points, the modeling based on this approach can be regarded as point-based
surface modeling.

Theoretically, this approach is suitable for any data pattern, regular or irregular,
since it only concerns individual points. However, as far as the process of determining
the boundaries of the region of influence by each point is concerned, the computation
will be much simpler if regular patterns such as a square grid, equilateral triangles,
hexagons, etc. are used (Figure 4.2b). Although it would seem quite feasible to
implement this approach in surface modeling, it is not really practical due to the
resulting discontinuities in its surface. However, in certain applications (e.g., the
calculation of total volumes of water, coal, etc.), this remains a valuable technique.

4.2.3 Triangle-Based Surface Modeling

If more terms are used, then a more complex surface can be constructed. Inspection
of the first three terms (the two first-order together with the zero-order terms) shows
that they form a planar surface. To determine the three coefficients of this particular
polynomial, three data points are the minimum requirement. These three points can
form a spatial triangle; then, a tilted planar surface can be defined and constructed.

If the surface determined by each triangle is used to represent only the area covered
by the triangle, then the whole DTM surface can be formed by a linked series of
contiguous triangles. The modeling based on this approach is usually referred to as
triangle-based surface modeling. Figure 4.3(b) is an example of surfaces resulting
from triangle-based modeling.

The triangle may be regarded as the most basic unit in all geometrical patterns,
since a regular grid of square or rectangular cells or any polygon with any shape can be
decomposed into a series of triangles. Therefore, triangle-based surface modeling is
the approach that is feasible with any data pattern irrespective of whether it has resulted
from selective sampling, composite sampling, regular grid sampling, profiling, or

 



DITM: “tf1732_c004” — 2004/10/22 — 16:37 — page 70 — #6

70 DIGITAL TERRAIN MODELING: PRINCIPLES AND METHODOLOGY

(a) (b)

Figure 4.3 Continuous surfaces resulting from (a) grid- and (b) triangle-based surface
modeling.

contouring. Since triangles have a great flexibility in terms of their shape and size,
this approach can easily incorporate break lines, form lines, and other data. Therefore,
the triangle-based approach has received increasing attention in terrain modeling
practice and is regarded as the main approach to terrain surface modeling.

In fact, higher-order polynomials (usually second- or third-order) can also be
used for triangle-based modeling to create curved facets. In this case, a linked
series of triangles (e.g., a string of triangles centered at one point) is the basic unit for
surface fitting.

4.2.4 Grid-Based Surface Modeling

If the first three terms, together with the term a3XY of the general polynomial, are
used for surface construction, then four data points are the minimum requirement to
form a surface. The resulting surface is referred to as a bilinear surface. Theoretically,
quadrilaterals of any shape such as parallelograms, rectangles, squares, or irregular
polygons can be used. However, for practical reasons such as the resulting data
structure and the final surface presentation, a regular square grid is the most suitable
pattern. As in the case of triangle-based surface modeling, the result will consist of
a series of contiguous bilinear surfaces (Figure 4.3a).

High-order polynomials can also be used for DTM surface generation (as shown
in Figure 4.7). However, unpredictable oscillations in the resulting DTM surface can
be created if too many terms of the polynomial are used, usually over a large area.
In practice, in order to reduce the risk of this, a restricted number of terms — usually
only the second- and third-order terms — are used. The minimum number of grid
points necessary to construct the DTM surface will be governed by the number of
terms used, but in any case, the number will be greater than four. In this case, different
patterns and geometric figures (see Figure 4.1) other than the basic triangle or square
grid cell can be considered for use in surface reconstruction. Nevertheless, because of
the difficulties likely to be encountered in data structuring and handling, DTM source
data that are evenly distributed, as in the case of regular grid and equilateral triangle
patterns, are still important.

Grid data have many advantages in terms of data handling. Therefore, eleva-
tion grid data from regular grid sampling and progressive sampling, especially the
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square grid data, are particularly suitable. For this reason, some DTM software
packages accept only gridded data. If this is the case, a preliminary data prepro-
cessing operation (random-to-grid interpolation) is necessary to ensure that the input
data are in grid form.

4.2.5 Hybrid Surface Modeling

The actual data structure implemented using a particular geometric pattern for surface
modeling is usually referred to as a network. A DTM surface is usually construc-
ted from one of the the two main types of network — grid or triangular. However,
a hybrid approach is also widely used to construct DTM surfaces. For example, a grid
network may be broken down into a triangular network to form a contiguous surface
of linear facets. Going in the opposite direction, a grid network may also be formed
by interpolation within an irregular triangular network.

In some software packages, hybrid surface modeling must have a basic grid of
squares or triangles obtained by systematic grid sampling. If break lines and form
lines are available for inclusion, the regular grid is broken into triangles and a local
irregular triangular network is implemented. Figure 4.4 shows an example of hybrid
surface modeling.

It might also be possible to combine point-based with grid-based or triangle-based
modeling to form a hybrid approach. That is, the boundaries of the region of influence
of a point can be determined using either a grid or a triangular network where the
data are located in a regular pattern or based on a triangular network if the data
are irregularly located.

Figure 4.4 An example of surface modeling by hybrid surface (from HIFI Brochure).
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4.3 THE CONTINUITY OF DTM SURFACES

After any of these modeling approaches is applied, a surface can be constructed.
This section discusses the characteristics of the resultant DTM surface. Emphasis is
given to continuity.

4.3.1 The Characteristics of DTM Surfaces: A Classification

The surfaces reconstructed from sampled points to represent terrain of the area
can be categorized based on different criteria. Size of the area and continuity of
the DTM surfaces are the two most widely used.

According to size of area (or coverage,) DTM surfaces can be classified as local,
regional, and global.

1. A local surface refers to a DTM surface covering only a small area, based on the
premise that the area to be reconstructed is complicated so that it must be processed
piece by piece or that only a local area is of interest.

2. A global surface is a DTM surface covering the whole area, based on the under-
standing that this area contains very simple or regular terrain features so that it can
be described by a single mathematical function. Alternatively, it may be used when
only very general information about the terrain surface is needed for the purpose
of reconnaissance.

3. A regional surface is a DTM surface with area size between local and global
surfaces. That is, the whole area to be reconstructed is divided into larger pieces
than local surfaces. This is a result of a compromise between the criteria given for
using a global surface and those used to justify the use of a local surface.

According to the continuity between local surfaces, DTM surfaces can be
classified into three types:

1. discontinuous surface
2. continuous surface
3. smooth surface.

4.3.2 Discontinuous DTM Surfaces

A discontinuous DTM surface refers to a surface that has discontinuity among the
local surfaces, a collection of which are used to represent the whole area. A discon-
tinuous surface results from the thought that the height value of a sampled point is
a representative for the values of its neighborhood (Peucker 1972). Therefore, the
height of any point to be interpolated can be approximated by adopting the height
of the closest reference point. In this way, a series of horizontal planes (i.e., local
surfaces) can be used to represent the whole terrain, as shown by Figure 4.2.

This type of surface is the result of point-based surface modeling. As discussed
in point-based modeling, this type of surface can be constructed from any type of
data set, irrespective of whether it is regular or irregular. From regular data, the
determination of boundaries between the sub-surfaces is much easier. However,
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Figure 4.5 Voronoi diagram of a point set and its dual Delaunay triangulation.

whenever the data are irregularly distributed, the boundaries of the region of influence
of each point need to be determined algorithmically. Normally, this is done by
constructing the Thiessen polygons, which have been widely used in geographical
analysis since this method was proposed by the climatologist A.H. Thiessen (Thiessen
1911; see also Brassel and Reif 1979). Actually, the Thiessen polygon is a region
enclosed by an embedded series of perpendicular bisectors, each located midway
between the point under consideration and each of its neighbors. The Thiessen poly-
gons of all points in an area form a Thiessen diagram, also termed a Voronoi diagram,
Wigner–Seitz cells, or Dirichlet tessellation. The actual term used seems to vary
between different scientific disciplines, although the basic idea is common to them
all. In recent years, the term Voronoi diagram seems to prevail in geographical infor-
mation sciences and will therefore be used in this book from now on. The Thiessen
polygon is also termed a Voronoi region. Figure 4.5 is example of the Voronoi diagram
of a point set.

It can be seen from Figure 4.5 that the dual of the Voronoi diagram is a trian-
gulation. This dual relationship was first recognized by Delaunay (1934). Therefore,
such a triangulation is usually named after Delaunay. More detailed discussion on this
topic will be conducted in Chapter 5, which is devoted to triangulation algorithms.

4.3.3 Continuous DTM Surfaces

A continuous DTM surface is a surface that has a series of local surfaces linked
together to cover the terrain being modeled. This is based on the idea that each data
point represents a sample of a single-value continuous surface. The boundary between
two adjacent sub-surfaces may not be smooth, that is, not continuous in the first and
higher derivatives.

The first derivative of a continuous surface can be either continuous or discon-
tinuous. However, continuous surfaces here refer to only those that are discontinuous
in the first derivative and those surfaces with continuous first derivative are referred
to as smooth surface. Figure 4.3 shows two types of continuous DTM surfaces and
Figure 4.6 illustrates the discontinuity problem in the first derivative.
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Figure 4.6 Discontinuity in the first derivative of a continuous surface: (a) a profile of
a continuous surface and (b) the first derivative of the profile in (a).

The lack of continuity in the first derivative is, for some users, rather undesirable
either in terms of modeling itself or in terms of the final graphic output. However, it is
also worth noting that the lack of continuity in the first derivative resulting in a distinct
boundary between adjacent patches, grid cells, or triangles is a feature that may not be
disturbing in some, if not most, cases. Indeed, it may be deliberately sought after or
introduced into the modeling process. This is particularly the case with data located
along linear features such as rivers, break lines, faults, etc. acquired via selective
or composite sampling, where this is indeed desirable so that interpolated contours
change direction abruptly along such lines.

Furthermore, it can be found in the literature (e.g., Peucker 1972) that, in many
cases, a continuous surface comprising a series of contiguous linear facets is the least
misleading one although it may not look convincing or attractive visually.

4.3.4 Smooth DTM Surfaces

A smooth DTM surface is a surface that exhibits continuity in first- and higher-order
derivatives. Usually, they are implemented regionally or globally. The generation of
such a DTM surface is based on the following assumptions:

1. The resource data always contain a certain level of random error (or noise) in
measurement so that the DTM surface does not need to pass through all the sampled
data points.

2. The surface to be constructed should be smoother than (or at least as smooth as)
the variation indicated by the source data.

For these conditions to be achieved, normally, a certain level of data redundancy
is used and a least-squares method is implemented using a multi-termed polynomial
to model the surface. Figure 4.7(a) shows examples of smooth surfaces.

For a single global surface based on a large data set, the whole of the surface
is modeled by a single high-order polynomial. A huge amount of data may be
involved, with an equation formed from each data point. There will be a substantial
computational burden or overhead on the modeling operation. Also, the final resulting
surface often exhibits unexpected and unpredictable oscillations among data points.
These are highly undesirable in terms of both the surface modeling process itself
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(a) (b)

Figure 4.7 Examples of smooth surfaces: (a) a global (smooth) surface and (b) a smooth
surface comprising a series of regional surfaces.

and the fidelity of the final results in terms of the actual representation of the terrain
surface delivered to the user in the form of contour plots or perspective views.

The result of these considerations is that data sets are often divided into a series
of continuous patches. The patches may be regular in terms of shape and size, as in
the case of square grid cells or equilateral triangles, or they may be irregular both in
shape and size, as in the case of the randomly distributed points normally encountered
in a triangulation procedure. Within each data patch, a lower-order polynomial can be
used to model the surface, again using the least squares method if there are redundant
data. While the use of the polynomial ensures a smooth surface within each patch,
a break in continuity will almost certainly occur along the boundaries between patches.
The result of this is that continuity in the first and higher derivatives between adjacent
patches will have to be built into the modeling system so that a smooth surface
can be achieved without breaks or discontinuities along boundaries. In other words,
a so-called seamless join must result between patches (Figure 4.7b). Needless to say,
the successful implementation of such a requirement carries a heavy computation
overhead.

4.4 TRIANGULAR NETWORK FORMATION
FOR SURFACE MODELING

Triangular network is the most basic and can be applied to both regularly and irreg-
ularly located data. That is, a regular grid network can be formed by interpolation
from a triangular network and either a continuous or a smooth surface can also be
constructed from the same network. The formation of a triangular network will be
discussed in this section and a discussion about the formation of a grid network will
be discussed in Section 4.5.

4.4.1 Triangular Regular Network Formation from
Regularly Distributed Data

The process of forming a triangular network is usually referred to as triangulation.
Triangulation can be applied either to regularly distributed data (such as grid data)
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to form a triangular regular network (TRN) or to irregularly distributed data to form
a TIN, which comprises a series of contiguous triangles of irregular size and shape.

If source data are acquired in a regular pattern, then this is the simplest network
to form. For square grids, simple sub-division using one or two diagonals produces a
series of regular triangles. Figure 4.8 shows three possible triangular patterns derived
from a grid pattern. If the pattern is based on regular triangles (Figure 2.9), then the
network is already triangular.

Of course, such an approach to form triangular networks from a square grid is
sometimes very arbitrary. Figure 4.9 shows this. Figure 4.9(a) shows a bilinear surface
constructed from a square grid. Figure 4.9(b) shows that a grid cell can be split into

(a) (b) (c)

Figure 4.8 Triangular regular network from a regular grid.

(a) (b)

(c) (d)

Figure 4.9 Possible types of linear facets constructed from a square grid.

 



DITM: “tf1732_c004” — 2004/10/22 — 16:37 — page 77 — #13

DIGITAL TERRAIN SURFACE MODELING 77

two triangles by a single diagonal whose plan is shown in Figure 4.8(a). Similarly,
Figure 4.9(c) shows the two triangles corresponding to those divided by the alternative
single diagonal shown in Figure 4.8(b). Finally, those in Figure 4.9(d) correspond to
the arrangement shown in Figure 4.8(c) with four center-point triangles formed by
using both diagonals. It is apparent that the height values of points interpolated from
these different surfaces shown in Figure 4.9(a) to Figure (d) will all be quite different,
although the same height values have been used at the grid nodes in each of these four
examples. This is a problem needing attention. However, even commercial packages
carry out such a triangulation process blindly.

4.4.2 Triangular Irregular Network Formation from
Regularly Distributed Data

In the triangular network formation process discussed above, there is no information
loss on the surface. However, data redundancy can be a problem, as in the case of
regular grid sampling. If so, some less important (or unimportant) points on the surface
can be deleted from the data set. Alternatively, the VIPs are retained to form a TIN.

The key to the selection of VIPs is to assign a significance value to each point so
that points with high significance values are selected. Chen and Guevara (1987) used
the sum of the second differential values at a point in all four directions to represent the
degree of significance. Suppose the height (H ) of a point along a profile is a function
of its position (x), as shown in Figure 4.10. The horizontal distance between Xi−1,
Xi , and Xi+1 is equal because of the regular grid sampling. Let the mathematical
function of this profile be

H = f (x) (4.3)

Then, its second differential value at point Xi is

d2H

dX2
= f ′′(Xi) = 2

(
f (Xi−1)− f (Xi−1)+ f (Xi+1)

2

)
(4.4)

Actually, the distance AC in Figure 4.10 is the second differential value at pointXi .
Chen and Guevara (1987) also consider four directions, that is, up–down, left–right,

A B

Xi Xi+1Xi –1

C

x

H

Figure 4.10 A terrain profile and its second differential value.
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upper left–lower right, and lower left–upper right. For each point, the second differ-
ential values for all four directions are added to represent the degree of significance
of this point. In their procedure, the number of points to be selected is specified first
and then those points with the greatest significance are selected.

However, as one can imagine, the selection of points should relate to the required
accuracy of the resulting DTM, instead of to a predefined number of points. Indeed,
Li (1990) and Li et al. (1998) related the degree of significance to the DTM accuracy
loss after VIP selection. In this case, a threshold for the significance values, instead
of the number of points to be retained, is considered. Now the question arising is
“what is the appropriate threshold for the significance value for a given allowable
accuracy loss?”

To find such a threshold for point selection, a close examination of the distance AC
in Figure 4.10 must first be undertaken. It can be found that AC is the error at x = Xi
if Xi is removed and the profile is constructed by linear interpolation between the
elevation values at Xi−1 and Xi+1. This represents the DTM error and a loss of
accuracy will result from the selection of VIPs or removal of those points that have
been regarded as insignificant.

The problem arising is “how much will the loss of accuracy be in terms of standard
deviation or root mean square error (RMSE) if all the data points with a degree of
significance smaller than a specific value are removed.” In other words, the relation-
ship between the accuracy loss and the specified critical value needs to be investigated.
If the error distribution is known, then the relationship can easily be set out. However,
the distribution is not exactly known although it is nearly normal (see Chapter 8).
Therefore, such a relationship needs to be found out through experimental investiga-
tion. Indeed, Li (1990) and Li et al. (1998) found the DTM accuracy loss (σloss) after
VIP selection and the threshold (SigThreshold) used for VIP selection:

σloss = SigThreshold

3
(4.5)

This is the result obtained from two large testing areas with approximately 2000
check points.

Suppose that the required accuracy of the final DTM (after the VIP selection) in
terms of variance is σ 2

after and the accuracy of initial DTM (before the VIP selection)
is σ 2

before, then

σ 2
after = σ 2

before + σ 2
loss (4.6)

By combining Equations (4.5) and (4.6), the relationship between the threshold
for VIP selection and the final DTM accuracy is as follows:

SigThreshold = 3σloss = 3
√
σ 2

after − σ 2
before (4.7)

Actually, the line of thought is similar to that used by Makarovic (1977, 1984), who
called this a progressive rejection process and used a Laplacian operator for this
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process as follows:

L =

0 1 0

1 −4 1
0 1 0


 (4.8)

After VIP selection, the resultant data will become irregular in distribution, then
a TIN generation procedure is applied. The algorithms for TIN generation will be
discussed in Chapter 5 and the general principle will be outlined in Section 4.4.3.

4.4.3 Triangular Irregular Network Formation from
Irregularly Distributed Data

From irregularly distributed data, either a regular grid or an irregular triangular
network can be formed. The formation of regular grid network will be discussed
in Section 4.5.

The formation of a TIN from irregularly distributed data is not as easy as in the
case of TRN from grids although there are a lot of algorithms available. Generally,
there are three basic requirements for TIN formation:

1. For a given set of data points, the resulting TIN should be unique if the same
algorithm is used, although one may start from different places, for example, the
geometric center, upper-left corner, lower-left corner or other points.

2. The geometric shapes of resultant triangles are optimum, that is, each triangle is
nearly equilateral, if there are no specific conditions.

3. Each triangle is formed with nearest neighbor points, that is, the sum of the three
edges of the triangle is minimum.

In all the possible alternatives, Delaunay triangulation is the one most widely
used because it satisfies all three requirements. A Delaunay triangulation is a set
of linked but nonoverlapping triangles. The circumscribing circle (circumcircle) of
each triangle would not include any other points, as this is one of the conditions
used for construction of Delaunay triangulation. The Delaunay triangulation is a dual
diagram of the Voronoi diagram (Figure 4.5) and thus can also be derived from the
Voronoi diagram. Therefore, an alternative approach for the construction of Delaunay
triangulation is first of all to construct a Vironoi diagram and then to derive the
triangulation.

Delaunay triangulation is constructed by connecting three neighboring points,
the corresponding Voronoi regions of which has a common vertex, and the vertex
is the center of the Delaunay triangulation’s circumscribing circle. Figure 4.5 shows
that Delaunay triangulation obeys the Euler’s theorem of planar graphs as follows:

Nregions +Nvertices −Nedges = 2 (4.9)

Delaunay triangulation can be formed in either dynamic or static mode. Static tri-
angulation means that the triangulation network that has already been constructed will
not be altered by adding new points in the formation process. In contrast, in dynamic
triangulation, the network already constructed will be changed if a new point is
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Figure 4.11 Delaunay triangulations of composite data.

added, so as to meet the Delaunay circumcircle principle. There are many algorithms
for Delaunay triangulation in both modes and they will be discussed in Chapter 5.

4.4.4 Triangular Irregular Network Formation from
Specially Distributed Data

Specially distributed data refer to two types of data, composite and contour data.
Composite data result from composite sampling, that is, a regular grid plus features
points and lines. Contour data can either be digitized from existing contour maps or
measured on a stereo model by means of contouring.

To form a triangulation network from composite data, the grids are first split into
regular triangles and Delaunay triangulation is then built-in grids containing features
points. Figure 4.11 shows an example.

To form a triangular network from contour data by a Delaunay triangulation
algorithm, special care needs to be taken, or else flat triangles (i.e., the heights at the
three vertices of a triangle being the same) may result. Figure 4.12 shows flat triangles
formed from two contours. This is because the three vertices are selected from the
same contour line. This can be avoided by the constraint that “No more than two
points can be selected from an individual contour line.” An alternative is to produce
the skeleton of the contour and to make use of the points along the skeleton together
to form the triangulation. This method will be discussed in more detail in Chapter 5.

4.5 GRID NETWORK FORMATION FOR SURFACE MODELING

As discussed previously, grid-based modeling is another main approach for DTM
surface modeling. If regular grid sampling method is used, then the resultant data have
already had the grid structure and no special process is needed when all the points
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(a) (b)

Figure 4.12 Flat triangles formed when a triangulation is constructed from contour data.
(a) A map with two contour lines. (b) Flat triangles formed in the shaded area.

(a) (b)

Figure 4.13 Simple resampling for the generation of coarse grids from fine grid (Li 1992b):
(a) new grid intervals equal to two times the old and (b) new grid intervals
equal to

√
2 times the old.

are used for modeling. Otherwise, resampling needs to be done to obtain a new grid.
If the data are irregularly distributed, a random-to-grid interpolation is required.

4.5.1 Coarser Grid Network Formation from
Finer Grid Data: Resampling

One simple resampling method without interpolation is to select certain points at
specific locations without any interpolation (Li 1992b). Figure 4.13 shows new grids
from simple resampling. In Figure 4.13(a), points in alternate rows and columns
are selected for a new grid with intervals equal to two times the intervals of the ori-
ginal grid. Similarly, one could obtain new grids with intervals of three times, four
times, . . . ,N times the intervals of the original. Figure 4.13(b) shows another possible
selection, that is, to select points along the diagonal. In this case, a new grid with
intervals equal to

√
2 times the intervals of the original grid is generated. Similarly,

new grids with 2
√

2, 3
√

2, . . ., andN
√

2 times the intervals of the original grid can be
generated.

If the desired intervals of the new grid network are always N or N
√

2 times the
intervals of the original grid, then the matter is quite simple. In practice, however, this
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Figure 4.14 Formation of finer grid to coarser grid by resampling: (a) from 3-m grid to 5-m grids
and (b) bilinear interpolation.

is not always the case. For instance, one may need a grid with intervals of 5 m from an
original grid that had intervals of 3 m (Figure 4.14a). In this case, some points can be
automatically selected from the original grid, whereas others need to be interpolated.
Suppose the coordinates of the starting grid node are (0, 0), the positions at (0, 5),
(5, 0), and (5, 5) will automatically become the nodes of the new grid. The coordinates
of these points in the new grid network are (0, 3), (3, 0), and (3, 3). All other new
grid points need to be interpolated. The commonly used interpolation methods are:

1. Nearest point: For example, point A is within the grid formed by four nodes with
coordinates (3, 1), (3, 2), (4, 1), and (4, 2). As point A is the nearest node (3, 2),
the elevation at (3, 2) will be assigned to point A.

2. Bilinear interpolation: Bilinear interpolation, as the name implies, is the linear
interpolation in both X and Y (or row and column) directions. Figure 4.14(b)
shows bilinear interpolation. If one wants to obtain the elevation (at position P) of
the new grid point (i.e., point A), one first linearly interpolates the elevation for
P1 using nodes (3, 2) and (4, 2) and then linearly interpolates the elevation for P2
using nodes (3, 1) and (4, 1). This is the linear interpolation in the column. Next,
the elevation of point A can be obtained by linear interpolation using points P1 and
P2. This is the linear interpolation in the row. Also, one can first interpolate the
elevations for P1 and P2 in the row and then interpolate the elevation for point A
using P1 and P2.

3. Bicubic interpolation: In both directions, a cubic function is used for interpolation,
instead of a linear function. Normally, the bicubic function is applied to a patch,
for example, consisting of a 3× 3, or 4× 4 grid.

A detailed discussion on interpolation and interpolation methods will be given in
Chapter 6.

4.5.2 Grid Network Formation from Randomly Distributed Data

From randomly distributed data, grid networks can be formed in two ways, that is,
direct random-to-grid interpolation and indirect interpolation from triangles through
a triangulation process. Figure 4.15 illustrates these two solutions.

In indirect interpolation via triangulation, two types of surfaces can be constructed
from the neighboring triangles. The first is simply the linear facet formed by the single
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(a) (b)

Figure 4.15 Grid network formation from randomly distributed data: (a) direct random-to-grid
interpolation and (b) indirect interpolation via triangulation.
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(a) (b)

Figure 4.16 From random data to grid data via triangulation: (a) linear interpolation in triangular
facets and (b) a curved surface formed from neighbor triangles.

triangle within which the interpolation point is located. Figure 4.16(a) shows where
grid nodes 1, 2, 3, and 4 can be obtained by linear interpolation from triangular
facets A, B, C, and E, respectively. The second is a curved surface constructed from
a string of triangles neighboring the interpolation point. Figure 4.16(b) shows that
grid node 1 may be interpolated by the curved surface formed from triangles A, B,
C, D, and E.

4.5.3 Grid Network Formation from Contour Data

As discussed previously, contour data are one of the major sources for digital terrain
modeling. To form a grid network from such a data set, three solutions are possible,
that is,

1. to treat the contour points as randomly distributed points, and then to apply
a random-to-grid interpolation

2. to form a triangulation from contour data and then to apply interpolation
as discussed in the previous sub-section

3. to design a contour-specific interpolation method.
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Two contour-specific methods are in common use. One is the contour-specific
interpolation along certain prespecified axes (CIPA) and the other is the cubic
interpolation along the steepest slope (CISS).

In CIPA, the number of axes used may be one, two, or four. The intersecting
points formed by these axes and two adjacent contour lines are used as neigh-
boring points for interpolation. Then, a pointwise interpolation is carried out by
employing a distance-weighted function. Figure 4.17 shows the interpolation of point
P using four predefined axes. In this figure, intersecting points 1, 2, . . . , 8 can be used
for interpolation of point P.

Alternatively, two points, each on one of two adjacent contours, along the
steepest slope passing through the point to be interpolated could be used for linear
interpolation. For example, points 5 and 1 in Figure 4.17 may be used for such an

100  

105  

110  

115

Figure 4.17 Contour-specific interpolation using predefined axes.

100  

105  

110  

115  

--Points 1-2-3-4 are
used for steepest
slope determination  
 
--Points 5-6-7-8 are
data points for 
interpolation

Figure 4.18 Selection of steepest slope direction and data points for interpolation by CISS.
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interpolation. As discussed by Leberl and Olson (1982), all eight intersecting points
are used to determine the direction of the steepest slope.

In fact, along the steepest slope, nonlinear interpolation is also possible. Clarke
et al. (1982) used a cubic polynomial function. In this case, four known points are
required for any interpolation point. That is, four adjacent contour lines are used.
On each of them, an intersection results. Figure 4.18 shows this.

 



DITM: “tf1732_c005” — 2004/10/22 — 16:37 — page 87 — #1

CHAPTER 5

Generation of
Triangular Irregular Networks

In Chapter 4, digital terrain surface modeling was discussed. It was pointed out that
grid- and triangle-based modeling approaches are more widely used than point-based
approaches. For grid-based modeling, a grid network needs to be formed through
a random-to-grid interpolation, if the original data are not in grid form. The discus-
sion of interpolation methods will be conducted in Chapter 6. On the other hand, for
triangle-based modeling, a triangular network needs to be formed through a triangula-
tion procedure if the data are not in grid or triangular form. The formation of triangular
irregular network (TIN) from irregularly distributed data is discussed in this chapter.

5.1 TRIANGULAR IRREGULAR NETWORK
FORMATION: PRINCIPLES

There are a number of ways for the construction of a triangulation network from
a given set of randomly (irregularly) distributed data. They are based on different
principles. In this section, these principles will be presented.

5.1.1 Approaches for Triangular Irregular Network Formation

To form a TIN, there are two choices for making use of the data points. The first is to
consider all the data to form an overall network. This is a batch (or static) approach
for the Delaunay triangulation of a set of data points. The alternative is to allow the
addition or removal of points during the triangulation process. This is a dynamic
process and thus is called dynamic triangulation, as modifications to the structure
can be made without reconstructing the whole network each time. It should be noted
that “dynamic” does not mean that the points are considered to be moving — that is
another property, usually known as kinetic (Guibas et al. 1991).

87
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Spatial data can be in either vector or raster format. Therefore, the triangulation
can be in either vector or raster mode. It is possible to convert vector data to raster
and then triangulate in raster mode. Alternatively, it is possible to convert raster data
into vector and then triangulate in vector mode.

As will be discussed later in this section, there are many possible criteria for
the construction of triangles, thus leading to many alternative methods. The most
widely used method, as was discussed in Chapter 4, is the Delaunay triangulation,
which has a dual relationship with the Voronoi diagram. It implies that the Delaunay
triangulation network can be formed either directly by algorithm or indirectly through
the Voronoi diagram. However, the triangulation in raster mode is usually achieved
via the Voronoi diagram because in raster space the construction of Voronoi diagrams
is much easier than that of Delaunay triangulation. Therefore, the approaches for
triangulation can be summarized as in Figure 5.1.

5.1.2 Principles of Triangular Irregular Network Formation

From a set of randomly distributed data, there are alternative ways to form triangular
networks. Figure 5.2 illustrates the three alternative triangular networks generated
from the same set of data. The question that arises is “which one is the best?”
There must be some basic principles to guide the construction of triangular networks.
This section discusses these principles.

Raster based

Static mode

Vector based 

Dynamic
mode

Triangular irregular network (TIN)

Voronoi
diagram

Figure 5.1 Approaches for triangular irregular network formation.

(a) (b) (c) (d)

Figure 5.2 Triangular networks with different shapes constructed from the same data set:
(a) a set of data; (b) result 1; (c) result 2; and (d) result 3.

 



DITM: “tf1732_c005” — 2004/10/22 — 16:37 — page 89 — #3

GENERATION OF TRIANGULAR IRREGULAR NETWORKS 89

As mentioned in Chapter 4, one of the basic characteristics of Delaunay triangu-
lation is that no other data points are contained by the circumcircle of a Delaunay
triangle. This is one of the basic principles for the generation of a Delaunay triangu-
lation from a set of two-dimensional data points, referred to as empty circumcircle
principle. Figure 5.3 illustrates this. In Figure 5.3(a), point D is within the circle
circumscribing �ABC if point C is selected to form a triangle with points A and B.
It means that point D instead of point C should be used to form a triangle with points
A and B. Figure 5.3(b) shows this case, where point C does not fall into the circle
circumscribing �ABD.

Local equiangularity is another principle suggested by Lawson in 1972 (see Tsai
1993) for Delaunay triangulation. It says that the triangular network is optimum
if for every convex quadrilateral formed by two adjacent triangles, the swapping
of diagonals will not cause a decrease in the minimum of the six interior angles
concerned and at the same time will not cause an increase in the maximum angle.
In this way, the minimum angle is maximized and the maximum angle is minimized
for all the triangles. This is also called the MAX–MIN angle principle. The procedure
for swapping diagonals is called a local optimization procedure (LOP) (Tsai 1993).
Figure 5.4 illustrates this principle. In Figure 5.4(a), two triangles,�ABC and�ADC
are used to form a convex quadrilateral. The minimum interior angle is ∠CAD and
the maximum interior angle is ∠ADC. After swapping the diagonal, as shown in
Figure 5.4(b), the minimum interior angle then becomes ∠CBD, which is larger
than∠CAD and the maximum interior angle is∠ADB, which is smaller than∠ADC.
This means that the shape in Figure 5.4(b) is the optimal configuration.

A

B

A

C
C

B DD
(a) (b)

Figure 5.3 The empty circumcircle principle for Delaunay triangulation. (a) Circumcircle
containing point D. (b) Point D is used to form the triangle.
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B

Maximum

Minimum

D

C
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(a) (b)

Figure 5.4 Illustration of the LOP process for local equiangularity: (a) before swapping the
diagonal; and (b) after swapping the diagonal.
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An intuitive principle is the minimum sum-distance, which refers to the sum of
the distances from a new point to the two end points of a triangle baseline (Yeoli
1977). The corresponding algorithms are based on the criterion that the new point
selected to construct a new triangle is the one that has the sum of its distances to the
end points of the baseline as the smallest value.

Another simple principle is the minimum circumscribing circle radius (Elfick
1979). The corresponding algorithms are based on the criterion that the new point
that is selected should form a triangle in which its circumscribing circle radius is the
smallest value. The minimum distance from the center of the circumscribing circle
to the base line has also been suggested (McLain 1976).

5.2 VECTOR-BASED STATIC DELAUNAY TRIANGULATION

As discussed in the previous section, various principles can be used for the imple-
mentation of TINs, leading to different types of algorithms. No attempt is made here
to introduce all these algorithms. Instead, only the methods for the construction of
Delaunay triangulations will be presented here.

5.2.1 Selection of a Starting Point for Delaunay Triangulation

An advantage of Delaunay triangulation is that the resulting triangulation network is
independent of the starting point. Therefore, the selection of a starting point is only for
the convenience of algorithm implementation. Some choices for the starting point are:

1. the geometric center of the data points (Elfick 1979)
2. the shortest of all possible lines between any two data points (Yeoli 1977)
3. a line segment on the imaginary boundary (McCullagh and Ross 1980)
4. a line segment on the boundary convex hull (Tsai 1993; Gosper 1998).

After choosing the starting point, another point, which is normally the nearest
neighbor is selected to form the initial base. Then, a third point is searched to form
the first triangle. Other triangles can then be formed by using the three sides of the
initial triangle as these bases. The search for points to form triangles will be discussed
in the next sub-section.

Figure 5.5 shows the triangulation process starting from the geometric center.
It is not necessary to have a data point located exactly at the geometric center. The
data point closest to this X and Y average values are selected as the starting point.
Point 1 in this Figure 5.5 is closest to the geometric center and thus selected as the
starting point. If the shortest of all possible lines between any two data points was
selected as the starting point, then the computation of all distances between two data
points would be heavy. As a consequence, this choice is not very popular.

Many triangulations start from anywhere on the boundary of the area to be
modeled; for many applications, the area to be modeled is explicitly defined. However,
in many other applications, the boundary is not explicitly defined, then the boundary
needs to be sorted out first.
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2

1

3
2

1

3

(a) (b)

Figure 5.5 Delaunay triangulation starting from the geometric center: (a) generation of the first
triangle and (b) generation of the second and third triangles.

(a) (b) (c)

Figure 5.6 Delaunay triangulation starting from anywhere on the imaginary boundary
box (the points indicated by triangles are the imaginary points). (a) A set of random
points. (b) Minimum bounding rectangle. (c) Imaginary boundary box.

A set of imaginary points can be used to define the boundary box of the area to be
triangulated. Figure 5.6 illustrates the triangulation from such an imaginary boundary
box. Figure 5.6(a) shows a set of random points. The area can then be defined by the
minimum bounding rectangle as shown in Figure 5.6(b) or by an imaginary boundary
box containing all the data points (Figure 5.6c). Usually, on the imaginary boundary
box, a few imaginary points (e.g., at the four corners and on the four sides) are added
for convenience of point searching. From anywhere on the rectangle or on the box,
the triangulation process can start, for example, from the upper/left corner.

Often, the convex hull of the data points is used to define the area of interest
which is the smallest convex polygon containing all data points. A convex polygon
means that a line segment connecting any two points must be completely within it
(Tsai 1993). A number of algorithms are available for constructing the convex hull of
a set of points on a 2-D plane such as Graham’s scan, Jarvis’ march (gift wrapping),
and Quick hull. A detailed discussion of these algorithms can be found elsewhere
(O’Rourke 1993; Gosper 1998). The Gift Wrapping algorithm is simple and popularly
used. Figure 5.7 illustrates the working principle of this algorithm. The first step is to
find the point with the minimum Y coordinate as a starting point; the second step is
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Figure 5.7 Gift Wrapping algorithm for construction of a convex hull.

(a) (b)

Figure 5.8 Search for a point to form a new triangle (a) Only one point inside the circle; (b)
More than one point inside the circle.

to find B where all points lie to the left of line AB by scanning through all the points.
That is, B makes the largest right-hand turn from A. In a similar way, points A, B, C,
D, E and F could be found to form a convex hull.

5.2.2 Searching for a Point to Form a New Triangle

After the starting point (also called rotation point) is determined, the nearest point is
selected as the known point to form an initial base. Then, a new point is selected as the
vertex of a new Delaunay triangle, which is located to the right side (i.e., clockwise
from the known point to the rotation point) of the base. A simple search method is to
draw a circle from the middle point of the base with the base as the diameter. If there
is only one point inside this circle, then the point will be picked up to form a new
triangle. If there is more than one point inside the circle, then the point that has the
largest angle subtended from the base from all possible choices around the starting
point will be selected. If this does not succeed in finding a point, then the search circle
is expanded using the base line as a chord and with progressively larger circles until
the appropriate neighbors are found. Figure 5.8 shows this searching process. In this
way, the most likely neighbors are first picked up and are then tested to find one with
the largest angle.
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Figure 5.9 Triangulation by enclosing from convex hull boundaries. (a) First triangle starting
from the boundary. (b) Subsequent triangles formed near the boundary.

To increase the efficiency of point searching, data points could be grouped into
blocks beforehand according to their (x or y) coordinates.

5.2.3 The Process of Delaunay Triangulation

Once the starting point is determined and the search principle is specified, the trian-
gulation can be carried out smoothly. An example of triangulation from the geometric
center of the data points has already been given in Figure 5.5. Therefore, the examples
given in this section are of triangulations starting from the boundaries.

The first example starts from the convex hull of the data area and moves along
the boundary. It is illustrated in Figure 5.9(a). The procedure is as follows:

1. The starting point has the point with minimum Y coordinate, that is, point 5 in
Figure 5.9(a).

2. The second vertex of the first triangle is the one nearest the starting point along the
convex hull clockwise, that is, point 9.

3. The third vertex, point 8, is selected by using line 5, 9 as the base line and the first
triangle is formed by following the search procedures discussed in Section 5.2.2.

4. The triangulation proceeds along the convex boundary. That is, triangle edge 8, 9
is used as the second base line for the formation of the second triangle.

5. The advancing front of the triangulation will be moved forward clockwise and
gradually toward the center, until all data points are triangulated.

The second example is to start from an imaginary boundary. This is illustrated
in Figure 5.10. The lower-left corner is selected as the starting point. This time the
movement is counterclockwise. A shell of triangles is formed when the front hits the
imaginary boundary. Instead of continuing along the boundary, a new shell will start
from the imaginary boundary near the first base. In this way, triangulation for the
whole data set will be completed shell by shell.
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Figure 5.10 Delaunay triangulation starting from an imaginary boundary.

5.3 VECTOR-BASED DYNAMIC DELAUNAY TRIANGULATION

In the previous section, Delaunay triangulation in static mode was discussed.
The search for points is usually an inefficient process if the amount of data is
large. Therefore, triangulation is more often done dynamically by gradually adding
new points into the network. This kind of dynamic operation is also referred to
as incremental triangulation. There are many incremental triangulation algorithms
available in the literature (e.g., Zhu and Chen 1998), but in this section, only the
simplest and most robust one is described as a representative, that is the Bowyer–
Watson algorithm (Bowyer 1981; Watson 1981), which is usually called the simple
incremental algorithm.

5.3.1 The Principle of Bowyer–Watson Algorithm for
Dynamic Triangulation

The Bowyer–Watson algorithm (Bowyer 1981; Watson 1981) is regarded as the most
practical triangulation algorithm. The basic idea is to start with coarse triangles and
then to add points sequentially into this coarse triangulation network. Figure 5.11
illustrates the refinement of triangles after adding more points.

The initial triangulation is usually very simple (e.g., two triangles of the bounding
rectangle) enclosing all points in the area of concern. The insertion process of this
algorithm is illustrated in Figure 5.12. When a point p is inserted into a triangle
(i.e., �ABC in Figure 5.12a) this triangle is split into three, with the new point
forming a vertex of each of the three new triangles (Figure 5.12b). Then, each of the
three edges of the old triangle (i.e.,�ABC) is checked to see whether there is a need for
swapping the edge with the alternative diagonal by applying the empty circumcircle

principle. In this example, edge
−→
AB must be swapped with the alternative Dp and
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(a) (b) (c)

Figure 5.11 Dynamic Delaunay triangulation by the insertion of points into the initial coarse
triangles.
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B  

(c)  (b)  (a)

Figure 5.12 Delaunay triangulation by the Bowyer–Watson algorithm: (a) initial triangulation;
(b) splitting the enclosing triangle; and (c) the “swap” operation.

the new triangulation after the insertion of point p is shown in Figure 5.12(c). More
discussion on a numerical criterion for edge swapping is given in Section 5.3.3.

5.3.2 Walk-Through Algorithm for Locating the
Triangle Containing a Point

For a large volume of data, locating the triangle where a point is to be inserted is
done by a walking-through algorithm (Gold et al. 1977) to improve efficiency. In this
algorithm, two problems need to be solved. The first is to set a numerical criterion,
which tells whether a point is within the triangle. The second is to give a pointer to
the next triangle to be examined if the current triangle does not contain the point.

The directional relationship between a point P and a directed line segment
−→
AB

can be determined by the following formula:

D(A, B, P) =
∣∣∣∣∣∣
xA yA 1
xB yB 1
xP yP 1

∣∣∣∣∣∣
(5.1)
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∆a3

∆a1

∆a2

Figure 5.13 Local “area coordinates” to determine whether a point is inside a triangle.

This value is in fact twice the area of the triangle formed by points A, B, and P. The
directional relationship is judged as follows:

D(A, B, P)




> 0, three points are in anticlockwise order,

i.e., P on the leftside of line
−→
AB

= 0, three points are in a line

< 0, three points are in clockwise order,

i.e., P on the right side of line
−→
AB

(5.2)

By using Equations (5.1) and (5.2), the question of whether point P is within
a triangle can then be answered. Figure 5.13 illustrates the principle. In this figure,
points 1, 2, and 3 are the three vertices. For a point P to be checked, three equations
can be established as follows:

	a1 =
∣∣∣∣∣∣
xp yp 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
, 	a2 =

∣∣∣∣∣∣
x1 y1 1
xp yp 1
x3 y3 1

∣∣∣∣∣∣
, 	a3 =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
xp yp 1

∣∣∣∣∣∣
(5.3)

These three area values are called the local area coordinates with respect to
the vertices 1, 2, and 3. If the local area coordinates of P are all positive, point P is
inside �123. If the point P is outside the triangle, then one or more area coordinates
of P will be negative.

To find a triangle that contains the new point, the algorithm starts from any
arbitrary triangle. If all the area coordinates of the point are positive, then the point
falls within this triangle. If not, one crosses the edge that has a negative coordinate and
repeats the same procedure for the new triangle. The walk continues until a triangle
is found where all three coordinates of P are positive, which means that p is inside
the triangle. Figure 5.14 illustrates the walk operation through the triangulation.
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5.3.3 Numerical Criterion for Edge Swapping

After the triangle containing P has been found, the point is inserted into the triangle,
splitting the old one into three, as in Figure 5.11(a) and Figure 5.11(b). The three
exterior triangle edges now need to be tested, to see if they conform to the Delaunay
(empty circumcircle) condition. This is computed as follows:

H(A, B, C, D) =

∣∣∣∣∣∣∣∣∣∣∣

xA yA x2
A + y2

A 1

xB yB x2
B + y2

B 1

xC yC x2
C + y2

C 1

xD yD x2
D + y2

D 1

∣∣∣∣∣∣∣∣∣∣∣

(5.4)

A, B, and C are the vertices of the triangle given in anticlockwise order, and D is the
fourth point being tested. Then, the following condition holds true:

H(A, B, C, D) =


> 0, point D is inside the circumcircle of �ABC
< 0, point D is outside the triangle
= 0, co-circular

(5.5)

If the fourth vertex (obtained from the next triangle outward from the split triangle)
is inside the split triangle’s circumcircle, then their common edge must be exchanged
with the other diagonal, making the inserted point a “neighbor” to the fourth point.
The new exterior edges must be stacked for later testing, and this process continues
until all exterior edges satisfy the Delaunay condition. Figure 5.15 illustrates the edge
switching. Figure 5.15(a) shows the case of vertex D being inside the circumcircle of
�ABC, and thus being a neighbor of B, and Figure 5.15(b) shows vertex D outside —
with the result that the diagonal BD has been switched and D is no longer a neighbor
of B. If H = 0 the four points are co-circular and either configuration is acceptable.

 p

S

1

2

3

Figure 5.14 The walk operation in a dynamic Delaunay triangulation.
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A

CB

D
A

C
B

D(b)(a)

Figure 5.15 Empty circumcircle test.

To avoid “infinite loops” a zero value is considered to mean that D is “outside,” and
thus will not be switched again.

5.3.4 Removal of a Point from the Delaunay Triangulation

It is very useful to allow insertion of points in an existing triangulated network,
especially in engineering design. It is equally important to allow the removal of
points from the network for the consideration of alternative designs. The problem of
removing points from the Delaunay triangulation can be considered as the inverse
of the incremental insertion algorithm (Heller 1990). The potential triangle with the
smallest circumcircle is removed by swapping the edge (the inverse of the insertion
algorithm described previously) to reduce the set of neighbors by one, and the process
is repeated until only three triangles are left. Again, as the inverse of the insertion
algorithm, P is removed and the three triangles are merged. A triangle considered for
removal is often called a “ear” and consists of adjacent triples of point P. Figure 5.16
illustrates an example of point deletion. In this figure,�DCB might have the smallest
circumcircle (Figure 5.16a) and thus is removed first (Figure 5.16b). The triple with
smallest circumcircle in the remaining set of neighbors is AED, and this is removed
second, leaving only three triangles (Figure 5.16c). Point P is removed in the end and
the final result is shown in Figure 5.16(d).

