

Euclidean Shortest Paths

“Beauty on the Path”, a digital painting by Stephen Li (Auckland, New Zealand),
September 2011, provided as a gift for this book.

Fajie Li � Reinhard Klette

Euclidean
Shortest Paths

Exact or Approximate Algorithms

Fajie Li
School of Information Science
and Technology
Huaqiao University
P.O. Box 800
Xiamen Fujian
People’s Republic of China
li.fajie@yahoo.com

Reinhard Klette
Dept. Computer Science
University of Auckland
P.O. Box 92019
Auckland 1142
New Zealand
r.klette@auckland.ac.nz

ISBN 978-1-4471-2255-5 e-ISBN 978-1-4471-2256-2
DOI 10.1007/978-1-4471-2256-2
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011941219

© Springer-Verlag London Limited 2011
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: VTeX UAB, Lithuania

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To Zhixing Li, and to the two youngest in the
Klette family in New Zealand

Foreword

The world is continuous the mind is discrete.
David Mumford (born 1937)

Recently, I was confronted with the problem of planning my travel from Israel
to New Zealand, home of the two authors of this book. When taking two antipodal
points on the globe, like Haifa and Queenstown, there is an infinite number of short-
est paths connecting these points. Still, due to constraints like reachable airports and
airlines, finding the optimal solution was almost immediate.

Throughout the long history of geometry sciences, the problem of finding the
shortest path in various scenarios occupied the minds of researchers in many fields.
Even in Euclidean spaces, which are considered simple, the introduction of obsta-
cles leads to challenging problems for which efficient computational solvers are hard
to find. The optimal path in 3D space with polyhedral obstacles was among the first
geometric problems proven to be, at least formally, computationally hard to solve. It
took almost 20 years for a team of 5 programming experts to eventually implement
a method approximating the continuous Dijkstra algorithm that is reviewed in this
book. Exact problems are hard to solve, and approximations are obviously required.

My personal line of work when dealing with geometric problems somewhat dif-
fers from the school of thought promoted by this book. A numerical approximation
in my vocabulary involves the notion of accuracy that depends on an underlying grid
resolution. This grid is defined by sampling the domain of the problem and leads to
the field of numerical geometry in which efficient solvers are simple to design.

The alternative computational geometry school of thought describes obstacles
as polyhedral structures that allegedly define the “exact” problem. The resulting
challenges under this setting are extremely difficult to overcome. Still, the unifying
bridge between these two philosophical branches is defined by the geometric prob-
lems. Without being familiar with the difficulty involved in designing a path between
points in a weighted domain, one could not appreciate the conceptual simplicity of
numerical Eikonal solvers.

This book addresses the type of hard problems in the computational geometry
flavor while inventing constraints that allow for efficient solvers to be designed. For
example, the creative rubberband methods explored in this book restrict the optimal

vii

viii Foreword

paths to bands of bounded width, thereby redefining problems and simplifying the
challenges, proving yet again Aleksandr Pushkin’s observation that “inspiration is
needed in geometry, just as much as in poetry.” I hope that, like me, the reader
would find the geometrical challenges introduced in this book fascinating and also
appreciate the elegance of the proposed solutions.

Ron KimmelHaifa, Israel

Preface

A Euclidean shortest path connects a source with a destination, avoids some places
(called obstacles), visits some places (called attractions), possibly in a defined or-
der, and is of minimum length. Euclidean shortest-path problems are defined in the
Euclidean plane or in Euclidean 3-dimensional space. The calculation of a convex
hull in the plane is an example for finding a shortest path (around the given set
of planar obstacles). Polyhedral obstacles and polyhedral attractions, a start and an
endpoint define a general Euclidean shortest-path problem in 3-dimensional space.

The book presents selected algorithms (i.e., not aiming at a general overview)
for the exact or approximate solution of shortest-path problems. Subjects in the
first chapters of the book also include fundamental algorithms. Graph theory offers
shortest-path algorithms for discrete problems. Convex hulls (and to a lesser extent
also constrained convex hulls) have been discussed in computational geometry. Sei-
del’s triangulation and Chazelle’s triangulation method for a simple polygon, and
Mitchell’s solution of the continuous Dijkstra problem have also been selected for a
detailed presentation, just to name three examples of important work in the area.

The book also covers a class of algorithms (called rubberband algorithms),
which originated from a proposal for calculating minimum-length polygonal curves
in cube-curves; Thomas Bülow was a co-author of the initiating publication, and he
coined the name ‘rubberband algorithm’ in 2000 for the first time for this approach.

Subsequent work between 2000 and now shows that the basic ideas of this al-
gorithm generalised for solving a range of problems. In a sequence of publications
between 2003 and 2010, we, the authors of this book, describe a class of rubberband
algorithms with proofs of their correctness and time-efficiency. Those algorithms
can be used to solve different Euclidean shortest-path (ESP) problems, such as cal-
culating the ESP inside of a simple cube-arc (the initial problem), inside of a simple
polygon, on the surface of a convex polytope, or inside of a simple polyhedron, but
also ESP problems such as touring a finite sequence of polygons, cutting parts, or
the safari, zookeeper, or watchman route problems.

We aimed at writing a book that might be useful for a second or third-year al-
gorithms course at the university level. It should also contain sufficient details for
students and researchers in the field who are keen to understand the correctness

ix

x Preface

proofs, the analysis of time complexities and related topics, and not just the algo-
rithms and their pseudocodes. The book discusses selected subjects and algorithms
at some depth, including mathematical proofs for most of the given statements. (This
is different from books which aim at a representative coverage of areas in algorithm
design.)

Each chapter closes with theoretical or programming exercises, giving students
various opportunities to learn the subject by solving problems or doing their own
experiments. Tasks are (intentionally) only sketched in the given programming exer-
cises, not described exactly in all their details (say, as it is typically when a costumer
specifies a problem to an IT consultant), and identical solutions to such vaguely de-
scribed projects do not exist, leaving space for the creativity of the student.

The audience for the book could be students in computer science, IT, mathemat-
ics, or engineering at a university, or academics being involved in research or teach-
ing of efficient algorithms. The book could also be useful for programmers, mathe-
maticians, or engineers which have to deal with shortest-path problems in practical
applications, such as in robotics (e.g., when programming an industrial robot), in
routing (i.e., when selecting a path in a network), in gene technology (e.g., when
studying structures of genes), or in game programming (e.g., when optimising paths
for moves of players)—just to cite four of such application areas.

The authors thank (in alphabetical order) Tetsuo Asano, Donald Bailey, Chander-
jit Bajaj, Partha Bhowmick, Alfred (Freddy) Bruckstein, Thomas Bülow, Xia Chen,
Yewang Chen, David Coeurjolly, Eduardo Destefanis, Michael J. Dinneen, David
Eppstein, Claudia Esteves Jaramillo, David Gauld, Jean-Bernard Hayet, David
Kirkpatrick, Wladimir Kovalevski, Norbert Krüger, Jacques-Olivier Lachaud, Joe
Mitchell, Akira Nakamura, Xiuxia Pan, Henrik G. Petersen, Nicolai Petkov, Fridrich
Sloboda, Gerald Sommer, Mutsuhiro Terauchi, Ivan Reilly, the late Azriel Rosen-
feld, the late Klaus Voss, Jinlong Wang, and Joviša Žunić for discussions or com-
ments that were of relevance for this book.

The authors thank Chengle Huang (ChingLok Wong) for discussions on rubber-
band algorithms; he also wrote C++ programs for testing Algorithms 7 and 8. We
thank Jinling Zhang and Xinbo Fu for improving C++ programs for testing Algo-
rithm 7. The authors acknowledge computer support by Wei Chen, Wenze Chen,
Yongqian Du, Wenxian Jiang, Yanmin Luo, Shujuan Peng, Huijuan Pi, Huazhen
Wang, and Jian Yu.

The first author thanks dean Weibin Chen at Huaqiao University for supporting
the project of writing this book. The second author thanks José L. Marroquín at
CIMAT Guanajuato for an invitation to this institute, thus providing excellent con-
ditions for working on this book project.

Parts of Chap. 4 (on relative convex hulls) are co-authored by Gisela Klette, who
also contributed comments, ideas and criticisms throughout the book project.

We are grateful to Garry Tee for corrections and valuable comments, often adding
important mathematical or historic details.

Fajie Li
Reinhard Klette

Huaqiao, People’s Republic of China
Auckland, New Zealand

Contents

Part I Discrete or Continuous Shortest Paths

1 Euclidean Shortest Paths . 3
1.1 Arithmetic Algorithms . 3
1.2 Upper Time Bounds . 5
1.3 Free Parameters in Algorithms 6
1.4 An Unsolvable Problem . 7
1.5 Distance, Metric, and Length of a Path 9
1.6 A Walk in Ancient Alexandria . 12
1.7 Shortest Paths in Weighted Graphs 15
1.8 Points, Polygons, and Polyhedra in Euclidean Spaces 19
1.9 Euclidean Shortest Paths . 23
1.10 Problems . 26
1.11 Notes . 27

References . 29

2 Deltas and Epsilons . 31
2.1 Exact and δ-Approximate Algorithms 31
2.2 Approximate Iterative ESP Algorithms 34
2.3 Convergence Criteria . 36
2.4 Convex Functions . 39
2.5 Topology in Euclidean Spaces . 40
2.6 Continuous and Differentiable Functions; Length of a Curve 43
2.7 Calculating a Zero of a Continuous Function 45
2.8 Cauchy’s Mean-Value Theorem 47
2.9 Problems . 48
2.10 Notes . 49

References . 50

3 Rubberband Algorithms . 53
3.1 Pursuit Paths . 53
3.2 Fixed or Floating ESP Problems; Sequence of Line Segments . . . 56

xi

xii Contents

3.3 Rubberband Algorithms . 57
3.4 A Rubberband Algorithm for Line Segments in 3D Space 59
3.5 Asymptotic and Experimental Time Complexity 60
3.6 Proof of Correctness . 63
3.7 Processing Non-disjoint Line Segments as Inputs 69
3.8 More Experimental Studies . 72
3.9 An Interesting Input Example of Segments in 3D Space 74
3.10 A Generic Rubberband Algorithm 75
3.11 Problems . 85
3.12 Notes . 88

References . 88

Part II Paths in the Plane

4 Convex Hulls in the Plane . 93
4.1 Convex Sets . 93
4.2 Convex Hull and Shortest Path; Area 96
4.3 Convex Hull of a Set of Points in the Plane 100
4.4 Convex Hull of a Simple Polygon or Polyline 105
4.5 Relative Convex Hulls . 111
4.6 Minimum-Length Polygons in Digital Pictures 113
4.7 Relative Convex Hulls—The General Case 114
4.8 Problems . 121
4.9 Notes . 123

References . 124

5 Partitioning a Polygon or the Plane 127
5.1 Partitioning and Shape Complexity 127
5.2 Partitioning of Simple Polygons and Dual Graphs 129
5.3 Seidel’s Algorithm for Polygon Trapezoidation 132
5.4 Inner, Up-, Down-, or Monotone Polygons 139
5.5 Trapezoidation of a Polygon at Up- or Down-Stable Vertices 142
5.6 Time Complexity of Algorithm 20 151
5.7 Polygon Trapezoidation Method by Chazelle 154
5.8 The Continuous Dijkstra Problem 156
5.9 Wavelets and Shortest-Path Maps 157
5.10 Mitchell’s Algorithm . 160
5.11 Problems . 167
5.12 Notes . 168

References . 169

6 ESPs in Simple Polygons . 171
6.1 Properties of ESPs in Simple Polygons 171
6.2 Decompositions and Approximate ESPs 174
6.3 Chazelle Algorithm . 177
6.4 Two Approximate Algorithms . 177
6.5 Chazelle Algorithm Versus Both RBAs 180

Contents xiii

6.6 Turning the Approximate RBA into an Exact Algorithm 183
6.7 Problems . 183
6.8 Notes . 186

References . 186

Part III Paths in 3-Dimensional Space

7 Paths on Surfaces . 191
7.1 Obstacle Avoidance Paths in 3D Space 191
7.2 Polygonal Cuts and Bands . 193
7.3 ESPs on Surfaces of Convex Polyhedrons 195
7.4 ESPs on Surfaces of Polyhedrons 200
7.5 The Non-existence of Exact Algorithms for Surface ESPs 206
7.6 Problems . 207
7.7 Notes . 208

References . 210

8 Paths in Simple Polyhedrons . 213
8.1 Types of Polyhedrons; Strips . 213
8.2 ESP Computation . 218
8.3 Time Complexity . 222
8.4 Examples: Three NP-Complete or NP-Hard Problems 224
8.5 Conclusions for the General 3D ESP Problem 226
8.6 Problems . 226
8.7 Notes . 227

References . 229

9 Paths in Cube-Curves . 231
9.1 The Cuboidal World . 231
9.2 Original and Revised RBA for Cube-Curves 236
9.3 An Algorithm with Guaranteed Error Limit 238
9.4 MLPs of Decomposable Simple Cube-Curves 243
9.5 Analysis of the Original RBA . 257
9.6 RBAs for MLP Calculation in Any Simple Cube-Curve 274
9.7 Correctness Proof . 284
9.8 Time Complexities and Examples 287
9.9 The Non-existence of Exact Solutions 290
9.10 Problems . 303
9.11 Notes . 304

References . 307

Part IV Art Galleries

10 Touring Polygons . 313
10.1 About TPP . 313
10.2 Contributions in This Chapter . 315
10.3 The Algorithms . 317

xiv Contents

10.4 Experimental Results . 321
10.5 Concluding Remarks and Future Work 322
10.6 Problems . 323
10.7 Notes . 324

References . 325

11 Watchman Routes . 327
11.1 Essential Cuts . 327
11.2 Algorithms . 333
11.3 Correctness and Time Complexity 336
11.4 Problems . 342
11.5 Notes . 343

References . 343

12 Safari and Zookeeper Problems . 347
12.1 Fixed and Floating Problems; Dilations 347
12.2 Solving the Safari Route Problem 350
12.3 Solving the Zookeeper Route Problem 353
12.4 Some Generalisations . 355
12.5 Problems . 359
12.6 Notes . 360

References . 361

Appendix Mathematical Details . 363
A.1 Derivatives for Example 9.6 . 363
A.2 GAP Inputs and Outputs . 364
A.3 Matrices Q for Sect. 9.9 . 366

Index . 371

Abbreviations

Definitions
2D 2-dimensional
3D 3-dimensional
AMLPP Approximate minimum-length pseudo-polygon; see page 276
CAV Cavity; see page 98
CH Convex hull; see page 97
ESP Euclidean shortest path; see page 11
iff Read: if and only if; see page 6
MLA Minimum-length arc; see page 279
MLP Minimum-length polygon; see page 114, 231–233, 304
MLPP Minimum-length pseudo-polygon; see page 275
MPP Minimum-perimeter polygon; see page 111
RBA Rubberband algorithm; see page 58
RCH Relative convex hull; see page 121
SPM Shortest path map; see page 159
SRP Safari route problem; see page 349
TPP Touring polygon problem; see page 313
WRP Watchman route problem; see page 327
ZRP Zookeeper route problem; see page 349

Symbols
|S| Cardinality of set S

‖ Relation sign for being parallel
∂S Frontier of set S

∧ Logical ‘and’
∨ Logical ‘or’
∩ Intersection of sets
∪ Union of sets
pq Straight line segment with endpoints p and q

pqr Triangle with vertices p, q , and r

� Trapezoid or triangle (in a partitioning)

xv

xvi Abbreviations

pq Straight line defined by points p and q; orientation “from p to q”
�(pqr) Angle formed by rotating segment pq clockwise into segment qr

� End of a proof or of an example

a, b, c Real numbers
A(·) Area of a measurable set (as a function)
α,β Angles
C Set of complex numbers a + i · b, with i = √−1 and a, b ∈ R

dm Minkowski metrics, for m = 1,2, . . . or m = ∞
de Euclidean metric; note that de = d2

D Determinant; see page 96
δ Real number greater than zero
e Edge (e.g., of a graph); real constant e = exp(1) ≈ 2.7182818284
E Set of edges of a graph
ε Real number greater than zero (the accuracy of an RBA)
εs Real number greater than zero (a shift distance)
f,g,h Functions, for example from N into R

g Simple cube-curve
g Tube (i.e., the union of cubes) of a simple cube-curve g

F Face of a polyhedron
F Set of faces of a polyhedron
G Graph
G Set {. . . ,−2,−1,0,1,2, . . .} of integers
γ Curve in Euclidean space (e.g., straight line, polyline, smooth curve)

H Half plane; see page 95
i, j, k, l,m,n Natural numbers
i Number of iterations, e.g., in a rubberband algorithm
j Natural number; index of points or vertices in a path
k Natural number; total number of items
κ Function in ε

L Length (as a real number)
L(·) Length of a rectifiable curve (as a function)
l(ρ) Length of a path ρ

λ Real number; e.g., between 0 and 1
n Natural number; e.g., defining the complexity of the input
N Neighbourhood (in the Euclidean topology, or in grids)
N Set {0,1,2, . . .} of natural numbers
O(·) Asymptotic upper time bound
p,q Points in R

2 or R3, with coordinates xp , yp, or zp

p(x) Polynomial in x

p.x,pi.x x-coordinate of point p or point pi

p.y,pi.y y-coordinate of point p or point pi

p.z,pi.z z-coordinate of point p or point pi

P Polygon

Abbreviations xvii

P •, P ◦ Closure and topological interior of polygon P

π Plane in R
3; real constant π = 4 × arctan(1) ≈ 3.14159265358979

� Polyhedron
�•, �◦ Closure and topological interior of polyhedron �∏k

i=1 Si Product of sets Si

P Partitioning (of the plane or of a simple polygon)
r Radius of a disk or sphere; point in R

2 or R3

R Set of real numbers
ρ Path with finite number of vertices; see page 11
s Point in R

2 or R3

S,Si Sets
S Family of sets
t Point in R

2 or R3

T Tree; threshold (a real number)
τ Threshold (real number)
T Trapezoidation or triangulation (of the plane or of a simple polygon)
v Vertex or node; a point in R2 or R3, with coordinates xv , yv , or zv

V Set of vertices of a graph
V (G),V (T) Set of vertices of graph G or tree T

V (ρ) Set of vertices of a path ρ

vu,−→vu Undirected or directed line segment between points v and u

x Real variable
x Vector
y Real variable
y Vector
Z Set of integers

Part I
Discrete or Continuous Shortest Paths

The road system of the historic city of Guanajuato is mostly underground, forming
a network of tunnels. Optimising routes from one part of the city to another part is
an exciting task not only for visitors of the city, but even for locals. In 2010, there
was not yet a “3D route planner” available for calculating shortest connections in
this historic city.

The first part of the book defines shortest paths in the geometry that we prac-
tise in our daily life, known as Euclidean geometry. Finding a shortest path
between two given points and avoiding existing obstacles can be a challenge.
We provide basic definitions and we propose the class of rubberband algo-
rithms for solving various Euclidean shortest-path problems, either defined in
the plane or in the 3-dimensional space.

Chapter 1
Euclidean Shortest Paths

Ptolemy once asked Euclid whether there was any shorter way
to a knowledge of geometry than by a study of the Elements,
whereupon Euclid answered that there was no royal road to
geometry.

Proclus Diadochus (410. . . 412–485)

This introductory chapter explains the difference between shortest paths in finite
graphs and shortest paths in Euclidean geometry, which is also called ‘the common
geometry of our world’. The chapter demonstrates the diversity of such problems,
defined between points in a plane, on a surface, or in the 3-dimensional space.

1.1 Arithmetic Algorithms

Technology is evaluated by applying various measures, which are mapping compo-
nents of the technology into real numbers, such as kilometres per hour, a maximum
error in millimetres, or a shape descriptor. We describe algorithms with respect to
run time, deviations of results from being optimal, or necessary constraints on input
data.

The shortest path algorithms in this book are designed to be fast, accurate,
and for a wide range of input data.

The time for calculating a shortest path on a computer depends on parameters
such as available memory space or execution time per applied operation. It is mean-
ingless to express the required time as an absolute value in, say, micro- or nano-
seconds, because computers differ in their parameters, they change frequently, and
your computer is certainly not identical to the one used by someone else.

F. Li, R. Klette, Euclidean Shortest Paths,
DOI 10.1007/978-1-4471-2256-2_1, © Springer-Verlag London Limited 2011

3

4 1 Euclidean Shortest Paths

Measures for computing time need to be independent from the configuration of
computers for expressing the quality of an algorithm. For example, we apply an ab-
stract measure to estimate the running time of algorithms, also called time complex-
ity or computational complexity. This is a common approach in computer science
for more than 50 years. We define a set of basic operations, thus specifying a par-
ticular abstract computer, and we assign one time unit to each basic operation. Such
a ‘unit of time’ is not measured in a physical scale; it is an abstract unit for each
basic operation. For those abstract units, the estimation of run time of an algorithm
is independent of progress in computer technology.

Definition 1.1 An algorithm is a finite sequence of basic operations.

We consider basic operations that are executable on ‘a normal sequential com-
puter’, and not, for example, on some kind of specialised processor. Basic opera-
tions are classified into numerical operations, logical tests, and control instructions;
alphanumerical operations on letters or other symbols are not a subject in this book.
Logical tests are comparisons in magnitude (such as “length < threshold”?). Con-
trol instructions are of the type if-then-else, while-do, or do-until. It only remains to
define a particular computer model by specifying the set of numerical operations.

Definition 1.2 An arithmetic algorithm is defined by having addition, subtraction,
multiplication, division, and the nth root (for any integer n > 1) as its basic opera-
tions.

A scientific algorithm expands an arithmetic algorithm by the following addi-
tional basic operations: trigonometric and inverse trigonometric functions, expo-
nential and logarithmic functions, factorials, and conversions of numbers between
different representation schemes (binary, decimal, or hexadecimal).

This book applies arithmetic algorithms for solving shortest-path problems.

(There is just one case in the book where trigonometric functions are used when
optimising a point location in an ellipse.)

Arithmetic algorithms are further specified by the range of numbers they are
working on. For example, assuming the unbounded range of rational numbers a/b

(for integers a and b) goes beyond the capabilities of existing computers, which can
only represent rational numbers up to some finite number of bits per number. Even
if divisions a/b are not performed, and assuming that there are no roots (i.e., all
calculations remain in the area of integers) then there is still the problem of a limited
range, having only a finite number of bits for representing all available integers.

Definition 1.3 An arithmetic algorithm over the rational numbers uses the basic
operations as available in an arithmetic algorithm and operates on the set of all
rational numbers.

1.2 Upper Time Bounds 5

1.2 Upper Time Bounds

We assume, as is common in algorithmic complexity theory, that the performance
of each basic operation requires one time unit.

Consider functions f and g, defined on the set N= {0,1,2, . . .} of natural num-
bers and into the set of non-negative reals; the input parameter n ≥ 0 stands for the
problem size, such as, for example, the number n = |S| of points in an input set S.

The book applies asymptotic upper time bounds O(f (n)) for characterising
the run time of an algorithm.

Definition 1.4 O(f (n)) is the class of all functions g with

g(n) ≤ c · f (n)

for some asymptotic constant c > 0 and all n ≥ n0, for some n0 ≥ 0.

Example 1.1 This example is an exercise on the given upper bound. Most of the
time complexities considered in this book are polynomial, but we also include higher
complexities in this example. Let

g1(n) = 5n + 10,

g2(n) = 5n log10 n + 1,000n,

g3(n) = 3

7
n3 + 5,000n2,

g4(n) = 3n! + 100n100,

g5(n) = 100

(
n2

25

)

+ 100n4,

g6(n) = 1

2
2n + 5,000n2.

Recall that

n! = n(n − 1)(n − 2) · · ·1 ∼ √
2πn

(
n

e

)n

(Stirling’s formula)

with π = 4 × arctan(1) ≈ 3.14159265 and e = exp(1) ≈ 2.7182818284. Further-
more,

(
n2

25

)

= n2(n2 − 1) · · · (n2 − 24)

25!
denotes a binomial coefficient.

It follows that the given six functions are all in the class O(nn+1/2). We also say
that they are upper bounded by nn+1/2. Except for the function g4, the other five
functions are all in the exponential class O(2n). The functions g1, g2, g3, and g5
are upper bounded by the polynomial bound n50. The functions g1, g2, and g3 are
in O(n3). Finally, the functions g1 and g2 are in O(n logn), and the function g1 is
of linear complexity. �

6 1 Euclidean Shortest Paths

1.3 Free Parameters in Algorithms

Finite sets of free parameters, such as an upper limit for the number of loops or
an approximation parameter ε > 0, specify many of the algorithms in this book.
For instance, a shortest path needs to stay at a distance of at least ε from given
obstacles, such that every object with a maximum diameter of 2ε can still move on
the calculated path.

Free parameters may influence the time complexity of an algorithm. We illustrate
by an example before we provide general statements.

Example 1.2 We need to specify the smallest positive integer m for n positive num-
bers a1, a2, . . . , an and a free parameter ε > 0 such that at least one ai/m is smaller
than ε > 0; we need to return a1/m,a2/m, . . . , an/m, for the identified value of m.
The free parameter ε is initialised when calling a solution to this task.

Brute-force principle: Systematically check all possible candidates whether
they define a solution.

A brute-force algorithm is as follows: We divide all those n numbers by m =
1,2,3,4, . . . in sequence, until at least one of the values ai/m is smaller than ε > 0;
we stop and return a1/m,a2/m, . . . , an/m.

What is the asymptotic time complexity of this brute-force algorithm? Obviously,
each iteration for one m-value takes linear time, because all n values are divided
and tested. The number of iterations equals m0, where m0 is the final value of m.
It follows that ε ≈ min{ a1

m0
, a2

m0
, . . . , an

m0
} = min{a1, a2, . . . , an}/m0. Thus, the upper

bound for the time complexity of this algorithm may also be expressed in the form
m0 ·O(n).

Definition 1.5 We call an algorithm κ-linear iff1 its time complexity is κ(ε) ·O(n),
and the function κ does not depend on the problem size n.

The brute-force algorithm is κ-linear; the function κ is here defined by dividing
the minimum of all ai by ε.

An obvious way for speeding up would be an algorithm based on the

Throw-away principle: Remove ‘quickly’ all the input data from any further
processing which does not have any influence on the outcome of a process.

1Read “if and only if”; abbreviation proposed by Paul Richard Halmos (1916–2006).

1.4 An Unsolvable Problem 7

Here we calculate at first the minimum a of all n numbers in O(n) (and ‘throw away
the others’), then calculate m0 in time O(m0) by repeated divisions of a, and finally
a1/m0, a2/m0, . . . , an/m0 again in O(n). The resulting upper bound equals

O(n + m0) =O
(
max{n,m0}

) ≈O
(

max

{

n,
min{a1, a2, . . . , an}

ε

})

.

Of course, we can also have an optimised algorithm: determine m0 in constant
time O(1) by dividing the minimum a simply by the given ε, having thus the upper
bound

O(n) +O(1) =O(n)

in total, without any influence on this upper bound by the given ε. �

We discuss a range of algorithms with one or two free parameters such as
ε > 0 in this book.

We are not able to eliminate the influence of free parameters on time complexity
in general, but it is possible sometimes as shown in the example above.

1.4 An Unsolvable Problem

A task might be a great challenge or unsolvable (at some time in human history),
such as making people walk on water or providing a way that blind people can see
again. It is even possible to prove that problems exist that have no solution, now and
at any time in future, as in the following example.

Example 1.3 Consider a polynomial p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0,
with complex numbers ak = bk + i · ck as its coefficients, where bk and ck are reals,
and i = √−1 is the imaginary unit. The task is to calculate the n roots x1, x2, . . . , xn

of the polynomial equation p(xk) = 0, for k = 1,2, . . . , n.
The Fundamental Theorem of Algebra says that every polynomial p(x) of degree

n has exactly n roots in the set C of complex numbers, with

p(x) = an(x − x1)(x − x2) · · · (x − xn) (1.1)

where each root is counted up to its multiplicity in Eq. (1.1). Thus, those n roots
exist.2

But calculating those n roots with an arithmetic algorithm over some defined
domain of numbers (e.g., the domain of all rational numbers) is a totally different
issue. If solvable this way over the given domain, then we say that this polynomial

2 Carl Friedrich Gauss (1777–1855) proved this theorem in his PhD thesis, published in 1799.

8 1 Euclidean Shortest Paths

is solvable by radicals over this domain. The case n = 1 is simple to solve. In school
mathematics, we are taught how to proceed for n = 2 with radicals over the domain
of rational numbers; general solutions are as follows:

x1 =
−a1 +

√
a2

1 − 4a2a0

2a2
and x2 =

−a1 −
√

a2
1 − 4a2a0

2a2
.

Polynomials of order n = 3 or n = 4 are also all solvable by radicals over the domain
of rational numbers. Indeed, for n = 1 to 4 those solutions by radicals apply when
the polynomial coefficients are complex numbers.

However, starting with n = 5, this is not true anymore for all polynomials of
order n. The solvability of polynomials by radicals over some domain of numbers
has been studied in Galois theory.3 Those studies have shown that polynomials of
degree 5 are not solvable by radicals over the domain of rational numbers in general.

Besides knowing this general non-existence result, it is also of interest to identify
examples of unsolvable polynomials (i.e., there is no arithmetic algorithm over the
rational numbers for calculating its roots). For example, the 5th degree polynomial

p(x) = x5 − x − 1 (1.2)

is unsolvable.4 �

We cannot obtain any (whatever time complexity) computable exact solution
for some easy to formulate numerical problems within a given class of algo-
rithms, because such a solution (provably) does not exist.

For some computational problems it is not yet known whether they can be solved
at all by an algorithm in some class of algorithms (e.g., the class of arithmetic al-
gorithms with polynomial time complexity). If it is known that a problem is not
(exactly) solvable at all within defined constraints, or where it is not yet decided
whether it is solvable or not, we still can aim at defining approximate solutions
which might be ‘practically sufficient’.

For example, the numerical value of π cannot be expressed in a current computer
with arbitrary accuracy, but a finite representation such as 3.14 is typically sufficient
in real-world applications for approximating the value of π .

3Named after Èvariste Galois (1811–1832).
4Shown by Bartel Leendert Van der Waerden (1903–1996).

1.5 Distance, Metric, and Length of a Path 9

Fig. 1.1 Right: An artist’s
imagination of Euclid, on a
stamp issued in the Maldives
(image is in the public
domain). That stamp depicts
Euclid working by the light of
a candle, but he would have
used an oil lamp. Left:
A rectangular Cartesian
coordinate system in the
plane, also showing two
points p and q and the
straight segment pq between
both, being the shortest
connection between two
points

1.5 Distance, Metric, and Length of a Path

Euclidean geometry is the geometry in daily life, for example, for measuring a dis-
tance between two points, defining a triangle or a square, defining a sphere, and so
forth.5

For measuring a distance in the plane we assume a rectangular xy Cartesian
coordinate system,6 as shown on the left of Fig. 1.1. Points p = (xp, yp) and q =
(xq, yq) are at a distance

de(p, q) =
√

(xp − xq)2 + (yp − yq)2 (1.3)

from one-another, and this is also the length of the straight segment, having p and
q as its endpoints. The subscript e indicates ‘Euclidean’.

There are other ways for measuring the distance between two points (or the
length of an arc, connecting points p and q). The Minkowski distance measure dm

generalises the Euclidean distance,7 with m = 1,2, . . . or m = ∞:

dm(p,q) = m
√|xp − xq |m + |yp − yq |m (m = 1,2, . . .),

d∞(p, q) = max
{|xp − xq |, |yp − yq |}.

Distance values decrease with increases in the value of m which is used:

dm1(p, q) ≤ dm2(p, q) for all 1 ≤ m2 ≤ m1 ≤ ∞ and all p,q ∈R
2. (1.4)

5Euclid of Alexandria (see Fig. 1.1, right) was living around −300. He wrote either as an individ-
ual, or as the leader of a team of mathematicians a multi-volume book Elements that established
Euclidean geometry and number theory.
6Introduced by René Descartes (in Latin: Cartesius; 1596–1650).
7Named after Hermann Minkowski (1864–1909).

10 1 Euclidean Shortest Paths

Fig. 1.2 A regular orthogonal grid and illustrations of 4-adjacent (left) and 8-adjacent (middle)
grid points. The path (right) is of shortest length with respect to d∞ between origin o and grid
point p, and with respect to d1 between p and grid point q; both segments of this path are not
‘shortest’ in the sense of Euclidean geometry

It follows that m = 2 defines the Euclidean distance, d2 = de. The cases m = 1
and m = ∞ are also of frequent importance if distances are calculated in a regular
orthogonal grid where grid points have integer coordinates only; see Fig. 1.2.

Horizontal [(x − 1, y) and (x + 1, y)] and vertical [(x, y − 1) and (x, y + 1)]
neighbours of a grid point (x, y) define the set of 4-adjacent grid points of (x, y),
and if we also take the four diagonal neighbours (x − 1, y − 1), (x + 1, y − 1),
(x − 1, y + 1), and (x + 1, y + 1), then we have the set of 8-adjacent grid points
of (x, y). It is easily verified that two 2-dimensional (2D) grid points p and q are
4-adjacent iff d1(p, q) = 1, and 8-adjacent iff d∞(p, q) = 1.8

Definition 1.6 A metric d on a set S is defined by the following:

M1 For all p,q ∈ S we have d(p,q) ≥ 0, and d(p,q) = 0 iff p = q .
M2 For all p,q ∈ S we have d(p,q) = d(q,p).
M3 For all p,q, r ∈ S we have d(p, r) ≤ d(p,q) + d(q, r).

Axiom M1 specifies positive definiteness (i.e., a metric can only take non-
negative values, and value zero identifies that there was no move away from the
start point) of d on S, axiom M2 describes symmetry (i.e., the distance remains
the same, no matter whether we go ‘left-to-right’, or ‘right-to-left’), and axiom M3
postulates triangularity; axiom M3 is also called the triangle inequality.

All the Minkowski distance measures dm, for 1 ≤ m ≤ ∞, satisfy those three
axioms, and are thus metrics on R2.

8Adjacency relations and metrics on grid points were introduced by the US computer scientist and
mathematician Azriel Rosenfeld (1931–2004), a pioneer of computer vision.

1.5 Distance, Metric, and Length of a Path 11

Fig. 1.3 Three paths from p to q which must not enter the shaded obstacles. Paths 2 and 3 are of
equal and minimum length

There are many more ways for defining a distance measure (i.e., a metric). For
example, let

df (p, q) =
{ |yp| + |xp − xq | + |yq |, if xp 	= xq,

|yp − yq |, otherwise.
(1.5)

Read: “down the tree by |yp| at xp, walk |xp − xq | to the next tree at xq , and up that
tree by |yq |”. The three axioms of a metric are valid for this measure; let us call it
the forest distance. The shortest connection between two points is here a move as
described, and it is not a straight segment as in Euclidean geometry.

This book optimises the length of paths for the Euclidean distance measure.

Definition 1.7 In Euclidean geometry, a path from a point p to a point q is a finite
sequence of vertices; it proceeds from vertex to vertex, starts at vertex p and ends
at vertex q . Its length is the sum of the Euclidean distances between pairs of subse-
quent vertices on that path. A path between two vertices that has minimum length is
called a Euclidean shortest path (ESP).

Figure 1.3 shows in bold lines an example of a path (called Path 1) from p to q

which must not enter the shown shaded obstacles; the figure also shows two different
shortest paths in thin lines (called Path 2 and Path 3; both are of identical length)
from p to q . The paths have different numbers of vertices. Path 1 is not of optimum
length, but has the smallest number of vertices. Path 2 goes through two ‘narrow’
sections between shaded obstacles. The ‘quality’ of a path may also be characterised
by the number of vertices, the width of passages, the angles of turns at vertices, and
other properties.

12 1 Euclidean Shortest Paths

Fig. 1.4 Vertices on a path (filled dots): a move is always half of the length of the previous one

This book considers paths with respect to their Euclidean lengths only; no
further properties are optimised.

A more general notion than that of a path is that of a curve; a curve may also
change its direction continuously (e.g., a spiral) and cannot be defined by a fi-
nite number of vertices, at least not without additional assumptions. A path in
a Euclidean geometric space is also known as a polygonal curve. Formally, let
p0 = p, p1,p2, . . . , pn−1,pn = q be a sequence of n + 1 vertices on a path ρ,
also denoted by ρ = 〈p0,p1, . . . , pn〉. Note that this is different from set notation
{p0,p1, . . . , pn} which does not imply any order of elements in the set. From Defi-
nition 1.7 we obtain that

Corollary 1.1 The length of path ρ = 〈p0,p1, . . . , pn〉 is equal to

L(ρ) =
n−1∑

i=0

de(pi,pi+1).

If p = q and n = 0, we have a path of length zero.

Example 1.4 Consider an algorithm which calculates a path on R from the origin
p = 0 to point q = 1, starting with a first move to p1 = 0.5, then to p2 = 0.75, to
p3 = 0.875, and so forth; the following move is always half of the length of the
previous move; see Fig. 1.4.

Mathematically, the algorithm never arrives at q = 1.0 if moves are defined on the
real straight line with arbitrary accuracy; after any final number of moves, the length
of the path is still less than 1. Of course, for an implementation of this algorithm we
can actually assume that it ‘practically’ arrives at q after a finite number of steps,
and this happens the earlier the fewer bits have been used on the given computer for
representing a real number. �

1.6 A Walk in Ancient Alexandria

As mentioned above, Euclid lived in Alexandria. Figure 1.59 represents the ancient
city of Alexandria in post-Euclidean time, but still about 2,000 years ago. Assume
that Euclid wanted to walk from p, the Canopic gate, to q , the entrance of the

9From http://hdl.handle.net/1911/9343, available as specified on http://creativecommons.org/
licenses/by/2.5/.

1.6 A Walk in Ancient Alexandria 13

Fig. 1.5 Sieglin, W. (1908). The post-Euclidean Alexandria from −100 to +100. From Trav-
ellers in the Middle East Archive. For an example of a shortest-path problem, assume that the
Canopic Gate defines the source, and the entrance to the Serapeum the destination. The printed
scale 1:58,800 applies only to the original 1908 map

Serapeum; see the figure for both. For simplifying the geometry, we assume that
Alexandria was totally flat at that time (i.e., we are walking on a plane). We are
interested in finding a shortest path [with respect to the Euclidean distance measure,
as in Eq. (1.3)] from p to q .

Our answer depends on the geometric scale or accuracy for defining the positions
of those vertices. The vertices could identify the road crossings at a rough scale
or any position somewhere on the road at a finer scale. Today’s motion planning
algorithms often require a high accuracy and vertices are defined at a fine scale.

Let us describe the layout of ancient Alexandria by a weighted undirected graph.
We identify each road intersection with one node, and road sections between two
nodes with one edge, which is labelled by the Euclidean distance (a weight) be-
tween both nodes defining this edge. We assume that there is no shortcut for walking
through the city (such as crossing one of the insulae of houses).

One additional way via the Paneum is shown in Fig. 1.6. The specification of the
graph could also cover distances for the non-planar case of Alexandria if distances
are measured in 3-dimensional (3D) space, also representing changes in elevation.

The weight of an edge could, for example, also correspond to the expected time
needed for walking from one node to an adjacent one; this weight could deliver
a better model of Alexandria which is actually not on a plane. In that case, the
time for walking between adjacent nodes would depend upon the direction, and

14 1 Euclidean Shortest Paths

Fig. 1.6 Example of an undirected graph. Weights of edges correspond to their drawn length (i.e.,
the shown city is assumed to be on a plane). The figure also shows one path from p to q , which
could be shortened when walking via the Paneum instead (of course, ignoring that this was on a
hill in ancient Alexandria; today there is a huge roundabout at this elevated place)

hence the undirected graph would need to be replaced by a directed graph, with
each undirected edge replaced by a pair of directed edges.

The following description is from an article about the Hellenistic Alexandria on
ArchNet:10

The city was physically divided by the intersection of two main thoroughfares: the east–west
Canopic Way and the Street of the Soma (Sema). The surrounding streets of the ancient city
were laid out in a Hippodamian grid. The Canopic Way connected the Canopic Gate and the
Necropolis Gate of the city wall. The Street of the Soma ran between the Moon Gate and
the Sun Gate of the city wall. Archaeologists estimate that both streets measured between
25 and 70 meters, and were lined with marble colonnades and paved with granite blocks.

The roads were actually very wide, and assigning a single node to a location of a
road intersection is a very rough approximation. Furthermore, on the same webpage
we read about the time of the Ptolemaic Dynasty (−304 to −29):

The land use program for the city under the Ptolemaic dynasty was primarily residential.
This street grid was divided into insulae (blocks), each averaging 36.5 by 182.5 meters, or
100 by 500 Ptolemaic feet. In Alexandria, a quarter accommodated six insulae intersected
by two minor roads. Housing plots measured 22 by 22 meters, and each insula could hold
as many as 20 houses.

10See http://www.archnet.org/.

1.7 Shortest Paths in Weighted Graphs 15

Fig. 1.7 Sketch of a shortest Euclidean path. The pass is crossing roads diagonally and is using
possible shortcuts through insulae. Vertices can be located at corners or in the middle of roads or
in the middle of insulae. The size ‘45 metres’ is given for illustrating a possible scale

Figure 1.7 provides a sketch for a shortest path assuming a more detailed layout
compared with the weighted graph representing the map in Fig. 1.5. It is allowed
to cross roads diagonally or to walk through insulae by using access paths to those
houses.

Shortest paths may be defined as a combinatorial problem in finite weighted
graphs, or as a continuous optimisation problem in Euclidean geometry.

1.7 Shortest Paths in Weighted Graphs

Definition 1.8 An (undirected) graph G = [V,E] is defined by a finite set V of
nodes and a set E ⊆ {{p,q} : p,q ∈ V ∧p 	= q} of edges between those nodes. Two
nodes are adjacent in G if connected by an edge.

Nodes of a graph are also called vertices in other publications (thus symbol V

here). If G = [V,E] is a planar simple graph, then |E| ≤ 3|V | − 6.
We assign a positive real weight w(e) = w(p1,p2), such as the distance between

positions in R2 represented by p1 and p2, to each edge e = {p1,p2} ∈ E. This map
is called a weight function w(e) = w(p1,p2), for e = {p1,p2} ∈ E.

If p1 and p2 are not adjacent (i.e., not connected by an edge), we define
w(p1,p2) to be infinite. Thus we have defined a weighted graph G = [V,E,w]. An
(unweighted) graph can also be regarded as a weighted graph in which w(p1,p2) =
1 for all edges {p1,p2} ∈ E.

Definition 1.9 In a weighted graph, a path is a finite sequence ρ = 〈p0,p1, . . . , pn〉
of nodes, where pi and pi+1 are adjacent, for i = 0, . . . , n − 1. Its total weight is

16 1 Euclidean Shortest Paths

the sum of the weights of all the edges on the path. A path between two nodes that
has minimum total weight is called a shortest path in the graph.

The total weight of a path in a graph is analogous to the length of a path in
Euclidean geometry; see Definition 1.7. Note that a weighted graph may have more
than just one shortest path.

A path of minimum length (i.e., with a minimum number of nodes), connecting
two nodes p and q of G, is sometimes called a geodesic. A geodesic in an un-
weighted graph can be found by breadth-first search; a path is here extendable if
it did not yet reach the destination, and if it still can be extended by one edge to a
node not yet visited on this path:

1: Start at the source; this defines a path of length zero.
2: while destination is not yet reached do
3: Extend all extendable paths by one edge to a node not yet visited on this path.
4: end while

We may record paths by storing just the predecessor at a node (i.e., from where
this node was reached), and the minimum path can be calculated by going backward,
from destination to source.

Obviously, this O(|E|) strategy will not deliver shortest paths in weighted graphs
because the total weight of a path is not necessarily in a fixed relationship with the
number of edges on it; a path with many nodes on it may have a smaller total weight
than a path with fewer nodes on it.

Of course, we may try to extend the described breadth-first search thus that
we calculate at first all potential candidates of paths, such that we can be
sure that a shortest path can be identified in this set, and traced back to the
source:

1: Start at the source; this defines a path of length zero.
2: while there is at least one extendable path do
3: Extend all extendable paths by one edge to a node not yet visited on this path.
4: Calculate the total weights of the extended paths.
5: end while
6: Compare the total weights of paths for selecting an optimal path.

We illustrate this straightforward extension on the breadth-first search by an ex-
ample.

Example 1.5 Consider the graph in Fig. 1.8 with the shown source p and desti-
nation q . Breadth-first search starts at first with paths ρ1 = 〈p, s〉, ρ2 = 〈p, r〉,
ρ3 = 〈p, t〉, and weights w1 = 3, w2 = 2, and w3 = 1. In the next iteration, we
extend those three paths and obtain

ρ11 = 〈p, s,u〉 with w11 = 5; ρ12 = 〈p, s, r〉 with w12 = 4;
ρ21 = 〈p, r, s〉 with w21 = 3; ρ22 = 〈p, r,u〉 with w22 = 6;

1.7 Shortest Paths in Weighted Graphs 17

Fig. 1.8 A weighted graph
G = [V,E,w] with
V = {p,q, r, s, t, u, v},
weights between 1 and 7 for
its edges, source p and
destination q . For example,
the path 〈p, s,u, v, q〉 does
have a total weight of 8

ρ23 = 〈p, r, q〉 with w23 = 8; ρ24 = 〈p, r, t〉 with w24 = 3;
ρ31 = 〈p, t, r〉 with w31 = 2; ρ32 = 〈p, t, q〉 with w32 = 8.

At this point we already know that ρ23 and ρ32 are geodesics between p and q .
However, the algorithm proceeds further.

Extendable paths are ρ11 (to r , q , and v), ρ12 (to t , q , u), ρ21 (to u), ρ22 (to s, q ,
and v), ρ24 (to q), and ρ31 (to s, u, or q). Paths ρ23 and ρ32 have a total cost of 8.

Terminating paths at the destination q are now ρ112 = 〈p, s,u, q〉 with w112 = 7,
ρ122 = 〈p, s, r, q〉 with w122 = 10, ρ222 = 〈p, r,u, q〉 with w222 = 8, ρ241 =
〈p, r, t, q〉 with w241 = 10, and ρ313 = 〈p, t, r, q〉 with w313 = 8.

Path 〈p, r,u, s〉 is a first example of a path which stops without reaching q . (This
will also happen to path 〈p, t, r, u, s〉 in the next iteration.) Paths 〈p, s,u, r, q〉,
〈p, s,u, v, q〉, 〈p, s, r, t, q〉, 〈p, s, r, u, q〉, 〈p, r, s, u, q〉, and 〈p, r,u, v, q〉 termi-
nate at q .

In the next iteration, we have paths 〈p, s,u, r, t, q〉, 〈p, s, r, u, v, q〉, 〈p, r, s, u,

v, q〉, 〈p, t, r, s, u, q〉, and 〈p, t, r, u, v, q〉 terminating at q . Finally, path 〈p, t, r, s, u,

v, q〉 also terminates at q .
We obtained the complete set of all 19 possible paths from p to q for this example

of a weighted graph. We select one of those which has the minimum total cost of 7
and trace its nodes back from q to the source p. �

This extended breadth-first search algorithm contains many avoidable calcula-
tions. For example, when knowing that ρ22 has cost 6, but ρ11 has cost 5, we do not
have to consider extensions of path ρ22. Before discussing an optimised solution,
we are generalising from a single-source–single-destination problem to a single-
source–multiple-destination problem:

The (general) shortest-path problem of graph theory is as follows: Given a
connected weighted graph G = [V,E,w] and a node p0 ∈ V , find a shortest
path from p0 to each p ∈ V .

Dijkstra’s algorithm (see Fig. 1.9) solves this general shortest-path problem.11

This algorithm does not perform redundant calculations as in the extended breadth-

11The Dutch scientist Edger Wybe Dijkstra (1930–2002) has made many substantial contributions
to computer science.

18 1 Euclidean Shortest Paths

Algorithm 1 (Dijkstra algorithm, 1959)
Input: A finite undirected weighted graph G = [V,E,w] and a start node p0 ∈ V .
Output: A labelling of all nodes such that a shortest path can be traced back from
any p ∈ V to p0.

1: Let V = {p0, . . . , pn}.
2: if |V | > 1 then
3: Let i = 0, V0 = {p0}, D(p0) = 0, and D(p) = +∞ for p 	= p0.
4: while i < |V | − 1 do
5: for each p ∈ V \ Vi do
6: Update D(p) by min{D(p),D(pi)+w(pi,p)}. If D(p) is replaced, put

a label [D(p),pi] on p. (This allows for the tracking of shortest paths.)
Overwrite the previous label, if there is one.

7: end for
8: Let pi+1 be a node that minimises {D(p) : p ∈ V \ Vi}.
9: Let Vi+1 = Vi ∪ {pi+1}.

10: Replace i with i + 1.
11: end while
12: end if

Fig. 1.9 Dijkstra algorithm for solving the shortest-path problem of graph theory

first algorithm above. Each node in graph G, which is reachable from the source, is
labelled at some stage by the minimum cost of a path from the source to this node,
and never reconsidered later.

Example 1.6 We consider again the weighted graph in Fig. 1.8. At the beginning
we initialise V = {p,q, r, s, t, u, v}, i = 0, V0 = {p}, D(p) = 0, and D(q) = · · · =
D(v) = +∞. We start the loop with i = 0 < 7 − 1 = 6.

For each node x ∈ V \ V0 = {q, r, s, t, u, v} we calculate min{D(x),D(p) +
w(x,p)}. This leads to updates D(s) = 3, D(r) = 2, and D(t) = 1. We select node
t for V1 = {p, t} and have i = 1 < 6.

For each node x ∈ V \ V1 = {q, r, s, u, v}, we calculate min{D(x),D(t) +
w(x, t)}. This leads to update D(q) = 8. D(r) remains at 2 and is not updated.
We select node r for V2 = {p, t, r} and have i = 2 < 6.

For each node x ∈ V \V2 = {q, s, u, v}, we calculate min{D(x),D(r)+w(x, r)}.
This leads to update D(u) = 6. D(q) remains at 8 and is not updated. We select node
s for V3 = {p, t, r, s} and have i = 3 < 6.

For each node x ∈ V \ V3 = {q,u, v}, we calculate min{D(x),D(s) + w(x, s)}.
This leads to update D(u) = 5. We select node u for V4 = {p, t, r, s, u} and have
i = 4 < 6.

For each node x ∈ V \ V3 = {q, v}, we calculate min{D(x),D(u) + w(x,u)}.
This leads to updates D(q) = 7 and D(v) = 6. We select node v for V4 =
{p, t, r, s, u, v} and have i = 5 < 6.

We only consider min{D(q),D(v) + w(q, v)}. There is no update; D(q) = 7
is the minimum. This minimum was obtained by coming from u. The minimum

1.8 Points, Polygons, and Polyhedra in Euclidean Spaces 19

Fig. 1.10 Path planning in
mobile devices is based on
weighted graphs. The figure
shows a recommended path
for driving in Auckland, New
Zealand

D(u) = 5 was obtained by coming from s. The minimum D(s) = 3 was obtained
by coming from p. �

The Dijkstra algorithm as specified above has a computational complexity of
O(|V |2). Applying a heap data structure for the set {p ∈ V \ Vi : D(p) < +∞} of
remaining nodes improves the time complexity of Dijkstra’s algorithm to O(|E| +
|V | log |V |). (This is O(|V | log |V |) if the graph G is planar.) The labels assigned in
Line 6 allow the construction of a shortest path from any node p ∈ V back to p0 as
illustrated in the example above.

The time complexity O(|E| + |V | log |V |) is often critical for graphs with a very
large number of nodes. A practical example is the optimisation of paths for a GPS
system as available in cars or mobile phones; see Fig. 1.10.

We only mention here that a heuristic A� search algorithm was designed for
reducing this time complexity by taking the risk that a calculated path is only sub-
optimal, and not necessarily an optimal solution.

A more in-depth discussion of graph-theoretical algorithms is beyond the scope
of this book, but we will make use of the Dijkstra algorithm later in the book. We
also note that treating time against optimality is already a common approach in
this area, and we will discuss similar developments in the field of shortest paths in
Euclidean geometry.

1.8 Points, Polygons, and Polyhedra in Euclidean Spaces

In this section, we discuss the geometric objects of Euclidean geometry, polygons
in 2D space, polyhedra in 3D space, or sets of points in 2D or 3D space, that allow
us to introduce various types of Euclidean shortest path (ESP) problems (in the next
section, and throughout the book).

Points or vertices of polygons or polyhedra are identified by coordinates.
A Cartesian coordinate system operates on a set of axes for rectangular (or oblique)
coordinates. Hereafter we consider only rectangular coordinate systems.

20 1 Euclidean Shortest Paths

Fig. 1.11 Right-hand 3D
coordinate system (courtesy
of Fay Huang, Yi-Lan,
Taiwan)

The coordinate axes intersect orthogonally at point o. It is called the origin of the
coordinate system. Its coordinates have value 0 since point o is at distance 0 from
all the axes.