An alternative (Devillers 1999) to the method described earlier is to remove the
ears in order of the power of P (Aurenhammer 1987). The power of P with respect to
the ear with vertices v1, v2, and v3 is simplyH(v1, v2, v3) divided by the triangle area.
Since it is necessary to select the ears for removal in order of their power, a priority
queue data structure is required. This data structure saves ears in the order in which
they are supplied, and returns them in the order smallest first. The ear that has the
smallest power is guaranteed to be Delaunay, and may thus be removed. With a similar
treatment shown in Figure 5.16, new triangles are formed by swapping the diagonals;
powers for the two new triangles are computed and the priority queue updated. This
process is repeated until three ears remain in the list. Finally, these last three triangles
are collapsed and point P is removed. Devillers (1999) shows an example where
Heller’s algorithm does not give correct results. Mostafavi et al. (2003) give a similar
algorithm where an ear is removed if its circumcircle contains none of the neighboring
points of P. While less efficient in extreme cases, it does not require the calculation of
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Figure 5.16 Deletion of a point from a triangular network: (a) neighbors of P (to be deleted);
(b) triple with smallest circumcircle deleted; (c) only three triangles left; and
(d) point P deleted from the triangulation.

the power of P (which requires a division), which may be an advantage where robust
arithmetic is required for degenerate configurations.

5.4 CONSTRAINED DELAUNAY TRIANGULATION

As will be discussed later in Chapter 8, the accuracy of the resultant DTM surface
will be much improved if the terrain F-S points and lines are all measured during the
data acquisition. This section will discuss the special treatment of these lines during
the triangulation process.

5.4.1 Constraints for Delaunay Triangulation: The Issue
and Solutions

As discussed in Chapter 2, the terrain feature lines are special. Ridge lines are the
connected lines of local maxima (points) and the ravine lines are the local minima.
These lines are so special that they should not be broken by any triangle edges.
Figure 5.17 shows the consequence of a ravine line being broken by a triangle edge.

In other words, special attention should be paid to these lines in the triangulation
process. There are two possible solutions, the first and the simplest is to make the
points on these lines very dense so that the lines will hopefully not be broken by
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Figure 5.17 Consequence of triangulation without consideration of terrain feature lines:
(a) a set of data with a ravine line; (b) a possible profile across ACB;
(c) triangulation without considering the ravine; and (d) contouring after considering
the ravine.

(a) (b) (c)

Figure 5.18 Densification of points on feature lines for triangulation: (a) data with a feature line;
(b) point densification; and (c) triangulation result.

any triangle edges even though they are treated as ordinary points. In this method,
the critical stage is the point densification process, which in effect transforms the
connected feature lines into ordinary data points. Experience shows that the interval
between the points along the feature lines has to be equal to or shorter than half
of the average point intervals computed from the whole data set. This method can
meet the demand very well in normal circumstances with simplicity, stability, and
reliability although the data volume is increased and the original data set is modified
by the densification. Figure 5.18 illustrates this treatment. A mathematically rigorous
solution for point density along curves is given by Amenta et al. (1998). The other
method is to treat each feature line as a constraint, ensuring that no triangle edge is
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Figure 5.19 Inter-visibility of nine points and two constrained line segments.

allowed to cross the algorithm. This is a rigorous solution and will be discussed in
the following sections.

5.4.2 Delaunay Triangulation with Constraints

Delaunay triangulation with consideration of a given constraint is constrained
Delaunay triangulation, or CDT in short. A CDT is not truly a Delaunay triangu-
lation as some of its triangles might not follow the Delaunay principle. For a given
set of data points and a set of lines as constraints, CDT is the triangulation of vertices
with the following properties:

1. the given constraint lines are included in the triangulation
2. the resulting triangulation is as close as possible to the Delaunay triangulation.

By “constrained” we mean that the predefined lines are not to be crossed by any
triangle edges. To accommodate this, the empty circle principle is modified to apply
to only those points that can be seen from at least one edge of the triangle where the
predefined lines are treated as opaque. As a result, the constrained Delaunay principle
becomes: only when the circumcircle of the triangle does not contain any other points,
and its three vertexes are visible to each other, is this triangle a CDT. Here, visibility
plays a central role. Figure 5.19 illustrates the inter-visibility of data points after the
insertion of two predefined lines (i.e., constraints). The Lawson LOP is applied only
if the constrained Delaunay principle holds.

A two-step method is commonly used for the construction of CDT as follows:

1. to construct the standard Delaunay triangulation with all the data including the data
points on the predefined line segments (called constraint line segments)

2. to embed the constraint line segments, and adjust all triangles in the local areas
where they exist through the diagonal swapping process.
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Figure 5.20 Constrained Delaunay triangulation. (a) Line segment ab as a constraint. (b) All
the vertices of the influence polygon connected to a. (c) Constrained Lawson LOP
exchange to optimize the triangulation. (d) Triangulation with constraints.

Figure 5.20 shows the process. In Figure 5.20(a), the standard Delaunay
triangulation is completed and constraint line ab is inserted. In Figure 5.20(b),
those triangles whose edges intersect the constraint line segment are identified. If two
such triangles have a common edge, this edge is deleted. In this way, the so-called
influence polygon of the constraint line segment is formed. All vertices of the influ-
ence polygon are connected to the starting point of the constraint line segment.
In Figure 5.20(c), the Lawson LOP is applied to optimize the local areas but the
constraint line segment is still an edge of some triangles. The final result is shown in
Figure 5.20(d).

5.5 TRIANGULATION FROM CONTOUR DATA
WITH SKELETONIZATION

Contour lines are a special type of feature lines. Three approaches can be used to
form triangulation from contour data as follows:

1. treat contour lines as random points and apply Delaunay triangulation to form
a triangulation network

2. treat all contour lines as constraint lines
3. a compromise between the above two approaches.

In the first approach, some undesirable effects may be created because this
algorithm treats each data point separately, for example, three vertices of a triangle
taken from the same contour line (leading to the so-called flat triangles) and some
triangle edges crossing the contour lines (Figure 5.21). Therefore, this approach is
seldom used. On the other hand, if all contour lines are treated as constraints, then
the computation involved is heavier. A compromise is to add more points to avoid
these two problems associated with the first approach, i.e. to derive the skeleton lines
of the contour map and then to use these points for triangulation (Thibault and Gold
2000). This section will describe the extraction of skeletons from contour maps for
the formation of more desirable triangulation networks.
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Figure 5.21 Unreasonable examples of generating triangles from the contour line: (a) an edge
of a triangle crossing the 25-m contour line and (b) the three vertices of a triangle
taken from the same contour line.

(a) (b)

Figure 5.22 Endo- and exoskeletons of biological shapes (Reprinted from Blum 1967, with
permission from MIT Press).

5.5.1 Extraction of Skeleton Lines from Contour Map

The skeleton or medial axis transform (MAT) of irregular “biological” shapes
(see Figure 5.22) was first studied by Blum in 1967. Each point on the MAT of
a continuous shape is the center of a disk touching the boundary at two or more
locations — thus, the shape may be reconstructed from the union of all the MAT
disks. (It should be noted that in the case of the discretely sampled skeleton the disks
must touch at least three sample points.) The principle of skeletonization is illustrated
in Figure 5.23, where the skeleton of a rectangle is extracted.

The skeleton of a connected set of points can be extracted by means of Voronoi dia-
grams (Aumann et al. 1991; Amenta et al. 1998; Thibault and Gold 2000) if the curve is
sampled with sufficient density (better than 0.42 times the distance between the curve
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Figure 5.23 Skeleton formed by a locus of the center of a disk touching the boundary.

(a) (b)

Figure 5.24 Voronoi diagram and skeleton of a connected set of points (Thibault and Gold
2000). (a) The Voronoi diagram of a boundary point set. (b) Endo- and exoskeletons
of the shape (a).

and the skeleton) (Gold 1999; Gold and Snoeyink 2001). Figure 5.24 shows the pro-
cess. Figure 5.24(a) shows the Voronoi diagram of a curved line that is approximated
by a set of points. The medial axis (skeleton) of the curve is approximated by a sub-
set of the Voronoi edges. The “crust” is the fully connected set of points along the
curve, formed from edges of the Delaunay triangulation. The crust and skeletons
are shown in Figure 5.24(b). Figure 5.25 shows a contour map with the extracted
skeleton lines.

After the skeleton lines are extracted, they will be used for the triangulation and
then for surface reconstruction. However, unlike the contour lines, the heights of the
points on skeleton lines are not known and therefore the next step is to estimate the
height for each point on the skeleton lines.

5.5.2 Height Estimation for Skeleton Points

As can be seen from Figure 5.25, some parts of the skeleton lie simply in the middle
of the two adjacent contour lines, therefore the heights of the points on these parts
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Figure 5.25 Contour map with extracted skeleton lines (Thibault and Gold 2000).

is simply the average of the heights of these two contours. The difficult part is to
estimate the heights for these small branches.

Figure 5.26 shows the estimation process. Figure 5.26(a) is an enlarged diagram
of a valley, indicated by a small branch of the skeleton line. The estimation method
is illustrated in Figure 5.26(b). The height of the contour line is marked as 20 m and
the height of a major part of the skeleton line is 15 m. The height of a point on this
branch of skeleton must be from 15 to 20 m. As each of these points is a Voronoi
vertex, its circumcircle (called skeleton circle here) touches both sides of the contour
re-entrant. The minor valleys become narrower toward their heads; the circle radius of
any skeleton point on the re-entrant, compared with the skeleton circle at the junction
of the branch with the main medial skeleton, gives the elevation of skeleton point as
a proportion of the elevations of the medial contour and the one forming the re-entrant.
The mathematical formula is as follows:

Zi = Zc − Ri

Rr
× Zc − Zb

2
(5.6)

where Zc is the elevation of the contour with the re-entrant; Zb is the elevation of
the other contour; Zi is the elevation of the skeleton point to be estimated; Rr is the
radius of the reference circle; and Ri is the radius of the skeleton point.

Figures 5.27 shows two examples of values estimated in this way. For summits
or pits the ratio of the circumcircles of a terminal node on the summit skeleton and
its associated skeleton node on the other side of the contour line is used — see
Thibault and Gold (2000) for details. These enriching points may now be inserted
into a new triangulation along with the original data.
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Figure 5.26 Height of each point on this branch estimated based on circle ratio. (a) A branch
of skeleton for the valley; (b) Skeleton point height estimation using circle ratios.

5.5.3 Triangulation from Contour Data with Skeletons

The points on the skeleton lines are also added to the contour data for triangulation to
avoid the problems mentioned at the beginning of Section 5.5. Figure 5.28 shows the
differences between simple triangulation from contour data (Figure 5.28a) and that
from the enriched contour data (Figure 5.28b).
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Figure 5.27 Two examples of height estimation for skeleton lines: (a) for the case with contour
re-entrant and (b) for the case of a summit.

5.6 DELAUNAY TRIANGULATIONS VIA VORONOI DIAGRAMS

It was discussed in Section 5.1 that Delaunay triangulations can also be constructed
indirectly from Voronoi diagrams because they have a dual relationship. This will
be addressed although it is more popular to derive Voronoi diagrams from Delaunay
triangulations.
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(b)

(a)

Figure 5.28 A comparison between triangulation from original contour data and that from
enriched contour data: (a) triangulation from original data and (b) triangulation
from enriched data.

5.6.1 Derivation of Delaunay Triangulations from
Voronoi Diagrams

Triangulation from Voronoi diagrams is simple. Figure 5.29 shows the process. After
the Voronoi diagram (Figure 5.29b) is constructed from a set of data (Figure 5.29a),
any two points that share a common Voronoi boundary are joined to form a triangle
edge (Figure 5.29c). These triangles are then searched for, recorded sequentially, and
finally form a Delaunay triangulation. The important issue in indirect triangulation
via the Voronoi diagram is the construction of the Voronoi diagram, which will be
discussed later.

5.6.2 Vector-Based Algorithms for the Generation of
Voronoi Diagram

The development of efficient and robust methods for the computation of Voronoi
diagrams has been considered challenging and has attracted much attention from
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(b)(a)

(d)(c)

Figure 5.29 Derivation of Delaunay triangulation from Voronoi diagram: (a) a set of date points;
(b) Voronoi diagram of the set; (c) dual relationship; and (d) triangulation of
the set.

researchers. As a result, many algorithms for computation of Voronoi diagrams are
available (Green and Sibson 1977; Brassel and Reif 1979; Bowyer 1981; Lee and
Drysdale 1981; Miles and Maillardet 1982; Ohya et al. 1984a,b; Klein 1988; Masser
1988; Sugihara 1992). Efforts have also been made on the development of dynamic
and kinetic Voronoi diagrams (Zaninetti 1990; Gold and Condal 1995). A compre-
hensive survey of such algorithms has been covered by Aurenhammer (1991) and
Okabe et al. (2000). No attempt has been made to provide a similar coverage here
in this section because in practice indirect triangulation via Voronoi diagram is not
a popular approach, although it is the best method for manual triangulation of data:
first sketch the Voronoi diagram, then the Delaunay triangulation.

From the viewpoint of computational geometry, a Voronoi diagram is essentially
“a partition of the plane into N polygonal regions, each of which is associated with
a given point. The region associated with a point is the set of points closer to that
point than to any other given point” (Lee and Drysdale 1981). Suppose there are N
distinct points P1, P2, . . . ,Pn in the plane. Each point will have a Thiessen polygon.
All these Thiessen polygons (or Voronoi region) together form a pattern of packed
convex polygons covering the whole plane (no gap or overlap). This is the Voronoi
diagram of the point set (Figure 5.29).

Usually, a Voronoi region can be used to define the spatial proximity for each
spatial point object, while such a region is required to meet the nearest-neighbor rule
formulated as follows (Okabe et al. 2000):

V (pi) = {X| ‖ X −Xi ‖≤‖ X −Xj ‖, for j �= i, j ∈ In} (5.7)
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Figure 5.30 Incremental method for the computation of Voronoi diagram.

where V (pi) denotes the Voronoi region of a point object pi ; P is a set of points and
P = {p1,p2, . . . ,pn}; p is an arbitrary point in 2-D space with coordinates (x, y) or
a location vectorX; ‖X −Xi‖ = d(p,pi) =

√
(x − xi)2 + (y − yi)2 is a distance

function; and In = {1, 2, . . . , n}, 2 ≤ n <∞. The Voronoi diagram of the data set is

V = {V (p1),V (p2), . . . ,V (pn)} (5.8)

A simple method for constructing Voronoi diagram is the so-called incremental
method (Forture 1975; Green and Sibson 1977; Bowyer 1981; Lee and Drysdale
1981; Ohya et al. 1984a,b). The basic idea of the incremental method is to expand
the Voronoi diagram incrementally, that is, to add one point at a time. Figure 5.30
illustrates the principle. First of all, the Voronoi diagram of the first three points,
that is, 1, 2, and 3, is constructed and point 4 is to be considered. It is found that point 4
is located within the Voronoi region of point 1. Then, a perpendicular bisector between
points 1 and 4 is drawn. This perpendicular bisector intersects the common bound-
ary of Voronoi regions V (p1) and V (p3). Then, a perpendicular bisector between
points 4 and 3 is drawn. As a result, part of V (p1) and part of V (p3) together form
V (p4). The process continues until the Voronoi diagram of N points is computed
through Voronoi diagram of N − 1 points by adding the last point.

The incremental method can also be implemented dynamically by inserting points
into the existing Voronoi diagram. This would be useful both in terms of Voronoi
diagram generation and in terms of query of Voronoi. Figure 5.31 illustrates the
insertion of a point into an existing Voronoi diagram. First, point 7 is inserted into
a Voronoi region V (p3), then the perpendicular bisector of line 3, 7 is drawn. This
line intersects the common boundary between V (p3) and V (p1) and that between
V (p3) and V (p5). Then, the perpendicular bisectors of line 1, 7 and line 5, 7 are
drawn. These two lines intersect the common boundary between V (p1) and V (p2)

and that between V (p5) and V (p6). The perpendicular bisectors of lines 6, 7 and
2, 7 are drawn and the last two intersections with the two common boundaries
with V (p4) are found. By joining these intersections a new polygon is formed,
which is the Voronoi region of point 7, that is, V (p7) (i.e., the shaded area of
Figure 5.31b). Indeed, this new point has “stolen” some of the area of each of these
neighbors.
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Figure 5.31 Insertion of a point into an existing Voronoi diagram.

5.6.3 Raster-Based Algorithms for the Generation of
Voronoi Diagram

Although the potential of computing Voronoi diagrams via distance transforma-
tion has been recognized by researchers (Borgefors 1986; Tang 1989; Okabe et al.
2000), a detailed discussion of methods was not available until the paper by Li et al.
(1999). Recently, methods for the generation of Voronoi diagrams in raster mode
from quadtree structures (Zhao et al. 2002) and on spherical features (Chen et al.
2003) have also been presented.

As the Voronoi boundary of point P is formed by perpendicular bisectors
between P and its close neighbors, distance is a key concept in the generation of
Voronoi diagrams. In vector mode, “distance” means the Euclidean distance. The
distance between two points P1(X1, Y1) and P2(X2, Y2) is defined as follows:

D(P1, P2) = f (X1,X2,Y1,Y2) =
√
(X1 −X2)2 + (Y1 − Y2)2 (5.9)

However, in raster mode, the coordinates are defined by the integer numbers of
rows and columns of raster pixels. Suppose there are two points P1(i, j) and P2(m, n),
then the Euclidean distance between them is defined as follows:

D(P1, P2) = f (i, j ,m, n) =
√
(i −m)2 + (j − n)2 (5.10)

The unit is number of pixels. For example, if the two points are at (2, 2) and (3, 3), then
the result is

√
2 (=1.414) pixels. This result in decimal form is inconvenient to use

in raster mode. Distance in an integer is more desirable and thus normally used. The
problem arising is “how to find an integer number for every possible distance between
two points that is the best approximation of the Euclidean distance.” In the example
given above, either 1 or 2 would be the best choice as the raster distance to approx-
imate the Euclidean distance of

√
2. However, other integers (e.g., 3 in the case

of the Chamfer 2-3 function) could also be used, depending on the definition given.
Figure 5.32 shows two definitions of raster distance, that is, city block and chessboard.

With the definition of raster distance given, the distance from each pixel to a given
set of points can be obtained by distance transformation. Figure 5.33(a) shows the
distance transformation of a set of points (A, B, C, D, E, F, and G). In this figure, the
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Figure 5.32 Definitions of raster distance: (a) city block distance and (b) chessboard distance.
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Figure 5.33 Distance transformation for Voronoi diagram generation. (a) Distance transforma-
tion (chessboard). (b) Voronoi regions formed from distance map.

number in each pixel indicates the minimum distance from this pixel to its neighboring
points. Naturally, the large number of the pixel is mid way between two points (e.g., 3
between A and B). There could be 20 different distance values for a single pixel if
there are 20 points in the set. However, in any case, only the distance with smallest
value is taken for that pixel. The result is a distance contour map. These influence
regions are in fact the Voronoi regions of the set of points, as shown in Figure 5.33(b).

In fact, distance transformation can also be achieved by operators developed
in mathematical morphology (Serra 1982). There are two basic operators developed
in mathematical morphology, that is, dilation and erosion. These can be com-
pared to “+,” “−,” “×,” and “÷” in ordinary algebra and they are defined as follows
(see Serra 1982; Haralick et al. 1987):

Dilation:

A⊕ B = {a + b : a ∈ A, b ∈ B} = ∪b∈BAb (5.11)

Erosion:

A� B = {a : a + b ∈ A, b ∈ B} = ∩b∈BAb (5.12)
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(b) (c) (d)(a)

Figure 5.34 Two basic morphological operators: dilation and erosion. (a) Original image A.
(b) Structuring element B. (c) A dilated by B. (d) A eroded by B.
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Figure 5.35 Two structuring elements mimicking chessboard and city block distances.

whereA is the original image with features andB is the structuring element. Examples
of dilation and erosion are given in Figure 5.34.

With the basic concepts and operators in mathematical morphology introduced,
the next step is to employ an appropriate structuring element so that distance contours
can be obtained using the dilation operator repeatedly. By a close examination of
possible structuring elements, it is found that structuring elements B1 and B0, as
shown in Figure 5.35 are the right choices for chess board and city block distance,
respectively. These two types of distance contours can be expressed mathematically
as follows:

Chessboard distance:
Dn = Dn−1 ⊕ B0 (5.13)

City block distance:
Kn = Kn−1 ⊕ B1 (5.14)

By using these two structuring elements for dilation operations, distance maps
similar to Figure 5.32 can be obtained. Then, the Voronoi diagrams can easily be
derived. In fact, it is easier to use a raster-based method for the generation of Voronoi
diagrams with line and area features as constraints. Figure 5.36 is a Voronoi diagram
of a data set with points, lines, and area features, generated in raster mode.

It is understandable that the approximation of raster distance to Euclidean distance
would be poor if point intervals are large. To overcome this, dynamic distance
transformation using morphological operators is also possible to ensure that the
distance error is within a pixel (Li et al. 1999).

It should be noted here that there are other alternatives for Delaunay triangu-
lation in raster mode. Instead of using the dilation operator to generate a distance

 



DITM: “tf1732_c005” — 2004/10/22 — 16:37 — page 114 — #28

114 DIGITAL TERRAIN MODELING: PRINCIPLES AND METHODOLOGY

1

2

3

7
9

8

14

13

4

11

10

12 5

Figure 5.36 Voronoi diagram of point, line, and area features.

(b)

(c)

(a)

Figure 5.37 Delaunay triangulation by morphological skeletonization (Chen 1991) (a) Original
contour lines; (b) Skeletinization; (c) Triangulation network.

contour map for the extraction of Voronoi regions for the data points, a skeletoniza-
tion algorithm could be used to derive the skeleton of the complement (i.e., a raster
area) of data points. The skeleton lines are then the boundaries of the Voronoi regions
of the data points (Chen 1991). This approach is particularly effective with contour
data that consist of line features (Su et al. 1998). Figure 5.37 shows the triangulation
constructed from contour line data by this skeletionization approach.
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CHAPTER 6

Interpolation Techniques for
Terrain Surface Modeling

6.1 INTERPOLATION TECHNIQUES: AN OVERVIEW

Interpolation is an approximation problem in mathematics and an estimation problem
in statistics. Interpolation in digital terrain modeling is used to determine the height
value of a point by using the known heights of neighboring points. There are two
implicit assumptions behind interpolation techniques: (a) the terrain surface is con-
tinuous and smooth and (b) there is a high correlation between the neighboring data
points. Interpolation is one of the core techniques in digital terrain modeling because
it is involved in the various stages of the modeling process such as quality control,
surface reconstruction, accuracy assessment, terrain analysis, and applications.

Interpolation techniques can be classified according to different criteria and
they can be used for different purposes. Table 6.1 attempts to provide a simple
classification.

By the size of the area for interpolation, two approaches are identified
(Petrie 1990a), that is, area based and point based. In the area-based approach the
surface is constructed by using all the reference (known) points within this area
and the height of any point within this area can be determined by using this con-
structed surface. Area-based interpolation could be either global or local. Global
interpolation involves the construction of a single complex 3-D surface from the
complete data set of measured points, from which the height values of all other
points can be obtained. This is an extreme approach. The usefulness of this type of
technique depends on the complexity of the terrain surface and the actual size of
the area. A more adaptive solution is to divide a large area into a series of patches
of identical shape and size. This is called local or patchwise interpolation. A sur-
face is constructed for each patch by using all the reference points and heights of
all points (to be interpolated) within this patch are obtained from this patch surface.
The size of the patch is determined by the complexity of the area and there could be

115
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Table 6.1 A Classification of Interpolation Techniques

Criteria Interpolation Techniques

Size of area for interpolation Point based, area based
(patchwise or global)

Exactness of the surface Exact fitting, best fitting
Smoothness of the surface Linear, nonlinear
Continuity of the surface Step, continuous
Preciseness of the function Precise, approximate
Certainty of the problem Functional, stochastic
Domain of interest Spatial, spectral (i.e., frequency)
Complexity of the phenomenon Analytical, numerical iteration

a certain degree of overlap between neighboring patches to ensure smooth connec-
tion between patches. At the other extreme, a surface could be constructed for the
interpolation of each point, leading to pointwise interpolation. This requires heavy
computation.

In the construction of a surface for interpolation, (whether global, patchwise, or
pointwise), the surface may or may not pass through all the reference points. If it
does pass through all the points, it is an exact reconstruction and is called exact
fitting. However, the surface may not pass through all the reference points, due to
errors in the reference points. In this case, there might be a deviation from each of
these reference points. If such deviations are limited to a minimum, then the surface
is a best fit. This type of interpolation is called best fitting.

A surface could be in the form of steps, as shown in Figure 4.2. This is a discon-
tinuous surface. In many applications, continuity is a requirement, at least visually,
thus a continuous surface can be constructed. The continuous surface may or may not
be smooth. For example, as discussed in Chapter 4, a surface comprising a set of con-
tiguous linear facets is not continuous in the first derivative and thus is not smooth.
Both triangular facets and bilinear surfaces are linear surfaces. Usually, a smooth
surface is constructed by using some kind of higher-order polynomials.

It is also possible to use an approximate function for interpolation if the original
function is too complex or the approximate function is good enough but much
simpler. For example, when x is a very small angle, the value of sin(x) can be
nicely approximated by x itself. In other words, y = x is a very good approximation
of the function y = sin(x) under this condition. In fact, it is also possible (but not
in terrain modeling) that the nature of a phenomenon is too complex and one is not
able to establish an analytical function for the problem, so numerical approximation
by iteration is used.

A problem could be deterministic or probabilistic. For the former, a deterministic
function can be used and for the latter a stochastic model must be used. Sometimes
the small variations on the terrain are so complex that the variation is then treated as
a stochastic process.

Interpolation can take place in either the space or the spectral domain. Most
interpolation techniques for terrain modeling are for spatial interpolation. However,
it is also possible to transform the data into a frequency domain and perform
interpolation there.
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It should be emphasized that interpolation techniques are well discussed within the
mathematical community and a large body of literature is available. Therefore, only
those widely used in digital terrain modeling are described in this chapter. In other
words, some interpolation functions, such as Kriging, are omitted here due to their
complexity. Furthermore, in photogrammetric community, it was found that sampling
is the single vital step in digital terrain modeling because information lost at the
sampling stage can never be reconstructed by whatever interpolation function. This
is why no complicated interpolation is used in digital terrain modeling.

6.2 AREA-BASED EXACT FITTING OF LINEAR SURFACES

This section discusses interpolation of a linear surface that fits exactly to the reference
points. In other words, each reference point is honored.

6.2.1 Simple Linear Interpolation

As discussed in Chapter 4, a plane can be determined by three points on it and
a triangular facet is a typical example of such a surface. The mathematical function
of a plane is as follows:

z = a0 + a1x + a2y (6.1)

where a0, a1, and a2 are the three coefficients and (x, y, z) is the set of coordinates
of a surface point. To compute these three coefficients, three reference points with
known coordinates, for example, P1(x1, y1, z1), P2(x2, y2, z2), and P3(x3, y3, z3),
are required to establish three equations as follows:


a0
a1
a2


 =


1 x1 y1

1 x2 y2
1 x3 y3



−1
z1
z2
z3


 (6.2)

Once the coefficients a0, a1, and a2 are computed, then the height zi of any point i
with a given set of coordinates (xi , yi) can be obtained by substituting (xi , yi) into
Equation (6.1).

6.2.2 Bilinear Interpolation

Bilinear interpolation from a square grid has been mentioned in Section 4.5 and
illustrated in Figure 4.14. Bilinear interpolation can be performed for any four points
(not along a line). The mathematical function is as follows:

z = a0 + a1x + a2y + a3xy (6.3)

where a0, a1, a2, a3 is the set of coefficients. They are to be determined by four equa-
tions that are formed by making use of the coordinates of four reference points,
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say, P1(x1, y1, z1), P2(x2, y2, z2), P3(x3, y3, z3), and P4(x4, y4, z4). The mathe-
matical formula is as follows:



a0
a1
a2
a3


 =




1 x1 y1 x1y1
1 x2 y2 x2y2
1 x3 y3 x3y3
1 x4 y4 x4y4



−1

z1
z2
z3
z4


 (6.4)

Once the coefficients a0, a1, a2, and a3 are computed, then the height zi of any
point i with a given set of coordinates (xi , yi) can be obtained by substituting (xi , yi)
into Equation (6.3).

If data (reference) points are distributed in the form of square grids, then the
following formula can be used:

zp = z1

(
1− 	x

d

)(
1− 	y

d

)
+ z2

(
1− 	y

d

)(
	x

d

)
+ z3

(
	x

d

)(
	y

d

)

+ z4

(
1− 	x

d

)(
	y

d

)
(6.5)

In the formula, points 1, 2, 3, and 4 are the four nodes of the square grid, and d is
the length of the grid interval (Figure 6.1a).

In fact, interpolation on a triangular facet can also be done in a similar way
to grid-based bilinear interpolation. As shown in Figure 6.1(b), the height of point
p(xp, yp, zp) can be interpolated from points 1 and 2 as follows:

zp = z1 + (z2 − z1)× (xp − x1)/(x2 − x1) (6.6)

and

z1 = zA + (zB − zA)× (x1 − xA)/(xB − xA) (6.7a)

z2 = zA + (zC − zA)× (x2 − xA)/(xC − xA) (6.7b)

where yp = y1 = y2, and points 1 and 2 lie on lines AB and AC, respectively.
Alternatively, the local area coordinates of Figure 5.13 may be used for linear
interpolation using a weighted average, that is,

zp = z1 ×	a1 + z2 ×	a2 + z3 ×	a3

	a1 +	a2 +	a3
(6.8)

This guarantees continuity between adjacent triangles. Indeed, if the distribution of
the reference points is not good (e.g., nearly along a straight line), then Equation (6.2)
is not stable and the use of Equation (6.6) is recommended in such a case.
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Figure 6.1 Bilinear interpolation: (a) for square grids and (b) for triangles.

6.3 AREA-BASED EXACT FITTING OF CURVED SURFACE

Bilinear interpolation is widely used in DTM interpolation because it is simple,
intuitive, and reliable. But the resulting surface is not smooth. To make the surface
smooth, a polynomial surface might be fitted to a set of contiguous linear surfaces.
Alternatively, exact fitting of curved surfaces is also possible, such as a bicubic spline
function.

6.3.1 Bicubic Spline Interpolation

To overcome the shortcomings of bilinear functions, a bicubic spline function can be
used to construct a smooth DTM surface over a patch consisting of four grid nodes, for
example, points A, B, C, and D in Figure 6.2. The mathematical function of a bicubic
function is as follows:

z = f (x, y) =
3∑
j=0

3∑
i=0

ai,j x
iyj

= a00 + a10x + a20x
2 + a30x

3

+ a01y + a11xy + a21x
2y + a31x

3y

+ a02y
2 + a12xy

2 + a22x
2y2 + a32x

3y2

+ a03y
3 + a13xy

3 + a23x
2y3 + a33x

3y3 (6.9)

where a00, a01, a10, . . . , a33 are the 16 coefficients to be determined.
Sixteen equations are needed to solve the 16 coefficients. With the coordinates of

the four grid nodes known, four equations can be established. Therefore, another 12
equations are needed and will come from the conditions for the connections between
patches, that is,

1. the slopes at each node (i.e., the joint between four adjacent patches) should be
continuous in x, y directions

2. the torque of the joint of adjacent patches is also continuous.
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Figure 6.2 Bicubic spline interpolation.

Let R and S be the slopes in x and y directions, respectively, and T be the
torque, then

R = ∂z

∂x
, S = ∂z

∂y
, T = ∂2z

∂x∂y
(6.10)

As the reference points are located at square-grid nodes, the height differences can
be used to compute these values as follows:

Ri,j = ∂z

∂x
= zi+1,j − zi−1,j

2

Si,j = ∂z

∂y
= zi,j+1 − zi,j−1

2

Ti,j = ∂2z

∂x∂y
= (zi−1,j−1 + zi+1,j+1)− (zi+1,j−1 − zi−1,j+1)

4

(6.11)

There will be 12 such equations for a patch with four nodes as there are three equations
for each node.

After these coefficients are solved, then for a point P with coordinates (xp, yp),
the height can be computed by Equation (6.9).

The connection requirements between patches are adopted from elastic
mechanics and the results of such interpolation may be not as desirable as expected
because terrain patches are not elastic crusts in the narrow sense.

6.3.2 Multi-Surface Interpolation (Hardy Method)

Multi-surface interpolation is also known as the Hardy method (Hardy 1971). The
basic idea is that any (regular or irregular) continuous curved surface can be approx-
imated by the sum of a series of simple surfaces (i.e., single-value mathematical
surfaces), with a desired accuracy. This might be regarded as an analogy of the Fourier
series. The actual process establishes a curved surface for each reference point using a
basic function (called kernel function) and the height of any point between reference
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points will take a weighted average from these curved surfaces. In this way, the final
surface will be continuous and pass through all reference points. The mathematical
expression of multi-surface overlapping is:

z = f (x, y) =
n∑
i=1

kiQ(x, y, xi , yi)

= k1Q(x, y, x1, y1)+ k2Q(x, y, x2, y2)+ · · · + knQ(x, y, xn, yn) (6.12)

where Q(x, y, xi , yi) is the simple (single-value) mathematical surface, called the
kernel function in multi-surfaces; n is the number of simple mathematical surfaces
(or the number of surface layers) the value of which is equal to the number of reference
points within the patch; and ki(i = 1, 2, 3, . . . , n) is the coefficient, that represents
the contribution of the ith kernel function to the final surface. To make computation
simple, the kernel functions are usually simple functions of the same type and formed
by rotating around an axis (which just passes through the reference point). Examples
of such simple functions are:

1. Conic function:

Q1(x, y, xi , yi) = C + [(x − xi)2 + (y − yi)2]1/2 (6.13)

where [(x−xi)2+(y−yi)2]1/2 is the horizontal distance between the interpolation
point (x, y) and the reference point (xi , yi).

2. Hyperbolical function:

Q2(x, y, xi , yi) = [(x − xi)2 + (y − yi)2 + σ ]1/2 (6.14)

where σ is a nonzero parameter. Equation (6.14) represents a curved surface that
is formed through the rotation of a hyperbola curve around a vertical axis. When
σ = 0, this curved surface degenerates to become a conic surface.

3. Cubic function:

Q3(x, y, xi , yi) = C + [(x − xi)2 + (y − yi)2]3/2 (6.15)

4. Geometric function:

Q4 = 1− D
2
i

a2
(6.16)

5. Exponential function:

Q5 = C0 × e−a2D2
i (6.17)

where C0 and a are the two parameters.
The following kernel functions are well known and widely used (Li 1988):

1. Arthur function:

Q(d) = e−25d2/a2
(6.18)

where d is the distance between two points and a is the longest distance among
various data points.

 



DITM: “tf1732_c006” — 2004/10/20 — 15:44 — page 122 — #8

122 DIGITAL TERRAIN MODELING: PRINCIPLES AND METHODOLOGY

2. Lu function:
Q(d) = 1+ d3 (6.19)

3. Wild function:

Q2(x, y, xi , yi) =
(

1+ (x − xi)
2 + (y − yi)2
(dki)

2
min

)1/2

(6.20)

where (dki)
2
min represents the distance between data point i and its closest data

point k. When n = m, Q matrix is an asymmetric matrix, because each data point
has its own reference (dki)min.

The Wild function is the result of modifying Equation (6.14). This is because the
surface obtained by using Equation (6.14) will become smoother as σ becomes larger.
Figure 6.3 shows this trend, where a set of values for σ (i.e., 0, 0.6, and 10) were
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Figure 6.3 Various σ values and interpolation curves for Equation (6.14).
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used. The advantage of the Wild function is that the terrain feature points and lines
can be used during the interpolation process even with very small (dki)min as long as
the set of points are dense enough. As a result, a steep slope could be produced on
the top of the curved surface. In this way, abrupt changes in the terrain surface can
be accommodated.

If the number of reference points m is larger than the number of kernel surfaces,
then a least-square solution is taken, which will be discussed later in this chapter.

One advantage of multi-surface interpolation is that different types of kernel
surfaces could be designed to accommodate different features and terrain surfaces.
This is useful when the density of sampled reference points is low but the accuracy
of such points is relatively high. On the other hand, the process is rather complicated
and inefficient, and thus this method is not widely used.

6.4 AREA-BASED BEST FITTING OF SURFACES

It is understandable that if the terrain surface is complicated, it is impossible to use
any mathematical function to completely describe it. Instead, one uses an interpola-
tion function to approximate the terrain surface. The accuracy of such approximation
will be discussed in Chapter 8. It must be noted here that a surface passing through
all the reference points is not necessarily a better approximation than other sur-
faces. If the area is big and there are many reference points available, one needs
to use very high-order polynomials to achieve exact fitting of the surface. Indeed,
it is dangerous to do so because unstable oscillation can be caused by such a
high-order polynomial function. Figure 6.4 illustrates such an oscillation. There-
fore, best fitting (instead of exact fitting) of curved surfaces is a method widely
in use and will be described in this section. The theory behind best fitting is that
small variations on the terrain surface are so complex that they can be treated as
a stochastic process.

6.4.1 Least-Squares Fitting of a Local Surface

There are many possibilities for best fitting depending on the definition of “best.”
A simple definition could be that the sum of the absolute values of the errors is at
a minimum. Another popular definition is the sum of the square errors being minimum,
leading to the least squares, which is widely used in error theory. The mathematical

Figure 6.4 Oscillation of high-order polynomial surface.
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expressions are as follows:

n∑
i=1

|ei | = min (6.21)

n∑
i=1

e2
i = min (6.22)

where ei is the deviation of the ith reference point from the fitting surface and n is
the total number of reference points.

For a set of reference points and a fitting function, there is an infinite number of
fitting. Figure 6.5 shows such a case by using linear surface as the fitting function.
This figure shows that there can be a deviation at each reference point from the fitted
surface and the deviation is also called residual in error theory. The best-fitting result
is the one with the smallest sum of square residuals.

The surface fitted to the data could be linear (Figure 6.6a) or a smooth curved
surface (Figure 6.6b). There are different types of curved surfaces as discussed in the
previous section. For the same set of data, if the surface fitted is different, then the
residual at each reference could be different. In Figure 6.5, there are three surfaces
(one linear and two curved) fitted to the same set of data and three sets of residuals
can be obtained, that is,

SumLinear =
n∑
i=1

	z2
i, L

SumCurved−1 =
n∑
i=1

	z2
i,c−1

SumCurved−2 =
n∑
i=1

	z2
i,c−2

where	zi, L is the residual at the ith point in the case of linear surface (i.e., the vertical
distance from the point to the linear line); SumLinear = ∑n

i=1	z
2
i, L is the sum

of the squares of the residuals; and 	zi,c−1 is the residual at the ith point for the
first type of curved surface (i.e., the vertical distance from the point to the curved
surface). The least-squares condition says that the surface that produces the least
sum of square errors is the best. In this example, among SumLinear, SumCurved−1,
and SumCurved−2, if SumCurved−2 is the smallest, then curve 2 is regarded as the
best fit.

The above discussion is about which types of surface to be considered. The com-
monly used functions for curved surface fitting are the second-order and third-order
polynomials and bicubic functions. No matter which function it is, the principles
and procedures of the least-square solution are identical. Therefore, the simpler
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Figure 6.5 Residuals at reference points on the same type of surfaces but with different fitting.

(a) (b)

Figure 6.6 Residuals at reference points on different surfaces.

second-order polynomial is used for illustration:

z = f (x, y) = a0 + a1x + a2y + a3xy + a4x
2 + a5y

2 (6.23)

where a0, a1, a2, . . . , a5 are the six coefficients. They need to be determined by mak-
ing use of reference points. If there are n (>6) reference points, then there are
n equations as follows:
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...
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1 y2
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n y2
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 (6.24)

The error functions can be written as follows:



v1

v2

...

vn


 =




1 x1 y1 x1y1 x2
1 y2

1

1 x2 y2 x2y2 x2
2 y2

2
...

...
...

...
...

...

1 xn yn xnyn x2
n y2

n






a0

a1

...
a5


−



z1

z2

...
zn


 (6.25)

and simplified as

V
n×1
= X
n×6

A
6×1
− Z
n×1

(6.26)
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According to the least-squares solution,

A
6×1
=
(
XT

6×n X
n×6

)−1(
XT

6×n X
n×6

Z
n×1

)
(6.27)

After the coefficients are computed, the height zp of any point P at location (x, y) can
be obtained by substituting x, y into Equation (6.23).

It must be noted here that this is a simple regression method. There are other more
sophisticated treatments using the least-squares concept such as the least-squares
collocation developed by Moritz (1980).

6.4.2 Least-Squares Fitting of Finite Elements

Finite element is a method widely used in mechanics. It divides a large piece of
material into small units (cells) for treatment. In the case of digital terrain modeling,
a surface over a large area can be divided into small-area units such as grid or triangular
cells. Then, a simple mathematical function is used to approximate the surface over
each small cell. In other words, the large surface consists of a finite number of
small-area units (Ebner et al. 1980).

In fact, bilinear and bicubic interpolations do employ the concept of finite element
analysis, especially in the case of exact fitting of bicubic spline. However, in the
case discussed here, the grid nodes are unknown, and thus have to be interpolated.
Figure 6.7 shows such a case. In this figure, the height of point P could be determined
by making use of the heights at the four grid nodes, that is, zi,j , zi+1,j , zi+1,j+1, and
zi,j+1. That is,

z(x, y) = zi,j
(

1− 	x
d

)(
1− 	y

d

)
+ zi+1,j

(
1− 	y

d

)(
	x

d

)

+ zi+1,j+1

(
	x

d

)(
	y

d

)
+ zi,j+1

(
1− 	x

d

)(
	y

d

)
(6.28)

Indeed, this equation is identical to Equation (6.5). Let the increments δx = 	x/d
and δy = 	y/d , then

z(x, y) = zi,j (1− δx)(1− δy)+ zi+1,j (1− δy)δx
+ zi+1,j+1δxδy + zi,j+1(1− δx)δy (6.29)

As P is a known point, and an observation equation can be obtained, the error
equation is:

vp = zi,j (1− δx)(1− δy)+ zi+1,j (1− δy)δx
+ zi+1,j+1δxδy + zi,j+1(1− δx)δy − zp (6.30)

In order to ensure the smoothness of the constructed surface, the second derivatives
(more precisely, the second differences) in both x and y directions can be used to
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Figure 6.7 Finite element interpolation of grid nodes.

construct two virtual error equations as follows:

vx(i, j) = zi−1,j − 2zi,j + zi+1,j = 0

vy(i, j) = zi,j−1 − 2zi,j + zi,j+1 = 0
(6.31)

Weights can also be introduced for errors. The simplest treatment of virtual observa-
tion values is to assume that they are not correlated and all have a weight 1. If the
weight for known points is wp, then the condition is

S∑
k=1

v2
kwp +

n−1∑
i=2

m∑
j=1

v2
x(i, j)+

n∑
i=1

m−1∑
j=2

v2
y(i, j) = min (6.32)

where S is the total number of reference points andm and n are the numbers of rows
and columns, respectively, of the DTM grid that is to be interpolated.

6.5 POINT-BASED MOVING AVERAGING

In the previous section, some area-based methods were introduced. In this and the
coming sections, some point-based interpolation methods will be introduced. This
section describes the moving averaging.

6.5.1 The Principle of Point-Based Moving Averaging

One of the point-based interpolation methods is moving averaging, which is normally
seen as a smoothing method. Figure 6.8 shows the three moving average lines of the
Hang Seng Index of Hong Kong Stocks, one for 20 days and the other for 50 days,
which show a smoothing effect on the Hang Seng Index.

A similar technique is in common use in digital terrain modeling. It is used to inter-
polate a point by making use of a number of reference points nearby. The mathematical
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9 02 1 03 5 03 9 03 1 04

200-day Ma
50-day Ma
^HSI

10,000

8,000

12,000

14,000

Figure 6.8 Moving averages of Hang Seng Index over last 3 years.

expression is as follows:

z =
∑n
i=1 zi

n
(6.33)

where n is the total number of reference points used for the averaging operation
and zi (i ∈ 1, n) is the height of the ith reference point. For example, if five
neighbor points are selected as reference points for interpolation of point P, and
their heights are 4, 5, 6, 3.5, and 4.5, then the height value of P is (4 + 5 +
6 + 3.5 + 4.5)/5 = 4.6. This is a simple averaging. It means that no matter how
close a reference is to the interpolation point, the weight is still the same as that
of the others. This equal weighting seems unfair to those reference points that are
closer to the interpolation point. This leads to a weighted moving averaging as
follows:

z =
∑n
i=1wizi∑n
i=1wi

(6.34)

where wi is the weight for the ith point, which may or may not be different from that
of the others.

Two questions arising now are (a) which points should be used as reference points
and (b) how to assign a weight to each reference point. These two problems will be
discussed in the following two subsections.

6.5.2 Searching for Neighbor Points

Neighbor points should be close to the point to be interpolated. Using distance as a cri-
terion, a circle or a rectangle can be drawn around the interpolation point and all points
within this area are selected. Figure 6.9(b) shows this. If too many points are closely
located, then the number may also be considered. For example, only the six closest
points are selected, as shown in Figure 6.9(a).

In such a selection, there could be a danger that most of the points are located
in a single direction. Figure 6.10(a) shows this case. An alternative is to consider
the point distribution. That is, the points are partitioned into four (Figure 6.10b)
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(a) (b)

Figure 6.9 Selection of the neighbor points for interpolation: (a) based on number of points and
(b) based on a search range.

(a) (b) (c)

Figure 6.10 Selection of some points from each sector as reference points: (a) no sectors;
(b) four sectors; and (c) eight sectors.

or eight (Figure 6.10c) sectors and a number of points from each sector are then
selected.

Another alternative, similar to the idea of partitioning, is to generate a Voronoi
diagram of the data points, and then those points whose Voronoi regions have common
boundaries with the Voronoi region of interpolation points are selected for interpola-
tion. Of course, one may argue that since the Voronoi diagram of the point set has
already been constructed, why should we not perform interpolation on the triangular
network.