The real 2D space, also called the real plane, in a rectangular Cartesian coordi-
nate system is a product

R
2 =R×R

of two real lines where R is the set of all real numbers. In R
2, points are expressed,

for example, by pi = (xi, yi) or pi = (pi .x,pi .y), whatever suits the local context.
The real 3D space is the product

R
3 =R×R×R

of three real lines. Points in R3 are denoted, for example, by pi with i ≥ 0 and
xyz-coordinates pi = (xi, yi, zi) or pi = (pi .x,pi .y,pi.z).

A right-hand coordinate system is a rectangular Cartesian coordinate system in
which the positive x-axis is identified with the thumb (pointing outward in the plane
of the palm), the positive y-axis with the forefinger (pointing outward in the plane of
the palm), and the positive z-axis with the middle finger of the right hand (pointing
away from the plane of the palm; see Fig. 1.11).

If d is a metric on a set S then the pair [S,d] defines a metric space. The Eu-
clidean distance, defined in Eq. (1.3), is a metric. The Euclidean distance between
two points p = (p.x,p.y,p.z) and q = (q.x, q.y, q.z) in the 3-dimensional space

de(p, q) =
√

(p.x − q.x)2 + (p.y − q.y)2 + (p.z − q.z)2 (1.6)

is also a metric on the set R3. The context specifies whether de is a function in 2D
or 3D space.

Definition 1.10 The metric space [R2, de] is the Euclidean plane, and the metric
space [R3, de] is the Euclidean 3D space.

A Euclidean space can be of any dimension m ≥ 1. This book only discusses the
cases m = 2 or m = 3 of our ‘daily life geometry’.

Shortest-path problems in the book are defined in Euclidean 2D or 3D space.

1.8 Points, Polygons, and Polyhedra in Euclidean Spaces 21

Fig. 1.12 Polygonal curves. Two of these are simple and defining simple polygons, and two of
them are non-simple, defining non-simple polygons. The polygon on the right also illustrates visi-
bility: point p is visible from the outside (see the dashed ray), but point q is not; point r , selected
in the interior of the polygon, sees point p (see the dashed line segment), but it cannot see point q

The definition of shortest-path problems in the plane makes in general use of
simple polygons, for defining the region of potential moves, a sequence of regions
to be visited, obstacles to be avoided, and so forth.

A polygon is defined by a loop which is a path ρ = 〈p0,p1, . . . , pn〉 with
p0 = pn. Vertices of this loop are endpoints of line segments, and the loop describes
thus a polygonal curve.

Definition 1.11 Let φ be a mapping of an interval [a, b] ⊂ R into the real plane,
φ : [a, b] → R

2, such that a 	= b, φ(a) = φ(b), and φ(s) 	= φ(t) for all s, t with
a ≤ s < t ≤ b. The set γ = {(x, y) : φ(t) = (x, y) ∧ a ≤ t ≤ b} is a simple curve.12

Informally speaking, a simple curve is “not intersecting itself”; any simple curve
can be generated from a circle by topological deformation.

Definition 1.12 A simple polygon P is defined by a simple polygonal curve; this
polygonal curve defines the frontier ∂P of P , which circumscribes the bounded
interior P ◦ of P .

Figure 1.12 shows two non-simple polygonal curves on the left; in the leftmost
case, path 〈p,q, r〉 intersects two other line segments of the polygonal curve, and
in the other example, segment pq is traversed twice in the loop. The two examples
shown on the right are simple curves.

A point p on the frontier of a polygon is visible from the outside iff there is a ray
starting at p that intersects the polygon in no other point than at p. A point p in a
polygon sees a point q in this polygon iff the straight segment pq is contained in
the polygon. See Fig. 1.12 on the right. An edge ei = pipi+1 is visible from another

12This was defined by Camille Jordan (1838–1922) in 1893, and γ is also called a Jordan curve
today.

22 1 Euclidean Shortest Paths

Fig. 1.13 Left: A simple polyhedron with randomly-rendered faces. Middle: A simple polyhedron
defined in a regular orthogonal 3D grid. Right: A non-simple polyhedron (which could be, e.g., the
layout for a “world” of a computer game)

edge ej = pjpj+1 iff there is a point on ei that sees a point on ej . Those visibility
concepts are useful for discussing geometric configurations.

The notion of a simple polygon can be generalised to 3D space. A polygon is a
bounded area in the plane whose frontier is defined by a polygonal curve; a poly-
hedron is a bounded volume in 3D space whose surface (also called frontier) is the
union of a set of polygons which only intersect at frontiers, but not at points in their
interior (i.e., the polygons define a non-overlapping tessellation of the surface).

Definition 1.13 A simple polyhedron Π is defined by a finite set of polygonal faces
which tessellates its surface completely, and which can be topologically transformed
into the surface of a sphere; the union of this set of polygons defines the frontier ∂Π

of Π , which encloses the bounded interior Π◦ of Π .

Informally speaking, “topologically transformed into the surface of a sphere”
means that the frontier may be “inflated” such that it becomes a “spherical balloon”.
Figure 1.13 shows two simple (left and middle) and one non-simple polyhedron.
The non-simple polyhedron on the right13 can be generated as a union of five tori.
A polyhedral torus cannot be topologically transformed into a sphere.

A point p on the surface of a polyhedron is visible from the outside iff there is a
ray starting at p that intersects the polyhedron in no other point than at p. A point
p in a polyhedron sees a point q in this polyhedron iff the straight segment pq is
contained in the polyhedron.

Objects in our real world (see Fig. 1.14) can be modelled as polyhedra by approx-
imating curved surface patches at some selected scale by polygons. The two objects
shown are of low shape complexity compared with the dimensions and variations of
shapes in the whole universe.

We assume that some integer n > 0 characterises the complexity of input data,
such as the number of points in a set, the number of vertices of a polygon, or the

13Used by Johann Benedict Listing (1808–1882) in 1861 when illustrating the skeletonisation of
shapes in R

3.

1.9 Euclidean Shortest Paths 23

Fig. 1.14 Left: A tree (at Tzintzuntzan, Mexico) can be modelled as a simple polyhedron, assum-
ing that nature was not producing any torus when growing this tree. Right: A sponge can only be
modelled as a non-simple polyhedron

number of faces of a simple polyhedron. The upper limit for n is unknown because
progress in technology may shift feasible values further up right now, or in a few
years from now. Those values of n are so ‘little’ compared with the universe, or even
to the infinity of the set of all integers. It would make sense to define an upper limit
for n, say n < 1080, which is the estimated number of protons in the observable
universe.14 We could conclude that all our algorithms only need to work for inputs
with n < 1080; larger inputs are out of scope.

This would not simplify considerations such as “this algorithm is correct for any
n > 0”, thus also, for example, a proof of correctness for

n = 101010101010

.

We prove results for numbers n which will never be experienced by humankind, just
for the sake of mathematical simplicity.

The complexity of input data (e.g., sets of points, polygons, or polyhedra)
will be characterised by integers, without taking into account any limitation
for those integers.

1.9 Euclidean Shortest Paths

Euclidean shortest paths (ESP) have been specified in Definition 1.7. In this section,
we illustrate only a few examples of ESP problems, for demonstrating subjects to
be considered in this book. Polygons or polyhedra are simple in what follows unless
otherwise stated.

14See, e.g., www.madsci.org/posts/archives/oct98/905633072.As.r.html.

24 1 Euclidean Shortest Paths

Fig. 1.15 Sketch of an ESP
problem in the plane defined
by a polygonal search
domain, source p and
destination q , an ordered set
of attractions (shown by
shaded ellipses), and a set of
obstacles, shown as shaded
polygons of constant shape.
The figure shows a possible
(not yet length-minimised)
path, connecting p with q via
the given sequence of
attractions, avoiding all the
obstacles, and staying in the
given search domain

Obstacles or attractions are bounded or unbounded subsets in Euclidean space.
When calculating a path, it must not enter any of the obstacles, but it has to visit all
the given attractions in a specified order. A path ρ visits a set S iff ρ has a non-empty
intersection with S.

We also assume a search domain that is the space of possible moves: the source
and destination for the path are in the search domain, all the attractions need to have
at least a non-empty intersection with the search domain, and obstacles can possibly
be outside of the search domain. See Fig. 1.15 for an example.

We consider polygonal or polyhedral search domains, defined by a finite number
n ≥ 0 of lines or line segments or polygonal faces, respectively. For example, a
half-plane or a 3D half-space are also possible; they are defined by one straight line
in 2D space, or one plane in 3D space (i.e., n = 1). Finally, all R2 or R3 are also
possible, they are defined by having no limiting straight line or segment or polygon
(i.e., n = 0).

Definition 1.14 Assume that the Euclidean space [R2, de] or [R3, de] contains a fi-
nite set of polygonal or polyhedral obstacles and also an ordered set of polygonal or
polyhedral attractions. We consider two points p (the source) and q (the final desti-
nation) within the given polygonal or polyhedral search domain. The ESP problem
is to compute a path ρ between p and q in such a way that the path ρ does not
intersect the interior of any obstacle, visits all the attractions in the specified order,
does not leave the search domain, and is of minimum Euclidean length.

An exact solution is path ρ that solves such an ESP problem. See Fig. 1.15. Due
to a constraint about the size of the object that is expected to move along a calculated
shortest path, we may consider expanded obstacles rather than the original obstacles;
see Fig. 1.16. Vertices of a calculated path, connecting p and q , can move freely in
the search domain, not only in the given attractions.

We provide five examples of ESP problems. Those and others are discussed in
this book:

1.9 Euclidean Shortest Paths 25

Fig. 1.16 The same ESP
problem as in Fig. 1.15 but
after expanding all the
obstacles in x- and
y-directions, thus ‘giving the
moving object less space’.
The figure shows a possible
path from p to q

Fig. 1.17 A rectangular
sheet with five embedded
polygonal shapes (i.e., being
the attractions) and a
non-optimised path of a
cutting head. At each of the
five points on frontiers of the
shapes, the cutting head
would start (and also end)
when cutting out a shape
from the sheet

1. Find an ESP between points p and q in a simple polygon (the polygon defines
the search domain); there are no obstacles or attractions. This is the well-known
problem of finding a shortest path in a simple polygon.

2. Attractions are pairwise-disjoint polygons (see Fig. 1.17), all within a rectangular
‘sheet’ of material (e.g., textile, metal), p = q , and there are no obstacles. This
is known as a parts-cutting problem, where a ‘cutting head’ needs to travel from
one polygonal shape to the other for cutting them ‘out’ from the rectangular
‘sheet’; this rectangle is the search domain.

3. The search domain is the interior or the surface of a polyhedron, and there are no
obstacles or attractions. This defines either the problem of finding a shortest path
in a simple polyhedron, or the problem of finding a shortest path on the surface
of a simple polyhedron.

4. The whole R3 is our search domain, and the obstacles are a finite set of stacked
rectangles (i.e., rectangles in parallel planes), without any attractions. We need
to find a shortest path which avoids the stacked rectangles. See Fig. 1.18.

5. The 3D space is subdivided into a regular orthogonal grid forming cubes (e.g.,
voxels in 3D medical imaging, or geometric units in gene modelling). These
cubes form a simple path iff each cube in this path is face-adjacent to exactly two
other cubes in the path, except the two end cubes which are only face-adjacent
to one other cube in the path. The two end cubes contain start and end vertex p

and q . See Fig. 1.19.

26 1 Euclidean Shortest Paths

Fig. 1.18 Five stacked
rectangles (i.e., being the
obstacles) in parallel planes
in 3D space. The figure shows
a possible path from p to q

Fig. 1.19 A simple path of
cubes and start and end points
p and q . The union of the
cubes in the path defines a
tube, and the ESP problem is
to find a shortest connection
from p to q in this tube

A given source p and destination q specify a fixed ESP problem. If there is no fixed
start or end point, then this defines a floating ESP problem with a higher degree of
uncertainty, thus a larger computational challenge.

1.10 Problems

Problem 1.1 Let g(n) = n log10 n and f (n) = n log2 n. Show that g(n) ∈ O(f (n))

and f (n) ∈O(g(n)) (i.e., both functions are asymptotically equivalent).

Problem 1.2 Show that the Minkowski distance measure d1 satisfies all the three
axioms M1, M2, and M3 of a metric.

Problem 1.3 A shortest d1-path is defined by minimising the total distance

L(ρ) =
n∑

i=0

d1(pi,pi+1) with p0 = p and pn+1 = q

between the source p and destination q . Figure 1.20 illustrates three (of many) op-
tions for shortest d1-paths between p and q . Specify the area defined by the union

1.11 Notes 27

Fig. 1.20 Three shortest d1-paths between p and q . The coordinate axes define the only two
possible directions of moves (also called isothetic moves)

of all shortest d1-paths from grid point p to grid point q . What is the analogous area
for Minkowski metric d∞?

Problem 1.4 How to define the length of a shortest path between two points p and
q in R3 when applying the forest distance df rather than de? Generalise the given
2D distance df at first to a metric in R3.

Problem 1.5 Do some experiments with the Dijkstra algorithm. Download a source
from the net, run it on weighted graphs with different values of |E|, and measure
the actual run time (e.g., by running it on the same input 1,000 times and divide
measured time by 1,000). Generate a diagram which plots values of |E| together
with the measured time. After a sufficient number of runs you should have a diagram
showing a ‘dotted curve’. Discuss the curve in relation to the upper time bounds
specified above for the Dijkstra algorithm.

Problem 1.6 (Programming exercise) Implement a program which ‘randomly’ gen-
erates a simple polygon with n > 0 vertices, with only specifying the value of pa-
rameter n at the start of the program. The program should also contain the option
that only the vertices are generated (i.e., a set of points) as a set of n randomly
generated points.

Aim at generating a large diversity of shapes of polygons (e.g., more than just
star-shaped polygons; see Fig. 1.21). For controlling the output of your program,
draw the resulting polygons on screen (e.g., by drawing with OpenGL in an OpenCV
window). The generated polygons will be useful for testing ESP programs later on,
for programming exercises listed in subsequent chapters.

1.11 Notes

For algorithm design in general, see, for example, the books [5, 10, 19]. Finding a
general solution to the general ESP problem (starting with dimension m = 3, with-
out predefined areas of destination, and with having the whole Rm as search space) is
known to be NP-hard [3]. The survey article [16] informs about ESP algorithms for

28 1 Euclidean Shortest Paths

Fig. 1.21 Left and middle: Two star-shaped polygons (note: in a star-shaped polygon there is at
least one point p ‘such that a ‘guard’ at p sees’ all the frontier of this polygon). Right: A ran-
domly generated simple polygon (courtesy of Partha Bhowmick, Indian Institute of Technology
Kharagpur, India)

3D space. There are arithmetic δ-approximation algorithms solving the Euclidean
shortest path problem in 3D in polynomial time, see [4].

Shortest paths or path planning in 3D robotics (see, for example, [11–13], or the
annual ICRA conferences in general) is dominated by decision-theoretic planning,
stochastic algorithms, or heuristics. Describing a robot with its degrees of freedom
(in moving) requires a high-dimensional space; the robot is a point of parameters
in this space. ESP algorithms need then to be applied to those high-dimensional
spaces. The problem is that there is typically no prior complete knowledge about
the space; when going from p to q it might be just possible to notice that a straight
path is not possible because there are some obstacles on the way (without having
complete geometric knowledge about the scene).

Path planning is the subject of the book [12]. The book contains illustrations
of shortest paths depending upon the chosen distance measure, and provides, in
general, a very good connection between geometric problems and various robotics
applications. The calculation of Euclidean shortest paths is not a subject in [12].

The pioneering paper for breadth-first search is [17]. The calculation of shortest
paths is also a subject in graph theory [5] (Chaps. 24 and 25); here, a shortest path
connects vertices in a given graph, where edges of the graph are labelled by weights;
this situation differs from the Euclidean shortest path problem, where possible ver-
tices are not within a predefined finite set, and thus we also do not have a finite set
of predefined weights (representing distances). Dijkstra’s algorithm was published
in [6]. The heuristic A�-search algorithm was published in [7].

For approximation algorithms, see the books [1, 8, 9, 14, 20], or the website [18];
the so-called “absolute” or “relative approximation” schemes are basically not much
different from the discussed concept of δ-approximation. Approximation algorithms
for ESP calculations are specified in [15].

For random curve generation, as addressed in Problem 1.6, see [2].

References 29

References

1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.:
Complexity and Approximation. Springer, New York (1999)

2. Bhowmick, P., Pal, O., Klette, R.: A linear-time algorithm for the generation of random digital
curves. In: Proc. PSIVT, pp. 168–173. IEEE Comput. Soc., Los Alamitos (2010)

3. Canny, J., Reif, J.H.: New lower bound techniques for robot motion planning problems. In:
Proc. IEEE Conf. Foundations Computer Science, pp. 49–60 (1987)

4. Choi, J., Sellen, J., Yap, C.-K.: Approximate Euclidean shortest path in 3-space. In: Proc.
ACM Conf. Computational Geometry, pp. 41–48 (1994)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn.
MIT Press, Cambridge (2001)

6. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269–271
(1959)

7. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of mini-
mum cost paths. IEEE Trans. Syst. Sci. Cybern. 4, 100–107 (1968)

8. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problems. PWS, Boston
(1997)

9. Hromkovič, J.: Algorithms for Hard Problems. Springer, Berlin (2001)
10. Kleinberg, J., Tardos, E.: Algorithm Design. Pearson Education, Toronto (2005)
11. Latombe, J.-C.: Robot Motion Planning. Kluwer Academic, Boston (1991)
12. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge, UK (2006)
13. Li, T.-Y., Chen, P.-F., Huang, P.-Z.: Motion for humanoid walking in a layered environment.

In: Proc. Conf. Robotics Automation, vol. 3, pp. 3421–3427 (2003)
14. Mayr, E.W., Prömel, H.J., Steger, A. (eds.): Lectures on Proof Verification and Approximation

Algorithms. Springer, Berlin (1998)
15. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Handbook of Com-

putational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)
16. Mitchell, J.S.B., Sharir, M.: New results on shortest paths in three dimensions. In: Proc. SCG,

pp. 124–133 (2004)
17. Moore, E.F.: The shortest path through a maze. In: Proc. Int. Symp. Switching Theory, vol. 2,

pp. 285–292. Harvard University Press, Cambridge (1959)
18. Rabani, Y.: Approximation algorithms. http://www.cs.technion.ac.il/~rabani/236521.04.wi.

html (2004). Accessed 28 October 2004
19. Skiena, S.S.: The Algorithm Design Manual. Springer, New York (1998)
20. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

Chapter 2
Deltas and Epsilons

I mean the word proof not in the sense of the lawyers, who set
two half proofs equal to a whole one, but in the sense of a
mathematician, where half proof = 0, and it is demanded for
proof that every doubt becomes impossible.

Carl Friedrich Gauss (1777–1855)

The introduction ended with recalling concepts in discrete mathematics as used in
this book. This second chapter adds further basic concepts in continuous mathe-
matics that are also relevant for this book, especially in the context of approximate
algorithms.

2.1 Exact and δ-Approximate Algorithms

The term exact algorithm seems to be clear to everybody: the algorithm computes
exactly the true solution for each input. However, the true solution is not always
uniquely defined. For example, algorithms for mapping a 2D or 3D binary picture
into topologically equivalent skeletal curves (see Fig. 2.1) are often based on iter-
ative thinning methods (i.e., object pixels in 2D, or object voxels in 3D pictures
are changed into background elements in one iteration if this operation does not
change the topology of the picture). Researchers have published different proposals
for thinning strategies. Correctly implemented algorithms deliver satisfactory re-
sults with respect to topology preservation or other predefined rules. But resulting
skeletal curves are different for equal inputs and different algorithms. There is no
unique “true solution” for thinning algorithms.

We do have a criterion of truth for ESPs. The length of a shortest path is always
uniquely defined.

Definition 2.1 An algorithm is exact if it delivers a true solution for each input with
respect to an existing criterion that is independent from the algorithm itself.

F. Li, R. Klette, Euclidean Shortest Paths,
DOI 10.1007/978-1-4471-2256-2_2, © Springer-Verlag London Limited 2011

31

32 2 Deltas and Epsilons

Fig. 2.1 Results of three different iterative thinning algorithms (dark pixels) on the same binary
picture shown in grey. The top part of the second result differs significantly from that of the first
and third results. (Courtesy of Gisela Klette, Auckland)

This definition requires exact correctness. Different measures specify approxi-
mate algorithms to express “how close” a solution needs to be to a true solution.
This book is about minimisation problems. We say in short “a solution” for “the
length of the calculated path” for the class of ESP problems.

Definition 2.2 An algorithm is a δ-approximate algorithm for a given minimisation
problem iff, for each input instance of this problem, the algorithm delivers a solution
that is at most δ times the optimum solution.

Obviously, δ < 1 is impossible, and δ = 1 defines an exact algorithm. In general,
we may assume that δ = 1 + ε0, for some ε0 ≥ 0. For example, δ = 1.15 defines
ε0 = 0.15, and thus an error limit of 15%.

Definition 2.3 An algorithm is without guarantee (of exactitude) iff there exists a
real number ε > 0 and an input instance such that the difference between the output
for this input and the true solution is larger than ε, for any choice of the algorithm’s
free parameters.

Note that a δ-approximate algorithm might even be an algorithm without guar-
antee, for ε < (δ − 1).

A δ-approximate algorithm does not necessarily calculate a solution arbitrar-
ily close to an optimal solution.

Definition 2.4 An algorithm is within guaranteed error limits iff for any ε > 0 and
each input instance, there is a choice of the free parameters for this algorithm such
that the difference between output for this input and true solution is smaller than or
equals ε.

Corollary 2.1 Any algorithm within guaranteed error limits is also a δ-approxima-
tion algorithm, for any ε0 > 0 and δ = 1 + ε0.

2.1 Exact and δ-Approximate Algorithms 33

Algorithm 2 (Papadimitriou algorithm, 1985)
Input: A finite set of simple polyhedra (the obstacles) with n vertices and O(n)

edges, a start point p that is not on the surface of any polyhedron, and an end point q ,
all in 3D Euclidean space. Let EΠ be the set of all edges of the polyhedral obstacles,
and ε > 0 the accuracy constant.
Output: A path (a polyline) from p to q .

1: for each edge e ∈ EΠ do
2: Compute a point r in e such that d2(p, r) = min{d2(p, r ′) : r ′ ∈ e}.
3: Break e into shorter line segments with endpoints

(xr + di, yr + di, zr + di) and (xr − di, yr − di, zr − di)

where

di = de(p, r) × ε

4
√

3n

(

1 + ε

4n

)i−1

for i = 1,2,
4: Let V be the set of midpoints of such shorter line segments. [A line segment

is called the associated segment of its midpoint.]
5: Put p and q also into V .
6: end for
7: Construct a visibility-weighted undirected graph G = [V,E,w] as follows: for

any pair of points u and v in V , there is an edge {u,v} ∈ E iff their associated
segments are visible from one-another. In this case, define the weight of {u,v}
as d2(u, v). Otherwise, let +∞ be the weight of edge {u,v}.

8: Apply the Dijkstra algorithm for computing a shortest path from p to q in
graph G

Fig. 2.2 Papadimitriou’s algorithm for solving the general 3D ESP problem. The calculated short-
est path in graph G is an approximate ESP for the given problem

Example 2.1 Consider a general 3D ESP problem where p and q are points in 3D
space, and a shortest path from p to q cannot pass through a finite set of simple
polyhedral obstacles having n vertices in total, and O(n) edges. The start point p

is not on the surface of any of those polyhedra. The Papadimitriou algorithm is a
δ-approximate algorithm for solving this problem; see Fig. 2.2 for a pseudocode of
this algorithm.

This algorithm maps the given continuous ESP problem into a discrete problem
by subdividing the edges involved into a finite number of segments, where the scale
of the subdivisions is defined by increments di , depending on the selected ε. The
particular definition of increments di is chosen for numerical considerations in the
original paper that are outside the scope for our discussion here. The visibility be-
tween edges was introduced when commenting on Fig. 1.12.

The Papadimitriou algorithm is an algorithm within guaranteed error limits. Let
δ = 1 + ε0. The algorithm produces a path guaranteed to be not longer than (1 + ε0)

34 2 Deltas and Epsilons

Algorithm 3 (Control structure of an iterative ESP algorithm)
Input: A search domain, obstacles, attractions, a start point p and an end point q , all
in 2D or 3D Euclidean space.
Output: A path (a polyline) from p to q .

1: INITIALISATION: path ρ0 from p to q , and L0 be the length of ρ0; i = 1.
2: while STOP CRITERION = false do
3: UPDATE produces a new path ρi .
4: Let Li be the length of ρi .
5: Let i = i + 1.
6: end while

Fig. 2.3 Defining control structure of an iterative ESP algorithm

times the length of a true ESP. Without proof we just state that it has the time com-
plexity

O
(

n4[b + log(n/ε0)]2

ε2
0

)

(2.1)

where b is the number of bits representing the coordinates of the vertices in the
polyhedral search domain Π (i.e., b is the base-2 logarithm of the largest integer
appearing as a coordinate for one of the vertices of Π), and n is the total number of
edges of Π . �

The Papadimitriou algorithm within guaranteed error limits is able to come arbi-
trarily close to an optimum solution, at the cost of an increase in time complexity
of the algorithm: for small ε0, the numerator in Eq. (2.1) is characterised by n4 · b
and the denominator by a very small number ε2

0. Note that the given time complex-
ity f (n, ε0) in Eq. (2.1) cannot be split into a product of two functions f1(n) and
f2(ε), such that f1 is independent of ε, and f2 independent of n.

2.2 Approximate Iterative ESP Algorithms

Numerics makes frequent use of the concept of repeated iterations for defining al-
gorithms within guaranteed error limits. An iterative ESP algorithm is defined by
performing at first a constant number of operations before running into a loop; the
loop performs a finite number of iterations, each time ending with the specification
of an ESP of length Li , where i runs from 0 to the maximum number of iterations;
see Fig. 2.3.

This is a general control structure. Any iterative ESP algorithm needs to be spec-
ified by explaining the initialisation of path ρ0, defining the stop criterion, and the
update (i.e., how to obtain path ρi+1 from path ρi and some optimisation strategy).

2.2 Approximate Iterative ESP Algorithms 35

Fig. 2.4 A sketch of a
distribution of Li -values, in
relation to the exact length L.
The distance between Li and
Li+1 is shown to be less than
ε, but the distance δ between
Li+1 and L remains unknown

The stop criterion should ensure that the algorithm is not running into an infinite
loop. The time complexity of an iterative ESP algorithm is then simply given as
follows:

f (x) = finitialisation(x) + fstop(x)

imax(x)∑

i=1

fupdate(x, i)

where x is a vector combining all the algorithm’s parameters (i.e., the problem
complexity n > 0 and possibly some free parameters). This further simplifies if
fupdate(x, i) is basically independent of the iteration number i, and fstop(x) assumed
to be a constant c > 0:

f (x) = finitialisation(x) + c · imax(x) · fupdate(x).

Because we are interested in asymptotic complexities, we can also ignore the con-
stant c (see Definition 1.4) and obtain

f (x) = finitialisation(x) + imax(x) · fupdate(x). (2.2)

The update should guarantee that the new path is a better solution (i.e., of reduced
length) compared to the previous path. If implementing both ideas properly, then we
may stop the algorithm by using an accuracy parameter ε > 0:

Definition 2.5 An iterative ESP algorithm is approximate iff, for any ε > 0, there
exists a natural number iε such that if i ≥ iε then

|Li+1 − Li | < ε. (2.3)

Let L be the (exact) length of an ESP. Definition 2.5 does not compare Li with L,
but Li with Li+1. This is illustrated in Fig. 2.4. The figure also shows a case where
Li−2 is larger than Li−3. This should actually be avoided by a proper specification
of the algorithm.

Because we do not know L, we can only compare previously calculated Li-
values. Definition 2.5 is thus different to that of an algorithm within guaranteed error
limits. The figure also illustrates a distance ε between Li and Li+1, and a distance
δ between Li+1 and L, indicating that δ could possibly still be larger than ε.

36 2 Deltas and Epsilons

Instead of Eq. (2.3), the unscaled stop criterion in Definition 2.5, consider a
scaled stop criterion

|Li+1 − Li |
Li+1

< ε. (2.4)

This is a common stop criterion, for example, in robotics, where values Li are mea-
surements (e.g., by some sensors). In such a case, the reason for applying Eq. (2.4)
is that, if the error in measuring Li is of the order of machine accuracy and the error
in measuring Li+1 is also of the order of machine accuracy, then the resulting error
in unscaled |Li+1 − Li | can even be of the order twice of that of machine accuracy.
However, we stay with Eq. (2.3) for quantities Li calculated in our algorithms.

The following section shows that any approximate ESP algorithm is also an al-
gorithm within guaranteed error limits, and thus also an (1 + ε0)-approximate algo-
rithm, for any ε0 > 0.

2.3 Convergence Criteria

Let f be a function that maps values from some subset S ⊆R into R, and let c ∈ R∪
{−∞,+∞} be a constant. The notation x → c is short for ‘value x goes arbitrarily
close to c’: (i) for c ∈ R and any ε > 0 there is a value x ∈ S with |x −c| < ε; (ii) for
c = −∞ and any T < 0 there is a value x ∈ S with x < T ; (iii) for c = +∞ and any
T > 0 there is a value x ∈ S with x > T . Let

lim
x→c

f (x)

be defined and equal to a real number a iff f (x) can go arbitrarily close to a as
x → c, which means that for any δ > 0 there is

(case c ∈R) an ε > 0 such that for any x ∈ S with |x−c| < ε it follows that |f (x)−
a| < δ;

(case c = −∞) a T0 < 0 such that for any x ∈ S with x < T0 it follows that |f (x)−
a| < δ;

(case c = +∞) a T0 > 0 such that for any x ∈ S with x > T0 it follows that |f (x)−
a| < δ.

Definition 2.6 Function f converges (or is convergent) as x → c iff limx→c f (x)

is defined. If it is defined and equals a then a is called the limit of f as x → c.

For example, f can be defined on the set of natural numbers N = {0,1,

2, . . .}, defining a sequence ai = f (i) of real numbers, for i ≥ 0. This sequence
{a0, a1, a2, . . .} may, for example, ‘oscillate somehow’ around a value a ∈ R by
coming closer and closer, say, but for index i + 1 a bit more than for index i:

|a − ai+1| < |a − ai |
for all i = 0,1,2, . . . ; see Fig. 2.5. The infinite sequence {a0, a1, a2, . . .} is converg-
ing to the limit a. In this case, we have that constant c equals +∞.

2.3 Convergence Criteria 37

Fig. 2.5 A sequence of reals with constantly decreasing distances from the real number a

Example 2.2 Let b be any real; the sequence ai+1 = (ai + b/ai)/2 of rational num-
bers, for any given initial rational number a0, is converging1 to a = √

b. Let b = 2
and a0 = 1, for example, then the first elements are

a0 = 1,

a1 = 1.5,

a2 = 1.41666666666 . . . ,

a3 = 1.41421568627 . . . ,

a4 = 1.41421356237 . . . ,

and the sequence converges to the limit
√

2. �

Now let us ‘remove’ the real a from the definition of convergence, and we just
claim for a given sequence {a0, a1, a2, . . .} of real numbers and for all i = 0,1,2, . . .

that

|ai+1 − ai+2| < |ai − ai+1|.
This is a first step towards a Cauchy sequence.2 (In general, a Cauchy sequence can
also be defined in terms of a function f defined on S ⊆ R; however, we only need
this special case of S =N in this book.)

Definition 2.7 A Cauchy sequence is an infinite sequence {a0, a1, a2, . . .} of real
numbers, such that for any ε > 0 there is an index i0 with |ai − aj | < ε, for any
i, j ≥ i0.

1 Heron of Alexandria (ca. 10–70) described this approximation method, which is also known as
Babylonian method.
2Named after Baron Augustin-Louis Cauchy (1789–1857), who was central for establishing the
infinitesimal calculus (e.g., of convergence of real numbers).

38 2 Deltas and Epsilons

This definition covers the case of some kind of ‘irregular’ finite beginning of
the sequence where values may not follow any fixed rule. But, after some finite
beginning, the elements of the sequence have to come closer to each other, for any
increase of the index. With Definition 2.5 we have immediately:

Corollary 2.2 The sequence Li of lengths, for i ≥ 0, calculated by an approximate
iterative ESP algorithms, defines a Cauchy sequence.

Theorem 2.1 (Cauchy Convergence Criterion) A sequence of real numbers is con-
vergent iff it is a Cauchy sequence.

A proof of this theorem may be based upon the inequalities

|a| − |b| ≤ |a − b| ≤ |a| + |b|
for any reals a and b, and on the Bolzano–Weierstrass Theorem, saying that every
bounded sequence has a convergent subsequence.3 A sequence {a0, a1, a2, . . .} of
real numbers is bounded iff there are real numbers a and b such that a ≤ ai ≤ b, for
all i ≥ 0.

Let a1, a2, a3, . . . be a convergent sequence. Thus, for any ε > 0 there is a kε such
that |ak − a| < ε, for all k ≥ kε . Now consider ε/2. Let i, j > kε/2, with |ai − a| <

ε/2 and |aj − a| < ε/2. Applying the above second inequality, we obtain that

|ai − aj | =
∣
∣(ai − a) − (aj − a)

∣
∣ ≤ |ai − a| + |aj − a| ≤ ε/2 + ε/2 = ε.

This shows that the sequence is Cauchy.
The other direction of the proof is not so short, and we just mention that every

Cauchy sequence is bounded, and possesses thus a convergent subsequence (see the
Bolzano–Weierstrass Theorem above). The proof can then be completed by showing
that, if a Cauchy sequence has a subsequence that is convergent to a, then the whole
sequence is also convergent to a.

We state the Cauchy Convergence Criterion above, and the following basic re-
sults of infinitesimal calculus without (complete) proof, but for possible reference
later in the book. Theorem 2.1 and Corollary 2.2 show that any approximate iterative
ESP algorithm is also an algorithm with guaranteed error limits.

Definition 2.8 A sequence {a0, a1, a2, . . .} of real numbers is monotonically de-
creasing (monotonically increasing) iff ai ≥ ai+1 (ai ≤ ai+1), for all i ≥ 0. Such a
sequence is called monotone iff it is either monotonically de- or increasing.

Theorem 2.2 (Monotone Convergence Criterion) A monotone sequence of real
numbers is convergent iff it is bounded.

Corollary 2.3 A monotonically decreasing sequence of real numbers is convergent
iff it is lower bounded.

3Named after Bernard Placidus Johann Nepomuk Bolzano (1781–1848) and Karl Theodor Wilhelm
Weierstrass (1815–1897).

2.4 Convex Functions 39

Fig. 2.6 Left: Graph of a
non-convex function. Right:
Graph of a convex function.
The points shown are local
minima

In this book, convergence proofs for iterative ESP algorithms are always done
by showing that a sequence is monotonically decreasing and lower bounded.

Let Li , for i ≥ 0, be the sequence of lengths calculated by an iterative ESP algo-
rithm. In particular, according to Corollary 2.3, we only have to show the existence
of a lower bound if a sequence is monotonically decreasing; then the sequence is
convergent, also a Cauchy sequence, and the algorithm is approximate, thus also an
algorithm with guaranteed error limits.

There is always a uniquely specified minimum length L for any input instance of
the considered ESP problem (i.e., a lower bound). However, Corollary 2.3 does not
say that the sequence is converging towards this lower bound; it might be another
real number larger than the lower bound.

2.4 Convex Functions

Measurements during an iterative solution define discrete samples Li , for iterations
i ≥ 0. We may assume that a continuous function f (x), defined on the interval R+
of all non-negative real numbers, is fitting these samples accurately: f (i) = Li , for
all i ≥ 0.

Definition 2.9 A function f , defined on an interval of real numbers, is convex if

f
(
λx1 + (1 − λ)x2

) ≤ λf (x1) + (1 − λ)f (x2)

for any two reals x1, x2 in this interval, and 0 ≤ λ ≤ 1.

(In general, a convex function is defined over a convex subset of Rn.)
A convex function possesses the important property that every local minimum

is also a global minimum. This property is used in this book for showing whether
solutions obtained by iterative ESP algorithms are always the global solutions. If f

is a convex function then −f is called a concave function. For example, the graph
of y = x3 is convex for x ≥ 0 but concave for x < 0.

See Fig. 2.6 for examples of two unary functions f (x); the graph of a convex
function may also run parallel to the x-axis in one segment, because the relation in

40 2 Deltas and Epsilons

Definition 2.9 also allows for equality. This would define a convex function that is
not strictly convex. If we replace the relation in Definition 2.9 by

f
(
λx1 + (1 − λ)x2

)
< λf (x1) + (1 − λ)f (x2) (2.5)

then f is strictly convex, and −f is strictly concave.
For showing that there is a unique minimum of a function (defined by measure-

ments during an iterative solution), we have to prove that this function is not only
convex but even strictly convex.

2.5 Topology in Euclidean Spaces

For showing that there is a unique minimum of a function, we have to prove that
this function is not only convex but even strictly convex; this is sometimes possible
by applying results from topology in Euclidean spaces. We also need topology for
defining “topological equivalence”, or for describing accurately the “interior” of a
set and its “frontier”. (We already used those two notions in the context of polygons
and polyhedra.)

We start our considerations in the 1-dimensional set R of reals. Let a < b be
two reals. The interval [a, b] = {x : a ≤ x ≤ b} is closed (it also contains both its
endpoints a and b), and the interval (a, b) = {x : a < x < b} is open. We can also
define “half-open” (or “half-closed”) intervals such as [a, b) = {x : a ≤ x < b}.
Points a and b define the frontier of the open (i.e., (a, b)) or closed (i.e., [a, b])
interval; the open interval (a, b) is also called the interior of [a, b].

For a real c and ε > 0 we define with Nε(c) = {x : |x − c| < ε} the ε-
neighbourhood of c, which is an open interval.

Definition 2.10 A set S ⊆ R is open if, for any point c ∈ S, there is an ε > 0 such
that Nε(c) ⊆ S.

Note that this is not true for the points a and b in the frontier of [a, b]. The
property is true for any real in the open interval (a, b), and also for any real in an
arbitrary (finite or infinite) union

(a0, b0) ∪ (a1, b1) ∪ (a2, b2) ∪ · · ·
of open intervals, which do not have to be pairwise disjoint, or a finite intersection

(a0, b0) ∩ (a1, b1) ∩ (a2, b2) ∩ · · · ∩ (am, bm)

of open intervals.
If S is an open set, then R \ S is called a closed set. Note that closed intervals,

as defined above, are also closed sets according to this definition. The set R is open,
and the empty set ∅ is also open; thus, these two sets are also closed. These are the
only two examples where a set is both closed and open. We summarise:

• Any ε-neighbourhood of a point c ∈R is open.

2.5 Topology in Euclidean Spaces 41

Fig. 2.7 The dashed line shows the frontier of an open set S. The shown neighbourhood of p is
completely contained in S, but the shown neighbourhood for point q is not. For point q , a smaller
radius of the neighbourhood needs to be chosen for having also a neighbourhood completely in S

• The union of any finite or infinite number of open sets is again open.
• The intersection of any finite number of open sets is again open.
• R and ∅ are both open and closed.

Now we generalise these notions of open or closed sets to the Euclidean plane or
3D space using the Euclidean metric de = d2 for defining ε-neighbourhoods

Nε(p) = {
q : de(p, q) < ε

}

of points p ∈ Rm, for m = 2 or m = 3. These neighbourhoods form open disks in
the plane (see Fig. 2.7) or open spheres in 3D space.

Definition 2.11 Let m = 2 or m = 3. A set S ⊆R
m is open iff, for any point p ∈ S,

there is an ε > 0 such that Nε(p) ⊆ S.

Again, if S ⊆Rm is an open set, then Rm \S is called a closed set. It follows that

• Any ε-neighbourhood of a point p ∈ R
m is open.

• The union of any finite or infinite number of open sets is again open.
• The intersection of any finite number of open sets is again open.
• R

m and ∅ are both open and closed.

This defines a consistent approach for dealing with open or closed sets in Rm, for
m = 1 and also for m = 2 or m = 3, and this can actually be extended to any m ≥ 1
for defining topologies in Euclidean spaces [Rm,de].

A set S ⊆ Rm is bounded if there is some point p ∈ Rm and a radius r > 0
such that S is completely contained in the r-neighbourhood of p: S ⊆ Nr(p). A
set is compact if it is bounded and closed. For example, simple polygons or simple
polyhedra are all bounded sets.

We conclude this section with introducing some commonly used notation. Let
S ⊆R

m. We define:

(interior) S◦ = {
p ∈ S : ∃ε

(
ε > 0 ∧ Nε(p) ⊆ S

)}
,

(frontier) ∂S = {
p ∈ R

m \ S◦ : ∀ε
(
ε > 0 → Nε(p) ∩ S �= ∅)}

,

(closure) S• = S◦ ∪ ∂S.

For any S ⊆R
m it follows that

42 2 Deltas and Epsilons

• S is open iff S = S◦.
• S is closed iff S = S•.
• S◦ ∩ ∂S = ∅.
• If S is closed then S \ ∂S is open.

The set ∂S defines the frontier of a set S. For example, in the case m = 3, a simple
polyhedron is defined by a finite number of polygonal faces; the union of those faces
is the surface of the polyhedron, and also the frontier of the polyhedron. In the case
m = 2, a simple polygon is defined by a polygonal loop; this loop is the frontier of
the polygon. In the case m = 1, the frontier of an interval (a, b), (a, b], [a, b), or
[a, b] is the set {a, b}.

Definition 2.12 S is called (topologically) connected iff it is not the union of two
disjoint nonempty open subsets (or, equivalently, closed subsets) of S.

Maximum connected subsets of S are called components of S.
A path visits a set S iff this path and S do have a nonempty intersection. Because

a path does have an orientation (i.e., from start to end, or by a defined loop), it also
visits S at some point for the first time, if there is a nonempty intersection, and if S

is topologically closed. If the path does not start in S, then the first visit of a closed
set S will be in ∂S.

Definition 2.13 A family F of subsets of a set S0 ⊆Rm defines a topological space
or a topology iff it satisfies the following axioms:

T1 {∅, S0} ⊆ F .
T2 The union of any finite or infinite number of sets in F is again in F .
T3 The intersection of any finite number of sets in F is again in F .

A set S ∈F is open, and S0 \ S is closed.

According to axiom T1, the base set S0 is open in its own topology. However, S0

does not need to be open in another topology. For example, a compact set S0 in Rm

is not open in the topology of Rm, but may define its own topology (i.e., all the open
subsets of S0 only), and S0 is then open in its own topology.

Definition 2.14 A topological space or topology F , defined by all open subsets of
a set S0 ⊆Rm, is called the topology on S0.

The important concept of “topological equivalence” will be specified in the
following section, after defining continuous mappings between topological
spaces.

2.6 Continuous and Differentiable Functions; Length of a Curve 43

Fig. 2.8 Left: A perspective projection from the centre of the open (i.e., not containing its frontier)
half-sphere onto a plane tangent to the half-sphere (which is parallel to the base of the hemisphere)
defines a homeomorphism; point p maps onto point q . Right: Projection of a triangle onto a circle
[R. Klette and A. Rosenfeld, 2004]

2.6 Continuous and Differentiable Functions; Length of a Curve

Consider a function f from a domain D ⊆ R into R. Informally speaking, f is
continuous on D iff, for a1, a2 ∈ D, values f (a1) and f (a2) are “close” to each
other if a1 and a2 are close to each other. More formally:

for any ε > 0 there is some δ > 0 such that |f (a1) − f (a2)| < ε, for any a2 ∈ D with
|a1 − a2| < δ.

This says that the open δ-neighbourhood of a1 is mapped into an open ε-neighbour-
hood of f (a1). An exact general definition of continuous functions is as follows:

Definition 2.15 A function f from a topology on S0 into a topology on S1 is called
continuous iff, for any open set S ⊆ S1, the set f −1(S) = {a ∈ S0 : f (a) ∈ S} is also
open in S0.

In the previous section, we defined topologies on Euclidean spaces R
m, for

1 ≤ m ≤ 3. A continuous function maps one topology (or topological space) into
another.

Definition 2.16 A function f from a topology on S0 into a topology on S1 is called
a homeomorphism iff it is one-to-one, onto S1, continuous, and f −1 is also contin-
uous.

A homeomorphism allows us to map sets one-to-one “smoothly” from S0 into S1
and also “backward”, from all S1 into S0.

Definition 2.17 Two sets S0 and S1 are topologically equivalent iff they can be
mapped by a homeomorphism from S0 onto S1.

For example, the Euclidean plane R
2 is topologically equivalent to an open half-

sphere, and a triangle (i.e., just the polyline) is topologically equivalent to a circle;
see Fig. 2.8. A circle with one point removed is topologically equivalent to R1.
The base sets of these examples of topological spaces are all open with respect to

44 2 Deltas and Epsilons

their topology, but not necessarily in the topology on the whole Euclidean space.
Any compact (i.e., bounded and closed) subset of Rm, m ≥ 1, defines a topological
space. Simple polygons or simple polyhedra are compact sets. The following is a
basic theorem in combinatorial topology:

Theorem 2.3 All simple polygons are topologically equivalent to a closed disk, and
all simple polyhedra are topologically equivalent to a closed sphere.

Derivatives Let f be a function from R into R. The derivative f ′(x) is the slope
of the tangent to the graph of a function f at (x, f (x)), defined by the limit

f ′(x) = df (x)

dx
= lim

ε→0

f (x + ε) − f (x)

ε

of Newton’s difference quotient4 of function f at x. If this limit is defined for all x

and x +ε in [a, b], then f is not only continuous but also differentiable at x ∈ [a, b].
Now assume that f is a function in variables x1, x2, . . . , and xm; the partial

derivative of f with respect to variable xi is denoted and defined by

∂f (x1, x2, . . . , xm)

∂xi

= lim
ε→0

f (x1, . . . , xi + ε, . . . , xm) − f (x1, . . . , xi, . . . , xm)

ε
.

For example, the polynomial p(λ1, λ2, λ3) = 4λ2
1λ2 + λ1λ3 + 5λ3

2λ3 has the partial
derivative 8λ1λ2 + λ3 with respect to λ1, 4λ2

1 + 15λ2
2λ3 with respect to λ2, and

λ1 + 5λ3
2 with respect to λ3.

Length of a curve In 2D with rectangular Cartesian coordinates, consider a pa-
rameterised curve γ (λ) = (x(λ), y(λ)), for a ≤ λ ≤ b. Denote the derivatives of
x(λ) and y(λ) by ẋ and ẏ.

Definition 2.18 The length of the curve γ (λ) in 2D is defined as

L(γ) =
∫ x(b)

x(a)

√

1 +
(

dy

dx

)2

dx.

The integral over x gives signed length of any part of the curve for which y is a
single-valued function of x. The following integral over λ gives positive length over
a general parameterised curve:

L(γ) =
∫ b

a

√

ẋ2 + ẏ2 dλ.

In 3D, consider a parameterised curve γ (λ) = (x(λ), y(λ), z(λ)), for a ≤ λ ≤ b.
Denote the derivative of z(λ) by ż.

4Named after Isaac Newton (1642–1727 in the Julian calendar, which was then used in England).

2.7 Calculating a Zero of a Continuous Function 45

Definition 2.19 The length of the curve γ (λ) is defined by

L(γ) =
∫ b

a

√

ẋ2 + ẏ2 + ż2 dλ.

In 2D or 3D, the integral over λ gives the same length of a curve for all rectan-
gular Cartesian coordinate axes.

Example 2.3 Consider a line segment between points p = (px,py,pz) and q =
(qx, qy, qz). A parameterised form of the segment is given by γ (λ) = p +λ(q −p),
for 0 ≤ λ ≤ 1. We obtain that x(λ) = px + λ(qx − px), and ẋ = qx − px , with
similar coordinate differences for ẏ and ż. It follows that the length L(γ) equals (as
expected) the Euclidean distance between p and q . �

The example shows that the definition of the length of a path (see Defini-
tion 1.7) is consistent with the general definition of the length of a curve.

2.7 Calculating a Zero of a Continuous Function

Continuous functions are important in a numerical context. For example, sometimes
we want to calculate a zero x of a continuous function f (i.e., f (x) = 0), defined
on a domain D ⊂ R, without having a general formula for calculating those zeros
(compare Sect. 1.4; such a general formula may even not exist).

Assume a continuous function f that is defined in the interval [a, b], with a < b,
and that satisfies f (a)f (b) < 0. Bolzano’s Theorem proves that f has at least one
zero in [a, b].
n-section method A straightforward method is to subdivide [a, b] uniformly into
n > 0 sections of equal length and to test f at the resulting endpoints of these
sections; see Fig. 2.9.

Binary search is a general strategy for reducing time in a search routine: di-
vide the search space recursively into halves and apply the search criterion at
borders of the resulting subspaces.

Binary-search method We replace the subdivision into n equal sections by an
iterated division into halves, testing the sign of the product of two f -values once
(for the left endpoint of the current segment and its midpoint). We know that there
is at least one zero of f somewhere in the current segment, and this product tells us
whether we have to continue the search in the left half of the segment or in the right
half. The search stops when the value at the midpoint is sufficiently close to zero.

46 2 Deltas and Epsilons

Algorithm 4 (n-Section Method)
Input: Reals a and b, integer n, an accuracy constant ε > 0; we also have a way to
calculate f (x), for any x ∈ [a, b].
Output: Value c ∈ [a, b] such that |f (c)| < ε.

1: Set flag = false and i = 0.
2: while i < n do
3: if |f (a + i · (b − a)/n)| < ε then
4: Let c = a + i · (b − a)/n, i = n, and flag = true.
5: end if
6: end while
7: if flag = false then
8: “Value of n was to small.”
9: end if

Fig. 2.9 n-section method for finding the zeros of a continuous function f satisfying
f (a)f (b) < 0

Algorithm 5 (Binary Search Method)
Input and Output as for Algorithm 4.

1: Set l = a and r = b.
2: while |f (l + (r − l)/2)| ≥ ε do
3: if f (l) · f (l + (r − l)/2) < 0 then
4: r = l + (r − l)/2
5: else
6: l = l + (r − l)/2
7: end if
8: end while

Fig. 2.10 Binary-search method for finding zeros of a function f satisfying f (a)f (b) < 0

That binary-search method is much more time-efficient than the ‘crude’ n-section
method. See Fig. 2.10 for pseudocode. It finds always a zero within the predefined
accuracy limit.

Newton–Raphson method Regarding the calculation of zeros of f , let us sup-
pose that we also have access to a calculation of derivatives f ′(x), for x ∈ [a, b].
The algorithm is shown in Fig. 2.11.5 Values of the derivative may be approximated
by difference quotients.

5It is named after Isaac Newton (see footnote on page 44) and Joseph Raphson (about 1648–about
1715).

2.8 Cauchy’s Mean-Value Theorem 47

Algorithm 6 (Newton–Raphson Method)
Input: Reals a and b; we also have a way to calculate f (x) and f ′(x), for any
x ∈ [a, b].
Output: Value c ∈ [a, b] as an approximate zero of f .

1: Let c ∈ [a, b] be an initial guess for a zero.
2: while STOP CRITERION = false do
3: Replace c by c − f (c)

f ′(c)
4: end while

Fig. 2.11 Newton–Raphson method for finding one zero of a smooth function f satisfying
f (a)f (b) < 0, and having a derivative of constant sign in [a, b]

If f is a smooth function then the Newton–Raphson method is more time-
efficient than the binary search method.

The initial value of c can be specified by a small number of binary-search steps
for reducing run-time. A small ε > 0 is used for specifying the stop criterion in the
Newton–Raphson method (i.e., “|f (c)| > ε ?”).

The caption of Fig. 2.11 states a condition which ensures that f has a single zero
z in (a, b)—but the Newton–Raphson method will converge only if c is ‘sufficiently
close’ to z. There is no practical way of deciding beforehand that c will give con-
vergence to z, unless f satisfies additional conditions (which are not easy to test
in general). For instance, apply Newton–Raphson to a quite simple function, and
the values of c for which the algorithm does converge give the Mandelbrot set. If
f satisfies the additional condition that f ′′(x) has constant sign in [a, b], then, if
f (b) has the same sign as f ′′(x), the startpoint c = b gives convergence to z, but
otherwise the startpoint c = a gives convergence to z.6

2.8 Cauchy’s Mean-Value Theorem

The line segment (a, f (a))(b, f (b)) is a chord of the graph of f , and f (b)−f (a)
b−a

is
the slope of this chord; see Fig. 2.12.

For a < b, assume a continuous function f that maps the closed interval [a, b]
into R. Let f be differentiable on the open interval (a, b). Cauchy’s Mean-Value
Theorem says that there exists a real c, a < c < b, such that

f ′(c) = f (b) − f (a)

b − a
.

6This paragraph was provided by Garry Tee, who also pointed out that a clear account of such con-
vergence conditions (with illustrations) is given in Sim Borisovich Norkin’s textbook The Elements
of Computational Mathematics, Pergamon Press, Oxford, 1965.

48 2 Deltas and Epsilons

Fig. 2.12 Graph of a
function f with a chord
pq = (a, f (a))(b, f (b)). The
dashed line shows the tangent
at (c, f (c))

This theorem is not difficult to show;7 basically, it says that there is a c such that the
tangent at (c, f (c)) is parallel to the chord (a, f (a))(b, f (b)). In Fig. 2.12, there
are two different points (c, f (c)) possible and only one of those is shown.

For the Newton–Raphson method it follows (from the mean-value theorem) that,
if f (a) and f (b) have different signs and f ′(x) has a constant sign on [a, b], then
f has exactly one zero in (a, b).

2.9 Problems

Problem 2.1 Assume that we want to measure the length of straight line segments
in the plane in a regular orthogonal grid after digitising them as follows (the so-
called grid intersection digitisation): go on the given straight line segment from one
end to the other; for every intersection of a grid line with the straight line, take the
closest grid point as the next grid point (if there are two at equal distance, decide for
the one closer to the origin); this maps a straight line segment into a polyline with a
finite number of vertices (at grid points); see Fig. 2.13 for three examples.

Assume that the regular orthogonal grid has unit distance between grid lines. The
resulting polylines have segments either of length 1 or of length

√
2. Use the total

length of the polyline (i.e., sums of 1s and of
√

2s) as an estimator for the length of
the original straight line segments. Does this define a δ-approximation? For what δ?
Is this an algorithm with guaranteed error limits?

Problem 2.2 Show that any 2nd order polynomial f (x) = a0 + a1x + a2x
2 is

convex over the entire real line if a2 > 0, and that any 3rd order polynomial
f (x) = a0 + a1x + a2x

2 + a3x
3 is not convex over the entire real line if a3 > 0.

Problem 2.3 (Programming exercise) Your program compares two approaches for
measuring the length of a curve.

(1) Consider a parabola y = c0 + c1x + c2x
2, allowing that parameters c0, c1 and

c2 be selected by a user of the program.

7Vatasseri Paramesvara (ca. 1380–1460) studied already mean-value formulas for the sine func-
tion. The theorem is due to A.-L. Cauchy (see footnote on page 37).

2.10 Notes 49

Fig. 2.13 Top: Three straight
line segments with assigned
grid points when using
grid-intersection digitisation.
Bottom: Resulting polylines

(2) Arclength of a parabola can readily be expressed in terms of elementary func-
tions; see Definition 2.18. Use this analytic approach for calculating the ar-
clength for a = 0 and b = 100.

(3) Now, in the main part of your program, provide an alternative way for measuring
this length based on approximating the graph of the given polynomial on the
interval [0,100] by a polyline at uniformly distributed x-values; take the sum
of the lengths of all straight segments of the polyline as your approximate length
estimate.

For (3), use different numbers ni > 0 of uniformly distributed x-values, thus
producing different length estimates Li . Discuss the speed of convergence of those
estimates towards the length obtained in Step (ii) in dependence of an increase in
values ni , using a sufficiently large number of ni -values.

For an additional challenge, replace (i) by the following: For generating the input
(i.e., the curve), now specify a 3rd order polynomial p(x) by selecting parameters
c0, c1, c2, and c3.

Calculate the length L(γ) of the graph γ (λ) = (x(λ),p(x(λ))) of this polyno-
mial, with 0 ≤ λ ≤ 1, x(0) = 0, and x(1) = 100, now by using a numerical inte-
gration procedure for the integral in Definition 2.18. See Fig. 2.14 for one 3rd order
polynomial and two examples with n1 = 5 and n2 = 10, as of relevance for Step (iii).

2.10 Notes

There are many different proposals for iterative thinning procedures; see, e.g., [9].
For materials on approximation algorithms, see the books [3, 7, 8, 12, 17] and

the website [14]. For Definition 2.2, see, e.g., [7]. [6] describes a so-called “2-
approximation linear algorithm” for calculating a shortest path on the surface of

50 2 Deltas and Epsilons

Fig. 2.14 Top: Graph of a
3rd-order polynomial
approximated by a polyline
defined by five uniformly
sampled values. Bottom: Ten
uniformly sampled values

a convex polyhedron, which is an example of an algorithm without guarantee. Ex-
ample 2.1 (the Papadimitriou algorithm) is due to [13]; published in 1985, this is the
first δ-approximation algorithm for solving a general 3D ESP problem.

Definition 2.5 differs from those in [3, 8, 12]; δ-approximation algorithms are
considered in [7]. Some books, such as [3, 7, 8, 12, 14], also consider so-called
“absolute” or “relative approximation”, and so forth. These are schemes that are ba-
sically not much different from the concept of δ-approximation; for this reason we
will not recall these concepts, and use δ-approximation as the concept of approxi-
mation algorithms in general in this book.

For basic definitions and theorems of mathematical analysis (Cauchy sequences,
convergence, and so forth), see, e.g., [4]. Topology was introduced in [11]; for text-
books on topology, see, e.g., [1, 2]. For topology and the length of curves, see also
[10]; this book also discusses topology and the grid intersection digitisation as used
in Problem 2.1. For a discussion of convex functions, see [5, 15, 16].

References

1. Aleksandrov, P.S.: Combinatorial Topology, vol. 1. Graylock Press, Rochester (1956)
2. Aleksandrov, P.S.: Combinatorial Topology, vol. 2. Graylock Press, Rochester (1957)
3. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.:

Complexity and Approximation. Springer, New York (1999)
4. Bartle, R.G., Sherbert, D.: Introduction to Real Analysis, 2nd edn. Wiley, New York (2000)
5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge,

UK (2004)
6. Hershberger, J., Suri, S.: Practical methods for approximating shortest paths on a convex poly-

tope in R
3. In: Proc. ACM-SIAM Sympos. Discrete Algorithms, pp. 447–456 (1995)

7. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problems. PWS, Boston
(1997)

8. Hromkovic̈, J.: Algorithms for Hard Problems. Springer, Berlin (2001)

References 51

9. Klette, G.: Skeletal Curves in Digital Image Analysis. VDM, Saarbrücken (2010)
10. Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)
11. Listing, J.B.: Vorstudien zur Topologie. Göttinger Studien, 1. Abteilung math. und naturw.

Abh., pp. 811–875. Several missing proofs were later published by Tait, P.G.: On knots. Proc.
R. Soc. Edinb. 9, 306–317 (1875–1878). A more recent review: Tripodi, A.: L’introduzione
alla topologia di Johann Benedict Listing. Mem. Accad. Naz. Sci. Lett. Arti Modena 13, 3–14
(1971)

12. Mayr, E.W., Prömel, H.J., Steger, A. (eds.): Lectures on Proof Verification and Approximation
Algorithms. Springer, Berlin (1998)

13. Papadimitriou, C.H.: An algorithm for shortest path motion in three dimensions. Inf. Process.
Lett. 20, 259–263 (1985)

14. Rabani, Y.: Approximation algorithms. http://www.cs.technion.ac.il/~rabani/236521.04.wi.
html (2006). Accessed July 2011

15. Roberts, A.W., Varberg, V.D.: Convex Functions. Academic Press, New York (1973)
16. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
17. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

Chapter 3
Rubberband Algorithms

There are two ways of constructing a software design: One way
is to make it so simple that there are obviously no deficiencies,
and the other way is to make it so complicated that there are no
obvious deficiencies. The first method is far more difficult.

Sir Charles Antony Richard Hoare (born 1934)

This chapter introduces a class of algorithms, called rubberband algorithms
(RBAs). They will be used frequently in the remainder of this book.

3.1 Pursuit Paths

Pursuit paths have attracted quite some attention in mathematics, for optimising
tactics to catch, for example, a pursued animal.

Definition 3.1 A pursuee and a pursuer move in a plane. The pursuer describes a
pursuit path by being always directed toward the pursuee.

A pursuit path is uniquely defined by the movement of the pursuee, its distance to
the pursuer at the time when the pursuit starts, and the chasing tactics (e.g., uniform
velocity of pursuee and pursuer). To be precise, ‘being always directed toward the
pursuee’ means that the tangent of the pursuit path at time t points to the position of
the pursuee at time t .

Example 3.1 A hare starts at the origin o = (0,0) of the Euclidean plane and runs
along the y-axis. A pursuing dog starts chasing the hare at the same time at position
p = (k,0). The chasing tactic is to maintain constant distance from the hare. The
pursuit path of the dog is the tractrix

y = ±k loge

(
k + √

k2 − x2

x

)

−
√

k2 − x2.

F. Li, R. Klette, Euclidean Shortest Paths,
DOI 10.1007/978-1-4471-2256-2_3, © Springer-Verlag London Limited 2011

53

54 3 Rubberband Algorithms

Fig. 3.1 The pursuit path of the second runner shortens the path of the followed first runner. Run-
ners 3, 4, and 5 shorten their paths even more (architectural plan of the monastery in Bebenhausen
near Tübingen)

That was the first occasion in which a differential equation was solved in terms of
known functions.1 �

In extension of this classical problem, let a first runner be pursued by several
other runners, where each runner chases the previous runner; see Fig. 3.1 for an
example. The runners have to cross line segments that define steps (i.e., particular
attractions in the sense of an ESP problem) identified by the path of the first run-
ner. Figure 3.2 shows 18 steps, where some are degenerated into single points (i.e.,
corners or tangential points).

We know that the shortest path between two points is a straight segment. Thus, an
ESP connecting those steps in sequence will be a polyline; see Fig. 3.2. Interestingly
it can be shown that pursuit paths converge toward a polyline, assuming that all
runners move with the same constant speed.

We assume that the first runner starts at time τ1 = 0 and selects a path γ1 from p

in one step Sj to point q in the next step Sj+1 (e.g., between steps S16 and S17 in
Fig. 3.2). The second runner starts at p at time τ2 > τ1 = 0 and selects a path γ2

1Florimond de Beaune (1601–1652) mapped physical problems, such as this pursuit problem, into
a mathematical description. His derivation of the tractrix was done about 1639.

3.1 Pursuit Paths 55

Fig. 3.2 A sequence of 18 steps S1, S2, . . . , S18 constrains a path. The shown path is a polyline,
consisting of straight segments between subsequent steps. This path is not yet of minimum length;
vertices of the polyline may still slide (a little) within steps for further optimisation

while chasing the first runner. The third runner starts at p at time τ3 > τ2, and so
forth. For i ≥ 1,

γi = {(
xi(λ), yi(λ)

) : τi ≤ λ ≤ Ti

}

for some Ti > 0, with (xi(τi), yi(τi)) = p and (xi(Ti), yi(Ti)) = q . It follows that
the path γi+1 of the (i + 1)st runner is defined by the solution of the differential
equation

dγi+1(λ)

dλ
= γi(λ) − γi+1(λ)

de(γi(λ), γi+1(λ))

for λ ≥ τi+1 and γi(λ) �= γi+1(λ), with the initial condition that γi+1(τi+1) = p.
If the chaser catches up with the chased runner then both paths are assumed to be

identical until reaching point q . We provide the following theorem2 without proof:

Theorem 3.1 For i = 1,2, . . . , the sequence of pursuit paths γi , defined by an ini-
tial path γ1 from p to q and start times τi , converges to the straight segment pq .

Convergence is defined by considering the maximal Euclidean distance between
points γi(λ), for τi+1 ≤ λ ≤ Ti , and the straight segment pq .

2Published by Alfred M. Bruckstein in 1993; see [3].

56 3 Rubberband Algorithms

Fig. 3.3 This figure shows a
game: Segments S1 to S9
need to be visited in the given
order, back from S9 to S1.
Each segment offers a finite
number of vertices (here: nine
screws), and the path (here:
a rubberband) needs to be of
minimal length. Obviously,
this game could be
programmed to be played on
a screen

3.2 Fixed or Floating ESP Problems; Sequence of Line Segments

Assume that we have an ordered set of steps S1, S2, . . . , Sk , either in 2D or 3D Eu-
clidean space. Some of the steps may be defined by the given sequence of attractions
(see Definition 1.14), others by identified ‘gates’ or ‘bridges’ that need to be crossed
by any shortest, or approximately-shortest path.

Definition 3.2 We have two cases for defining an ESP that visits those steps in the
given order:

Fixed ESP Problem: The ESP needs to run from p to S1, then S2, and so forth,
ending at Sk , and finally point q , for given points p and q .

Floating ESP Problem: The ESP has to form a loop. It visits S1, then S2, and so
forth, finally Sk , and it returns to the already defined vertex in S1, without having
given points p and q .

Figure 3.3 illustrates a floating ESP problem. For identifying an ESP, we may
start at any step, select a vertex there, continue with selecting a vertex on the next
step, and so forth. The figure illustrates a case where there is only a finite number
of options for selecting a vertex on each step. This can be modelled by a weighted
undirected graph, and the Dijkstra algorithm solves the problem of finding an ESP.

Let S1, S2, . . . , and Sk be k straight line segments, k ≥ 1, in the Euclidean 3D
space, defining an ordered set of steps. Any line segment is closed (i.e., it contains
both of its endpoints) if not otherwise stated. We consider a fixed ESP problem. Let
S0 = {p} and Sk+1 = {q} be two more steps; defined this way only for technical
reasons.

Let L be the length of a shortest path, starting at p, then visiting segments S1, . . . ,
and Sk in order, and finally ending at q . The task is to compute such a path of
length L, or (at least) a path whose length is “very close” to L in the sense of
Sect. 2.1.

3.3 Rubberband Algorithms 57

Fig. 3.4 Points p and q , an
ordered set of steps
[S1, . . . , S6], and an initial
path 〈p,p1,p2, . . . , p6, q〉,
where points pj have been
selected as being the
midpoints of those segments
Sj , for j = 1,2, . . . ,6

Theorem 3.2 There is exactly one shortest path for the fixed ESP problem of k

pairwise disjoint line segments.

This uniqueness theorem3 is cited without proof here, but will be also verified
later in this chapter by our discussion of an approximate algorithm for calculating
such a shortest path.

Figure 3.4 illustrates a possible initialisation (in 2D only) for solving this fixed
ESP problem. A first set of points pj is here initialised by selecting, for example,
the midpoints of segments Sj , for j = 1, . . . ,6. This can be then further processed
by an iterative ESP algorithm; see the definition of the general control structure
in Fig. 2.3, with the intention that the resulting algorithm is also approximate; see
Definition 2.5.

3.3 Rubberband Algorithms

Assume that the dashed polyline in Fig. 3.4 is a rubberband that can freely move
on the given steps. For example, point p4 would slide into the endpoint on the right
of S4 if p5 and p3 are considered to be fixed. Actually, point p3 will move to the
left on S3, thus limiting the possible space where p4 can slide in on S4.

A rubberband algorithm attempts to emulate the behaviour of such a flexible
band on a given set of steps.

Definition 3.3 A rubberband algorithm (RBA) is an iterative ESP algorithm where
a path through all steps (in the given order) is selected for initialisation; in each
iteration i ≥ 1, this path is transformed into a new path such that the length Li of
the path is reduced from length Li−1.

Thus, the lengths Li of the sequence of calculated paths are monotonously de-
creasing; they are also lower bounded by the minimum length L. With Corollary 2.3

3First published by Micha Sharir and Amir Schorr in 1986; see [15].

58 3 Rubberband Algorithms

we have thus immediately the following:

Corollary 3.1 The sequence {Li} of lengths, for i = 1,2, . . . , calculated in itera-
tions of an RBA, is convergent.

For a given RBA it remains to show that the lengths calculated by this RBA
are actually converging to the minimum length L, for any input, and not to
any other real larger than L.

There are, obviously, many options for initialisation. For example, if steps are
line segments, then we may always choose one of the end points of the segments,
always the midpoint, or always a random point on each line segment. For a given
RBA, the convergence behaviour needs to be studied with respect to the selected
initialisation method for specifying the first path.

The convergence behaviour of an RBA must not depend on the selected ini-
tialisation method.

In every iteration i ≥ 1, the update of the calculated path is typically done by
subsequent local optimisations, considering three steps Sj−1, Sj , and Sj+1, for j =
1, . . . , k, and optimising locally the position of the vertex of the path on step Sj . An
iteration i ≥ 1 is finished when arriving at j = k.

A local optimisation approach using three steps is only one option: we
could also consider any fixed number 2l + 1 ≥ 3 of subsequent line segments,
Sj−l , . . . , Sj , . . . , Sj+l , and optimise positions of vertices on 2l − 1 segments
Sj−l+1, . . . , Sj , . . . , Sj+l−1.

However, the use of l > 1 will increase the complexity of local optimisation, not
only with respect to implementation, but also (and this is actually more important
for our discussion of RBAs) with respect to convergence proofs. Thus we decided
for l = 1 (i.e., only optimising a vertex on one step Sj), and we may have potentially
a few more iterations compared with l > 1.

In this book, local optimisation of RBAs is for three subsequent steps.

In each iteration i, we calculate a path of length Li . In the stop criterion, we may
compare this length with the length of the path calculated in the previous iteration,
and the standard way is by using an accuracy constant ε. If the difference between
previous length and current length is smaller than or equal to ε then we stop and the
result is a path of length Lfinal = Li .

We illustrate the concept of rubberband algorithms by providing in the next sec-
tion a first example of an RBA; there will be many more RBAs in this book, also

3.4 A Rubberband Algorithm for Line Segments in 3D Space 59

Fig. 3.5 Local upper error bound dε between a path (full line) and an optimal path (dashed line)

for steps which are not straight line segments. The actual challenge is not only to
ensure the convergence of the Lis toward the minimum length L (say, for any kind
of initialisation):

We need to ensure that the resulting time complexity is “feasible” which
means that the algorithm is of relevance for real-world applications.

For example, a κ-linear solution (see Sect. 1.3) is feasible in dependency of the
practical behaviour of function κ(ε) and the size of the asymptotic constant c > 0 of
the linear component in O(n); a theoretical run-time analysis of an algorithm needs
to be accompanied by experiments illustrating the actual run-time behaviour.

It is practically important to understand the relation between the chosen ε and
the actual accuracy of the calculated path ρfinal with length Lfinal. See Fig. 2.4; the
difference Lfinal − L from the true minimum value L might be larger than ε.

Let dε ≥ 0 be the upper error bound for distances between any vertex pi in the
calculated path and its corresponding optimal vertex p′

i in step Si which means that
de(pi,p

′
i) ≤ dε , for all i = 0,1, . . . , k − 1; see Fig. 3.5.

Definition 3.4 The upper bound dε characterises the local accuracy of an RBA,
and the difference Lfinal − L between the length Lfinal of a calculated path and the
optimum length L of the ESP characterises the global accuracy.

3.4 A Rubberband Algorithm for Line Segments in 3D Space

We continue the discussion of the fixed line-segment ESP problem in 3D space.
The input is defined by a sequence of k > 0 pairwise disjoint line segments
S1, S2, . . . , Sk in 3D space, and two points p and q that are not on any of the k

segments. Let S0 = {p} and Sk+1 = {q}. We also use an accuracy constant ε > 0.
For a pseudocode of the algorithm, see Fig. 3.6. We specify the δ-value of the

output further below. The given RBA is an example of an iterative ESP algorithm.
Figure 3.7 illustrates all steps for the first iteration. The initial configuration is

shown at the top, left. The first iteration starts at the top, right and it ends at the

60 3 Rubberband Algorithms

Algorithm 7 (RBA for the fixed ESP problem of pairwise disjoint line segments in
3D space)
Input: A sequence of k pairwise disjoint line segments S1, S2, . . . , Sk in 3D; two
points p and q that are not on any of those segments, and an accuracy constant
ε > 0.
Output: A δ-approximation path 〈p,p1,p2, . . . , pk, q〉 of an ESP.

1: For each j ∈ {0,1, . . . , k + 1}, let pj be a point Sj .
2: Lcurrent ← ∑k

j=0 de(pj ,pj+1), where p0 = p and pk+1 = q; and let
Lprevious ← ∞.

3: while Lprevious − Lcurrent ≥ ε do
4: for each j ∈ {1,2, . . . , k} do
5: Compute a point qj ∈ Sj such that de(pj−1, qj) + de(qj ,pj+1) =

min{de(pj−1,p) + de(p,pj+1) : p ∈ Sj }
6: Update the path 〈p,p1,p2, . . . , pk, q〉 by replacing pj by qj .
7: end for
8: Let Lprevious ← Lcurrent and Lcurrent ← ∑k

j=0 de(pj ,pj+1).
9: end while

10: Return {p,p1,p2, . . . , pk, q}.
Fig. 3.6 RBA for solving the fixed ESP problem for a sequence of pairwise disjoint line segments
in 3D space. Note that the initialisation remains unspecified; we show below that the result is “not
much” influenced by the chosen initial path

bottom, left. The first step of the second iteration (bottom, right of Fig. 3.7) defines
already the shortest path (i.e., not only an approximate, but an accurate solution).
Points p2, . . . , p6 cannot move into any ‘better’ position anymore. At the end of the
second iteration, we would have that Lcurrent = Lprevious, saying that this is already
the optimum. This means that we could replace a positive ε, such as, for example,
ε = 10−15 even (theoretically; ignoring numerical inaccuracies of a given computer)
by ε = 0 for this input example. Value ε = 0 or a case of Lcurrent = Lprevious defines
an accurate result rather then just an approximate result.

However, such a (quick) termination with an accurate result is an exception in
the general set of possible input configurations. In Sect. 3.9, we even provide an
example for an ESP problem in 3D space where no RBA can ever stop (after any
finite number of iterations) with an exact solution.

3.5 Asymptotic and Experimental Time Complexity

We provide a theoretical analysis of the time complexity of Algorithm 7. This was
prepared at a general level by Eq. (2.2), for any iterative ESP algorithm, listing total
time f (x), time finitialisation(x) for initialisation, the number imax(x) of iterations,
and the time fupdate(x) for updates. We have x = (k, ε), combining the input com-
plexity k (i.e., here the number of line segments) and the free parameter ε.

3.5 Asymptotic and Experimental Time Complexity 61

Fig. 3.7 2D illustration of the provided RBA for line segments in 3D space

62 3 Rubberband Algorithms

Table 3.1 Three examples of experimental results, for three randomly-generated sequences of
5,000 line segments in 2D space, and 50 randomly-generated initialisations for each sequence.
Run times and initial lengths are rounded to nearest integers

min iterations 2,039 2,888 2,133

max iterations 3,513 3,243 8,441

min run time 44 s 63 s 48 s

max run time 78 s 70 s 188 s

min initial length 827,430 822,952 822,905

max initial length 846,928 841,860 839,848

min final length 516,994.66273890162 513,110.99723050051 512,768.28438387887

max final length 516,994.66273896693 513,110.99723056785 512,768.28457121132

The update is a sequence of k local optimisations, each involving three line seg-
ments. Each local optimisation requires only constant time. Thus, one (global) up-
date is in O(k). The initialisation also takes O(k).

It only remains to analyse the number imax(k, ε) of necessary iterations. This is
linearly dependent on the difference L0 − L (note: we have that imax(ε) = L0−L

ε
)

where L is the length of an optimal path and L0 the length of the initial path. Ob-
viously, the difference L0 − L is influenced by the distribution of the k segments in
3D space, but variable k does not appear in this term. Thus, the number of iterations
is given by

imax(ε) = L0 − L

ε
.

In summary, Algorithm 7 runs in time imax(ε)O(k), that is, it is κ-linear, for the
function κ(ε) = imax(ε).

We provide a few measured run times for an implementation4 of Algorithm 7.
The program was running several thousands of times on randomly-generated se-
quences of line segments S1, S2, . . . , Sk , using several randomly-generated initiali-
sations for each sequence.

For example, Table 3.1 shows results for three randomly-generated sequences
of 5,000 line segments and ε = 10−15. Each column summarises results for one of
these three sequences where Algorithm 7 was running on 50 different randomly-
generated initial paths.

Regarding accuracy, the table shows that for each of the three sequences, al-
though lengths of initial paths vary significantly, the lengths of final paths are ap-
proximately identical. Theoretically they should be identical (see lemmas and The-
orem 3.3 in the next section); the table illustrates a degree of numerical inaccuracy
that we face in practise. The results show that the implementation provides “nearly”
isolated solutions in [0,1] as we will show in the next section for the equational
system formed by Eq. (3.4), for j = 1,2, . . . , k. The uniqueness of the ESP for the
considered problem was stated in Theorem 3.2 before.

4The source code can be downloaded at www.mi.auckland.ac.nz; follow the link at the 2009 MI-
tech Report 51.

3.6 Proof of Correctness 63

Fig. 3.8 Three subsequent
line segments of the given
sequence of steps

Regarding time complexity, the table illustrates that we can expect about k/2
iterations for k line segments and ε = 10−15. On 2010 computer technology, this
was about one minute for 5,000 line segments, where the implementation used was
straightforward, not aiming at any run-time optimisation.

3.6 Proof of Correctness

We have to show that the repeated local optimisation of Algorithm 7 ensures that
the calculated path converges as ε → 0 to a shortest path, independent of the chosen
initialisation.

We provide a few auxiliary results first. Let S0, S1, and S2 be three pairwise
disjoint line segments of local optimisation, the two endpoints of Si being ai =
(a1i , a2i , a3i) and bi = (b1i , b2i , b3i). Points pi ∈ Si , for i = 0,1,2, are defined by
individual values λi as follows:

pi(λi) = ai + (bi − ai)λi

= (
a1i + (b1i − a1i)λi, a2i + (b2i − a2i)λi, a3i + (b3i − a3i)λi

)

with 0 ≤ λi ≤ 1. Let

d(λ0, λ1, λ2) = de

(
p1(λ1),p0(λ0)

) + de

(
p1(λ1),p2(λ2)

);
see Fig. 3.8. The equation

∂d(λ0, λ1, λ2)

∂λ1
= 0 (3.1)

identifies a minimum of d(λ0, λ1, λ2), and there is actually only one minimum.
More about this later; at first we consider consequences of Eq. (3.1).

Definition 3.5 If an expression is derived from a finite number of polynomials in x

by only applying operations “+”, “−”, “×”, “÷”, or “√” finitely often then we say
that this expression is a simple compound of polynomials in x.

Lemma 3.1 Equation (3.1) implies that λ2 is a simple compound of polynomials of
λ0 and λ1.

64 3 Rubberband Algorithms

Proof The formula

de

(
p1(λ1),p0(λ0)

)2

=
3∑

j=1

([
aj1 + (bj1 − aj1)λ1

] − [
aj0 + (bj0 − aj0)λ0

])2 (3.2)

can be simplified: Without loss of generality, we can assume that S1 is parallel to one
of the three coordinate axes. It follows that only one element of the set {bj1 − aj1 :
j = 1,2,3} is not equal to 0, and the other two are equal to 0. Thus, we can assume
that the expression on the right of Eq. (3.2) can be written in the form

{[
a11 + (b11 − a11)λ1

] − [
a10 + (b10 − a10)λ0

]}2

+ {
a21 − [

a20 + (b20 − a20)λ0
]}2

+ {
a31 − [

a30 + (b30 − a30)λ0
]}2

.

Thus, we have that

de(p1,p0) = |A1|
√

(λ1 + B0λ0 + C0)2 + D0λ
2
0 + E0λ0 + F0

where A1 is a function of aj1 and bj1; B0, C0, D0, E0 and F0 are functions of aj0,
bj0, aj1 and bj1, all for j = 0,1,2. Analogously, we have that

de(p1,p2) = |A1|
√

(λ1 + B2λ2 + C2)2 + D2λ
2
2 + E2λ2 + F2

with the same A1, and B2, C2, D2, E2, and F2 are now functions of aj1, bj1, aj2
and bj2 for j = 0,1,2. Because of the assumed Eq. (3.1), or equivalently,

∂(de(p1,p0) + de(p1,p2))

∂λ1
= 0,

we have that

λ1 + B0λ0 + C0
√

(λ1 + B0λ0 + C0)2 + D0λ
2
0 + E0λ0 + F0

+ λ1 + B2λ2 + C2
√

(λ1 + B2λ2 + C2)2 + D2λ
2
2 + E2λ2 + F2

= 0.

This equation can be written in the form

Aλ2
2 + Bλ2 + C = 0

where A, B , and C are polynomials in λ0, λ1, and in aj0, bj0, aj1, bj1, aj2 and bj2
for j = 0,1,2. �

All the λ0, λ1 and λ2 are in [0,1]. For keeping λ2 inside of the interval [0,1]
(see Fig. 3.9), let λ2 = 0 if λ2 < 0 when solving Aλ2

2 + Bλ2 + C = 0, and λ2 = 1 if
λ2 > 1; this defines the endpoints of segment S2.

3.6 Proof of Correctness 65

Fig. 3.9 The solution for λ

defines a point (here point
p′

2) on the straight line that is
incident with this step, but
this point may be outside of
the step. Then we take the
nearest endpoint of the step

Lemma 3.2 Equation (3.1) implies that λ1 is a continuous function of λ0 and λ2.

Proof We may translate two points p0(λ0) and p2(λ2), and line segment S1 such
that the endpoint a1 of S1 is identical with the origin. Then rotate p0(λ0), p2(λ2),
and S1 so that the other endpoint b1 of S1 is (also) on the x-axis. Let p0(λ0) =
(p10,p20,p30), p2(λ2) = (p12,p22,p32). After translation and rotation, we have
that a1 = (0,0,0) and b1 = (b11,0,0). Thus, p1(λ1) = (b11λ1,0,0), and

de(p1,p0) =
√

(b11λ1 − p10)2 + p2
20 + p2

30,

de(p1,p2) =
√

(b11λ1 − p12)2 + p2
22 + p2

32.

Equation (3.1) is short for

∂(de(p1,p0) + de(p1,p2))

∂λ1
= 0.

From this we obtain that
b11λ1 − p10

√
(b11λ1 − p10)2 + p2

20 + p2
30

+ b11λ1 − p12
√

(b11λ1 − p12)2 + p2
22 + p2

32

= 0.

This equation has a unique solution

λ1 =
p10

√
p2

22 + p2
32 + p12

√
p2

20 + p2
30

b11(

√
p2

22 + p2
32 +

√
p2

20 + p2
30)

where p0 and p2 are defined by λ0 and λ2, respectively. �

Again, to keep λ1 inside of [0,1], let λ1 = 0 if we have to satisfy λ1 < 0; and let
λ1 = 1 if we have to satisfy λ1 > 1.

We consider the sequence S0, S1, . . . , and Sk+1 of the given k + 2 line segments.
All segments contain their endpoints aj = (a1j , a2j , a3j) and bj = (b1j , b2j , b3j),
for j = 0,1, . . . , k + 1. Points pj ∈ Sj , for j = 0,1,2, . . . , k + 1, can be written as
follows:

pj (λj) = aj + (bj − aj)λj

= (
a1j + (b1j − a1j)λj , a2j + (b2j − a2j)λj , a3j + (b3j − a3j)λj

)

66 3 Rubberband Algorithms

where 0 ≤ λj ≤ 1. Let

d(λ0, λ1, λ2, . . . , λk+1) =
k∑

j=0

de

(
pj (λj),pj+1(λj+1)

)
. (3.3)

Both S0 and Sk+1 are just single points p and q , respectively, with λ0 =
λk+1 = 0. In Eq. (3.3), every λj only appears in two subsequent terms. Thus we
have the following

Lemma 3.3 For each j ∈ {1,2, . . . , k},
∂d(λ0, λ1, λ2, . . . , λk, λk+1)

∂λj

= 0 (3.4)

is equivalent to

∂d(λj−1, λj , λj+1)

∂λj

= 0 (3.5)

where λ1, λ2, . . . , λk are in [0,1].

Equation (3.4) is now related to a global minimum property of the Euclidean path
〈p,p1,p2, . . . , pk, q〉 while Eq. (3.5) is related to a local minimum property of the
same path. Therefore, Lemma 3.3 describes a relationship between global and local
minimum properties of the same path.

We introduce the notions of “isolated” or “interval solutions” for the next lemma.
Let f (x0) = 0, and let f (x) �= 0 for a sufficiently small number ε > 0 and all x �= x0

in the ε-neighbourhood Nε(x0); then we say that x0 is an isolated root or isolated
solution of f (x). If I ⊂ R is a bounded interval, and for all x in I , f (x) = 0, then
we say that I is an interval solution of f .

We generalise those two definitions for the multivariate case: Let f be a function
from Rm into R, for m ≥ 1. Assume that f (p0) = 0, and for a sufficiently small
number ε > 0 and all p �= p0 in the ε-neighbourhood Nε(p0), let f (p) �= 0; then
we say that p0 is an isolated root or isolated solution of f .

Let Ik ⊂ R be a bounded interval of non-zero length; for i = 1,2, . . . , k − 1,

k +1, . . . ,m, the bounded interval Ii ⊂R is possibly just a single point. (I1, I2, . . . ,

Im) is an interval solution of f if for each xk ∈ Ik there exist values xi ∈ Ii , for
i = 1,2, . . . , k − 1, k + 1, . . . ,m, such that f (x1, x2, . . . , xm) = 0. Note that the
important point is that there is at least one interval involved of non-zero length.

Consider m functions f1, . . . , fm, for m ≥ 1. We say that p0 is an isolated solu-
tion for those m functions if p0 is an isolated solution for any of those m functions,
and (I1, I2, . . . , Im) is an interval solution to those m functions if (I1, I2, . . . , Im) is
an interval solution for any of those m functions.

Lemma 3.4 The equational system (3.4), with j = 1,2, . . . , k, implies a unary
equation f (λ1) = 0 which has only a finite number of isolated or interval solutions
in [0,1].

3.6 Proof of Correctness 67

Proof By Lemmas 3.3 and 3.1, λj+1 is a simple compound of polynomials in
λj−1 and λj , denoted by λj+1 = fj (λj−1, λj). Thus, the system formed by
Eq. (3.4) (where j = 1,2, . . . , k) implies an equational system formed by λ2 =
f2(λ0, λ1), λ3 = f3(λ1, λ2), λ4 = f4(λ2, λ3), . . . , λk = fk(λk−2, λk−1), and λk+1 =
fk+1(λk−1, λk).

Note that λ0 = λk+1 = 0. Therefore, f (λ1) is a simple compound of polynomials
in λ1. Function f (λ1) has only a finite number of monotonous intervals in [0,1],
and f (λ1) is differentiable in each of those monotonous intervals.5 Thus, f (λ1) can
be approximately expressed as a linear function in a finite number of monotonous
subintervals in [0,1].

Therefore, function f (λ1) has only a finite number of isolated or interval solu-
tions in [0,1]. �

Let S1, S2, . . . , and Sk be k non-empty subsets of R3; the term

k∏

j=1

Sj = S1 × S2 × · · · × Sk

denotes the cross product. This cross product is a subset of R3k .
Algorithm 7 runs for a limited time, influenced by the chosen accuracy param-

eter ε. It maps an initial path 〈p,p1,p2, . . . , pk, q〉 into a final path with a length
Lfinal, assuming imax iterations until termination. In this sense, Algorithm 7 defines
a unique mapping from

∏k
j=1 Sj into R.

The initial path can also be characterised by λ-values, defining the positions of
those points pj on segments Sj . Let

k∏

j=1

[0,1] = [0,1] × [0,1] × · · · × [0,1]

be the k-dimensional unit cube [0,1]k . Algorithm 7 defines thus also a unique map-
ping from [0,1]k into R.

Lemma 3.5 Function fRBA(λ1, λ2, . . . , λk) is continuous.

Proof This follows from Lemma 3.2, and because Algorithm 7 terminates after a
finite number of steps. �

Lemma 3.6 Function fRBA(λ1, λ2, . . . , λk) maps all [0,1]k into a finite set.

Proof It is sufficient to prove that for each interval solution J of the equational
system formed by Eq. (3.4), with j = 1,2, . . . , k, the function

fRBA(λ1, λ2, . . . , λk) : J → R

5Let f be a function, mapping R into R. Suppose interval J ⊆ I is a subinterval of interval I , and
f is monotonous in J ; then we say that J is a monotonous interval of f in the larger interval I .

68 3 Rubberband Algorithms

has only a finite number of values.
Suppose that f (λ1) = 0, for all λ1 in an interval I ⊆ [0,1], and f (λ1) is defined

as in Lemma 3.4. By Lemma 3.4, d(λ0, λ1, λ2, . . . , λk+1) implies a unary length
function L(λ1), where λ1 is in an interval I ′ ⊆ I , d(λ0, λ1, λ2, . . . , λk+1) is defined
as in Eq. (3.3), and

d[L(λ1)]
dλ1

= 0

for all λ1 ∈ I ′ ⊆ I . This implies that the length function L(λ1) is constant, for all
λ1 ∈ I ′ ⊆ I . Thus, the function fRBA(λ1, λ2, . . . , λk) : J →R has only a finite num-
ber of values. �

Theorem 3.3 If the chosen accuracy constant ε is sufficiently small, then, for any
initial path, Algorithm 7 outputs a unique [1+2(k +1) ·dε/L]-approximation path,
where k is the number of steps, L the optimum length, and dε the local accuracy
bound.

Proof Following Lemma 3.5, Algorithm 7 defines a function fRBA(p1,p2, . . . , pk)

on
∏k

j=1 Sj which is continuous and, following Lemma 3.6, maps into a finite num-
ber of positive real numbers (i.e., the lengths of calculated paths), for any initial
sequence of points p1,p2, . . . , pk sampled in

∏k
j=1 Sj . Therefore, the range of

fRBA(p1,p2, . . . , pk) must be a singleton.
For each j ∈ {0,1, . . . , k}, the error of the difference between de(pj ,pj+1) val-

ues of calculated vertices and de(p
′
j ,p

′
j+1)) values of optimal vertices is at most

2 · dε because of de(pi,p
′
i) ≤ dε . We know that p = p0 = p′

0 and q = pk+1 = p′
k+1.

We obtain that

L ≤
k∑

j=0

de(pj ,pj+1) ≤
k∑

j=0

[
de

(
p′

j ,p
′
j+1

) + 2dε

] = L + 2(k + 1)dε. (3.6)

Thus, the output path is an [1 + 2(k + 1) · dε/L]-approximation path. �

The local upper accuracy bound dε might be specified by applying calculations
as summarised in the proofs of the lemmata prior to this theorem. It is sufficient to
state that

lim
ε→0

dε = 0 (3.7)

at a theoretical level.

Algorithm 7 can calculate paths of any local or global accuracy, only depend-
ing on the chosen accuracy constant ε > 0.

This is the goal for any RBA that is controlled by an accuracy constant ε > 0.

3.7 Processing Non-disjoint Line Segments as Inputs 69

Fig. 3.10 Illustration of two
intersecting line segments

Table 3.2 Number i of
iterations and resulting δs, for
Example 3.2, illustrated by
Fig. 3.10, with p1 = (1,2)

and p2 = (2.5,2) as
initialisation points

i δ

1 −0.8900

2 −0.1752

3 −0.0019

4 −1.293 × 10−5

5 −8.443 × 10−8

6 −5.493 × 10−10

7 −3.574 × 10−12

3.7 Processing Non-disjoint Line Segments as Inputs

So far we assumed that input line segments are pairwise disjoint. This ensures that
two subsequent vertices of the generated path are always different to each other. In
this section, we discuss the consequences for non-disjoint segments. In this case, two
subsequent vertices might be identical (at the intersection of both line segments). It
is difficult to exclude intersections in practise. In this section, we modify Algo-
rithm 7 for being able to handle non-disjoint line segments as well.

Before detailing the modifications of this algorithm compared to Algorithm 7, we
discuss three examples of paths on non-disjoint line segments, and how they would
be processed by Algorithm 7 as given above.

Example 3.2 Let the input for Algorithm 7 be as follows (see also Fig. 3.10 for a
sketch of this input):

S1 = q1q2, S2 = q2q3, q1 = (0,0), q2 = (2,4),

q3 = (3,0), p = (1,0), and q = (2,0).

To initialise, let p1 and p2 be the centres of S1 and S2, respectively [i.e., p1 =
(1,2), and p2 = (2.5,2)]. We obtain that the length of the initialised polyline
ρ = 〈p,p1,p2, q〉 is equal to 5.5616. Algorithm 7 finds the shortest path ρ =
〈p,p′

1,p
′
2, q〉 where p′

1 = (0.3646,0.7291), p′
2 = (2.8636,0.5455) and the length

of it is equal to 4.4944; see Table 3.2, which lists resulting δs (here δ = L0 − L1 in
Step 3 of Algorithm 8) for the number i of iterations. �

70 3 Rubberband Algorithms

Table 3.3 Number i of iterations and resulting δs, for the example shown in Fig. 3.10, with p1 =
(2−δ′,2(2−δ′)) and p2 = (2+δ′,−4((2+δ′)−3)) as initialisation points and εs = 2.221×10−16

i δ i δ i δ i δ

1 −5.4831 × 10−7 7 −1.2313 13 −7.0319 × 10−10 19 8.8818 × 10−16

2 −6.2779 × 10−6 8 −2.0286 14 −4.5732 × 10−12 20 8.8818 × 10−16

3 −7.7817 × 10−5 9 −0.2104 15 −3.0198 × 10−14 21 −8.8818 × 10−16

4 −9.6471 × 10−4 10 −0.0024 16 −8.8818 × 10−16 22 8.8818 × 10−16

5 −0.0119 11 −1.6550 × 10−5 17 8.8818 × 10−16 23 −8.8818 × 10−16

6 −0.1430 12 −1.0809 × 10−7 18 −8.8818 × 10−16 24 0

Example 3.3 The output of Algorithm 7 is false if we modify the initialisation in
Example 3.2 so that p1 = p2 = q2. In this case, the calculated path equals ρ =
〈p,p′

1,p
′
2, q〉, where p′

1 = q2 and p′
2 = q2, and its length equals 8.1231. �

Definition 3.6 An updated polygonal path with at least two subsequent identical
vertices is called degenerate, or a degenerate case.

Algorithm 7 fails in general for degenerate cases.
Our solution for a degenerate case is as follows: we do not allow that a case

pj = pj+1 happens by removing sufficiently small line segments from the inter-
secting ends of segments Sj and Sj+1. The following example demonstrates this
strategy. When moving vertices apart by some small slide distance εs > 0, we need
to acknowledge some numerical dependency between εm and the chosen accuracy
constant ε, which will depend in general on the chosen implementation.

Example 3.4 We modify the initialisation step of Example 3.3. Assume that we
selected a very high accuracy, such as

ε = 10−100.

Now let

δ′ = 2.221 × 10−16,

x1 = 2 − δ′ and y1 = 2 × x1,

x2 = 2 + δ′ and y2 = −4 × (x2 − 3),

p1 = (x1, y1) and p2 = (x2, y2).

The length of the initialised polyline ρ = 〈p,p1,p2, q〉 is equal to 8.1231. Algo-
rithm 7 calculates the shortest path ρ = 〈p,p′

1,p
′
2, q〉, where p′

1 = (0.3646,0.7291)

and p′
2 = (2.8636,0.5455), and its length equals 4.4944, as in Example 3.2. See Ta-

ble 3.3 for resulting δs in dependency of the number i of iterations.
Of course, if we select a larger accuracy constant, for example, ε = 10−10, then

the algorithm will stop sooner, after fewer iterations.

3.7 Processing Non-disjoint Line Segments as Inputs 71

Fig. 3.11 Handling a degenerate case of identical vertices pj = pj+1, as shown on the left. Point
pj slides on Sj ‘a little’ away from its former position

We discuss a particular implementation on a Pentium 4 PC using Matlab 7.04.
When we changed the value of δ′ from 2.221 × 10−16 into a slightly smaller slide
distance

εs = 2.22 × 10−16

then we obtained the same false result as that of Example 3.3. This is because this
particular implementation was not able to recognise a difference between x1 and
x1 ∓ 2.22 × 10−16. The value

δ′ = 2.221 × 10−16

is large enough for this particular implementation. �

We are now ready to formally specify our method for handling degenerate cases.
Let Sj−1, Sj and Sj+1 be three subsequent segments in the input sequence of steps
such that Sj ∩ Sj+1 �= ∅. Assume that pj−1, pj and pj+1 are three subsequent
vertices of an updated polygonal path (in some iteration i) such that pj and pj+1
are identical; see left of Fig. 3.11.

Let εs be a sufficiently small positive number for moves on steps. There are at
most two possible points p in Sj such that de(p,pj+1) = εs . Select that point p

for which de(p,pj−1) + de(p,pj+1) is the smaller value, and update the polygonal
path by letting pj = p; see right of Fig. 3.11.

We say that pj is εs-transformed into p ∈ Sj . Analogously to the explanation of
Eq. (3.6), the total error of this εs -transform equals 2m · εs when handling m ≤ k

degenerate cases.
We provide a pseudocode of the modified Algorithm 7 (see Algorithm 8) in

Fig. 3.12. By taking the additional error into account, possibly added by a maxi-
mum of k εs -transforms, and following the proof of Theorem 3.3, we obtain:

Corollary 3.2 The output of Algorithm 8 is a
(
1 + 2

[
(k + 1)dε + kεs

]
/L

)
-approximation path

〈p,p1,p2, . . . , pk, q〉 which starts at p, then visits segments Sj at pj in the given
order, and finally ends at q , where L and dε are defined as for Algorithm 7, and εs

is a chosen slide distance.

72 3 Rubberband Algorithms

Algorithm 8 (RBA for the general fixed line-segment ESP problem in 3D space)
Input: A sequence of k (not necessarily pairwise disjoint) line segments
S1, S2, . . . , Sk in 3D; two points p and q that are not on any of those segments,
an accuracy constant ε > 0, and a slide distance εs > 0.
Output: A δ-approximation path 〈p,p1,p2, . . . , pk, q〉 of an ESP.

1: For each j ∈ {0,1, . . . , k +1}, let pj be a point Sj ; if Sj ∩Sj∓1 �= ∅, then select
pj such that pj is not in the intersection.

2: Lcurrent ← ∑k
j=0 de(pj ,pj+1), where p0 = p and pk+1 = q; and let

Lprevious ← ∞.
3: while Lprevious − Lcurrent ≥ ε do
4: for each j ∈ {1,2, . . . , k} do
5: Compute a point qj ∈ Sj such that de(pj−1, qj) + de(qj ,pj+1) =

min{de(pj−1,p) + de(p,pj+1) : p ∈ Sj }
6: if Sj ∩ Sj∓1 �= ∅ and qj is in the intersection then
7: εs -transform qj to be another point (still denoted by qj) in Sj .
8: end if
9: Update the path 〈p,p1,p2, . . . , pk, q〉 by replacing pj by qj .

10: end for
11: Let Lprevious ← Lcurrent and Lcurrent ← ∑k

j=0 de(pj ,pj+1).
12: end while
13: Return {p,p1,p2, . . . , pk, q}.
Fig. 3.12 RBA for solving the general fixed line-segment ESP problem in 3D space. The initiali-
sation includes now also that subsequent vertices need to be different from each other, and lines 6
and 7 deal with possible degenerate cases

For guaranteeing convergence toward the length of an ESP, the constant εs needs
to be chosen sufficiently small. Analogously to the theoretical consideration in
Sect. 3.5, Algorithm 8 runs in κ(ε, εs) · O(k) time, where κ(ε, εs) depends mainly
upon ε, to a minor degree also on εs , but not on the number k of line segments.

3.8 More Experimental Studies

This section complements the run-times reported in Sect. 3.5, using an implemen-
tation of Algorithm 7. The experimental studies in this section are about accuracy,
and they allow us to conclude on run-time. We vary the number k of line segments
between 2 and 20,000. We explain below our approaches for obtaining the experi-
mental results provided in Table 3.4.

For any of the listed values of k, a number ne of randomly-selected configurations
was tested; each configuration is defined by a sequence of k line segments and a
randomly-selected initialisation of path ρ0.

3.8 More Experimental Studies 73

Table 3.4 Experimental results of Algorithm 7. k is the number of line segments, ne is the number
of experiments for k segments, imax is the maximal number of iterations needed for any of the ne

experiments, δ200 = maxl=1,...,ne {Ll
199 − Ll

200}, Lδ200 = L
l0
200, where l0 satisfies δ200 = L

l0
199 −

L
l0
200, and Lmin = minl=1,...,ne Ll , where Ll is the output length of lth experiment. The last column

shows just a reference number for the row (there have been more experiments)

k ne imax δ200 Lδ200 Lmin
δ200

Lδ200
Row

2 100,000 48,062 0.027009 511.463 491. 35 5.28073 × 10−5 1

3 210,000 112,765 0.014378 498.412 491.35 2.88482 × 10−5 2

4 10,100,000 122,403 0.253529 610.916 491.35 4.14998 × 10−4 3

6 563,422 388,571 0.107719 1,091.16 496.02 9.87197 × 10−5 5

8 762,066 462,346 0.281012 1,237.31 501.97 2.27115 × 10−4 7

10 697,858 195,220 0.191796 1,207.78 581.96 1.58800 × 10−4 8

11 135,571 115,019 0.194815 1,480.20 660.83 1.31614 × 10−4 9

40 146,490 318,223 0.465686 3,583.48 2,326.34 1.29954 × 10−4 15

60 100,000 159,249 0.328890 7,796.82 4,316.65 4.21826 × 10−5 16

80 106,495 183,808 0.432228 10,005.20 5,926.99 4.32003 × 10−5 18

90 102,820 186,644 0.542972 9,976.34 6,730.69 5.44260 × 10−5 19

100 81,475 123,031 2.025440 10,107.10 7,642.06 2.00398 × 10−4 20

400 18,706 197,676 1.514930 45,664.1 35,527.6 3.31755 × 10−5 25

600 14,007 4,862,710 0.162764 63,368.0 56,021.7 2.56855 × 10−6 26

700 8,782 89,821 0.490649 76,541.5 65,682.9 6.41023 × 10−6 27

800 6,509 159,955 0.213358 87,739.3 75,034.3 2.43173 × 10−6 28

900 4,370 101,469 0.167307 93,941.6 86,420.9 1.78097 × 10−6 29

1,000 10,282 162,547 0.464297 107,397.0 95,780.1 4.32318 × 10−6 30

2,000 4,942 93,893 0.886554 211,389.0 198,226.0 4.19395 × 10−6 31

4,000 4,693 139,894 0.486883 414,910.0 401,991.0 1.17347 × 10−6 32

8,000 2,218 270,534 0.438270 827,244.0 813,093.0 5.29795 × 10−7 34

10,000 1,448 55,770 0.885872 1.05849 × 106 1.02096 × 106 8.36921 × 10−7 35

20,000 304 31,194 0.286782 2.08472 × 106 2.05278 × 106 1.37564 × 10−7 36

Example 3.5 The first study is about the differences in path length after only 200
iterations. For this let

δ200(k) = max
l=1,...,ne

{
Ll

199(k) − Ll
200(k)

}

where Ll
199(k) and Ll

200(k) are the lengths of the updated paths in the 199th and
200th iteration of the lth configuration for k line segments. The maximal value of
δ200 is 2.025440 in Row 20. In other words, in an extensive set of 14,403,815 experi-
ments in total, we always have κ(ε) ≤ 200, for any accuracy constant ε ≥ 2.025440.
The fifth column shows the minimum length of paths in iteration 200 which define
this maximum difference δ200, for illustrating the scale of the length of the gener-

74 3 Rubberband Algorithms

ated paths. The length in the fifth column can also be compared with the minimum
length in the sixth column.

If using more than i iterations (i.e., κ(ε) > i) then the difference Lδi
reduces to

Lδi
×

(

1 − δi

Lδi

)

= 2 × Lδi
− Lδi−1 .

We consider again i = 200 and the ratios δ200 : Lδ200 . For all the examples of k

segments studied, the maximum of those ratios equals 0.000414998 in Row 3. This
means that for any configuration and more than 200 iterations (i.e., κ(ε) > 200),
then there are κ(ε)−200 iterations required for reducing the length of the calculated
path from Lδ200 to Lδ200 ×(1−0.000414998). For example, Row 26 shows that there
was a configuration where the algorithm spent κ(ε) − 200 = 4,862,510 iterations
for reducing the length of the calculated path from Lδ200 = 66,368.0 to Lδ200 × (1 −
2.56855 × 10−6). �

Example 3.6 For a second study we use the accuracy constant ε = 10−15. As spec-
ified in the table, we have, for example, that

κ(ε) ≥ 112,765 when k = 3 (see Row 2),

κ(ε) ≥ 388,571 when k = 6 (see Row 5),

κ(ε) ≥ 462,346 when k = 8 (see Row 7),

κ(ε) ≥ 4,862,710 when k = 600 (see Row 26),

and so forth, where κ(ε) equals the maximum number of iterations imax for any
of the randomly-generated configurations with k segments. The κ-values show that
there is no formal dependency on k; the values depend on the geometric complexity
of the generated configuration and on the chosen accuracy ε. The smaller the ε, the
greater the κ-value. �

3.9 An Interesting Input Example of Segments in 3D Space

Consider the following input for Algorithm 7: let p = (1,4,7), q = (4,7,4), k = 2,
where the two endpoints of S1 are (2,4,5) and (2,5,5), and the two endpoints of
S2 are (4,5,4) and (4,5,5).