6.5.3 Determination of Weighting Functions

The fundamental idea of assigning a weight to a reference point is to consider the
influence of the reference point. A distance function is widely used. That is, the
smaller the distance, the larger the weight.

It is obvious that the closer together the observed points are located, the greater
their similarity; the farther apart they are, the smaller the similarity. Therefore,
distance affects the degree of influence of different points on the elevation of the
to-be-interpolated point. So, in moving averaging, one usually adopts a weighting
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function related to distance. The commonly used weighting functions are as below:

wi = 1

d2
i

(6.35)

wi =
(
R − di
di

)2

(6.36)

wi = e−d2
i /K

2
(6.37)

where wi is the weight for the reference point i; R is the radius of the circle; di is the
distance of the reference point to the interpolation point; and K is a constant.

An alternative is to make the weight a function of area instead of distance. The
Voronoi region of each reference point can be used to construct a weighting function.
This determination can be explained by using Figure 5.31 (in Chapter 5). In this
figure, suppose point 7 is to be interpolated. This point is inserted into the Voronoi
diagram formed by the points of the orignal set and a Voronoi region of the new
point is obtained by “stealing” a piece from each of the original Voronoi regions. The
amount of area being stolen can be used as the weight for interpolation (Gold 1989).
The area corresponding to each point is clearly shown in this figure. For any point in
the reference list, if no area of its Voronoi region is stolen, then it exerts no influence
on the interpolation point. The intersection of the Voronoi region of the interpolation
point and the old Voronoi region of a reference point, say pi , is the area stolen and is
used as the weight for pi . Mathematically,

wi = V (pi)old ∩ V (pnew) (6.38)

Here, the notation in Section 5.6.2 is followed. V (pi)old is the Voronoi region of point
pi before the new point (i.e., the point to be interpolated) is added; V (pnew) is the
Voronoi region of the new point; andwi is the weight for pointpi . Sibson (1980, 1981)
first described this weighted-average interpolant, which is smooth everywhere except
at data points, and has a set of weights that map directly to the set of Voronoi neighbors.
Dakowicz and Gold (2002) describe how to use this technique to generate surfaces
with meaningful slopes.

6.6 POINT-BASED MOVING SURFACES

In moving averaging, the average value of a number of neighbor points is assigned
to the interpolation. In fact, by moving averaging, a moving surface has also been
created. Therefore, most of the principles discussed in the previous section also apply
in this section. Various types of surfaces can be created for point-based interpolation.
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6.6.1 Principles of Moving Surfaces

For a given set of data, different types of surface can be created. If the height of the
reference point nearest the interpolation point is assigned to the interpolation point, it
is called nearest-neighbor interpolation, although no real interpolation occurs. In this
case, a horizontal plane is created using a deterministic function. Figure 6.11(a) shows
this type of surface. The mathematical function is:

z = zi , if di = min(d1, d2, . . . , di , . . . , dn) (6.39)

The graphic illustration of moving averaging is shown in Figure 6.11(b). In fact, it is
also a horizontal plane but a stochastic model. The fitting condition is:

k∑
i=1

	zi = 0 (6.40)

In fact, any function can be used as the model for a moving surface. If the first
three terms of the polynomial function are used, then a tilted linear surface is created
(Figure 6.11c). But the curved surface (Figure 6.11d) is in common use, such as the
second-order polynomial surface

z = a0 + a1x + a2y + a3x
2 + a4xy + a5y

2 (6.41)

The condition for surface fitting is the least squares.
After a surface model is selected, for any interpolation point, say p, a surface is

constructed from a set of neighboring reference points by least-squares conditions.
To make the computation more efficient, it is normal practice that a new coordinate

system with the interpolation point p(xp, yp) as the origin is used. That is,

xi, new = xi − xp
yi, new = yi − yp

(6.42)

After such a treatment, from Equation (6.41), it can be noted that the height for the
interpolation point is

z = a0 (6.43)

6.6.2 Selection of Points

The principles for the selection of reference points discussed in the previous section
are also applicable in this case. The only thing special here is that the number of
reference points must be larger than the number of coefficients involved in the mathe-
matical model. But too many points will be computationally expensive. A compromise
is to select about ten points. An adaptive circle radius can be used for point selection.
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P1 P2 P2
P3 P1 P3

P1 P2 P2
P3 P1 P3

(a) (b)

(c) (d)

Figure 6.11 Different types of moving surfaces for interpolation: (a) nearest; (b) averaging;
(c) linear surface; and (d) curved surface.

The idea is to start from the average density of the data points to determine the radius
R of a circle within which there are approximately ten points:

πR2 = 10(A/N) (6.44)

where N is the total number of the points and A is the total area. This method takes
into consideration the two elements for point selection, that is, the number of points
and the range.
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CHAPTER 7

Quality Control in Terrain Data Acquisition

Like industrial production, there must be some procedures or methodology for quality
management and control in digital terrain modeling.

7.1 QUALITY CONTROL: CONCEPTS AND STRATEGY

7.1.1 A Simple Strategy for Quality Control in Digital
Terrain Modeling

The quality of DTM data is usually measured by the accuracy of position and height.
However, updatedness (or currency) has also become an important issue. This impor-
tance can be illustrated by the generation of DTM from a pair of aerial photographs
taken 10 years ago. Although the DTM is of great fidelity to the original terrain, the
result may not necessarily be useful if there have been a lot of changes. In this context,
it is assumed that the source materials used for digital terrain modeling are not out of
date. Therefore, only accuracy is of concern in this chapter.

Quality control is complicated. To build a DTM of high quality, one has to
take care of each of the processes in digital terrain modeling so as to eliminate,
reduce, or minimize the magnitude of errors that could be introduced. A simple
strategy is

1. to minimize errors introduced during data acquisition
2. to apply procedures to eliminate errors and reduce the effect of errors
3. to minimize errors introduced in the surface modeling process.

This chapter is only concerned with the first two. Error propagation in the modeling
process will be discussed in Chapter 8.

133
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7.1.2 Sources of Error in DTM Source (Raw) Data

Measured data will always contain errors, no matter which measurement methods
are used. The errors in data come from

1. errors in the source materials
2. inaccuracy of the equipment for data acquisition
3. human errors introduced in the acquisition process
4. errors introduced in coordinate transformation and other data processing.

For DTM source data acquired by photogrammetry, errors in source materials
include those in aerial photographs (e.g., those caused by lens distortion) and those at
control points. Inaccuracy of equipment refers to the limited accuracy and precision
of the photogrammetric instrument as well as the limited number of digits used by
a computer; human errors include errors in measurement using float marks and typing
mistakes; coordinate transformation errors include those introduced in relative and
absolute orientation and image matching if automated method is used.

7.1.3 Types of Error in DTM Source Data

Generally speaking, three types of errors can be distinguished, namely,

1. random errors
2. systematic errors
3. gross errors (i.e., mistakes).

In classic error theory, the variability of serious measurements of a single quantity
is due to observational errors. Such errors do not follow any deterministic rule, thus
leading to the concept of random errors. Random errors are also referred to as random
noise in image processing and as white noise in statistics. Random errors have a normal
distribution. For such errors, a filtering process is usually applied to reduce their
effects. This is the topic of Section 7.3 in this chapter.

Systematic errors usually occur due to distortions in source materials (e.g.,
systematic distortion of a map), lack of adequate adjustment of the instrumentation
before use, or physical causes (e.g., photo distortion due to temperature changes).
Alternatively, systematic errors may be the result of the human observer’s limita-
tions, for example, stereo acuity or carelessness such as failing to execute correct
absolute orientation. Systematic errors may be constant or counteracting. They may
appear as a function of space and time. Most practitioners in the area of terrain data
acquisition are aware of systematic errors and strive to minimize them.

Gross errors are, in fact, mistakes. Compared with random and systematic errors,
they occur with a small probability during measurement. Gross errors occur when,
for example, the operator records a wrong reading on the correct point or observes the
wrong point through misidentification, or if the measuring instrument is not working
properly when an automatic recorder is used. Indeed, gross errors often occur in
automatic image matching (due to mismatching of image points).

From a statistical point of view, gross errors are specific observations that cannot
be considered as belonging to the same population (or sampling space) as the other
observations. Therefore, gross errors should not be used together with the other
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observations from the population. Consequently, measurement should be planned
and observational procedures designed in such a way as to allow for the detection of
gross errors so that they can be rejected and removed from the set of observations.
The detection and removal of gross error will be discussed in Section 7.4 to Section 7.8.

7.2 ON-LINE QUALITY CONTROL IN PHOTOGRAMMETRIC
DATA ACQUISITION

On-line quality control is to examine the acquired data during the process of data
acquisition and to correct errors immediately if any. Visual inspection is an approach
often widely used in practice. Four methods will be introduced in this section.
However, the last three can be used for either on-line quality control or off-line
quality checking.

7.2.1 Superimposition of Contours Back to the Stereo Model

In practical applications, on-line quality control in photogrammetric data acquisition
is achieved by superimposition of contour lines back to the stereo model to examine
whether there is any inconsistency between contour lines and the relief on the stereo
model. The contour lines are generated from the data just acquired from the stereo
model. If no inconsistency is found, it means that no gross errors occurred. However,
if there is a clear inconsistency somewhere, it means that there are gross errors and
it will be necessary to edit the data and remeasure some data points. Ostman (1986)
called such an accessory system a graphic editor for DTMs.

Another method is to superimpose the contours interpolated from the measured
DTM data onto the orthoimages to inspect whether there is mutation of contours, or
to compare them with topographic maps and terrain feature points and lines. When
there is relatively great difference of the landforms or elevations of the points, they
need to be measured again and to be edited till the DTM data meet the requirements.
This method is limited to the inspection of the gross errors.

7.2.2 Zero Stereo Model from Orthoimages

An alternative is to compare the orthoimages made from both left and right images.
If both orthoimages are made using the DTM obtained from the same stereo pair
through image matching and there are no obstacles (i.e., buildings and trees) in this
area, then the two orthoimages will form a zero stereo model (i.e., no height infor-
mation in the model) if the DTM used for orthoimage generation is free of errors.
Zero stereo model also indicates that no x-parallax can be observed anywhere on the
model. If parallax does exist, it may result from:

1. errors in the orientation parameters, leading to inconsistency of the left and right
orthoimages

2. something wrong with the image matching of the orthoimage pair
3. errors in the DTM data used for the orthoimage generation.

If the first two possibilities are excluded, then any parallax appearing on the
orthoimage pairs is the direct reflection of the errors of the DTM data.
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7.2.3 Trend Surface Analysis

Most terrains follow certain natural trends, such as continuous gradual spatial change.
The shape of the trends may vary with the genesis of landforms. The continuous
change of terrain surfaces may be described by smooth mathematical surfaces,
referred to as trend surfaces.

A typical trend surface analysis will reveal the greatest deviations from the
general trend in the area. As data points with gross errors appear to be abnormal,
the deviations of data values from the general trend will be obvious. In other words,
gross errors are detected if great deviations from the trend surface are found.

There are different types of trend surfaces. One of them is the least-square trend
surface as follows:

Z(x, y) =
j∑
k=0

k∑
i=0

akix
k−iyi , j = 1, 3 (7.1)

The number of terms to be used for this polynomial function should be selected
according to the size and complexity of the area of interest. For example, in a large
and complex area, a higher-order polynomial should be used.

The critical issue is to set a threshold so that any point with a deviation larger than
this threshold will be suspected of having gross errors. In practice, a value of three
times the standard deviation is often regarded as a reliable threshold. However, due to
the instability of higher-order polynomial surfaces over rough terrain with irregularly
distributed data points, a large deviation does not necessarily mean gross errors at the
point. This is the limitation of trend analysis.

7.2.4 Three-Dimensional Perspective View for Visual Inspection

A fourth method is to create a 3-D surface from the DTM data for interactive visual
inspection. In this way, those points that look unreasonable can be regarded as gross
errors and removed from the data set.

The visualization of a 3-D surface from DTM data is an important application
of DTM and will be addressed in Chapter 12. To create a 3-D surface for visual
inspection, a TIN model can be constructed directly from all of the original data
points so as to ensure that all the analyses will be based on the original data. For
efficiency, it is recommended that a wire net perspective display based on the TIN is
created for a local area around the point to be inspected. Figure 7.1 shows the visual
inspection of contour data. The spikes indicate that wrong height values have been
assigned to some contour points. Such an inspection is intuitive but the results are
likely to be reliable.

7.3 FILTERING OF THE RANDOM ERRORS OF THE ORIGINAL DATA

Because DTM products are obtained after a series of processes from the DTM source
(raw) data, the quality of the source data will greatly affect the fidelity of the DTM
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Figure 7.1 Wire net perspective view of the area around the suspected point.

surfaces constructed from such data and the products derived from the DTM. The
quality of the source data can be judged by using their three attributes (i.e., density,
distribution, and accuracy) as criteria. The quality of a set of data can be considered as
being poor if the data are not well distributed, for example, very few scattered points in
areas of rough and steep terrain but with a high density of points on relatively smooth
and flat areas. However, these first two factors, that is, density and distribution, are
related to sampling and the problems can be solved by employing an appropriate
sampling strategy.

An important factor for the quality of DTM source data is its inherent accuracy.
The lower the accuracy, the poorer the data quality. Accuracy is primarily related to
measurement. After a set of data points have been measured, an accuracy figure can
be obtained or estimated. The accuracy figure obtained for any measured data set is
the overall result of different types of errors. The purpose of this section is to devise
filtering techniques to eliminate or reduce the effects of some of these errors so as to
improve the quality of the final DTM and thus its products.

7.3.1 The Effect of Random Noise on the Quality of DTM Data

Any spatial data set can be viewed as consisting of three components: (a) regional
variations, (b) local variations, and (c) random noise. In digital terrain modeling, the
first is of most interest, because it defines the basic shape of the terrain. Interest in
the second varies with the scale of the desired DTM products. For example, at a large
scale, it is extremely important. However, if a small-scale contour map covering a
large region is the desired product, then this component may be regarded as random
noise because less detailed information about the terrain variations is needed. By
contrast, the third component is always a matter of concern since it may distort the
real picture (appearance) of both regional and local variations on the terrain, but
especially the latter. As a matter of fact, it is difficult to clearly define these three
components. Generally speaking, the high-frequency component of the data can be
regarded as random noise.
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It is important to separate the main components of the data set that are of interest
to the user from the remainder of the information present in the data set, which is
regarded as random noise. The technique used for this purpose is referred to as filtering
and the device or procedure used for filtering is referred to as a filter. A digital filter
can be used to extract a particular component from a digital data set, thus ensuring
that all other components are filtered out. If a digital filter can separate the large-scale
(low-frequency) component from the remainder, this filter is called as a low-pass filter.
By contrast, if a digital filter can separate the small-scale (high-frequency) component
from the remainder, then this filter is referred to as a high-pass filter. However, here
only the low-pass filter is of interest since it is the high-frequency component that
needs to be filtered out.

Before discussing how to filter out random noise, it is necessary to know how
random noise affects the quality of the DTM and its products.

Ebisch (1984) discussed the effect of round-off errors found in grid DTM data on
the quality of the contours derived from the DTM data, and he also demonstrated the
effect of random noise in the DTM data on the contours produced from it. Ebisch first
produced smooth contours (Figure 7.2a) with 1.0-m intervals from a conical surface
represented by a grid of 51 by 51 points. Then, he rounded-off the grid heights to
the nearest 0.1 m to produce another contour map (Figure 7.2b) to show the effect
of round-off error. After that, he added random noise with a maximum amplitude of
±0.165 m to the grid, producing a contour map with zigzag and meandering contour
lines (Figure 7.2c). Figure 7.2(d) shows the contours produced from the DTM data
with both round-off and added random errors. This figure shows the effects of random
noise on the quality of DTM source data and the quality of the contours derived from
these data.

(a) (b)

(c) (d)

Figure 7.2 Effect of round-off errors and random noise on the contours produced from the data
set (Reprinted with permission from Ebisch 1984). (a) Contours produced from the
original data set (a smooth surface). (b) Contours produced from the data set after
rounding off the decimal fraction of original DTM data. (c) Contours produced from
the data set with a random noise of magnitude ±0.165 m added. (d) Contours
produced from the data set with both random noise and round-off errors included.

 



DITM: “tf1732_c007” — 2004/10/20 — 15:44 — page 139 — #7

QUALITY CONTROL IN TERRAIN DATA ACQUISITION 139

7.3.2 Low-Pass Filter for Noise Filtering

A low-pass filter is usually implemented as a convolution procedure, which is an
integral expressing the amount of overlap of one function (X) as it is shifted over
another function (f ). Convolution can take place either as a 1-D or a 2-D operation.
However, the principles are the same in both cases. Therefore, for simplicity, the 1-D
convolution is presented here.

Suppose X(t) and f (t) are two functions, and the result of convolving of X(t)
with f (t) is Y (t). Then, the value of Y (t) at position u is defined as:

Y (t) =
∫ +∞
−∞

X(t)f (u− t)dt (7.2)

In DTM data filtering, X(t) refers to the input terrain data containing random errors;
f (t) can be considered as a normalized weighting function; and Y (t) comprises the
low-frequency components of the terrain variations present in the input data and is
the remaining part after filtering out random noise. Practically, it is not necessary
to have the integration from negative to positive infinity for Equation (7.2). In most
cases, an integral that operates over a restricted length will do.

Certain functions such as a rectangular function, a triangular function, or a
Gaussian pulse can be used as the weighting function for this purpose. The Gaussian
function is more widely used. The expression is:

f (t) = e(−t2/2σ 2) = exp(−t2/2σ 2) (7.3)

The definition of convolution given in Equation (7.3) applies to continuous functions.
However, in DTM practice, the source data are only available in a discrete form.
Therefore, only the discrete convolution operation is of interest here. The principle of
the operation is to use a symmetric function as a weighting function. It will be used
here as the weighting function, since the Gaussian function is symmetric. Its principle
as applied in 1-D is explained below. Suppose,

X(t) = (A1,A2,A3,A4,A5,A6,A7)

f (t) = (W1,W2,W3,W4,W5)

and

Y (t) = (B1,B2,B3,B4,B5,B6,B7)

Then, the discrete convolution operation can be illustrated in Table 7.1. To explain
how it works, the result for B4 can be taken as an example,

B4 = W1 × A2 +W2 × A3 +W3 × A4 +W4 × A5 +W5 × A6

The size of the window and the weights selected for the various data points lying
within the window have a great effect on the degree of smoothing achievable by the
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Table 7.1 Discrete Convolution Operation

X (t ) 0 0 A1 A2 A3 A4 A5 A6 A7 0 0

Operation × + × + × + × + × + × + × + × + × + × + × Results

W1 W2 W3 W4 W5 B1
W1 W2 W3 W4 W5 B2

W1 W2 W3 W4 W5 B3
f (t ) W1 W2 W3 W4 W5 = B4

W1 W2 W3 W4 W5 B5
W1 W2 W3 W4 W5 B6

W1 W2 W3 W4 W5 B7

Table 7.2 Sample Values of the Gaussian Function as Weights for
Convolution

t 0.0× σ 0.5× σ 1.0× σ 1.5× σ 2.0× σ 3.0× σ
f (t ) 1.0 0.8825 0.6065 0.3247 0.1353 0.0111

convolution operation. For example, if only one point is within the window, then no
smoothing will take place. Also, the smaller the differences in the weights given to
the points lying within the window, the larger the smoothing effect it will have. For
example, if the same weight is given to each point within the window, then the result is
simply the arithmetic average. Table 7.2 lists some of the values for the Gaussian pulse
expressed by Equation (7.3). From these values, a variety of weighting matrices may
be constructed. The weight matrix can also be computed directly from Equation (7.3)
using predefined parameters.

7.3.3 Improvement of DTM Data Quality by Filtering

Li (1990) conducted a test on the improvement of DTM data quality by noise filtering.
The source data was generated by using a completely digital photogrammetric system.
The digital photos used in the system were formed from a pair of aerial photos taken
at a scale of 1 : 18,000 using a scanning microdensitometer with a pixel size of 32 µm.
The data were measured in a profiling mode with a 4-pixel interval between measured
points; thus, the interval between any two data points is 128 µm on the photo. The
data points acquired from image matching produced a data set only approximately
in a grid form in this test area, with grid intervals of about 2.3 m. The data are very
dense. In an area of 1 cm × 1 cm at photo scale, approximately 8588 (113 × 76)
points were measured. This data set provides very detailed information about the
terrain roughness. The check points used for this study were measured from the same
photos in hardcopy form using an analytical instrument.

A filter based on the convolution operation described above was used for this test.
Since the original data were not in an exact grid, a 1-D convolution was carried out
on each of the two grid directions rather than a single 2-D operation. Therefore, for
each point, the average of the two corresponding values was used as the final result.
The window size comprises five points in each grid direction. The five weights for
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Table 7.3 Accuracy Improvement with Random Noise Filtering
(Li 1990)

Parameters Before Filtering After Filtering

+Maximum residual (m) +3.20 +2.67
−Maximum residual (m) −3.29 −2.76
Mean (m) 0.12 −0.02
Standard deviation (m) ±1.11 ±0.98
RMSE (m) ±1.12 ±0.98
No. of check points 154 154

3.5555

3.5550

3.5545

3.5540

3.5535

3.5530
2.6520 2.6530 2.65402.65352.6525

3.5555(a) (b)
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400

400

350

Figure 7.3 Improvement of data quality by using a low-pass filter (Li 1990). (a) Contours
generated from the original data. (b) Contour generated from the smoothed data.

these five points were computed according to Equation (7.3) individually since the
point intervals varied. These values before normalization were approximately:

f (t) = (0.135, 0.6065, 1.0, 0.6065, 0.1353) (7.4)

In computing the value for each of these five weights corresponding to each of the
five points lying within the window, the distance of the point to the central point of
the window was used as the value of the variable t in Equation (7.2). Also, the average
value of the intervals between each pair of data points (i.e., 2.3 m) was used as the
variable σ . Table 7.3 shows the comparison between the accuracy of the experimental
DTM data before and after filtering. It is clear that the improvement in RMSE was
about 17%. Figure 7.3 shows the corresponding contours before and after filtering.
It can be seen clearly that the small fluctuations in the contour shapes arising from
noise in the data have to a large extent been removed after the filtering. Therefore,
the presentation of the contours after filtering is also much better visually.

7.3.4 Discussion: When to Apply a Low-Pass Filtering

The data set used in this study was very dense. Realistically, such a dense data set can
only be obtained from devices equipped with automated or semiautomated techniques,
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for example, using image-matching techniques based on automatic image correlation.
In such a data set, loss in the fidelity of the representation of terrain topology is not
likely to be a serious problem. By contrast, the effect of random errors involved in the
measuring process and of any other random noise on the data quality is considerable
at the local or detailed level.

From the study it is clear that the availability of too detailed information about the
roughness of the terrain topography, coupled with the measuring errors likely to be
encountered with image-matching techniques, can have a significant negative effect
on DTM data quality and thus on the quality of derived DTM products. Therefore,
with dense data, a filter such as that based on a convolution operation can be used to
smooth the digital data set and improve the quality.

An important question arising is: “when should a filtering process be applied
to digital data?” That is also to say, “under what circumstances is it necessary to
apply a filtering process to the data?” This is a question very difficult to answer. The
magnitude of random errors occurring during measurement needs to be taken into
consideration. From the literature it can be found that 70 to 90% of photogrammetric
operators are measuring with a precision (RMSE) within the range ±10 to 20 µm
(Schwarz 1982). This could be a good indicator. Alternatively, according to Kubik and
Roy (1986), 0.05‰ of H (flying height) might be regarded as an appropriate value.
Therefore, a rough answer to this question might be that if the accuracy loss arising
from data selection and reconstruction (topographic generalization) is much larger
than this value (0.05‰ of H ), then a filtering process is not necessary. In contrast,
if random noise does form an important part of the error budget, then a filtering
process may be applied to improve data quality.

7.4 DETECTION OF GROSS ERRORS IN GRID DATA BASED
ON SLOPE INFORMATION

Often the presence of gross errors will distort the image (i.e., the appearance) of the
spatial variation present in DTM data sets much more seriously than that resulting
from random noise. In some cases, totally undesirable results may be produced in
the DTM and in the products derived from it, due to the existence of such errors.
Therefore, methods are needed to detect this type of errors in DTM data set and to
ensure their removal from the data set. In Section 7.2, some on-line methods were
described and from this section onward, some off-line methods will be presented.

DTM source data may be either in a regular grid or irregularly distributed. Regular
grid data have a certain special characteristic. That is, they can be stored in a concise
and economic form in a height matrix. This can also help in designing an algorithm
for gross error detection. However, an algorithm suitable for application to grid data
is unlikely to suit irregularly distributed data. Therefore, different approaches need
to be taken for the detection of gross errors in each of these two cases. In this section,
algorithms for the detection of gross errors in a regular grid data set are developed
while two algorithms for detecting gross errors in irregularly distributed data will be
presented in Section 7.5 and Section 7.6.
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7.4.1 Gross Error Detection Using Slope Information: An Introduction

To develop algorithms for gross error detection, the first question is “what kind of
information can be used for this purpose?” Slope is the fundamental attribute of a
terrain point and, therefore, slope information can probably serve as the basis for
the development of suitable algorithms. The second problem to be considered is the
feasibility of obtaining the slope information from the data set. The computation of
the slope of each grid point in different directions does not present a real problem.
In this view, it appears promising to make use of slope information as the basis for
developing algorithms for detection of gross errors. Hannah (1981) and Li (1990)
both have used slope information for such a purpose.

Hannah (1981) developed an algorithm for the reduction of gross errors, based
on the absolute slope values. The principle of Hannah’s algorithm can be described
briefly as follows. As a first step, the slopes between the point under investigation,
say P, and its neighbors (eight if not located on the boundary) are computed. Once
this has been done for the whole data set, three tests are carried out on the slopes.

1. The first test, called a slope constraining test, checks the (eight) slopes immedi-
ately surrounding P to see if they are reasonable, that is, whether they exceed the
predefined threshold value or not.

2. The second, called the local neighbor slope consistency test, checks the four pairs
of slopes crossing P to see if the absolute value of the difference in slope in each
pair exceeds the given threshold value.

3. The third, called the distant neighbor slope consistency test, is similar to the second
test. This test checks whether pairs of slopes approaching a point across each of
the eight neighbors are consistent.

The results of these three tests are used as the basis to judge whether a point is
accepted or rejected. It has been found (Li 1990) that this algorithm produces an
over-smoothing result in areas of rough terrain in order to detect the gross errors or
other unnatural features of relatively smooth terrain.

Li (1990) further pointed out that the most serious demerit of Hannah’s algorithm
is that all the criteria for acceptance or rejection of data are expressed in an absolute
sense. Obviously, absolute slope values and slope differences will vary from place
to place. For example, in an area with rough terrain, absolute slope differences will
be larger than those found in smooth areas. Absolute values of slopes in steep areas
will be larger than those found in flat areas. That is, it is not feasible for an absolute
threshold value to be suitable overall for an area of interest except in a homogenous
area. For this reason, Li (1990) tried to make relative thresholds for his algorithm
development and his algorithm will be presented in the following sub-sections.

7.4.2 General Principle of Gross Error Detection Based on an
Adaptive Threshold

The algorithm developed by Li (1990) is based on the concept of slope consistency.
Instead of absolute values of slope and slope changes, relative values are considered.
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Figure 7.4 Point P in the original grid data and its neighbors.

Furthermore, a statistic is taken from these relative values and is then used as the
threshold value to measure the validity of a data point instead of using a predefined
value. Thus, this algorithm is adaptive to any data set.

As shown in Figure 7.4, data point P can be defined by its row and column number,
(I , J ) within the height matrix. Its eight immediate neighbors — points 5, 6, 7, 10,
12, 15, 16, and 17 — can also be defined by row and column as (I + 1, J − 1),
(I + 1, J ), (I + 1, J + 1), (I , J − 1), (I , J + 1), (I − 1, J − 1), (I − 1, J ), and
(I − 1, J + 1). From these eight points and point P itself, six slopes can be computed
in both the row (i.e., I ) and the column (i.e., J ) directions. Taking the row direction
as an example, six slopes — those between points 5 and 6, 6 and 7, 10 and P, P and
12, 15 and 16, as well as 16 and 17 — can be computed. From the set of six slope
values, three slope changes can then be computed. For example, the slope changes at
points 6, P, and 16 can be computed from those values mentioned above. These initial
values are given in an absolute sense and will vary from place to place. Therefore,
some relative values need to be computed from them.

If there is no gross error at point P, then for the same direction (e.g., the row
direction), the difference in the slope change (DSC) at point P and that at its immediate
neighbor (e.g., point 6 or 16) located in the row direction will be consistent, even
though the absolute values of slope and slope change may vary from place to place.
Therefore, these differences in slope change are the relative values that are being
searched for and can be used as the basis of a method for detecting gross errors.

That is, for each point except those along the boundary, two DSC values can
be computed from the three slope changes in each direction. The DSC values from
all the data points will be used as the basic information for this algorithm. From
these DSC values, a statistic will be computed and it will then be used to construct
the required threshold value. Then, this threshold value will be used as the basis on
which a judgment is made as to whether or not a point has a gross error in elevation.
For example, if all four DSC values centred at P exceed the threshold value, then P
will be suspected of containing gross errors.
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7.4.3 Computation of an Adaptive Threshold

In this computation, first of all, the DSC values in both row and column directions
are computed and then these DSC values are used to compute an adaptive threshold.

The computation of the slope (Slope) in the J direction, for example, is as follows:

Slopej (I + 1, J − 1) = Z(I + 1, J )− Z(I + 1, J − 1)

Dist(J − 1, J )
(7.5)

where Dist(J − 1, J ) is the distance between the nodes at (I + 1, J ) and
(I + 1, J − 1), that is, equal to the grid interval.

Similarly the values Slopej (I + 1, J ), Slopej (I , J − 1), Slopej (I , J ),
Slopej (I − 1, J − 1), and Slopej (I − 1, J ) can be calculated. The computation of
slopes in the other (I ) direction is similar. After calculating the slopes, three slope
changes (SlopeC) in each direction can be computed. For example, in the J direction,
the computation is as follows:

SlopeCj (I , J ) = Slopej (I , J )− Slopej (I , J − 1) (7.6)

Also, SlopeCj (I + 1, J ) and SlopeCj (I − 1, J ) can be computed similarly. The
computation of slope changes in the I direction is also similar. After this, two
differences in slope change (DSlopeC) for the point (I , J ) in each direction can
be computed as follows:

J direction:

DSlopeCj (I , J , 1) = SlopeCj (I , J )− SlopeCj (I + 1, J )

DSlopeCj (I , J , 2) = SlopeCj (I , J )− SlopeCj (I − 1, J )
(7.7)

I direction:

DSlopeCj (I , J , 1) = SlopeCj (I , J )− SlopeCj (I , J + 1)

DSlopeCj (I , J , 2) = SlopeCj (I , J )− SlopeCj (I , J − 1)
(7.8)

All DSC values calculated from all the data points will be used for computation
of a statistic, which will then be used as threshold for acceptance or rejection of the
point. For such a statistic, the absolute mean, the range (biggest minus smallest),
the mode, the RMSE, as well as the standard deviation and mathematical mean are
all possible options. Li (1988) made a thorough analysis on the possible statistics and
Li (1990) made some observations from experiments and then concluded that RMSE
is as good as the combination of the mathematical mean and standard deviation.
Thus, the threshold value is simply K times RMSE of the DSC values, that is,

DSCT = K × RMSE(DSC) (7.9)
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where K is a constant. It has been found that the DSC values are quite normally
distributed and thus a value of 3 has been used for the constant K . There are three
possible ways to compute RMSE values:

1. Compute the only RMSE value from all DSC values at all the data points in all
directions.

2. Compute four RMSE values from the DSC values at all the data points, one for
each of the four directions (above, left, below, and right) defining each data point.

3. Compute two RMSE values, one of which is related to the row (i.e., the I ) direction
and the other to the column (i.e., the J ) direction. In this case, the two DSC values
of each point in the same direction, say the J direction, are added together to get a
new value and the RMSE value can be computed from these new values.

Theoretically, the last method is most reasonable because the absolute value of a
sum of the two DSC values at the same point (e.g., P) in the same direction (e.g., in
the J direction) will become smaller (approaching 0) if the slope change is consistent,
and it will become larger if it is not consistent. Li (1990) tried different criteria and
his results proved this point.

7.4.4 Detection of Gross Error and Correction of a Point

All the methodology described above is designed to judge whether or not a point has a
gross error. A particular threshold value for an individual direction is used as the basis
for judgment. If the threshold is exceeded, then this point is regarded as unnatural in
the neighborhood and is suspected of having a gross error.

The procedures used for detecting a gross error in all the methods described above
are similar. The only difference is to compare the DSC values with the overall RMSE
or a particular RMSE value. Taking the second method as an example, if the absolute
value of the DSC at a point along a single side is greater than the threshold value —
K times the RMSE of this side — then the point is suspected of being unnatural
compared to the values in the neighborhood. If all four sides around the point are
suspect, then this particular point will be suspected of having a gross error. In most
cases, if three sides of a point are suspected, then again it is regarded as having a
gross error. For the last method, if a point is suspected in both the row and the column
directions, then it is regarded as containing a gross error.

It is possible that some gross errors have not been detected in a single run if they
are located close together, in that case, a point that has a gross error may still be
considered natural if its neighbors also have gross errors of a similar magnitude. This
means that a further detection of the remaining gross errors may be necessary. To
improve the results in the next run, correction of those points found to have gross
error must be done first. The principle of data correction used in this algorithm is as
follows: In Figure 7.4, suppose that point P is the point containing a gross error, and
points 1 to 20 are its neighbors. In the process of detecting gross errors, the slope
and slope change values at all these points have been calculated (except those points
near boundaries). From points 6, 16, 10, and 12, four estimates have been made.
The estimate from Point 10 may be taken as an example. The average of the slope
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change values at points 5 and 15 (in the J direction) are taken as the estimated slope
change at point 10 (in the same direction). The new slope at point 10 (to P) can then
be computed as follows:

Slope(10, J ) = Slope(9, J )+ SlopeC(5, J )+ SlopeC(15, J )

2
(7.10)

where Slope(10, J ) and Slope(9, J )denote the slopes at points 10 and 9 in the J
direction, respectively, and SlopeC(5, J ) and SlopeC(15, J ) denote the slope changes
at points 5 and 15 in the J direction, respectively.

These slope values are used to compute the height values of point P. Finally,
the average of four such estimates is used as the height estimate for point P. If either
points 9 or 10 is suspected of having a gross error, or if other neighbors in this side
(points 4, 5, 6, 14, 15, and 16 ) are suspected of having gross errors, then any estimate
from this side will be unreliable and should not be used. It is also possible that no
reliable estimate can be made for point P in a single run. Therefore, some form of
interactive processing is needed.

7.4.5 A Practical Example

Figure 7.5 shows how this algorithm works. Figure 7.5(a) shows the contours pro-
duced from a set of original DTM data. Clearly, some residual errors exist producing
unnatural features in some of these contours. After applying gross error detection
procedures, the corresponding contour plot, as shown in Figure 7.5(b), illustrates that
these unnatural features have been removed.

7.5 DETECTION OF ISOLATED GROSS ERRORS IN
IRREGULARLY DISTRIBUTED DATA

In an irregularly distributed data set, the information that is conveniently available
to users is the set of X, Y , Z coordinates of the data points. Therefore, the height
for every data point and its neighbors can be used to assess the validity of the data
elevations. The algorithm to be described in this section (Li 1990) is based on this
height information.

112

114

116

112

114

116(a) (b)

Figure 7.5 An example of contours produced from the data set before and after gross
error removal: (a) contours generated from original data and (b) contours generated
after removal of gross errors.
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Gross errors may be scattered as isolated occurrences or they might occur in
clusters. In the latter case, the situation is more complicated. In this section, an algo-
rithm for detecting individual gross errors scattered in the data set will be discussed.
Then, in Section 7.6, this algorithm will be modified to suit the detection of gross
errors occurring in clusters.

7.5.1 Three Approaches for Developing Algorithms for Gross
Error Detection

Depending on the size of the area, three approaches can be distinguished for the
development of algorithms for gross error detection, namely global, regional, and
local approaches.

Any method using a global approach must involve the construction of a global
surface through all points in the data set using a high-order polynomial function
and then checking the deviation of each data point from the constructed surface.
If the deviation is greater than the threshold value, then this point is considered to
have a gross error. The threshold value might be predefined or it may be computed
from the deviations of the heights of the data points from the global surface. This
was discussed in Section 7.2 as tread surface analysis. Global techniques, as Hannah
(1981) pointed out, “have the drawback that they give identical treatment to all areas.”
However, terrain is rarely uniform in roughness, so the uniform application of a global
technique to an area may result in too many points being regarded as having gross
errors in rough areas, whereas in fact they do not, while failing to detect gross errors
in relatively smooth areas. That is to say, the final result could be totally undesirable
or misleading.

The methods employed in a regional approach could be similar to those used in
the global approach, that is, constructing a regional surface by use of a polynomial
function and then checking the deviations of the data points from the specific surface.
The difference is the size of the area of the surface. The adequacy of this approach
depends partly on this.

A major drawback in using a polynomial function to fit the terrain surface, regard-
less of the size of the area that such a surface covers, is that those points that have
gross errors will also have been used to construct the DTM surface. In this case, all
points near the particular point with a large gross error may have large deviations
from the constructed DTM surface due to the large influence of the erroneous point
on the constructed surface. Thus, they may all be identified as having gross errors
when in fact this is not the case.

If a local approach is employed, then the use of a polynomial surface to fit the data
points can be avoided. A method similar to that used in pointwise interpolation can be
employed. This involves comparing the height of the point with a representative value
such as the average height derived from the heights of its neighbors. As a result, if
the difference is larger than a certain threshold value, then this point can be regarded
as having a gross error.

The principle of the pointwise method is very simple and intuitive and the
computation is also not complex. A simple algorithm that has been developed by
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Li (1990) will be described in this section. Felicísimo (1994) has also developed
a similar algorithm but it is omitted here.

7.5.2 General Principle Based on the Pointwise Algorithm

For a specific point P, a window of a certain size is first defined centered on P.
Then, a representative value will be computed from all the points located within this
window. This value is then regarded as an appropriate estimate for the height value of
the point P. Or this value can be regarded as the true value of point P. By comparing
the measured value of P with the representative value estimated from the neighbors,
a difference in height can be obtained. If this difference is larger than the computed
threshold value, then this point is suspected of having a gross error. The computation
of the threshold will be discussed later.

In this method, the height of point P is not taken into consideration when com-
puting the representative value for P. Therefore, the height of point P has no influence
on the estimated value derived from the neighbors. This provides more reliable
information about the relationship between P and its neighbors.

7.5.3 Range of Neighbors (Size of Window)

The range of the area within which neighboring points will be searched for is specified
by a window centered on point P. This can be specified by defining either an area or
the number of nearest points required. The former can be expressed as follows:

X range:

XP −Dx < Xi < XP +Dx (7.11a)

Y range:

YP −Dy < Yi < YP +Dy (7.11b)

where XP and YP are the coordinates of P — the point under inspection; Xi and Yi
are the X and Y coordinates of the ith point in the neighborhood; and Dx and Dy are
the half-window sizes in the X and Y directions, respectively.

Also, a combination of both criteria can be used. The average window size can
be computed according to the total number of points and the coordinate range of the
area. This average value can be used as the initial window size. In an area with a
higher density of points, the number of points lying within a window of this size will
be larger than average. However, in a lower-density area, only a few points may be
located inside such a window. Therefore, a minimum number of points may also need
to be specified. If the number of points within a window is smaller than the specified
value, then the window is enlarged a little until the specified number of points is
reached.
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7.5.4 Calculating the Threshold Value and Suspecting a Point

In this algorithm, the average height of the neighbors is used as the representative
value. This value can be computed in either of two ways. One is to simply take the
arithmetic mean and the other is to use a weight for every point according to its
distance from the point, making the weight inversely proportional to the distance.

The weighted mean should be closer to the real value of P if there are no gross
errors in the neighborhood. However, if a point with a large gross error is close to P,
then the weighted mean will be greatly affected by this point, thus producing an
unreliable value. Therefore, the simple arithmetic mean may be more desirable. In
fact, practical tests confirm this. In addition, the calculation of the simple arithmetic
mean takes much less computation time. It is, therefore, used in this algorithm.

In this algorithm, the height differences of all points are used to compute a
statistical value, which will then serve as the basis for determining a threshold value.
SupposeMi is the arithmetic mean of the neighboring points centered at the ith point
in the data set and the difference between the Mi and the height value of this (ith)
point (Hi) is Vi , then

Vi = Hi −Mi (7.12)

If the data set hasN points, then the total number of V values is alsoN . The required
statistical value can be computed from these values of V . In this study, the math-
ematical mean (µ) and standard deviation (σ) are computed from V values and are
then used as the basis for calculating the threshold value:

VThreshold = K × σ (7.13)

where K is a constant and in this algorithm K = 3.
After the threshold value has been set, every point in this data set can be checked.

For any point i, if the absolute value of (Vi − µ) is larger than this threshold value,
it is suspected of containing a gross error.

7.5.5 A Practical Example

The distribution of the data set and the contours generated from it are shown
in Figure 7.6. Figure 7.6(a) shows the irregular distribution of the data points.
Figure 7.6(b) (the corresponding contour plot) shows clearly that there are gross
errors in the data set, especially in the upper-left corner. The size of this area is about
4.5 cm× 4.5 cm on the photo and about 800 m× 800 m on the ground. Within this
area, the height value of 3496 points was measured by image matching.

In this example, the simple arithmetic mean was used as the representative value
derived from the neighboring points while the window size was defined by the com-
bination of specifying an area size and a certain number of points. The minimum
number of points was initially defined as five. As a result, the algorithm did not work
well. The number was gradually increased and it was found that a number between
15 and 20 gave the best results.
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Figure 7.6 Distribution of acquired points with gross errors. (a) The distribution of data points.
(b) Unnatural contour produced.
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Figure 7.7 Detection and removal of gross errors from a data set: (a) gross error points detected
and (b) the data set after removal of gross errors.

After applying this algorithm, those points that generated the unnatural contours
were detected and their locations plotted in Figure 7.7(a). The data points after
removal of those erroneous points were used to produce the contour map shown
in Figure 7.7(b). It can be seen that this algorithm worked well.

7.6 DETECTION OF A CLUSTER OF GROSS ERRORS IN
IRREGULARLY DISTRIBUTED DATA

7.6.1 Gross Errors in Cluster: The Issue

It must be pointed out that the algorithm described in the previous section works only
in the case of isolated gross errors. When the gross errors are in cluster, the algorithm
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Figure 7.8 A set of data with gross errors in cluster. (a) Distribution of the original data set.
(b) Contours from the original data set with gross errors.

will fail to work. Figure 7.8(a) shows the distribution of a set of data obtained from
image matching. The corresponding contour plot is shown in Figure 7.8(b). The
size of this area is about 4.0 cm × 2.2 cm on the photo and about 700 m × 400 m
on the ground. In total, the elevation values of 4733 points were available within
this area. Some gross errors are present in the data set, as can be seen clearly from
Figure 7.8(b).

The algorithm with all the parameters and window size set in the previous example
was applied and the result is shown in Figure 7.9. From the contour plot, it can be seen
that there are still some gross errors left in the data set. A much larger window size
(containing 60 points) was used, but the algorithm still failed to detect gross errors
because the remaining gross errors occurred in clusters. In this section, an algorithm
for detection of such errors in cluster developed by Li (1990) will be presented.
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Figure 7.9 Result after removal of gross errors in isolation. (a) Gross error points detected.
(b) Contours from the data set after removal of isolated gross errors.

7.6.2 The Algorithm for Detecting Gross Errors in Clusters

Theoretically, the use of an increased window size should solve the problem of detect-
ing gross errors in clusters. However, an algorithm may still fail to work with a window
size of up to 60 points, as discussed in the previous section. If the window size is
increased more, it might work in some cases, but the results may not be satisfactory
since the representative value derived from the neighboring points may then have
deviated from what it should be, thus leading to an erroneous conclusion being made.
There should be an alternative solution.

The idea behind the development of this algorithm is to find those points that have
the most influence on the representative value, that is, the average value in this case.
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Then, these points would not be used to compute the representative value. The method
used for point data snooping in a window is similar to the idea used in the previous
algorithm. The procedure used is as follows.

Take the first point out of the window and calculate a new value of the repre-
sentative value from the remaining points; then, compute and record the difference
between this average and the original one. This procedure is then applied to every
point in the window. Suppose there are N points in the window, then N differences
can be obtained as follows:

Vi = MPi −MP (7.14)

where MP is the average value computed from all the points in the window; MPi is
the average value computed from all the remaining neighboring points in the window
other than the ith point, which was taken out of the window; and Vi is the difference.
The rest of the procedure is the same as was used for the previous algorithm. That is,
the M values of V are used to compute a single statistical value, which is then used
as the basis on which to construct a threshold value for snooping data points within
the window. After that, every value of V can be checked. If any value of V , say Vj ,
exceeds this threshold value, then point J will be suspected of having gross errors and
excluded from this window. In this way, all points that appear to make a great change
in the representative value in a window will be excluded.

This point data detecting technique is then applied to each window. After this has
been done, the rest of the procedure is exactly the same as the procedures described
in the previous section, that is, computing a representative value, constructing a
threshold value, and identifying suspect points.

7.6.3 A Practical Example

This algorithm was applied to the data set shown in Figure 7.8. The gross errors
detected by this algorithm are plotted in Figure 7.10(a) and the contours produced
from the data set after removal of gross errors are shown in Figure 7.10(b). It can be
seen from Figure 7.10(b) that there is still a point with a small gross error located
in the northwest of the test area since it produces an unnatural contour in that part
of the plot. The reason why this point was not detected by this algorithm could be
due to the fact that, in applying this algorithm, a larger window size needs to be
used. For example, a minimum number of 35 points was specified. However, the use
of a large window size resulted in a decrease in the sensitivity of this algorithm to
gross error.