It can be shown that this fixed ESP problem is equivalent (see Lemma 3.4) to
finding the roots of the polynomial

p(x) = 84x6 − 228x5 + 361x4 + 20x3 + 210x2 − 200x + 25

which is not solvable by radicals over the field of rational numbers. The proof of
this unsolvability is very complicated, and we do not provide it here (but later in
Sect. 9.9). As discussed in Sect. 1.4, this means the following:

Any arithmetic algorithm for solving the fixed 3D straight segment ESP prob-
lem can only be approximate and not exact.

3.10 A Generic Rubberband Algorithm 75

Fig. 3.13 Illustration for
level-2 cells in 2D or 2.5D,
where m = 7

3.10 A Generic Rubberband Algorithm

Following Sect. 1.9, a generic ESP from p to q is an ESP which is in a plane (2D
ESP), in the surface of a connected polyhedron (2.5D ESP), or in 3D free space (3D
ESP). The generic ESP free space is the search space in 2D, 2.5D, or 3D space.

In the 2D case, the generic ESP free space is a polygon which may have some
holes (i.e., obstacles which are simple polygons). In the 2.5D case, the generic ESP
free space is the surface of a connected polyhedron (i.e., the union of some simple
polygons). In the 3D case, the generic ESP free space equals R3 \ ⋃m

i=1 Π◦
i , where

Πi (i.e., an obstacle) is a connected polyhedron, for i = 1,2, . . . ,m, and Πj ∩Πk =
∅, where j �= k, for j, k = 1,2, . . . ,m.

Let Π be the generic ESP free space. In the 2D case, Π can be decomposed into
some triangles (see Chap. 5) aiming at a minimum number of additional “new” ver-
tices. In the 2.5D case, each simple surface polygon of Π can be decomposed into
some triangles without adding any “new” vertex. In the 3D case, Π can be decom-
posed into some tetrahedrons, again with the goal to minimise the number of “new”
vertices. We call each triangle (in both the 2D and the 2.5D case) or tetrahedron (in
the 3D case) a level-1 cell (with respect to Π). Each side of a triangle (level-1 2D or
2.5D cell), or each triangular face of a tetrahedron (level-1 3D cell) is called a side
of a level-1 cell.

Definition 3.7 The shortest (longest) edge of all level-1 cells, denoted by lC (LC),
is the shortest (longest) side of all level-1 cells if they are triangles, or the shortest
(longest) side of all the triangular faces of all level-1 cells if they are tetrahedra.

We introduce an integer parameter h > 0 which defines decomposition resolu-
tion.6 For each level-1 cell C, we have the following two cases:

Case 1 (generic ESP free space in 2D or in 2.5D). If C is a triangle, then we
decompose three sides (line segments) of C into smaller line segments as fol-
lows: for each side SC , let u and v be the two endpoints of SC . We add cut
points {wi : i = 1,2, . . . ,m − 1} on the line segment uv (i.e., SC) such that
de(wi−1,wi) = lC/h and de(wm−1,wm) ≤ lC/h, where w0 = u and wm = v,
for i = 1,2, . . . ,m − 1; see Fig. 3.13.

Case 2 (generic ESP free space in 3D). If C is a tetrahedron, then we decompose the
four sides (i.e. the triangles) of C into smaller line segments as follows: for each
side SC , let u, v and w be the three vertices of SC . Without loss of generality,
assume that the edge uv is the longest side of the triangle �uvw (i.e., SC). Let w′
be the point on uv such that w′w ⊥ uv. We add cut points on both w′w and uv

6This is motivated by the definition of grid resolution and the study of multigrid approaches in [8].

76 3 Rubberband Algorithms

Fig. 3.14 Illustration for level-2 cells in 3D, where m = 7

exactly the same way as in Case 1. Then we add cut edges through each cut point
such that each cut edge is parallel to w′w or uv. These cut edges cut triangle
�uvw (i.e., SC) into smaller triangles, squares, trapezoids, or even irregular 5-
gons or 6-gons; see Fig. 3.14.

We call each smaller line segment in Case 1, or smaller triangle, square, trape-
zoid, or irregular 5-gon or 6-gon in Case 2, a level-2 cell (with respect to the level-1
cell C).

In Fig. 3.14, left, six points were added on the side uv; four points were added on
the line segment w′w. Right, 21 level-2 cells are created with respect to the level-1
cell (i.e., the triangle �uvw) including eight triangles, seven squares, one trapezoid,
four irregular 5-gons, and one 6-gon.

Definition 3.8 For each level-1 cell C, we construct the cell visibility (undirected)
weighted graph GC = [V,E,w] as follows: each node (also called vertex) v in V

corresponds to a level-2 cell C2
v with respect to C. For any two nodes v and v′ in V ,

the unordered pair {v, v′} is an edge in E iff the corresponding level-2 cells C2
v and

C2
v′ of v and v′ are not on the same side of the level-1 cell C. For each edge {v, v′}

in E, its weight is defined by

w
({

v, v′}) = min
{
de

(
q, q ′) : q ∈ C2

v

• ∧ q ′ ∈ C2
v′

•}
.

C2
v is also called the level-2 cell corresponding to the node v of the graph GC .

For example, in Fig. 3.15, left, three sides of the level-1 cell C (i.e., the triangle)
are decomposed into four level-2 cells C2

v1
, C2

v2
, C2

v3
, C2

v4
, three level-2 cells C2

v5
,

C2
v6

, C2
v7

, and four level-2 cells C2
v8

, C2
v9

, C2
v10

, C2
v11

, respectively. Right, the cell vis-
ibility (undirected) weighted graph GC = [V,E,w], where V = {v1, v2, . . . , v11}.
Each node vi in V corresponds to the level-2 cell C2

vi
shown on the left, where

i = 1,2, . . . ,11.

Definition 3.9 For a level-1 cell C which contains a point p1 in the generic ESP free
space, we can construct the cell visibility (undirected) weighted graph for point p1,

3.10 A Generic Rubberband Algorithm 77

Fig. 3.15 Illustration for a cell visibility (undirected) weighted graph

Fig. 3.16 Illustration for a cell visibility (undirected) weighted graph for point p1

denoted by GC(p1) = [V1,E1,w1], as follows: V1 = V ∪ {v1}, where V is defined
as in the cell visibility (undirected) weighted graph GC above, node v1 corresponds
to point p1. For any two nodes v and v′ in V1, if v �= v1 and v′ �= v1, then the
unordered pair {v, v′} is an edge in E iff the corresponding level-2 cells C2

v and C2
v′

of v and v′ are not on the same side of level-1 cell C, otherwise, {v, v′} is an edge
in E. For each edge {v, v′} in E, its weight is defined by

w
({

v, v′}) = min
{
de

(
q, q ′) : q ∈ C2

v

• ∧ q ′ ∈ C2
v′

•}

if v �= v1 and v′ �= v1, and

w
({

v1, v′}) = min
{
de

(
p1, q

′) : q ′ ∈ C2
v′

•}

or

w
({

v, v1}) = min
{
de(q,p1) : q ∈ C2

v

•}

otherwise.

For example, in Fig. 3.16, left, point p1 is located in the interior of the level-1
cell C (i.e., the triangle). Right, the cell visibility (undirected) weighted graph (with

78 3 Rubberband Algorithms

Fig. 3.17 Illustration for
generic step sets. Left:
a generic step set. Right:
pairwise disjoint generic step
set

Fig. 3.18 Illustration for a
cell visibility (undirected)
weighted graph GC [S1, S2]

the point p1) GC(p1) = [V1,E1,w1] can be constructed from the cell visibility
(undirected) weighted graph GC = [V,E,w] shown on the right of Fig. 3.15 by
adding all edges (in red colour) which are incident with node v1 corresponding to
point p1.

If {S1, S2, . . . , Sk} is a set of sides of level-1 cells such that Si ∩ Si+1 = ∅, where
i = 1,2, . . . , k − 1, then {S1, S2, . . . , Sk} is called a pairwise disjoint generic step
set. If {S1, S2, . . . , Sk} is a set of sides of level-1 cells such that Si ∩Si+1 �= ∅, where
i = 1,2, . . . , k − 1, then {S1, S2, . . . , Sk} is called generic step set.

Analogously to LC and lC , LS and lS are the longest (shortest) steps in the
generic step set.

For example, in Fig. 3.17, left, a generic step set {S1, S2, S3} is shown, and on
the right a pairwise disjoint generic step set {S1, S2, S3}.

For each step Si in a generic step set {S1, S2, . . . , Sk}, Si can be thought to be a
side of a level-1 cell Ci . Each level-2 cell with respect to the level-1 cell Ci is also
called a level-1 cell with respect to the side (step) Si , where i = 1,2, . . . , k.

For two consecutive steps Si−1 and Si in a generic step set {S1, S2, . . . , Sk},
where i = 2,3, . . . , k, we can construct the cell visibility (undirected) weighted
graph GC[Si−1, Si] = [V,E,w] as follows: Each node (also called vertex) v in V

corresponds to a level-1 cell C1
v with respect to Si−1 or Si . For any two nodes v and

v′ in V , the unordered pair {v, v′} is an edge in E iff the corresponding level-1 cells
C1

v and C1
v′ of v and v′ are not on the same step Si−1 or Si . For each edge {v, v′} in

E, its weight is defined as

w
({

v, v′}) = min
{
de

(
q, q ′) : q ∈ C1

v

• ∧ q ′ ∈ C1
v′

•}
.

For example, in Fig. 3.18, left, three steps S1, S2 and S3 are decomposed into
three level-1 cells C1

v1
, C1

v2
, C1

v3
, three level-1 cells C1

v4
, C1

v5
, C1

v6
, and two level-1

cells C1
v7

, C1
v8

, respectively. The same figure shows on the right the cell visibility
(undirected) weighted graph GC[S1, S2] = [V,E,w], where V = {v1, v2, . . . , v6}.

3.10 A Generic Rubberband Algorithm 79

Fig. 3.19 Illustration for a
cell visibility (undirected)
weighted graph GC [p1, S1]

Each node vi in V corresponds to the level-1 cell C1
vi

shown on the left, where
i = 1,2, . . . ,6.

If Si−1 is degenerated into a single point p1, then we can construct the cell visi-
bility (undirected) weighted graph GC[p1, Si] = [V,E,w] as follows: Each node v

in V corresponds to a level-1 cell C1
v with respect to Si , or it corresponds to the

point p1. For any two nodes v and v′ in V , the unordered pair {v, v′} is an edge in E

iff v corresponds to point p1 and v′ corresponds to a level-1 cell C1
v with respect to

Si , or v′ corresponds to point p1 and v corresponds to a level-1 cell C1
v with respect

to Si . For each edge {v, v′} in E, its weight is defined by

w
({

v, v′}) = min
{
de

(
p1, q

′) : q ′ ∈ C1
v′

•}

if v corresponds to the point p1 and v′ corresponds to a level-1 cell C1
v with respect

to Si , or

w
({

v, v′}) = min
{
de(q,p1) : q ∈ C1

v

•}

if v′ corresponds to the point p1 and v corresponds to a level-1 cell C1
v with respect

to Si .
For example, see Fig. 3.19, left, with point p1. Three steps S1, S2, and S3 are

decomposed into three level-1 cells C1
v1

, C1
v2

, C1
v3

, three level-1 cells C1
v4

, C1
v5

, C1
v6

,
and two level-1 cells C1

v7
, C1

v8
, respectively, exactly the same as those shown in

Fig. 3.18. In the same figure on the right, the cell visibility (undirected) weighted
graph GC[p1, Si] = [V,E,w] is shown, where V = {v, v1, v2, v3}. Node v corre-
sponds to point p1, and each node vi in V \ {v} corresponds to the level-1 cell C1

vi

shown on the left, where i = 1,2,3.
Analogously, if Si is degenerated into a single point p1, then we can also con-

struct the cell visibility (undirected) weighted graph GC[Si−1,p1] = [V,E,w]:
Remove an ε-part from Si defined as follows: Consider two consecutive steps

Si−1 and Si in a generic step set {S1, S2, . . . , Sk}, where i = 2,3, . . . , k. In the 2D
case, Si ∩ Si+1 is a single point, denoted by p1, which is an endpoint of both line
segments Si and Si+1. Let p2 be in Si such that de(p2,p1) = ε. Then update Si by
removing the small line segment p2p1 from Si , where i = 1,2, . . . , k − 1. In the
3D case, Si ∩ Si+1 is a line segment, denoted by S ′

1, which is a common side of
both triangles Si and Si+1. Let line segment S′

2 be completely inside of Si such that

80 3 Rubberband Algorithms

Fig. 3.20 Illustration for
removing an ε-part from Si

S′
2 ‖ S′

1 and de(S
′
2, S

′
1) = ε. Then update Si by removing the small trapezoid whose

two parallel sides are S′
1 and S′

2 from Si , where i = 1,2, . . . , k − 1.
See, for example, Fig. 3.20, left, where an ε-part forms a trapezoid defined by S ′

1
and S′

2. The ε-part is removed from step Si on the right in this figure.

The main idea behind the generic RBA Algorithms 7 and 8 compute a solution
whose length L is an upper bound to the optimal (i.e., true) shortest path. It still
remains a challenge to estimate the approximation factor of those algorithms. The
following generic RBA applies the Dijkstra algorithm for computing a step set and
then a lower bound Lh of the length of the optimal path. Then we can easily obtain
an upper bound L/Lh of the approximation factor of our algorithms. The key idea is
to construct a “good” visibility weighted graph by keeping all edges inside of their
cells of uniform size. In this way, we can greatly reduce the time complexity of the
applied Dijkstra algorithm.

In this way, the generic RBA defines a universal path optimisation method
which applies the discrete shortest path method (i.e., the Dijkstra algorithm)
for solving continuous shortest path problems (i.e., the Euclidean shortest
path problems).

We call the graph constructed in Algorithm 10 indirect visibility graph.
Algorithms 9 and 10, given in Figs. 3.21 and 3.22, follow the general concept of

RBAs as outlined above, and do not require more explanations due to their simplic-
ity. See Fig. 3.23 for an example. Line 6 in Algorithm 10 stays short for taking the
union of those two graphs.

The main computation of Algorithm 9 occurs in the while-loop. The for-loop
takes O(k) time. The number of iterations of the while-loop equals κ(ε) = L0−L

ε
,

where L0 is the length of an initial path and L the length of the optimum path. Thus,
we have:

Theorem 3.4 Algorithm 9 can be computed in time κ(ε) ×O(k) for k steps.

Theorem 3.5 In the 2D or 2.5D case, Algorithm 10 can be computed in time mδ ×
O(m2k + (mk) log(mk) + κ(ε) × k), where mδ is the number of iterations taken by
the while-loop, m = (LS/lS) × h, and LS (lS) is the longest (shortest) step in the
step set.

3.10 A Generic Rubberband Algorithm 81

Algorithm 9 (Simple generic RBA for computing the generic ESP)
Input: Source point p and target point q , a pairwise disjoint generic step set
{S1, S2, . . . , Sk} such that p and q are not on Si , for any i = 1,2, . . . , k, and an
accuracy constant ε > 0.
Output: A path approximating a generic ESP from p to q .

1: For each j ∈ {0,1, . . . , k + 1}, let pj be a point in Sj .
2: Lcurrent ← ∑k

j=0 de(pj ,pj+1), where p0 = p and pk+1 = q , and
Lprevious ← ∞.

3: while Lprevious − Lcurrent ≥ ε do
4: for each j ∈ {1,2, . . . , k} do
5: Compute a point qj ∈ Sj such that de(pj−1, qj) + de(qj ,pj+1) =

min{de(pj−1,p) + de(p,pj+1) : p ∈ Sj }
6: Update the path 〈p,p1,p2, . . . , pk, q〉 by replacing pj by qj .
7: end for
8: Let Lprevious ← Lcurrent and Lcurrent ← ∑k

j=0 de(pj ,pj+1).
9: end while

10: Return {p,p1,p2, . . . , pk, q}.
Fig. 3.21 A generic RBA for computing a generic ESP, basically coinciding with Algorithm 7

Proof Line 1 takes constant time. In the 2D or 2.5D case, each step Si is a line
segment. Line 4 takes O(m) time because there are at most m points that can be
added to step Si . Lines 5 and 6 take O(m2) time because there are at most m2 edges
in the cell visibility weighted graph GC[Si−1, Si]. Line 7 only takes constant time.
Thus, the for-loop can be computed in O(m2k) time.

Line 9 can be computed in O(m2k+(mk) log(mk)) time (see the time complexity
of the Dijkstra algorithm in Sect. 1.7) because the indirect visibility graph GV has
O(m2k) edges and O(mk) nodes. By Theorem 3.4, Line 10 can be computed in
κ(ε) ×O(k) time. Line 11 only takes constant time. Thus, the main computation of
the while-loop is done in O(m2k + (mk) log(mk) + κ(ε) × k) time. �

Theorem 3.6 In the 3D case, Algorithm 10 can be computed in time mδ ×O(m4k+
(m2k) log(m2k)+κ(ε)×k), where mδ is the number of iterations taken by the while-
loop, m = (LS/lS) × h, and LS (lS) is the longest (shortest) side of the steps in the
step set.

Proof In the 3D case, each step Si is a triangle. Line 4 now takes O(m2) time
because there are O(m) points that can be added on the longest side of Si . In con-
clusion, Lines 5 and 6 require O(m4) time because there are O(m4) edges in the
cell visibility weighted graph GC[Si−1, Si]. Thus, the for-loop can be computed in
O(m4k) time.

Line 9 can be computed in O(m4k + (m2k) log(m2k)) time due to the time com-
plexity of the Dijkstra algorithm: the indirect visibility graph GV has O(m4k) edges
and O(m2k) nodes. Altogether, the main computation of the while-loop is accom-
plished in O(m4k + (m2k) log(m2k) + κ(ε) × k) time. �

82 3 Rubberband Algorithms

Algorithm 10 (Another simple generic RBA for computing a generic ESP)
Input: Source point p and target point q , generic step set {S1, S2, . . . , Sk}, where p

and q are not on any Si , for i = 1,2, . . . , k, an integer parameter h > 0 defining
the decomposition resolution, an accuracy constant ε > 0, and an approximation
parameter δ > 1.
Output: A δ-approximation path for the generic ESP from p to q .

1: Start with an empty visibility weighted graph GV , L = +∞, the given integer
h, and let Lh be a sufficiently small positive real number.

2: while L/Lh ≥ δ do
3: for each i ∈ {1,2, . . . , k} do
4: Decompose Si into a set S1(Si, h) of level-1 cells with respect to Si .
5: Construct the cell visibility weighted graph GC[Si−1, Si].
6: Let GV = GV + GC[Si−1, Si].
7: Remove an ε-part from step Si , and denote the resulting step by S′

i .
8: end for
9: Let GV , p and q be the input for the Dijkstra algorithm for computing a

shortest path ρV (p,q,h) = (p, v1, v2, . . . , vk, q) from p to q in GV . Let Lh

be the length of ρV (p,q,m). Let C1
i be the level-1 cell corresponding to vi ,

and let ui be the centre of C1
i , for i = 1,2, . . . , k.

10: Let ε, p, q , step set {S ′
1, S

′
2, . . . , S

′
k}, and initial path (p,u1, u2, . . . , uk, q) be

the input for Algorithm 9 for computing an approximate ESP ρ(p,q). Let L

be the length of ρ(p,q).
11: Let h = 2 × h.
12: end while
13: Return the approximate ESP ρ(p,q).

Fig. 3.22 A second generic RBA for computing a generic ESP which makes more explicit use of
the ‘key idea’ presented above, also using Dijkstra’s algorithm

Fig. 3.23 An example of an indirect visibility graph

3.10 A Generic Rubberband Algorithm 83

Algorithm 11 (see Fig. 3.24) is finally our proposal for a general time-
optimised design of a generic RBA.

Again, the pseudocode contains the necessary specifications, and should be easy
to follow after having discussed RBAs before. The graph constructed in Algo-
rithm 11 is again an indirect visibility graph.

Theorem 3.7 In the 2.5D case (i.e., the generic ESP free space Π is the surface
of a connected polyhedron), Algorithm 11 can be computed in time mδ ×O(m2n +
(mn) log(mn) + κ(ε) × n), where mδ is the number of iterations taken by the while
loop, m = (LS/lS)×h, LS (lS) is the longest (shortest) edge of Π , and n = |V (Π)|
(i.e., the number of vertices of Π).

Proof Line 1 takes constant time. In the 2.5D case, Π is the surface of a connected
polyhedron. Thus, Line 2 can be computed in O(n) time because there are O(n)

faces and each face Fi can be decomposed into triangles in O(|V (Fi)|) time where
n = |V (Π)| is the number of vertices of Π .7

Line 6 takes O(m) time because there are O(m) points can be added on the
side SC . Thus, Lines 5–7 take O(m) time because there are three sides for each
cell C. Line 9 takes O(m2) time because there are at most m2 edges in the cell
visibility weighted graph GC(p). Analogously, Lines 12, 14, and 17 take O(m2)

time. Thus, the outer for-loop (Lines 4–18) can be computed in O(m2n) time.
Line 19 can be computed in O(m2n + (mn) log(mn)) time due to the time

complexity of the Dijkstra algorithm, because the indirect visibility graph GV has
O(m2n) edges and O(mn) nodes. By Theorem 3.5, Line 20 can be computed in
mδ × O(m2k + (mk) log(mk) + κ(ε) × k) time, where mδ is the number of itera-
tions taken by the while-loop in Algorithm 10. Line 21 takes constant time. Line 23
takes in O(n) time because there are O(n) vertices in the output path. Thus, the
main computation inside the while-loop occurs in Lines 19 and 20. �

For the 2D and 3D case, we have the following theorems, and proofs are analo-
gous to that of Theorem 3.7. The following theorem differs from Theorem 3.7 just
by the different meaning of Π in the 2D case:

Theorem 3.8 In the 2D case (i.e., the generic ESP free space Π is a polygon
which may have some holes), Algorithm 11 can be computed in mδ × O(m2n +
(mn) log(mn) + κ(ε) × n) time.

Note that is not difficult to decompose Π into triangles by adding at most n

“new” vertices.

7For linear-time triangulation, see the Chazelle method in Chap. 5, but also the critical discussion
pointing to a missing implementation so far.

84 3 Rubberband Algorithms

Algorithm 11 (Generic RBA for computing the generic ESP)
Input: Source point p and target point q in a generic ESP free space Π , an integer
parameter h > 0 for decomposition resolution, an accuracy constant ε > 0, and an
approximation parameter δ > 1.
Output: A δ-approximation path for a generic ESP from p to q .

1: Initialise a visibility weighted graph as empty graph GV , let L = +∞, read the
provided parameter h, and let Lh be a sufficiently small positive real number.

2: Decompose Π into a set S1 of level-1 cells.
3: while L/Lh ≥ δ do
4: for each cell C ∈ S1 do
5: for each side SC of C do
6: Decompose SC into a set S2(SC,h) of level-2 cells.
7: end for
8: if C contains p then
9: Construct the cell visibility weighted graph GC for p, denoted by

GC(p).
10: else
11: if C contains q then
12: Construct the cell visibility weighted graph GC for q , denoted by

GC(q).
13: else
14: Construct the cell visibility weighted graph GC .
15: end if
16: end if
17: Let GV = GV + GC .
18: end for
19: Let GV , p and q be the input for the Dijkstra algorithm for computing a

shortest path ρGV
(p, q,h) = (p, v1, v2, . . . , vk, q) from p to q in GV . Let

Lh be the length of ρGV
(p, q,h). Let C2

i be the level-2 cell corresponding to
node vi of graph GV , and SC1

i
be the side of the level-1 cell corresponding to

C2
i , where i = 1,2, . . . , k.

20: Let ε, p, q , and step set

{SC1
1
, SC1

2
, . . . , SC1

k
}

be the input for Algorithm 10 for computing an approximate ESP ρ(p,q).
Let L be the length of ρ(p,q).

21: Let h = 2 × h.
22: end while
23: Return the approximate ESP ρ(p,q).

Fig. 3.24 Generic RBA for computing an approximate generic ESP

3.11 Problems 85

Theorem 3.9 In the 3D case [i.e., the generic ESP free space Π = R3 \ ⋃m′
i=1 Π◦

i ,
where obstacle Πi is a connected polyhedron, for i = 1,2, . . . ,m′, and Πj ∩ Πk =
∅, where j �= k, for j, k = 1,2, . . . ,m′], Algorithm 11 can be computed in mδ ×
O(m4n + (m2n) log(m2n) + κ(ε) × n + (n1 + r2) log r) time, where n = n1 + n2,
n1 = |V (Π)|.

In the theorem, n1 is the number of vertices of Π , n2 is the number of “new” ver-
tices added for decomposing Π into tetrahedrons, and r is the number of “notches”
(i.e., features which cause nonconvexity in polyhedra).

Proofs of the correctness of Algorithms 9, 10, and 11 can follow exactly the same
‘line-by-line’ pattern as followed in the proof of Theorem 3.3.

By Theorem 3.9, Algorithm 11 may be expected to outperform other algo-
rithms, for example, for the general 3D ESP problem which is NP-hard, and
for which there does not exist any exact solution algorithm; see, e.g., Exam-
ple 9.13.

We provide two final remarks for this chapter:
About κ(ε). For Algorithm 9, we may apply the Dijkstra algorithm with a small

value of the decomposition resolution parameter h to obtain a lower bound l for the
length of an optimal path. Then we choose the accuracy constant ε equals α × l,
instead of α, where α may be between 10−2 and 10−5 (instead of 10−15) depending
on the given practical application. Then we have that

κ(ε) = L0 − L

α × l
.

This may lead to a “good” upper bound for κ(ε) in practical applications.
About the indirect visibility graph. In contrast to the visibility graphs introduced

in computational geometry,8 our indirect visibility graphs keep each edge inside of
a single level-1 cell. This greatly reduces the total number of edges of our visibil-
ity graphs and speeds up the application of the Dijkstra algorithm. Thus, in Theo-
rems 3.5, 3.6, 3.7, 3.8, and 3.9, the number of edges of the indirect visibility graph
equals m2k, m4k, m2n, m2n, and m4n, respectively, and can be further reduced
when the lengths of sides of level-1 cells are increasing differently (i.e., more non-
uniformly).

3.11 Problems

Problem 3.1 In Algorithm 8, what may happen if there is no εs -transform qj per-
formed in Line 7?

8For example, see references [1, 6, 7, 9, 14, 16].

86 3 Rubberband Algorithms

Problem 3.2 Discuss the advantages and disadvantages between the unscaled stop
criterion (2.3) and the scaled stop criterion (2.4) for Algorithm 7.

Problem 3.3 State three key issues when applying Algorithm 7.

Problem 3.4 Prove that Algorithm 10 defines a sequence of intervals {[lh,Lh]},
where lh is the length obtained by the Dijkstra algorithm, and Lh is the length of an
approximation path, such that limh→+∞ lh = limh→+∞ Lh which is the length of
the optimal path.

Problem 3.5 For Algorithm 11, if the value LC/lC (LC and lC are the shortest and
longest edge of all level-1 cells) is very large, then how to improve the algorithm
by selecting a good decomposition resolution integer parameter h > 0 such that the
algorithm can already terminate in fewer iterations by reducing the approximation
parameter?

Problem 3.6 The value of decomposition resolution parameter h > 0 in Line 11 of
Algorithm 10 increases exponentially. State a simple way to slow down the speed
of growth of h.

Problem 3.7 Which different indirect visibility graphs have been introduced in
Sect. 3.10? What are the differences between them?

Problem 3.8 Discuss the difference between indirect visibility graphs introduced
in this book and visibility graphs as commonly used in computational geometry.

Problem 3.9 Can Algorithm 11 be improved by (i) modifying cells from triangles
(in the 2D and 2.5D case) or tetrahedrons (in the 3D case) to more general convex
subpolygons (in the 2D and 2.5D case) or to convex polyhedrons (in the 3D case),
and (ii) defining a corresponding indirect visibility graph?

Problem 3.10 In Lemma 3.1, Eq. (3.1) can be written as

Aλ2
1 + Bλ1 + C = 0

where A, B , and C are polynomials in λ0, λ2, and also in aj0, bj0, aj1, bj1, aj2 and
bj2, for j = 0,1,2. Under these conditions, is there a possibility that λ1 /∈ [0,1] for
some λ0, λ2, S0, S1, and S2?

Problem 3.11 Discuss other options for terminating Algorithm 7.

Problem 3.12 What would be the minimal value of ε > 0 for Algorithm 7 on your
computer and your programming environment when implementing the algorithm?

Problem 3.13 The number of iterations of Algorithm 7 depends on the value of ε,
denoted by imax(ε). Can you specify a non-trivial upper bound for imax(ε)?

3.11 Problems 87

Problem 3.14 (Programming exercise)

(a) Implement Algorithm 7 for the 2D space. A user of the program may at first
interactively specify a finite number of segments Sj , and then a start p and
a destination q . This specification may be done by means of graphical input
or numeric input; however, the resulting configuration has to be visualised on
screen in a graphical format.

(b) Select midpoints of steps for defining the initial path.
(c) A user of the program should now be able to select either a mode defined by

a fixed number i0 > 0 of iterations, or a mode defined by an accuracy constant
ε > 0.

(d) In the first case, the program runs through iterations i = 0, . . . , i0 and outputs
the sequence of values Li − Li+1 in some appropriate way (e.g., as a table, or
by means of a diagram using a logarithmic scale for those values). In this case,
also visualise the calculated paths on screen.

(e) In the second case, the program runs through iterations i = 0,1, . . . until
Li − Li+1 < ε; in this case, measure the run time until the program stops (note:
a more accurate measurement may result from having this process running, say,
100 times, and then divide the time by 100). Output the resulting ε-shortest path
and the number of iterations used to arrive at this result.

Problem 3.15 (Programming exercise) Implement the game as suggested by
Fig. 3.3.

Problem 3.16 After having Algorithm 7 implemented for the 2D space, replace the
unscaled stop criterion (2.3) by the scaled stop criterion (2.4). How does this effect
the performance with respect to the number of iterations until stop is reached?

Problem 3.17 (Research problem) Specify (i.e., find a formula) a local upper accu-
racy bound dε in Theorem 3.3?

Problem 3.18 (Research problem) Provide a short proof for Theorem 3.3 based
on convex analysis (e.g., to prove that Algorithm 7 defines a convex function and
outputs a local minimum).

Problem 3.19 (Research problem) Consider the proof of Lemma 3.6. Answer the
question whether interval I ′ is a proper subset of interval I or not. If a proper subset
then how does this affect the proof of this lemma?

Problem 3.20 (Research problem) Let Π be a simple polygon. Insert a finite num-
ber of holes (i.e., which are simple polygons again) into Π such that frontiers are
pairwise disjoint. Let n be the total number of given vertices in those polygons. Pro-
vide an algorithm which adds at most n new vertices to decompose this polygon Π

with holes into triangles. Can this be done in O(n) time?

88 3 Rubberband Algorithms

3.12 Notes

The rubberband was patented in England on March 17, 1845 by Stephen Perry. He
invented the rubberband for holding papers or envelopes together.

The paper [4] proposed a rubberband algorithm for the particular case of cal-
culating a shortest path in a ‘cuboidal world’, where the 3D space is subdivided
into uniformly sized cubes. The paper [12] analysed this algorithm further in de-
tail, which led to a correction of the rubberband algorithm originally published. The
Ph.D. Thesis [10] showed that the ‘rubberband concept’ used in this algorithm ac-
tually allows us to establish a whole class of rubberband algorithms, suitable for
solving various Euclidean shortest paths, defined in the plane or in 3D space; see
also [11] or [13].

The paper [3] discussed sequences of pursuit paths (motivated by ant movements)
and also contains a proof of Theorem 3.1.

Note that there are other techniques of proofs for the uniqueness of Euclidean
shortest paths (other than the one given in this chapter), such as in [5, 15, 17], but
those cannot be straightforwardly generalised, for example, from the input case of
a sequence of line segments to that of a sequence of polygons. For Theorem 3.2,
see [15]. For the derivation of the polynomial

p(x) = 84x6 − 228x5 + 361x4 + 20x3 + 210x2 − 200x + 25

see [11], Sect. 7.4.1, pp. 102–106. For decomposition of polyhedrons into tetrahe-
drons, see [2].

References

1. Asano, T., Guibas, L., Hershberger, J., Imai, H.: Visibility of disjoint polygons. Algorithmica
1, 49–63 (1986)

2. Bajaj, C.L., Dey, T.K.: Convex decomposition of polyhedra and robustness. SIAM J. Comput.
21(2), 339–364 (1992)

3. Bruckstein, A.M.: Why the ant trails look so straight and nice? Math. Intell. 15(2), 59–62
(1993)

4. Bülow, T., Klette, R.: Digital curves in 3D space and a linear-time length estimation algorithm.
IEEE Trans. Pattern Anal. Mach. Intell. 24, 962–970 (2002)

5. Choi, J., Sellen, J., Yap, C.-K.: Precision-sensitive Euclidean shortest path in 3-space. In: Proc.
Ann. ACM Symp. Computational Geometry, pp. 350–359 (1995)

6. Ghosh, S.K., Mount, D.M.: An output sensitive algorithm for computing visibility graphs.
SIAM J. Comput. 20, 888–910 (1991)

7. Kapoor, S., Maheshwari, S.N.: Efficient algorithms for Euclidean shortest path and visibility
problems with polygonal. In: Proc. Ann. ACM Sympos. Computational Geometry, pp. 172–
182 (1988)

8. Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)
9. Lee, D.T.: Proximity and reachability in the plane. Ph.D. thesis, University of Illinois at

Urbana–Champaign, Urbana (1978)
10. Li, F.: Exact and approximate algorithms for the calculation of shortest paths. Ph.D. thesis,

Computer Science Department, The University of Auckland (2007)

References 89

11. Li, F., Klette, R.: Exact and approximate algorithms for the calculation of shortest paths. Tech-
nical report 2141, Institute for Mathematics and Its Applications, University of Minnesota
(2006)

12. Li, F., Klette, R.: Analysis of the rubberband algorithm. Image Vis. Comput. 25, 1588–1598
(2007)

13. Li, F., Klette, R.: Euclidean shortest paths in a simple polygon (invited talk). In: Bhattacharya,
B.B., et al. (eds.) Algorithms, Architectures, and Information Systems Security, Indian Statis-
tical Institute Platinum Jubilee Conf., pp. 3–24. World Scientific, Delhi (2008)

14. Overmars, M.H., Welzl, E.: New methods for constructing visibility graphs. In: Proc. Ann.
ACM Sympos. Computational Geometry, pp. 164–171 (1988)

15. Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. SIAM J. Comput. 15, 193–215
(1986)

16. Welzl, E.: Constructing the visibility graph for n line segments in O(n2) time. Inf. Process.
Lett. 20, 167–171 (1985)

17. Yap, C.-K.: Towards exact geometric computation. Comput. Geom. 7, 3–23 (1997)

Part II
Paths in the Plane

The image above shows an ant street in Argentina’s Sierra Grande, near La Cum-
brecita. Many ant species are able to find shortest paths (with respect to some ‘ob-
stacles’) based on odorous chemical substances (called pheromones) deposited by
ants. Ant-colony optimisation may be cited as an example where local optimisa-
tion is performed for converging towards a global optimum. However, ants will not
always succeed, as controlled experiments have illustrated.

The second part of the book discusses algorithms for calculating exact or
approximate ESPs in the plane. There are exact solutions for convex hulls,
relative convex hulls, and more ESP problems in the plane, for example, based
on a linear-time triangulation of a simple polygon, and there are also ‘easy to
program’ δ-approximate solutions following the general RBA design.

Chapter 4
Convex Hulls in the Plane

Laughter is the shortest distance between two people.
Yakov Smirnoff (born 1951)

Convex hulls in the plane are examples for shortest paths around sets of points,
or around simple polygons. Possibly these paths may be constrained by available
polygonal regions. This chapter explains a few exact algorithms in this area which
run typically in linear or (n logn)-time with respect to a given input parameter n.
However, the problems could also be solved approximately by rubberband algo-
rithms.

4.1 Convex Sets

Assume that we have a finite set of points or polygonal sets, such as in Fig. 4.1,
and the task is to find a shortest path “around” those, starting at p and ending at
q , where obstacles such as the shown road need to be taken into account. Such a
shortest path will follow the convex hull wherever possible. We define convex sets
first, then convex hulls in the following section, and show then the correctness of
this statement.

Definition 4.1 A subset S ⊂ Rm is convex, for m ≥ 2, iff, for any pair of points
p,q ∈ S, all straight line segments pq are fully contained in S .

For example, a circular or rectangular region in R2 is convex, but an annulus (i.e.,
the area between two concentric circles) is not. These are examples of bounded sets.
A set is bounded iff it is contained in a disk (m = 2) or a sphere (m ≥ 3) of some
radius r > 0.

A non-convex set S does have cavities or holes; these are sets of points r /∈ S on
straight segments pq with p ∈ S and q ∈ S . Cavities and holes are easy to visualise
for polygons in R2; see Fig. 4.2. However, imagine, for example, all the cavities of

F. Li, R. Klette, Euclidean Shortest Paths,
DOI 10.1007/978-1-4471-2256-2_4, © Springer-Verlag London Limited 2011

93

94 4 Convex Hulls in the Plane

Fig. 4.1 A shortest path
around a castle (shown as a
group of buildings and walls),
starting at p and ending at q ,
not allowed to cross the road

a sponge in R3. Let S ⊂ Rm be a bounded set. A hole is a bounded component in
R

m \ S, and a cavity is a subset of the unbounded component of Rm \ S. See also
Definition 4.4 in the next section for cavities in the case m = 2.

Example 4.1 A half-plane is unbounded. A half-plane is a set of points (x, y) ∈ R
2

which satisfy a linear relation

ax + by ≤ c

for a given triple a, b, and c of reals. A half-plane is also a convex set. For showing
this, let ax1 + by1 ≤ c and ax2 + by2 ≤ c, for two points pi = (xi, yi) in the half-
plane, with i = 1,2. We consider points on the straight segment

p1p2 = {(
x1 + λ(x2 − x1), y1 + λ(y2 − y1)

) : 0 ≤ λ ≤ 1
}
.

Let pλ = (x1 + λ(x2 − x1), y1 + λ(y2 − y1)) be on p1p2, for 0 ≤ λ ≤ 1. We have
that

a
(
x1 + λ(x2 − x1)

) + b
(
y1 + λ(y2 − y1)

)

= (1 − λ)(ax1 + by1) + λ(ax2 + by2)

≤ (1 − λ)c + λc = c.

Fig. 4.2 Left: a convex set. Right: a non-convex set with two cavities and one hole

4.1 Convex Sets 95

Fig. 4.3 Disk and tangential
line γp at point p on the
frontier of the disk. A second
point q on the line can be
used for defining the line with
an orientation; γp = pq

means that the disk is left of
the oriented line pq

This shows that pλ also satisfies the defining linear relation of the half-plane, for
any 0 ≤ λ ≤ 1. �

Corollary 4.1 Let S1, S2 ⊂ R2 be two convex sets. Then the intersection S1 ∩ S2 is
convex as well.

Proof Consider two distinct points p,q ∈ S1 ∩ S2. Because pq is in S1 and also in
S2, it is also in the intersection of both convex sets. �

The proof of this corollary can be extended for showing that the intersection
⋂

F
of any family F = {Sa : a ∈ I } of convex sets Sa , with a ∈ I ⊆ R, is also a convex
set. For example, the intersection of a set of half-planes of the cardinality of R is
again a convex set, and such an intersection may define a disk; see the following
example.

Example 4.2 Figure 4.3 shows a disk and one of its tangential lines γp , defined by
a point p on the frontier of the disk. Line γp can be represented either as oriented
line pq (i.e., orientation from p toward q) or oriented line qp. Every straight line
defines two half-planes whose intersection is the given line. The oriented line pq

and the half-plane on the left, denoted by Hl(pq), contains the disk.
Now we rotate the pair of points p and q around the centre of the disk by an

angle α, defining new points pα and qα . Note that pα is still on the frontier of the
disk.

Let F = {Hl(pαqα) : 0 ≤ α < 2π)}. The intersection
⋂

F coincides with the
given disk. Family F has the cardinality of the real numbers. �

Corollary 4.2 A closed subset S ⊂ R2 is convex iff S is equal to the intersection of
all half-planes containing S.

Proof Let F = {H : S ⊆ H ∧H is a half-plane}. As commented after Corollary 4.1,
it follows that

⋂
F is convex. This already proves the sufficiency: if S = ⋂

F then
S is convex as well.

Obviously, we have that S ⊆ ⋂
F . To prove the necessity, it remains to show that

both sets are equal which means that there cannot be any point p that is not in the
convex set S but in the intersection of all half-planes H containing S (i.e., p would
need to be in every half-plane H ∈ F).

96 4 Convex Hulls in the Plane

Fig. 4.4 Illustration for the
proof of Corollary 4.2. Point
q is on the frontier of S, point
p is not in S, but also not in
the half-plane H

Let us assume that such a point p exists: p /∈ S but p ∈ H , for any H ∈ F . Let q

be a point in the frontier ∂S of S; because of ∂S ⊆ S it follows that q 	= p. For any
point r ∈ pq , with r 	= q , assume that we also have r /∈ S; see Fig. 4.4.

Now, we rotate the ray −→qp clockwise around q to form two angles, at first �pqs

and then �pqt , such that qs and qt are tangents of S at s and t , respectively, where
p rotates into s and later into t . Points s, q , and t are collinear (i.e., they are all on
one straight line) iff q is on a continuous segment of the frontier of S (where ‘left
tangent’ at q equals ‘right tangent’ at q).

Let �sqt be the angle that contains point p. Because S is convex, it follows that
�sqt ≥ 180◦. Let H ∈ F be such that the straight line qs (or line qt) is its frontier
and p /∈ H . This is a contradiction to the selection of p. �

Accordingly, for a convex set S ⊂R2 we can ask for a minimum number of half-
planes whose intersection defines S. For example, a rectangle is already defined by
the intersection of four half-planes, but a circular region by the intersection of a
family F of half-planes, where F has the cardinality of the real numbers. A simple
convex polygon with n edges is defined by the intersection of n half-planes.

4.2 Convex Hull and Shortest Path; Area

A non-convex set S may be extended into a convex superset, called a convex hull.
For example, we could try to define a convex hull CH(S) of a subset S ⊂ R

m, for
m ≥ 2, as being the union of S with all of its cavities or holes, formally

S1 =
⋃

p,q∈S

pq.

However, this will not yet define a convex set, in general. For example, let S be the
set of four corners of a tetrahedron in R

3. Then S1 is only the set of all the six edges
of that tetrahedron. We could repeat the process:

S2 =
⋃

p,q∈S1

pq.

Then we would have with S2 the surface of the tetrahedron, formed by four triangu-
lar regions. Finally,

S3 =
⋃

p,q∈S2

pq

4.2 Convex Hull and Shortest Path; Area 97

would define with S3 the whole set of all interior and frontier points of the tetra-
hedron. In general, m steps of this iterative definition will define the convex hull
CH(S) of a set S ⊆R

m, for m ≥ 1. This definition is equivalent to the following:

Definition 4.2 The convex hull CH(S) of a subset S ⊂R
m, for m ≥ 2, is a smallest

(by contents) convex set that contains S.

The convex hull CH(S) is uniquely specified this way for any S ⊂ Rm: if there
were two different convex hulls, then S would also be contained in the intersection
of both, and the intersection would be again a convex set (see Corollary 4.1), but of
smaller contents than the two assumed convex hulls. This contradicts the definition
of a convex hull.

The convex hull is defined based on the measurable content of a set, which is the
area for 2D, and the volume for 3D. We do not discuss volumes in this book, but the
area of sets in a plane.

Definition 4.3 The area of a bounded and measurable set S ⊂ R2 is given by the
following:

A(S) =
∫

S

dx dy.

The integration is for the characteristic function χS of the set S that is equal to 1
for all points in S, and equal to 0 otherwise. In a more extensive form, the definition
reads as follows:

A(S) =
∫

S

χS(x, y)dx dy.

Area is additive: If S1 and S2 are subsets of the Euclidean plane that have disjoint
interiors, we have A(S1 ∪ S2) =A(S1) +A(S2). This allows us to measure the area
of a set by partitioning the set into (e.g., convex) subsets and adding the areas of
these subsets.

Example 4.3 Let T be a triangle pqr where p = (x1, y1), q = (x2, y2), and r =
(x3, y3). Then we have the following:

A(T) = 1

2
· ∣∣D(p,q, r)

∣
∣ (4.1)

where D(p,q, r) is the determinant
∣
∣
∣
∣
∣

x1 y1 1
x2 y2 1
x3 y3 1

∣
∣
∣
∣
∣
= x1y2 + x3y1 + x2y3 − x3y2 − x2y1 − x1y3.

Note that D(p,q, r) can be positive or negative; this can be used to define the ori-
entation of the ordered triple (p, q, r).

98 4 Convex Hulls in the Plane

Fig. 4.5 A rubberband spans
around a set of (Taiwanese)
chopsticks. Assume that the
rubberband is in one plane,
then it approximates a convex
hull around the sticks in this
plane; the sticks intersect this
plane in a finite number of
‘points’

More generally, let P be a simple polygon defined by a loop 〈p0,p1, . . . , pn〉
(i.e., p0 = pn and n ≥ 3). Let pi = (xi, yi). Then the following is true:

A(P) = 1

2
·
∣
∣
∣
∣
∣

n∑

i=1

xi(yi+1 − yi−1)

∣
∣
∣
∣
∣

(4.2)

where yn+1 = y1. This general formula can be shown by complete induction, by
partitioning a polygon with n + 1 vertices into one with n vertices and one triangle,
and by adding areas of both based on the additivity property of area. �

Sets S in this book are typically (i) simple polygons P , (ii) simple or non-simple
polyhedrons Π , both defined by finite sets of vertices, or (iii) finite sets of points.
Figure 4.5 illustrates a convex hull of a finite set of ‘points’ (i.e., the intersection of
the plane of the shown rubberband with the sticks). Convex hulls of such sets S are
always bounded polygons.

For example, if S is a singleton (i.e., S only contains one point), then the convex
hull is a degenerated polygon consisting only of one vertex; if S contains a finite
number of points which are all collinear then the convex hull of S is a line segment.
If S is non-collinear then the convex hull CH(S) is a simple polygon.

A cavity of a simple polygon is a simple polygon with three or more vertices; we
may now define such a cavity precisely using the notion of a convex hull:1

Definition 4.4 A cavity CAV(P) of a simple polygon P is the topological closure
of a component of CH(P) \ P .

A cavity is separated by a line segment (called the cover of the cavity) from
the exterior R

2 \ CH(P), see Fig. 4.2. The difference CH(P) \ P does not

1Parts of this chapter have been contributed by Gisela Klette, at various places, starting from about
here to the end of the chapter.

4.2 Convex Hull and Shortest Path; Area 99

Fig. 4.6 For calculating the
convex hull of the simple
polygon P , we may embed it
into a rectangle R, select in P

the point p with maximal
y-coordinate, add an edge pq

parallel to the y-axis as
shown, and calculate an ESP
from p (say, starting at p to
the left as indicated by the
dashed curve) back to p in
the non-simple polygon
〈q0, q,p, r, . . . , s,p, q,

q1, q2, q3, q0〉 defined by the
topological closure of R \ P

and the additional edge pq

contain the two endpoints of the cover, which are in P . Thus, the difference
CH(P) \ P ‘disconnects’ at those endpoints into different components. By tak-
ing the topological closure, the endpoints of the covers are also part of the cavities
CAV1(P), . . . ,CAVm(P) of a polygon P .

We are interested in calculating a Euclidean shortest path (ESP) around a finite
set S of points, which might also be the set of all the vertices of a given polygon P ;
see Fig. 4.6. The following theorem provides the justification for this approach.

Theorem 4.1 The convex hull of a finite non-collinear set S of points in R2 coin-
cides with the ESP around S.

Proof Let P be a polygon which contains S, and p1 and p2 be any two vertices
of CH(S) defining an edge p1p2 of this convex hull, and also a straight line γ in
R

2. Straight line γ intersects P at q1 and q2, and the line segment q1q2 ‘cuts off’
a polygonal region from P which does not contain any point of S, thus defining a
smaller polygon P1 whose perimeter is shorter than that of P , and P1 contains S. If
P1 does not yet coincide with CH(S) then continue for another edge of CH(S). �

A polygonal path is an already sorted input for any geometric algorithm, con-
trary to a finite set of points which is still an unsorted input (and, thus, often
more difficult to deal with).

Following Corollary 4.2, the computation of the convex hull CH(S), for any
given finite set S of points in the plane, is equivalent to the computation of the
intersection of all half-planes containing S. Algorithms for the convex hull calcu-
lation for a finite set of points are dealt with in the next section, followed by the
simpler case of polygonal inputs.

The convex hull of a finite subset S ⊂ R
3, or of a simple polyhedron Π ⊂ R

3,
is defined by a finite set of half-spaces. A proof can be analogous to the provided

100 4 Convex Hulls in the Plane

Fig. 4.7 The initial polyline
ends at point q . The line qr

does not partition the plane
into two half-planes where
one contains all the remaining
active points, but the line qp

does

proof for Corollary 4.2; each half-space is defined by one plane in R3. Such a convex
hull constitutes a convex polyhedron. In this book, we are interested in Euclidean
shortest path problems, and there is no need for discussing algorithms for computing
convex hulls of 3D sets of points.

4.3 Convex Hull of a Set of Points in the Plane

First of all, recall the throw-away principle as stated in Chap. 1: Is there a way to
reduce the given set of points ‘quickly’ so that only points of potential impact on
the calculated convex hull remain to be active input data?

For example, we can scan through the given set, calculate points which are
extreme in directions m · π/4, for m = 0,1, . . . ,7, and exclude all the points in
the resulting octagon from continuing to be active. Note that these extreme points
pi = (xi, yi), with i = 1, . . . ,8, can easily be identified by searching for minima
or maxima in x, y, x + y, or x − y values. Note that the extreme points are also
vertices of the convex hull, and they are not necessarily all pairwise different. If S

only contains one point, then all the extreme points would coincide with this point.
It may happen that there is no point of S in the interior of the calculated octagon,

but this should be a ‘rare case’ in general. For taking this case also into account in
the worst-case sense, we stay with n = |S| for describing the input complexity of
convex hull algorithms in the following.

Assume that we start with identifying two subsequent vertices of the convex hull,
defining a straight segment which we take as an initial polyline. We want to extend
this polyline in counterclockwise order by more edges so that it finally becomes the
frontier of the convex hull. Points that are already on the polyline are defined to
be inactive. The current polyline ends at point q . We could apply a straightforward
algorithm (see Fig. 4.7):

4.3 Convex Hull of a Set of Points in the Plane 101

Fig. 4.8 Point p, calculated
in the interior of CH(S), and
an oriented reference line γ

(here selected by point
p1 ∈ S) defines a polar
coordinate system. All the
points in S are sorted by, for
example, increasing angular
coordinates, here illustrated
for point p1 (i.e., angle zero)
up to point p10. (An
application of the throw-away
principle would have
deactivated many points prior
to this process.)

From all the remaining active points, select point p such that qp divides the plane into two
half-planes where the one on the left contains all the remaining active points; extend the
polyline by qp, and then p becomes the new endpoint of the extended polyline.

The time complexity of that algorithm is O(n3). We can do better.

No convex hull algorithm for n (unsorted) points in the plane can do bet-
ter than in (n logn)-worst-case time complexity. The Graham algorithm per-
forms with upper bound O(n logn), and it is thus optimal with respect to
asymptotic worst-case time complexity.

Graham algorithm The Graham algorithm consists of five parts:2

The first part identifies a point p in the interior of the convex hull CH(S), for
example, by selecting the first non-collinear triple of points in S and taking p as the
centroid of those three points.

The second part starts with defining an oriented line γ = pp1 (e.g., by connecting
p with the point having a maximal y-coordinate in S; see Fig. 4.8), and expresses
all points in S in polar coordinates (radius, angle) with respect to p and γ .

The third part sorts all points in S with respect to their angles (say, in increasing
order, clockwise in Fig. 4.8).

In the fourth part, unnecessary points are deleted: those identical to p (i.e., radius
equals zero) and those where there is another point with the same angle but a larger
radius.