Inspection of Figures 7.10(a) and Figure 7.8(a) reveals that the majority of the
gross errors detected by these two algorithms are identical. However, each may
miss one or more points for the reasons discussed previously. Therefore, using both
algorithms together may produce a more desirable result, because all points detected
by both of them should be deleted from the data set. Figure 7.11 shows the gross errors
detected by both algorithms. It can be found that a much more reasonable result was
produced after removing them.
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Figure 7.10 Results obtained by algorithm for detecting a cluster of gross errors: (a) gross error
points detected and (b) contours from the data set after removal of gross errors.

7.7 DETECTION OF GROSS ERRORS BASED ON TOPOLOGIC
RELATIONS OF CONTOURS

7.7.1 Gross Errors in Contour Data: An Example

As has been discussed previously, contour data are one of the main sources for digital
terrain modeling. From analog map to digital data, one has to digitize the contour
lines. During the course of digitization, elevation values of contours are normally
entered by the operator. Quite often, the data points are recorded as follows:

1. N1 (number of points in contour 1), H1 (height of contour 1)
• X1 (X coordinates of point 1), Y1 (Y coordinates of point 1)
• X2 (X coordinates of point 2), Y2 (Y coordinates of point 2)
• · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
• XN1 (X coordinates of point N1), YN1 (Y coordinates of point N1)

2. N2 (number of points in contour 2), H2 (height of contour 2)
• X1 (X coordinates of point 1), Y1 (Y coordinates of point 1)
• · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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Figure 7.11 Results obtained from the complementary use of these two algorithms: (a) gross
error points detected and (b) contours from the data set after removal of gross
errors.

Such a manual operation is subject to mistakes, as shown in Figure 7.12. In this
figure, the contour interval is 10 m. The elevation values are 50, 60, 70, 80, 90, 100,
and 110 m. It is obvious that the elevation value of the third contour as indicated in
this figure, that is, the 170 m, must be a mistake.

It should be pointed out that there might be cases where contour lines are broken
(Figure 7.13). For example, when the slope is nearly vertical and the contours overlap,
some contour lines will be broken. Other cases are the space required for indexing
and areas with escarpment or faults. In such cases, the elevations of broken lines are
more prone to error.

7.7.2 Topological Relations of Contours for Gross Error Detection

There are two possible approaches for the detection and removal of gross errors in a
contour data set. One is to regard all the contour data as random points and then to
apply the algorithms described in the previous sections. The other is to employ the
topological relations between neighboring contour lines so as to detect and remove
gross errors.
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Figure 7.12 Contours digitized from a 1 : 10,000 scale map, with a gross error introduced.
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Figure 7.13 Relations between elevation values of adjacent contours.

Consider the fact that the elevation values of all points on the contour are wrong
if the elevation of a contour line is erroneously given. If a contour is long, it is
not efficient to employ the algorithms described in the previous sections. Therefore,
considering the topological relations of contours is more reasonable and efficient.

There are three possible relations between elevation values of neighboring
contours:

1. increase in elevation
2. decrease in elevation
3. equal elevation.

Figure 7.13 illustrates these three cases. According to these relations, it can be judged
whether the elevation of a contour is wrong.
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CHAPTER 8

Accuracy of Digital Terrain Models

The accuracy of DTMs is of concern to both DTM producers and users. For a DEM
project, accuracy, efficiency, and economy are the three main factors to be considered
(Li 1990). Accuracy is perhaps the single most important factor to be considered
because, if the accuracy of a DEM does not meet the requirements, then the whole
project needs to be repeated and thus the economy and efficiency will ultimately be
affected. For this reason, this chapter is devoted to this topic.

8.1 DTM ACCURACY ASSESSMENT: AN OVERVIEW

8.1.1 Approaches for DTM Accuracy Assessment

A DTM surface is a 3-D representation of terrain surface. Unavoidably, some errors
will be present in each of the three dimensions of the spatial (X, Y , Z) coordinates
of the points occurring on DTM surfaces. Two of these (X and Y ) are combined to
give a planimetric (or horizontal) error while the third is in the vertical (Z) direction
and is referred to as the elevation (or height) error.

The assessment of DTM accuracy can be carried out in two different modes,
that is,

1. the planimetric accuracy and the height accuracy can be assessed separately
2. both can be assessed simultaneously.

For the former, accuracy results for the planimetry can be obtained separately
from the accuracy of these results in a vertical direction. However, for the latter, an
accuracy measure for both error components together is required.

There are four possible approaches for assessing the height accuracy of the
DTM (Ley 1986), namely,

1. Prediction by production (procedures): This is to assess the likely errors intro-
duced at the various production stages together with an assessment of the vertical

159
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accuracy of the source materials. The accuracy of the final DTM is the consequence
or concatenation of the errors involved in all these stages.

2. Prediction by area: This is based on the fact that the vertical accuracy of contour
lines on a topographic map is highly correlated with the mean slope of the area.

3. Evaluation by cartometric testing: This is about experimental evaluation. It is
argued by many that the entire model rather than the node should be tested. For such
a test, a set of checkpoints is required.

4. Evaluation by diagnostic points: A sample of heights is acquired from the source
materials at the time of data acquisition and this set of data is used to check the
quality of the model. This can be conducted at any intermediate stage as well as at
the final stage.

There are three approaches for assessing the planimetric accuracy of DTM
(Ley 1986), namely:

1. No error: It is argued that a DTM provides use of a set of heights with planimetric
positions, which are inherently precise.

2. Predictive: Similar to the prediction by area used for vertical accuracy.
3. Through height: To fix the positions of node heights by comparing a series of points.

However, as he also mentioned, it is difficult to bring these into practice. This is
perhaps the reason why the issue of planimetric accuracy is rarely addressed.

An alternative approach is to simultaneously assess the vertical and horizontal
accuracies. In doing so, a measure capable of characterizing the accuracy in three
dimensions is required. Ley (1986) suggested using a comparative measure of
the mean slopes between the DTM surface and the original terrain surface. Others
have also considered the use of other geomorphometric parameters as well as terrain
feature points and lines. However, there is no consensus. Most people follow the
practice of assessing the contour accuracy, that is, assessing the vertical accuracy only.

8.1.2 Distributions of DTM Errors

In the field of DTM data acquisition, it is usually assumed that errors in spatial data
are normally distributed. However, it is not necessarily the case for DTM errors,
as shown in Figure 8.1. These two sets of data were obtained from an experimental
test conducted by Li (1990). Figure 8.1(a) is the result for the Sohnstetten area
with a sample size of 1892 points and Figure 8.1(b) is the result for the Spitze area with
a sample size of 2115 check points. Some information about these experimental
tests is given in Section 8.2.

To understand the distributions better, the frequency of occurrence of large errors
was also recorded. Table 8.1 lists the results (Li 1990). To show how the distribu-
tions deviate from the normal contribution, the theoretical values for the occurrence
frequency of large errors are also listed. From this table, it is clear that curves
of the distribution of DTM errors are flatter than the standard normal distribution
N (0,1).
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Figure 8.1 Distribution of DTM errors (Li 1990): (a) for Sohnstetten area (1892 checkpoints)
and (b) for Spitze area (2115 checkpoints).

8.1.3 Measures for DTM Accuracy

Letf (x, y)be the original terrain surface andf ′(x, y)be the constructed DTM surface,
then the difference, e(x, y), where

e(x, y) = f ′(x, y)− f (x, y) (8.1)
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Table 8.1 Occurrence Frequency of Large Errors in DTM

Test Area Grid Interval (m) >2σ (%) >3σ (%) >4σ (%)

Uppland

√
2× 20 4.5 1.0 0.3

40 5.1 1.1 0.3√
2× 40 5.2 1.3 0.3

80 5.6 1.2 0.3

Sohnstetten

20 5.6 1.7 0.8√
2× 20 6.0 1.5 0.6

40 6.6 1.5 0.3√
2× 40 6.1 1.5 0.3

Spitze

10 5.0 2.3 1.5√
2× 10 5.8 2.7 1.2

20 5.4 2.7 1.4
N (0,1) 4.6 0.3 0.01

is the error of the DTM surface. Following a similar treatment by Tempfli (1980),
the mean square error (mse) can be used as a measure for DTM accuracy, where

mse =
∫∫

e2(x, y) dxdy (8.2)

e(x, y) is a random variable in statistical terms (Li 1988) and magnitude and spread
(dispersion) are the two characteristics of random variable. To measure the magnitude,
some parameters can be used such as the extreme values (emax and emin), the mode
(the most likely value), the median (the frequency center), and the mathematical
expectation (weighted average). To measure the dispersion, some parameters such as
the range, the expected absolute deviation, and the standard deviation can be used.

To summarize, in addition to the mse which is in common use, the following
parameters can also be used to measure DTM accuracy:

Range:
R = emax − emin (8.3)

Mean:

µ =
∑

e

N

Standard deviation:

σ =
√∑

(e − µ)2

N − 1
(8.4)

The use of range, R, may lead to a specification of DTM accuracy something
like the American National Map Accuracy Standard. But some characteristics of this
measure might be objectionable, that is,

1. The value R depends on only two values of the random variable and others are all
ignored.

2. The probability of the values in e(x, y) is ignored.
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Therefore, the combination of mean and standard deviation is preferred although the
distribution of DTM errors is not necessarily normally, as shown in Figure 8.1.

This is because most of the probability distribution is massed with 4σ distance
from µ, according Chebyshev’s theorem (Burington and May 1970). Chebyshev’s
theorem states that the probability is at least as large as 1− 1/k2 that an observation
of a random variable (e) will be within the range from µ− k × σ to µ+ k × σ , or

P(|e − µ| > k × σ) <
1

k2
(8.5)

where k is any constant greater than or equal to 1. If the normal distribution is used
to approximate the distribution of e(x, y), the standard deviation computed from
Equation (8.4) has the special meaning that is familiar to us.

8.1.4 Factors Affecting DTM Accuracy

The accuracy of the DTM is a function of a number of variables such as the roughness
of the terrain surface, the interpolation function, interpolation methods, and the three
attributes (accuracy, density, and distribution) of the source data (Li 1990, 1992a).
Mathematically,

ADTM = f (CDTM,MModeling,RTerrain,AData,DData, DNData,O) (8.6)

where ADTM is the accuracy of the DTM; CDTM refers to the characteristics of the
DTM surfaces; MModeling is the method used for modeling DTM surfaces; RTerrain
is the roughness of the terrain surface itself; AData, DData, and DNData are the three
attributes (accuracy, distribution, and density) of the DTM source data; andO denotes
other elements.

The roughness of the terrain surface determines the difficulty of DTM represen-
tation of terrain. If the terrain is simple, then only a few points need to be sampled
and the surface to be used for reconstruction will be very simple. For example, if the
terrain is flat, only three points are essential and a plane can be used for modeling this
piece of terrain surface. On the other hand, if the surface is complex, then more points
need to be measured and higher-order polynomials may have to be used for modeling
this terrain. The descriptors for the complexity of terrain surfaces have already been
introduced in Chapter 2. Among the various descriptors, slope is the most important
one widely used in the practice of surveying and mapping and will be used later in
the development of the DTM accuracy model.

A DTM surface can be constructed by two methods. One is to construct it directly
from the measured data and the other is indirect. In the latter, the DTM surface is con-
structed from grid data that are interpolated via a random-to-grid interpolation. The
accuracy of the DTM surface constructed indirectly will be lower than the accuracy
of that constructed directly, due to accuracy loss in the random-to-grid interpolation
process.

As discussed in Chapter 4, three types of DTM surfaces are possible, discontinu-
ous, continuous, and smooth. It has been found that the continuous surface consisting
of a series of contiguous linear facets is the least misleading (or the most trustable).
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The three attributes of the source data (distribution, accuracy, and density) will
also have a great influence on the accuracy of the final DTM. If there are a lot of points
in the smooth or flat areas and few points in the rough areas, then the result will not
be satisfactory. This is the combined effect of distribution and density, which was
discussed in Chapter 2. The third attribute, the accuracy of the source data, will be
discussed in detail in this section. Undoubtedly, errors in source data are propagated
to the final DTM during the modeling process.

It has already been discussed in Chapter 3 that aerial photographs and existing
topographical maps are the main data sources for digital terrain modeling. The
accuracy of photogrammetric data is affected by the following factors:

1. the quality and scales of the photographs
2. the accuracy and physical conditions of the photogrammetric instruments used
3. the accuracy of measurement
4. the stereo geometry of aerial photographs.

Generally, the accuracy of photogrammetric data is 0.07 to 0.1H‰ if acquired by
using an analytical photogrammetric plotter or 0.1 to 0.2H‰ if acquired by using an
analog photogrammetric plotter. Here, H is the flying height, that is, the height of the
aerial camera when the photographs were taken (usually with a wide-angle camera
with a focal length of 152 mm and a frame of 23 cm×23 cm). It refers to the accuracy
of static measurement. However, if the measurement is dynamic (e.g., contouring
and profiling), the accuracy is much lower. The speed of measurement is also an
important factor. Various experimental tests (e.g., Sigle 1984) reveal that the accuracy
of photogrammetrically measured data is about 0.3H‰. Some experiments (e.g.,
Gong et al. 2000) also reveal that the accuracy of photogrammetric data acquired by a
fully digital photogrammetric system is not as high as that from an analytical plotter.

The accuracy of contouring data obtained from digitization is affected by the
following factors:

1. the accuracy and physical condition of the digitizer
2. the quality of the original map
3. the accuracy of measurement.

The accuracy of contours can be written as:

mc = mh +mp × tan α (8.7)

wheremh refers to the accuracy of height measurement;mp is the planimetric accuracy
of the contour line; α is the slope angle of the terrain surface; and mc is the overall
height accuracy of the contours, including the effect of planimetric errors.

Usually, the accuracy specifications for contours all appear in the form of
Equation (8.7). A summary of such specifications is given in Table 8.2. Accuracy
loss during the digitization process is about 0.1 mm in point mode and 0.2 to 0.25 mm
in stream mode. In any case, the overall accuracy of digitized contour data will be
still within a 1/3 contouring interval.
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Table 8.2 Some Examples of Contour Accuracy Specifications

Country Scale Accuracy of Contours (m)

France 1:5000 0.4+ 3.0× tanα

Switzerland 1:10,000 1.0+ 3.0× tanα

Britain 1:10,560
√

1.82 + (3.0× tanα)2

Italy 1.8+ 12.5× tanα

France 1:25,000 0.8+ 5.0× tanα

Finland 1.5+ 3.0× tanα

America 1:50,000 1.8+ 15× tanα

Switzerland 1.5+ 10× tanα

Table 8.3 Comparison of the Accuracy of DTM Data Obtained by
Different Techniques

Methods of Data Acquisition Accuracy of Data

Ground measurement (including GPS) 1–10 cm
Digitized contour data About 1/3 of contouring interval
Laser altimetry 0.5–2 m
Radargrammetry 10–100 m
Aerial photogrammetry 0.1–1 m
SAR interfereometry 5–20 m

For convenience of reference, the accuracy of DTM source data from various
sources is summarized in Table 8.3.

8.2 DESIGN CONSIDERATIONS FOR EXPERIMENTAL TESTS
ON DTM ACCURACY

8.2.1 Strategies for Experimental Tests

As stated previously, the accuracy of a DTM is the result of many individual factors,
that is,

1. the three attributes (accuracy, density, and distribution) of the source data
2. the characteristics of the terrain surface
3. the method used for the construction of the DEM surface
4. the characteristics of the DEM surface constructed from the source data.

Accordingly, six strategies for an experimental testing of DEM accuracy
are possible (Li 1992a), in each of which only one of the six factors is used as
the independent variable and the other five as controlled variables:

1. The accuracy of the source data could be varied while all the other factors remain
unchanged. This can be achieved by using different data acquisition techniques

 



DITM: “tf1732_c008” — 2004/10/22 — 16:37 — page 166 — #8

166 DIGITAL TERRAIN MODELING: PRINCIPLES AND METHODOLOGY

such as GPS, photogrammetry, and other methods. It can also be achieved by using
the same type of data acquisition techniques but with different accuracies.

2. The density of the source data could be varied while all other factors remain
unchanged. This can be achieved by using different sampling intervals or data
selection methods. Alternatively, resampling without involvement of interpolation,
as discussed in Chapter 4, can be applied to a set of data with finer resolutions
(i.e., smaller intervals) to coarser resolution (i.e., larger intervals).

3. The distribution of source data could be varied while all other factors remain
unchanged. This can be achieved by using different sampling patterns or data
selection methods. In digital terrain modeling practice, grid and contour data are
the two types of basic data patterns that have been widely used. Another two types
of data are also widely used, that is, with or without feature points (i.e., top of hills,
bottom of valleys, points along ridge lines, points along ravine lines, points along
the edge of terrace, saddle points, etc.).

4. The type of terrain could be varied while all other factors remain unchanged.
This is achieved by using terrain surface with various types of relief.

5. The type of DTM surface could be varied while all other factors remain unchanged.
This is achieved by using different types of discontinuous, continuous, and smooth
surfaces for DTM surface reconstruction.

6. Two types of modeling methods are used to construct two types of surfaces,
that is, direct modeling using triangulated networks and indirect modeling using
a random-to-grid interpolation to form a grid network.

8.2.2 Requirements for Checkpoints in Experimental Tests∗

In experimental tests on DTM accuracy, a set of checkpoints is used as the ground
truth. Then, the points interpolated from the constructed DTM surface are checked
against the corresponding checkpoints. After that, the difference between the two
heights at each point is obtained. These differences are used to compute statistical
values, as discussed in Section 8.1. It is clear that the final DTM accuracy figures
are definitely affected by the characteristics of the set of checkpoints. In other words,
the final estimates may be affected by the three attributes of the set of checkpoints,
that is, accuracy, sample size (number of points), and distribution, because the three
attributes can be used to characterize the set of checkpoints (Li 1991).

First, the required sample size (number) of the set of checkpoints will be
considered. From statistical theory it can be found that this is related to the following
two factors:

1. the degree of accuracy required for the accuracy figures (i.e., the mean µ and
standard deviation σ ) to be estimated

2. the variation associated with the random variable, that is, the height differences
in the case of DTM accuracy tests.

The smaller the variation, the smaller the sample size needed to achieve a given
degree of accuracy required for accuracy estimates. For an extreme example, if the
σ of the height differences is 0, then one checkpoint is enough no matter how large

∗ Largely extracted from Li 1991, with permission from ASPRS
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the test area or the size of the data set. Similarly, the higher the given degree of
accuracy requirement for the accuracy estimates, the larger the sample size needed.
The relationship between the sample size, the value σ , and the given degree of
accuracy required needs to be established.

If the distribution is normal, the discussion is simpler. However, as discussed in
Section 8.1, the distribution of DTM errors is not necessarily normal and, therefore,
a new random variable with approximate normal distribution needs to be selected
for further discussion. Let �H be the random variable of height differences e(x, y)
in discrete space; µ be the mean of a random sample of size n from a particular
distribution; and M be the true value of the random variable. Then, the ratio

Y = µ−M

σ/
√
n

(8.8)

is a standardized variable and has approximately the normal distribution N(0, 1),
even though the underlying distribution is not normal, as long as n is large enough
(Hogg and Tanis 1977). Suppose theσ of a distribution is known but theM is unknown,
then for the probability r and for a sufficiently large value of n, a valueZ can be found
from the statistical table for N(0, 1) distribution, such that the probability that Y will
be within the range from −Z to Z is approximately equal to r , or approximately,

P(−Z ≤ y ≤ Z) ≈ r (8.9)

The closeness of the approximate probability r to the exact probability depends on
both the underlying distribution and the sample size. If the distribution is unimodal
(with only one mode) and continuous, the approximation is usually quite good for
even a small value of n (e.g., 5). If the distribution is “less normal” (i.e., badly skewed
or discrete), a large sample size is required (e.g., 20 to 30 points).

Substituting Equation (8.8) into Equation (8.9) and rearranging it, the following
expression can be obtained:

P

(
µ− Zσ√

2
≤ y ≤ µ+ Zσ√

2

)
≈ r (8.10)

For a given constant S, the percentage of the probability, (100r)%, of the random
interval µ± S including M is called the confidence interval, where S is the specified
degree of accuracy for the mean estimate, µ in this case. In general, if the required
confidence interval (100r)% = 100(1−α)%, then the sample size n can be expressed
as follows:

n = Z2
r × σ 2

S2
= Z2

r ×
(σ
S

)2
(8.11)

where Zr is the limit value within which the values of the random variable Y will
fall with probability r . Its value can be found in the statistical table for the N(0, 1)
distribution. The mathematical expression is as follows:

�(Z) = 1− α/2 (8.12)
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and the commonly used values are as follows:

Zr=0.95 = 1.960, Zr=0.98 = 2.326, Zr=0.99 = 2.576

For example, if the accuracy required for the mean estimate is 10% of the standard
deviation of the DTM errors (i.e., σ ), and the confidence level is 95%, then the
required sample size is

n = Z2
r ×

(σ
S

)2 = 1.962 ×
(

100

10

)2

= 384

Similarly, there is also a relationship between the accuracy specified for the stand-
ard deviation estimate σ and the required sample size. According to Burington and
May (1970), the variance of the standard deviation estimate from a sample can be
expressed as follows:

σ 2
σ =

σ 2

2(n− 1)
(8.13)

that is,

n = σ 2

2σ 2
σ

+ 1 (8.14)

For example, if the accuracy σσ required for the standard deviation estimate σ is
10% of σ , then the required sample size is 51.

The variation of DTM accuracy estimate values with the number of checkpoints
used has been intensively tested by Li (1991). The number of checkpoints was reduced
systematically from 100 to 1% to produce a number of new sets of checkpoints. These
new sets of checkpoints were then used to assess the DTM accuracy and produce new
sets of DTM accuracy estimates. The test results confirm the relationships expressed
by Equations (8.11) and (8.14).

Equations (8.11) and (8.14) can be used to estimate the number of checkpoints
required. In such calculations, it is implicit that the checkpoints are free of errors.
However, this is not the case in practice. If the accuracy of the set of checkpoints
is lower than the expected DTM accuracy, then the result of the DTM accuracy
estimated from the height differences is meaningless. This means that the relationship
between the required accuracy of checkpoints and the given degree of accuracy for
the DTM accuracy estimate should be established. In this discussion, the accuracies
are discussed in terms of the standard deviations.

Let �H2 be the error involved in the checkpoints and �H1 the true height
difference. Then,

�H = �H1 +�H2 (8.15)

By applying the error propagation law to Equation (8.15), the following expression
can be obtained:

σ 2 = σ 2
�H1
+ σ 2

�H2
(8.16)

The value of σ itself is not of interest but the value of σ�H2 is. The attempt is made
here to find a critical value for σ�H2 so that the σ is still acceptable as being the
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representative of σ�H1 . As expressed in Equation (8.13), the standard deviation of
σ�H1 has a variance approximately as follows:

σ 2
σ�H1
= σ 2

�H1

2(n− 1)
(8.17)

Therefore, the acceptable range for σ to deviate from σ�H1 can be expressed as
follows:

σ�H 1 −
σ�H 1√
2(n− 1)

≤ σ ≤ σ�H 1 +
σ�H 1√
2(n− 1)

(8.18)

It is much more convenient to use a single value, so the square root of these two terms
is used as the representative value because they are independent. Then, the following
equation can be obtained:

σ 2 = σ 2
�H1
+ σ 2

�H1

2(n− 1)
= (2n− 1)σ 2

�H1

2(n− 1)
(8.19)

Combining Equation (8.19) with Equation (8.16), the following expression can be
obtained:

σ 2
�H2
= σ 2

2n− 1
(8.20)

or

σ�H2 =
σ√

2n− 1
= 1√

2n− 1
× σ (8.21)

For example, if the sample size of the set of checkpoints is 51, then the required
accuracy of the checkpoints in terms of the standard deviation is 10% of the standard
deviation (σ ) of the DTM errors. In mapping sciences, the accuracy of checkpoints
is usually specified in terms of RMSE, then RMSE might be used to replace σ in
Equation (8.20).

The last consideration is the distribution of the checkpoints. An intensive test
as to whether random distribution is as good as even distribution (e.g., in grid
form) was conducted by Li (1991). Two test areas (see Section 8.3) were used.
The numbers of checkpoints for the areas were 1892 and 2314. From each set of
checkpoints, 15 subsets of checkpoints, each with 500 points, were randomly gener-
ated. The randomness of selection was achieved by using a set of random numbers
from a uniform distribution generated by a computer subroutine for random num-
bers. In the generation of random numbers, the range was determined by the total
number of points in the original set of checkpoints. After this, those checkpoints with
the same numbering as the generated random numbers were taken from the original
set to form the sample. As expected, there were differences among the 15 accuracy
estimates. However, the variation was very small and well within the acceptable range.
Therefore, it might be assumed that the random selection of checkpoints is acceptable
if the selection is over the whole test area.
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8.3 EMPIRICAL MODELS FOR THE ACCURACY OF
THE DTM DERIVED FROM GRID DATA

From the literature it can be seen that many experimental investigations into the accur-
acy of DTM have been conducted by many researchers. The best known investigation
was the international test organized by the International Society for Photogrammetry
and Remote Sensing (ISPRS) in the early 1980s (Torlegard et al. 1986). A number
of institutions all over the world participated in the acquisition of DTM source data
by using the photogrammetric method. Six areas with different types of terrain were
tested. However, this international test failed to produce any empirical model for DTM
accuracy. In the early 1990s, a systematic investigation into the relationship between
sampling intervals and DTM accuracy was conducted by Li (1990, 1992a, 1994) using
three sets of the ISPRS test data. Through this testing, an empirical model for DTM
accuracy prediction was produced. Cases both with and without terrain features were
considered and a different model for each was produced. Recently, in the community
of geo-information, similar tests have also been conducted (e.g., Gong et al. 2000;
Tang 2000). This section is based mainly on the tests by Li (1990, 1992a, 1994).

8.3.1 Three ISPRS Test Data Sets

The three ISPRS data sets used were for the Uppland, Sohnstetten, and Spitze areas.
The basic characteristics of these test areas are described in Table 8.4. A set of
photogrammetrically measured contour data, a set of square-grid data, and a set of
F-S data for each of these areas were used. Some information about the test data is
given in Table 8.5. The checkpoints were measured from much larger-scale aerial
photographs and therefore have much higher accuracy then the test data points. Some
information about these checkpoints is given in Table 8.6.

Figure 8.2 shows the contour maps of these areas. The corresponding F-S data
are superimposed onto each of these maps. The Uppland area is relatively flat, with
a few mounds. In the Sohnstetten area, a valley runs through the middle of the area,
so most of the F-S points are along the edges and ravines. In the Spitze area, a road
junction cuts through the right side of the area, so the F-S points are those along the
break lines caused by these roads.

8.3.2 Empirical Models for the Relationship between DTM Accuracy
and Sampling Intervals

A triangulation-based modeling system was used in this experiment and linear inter-
polation was used to avoid any misleading fluctuation on the constructed surface.

Table 8.4 Description of the ISPRS Test Areas

Test Area Terrain Description Height Range (m) Mean Slope (◦)

Uppland Farmland and forest 7–53 6
Sohnstetten Hills with moderate height 538–647 15
Spitze Smooth terrain 202–242 7
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Table 8.5 Description of Test Data

Parameter Uppland Sohnstetten Spitze

Photo scale 1:30,000 1:10,000 1:4000
Flying height (H ) (m) 4500 1500 600
Grid interval (m) 40 20 10
Grid data accuracya (m) ±0.67 ±0.16 ±0.08
CI (m) 5 5 1
Average planimetric CIb (m) 48 9 8
Contour point interval (m) 10.4–22.5 3.7–19.8 5.4–9.2
Contour data accuracya (m) ±1.35 ±0.45 ±0.18

a Accuracy is represented in terms of RMSE.
b The mean planimetric CI is equal to CI cot α, where α is the mean
slope angle.

Table 8.6 Description of Checkpoints

Test Area Photo Scale
Flying

Height (m)
Number of

Points RMSE (m)
Largest

Error (m)

Uppland 1:6000 900 2314 ±0.090 0.20
Sohnstetten 1:5000 750 1892 ±0.054 0.07
Spitze 1:1500 230 2115 ±0.025 0.05

Through the comparison of heights interpolated from DTM surfaces and the cor-
responding checkpoints, an error for each checkpoint is obtained, from which the
accuracy estimates of the DTM surfaces can be computed.

To test the accuracy of DTM with sampling intervals (i.e., the grid intervals
in this case were due to regular grid sampling), a number of new data sets with
grid intervals larger than the interval of the original grid were produced by simple
resampling without interpolation, as discussed in Chapter 4. The test results are shown
in Table 8.7, which lists the variation of DTM accuracy with grid interval and changes
in accuracy after F-S data are added.

The results for the Uppland and Sohnstetten areas are plotted in Figure 8.3.
It is clear that

1. If the F-S points are sampled, the relationship between DTM accuracy and sampling
intervals (grid intervals in this particular case) is quite linear.

2. If the F-S points are not sampled, the relationship between DTM accuracy and
sampling intervals (grid intervals in this particular case) is a quadratic curve.

By regression, empirical models for DTM accuracy could be obtained. The general
form is:

With F-S data:
σDTM-c = k1 × σData + k2 × d (8.22)

With no F-S data:
σDTM-g = k1 × σData + k2 × d + k3 × d2 (8.23)

where d is the sample interval, that is, the grid interval for grid-based sampling.
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(a) (b)

(c)

Figure 8.2 Contour maps of the test areas (photogrammetrically measured) superimposed
with feature-specific points: (a) Uppland area (CI = 5 m); (b) Sohnstetten area
(CI = 5 m); and (c) Spitze area (CI = 1 m), where the large blank area was
not measured due to difficulties.

8.3.3 Empirical Models for DTM Accuracy Improvement
with the Addition of Feature Data

From Equation (8.23) it can be found that the difference between the DTM accuracy
with and without additional feature points is the second-order term. Therefore, the
difference could be expressed as follows:

�σ = σDTM-g − σDTM-c = a + b × d2 (8.24)

The regression result is shown in Figure 8.4. It is clear that the curves fit the experi-
mental data very well. In fact, in Figure 8.4, the ratio of the grid interval to its smallest
interval (d/d0) is used instead of the absolute value of d. The regression results also
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Table 8.7 The Relationship between the Accuracy of DTM and Grid Intervals

Standard Error (σ ) (m)

Test Area
Grid Interval

(m) No F-S Data With F-S Data
Difference in
σ Value (m)

Ratio
in Grid
Interval

Uppland

√
2× 20 0.63 0.59 0.04 1

40 0.76 0.66 0.10
√

2√
2× 40 0.93 0.70 0.23 2

80 1.18 0.80 0.38 2
√

2

Sohnstetten

20 0.56 0.40 0.16 1√
2× 20 0.87 0.55 0.32

√
2

40 1.44 0.77 0.67 2√
2× 40 2.40 1.08 1.32 2

√
2

Spitze

10 0.21 0.14 0.07 1√
2× 10 0.28 0.15 0.13 1

20 0.36 0.16 0.20 2
√

2
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Figure 8.3 Variation of DTM accuracy with sampling interval (grid interval in this case) (Reprin-
ted from Li 1994, with permission from Elsevier): (a) for Uppland area and (b) for
Sohnstetten area.

reveal that the constant a in Equation (8.24) is close to 0; therefore, Equation (8.24)
can be rewritten as

�σ2

�σ1
=
(
d2

d1

)2

(8.25)

where �σ1 and �σ2 represent the difference in value corresponding to d1 and d2.

8.4 THEORETICAL MODELS OF DTM ACCURACY BASED
ON SLOPE AND SAMPLING INTERVAL∗

Since the early 1970s, attempts have been made to establish a mathematical model for
the prediction of DTM accuracy through experimental analysis. A number of such

∗ The materials included in this section were first published in Photogrammetric Record (Li 1993a, 1993b).

 



DITM: “tf1732_c008” — 2004/10/22 — 16:37 — page 174 — #16

174 DIGITAL TERRAIN MODELING: PRINCIPLES AND METHODOLOGY

2

Ratio of grid interval (d/d0)

D
iff

er
en

ce
 in

 σ
 v

al
ue

s 
(σ

g
–

σ c
)

310

0.5

1.0

L2

L1

Figure 8.4 Relationship between the difference in DTM accuracy values (with and without
F-S points) and the ratio of grid interval. The dot and square points represent
the test result; the continuous curves are for regression results. L1 and L2 are
for Uppland and Sohnstetten, respectively. d/d0 is the ratio of the grid interval d to
the smallest grid interval d0 (Li 1994).

models have been developed. Most of them are either not reliable or not practical
enough. In this section, the theories behind these models will be outlined. The model
developed by Li (1990, 1993b) will be presented in detail, because it is similar to
traditional map accuracy specification, that is, making use of slope and sampling
interval.

8.4.1 Theoretical Models for DTM Accuracy: An Overview

It is understandable that a terrain profile can be expanded by a Fourier series. Through
the analysis of these individual sine and cosine waves, the accuracy loss due to
sampling and surface reconstruction from sinusoidal functions could then be estim-
ated (Makarovic 1972). The fidelity of the reconstructed surface is represented by
the ratio of the mean value of the magnitude of the linearly constructed sinusoidal
waves to the amplitude of the input waves, as shown in Figure 8.5. In this figure,
the profile ABCDEF, reconstructed by linear interpolation, is an approximation to
the sinusoidal input; �x is the sampling interval; and δy is the height error at Xi ,
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Figure 8.5 Sampling from a sine wave and reconstruction.

which is the height difference between the sine wave and the reconstructed profile.
Suppose a is the original amplitude of the sine wave and m is the statistical mean
error level over a sufficient length of the sine wave, then F in the expression

F = a −m

a
(8.26)

represents the fidelity of the reconstructed data. Transfer functions can also be derived
for different interpolation techniques. These fidelity figures may also be converted
into standard deviation values. In this way, the accuracies of DTM surfaces can also
be compared for different types of terrain surface.

In principle, this theory is complete … The task remains to investigate the frequency
distribution of different terrain types and to relate the corresponding theoretical and
empirical accuracy results (Ackermann 1979).

Covariance and variogram are two of the measures for terrain roughness and
therefore can be used to estimate the accuracy loss due to sampling and reconstruction,
thus to estimate DTM accuracy (Kubik and Botman 1976). First, covariance values are
computed for different point intervals; then, these covariance values are approximated
by either the exponential or the Gaussian function. In a similar way, the variogram
can also be used as a terrain descriptor for DTM accuracy estimation (Frederiksen
et al. 1986). Actually, they are all inter-related. Therefore, only the model based on
the variogram is described here.

The values of semivariogram for different point intervals can be computed by
Equation (2.9). After that, these semivariogram values are approximated by the
following function:

2γ (d) = Adb (8.27)

where A and b are two constants.
The values of these two constants will depend on the type of terrain modeled.

Figure 8.6 shows the semivariograms of the three ISPRS test data sets, described
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Figure 8.6 Semivariograms for the three ISPRS test areas, computed from data sets with
various intervals.

in Section 8.3.1. The mathematical expression of an accuracy model based on the
variogram is then expressed as follows (Frederiksen et al. 1986):

σ 2
int = A×

(
D

L

)b (
−1

6
+ 2

(b + 1)(b + 2)

)
(8.28)

where σ 2
int denotes the DTM accuracy in terms of error variance without taking the

errors in the raw data into consideration; D is the sampling interval for the raw data;
and L is the sampling interval of the profiles that were used to compute the two
parameters A and b. The final expression is:

σ 2
DTM = σ 2

Data + σ 2
int (8.29)

where σDTM is the accuracy of the resulting DTM; σData is the accuracy of measured
raw data; and σ 2

int is the accuracy loss due to sampling and reconstruction. All these
values are expressed in terms of standard deviation.
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Table 8.8 Comparison of Experimental Results with the Predicted Accuracies by
Variogram-Based Model

Grid Data Composite Data

Test Area

Grid
Interval

(m)

Predicted
Accuracy

(m)

Tested
Result

(m)
Difference

(m)

Tested
Result

(m)
Difference

(m)

Uppland

40 1.04 0.76 0.28 0.66 0.38
40
√

2 1.18 0.93 0.25 0.70 0.48
80 1.38 1.18 0.20 0.80 0.58

Sohnstetten

20 0.74 0.56 0.18 0.43 0.31
20
√

2 0.98 0.87 0.11 0.56 0.42
40 1.38 1.45 −0.07 0.78 0.60
20
√

2 1.77 2.40 −0.63 1.08 0.69

Spitze

10 0.29 0.21 0.08 0.16 0.13
10
√

2 0.37 0.28 0.09 0.17 0.20
20 0.48 0.35 0.13 0.18 0.30

It is interesting to note that accuracy predictions from this model are closer to the
actual results obtained from the grid data sets (Li 1993a) in spite of large differences,
whereas they are in very poor agreement with the results obtained from the composite
data sets. This might be due to the fact that the values of the variogram used in this
model were computed from grid data sets only and not from the composite data sets
(Table 8.8), since it is complicated and difficult to compute variograms from nongrid
data sets.

The parameters of the model based on variogram analysis were estimated from
the whole set of data points. In practice, it is impossible to do this with confidence
since the DTM accuracy for a given sampling interval needs to be predicted before
the actual measurement of the data points can be carried out.

It is also understandable that the high-frequency part of the terrain surface is
difficult to model and the accuracy loss in the process of terrain surface reconstruc-
tion can be determined by the summation of Fourier spectra of terrain profiles in
their high-frequency part (Frederiksen 1980). In other words, those regions higher
than 1/(2D), where D is the sampling interval form the error component. The
mathematical expression of this model is as follows:

σ 2
DTM = σ 2

Data +
0∑

λ=2D

Pλ (8.30)

where Pλ is the spectral value corresponding to the wavelength λ; D is the sampling
interval; σData is the accuracy of the source data; and σDTM is the accuracy of the
final DTM.

Experimental results (Li 1993a) show that the results predicted by this model are
very different from the experimental results, but in the case of the composite data, the
difference is much smaller. This model always produces too optimistic a prediction
(Table 8.9).
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Table 8.9 Comparison of Test Results with the Predicted Accuracy by
Frequency-Based Model

Grid Data Composite Data

Test area

Predicted
Accuracy

(m)

Tested
Result

(m)
Difference

(m)

Tested
Result

(m)
Difference

(m)

Sohnstetten 0.26 0.46 −0.20 0.35 −0.09
Spitze 0.10 0.31 −0.21 0.20 −0.10
Drivdalen 1.25 1.57 −0.32 1.47 −0.22

d

I

Ha
Hi

Hb

B

A

∆

Figure 8.7 Linear interpolation of point I between points A and B.

As these models are not reliable and not conventional, from this section on, the
mathematical model for DTM accuracy prediction-based slope and sampling intervals
(Li 1990, 1993b) will be presented.

8.4.2 Propagation of Errors from DTM Source Data
to the DTM Surface

As discussed previously, linear surfaces are the least misleading, thus the most
reliable. The linear modeling of the square grid means representing terrain surfaces
by continuous bilinear facets. The height of a desired position is then interpolated
from the bilinear surface.

When discussing error propagation in linear modeling, error propagation in a
profile should be considered first. Suppose points A and B in Figure 8.7 are two grid
nodes with the interval of d; point I, between A and B, is to be interpolated. If the
horizontal distance between points I and A is �, then:

Hi = d −�

d
Ha + �

d
Hb (8.31)

Here Ha and Hb are the heights of points A and B, respectively, and Hi is the inter-
polated height of point I. If points A and B are measured with an accuracy σnod, then
the accuracy of point I, σnod, which is propagated purely from the two grid nodes,
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can be expressed as follows:

σ 2
i =

(
d −�

d

)2

σ 2
nod +

(
�

d

)2

σ 2
nod (8.32)

Equation (8.32) is an expression of the accuracy (in terms of standard deviation)
of a particular point located along one side of a surface. However, what is of interest
here is the overall average value for all possible points along the line AB, which is
a representative value for the DTM profile. In this case, the horizontal distance from
these points to point A in Figure 8.7 (� in Equation [8.32]) should be regarded as a
variable that takes a value from 0 (at point A) to d (at point B). Therefore, the average
variance of all points between A and B can be computed as follows:

σ 2
S =

1

d

∫ d

0

((
d −�

d

)2

σ 2
nod +

(
�

d

)2

σ 2
nod

)2

d� = 2

3
σ 2

nod (8.33)

where σ 2
S refers to the overall average value of error variance of all points along the

whole profile with a grid interval of d, but only with respect to errors propagated from
the source data (i.e., grid nodes).

For the overall accuracy of the points along a profile, another term concerning
accuracy loss due to the linear representation of the terrain surface should be added,
thus giving the following formula:

σ 2
Pr = σ 2

S + σ 2
T =

2

3
σ 2

nod + σ 2
T (8.34)

where σ 2
T denotes the accuracy loss caused by the linear representation of terrain

surfaces in the form of variance (which will be discussed later); σ 2
nod is the variance

of errors at grid points; and σ 2
Pr is the overall accuracy of DTM points along the profile

with an interval of d , also in terms of variance.
In the case of bilinear surfaces, the interpolation of a point takes place in two

perpendicular directions. Suppose A, B, C, and D are the four nodes and point E is
the point to be interpolated on the bilinear surface (Figure 8.8). The interpolation can
take place initially along AB and CD, using Equation (8.31). Thus, point I can be
interpolated from A and B and similarly point J can be interpolated from D and C.
The next step takes place between points I and J, that is,

He = d − ε

d
Hi + ε

d
Hj (8.35)

where ε is the horizontal distance from point E to point I and He, Hi and Hj are the
heights of points E, I, and J, respectively.

Thus, Equation (8.35) again expresses the linear interpolation along a profile with
an interval of d . Fundamentally, it is identical to Equation (8.31). Therefore, the
same development as for Equation (8.31) can be obtained. However, the accuracy of
points I and J in Figure 8.8, as for point I in Figure 8.7, is different from that of points A,
B, C, and D; and the actual accuracy value varies with the positions of I and J between
the two nodes and the characteristics of the terrain surface. Therefore, the average
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Figure 8.8 Bilinear interpolation of point E by use of four nodes (A, B, C, and D).

value expressed by Equation (8.34), σ 2
Pr, should be used as the representative for

points I and J in Figure 8.8. Again, there is an accuracy loss (σ 2
T) due to the linear

representation for profile IJ. Thus, an analog to Equation (8.34) can be obtained for
the accuracy of the points interpolated from a bilinear surface as follows:

σ 2
Surf =

2

3
σ 2

Pr + σ 2
T (8.36)

By substituting Equation (8.34) into Equation (8.36), the following expression can
be obtained:

σ 2
Surf =

2

3

(
2

3
σ 2

nod + σ 2
T

)
+ σ 2

T =
4

9
σ 2

nod +
5

3
σ 2

T (8.37)

where σ 2
Surf is the average value for the accuracy of the points on a bilinear surface;

σ 2
nod is the accuracy of nodes; and σ 2

T is the accuracy loss due to linear representation
of terrain profiles.

8.4.3 Accuracy Loss Due to Linear Representation
of Terrain Surface

So far, the general form of the accuracy model of DTM surfaces has already been
derived and is expressed by Equation (8.37). In this connection, two important
problems needed to be solved:

1. the accuracy of grid points (σ 2
nod)

2. the accuracy loss caused by linear representation of terrain surfaces (σ 2
T).

The first problem was addressed in Section 8.1.4. Therefore, the remaining problem
is to obtain a good estimate for σ 2

T.
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8.4.3.1 Strategy for Determining σ 2
T

The value of σ 2
T varies with the roughness of the terrain surface, which varies from

place to place. Therefore, it is impossible to depict its inflexions using an analytical
method, especially for small local deviations. These characteristics can only be
handled by using statistical methods.

In linear modeling of a terrain surface, σT represents the standard deviation of
all height differences (�H ) between terrain surfaces and the resulting linear facets
(the DTM surfaces) constructed from nodes free of errors. In this case, �H , that is,
the e(x, y) in Equation (8.5), is a random variable. According to the discussion in
Section 8.1.3, for a given random variable, regardless of its distribution, its σ value
(σT here) gives a strong indication of its dispersion. Mathematically,

P(|�H − µ| ≤ KσT) ≥ f (K) (8.38)

where µ is the mean value; K is a constant; and f (K) is a function of K with its
value ranging from 0 to 1. Suppose �H has a normal distribution; if K takes a value
of 3, then f (K) is equal to 99.73%. This means that for normal distribution, with the
probability of 99.7%, �H will have a value (if sampled) from−3σ+µ to 3σ+µ. This
probability is so large that in error theory, 3σ is regarded as the possible maximum
error and any error larger than this value is regarded as gross error. Taking an analog
from the practice of error theory, the following expression seems appropriate:

σT = Emax

K
(8.39)

where σT is the accuracy loss due to linear representation of the terrain profile; Emax
is the possible maximum error (which will be specifically discussed later); and K

is the same constant as given in Equation (8.38) and its value is dependent on the
distribution of �H . As DTM errors are not normally distributed, as discussed in
Section 8.1.2, the value of K must be quite different from 3, which is the value for
normal distribution. On the other hand, as can be seen from Table 8.1, experimental
tests reveal that the probability of DTM errors larger than 4σ is approximately 0.3%.
Therefore, it seems appropriate to take

K = 4

for Equation (8.39). As a consequence, the only task left here is to obtain a reliable
estimate for the Emax in Equation (8.39).

8.4.3.2 Extreme Error (Emax) Due to Linear Representation

To analyze the possible extreme values of �H , it is necessary to consider some
possible outlines of terrain profiles in extreme situations. Since only extreme cases
are being examined, some of the analyses may seem unrealistic.

Figure 8.9(a) and Figure 8.9(b) illustrate the maximum possible errors at point C,
for the same terrain feature but with different locations of nodes due to a fault or
other geological structure giving rise to a steep change in slope. If information giving
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d

(a) (b)
C

d

C

EbEb

Figure 8.9 The possible maximum errors of linear representation, due to faults or breaks,
with different locations of grids.

E r E r

d d

C C

(a) (b)

� �

Figure 8.10 The possible maximum errors of representation using grid nodes only, with different
locations of grids. (a) The maximum error occurring when a grid contains local
maxima or minima. (b) E r varies with the location of the grids.

a full description of this structure has not been collected, a huge error may result. The
value of such an error, Eb here, varies with the characteristics of the terrain itself.
Therefore, these values can only be measured directly, but not estimated analytically.

Figure 8.10(a) and Figure 8.10(b) show the possible positive maximum error
at point C for different locations of nodes when only points that are located
on regular grid nodes are sampled (in other words without F-S points). As shown
in Figure 8.10(a), the possible maximum error of Er arises when C lies in the middle
of the grid, giving the following formula:

Er,max = 1

2
d tan β (8.40)

where Er,max is the possible maximum error in such a case. Similarly, the possible
negative error can also be estimated.

Figure 8.11(a) shows the possible errors that may occur for grid data with some
F-S points for a convex slope. This figure can be justified because it is not practical
to include all convex and concave points, even for the case where pure selective
sampling has been carried out on a stereo model (in a photogrammetric system).
Figure 8.11(b) is exaggerated from Figure 8.11(a) for the convenience of obtaining
a numerical estimate. Point C in this diagram shows an extreme case of convex slope.
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Figure 8.11 Possible maximum errors of the linear representation of ordinary terrain slopes:
(a) a convex slope; (b) exaggeration of (a); and (c) variation of Ec with location of
grids.

Line AB is the linearly constructed profile; ∠CAD is the slope angle at point A
(denoted as β); and line segment CE is the possible error at point C. Therefore:

CE = CF − EF = X tan β − X2 tan β

d
(8.41)

Figure 8.11(c) shows that the value Ec varies with the location of the grid nodes.
The next task is to find the maximum value for CE (Figure 8.11(b)) representing
all possible locations of point C in terms of the horizontal distance from point A.
If the first-order derivative of CE is considered to be equal to 0, then the location of
C where the value of CE reaches its maximum can be determined as follows:

d(CE)

dX
= tan β − 2X tan β

d
= 0 (8.42)

From Equation (8.42) it can be seen that X = d/2. By substituting this value into
Equation (8.41) and denoting CE with Ec,

Ec,max = CB = 1

4
d tan β (8.43)

Therefore, it can be deduced that the value of possible extreme errors for the case
of regular grid data only is double that for composite data. The maximum error due
to linear representation is Ec,max for composite data whereas the situation is more
complicated for grid data only.
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8.4.3.3 A Practical Consideration Regarding Emax and σ

The three extreme values identified previously belong to three different types of
distribution. Eb applies to grids taken across faults or break lines; Er is related to
grids taken across peaks, pits, ridges, and ravines; and Ec is used for ordinary terrain
features and therefore for all the remaining grids. Suppose the proportions of grids
that may contain Ec, Er, and Eb are P(c), P(r), and P(b), then:

P(c)+ P(r)+ P(b) = 1 (8.44)

For composite data, both P(r) and P(b) are 0. It is only necessary to consider P(r)

and P(b) for regular grid data. If there are no faults or break lines as shown in
Figure 8.9, then P(b) is 0. Otherwise, P(b) can be estimated according to the height
over the length and width of the faults or breaks.

Similarly, the estimation of P(r) is not an easy task. For a smaller area, there is no
better method than simply counting the number of grid cells across the ridge and ravine
lines and then dividing by the total number of grids. For a large area, some alternatives
may be used. The value of P(r) is directly related to the wavelength of the terrain
variation (Figure 8.12). However, the planimetric shape of a hill (expressed by con-
tours) could be different from place to place. Even for the same hill, the wavelengths
could be different if the profiles are taken along different directions. Therefore, even
a rough estimate, such as an average value, could be valuable. The value of average
wavelengths can be estimated as follows:

λ = 2H cot α (8.45)

whereH is the average relative height; α is the average slope angle; andλ is the average
wavelength, all taken over the entire area to be modeled (Figure 8.12). In practice,
the average value of local relief (half of the maximum minus minimum heights)
can be used to represent H . Therefore,

λ = (Hmax −Hmin) cot α (8.46)

�

H

�

Figure 8.12 Approximate estimation of wavelength λ, where H is the average of height
variation.
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Once the estimation of λ is made, the value of P(r) can then be estimated. Both
the top and bottom of a spatial variation will occur over a single wavelength in one
profile. Therefore, for a grid that has two profile directions perpendicular to each
other, the frequency of Er over a grid is as follows:

P(r) = 4d

λ
(8.47a)

where λ is the average wavelength; d is the grid interval; and P(r) is the occurrence
frequency of the extreme error Er.

An idealized figure as shown in Figure 8.13 may help in understanding the estima-
tion ofP(r). In this example, the total number of grid squares is (1.5λ/d)×(1.5λ/d).
Suppose all profiles along both directions are identical to the one shown in Figure 8.13,
then the total number of grid squares that may contain Er is, as shown in Figure 8.13,
approximately equal to 6(1.5λ/d). Thus, P(r) is 4λ/d , which is expressed in
Equation (8.47a). However, a more important consideration is for the area with size
λ× λ. Figure 8.13 shows that in this unit area, P(r) = 4d/λ = d(4λ/λ2). Here, 4λ
is the perimeter and λ2 is the area. Therefore, the following formula may be more
common and appropriate for the estimation of P(r):

P(r) = Perimeter of lowest contour

Area enclosed by lowest contour
(8.47b)

1.5 �

1.
5 

�

p
p

Figure 8.13 Estimation of ratio (P(r )) of grid nodes containing the local biggest and smallest
points.
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Equation (8.47b) could be very helpful for the estimation of P(r) from existing
contours, which from the map appear to be irregular in shape.

Therefore, for DTM surface linearly constructed from grid data only, the value
of σT can be estimated as follows:

σT = P(r)Er,max + P(c)Ec,max + P(b)Eb,max

K
(8.48)

Such an averaging operation is not justified from a statistical point of view since Eb,
Er, and Ec belong to three different distributions. However, in the practice of DTM
accuracy assessment, it is never possible to distinguish these three types of errors and
estimates are made from a sample that contains all of them. Therefore, Equation (8.48)
is an appropriate representation of DTM practice.

In practical terms, Eb rarely occurs and even if it does occur, it is normally
sampled. Therefore, it is acceptable to neglect Eb in Equation (8.48), giving:

σT = P(r)× Er,max + P(c)× Ec,max

K
= P(r)× Er,max + (1− P(r))× Er,max

K
(8.49)

8.4.4 Mathematical Models of the Accuracy of DTMs Linearly
Constructed from Grid Data

It has been shown that accuracy loss due to linear representation from measured grid
data only can be rewritten as follows:

σT,r = Ec,max

K
(1− P(r))+ Er,max

K
P(r)

= d tan α

4K
(1− P(r))+ d tan α

2K
P(r)

= d tan α

4K
(1+ P(r))

= d tan α

4K

(
1+ 4d

λ

)
(8.50)

For a DTM constructed from composite data, the accuracy loss formula is as follows:

σT,c = Ec,max

K
= d tan α

4K
(8.51)

Substituting Equations (8.51) and (8.50) into Equation (8.37), the accuracy models of
the DTM linearly constructed from composite data and grid data only, respectively,
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are as follows:

σ 2
Surf/c =

4

9
σ 2

nod +
5

48K2
(d tan α)2

= 4

9
σ 2

nod +
5

48× 42
(d tan α)2

= 4

9
σ 2

nod +
5

768
(d tan α)2 (8.52a)

σ 2
Surf/r =

4

9
σ 2

nod +
5

48K2
(1+ P(r))2(d tan α)2

= 4

9
σ 2

nod +
5

768

(
1+ 4d

λ

)
(d tan α)2 (8.52b)

where σ 2
Surf/c and σ 2

Surf/r denote the accuracies of DTM linearly constructed from com-
posite data and grid data only (both in terms of variance); σ 2

nod is the variance of errors
at measured grid nodes; K is a constant (approximately equal to 4 depending on the
characteristics of the terrain surface); α is the average slope angle of the area; P(r) is
the proportion of grids that may contain Er and is expressed in Equation [8.47]); and
λ is the wavelength of the profiles in the area, and is expressed by Equation (8.46).

At this point, the derivation of the formulae have all been completed. However,
the discussion can be extended to provide an approximation of Equations (8.52) as
follows:

σSurf/c = 2

3
σnod +

√
5√

48K
(d tan α)

= 2

3
σnod +

√
5

16
√

3
(d tan α) (8.53a)

σSurf/r = 2

3
σnod +

√
5√

48K
(1+ P(r))(d tan α)

= 2

3
σnod +

√
5

16
√

3

(
1+ 4d

λ

)
(d tan α) (8.53b)

These equations represent an analog to the Koppe Formulae, which are widely used
for specifying map accuracy in middle European countries. Equation (8.53) proves
to be a very good approximation of Equation (8.52) in the case where grid intervals
are relatively small and is more convenient to use in practice.

The experimental test results obtained in Section 8.3 were used to evaluate
this model (Li 1990, 1993b). The basic facts about these areas were given in
Table 8.5. The wavelengths for these three areas are estimated as 470 m (computed
by Equation [8.46]), 214 m (i.e., the width of the test area checked), and 300 m (the
width of the test area checked). The results are given in Table 8.10. These results
reveal that this set of mathematical models produce reasonably reliable estimates of
DTM accuracy.
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Table 8.10 Comparison of the Predicted Accuracy and the Test Results

Grid Data Only Composite Data

Test Area

Grid
Interval

(m)

Predicted
Accuracy

(m)
Tested

(m)
Difference

(m)

Predicted
Accuracy

(m)
Tested

(m)
Difference

(m)

Uppland

20
√

2 0.54 0.63 −0.09 0.51 0.59 −0.08
40 0.64 0.76 −0.13 0.56 0.66 −0.10
40
√

2 0.85 0.93 −0.08 0.66 0.70 −0.04
80 1.24 1.18 0.06 0.81 0.80 0.01

Sohnstetten

20 0.63 0.56 0.07 0.45 0.43 0.02
20
√

2 0.97 0.87 0.10 0.63 0.56 0.07
40 1.56 1.45 0.11 0.87 0.78 0.09
40
√

2 2.58 2.40 0.18 1.23 1.08 0.15

Spitze

10 0.17 0.21 −0.04 0.12 0.16 −0.04
10
√

2 0.25 0.28 −0.03 0.15 0.17 −0.02
20 0.38 0.35 0.03 0.20 0.18 0.02

For theoretical evaluation, the following set of parameters can be used as stand-
ards: (a) accuracy, (b) descriptive realism, (c) precision, (d) robustness, (e) generality,
(f) fruitfulness (Meyer 1995), and (g) simplicity (Li 1990, 1993b).

8.5 EMPIRICAL MODEL FOR THE RELATIONSHIP BETWEEN
GRID AND CONTOUR INTERVALS

In Section 8.4, theoretical models for the accuracy of DTMs derived from grid data
were presented. In this section, the accuracy of DTMs derived from contour data
will be discussed and then the relationship between contour and grid intervals will be
addressed.

8.5.1 Empirical Model for the Accuracy of DTMs Constructed from
Contour Data

According to contour map accuracy specifications, the accuracy of a DTM derived
from contour data can be expressed by the following expression:

σ 2
DTM, cont =

σ 2
DCD

C
+
(

CI

K

)2

(8.105)

where σDCD is the standard deviation of errors in digital contour data; CI is the contour
interval; K and C are two constants; and σDTM,cont is the standard deviation of errors
at the DTM derived from the digital contour data.

As a general guide, the value of σDTM,cont is about 1
3 CI. Experimental results

confirm such a conclusion. Table 8.11 lists some results obtained from the three
ISPRS test areas (Li 1990, 1994). In each area, there is a set of photogrammetrically
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Table 8.11 The Improvement of DTM Accuracy with the Addition of F-S Data into
Contour Data

Uppland Sohnstetten Spitze

Parameter
With F-S

Data
Without
F-S Data

With F-S
Data

Without
F-S Data

With F-S
Data

Without
F-S Data

RMSE (m) 0.93 1.74 0.35 0.91 0.17 0.27
µ (m) 0.47 1.05 0.11 0.22 0.09 0.10
σ (m) 0.80 1.39 0.35 0.88 0.15 0.24
+Emax (m) 3.25 5.91 1.73 4.52 0.75 0.94
−Emax (m) −5.18 −5.18 −2.48 −3.01 0.95 −0.95
CI/σ 6.25 3.60 4.29 5.68 6.67 4.17

Reduction
in σ (%)

42.45 60.23 37.50

measured contour data. Like the case of square grid data, two types of data could be
generated by a combination of contour data with F-S points: (a) contour data only and
(b) contour data with F-S data. The improvement of DTM accuracy with the inclusion
of F-S data is noticeable.

The exact value ofC in Equation (8.54) is difficult to estimate as each triangle may
have a different shape. However, a value of 3 seems appropriate since three points have
been used for interpolation within a linear facet. The value of K in Equation (8.54)
ranges from 4.5 to 5.9. This implies that the error budget deriving from the loss in
fidelity of terrain topography that is selectively represented by only contours is in the
range from CI/4 to CI/6, depending on the characteristics of the terrain topography.
When F-S data are included, theK in Equation (8.54) ranges from 10 to 30. In terms of
standard deviation, the level has been reduced to CI/6 to CI/15 from the original level
of CI/3 to CI/5. The improvement is about 40 to 60%. As a result, Equation (8.54)
may be written as follows:

σ 2
DTM,cont =

σ 2
DCD

3
+
(

CI

K

)2

, K =
{

4–6, if no F-S data

10–30, if with F-S data
(8.106)

This is based on the photogrammetrically measured contour data. However, if it is
digitized from contour maps, the accuracy would be poorer than the one expressed
by Equation (8.55).

8.5.2 Empirical Model for the Relationship between
Contour and Grid Intervals

As has been discussed previously, photogrammetrically measured data and con-
tour data are the two major types of data for digital terrain modeling. Among the
various strategies for photogrammetric sampling for DTM data acquisition, regular
grid sampling is the most popular. Therefore, it would be of interest to discuss the
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relationship between grid-based and contour-based terrain representations, in terms
of fidelity, accuracy, or quality.

To compare the quality of these two types of DTM, it is helpful to have a com-
parison of data density between them. For grid data, the density is represented by
grid interval (d) while for contour data the density is expressed by (vertical) contour
intervals (CI). The average value of the planimetric contour interval for a contour
interval of CI can be expressed as follows:

D = CI× cot α (8.107)

where α is the average slope angle of the terrain surface, CI is the vertical contour
interval; and D is the planimetric contour interval.

Theoretically speaking, the accuracy of the DTM derived from contour data with
an interval of CI should be approximately equal to that derived from grid data with
intervals of D as expressed in Equation (8.56) if the terrain is homogenous; the effect
of errors involved in source data on the final results is the same.

Experimental results (Li 1990, 1994) show that the relationship is not that
straightforward and a factor, K , needs to be included in Equation (8.56), that is,

d = K ×D = K × CI× cot α (8.108)

where

K =
{

1.2–2.0, if no F-S data

1.0–1.5, if with F-S data
(8.109)
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CHAPTER 9

Multi-Scale Representations
of Digital Terrain Models

The previous two chapters addressed the issues on the quality of DTMs. The repre-
sentations of DTM data will be discussed in the next three chapters. This chapter will
look at some issues on multi-scale representation.

9.1 MULTI-SCALE REPRESENTATIONS OF DTM: AN OVERVIEW

Before multi-scale representations of DTM data can be discussed, it is essential to
clarify some concepts related to scale, to understand what is to be addressed in this
chapter.

9.1.1 Scale as an Important Issue in Digital Terrain Modeling

“Scale is a confusing concept, often misunderstood, and meaning different things
depending on the context and disciplinary perspective” (Quattrochi and Goodchild
1997, p. 395). Scale is an old issue in geosciences such as cartography and geography.

In cartography, maps are produced at different scales, for example, 1:10,000
and 1:100,000. A ground area with a fixed size will be mapped into a bigger map
space at a larger scale. For example, a ground area of 10 km × 10 km will be a
map area of 1 m × 1 m at a scale of 1:10,000. However, at 1:100,000, it is an area
of only 0.1 m × 0.1 m on map. Due to the reduction in size (from 1 m × 1 m to
0.1 m×0.1 m), the same level of detail (LOD) as represented on the larger-scale map
cannot be represented on the smaller-scale map. This means that the representations
of the same feature in the same area will be different when the maps are at different
scales. Therefore, there is a multi-scale issue in cartography, that is, how to derive
small-scale maps from large-scale maps through operations such as simplification
and aggregation. This issue is called generalization.

191
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In geography, there is a similar issue. Normally, geographical data are sampled
from enumeration units. The size of the enumeration unit is a scale indicator. In some
geographical applications, a larger unit is needed as the basis for analysis. The sampled
data need to be aggregated into a larger enumeration unit from the original unit.
However, the statistical results may be different when the analysis is carried out
based on different sizes (i.e., different scales) of the enumeration unit. Therefore,
the issue is how to aggregate data from small enumeration units to larger units for
processing. This issue is called the “modifiable areal unit” issue (Openshaw 1994).
Indeed, there are similar issues in all geosciences, such as geomorphology, oceano-
graphy, soil science, biology, biophysics, social sciences, hydrology, environmental
sciences, and so on.

In digital terrain modeling, there is also a similar issue. Currently, DTM data at
a national level are produced at various scales, for example, 1:10,000, 1:50,000, and
1:100,000, for different applications. They are mainly derived from contour maps at
the corresponding scales. It would be desirable to maintain and update the DTM data
at the largest scale only and to derive DTM data at any smaller scale by a generalization
process, that is, DTM generalization.

In computer graphics and games, landscape is often used as a background in
various situations such as driving and flight simulations. In such cases, the LOD
of the terrain surface may appear to be different if viewed from different distances.
Therefore, in a scene, some parts may be represented in more detail and other parts in
less detail. This is also a multi-scale issue and is simply termed LOD, which is also
an important issue in DTM visualization.

As will be discussed later, LOD is an issue quite different from generalization.
In this chapter, the emphasis is on generalization although the basic ideas on LOD will
also be outlined.

9.1.2 Transformation in Scale: An Irreversible Process in
Geographical Space

Here, the term geographical space means the real world. However, the term real world
is still confusing because different disciplines study different aspects of it. Nuclear
physics studies particles at the sub-molecular level in units of nanometers. This is an
extreme at a micro-scale. At the other extreme, astro-physics studies the planets at an
intergalactic level in units of light-years (the distance travelled by light in the period
of a year). Such studies are at a macro-scale. Between these two extremes, many
scientific disciplines study the planet earth, such as geology, geography, geomatics,
geomorphology, geophysics, which are collectively called geosciences. Here, real
world refers to the world studied by the geosciences. Such studies are at a scale called
geo-scale. By an analogy to electromagnetic (EM) spectrum, the scale range, from
micro-scale to geo-scale to macro-scale, is termed the scale spectrum (Figure 9.1).
Like the visible light band in the EM spectrum, geo-scale is also a small band in the
scale spectrum (Li 2003). Digital terrain modeling is a branch of geoscience.

The transformation in the scale of geographical space is much more complicated
than that in Euclidean space. In Euclidean space, any object has an integer dimension,
that is, 0 dimension for a point, 1 for a line, 2 for a plane, and 3 for a volume.
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Geo-scale

Macro-scale

Micro-scale

Astro-physics

Geosciences

Meteorology

Biology

Nuclear physics

Space science

Figure 9.1 Geo-scale in the scale spectrum.

Scale 1 Scale 2 Scale 3

Scale 3Scale 2Scale 1

Figure 9.2 Scale change in 2-D Euclidean space: a reversible process.

An increase (or decrease) in scale will cause an increase or (or decrease) in length in
a 2-D space and in volume in a 3-D space. However, the shape of the object remains
unchanged. Figure 9.2 illustrates the scale reduction in a 2-D Euclidean space. Scale 2
is a two-time reduction of scale 1 and scale 3 is a four-time reduction of scale 1. In such
a transformation process, the length of the perimeter is reduced by two and four times,
respectively, and the area of the object is reduced by 22 and 42 times, respectively.
When the object at scale 3 is increased four times, the shape of the object is identical
to the original one shown at scale 1. That is, the transformations are reversible.

However, in geographical space, the dimensions are not integers. The concept of
fractal dimensions was introduced by Mandelbrot (1967). In such a space, a value
between 1.0 and 2.0 is the dimension of a line and a value between 2.0 and 3.0 is
the dimension of a surface. In fractal geographical space, it was discovered long ago
that different lengths will be obtained for a coastline represented on maps at different
scales. The length measured from smaller-scale maps will be shorter if the same unit
size (at map scale) is used for measurement. This is because different levels of reality
(i.e., the Earth’s surface with different degrees of abstraction) have been measured.
Indeed, on maps at a smaller scale, the level of complexity of an object is reduced
to suit the representation at that scale. But when the representation at a smaller scale
is enlarged back to the original size, the level of complexity cannot be recovered.
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Scale 1
Scale 3

Scale 2

Scale 1 Scale 2 Scale 3

Figure 9.3 Scale change in 2-D geographical space: an irreversible process.

Figure 9.3 illustrates that such a transformation is not reversible. Li (1996, 1999)
regarded such kind of transformation as “transformation in scale dimension.”

This means that the generalization of a DTM from a large-scale to a smaller-scale
representation is an irreversible process. It will be shown in Section 9.3 that this
process follows a natural principle (Li and Openshaw 1993).

9.1.3 Scale, Resolution and Simplification of Representations

The size of the basic unit for measurement or representation is referred to as resolution.
If the data are in raster format, the size of the raster of pixels is referred to as the
resolution. The larger the pixel size, the lower the resolution. In the case of grid
DTM, the grid interval is usually regarded as the resolution.

Normally, the scale and resolution of spatial data are tightly packed. With the
resolution of one’s eyes fixed, when one views an object more closely, the images
formed in one’s eyes are larger, thus the images have a higher resolution or are at a
larger scale. That is, in normal cases, the resolution is also good indicator of scale
for DTM data. This is because resolution means the level of detail and scale means
the level of abstraction. However, scale is not equal to resolution. Scale could refer
to the ratio of distances as well as the relative size of interest. Figure 9.4 shows four
images at the same scale but with four different resolutions. Similarly, digital maps
can be plotted at any scale one wishes, but the resolution is fixed.

With the introduction of resolution, it is easier to explain the difference between
scale reduction in Euclidean and geographical spaces. In Euclidean space, reduction in
the size of an object does not cause a change in its complexity. This can be understood
with the following line of thought. When the scale is reduced, the size of the object is
also reduced, but at the same time, the basic resolution of the observation instrument
is also refined by the same magnification. This is implied in Euclidean geometry.
For example, if the scale is reduced by two times, the size is reduced by two times
and the resolution is two times finer (i.e., higher). On the other hand, in geographical
space, when the scale is reduced, the size of an object is also reduced, but the basic
resolution of the observation instrument remains unchanged. That is, this change of
complexity is achieved by changing the relationship between the size of the object
and the resolution of observation.
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(a) (b)

(c) (d)

Figure 9.4 Four images of Hong Kong with the same scale but different resolutions. The
color plate can be viewed at http://www.crcpress.com/e_products/downloads/
download.asp?cat_no=TF1732.

Table 9.1 The Cause and Effect of Scale Reduction in Euclidean and Geographical Space

Effect Cause

Relative Absolute Instrumentation Observer’s
Space Complexity Complexity Resolution Resolution

Euclidean space Increased Unchanged Reduced Unchanged
Geographical space Unchanged Decreased Unchanged Unchanged

There are ways in which to achieve this result (Table 9.1). The first is to change
the size of the object but, at the same time, to retain the basic resolution of the
observational instrument. The second is (a) to retain the size of the object but change
the basic resolution of the observation instrument and then (b) to change the size of
the observed objects by simple reduction in Euclidean space.

9.1.4 Approaches for Multi-Scale Representations

It becomes clear that there are two different types of multi-scale representations.
The first one is map-like, emphasizing the metric quality, and is thus useful for
measurement. The multi-scale issue on the DTM is related to how to automatically
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(a) (b) 

Figure 9.5 Steps and linear slope compared to discrete and continuous transformations:
(a) discrete (steps) and (b) continuous (linear slope).

derive DTM data suitable for any smaller-scale representation from the DTM at the
largest scale, which is updated continuously. Such a process is called generaliza-
tion and it is applied uniformly across the whole area covered by the DTM data so
that all data points within the area will have a uniform accuracy. This is referred
to as metric multi-scale representation here. The other type, for visual impression
only (e.g., for computer graphics and games), is called visual multi-scale repre-
sentation. On the same image, the scale of the image pixels produced from DTM
data is not the same over the whole image and is a function of viewing distance.
In other words, the LOD represented on an image varies from place to place. This
kind of approach is simply called LOD in computer graphics. In some literature, it is
also called view-dependent LOD and, in contrast, metric multi-scale representation
is called view-independent LOD.

There are also two types of transformations in scale, discrete and continu-
ous transformations. “Discrete” means that there are only a few scales available,
for example, 1:10,000, 1:100,000, and 1:1,000,000. The transformation jumps from
1:10,000 to 1:100,000, then to 1:1,000,000. Discrete transformation is like fixed steps
in a staircase (Figure 9.5a). “Continuous” means that transformation can be to any
scale, for example, 1:50,000 or 1:56,999, although in practice some scales are not
used (e.g., 1:56,999). Continuous transformation is like a linear slope (Figure 9.5b).

From the above discussions, the approaches for multi-scale representation
of DTM data can be summarized as in Figure 9.6.

9.2 HIERARCHICAL REPRESENTATION OF DTM
AT DISCRETE SCALES

The hierarchical representation seems to be popular for the representation of DTM
data at discrete scales, particularly in computer graphics and games and terrain visu-
alization, in order to speed up the data processing. Both grid and triangular networks
could be represented in hierarchy (de Berg and Dobrindt 1998; de Floriani 1989).

9.2.1 Pyramidal Structure for Hierarchical Representation

The pyramid is the most commonly used hierarchical representation of DTM data.
Figure 9.7 shows three-level pyramid structures of square grid and triangular grids.
That is, four squares (or triangles) at the third level form a larger square quadrilateral
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Continuous
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Visual multi-scale
representation

(View-dependent LOD)

Metric multi-scale
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(Generalization, or isotropic LOD
or view-independent LOD)

Figure 9.6 Alternative approaches for multi-scale representation of DTM data.

Figure 9.7 Pyramid representations of grid and triangular networks.

(or triangle) at the second level. Similarly, four squares (or triangles) at the second
level form the largest square (or triangle) at the first level. The number of squares
(triangles) at the nth level is 4n−1.

The sizes of the squares at the same level of the pyramid structure are identical.
Figure 9.8 is an example of the grid pyramid representation of DTM data, where the
original DTM is represented in three hierarchical levels. In the four-to-one aggregation
process, simple averaging is adopted to compute the height value of the new grids.
For example, if the heights of the four grid nodes at the fourth level are 5, 6, 4.5, and
5.5 m, then the average height value of these, that is, (5+6+4.5+5.5)m/4 = 5.25 m,
is used as the height for the new grid node at the third level.

The hierarchical concept of a simple pyramid emphasizes the level of grid sizes,
that is, different resolutions, to represent the terrain surface at different scales. This
is also the simplest LOD for visualization of DTM data. However, it does not take
into consideration certain terrain features and thus usually produces relatively obvious
visual distortions due to the loss of important surface characteristics and discontinuity
at the boundaries between grid cells.
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(a) (b)

(c) (d)

Figure 9.8 Pyramid representation of grid DEM: (a) original DEM at 1:20,000; (b) the second
level; (c) the third level; and (d) the fourth level.

9.2.2 Quadtree Structure for Hierarchical Representation

A major shortcoming of the simple pyramid structure is that the grid intervals among
the grid cells are identical at any hierarchical level irrespective of whether the ter-
rain surface is complicated or simple. This may cause problems if some parts of an
area are complicated while other parts are simple. In this case, a hierarchical struc-
ture with varying grid sizes would be more desirable. The complicated parts could
be represented with grid cells with finer resolution (i.e., smaller grid interval) and
the simpler parts could be represented by grid cells with coarser resolution that is,
(larger grid interval). Area quadtree, or simply quadtree, is such a kind of grid in
common use. Figure 9.9 is an illustration of quadtree structure. Similarly, triangular
cells also can be represented by quadtree. Figure 9.10 is an example of triangular
quadtree.

The aggregation of four cells into one is similar to the simple pyramid. The only
difference is that in a quadtree, some criteria must be set so as to determine whether
aggregation should take place for the four given cells. For example, if the height
differences are larger than the threshold, then no aggregation should take place,
otherwise they are aggregated into one. Figure 9.11 is an example of a hierarchical
representation by a quadtree.

In visualization with such a representation, when a more detailed level is desired,
the next level with smaller grid intervals will be displayed, only in those parts with
complicated terrain variations. To speed up the visualization process, one would like
to generate an LOD for in as many levels as possible. However, in normal practice,
only three to five LODs are produced and stored. Further levels are generated in
real time by algorithms.

 



DITM: “tf1732_c009” — 2004/10/25 — 12:39 — page 199 — #9

MULTI-SCALE REPRESENTATIONS OF DIGITAL TERRAIN MODELS 199

Figure 9.9 Hierarchical representation of grid by quadtree structure.

Figure 9.10 Hierarchical description of terrain triangular network by use of quadtree.

Figure 9.11 Quadtree representation of DTM (Cheng 2000).

 



DITM: “tf1732_c009” — 2004/10/25 — 12:39 — page 200 — #10

200 DIGITAL TERRAIN MODELING: PRINCIPLES AND METHODOLOGY

9.3 METRIC MULTI-SCALE REPRESENTATION OF DTM
AT CONTINUOUS SCALES: GENERALIZATION

9.3.1 Requirements for Metric Multi-Scale Representation of DTM

Since the later 1970s, metric multi-scale representation of DTM data has been a
research topic. A list of six criteria were proposed by Weibel (1987) for the evaluation
of the methodology used:

1. to run as automatically as possible
2. to perform a broad range of scale changes
3. to be adaptable to the given relief characters
4. to work directly on the basis of the DTM
5. to enable an analysis of the results
6. to provide the opportunity for feature displacement based on the recognition of the

major topographic features and individual landforms (major scale reduction).

Three approaches have been proposed for metric multi-scale representation of
DTM data.

1. filtering methods (e.g., Loon 1978)
2. generalization of structure lines (e.g., Wu 1997)
3. a hybrid (Weibel 1987) of the above two.

However, these methods do not directly relate to the filtering process to scales and,
therefore, are not true generalization methods.

If the set of criteria proposed by Weibel (1987) are used to evaluate these
pyramidal representations, the results are not too good. The most serious shortcom-
ing is that only a fixed number of scales are produced, at least for hierarchical grid
networks, that is, 2-time, 4-time, 8-time, 16-time, . . . scale reduction. Therefore,
this approach is only convenient for data structures with which visualization of
DTMs could be speeded up, but it cannot be used to produce smaller-scale DTMs
from larger-scale ones. In this section, an approach based on a natural principle
will be introduced.

9.3.2 A Natural Principle for DTM Generalization

The natural principle formalized by Li and Openshaw (1993) mimics the general-
ization process of the Nature. The example they used is the Earth’s surface viewed
from different heights. If one views the Earth from the Moon, all terrain variations
disappear and the Earth appears like a blue ball. If one views it from a satellite, then
the terrain surface becomes very smooth. These phenomena can easily be checked
by forming a stereo model from a pair of satellite images such as SPOT images
with 10-m resolution or Spacelab Metric Camera photography. Such a stereo model
is at a very small scale. When one views the terrain surface from an airplane, small
details are still not visible but the main characteristics of the terrain variations become
clear. It is a commonplace to photogrammetrists that stereo models formed from
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high-altitude photography are more generalized than those formed from low-altitude
photography. These illustrate the generalization process, or the transformation in
scale.

This is also due to the limitation of the human eye’s resolution. One is not able
to see objects beyond this resolution. When the viewpoint is higher, the ground area
corresponding to the human eye’s resolution becomes larger, thus the ground surface
appears more abstract. In the case of stereo models formed from images, it is due
to the resolution of the images. That is, all information within the image resolution
(e.g., 10 m per pixel in the case of SPOT images) disappears. These examples underline
a universal principle, a natural principle as described by Li and Openshaw (1993),
which states:

for a given scale of interest, all details about the spatial variations of geographical
objects beyond certain limitation are unable to be presented and can thus be neglected.

It follows, therefore, that a simple corollary to this process can be used as a basis
for the transformations in scale dimension. The corollary can be stated as follows:

By using a criterion similar to the limitation of the human eye’s resolution and
neglecting all the information about the spatial variation of spatial objects beyond
this limitation, zooming (or generalization) effects can be achieved.

Li and Openshaw (1992) also term this limitation as the smallest visible object
(SVO) but it will be called the smallest visible size (SVS) in this context. Figure 9.12

(a)

(b)

Figure 9.12 The natural principle given by Li and Openshaw (1993): a point or a cell can be
used to represent the spatial variations within a certain limitation. (a) In 2-D: spatial
variations within this area can be completely neglected and then represented by
a point (or a raster cell). (b) In 3-D: spatial variation within this volume can be
completely neglected and then represented by a point (or a voxel cell).
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illustrates the natural principle for a 2-D (Figure 9.12a) and a 3-D representation
(Figure 9.12b).

Now the critical question is how to compute the size of the SVS. Through intensive
testing, Li and Openshaw (1992) found that a value from 0.5 to 0.7 mm on the target
(or output) map will enable them to produce line generalization results similar to
that done by human beings. Let k be the SVS on the map and Kbe the SVS on the
ground, then

K = k × ST (9.1)

where ST is the scale factor of the target map.
However, there is a problem associated with this formula. That is, the value ofK

is the same no matter how large the scale SS of the source (input) map is. To solve
this problem, Li and Openshaw (1992, 1993) modified Equation (9.1) into

K = k × ST ×
(

1− SS

ST

)
(9.2)

This equation seems more reasonable. When the difference between SS and ST is
small, theK value is also small. This means that little needs to be changed. In extreme,
when ST = SS, K = 0, no generalization will be done.

9.3.3 DTM Generalization Based on the Natural Principle

This principle was successfully implemented for digital map generalization (Li and
Openshaw 1992). It has also been demonstrated that this natural principle is equally
applicable for 3-D representations. Figure 9.13 illustrates the generalization of a 3-D
surface. In this figure, one views the terrain from two different heights, that is,
level A and level B. Suppose the viewpoint at each level is the same and the viewing
resolution is also identical, then the surface could be generalized easily, as shown in
Figure 9.13(b) and Figure 9.13(c), respectively.

Figure 9.13 illustrates the generalization based on a central projection and the
degree of generalization will vary with the viewing distance. But if one considers
only a small area of the surface just below the viewpoint each time and moves the
viewpoint little by little, then an orthogonal projection is approximated by the central
projection and the DTM surface will be generalized more uniformly.

The process of applying the natural principle to DTM generalization is illustrated
in detail in Figure 9.14. It works like a convolution process, carried out cell by cell
on the input DTM. Each time, a template with a size equal to the SVS is placed onto
a cell of the input DTM, all the cells within this template will be used to estimate
the height of this cell in the output DTM. The computation process is illustrated in
Figure 9.15. Two methods were used (Li and Li 1999). One is the average of all cells
within the template and the other is the average of the cells along the edges of the
template. Indeed, all the point-based interpolation methods described in Chapter 6
can be used for this purpose.
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Figure 9.13 Generalization of a 3-D representation based on the natural principle (Li and
Openshaw 1993).

Figure 9.14 The movement of an SVS template over the input DTM pixel by pixel, within which
all spatial variations are ignored, for example, nine cells (16 nodes) are aggregated
into one in this example.

Figure 9.16 shows a set of DTMs generalized based on the method described in
this section. The 1:20,000-scale DTM, as shown in Figure 9.8, was then generalized
to produce DTMs at 1:50,000, 1:100,000, and 1:200,000. It is clear that the surface
becomes smoother as the scale becomes smaller. The contour plots of these DTMs
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(a) (b)

Figure 9.15 Aggregation of pixels within an SVS template (4 × 4 pixels) (the average of the
boundary pixels only is used in this example).

(a) (b)

(c) (d)

Figure 9.16 Generalization of DTM from 1:10,000 to 1:200,000, based on the natural principle:
(a) original DTM at 1:20,000; (b) generalized for 1:50,000; (c) generalized for
1:100,000; and (d) generalized for 1:200,000.

are given in Figure 9.17. It is clear that contour lines are smoother when the scale is
smaller. This is in accordance with the natural generalization.

It must be noted here that this generalization method is similar to low-pass filtering
but they differ in many aspects. First, the template can be moved gradually pixel by
pixel or jumped from one pixel to another by a distance smaller than template size.
In an extreme case, there may be no overlap between templates, leading to the simple
pyramidal structure. Second, the size of the template is computed from the values of
the source and target scales.

In this method, the degree of generalization is the only concern but the resulting
grid size of the final DTM is not. If desirable, a quadtree structure may be used to
represent (or compress) the generalized DTM.
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(a) (b)

(c) (d)

Figure 9.17 Contour representation of DEMs at different scales: (a) 1:20,000; (b) 1:50,000;
(c) 1:100,000; and (d) 1:200,000.

This method is equally applicable to triangular networks. In such a process, the
height of each triangular vertex will be modified.

9.4 VISUAL MULTI-SCALE REPRESENTATION OF DTM
AT CONTINUOUS SCALES: VIEW-DEPENDENT LOD

As discussed previously, the LOD technique is used for computer graphics and DTM
visualization.

9.4.1 Principles for View-Dependent LOD

The basic idea of LOD is simple. That is, more detail is used for scenes or objects
closer to the viewpoint and less detail for scenes or objects further from the from
viewpoint.

If the DTM is in grid form, then coarser grid cells will be used for the representation
of the scenes or objects that are more distant from the viewpoint. If the DTM is
triangular, then coarser triangular cells will be used for the representation of the
scenes or objects that are more distant from the viewpoint. Coarser cells, either grid
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or triangular, are generated by a number of operations such as collapse and removal.
Figure 9.18 illustrates four of the basic operations for the simplification of a triangular
network for LOD purposes:

1. Vertex removal: A vertex in the triangular network is removed and new triangles
are formed (Figure 9.18a).

2. Triangle removal: A complete triangle with three vertices is removed and new
triangles are formed (Figure 9.18b).

3. Edge collapse: An edge with two vertices is collapsed to a point and new triangles
are formed (Figure 9.18c).

4. Triangle collapse: A complete triangle with three vertices is collapsed to a point
and new triangles are formed (Figure 9.18d).

Now the question arising is when to use these operations. This is about the
constraints of simplification. Recalling the VIP selection discussed in Chapter 4, two
constraints were used: (a) the number of VIPs to be retained and (b) the allowable
accuracy loss. These two constraints can also be used to simplify the DTM data for
the generation of view-dependent LOD, leading to two distinct approaches. However,

(a)

(b)

(c)

(d)

Figure 9.18 Basic geometric operations for simplification of the triangular network: (a) vertex
removal; (b) triangle removal; (c) edge collapse; and (d) triangle collapse.
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the number of triangles should be used in LOD instead of the number of VIPs. The
method making use of allowable error as the constraint is also called fidelity-based
simplification and that making use of the number of triangles as the constraint is also
called budget-based simplification (Luebke et al. 2003).

9.4.2 Typical Algorithms for View-Dependent LOD for DTM Data

One of the first real-time continuous LOD algorithms for terrain grids was the early
work of Lindstrom et al. (1996) as cited by Luebke et al. (2003). The simplification
scheme involves a vertex removal approach in which a pair of triangles is reduced to a
single triangle. Figure 9.19 illustrates the principle. In this figure,�ABC and�BCD
are the two triangles considered. If vertex C is removed, then there will be a ver-
tical error (δ) from C to line AD. If δ on the screen is smaller than a threshold,
then vertex C can be removed. This is the working principle of a fidelity-based
simplification.

An extremely popular continuous LOD algorithm is the real-time optimally adapt-
ing meshes (ROAM) algorithm developed by Duchaineau et al. (1997). A continuous
mesh is produced by applying a series of split and merge operations on a binary tri-
angle tree (Figure 9.20). Again, screen-based geometry error is used as a threshold
for split and merge operations. Figure 9.21 is an example of the LOD of a terrain
surface determined by this method.

The ROAM algorithm includes a number of other interesting features and optimi-
zations, including an incremental mechanism to build triangle strips. Real-time
display of complex surfaces is provided by dynamically computing a multi-resolution
triangular mesh for each view. The meshes minimize geometric distortions on the
screen while maintaining a fixed triangle count. Pop-ups are minimized in several
ways, and efficient mesh corrections ensure that selected lines of sight or object
proximity are correctly represented. An incremental priority-queue algorithm uses
frame-to-frame coherence to quickly compute these optimal meshes (Duchaineau
et al. 1997).

G
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D  

C  

B  

A 

Figure 9.19 Fidelity-based LOD by Lindstrom et al. (1996).
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(a)

(b)

Split 

Merge 

Figure 9.20 Split–merge of binary triangle tree in ROAM algorithm. (a) Binary triangle tree.
(b) Split and merge of binary triangle tree structure.

(a) (b)

Figure 9.21 LOD of DTM by ROAM algorithm; (a) Binary triangle tree structure; (b) Perspective
display.

9.5 MULTI-SCALE DTM AT A NATIONAL LEVEL

DTMs have become a type of core data in a national spatial data infrastructure (NSDI)
and thus most countries have multi-scale DTM data sets. In this section, two examples
of multi-scale DTM at a national level are briefly described. One is China, from
the eastern part of the world, and the other is the United States, from the western
part of the world. They are both large countries so that DTMs at many scales are
available. The information for the Chinese multi-scale DTMs is extracted from the
home page of the National Geomatics Center of China and that for the American
multi-scale DTMs is extracted from the home page of the U.S. Geological Survey
(USGS).
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9.5.1 Multi-Scale DTM in China

So far, China has built its national DTM database at three scales, that is, 1:1,000,000,
1:250,000, 1:50,000, covering the whole country. For some important regions, such as
river basins of China’s seven major rivers, DTMs at 1:10,000 have also been produced.
Larger-scale DTM databases are produced by provincial or metropolitan bureaus of
surveying and mapping.

The national 1:1,000,000 DTM database was produced from over 10,000 sheets
of 1:50,000 and 1:10,000 topographic maps. The grid intervals are 28′′.125×18′′.750
(longitude × latitude). There are a total of 25,000,000 grid nodes all over the
country.

The national DTM database of China at 1:250,000-scale was produced from
the 1:250,000-scale topographic maps. There are two sets of national DTM data
at this scale, one stored in the national (grid) coordinate system with intervals of
100 m × 100 m and the other stored in the geographical coordinator system with
intervals of 3′′ × 3′′.

The national DTM database of China at 1:50,000-scale was produced from
topographic maps at three different scales, that is, 1:10,000, 1:50,000, and 1:100,000.
The grid interval is 25 m.

DTMs at 1:10,000-scale for the river basin areas of all China’s seven major rivers
have been produced by the National Geomatics Center of China. The grid size is
12.5 m×12.5 m. The production of DEMs at this scale is done at the provincial level
and is still in progress.

9.5.2 Multi-Scale DTM in the United States

The United States has many scales of DTM as well, that is, 1-degree, 30 minutes,
15 minutes, and 7.5 minutes. The 1-Degree DTM corresponds to the 1:250,000-scale
USGS topographic map series, and is available for all of the contiguous United States
and most of Alaska. It is expressed in geographic coordinates (latitude and longitude).
The grid interval is 3′′ × 3′′.

The 30-Minute DTM corresponds to the 1:100,000-scale topographic maps. It is
available for the coterminous United States and Hawaii. It is expressed in geographic
coordinates (latitude and longitude). The grid interval is 2′′ × 2′′.

The 15-Minute Alaska DTM corresponds to the USGS 1:63,360-scale topo-
graphic map series for Alaska. It is expressed in geographic coordinates (latitude
and longitude). The grid interval is 2′′ × 3′′ (latitude/longitude).

The 7.5-Minute DTM corresponds to the USGS 1:24,000- and 1:25,000-scale
topographic quadrangle maps, and is available for all of the United States and its ter-
ritories. Most files will have a grid interval of 30 m but 10-m grids are also available for
some locations. However, for Alaska, the grid interval is 1′′ ×2′′ (latitude/longitude).
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CHAPTER 10

Management of DTM Data

In Chapter 9, it was discussed that DTM data have become part of an NSDI and
one usually produced at the national level with multi-scales. For large countries like
Brazil, Canada, China, India, and the United States, the volume of DTM data could
be huge. Therefore, efficient management of DTM data in a computerized system is
an important task at national or provincial geospatial information centers. Therefore,
this chapter is devoted to management of DTM data.

10.1 STRATEGIES FOR MANAGEMENT OF DTM DATA

Spatial data, including DTM data, must be managed efficiently and database technol-
ogy plays an important role. There are different strategies to deal with the problems
in the management of DTM data.

10.1.1 Strategy for Making DTM Data Management Operational

To make the management of spatial data operational, spatial data sets are partitioned
according to five attributes, horizontal or vertical positions, time, theme, and scale.
In the management of DTM data, scale and horizontal positions are used. The use of
scale was discussed in Chapter 9 and, therefore, only the use of horizontal position
will be described in this section.

If the area to be modeled is large such as a nation or a province, one is concerned
with the arrangement of the huge volume of DTM data. Questions such as “should
distributed or centralized databases be used,” or “how can the data of the whole area
be split into small pieces so that they can be managed efficiently” are the concern here.

As contour maps have been widely used for DTM production, DTMs at a national
scale are usually arranged in a way similar to map sheets. Figure 10.1 shows
the arrangement for the 1:1,000,000-scale topographic maps of China. Table 10.1
shows the size of each map sheet at different scales, ranging from 1:1,000,000 to

211
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Figure 10.1 The tiling system of China’s map sheets at 1:1,000,000 scale. (Courtesy of the
National Geomatics Center of China.)