In the fifth part, scan through the remaining active points in order, starting with
i = 1: if pi , pi+1, and pi+2 form an exterior angle on the frontier that is less than
or equal to 180◦ then continue with pi−1, pi , and pi+2, otherwise continue with

2Named after the mathematician Ron Graham (born 1935); he also popularised the Erdös numbers.

102 4 Convex Hulls in the Plane

Algorithm 12 (Graham algorithm, 1972)
Input: A set S of n points in the plane.
Output: A polygonal path 〈q1, q2, . . . , qm, q1〉 defining the convex hull of S.

1: Calculate a point p in the interior of CH(S); stop if not possible (i.e., S is
collinear).

2: Select a point q ∈ S that is a vertex of the convex hull.
3: Sort the points in S by increasing angles defined by the polar coordinate system

of p and qp.
4: Delete unnecessary points (i.e., those equal to p or, if of identical angle with

another point but of smaller radius).
5: Let 〈p1,p2, . . . , pn,pn+1〉 be the resulting sorted sequence (e.g., p1 = q1), with

pn+1 = p1. Let k = 2 (i.e., number of points on the convex hull), q1 = p1, and
q2 = p2.

6: for i = 3 to n + 1 do
7: while angle �(qk−1qkpi) ≤ 180◦ do
8: if k > 2 then
9: k = k − 1 else k = i and i = i + 1

10: end if
11: end while
12: k = k + 1 and qk = pi

13: end for

Fig. 4.9 Graham algorithm, where Step 2 contains a suggestion (q on the convex hull) that is not
contained in the original algorithm, easy to ensure (e.g., take a point with maximal y-coordinate),
and helps for defining the stop criterion

pi+1, pi+2, and pi+3. Indices are calculated modulo the number of active points;
stop after closing the loop on the frontier. The pseudocode is shown in Fig. 4.9.
Figure 4.10 shows the resulting polyline of the convex hull up to p10.

Parts 1, 2, 4, and 5 can all be done in linear time O(n), and Part 3 requires sorting,
thus O(n logn) in the worst-case sense.

Sklansky test The Graham algorithm depends on calculating angles used both
for sorting and the test in Row 5. For increasing the speed, angles can be replaced
by the cosine of angles. The test in Row 5 can be further sped-up by determinant
calculations. For three points pi = (xi, yi), for 1 < i ≤ 3, it is sufficient to compute
the determinant (compare Example 4.3)

D(p1,p2,p3) = (y3 − y1)(x2 − x1) − (y2 − y1)(x3 − x1) =
∣
∣
∣
∣
∣

x1 y1 1
x2 y2 1
x3 y3 1

∣
∣
∣
∣
∣

(4.3)

to decide whether the angle �(p1p2p3) is less than, or equal to 180◦. If less than
180◦, then this is also called a left turn, being equal to 180◦ defines collinear points,
and larger than 180◦ a right turn. The value of the determinant D(p1,p2,p3) of

4.3 Convex Hull of a Set of Points in the Plane 103

Fig. 4.10 The sorted points
define a simple polygon
(shown by dashed edges).
Only those vertices remain on
the convex hull where the
angle of the frontier is larger
than 180◦

Fig. 4.11 Three points in a
right-hand xy-coordinate
system. The points describe a
left turn in the order p1, p2,
p3, and a right turn in the
order p3, p2, p1

three successive points p1, p2, and p3 equals the signed area of the trapezoid defined
by those three points; see Eqs. (4.1) and (4.3). The use of the determinant, known as
Sklansky test,3 avoids the computation of trigonometric functions (and thus we stay
with arithmetic algorithms as promised in Sect. 1.1).

For example, let p1 = (0,1), p2 = (0,0), and p3 = (1,0); see Fig. 4.11. Then
we have that D(p1,p2,p3) = 1. This single result is already sufficient to know that
a positive value of D always defines a left turn in a right-hand coordinate system,
but a right turn in a left-hand coordinate system.

Assuming a right-hand coordinate system and clockwise orientation of the polyg-
onal path, we can replace the test of the angle in Row 7 of Fig. 4.9 by the Sklansky
test “D(pk−1pkpi) ≤ 0?”. A negative value of D defines a left turn at a vertex, and
this vertex is also called a concave vertex. A positive value of D defines a right turn
at a convex vertex.

A quickhull algorithm The divide-and-conquer principle leads to an algorithm
that determines the vertices of the convex hull of a finite set of points in the plane
with O(n logn) expected time complexity. The basic strategy of the algorithm
(divide-and-conquer principle) was first time applied in Quicksort.4

3Jack Sklansky (born 1928) made pioneering contributions to image analysis.
4Quicksort was developed in 1960 by Sir Charles Antony Richard Hoare (born in 1934).

104 4 Convex Hulls in the Plane

Fig. 4.12 Left: Sorted input with the top-most left-most point pTL and the bottom-most right-most
point pBR. Right: Upper and lower arc obtained by scanning the sorted sequence from left to right,
pTL to pBR, or vice-versa, respectively

The divide-and-conquer principle: divide the given input, solve the problem
for the smaller sets of input data, and merge results into a solution for the
original input. Apply this principle recursively.

For a given array of points and a selected pivot, the algorithm starts by parti-
tioning the array into two subarrays. One subarray includes all points on the left of
the selected pivot, and the other subarray includes all points on the right of the se-
lected pivot. The procedure continues for each subarray until the base case has been
reached where the length of each subarray is 1; the convex hull of a single point is
the point itself. For merging the convex hulls on the left and on the right, an upper
and a lower tangential lines are calculated for defining the merging edges.

This algorithm has O(n2) worst-case time complexity, but O(n logn) expected
time complexity.

We refrain from giving more details here for this (very efficient and popular)
recursive algorithm; they can be easily found on the net also with free downloads of
sources and animated demonstrations of the algorithm.

A rubberband algorithm Figure 4.12 illustrates a rubberband algorithm for cal-
culating the convex hull of a finite set of points in the plane.

In a first run through the given set, points are sorted left to right along the x-axis.
Let pTL be the point with the smallest x-coordinate. If there are more than one point
with the smallest x-coordinate then we take the one with the largest y-coordinate.
Analogously, pBR is the one with the smallest y-coordinate of all points with the
largest x-coordinate. In general, if there are points with identical x-coordinates,
then they are sorted by decreasing y-coordinates.

At the beginning of the second and third run, all points (i.e., vertices) are active.
During a run some of the points become inactive by deletion. This is best imple-
mented by using a stack (see the Sklansky algorithm in the next section).

4.4 Convex Hull of a Simple Polygon or Polyline 105

The second run considers the points from pTL to pBR, and the third run from pBR

to pTL. We describe the second run; the third run is analogous but into the opposite
direction.

For a current point p, let pb be the nearest active vertex to the left (‘b’ from ‘be-
fore’), and pn be the nearest active vertex to the right (‘n’ from ‘next’). At the start,
we assume that pb = p = pTL. Now we proceed from left to right by considering
the following cases:

Case A: Point p is collinear or concave in the sequence pb, p, and pn. We delete
point p, pb becomes the new point p, pb is the active point before this updated
p (or pTL if already p = pTL), and pn remains.

Case B: Point p is convex in the sequence pb, p, and pn. Then we move p forward:
p becomes pb, pn becomes p, and the next active vertex is the new pn.

Note that we ‘stretch the rubberband’ only by local (i.e., three-point) optimisations.
The sorted sequence describes a monotonously increasing (or decreasing) polyline.
For such a polyline, the applied simple backtracking strategy suffices for selecting
all the convex vertices. The time complexity of the first run is defined by sorting,
and the second and third run are of linear time complexity. Thus, the worst-case
complexity is O(n logn).

Did you notice that the second and third run coincide (methodically) with the
fifth part of the Graham algorithm? Thus, there is also a ‘rubberband interpretation’
of this fifth part.

4.4 Convex Hull of a Simple Polygon or Polyline

The convex hull of a simple polygon in 2D (see Fig. 4.13) is equal to the convex hull
of its set of vertices, and we could also apply one of the O(n logn) algorithms from
the previous section. However, the ‘sorted’ input of vertices of a simple polygon
allows us to calculate its convex hull actually in linear time.

Visibility has been discussed already next to Fig. 1.12. ‘Visibility from the out-
side’ defines a class of simple polygons which is often sufficient for modelling pos-
sible inputs in a given real-world application:

Definition 4.5 A polygon P is visible from the outside iff for any point q on the
frontier of P there is a ray with q as the start point that does not intersect the polygon
at any other point than q .

Part 5 of the Graham algorithm (i.e., the repeated ‘local rubberband optimisa-
tion’), sped-up by using the Sklansky test, is known as the Sklansky algorithm for
the computation of the convex hull of a simple polygon, provided that the input
polygon is completely visible from the outside. It may fail for input polygons that
are not visible from the outside.

106 4 Convex Hulls in the Plane

Fig. 4.13 The convex hull of
a shown isothetic (i.e., all
edges parallel to coordinate
axes) simple polygon. The
shown polygon is also visible
from the outside

Sklansky algorithm We provide a version of the algorithm that uses a stack (i.e.,
a first-in-last-out 1-dimensional data structure) with elements q0 = p0 (at the bot-
tom), q1, . . . , qtop−1, qtop at a given time assumed to be vertices of the convex hull.
Operations PUSH or POP add or delete the top element, with an update top + 1 or
top − 1, respectively. The use of a stack prepares for more general input cases later
on.

The algorithm traces the frontier of the polygon in clockwise or counterclockwise
order. For every next vertex pk , it computes the determinant D(qtop−1, qtop,pk). The
algorithm (see Fig. 4.14) works in linear time in the number of given vertices; there
is no sorting included, and every vertex, once discarded, is never reconsidered.

Algorithm 13 (Sklansky algorithm, 1972)
Input: A simple polygon P , visible from the outside, defined by a loop 〈p0,p1, . . . ,

pn−1,p0〉.
Output: Vertices of the convex hull CH(S) in a stack.

1: Select a start vertex p0 in the loop (modulo n) such that it is a vertex of the
convex hull.

2: Let p1 be the next vertex of P . PUSH(p0) and PUSH(p1) onto the stack. Let
k = 2 and pn = p0.

3: while k ≤ n do
4: while D(qtop−1, qtop,pk) ≤ 0 and top > 0 do
5: POP {i.e., qtop is deleted from the stack and top = top − 1}
6: end while
7: PUSH pk {i.e., top = top + 1 and qtop = pk} and k = k + 1
8: end while
9: Vertices of the convex hull are in the stack.

Fig. 4.14 Version of the Sklansky algorithm using a stack

4.4 Convex Hull of a Simple Polygon or Polyline 107

Fig. 4.15 A polygon with a
non-convex cavity. Vertices
p2 and p7 define the cover
p2p7 of this cavity

Example 4.4 The simple polygon in Fig. 4.15 is not visible from the outside. As-
sume we take this as an input for the Sklansky algorithm.

We start with q0 = p0, . . . , q3 = p3. Then we have the first POP, remove p3 from
the stack and have q3 = p4. This happens again; we remove p4 and have q3 = p5.
Now, p2, p5, and p6 form a right turn. Thus, p5 stays in the stack, and we move on
with q4 = p6.

Vertices p5, p6, and p7 are again a right turn. Vertices p5 and p6 will not be
removed from the stack. �

Klette algorithm The Klette algorithm keeps control whether the sequence of
vertices is at a given time inside of a non-convex cavity or not. A cavity (see Defi-
nition 4.4) is a simple polygon defined by a cover.

The binary parameter flag is true if the algorithm is ‘currently in a non-convex
cavity’, that is, it was crossing a cover once, and flag is back to false if the algorithm
leaves the recognised non-convex cavity again.

Let qprev be the vertex of P immediately preceding q in the traced polyline of
all vertices of P . The vertex q

prev
top in the pseudocode in Fig. 4.16 is the vertex of P

immediately preceding the vertex that is currently on the top of the stack.
For example, if qtop = p7 then q

prev
top = p6. This vertex q

prev
top is not necessarily an

element of the stack. Vertices inside a cavity are always in the interior of the convex
hull and not pushed into the stack. The Klette algorithm is correct for any simple
polygon.

Example 4.5 For the polygon in Fig. 4.15, flag becomes true when the algorithm
is at k = 6: here we have q0 = p0, q1 = p1, q2 = p2, q3 = p5, top = 3, vertex
q

prev
top = p

prev
5 = p4, and thus with D(p4, q3,p6) = D(p4,p5,p6) < 0 a left turn.

For k = 7 we are back to flag = false because the algorithm crosses again the line
segment p2p5. Note that a crossing of a cover was detected at k = 6, when p5p6
‘turned backward into the cavity’, compared to line segment p2p5. �

Melkman algorithm A simple polygon is a special case of a simple polyline.
A simple polyline is a chain of line segments in the plane such that the only common
points are the end vertices and the start vertices of two consecutive line segments.
Line segments do not intersect with each other. The chain does not have to form a
loop.

108 4 Convex Hulls in the Plane

Algorithm 14 (Klette algorithm, 1983)
Input: A simple polygon P defined by a loop 〈p0,p1, . . . , pn−1,p0〉.
Output: Vertices of the convex hull CH(S) in a stack.

1: Select a start vertex p0 in the loop (modulo n) such that it is a vertex of the
convex hull.

2: Let p1 be the next vertex of P . PUSH(p0) and PUSH(p1) onto the stack. Let
k = 2 and pn = p0. Set flag to false.

3: while k ≤ n do
4: if flag = false then
5: while D(qtop−1, qtop,pk) ≤ 0 and top > 0 do
6: POP
7: end while
8: if top = 0 or D(q

prev
top , qtop,pk) > 0 then

9: PUSH pk and k = k + 1
10: else
11: Set flag to true.
12: end if
13: else
14: while D(qtop−1, qtop,pk) ≤ 0 and top > 0 do
15: POP
16: end while
17: PUSH pk and k = k + 1
18: Set flag to false.
19: end if
20: end while
21: Vertices of the convex hull are in the stack.

Fig. 4.16 Klette algorithm

The Melkman algorithm5 is a very efficient implementation for the computation
of the convex hull of a simple polyline. The algorithm uses a deque with two ends
rather than a stack. Elements can be added or removed at both ends (called the
bottom and the top). Elements can be pushed (PUSH) or popped off (POP) at the
top (similar to the operations of a stack), but they can also be inserted (INSERT) or
deleted (DELETE) at the bottom.

Let {qbot, qbot+1, . . . , qtop−1, qtop} be the elements of the deque. INSERT p de-
creases bot by one; the previous element at the bottom is now at position bot + 1;
vertex p moves into position bot. The DELETE p operation removes the element at
position bot by increasing bot by one.

The convex hull at the end of stage k (between Rows 2 an 14 in Fig. 4.17) of
already processed vertices is an ordered list of elements saved in the deque qk =
{qbot, . . . , qtop} with qbot = qtop at any stage.

5Avraham Melkman is at the Ben Gurion University of the Negev.

4.4 Convex Hull of a Simple Polygon or Polyline 109

Algorithm 15 (Melkman algorithm, 1987)
Input: A simple polyline ρ = 〈p0,p1, . . . , pn−1〉 with n vertices in the plane.
Output: The vertices of the convex hull of this polyline.

1: PUSH p0 and then p1 onto the deque. PUSH p2 and INSERT p2 (i.e., at both
ends). Those three vertices must constitute a triangle. Let k = 3.

2: while k < n do
3: while D(qbot, qbot+1,pk) > 0 AND D(qtop−1, qtop,pk) > 0 AND k < n do
4: k = k + 1
5: end while
6: while D(qbot, qbot+1,pk) ≤ 0 do
7: DELETE
8: end while
9: INSERT pk

10: while D(qtop−1, qtop,pk) ≤ 0 do
11: POP
12: end while
13: PUSH pk and k = k + 1
14: end while
15: Vertices of the convex hull are in the deque.

Fig. 4.17 Melkman algorithm

Fig. 4.18 Three different cases for positions of vertex pk+1. The dashed line shows the convex hull
calculated so far up to pk+1, where the new vertex pk+1 becomes the new position of qbot = qtop
in both cases shown on the left and at the middle

Stage k + 1 (see Fig. 4.18) starts with deciding whether the new vertex pk+1 is
(already) inside the convex hull computed up to stage k. This decision requires the
computation of two determinants.

If pk+1 is left of both straight lines qbotqbot+1 and qtop−1qtop then pk+1 is inside
the convex hull calculated at stage k, and the deque does not change; the algorithm
moves on to the next vertex pk+2.

If pk+1 is right of qbotqbot+1 then the bottom of the deque will change. We delete
the element qbot and we check whether pk+1 is right of the segment defined by
qbot+1qbot+2 and so on until pk+1 is on the left. Then we insert pk+1.

110 4 Convex Hulls in the Plane

Fig. 4.19 Left: a simple polygon with its extreme points pRT, pBR, pLB, and pTL. The rubberband
is shown with endpoints pTL and pRT, for local optimisation at point p. Right: The vertices of the
polygon are numbered, and the scan through this loop is modulo 25. When testing points 21, 22,
and 23, point 23 is deleted due to case B. The same case applies for the deletion of point 2 when
considering points 25, 1, and 2, or for the deletion of point 15 when considering points 13, 14, and
15. Points 19 and 24 are deleted due to case A, and point 22 due to case C

If pk+1 is right of qtop−1qtop then the top of the deque will change. We pop off
the element qtop and we check whether pk+1 is right of the segment defined by
qtop−2qtop−1 and so on until pk+1 is on the left. Then we push pk+1 on top of the
deque.

The Melkman algorithm computes the convex hull for simple polylines in linear
time. Every vertex is processed once (this was also true for the Sklansky or the
Klette algorithm), and, as a novelty, there is no need to determine a special pivot
vertex.

A rubberband algorithm Figure 4.19 illustrates a rubberband algorithm for cal-
culating the convex hull of a simple polygon. In a first run through the polygon, we
detect extreme points pRT, pBR, pLB, and pTL meaning the right-most top-most,
bottom-most right-most, left-most bottom-most, and top-most left-most point, re-
spectively.

The second run starts and ends at one of those extreme points. Assume that we
consider points between two subsequent extreme points q1 and q2 (e.g., q1 = pTL
and q2 = pRT); this situation repeats four times during the second run. Vertices are
either inactive or active. At the beginning, all vertices are active. Extreme points
remain always active.

The current vertex p starts at q1 and runs through all the active vertices to q2. For
a vertex p, we also have active vertex pb before p and active vertex pa after p. We
delete vertices (i.e., those become inactive) according to the following three cases:

Case A: Point p is concave in the sequence pb, p, and pa . We delete point p and
pb becomes the new point p, pa remains, and the new pb is the active vertex
before p. (Note: this is the fifth part of the Graham algorithm again.)

Case B: Point pa is concave in the sequence p, pa , and q2. We delete point pa and
continue with p (now having a new point pa).

4.5 Relative Convex Hulls 111

Fig. 4.20 The relative
convex hull (shaded area
with dashed frontier) of the
shown inner and outer
polygon. It is identical to the
minimum-perimeter polygon,
circumscribing the inner
polygon and contained in the
outer polygon

Case C: Point pb is concave in the sequence q1, pb, and p. We delete point pb and
continue with p (now having a new point pb).

When considering one triple pb, p, and pa , we test for cases A, B, and C in se-
quence. If none of the cases applies then pa becomes the new p. We stop when
reaching the same extreme point where the second run started.

The use of a doubly-linked list for storing the vertices of the given polygon en-
sures an efficient implementation of this linear time algorithm.

4.5 Relative Convex Hulls

The ‘relative convex hull’ is identical to the minimum-perimeter polygon (MPP).
This polygon circumscribes a given discrete set (e.g., the inner polygon in Fig. 4.20)
constrained by a given (polygonal) search domain (the outer polygon in Fig. 4.20),
and is of shortest length.

Definition 4.6 Let A ⊆ B ⊆ R
2. Set A is B-convex iff all line segments in B be-

tween any two distinct points p,q ∈ A belong also to A.

Figure 4.21 shows three sets S, A, and B , with S ⊂ A ⊂ B . Set A is B-convex,
and set S is neither A-convex nor B-convex.

Definition 4.7 Let S ⊆ B ⊆R
2. The convex hull of S relative to B is the intersection

of all B-convex sets containing S.

The B-convex hull of S (see Fig. 4.22) is short for the convex hull of S relative to
B , and this is also formally expressed as CHB(S). The relative convex hull of S is a
set CHB(S) for some unspecified set B containing S.

112 4 Convex Hulls in the Plane

Fig. 4.21 Points p, q , r , and s are all in A. The line segment pq is in B and also in A. The line
segment rs is not in B , thus not of interest for deciding about B-convexity. Points p and q are also
in S, the line segment pq is in B but not in S; thus, S is not B-convex. S is also not A-convex

Fig. 4.22 The B-convex hull
of S

From Definition 4.4 it follows that the B-convex hull is the smallest B-convex set
containing S. Any convex set S is also B-convex, only provided that S is contained
in B . Any set B itself is also B-convex. If S is a simple polygon and V the set of
vertices of S, then CHB(S) = CHB(V), for any set B containing S. If S ⊆ A ⊆ B

then

S ⊆ CHA(S) ⊆ CHB(S) ⊆ CH(S). (4.4)

Informally, a larger set B defines a ‘more relaxed constraint’ for S compared to that
defined by set A, and the B-convex hull is thus ‘closer’ to the convex hull CH(S).
Analogously to Theorem 4.1, we also have:

4.6 Minimum-Length Polygons in Digital Pictures 113

Corollary 4.3 Let S be a finite set of points contained in a simple polygon B . The
frontier of the B-convex hull of S coincides with the ESP that circumscribes S and
is contained in B .

This ESP is uniquely defined for given sets S and P . Instead of a finite set S, we
may also consider a simple polygon having S as its set of vertices. Then we call S

the inner polygon and P the outer polygon.
Algorithms for calculating the P -convex hull of polygon S can make use of the

following property (see Fig. 4.20 for an example):

Theorem 4.2 Only convex vertices of polygon S and only concave vertices of poly-
gon P are candidates for vertices of the relative convex hull CHP (S), for any simple
polygons S and P , with S ⊆ P .

4.6 Minimum-Length Polygons in Digital Pictures

The Klette–Kovalevsky–Yip algorithm (see pseudocode in Fig. 4.24) is based on
Theorem 4.2 and was designed for estimating the perimeter of components in a
digital picture.6 Digital geometry applies adjacency relations between pixels. For
example, 8-adjacency defines an 8-path as a sequence of grid points where two
subsequent vertices in this path have a d∞-distance equal to 1 (i.e., they are diagonal
or isothetic neighbours). The 4-border of a set of pixels contains exactly all those
pixels of this set which have at least one 4-adjacent pixel outside of this set.

The inner polygon is an 8-path through the 4-border of the traced component,
and the outer polygon is again an 8-path, a virtual polygon along the co-border. The
8-path of the co-border is ‘parallel’ to the 8-path of the inner polygon at a distance
of one pixel; see Fig. 4.23.

While tracing the 8-path of the 4-border of a given component, all its concave
vertices are replaced in Line 1 (see Fig. 4.24) by corresponding concave vertices of
the virtual 8-path of the co-border. In general, this is a one-to-one mapping, but there
may be cases where two or three concave vertices of the inner 8-path are assigned to
the same concave vertex of the outer path; see Fig. 4.23. However, we then replace
those two or three concave vertices all by the same concave vertex of the outer
8-path. Identical vertices are eliminated in the algorithm because they satisfy the
collinearity property.

In the resulting list CC, a vertex is marked by a plus sign if it is a convex vertex
of the inner 8-path, or by a minus sign if it is a concave vertex of the outer 8-path.
Collinear (e.g., repeated) vertices are ignored because they are not candidates for

6The algorithm published in [11] (see also [10]) calculates a polygonal path between inner and
outer polygon whose length is multigrid convergent. However, the case discussion was incomplete;
see [2] for showing an input where the calculated polygonal path actually differs from the MLP.
The missed case has been taken care of in the given pseudocode.

114 4 Convex Hulls in the Plane

Fig. 4.23 There is a unique
mapping of concave vertices
on the border of a region (i.e.,
the inner polygon) onto
concave vertices of the virtual
co-border (i.e., the outer
polygon). In this example,
there are two cases where two
or three concave vertices map
onto one concave vertex.
There are also two cases
where edges of the outer
polygon ‘are touching
each-other’

the minimum-length polygon (MLP), and they could already be deleted in Step 1 in
Fig. 4.24.7

Now, the algorithm runs a second time through list CC. It starts at a vertex p1
already known to be an MLP vertex (e.g., maximum y-coordinate). After each de-
tected MLP vertex pk , the algorithm passes all those vertices v which can still be
connected by a line segment pkv contained in the difference set of outer polygon
minus inner polygon; the vertex furthest away from pk with this property defines
the next MLP vertex pk+1. See Fig. 4.25.

Both runs of the algorithm through the given CC list are in linear time. The
pseudocode in Fig. 4.24 also contains the calculation of the length of the MLP.

4.7 Relative Convex Hulls—The General Case

Now we consider the general case where the inner and outer polygon A and B are
simple polygons with A ⊆ B .

Toussaint algorithm This algorithm assumes a similar cut pq as in Fig. 4.6
where the outer polygon replaces the role of the rectangle, used in this figure for
embedding a given simple polygon. See Fig. 4.26. The cut connects now one ex-
treme vertex p of the inner polygon (i.e., known to be on the relative convex hull)
with a point q on the outer polygon having the same x-coordinate as p. The rela-
tive convex hull is defined by an ESP in the generated (via the cut) simple polygon
Q = (B \ A)• that starts and ends at vertex p and circumscribes the inner polygon.

The algorithm assumes a triangulation of Q that can be done in O(n log logn)

time (see Chap. 5). This is followed by finding the shortest path that can be

7The name ‘minimum-length polygon’ is common in digital geometry for this particular case of
ESPs, defined by a border and its co-border of a component in a digital image.

4.7 Relative Convex Hulls—The General Case 115

Algorithm 16 (Klette–Kovalevsky–Yip algorithm, 1999)
Input: A border loop of length n of convex or concave vertices of a component in a
digital picture.
Output: The vertices of the MLP saved in a list MLP = [p1, . . . , pm] and the length
L of the MLP.

1: Compute a list CC = [v1, . . . , vn]; it contains all convex vertices of the border
loop; all concave vertices of the border loop are replaced by concave vertices of
its co-border; each vertex vj is labelled by the sign of D(vj−1, vj , vj+1).

2: Initialise: k = 1 {k is the index for new MLP-vertices}, a = 1, b = 1, j = 2
{j is the index for all vertices in the given list CC}, p1 = v1 {p1 is the first
MLP-vertex}, vn+1 = v1, and L = 0 {L is the length of the MLP}.

3: while j ≤ n + 1 do
4: if D(pk, vb, vj) > 0 then
5: if D(pk, va, vj) ≥ 0 then
6: if vj has a negative sign {i.e., it is a concave vertex} then
7: k = k + 1, pk = vb, j = b, a = b, L = L + de(pk−1,pk)

8: end if
9: else

10: if vj is labelled by a positive sign {i.e., it is a convex vertex} then
11: b = j

12: else
13: a = j

14: end if
15: end if
16: else
17: if D(pk, va, vj) ≥ 0 then
18: if vj is labelled by a positive sign then
19: b = j

20: else
21: a = j

22: end if
23: else
24: if vj has a positive sign then
25: k = k + 1, pk = va , j = a, b = a, L = L + de(pk−1,pk)

26: end if
27: end if
28: end if
29: j = j + 1
30: end while
31: Now we have m = k vertices in the MLP = [p1, . . . , pm], and it is of length L.

Fig. 4.24 Klette–Kovalevsky–Yip algorithm (revised)

116 4 Convex Hulls in the Plane

Fig. 4.25 The relative
convex hull is defined by
replacing a few segments of
the dashed polyline (i.e., the
initial CC list) by the shown
line segments. Non-MLP
vertices are shown with white
interior

Fig. 4.26 The cut pq defines
the light-gray shaded
(non-simple) polygon. The
dashed line is a shortest path
in this polygon from p

(departing to the right) to p

(arriving from the left)

done in linear time on the given triangulation. The whole algorithm works thus in
O(n log logn) time.

Preliminaries for a recursive algorithm The following properties of the rela-
tive convex hull RCHB(A), for simple polygons A and B , A ⊆ B , prepare for the
detailed presentation of a recursive algorithm. At first we state:

Theorem 4.3 The B-convex hull of a simple polygon A is equal to the convex hull
of A iff the convex hull of A is completely contained in B (i.e., CH(A) ⊆ B).

Proof If CH(A) ⊆ B then RCHB(A) = CH(A) because B is not constraining
CH(A) at all. On the other hand, we always have that RCHB(A) ⊆ B . Thus, if
RCHB(A) = CH(A) then also CH(A) ⊆ B . �

The B-convex hull of a simple polygon A is different to CH(A) if there exists at
least one cavity CAVi (A) in A and one cavity CAVj (B) in B such that the intersec-
tion CAVi (A)◦ ∩ CAVj (B) is not empty. (Recall: S◦ is the interior of set S.)

According to the following theorem, we can determine a subset of all vertices of
the relative convex hull by computing the vertices of the convex hull for the inner
polygon.

4.7 Relative Convex Hulls—The General Case 117

Fig. 4.27 Polygon A (shaded) has one cavity CAV(A), with the cover pspe .—Illustrating The-
orem 4.5, Inew has one cavity with the cover q6ps , and with vertex p3 of A in its interior, and a
second cavity with the cover q10pe , and no vertex of A in its interior

Theorem 4.4 All vertices of the convex hull of a simple polygon A, contained in a
simple polygon B , are also vertices of the B-convex hull of A.

Proof We consider the start and end vertices ps and pe of the cover of a cavity
CAV(A); see Fig. 4.27. They are by definition vertices of the convex hull of A.

If the intersection CAV(A)◦ ∩ CAV(B) is empty, for any cavity CAV(B) of
B , then B has no vertices inside this cavity of A, and because A ⊆ B , the cover
pspe connects vertices in A as well as points in B . Thus, ps and pe are vertices of
CHB(A).

Now assume that CAV(A)◦ ∩ CAV(B) is not empty, for a cavity CAV(B) of B .
Then there is at least one vertex qi of B in CAV(A), and the line segment pspe

crosses the frontier as well as the exterior of B . The frontier of CHB(A) contains
thus a polygonal path from ps to pe also containing at least one vertex of B in
CAV(A). The segments of this polygonal path do not cross the frontier of A, and do
also not cross the frontier of B . Thus, ps and pe are vertices of CHB(A).

Finally, consider two consecutive vertices of CH(A) that are not a start or end
vertex of a cavity; they are vertices of CHB(A) per definition of the relative convex
hull. �

The theorem above tells us that we can copy all vertices of the convex hull of A

to the B-convex hull of A. In some cases, we have to insert additional vertices for
the relative convex hull between cover endpoints ps and pe of a cavity in A if there
are vertices of B in this cavity.

118 4 Convex Hulls in the Plane

Let us consider cavities in polygons A and B with CAV(A)◦ ∩ CAV(B) 	= ∅. Let
Inew be the polygonal path in CAV(A) that is defined by vertices ps and pe of A

and all the vertices of B located in this cavity of A (see Fig. 4.27; here we have that
Inew = 〈ps, q3, q4, . . . , q11,pe〉).

Theorem 4.5 All vertices of the convex hull of Inew are vertices of the relative con-
vex hull RCHB(A), on the subpath between ps and pe .

Proof We assume that Inew has no cavity. Then Inew is convex and all the line seg-
ments between vertices of Inew are in the convex hull of A, and they do not intersect
with the exterior of B . They do not intersect with A because of A ⊆ B .

If Inew has a cavity and vertices of B in that cavity then vertices ps and pe on
Inew belong obviously to the convex hull of this polygon. The straight segments
between vertices of the cavity are completely in CH(A) and in B (for example, see
q10, q11, p10 in Fig. 4.27).

If vertices of A are in the cavity (for example, see p2, p3, q6 in Fig. 4.27) then
the cover pspe intersects A. The polygonal path, starting at ps and ending at pe ,
connects vertices in A. �

If the new polygon Inew has a cavity CAV(Inew) containing vertices of A, then
the start and end vertex of CAV(Inew) and the vertices of CAV(Inew) constitute again
a new inner polygon Onew, and the start and the end vertex of CAV(Inew) and the
vertices of Inew constitute a new outer polygon (see Fig. 4.27).

This leads us to the basic idea of a recursive algorithm for the computation of the
relative convex hull.

We follow (e.g., in counterclockwise order) both frontiers of the original poly-
gons, starting on the frontier of A at an extreme vertex that is a vertex of the relative
convex hull CHB(A).

Furthermore, for the computation of the convex hull and for finding intersecting
cavities in A and in B , we use the standard decision that a vertex pi of a polygon
is convex, concave, or collinear, depending on the sign or value of the determinant
D(pi−1,pi,pi+1).

Recursive algorithm Algorithm 16 is based on a mapping of cavities of the in-
ner polygon A onto cavities of the outer polygon B . This mapping simplifies the
process of finding overlapping cavities in A and B in this special situation for MLP
calculation. The following algorithm for the general case of arbitrary inner and outer
simple polygons is not making use of such a mapping of cavities.

The base case of the recursion (i.e., where it stops) is a triangle. We use The-
orem 4.3: The relative convex hull CHB(A) for simple polygons A ⊆ B is only
different from CH(A) if there is at least one cavity in A and one in B such that
the intersection of those cavities is not empty. The algorithm copies vertices of the
convex hull of the inner polygon one by one, until it finds a cavity.

If it detects a cavity CAV(A), then it finds the next cavity in B that has a
nonempty intersection with CAV(A), if there is any. The algorithm computes the

4.7 Relative Convex Hulls—The General Case 119

Fig. 4.28 Left: covers created at recursion depth m, for m = 1 to m = 5. Right: covers at recursion
depth 6; both cavities define only a triangle each, thus the base case of the recursion

convex hull of the new inner polygon Inew (i.e., all vertices of B in CAV(A), includ-
ing the start and end vertices of CAV(A)). For each cavity in this resulting convex
hull, the algorithm computes recursively the convex hulls of the next new polygons.

If there is no cavity remaining, then the algorithm inserts the computed vertices
in a cavity, between ps and pe, for all cavities in A, and it returns the relative convex
hull of the given polygon A relatively to B .

This is the basic outline of the algorithm, and we discuss it now more in detail.
We assume two lists containing all the vertices of A and B with their coordinates
(in the order of polygonal paths). We compute the convex hulls of both polygons
by applying the Melkman algorithm (see Algorithm 15). The computation for both
polygons starts at the extreme vertices with, say, minimum y-coordinates. For a
given ordered set of n vertices A = 〈p1,p2, . . . , pn〉, the Melkman algorithm de-
livers the convex hull in O(n) time in a deque D(A) where the first and the last
element are the same vertices.

The difference in indices of two consecutive vertices pj and pi in the resulting
deque D(A) is equal to 1 iff there is no cavity between pj and pi . We do not change
D(A). A cavity in A with the starting vertex ps = pj and end vertex pe = pi has
been found if (i − j) > 1.

The next step finds a cavity in the convex hull of the outer polygon. It searches
the deque D(B). If it finds a cavity, it checks whether a line segment between the
vertices of B in this cavity intersects the cover pspe, and it computes the convex
hull for ps , pe and all the vertices q of B that define a concave corner ps, q,pe and
are also inside the cavity.

See Fig. 4.28. At recursion depth 1, one cavity of A is detected with the cover
numbered “1”. When calculating the convex hull of points of B in the cover, note
that the sequence of points is also crossing the cover numbered “1”, but convex
points with respect to the cover are ignored, until we return to concave points. This
can happen repeatedly (twice in the shown example). At recursion depth 2, we iden-
tify three covers of cavities, all numbered by “2”. Only the middle one leads to

120 4 Convex Hulls in the Plane

another recursion step of depth 3, and so on. The drawing on the right in Fig. 4.28
shows the case of maximum recursion depth, when going from 5 to 6. At depth 6,
we only have two triangles and stop here.

Example 4.6 For a simpler example, see Fig. 4.27. The convex hull of A is saved
in a deque and the set of vertices equals D(A) = 〈p1,p2,p10, . . . , p16,p1〉. We
trace the deque. The difference between the first two indices is 1, we calculate the
difference between the second and the third vertex. Between p2 = ps and p10 = pe

there must be a cavity because the difference of the indices is larger than 1.
Vertices of B inside the cavity between ps and pe define now the new in-

ner polygon with vertices Inew = 〈ps, q3, q4, . . . , q11,pe〉, and vertices of A in-
side the cavity between ps and pe define a new outer polygon with vertices
Onew = 〈ps,p3,p4, . . . , p9,pe〉.

All vertices of the convex hull D(Inew) = 〈ps, q6, q7, . . . , q10,pe,ps〉 are ver-
tices of the relative convex hull. The polygon Inew has one cavity p2,p3, q6 con-
taining one vertex of polygon A. This defines again a new inner polygon.

The convex hull of three vertices is the same set of three vertices; the recursion
stops. We replace p2 and q6 by p2,p3, q6 in D(Inew). We continue to check for
cavities until we reach pe. The adjusted deque replaces the start and the end vertices
in D(A). In our example (see Fig. 4.27), the next cavity in D(Inew) starts at q10 and
ends at pe. But inside the cavity there is no vertex of the outer polygon. Thus, the
relative convex hull does not change.

We continue to trace the deque D(A) at p10 until p1 is reached, and we skip
vertex by vertex because there is no other cavity in A; D(A) stays unchanged. �

See Fig. 4.29 for a pseudocode of the algorithm by Gisela Klette for cal-
culating the relative convex hull. This algorithm applies recursively a procedure
RCH(I,O,D(I),D(O), l, t,ps,pe) also given in the same figure.

Note that the Melkman algorithm delivers the convex hull in a deque with the
first element at the bottom of the deque and also at the top of the deque. We need to
remove the first element from the top after the computation of the convex hull.

Note that any vertex on A or B is accessed by the algorithm only at most as often
as defined by the depth of a stacked cavity. This defines this algorithm as being of
linear time complexity, measured in the total number of vertices on A and B if this
depth is limited by a constant, but the algorithm is of quadratic time in the worst
case sense.

For the general case, roughly speaking, if there are “many” cavities in A, then
they are all “small”, and the algorithm has again linear run-time behaviour. (The
number N of cavities in a simple polygon with n vertices is at most N = �n/2�, for
any n > 3.)

If there is just one “big” cavity (similar to Fig. 4.28), then the recursion only
proceeds for this one cavity, and we are basically back to the upper bound for the
original input, now for a reduced number of vertices plus some preprocessing in
linear time. The worst case in time complexity is reached if there is a small number
of “large cavities” in A and B , causing repeated recursive calls within originally

4.8 Problems 121

Algorithm 17 (Algorithm by Gisela Klette)
Input: Simple polygons A = 〈p1,p2, . . . , pn,p1〉 and B = 〈q1, q2, . . . , qm, q1〉,
with A ⊆ B .
Output: Relative convex hull RCHB(A) in D(I).

1: Initialise D(I) = ∅ and D(O) = ∅
2: Call Procedure RCH(A,B,D(I),D(O),n,m,p1,pn)

Procedure RCH(A,B,D(I),D(O),n,m,p1,pn)

1: Compute convex hulls of I and O in deques D(I) and D(O), respectively;
l is the number of vertices in I and t the number of vertices in O;
ps is the start vertex and pe the end vertex of the inner polygon;
k = 1 and j = 1 are loop variables.

2: Remove the final element in each of the deques D(I) and D(O).
3: while k < l do
4: if there is a cavity between two consecutive vertices vk and vk+1 in D(I)

then
5: ps = vk and pe = vk+1
6: while j < t do
7: if there is an overlapping cavity between two consecutive vertices in

D(O) then
8: Update I such that I includes ps and pe and all vertices in O inside

the cavity of I ; L is the number of vertices.
9: if L > 3 then

10: Update O such that O includes ps and pe and all the vertices of I

in the cavity of I ; T is the number of vertices.
11: Call RCH(I,O,D(I),D(O),L,T ,ps,pe)

12: end if
13: Insert q between ps and pe in D(I).
14: end if
15: end while
16: Return D(I).
17: end if
18: end while
19: Return D(I).

Fig. 4.29 The recursive algorithm by Gisela Klette

large cavities of A, and the number of recursive calls defines the depth of those
stacked cavities. However, such cases are often unlikely in real-world applications.

4.8 Problems

Problem 4.1 Show the correctness of Eq. (4.3).

122 4 Convex Hulls in the Plane

Problem 4.2 Provide a correctness proof for the Graham algorithm (i.e., correct
calculation of the convex hull, for any finite set of points in the plane).

Problem 4.3 Figures 4.14 and 4.21 illustrate rubberband algorithms for convex hull
calculations, either for a set of points or for a simple polygon. In the latter case, we
suggested the use of four extreme points, but only two for a set of points. Why?

Problem 4.4 Prove that (4.4) is true, for any subsets S, A, and B of R2 satisfying
S ⊆ A ⊆ B .

Problem 4.5 (Programming exercise) Implement the rubberband algorithms for
calculating the convex hull of a set of n points in the plane, or of a simple poly-
gon. Compare the actual run-time of your rubberband algorithm with that of the
Graham algorithm (i.e., input data are a set) and that of the Melkman algorithm
(i.e., input data are a simple polygon); there are sources for both algorithms on the
net. Use randomly generated input data (see, for example, Problem 1.6).

Problem 4.6 In Fig. 4.28, we have a = 40 vertices for the inner polygon A, b = 56
vertices for the outer polygon B , and depth r = 7 of the resulting recursion. Simplify
polygons A and B such that they have a minimum number a + b of vertices but still
depth r = 7 in the resulting recursion. Can you generalise the result by deriving a
general upper bound for r for a given sum a + b?

Problem 4.7 (Programming exercise) Implement a program which does the follow-
ing:

(a) Read an arbitrary gray-level image (in a format such as bmp, tiff, png, or raw,
which supports accurate image value representation, as opposed to, for exam-
ple, jpg format which is defined by a lossy image encoding scheme) and apply
a threshold, for generating a binary image containing black object pixels and
white non-object pixels.

(b) Identify a component (e.g., defined by 4-adjacency) of object pixels by a mouse
click (i.e., by clicking somewhere inside of this component). Identify this region
on screen by changing all pixel values within this region into a particular colour
(note: this step may apply a common graphic routine for ‘filling’ a connected
region with some constant value).

(c) Estimate the area of the selected component by counting its number of pixels.
(This is a sound way for estimating the area.)

(d) Estimate its perimeter by calculating the perimeter of its minimum-length cir-
cumscribing polygon (MLP). For doing so, implement first a border tracing
algorithm which allows ‘walking around a connected region’ exactly once, con-
sider this as being the inner border, and now include the calculation of an outer
border into your tracing algorithm being one pixel away (in a region of non-
object pixels) from the traced inner border. Finally, the MLP is calculated be-
tween inner and outer border. (Again, the use of the MLP defines a sound way
for estimating the perimeter.)

4.9 Notes 123

(e) Output the shape factor of the selected component, defined by the area divided
by the square of the perimeter. Discuss the importance of this shape factor for
characterising the shape of connected image regions.

Problem 4.8 A polygon P is called monotone (strictly monotone) with respect to
a straight line γ if every line orthogonal to γ intersects the frontier of P at most
twice (at most in two points). Simplify the Sklansky algorithm so that it calculates
the convex hull of any monotone polygon correctly without containing unnecessary
instructions.

Problem 4.9 (Research problem) Implement Gisela’s algorithm described in
Fig. 4.29 and provide experimentally measured run-times especially for polygons
having ‘stacked’ cavities, for identifying those shapes which cause maximum run
times.

Problem 4.10 (Research problem) Design a rubberband algorithm for computing
relative convex hulls, and compare its performance with that of Gisela’s algorithm.

Problem 4.11 Prove that the rubberband algorithm described at the end of Sect. 4.3
can be computed in time O(n logn).

4.9 Notes

For the geometry of convex sets in the context of discrete geometry, see, for exam-
ple, [6].

The Graham algorithm was published in 1972 (on less than two pages) in [5].
A different strategy has been used by William F. Eddy [4] for the computation of
the convex hull for any finite set of points in the plane. Also in 1972, Jack Sklansky
published in [16] the first linear-time algorithm for calculating the convex hull of a
simple polygon using the determinant D(p1,p2,p3) for testing for a ‘left turn’ or
‘right turn’ (actually, there introduced as the cross product of two vectors). However,
it turned out a few years later that this algorithm is not correctly calculating the
convex hull for any simple polygon.

Part 5 of the Graham algorithm and the Sklansky algorithm, as well as several
convex hull algorithms published after 1972, apply a ‘three steps local optimisation’
approach what is a defining feature of rubberband algorithms in general. In these
convex hull algorithms, steps (of the RBA) are single points only, and the RBA is
just about eliminating some of these steps. For convex-hull algorithms in general,
see also textbooks in computational geometry, for example, [13].

The Klette algorithm was published in [9] and is one of the various convex-hull
algorithms for simple polygons which fixed this issue. The Melkman algorithm,
published in [12], may have simple polygons as input, but also just simple (i.e., no
self-intersection) polygonal chains.

124 4 Convex Hulls in the Plane

The papers [15–17] proposed minimum-perimeter polygons (i.e., constrained or
relative convex hulls in the regular orthogonal grid) for measuring the perimeter of
sets digitised in the plane. The relative convex hull was identified as a way to esti-
mate the length of curves [18] with convergence to the true value. For Theorem 4.2,
see [18]. The relative-convex-hull algorithm in [11] applies this property. It com-
putes the ESP for components in a digital picture in time linear with respect to the
number of pixels on the border of a component.

The book [10] discusses in detail the issue of multigrid convergence of property
estimators (e.g., length, area, curvature, volume, or surface area); the paper [1] dis-
cusses multigrid convergence for the particular case of length estimation in digital
images. Algorithms for relative convex-hull calculations are also published in [8,
11, 14, 19]. The material on relative convex hull in this chapter is partially authored
by Gisela Klette; see also her DGCI-conference paper [8].

For ant-colony optimisation (ACO), as referred to for the introductory figure
of Part II, see the book [3]. Concepts of local optimisation are also a subject in
biologically-inspired concepts of computing, such as swarm intelligence; see the
book [7]. However, we cite those optimisation concepts here only for some con-
ceptual similarity (say, accumulating local knowledge for global optimisation), and
they are not further discussed in this book.

References

1. Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves.
IEEE Trans. Pattern Anal. Mach. Intell. 26, 252–258 (2004)

2. de Vieilleville, F., Lachaud, J.-O.: Digital deformable model simulating active contours. In:
Proc. DGCI. LNCS, vol. 5810, pp. 203–216. Springer, Heidelberg (2009)

3. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
4. Eddy, W.F.: A new convex hull algorithm for planar sets. ACM Trans. Math. Softw. 3, 398–

403 (1977)
5. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set.

Inf. Process. Lett. 7, 175–180 (1972)
6. Gruber, P.M.: Convex and Discrete Geometry. Springer, New York (2007)
7. Kennedy, J., Eberhardt, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)
8. Klette, G.: Recursive calculation of relative convex hulls. In: Proc. DGCI. LNCS, vol. 6607,

pp. 260–271. Springer, Heidelberg (2011)
9. Klette, R.: Mathematische Probleme der digitalen Bildverarbeitung. Bild Ton 36, 107–113

(1983)
10. Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)
11. Klette, R., Kovalevsky, V.V., Yip, B.: Length estimation of digital curves. In: Vision Geometry.

SPIE, vol. 3811, pp. 117–129 (1999)
12. Melkman, A.: On-line construction of the convex hull of a simple polygon. Inf. Process. Lett.

25, 11–12 (1987)
13. O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge Tracts in Theoretical Com-

puter Science (1998)
14. Provençal, X., Lachaud, J.-O.: Two linear-time algorithms for computing the minimum length

polygon of a digital contour. In: Proc. DGCI. LNCS, vol. 5810, pp. 104–117. Springer, Hei-
delberg (2009)

15. Sklansky, J.: Recognition of convex blobs. Pattern Recognit. 2, 3–10 (1970)

References 125

16. Sklansky, J.: Measuring concavity on a rectangular mosaic. IEEE Trans. Comput. 21, 1355–
1364 (1972)

17. Sklansky, J., Chazin, R.L., Hansen, B.J.: Minimum perimeter polygons of digitized silhou-
ettes. IEEE Trans. Comput. C-21, 260–268 (1972)

18. Sloboda, F., Stoer, J.: On piecewise linear approximation of planar Jordan curves. J. Comput.
Appl. Math. 55, 369–383 (1994)

19. Toussaint, G.T.: An optimal algorithm for computing the relative convex hull of a set of points
in a polygon. In: EURASIP, Signal Processing III: Theories and Applications, Part 2, pp. 853–
856. North-Holland, Amsterdam (1986)

Chapter 5
Partitioning a Polygon or the Plane

Many are stubborn in pursuit of the path they have chosen, few
in pursuit of the goal.

Friedrich Wilhelm Nietzsche (1844–1900)

The chapter describes algorithms for partitioning a simple polygon into trapezoids
or triangles (Seidel’s triangulation and an algorithm using up- and down-stable ver-
tices). Chazelle’s algorithm, published in 1991 and claimed to be of linear time, is
often cited as a reference, but this algorithm was never implemented; the chapter
provides a brief presentation and discussion of this algorithm. This is followed by a
novel procedural presentation of Mitchell’s continuous Dijkstra algorithm for sub-
dividing the plane into a shortest-path map for supporting queries about distances to
a fixed start point in the presence of polygonal obstacles.

5.1 Partitioning and Shape Complexity

Partitioning (or decomposition, or tessellation) of a simple polygon or other planar
sets is a common preprocessing step when solving an ESP problem in the plane (see
Chap. 6 for the general case or the Toussaint algorithm in Sect. 4.7 for a particu-
lar application). ‘Triangle puzzles’ are popular games (e.g., using triangles of vari-
ous sizes for forming a predefined shape). Decompositions are also used in pattern
recognition or image analysis, for example, when in need of a ‘shape complexity
measure’.

The shape complexity of a convex set S can simply be identified with the mini-
mum number of half-planes needed for generating S by repeated intersections (i.e.,
the number of edges if S is a convex polygon). Non-convex sets can be partitioned
into convex sets. See Fig. 5.1.

F. Li, R. Klette, Euclidean Shortest Paths,
DOI 10.1007/978-1-4471-2256-2_5, © Springer-Verlag London Limited 2011

127

128 5 Partitioning a Polygon or the Plane

Fig. 5.1 Polygon with one hole. Left: A partitioning into convex sets by linear extension of the
polygon’s edges. Right: A partitioning into triangles by connecting vertices of the polygon. Those
two approaches are further specified when defining algorithms

The shape complexity of a compact set can be quantified by the minimum
number of convex sets required for partitioning this set.

The complexity of the contributing convex partitioning elements can be used for
a more refined specification of shape complexity.

A simple polygon (no matter whether convex or non-convex), possibly with a
finite number of holes, all defined by simple polygons, can always be partitioned into
triangles. The required number of triangles allows us to define the shape complexity
of any simple polygon in a standard way, not depending on possible variations of
the convex partition elements.

Definition 5.1 A family F = {Sa : a ∈ I } of sets, with index set I ⊆ R, defines a
partitioning of a set S iff

(i) S is the union of all the sets in F ,
(ii) any set Sa has a non-empty interior, and

(iii) the interiors of sets Sa and Sb are disjoint, for any a, b ∈ I and a �= b.

Property (ii) requires that there are no degenerated sets in F such as line seg-
ments or singletons (i.e., sets that contain only a single point). Property (iii) says
that sets in F may share points on their frontiers. (The interior of a set was defined
in Sect. 2.5.) If S ⊆R

2 then the elements in F are also called faces.
See Fig. 5.2 for two examples in 3D space; Listing’s polyhedron on the right

was already shown in Fig. 1.12. The question raised in the caption of this figure is
not easy to answer in general. Listing’s polyhedron is the union of four partially
overlapping toroidal polyhedrons (i.e., each of the four is topologically equivalent
to a torus). Those polyhedrons can be further subdivided by removing double copies
of overlapping parts, thus defining a partitioning into pairwise disjoint polyhedrons.
So far a ‘brief excursus’ into 3D space; this chapter discusses planar sets only.

The class of simple polygons contains ‘very complex’ 2D shapes. For example,
consider a ‘fractal tree’ (see Fig. 5.3) and expand all line segments of this tree into
‘thin elongated rectangles’ so that their union forms a simple polygon.

5.2 Partitioning of Simple Polygons and Dual Graphs 129

Fig. 5.2 What is the minimum number of convex sets needed for partitioning a 3D non-convex
set? Left: Torus. Right: Listing’s polyhedron

Fig. 5.3 Digital print of a fractal tree. Courtesy of Robert Fathauer, Tessellations Company,
Phoenix, Arizona

5.2 Partitioning of Simple Polygons and Dual Graphs

We consider the partitioning of a simple polygon into triangles or trapezoids.1

A trapezoid partitions into two triangles, and this post-process is not adding much
run time to a partitioning algorithm if needed. A partitioning into triangles only is
called a triangulation, and into triangles or trapezoids is called a trapezoidation.