Table 10.1 The Sizes of China’s Map Sheets From 1:1,000,000 to 1:10,000 Scales

Scale 1:1,000,000 1:500,000 1:250,000 1:100,000 1:50,000 1:25,000 1:10,000

Size 6◦ × 4◦ 3◦ × 2◦ 1.5◦ × 1◦ 30′ × 20′ 15′ × 10′ 7.5′ × 5′ 3′45′′ × 2′30′′
(long/lat)

1:10,000. Taking the DTM of China at 1:1,000,000 as an example, it is in a grid
form and there are a total of 25,000,000 data points (at grid nodes). The heights
of these points are divided into tiles, which follow the 1:500,000-scale topographic
maps (http://nfgis.nsdi.gov.cn/). In other words, each tile covers an area of 3◦ × 2◦
(longitude/latitude). This kind of partition is the operational strategy for DTM data
management. Such a strategy is equally applicable for any project with a relatively
large area to be modeled.

10.1.2 Strategy for Using Databases for DTM Data Management

The second strategy is about the use of databases to store DTM data. The traditional
database is good at managing of event (or attribute) data but it is not good for geometric
data. On the other hand, all spatial data, including DTM data, have two components,
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geometric and attribute, and therefore are quite different from ordinary event data,
which have only one component. Therefore, special arrangements for spatial data
must be made according to the characteristics of these two components. Currently, the
mainstream practice is to use files to store geometric data and to use relational tables
to store attribute data (and relational data if any) in a traditional relational database.
The files for geometric data are then managed by a computer system. The geometric
and attribute data are then linked by pointers. This is also common for DTM data
management. Files are cataloged and indexed so that efficient retrieval is possible.
This is helped by metadata, or “data about data.” Metadata contain the information
describing the contents, quality, status, and other characteristics. Metadata can also
be indexed using files. However, if complicated, metadata can also be managed
by databases. In this way, databases do now come into the area of geometric data
management, but indirectly.

Current development is toward object-relational databases. In such databases,
geometric data (mainly the coordinates) are also organized into tables and stored and
managed by the relational database management system. This has become popular
for the management of large-volume DTM data. In practice, when data volume is
not very large, a file system is still commonly used due to its convenience and the
high cost of object-relational databases. Purely object-oriented databases have also
been under development. However, there is still a long way to go before they will be
commonly used.

10.2 MANAGEMENT OF DTM DATA WITH FILES

In the previous section, it was discussed that file systems are still commonly used
for the management of DTM data. The structure of such files will be discussed in
this section.

10.2.1 File Structure for Grid DTM

When the DTM is in a grid form, it can be represented by point matrix (Figure 10.2),
or raster format. The topology between a grid point and its adjacent grid points is
implicitly built in the rows and columns of the matrix.

The coordinates of a grid node can be computed based on the coordinates (x0, y0)

of the origin of the area and the square grid intervals d. Suppose the lower-left corner

62666862

66687064

58635957

566058 …

…

…

… … … … …

…

56

Figure 10.2 Matrix representation of grid DTM data.
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Table 10.2 Typical File Structure for Grid DTM

File Components Contents Comments

Header Coordinates of the origin;
coordinate data type;
height range; height data type;
grid interval; numbers of rows
and columns; order of rows and
columns, position (in the file)
where the body starts; position

(in the file) where the footer starts;
use of compression or not; etc.

The information in the footer
can also be recorded here

Body Height values of grid nodes Row by row and column by
column in blocks

Footer Data describing the general
characteristics of DTM,
e.g., name, boundary, producer,
projection parameters,
version, accuracy, date of production,
date of revision, linage, etc.

Metadata

point of a matrix (m, n) is used as the origin, then the coordinates of the grid node at
(i, j) are:

xi,j = (j − 1)× d + x0, j = (0, n− 1)

yi,j = (i − 1)× d + y0, i = (0,m− 1)
(10.1)

In other words, this elevation matrix records the heights at DTM grid nodes.
However, some additional information is required to tell users how to read the height
information. The location of the origin and the grid interval are necessary for the
computation of coordinates, and information about the sequence of the height values
is also needed so that each grid node can be assigned a height value. In a typical file of
raster data, such additional information is recorded as the header and the matrix is the
file body. In the body, heights are recorded row by row and then column by column,
or column by column and then row by row, or block by block. Some other relevant
information may also be recorded, either in the header or in a footer. Therefore, the
typical file structure for a grid DTM is as shown in Table 10.2.

10.2.2 File Structure for TIN DTM

The TIN model represents a surface comprising a series of contiguous triangles,
hence triangulated. A triangle has three vertices, which can be arbitrarily located,
here irregular in shape. This contrasts with the grid model where points are spaced
regularly in a lattice. The big difference between the management of TINs and grids
is that, for the TIN model, apart from elevation values, the coordinates (xi , yi) of
each vertex (say ith) and the information describing the topological relations among
the three vertices need to be recorded. The topological relationship between triangles
also needs to be recorded in most cases.
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I
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IV
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3
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Figure 10.3 A triangulated irregular network (TIN).

Table 10.3 A List of Coordinates of
Points

No. X Y Z

1 429.1 269.6 57.5
2 437.3 200.3 60.2
3 504.7 234.1 55.3
4 607.2 190.5 56.1
5 555.4 265.8 50.2
6 506.7 280.3 52.5
7 621.2 251.4 53.8
...

...
...

...

Table 10.4 A List of Triangles

No. Vertex 1 Vertex 2 Vertex 3

I 1 2 3
II 1 3 5
III 3 4 5
IV 2 4 3
V 1 5 6
VI 4 7 5
...

The recording of geometric information is illustrated in Figure 10.3 and Table 10.3
and Table 10.4, that is, a table of points containing all their coordinates and a table of
triangles with their corresponding three vertices. Apart from geometric information,
the topological information is recorded for efficient retrieval of data. Table 10.5 lists
the adjacent relations between these triangles.

The file structure for a TIN DTM is simply the list of points with their coordinates,
with some metadata also included in the header. The file structure is like that given
in Table 10.6. The topological information about these triangles is stored either in
a database or in a file. Table 10.7 illustrates a possible arrangement of such topological
information in a file.
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Table 10.5 Adjacent Relations of
Triangles

Triangle Edge Neighbors

I — IV II
II I III V
III IV VI II
IV — III I
V II — —
VI — — III
...

Table 10.6 Typical File Structure for TIN Point Coordinates

File Components Contents Comments

Header The coordinates of the points on the
boundary (convex hull); ranges of X , Y , and
Z coordinates; coordinate data type; data types;
numbers of points; position (in the file) where
the body starts; position (in the file) where
the footer starts; use of
compression or not; etc.

The information in the
footer can also be
recorded here

Body X , Y , and Z coordinates of points in sequence May also be in blocks

Footer Data describing the general characteristics
of DTM, e.g., name, producer,
projection parameters, version, accuracy,
date of production,
date of revision, linage,
the null points code, etc.

Metadata

Table 10.7 Typical File Structure for TIN Topology

File Components Contents Comments

Header Number of triangles,
the bytes of data for Table 10.4 or
Table 10.5, data types, etc.

The information in the footer
can also be recorded here

Body Information in Table 10.4 or
information in Table 10.5

Adjacent triangular topology is
not always necessary

Footer Other relevant information Metadata

10.2.3 File Structure for Additional Terrain Feature Data

As discussed in Chapter 4, a hybrid DTM network may be generated if data from
composite sampling (i.e., grid plus feature points and lines) are used. In normal
practice, the grid and feature data are stored in separate files. When modeling or
interpolation is needed, grids are split into triangles and feature points and lines are
added to the regular triangular network to update local triangles (Figure 10.4).
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Figure 10.4 Hybrid of regular grid and TIN.

···

···

···
···

1(line ID), N1 (No.of points on line 1)

2(line ID), N2 (No.of points on line 2)

X11, Y11, Z11

X21, Y21, Z21

X22, Y22, Z22

X12, Y12, Z12

X1N1
, Y1N1

, Z1N1

X2N2
, Y2N2

, Z2N2

Figure 10.5 The body of vector file structure for terrain feature data.

Feature data may be stored in one or two files, one for points and the other for
lines. The file structure for terrain feature points is similar to that for the points
of TINs. However, for lines, it is slightly different. In the header, the number of lines
is specified and in the body the data could be organized as shown in Figure 10.5.

10.3 MANAGEMENT OF DTM DATA WITH SPATIAL DATABASES

In the previous section, the file structures for both grid and TIN DTMs were discussed.
These files are managed using an indexing system, which can be organized into files
or into tables and managed by a database if the indexing is rather complex. In this
case, an ordinary relational database will serve for the purpose. On the other hand,
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the DTM data can also be organized into tables in an object-relational database,
in which DTM data are stored in block as a field.

10.3.1 Organization of Tables for Grid DTM Data

A large area (e.g., a country) may be divided into a number of smaller regions
(e.g., provinces) and each region can be further divided into a number of smaller
units called tiles. Each tile may also be further divided into a number of small units.
This is a hierarchical structure and can be indexed efficiently for the management of
DTM in a grid form. Figure 10.6 shows an indexing system for the hierarchy in three
levels, region, tile, and block. It is not necessary to have rectangular shapes for the
tiles. For example, the boundaries will be irregular if the DTM data of a nation is
managed based on drainage area or administrative region.

In some commercial systems, the block is the basic unit for access and retrieval.
Each block comprises many rows and columns. Through the structural index for
“region–tile–block–row–column,” the height of any location within the database
can be uniquely determined. The spatial index formed by the region–block–unit
hierarchy ensures fast retrieval of and seamless access to DTM data. The arrange-
ment of tables for a regional DTM in an object-relational database is shown in
Table 10.8, Table 10.9, and Table 10.10, which are created by the authors for
illustration purposes only.

The above data organization method may also apply to TINs for large areas. As the
TIN boundary of each region is irregular, to avoid the edge-matching problem between
adjacent blocks, a certain degree of overlapping is necessary in block partitioning.

Suppose each region is organized into a database. There are only four fields in
a record. This is illustrated in Table 10.8.

In Table 10.8, the field Region-table-name is the name of the table containing
DTM data (see Table 10.9); the field Region-DTM-info is an abstract data type
using database BLOB field (variable length), that is, a data stream, and has a

Standard Block 13

00 01 02 03

10

222120 23

1312
Standard tile 11

Column 3

Row 5

Grid cell 1*6

Figure 10.6 Hierarchical structure based on region–tile–block (Modified from ESRI, 1992).
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Table 10.8 An Index Table for a Regional DTM

Region-ID Region-Table-Name Region-DTM-info Range-of-region

1 GridDEM50000_1 GridDTM50000_1_INFO GridDTM50000_1_ENVELOPE
2 GridDEM50000_2 GridDEM50000_2_INFO GridDTM50000_2_ENVELOPE
...

...
...

...

structure that contains the information about the region. For example, the struc-
ture GridDTM50000_1_INFO contains all the tile and block information about this
region. The following is an example:

* GridDTM50000_1_INFO

{

int XtilesNum; //number of tiles in column

direction, e.g., four in

Figure 10.6//

int YTilesNum; //number of tiles in row

direction, e.g., three in

Figure 10.6//

int XBlocksNum; //number of blocks in each tile,

in column direction, e.g.,

five in Figure 10.6//

int YBlocksNum; //number of blocks in each tile,

in row direction, e.g., five

in Figure 10.6//

int BlockRow; //number of rows in each block,

e.g., seven in Figure 10.6//

int BlockColumn; //number of columns in each

block, e.g., eight in

Figure 10.6//

float BlockCellSize; //interval of DTM cells,

e.g., 25.0 for 25.0 m//

int Scale; //scale factor of the DTM,

e.g., 50,000 for 1 : 50,000//

BOOL bOriDataLayer; //whether it is original or

updated, e.g., TRUE

if original//

BOOL bCompressed; //whether or not data

compression is

used, e.g., FALSE if

no compression//

};
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In Table 10.8, the field Range-of-region is also the abstract data type BLOB,
that is, a pointer to a structure that contains the coordinates of the four corners of the
region. For example, the structure GridDTM50000_1_ENVELOPE may contain:

GridDTM50000_1_ENVELOPE

{

float XMin; //the smallest X coordinates, e.g.,

850,000 for 850,000 m//

float XMax; //the largest X coordinates, e.g.,

860,000 for 860,000 m//

float YMin; //the smallest Y coordinates, e.g.,

810,000 for 810,000 m//

float XMax; //the largest Y coordinates, e.g.,

830,000 for 830,000 m//

};

In Table 10.8, the index table of the DTM at region level is set for the
logical structure of the region–block–tile–block hierarchy. The actual heights at grid
nodes are arranged in blocks and stored in a table with a name given under the
field Region-table-name. In other words, the height data are stored block by block.
Three different ways have been used to organize data in blocks, which are shown in
Tables 10.9 and Table 10.10.

In Table 10.9, the Block-ID is the main key, which is unique to each block.
Each Block-ID consists of four numbers. The first two indicate the location of the
corresponding tile (which contains this block) in the region, one for the numbering

Table 10.9 Organization of DTM Height Data for Region GridDEM50000_1
in Block

Block-ID Bytes-of-Block Block-Data

0000 112 h0,0 h0,1 . . .h0,6 h1,0 . . .h6,7 (of Block 0000)
...

...
...

1113 112 h0,0 h0,1 . . .h0,6 h1,0 . . .h6,7 (of Block 1133)
...

...
...

2344 112 h0,0 h0,1 . . .h0,6 h1,0 . . .h6,7 (of Block 2344)

Table 10.10 Organization of DTM Height Data
for Region GridDEM50000_1 in Tiles

FILE-ID DTM-Info DTM-Data

00 DTMINFO00 Heights at tile 00
01 DTMINFO01 Heights at tile 01
...

...
...

23 ∗DTMINFO23 Heights at tile 23
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of the tile in row direction and the other in column direction. The other two indicate
the location of the current block in the corresponding tile, one for block numbering
in row direction and the other in column direction. For example, the block labeled
in Figure 10.6 is assigned an ID of 1113. The first two digits, that is, “11” indicate
a location of the second tile in row direction and second tile in column directions in
the region. The last two digits, that is, “13,” indicate the location of the block within
tile 11, that is, the second in row and the fourth in column directions. The data type
for block-data is BLOB. In Figure 10.8, the size of each block is a 7 × 8 matrix.
The 7 × 8 height for each block is then recorded in this field. In this table, as the
number of bytes for each block is 112, a float (or integer) of two bytes is used for each
height value. h0,0 h0,1 . . . h0,6 h1,0 . . . h6,7 are the heights of the respective 7× 8 data
blocks.

In fact, it is also possible to organize the DTM data file using tile as the basic unit.
That is, one file is used for each tile. In this case, the file format of each tile may not
necessarily be the same. Table 10.10 shows the organization of tables using tile as the
basic unit.

The file-ID in this table is the tile number. The data types for the fields DTM-Info
and DTM-Data are both BLOB, which is a data stream. The former is a structure as
follows (using DTMINFO00 as an example):

DTMINFO00

{

Char Filename; //file name of file for DTM data of

tile 00//

Float ENVELOPE2D; //the area covered by tile 00, i.e.,

the coordinates of the

four corners//

Int Data-Bytes; //the size of data file in terms of

bytes//

};

In the DTM-Info field, a file name is included to refer to the height data block
in the DTM-Data field of the corresponding record. This is for the convenience of
retrieval. The height values in each tile form a data stream and are stored in the field
DTM-data. The data may be stored in separate files (i.e., not as a field in the table).
In this case, Table 10.9 simply stores the logical information for the management of
DTM files.

10.3.2 Organization of Tables for TIN DTM Data

As was done for the region–tile–block hierarchical structure of grid DTM, similar
arrangements can also be made for TIN DTM. A region can be divided into a
number of (e.g., M × N ) blocks for the TIN. Table 10.11 shows the indexing of
TIN blocks.
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Table 10.11 The TIN Block Indexing Table

Region-ID Region-Table-Name Region-Info Range-of-Region

0 TIN50000_0 TIN50000_0_INFO TIN50000_0_ENVELOPE
1 TIN50000_1 TIN50000_1_INFO TIN50000_1_ENVELOPE
...

...
...

...
K TIN50000_K TIN50000_K _INFO TIN50000_M_ENVELOPE

The fields of Table 10.11 are defined as the ID of the region, the name of the
region, other information about the region, and the envelope (range) of the region,
respectively. For the ith region, the structure in the Region-Info field is called
TIN50000_i_INFO, defined as follows:

TIN50000_ i_INFO

{

float Xblocksize; //the size of each block in the

region, in X direction//

float Yblocksize; //the size of each block in the

region, in Y direction//

int XBlocksNum; //the number of blocks in the

region, in X direction//

int YBlocksNum; //the number of blocks in the

region, in Y direction//

int NPoint; //the total points number in the

region//

int Scale; //scale factor of DTM data, e.g.,

50,000 for 1 : 50,000//

BOOL bCompressed; //whether or not the data are

compressed//

};

TIN50000_i_ENVELOPE is the defined area coverage of the ith region, which is
similar to the structure GridDTM50000_i_ENVELOPE discussed previously.

A triangle is the basic unit in a TIN. There may be a number of triangles in each
region or block. The data structure for a triangle is shown in Figure 10.7. Three tables
are required for this structure, one for point coordinates, one for the relationship
between a triangle and its three vertices, and one for the relationship between a
triangle and its three edge neighbors, for example the tables given in Section 10.2.2,
Table 10.3, Table 10.4, and Table 10.5. These three tables can also be stored in
a database table. Table 10.12 illustrates the table formats in a spatial database.

In Table 10.12, BLOCK-ID is the main key of the data table (i.e., ID), Both
Triangle-List and Point-list are data streams (i.e., type BLOB). Triangle-List contains
the data for Table 10.4 and Table 10.5. The Point-list contains the coordinates of
points in Table 10.2.
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Triangle

Unique (OID)

Type

Serial number

 3-D coordinate extent

 Topological attribute

Pointer to edge

Pointer to adjacent triangle

Other attributes

Pointer to point

Figure 10.7 Structure of a triangle entity in a TIN.

Table 10.12 The TIN Topology Data Table

BLOCK-ID Triangle-List Point-List

00 Triangle list for block 00 Point coordinates of Block 00
01 Triangle list for block 01 Point coordinates of Block 01
...

...
...

M − 1, N − 1 Triangle list for block M − 1, N − 1 Point coordinates of Block M − 1, N − 1

Vertex is the basic entity of the TIN in a database. The topological relationship,
including the links between a triangle and its three vertices, between a node and
its adjacent nodes, and between a triangle and its adjacent triangles, can also be
set up in the database using a pointer system for vertices. This structure is given in
Figure 10.8.

10.3.3 Organization of Tables for Additional Terrain Feature Data

As has been discussed in Section 10.2.3, if additional terrain feature data are available,
they need to be stored in a separate file (if file system is used) or table (if spatial
database is used) from the grid DTM data. The arrangement of line data in a vector
file is given in Section 10.2.3. In this section, the organization of such vector data
into tables in spatial databases is given. The structure of such vector lines is given in
Figure 10.9. The data format is given in Table 10.13.

In this table, an integer is used for line types, for example, 1 for ridge lines, 2 for
break lines, 3 for rivers, and so on. A data stream (i.e., BLOB) is used to store the
coordinates of all the points on a line. In fact, the terrain features could be points,
line, and areas. If there is more than one type of terrain feature, an indexing table can
be used to manage them. Table 10.14 is an example.
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Point

Unique ID (OID)

Type

Serial number

X   Y   Z 

Topological attributes

Pointer to edge

Pointer to triangle

Other attributes

Figure 10.8 Pointer structure of a point in a TIN database.

Line

Unique ID (OID)

Extent of 3-D coordinate 

Coordinate point number

Other attributes

3-D coordinates 

Figure 10.9 Line structure of linear entity.

Table 10.13 The Linear Entity Data Table

Line-ID Line-Type Number-of-points Coordinates-of-the-Line

1 1 N1 X11, Y11, Z11 X12, Y12, Z12 . . .X1N1
, Y1N1

, Z1N1
2 3 N2 X21, Y21, Z21X22, Y22, Z22 . . .X2N2

, Y2N2
, Z2N2

...
...

...
...

Table 10.14 An Indexing Table for Terrain Features

Region-ID Region-table-name Feature-Info Range-of-region

0 Feature50000_0 Feature50000_0_INFO Feature50000_0_ENVELOPE
1 Feature50000_1 Feature50000_1_INFO Feature50000_1_ENVELOPE
...

...
...

...
K Feature50000_K Feature50000_K _INFO Feature50000_K _ENVELOPE
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The meanings of the fields in this table are similar to those in Table 10.11. The
structure of Feature50000_i_INFO is defined as:

Feature50000_ i_INFO

{

INT LRID; //ID of feature table//

Char TABLENAME; //name of table//

BLOB TABLEFLAG; //flag of table, such as 1 for point

table, 2 for line table, 3 for area

table, etc.//

};

10.3.4 Organization of Tables for Metadata

“Metadata” is “data about data.” Metadata describes the content, quality, status, and
other features of data. Metadata also help to locate and understand the data. Metadata
are an important basis for sharing spatial data. Through inquiring about and brows-
ing through the metadata, users obtain general information about the kind of data
available, which data are of interest, and where such data are kept. A major part of
the interface used in the clearinghouse of a national spatial data infrastructure is to
provide interactive queries on metadata. Through metadata it is convenient to obtain
descriptions of spatial data (e.g., DTM) and the data themselves. Metadata have four
fundamental functions:

1. Availability: to indicate whether a data set exists for a certain geographic area.
2. Fitness for use: to evaluate whether the data set is applicable.
3. Access: to determine the means of acquiring verified data.
4. Transfer: to successfully handle (e.g., transfer) and utilize the data set.

Metadata generally contain the following:

1. Basic identifiers: the fundamental information about data sets, for example, title,
geographic extent, currency (updatedness), rules of access or utilization.

2. Quality: quality evaluation of data sets, including accuracy of location and
attributes, completeness, consistency, information sources, producing methods.

3. Data organization: the mechanism for representing spatial information in data
sets, for example, whether the spatial location is represented directly by a raster or
a vector or indirectly by a street address or zip code.

4. Spatial reference: description of the coordinate systems of data sets, including
projection, parameters, benchmark of the plane, and elevation.

5. Entity and attribute: the content of data sets, including type, attributes, domain.
6. Issuance: obtaining of datasets, for example, contact information, format, and how

to get information about data and prices from the Web and physical media.
7. Metadata reference: description information about the currency (updatedness) of

the metadata and its producers, etc.
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Table 10.15 An Example of a Metadata Set in a Table

Table-ID Table-Name Institution-Name Product Updating-Date Scale . . .

100,000 PubMetadata GeomaticsCenter DTM 10-12-2004 50,000
...

...
...

...
...

...
...

...

Table 10.16 Standards of Metadata

Name of Standards Institution or Organization

Content Standard for Digital U.S. Federal Geographic
Geospatial Metadata (CSDGM) Data Committee (FGDC)

Directory Interchange Format (DIF) U.S. National Aeronautics and
Space Administration (NASA)

Government Information U.S. Federal Government
Locator Service (GILS)

CEN Geographic Information — CEN (European Committee for
Data Description — Metadata Standardization) TC287

Geographical Data Description Multipurpose European Ground Related
Directory (GDDD) Information Network (MEGRIN)

Geomatic Data Sets Canadian General Standards Board (CGSB)
Cataloguing Rules and Committee on Geomatics (CoG)

ISO Geographic Information — ISO (International Organization for
Metadata Standardization)/TC211

As metadata files are descriptive documents with text and numeric data types,
generally a relational database is sufficient. Two tables are required for metadata
management, one for publishing metadata for the public (as shown in Table 10.15),
and the other for internal applications. In fact, the structures of these two tables are
the same, but with different fields.

The importance of metadata is well recognized and international efforts have
been made on the standardization of metadata. Table 10.16 provides a list of such
standards.

10.4 COMPRESSION OF DTM DATA

As discussed in the previous section, in the structure for DTM data, one variable
states whether the data have been compressed. If compressed, then decompression
needs to be applied before using the data. In this section, a brief discussion on DTM
data compression is given.

10.4.1 Concepts and Approaches for DTM Data Compression

There are two basic ideas behind data compression, leading to two different
approaches:

1. Lossless compression: Some data provide no extra information, or are redundant.
Redundancy can be minimized by more efficient coding methods. After decoding,
the data can be recovered with 100% fidelity.
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2. Lossy compression: Information or accuracy loss is still acceptable even though
changes to some of the data points are made. However, the information or accuracy
lost during compression can never be recovered.

In digital terrain modeling, data redundancy is inevitable, especially when image-
based techniques such as automated photogrammetric systems, LIDAR and InSAR
are used for data acquisition (see Chapter 3 for a more detailed discussion).

Data redundancy exists in a number of different guises. It is more than just height
values being constant. Rather the inefficiency of using fixed-length data coding and
also the correlation between neighboring data values are the big concerns.

In fact, both lossless compression and lossy compression techniques are used in
digital terrain modeling. The selection of VIPs discussed in Chapter 4 is a lossy com-
pression technique. Therefore, this section contains only a brief discussion on lossless
compression for grid DTM. In fact, the quadtree structure discussed in Chapter 9
is a very efficient method of data compression. Other traditional methods such as
run-length and block encoding, and general-purpose methods such as gzip or bzip2
can also be used to reduce file sizes. In this section, the widely used Huffman coding
is first described, then another simple method is introduced.

10.4.2 Huffman Coding

The basic idea behind the Huffman coding is that some values occur more frequently
than others. If shorter codes are used for more frequent values and longer codes for
less frequent values, then the overall storage required will be significantly reduced.
Table 10.17 shows a set of grid DTM, that is, heights, in a matrix. The heights range
from 212 to 216. Therefore, an 8-bit space (i.e., a byte) is required to store one height
value and a total of 8×36 bits (288 bits) are required for this data set.

Table 10.18 shows that height 213 occurs most frequently and 216 least frequently.
The idea is to devise a coding system to let the value with higher frequency have a
shorter code and the lower one have a longer code. In this example, the value 213
should be assigned the shortest code and 216 the longest code. The Huffman coding
does this and is illustrated in the right part of Table 10.18.

First, the values are put in an order of frequency, with the most frequent value at
the top. This process is called source reduction. In this process, two basic principles
are involved:

1. The last two frequencies are always summed to form one value in each round.
2. The frequency values are always sorted in order, with the largest frequency value

at the top.

Table 10.17 A Set of DTM Data in
a Grid

213 213 213 212 212 213
216 212 213 212 212 216
214 215 215 213 216 215
212 213 213 213 214 214
212 213 215 214 213 212
212 213 213 213 213 212

 



DITM: “tf1732_c010” — 2004/10/22 — 16:37 — page 228 — #18

228 DIGITAL TERRAIN MODELING: PRINCIPLES AND METHODOLOGY

Table 10.18 Huffman Coding for Data Compression

Original Source Source Reduction

Value Occurrence Frequency First Code 3 Second Code 2 Third Code 1 Final Code

213 15 0.42 0.42 1 0.42 1 0.58 0 1
212 10 0.28 0.28 01 0.30 00 0.42 1 01
214 4 0.11 0.19 000 0.28 01 001
215 4 0.11 0.11 001 0000
216 3 0.08 0001

After the number of frequencies is reduced to two, codes can be assigned to each of
them. In the code assignment process, three principles are involved:

1. The code is binary, that is, always 0 and 1.
2. Codes at higher levels are propagated into lower levels.
3. Codes are assigned by tracing back the source reduction process.

In the example given in Table 10.18, three rounds of reduction are required for
the data set with five values. The last two frequency values (0.58 and 0.42 under the
column head “Third”) are assigned 0 and 1, respectively. As 0.42 is the frequency
for value 213, code 1 is assigned to value 213. On the other hand, in the third round,
the frequency 0.58 was combined from the frequencies 0.30 and 0.28 in the second
round; therefore, the code 0 for frequency 0.58 will be propagated to frequencies 0.30
and 0.28. In this way, frequencies 0.30 and 0.28 are assigned 00 and 01, respectively.
Again, the frequency 0.30 in the second round was combined from the frequencies
0.19 and 0.11 in the first round; therefore, the code 00 for frequency 0.30 will be
propagated to frequencies 0.19 and 0.11. Thus, frequencies 0.19 and 0.11 are assigned
000 and 001, respectively. Again, the frequency 0.19 in the first round was combined
from the original frequencies 0.11 and 0.08; therefore, the code 000 for frequency
0.19 will be propagated to frequencies 0.11 and 0.08. Thus, frequencies 0.11 and
0.08 now have codes 0000 and 0001, respectively. Therefore, the final codes for
values 3, 2, 4, 5, and 6 are 1, 01, 001, 0000, and 0001. The total number of bits
required for this coding is 1× 15+ 2× 10+ 3× 4+ 4× 4+ 4× 3 = 80. As a result,
the compression ratio is 288/80 = 3.6. Generally, a maximum ratio of 5 is achievable
with lossless compression.

10.4.3 Differencing Followed by Coding

It was discussed previously that there is a higher correlation between close neighbors.
This means that the differences in heights between neighbor DTM cells must be
smaller than the original height values. Therefore, it is natural to make use of the
differences and then encode these differences (Kidner and Smith 2003; Wessel 2003).

Kidner and Smith (2003) suggested using the optimal linear predictor to compute
DTM heights, then computing the height differences between the original and the
predicted DTM points, and last encoding these differences with a Huffman coding.
Figure 10.10 illustrates the principle.
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Figure 10.10 DTM data compression based on linear prediction.

The prediction is based on the three-point linear predictor as follows:

Z = a − b + c (10.2)

If the coefficients can be optimized, then a much higher compression ratio may be
reached. Kidner and Smith (2003) suggested the use of the following predictor:

Z = INT(w1 × a + w2 × b + w3 × c) (10.3)

where INT refers to take the nearest integer and w1,w2, and w3 are weights whose
sum is equal to 1. When w1 = 1,w2 = (−1),w3 = 1, the predictor is equivalent to
the three-point predictor expressed by Equation (10.2).

After this differencing process, Huffman coding can be applied to the differ-
ences. Kidner and Smith (2003) revealed that differencing followed by Huffman
coding is capable of producing significant reduction. They showed that all the USGS
1:250,000-scale DTMs can be successfully compressed into a CD-ROM. The test
results revealed that this lossless DTM compression method offers a typical storage
saving of 90% compared with the traditional 2-byte ASCII or binary representations.
The compressed files are less than half the size of GZIP-encoded DTMs.

10.5 STANDARDS FOR DTM DATA FORMAT

DTM data are a type of fundamental data in a national spatial data infrastructure.
Like other data sets, there must be some standards for them, including accuracy
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and format. In this chapter, only format is discussed as this chapter deals with data
management.

10.5.1 Concepts and Principles of DTM Data Standards

Data are important and expensive. It is therefore important for data to be shared.
DTM data often have different formats. Each software producer sets a specific format
for the data in its digital terrain modeling system. So one system may need to provide
a large number of programs under the import/export menu in order to read other
formats. This is the case of data exchange between any two systems. If there are n
data formats, one needs to write C2

n programs. For example, if there are ten different
formats, one needs to write C2

10 = 10!/2 = 10× 9/2 = 45 programs. As illustrated
in Figure 10.11(a), this is very inefficient.

1 2

5 4

3N

1 2

5 4

3N

(b)(a)

Figure 10.11 DTM data exchange standards: (a) exchange between any two and (b) exchange
via a neutral format.

Table 10.19 U.S. Standards for DTM Data Format

Element Comments

Filter Blank fill
Origin code Free format mapping origin code
DTM level 1 = DEM-1; 2 = DEM-2, 3 = DEM-3; 4 = DEM-5
Pattern 1 = regular; 2 = random; reserved for future use
Coordinate system 0 = geographic; 1 = UTM; 2 = state plane
Zone UTM coordinate zone
Map projection Specify the type and parameters of map projections
Unit for planimetry 0 = radius; 1 = feet; 2 = meter; 3 = arc-second
Unit for height 1 = feet; 2 = meter
Number of bounding polygons Set to n = 4
Corner coordinates Four corners of the quadrangle corners, from lower-left

corner, clockwise
Minimum and maximum heights In the same unit as for unit for height
Axis orientation Zero of the same as easting and northing, or geographic

system
Accuracy code 0 = unknown; 1 = recorded
Resolutions In X and Y , as well as Z
Row and column Number of rows and columns of the height matrix
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Table 10.20 Chinese Standards for DTM Data Exchange

Element Description

DataMark Geospatial data exchange format of China — the tag of DTM data exchange
format (CNSDTF-DTM)

Version Version number of the exchange format, e.g., 1.0
Unit Coordinate unit, K for kilometer, M for meter, D for trapeze with degree as unit,

S for trapeze expressed by degree-minute-second (i.e., DDDMMSS.SSSS)
Alpha Directional angle
Compress Compression method, e.g., 0 for noncompression, 1 for run-length encoding
Xo X coordinate of the original point on the top-left corner
Yo Y coordinate of the original point on the top-left corner
DX Interval in X direction
DY Interval in Y direction
Row Number of rows
Col Number of columns
ValueType Type of elevation value
HZoom Magnification rate, i.e., the number used to make elevation data stored in

integer, e.g., 100 is used to make 213.56 become 21356
Coordinate Coordinate system; G for geodetic coordinate system; M for mathematical

coordinate system; M is the default value
Projection Projection type (optional)
Spheroid Reference spheroid (optional)
Parameters Projection parameters
MinV Minimum value of the grid height
MaxV Maximum value of the grid height

An alternative solution is to develop a neutral format and have all software system
support this format. In this way, exchange is more efficient than the exchange between
two systems. Figure 10.11(b) illustrates this.

There are many format standards available such as the international standard-
ization agreements STANAG 3809 published by NATO, the DTED (digital terrain
elevation data) level 1 and level 2 files specified by the Department of Defense of the
United States. However, in this section, only the ones by US and China are briefly
described in this section, as did for the multi-scale DTM data in Chapter 9.

10.5.2 Standards for DTM Data Exchange of the United States

Intended to facilitate the interchange and use of DEM data, The National Mapping
Division of the USGS specified the logical ASCII format for DEM data sets in its
Standards for Digital Elevation Models (USGS 1998), as listed in Table 10.19.

These basic elements are contained in the old format although there is a new
version containing additional information.

10.5.3 Standards for DTM Data Exchange of China

Similar to the U.S. Standards, China’s Standards also list a few essential elements for
the description of a DTM data set (SBQTS 1999). Table 10.20 is an extraction from
the standard.
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Contouring from Digital Terrain Models

Contour production has been one of the traditional applications of DTMs. This
chapter is devoted to the production of contours from DTM.

11.1 APPROACHES FOR CONTOURING FROM DTM

Contour lines could be produced from either grid-based or triangulation-based DTM,
either by a vector-based or by a raster-based method. Thus, theoretically speaking,
four combinations are available for contouring from DTM:

1. vector-based contouring from a grid-based DTM
2. vector-based contouring from a triangulation-based DTM
3. raster-based contouring from a grid-based DTM
4. raster-based contouring from a triangulation-based DTM.

The first two approaches are widely used. Raster-based contouring from a grid-
based DTM is not widely used although it is not difficult. Raster-based contouring
from a triangulation-based DTM is not practical because the triangulations are nor-
mally for irregularly distributed data and thus it is not possible to form a raster structure
without interpolation. It is possible to produce a stereomate for a contour map so that
a stereo model of terrain can be seen if viewed using a stereoscope. This results in
various approaches for contouring from DTM, as shown in Figure 11.1.

11.2 VECTOR-BASED CONTOURING FROM GRID DTM

There are many ways to produce contour lines from a grid DTM. The basic
principles are similar although the procedures may differ. All methods in vector-based

233
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Grid DTM

Raster
approach

TIN DTM

Vector
approach

Contour map

Stereo
approach

Figure 11.1 Approaches for contouring from DTMs.

approaches try to solve the following problems:

1. to search for the starting point of each contour line
2. to interpolate the contour points by computing the coordinates of the intersection

points between each contour line and grid edges
3. to trace contour lines
4. to smooth traced contour lines, if desirable.

11.2.1 Searching for Contour Points

To obtain all contour lines in the area of concern, first the heights of the lowest (hmin)
and highest (hmax) contours are computed from the heights of the lowest (Zmin) and
highest (Zmax) points in the area:

hmin = (Zmin//�h+ 1)×�h
hmax = (Zmax//�h)×�h (11.1)

where �h is the desirable contour interval for the area and // represents the integer
division, that is, taking only the integer part of the division result, for example,
5//2 = 2.

The next step is to search for all the contours systematically and then to trace each
one. There are two methods to search for contour points on grid edges. The first starts
with a given height and checks grid edges one by one to see whether or not the contour
passes through any grid cells. The other starts with a grid edge and then checks all
the possible contour heights to see whether this grid cell contains any contours. They
are basically the same and the only difference is the searching sequence.

Usually, the search for grid edges starts from a corner, for example, the upper-left,
and ends until a contour point is found for the given height or until all grid edges have
been checked. Open contours are closed to the boundaries of the area and therefore
their starting points should be found on the grid edges along the boundaries. Closed
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Figure 11.2 Interpolation of contour points and tracking of contour lines.

contours are inside the DTM area. An open contour may go through as few as two
grid cells and a closed contour may occupy as few as four cells. Therefore, searching
needs to be conducted on each grid cell to ensure that no contour is missed.

Whether or not a grid edge (e.g., P1P2 in Figure 11.2) contains one or more
contour points can be judged by the following equations:

ZP1 > h > ZP2 , or ZP1 < h < ZP2 ⇒ within P1P2

ZP1 = h, or h = ZP2 ⇒ through node P1 or P2

otherwise, ⇒ not contained in this edge

(11.2)

where h is the contour of concern, P1 and P2 are the two nodes of a cell edge; and
ZP1 and ZP2 are the heights of the two nodes. Equation (11.2) can be simplified to:

(ZP1 − h)(ZP2 − h) ≤ 0 (11.3)

In Equation (11.3), if the result is equal to 0, then the contour will passes through
a grid node. This may cause difficulties in determining the next direction. To avoid
this, it is a normal practice to add or subtract a small value from the height of the node
that is equal to h (height of the contour).

11.2.2 Interpolation of Contour Points

If the cell edge P1P2 does contain a point of the contour with height h, then the exact
location of this point on P1P2 needs to be interpolated. As in traditional mapping,
linear interpolation is usually adopted, that is,

Xh = XP1 +
(h− ZP1)

(ZP2 − ZP1)
× (XP2 −XP1)

Yh = YP1 +
(h− ZP1)

(ZP2 − ZP1)
× (YP2 − YP1)

(11.4)
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Figure 11.3 Incorporation of contour lines when terrain feature lines are sampled.

(a) (b) (c)

Figure 11.4 Three possible exits for a given point on a grid edge.

Figure 11.2. shows simple interpolation by using grid nodes. If terrain feature
points and lines have been sampled, such as the line 1, 2, 3, 4, 5 in Figure 11.3, then
they have to be considered in the interpolation of contour lines, as follows:

1. To interpolate the intersections (i.e., A, B, C, and D in Figure 11.3) between a feature
line and the grid cells to obtain the X, Y , and Z coordinates of these intersections.

2. To interpolate contour points by using these intersections and grid nodes. For
example, points A and N2 are used to interpolate contour point P; and points 3
and C are used to interpolate contour point R.

3. To obtain the final contour points (i.e., P, Q, R, S, T, and U in Figure 11.3) by
contour tracing and interpolation.

11.2.3 Tracing Contour Lines

Once the starting point of a contour is located, the next step is to trace the contour
through the grids. For a given point on a grid edge, there are three possible exits
within this grid, as shown in Figure 11.4. Therefore, tracing a contour line means to
determine the exit for the current point and forward this exit through the grid cells,
until the contour closes or reaches the boundary of the DTM area. Figure 11.2 also
illustrates the tracing of a contour line from cells B to D and C.

The basic principle of contour tracing is that the exit edge of the current grid cell
is naturally the entrance edge of the adjacent grid cell. Figure 11.2 also shows the
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threading process, where the contour line enters cell D from cell B. In this case, cell
edge P1P2 is the exit edge of cell B and the entrance edge of cell D at the same time.

It is likely that there is more than one contour line of the same height in the DTM
area, therefore it is still necessary to search for other possible contours with the same
height. After all contours with one height are interpolated, the search for contours
with a new height is carried out. This process is repeated until all contour lines are
interpolated. Figure 11.5 shows an example of a contour map.

It is also possible that a contour has more than one exit, causing an ambiguity in
contour line direction. Figure 11.6 shows ambiguity of line trend with five possible
cases. The third case is impossible. One solution to this problem is to add a central
point, whose height is the average of the heights of the four grid nodes. An alternative
is to arbitrarily set a priority criterion (e.g., the right side is higher).

Figure 11.5 Contour lines interpolated from grid DTM by using the vector approach.
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Figure 11.6 Ambiguity of contour line direction (modified from Petrie 1990a).
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11.2.4 Smoothing Contour Lines

Figure 11.5 shows that contour lines interpolated from grids may be not as smooth
as required for practical applications. Therefore, smoothing processes need to be
applied. There are two solutions available:

1. to subdivide a grid cell into a number (e.g., nine) of sub-cells, so as to obtain smooth
contour lines

2. to apply a smoothing technique to the interpolated contour lines.

For the first solution, a polynomial surface is fitted to a grid cell (or a few grid
cells) so that nodes of finer grid cells are interpolated from the polynomial surface.
Figure 11.7 illustrates the subdivision of nine cells from the original cell to obtain
smoother contour lines.

For the other solution, many kinds of smoothing techniques are available.
Figure 11.8 classifies these techniques. In contouring practice, curve fitting is the
most widely used, including least-square curve fitting and splines (e.g., Bezier curves,
B-splines, tension splines, and cubic splines). Figure 11.9 shows two examples.
As discussion on splines and least squares for surface modeling was provided in
Chapter 6 and line smoothing is 1-D surface modeling, no further discussion on
these topics will be given here. Splines are more widely used for contour smoothing
because each data point might be honored by this technique.

11.3 RASTER-BASED CONTOURING FROM GRID DTM

It was discussed in the previous section that a set of processes (i.e., searching,
tracing, interpolation, and smoothing) are needed to produce contour in vector-based
contouring. It will be seen later that a raster-based approach is easier and more intuitive

 

Figure 11.7 Smooth contours obtained from finer grid cells.
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Figure 11.8 A classification of smoothing techniques.
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Figure 11.9 Curve fitting techniques for smoothing: (a) cubic curve fitting by least squares and
(b) cubic curve fitting by spline.

if grid DTM with high density is available, where fully digital photogrammetric
workstations powered with image-matching techniques are in use. In raster mode,
techniques developed in digital image processing can easily be used to produce con-
tours, such as slicing technique for binary contouring and edge detection for contour
line tracing from binary contour to form edge contour (Eyton 1984). In this section,
a number of such contouring techniques in raster mode will be presented.

11.3.1 Binary and Edge Contouring

Image slicing is used to produce a number of slices (classes) with a given height range,
which is the CI. Then, height classes are alternately assigned black and white colors.
The boundaries between contrasting classes define the contour lines. To derive edge
contours, edge tracing is then applied.

The principle of applying slicing technique to binary contouring is simple. First
Equation (11.1) is applied to compute the highest and lowest contours. The total
number of contours is then computed as follows:

NT = hmax − hmin

�h
(11.5)
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The number of classes for a grid node with heightZ can then be computed as follows:

N = Z − hmin

�h
+ 1 (11.6)

Class 0 is reserved for the heights below hmin. For example, the height range
in an area is from 3 to 16 m and the CI is 5 m. Then, the height of the lowest contour
is hmin = 5. All points with height Z in the range 5 ≤ Z < 10 are classed as 1; all
with height Z in the range 10 ≤ Z < 15 are classed as 2; and all with height Z equal
to 15 or above are classed as 3.

After slicing, a color is assigned to each class. In binary contouring, only two
colors, black and white, are used. A simple rule for color assignment could be: black
for odd classes and white for even classes. Figure 9.17 shows some examples of such
a contour produced from the DTM shown in Figure 9.16.

This method can also be implemented with an on-line plotter (Eyton 1984).
A row of DTM data are read into memory, then assigned a class number according
to Equation (11.6). IfN is an odd number, a black pixel is drawn at the corresponding
position and if N is an even number, then a white pixel is drawn.

To extract the boundaries of height classes as contour lines, an edge tracing
procedure is needed. Many operators have been designed in image processing.
These are usually expressed in the form of a template for convenience in discrete
mode. The Sobel operator is one of the most popular techniques for edge detection.
The two templates for this operator are shown in Figure 11.10, one for vertical and
the other for horizontal edges. For an edge in an arbitrary direction, the root square
of the results (or the sum of the absolute values) for these two directions is used.

Figure 11.11 shows an example of edge detection by a Sobel operator. However,
as the pixel values in the classified height image are homogenous, the search for
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Figure 11.10 Sobel operator for edge detection: (a) for horizontal edge and (b) for vertical edge.
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(a) (b)

Figure 11.12 Gray-scale display of contour map (Reprinted from Eyton 1984, with permission
from Elsevier): (a) Contours over a gray background. (b) Illuminated contour map.

boundary points between two adjacent height classes may be simplified. For example,
in Figure 11.11(a), if code number 2 is used to represent the class with height range
[5,10) and code number 8 to represent the class with height range [10,15), then all
pixels with code 8 adjacent to the pixels with code 2 together form the contour line
with height 10, which is the boundary between these two classes. The edge contours
are in fact ordinary contour lines and therefore there is no need to give an example here.

11.3.2 Gray-Tone Contouring

In fact, a variety of contour products could be produced in raster mode. For example,
gray-scale contour display can easily be produced, such as

1. three-tone contours: that is, to make use of black, white, and gray
2. contours over a gray background: that is, to draw white contours over a gray

background
3. illuminated contours: that is, to draw contours over a background of shading

(see Chapter 13).

Figure 11.12 shows two contour plots with gray-tones. Figure 11.12(a) shows
contours plotted over a gray background and Figure 11.12(b) shows a contour map
plotted over a shading.

11.4 VECTOR-BASED CONTOURING FROM TRIANGULATED DTM

Contouring from grid data is straightforward and convenient for algorithm
implementation. However, there might be an accuracy loss in the random-to-grid
interpolation process if the sampled data are not in grid form. If the data points are
irregularly distributed, a TIN (see Chapter 5) structure is often the solution.
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The process for contour tracing in a TIN structure is similar to the one described
in Section 11.2:

1. to search for the starting point of each contour line
2. to interpolate the contour points by computing the coordinates of the intersection

points between each contour line and the triangle edges
3. to trace contour lines through the triangles
4. to smooth traced contour lines, if desirable.

The search for and interpolation of contour points in vector-based contouring from
TINs are similar to contouring from grid data. On the other hand, tracing contour
points is slightly different because the data structure is different. For a triangle, there
are only two possible exits for a given contour point on the edge of a triangle (see
Figure 11.13).

It is also the basic principle of contour tracing that the exit edge of the current
triangle is the entrance edge of the adjacent triangle. Figure 11.14 shows the threading
process, where the contour line enters triangle II from triangle I. In this case, triangle
edge AC is both the exit edge of triangle I and the entrance edge of triangle II.
Figure 11.15 is an example of contouring from a TIN-based DTM.

The contours in Figure 11.15 do not look nice. There is also a smoothing problem
here. Similar to contouring from grid DTM, either of the following two methods can
be used to solve the problem: curve fitting or subdivision of a triangle into a number
of sub-triangles (e.g., nine sub-triangles).

A

B

C C

B

A

Figure 11.13 Two possible exits of a contour point on triangle edge AB.
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Figure 11.14 Contour threading on a TIN-based DTM.

 



DITM: “tf1732_c011” — 2004/10/22 — 16:37 — page 243 — #11

CONTOURING FROM DIGITAL TERRAIN MODELS 243

Figure 11.15 Contours produced from a TIN-based DTM.

Thus, triangulations produce unambiguous contour segments, and hence complete
contour strings. A more interesting problem, as in grids, is how to extract all contour
strings efficiently from the topological structure, as all cells must be checked for
the presence of contours that may only be small closed loops. Various algorithms
have dealt with this. Gold and Cormack (1987) showed that a single traversal of the
triangulation may be used to maintain a sweepline that collects and maintains the
partially discovered contour portions. van Kreveld (1996) develops more advanced
data structures that improve the searching efficiency significantly. Nevertheless, aside
from efficiency concerns, every cell in the grid or triangulation must be checked
somehow to see if portions of contours pass through them, and the contour strings
must be assembled either on an ongoing basis or by matching the individual segments
after they have all been collected.

11.5 STEREO CONTOURING FROM GRID DTM

The natural world is 3-D. 2-D contours are not as attractive as a 3-D display of the
terrain surface. However, on such a surface, the height information is not easily
perceived or obtained when viewed. This stimulated the idea of producing stereo
contour maps (Jensen 1980; Eyton 1984). One contour map is, as usual good for metric
measurement, while the other is the stereomate only used for stereo viewing. This is
an analog of orthoimage and its stereomate, which was introduced by Collins (1968).
This is particularly useful in flat areas where the terrain variation is not great and thus
it is difficult to recognize slope trends because the contours are sparsely distributed.

11.5.1 The Principle of Stereo Contouring

The human beings sense and receive 3-D information through binocular parallax,
to form stereo models in their mind. Parallax plays a crucial role in the transformation
of 2-D images to 3-D.
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Figure 11.16 X-parallax and stereo measurement.

In orthoimage, the displacement of an image point caused by terrain height
over a desired datum is corrected point by point so that the corrected image can
be used as a plan, that is, measurable in planimetric positions. In this case, height
measurement is not possible anymore. To make orthoimages measurable for height,
the idea of stereomates was proposed by Collin (1968). The principle is illustrated in
Figure 11.16. Ground point A is imaged on the left photo as a′ and on the right photo
as a′′. The x-parallax of this image point is computed as follows:

pa = xa′ − xa′′ (11.7)

where xa′ is the x coordinate of a′ on the left image and xa′′ is the x coordinate of a′′
on the right.

If the left image is made into an orthoimage, then the image position of ground
point A will be corrected to point A′ from a′. Then, the difference of the x coordinates
δxa = xa′ − xA′ . If this orthoimage is used with the original right image to form a
stereo model, then the height of A is changed because the x-parallax pa is reduced
by an amount of δxa. In order to make the height of point A remain the same, the
position of a′′ needs to be modified, that is, to be shifted by the same amount as δxa
(from a′′ to A′′ in the figure).

In stereo contouring, the principle is the same. First, an ordinary contour is
produced from the original DTM. Then, a procedure is applied to DTM data so
as to make the x coordinate of each DTM point shift by an amount that is propor-
tional to the height of this point. In this way, a new DTM, that is, the mate DTM, is
created. The contour map produced from this mate DTM is then the stereomate of
the contour map produced from the original DTM.
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11.5.2 Generation of Stereomate for Contour Map

As a contour map is already measurable, there is no need for an exact of x-parallax
for each point. Therefore, any function that is able to provide relatively correct
parallaxes for DTM data points will serve the purpose. The simplest is a linear
function (Eyton 1984), as follows:

δxj = δx

Zmax − Zmin
× (Zj − Zmin) (11.8)

where Zmax is the greatest height in the area; Zmin is the lowest height; δx is the
maximum amount of x-shift (i.e., the x-shift for Zmax); Zj is the height of point j;
and δ xj is the required x-shift for point j. The new x coordinate of each point is

x

z

x

z

x

z

x

z

(a) (b)

(c) (d)

Figure 11.17 The process of generating a new grid DEM with the desired parallax. (a) One
row of the original grid. (b) Each grid point shifted to the right proportionally.
(c) Fitting a curve to the shifted points. (d) Interpolating a height for each node
of the original grid.

(a) (b)

Figure 11.18 Stereo contour maps.
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computed as follows:
Xj, new = Xj,old + δxj (11.9)

but the y coordinate and height of each point remain the same.
If the data are irregularly distributed, after an x-shift to every point, a triangulation

procedure is applied to the new set of data and the mate contour map is then produced
from the TIN-based DTM.

If the original data are in a regular grid form, then, the new data are not regular
any more in X because an x-shift was introduced to every point according to the
height of the point. There are two alternative approaches for the generation of the
mate contour map:

1. to apply a triangulation procedure to build a TIN and then produce contours from
the TIN-based DTM

2. to apply an interpolation procedure to interpolate the new grid data set, that is,
to obtain new height value at the original location of each grid node.

Figure 11.17 illustrates the process for interpolation of the new grid data set.
Figure 11.17(a) is a row in the original grid; Figure 11.17(b) represents the situation
after applying an x-shift to each grid point, that is, each point is moved from the node
position by an x-shift computed by Equations (11.8) and (11.9). After the shifts, the
intervals between points are not equal anymore. That is, the original grid is broken. To
obtain a new set of data in grid form, a new height for each of the original grid nodes
needs to be computed from the x-shifted points. A polynomial function is fitted to the
x-shifted points for interpolation, as shown in Figure 11.17(c). Figure 11.17(d) shows
the new heights at the original grid nodes. A contour map, that is, the stereomate,
can then be produced from these new data. Figure 11.18 shows an example of stereo
contour maps.
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CHAPTER 12

Visualization of Digital Terrain Models

It has been estimated that over 80% of information one obtains is through our
visual systems and thus our visual systems are overloaded. From an other point
of view, visualization is an important issue in all disciplines, including digital terrain
modeling.

12.1 VISUALIZATION OF DIGITAL TERRAIN MODELS: AN OVERVIEW

DTM visualization is a natural extension of contour representation, which has
been discussed in Chapter 11. In order to understand this, the basic concepts,
that is, variables used at different stages, approaches, and basic principles, will be
discussed here.

12.1.1 Variables for Visualization

Visual representation is an ancient communication tool and contouring is a graphic
representation for visual communication. Here, communication means to present
information (results) in graphic or other visual forms that are already understood.
Six primary visual variables are available for such a presentation:

1. three geometric variables
• shape
• size
• orientation

2. three color variables
• hue
• value or brightness
• saturation or intensity.

247
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Primary visual variables Graphic 1 Graphic 2
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Size

Shape

Orientation

Hue (color)

Saturation (intensity)

Value (brightness)

Figure 12.1 Six primary variables for visual communication. The color plate can be viewed at
http://www.crcpress.com/e_products/downloads/download.asp?cat_no=TF1732.

Secondary visual variables

Arrangement

Texture

Orientation

Graphics 1 Graphics 2

Figure 12.2 Three secondary variables for visual communication.

Figure 12.1 shows these six variables graphically. In addition, three secondary
visual variables (Figure 12.2) are available:

1. Arrangement: shape and configuration of components that make up the pattern.
2. Texture: size and spacing of components that make up a pattern.
3. Orientation: directional arrangement of parallel rows of marks.

Visualization is a natural extension of communication and goes into a domain
called visual thinking (DiBiase 1990). Visualization emphasizes an intuitive repre-
sentation of data to enable people to understand the nature of phenomena represented
by the data. In other words, visualization is concerned with exploring data and infor-
mation graphically — as a means of gaining understanding and insight into the data.

 

www.crcpress.com
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Figure 12.3 Exploratory acts for visual analysis (Reprinted from Jiang 1996 with permission).

Table 12.1 Variables at the Different Stages of Visualization

Stage Variables in Use

Paper graphics Visual — — — —
variables

Computer Visual Screen — — —
graphics variables variables

Visualization Visual Screen Dynamic Exploratory —
variables variables variables acts

Web-based Visual Screen Dynamic Exploratory Web variables
visualization variables variables variables acts

Thus, visualization has been compared to visual analysis, with an analogy to numerical
analysis.

Visualization is a fusion of a number of scientific disciplines, such as computer
graphics, user-interface methodology, image processing, system design, cognitive
science, and so on. The major components are rendering and animation techniques.
In visualization, in additional to the traditional visual variables, some other sets of vari-
ables are in use. One set, related to analysis, is called exploratory acts (Figure 12.3),
which consists of drag, click, zoom, pan, blink, and highlight and so on (Jiang
1996). Theoretically, some variables particular to screen display such as blur, focus,
and transparency (Kraak and Brown 2001) are also in use. In the era of Web-based
visualization, more exploratory acts are in use, particularly the browse and plug-in.
Table 12.1 lists the sets of variables in use at different stages.

The dynamic variables (DiBiase et al. 1992) are related to animation, including
duration, rate of change, and order. These variables will be discussed in Section 12.5.
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2-D
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Dynamic
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3-D static

2-D dynamic

3-D dynamic

Figure 12.4 Approaches for graphic representation of DTM surface.

12.1.2 Approaches for the Visualization of DTM Data

Visualization of DTM data means to make use of these variables for visual presentation
of the data so that the nature of the terrain surface could be better understood. In fact,
in Chapter 1, a brief discussion on the representation of terrain surface was conducted
and it was pointed out that terrain surfaces could be represented by either graphics or
mathematical functions (Figure 1.4). This chapter focuses on graphic representations.
It is understandable that there are 2-D and 3-D representations, both in static and
dynamic modes. Figure 12.4 shows a classification of these visualization approaches.

This chapter gives a brief discussion of 2-D representation techniques and a few
new developments in 3-D representations, as follows:

1. Texture mapping: This is to produce virtually real landscapes by mapping aerial
photographs or satellite images onto the digital terrain model. This method can
show the color and texture of all kinds of ground objects and artificial constructions,
but the geometric texture of terrain relief cannot be clearly represented. Therefore,
the method is often used to represent smooth areas where there are many ground
objects and human activities, such as towns and traffic lines.

2. Rendering: This is like shading, but in 3-D representations. It makes use of illumi-
nation models to simulate the visual effect produced when lights shine on the terrain.
This method can be used to simulate micro ground relief (geometric texture) and
color using pure mathematical models. Terrain simulation based on fractal models
is considered to be the most promising method.

3. Animation: This can be used to produce dynamic and interactive representations.

If all these techniques are compared, one would find that some are more abstract
than others and some are more symbolic than others. Figure 12.5 summarize this.

12.2 IMAGE-BASED 2-D DTM VISUALIZATION

In two dimensions, contouring is the most popular technique. A detailed description
of contouring was given in Chapter 11. This section presents some image-based
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Figure 12.5 A comparison of various techniques for terrain visualization.

(a) (b)

(c) (d)

Figure 12.6 Shading of terrain surface: (a) a pyramid-like object; (b) the orthogonal view;
(c) hill shading; and (d) slope shading.

techniques. It is possible to make the 2-D representation dynamic through animation;
however, it is not common to do so, therefore 2-D dynamic representation will not be
discussed here.

12.2.1 Slope Shading and Hill Shading

Among these image-based techniques, shading is still widely used. Two types are
available, hill (or oblique) and slope (or vertical) shading.

Slope shading assigns a gray value to each pixel according to its slope value. The
steeper the slope, the darker the image. Figure 12.6(a) is pyramid consisting of four
triangular facets and a base. Figure 12.6(b) is the orthogonal view of Figure 12.6(a).
Figure 12.6(d) is the result of slope shading. It can be found that the two facets with
identical slope angles are assigned the same gray shade.

Figure 12.6(c) is the result of hill shading. The idea is to portray the terrain
variations with different brightness by illuminating the pyramid so that shadow effects
are produced, thus leading to the stereoscopic sense, which is produced by the readers’
experience (but not by perception on a physical level). In hill shading, a light source
is assumed, normally from the northwest. The facet facing the light is brightest and
the facet facing away the darkest.
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12.2.2 Height-Based Coloring

Here, the term height-based coloring means to assign a color to each image pixel
based on the heights of the DTM data. Two approaches are in use, interval-based and
continuous coloring.

Hypermetric tinting (color layers) is an interval-based coloring widely used. The
basic principle is to use different colors for areas with different altitudes. Theoretically,
one could use an infinite number of colors to represent heights. However, in practice,
terrain surface is classified into a few intervals according to height and one color is
assigned to each class. The commonly used colors are blue for water, green for lower
altitude, yellow for medium, and brown or red for higher altitude. Figure 12.7(a) is
an example.

Gray can also be used to produce an image similar to Figure 12.7(a). Figure 12.7(b)
is an example. It is possible to use a continuous variation of gray tones to illustrate
the variations of the terrain surface (instead of height ranges). In other words, gray
levels from 0 to 255 are used to represent the heights of the terrain surface. A mapping
process is needed to fit the terrain height variations into the gray range of [0,255].
Figure 12.8 shows some possible mappings. The simplest is linear stretching (if the
range of heights is much smaller than 256) or linear depression (if the variation is

(a) (b)

Figure 12.7 Interval-based coloring of terrain heights: (a) hypermetric tints (color lay-
ers) and (b) half toning (gray layers). The color plate can be viewed at
http://www.crcpress.com/e_products/downloads/download.asp?cat_no=TF1732.

g

z

255

0

gmax

gmin

zmaxzmin zi
z

zmaxzmin zi

gi

255

0

gmax

gmin

gi

g(b)(a)

Figure 12.8 Height value to gray level mapping: (a) linear mapping and (b) nonlinear mapping.
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(a) (b)

1 1 Kilometers0 1 1 Kilometers0

Figure 12.9 Representation of DTM by continuous gray image: (a) a contour map and (b) the
gray image of the contour map.

outside the range of [0,255]). Equation (12.1) is the formula for a linear mapping.

gi = gmin + gmax − gmin

zmax − zmin
(zi − zmin) (12.1)

where gi is the gray value of height zi; gmin is the desired minimum gray value,
0 ≤ gmin < gmax; gmax is the designed maximum gray value, gmin < gmax ≤ 255;
gmin is the lowest height in the area; and zmax is the largest height value in the area.
In this way, the height range [zmin, zmax] is mapped into a gray range [zmin, zmax].
Usually, the full gray range [0,255] is used and thus zmin = 0 and zmax = 255.
Figure 12.9 is an example of the continuous gray image of a DTM, which clearly
shows the shape of the landscape.

12.3 RENDERING TECHNIQUE FOR THREE-DIMENSIONAL
DTM VISUALIZATION

With the development of computer graphics, 3-D visualization has become the
mainstream of DTM visualization. The 3-D wire frame (Figure 12.10) is widely
used, especially in computer-aided design. However, rendering, which employs some
illumination models to produce a vivid representation of 3-D objects, has become a
more popular technique for DTM visualization.

12.3.1 Basic Principles of Rendering

The basic idea of rendering is to produce vivid representations of 3-D objects.
A surface is split into a finite number of polygons (or triangles in the case of TIN);
all these polygons are projected onto the view plane of a given viewpoint; each visible
pixel is assigned a gray value, which is computed based on an illumination model
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(a) (b)

Figure 12.10 Three-dimensional wire frame of a surface: (a) hidden lines not removed and
(b) hidden lines removed.

and the viewpoint. In other words, rendering of DTM is to transform a DTM surface
from a 3-D to a 2-D plane. The rendering process follows these steps:

1. to divide the surface to be rendered into a set of contiguous triangular facets
2. to set a viewpoint, determine the observing direction, and transform the terrain

surface into an image coordinate system
3. to identify the visible surfaces
4. to calculate the brightness (and color) of the visible surface according to an

illumination model
5. to shade all the visible triangular pieces.

The first step is omitted here because triangulation was discussed in Chapters 4
and 5, and the subdivision of triangles was discussed in Chapter 9.

12.3.2 Graphic Transformations

What can be displayed on the screen is determined by the position of the observer
(or viewpoint) and the direction of the sight line. Rendering begins with the trans-
formation of the terrain surface from the ground coordinate system (GCS) O–XYZ to
the viewpoint-centered eye-coordinate system (ECS) Oe–XeYeZe and then it projects
the surface onto the display screen which is parallel to the Oe–XeYe plane. This series
of transformations is called graphical transformations, which consists of shifting,
rotating, scaling, and projection.

Both the GCS and the ECS are right-hand 3-D Cartesian coordinate systems. For
the ECS, its origin is fixed on the viewpoint, and its axis Ze is opposite the observing
direction. Based on the characteristics of digital computation with a computer, a vector
in 3-D space is described by three direction cosines. This simplifies the relationships
between two 3-D coordinate systems and makes the computation of coordinate trans-
formations more efficient. All subsequent processes, such as recognition of visible
facets, projective transformation, and the shading process, will be carried out in the
ECS. Figure 12.11 shows the relationship between the two coordinate systems.

Given the coordinates of the viewpoint in the GCS as (XOe ,YOe ,ZOe) and an
observing direction (azimuth angle α and pitch angle β), the direction cosine of each
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Figure 12.11 The ground coordinate and eye-coordinate systems.

eye-coordinate axis can be calculated. In order to simplify the calculation, the vector
OeO (from the viewpoint Oe to the origin of the GCS O) and the direction of the sight
line are merged here. This joint direction will be considered as the future projection
direction. This simplifies the problem. That is, when the direction of the sight line
and the viewing distance DS from Oe to O are known, then the coordinates of the
viewpoint can be derived as follows:



XOe

YOe

ZOe


 =



DS × cosβ × cosα
DS × cosβ × sin α
DS × sin β


 (12.2)

The three direction cosines are the cosines of the angles between the vector from
the origin to a point P and each of the coordinate axes (in the plane including the
vector and the axis). If vector

−→
OP is of unit length, these direction cosines reduce to

PX, PY , and PZ (usually called l, m, and n).
Let the direction cosines of OeXe, OeYe, OeZe be represented by (l1 l2 l3),

(m1 m2 m3), and (n1 n2 n3). Suppose OeXe is the horizontal axis, then

n1 = XOe

DS
, n2 = YOe

DS
, n3 = ZOe

DS
(12.3)

l1 = −n2

r
, l2 = −n1

r
, l3 = 0 (12.4)

where r =
√
n2

1 + n2
2

m1 = −n3l2 = −n1n3

r
, m2 = n3l1 = −n2n3

r
, m3 = r (12.5)

And the relationship between the ground coordinate (X,Y ,Z) and the eye-coordinate
(Xe,Ye,Ze) is: 


Xe
Ye
Ze


 =



l1 l2 l3
m1 m2 m3
n1 n2 n3





X −XOe

Y − YOe

Z − ZOe


 (12.6)
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To project the 3-D terrain surface onto the 2-D screen, either parallel or central
(perspective) projection can be used. To obtain the visual effects consistent to the
human eye and to produce perspective views with strong stereo sense and realism,
the perspective projection is used in the field of computer graphics. Suppose a plane
parallel to the Oe–XeYe plane and with a distance f to the viewpoint is used as a
projection plane (screen), then the coordinates of a point in the ECS can be transformed
into the coordinates (u, v) on the display screen by using the following formula:

u = Xe

Ze
× f (12.7)

v = Ye

Ze
× f (12.8)

In these formulae, f is similar to the focus of the camera, expressing the distance
between the projection plane (screen) and the observer. Experience shows that optimal
visual effects can be obtained when f is three times the size of the screen.

12.3.3 Visible Surfaces Identification

The challenge in generating graphic images with a stereo sense is the removal of
hidden surface, which is similar to the hidden line removal in the 3-D wire frame.
This means that those facets that can be seen from the position of the current viewpoint
need to be identified. Surface facets outside the view field are cut out, and those facets
that are in the view field but are partially blocked by others have to be identified. This
process is also called the recognition of the visible surface facets in the literature.
Figure 12.12 shows these different surface facets.

All algorithms for visible surface recognition make use of a form of geometric
classification to identify the visible and hidden surfaces. Visible surface recognition

Partially
visible

Culled

Invisible Visible

Figure 12.12 Different surface facets, completely hidden, partially visible, and visible.
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can be carried out either in image or in object space. Image-based algorithms
make a judgment through the examination of the projected images, while space-
based algorithms directly examine the definition of the object. The commonly used
algorithms are depth sorting (i.e., an object-based method), and Z-buffer (depth
buffer), area subdivision, and scanning lines. These are image-based methods.

For n triangular facets producing N pixels, the computation complexity for
image-based algorithms is O(nN ) as they examine the image pixel by pixel. By
contrast, object-based methods compare each surface facet and thus the computa-
tion complexity is lower — O(n2). Experience shows that depth sorting is the most
efficient method for situations where the number of triangles is less than 10,000; all
methods except the depth buffer are significantly slow when the number of triangles
is more than 10,000. It might be said that the depth sorting algorithm is more suitable
for DTMs with a TIN structure and the depth buffer algorithm is more appropriate if
the fractal subdivision of the grid DTM is employed.

In the depth sorting algorithm, first sort all the triangles based on the distance
between the triangles and the viewpoint (called depth in the ECS), then process each
triangle in sequence from far to near. This method is often called a painter algorithm,
as it is similar to the painter’s creation — first paint the background, then gradually add
the foreground objects on the background. Obviously, the color of the close objects
will cover the color of the objects behind, and finally the hidden parts are naturally
removed. Since there are no intersections and no gaps between the TIN, the depth
sorting algorithm is reliable.

The characteristic of the depth buffer algorithm is that it needs to reserve a 2-D
array (Z-buffer) to access the depth (the value of Ze) of the pixels currently in the
computer frame buffer. The triangular facets are divided into parts as large as pixels,
and the depth of each part (assumed to be fixed) is compared with that in the Z-buffer.
If some part is closer than the current pixels, it will be written into the frame memory,
and the Z-buffer will be updated with the new depth. The size of the Z-buffer is
decided by the display resolution.

No matter what method is used to identify visible surfaces, the results from the
processing are applicable only to the specific viewpoint and observing direction.
As a result, real-time updating of graphics with change in viewpoint and view direction
is restrained by the efficiency of the visible surface recognition (i.e., hidden surface
removal). It is worth noting that in the ECS, the depths of all points have negative
values.

12.3.4 The Selection of an Illumination Model

When a surface facet is identified as being visible, the next step is to assign dif-
ferent colors or gray values to different parts of the surface facet because when
light illuminates the surface, the shading of each part is different. Therefore, to a
large extent, the realism of a 3-D terrain display depends on the shading effect.
To do so, the surface is decomposed into pixels and a color is assigned to each
pixel. To produce vivid shading, illumination of the surface is the key element.
There are two approaches to color assignment, that is, to make use of a model
or to make use of the real texture of the object. In this section, only the use
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Angle of incidence(a) (b)
Angle of
reflectance

Figure 12.13 Reflectance of lights: (a) specular reflector and (b) diffuse reflector.

of an illumination model is discussed and the use of real texture is addressed in
Section 12.4.

Visible light reflected by objects contains two types of information, spatial and
spectral, which are the basis for interpretation. As different kinds of natural ground
objects have different reflectance characteristics, and they may be illuminated by
different light sources, it is impossible to simulate the illumination effect of natural
scenery with 100% realism.

There are two types of reflection, diffuse and mirror reflections, as shown in
Figure 12.13. Mirror reflection, or specular reflection, is in a single direction. Diffuse
reflection is uniform in all directions. However, the real terrain surface is neither a pure
diffuse reflector nor a pure specular reflector. Rather, most earth surfaces are some-
where between the two. Therefore, a combination of both models seems to be a real-
istic solution. Also, both reflected light and environmental light need to be considered.

An illumination model establishes the relationships between the reflecting inten-
sity at any ground point, light source, and features on terrain. The Lambert cosine law
describes the illumination model for diffuse reflection. As shown in Figure 12.13(b),
if the incidence angle between the normal vector of point P on the ground and the
vector directing to the light source from P is θ , then the intensity of diffuse reflection
light on point P, Id, is:

Id = IP ×Kd × cos θ (12.9)

where IP is the intensity of the light source andKd ∈ (0, 1) is the coefficient of diffuse
reflection on the ground. Since the light is diffused in all directions uniformly, the
intensity of the diffuse reflection is independent of the viewpoint.

On the other hand, with specular reflection, the light reflected is in a single
direction (Figure 12.13a), that is, the direction with an angle equal to the angle
of incidence. However, since real terrain is usually not a complete specular reflector,
its mirror reflection does not follow the reflection law strictly. After considering this,
Phong (1975) developed his famous Phong model as follows:

IS = IP ×W(θ)× cosn α (12.10)

where α is the angle between the complete reflecting direction and the sight line,
W(θ) ∈ (0, 1) is the surface reflection function for mirror reflection related to the
characteristics of real terrain surface, which is usually simplified with a constant
Ks ∈ (0, 1); and n is the focus index of mirror reflection, the smoother the surface,
the bigger the value of n.
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In most cases, to increase the realism, environmental light is also taken into
consideration. The characteristics of environmental light are described by a diffusion
model,

Ia = IE ×Ka (12.11)

where IE and Ka are the intensity of environmental light and the coefficient of the
terrain reflected environmental light, respectively. Since its effect on the scene is
the same, generally it is also treated as a constant with its value equal to 0.02 to
0.2 times IPKd.

Combining the diffuse and mirror reflection models, the Phong model is as
follows:

I = Ka × IE +
∑
[Kd × IP × cos θ +Ks × IP × cosn α] (12.12)

Here,
∑

indicates the sum of all the light sources and Kd + Ks = 1. In practice,
vivid results can be obtained by using only a point light source. In this way, the
computation is simplified.

12.3.5 Gray Value Assignment for Graphics Generation

After the illumination model is presented, the gray level for any area of the surface
facet can be estimated. The Gouraud (1971) shading is a simple but effective method
for this purpose. In this method, the gray values of the three vertices are first estimated
from the Phong model, then all pixels within this triangle are linearly interpolated
from these three vertices. Figure 12.14 shows the principle. The formulae for this
linear interpolation were given in Chapter 6.

The result of shading by the Gouraud model looks smooth, since the intensities
change continually across the polygon edges. This approach is still used in today’s
hardware accelerated rendering pipelines (Zwicker and Gross 2000).

As discussed in Chapter 4, the problem with linear interpolation is that it
is not smooth across the boundary of two linear facets. To solve this problem,
Phong introduced a more realistic model that is able to simulate specular highlights.
In this method, interpolation is carried out by using normals instead of intensities.
Figure 12.15 is the perspective view of DTM shading produced by this method.

x

y

A

B

C

RL Scan 

line

Figure 12.14 Scan line incremental method.
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Figure 12.15 Shading of DTM.

Figure 12.16 Perspective view of DTM by altitude tinting. The color plate can be viewed at
http://www.crcpress.com/e_products/downloads/download.asp?cat_no=TF1732.

To display terrain surfaces more realistically, apart from the gray levels, other
colors with different intensities can also be used. Terrain with different altitudes
may be represented by different colors, which makes the 3-D terrain image have the
effect of hypermetric tints. Figure 12.16 is an example.

12.4 TEXTURE MAPPING FOR VIRTUAL LANDSCAPE GENERATION

This section discusses how to map texture and other attributes onto the terrain surface,
so as to produce a more vivid view, called virtual landscape.

12.4.1 Mapping Texture onto DTM Surfaces

To improve the visual realism of images synthesized by rendering, a number of
techniques have been developed. The basic idea is to add image-based information
to the rendered primitives. The most commonly used technique is called texture
mapping, that is, mapping a function of texture onto a 3-D surface. The function could
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Figure 12.17 Mapping texture onto the surface of DTM. The color plate can be viewed at
http://www.crcpress.com/e_products/downloads/download.asp?cat_no=TF1732.

be 1-D, 2-D, or 3-D and may be represented by discrete values in a matrix array or by
a mathematical expression. Texture mapping enhances the visual richness of raster
images while entailing only a relatively small increase in computation. Figure 12.17
is an example of such a product, showing part of the Yangtze River of China.

In this context, the texture is defined by a 2-D image array. The digital image data
could be obtained from photographs or videos or generated by mathematical functions.
As the data are in a discrete raster format, before texture mapping, a continuous
texture function f (U ,V ) in the texture space (U ,V ) has to be established by using
these discrete data. The easiest method is to carry out an interpolation by using a
bilinear function.

The first step in texture mapping is to map the texture onto the 3-D terrain surface;
the second is to map the 3-D surface with texture onto the screen. To map from the
texture space to the 3-D terrain, the most accurate method is to establish direct map-
ping between the texture coordinate system (U ,V ) and the 3-D ECS (Xe,Ye,Ze)

based on central projective principles. The direct linear transformation (DLT) can be
used for this purpose:

U = a1Xe + b1Ye + c1Ze

a3Xe + b3Ye + c3Ze
(12.13)

V = a2Xe + b2Ye + c2Ze

a3Xe + b3Ye + c3Ze
(12.14)

The computation required in this equation is heavy because it is a nonlinear function.
In practice, a simple function similar to the affine function in 2-D can serve for this
purpose:

U = a1Xe + b1Ye + c1Ze + d1 (12.15)

V = a2Xe + b2Ye + c2Ze + d2 (12.16)

At least four control points are required, whose texture and eye-coordinates are
known. The control points in used photogrammetry or in DTM data may be used
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(a)

(b)

Figure 12.18 Virtual landscape by mapping texture and other objects: (a) texture
image and 2-D features mapped onto DTM and (b) texture image and
3-D features mapped onto DTM. The color plate can be viewed at
http://www.crcpress.com/e_products/downloads/download.asp?cat_no=TF1732.

for this transformation. In digital photogrammetry, the texture coordinates and object
space coordinates of all the DTM points are known.

12.4.2 Mapping Other Attributes onto DTM Surfaces

By mapping texture onto the DTM model one obtains vivid details of the terrain
surface. In fact, the visual effect can be enhanced by adding other information onto
the model, for example, designed roads, river, land use, vegetation, and images.

Aerial images can be mapped onto DTMs to produce realistic landscapes. In
fact, images, vector data (lines), and 3-D objects on the ground (e.g., houses, trees),
can also be mapped onto the DTM. Figure 12.18 shows such examples.

12.5 ANIMATION TECHNIQUES FOR DTM VISUALIZATION

In the previous sections, static techniques for 3-D visualization of DTM were dis-
cussed. However, these techniques can become dynamic by employing animation
techniques.
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12.5.1 Principles of Animation

The fundamental of animation is the page flipping technique, resulting in movies.
First a number of frames of pictures are made and stored in computer memory,
then they are displayed on screen in sequence. As mentioned in Section 12.1, three
dynamic variables are available to control the animation process:

1. Duration (time units for a scene): Normally, a frame duration of 1/30 sec (i.e., 30
frames per second) will produce a smooth animation. If the duration is too long,
the action will be jerky.

2. Rate of change (pace of animation or differences between two successive scenes):
Figure 12.19 shows the animation of (up–down) vibration, with four frames. The
differences between these frames are clear. If the rate is low, slow motion can
be produced. On the other hand, fast motion is produced if the change rate is high.

3. Order (the sequence of the frames): Frames could be arranged according to time,
position, or attributes. The frame sequence in Figure 12.19 is arranged according to
time. However, the frames in Figure 12.21 and Figure 12.22 are arranged according
to the viewpoint.

In terrain visualization, “fly-through” and “walk-through” are commonly used.
The animated image sequence is produced in an order of space, that is, by moving
the viewpoint along a certain track. This type of animation is also called viewpoint
animation.

There are two ways to access or display each picture frame, frame by frame or
bit boundary block transfer (bitblt). Frame-based animation is full screen animation
and page animation. First, a series of full screen images is produced and saved in a
separate buffer, and then it is animated by displaying the pages in sequence. Frame
animation is considered to be the best choice for complex and full shading. In bitblt,
each frame is only a rectangular block of the full screen image. Less memory is
required because only a small portion of the full screen display is manipulated each
time. This can enhance the performance.

(a) (b)

(c) (d)

Figure 12.19 Four frames for animation of up–down vibration: (a) frame 1; (b) frame 2;
(c) frame 3; and (d) frame 4.
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For both kinds of animation, the image sequence has to be set up first. To obtain a
fast speed, for example, 30 frames per second, all the frames are put into the memory.
Therefore, both the number of frames and the capacity of each image are limited by
computer memory. Various concepts for frame storage and display have been in use,
such as RAM based, EMS/XMS based, and disk based. For example, the RAM-based
method is usually used to produce smooth animation when a sequence is short and
the amount of information is small (e.g., 30 frames, 160× 100+ 256 colors).

12.5.2 Seamless Pan-View on DTM in a Large Area

With the development of computer graphics, it is possible to generate a seamless pan-
view of the global DTM on a personal computer. On the other hand, the limitation
of computers to real-time application of a large amount of DTM data is clear. Such
limitations mainly rest in the size of memory, the volume of texture data, the precision
of CPU floating points, the speed of display card for geometric shading and the speed
of data transfer and access. With a given computer, the key to real-time display is
(a) to reduce the computation required for rendering and (b) to speed up data access
and display.

It is often the case that only a part of the terrain surface can be displayed at
one time due to the large data volume, even when an LOD model as described in
Chapter 9 is employed. To speed up the interactive real-time rendering of the terrain,
usually only part of the data are selected for processing and the details in this part
will also change dynamically with changes in viewpoint and sight line. An efficient
mechanism for data organization and management is required to ensure the speedy
dynamic triangular network updates required for scene changes with viewpoints. To
manage the scenes, some parameters must be set to judge which part of the scene
will be removed, updated, or accessed from the database and when to do so. That is,
databases or data structures for DTM data storage must be able to support fast access
to data.

To achieve real-time pan-views of a large area on a desktop PC, a common strategy
is to apply multi-thread data paging based on subdividing the whole terrain into data
blocks, as described in Chapter 10, double display buffers, and multi-thread process
scheme. During panning, the data blocks in the current view field are selected accord-
ing to the viewpoint and then different LODs are set according to the relationship
between the data blocks, the viewpoint, and sight line. In this way, the number of
models is reduced and the efficiency of scene rendering is increased.

The viewpoint is always located near the center of the data page. During panning,
as the viewpoint moves, the data blocks on the data page need to be updated frequently.
The moving direction of the viewpoint is judged by the offsets between the current
position of the viewpoint (xe, ye) and the geometric center (xc, yc) of the data page,
that is,

"X = xe − xc (12.17)

"Y = ye − yc (12.18)
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When "X is positive, the viewpoint moves toward the positive side of the x-axis,
otherwise toward the opposite direction. If |"X| > BlockSize (the size of the data
block) and "Y < BlockSize/2, a new column of data block in the moving direction
is read into the data page; subsequently, the column of data block on the opposite side
is deleted from the page, as shown in Figure 12.20.

Eight combinations of "X and "Y are possible, up, down, left, right, upper-left,
lower-left, upper-right, and lower-right, thus the forward direction of block movement
could be in any of these eight directions. But, in each freshing, only one new row
(or column) of a data block in the forward direction is added into the data page and
one row (or column) in the backward direction is deleted.

Moving left

Viewpoint  center

New added block 

Current data page

Freed block

Block out of
memory

Figure 12.20 Dynamic data paging of data blocks.

(a) (b)

(c) (d)

Figure 12.21 Four frames for fly-through animation: (a) frame 1; (b) frame 2; (c) frame 3; and
(d) frame 4.
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(a) (b)

(c) (d)

Figure 12.22 Four frames for walk-through animation: (a) frame 1; (b) frame 2; (c) frame 3; and
(d) frame 4.

In this way, based on the offsets of the viewpoint and the geometric center of
the data page, frequent updating of the data page is achieved and thus the real-time
pan-view of a large area is realized.

12.5.3 “Fly-Through” and “Walk-Through” for DTM Visualization

Fly-through and walk-through are the two basic techniques used in terrain anima-
tion. They allow users to view a model from different angles. Fly-through provides
a continuous bird’s eye view to the landscape. That is, the viewpoint is far above
the terrain surface. Therefore, the viewpoint can be moved in any direction in the
3-D space. Walk-through mimics the human view while walking. Walk-through can
be considered as a special case of fly-through, that is, the viewpoint is low and its
movement in vertical direction is restricted. The change in viewpoint for fly-through
or walk-through can be controlled in various ways, such as using a mouse, keyboard,
fixed route, or freedom to roam.

Similar to the pan-view of a large area, only the visible area is dynamically loaded
and progressively rendered during the changes in the viewpoint. In most cases, an
LOD model (described in Chapter 9) is adopted. Figure 12.21 shows the animation
of a fly-through over a virtual landscape, with four frames. Figure 12.22 shows the
animation of a walk-through the cityscape, again with four frames.
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CHAPTER 13

Interpretation of Digital Terrain Models

In Chapter 12, the visualization of DTM was discussed. Visualization can on the
one hand be regarded as a representation and on the other hand compared to visual
analysis. This chapter will cover DTM-based terrain analysis, or DTM interpretation.

13.1 DTM INTERPRETATION: AN OVERVIEW

To interpret a DTM means “to understand the terrain characteristics through
the extraction/computation of the parameters.” DTM interpretation is also called
DTM-based terrain analysis.

The term digital terrain analysis means different things to people with different
backgrounds because they emphasize different aspects. In some literature, a large part
of digital terrain analysis is on interpolation methods for terrain surface modeling,
which was discussed in Chapter 6; in some other literature a large part is on visual-
ization of DTMs, which was the topic of Chapter 12; and for a third group, it means
the derivation of attributes from terrain surfaces, which is the main content of this
chapter.

It is understandable that people from different disciplines are interested in different
sets of attributes of the terrain surface. A detailed discussion on all the possible attrib-
utes can be found in other literature (e.g., Moore et al. 1994; Wilson and Gallant 2000).
This chapter considers the computation of commonly used attributes, such as slope
and aspect, area and volume, roughness parameters, and hydrological parameters.
In addition, the derivation of viewsheds and the analysis of inter-visibility between
points on terrain surfaces are also presented.

13.2 GEOMETRIC TERRAIN PARAMETERS

This section discusses the computational models for geometric parameters, including
surface area, projection area, and volume.

267
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13.2.1 Surface and Projection Areas

The formula for the computation of the surface area of a triangle, S�, is as follows:

S� =
√
P(P −D1)(P −D2)(P −D3) (13.1)

where Di represents the length of the edge opposite the vertex I and is computed
from Equation (13.2).

P = 1

2
(D1 +D2 +D3)

D1 =
√
(x3 − x2)2 + (y3 − y2)2 + (z3 − z2)2

D2 =
√
(x3 − x1)2 + (y3 − y1)2 + (z3 − z1)2

D3 =
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

(13.2)

The surface area of the whole DTM, S, is the sum of the surface areas of all triangles.

S =
N∑
i=1

S�,i (13.3)

where N is the total number of triangles in the area. If the DTM is in a grid form,
then each grid cell can be split into two triangles.

The area of the surface projected on the horizontal plane can also be computed
from Equation (13.1). In this case, the heights for the three vertices of a triangle are
set to 0. On the other hand, a more convenient method can be used for the computation
of a horizontal area. Figure 13.1 shows the principle. In this figure, the three vertices
are points 1, 2, and 3. If these three points are projected to the x-axis, then points 1′, 2′,
and 3′ are obtained. Points 1 and 2, together with 1′ and 2′, form a trapezoid�1, 2, 3.

1

2

3

1′ 2′ 3′

y

x

Figure 13.1 The area of �1, 2, 3 to be computed from three trapeziods.

 



DITM: “tf1732_c013” — 2004/10/22 — 16:37 — page 269 — #3

INTERPRETATION OF DIGITAL TERRAIN MODELS 269

Similarly, points 2 and 3, together with 2′ and 3′, form another trapezoid; and points
3 and 1, together with 3′ and 1′, form the third trapezoid. By adding the areas of the
first two trapezoids together and subtracting the area of the third trapezoid, the area
of the triangle �1, 2, 3 is obtained, that is,

A123 = |A122′1′ | + |A233′2′ | − |A311′3′ | (13.4)

However, if the vertices are arranged clockwise and the areas are computed
according to Equation (13.5), then the value of A311′3′ will be negative and then
Equation (13.4) could be written as Equation (13.6):

A122′1′ = y1 + y2

2
× (x2 − x1)

A233′2′ = y2 + y3

2
× (x3 − x2)

A311′3′ = y3 + y1

2
× (x1 − x3)

(13.5)

A123 = A122′1′ + A233′2′ + A311′3′

= 1

2
[(y1 + y2)(x2 − x1)+ (y2 + y3)(x3 − x2)+ (y3 + y1)(x1 − x3)]

= 1

2
(y1x2 + y2x3 + y3x1 − x1y2 − x2y3 − x3y1)

= 1

2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ (13.6)

In fact, Equation (13.6) can be extended to compute the area of any polygon with
N points:

A = 1

2

N∑
i=1

(yi × xi+1 − xi × yi+1) (13.7)

This formula requires the (N + 1)th point. However, it does not exist in the point
list of the polygon. As a result, the first point is used as the (N + 1)th point so as to
make this polygon closed.

Similarly, as shown in Figure 13.2, the area covered by a profile (or a section)
consisting of N points can be computed as follows:

Aprofile =
n−1∑
i=1

zi + zi+1

2
×Di,i+1 (13.8)

where Di,i+1 is the horizontal distance between the ith and (i + 1)th points.
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1

2
3

4

N

D2,3D1,2 Reference

z

D

Figure 13.2 Area covered by a profile.

(a) (b)

A∆

z1
z2

z3

ACell

z1
z2

z3
z4

Figure 13.3 Volume calculation-based TIN and grid DTM.

13.2.2 Volume

After the horizontal area A� covered by a triangular facet is computed, the volume
of the triangular prism covered by this triangular facet (see Figure 13.3a) can be
computed as follows:

V3 = z1 + z2 + z3

3
× A� (13.9)

If the DTM is in a grid form, the volume covered by a cell (Figure 13.3b) can be
computed as follows:

V4 = z1 + z2 + z3 + z4

4
× ACell (13.10)

where ACell is the horizontal area covered by the cell.
By using either of these two formulae, the volume required for cutoff or fill-up

for an engineering design on the DTM can then be computed as follows:

V=VoriginalDEM − VnewDEM (13.11)

The result of V can be interpreted as follows:

1. V > 0, cutting off
2. V > 0, filling up
3. V = 0, no need to do either.

 



DITM: “tf1732_c013” — 2004/10/22 — 16:37 — page 271 — #5

INTERPRETATION OF DIGITAL TERRAIN MODELS 271

13.3 MORPHOLOGICAL TERRAIN PARAMETERS

Morphometric terrain parameters are those that can be derived directly from the DTM
using some local operations, such as slope and aspect, complexity index, and so on.

13.3.1 Slope and Aspect

Although slope was discussed in Chapter 2 and the use of slope information presen-
ted in Chapters 4 and 7, yet no rigorous definition has been given so far. Slope is
the first derivative of a surface and has both magnitude and direction (i.e., aspect).
That is, slope is a vector consisting of gradient and aspect. The term slope used in the
previous chapters is called gradient in geomorphological literature. The term aspect
is defined as the direction of the biggest slope vector on the tangent plane projected
onto the horizontal plane. Aspect is the bearing (or azimuth) of the slope direction
(Figure 13.4), and its angle ranges from 0 to 360◦. (Note that in some literature, east
is used as the reference direction for aspect instead of north.) In this context, the term
slope is still used to refer to the gradient.

Suppose the surface function is

z = f (x, y) (13.12)

Then, the slope is defined as

Slopex =
df

dx
= fx

Slopey =
df

dy
= fy

(13.13)

Slope can be derived from the TIN or grid DTM using simple local operations.
Suppose the three vertices of a 3-D triangular facet are points 1, 2, and 3. The normal

31
3

2Slope 

Slope 

NN

P

P

�

�

�

Figure 13.4 Definitions of slope and aspect.
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(i.e., a vector) of this triangular facet at point 3 can be computed as follows:


N =
∣∣∣∣∣∣
i j k

x1 y1 z1
x2 y2 z2

∣∣∣∣∣∣
= i(y1z2 − y2z1)− j(x1z2 − x2z1)+ k(x1y2 − x2y1)

(13.14)

where i, j , and k are the unit vectors in the x, y, and z directions.
The projection of the 
N onto the horizontal plane 
P is computed as follows:


P = i(y1z2 − y2z1)− j(x1z2 − x2z1) (13.15)

The slope angle of the triangle, α, is then computed as follows:

sin α = 
|P |

|N | (13.16)

The aspect of this slope direction, β, is computed as follows:

tan β =
(
−x1z2 − x2z1

y1z2 − y2z1

)
(13.17)

Many approaches are available to compute slope and aspect from a grid DTM.
However, no attempt is made to introduce all of them. Instead, only some simple
methods are presented. Figure 13.5 is a window with nine cells from a grid DTM.
From this window, the slope and aspect values of the central cell, that is, with
height z0, can be estimated as follows:

Slope = tan α =
√

Slope2
Row + Slope2

Col (13.18)

Aspect = tan β = SlopeCol

SlopeRow
(13.19)

In these formulae, SlopeRow and SlopeCol are the slopes in the row and column
directions, respectively. If the row is west to east, then Slopewe is normally used to
denote SlopeRow, and likewise Slopesn to denote SlopeCol.

z5 z2 z6

z1 z0 z3

z8 z4 z7

Figure 13.5 A window for the computation of slope and aspect value.
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Methods for the computation of the slopes in these two directions are listed in
Table 13.1. In this table, the variable d is as usual the grid interval. Figure 13.6 shows
an example of slope and aspect maps of an area: the contours and gray image are
shown in Figure 12.9. Comparative analysis has also been made by Skidmore (1989)
and Liu (2002). It has been revealed (Liu 2002) that method 1 has the highest accuracy
and computational efficiency, and method 2 comes second. However, method 1 has
not yet been implemented in popular commercial GIS software.