There are many algorithms for trapezoiding a simple polygon. Sources are freely
available on the net for some of them. For a start, a convex polygon is very easy to
triangulate; just select a vertex and connect it by n − 1 line segments with all the
other vertices. We apply the following

1A trapezoid is a quadrilateral with one pair of parallel sides. Thus, a trapezoid is always a convex
polygon.

130 5 Partitioning a Polygon or the Plane

Fig. 5.4 Triangulated
polygon P and dual graph
GP . Graph nodes can be
positioned in corresponding
triangles conveniently
anywhere for graphical
presentation

Partitioning constraint: Vertices of triangles or trapezoids of a partitioning
are restricted to be on the frontier of the given simple polygon.

Both examples in Fig. 5.1 satisfy this constraint; the example on the right even
uses only vertices of the given polygon. There are also partitioning methods which
introduce additional vertices in the interior of the polygon, but we exclude those
from our considerations.

Let P be a simple polygon and T = {�1,�2, . . . ,�m} a partitioning of P into
convex sets. Two faces �i and �j of T are either disjoint, or they share an edge eij ,
or they share just a single point, for i, j = 1, . . . ,m and i �= j .

A partitioned simple polygon defines a dual graph GP = [V,E]. This is an undi-
rected graph whose nodes V = {v1, v2, . . . , vm} correspond one-to-one to the faces
of T , and there is an edge e = {vi, vj } in E iff �i ∩�j is a line segment of non-zero
length (i.e., a line segment that is not just a point). See Fig. 5.4.

Lemma 5.1 The dual graph GP is a tree, for any partitioned simple polygon P .

Proof By contradiction. Suppose that GP is not a tree. Then there is a cycle
u1u2 · · ·uku1 in GP . Consequently, there is a sequence �′

1,�′
2, . . . ,�′

k of sets in T
such that �′

i ∩ �′
j �= ∅, for i �= j and i, j = 1,2, . . . , k. It follows that there is a

polygonal loop ρ = w1w2 · · ·wkw1 with wi ∈ �′
i , for i = 1, . . . , k that is completely

contained in the interior of P . Loop ρ circumscribes a vertex of �′
1; we denote this

by w. Vertex w cannot be on the frontier of P , which contradicts our partitioning
constraint. See Fig. 5.5. �

Assume a fixed ESP problem where a simple polygon P defines the search space,
and end points p and q are given in P . Points p and q are in elements �p and �q of
a partitioning T of P . Any ESP from p to q has now to cross all those elements in T
which are on a shortest path from up to up in the dual graph GP , where up and up

are the nodes representing �p and �q , respectively. By Lemma 5.1, we know that
GP is a tree. By identifying the shortest path from up to up , we obtain the sequence

5.2 Partitioning of Simple Polygons and Dual Graphs 131

Fig. 5.5 Path ρ and vertex
w, as discussed in the proof
of Lemma 5.1

of edges eij which a solution to the ESP problem needs to cross. For example, these
edges can be considered to be steps of an RBA.

Shortest path in a tree Let T be a tree, and u1 and u2 be two nodes in T , u1 �= u2.
We provide a procedure for calculating a uniquely specified path from u1 to u2
by not allowing any returns (and thus the shortest path). There exists a linear-time
algorithm for computing the shortest path between two nodes in a positive-integer
weighted graph. Because we know that we have a tree, we can adapt the algorithm
for this particular input; see Fig. 5.6.

Let d(v) denote the degree of a node v in a graph (i.e., the number of adjacent
nodes). In our tree, we have leaves v with d(v) = 1, and the degree of a non-leaf
node can be any integer ≥ 2.

The outline of Algorithm 18 is as follows: We collect all leaves of the tree T

in list S1, not allowing u1 and u2 to be in this set. Then we ‘prune’ each branch,
starting at node v in S1, by beginning with the uniquely specified node w adjacent
to v.

If d(w) = 2 and w is not u1 or u2, then we use w as the new v, insert it into V1,
and there is only one node w adjacent to v that is not yet in V1. If d(w) = 2 and w

is not u1 or u2, then we proceed as before.

Algorithm 18 (Shortest path in a tree)
Input: A tree T = [V,E] and two nodes u1 and u2 in V .
Output: The shortest path ρ from u1 to u2 in T .

1: Let S1 = {v : v ∈ V ∧ d(v) = 1 ∧ v �= u1 ∧ v �= u2} and V1 = ∅.
2: for each v ∈ S1 do
3: Insert v into V1.
4: Let w be the unique node adjacent to leaf v.
5: while d(w) = 2 ∧ w �= u1 ∧ w �= u2 do
6: v = w and insert v into V1.
7: Let w be the unique node adjacent to v and not yet in V1.
8: end while
9: Update T by removing V1 from V . Reset V1 = ∅.

10: end for
11: Path ρ is the remaining tree T .

Fig. 5.6 Algorithm for calculating a shortest path in a tree

132 5 Partitioning a Polygon or the Plane

Fig. 5.7 A sequence of steps
(bold shaded edges of faces
of the shown partitioning) for
possible use by an RBA. The
figure also shows a possible
initial path (thin shaded
polyline)

Otherwise, we go to the next node in S1. When the program terminates, the final
updated T is the desired unique path ρ from u1 to u2 in the originally given tree T .

Assume that we have a partitioning of a simple polygon P and its dual graph
T = GP . Let up and uq be the vertices of T corresponding to the faces containing p

and q , respectively.
We apply Algorithm 18 and interpret the obtained path from up to uq in T by

the sequence of corresponding faces {�′
1,�′

2, . . . ,�′
k}.

Let {e1, e2, . . . , ek−1} be a sequence of edges of faces of the partitioning such
that ei = �′

i ∩ �′
i+1, for i = 1, . . . , k − 1. When designing an RBA, we need to

be prepared for degenerate cases as discussed in Sect. 3.7. Let {e′
1, e

′
2, . . . , e

′
k−1}

be a sequence of edges such that e′
i is obtained by removing at both endpoints a

sufficiently small segment of length εs > 0 from ei , for i = 1, . . . , k − 1. The set
{e′

1, e
′
2, . . . , e

′
k−1} can then be used as a set of steps for an RBA. See Fig. 5.7, and

Chap. 6 for the actual ESP algorithm.

5.3 Seidel’s Algorithm for Polygon Trapezoidation

Two line segments are called noncrossing if the intersection of them is empty or
a joint endpoint. Let S be a set of nonhorizontal, noncrossing line segments in the
plane. The left (right) horizontal extension through an endpoint p of one of the
segments in S is the line segment or ray starting at p and extending towards the left
(right) until it either hits another segment in S, or it extends to infinity.

The horizontal extension through an endpoint p is the union of the left and right
horizontal extension through p.

Definition 5.2 The trapezoidation T (S) of set S of line segments is the partition-
ing of the plane formed by the segments in S and the horizontal extension through
endpoints in segments in S.

A face in T (S) is always either a trapezoid or a triangle; see Fig. 5.8.
Let TS be a point location query structure for T (S), which is a binary decision

tree with a selected node being the root and with one leaf node for each face in
T (S). At this point we just assume that such a tree is given. We show first how the
tree is used for a point query. Later we explain how to build this tree.

5.3 Seidel’s Algorithm for Polygon Trapezoidation 133

Fig. 5.8 The trapezoidation
of the shown five line
segments leads to 14 faces
(triangles or trapezoids)

Each nonleaf node in such a tree TS is labelled either by X or by Y . Each X-
node is associated with a line segment in S. Each Y -node is associated with the
y-coordinate of an endpoint of some line segment in S. The associated line segment
(X-node) or y-coordinate (Y -node) is called the key of the node.

Let q be a query point in the plane; we have to identify the enclosing face in
T (S). The query is processed as follows (see Procedure 1 in Fig. 5.9):

We start at the root and proceed along a path down to a leaf node whose cor-
responding face in T (S) encloses q . Point q can be on an edge incident with two

Procedure 1 (Query point in the plane using a binary decision tree)
Input: A point q in the plane, a partitioning T (S) and its binary decision tree T (S).
Output: The face of T (S) that encloses q .

1: Set the current node v to be the root of T (S).
2: while v is not a leaf node do
3: if v is an X-node then
4: if q is to the left of the key of v then
5: Reset v to be the left child of itself.
6: else
7: Reset v to be the right child of itself.
8: end if
9: else

10: if v is a Y -node then
11: if the y-coordinate of q is greater than the key of v then
12: Reset v to be the left child of itself.
13: else
14: Reset v to be the right child of itself.
15: end if
16: end if
17: end if
18: end while
19: Return node v’s corresponding trapezoid of T (S).

Fig. 5.9 Procedure for a query point and a binary decision tree T (S), determining the enclosing
face in T (S)

134 5 Partitioning a Polygon or the Plane

Procedure 2 (Update of trapezoidation and binary decision tree)
Input: Line segment s, extended set S′ = S ∪ {s}, T (S), and T (S).
Output: T (S ′) and T (S′).

1: if the upper endpoint a of s is not an endpoint of any line segment in S then
2: Apply Procedure 1 to compute the trapezoid �a of T (S) which contains a.
3: Obtain a new trapezoidal decomposition T ′ from T (S) by splitting �a with

the horizontal extension through a, leading to two newly created trapezoids.
4: Obtain a new binary tree T ′ from T by modifying the leaf of T (S) corre-

sponding to �a to be a Y -node whose key is the y-coordinate of a, and
whose two children are two new leaves corresponding to the two newly cre-
ated trapezoids in T ′.

5: else
6: Let T = T ′ and T = T ′ (i.e., a is already an endpoint of some line segment

in S).
7: end if
8: For the lower endpoint b of s, we obtain analogously a new trapezoidal decom-

position T ′′ from T ′ and a binary tree T ′′ from T ′.
9: Obtain T (S′) from T ′′ as follows: Find all trapezoids of T ′′ that are intersected

by s, cut each of them in two trapezoids, one on each side of s, and merge
trapezoids that share a line segment in their frontiers.

10: Obtain tree T (S′) from T ′′ as follows: Create a new leaf corresponding to each
newly created trapezoid of T (S ′) (along line segment s). Each new leaf of T ′′
that corresponds to a trapezoid in T ′′ that was cut by s becomes an X-node
whose key is s and whose two children are the two new leaves.

Fig. 5.10 Procedure for computing T (S′) and T (S ′) from previous trapezoidation and binary
decision tree

faces; in this case, one of two leaf nodes can be selected. It is suggested to use a
default decision in cases when q is on an edge (e.g., the face on the left).

At each node v along the path, the decision which of the two children of v re-
places v next depends on the outcome of the comparison of q with the key of node v:
If v is an X-node, then q is either left or right of the key (where the key is a line
segment in set S in this case); at a Y -node, we consider q’s y-coordinate, whether it
is smaller or greater than the key (where the key is the y-coordinate of the Y -node
in this case).

Now we consider the construction of the trapezoidation, which is done concur-
rently with the construction of the binary decision tree. Let s be a ‘new’ nonhorizon-
tal line segment with upper endpoint a and lower endpoint b. Also assume that this
line segment s has either no intersection with another segment in the already given
set S of line segments, or ‘just’ a joint endpoint. Thus, S ′ = S ∪ {s} also contains
only noncrossing line segments.

We describe how to compute T (S′) and T (S′) from the already given trapezoi-
dation T (S) and decision tree T (S). See Procedure 2 in Fig. 5.10.

5.3 Seidel’s Algorithm for Polygon Trapezoidation 135

Fig. 5.11 Initial steps for
computing the trapezoidation
T ({s1}) and the binary tree
T ({s1}). Upper row: Start
with S = ∅. Lower row:
Upper vertex a of first
segment s1 and its horizontal
extension

Fig. 5.12 Continuing with
computing trapezoidation
T ({s1}) and binary tree
T ({s1}): considering the
lower vertex b of first
segment s1 and its horizontal
extension

Fig. 5.13 Finalising the
computation of trapezoidation
T ({s1}) and binary tree
T ({s1}): segment s1 has been
taken into account

Example 5.1 Refer to Figs. 5.11, 5.12, and 5.13. This example illustrates how to
calculate trapezoidation T ({s1}) and tree T ({s1}), starting initially at S = ∅.

At the beginning, there are no segments in the set S, T (∅) contains one face that
is the whole plane (see top left in Fig. 5.11); the corresponding binary tree T (∅) has
a root and just one leaf node (see top right in Fig. 5.11).

The second row in Fig. 5.11 shows both T ′ and T ′ after Lines 3 and 4 of Pro-
cedure 2. Note that we always keep the left (right) leaf node corresponding to the
newly created trapezoid below (above) the horizontal extension through the current

136 5 Partitioning a Polygon or the Plane

Fig. 5.14 Computation of T ({s1, s2}) and tree T ({s1, s2}) from T ({s1}) and T ({s1}): start with
upper endpoint a2

Fig. 5.15 Computation of T ({s1, s2}) and tree T ({s1, s2}) from T ({s1}) and T ({s1}): continuation
with lower endpoint b2

point; this is a1 in the shown example. (As common in programming, p.y denotes
the y-coordinate of a point p.)

Figure 5.12 shows both T ′′ and T ′′ after Line 8 of Procedure 2. Figure 5.13
shows both T ({s1}) and T ({s1}) after Lines 9 and 10 of Procedure 2. �

Example 5.2 Refer to Figs. 5.14, 5.15, and 5.16. This example shows how to com-
pute T ({s1, s2}) and the binary tree T ({s1, s2}) from T ({s1}) and T ({s1}) as ob-
tained in the previous example and shown in Fig. 5.13.

This update starts with taking the upper endpoint a2 into account, then the lower
endpoint b2, and finally the segment s2 itself. For this final operation, we also inter-
sect s2 with the previous horizontal extension of b2. �

5.3 Seidel’s Algorithm for Polygon Trapezoidation 137

Fig. 5.16 Computation of T ({s1, s2}) and tree T ({s1, s2}) from T ({s1}) and T ({s1})—finalisation;
note that the previous horizontal extension of vertex b1 was intersected and cut by s2

After having those two procedures at hand, we are now ready to present the Seidel
algorithm2 for trapezoidation of a simple polyline (i.e., a more general case than just
a simple polygon). Without loss of generality, let γ be a simple polyline such that
no two vertices of γ have the same y-coordinate. For a positive integer n, let

log(0) n = n and log(i) n = log
(
log(i−1) n

)

for i ≥ 1. Let log∗ n be the largest integer l such that log(l) n ≥ 1. Finally, let N(h) =
n/ log(h) n�, where 0 ≤ h ≤ log∗ n and a� denotes the smallest integer greater than
or equal to a. For the Seidel algorithm, see now Fig. 5.17.

Line 4 starts with i = 1 because of N(0)+1 = 2. Thus we start in Line 5 with s2,
the trapezoidation, and the tree for S1, as available due to Line 2. Note that N(log� n)

may not be equal to n. Recall that log∗ n is the largest integer l such that log(l) n ≥ 1
(note that log(l) n may be greater than 1). Thus, N(log� n) = N(l) = n/ log(l) n�
and N(log� n) = n if log(l) n = 1.

In Line 7, we consider all the segments which have not been processed, yet.
This is not only necessary but also the ‘most important idea’ of the algorithm: If
i > N(h − 1) and the endpoints of si in T (SN(h−1)) are already known, then they
can be located in T (Si) via T (Si) in an expected time of at most O(log(i/N(h−1)))

(see Lemma 5.2 below).
If the input of Algorithm 19 is a simple polygon, then we may obtain the trapezoi-

dation of our algorithm from the resulting trapezoidation of Algorithm 19 by simply
deleting all left or right horizontal extension through an endpoint that is exterior to
the input polygon.

2Raimund Seidel is at Saarland University.

138 5 Partitioning a Polygon or the Plane

Algorithm 19 (Seidel algorithm, 1991)
Input: A simple polyline γ with n edges (i.e., line segments) in the plane.
Output: The trapezoidation of γ and its query structure (i.e., a binary decision
tree).

1: Create a sequence of all edges of γ in some random ordering, denoted by
s1, s2, . . . , sn.

2: Let S1 = {s1}. Apply the procedure of Fig. 5.10 for computing T (S1) and
T (S1).

3: for h = 1 to log∗ n do
4: for i = N(h − 1) + 1 to N(h) do
5: Use si , T (Si−1), and T (Si−1) as input for the procedure of Fig. 5.10 and

compute Si = Si−1 ∪ {si}, T (Si), and T (Si).
6: end for
7: for each segment s in {sN(h)+1, sN(h)+2, . . . , sn} do
8: Determine the trapezoids in T (SN(h)) that contains both endpoints of s by

tracing γ through the trapezoids in T (SN(h)).
9: end for

10: end for
11: for i = log∗ n + 1 to n do
12: Use si , T (Si−1), and T (Si−1) as input for the procedure of Fig. 5.10 and

compute T (Si) and T (Si).
13: end for

Fig. 5.17 Seidel algorithm for triangulating a simple polyline in the plane

In order to analyse Algorithm 19, we state three lemmata. Let S = {s1, s2, . . . , sn},
where s1, s2, . . . , sn are defined in Line 1 in Algorithm 19. Let Sm = {s1, s2, . . . , sm},
for m = 1,2, . . . , n.

Lemma 5.2 Let 1 ≤ j ≤ k ≤ n. If q is a query point whose location in T (Sj) is
already known, then q can be located in T (Sk) via T (Sk) in an expected time of at
most O(log(k/j)).

Lemma 5.3 Let 1 < i ≤ n. The expected number of horizontal trapezoid sides of
T (Si−1) which are intersected by the interior of si is at most four.

Lemma 5.4 Let R be a random subset of S of size r . Let Z be the number of
intersections between horizontal lines of T (R) and segments in S \R. The expected
value of Z is at most 4(n − r).

The time complexity of Algorithm 19 can now be analysed as follows: Line 1
can be computed in O(n) time.3 Line 2 can be computed in O(1) time. Time for

3See also the third paragraph in [16] for a detailed discussion about this.

5.4 Inner, Up-, Down-, or Monotone Polygons 139

Line 5 is caused by locating endpoints of si in T (Si−1) and “threading” si through
T (Si−1).

By Lemma 5.2, the expected location time is O(log(i/N(h−1))) =O(log(h) n).
By Lemma 5.3, the expected threading time is constant. Thus, Lines 4–6 can be
computed in expected time N(h) ×O(log(h) n), that is, O(n).

By Lemma 5.4, the expected time of Lines 7–9 is O(n). Thus, the expected time
of Lines 3–10 is O(n log∗ n). Analogously to the analysis of Lines 4–6, Lines 11–13
can be computed in expected time O(n).

Thus, the expected time of Algorithm 19 is O(n log∗ n) altogether.

5.4 Inner, Up-, Down-, or Monotone Polygons

This section provides technical definitions for presenting in the following section a
worst-case O(n logn) algorithm for the trapezoidation of a simple polygon.

Following the default settings in this book, we have a rectangular right-hand
xy-coordinate system, the x-axis goes left to right, and the y-axis bottom to top.
A simple polygon P is defined by a polygonal loop ρ = 〈v0, v1, . . . , vn−1, v0〉 in
clockwise order. We recall that a polygon is always a closed set, thus containing its
frontier ∂P (that is given by the polygonal loop).

Definition 5.3 Let εs > 0. Let P ′ be a polygon with P ′ ⊂ P . Let u0, u1, . . . , un−1

be the vertices of P ′ in clockwise order. Then P ′ is called an inner polygon of P , de-
noted by P(v0, εs), if the following is true: de(u0, v0) = εs , edge uiui+1 is parallel
to edge vivi+1, and uivi bisects the angle �(vi−1vivi+1), for i = 0,1, . . . , n − 1.4

An inner polygon is uniquely defined by the chosen shift distance εs > 0 and
vertex v0. If εs is sufficiently small then P ′ is a simple polygon. In Fig. 5.18,
the simple polygon P(v0, εs) = 〈u0, u1, . . . , u5, u0〉 is the inner polygon of P =
〈v0, v1, . . . , v5, v0〉.

For vertices v1, v2, and v3 in {p1, . . . , pn}, let ρP (v1, v2) be the polygonal sub-
path from v1 to v2 in ρ, and ρP (v1, v2, v3) the polygonal path which goes first from
v1 to v2 and then from v2 to v3, all in the same order, following the frontier of P

(e.g., possibly containing v2 twice, first time when going from v1 to v2).
We recall that p.x and p.y denote the x- and y-coordinates of a point p.

Definition 5.4 Let u, v, and w be three points in ∂P with u.y = v.y = w.y. The
path ρP (u, v,w) = 〈u, . . . , v, . . . ,w〉 becomes a loop ρ′ = 〈u, . . . , v, . . . ,w,u〉 by
adding the line segment wu. The polygon P ′, defined by loop ρ′, is called an up-
(down-) polygon with respect to point v iff p.y ≥ v.y (p.y ≤ v.y), for each point p

in polygon P ′.

4Addition or subtraction of indices is modulo n.

140 5 Partitioning a Polygon or the Plane

Fig. 5.18 A simple polygon
and an example of an inner
polygon, defined uniquely by
the distance εs between v0
and u0. In the shown case, the
inner polygon is again a
simple polygon

Polygon P ′ can be simple or non-simple. For example, PL and PR are up-
polygons in Fig. 5.19, both with respect to v1. P ′ is a down-polygon with respect
to v1. These three polygons are all simple. If v3 were located higher up on the
shown line segment v1v1R, then P ′ would not be simple anymore, but the union of
two simple polygons.

Let vi−1, vi , vi+1 and vi+2 be four consecutive vertices of P . If

vi−1.y < vi.y, vi.y = vi+1.y, and vi .y > vi+2.y (5.1)

[or vi−1.y > vi.y, vi.y = vi+1.y, and vi .y < vi+2.y] (5.2)

Fig. 5.19 A simple polygon and a few vertices and line segments. See the text for explanations

5.4 Inner, Up-, Down-, or Monotone Polygons 141

Fig. 5.20 The polygon on
the left is monotone in
y-direction, with one
maximal edge and one
minimal vertex. The polygon
on the right is strictly
monotone in x-direction, but
not monotone in y-direction

and the point (1
2 [vi.x + vi+1.x], vi .y + εs) [or (1

2 [vi .x + vi+1.x], vi .y − εs)] is
in P , for some εs > 0, then vivi+1 is called an up- (down-) stable edge of P . Fur-
thermore, if (5.1) is true [or (5.2) is true], and point (1

2 [vi .x + vi+1.x], vi .y − εs)

[or (1
2 [vi.x + vi+1.x], vi .y + εs)] is in P , for some εs > 0, then vivi+1 is called a

maximal (minimal) edge of P .
Let vi−1, vi , and vi+1 be three consecutive vertices of P . If

vi−1.y < vi.y and vi .y > vi+1.y (5.3)

[or vi−1.y > vi.y and vi .y < vi+1.y] (5.4)

and vertex ui of P(v0, εs), for some εs > 0, is not in the triangle vi−1vivi+1, then vi

is called an up- (down-) stable vertex of P , for εs . Furthermore, if (5.3) is true
[or (5.4) is true] and vertex ui of P(v0, εs), for some εs > 0, is in the triangle
vi−1vivi+1, then vi is a maximal (minimal) vertex of P .

See Fig. 5.19 for a few examples. Vertices v2, v3, v5, v6, v7, and v8 are up-stable.
Vertices v1, v4, v9, v10, v11, v12, and v13 are down-stable. Vertex u1 is maximal
and u3 is minimal. See also Fig. 5.20. The polygon on the right has two up-stable
vertices and one up-stable edge, and one down-stable vertex and one down-stable
edge.

Corollary 5.1 A simple polygon is monotone with respect to the y-axis iff it has
both a unique maximal and minimal point or edge.

Proof The definition of a monotone polygon (see Problem 4.8) is with respect to a
straight line. This is the y-axis in our case.

Assume that a simple polygon P is monotone in y-direction. A line γ orthogonal
to the y-axis intersects δP at maximal or minimal points or edges once. Otherwise
(if there is any intersection) a line γ intersects δP twice, and there cannot be a
maximal or minimal vertex or edge below or above (in y-direction) of such an in-
tersection, because the count would then be three or more. Now assume that two
different maximal or minimal vertices or edges are incident with the same line or-
thogonal to the y-axis. The part on the frontier between those two vertices or edges
would contradict the property that P is monotone.

Now assume that P has both a unique maximal and minimal point or edge. Then
all the vertices between those two have monotonously strictly increasing (or de-
creasing) y-coordinates, what means that P is monotone. �

142 5 Partitioning a Polygon or the Plane

In Fig. 5.19, the sequence u1, u2, . . . , u8, u1 defines a monotone simple polygon
with respect to the y-axis. The sequence u1, u2, . . . , u8, u9, u1 is not monotone with
respect to the y-axis.

Let v be an up-stable vertex of P . Let Sv be the set of all minimal vertices u

of P with u.y < v.y; set Sv contains at least two elements. Let u′ ∈ Sv be such
that u′.y = max{u.y : u ∈ Sv}. If there exists a point w ∈ ∂P such that the line
segment u′w is contained in P and w.y = u′.y, then u′w is called a cut-edge of P .
The polygonal path ρP (v,u′) is called a decreasing polygonal path from v to u′w.
Vertex v is called an up-stable point with respect to the cut-edge u′w, and u′w is
called a cut-edge with respect to the up-stable point v. Vertex u′ is called the nearest
minimal vertex with respect to v.

In Fig. 5.19, v8, v9, u9, u3 is a decreasing polygonal path from v8 to edge u3u4,
and u3 is the nearest minimal point with respect to v8.

Let u and w be points (i.e., not necessarily vertices) in the frontier ∂P such that
u.y = v.y = w.y, u.x < v.x < w.x, and both line segments uv and vw are in P ;
then u and w are called the left and right intersection points of v, respectively. In
Fig. 5.19, v1L and v1R are the left and right intersection points of v1, respectively.

Let v be a maximal point of P . Let Sv be the set of all down-stable points u of P

with u.y < v.y; set Sv can be empty. Let u′ ∈ Sv such that u′.y = max{u.y : u ∈ Sv}.
Vertex u′ is called the nearest down-stable vertex with respect to v.

In Fig. 5.19, vertex v9 is the nearest down-stable vertex with respect to the max-
imal vertex above the line segment v9u9.

5.5 Trapezoidation of a Polygon at Up- or Down-Stable Vertices

The algorithm (see Fig. 5.21) uses three subroutines, given below as Proce-
dures 3, 4 and 5. Since the discussion of the algorithm in the case of an up- or
down-stable edge is analogous to that of an up- or down-stable vertex, we will just
detail the case of up- or down-stable vertices.

The algorithm partitions a given polygon into a set S of monotone polygons
(Lines 1 to 23). These monotone polygons are then partitioned into trapezoids
(Lines 24 to 27). If needed, each trapezoid can be further split into two triangles.
Note that some of the monotone polygons in S can be triangles when arriving at
Line 24.

The partitioning into monotone polygons occurs at up- or down-stable vertices.
There is a sequence of figures illustrating operations in some lines of Fig. 5.21, all
based on the input example of a polygon already shown in Fig. 5.19.

At the beginning, polygon P is the only element of a set P of polygons. Polygons
in this set P will ‘shrink’ (in Line 12) or split into smaller polygons (in Line 19),
and the set P will be empty when reaching Line 22.

See Fig. 5.22 for Line 2; up- and down-stable vertices can be identified during
one scan through the given polygonal loop of P , just by applying the usual “left
turn?” or “right turn?” decisions, and we skip the details.

5.5 Trapezoidation of a Polygon at Up- or Down-Stable Vertices 143

Algorithm 20 (Partitioning of a simple polygon at up- or down-stable vertices)
Input: Let P be a simple polygon with up-stable or down-stable vertices.
Output: A set T (P) of trapezoids or triangles T = {�1,�2, . . . ,�m} defining a
partitioning of P .

1: Let S = ∅ and P = {P }.
2: Compute the set V of all up- or down-stable vertices in P .
3: For all up-stable vertices in V , compute the left and right intersection points by

applying Procedure 5.
4: Sort V for decreasing y-coordinates. Let k be the cardinality of V .
5: for i = 1,2, . . . , k do
6: if vi is a down-stable vertex and in polygon Q ∈ P then
7: Calculate two points viL and viR in ∂Q such that viL.y = vi .y = viR.y and

viL.x < vi.x < viR.x.
8: Let QL = viLvi + ρQ(viL, vi) {an up-polygon}.
9: Let QR = viviR + ρQ(vi, viL) {an up-polygon}.

10: Let Q′ = viLviR + ρQ(viL, viL) {the down-polygon}.
11: Let S = S ∪ {QL,QR}.
12: Replace element Q in P by Q′.
13: else
14: Let vi be an up-stable vertex in polygon Q ∈ P . Let viL, viR be the left

and right intersection points of vi , respectively, as calculated in Line 3
(i.e., they are in ∂Q).

15: Let QL = viLvi + ρQ(viL, vi) {a down-polygon}.
16: Let QR = viviR + ρQ(vi, viR) {a down-polygon}.
17: Let Q′ = viLviR + ρQ(viL, viR) {the up-polygon}.
18: Let S = S ∪ {Q′}.
19: Replace element Q in P by QL and QR.
20: end if
21: end for
22: Let n be the cardinality of S and T = ∅.
23: for j = 1,2, . . . , n do
24: Partition the monotone polygon Pj ∈ S into a set Tj of trapezoids.
25: Let T = T ∪ Tj .
26: end for
27: Output T (P) = T .

Fig. 5.21 Trapezoidation of a simple polygon using down- or up-stable points. Procedure 3 is
explained below

For Line 3, see Fig. 5.23. The calculation of those intersection points needs to
be organised carefully in order not to waste calculation time, and we provide with
Procedure 5 a possible solution below.

In Line 4, we sort all the up- and down-stable vertices according to their decreas-
ing y-coordinate. In the shown example, we have v1 first, followed by v2, v3, and
so forth—indices already show the position in the sorted set V .

144 5 Partitioning a Polygon or the Plane

Fig. 5.22 At the end of Line 2 of Algorithm 20: all the up- and down-stable vertices of the polygon

Fig. 5.23 Illustration of the final result of Line 3 in Algorithm 20, showing the calculated left and
right intersection points, but also the line segments illustrating their geometric assignment to one
of the up-stable vertices

If v ∈ V is down-stable, then we still need the left-and right intersection points.
Figure 5.24 illustrates all the resulting intersection points when processing down-
stable vertices in Line 7. (The figure also still contains all the intersection points for
up-stable vertices as calculated before in Line 3.)

5.5 Trapezoidation of a Polygon at Up- or Down-Stable Vertices 145

Fig. 5.24 Illustration of all the results obtained in Line 7 in Algorithm 20, showing calculated
intersection points and line segments to one of the down-stable vertices

Fig. 5.25 Illustration for Lines 7–12 of Algorithm 20 when processing the first down-stable vertex
v1: two up-polygons are separated and go into S, and the remaining polygon is further processed.
Set P still has only one element

For vertex v1 and Lines 7 to 12, see Fig. 5.25. We have the first two monotone
polygons separated and moved into S (both are triangles); the updated polygon is
now without vertex v1 but with two new vertices, the former intersection points.

146 5 Partitioning a Polygon or the Plane

Fig. 5.26 When processing v3 in Lines 14 to 19 of Algorithm 20, one up-polygon (a trapezoid) is
separated and two down-polygons (subsets of one of the two down-polygons, created at vertex v2)
define new elements in the set P . After v3, P contains three elements

For vertex v3 and Lines 14 to 19, see Fig. 5.26. Vertex v2 already resulted into a
separation of a triangle and a split of the remaining polygon into two smaller poly-
gons. Now, at v3, one of those two is partitioned into a trapezoid (to be separated)
and two down-polygons.

At vertex v4, we obtain two trapezoids for set S, at v5 one triangle, and at v6 a
monotone polygon that still needs to be split into one trapezoid and one triangle.
The final partitioning, as provided in Line 27, is shown in Fig. 5.27.

In those figures, points are coloured according to four categories: vertices of the
originally given polygon, left- and right-intersection points for all up-stable vertices,
left-and right-intersection points of all down-stable points, and auxiliary points cre-
ated when partitioning the monotone polygons into trapezoids.

Note that the calculation of a binary decision tree (as provided by the Seidel
algorithm) also requires the trapezoidation of the exterior of the given polygon. This
could be integrated into the algorithm.

Procedures for Algorithm 20 Procedure 3 updates the left or right intersection
points of up-stable vertices. It is applied within Procedure 4 which removes up-
stable points. Procedure 5 applies Procedures 3 and 4 to compute the left and right
intersection points of all up-stable vertices, from bottom to the top. This procedure
is called in the main algorithm which processes both up- and down-stable vertices,
from top to the bottom.

Procedure 3 is given in Fig. 5.28.
The basic idea of Procedure 3 is simple: If there is no up-stable vertex in the

current simple polygon then it is easy to decompose it into some trapezoids. Each

5.5 Trapezoidation of a Polygon at Up- or Down-Stable Vertices 147

Fig. 5.27 Output of Algorithm 20 for the polygon of Fig. 5.19. If necessary, trapezoids may be
partitioned into two triangles each

cut edge in this polygon corresponds to an up-stable point in the original polygon.
The left or right intersection point of each up-stable vertex can be computed if we
locate the trapezoid that contains the up-stable vertex.

By sorting both trapezoids (in Step 1) and up-stable vertices (in Step 9), we can
select trapezoid �i quickly (in linear time): if at �i , we search for the next trapezoid
starting from index i + 1.

In Line 1, m is the cardinality of TP , �i .y is the y-coordinate of endpoints of
the upper edge of �i , for i = 1,2, . . . ,m, and y0 is the minimal y-coordinate of
all vertices of P . The operations in Line 1 are straightforward because there is no
up-stable point.

The original polygon is the input polygon in the main algorithm (Algorithm 20),
while P is the polygon obtained from Step 7 in Procedure 4 (see Fig. 5.29) or
Step 14 in Procedure 5 (see Fig. 5.30).

Strictly speaking, in Line 1 it could be y0 < �1.y ≤ �2.y ≤ · · · ≤ �m.y rather
than y0 < �1.y < �2.y < · · · < �m.y; see Exercise 5.10.

Each cut edge corresponds to a degenerated trapezoid whose up and down sides
are identical. See Fig. 5.31 for Line 5. After the sorting, vertices are called v0, v1, . . .

with (�0)y = y0.
In Line 13, the ‘initial left and right intersection points’ are as originally set in

Step 12 in Procedure 5. See Fig. 5.32 for Line 13. Both v and w in this figure are
originally set in Step 12 in Procedure 5. In other words, originally, v and w are left
and right intersection points of u, respectively. But now, v is correctly updated to be
the right intersection point of u.

The basic idea behind the procedure shown in Fig. 5.29 is as follows: There are
no up-stable vertices in the input polygon when this procedure is called (Step 7) by

148 5 Partitioning a Polygon or the Plane

Procedure 3 (Update of left or right intersection points of up-stable vertices)
Input: Let P be a simple polygon with no up-stable vertex but at least one cut-edge.
Output: Update left or right intersection points of up-stable points (of orig-
inal simple polygon) with respect to cut edges in P . (Note that there is at
least one cut-edge, there must exist some up-stable point in the original poly-
gon.)

1: Decompose P into a set of trapezoids, denoted by TP = {�1,�2, . . . ,�m} such
that y0 < �1.y < �2.y < · · · < �m.y.

2: Let Ve = ∅.
3: for each edge e of P do
4: if e is a cut edge then
5: Let ve be the up-stable point with respect to e.
6: Insert ve into Ve.
7: end if
8: end for
9: Sort Ve for increasing y-coordinates: v1, v2, . . . , vm.

10: for i = 1 to m do
11: Select trapezoid �i ∈ TP such that �i−1.y < vi.y < �i .y.
12: Compute the intersection points of line y = vi .y with the edges on the left

and right of �i .
13: Update the left and right intersection points of vi by comparing the results of

Line 12 with the initial left and right intersection points of vi .
14: end for

Fig. 5.28 Procedure for updating left or right intersection points of up-stable vertices

Procedure 4 (Removal of maximal vertices)
Input: Let I be an interval of real numbers, and MI be the set of maximal vertices
of P such that for each element v ∈ MI it follows that v.y ∈ I . Assume that there is
not any up-stable vertex in the input polygon P .
Output: An updated simple polygon P after removing any maximal vertex in the
input polygon.

1: Let MI = {v1, v2, . . . , vk}.
2: for i = 1,2, . . . , k do
3: Find a closest down-stable point with respect to vi around the frontier of P ,

denoted by ui .
4: Find a point wi ∈ ∂P such that ρP (ui, vi,wi) is the shortest polygonal path

in ∂P such that ui.y = wi.y.
5: Update P by replacing ρP (ui, vi,wi) by the edge uiwi .
6: Let Pi be the polygon created by adding edge uiwi to ρP (ui, vi,wi).
7: Let Pi be the input of Procedure 3 and update the left and right intersection

points of all possible up-stable points.
8: end for

Fig. 5.29 Removal of maximal vertices in a polygon

5.5 Trapezoidation of a Polygon at Up- or Down-Stable Vertices 149

Procedure 5 (Compute all left or right intersection points)
Input: A simple polygon P with some up-stable vertices.
Output: All left or right intersection points, for all the up-stable vertices.

1: Let U = {v1, v2, . . . , vk} be the sorted set of up-stable vertices of P such that
v1.y < v2.y < · · · < vk.y.

2: for i = 1 to k do
3: Find closest minimal vertex ui with respect to vi by following the frontier

of P .
4: Let I = [a, b] where a = ui.y and b = vi.y.
5: Compute MI .
6: if MI �= ∅ then
7: Let P , I , and MI as input, apply Procedure 4 to update P .
8: Find a point wi such that ρP (ui, vi,wi) is the shortest polygonal path of

∂P with ui.y = wi.y.
9: end if

10: Set initial left and right intersection points of vi as follows: Find two points
wiL, wiR such that ρP (wiL, ui, vi,wiR) is the shortest polygonal path in ∂P

with wiL.y = vi .y = wiR.y.
11: Let the initial left and right intersection points of vi be wiL and wiR, respec-

tively.
12: Update P by replacing path ρP (ui, vi,wi) by edge uiwi .
13: Now let P be the input for Procedure 3; update the left and right intersection

points of all possible (analogous to Step 7 in Procedure 4) up-stable vertices.
14: end for

Fig. 5.30 Computation of all left or right intersection points for a given simple polygon

Fig. 5.31 Example for
Line 5 of Procedure 1. Here,
e is a cut edge. There is a
decreasing polygonal path
from up-stable vertex ve to
edge e. Each cut edge
corresponds to an up-stable
vertex via a decreasing
polygonal path

the next procedure. Now, each maximal vertex (i.e., vi in the procedure) corresponds
to a down-stable vertex (i.e., ui in Line 3) that again corresponds to a cut edge (i.e.,
uiwi in Line 5) by the assumption. Thus, each maximal vertex and the cut edge
corresponds a simple polygon (i.e., Pi in Line 6) that can be replaced by the cut
edge in the input polygon so as to remove the maximal vertex (see Line 5).

150 5 Partitioning a Polygon or the Plane

Fig. 5.32 Example for
Line 13 of Procedure 3: u is
an up-stable point, v is the
result of Line 12, w is the
initial right intersection point
of u

For Line 1, see Fig. 5.33, first on the left: we start for this example at the specified
vertex v1.

For Line 3, see Fig. 5.33, second from the left: We find the corresponding down-
stable vertex u1 with respect v1. In Line 3, in other words, we find a down-stable
vertex ui such that ρP (vi, ui) is the shortest. There can be at most two closest down-
stable points.

For Line 4, see Fig. 5.33, second from the right: We find another endpoint w1 of
the cut edge u1w1.

For Line 5, see Fig. 5.33, first from the right: The polygon corresponding to the
maximal vertex v1 and cut edge u1w1 is removed by replacing it by the cut edge.

For Line 7, the cut edge of Pi does not necessary correspond to an up-stable
vertex of the original polygon. For example, in Fig. 5.33, the cut edge u1w1 does
not correspond to any up-stable vertex of the original polygon. In Fig. 5.31, if the
cut edge is the bottom edge (i.e., the edge below e), then the removed polygon
does contain an cut edge e that corresponds to an up-stable vertex ve of the original
polygon.

For Line 1, see Fig. 5.34. We sort six up-stable vertices.
For Lines 3, 8, 10, and 12, see Fig. 5.35. For Line 3, u1 is a minimal vertex such

that ρ(u1, v1) is the shortest. For Line 8, w1 is another endpoint of the cut edge
u1w1. For Line 10, w1L

and w1R
are initial left and right intersection points of v1

respectively. We can see that w1L
is correct but w1R

is wrong. For Line 12, the up-
stable vertex v1 and the cut edge u1w1 corresponds a polygon that is removed and
replaced by the cut edge.

Here are three more examples. Figure 5.36 shows 4 up-stable vertices v1, v2, v3,
and v4.

Figure 5.37 (left) shows the initial left and right intersection points w1L
and w1R

of the up-stable vertex v1 (Line 10).

Fig. 5.33 Example for operations of Procedure 4 for the polygon in Figs. 5.19 or 5.34, only show-
ing the lower left part of this polygon. From left to right: Line 1, Line 3, Line 4, and Line 5

5.6 Time Complexity of Algorithm 20 151

Fig. 5.34 Example for Line 1 of Procedure 5

Fig. 5.35 Example for operations in Procedure 5 for the polygon in Fig. 5.34, only showing the
lower left part of this polygon. From left to right: Line 3, Line 8, Line 10, and Line 12

Figure 5.37 (right) shows the initial left and right intersection points w2L
and

w2R
of the up-stable vertex v2 (for Line 10). It also shows the resulting polygon

after replace the polygon v1u5u4 by the cut edge u5u4 (Line 12).

5.6 Time Complexity of Algorithm 20

Lemma 5.5 The set of up-stable (or down-stable or maximal) vertices of a simple
polygon P can be computed in O(n), where n = |V (P)|.

Proof For a sufficiently small number εs > 0, the “start” vertex v′
0 of an inner poly-

gon P(v0, εs) can be computed in O(n); see [17]. Consider three consecutive ver-
tices u, v, w of P with u.x < v.x < w.x. Let v′ = (v.x, v′.y) be a point of P(v0, εs).

152 5 Partitioning a Polygon or the Plane

Fig. 5.36 Example 1 for Line 1 of Procedure 5: There are 4 up-stable vertices v1, v2, v3, and v4

Fig. 5.37 Continuation for the polygon shown in Fig. 5.36, but only showing the upper left corner
of the polygon. Examples 2 (left) and 3 (right) for Lines 10 and 12, respectively, of Procedure 5

In other words, v′ is the point of P(v0, εs) such that its x-coordinate is identical to
v.x.

By the definition above, if there are three consecutive vertices u, v0, w of P with
u.x < v0.x < w.x, then v′

0 is the point of P(v0, εs) such that its x-coordinate is
identical to v0.x. Without loss of generality, we may assume that the coordinates of
each vertex are integers, and we set εs = 0.1.

If u.y < v.y, v.y > w.y and v′.y > v.y, then v is an up-stable vertex. If u.y <

v.y, v.y > w.y and v′.y < v.y, then v is a maximal point. If u.y > v.y, v.y < w.y

and v′.y < v.y, then v is a down-stable point. �

Lemma 5.6 Procedure 3 can be executed in O(n logn) time, where n = |V (P)|.

Proof If P is monotone, then it can be decomposed into a stack of trapezoids in
O(|V (P)|). Otherwise, by assumption, P can only have a finite number of down-

5.6 Time Complexity of Algorithm 20 153

stable points. Analogously to Lines 7–10 in Algorithm 20, P can be decomposed
into a set of trapezoids in O(|V (P)|) time.

Thus, Line 1 can be executed in O(|V (P)|). Line 2 can be performed in O(1).
Lines 3–8 require O(|E(P)|) =O(|V (P)|) time. Line 9 can be computed in

O
(|Ve| log

(|Ve|
)) ≤O

(∣
∣V (P)

∣
∣ log

(∣
∣V (P)

∣
∣
))

time. Lines 10–14 can be executed in O(|Ve| ≤ O(|V (P)|). Thus, Procedure 3 re-
quires O(|V (P)| log(|V (P)|)) time. �

Lemma 5.7 Procedure 4 requires O(n logn) time, where n is the number of vertices
of the original simple polygon P .

Proof By Lemma 5.5, Line 1 can be computed in O(n logn) time, where n is the
number of vertices of the original simple polygon P . Line 3 can be computed in
O(nu) time, where nu is the number of vertices of ρP (ui, vi). Line 4 can be com-
puted in O(nw) time, where nw is the number of vertices of ρP (vi,wi). Lines 5
and 6 can be executed in constant time. By Lemma 5.6, Line 7 can be computed in
O(ni logni) time where ni = |V (Pi)|.

Thus, Procedure 4 can be computed in O(n log n) altogether, where n is the
number of vertices of P . �

Lemma 5.8 Procedure 5 can be computed in O(n logn) time, where n is the num-
ber of vertices of the original simple polygon P .

Proof By Lemma 5.5, Line 1 requires time in O(n logn), where n is the number
of vertices of the original simple polygon P . Line 3 can be computed in O(nu),
where nu is the number of vertices of ρ(ui,P, vi). Line 4 can be performed in
constant time. Line 5 can be executed in O(|MI |) time. By Lemma 5.7, Line 7
require O(nu lognu) time, where nu = |V (ρ(ui,P, vi))|. Line 8 can be computed
in O(nw), where nw is the number of vertices of ρP (ui,wi). Line 10 requires O(ni)

time, where ni = |V (ρP (ui,wi l))| + |V (ρP (wi,wir))|. Lines 11 and 12 can be
computed in constant time.

By Lemma 5.6, Line 13 can be computed in O(n logn) time, where n is the
number of the vertices of the updated P . Therefore, Procedure 5 can be com-
puted in O(n logn), where n is the number of vertices of the original simple poly-
gon P . �

Theorem 5.1 Algorithm 20 has a worst-case time complexity of O(n logn), where
n is the number of vertices of the given simple polygon P .

Proof Line 1 requires constant time. By Lemma 5.5, Line 2 can be computed
in O(n), where n is the number of vertices of the given simple polygon P . By
Lemma 5.8, Line 3 can be performed in O(n logn) time, where n is the number of
the vertices of the given simple polygon P .

Line 4 can be computed in time O(|V | log |V |). Line 7 can be executed in O(ni)

time, where ni = |V (ρP (viL, vi))|+ |V (ρP (vi, viR))|. Lines 8–13 can be computed

154 5 Partitioning a Polygon or the Plane

Fig. 5.38 A simple polyline
ρ and its visibility map V (C)

in O(1). Thus, Lines 6–13 require O(ni) altogether, where ni = |V (ρP (viL, vi))| +
|V (ρP (vi, viR))|. Lines 15–21 only take constant time. By Lemma 5.7, Line 25 can
be executed in O(|Pj | log |Pj |) time.

Thus, Lines 24–27 take O(n) time, where n is the number of the vertices of
the input polygon P . Line 28 can be computed in constant time. Therefore, the
algorithm requires altogether O(n logn) time. �

5.7 Polygon Trapezoidation Method by Chazelle

The method starts with the computation of a visibility map for a simple polyline.
The most important concept is that of conformality (see definition below). Restoring
conformality after merging two submaps is the core of the method.

Let ρ be a simple polyline such that no two vertices of ρ have the same y-
coordinate. Assume that ρ is embedded in a ‘spherical plane’ such that (−∞, y) =
(+∞, y), (x,−∞) = (−x,−∞), and (x,+∞) = (−x,+∞).

Then the horizontal extension through any vertex of ρ must hit two edges of ρ.
For example, if a vertex has maximum y-coordinate, then this vertex is an endpoint
of an edge. Thus, the horizontal extension through this vertex will hit this edge
from both sides. Under this assumption, the visibility map V (ρ) is identical to the
trapezoidation T (S), where S is the set of all edges of ρ. See Fig. 5.38.

A submap of V (ρ) is a subgraph that is obtained after removing from V (ρ) some
horizontal line segments, also called chords. Chords are not edges of ρ. A face of
a submap of V (ρ) is a bonded or unbounded component, where segments of ρ or
chords defining the frontier of a face.

In order to make a difference between both sides of a line segment, each edge
of ρ and each chord is given a sufficiently small width. See Fig. 5.39. This way, the
polyline ρ is a very thin simple polygon (a subset of the space between the lines in
Fig. 5.39).

The frontier of each face consists of sequences of edge segments (called an arc)
and chords. The weight of a face is the maximal number of edge segments in any of
its arcs. In Fig. 5.39, Faces 1, 2, and 3 have weights 5, 1, and 3, respectively.

The dual graph of V (ρ) is a tree and is called the visibility tree of ρ. The dual
graph of a submap of V (ρ) is called the visibility tree of the submap. The weight
of a node in a visibility tree is defined as the weight of the corresponding region.

5.7 Polygon Trapezoidation Method by Chazelle 155

Fig. 5.39 A submap of the
visibility map in Fig. 5.38.
The frontier of Face 1
consists of one (shaded) arc
with 5 edge segments and two
chords

A submap is called conformal if the degree of each node of its visibility tree is 4 at
most. The map V (ρ) is conformal.

A submap is called k-granular if each node of its visibility tree has a weight less
than or equal to k, and a contraction of any edge that is incident with an adjacent
node of degree 1 or 2 results in a new node of weight greater than k.

A submap is represented in normal form if the following information is provided
by the representation:

1. Node adjacencies in the visibility tree.
2. Each edge of the tree corresponds5 to a chord of this submap and all arcs adjacent

to this chord. Each arc corresponds to a node of the tree such that the node’s
corresponding face of the submap is incident with this arc.

3. Each arc is represented by an arc-structure that is stored in an arc-sequence table
(not explained here).

4. If the submap is conformal, then its binary tree decomposition is given.

The Chazelle’s method 6 is sketched in Fig. 5.40. Lines 1 to 6 have been called the
up-phase of the method, and Lines 7 to 11 the down-phase of the method.

The input is a simple polyline ρ with n = 2m + 1 vertices. Such a number can
be obtained by padding ρ with additional vertices if necessary. A chain of grade i

is a subpolyline of ρ of the form va, . . . , vb such that a − 1 is a multiple of 2i and
b = 2i + a, where i = 0,1,2, . . . ,m.

This method was published in 1991, with the claim to be a linear-time triangula-
tion algorithm for any simple polyline. Until now no implementation is known to the
authors. Thus, we decided to present this algorithm here, hoping that someone could
then take the challenge of implementation. When attempting to extract a procedu-
ral presentation (i.e., an actual algorithm) from the original paper, we experienced
severe problems. We have two major concerns:

5Each node of the tree corresponds to a region of the submap. Two nodes are connected by an edge
if their corresponding regions share a chord. In this case, the edge “corresponds” to the chord.
6Bernard Chazelle is at Princeton University.

156 5 Partitioning a Polygon or the Plane

Algorithm 21 (Chazelle’s method, 1991)
Input: A simple polyline ρ with n vertices in the plane, where n = 2m + 1.
Output: The visibility map V (ρ).

1: for i = 0 to m do
2: for any subpath γ of ρ of the form va, . . . , vb , with 2i−1 < b − a ≤ 2i do
3: Let e be the number of edges of γ .
4: Compute a submap of V (γ) which is 20.2log e��-granular, conformal, and

represented in normal form.
5: end for
6: end for
7: for i = 1 to m do
8: for any chain γ of a grade that is greater than or equal to i do
9: Compute the final V (γ) from a submap of V (γ) that is 2i/5�-granular,

conformal, and represented in normal form.
10: end for
11: end for

Fig. 5.40 Sketch of Chazelle’s proposal for computing the visibility map of a simple polyline in
the plane

(i) The method is not sufficiently specified to be called ‘an algorithm’: operations
are often described within extensive proofs, and not explicitly with some pro-
cedures.

(ii) It appears questionable whether the method is actually of linear time: quite a
few operations are described as sorting instead of the complicated, claimed to
be linear operations.

The authors believe that the inclusion into our text may reactivate the consideration
of this method (which gained quite some attention), being aware that we could not
succeed with providing a fully comprehend presentation of an algorithm.

5.8 The Continuous Dijkstra Problem

The Dijkstra algorithm (see Fig. 1.9) solves a shortest path problem on finite
weighted graphs: for a given vertex p in the graph, find shortest paths to any other
vertex q of that graph.

The continuous Dijkstra problem: Given is a finite set of pairwise disjoint
simple polygons (the obstacles) and a start vertex p ∈ R

2 which is not in any
of those polygons, provide a partitioning of R2 which supports the calculation
of ESPs to points q ∈R

2 that are not in any of those polygons.

5.9 Wavelets and Shortest-Path Maps 157

Fig. 5.41 The continuous
Dijkstra problem: source
point p, a finite set of
polygons (obstacles), three
different destinations, and the
ESPs defined by those end
points

See Fig. 5.41 for an example of ESPs to three different destinations; the start
point p and obstacles remain fixed.

5.9 Wavelets and Shortest-Path Maps

Let p be the source point, dq the length of an ESP from p to a point q , and V be the
set of vertices of all input polygons (i.e., the vertices of the obstacles). We assign a
label l(v) to a vertex v ∈ V that specifies the current upper bound for the length of
a path from p to v.

A wavelet7 ω is a circular arc together with the centre rω ∈ V ∪ {p} of the circle,
also called the root (of the wavelet). Let d(rω) be the length of a shortest path from
p to rω among the given obstacles. At any time we have that d(rω) ≤ drω .

Example 5.3 Figure 5.42 shows a point p = (36,32) and two triangular obstacles.
We have V = {v1, . . . , v6}. For demonstrating calculations further below, we have
v1 = (165,64), v2 = (244,193), and v3 = (130,502) for the first triangle, and v4 =
(300,600), v5 = (350,800), and v6 = (100,800) for the second triangle. It follows
that dv1 = de(p, v1), dv2 = de(p, v1) + de(v1, v2) ≈ 284.178, dv3 = de(p, v3), and
so forth. Actually, it is d(rω6) = dv2 ≈ 284.178.

Initially, we have l(p) = 0 and l(vi) = +∞, for i = 1, . . . ,6.
Figure 5.42 shows three full-circle wavelets ω1, ω2, and ω3, all having p as their

root. The wavelet ω4 also has p as its root but is not a full circle. The non-full-circle
wavelets ω5, ω6, and ω7 have v1, v2, and v3 as root, respectively. In other words,
we have that rωi

= p, for i = 1,2,3,4, rω5 = v1, rω6 = v2, and rω7 = v3.
We will continue with this example. �

In the algorithm for solving the continuous Dijkstra problem, we will consider a
queue containing wavelets. A wavelet in the current queue is active.

7Not to be confused with wavelets in signal theory.

158 5 Partitioning a Polygon or the Plane

Fig. 5.42 Illustration of a wavefront for Example 5.3

An active and non-full-circle wavelet ω has a left track aω and a right track bω.
Each track is the locus of the endpoints of the wavelet when it changes with the
distance parameter d where

d = d(rω) + r(ω)

and r(ω) is the radius of ω. For example, in Fig. 5.42, the left track aω5 and the right
track bω5 are line segments v1u2 and v1u1, respectively. For the radius of ω5, we
have that r(ω5) = de(v1, u1) ≈ 151.268.

A full-circle wavelet is considered to be the union of two semi-circle wavelets,
each having horizontal left and right tracks.

If aω or bω is not an obstacle segment then ω has a left or right adjacent wavelet
LW(ω) or RW(ω), respectively. It follows that bLW(ω) = aω and aRW(ω) = bω. For
example, in Fig. 5.42 we have that LW(ω5) = ω6 and RW(ω5) = ω4.

The bisector B(rω, rω′) of two wavelets ω and ω′ is the locus of points q such
that

d(rω) + de(rω, q) = d(rω′) + de(rω′, q).

Below a bisector is sometimes denoted by the symbol γ of a curve in R
2.

In Fig. 5.43, B(v3, v2) is the bisector of two wavelets rooted at v3 and v2; it ends
at point s. B(v4, v2) starts at point s and is the bisector of two wavelets rooted at

5.9 Wavelets and Shortest-Path Maps 159

Fig. 5.43 Illustration of a
shortest-path map (SPM)

v4 and v2. B(v5, v6) is the bisector of two wavelets rooted at v5 and v6. B(v3, v2),
B(v4, v2), and B(v5, v6) are hyperbolic arcs.

In the algorithm for solving the continuous Dijkstra problem, we have different
events. A closure event occurs when an active wavelet comes to its end of existence
because its left and right tracks meet at a closure point, such as point s in Fig. 5.43.
A vertex event occurs when an active wavelet collides with an obstacles vertex. In
both cases, a closure point or an obstacles vertex is called the event point. The length
of the shortest path from p to a current event point is called the event distance.

For example, in Fig. 5.43, the closure point s is the intersection point of line
segment v4s and B(v3, v2). Line segment v4s is the right track of the wavelet rooted
at v4. B(v3, v2) is the left track of the wavelet rooted at v2. When this closure event
occurs, the event distance is de(s, v4) + de(v4, v3) + de(v3,p).

In Fig. 5.42, wavelet ω3 collides with obstacle vertex v1. The event distance is
de(p, v1) when this event occurs.

A point q in wavelet ω is swept over by ω for a distance parameter d = d(rω) +
r(ω). In this case, make a copy of q associated with rω, denoted by q(rω). Point rω
is called the predecessor of q(rω).

The sweep space S(d) is the set of all copies of all points swept over by a distance
parameter less than or equal to d .

See Fig. 5.42. The set of points in
⋃7

i=4 ωi is a wavefront with distance parame-
ter d that equals to de(p, v3)+ de(v3, u5). Each point in the wavefront is swept over
by a corresponding wavelet for a distance parameter. It follows that all points in the

160 5 Partitioning a Polygon or the Plane

Algorithm 22 (Mitchell algorithm, 1996)
Input: A set of pairwise disjoint simple polygons (obstacles) and a source point p

in the plane.
Output: The shortest-path map SPM with respect to p.

Fig. 5.44 Mitchell algorithm for solving the continuous Dijkstra problem (figure to be continued
on next page)

wavefront are characterised by having ESPs of uniform length to the source point p,
which is equal to the distance parameter. v1 is the predecessor of all points in ω5.

The signal tree at distance d , denoted by T (d), is an infinite directed graph whose
set of nodes is S(d), and whose set of edges is defined by links from a vertex q(rω) ∈
S(d) to its predecessor rω.

The shortest-path tree at distance d , denoted by SPT(d), is an directed graph
whose set of nodes is V , and whose set of arcs connects points q(rω) ∈ V with their
predecessor rω. Thus, SPT(d) is a subgraph of T (d).

The shortest-path map at distance d , denoted by SPM(d), is a partitioning of
S(d) that consists of edges of the given polygons (i.e., of the obstacles) and bisectors
of wavelets.

A triangulation SPM(d) is a further partitioning by SPM(d)-triangles such that,
if a vertex in V has been swept over for a distance parameter less than or equal to d ,
then it is connected to its predecessor.

When the algorithm terminates, all vertices in V have been swept over by some
distance parameter d ′. In this case, SPM(d ′) is called the shortest-path map SPM,
which is a partitioning of the free space that contains all the points outside of the
given polygonal obstacles (including their frontier). For each point in the interior
of the same region of the SPM, there is a unique predecessor. Figure 5.43 shows a
SPM for two triangles and point p.

5.10 Mitchell’s Algorithm

The Mitchell algorithm8 for solving the continuous Dijkstra problem is shown in
Fig. 5.44. It uses three procedures which are explained further below; the first two
are shown in Figs. 5.45 and 5.46.

The input for the Mitchell algorithm is a set of pairwise disjoint simple polygons
(obstacles) and a source point p in the plane.

Line 1 initialises the algorithm. We set the event distance d = 0; label each vertex
v ∈ V to be l(v) = +∞ and l(p) = 0; and event queue Q has a single wavelet ω

that roots at point p with radius 0.
Line 2 enters a while loop.
Line 3 takes and processes the first element in the event queue Q.

8Joseph S.B. Mitchell is at the State University of New York at Stony Brook.

5.10 Mitchell’s Algorithm 161

1: Let d = 0. For each v ∈ V , let l(v) = +∞. Let SPT(0) be a single node p and l(p) =
0. Let ω be a wavelet rooted at point p with radius 0. Let event queue Q = {ω}. In the
rest of the algorithm, each active wavelet will be indexed by its event distance in Q.

2: while Q �= ∅ do
3: Remove the first event in Q. Let q be the event point, d the event distance, rω the

root of the wavelet which caused this event.
4: if q is a closure point then
5: if aω and bω are not obstacle edges then
6: if q lies to the right of the directed line segment rLW(ω)rRW(ω) then
7: Let q be the starting point. Call Procedure 8.
8: else
9: if q lies to the left of the directed line segment rLW(ω)rRW(ω) then

10: Update LW(ω) to have the right track B(rLW(ω), rRW(ω)) and RW(ω) to
have the left track B(rLW(ω), rRW(ω)).

11: end if
12: end if
13: else
14: if both rLW(ω) and rRW(ω) are obstacle edges then
15: Label q with distance d .
16: else
17: if both aω [bω] and bRW(ω) [aLW(ω)] are an obstacle edge e then
18: Label event point q = e ∩ B(rω, rRW(ω)) [q = e ∩ B(rω, rLW(ω))] with

event distance d ; remove both ω and RW(ω) [LW(ω)] from Q.
19: else
20: if aω [bω] is an obstacle edge but bω [aω] is not an obstacle edge then
21: Update RW(ω) [LW(ω)] to have left [right] track e.
22: end if
23: end if
24: end if
25: end if
26: else {In this case, q ∈ V .}
27: Rename q to be now v (note: v stands for ‘vertex’).
28: if there exists an obstacle edge e such that q ′ = e ∩ rωv then
29: Let q ′ be the starting point. Call Procedure 8.
30: else
31: if l(v) = +∞ then
32: Let l(v) = d(rω)+de(rω, v). Create a new wavelet rooted at v and its tracks

consist of ray rωv and an obstacle frontier segment containing v. Let rv =
rω. The created wavelet is inserted into Q according to its event distance.

33: else
34: Let rω, v, and SPM(d) be the input for Procedure 6.
35: end if
36: end if
37: end if
38: end while

Fig. 5.44 (Continued)

162 5 Partitioning a Polygon or the Plane

Procedure 6 (Clip-and-merge)
Input: rω , v, and SPM(d), as provided in Line 33 in Algorithm 22.
Output: A merge bisector γ which is a straight line that passes through a start point
q and the frontier of one of the SPM(d)-triangles.

1: Call Procedure 7 for computing a start point q .
2: Call Procedure 8 for start point q .

Fig. 5.45 Pseudocode of Procedure 6 for a clip-and-merge operation

Procedure 7 (Calculate a start point)
Input: rω , v, and SPM(d) from Algorithm 22.
Output: A start point (that is, a “seed” point) for Procedure 8.

1: if line segment rωv intersects some edges of SPT(d) then
2: Let u be that intersection point where line segment vu is minimal.
3: else
4: Let u = v.
5: end if

[Use binary search to find a “seed” point q as follows:]
6: Let ρu and ρrω be the unique paths from p to u and from p to rω in T (d),

respectively.
7: Let ωrω be the first active wavelet such that it is clockwise of ρrω ; ωu be the first

active wavelet such that it is counterclockwise of ρu. Let Search = true.
[In order to compute a “seed” point q , we do a binary search on a list of ordered
active wavelets clockwise of ωrω and counterclockwise of ωu (see Fig. 5.49).]

8: while Search = true do
9: Let ωu be a median active wavelet on the frontier of SPM(d)-triangle � with

root r�.
10: if � ∩ rωu = ∅ then
11: Only search for q in the active wavelets which are clockwise of ω.
12: else
13: Let y be a intersection point of � with rωu such that y is closest to v.
14: if d(r�, y) + d(r�) > d(rω, y) + d(rω) then
15: Only search for q in the SPM(d)-triangles which are counterclockwise

of �.
16: else
17: Only search for q in the SPM(d)-triangles which are clockwise of �

(this also includes � itself).
18: end if
19: end if
20: end while
21: Return the selected point q .

Fig. 5.46 A pseudocode for detecting a “seed” point q

5.10 Mitchell’s Algorithm 163

Fig. 5.47 A closure point q lies to the right of the directed line segment rLW(ω)rRW(ω)

Then the while loop divides into two main steps: Lines 4–25 handle a closure
event (i.e., if q is a closure point); Lines 26–36 do a vertex event (i.e., if q is a
non-closure point).

Case 1. q is a closure point (Line 4).
Case 1.1. Both left track aω and right track bω of ω are not obstacle edges

(Line 5).
Case 1.1.1. q lies to the right of the directed line segment rLW(ω)rRW(ω) (see

Fig. 5.47), let q be the starting point. Call Procedure 8 (Lines 6–7).
Case 1.1.2. q lies to the left of the directed line segment rLW(ω)rRW(ω) (e.g., in

Fig. 5.43, the closure point s lies to the left of the directed line segment v4v2),
simply update LW(ω) (i.e., the left adjacent wavelet of ω) to have the right track
B(rLW(ω), rRW(ω)) and RW(ω) (i.e., the right adjacent wavelet of ω) to have the left
track B(rLW(ω), rRW(ω)) (Lines 8–12).

Case 1.2. Left track aω or right track bω of ω is an obstacle edge (Line 13).
Case 1.2.1. Both left track aω and right track bω of ω are obstacle edges (Line 14).

Simply Label q with distance d . In this case, ω dies and we remove it from the event
queue Q (Line 15).

Case 1.2.2. Left track aω and right track bRW(ω) of right adjacent wavelet of ω are
an obstacle edge e (Line 17) (see Fig. 5.48). Label event point q = e∩B(rω, rRW(ω))

with event distance d ; remove both ω and RW from the event queue Q.
Analogously, right track bω and left track aLW(ω) of left adjacent wavelet of ω

are an obstacle edge e (Line 17). Label event point q = e∩B(rω, rLW(ω)) with event
distance d ; remove both ω and LW from the event queue Q.

164 5 Partitioning a Polygon or the Plane

Fig. 5.48 A closure point q

is on an obstacle edge e

Case 1.2.3. Left track aω is an obstacle edge e but right track bω is not an obstacle
edge (Line 20). Simple update right adjacent wavelet RW(ω) of ω to have left track e

(Line 21) (see Fig. 5.48).
Analogously, right track bω is an obstacle edge e but left track aω is not an

obstacle edge (Line 20). Simple update left adjacent wavelet LW(ω) of ω to have
right track e (Line 21).

Case 2. q is a non-closure point (Line 26). In this case, q must be a vertex in V .
Rename q to be v (v for vertex). Perform a ray-shooting query to test if a ray from
rω to v hits an obstacle edge e.

Case 2.1. There exists an obstacle edge e such that q ′ = e ∩ rωv (Line 28). Let q ′
be the starting point. Call Procedure 8 (Line 29).

Case 2.2. There does not exist an obstacle edge e such that q ′ = e∩rωv (Line 30).
Case 2.2.1. l(v) = +∞ (Line 31). That is, v is not yet hit by any wavelet. Label

l(v) to be d(rω) + de(rω, v). Create a new wavelet rooted at v; its tracks consist of
ray rωv and ‘appreciate’ (term as used by the author of this algorithm) the obstacle
frontier segment containing v. Let rv = rω . The created wavelet is inserted into Q

according to its event distance (Line 32).
Case 2.2.2. l(v) < +∞ (Line 33). That is, v is already hit by a wavelet. Let rω ,

v, and SPM(d) be the input for Procedure 6 (Line 34).
In Line 33 of Algorithm 22, we have to perform a clip-and-merge operation

which is done by combining Procedures 7 and 8. See Fig. 5.45.
The most difficult and important points of Algorithm 22 are Lines 7, 29, and 34

which are two procedures (Procedures 7 and 8) to be explained below.
The input for Procedure 7 are the same as the input for Procedure 6, which are

rω , v, and SPM(d) from Algorithm 22. The output is a start point (that is, a “seed”
point) for Procedure 8.

Lines 1–5 of Procedure 7 compute a point u in line segment rωv as follows: If
line segment rωv intersects some edges of SPT(d), then let u be the intersection
point that is closest to v. Otherwise, simply let u be v.

The rest of this procedure is applying a binary search to find a “seed” point q as
follows: Let ρu and ρrω be the unique paths from p to u and from p to rω in T (d),
respectively (Line 6) (see Fig. 5.49).

5.10 Mitchell’s Algorithm 165

Fig. 5.49 Illustration for Procedure 7

Let ωrω be the first active wavelet such that it is clockwise of ρrω ; ωu be the first
active wavelet such that it is counterclockwise of ρu (Line 7) (see Fig. 5.49).

In order to compute a “seed” point q , we do the binary search on a list of ordered
active wavelets clockwise of ωrω and counterclockwise of ωu.

Line 8 enters a while loop.
Let ωu be a median active wavelet on the frontier of SPM(d)-triangle � with

root r� (Line 9).
Case 1 � ∩ rωu = ∅ (Line 10). Only search for a “seed” point q in the active

wavelets which are clockwise of ω (Line 11).
Case 2 � ∩ rωu �= ∅ (Line 12). Let y be a intersection point of � with rωu such

that y is closest to v (Line 13).
Case 2.1 d(r�, y)+d(r�) > d(rω, y)+d(rω) (Line 14). Only search for q in the

SPM(d)-triangles which are counterclockwise of � (Line 15).
Case 2.2 d(r�, y)+d(r�) ≤ d(rω, y)+d(rω) (Line 16). Only search for q in the

SPM(d)-triangles which are clockwise of � (this also includes � itself) (Line 17).
When can the variable Search be set to false to terminate the while loop (i.e., the

binary search)? There are the following two cases:

Case 1. There is an SPM(d)-triangle � with root r� such that � intersects rωu

with two points x and y such that d(r) + d2(r, x) < d(r�) + d2(r�, x) and
d(r)+d2(r, y) > d(r�)+d2(r�, y). This means that � contains a “seed” point
q that can be computed approximately by another binary search.

Case 2. There are two adjacent active wavelets ω1 and ω2 such that the corre-
sponding SPM(d)-triangles of them intersect rωu at two points x and y, re-

166 5 Partitioning a Polygon or the Plane

Procedure 8 (Trace a bisector)
Input: SPM(d) from Algorithm 22, a start point q , and rω and r ′′

ω which are the two
roots of wavelets which intersect at q .
Output: The merge bisector γ which is a curve consists of some portions of hyper-
bolas, which contains q and intersects the frontier of one of the SPM(d)-triangles.

1: while we can trace the merge curve γ in at least one direction do
2: Remove from event queue Q those active wavelets which get fully separated

from their roots by γ as trace the merge curve γ through the SPM(d) trian-
gulation.

3: if γ encounters an obstacle frontier in one direction then
4: Stop tracing in this direction.
5: else
6: if γ intersects the pseudo-wavefront at a point z which is the intersection

point of two wavelets then
7: Update appropriate left/right tracks of these two wavelets with the bi-

sector between their roots.
8: end if
9: end if

10: end while

Fig. 5.50 A procedure for tracing a bisector

spectively (see Fig. 5.49). Compute a SPM(d)-triangle � that intersects the
directed line segment xy. Compute all SPM(d)-triangle in a set S′ such that
each triangle in S′ intersects � with non-empty. Compute a SPM(d)-triangle
�′ in S ′ such that �′ intersect SPM(d)-triangle � with a point q ′ such that
d(r�) + d2(r�, q ′) = d(r ′�) + d2(r

′�, q ′), where r� and r ′� are the roots of �
and �′, respectively. Return q ′ as a “seed” point. S ′ has only constant cardinal-
ity because of the following

Lemma 5.9 Each SPM(d)-triangle can be clipped by a bisector at most 6 times.

The input for Procedure 8 (see Fig. 5.50) are SPM(d) from Algorithm 22, a start
point q , and rω and r ′′

ω which are the two roots of wavelets which intersect at q .
The output of this procedure is a merged bisector γ which is a curve consisting

of some portions of hyperbolas, which contains the “seed” point q and intersects the
frontier of one of the SPM(d)-triangles.

This procedure computes the curve γ following B(rω, r ′′
ω) in two directions out

of q . The curve γ lies within two SPM(d)-triangles rooted at rω and r ′′
ω, respectively.

Line 1 enters a while loop and keeps checking if we can trace in at least one
direction out of q .

Line 2 removes each wavelet from event queue Q whenever this wavelet dies. For
example, in the Fig. 5.43, let the “seed” point q be an interior point of B(v3, v2).
The active wavelet that roots at v3 dies once we trace the merge curve γ through the
closure point s.

5.11 Problems 167

γ encounters an obstacle edge v2v3 in one direction (Line 3).
If γ intersects the pseudo-wavefront at a point z which is the intersection point

of two wavelets, then update the appropriate left/right tracks of these two wavelets
with the bisector between their roots (Lines 6 and 7, see Fig. 5.47). For example,
in Fig. 5.47, γ (which is equal to the curve qs in this figure) intersects the pseudo-
wavefront at a point z = s which is the intersection point of two wavelets ω1 and
ω2; then we update the left track of ω1 and the right track of ω2 with the bisector
(i.e., γ) between their roots rω1 and rω2 .

5.11 Problems

Problem 5.1 Discuss differences between triangulation and trapezoidation of a
simple polygon.

Problem 5.2 Show that the dual graph GP is not a tree for any polygon P with
holes.

Problem 5.3 (Programming exercise) Implement and test Algorithm 18.

Problem 5.4 Discuss the difference between an X-node and a Y -node, as intro-
duced in Sect. 5.3.

Problem 5.5 Consider a simple polygon P . Show that a triangulation of P can be
obtained from a trapezoidation of P in O(n), where n is the number of vertices
of P .

Problem 5.6 (Programming exercise) Compute the inner polygon P(v0, εs) of a
simple polygon P , where v0 is a vertex of P , and εs > is a predefined parameter.

Problem 5.7 Discuss the difference between an up- (down-) stable vertex (edge)
and a maximal (minimal) vertex (edge) as introduced in Sect. 5.5.

Problem 5.8 Discuss differences between a closure event (point) versus a vertex
event (point), the signal tree T (d) at distance d versus the shortest-path tree SPT(d)

at distance d , the shortest-path map SPM(d) at distance d versus the shortest-path
map SPM. See definitions in Sect. 5.9.

Problem 5.9 Can a point possibly have more than one predecessor in a shortest-
path map? If a side of an SPM(d)-triangle is not a line segment, can it then be an
arc and on what kind of a curve?

Problem 5.10 Consider Procedure 3. Show that we could also request y0 < �1y ≤
�2y ≤ · · · ≤ �my instead of y0 < �1y < �2y < · · · < �my .

168 5 Partitioning a Polygon or the Plane

Problem 5.11 (Programming exercise) Implement Algorithm 20 and use polygons
as given in Figs. 5.19 and 5.36 as input for testing the correctness of your program.

Problem 5.12 What is the purpose of Lines 7 and 8 in Seidel’s Algorithm (Algo-
rithm 19)?

Problem 5.13 (Programming exercise) Implement the Seidel Algorithm (Algo-
rithm 19) described in Sect. 5.3 and study the practical running time of this algo-
rithm, especially with the goal of analysing the worst case complexity of your imple-
mentation. For a C-source of the algorithm, see www.cs.unc.edu/~dm/CODE/GEM/
chapter.html.

Problem 5.14 (Programming exercise) Implement the Mitchell algorithm (i.e., Al-
gorithm 22) as described in Sect. 5.9. Analyse its practical time complexity by run-
ning it on inputs of different sizes.

Problem 5.15 (Research problem) Read the article on Chazelle’s triangulation
method (see [3]) and determine operations which are described there as sorting in-
stead of the complicated, claimed to be linear operations. How can those operations
be implemented so that they run in linear time? Altogether, provide a linear-time
implementation following the ideas of Chazelle’s triangulation method—if possible
at all.

Problem 5.16 (A conjecture) Can we replace the O(n logn) sorting step in Algo-
rithm 20 by incorporating some type of a scan of lesser than n logn time complexity;
possibly even of linear time complexity?

5.12 Notes

Although there exists a linear algorithm for computing the shortest path between
two vertices in a positive integer weighted graph [19], the provided Algorithm 18
for calculating a shortest path in a tree is much simpler.

For Fig. 5.3, see [8].
There are (at least) two ways of decomposing a simple polygon: into triangles

only or also allowing trapezoids. In the first case, Theorem 4.3 in [3] says that it
is possible to compute a triangulation of a simple polygon in linear time (but the
method is described in [3] on 40 pages and it is “fairly complicated”, as pointed
out in Sect. 5.7). In the second case, Theorem 1 in [14] says a given trapezoida-
tion given in that paper has time complexity O(n logn), where n is the number of
vertices of the original simple polygon Π . The chapter presented this algorithm in
Sect. 5.5. This algorithm has possibly the potential to be sped-up; see Problem 5.16.
The algorithm uses the calculation of tangents to two polygons as provided by [17].

The Seidel algorithm has expected time complexity O(n logn) and worst case
complexity O(n2) and is the simplest of the three trapezoidation methods. Lem-
mata 5.2, 5.3, and 5.4 are Lemmata 4, 2, and 5 in [16]. See also www.cs.unc.edu/

References 169

~dm/CODE/GEM/chapter.html. There is another algorithm in [18] that was not in-
cluded in this chapter.

By [4] and [9], a triangulation of a simple polygon can be derived in linear time
from its visibility map.

For the Mitchell algorithm, see [15]. Lemma 5.9 is Corollary 2 in [15]. For ray-
shooting query, see references [1, 5, 6, 11]. For more references on decomposition
of simple polygons, see, for example, [2, 4, 7, 9, 10, 12, 13, 18, 20].

References

1. Agarwal, P.K.: Ray shooting and other applications of spanning trees and low stabbing num-
ber. In: Proc. Annu. ACM Sympos. Comput. Geom., pp. 315–325 (1989)

2. Chazelle, B.: A theorem on polygon cutting with applications. In: Proc. Annu. Sympos. on
Foundations of Computer Science, pp. 339–349 (1982)

3. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6, 485–
524 (1991)

4. Chazelle, B., Incerpi, J.: Triangulation and shape-complexity. ACM Trans. Graph. 3, 135–152
(1984)

5. Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L., Hershberger, J., Sharir, M.,
Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12(1),
54–68 (1994)

6. Cheng, S.W., Janardan, R.: Space-efficient ray-shooting and intersection searching: algo-
rithms, dynamization, and applications. In: Proc. Annu. ACM-SIAM Sympos. Discrete Al-
gorithms, pp. 7–16 (1991)

7. Clarkson, K.L., Tarjan, R.E., Wyk, C.J.V.: A fast Las Vegas algorithm for triangulating a
simple polygon. Discrete Comput. Geom. 4, 423–432 (1989)

8. Fathauer, R.: Website of the ‘Tessellations Company’. http://members.cox.net/fathauerart/
index.html (2010). Accessed July 2011

9. Fournier, A., Montuno, D.Y.: Triangulating simple polygons and equivalent problems. ACM
Trans. Graph. 3(2), 153–174 (1984)

10. Garey, M.R., Johnson, D.S., Preparata, F.P., Tarjan, R.E.: Triangulating a simple polygon. Inf.
Process. Lett. 7(4), 175–179 (1978)

11. Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: shoot a ray, take a walk.
J. Algorithms 18(3), 403–431 (1995)

12. Hertel, S., Mehlhorn, K.: Fast triangulation of simple polygons. In: Proc. Conf. Found. Com-
put. Theory, pp. 207–218 (1983)

13. Kirkpatrick, D.G., Klawe, M.M., Tarjan, R.E.: Polygon triangulation in O(n log logn) time
with simple data-structures. In: Proc. Annu. ACM Sympos. Comput. Geom., pp. 34–43 (1990)

14. Li, F., Klette, R.: Decomposing a simple polygon into trapezoids. In: Proc. CAIP. LNCS,
vol. 4673, pp. 726–733 (2007)

15. Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Int. J. Comput. Geom. Appl. 6,
309–332 (1996)

16. Seidel, R.: A simple and fast incremental randomized algorithm for computing trapezoidal
decompositions and for triangulating polygons. Comput. Geom. 1, 51–64 (1991)

17. Sunday, D.: Algorithm 14: Tangents to and between polygons. http://softsurfer.com/Archive/
algorithm_0201/ (2006). Accessed July 2011

18. Tarjan, R.E., Wyk, C.J.V.: An O(n log logn) algorithm for triangulating a simple polygon.
SIAM J. Comput. 17, 143–178 (1988)

19. Thorup, D.: Undirected single-source shortest paths with positive integer weights in linear
time. J. ACM 3, 362–394 (1999)

20. Toussaint, G.T., Avis, D.: On a convex hull algorithm for polygons and its application to
triangulation problems. Pattern Recognit. 15(1), 23–29 (1982)

Chapter 6
ESPs in Simple Polygons

Obstacles are those frightful things you see when you take your
eyes off your goal.

Henry Ford (1863–1947)

Let p and q be two points in a simple polygon P . This chapter provides the Chazelle
algorithm for computing the ESP between p and q that is contained in P . It uses
triangulation of simple polygons as presented in the previous chapter as a prepro-
cessing step, and has a time complexity that is determined by that of the prior trian-
gulation.

This chapter also provides two rubberband algorithms for computing a shortest
path between p and q that is contained in P . The two algorithms use previously
known results on triangular or trapezoidal decompositions of simple polygons, and
have κ(ε)O(n log n) time complexity (where the super-linear time complexity is
only due to preprocessing, i.e., for the decomposition of the simple polygon P ,
κ(ε) = L0−L

ε
, L is the length of an optimal path and L0 the length of the initial

path, as introduced in Sect. 3.5).

6.1 Properties of ESPs in Simple Polygons

Algorithms for computing Euclidean shortest paths between two points p and q of
a simple polygon P , where the path is restricted to be fully contained in P , have
applications in 2-dimensional pattern recognition, picture analysis, robotics, and so
forth.

The design of algorithms for calculating ESPs within a simple polygon may use
one of the known partitioning algorithms as a preprocess. This chapter shows how
rubberband algorithms may be used to calculate approximate or exact ESPs within
simple polygons, using either decompositions into triangles or into trapezoids.

For a start, we prove a basic property of exact ESPs for such cases.

Proposition 6.1 Each vertex (�= p, q) of the shortest path is a vertex of P .

F. Li, R. Klette, Euclidean Shortest Paths,
DOI 10.1007/978-1-4471-2256-2_6, © Springer-Verlag London Limited 2011

171

172 6 ESPs in Simple Polygons

Fig. 6.1 Illustration that each vertex of a shortest path is a vertex of P , where v1v2v3v4v5 . . . is a
polygonal part of the border of the simple polygon P . Left, middle, right illustrate Cases 1, 2, 3 as
discussed in the text, respectively

Proof To see this, let ρ = 〈p,p1,p2, . . . , pk, q〉 be the shortest path from p to
q completely contained in simple polygon P . Assume that at least one pi ∈ ρ

is not a vertex of P . Also assume that each pi is not redundant, which means
that pi−1pipi+1 must be a triangle (i.e., three points pi−1, pi , and pi+1 are not
collinear), where i = 1,2, . . . , k and p0 = p, pk+1 = q .

Case 1: Neither of the two edges pi−1pi and pipi+1 is on a tangent of P (see
Fig. 6.1, left); then there exists a sufficiently small neighbourhood of pi , denoted
by U(pi), such that for each point p′ ∈ U(pi) ∩ �pi−1pipi+1 ⊂ P • (the topo-
logical closure of a simple polygon P), both edges pi−1pi and pipi+1 are com-
pletely contained in P . By elementary geometry, we have that de(pi−1,p

′) +
de(p

′,pi+1) < de(pi−1,pi) + de(pi,pi+1), where de denotes Euclidean dis-
tance. Therefore, we may obtain a shorter path from p to q by replacing pi

by p′. This is a contraction to the assumption that pi is a vertex of the shortest
path ρ.

Case 2: Both pi−1pi and pipi+1 are on tangents of P (see Fig. 6.1, middle); then
we can also derive a contradiction. In fact, let p′

i−1 and p′
i+1 be the closest ver-

tices of P such that p′
i−1pi and pip

′
i+1 are on tangents of P . Analogous to the

first case, there exists a point p′ such that the polygonal path p′
i−1p

′p′
i+1 is com-

pletely contained in P • and the length of p′
i−1p

′p′
i+1 is shorter than p′

i−1pip
′
i+1.

This is a contradiction as well.
Case 3: Either pi−1pi or pipi+1 is a tangent of P (see Fig. 6.1, right); then we may

arrive at the same result as in Case 2. �

Let P be a simple polygon and u1, u2, v1, and v2 four vertices of P . Assume that
v1v2 is a chord of P (i.e., line segment v1v2 is completely in P).

Definition 6.1 Chord v1v2 is called a u1u2-crossing in P if the four vertices u1, v1,
u2, and v2 appear in this order on the frontier of P .

6.1 Properties of ESPs in Simple Polygons 173

Fig. 6.2 Left: Triangulated simple polygon P and selected vertices p and q; all the dashed seg-
ments are pq-crossing and the shaded triangles will be removed. Right: Polygon P ∗, also illustrat-
ing the naming scheme for a- and b-vertices; for example, we have a1 = a2 due to two edges a1b1
and a2b2. Not shown: b4 = b5 = b6, b7 = b8, a3 = a4, a6 = a7, a8 = a9

Fig. 6.3 A funnel (shaded
polygon) and its funnel vertex
b4. The polyline σb4b8 is one
line segment only, and the
polyline σb4a8 two line
segments

Let p and q be two vertices of P (note: not just points in P). Let P be a parti-
tioning of P . Polygon P ∗ is obtained from P by removing at first all the edges in
P that are pq-crossing, and by removing then all the triangles of P which still have
all three of their edges. See Fig. 6.2 for an example. Polygon P ∗ can be computed
from P in O(n) time, where n is the number of vertices of P . One has:

Lemma 6.1 The shortest path between p and q in P is identical to the shortest
path between p and q in P ∗.

Let P� be the resulting partitioning of P � after the described removal of faces
of P . An interior edge of P� does only have its both endpoints on the frontier of P �.

Lemma 6.2 The shortest path between p and q in P ∗ intersects each interior edge
of P� exactly once, and intersects no other edge of P�.

Let σpq be the shortest path from p to q in P �. Let S = {a1b1, . . . , ambm} be the
set of all interior edges of P ∗, indexed in the order as they are crossed by σpq . See
Fig. 6.2 on the right.

Consider shortest paths σpai
and σpbi

, for both endpoints of the interior edge
aibi . See Fig. 6.3 for an example, with i = 8. Both shortest paths are identical be-
tween p and some vertex (here bk = b4), and split then into two polylines σbkbi

and
σbkai

. These two polylines and edge aibi circumscribe a polygon. The shaded area
is called a funnel. Path σpq passes through the funnel.

174 6 ESPs in Simple Polygons

The vertex where both shortest paths separate (here b4) is called the funnel vertex
for the start vertex p and interior edge aibi . Polylines σbkbi

and σbkai
are ‘turning

away’ from each other (without intersecting again). Both polylines σbkbi
and σbkai

are called the funnel sides. The segment aibi is called the funnel base. We state
without proof:

Lemma 6.3 For i ∈ {1,2, . . . ,m}, there exists a funnel vertex v of P ∗ such that
σpai

= σpv ∪ σvai
and σpbi

= σpv ∪ σvbi
, where σvai

and σvbi
are two non-

intersecting (i.e., except at v) polylines that are both convex, one in clockwise and
one in counter-clockwise order.

Figure 6.4 shows different cases which may occur when proceeding from funnel
vertex v to its interior edge aibi , and then further to the next interior edge ai+1bb+1.

This chapter is organised as follows. At first we briefly recall decompositions
of simple polygons, describe the Chazelle algorithm (note: not to be confused
with the triangulation method discussed in the previous chapter), and specify,
as a preliminary result, two approximate RBAs; we provide examples of us-
ing them. We also analyse their correctness and time complexity. These two
approximate rubberband algorithms are then transformed into two exact rub-
berband algorithms.

6.2 Decompositions and Approximate ESPs

There are (at least) two ways of decomposing a simple polygon: into triangles or
trapezoids. Step sets can be defined by selecting edges of triangles or trapezoids of
those decompositions.

Triangulations Let P be a simple polygon. Let T1 = {�1,�2, . . . ,�m} be such
that P = ⋃m

i=1 �i and �i ∩ �j = ∅ or = eij , where eij is an edge of both triangles
�i and �j , i �= j and i, j = 1,2, . . . ,m. We construct a corresponding simple graph
G = [V,E] where V = {v1, v2, . . . , vm} and each edge e ∈ E is defined as follows:
If �i ∩ �j = eij �= ∅, then let e = vivj (where eij is an edge of both triangles �i

and �j); and if �i ∩ �j = ∅, then there is no edge between vi and vj , i < j and
i, j = 1,2, . . . ,m. We say that G is a dual graph with respect to the triangulated
simple polygon P , denoted by GP .

Lemma 6.4 For each triangulated simple polygon P , its dual graph GP is a tree.

We leave the proof of this lemma as an exercise for readers.
Let T be a tree and p �= q , p, q ∈ V (T). The following procedure will compute a

unique path from p to q in T . Although there exists a linear algorithm for computing

6.2 Decompositions and Approximate ESPs 175

Fig. 6.4 Illustration for Algorithm 23. Interior edges are shown as bold grey lines. Dashed lines
extend edges of σvbi

= 〈v,w1, . . . ,wl = bi〉 or of σvai
= 〈v,u1, . . . , uk = ai〉. They define angular

sectors, the next vertex ai+1 or bi+1 is in one of those, and the sector decides whether the next point
is connected (see the black bold line segments) either to v, wj , or uj , where j = 1,2, . . . , i − 1.
Bottom left illustrates the case in Line 8 of Algorithm 23. Top left shows the case in Line 10.
Bottom right shows the case in Line 16, and top right shows the case in Line 18

the shortest path between two vertices in a positive integer weighted graph, our
procedure below is much simpler because here the graph is (just) a tree.

Let v be a vertex of a graph G, dG(v) the degree of v in G.
The main idea of Procedure 9 is straightforward: We collect all the vertices of the

tree T of degree 1 in an array S1. Then we process each vertex v in S1 as follows:
We check if v equals p′ or q ′, if so we then go to process the next vertex of degree
1 after v in S1. Otherwise, we check the unique neighbour of v, denoted by nv .
If dT (nv) = 2 and nv does not equal p′ and q ′, then we update v in current T by
letting v = nv and process v as before. Otherwise, we go to process the next vertex
of degree 1 after v in S1. When the program terminates, the final updated T is the
desired unique path ρ from p′ to q ′ in the original tree T .

We apply Procedure 9 (see Fig. 6.5) as follows: Let T = GP and p′, q ′ be the
vertices of T corresponding to the triangle containing p, q , respectively. Let a se-
quence of triangles {�′

1,�′
2, . . . ,�′

m′ } correspond to the vertices of the path cal-
culated by Procedure 9. Let {e1, e2, . . . , em′−1} be a sequence of edges such that
ei = �i ∩ �i+1, where i = 1,2, . . . ,m′ − 1. Let {e′

1, e
′
2, . . . , e

′
m′−1} be a sequence

of edges such that e′
i is obtained by removing a sufficiently small segment (Assume

176 6 ESPs in Simple Polygons

Procedure 9 (Step set calculation)
Input: The (original) tree T and two points p′, q ′ ∈ V (T).
Output: A unique path ρ from p′ to q ′ in T .

1: Let S1 be {v : d(v) = 1 ∧ v ∈ V (T)}, V1 be ∅.
2: for each v ∈ S1 do
3: if v = p′ or q ′ then
4: Break this iteration and go to next iteration.
5: else
6: Let V1 be V1 ∪ {v}.
7: Let the unique neighbour of v be nv .
8: while dT (nv) = 2 ∧ nv �= p′ ∧ nv �= q ′ do
9: v = nv .

10: Let V1 be V1 ∪ {v}.
11: Let the unique neighbour of v be nv .
12: end while
13: Update T by removing V1 from V (T).
14: end if
15: end for

Fig. 6.5 Procedure for step set calculation for a given triangulation

that the length of the removed segment is δ′.) from both endpoints of ei , where
i = 1,2, . . . ,m′ − 1. Set {e′

1, e
′
2, . . . , e

′
m′−1} is the approximate step set we are look-

ing for.

Trapezoidal decomposition Analogously to the triangulation case, let P be a
simple polygon, and let T2 = {t1, t2, . . . , tm} be such that P = ⋃m

i=1 ti and ti ∩ tj = ∅
or eij , where eij is a part (a subset) of a joint edge of trapezoids ti and tj , i �= j and
i, j = 1,2, . . . ,m. We construct a corresponding simple graph G = [V,E] where
V = {v1, v2, . . . , vm}, and each edge e ∈ E is defined as follows: If ti ∩ tj = eij �= ∅,
then let e = vivj (where eij is a subset of a joint edge of trapezoids ti and tj); and if
ti ∩ tj = ∅, then there is no edge between vi and vj , i < j and i, j = 1,2, . . . ,m. We
say that G is a (corresponding) graph or dual graph with respect to the trapezoidal
decomposition of simple polygon P , denoted by GP .

Analogously to Lemma 6.4, we also have the following:

Lemma 6.5 For each trapezoidal decomposition of a simple polygon P , its corre-
sponding graph GP is a tree.

Following the triangulation case, we apply Procedure 9 as follows: Let T = GP

and let p′, q ′ be the vertices of T corresponding to the trapezoids containing p,
q , respectively. Let a sequence of trapezoids {t ′1, t ′2, . . . , t ′m′ } correspond to the ver-
tices of the path obtained by Procedure 9. Let E′ = {e1, e2, . . . , em′−1} be a se-

6.3 Chazelle Algorithm 177

quence of edges such that ei = ti ∩ ti+1, where i = 1,2, . . . ,m′ − 1. For each
i ∈ {1,2, . . . ,m′ − 2}, if ei ∩ ei+1 �= ∅, then update ei and ei+1 in E′ by remov-
ing sufficiently small segments from both sides of this intersection point. Then the
updated set E′ is the approximate step set.

6.3 Chazelle Algorithm

If p and q are not vertices of P , then P ∗ can also be computed from P in O(n)

time, where n is the number vertices of P .
Let p [q] be in the interior of a triangle tp [tq] of P�. Let t ′p [t ′q] be the triangle

whose three vertices are p, a1, and b1 [q , am, and bm]. Update P∗ by replacing tp
[tq] by t ′p [t ′q]. Then p and q are vertices of P ∗, and σpq is still the same as before.
After this preprocessing we are ready to apply the Chazelle algorithm. See Fig. 6.6
for a pseudocode.

Figures 6.7 and 6.8 show step by step funnel vertex v, funnel base aibi , and both
funnel sides U and W of the current funnel. For current funnel base aibi and next
interior edge ai+1bi+1, there are the following two cases:

Case 1. ai+1 = ai and bi+1 �= bi (Line 4). Lines 5 and 6 are equivalent to computing
the vertex v′ such that bi+1v

′ is tangent to funnel side U or W at v′. For Line 5,
see Fig. 6.4, left bottom. In Line 6, v′ is the vertex of U such that the line segment
v′bi+1 is tangent of U at v′. Lines 7–11 are for updating funnel vertex, funnel
sides, and funnel base.

Case 2. bi+1 = bi and ai+1 �= ai (Line 12). Lines 13–20 are analogous to Lines 5–
11.

For Line 8, see Fig. 6.4, left bottom. For Line 10, see Fig. 6.4, left top. For
Line 16, see Fig. 6.4, right bottom. For Line 18, see Fig. 6.4, right top.

6.4 Two Approximate Algorithms

Figures 6.9 and 6.10 show both algorithms having decomposition, step set construc-
tion, and ESP approximation as their subprocedures.

For Step 4 in Fig. 6.9, see the description following Lemma 6.4. For Step 5
note that the approximation is not due to Algorithm 24 but due to removing small
segments of length δ′.

Example 6.1 We illustrate Algorithms 24 and 25 by a few examples, using a simple
polygon given by coordinates as provided in Table 6.1. Figure 6.11 shows two dif-
ferent triangulations of this polygon, the step sets defined by those triangulations,
and also the corresponding trees.

178 6 ESPs in Simple Polygons

Algorithm 23 (Chazelle algorithm, 1982)
Input: Two vertices p and q of P ∗.
Output: The shortest path σpq .

1: Let p be the initial funnel vertex: v = p; the two sides of the initial funnel are
U = 〈v, a1〉 and W = 〈v, b1〉.

2: for i = 1 to m do
3: Let U = 〈v,u1, . . . , uk〉, W = 〈v,w1, . . . ,wl〉, where uk = ai and wl = bi .
4: if ai+1 = ai and bi+1 �= bi then
5: Polylines U and W , and the line segments bi+1ai and bi+1bi form a sim-

ple polygon; cut this by lines uk−2uk−1, . . . , u1u2, vu1, vw1,w1w2, . . . ,

wl−2wl−1 into k + l faces.
6: Determine the face F that contains bi+1 and that vertex v′ of W or U such

that F also contains the line segment v′bi+1.
7: if v′ is a vertex of U then
8: Update the current funnel as follows: reset v = v′, U = 〈v, . . . , uk〉, and

W = 〈v, bi+1〉.
9: else

10: Update the current funnel by setting W = 〈v,w1, . . . , v
′, bi+1〉.

11: end if
12: else
13: Polylines U and W , and line segments ai+1ai and ai+1bi form a sim-

ple polygon; cut this by lines uk−2uk−1, . . . , u1u2, vu1, vw1,w1w2, . . . ,

wl−2wl−1 into k + l regions.
14: Determine the face F that contains ai+1 and that vertex v′ of W or U such

that F also contains the line segment v′ai+1.
15: if v′ is a vertex of U then
16: Update the current funnel by setting U = 〈v,u1, . . . , v

′, ai+1〉.
17: else
18: Update the current funnel as follows: reset v = v′, U = 〈v′, ai+1〉, and

W = 〈v′, . . . ,wl〉.
19: end if
20: end if
21: end for

Fig. 6.6 Chazelle algorithm for computing an ESP in a simple polygon

Tables 6.2 and 6.3 detail the resulting approximate ESPs, and those are also
visualised in Fig. 6.12. The lengths of those two paths are 1246.0330730004 and
1323.510103408.

After illustrating triangulation and Algorithm 24, we use the same polygon for
illustrating Algorithm 25 using a decomposition into trapezoids. See Fig. 6.13 for
one example of a trapezoidal decomposition, and Fig. 6.14 and Table 6.4 for results.
The length of the approximate ESP equals 1356.7016610946, thus is larger than for
both of the paths obtained for the triangulation, but the number of vertices is reduced
compared to both approximate ESPs obtained for triangulations. �

6.4 Two Approximate Algorithms 179

Fig. 6.7 Illustration of
Algorithm 23: Left, top:
v = p, U = 〈p,a1〉, and
W = 〈p,b1〉. Right, top:
v = p, U = 〈p,a2〉, and
W = 〈p,b2〉. Middle, left:
v = p, U = 〈p,a3〉, and
W = 〈p,b3〉. Middle, right:
v = a4, U = 〈a4〉, and
W = 〈a4, b4〉. Bottom, left:
v = a4, U = 〈a4, a5〉, and
W = 〈a4, b5〉. Bottom, right:
v = b6, U = 〈b6, a6〉, and
W = 〈b6〉

Fig. 6.8 Illustration of
Algorithm 23: Left, top:
v = b6, U = 〈b6, a7〉, and
W = 〈b6, b7〉. Right, top:
v = b6, U = 〈b6, a7, a8〉, and
W = 〈b6, b8〉. Left, bottom:
v = b6, U = 〈b6, a7, a9〉, and
W = 〈b6, b9〉. Right, bottom:
v = a10, U = 〈a10〉, and
W = 〈a10, b10〉

180 6 ESPs in Simple Polygons

Algorithm 24 (RBA for approximate ESP in a simple polygon based on triangula-
tion)
Input: A simple polygon P ; two points p, q ∈ P , and an accuracy constant ε > 0.
Output: A sequence 〈p,p1,p2, . . . , pk, q〉 of an [1 + 2(k + 1)r(ε)/L]-approxima-
tion path which from p to q inside of P , where L is the length of an optimal path,
r(ε) the upper error bound for distances between pi and the corresponding opti-
mal vertex p′

i : de(pi,p
′
i) ≤ r(ε), for i = 1, . . . , k, where de denotes the Euclidean

distance.

1: Apply a triangulation algorithm to decompose P into triangles.
2: Construct the corresponding graph with respect to the decomposed P , denoted

by GP .
3: Apply Procedure 9 to compute the unique path from p′ to q ′, denoted by ρ.
4: Let δ′ = ε. Compute the step set from ρ, denoted by S, where removed segments

have length δ′.
5: Let S, p, q , and ε as input, apply Algorithm 7 to compute the approximate ESP

from p to q .

Fig. 6.9 Approximate ESP calculation after triangulation

Algorithm 25 (RBA for approximate ESP based on trapezoidal decomposition)
Input: The same as for Algorithm 24.
Output: The same as for Algorithm 24.

Modify Step 1 in Algorithm 25 as follows:
Apply a trapezoidal decomposition algorithm to P .

Fig. 6.10 Algorithm 25: approximate ESP after trapezoidal decomposition

Table 6.1 Vertices of a simple polygon with p = (59,201) and q = (707,382)

vi v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

xi 42 178 11 306 269 506 589 503 595 736 623 176 358 106

yi 230 158 304 286 411 173 173 436 320 408 100 211 19 84

6.5 Chazelle Algorithm Versus Both RBAs

The Chazelle algorithm provides exact ESPs. It is more difficult to implement than
the RBA. Its time complexity is known to be O(n), where n is the number of vertices
of the input polygon, not counting the time needed for preprocessing (i.e., for a
triangulation of the polygon).

For discussing the time complexity of Algorithms 24 and 25, we start with
analysing the used subprocedure.

Lemma 6.6 Procedure 9 can be computed in O(n) time, where n = |V (T)|.

6.5 Chazelle Algorithm Versus Both RBAs 181

Fig. 6.11 Top: The step sets of two different triangulations of the same simple polygon. Bottom:
The corresponding graphs (trees) to those two triangulations

Table 6.2 Vertices pi calculated by Algorithm 24 for the triangulation shown in Fig. 6.11 on the
left. The length of the path equals 1246.0330730004

pi (xi , yi) pi (xi , yi)

p1 (177.9999999928, 157.9999999926) p6 (374.5899740372, 188.1320635957)

p2 (178.000000018, 157.9999999861) p7 (506.0000000117, 172.9999999927)

p3 (176.9605570407, 185.5452384224) p8 (589.0000000034, 172.9999999927)

p4 (175.9999999835, 211.0000000093) p9 (589.0000000772, 173.0000001234)

p5 (176.000000013, 211.0000000075)

Table 6.3 Vertices pi calculated by Algorithm 24 for the triangulation shown in Fig. 6.11 on the
right. The length of the path equals 1323.510103408

pi (xi , yi) pi (xi , yi)

p1 (123.3191615501, 175.7014459270) p5 (420.0869708340, 167.6376763887)

p2 (178.000000018, 157.9999999861) p6 (510.0186257061, 170.4926523372)

p3 (176.9605570407, 185.5452384224) p7 (589.0000000034, 172.9999999927)

p4 (175.9999999835, 211.0000000093) p8 (609.1637118080, 208.7136929370)

Proof Line 1 can be computed in O(n). Inside of the for-loop, each operation out-
side of the while-loop can be computed in O(1). The while loop can also be com-
puted in O(1). Thus, the for-loop can also be computed in O(n). �

Again, let κ(ε) = (L − L0)/ε, L is the true length of the ESP from p to q , L0
that of an initial polygonal path from p to q , and n is the number of vertices of P .

Theorem 6.1 Algorithms 24 and 25 can be computed in time κ(ε) ·O(n) and κ(ε) ·
O(n logn), respectively.

182 6 ESPs in Simple Polygons

Fig. 6.12 Approximate ESPs with respect to the triangulations shown in Fig. 6.11

Fig. 6.13 A trapezoidal decomposition (left) and its step set (right)

Fig. 6.14 Left: Corresponding graph with respect to the trapezoidal decomposition in Fig. 6.13.
Right: Resulting approximate ESP

Table 6.4 Vertices pi

calculated by Algorithm 25
for the simple polygon in
Fig. 6.13. The length of the
path equals 1356.7016610946

pi (xi , yi) pi (xi , yi)

p1 (170.9999999999, 149) p5 (504, 161)

p2 (171.0000000001, 149) p6 (584, 161)

p3 (171.9999999999, 202) p7 (669.1611374407582, 312)

p4 (172.0000000001, 202)

Proof Steps 2, 4 can be computed in O(n) time. Theorem 4.3 in [2] (Theorem 1 in
[8]), Lemma 6.6, and Sect. 3.5 prove the conclusion for Algorithms 24 and 25. �

6.6 Turning the Approximate RBA into an Exact Algorithm 183

6.6 Turning the Approximate RBA into an Exact Algorithm

We mention a possible way to improve Algorithms 24 and 25 without changing
their time complexity. We may revert the removal of some segments to obtain exact
vertices of P .