Table 13.1 Methods for the Computation of Slopes in Row and Column Directions

Equations for Slope in Row Equation
No. References and Column Directions No.

1 Ritter 1987; Slopewe =
z3 − z1
2× d

, Slopesn =
z2 − z4
2× d

(13.20)
Zevenbergen and
Thorne 1987

Slopewe =
(z7 + 2z3 + z6)− (z8 + 2z1 + e5)

8× d
2 Horn 1981 (13.21)

Slopesn =
(z6 + 2z2 + z5)− (z7 + 2z4 + z8)

8× d

Slopewe =
(z7 +

√
2z3 + z6)− (z8 +

√
2z1 + z5)

(4+ 2
√

2)d
3 Unwin 1981 (13.22)

Slopesn =
(z6 +

√
2z2 + z5)− (z7 +

√
2z4 + z8)

(4+ 2
√

2)d

4 Sharpnack and G = Slopewe =
(z7 + z3 + z6)− (z8 + z1 + z5)

6× d
Akin 1969; (13.23)

Hengl et al. 2003 H = Slopesn =
(z6 + z2 + z5)− (z7 + z4 + z8)

6× d

(a) (b)

0–5
5–10 
10–20 
20–30
30–40 
40–58

1 0 1 Kilometers 1 0 1 Kilometers

Slope
(degrees)

Flat
N
NE
E
SE
S
SW
W
NW

Aspect

Figure 13.6 An example of slope and aspect maps of an area (as shown in Figure 12.9):
(a) slope map and (b) aspect map.
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13.3.2 Plan and Profile Curvatures

Hengl et al. (2003) regarded Equation (13.23) as the Evens–Young method. By
this method, the three second derivatives of the terrain surface can also be derived
as follows:

D = d2f

dx2
= (z1 + z3 + z5 + z6 + z7 + z8)− 2(z0 + z2 + z4)

3× d2

E = d2f

dy2
= (z2 + z4 + z5 + z6 + z7 + z8)− 2(z0 + z1 + z3)

3× d2

F = d2f

dx dy
= z6 + z8 − (z5 + z7)

4× d2

(13.24)

Using Equations (13.23) and (13.24), the curvature can then be computed as shown in
Table 13.2 (extracted from Hengl et al. 2003). The signs of the curvatures are defined
in Figure 13.7. It can be seen that for plan curvature, a positive value indicates
the divergence of the flow and a negative value the concentration of the flow and for
profile curvature, a positive value indicates the convex profile and a negative value the
concave profile. The mean curvature is the average of the plan curvature. Figure 13.8
shows an example of curvature maps of the area whose slope and aspect maps are
shown in Figure 13.6.

Table 13.2 Methods for the Computation of Curvatures

Equation
Name Equations No.

Plan curvature PlanC = −H2 × D − 2×G × H × F +G2 × E

(G2 + H2)1.5
(13.25)

Profile curvature ProfC = −G2 × D + 2×G × H × F + H2 × E

(G2 + H2)× (1+G2 + H2)1.5
(13.26)

Mean curvature MeanC = − (1+ H2)× D − 2×G × H × F + (1+G)2 × E

(G2 + H2)× (1+G2 + H2)1.5
(13.27)

(a) (b) (c) (d) zzy

xx

y

Figure 13.7 The sign of plan curvature (PlanC) and profile curvature (ProfC): (a) positive PlanC;
(b) negative PlanC; (c) positive ProfC; and (d) negative ProfC.
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(a) (b)

Plan curvature
(radians/100 m)

–55– –50
–50– –40
–40– –30
–30– –20
–20– –10
–10–0
0–10
10–20
10–25

1 0 1 Kilometers 1 0 1 Kilometers

Profile curvature
(radians/100 m)

–20– –15
–15– –10
–10– –5
–5–0
0–5
5–10
10–15
15–20
20–25
25–30

Figure 13.8 Maps of plan curvature and profile of the area as shown in Figure 12.9: (a) plan
curvature map and (b) profile curvature map.

13.3.3 Rate of Change in Slope and Aspect

In Figure 13.5, suppose the slope of grid point 0 is Slope0, and the slope of grid
point j is Slopej , j = 1, 2, . . . , 7, 8, then the rates of change in slope in grid cell 0
are as follows:

SR0,j =




Slopej − Slope0

d
, for j = 1, 2, 3, 4

Slopej − Slope0√
2d

, for j = 5, 6, 7, 8
(13.28)

where d is the grid interval. There are eight values for the rate of slope change. The one
with the maximum magnitude is taken as the rate of slope change, that is,

SR0 = SGNSmax |SRmax| (13.29)

where |Smax| = MAX(|SR0,1|, |SR0,2|, |SR0,3|, |SR0,4|, |SR0,5|, |SR0,6|, |SR0,7|,
|SR0,8|) and SGNSmax represents the sign of Smax. For example, if SR0,4 has the
largest absolute value, then SR0 = SR0,4. The computation of the rate of aspect
change is done exactly the same way.

13.3.4 Roughness Parameters

The roughness of a DTM surface is defined as the ratio of the surface area S and its
projection onto the horizontal plane (i.e., the horizontal area A):

RoughnessA =
S

A
(13.30)

When RoughnessA = 1, which is the smallest possible value, it means that the DTM
surface is a horizontal surface.

It can be noted that the roughness values of two inclined planes will be different if
the angles are different, although both are planes. This is a serious deficiency. Another
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commonly used method is to make use of the two average heights along the diagonal
(see Figure 13.5):

Roughnessz =
∣∣∣∣z5 + z7

2
− z6 + z8

2

∣∣∣∣ (13.31)

Another interesting parameter is the convexo-concave coefficient. It is defined as

CC = (zmax + zo
max)/2

zmean
(13.32)

where zmax is the height point of the four nodes of a grid cell; zo
max is the height of

the node opposite the highest node along the diagonal; and zmean is the mean value
of the four heights. The result of CC can be interpreted as follows:

1. CC > 0: convex shape
2. CC < 0: concave shape
3. CC = 0: level.

13.4 HYDROLOGICAL TERRAIN PARAMETERS

One of the major tasks in digital terrain analysis is the computation of hydrological
parameters, which are used to model the mass (e.g., water, sediments, and nutrient)
transportation and flow between land units. A number of important parameters
have been proposed, for example, total contributing area, specific catchment area,
compound topographic index, and stream power index. The results from the mod-
els form important input to, for example, the development of soil erosion models,
land use and land evaluation, landslide prediction, and catchment and drainage net-
work analysis (Zhou and Liu 2002). However, all these are the secondary terrain
parameters and they are commonly derived from a more fundamental element —
the flow model. A detailed discussion of these secondary parameters can be found
elsewhere (e.g., Wilson and Gallant 2000; Hengl et al. 2003). In this section, only
flow models are discussed, including flow direction, flow accumulation and lines,
as well as catchments and drainage networks.

13.4.1 Flow Direction

The fundamental principle behind the determination of flow direction is that water
will flow downhill (from a higher place to a lower place). On a terrain surface,
peaks are the maxima and pits are the minima. Ridge lines connect local maxima
and valleys (or ravines) lines connect local minima. Therefore, water will flow from
peaks and ridge lines to valleys and pits. The direction of flow can also be determined
using a DTM.

There are two general approaches:

1. Single-flow direction (SFD): The total amount of flow should be received by a single
neighboring cell that has the maximum downhill slope to the current cell, as shown
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78 72 69

74 67 56

69 53 44

78 72 69

74 67 56

69 53 44

78 72 69

74 67 56

69 53 44

(a) (b) (c)

Figure 13.9 Approaches for the determination of flow direction: (a) SFD, D4; (b) SFD, D8;
and (c) MFD.

in Figure 13.9(a) (only four possible directions) and Figure 13.9(b) (all eight
possible directions).

2. Multiple-flow direction (MFD): The flow from the current cell is distributed to
all lower neighboring cells according to some criteria, slope and flow width
(i.e., contour length), as shown in Figure 13.9(c) and expressed by Equation (13.33)
(Quinn et al. 1991).

Fi = Li × tan αi∑n
i=1 Li × tan α

(13.33)

where Fi is the proportional flow to the ith neighboring cell; Li is the flow width,
which is equal to (

√
2/4)d for the direction along the diagonal and (1/2)d for four

side neighbors (where d is the grid interval); and αi is the slope angle of the ith
neighboring cell.

A systematic classification of algorithms for the determination of flow direction
based on these two approaches has been given by Zhou and Liu (2002). In this section,
only the basic principles are introduced through simple algorithms. More precisely,
only the deterministic eight-node (D8) is introduced because of its simplicity and
wide implementation in GIS. However, it has been found from experimental testing
results that D8 may produce unacceptable errors and the warning is that “care must
be taken if they are used in real-world applications where accuracy is of concern”
(Zhou and Liu 2002).

The principles of D8 (O’Callaghan and Mark 1984) are

1. Water can flow in only one of the eight directions (i.e., left, right, up, down,
lower-left, upper-left, lower-right, and upper-right).

2. The direction must have the largest down slope.

In some literature, slope is measured by a distance-weighted drop, which is
the height difference (between a given point and the next point) divided by the
horizontal distance. In raster space, the distance is given in a unit of pixels. Therefore,
the distance between two side neighbor grid cells is 1 and that between two diagonal
grid cells is

√
2. Therefore, in the case of a 3 × 3 window, the distance-weighted

drop is

1. the height difference in row or column
2. the height difference divided by

√
2 in diagonal.
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5 0 1

4 3 2

64 128 1

32 0 2

16 8 4

32 64 128
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(a) (b) (c)

Figure 13.10 Coding systems for the flow direction: (a) simple coding; (b) by Jenson and
Domingue (1988); and (c) by Arc/Info.
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Figure 13.11 Flow directions and their coding: (a) a 6 × 6 grid DTM; (b) flow directions; and
(c) flow coding.

In some literature, a coding system is assigned to each direction. The simplest
coding system is as shown in Figure 13.10(a). Some researchers use numbers with
a power of 2. For example, the coding used by Jenson and Domingue (1988) is shown
in Figure 13.10(b) and the coding used in Arc/Info GIS is shown in Figure 13.10(c).

Figure 13.11 illustrates the flow directions of a grid DTM with 6 × 6 cells and
Figure 13.12 is the flow direction map of the area as shown in Figure 12.9. In this
figure, the coding system shown in Figure 13.10(c) is employed.

It must be noted here that usually a preprocessing is needed to remove depressions
(Jenson and Domingue 1988) and compound depressions (Zhu et al. 2003). Detailed
discussion of this lies outside this section.

13.4.2 Flow Accumulation and Flow Line

After flow directions have been determined, a flow accumulation matrix can be com-
puted. Figure 13.13 is the flow accumulation matrix of the area shown in Figure 13.11.
In this matrix, each cell is assigned a value equal to the number of cells that flow to it.
Water flows to the lowest area accumulatively. Therefore, the lowest area will collect
the water flow from all cells in the area. In Figure 13.13(a), the highest number is
35 because water from all 35 cells will flow to the last pixel. Those pixels with large
numbers in the accumulation matrix form the flow lines. If different colors are used
for the different numbers, one can see the flow lines clearly. Figure 13.13(b) is an
example of the shaded flow accumulation map of Figure 13.13(a). Figure 13.14(a) is
a flow accumulation map.

If a cell has a zero in the flow accumulation matrix, it means that no water from
other cells flows to it, thus this cell must be a local maxima, corresponding to points
at peaks and ridge lines.
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Figure 13.12 Flow direction map of the area as shown in Figure 12.9.
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Figure 13.13 Flow directions and their coding: (a) flow accumulation and (b) flow accumulation
with shading

13.4.3 Drainage Network and Catchments

After the flow accumulation matrix is produced, the extraction of flow lines becomes
easy. From Figure 13.13, it can be seen that if one sets a threshold for flow accumu-
lation values, then flow lines can be delineated easily. In Figure 13.13(b), a threshold
value of 3 is set and the flow lines are then highlighted. Those cells with water accumu-
lation greater than this threshold will be linked together and vectorized to become flow
lines. All the flow lines together form a drainage network, which can be represented
by a tree structure (Figure 13.15). Figure 13.14(b) is a drainage network map.

The level of detail of the extracted drainage network is in inverse proportion to
the threshold used for flow accumulation. Experience shows that the results would
be ideal if the threshold is set to the mean value of accumulation of all the cells
(Tang 2000).
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Figure 13.14 Flow accumulation and lines of the area as shown in Figure 12.9. (a) Flow
accumulation map. (b) Drainage network map.
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Figure 13.15 Tree structure for the representation of drainage network.

Another important hydrological parameter is the catchments (or watersheds).
A watershed is the land area that drains precipitation into a particular stream or
river system and is a polygon formed by the ridge lines. That is, those cells with zero
water accumulation form the watershed boundary. The normal practice for delineating
a watershed is to start from the outlet of the stream concerned and trace through the tree
structure until the upstream limits of the basin are defined. More detailed discussion
for catchment area calculation can be found in other literature (e.g., Freeman 1991).

13.4.4 Multiple Direction Flow Modeling: A Discussion

As previously stated, the SFD approach, although simple and easy to implement, has
serious deficiencies as follows:

1. Because it is based on a grid and the D8 model, small-scale flow directions are
biased to these eight directions, giving an implausible set of river directions.
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2. Modeling of physical processes (e.g., groundwater flow or heat flow) is not usually
done on a “winner takes all” approach: if two exit paths from a cell are approx-
imately equal in influence (based on the local gradient), then finite-difference flow
models allocate the flow accordingly.

3. The fixed flow direction model (Figure 13.11b) does not allow for the effects of
accumulation in a cell — hence the major difficulties with apparent “pits” in the flow
model, where local (and usually minor) minima are found. A great deal of effort
must then be expended on eliminating these artifacts that are due to the expected
variability in a grid-based DEM and whose influences on the flow model are out of
all proportion to their importance.

A better solution, that saves effort in the long run, is to implement a proper
finite-difference scheme that resolves these issues. As in groundwater modeling, the
volume of water transferred from a higher to a lower cell in one time step is equal
to a conductivity factor, times the cross-sectional area of the face between the cells,
times the tangent of the gradient between the cell centers. The conductivity factor is
based on ground control (being lower for vegetation and higher for bare rock) and
on the time step used. The cross-sectional area, for surface runoff, is based on the
length of the common 2-D boundary (e.g., the grid cell size) times a putative unit
height. The tangent of the gradient equals the height difference between the cells
divided by the distance between the cell centers. This is described in Narasimhan and
Witherspoon (1976) as the integrated finite-difference (IFD) technique.

To reduce the bias of a regular grid, random Voronoi cells may be introduced,
with an estimated height at each center. (In most cases the original data points will
be insufficiently dense, and additional interpolated points will be inserted at random
locations.) This gives local flow directions that vary more plausibly in orientation.
As the available water is allocated on the basis of the demand calculated for the
neighboring cells, some flow will be allocated to all (lower) adjacent cells. If the
height of a cell is considered to be the sum of the ground elevation plus the currently
accumulated water, the problem of pits is eliminated — they fill up rapidly, as in
the real world. The result of a simple simulation using this approach is given in
Figure 13.16.

13.5 VISIBILITY TERRAIN PARAMETERS

Visibility analysis is a basic terrain analysis function used in a wide variety of appli-
cations such as resource management, urban planning, crime mapping, and military
operations analysis. There are two fundamental parameters in visibility analysis:

1. intervisibility of line-of-sight (LoS), that is, point-to-point visibility
2. viewshed, that is, point-to-area visibility.

Recently, other terms such as visibility surface and visualscape have been intro-
duced for more complex terrain analysis (Caldwell et al. 2003; Llobera 2003),
although intervisibility and the viewshed are still the most important concepts for
DTM-based visibility analysis.
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Figure 13.16 Surface runoff simulation using Voronoi cells and IFD modeling.

13.5.1 Line-of-Sight: Point-to-Point Visibility

The simplest method of visibility analysis is the LoS profiles model, as shown in
Figure 13.17(a). The LoS is defined by the viewpoint V and the target T.

The basic idea of intervisibility analysis is to compute from the DEM the pro-
file section between the viewpoint and the target (defining a LoS), as shown in
Figure 13.17(a), to see whether or not any point within the profile will block the
LoS (i.e., between viewer and the target). If yes, then the target is not visible. In this
figure, if the height of the obstacle is lower then a critical value, then the target T
is visible. Let the height of the target be hT, the height of the viewer be hV, let the
distance between the target and the obstacle beDTO, and let the distance between the
viewer and the obstacle beDVO; then, the critical value for the height of the obstacle is

hCrit = DTOhT +DVOhV

DTO +DVO
(13.34)

This means, if the height of the obstacle is lower than hCrit, then the target is
visible.

Alternatively, if the height of the obstacle is known, then the area blocked by this
object can also be computed. This is shown in Figure 13.17(b). The length of the
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Figure 13.17 Intervisibility between two points: LoS. (a) Critical height of the obstacle between
two points. (b) Shaded areas blocked by obstacles.
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Figure 13.18 The viewshed concept.

invisible area is computed as follows:

DTO = hO

hV − hO
×DVO (13.35)

13.5.2 Viewshed: Point-to-Area Visibility

A viewshed is all the regions that are visible from a viewpoint. It is formed by a set
of points. Figure 13.18 shows an example. In fact, the viewshed is a 2-D extension of
the LoS. Viewshed analysis is a key component of visual impact assessment study.
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There are more grid-based algorithms for the computation of viewshed although
TIN-based algorithms are also available (e.g., De Floriani and Magillo 1994).
The results of grid-based algorithms are usually represented in a discrete form, that
is, each grid point is recorded as being either visible or invisible. This representation
is called visibility matrix in some literature.

To obtain the viewsheds in a regular grid DEM from a given viewpoint, a simple
method is to judge the visibility between each grid point and the viewpoint using
Equations (13.34) and (13.35). However, as can be seen from Figure 13.18, there
would be a huge amount of redundant computation in using such a simple method.
To improve computation efficiency, several specially designed algorithms have been
developed (e.g., Wang et al. 2000; Rana and Morley 2002), apart from the parallel
processing algorithms (De Floriani and Magillo 1994). For example, topographic
features on the terrain surface have been used to reduce the number of observer–
target pair comparisons (Rana and Morley 2002); and reference planes rather than
sightlines are used to save a considerable amount of computation (Wang et al. 2000).
Detailed discussion of this will not be presented here in this chapter.
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CHAPTER 14

Applications of Digital Terrain Models

DTMs have found wide applications since their origin in the late 1950s, in various
disciplines such as mapping, remote sensing, civil engineering, mining engineering,
geology, geomorphology, military engineering, land planning, and communications
(Catlow 1986; Petrie and Kennie 1990; Li and Zhu 2000; Maune et al. 2001). In this
chapter, brief descriptions of various applications will be given.

14.1 APPLICATIONS IN CIVIL ENGINEERING

The first application of DTM is in civil engineering, more precisely, highway engin-
eering. In 1957, Roberts (1957) proposed the use of DTMs for highway design. One
year later, Miller and Laflamme (1958) used the data to set up a cross-section (pro-
file) model and coined the concept of DTMs for the first time. Thereafter, Roberts
and his colleagues at MIT developed the first terrain modeling system. This system
could not only interpolate in the sections (profiles), but also calculate the cut-and-
fill between sections and provide useful data for engineering design. By 1966, they
had been able to provide programs for road design using DTMs, most of which
were based on the cut-and-fill calculation. Many techniques originally developed for
road design have been applied to construction engineering, such as the design of
reservoirs and dams. DTMs have also been widely applied to other related engin-
eering such as mining. In this section, applications in road engineering and water
conservancy will be described briefly.

14.1.1 Highway and Railway Design

The development of a transportation network is complicated, aiming to provide
a network to satisfy the needs of society. The design process can be split into steps
such as site investigation, route planning and design, earthwork calculation, pavement

285
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(a) (b)

(c) (d)

Figure 14.1 Cases involved in the design of roads and railways: (a) excavation in the form of
cuts (cross section); (b) embankments in the form of fills (cross section); (c) digging
in the form of tunnel (profile); and (d) construction in the form of bridge (profile).

design, bridge and tunnel design, and so on. DTMs help in route planning and design
and earthwork calculation.

Due to variations in the terrain, it is unlikely that a road or railway can be construc-
ted without any earthwork. In most cases, tunnels and bridges need to be constructed,
hills and lowlands modified (Figure 14.1). Earthwork can take the form of excava-
tion or the construction of embankments, to carry an elevated highway or railway.
Normally in a road or railway design, both cuts and fills will be necessary.

Designers make every effort to select a route passing through areas with stable
geological conditions, with gentle slopes and small curves to minimize earthwork.
Traditionally, such work was done on contour maps. Nowadays, DTMs are widely
used for drawing plans, profiles (along the designed central line), and cross sections,
for computing the volume of earthwork, for generating perspective views, and even
for producing 3-D animation. As various routes are possible for a given project, the
aim of the design is to obtain an optimal route.

The basic requirements for landscape modification with a TIN are the ability to
insert and delete points in a triangulation (see Chapter 5) and to assign to them a
particular height. Although it is desirable to have additional tools that are specific
to the particular application, terrain manipulation can be done with these alone —
other techniques are described in Chapter 15. Figure 14.2 shows a triangulated surface
where roadside elevation values have been added to the original terrain, and some
of the original data points have been modified. Figure 14.3 shows a 3-D view of
this model, which may then be used to evaluate the feasibility of the proposed route.
Figure 14.4 shows a highway on the TIN-based DTM with shading.

In mining, DTMs have also been used to compute earth volume and to simulate
mining progression.

14.1.2 Water Conservancy

There are different types of water conservancy projects, such as reservoirs and canals.
A canal project is similar to a road project, but there are differences. The major
difference is that water cannot naturally flow uphill. Therefore, a canal is normally
not allowed to have upward slopes.
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Figure 14.2 A triangulated terrain surface with road lines added.

Figure 14.3 A 3-D view of the triangulated terrain surface with road lines.

Figure 14.4 A highway designed on TIN-based DTM with shading.
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In a reservoir project, the water volume needs to be estimated, the location of
the dam determined, various critical water and outlet water levels designed, and
drainage planned. Reservoir volume and area are two major features. DTMs can be
used to replace traditional contour maps to assist in selecting a site for the dam and
estimating water volume. The procedure for the computation of water volume is as
follows:

1. Let points (xA, yA) and (xB, yB)be the two points on the dam axis, then the equation
for this axis is

y = kx + b (14.1)

where k = (yB − yA)/(xB − xA) and b = yA + kxA.
2. Compute the intersection points (xi , yi)of the dam with the contour lines at different

levels, which are derived from the DTM of the reservoir area.
3. Compute the area of the irregular polygon formed by each contour (e.g., the kth

contour) and the designed dam:

Ak = 1

2

∑
(xi+1 + xi)(yi+1 − yi), k = 1, 2, . . . , m (14.2)

4. Compute the volume between the adjacent two areas (e.g., the kth and the (k+1)th):

�V = 1

2
(Ak + Ak+1)×�H (14.3)

where �H is the height difference between the two adjacent areas.
5. Compute the volume contained by the reservoir:

V =
∑

�V (14.4)

In the end, the curves showing the relationships between water level and reservoir
volume and between water level and water area can also be produced with ease.

14.2 APPLICATIONS IN REMOTE SENSING AND MAPPING

DTMs have many applications in remote sensing and mapping, such as topographic
mapping (contours), thematic mapping, orthoimage generation and image analysis,
map revision, and so on. In this section, only the applications in orthoimage genera-
tion and remote sensing image analysis are discussed.

14.2.1 Orthoimage Generation

To make images useful as backdrops for other thematic information and base maps,
it is desirable that the images have characteristics similar to those of maps. This
means that the same scaling, orientation, and projection into a geo-referencing
system (e.g., a national geodetic system) should be adopted. To accomplish this,
a number of requirements must be fulfilled:

1. All image points should be registered in a geo-referencing system such as a national
geodetic (or grid) system.
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2. Each point (pixel) of the resulting image should have the same scale if the ground
area is small, or else scale variations should follow a map projection.

3. The relative relationships between features should also be retained.

Remote sensing images, either satellite or aerial images, do not have such good
characteristics due to the distortions caused by the imperfections of camera or scanner
systems, the instability of platforms (tilts and flying height variations), atmospheric
refraction, the earth’s curvature, and terrain height variations. The two most serious
factors are the instability of the platform and terrain height variations. Therefore,
geometric rectification is required.

To rectify the images, the relationship between the image and ground points needs
to be established. For aerial photography, relationships were discussed in Chapter 3
and expressed by Equation (3.3). For scan image, Equation (3.3) can still be used
but only for each scan line. Therefore, it is not practical to use Equation (3.3) to
model scan images, because there are normally thousands of scan lines in a frame,
and this results in too many unknowns. In practice, a polynomial (normally second or
third order), as listed in Table 4.1, is used to approximate geometric transformation
models. A few control points from both the image and the ground are measured as
reference points to solve the coefficients of this model. Then, all points on the image
can be transformed to the ground. This is geometric rectification in which distortions
are corrected, minimized, or redistributed. However, the distortion caused by terrain
variation is still there. To remove this distortion, as shown in Figure 14.5, a DTM is
required.

In Figure 14.5(a), the distortion caused by relief is shown. The ground point A
has a height z over a reference datum. This causes a displacement “aa” on the image.
In the case of rectification, if the height of each pixel on the image, for example,
“a” in Figure 14.5, is found from the DTM, then a correction can be applied. The
determination of the ground height is done by an iterative process (Albertz et al. 1999),
as shown in Figure 14.5(b).
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Figure 14.5 Image distortion due to relief and its correction: (a) image distortion caused by
relief and (b) intersection of ground surface with light ray.

 



DITM: “tf1732_c014” — 2004/10/25 — 12:49 — page 290 — #6

290 DIGITAL TERRAIN MODELING: PRINCIPLES AND METHODOLOGY

A

B

A

B

Sun

Figure 14.6 Effect of topographic variation on image brightness.

Table 14.1 Removal of Topographic Effect with Band Ratio

Image Brightness on Image Brightness on
Slope Facing Away from Sun Slope Facing Sun

Unit Red Band NIR Band Red/NIR Red Band NIR Band Red/NIR

A 20 30 0.67 40 60 0.67
B 30 60 0.50 50 100 0.50

14.2.2 Remote Sensing Image Analysis

In Chapter 12, shading was used to produce a vivid representation of terrain
surface. It was argued that the surface reflectance is different if the slope and aspect
are different. This means that the brightness of image pixels is also affected by the
slope and aspect of the terrain surface. Figure 14.6 shows such effects.

However, the image from all the bands will suffer from the same effect for the
same area. Therefore, in remote sensing, band ration is widely used to remove such
effects. In Figure 14.6, there are two types of land cover, A and B. The sunlight is
from the lower-right corner. Therefore, the surface on the right side will appear to
be brighter on the image. Table 14.1 gives a possible example. The ratios of the red
and the near infrared (NIR) bands are the same although the absolute differences are
very different. With a DTM, the slope and aspect map of the terrain surface can easily
be produced, as discussed in Chapter 13; thus, the topographic effect can then be
removed. In the end, a more reliable analysis could be made from the image after the
removal of topographic effects.

14.3 APPLICATIONS IN MILITARY ENGINEERING

14.3.1 Flight Simulation

Pilot training is difficult, costly, and sometimes dangerous. It is natural to think about
simulation so that the pilot can sit down in front of a special device to learn how to
control an airplane. In addition to pilot training, flight simulation can also be used for
mission planning and rehearsal.
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Figure 14.7 Virtual battlefield environment simulation (You 1991).

In simulation, the DTM plays an important role. 3-D rendering techniques are
employed to simulate the terrain, often with LOD techniques. Textures and other
attributes can also be mapped onto the DTM surface to generate realistic scenery.
To simulate scene changes while flying, the “fly-through” technique is used.

DTMs can also be used to guide cruise missiles. This is done by matching the
DTM surface stored in the computer with the real world sensed by the detectors on
board the cruise missile.

14.3.2 Virtual Battlefield

The virtual battlefield is a simulation of a potential battlefield generated in computers,
which allows people to be involved. Battlefield simulation provides a dynamic and
stereo environment, which can be used to recapitulate the battle, evaluate the results,
and gain experience. DTM is used to simulate the battle environment. Figure 14.7 is
an example of the virtual battlefield environment.

A number of parameters can be derived from the DTM for the battlefield simu-
lation, such as intervisibility, shields of the landform, exposed distance of a moving
unit, the closest shielding distance to the target, and accessibility of the battle field.

14.4 APPLICATIONS IN RESOURCES AND ENVIRONMENT

14.4.1 Wind Field Models for Environmental Study

In climatology, environment, and forestry, to predict the spread of forest fires and
pollution, it is necessary to be able to predict the wind direction. To do so, enough
information about the wind model of the areas of interest needs to be obtained.

A large mountain range exerts dynamic and thermodynamic effects on the
atmosphere. The dynamic effect means that with rotation and gravity, mountains
force the air to flow like waves at various scales, which results in changes in the wave
fronts. The thermodynamic effect means that temperature differences between day
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and night in different parts of the mountains result in local influence of hill and valley
winds. The direction and velocity of winds also vary with altitude, slope, aspect, and
terrain roughness, which results in a complex and unstable wind field in mountain
areas. To model this, all the essential topographic parameters can be extracted from
DTMs, such as

1. the lowest, highest, and average elevations of each grid cell
2. the lowest, highest, and average elevations of certain square areas delineated with

specific conditions
3. the average slope of each cell
4. the percentage of cells containing such terrain features as ridges, valleys, and flat

lands
5. the standard deviation of elevations and slopes.

14.4.2 Sunlight Model for Climatology

The mountain climate is deeply influenced by terrain variations. These effects
result in different climates on the two sides of the mountain range. Also, unique
local climates may be formed on any part of a mountainous region because of dif-
ferent combinations of altitudes, slopes, and aspects, as well as the shading effect of
mountain ridges. When analyzing the mountain climate, one has to consider not only
the relatively invariable factors like geographic latitude and average altitude of the
region, but also the micro topographic parameters such as the local height differences,
aspect, and shading areas.

DTMs play an important role in sunlight modeling. The incidence direction of
sunlight is defined by the functions of date, time, and the latitude and longitude of
the area. The sunlight received by each cell is also dependent on the slope, aspect,
and altitude of the cell. To produce a precise sunlight model, the coordinates of grid
cells are transformed into latitude and longitude, the angle between the incidence
direction of the sunlight and the outward normal of the grid cell is then calculated,
the shade status is judged by a hidden surface algorithm of the 3-D perspective, and
then the instantaneous sun radiation can be accurately calculated. The sun radiation
of a grid cell in 1 day can be obtained by summarizing all instantaneous sun radiation.
Similarly, the sun radiation on one grid cell during a month, a season, or a year can
be calculated. Of course, the sun radiation at one time period on one slope surface
can be obtained by accumulating all the radiation values of those grid cells on the
surface.

14.4.3 Flood Simulation

The flat areas of river basins are often flooded after heavy rain. Therefore, it is
necessary to study flood risks. To do so, potential flood levels and velocity are the
two major parameters to be considered. The DTM has been used to simulate floods.
In such a simulation, with a given rainfall, the amount of water from different catch-
ments can be estimated, as described in Chapter 13. After considering the capacity
of the river, the amount of water to be accumulated can be computed. Then, the area
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(a) (b)

Figure 14.8 Flood areas simulated with satellite images superimposed. The color plate can
be viewed at http://www.crcpress.com/e_products/downloads/download.asp?cat_
no=TF1732.

to be flooded can also be estimated. Figure 14.8 shows an example of the flood areas
simulated using a DTM, with satellite images superimposed.

14.4.4 Agriculture Management

Recently a popular term — precision farming — has come into use. It means that
that farmers can control the quantity of water, fertilizer, and pesticides placed on
different areas of the farm land, based on the attributes of the land, such as soil type
and condition, slope, the condition of the crops, and so on. Slope (as well as aspect)
information can be derived from a DTM.

Slope is a type of spatial information important to soil erosion. In some developing
countries, areas with steep slopes are still farmed, resulting in serious soil erosion.
This was also the case, for example, in China. However, in the late 1990s, the Chinese
government ordered that no lands with a slope over a certain value should be farmed.
In this way, the situation of soil erosion has been improved.

14.5 MARINE NAVIGATION

The topographic surface is usually observed above sea level, but clearly the sub-sea
terrain surface is important in various applications. Terrain model construction is often
more difficult, as the overall surface form is often not available at the time of sampling.
Observations of the sea floor are often made along ships’ tracks, giving a highly
anisotropic distribution that requires special interpolation techniques to reconstruct
plausible surfaces (Gold and Condal 1995).

However, the most important marine application of DTMs is undoubtedly in ship
navigation. This is most commonly based on the use of electronic or paper mar-
ine charts, but is now being considered for 3-D representations (Gold et al. 2004).
Figure14.9showsanavigator’sviewof theEastLammaChannel, HongKong, together
withthesuperimposedchartsymbols. Figure14.10showstheuseofdynamic3-Dsafety
contours, highlighting the safe channel for a particular ship’s draught. Figure 14.11
shows how the dynamic intersection of the tidal sea surface with the terrain is used for
a collision-avoidance system, with the kinetic Voronoi diagram (derived from TIN) as
the basis — collisions are only possible between the generators of adjacent cells.
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Figure 14.9 A navigator’s view of the East Lamma Channel.

Figure 14.10 Channel safety contours based on sub-sea topography.

Figure 14.11 The intersection of the terrain and sea surface: collision detection using kinetic
Voronoi diagrams.
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14.6 OTHER APPLICATIONS

In planning and landscape design, visual impact analysis (VIA) is applied to the
new designs. That is, the designs are superimposed onto a DTM to create a virtual
landscape, which is visually analyzed.

DTMs can also be used for communication network planning. Problems such as
dead angles and blind areas in site selection of the radio or television transmitting
station can be computed.

Indeed, as the DTM is a fundamental model of the Earth’s surface, it has
applications in all Earth-related sciences. However, a complete coverage of these
applications lies outside the scope of this book.
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CHAPTER 15

Beyond Digital Terrain Modeling

Chapter 14 discusses the more traditional development and applications of terrain
models. Here, we look at some extensions of these models for specific problems.

15.1 DIGITAL TERRAIN MODELING WITH COMPLEX
CONSTRUCTION

15.1.1 Manual Addition of Constructions on Terrain Surface

For simplicity it is usually assumed that terrain models are monotonic in X and
Y — there is only one possible Z for each XY location. This is often true in the
real world, but not always — occasionally there are caves, tunnels, overhanging
cliffs, bridges, and overpasses. In the work by Tse and Gold (2002), the standard
TIN model is extended by merging some aspects of terrain modeling (TINs), com-
putational geometry (the Quad-Edge data structure), and computer aided design or
CAD (Euler operators, which guarantee to preserve the connectivity of the surface
after they are applied). They found it easy to combine them to give the usual oper-
ations on a 2D triangulation — as well as add an operator that generates a hole
between any two nonadjacent triangles (which is really the same thing as adding
a bridge or handle to the surface). Figure 15.1, Figure 15.2, and Figure 15.3 give
simple examples, and Figure 15.4 and Figure 15.5 show part of a Hong Kong
city model.

Thus, a simple modification of the basic triangulation algorithm allows one
to interactively modify the terrain model to add complex features that are other-
wise unavailable. Because one is still forming a connected surface, a variety of
topological operations, such as neighborhood selection and flow modeling, may
be performed. Clearly another, even higher, layer of operations would permit one
to add predesigned features such as buildings, dams, tunnels, etc. to our terrain
model.
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(a) (b)

Figure 15.1 TIN model of a surface with a tunnel: (a) a tunnel on a TIN model and (b) the
enlarged tunnel.

(a) (b)

Figure 15.2 TIN model of a surface with bridges: (a) two bridges on a TIN model and (b) the
enlarged bridge.

(a) (b)

Figure 15.3 TIN model of a ground surface with buildings and bridge: (a) a building on a TIN
model and (b) a bridge connecting two buildings.

15.1.2 Semiautomated Modification of the Terrain Surface

Section 15.1.1 showed simple terrain modification based on modifying the TIN by
adding and deleting individual points with (X,Y ,Z) coordinates. This is effective
but slow to do by hand. An alternative approach is to “cut” the triangulated surface
with a “knife” in order to sculpt it to the form desired. One first sets the knife size,
location, and orientation and then performs the cut (or intersect) operation. One may
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Figure 15.4 A partial view of Hong Kong harbor.

Figure 15.5 Part of the Hong Kong city model.

either lower the terrain surface to the knife position, for example, cutting into the
side of a hill, or else raise the surface to the knife position, creating an embankment
or dam. More points are added to the triangulation to form the intersection lines
between the knife and the original terrain, and one assumes a maximum slope (less
than vertical) for the edges of the cut or embankment. Figure 15.6(a) shows a simple
TIN model with the knife in place. Figure 15.6(b) shows the result after the surface
is lowered to the knife (with a 45◦ embankment specified). Figure 15.6(c) shows
the knife positioned across a valley, and Figure 15.6(d) shows the result of raising the
terrain surface to the knife, forming a dam structure across the valley.
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(a)

(c)

(b)

(d)

Figure 15.6 Terrain modification by “cutting” the triangulated surface with a “knife.” (a) The knife
positioned on the terrain. (b) Modified terrain after lowering the surface to the knife
blade. (c) The knife positioned across a valley. (d) The dam created after raising
the surface to the knife blade.

15.2 DIGITAL TERRAIN MODELING ON THE SPHERE

With the introduction of the concept digital earth, global modeling of the Earth’s
surface (Gold and Mostafavi 2000) has become a hot topic. The digital terrain
modeling techniques described in this book can also be extended to spherical
terrain modeling.

15.2.1 Generation of TIN and Voronoi Diagram on Sphere

In planimetric terrain modeling, as discussed in Chapter 4, grids and TINs have
been widely used to tessellate the terrain. On the sphere, a similar tessellation model
needs to be used. The concept of spherical surface tessellation was presented by
Fuller, a German cartographer, for map projection in the 1940s (Dutton 1996). Since
then, many researchers have approached this problem to project, analyze, and index
global data. Many methods are based on inscribed polyhedrons, such as the tetra-
hedron, the cube (Snyder 1992), the octahedron (Dutton 1989, 1996; Goodchild et al.
1991; Goodchild and Yang 1992; Otoo and Zhu 1993; Clarke and Mulcahy 1995),
the dodecahedron (Wickman and Elvers 1974), and the icosahedron (Fekete 1990;
White et al. 1992; Lee and Samet 2000), as shown in Figure 15.7. The edges of the
polyhedron are projected to the spherical surface and form the edges of spherical
triangles.

The octahedron-based tessellation is a regular triangular mesh on the sphere,
called the octahedral quaternary triangular mesh (O-QTM). Figure 15.8 shows an
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(a)

(b)

Figure 15.7 Spherical surface tessellation based on inscribed polyhedra (Reprinted with per-
mission from White et al. 1992): (a) five polyhedra and (b) projected to the spherical
surface.

(a) (b) (c)

Figure 15.8 Hierarchical tessellation of the spherical facet based on octahedron (Dutton 1996):
(a) level 1; (b) level 2; and (c) level 3.

example of O-QTM at three difference levels (Dutton 1996). Terrain modeling can
then be applied to the QTM.

The QTM can also be used as a coordinate system on the sphere, just like the
regular grid or triangular network on a 2D plane. In the QTM, a point is represented
by a triangle, an arc is represented by a series of neighbor triangles, and a region
is represented by a series of neighbor triangles on and within its boundary trace.
From the QTM, a TIN can then be constructed. Alternatively, spherical TINs can
also be derived from spherical Voronoi diagrams (Augenbaum 1985; Robert 1997;
Chen et al. 2003). Figure 15.9 shows an example of spherical Voronoi diagram and
its dual — the spherical TIN.

15.2.2 Voronoi Diagram for Modeling Changes in Sea Level on Sphere

Mostafavi and Gold (2004) used the dynamic Voronoi diagram on the sphere to model
the continually changing height of the sea, rather than of terrain. Figure 15.10(a)
shows an initial set of cells, each representing a fixed mass of water, and uses the free
Lagrange method to simulate flow under lunar gravitational influence, and hence the
sea height. Coastlines were modeled by a double line of fixed Voronoi cell generators.
Figure 15.10(b) shows the result after simulation started: high water (HW) is indicated
by smaller, and therefore higher, cells, while low water (LW) is shown by larger,
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(a) (b)

Figure 15.9 Spherical TIN formation: (a) Voronoi diagram and (b) Delaunay triangulation.

HW

(a) (b)

LW

Figure 15.10 Dynamic Voronoi diagram on sphere to model the continually changing heights
of sea: (a) initial configuration of Voronoi cells and (b) Voronoi cell configuration
indicating lunar tides.

lower cells. Figure 15.11 is a Mercator projection showing the flow directions and
velocities of each cell.

15.3 THREE-DIMENSIONAL VOLUMETRIC MODELING

Two dimensions are required in terrain modeling to generate the underlying
triangulation or grid. Once elevations are added as an attribute, the result is usually
known as “2.5D” modeling, although the data structures remain 2D. Once the topol-
ogy (or connectedness) can no longer be represented on the plane (as in 3D objects
in CAD or games), a surface representation, composed usually of triangles, is often
used, as in Section 15.1.

However, for some applications a surface model is inappropriate, and a full 3D
volumetric model is needed. Examples include geological, atmospheric, and oceano-
graphic models, where attributes need to be assigned to arbitrary locations in 3D
space. In some cases a 3D grid may be used, or an octree where nodes repre-
sent volumes. A more flexible approach is to replace the 2D triangulation structure
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Figure 15.11 Mercator projection showing cell velocities and directions.

Figure 15.12 Delaunay and Voronoi cells in three dimensions.
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Figure 15.13 A three-dimensional isosurface. The color plate can be viewed at http://www.
crcpress.com/e_products/downloads/download.asp?cat_no=TF1732.

with a 3D Delaunay tetrahedral model, thus allowing the connection of arbitrarily
located observations, and then to add the 3D Voronoi cells. While conceptually simple,
the implementation is often difficult, due to the large number of degenerate (coplanar,
cocircular) cases. Figure 15.12 shows a 3D data set with one Delaunay cell and
its neighbors shown on the left and a Voronoi cell on the right.

Various interpolation techniques, such as the equivalent of the 2D Sibson or
natural neighbor interpolation, may be used, and these behave well for the aniso-
tropic distributions of data that are often found in three dimensions. For visualization
purposes the individual tetrahedral may be sliced, based on the values at the corner
vertices, to give the 3D equivalent of 2D contours. Figure 15.13 shows a single 3D
isosurface constructed in this way.
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Epilogue

It was natural that we felt relieved and excited somehow after having completed the
final draft of this book and having uploaded the materials onto the ftp site of the
publisher. However, soon we started to feel obliged to write this epilogue because
there are a few issues confronting us.

We thought it is really a pity that no authored book in this discipline had been
made after over 40 years of development although there are two edited works, Terrain
Modelling in Surveying and Civil Engineering by Petrie and Kennie (1990) and Digital
Elevation Model Techniques and Applications: The DEM User Manual by Maune
(2001). Our aim was to write a book systematically covering a wide range of topics
in digital terrain modeling so as to fill in the gap in this area. While writing, we were
faced with a number of challenges.

The first challenge was related to the selective omission of materials. It was
difficult to make decisions. This is because the term “digital terrain modeling” would
mean different things to different groups of terrain specialists and practitioners. To the
producers (including photogrammetrists and surveyors), data acquisition and terrain
surface modeling are of most concern; to geographers, terrain analysis and appli-
cations are the most important; to geologists, interpolation techniques seem to be
critical; . . . . It is really hard to satisfy all these groups. In the end, we decided that
those topics are simplified if they have rich bodies of literature available. For example,
we did not include many algorithms and techniques for interpolation and triangulation
as there is a huge body of literature (e.g., Su 1989; Chin 1995; Sakhnovich 1997;
de Berg 2000; Phillips 2003) in these areas covering the techniques developed in
computational geometry and geosciences. Contouring is a traditional topic in digital
terrain modeling but is only briefly discussed in this book because a book authored
by Watson (1992) has been dedicated to this topic. Similarly, DTM-based terrain
analysis is briefly discussed because of a recent book edited by Wilson and Gallant
(2000).

The second challenge was related to the depth of discussion. We may disappoint
those readers who are interested in mathematics because we present neither mathe-
matical proofs nor technical details. Indeed, it is the main aim of this book to present
a systematic accounting of stories in digital terrain modeling at the level of principles
and methodology, as the title of the book suggests.
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The third challenge was related to the boundary of the discipline. Because the
terrain surface is of concern to all geosciences and a huge body of related model-
ing methodology and applications is available, we have to cut down the contents
somewhere. Therefore, we did not cover much on Voronoi diagrams (e.g., Davies
2000; Okabe et al. 2000) although we are very interested in this topic. Similarly, we
did not cover much on geostatistics (e.g., Olea 1999) and even omitted the famous
Kriging technique. We only simply mentioned the surface modeling on sphere and
with construction in Chapter 15.

All in all, we are pleased with the compilation of some materials presented to
you, but also feel guilty about the imperfection. Your comments are appreciated so
that we could make improvements in another edition, if possible.
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