In Step 7 of Algorithm 26 (see Fig. 6.15), we partition the vertices of ρ into
m groups so that for each group, if the number of vertices is at least 2, then the
Euclidean distance between any two continuous vertices is less than ε′; and for any
two continuous groups, the Euclidean distance between the last vertex of the first
group and the first vertex of the second group is greater than ε′.

By Theorem 6.1, the smaller the value of the accuracy constant ε, the longer
it takes for Algorithm 24 to terminate. Also, based on Proposition 6.1, the main
idea of Algorithm 26 is to try a larger accuracy constant ε′ (� ε) to test whether the
vertices of the current path (ρ in Step 6, see also Fig. 6.17) are already close to some
vertices of the simple polygon P . If this is true, then replace such vertices (which are
sufficiently close to corresponding vertices) to obtain a candidate exact path (ρ in
Step 8; see also Fig. 6.17, right). We check the correctness of this candidate path by
testing whether an approximate path (ρ ′ in Step 9, see also Fig. 6.16) which is “very
close” to this path is already an approximation output path of Algorithm 24.

Example 6.2 To illustrate Step 7 of Algorithm 24, see Fig. 6.17; we partition the
vertices of ρ into:

ρ = 〈
p, {p1}, {p2,p3}, {p4}, {p5}, {p6}, {p7}, {p8}, q

〉

where {p1}, {p5}, and {p8} are redundant. The candidate exact path is

ρ = 〈p,p1,p2,p3,p4, q〉
in Fig. 6.17, right, which is also the true exact path. �

This chapter provided two approximate algorithms for calculating ESPs in
simple polygons. Their time complexity depends on the used preprocessing
step (triangular or trapezoidal decomposition). The chapter illustrates that
rubberband algorithms are of simple design, easy to implement, and can be
used to solve ESP problems either approximate or in a de-facto exact way if
the used accuracy threshold was chosen sufficiently small.

6.7 Problems

Problem 6.1 Give a high-level description for the Chazelle Algorithm 23. Explain
what are a funnel vertex, funnel sides, and a funnel base.

184 6 ESPs in Simple Polygons

Algorithm 26 (Revised RBA for exact ESP in a simple polygon based on triangu-
lation)
Input: A simple polygon P ; two points p, q ∈ P and two accuracy constants ε > 0
and ε′ > 0 such that ε′ � ε.
Output: A sequence 〈p,p1,p2, . . . , pk, q〉 of an exact path from p to q inside of P .

1: Decompose P into triangles (trapezoids, respectively).
2: Construct the corresponding graph with respect to the decomposed P , denoted

by GP .
3: Apply Procedure 9 to compute the unique path from p′ to q ′, denoted by ρ. Let

Search = true.
4: while Search = true do
5: Let δ′ = ε′. Compute the step set from ρ, denoted by S, where removed

segments have length δ′.
6: Let S, p, q , and ε′ as input, apply Algorithm 7 to compute the approximate

ESP from p to q , denoted by ρ = 〈p,p1,p2, . . . , pk, q〉.
7: Partition the vertices of ρ into

ρ = 〈
p,

{
v1

1, v1
2, . . . , v1

n1

}
,
{
v2

1, v
2
2, . . . , v2

n2

}
, . . . ,

{
vm

1 , vm
2 , . . . , vm

nm

}
, q

〉

so that for each i ∈ {1,2, . . . ,m}, if ni ≥ 2, then de(v
i
j , v

i
j+1) < ε′, where

j = 1,2, . . . , ni − 1; and for each i ∈ {1,2, . . . ,m − 1}, de(v
i
ni

, vi+1
1) � ε′.

8: Update the vertices of ρ as follows: For each i ∈ {1,2, . . . ,m}, let vi be the
endpoint of the original step of the first vertex vi

1, if de(v
i
1, vi) ≤ ε′, then

replace each vertex in the group {vi
1, v

i
2, . . . , v

i
ni

} by vi . Otherwise, the group
{vi

1, v
i
2, . . . , v

i
ni

} has a single vertex, which is redundant. Still denote ρ by
〈p,p1,p2, . . . , pk, q〉.

9: Let ρ′ be 〈p,p′
1,p

′
2, . . . , p

′
k, q〉 such that p′

i is on the step of pi and
de(p

′
i , pi) = ε if pi is a vertex of P or p′

i = pi otherwise, where i =
1,2, . . . , k. Let S′ be the step set of ρ ′.

10: Let S ′, p, q , and ε as input, and let ρ′ be an initial path, apply Algorithm 7
to compute the approximate ESP from p to q , denoted by ρ ′′.

11: if ρ′′ = ρ′ then
12: Output ρ obtained in Line 8 as an exact path and Search = false.
13: else
14: ε′ = ε′ × 0.1
15: end if
16: end while

Fig. 6.15 Exact ESP calculation after triangulation

Problem 6.2 Show that the Chazelle Algorithm 23 is a linear-time algorithm.

Problem 6.3 Show that in Lines 5 and 13 of the Chazelle Algorithm 23 (in Fig. 6.6),
the number of faces is k + l, where k and l are the numbers of vertices of the two
current funnel sides, as defined in the algorithm.

6.7 Problems 185

Fig. 6.16 An example
illustrating the approximation
path ρ′ (in red) in Step 9 of
Algorithm 26

Problem 6.4 Show that Procedure 9 can be computed in linear time.

Problem 6.5 Consider Line 4 of Algorithm 24 and let δ′ = 0 (i.e., we do not remove
any small segments from any segment in the step set S). Then, what will happen in
conclusion of this?

Problem 6.6 Show that Algorithm 26 outputs an exact ESP. Why do the two ac-
curacy constants ε > 0 and ε′ > 0 have to satisfy the condition ε′ � ε? Could
we replace (with or without any effect?) Line 14 of the algorithm by “ε′ = ε′ × α,
where α is a constant between 0 and 1.”?

Problem 6.7 Prove that Algorithm 26 and Algorithm 24 (and Algorithm 25) have
the same time complexity.

Problem 6.8 (Programming exercise) Implement and test Procedure 9.

Problem 6.9 In Algorithm 23 in Fig. 6.6, why are there only the following two
different cases:

Case 1. ai+1 = ai and bi+1 �= bi (Line 4), and
Case 2. bi+1 = bi and ai+1 �= ai (Line 12)?

In Case 1, why are Lines 5 and 6 equivalent for computing a vertex v′ such that
bi+1v

′ is tangent to funnel side U or W at v′?

Fig. 6.17 Left: Example of an approximation path ρ in Line 6 of Algorithm 26. Right: Example
of the candidate exact path ρ (in dark red) in Line 8 of Algorithm 26

186 6 ESPs in Simple Polygons

Problem 6.10 (Programming exercise) Implement the Chazelle Algorithm 23 as
given in Fig. 6.6. Discuss its measurable time complexity for inputs of varying com-
plexity.

Problem 6.11 (Programming exercise) Implement Algorithm 24, Algorithm 25,
and Algorithm 26. Compare the performance (time and resulting decompositions)
of those three algorithms.

6.8 Notes

Algorithms for computing ESPs between two points p and q of a simple polygon
Π have been intensively studied; see, for example, [3, 5, 6, 9].

For partitioning, there is, for example, Chazelle’s [2] method (see previous chap-
ter) proposed for triangulating a simple polygon, or an easier to describe and
O(n logn) algorithm for partitioning a simple polygon into trapezoids [8].

For Lemma 6.1, see [4]. For a linear-time algorithm for computing the shortest
path between two vertices in a positive integer-weighted graph, see [10].

Algorithms for computing ESPs between two points p and q of a simple polygon
Π , where the path is restricted to be fully contained in Π , have applications in 2-
dimensional pattern recognition, picture analysis, robotics, and so forth. They have
been intensively studied [3–5, 7].

This chapter provided two algorithms for calculating ESPs in simple polygons.
The used preprocessing step (triangular or trapezoidal decomposition) determines
their asymptotic time complexity because the subsequent ESP construction is ei-
ther of O(n) (assuming that Chazelle’s triangulation method can be turned into a
linear-time algorithm) or κ(ε)-linear (RBA). The chapter illustrates that RBAs are
of simple design, easy to implement, and can be used to calculate ESPs in simple
polygons, either approximate or in a de-facto exact way if the used accuracy con-
stant was chosen small enough.

Proposition 6.1 was shown in [6]. For the Chazelle algorithm for computing
an ESP inside of a simple polygon, see [1]. This paper contains Lemma 6.1 as
Lemma 6.1, Lemma 6.2 as Lemma 6.2, and Lemma 6.3 as Lemma 6.3.

In [8], the authors claimed to have an O(n logn) rubberband algorithm for calcu-
lating ESPs in simple polygons. Actually, this needs to be corrected: the algorithm
given in [8] has a worst-case time complexity of O(n2). However, using the trape-
zoid decomposition as given in the previous chapter it is possible to calculate step
sets more efficiently. This allows us to modify the algorithm given in [8] into one of
O(n logn) time complexity.

References

1. Chazelle, B.: A theorem on polygon cutting with applications. In: Proc. Annual IEEE Symp.
Foundations Computer Science, pp. 339–349 (1982)

References 187

2. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6, 485–
524 (1991)

3. Hershberger, J.: A new data structure for shortest path queries in a simple polygon. Inf. Pro-
cess. Lett. 38, 231–235 (1991)

4. Lee, D.T., Preparata, F.P.: Euclidean shortest paths in the presence of rectilinear barriers. Net-
works 14, 393–410 (1984)

5. Guibas, L., Hershberger, J.: Optimal shortest path queries in a simple polygon. J. Comput.
Syst. Sci. 39, 126–152 (1989)

6. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for
visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2,
209–233 (1987)

7. Li, F., Klette, R.: Finding the shortest path between two points in a simple polygon by applying
a rubberband algorithm. In: Proc. PSIVT, pp. 280–291 (2006)

8. Li, F., Klette, R.: Decomposing a simple polygon into trapezoids. In: Proc. Computer Analysis
Images Patterns. LNCS, vol. 4673, pp. 726–733. Springer, Berlin (2007)

9. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack J.-R., Urrutia J.
(eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)

10. Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear
time. J. ACM 3, 362–394 (1999)

Part III
Paths in 3-Dimensional Space

The image above was on the cover of the authors 2007 technical report at the In-
stitute of Mathematics and its Applications (IMA), Minneapolis. It illustrates the
original problem when a rubberband algorithm was studied for the first time in 1999
for solving an ESP problem: there is a simple cube-curve in 3D space, and we are
interested in calculating a shortest loop which passes through all those cubes.

The third part of the book is about shortest paths in 3D space. The search
domain can be the surface of a simple polyhedron, the interior of a simple
polyhedron, or a union of cubes as shown in the figure above.

Chapter 7
Paths on Surfaces

Inspiration is needed in geometry, just as much as in poetry.
Alexander Pushkin (1799–1837)

This chapter presents two RBAs for the calculation of an ESP on the surface of a
convex or a general polyhedron Π . Solutions are restricted by specified constraints.
First, we consider a convex polyhedron and provide a κ(ε) · O(kn logn) RBA for
computing a restricted solution. In this formula, k is the number of polygonal cuts1

between source and target point, and n is the number of edges of Π . Second, we
consider the surface of a general polyhedron Π and provide a κ1(ε) · κ2(ε) ·O(n2)

RBA for computing a restricted solution for the surface ESP problem. In this for-
mula, n is again the number of vertices of Π and κi(ε) = (L0i − Li)/ε, for i = 1 or
i = 2, where L1 is the length of a shortest path, L01 the length of the initial path, L2
the length of a restricted shortest path, and L02 the length of an initial path for the re-
stricted path calculation. Both proposed RBAs are easy to implement. Applications
are, for example, in 3D object analysis in biomedical or industrial imaging.

7.1 Obstacle Avoidance Paths in 3D Space

In Chap. 1, we defined a polyhedron Π as a bounded volume in 3D space whose
surface (i.e., its frontier) is the union of a set of simple polygons which only in-
tersect at their frontiers (i.e., the polygons are non-overlapping). From here on, we
also assume that this set of polygons is finite. Because each simple polygon can be
triangulated, we can use the following

Definition 7.1 A polyhedron is a compact connected subset of R3 such that its
frontier is a union of a finite number of non-overlapping triangles.

1See Definition 7.2 below.

F. Li, R. Klette, Euclidean Shortest Paths,
DOI 10.1007/978-1-4471-2256-2_7, © Springer-Verlag London Limited 2011

191

192 7 Paths on Surfaces

A polyhedron is simple iff it is homeomorphic (i.e., topologically equivalent) to
the unit sphere. Note that this still allows that a simple polyhedron can be of ‘very
complex’ shape. Now assume that we have a ‘large’ search space Ω ⊆ R

3 (e.g., all
R

3, or a ‘large’ simple polyhedron) and two points p and q in Ω such that p �= q ,
being the start and endpoint of paths to be calculated in Ω .

An obstacle in the given context is a simple polyhedron contained in the set
Ω \ {p,q}. Assume a finite set of pairwise disjoint obstacles. (We do not assume
attractions which would need to be visited.)

The general obstacle avoidance problem: Calculate an ESP ρpq from p to q

that does not pass through any interior point of any of the obstacles and that
stays in the search space.

The problem occurs, for example, when planning optimal collision-free paths for
a robot in a 3D environment. The general obstacle avoidance problem is known to
be NP-hard. The problem can be simplified by also providing a simple polyhedron
Π ⊆ Ω that contains p and q and that is disjoint with any of the given obstacles.
Basically, Π defines a corridor for locating connecting paths.

The general obstacle avoidance problem with a given corridor: Calculate an
ESP ρpq from p to q , both in a given corridor Π , that does not pass through
any interior point of any of the obstacles and that stays in the search space.

One option for an approximate solution for this general obstacle avoidance prob-
lem with a given corridor is that we search for a shortest path in Π that connects p

with q .

ESP in a simple polyhedron: Calculate an ESP ρpq from p to q , both in a
given simple polyhedron Π , that stays in Π .

Another option for an approximate solution for the general obstacle avoidance
problem with a given corridor is that we search for a shortest path ρab on the surface
of Π , after connecting p and q with a start and endpoint a and b on the surface of Π ,
respectively.

Surface ESP problem: Calculate an ESP ρpq from p to q , both on the surface
of a given simple polyhedron Π , that stays in the surface of Π .

7.2 Polygonal Cuts and Bands 193

This chapter provides two RBAs for specific surface ESP problems. The ESP-
in-a-simple-polyhedron problem will be dealt with in the next chapter. In the rest
of this chapter, Sect. 7.2 provides necessary definitions and theorems. Sections 7.3
and 7.4 present both RBAs, followed by an analysis of the time complexity of both
algorithms and some concluding remarks.

7.2 Polygonal Cuts and Bands

Let Π be a convex polyhedron and V = {v1, v2, . . . , vn} be the set of all vertices
of Π . Let F = {F1,F2, . . . ,Fm} be the set of all faces (i.e., simple polygons) of the
surface ∂Π of Π . Let E = {e1, e2, . . . , el} be the set of all edges of all faces of ∂Π .

For v ∈ V , let πv be that plane in R3 which contains v and is parallel to the
xy-plane (i.e., πv is defined by the equation z = v). Let Pv = πv ∩ Π .

Definition 7.2 Pv is the polygonal cut (of Π) with respect to v.

Because Π is a convex polyhedron, Pv is a convex polygon that is possibly de-
generated into a singleton {v}. If u.z = v.z and u is a vertex of Pv then Pu = Pv . We
also write Pu.z instead of u.z. Two polygonal cuts P1 and P2 are called adjacent iff

P1.z < P2.z or P2.z < P1.z

and there is no vertex v ∈ V such that v.z is between v1.z and v2.z. P =
〈P1,P2, . . . ,Pk〉 is called a sequence of polygonal cuts of Π iff Pi is adjacent to
Pi+1, for i = 1,2, . . . , k − 1.

Let u and v be vertices of Π such that the polygonal cuts Pu and Pv are adjacent.
Let

Suv = {w : w ∈ ∂Pu ∧ vw ⊆ some edge e ∈ E}.
It follows that Suv �= Svu for u �= v. Set Suv may also contain points that are not
vertices of Π . Because u and v are vertices of the polyhedron, we have that u ∈ Suv

iff uv is an edge of Π . Set Suv defines a polyline in the frontier of Pu; see Fig. 7.1.

Definition 7.3 Let u,v ∈ V be such that u.z < v.z, the line segment uv is com-
pletely contained in some edge in E, and the polygonal cuts Pu and Pv are adjacent.
The set Suv [Svu] defines then the downward [upward] visible polyline of vertex v

[of vertex u] in Π .

Let Π be a polyhedron (see Fig. 7.2 for an example). Let F = {F1,F2, . . . ,Fm}
be a set of triangles such that ∂Π = ⋃m

i=1 Fi and Fi ∩ Fj = ∅ or = eij , or = vij ,
where eij (vij) is an edge (vertex) of both Fi and Fj , i �= j , respectively, with
i, j = 1,2, . . . ,m.

We construct a dual simple graph GΠ = [VΠ,EΠ] where VΠ = {v1, v2, . . . , vm}.
Each vi is a triangle. Edges e ∈ EΠ are defined as follows: If Fi ∩Fj = eij �= ∅, then
we have an edge e = vivj (where eij is an edge of both triangles Fi and Fj); and

194 7 Paths on Surfaces

Fig. 7.1 Illustration of sets
Suv = {u,w2,w3} and
Svu = {v,w1}. Those sets
define the polylines 〈v,w1〉
and 〈u,w2,w3〉 in the
frontiers of Pv and Pu ,
respectively

Fig. 7.2 A unit cube in a
right-handed xyz-coordinate
system, with w5 = (1,0,0),
w7 = (0,1,0), w4 = (0,0,1),
start point
p = (0.76,0.12,1), and target
q = (0.9,0.24,0)

if Fi ∩ Fj = ∅ or a vertex, then there is no edge between vi and vj , i < j and
i, j = 1,2, . . . ,m.

In such a case, we say that GΠ is a dual graph with respect to the triangulated
polyhedron Π . See Fig. 7.3 for an example. Analogously, we can define a dual graph
for a connected surface segment (a subsurface) of a polyhedron. Abbreviating we
may also speak about “the graph for a polyhedron” or “the graph for a subsegment
of a surface”.

A triangulated polyhedron Π can also be thought as being a graph such that each
vertex of Π is a vertex of this graph, and each edge of a triangle is an edge of this
graph. We denote this graph by G′

Π .
Let p �= q , p,q ∈ V (G′

Π); if ρ is a cycle of G′
Π such that G′

Π\ρ has two com-
ponents, denoted by G1 and G2 with p ∈ V (G1) and q ∈ V (G2), then ρ is called a
cut cycle of G′

Π or Π . For example, in Fig. 7.2, w1w2w3w4w1 and w1w6w7w4w1
are cut cycles of Π .

An approximate cycle is a graph such that it consists of a cycle plus a few more
vertices, each of which is of degree 1 only, and (thus) adjacent to a vertex on the
cycle. (The graph shown later in Fig. 7.12 is an approximate cycle.)

A band is a subsurface of a polyhedron Π such that the dual graph of it is a cycle
or an approximate cycle.

7.3 ESPs on Surfaces of Convex Polyhedrons 195

Fig. 7.3 The dual graph for
the triangulated cube in
Fig. 7.2. This graph is
3-regular (i.e., each node is of
degree 3)

Procedure 10 (Compute visible polylines)
Input: E, V , and a vertex u ∈ V .
Output: The set of vertices of the downward (upward) visible polylines of u.

1: Let v = max{w : w.z < u.z ∧ w ∈ V }.
2: Let Vu = {w : ∃e(e ∈ E ∧ w = e ∩ [plane z = v.z])}.
3: Apply Graham’s scan algorithm to compute the set of vertices of the downward

visible polyline of u.
4: Analogously, compute the set of vertices of the upward visible polyline of u.

Fig. 7.4 The pseudocode of Procedure 10. This procedure is applied in Line 10 of Procedure 11

A band can also be thought as being a subgraph of G′
Π . Let E′ be the subset of

all the edges of a triangulated band such that each edge belongs to a unique triangle.
Then E′ consists of two cycles. Each of them is called a frontier of the band. For
example, in Fig. 7.2, w1w2w3w4w1 and w5w6w7w8w5 are two frontiers of a band
whose triangles are perpendicular to the xoy-plane.

If two triangulated bands share a common frontier, then they are called continu-
ous (in the sense of “continuation”).

7.3 ESPs on Surfaces of Convex Polyhedrons

The following algorithm uses Procedures 10 (see Fig. 7.4) and 11 (see Figs. 7.5
and 7.6). The algorithm is a simplified 3D rubberband algorithm (i.e., Algorithm 27
in Fig. 7.7), which is later used as a subprocess in our main algorithm (i.e., Algo-
rithm 28 in Fig. 7.8). Algorithm 27 will call Procedure 11 which will call Proce-
dure 10. Let p (q) be the start point (endpoint) on the surface of a convex polyhe-
dron Π .

In Line 3 of Procedure 10, Graham’s scan algorithm is applied, and this was
given earlier in the book.

196 7 Paths on Surfaces

Fig. 7.5 Illustration for the
output of Procedure 11:
P ∗

2 = ρ(w2,w3,w4) because
ρ(w1,w2,w3,w4) is the
polyline of maximal length
which can be seen by p3, and
ρ(w2,w3,w4) is the polyline
of maximal length which can
be seen by p1

Procedure 11 (Compute a maximal visible polyline)
Input: Three consecutive polygonal cuts P1, P2, and P3 (i.e., {P1,P2,P3} is a se-
quence of polygonal cuts) of a convex polyhedron Π , and two points pi ∈ ∂Pi ,
where i = 1,3, and p1.z < p3.z.
Output: The set of vertices of a maximal polyline P ∗

2 ⊂ P2 such that for every point
p ∈ ∂P ∗

2 , there is a �i ∈ S such that the segment pip ⊂ ∂�i , where i = 1,3. In
other words, P ∗

2 is the polyline of maximal length between p1 and p3 (with respect
to the z-coordinate) such that each vertex of it is visible both from p1 and p3 (see
Fig. 7.5).

1: Let P ′
i = ∅, where i = 1,3.

2: if p1 is not a vertex of P1 then
3: Find the unique edge e in P2 such that p1 and e are contained in a face of Π .
4: Let P ′

1 = {e}.
5: else
6: if p1 is a vertex of P1 but not a vertex of Π then
7: Find the two edges e1, e2 in P2 such that p1 and ei are contained in a face

of Π , where i = 1,2.
8: Let P ′

1 = {e1, e2}.
9: else

10: Use E, V , and p1 as input for Procedure 10; use the result for updating
V (P ′

1).
11: end if
12: end if
13: Update V (P ′

3) analogously.
14: Let V (P ′

j) = {wj1 ,wj2 , . . . ,wjkj
}, where j = 1,3.

15: Let 21 = max{11,31} and 2k2 = min{1k1 ,3k3}.
16: Output V (P ∗

2) = {w21 ,w22 , . . . ,w2k2
}.

Fig. 7.6 The pseudocode of Procedure 11. This procedure is repeatedly called in Algorithm 27

7.3 ESPs on Surfaces of Convex Polyhedrons 197

Algorithm 27 (RBA for polygonal cuts)
Input: A sequence of k pairwise disjoint polygonal cuts P1,P2, . . . ,Pk , and P ′ =
{p1,p2, . . . , pk} such that pi ∈ ∂Pi , for i = 1,2, . . . , k and k ≥ 3; two points p,q /∈⋃k

i=1 Pi , and an accuracy constant ε > 0.
Output: A sequence 〈p,p1,p2, . . . , pk, q〉 of an [1 + 2(k + 1)r(ε)/L]-approxima-
tion path which starts at p, then visits (i.e., passes through) polygonal cut Pi at pi in
the given order, and finally ends at q , where L is the length of an optimal path, r(ε)

the upper error bound for distances between pi and the corresponding optimal vertex
p′

i : de(pi,p
′
i) ≤ r(ε), for i = 1, . . . , k, where de denotes the Euclidean distance.

1: L1 ← ∑k+1
i=0 LP (pi,pi+1) (p = p0 = P0, q = pk+1 = Pk+1); and let L0 ← ∞.

2: while L0 − L1 ≥ ε do
3: for each i ∈ {1,2, . . . , k} do
4: Apply Procedure 11 to compute a polyline P ∗

i ⊂ Pi .
5: Compute a point qi ∈ ∂P ∗

i such that
de(pi−1, qi) + de(qi,pi+1) = min{de(pi−1,p) + de(p,pi+1) : p ∈ ∂P ∗

i }
6: Update the path 〈p,p1,p2, . . . , pk, q〉 by replacing pi by qi .
7: end for
8: Let L0 ← L1 and L1 ← ∑k+1

i=0 LP (pi,pi+1).
9: end while

10: Return {p,p1,p2, . . . , pk, q}.
Fig. 7.7 The pseudocode of Algorithm 27: A rubberband algorithm that has a set of polygonal
cuts as its steps

In Line 1 of Procedure 11, the final P ′
1 will be the upward visible polyline of p1,

and the final P ′
3 will be the downward visible polyline of p3. In Line 3, p1 can see e.

In Line 7, p1 can see e1 and e2. In Line 9, p1 is a vertex of Π .
Let LP (p,q) be the length of the shortest path, starting at p, then visiting

polygonal cuts P1,P2, . . . ,Pk in this order, and finally ending at q , where P =
〈P0,P1, . . . ,Pk〉.

The accuracy parameter in the input of Algorithm 27 can be chosen such that
maximum possible numerical accuracy is guaranteed on a given computer. This
algorithm is a simplified version of an RBA and is used in Line 14 of the main
algorithm (Algorithm 28).

We note that the point qi , computed in Line 5 in Algorithm 27, may not be
unique. It is this non-uniqueness that leads our Algorithm 28 in Sect. 7.3 (i.e., this
section) to produce a restricted ESP.

Now we present the main algorithm (i.e., Algorithm 28) in Fig. 7.8. Let p,q ∈
∂Π such that p.z < q.z.

In Line 3 of Algorithm 28, each e ∈ E has weight equal to 1.2

2For Thorup’s algorithm in Line 4, see [29]. Mikkel Thorup works for AT&T.

198 7 Paths on Surfaces

Algorithm 28 (RBA for surface ESP)
Input: Two points p,q ∈ ∂Π , and an accuracy constant ε > 0.
Output: An approximation path from p to q on ∂Π .

1: Compute V1 = {v : p.z < v.z < q.z ∧ v ∈ V }.
2: Sort V1 according to the z-coordinates. As a result, we have

V1 = {u1, u2, . . . , uk′ }
with

u1.z ≤ u2.z ≤ · · · ≤ uk′ .z.

3: Construct a 1-weighted graph G = [V,E].
4: Apply Thorup’s algorithm to find the shortest path ρ(u1, uk′) ⊂ G.
5: Let P = {p}.
6: for each vertex v ∈ V1 do
7: Compute the polygon Pv .
8: Find an edge e = uiui+1 of ρ(u1, uk′) such that

ui.z ≤ v.z ≤ ui+1.z

where 1 ≤ i < k′.
9: Compute the point where Pv and e intersect, denoted by v′.

10: Let P = P ∪ {v′}.
11: end for
12: Let P = P ∪ {q}.
13: Let Sstep = {Pv : v ∈ V1}, which is a sequence of polygonal cuts of Π from p

to q .
14: Apply Algorithm 27 on Sstep and P to compute the shortest path ρ(p,q) on the

surface of Π .

Fig. 7.8 The pseudocode of Algorithm 28: A rubberband algorithm surface ESP

To complete this section, we analyse (step by step) procedures and the algorithms
proposed in this section.

Lemma 7.1 Procedure 10 has time complexity O(|E| log |E|), where E is the set
of edges of Π .

Proof Line 1 can be computed in O(|V |), where V is the set of vertices of Π .
Line 2 can be computed in O(|E|), where E is the set of edges of Π . Line 3 can be
computed in O(|Vu| log |Vu|). Note that |Vu| < |V | ≤ |E|.

It follows that Procedure 10 can be computed in O(|E| log |E|). This proves the
lemma. �

Lemma 7.2 Procedure 11 has time complexity O(|E| log |E|), where E is the set
of edges of Π .

7.3 ESPs on Surfaces of Convex Polyhedrons 199

Proof Line 1 requires only constant time. Line 2 can be computed in O(|V (P1)|).
Line 3 can be computed in O(m), where m is the number of triangles in ∂Π . Line 6
can be computed in O(|V |), where V is the set of vertices of Π . Line 7 can be com-
puted in O(m). By Lemma 7.1, Line 10 can be computed in O(|E| log |E|), where
E is the set of edges of Π . Thus, Lines 1–12 can be computed in O(|E| log |E|) be-
cause of |V (P1)| < |V | ≤ |E|. Analogously, Line 13 has the same time complexity
as Lines 1–12. Lines 14, 16 can be computed in O(|E|). Line 15 requires constant
time only. This proves the lemma. �

Lemma 7.3 The time complexity of Algorithm 27 is κ(ε) · O(k|E| log |E|), where
E is the set of edges of Π , and k is the number of the polygonal cuts between p

and q .

Proof The difference between Algorithm 27 and Algorithm 7 is defined by Lines 4
and 5.

By Lemma 7.2, Line 4 can be computed in time O(|E| log |E|), where E is the
set of edges of Π . Line 5 can be computed in time O(|V (P ∗

i)|).
Because |V (P ∗

i)| ≤ |V (Pi)| ≤ |V | + |E|, it follows that Algorithm 27 needs
κ(ε) · O(k|E| log |E|) time, where E is the set of edges of Π , and k is the num-
ber of polygonal cuts between p and q . �

Theorem 7.1 Algorithm 28 has a time complexity κ(ε) ·O(kn logn), where n is the
set of vertices of Π , and k is the number of polygonal cuts between p and q .

Proof Line 1 can be computed in O(|V |), where V is the set of vertices of Π . Line 2
needs O(|V | log |V |) time. Line 3 can be computed in time O(|E|), where E is the
set of edges of Π . Line 4 uses O(|V |) time. Line 5 requires only constant time.
Line 7 can be computed in time O(|E|), where E is the set of edges of Π . Line 8
can be computed in time O(k′) =O(|V1|).

Line 9 requires O(|E|) time. Line 10 can be computed in time O(1). Thus, the
for-loop (i.e., steps 6–11) requires O(|V1||E|) time. Line 12 can be computed in
time O(1). Line 13 consumes O(|V1|) time. By Lemma 7.3, Line 14 can be com-
puted in time κ(ε) ·O(|V1||E| log |E|). By an elementary graph, O(|E|) =O(|V |),
we have κ(ε) ·O(|V1||E| log |E|) = κ(ε) ·O(kn logn), where n is the set of vertices
of Π . Altogether, this proves the theorem. �

We described a simple κ(ε) · O(kn logn) algorithm.3 Note that the provided al-
gorithm requires the convexity of polygonal cuts. By experience of the authors, the
algorithm is easy to implement.

3The algorithm may be considered as a “partial, restricted, and approximate answer” to an open
problem stated in [22].

200 7 Paths on Surfaces

Procedure 12 (Separation)
Input: G′

Π = [V (Π),E(Π)], and two vertices p �= q ∈ V (Π).
Output: The set of all vertices of a cycle ρ in G such that, if we cut the surface of
Π along ρ into two separated parts, then p and q are on different parts.

1: Let Np = {v : vp ∈ E(Π)}.
2: Select u,v ∈ Np such that ∠upv �= 180◦.
3: Let V = {p,v}. Let Search = true.
4: while Search = true do
5: Let Nv = {w′ : w′v ∈ E(Π) ∧ w′ /∈ V }.
6: Take a vertex w ∈ Nv .
7: if w �= u then
8: Let V = V ∪ {w}, v = w.
9: else

10: Search = false.
11: end if
12: end while
13: if q /∈ V then
14: Output V .
15: else
16: Output V \{q}.
17: end if

Fig. 7.9 The pseudocode of Procedure 12

7.4 ESPs on Surfaces of Polyhedrons

Now we move on to the case of arbitrary simple polyhedrons. Without loss of gen-
erality, we can assume that p �= q , p and q ∈ V (Π).

The following procedure finds a cut cycle to separate p and q such that either p

or q is not a vertex of the cut cycle. [This procedure will be used in Line 1 of the
main algorithm (Algorithm 29) below.]

In Line 1 of Procedure 12 (see Fig. 7.9), Np is the set of all neighbours of p.
Line 2 means, in other words, uv ∈ E(Π). In Line 5, Nv is the set of all neighbours
of v.

For example, in Fig. 7.2, ρ can be either w1w2w3w4w1 or w1w6w7w4w1, but it
cannot be w1w5w8w4w1.

The following procedure computes step bands (i.e., the step set for the second
level RBA). It will be used in Line 2 of the main algorithm below.

In Line 3 of Procedure 13 (see Fig. 7.10), the used “minus” in graph theory can
also be written as Π1\ρ1; in other words, we delete each vertex in ρ1 and each edge
of Π1 which is incident with a vertex of ρ1. In Line 5, GΠ1(V (ρ1) ∪ V (ρ2)) is the
induced subgraph of GΠ1 .

For example, in Fig. 7.2, if a single vertex can be thought of as being a band, then
we can have S = {B1,B2,B3}, where B1 = p, B2 is the band such that V (B2) =
{w1,w2,w3,w4,w5,w6,w7,w8}, and B3 = q .

7.4 ESPs on Surfaces of Polyhedrons 201

Procedure 13 (Step set calculation)
Input: G′

Π = [V (Π),E(Π)] and ρ, the cut cycle obtained with Procedure 12. With-
out loss of generality, we can assume that p ∈ V (ρ) and q /∈ V (ρ).
Output: The set of the step bands S = {B1,B2, . . . ,Bm} such that p ∈ V (B1) and
q ∈ V (Bm).

1: Let S = ∅, Π1 = Π and ρ1 = ρ.
2: while q /∈ V (ρ1) do
3: Let Π2 be the component of Π1 − ρ1 such that q ∈ V (Π2).
4: Let ρ2 be the frontier of Π2.
5: Let Π1, ρ1, and ρ2 as the input, compute a band B = GΠ1(V (ρ1) ∪ V (ρ2)).
6: Update ρ1 and Π1 by letting ρ1 = ρ2 and Π1 = Π2.
7: Let S = S ∪ {B}.
8: end while
9: Output S.

Fig. 7.10 The pseudocode of Procedure 13

The following Procedure 14 (see Fig. 7.11) computes step segments in a single
band (i.e., a subset of the step set for the initialisation of the RBA). (It will be used
in Line 2 of Procedure 15 below.)

Let Fu, Fv be two triangles such that u ∈ ∂Fu and v ∈ ∂Fv . Let wu and wv ∈
V (GB) (Here, GB is the dual graph of the band B; see Fig. 7.12.) be such that wu

and wv correspond to Fu and Fv , respectively.
By the definition of a band (see Sect. 7.2), there is a cycle, denoted by ρB , such

that either wu (respectively, wv) ∈ V (ρB) or the unique neighbour of wu (respec-
tively, wv) is in V (ρB).

For example, in Fig. 7.13, the frontier of B consists of two cycles uw1w2w3w4u

and w5w6w7w8w5. We have that Fu = �pw4w1, Fv = �w1w5w6. S1 = {w1w4,

w1w5} and S2 = {w4w1,w4w5,w4w8,w4w7,w3w7,w3w6,w2w6,w1w6}, where
S1 and S2 are the output of Procedure 14.

In Line 1 of Procedure 14, ρB is a cycle of the graph GB . Cycles are defined
after Fig. 7.10. In Line 4, assume that the length of the removed segment equals δ′.
In Line 8, the definition of a band is in Sect. 7.2. In Line 9, Case 1 is defined in
Line 1. In Line 10, only one of either wu or wv is not in V (ρB). In Line 11, Cases 1
and 2 are defined in Lines 1 and 7.

The following Procedure 15 (see Fig. 7.14) is the initialisation procedure of the
RBA. It will be used in Line 7 of the main algorithm (Algorithm 29 in Fig. 7.15)
below.

The main algorithm defines now the iteration steps of the RBA.
In Line 3 of Algorithm 29, it is very likely that there exist further points between

pi and pi+1.
We provide an analysis of run-time complexity, and an example for this algo-

rithm. It is basically another illustration for the general comments (e.g., in [18,
19]) that the basic idea of rubberband algorithms may be applied efficiently for a
diversity of shortest path problems.

202 7 Paths on Surfaces

Procedure 14 (Step segments in a single band)
Input: The triangulated band B and two vertices u,v ∈ V (B) such that u and v

are on two different frontiers of B , denoted by ρ1 and ρ2 (i.e., u ∈ V (ρ1) and v ∈
V (ρ2)).
Output: Two step sets of segments (edges) S1 and S2 such that either S1 or S2 con-
tains the vertices of an approximate surface ESP of B from u to v.

1: if both wu and wv are in V (ρB) then
2: ρB can be decomposed into two paths from wu to wv , denoted by P1 and

P2. Let {Fj1 ,Fj2 , . . . ,Fjmj
} be the sequence of triangles corresponding to

the sequence of the vertices of Pj , where j = 1,2.
3: Let {ej1, ej2 , . . . , ejmj

−1} be a sequence of edges such that eji
= Fji

∩ Fji+1 ,
where j = 1,2; i = 1,2, . . . , jmj

− 1.
4: Let {e′

j1
, e′

j2
, . . . , e′

jmj
−1} be a sequence of edges such that e′

ji
is obtained

by removing a sufficiently small segment from both endpoints of eji
, where

j = 1,2; i = 1,2, . . . , jmj
− 1.

5: The sets Sj = {e′
j1

, e′
j2

, . . . , e′
jmj

−1} (where j = 1,2) are the approximate

step sets we are looking for.
6: else
7: if both wu and wv are not in V (ρB) then
8: Again, by the definition of a band, let w′

u (w′
v) be the unique neighbour of

wu (wv) such that w′
u and w′

v /∈ V (ρB).
9: In this case, ρB can be decomposed into two paths from w′

u to w′
v , denoted

by P ′
1 and P ′

2. Appending wu and wv to both ends of P ′
1 and P ′

2, we obtain
two paths, denoted by P1 and P2. Analogous to Case 1, we can compute
the approximate step sets.

10: else
11: We can compute the approximate step sets, analogously to Cases 1 and 2.
12: end if
13: end if

Fig. 7.11 The pseudocode of Procedure 14

We analyse, step by step, the time complexity for each of the procedures and the
main algorithm as presented above in this section.

Lemma 7.4 Procedure 12 can be computed in time O(|V (Π)|2).

Proof In our data structure, we identify adjacent vertices for each vertex; so Lines
1 and 5 can be computed in time O(|V (Π)|). Line 2 uses O(|Np|) time. Line 3
requires O(1) time. Line 6 can be computed in time O(|Nv|). Lines 7 and 8 require
O(1) time. The loop, from Line 4 to Line 12, needs O(|V (Π)|2) time. Lines 13–17
can be computed in time O(|V |). Therefore, Procedure 12 can be computed in time
O(|V (Π)|2). �

7.4 ESPs on Surfaces of Polyhedrons 203

Fig. 7.12 The dual graph
with respect to B; the two
frontiers of B are
pw1w2w3w4p and
w5w6w7w8w5 in Fig. 7.13.
v9 corresponds to triangle
pw4w1, and v2 corresponds
to triangle w1w5w6

Fig. 7.13 A unit cube such
that u = p. Point v is the
midpoint of edge w5w6

Lemma 7.5 Procedure 13 can be computed in time O(|V (Π)|2).

Proof Line 1 can be computed in time O(1). The test in Line 2 needs O(|V (ρ1)|)
time. Line 3 can be computed in time O(|V (Π1)|). Line 4 can requires O(|V (Π2)|)
time. Line 5 can be computed in time O(|V (Π1)|). Lines 6 and 7 can be com-
puted in time O(1). The loop, from Line 2 to Line 8, is computed in time
O(|V (Π1)| · |V (ρ1)|) ≤ O(|V (Π)|2). Line 9 can be computed in time O(|S|).
Therefore, Procedure 13 can be computed in time O(|V (Π)|2). �

Obviously, we have the following

Lemma 7.6 Procedure 14 can be computed in time O(|V (GB)|).

Lemma 7.7 Procedure 15 has time complexity κ ·O(|V (ρ2)| · |V (B1 ∪B2)|), where
κ = (L0 − L)/ε, ε is the accuracy, and L0 and L are the lengths of the initial and a
shortest path from u1 to u3, respectively.

Proof By Lemma 7.6, Line 2 can be computed in time O(|V (Bi)|), where i = 1,2;
see the analysis in Sect. 3.5 (see also Theorem 1.4 of [20]), Line 3 has time com-
plexity

κ ·O(∣
∣V (B1 ∪ B2)

∣
∣
)
.

204 7 Paths on Surfaces

Procedure 15 (Initialisations)
Input: Two continuous triangulated bands B1 and B2, and three vertices u1, u2, and
u3, all three in V (B1 ∪ B2), such that u1 and u2 are on two different frontiers of
B1, denoted by ρ1 and ρ2; u3 is on the frontier, denoted by ρ3 (�= ρ2), of B2. Let
eu2 ∈ E(ρ2) be such that u2 ∈ eu2 ; l a sufficiently large integer; and E = E(ρ2).
Output: The set of vertices of an approximate ESP on the surface of B1 ∪ B2 from
u1 to u3.

1: while E �= ∅ do
2: Let Bi and ui , ui+1 be the input; apply Procedure 14 to compute step seg-

ments in band Bi , denoted by SBi
, where i = 1,2.

3: Let S12 = SB1 ∪ SB2 be the input. Apply Algorithm 7 to compute an approxi-
mate ESP on the surface of B1 ∪ B2. This is denoted by ρeu2

, and it connects
u1 with u3.

4: Let the length of ρeu2
be equal to l(ρeu2

).
5: if l(ρeu2

) < l then
6: Let V = V (ρeu2

).
7: end if
8: Let E = E\{eu2}.
9: Take an edge e ∈ E and let u2 be one endpoint of e; let eu2 = e.

10: end while
11: Output V .

Fig. 7.14 The pseudocode of Procedure 15

Line 4 can be computed in time O(|V (ρeu2
)|). Lines 5–7 can be computed in

time O(1). Line 8 can be computed in time O(|V (ρ2)|). Line 9 can be computed in
time O(1). The loop, from Line 1 to 13, can be computed in time

κ ·O(∣
∣V (ρ2)

∣
∣ · ∣∣V (B1 ∪ B2)

∣
∣
)
.

Line 11 can be computed in time O(|V |). Therefore, Procedure 15 can be computed
in time κ ·O(|V (ρ2)| · |V (B1 ∪ B2)|). �

Theorem 7.2 The main algorithm has time complexity κ1 · κ2 ·O(|V (GΠ)|2); κ1 =
max{κi : i = 1,2, . . . , k}; κi is defined analogously to κ in Lemma 7.7, where i =
1,2, . . . , k; κ2 = (L1 − L)/ε, ε is the accuracy, and L1 and L are the lengths of the
initial and restricted path, respectively.

Proof By Lemma 7.4, Line 1 can be computed in time O(|V (GΠ)|2). According
to Lemma 7.5, Line 2 can be computed in time O(|V (GΠ)|2). Line 3 can be com-
puted in time O(|V (ρ)|). Lines 4 and 10 can be computed in time O(|V (ρ)|). By
Lemma 7.7, Line 7 can be computed in time κi ·O(|V (ρi2)| · |V (Bi−1 ∪Bi)|). Line 8
can be computed in time O(|V (ρ)|). The loop, from Line 5 to 11, can be computed
in time κ1 · κ2 · O(|V (GΠ)|2), where κ1 = max{κi : i = 1,2, . . . , k}; κi is defined
analogously to κ in Lemma 7.7, where i = 1,2, . . . , k; κ2 = (L1 −L)/ε, ε is the ac-
curacy, and L1 and L are the lengths of the initial and restricted path, respectively.

7.4 ESPs on Surfaces of Polyhedrons 205

Algorithm 29 (RBA for surface ESP)
Input: G′

Π = [V (Π),E(Π)], and two vertices p �= q , p,q ∈ V (Π); accuracy con-
stant ε > 0.
Output: The set of vertices of an approximate and restricted ESP on the surface
of Π .

1: Let G′
Π , p and q be the input; apply Procedure 12 to compute a cut cycle which

separates p and q , denoted ρpq .
2: Let G′

Π and ρpq be the input; apply Procedure 13 to compute step bands S =
{B1,B2, . . . ,Bk+1} such that p ∈ V (B1) and q ∈ V (Bk+1).

3: Let pi be a point on the frontier of Bi , where i = 1,2, . . . , k + 1, p = p0 and
q = pk+1. We obtain an initial path ρ = 〈p0, . . . , p1, . . . , p2, . . . , pk+1〉.

4: Compute the length L1 of the initial path ρ; and let L0 ← ∞.
5: while L0 − L1 ≥ ε do
6: for each i ∈ {1,2, . . . , k} do
7: Apply Procedure 15 to compute a point qi on the frontier of Bi such that

qi is a vertex of an approximate ESP on the surface of Bi−1 ∪Bi from qi−1
to qi+1.

8: Update the path 〈p,p1,p2, . . . , pk, q〉 by replacing pi by qi .
9: end for

10: Let L0 ← L1 and L1 be the length of the updated path ρ.
11: end while
12: Return {p,p1,p2, . . . , pk, q}.
Fig. 7.15 The pseudocode of Algorithm 29: a rubberband algorithm for surface ESP

Fig. 7.16 A unit cube within
an xyz-coordinate system,
where p = (0.76,0.001,1),
q = (0.999,0.001,0).
pw9w10q is an initial surface
path from p to q while
pw13w12w11q is an
approximate surface ESP
from p to q , where
w9 ∈ w1w2,
w10,w11 ∈ w5w6,
w12 ∈ w1w5 and w13 ∈ w1w4

Therefore, the main algorithm can be computed in time κ1 ·κ2 ·O(|V (GΠ)|2). �

The following example illustrates the steps of the main algorithm. Let Π be the
unit cube in Fig. 7.16.

Line 1 computes a cut cycle ρpq = w1w2w3w4w1 (which may be not uniquely
defined).

206 7 Paths on Surfaces

Line 2 computes step bands S = {B1,B2,B3}, where B1 = p, B2’s frontiers are
two cycles w1w2w3w4w1 and w5w6w7w8w5, and B3 = q .

Line 3 decides that we use pw9w10q as an initial surface path from p to q (see
Fig. 7.16).

In Line 7, the algorithm applies Procedure 15 (the initialisation procedure of the
RBA) and searches each edge of the polygon w1w2w3w4w1; it finds a point w13 ∈
w1w4 to update the initial point w9, and it also inserts a new point w′

12 ∈ w1w5 into
the segment between w13 and w10.

Again, in Line 7, the algorithm searches each edge of the polygon w5w6w7w8w5
and finds a point w11 ∈ w5w6 for updating the initial point w10; it also updates point
w′

12 ∈ w1w5 by point w12 ∈ w1w5 which is between w13 and w11.
The algorithm iterates (note: the iteration steps are defined in the main algorithm)

until the required accuracy is reached.
The section presented a rubberband algorithm for computing an approximate

and restricted surface ESP of a polyhedron. Although it is not the most efficient, it
follows a straightforward design strategy, and is thus easy to implement.

This algorithm generalised an rubberband algorithm designed for solving a 2D
ESP of a simple polygon4 to the one which solves the surface ESP of polyhedrons.

This approach is a contribution towards the exploration of efficient approxi-
mate algorithms for solving the general ESP problem.

This will allow more detailed studies of computer-represented surfaces as is typ-
ical, e.g., in biomedical or industrial 3D image analysis.

7.5 The Non-existence of Exact Algorithms for Surface ESPs

In Fig. 7.17, p = (1,4,7), q = (4,7,4), w1 = (2,4,5), w2 = (2,5,5), w3 =
(4,5,4), w4 = (4,5,5) (de(w1,w2) = de(w3,w4) = 1). We can create a surface
fragment as follows: Randomly select points w5 and w6 on the line segments
w1w2 and w3w4, respectively. Without loss of generality, assume that de(w5,w1) ≤
de(w6,w4). Then we may find a point w7 on the line segment w1w2 such that
de(w5,w7) = de(w6,w3).

Now, let both w5 and w6 move along the line segments w1w2 and w3w4 towards
w7 and w3 with the same velocity, respectively. We denote the locus of segment
w5w6 by S1. Let S2 and S3 be the triangles pw5w7 and qw6w3, respectively. Then
we obtain a surface fragment S = S1 ∪ S2 ∪ S3.

The problem of finding an ESP from p to q on S implies the problem of finding
an ESP starting at p, then visiting segments w1w2 and w3w4 in this order, and
finally ending at q .

4See [20].

7.6 Problems 207

Fig. 7.17 An example of a
surface fragment such that
there does not exist any exact
algorithm for computing a
surface ESP from p to q

By Sect. 3.9, there does not exist any exact algorithm for the second problem.
Thus, there does not exist any exact algorithm for the first problem. Thus:

There does not exist any exact algorithm for the general surface ESP problem.

7.6 Problems

Problem 7.1 What is the dual graph GΠ with respect to a triangulated polyhedron
Π? What is the graph G′

Π ? Discuss the differences between GΠ and G′
Π .

Problem 7.2 Discuss the differences between an approximate cycle and a cycle.
When are two triangulated bands continuous?

Problem 7.3 Algorithm 27 is modified from Algorithm 7. Underline the modifica-
tions in Algorithm 27 in Fig. 7.7. Does Algorithm 27 always output a global ESP?
Why?

Problem 7.4 What are the elements (i.e., steps) in the step set Sstep in Line 13 of
Algorithm 28 in Fig. 7.8?

Problem 7.5 Consider Line 2 of Procedure 12 in Fig. 7.9. Why can points u and v

not be collinear?

Problem 7.6 Consider Line 4 of Procedure 14 in Fig. 7.11. Why do we need to re-
move for each segment eji

a sufficiently small segment from both endpoints? Which
lines of this procedure define Cases 1 and 2 (as mentioned in Lines 9 and 11)?

Problem 7.7 Algorithm 29 is also modified from Algorithm 7. Underline modifi-
cations in Algorithm 27 in Fig. 7.7.

208 7 Paths on Surfaces

Problem 7.8 We refer to Sect. 7.5. Assume that the two points w5 and w5 are not
selected randomly. Could we then also use the constructed surface fragment S as an
example to show that there does not exist any exact algorithm for the general surface
ESP problem?

Problem 7.9 Why either Algorithm 28 or 29 may fail to compute a global solution
to the considered ESP problems? Find simple counterexamples (one for each).

However, if we can find a lower bound for the length of the optimal path, then the
solutions obtained with these two algorithms can still be thought to be approximate
global solutions. Based upon this idea, generalise both Algorithms 28 and 29 to
be approximate algorithms for computing global solutions to the considered ESP
problems.

Problem 7.10 If the input polyhedron Π is not convex, then how will this affect
the performance of Algorithm 28?

Problem 7.11 (Programming exercise)

(a) Generate a surface triangulation for a given polyhedron.
(b) Consider the generated triangulation as a labelled graph; labels are defined by

the length of edges.
(c) Generate a shortest path from a selected vertex to another selected vertex by

applying the Dijkstra algorithm.

Discuss the accuracy of this discrete surface ESP algorithm for calculating an
ESP on the surface of a polyhedron.

Problem 7.12 (Programming exercise) Implement both Algorithms 28 and 29 and
compare their performance.

Problem 7.13 (Programming exercise) Implement the generic RBA (i.e., Algo-
rithm 11 for the 2.5D case) as described in Fig. 3.24, and compare its performance
with that of Algorithms 28 and 29.

7.7 Notes

As a first result, [28] presented in 1984 a doubly-exponential time algorithm for
solving the general obstacle avoidance problem. Reference [25] improved this by
providing a singly-exponential time algorithm. The result was further improved by
a PSPACE algorithm in [8].

Since the general ESP problem is known to be NP-hard [9], special cases of the
problem have been studied afterwards. Reference [27] gave a polynomial time algo-
rithm for ESP calculations for cases where all obstacles are convex and the number
of obstacles is ‘small’. Reference [12] solved the ESP problem with an O(n6k−1)

algorithm assuming that all obstacles are vertical buildings with k different heights.

7.7 Notes 209

Reference [28] is the first publication considering the special case that the short-
est polygonal path ρpq is constrained to stay on the surface of Π . Reference [28]
presented an O(n3 logn) algorithm where Π was assumed to be convex. Reference
[23] improved this result by providing an O(n2 logn) algorithm for the surface of
any Π . The time complexity was even reduced to O(n2) [10].

Recently, [6] presented an O(n3) algorithm for the surface of any Π . Their algo-
rithm was implemented and then evaluated on surfaces for which the correct solution
(also called the ground truth) was known.

So far, the best known result for the surface ESP problem is due to [14]; this
paper improved in 1999 the time complexity to O(n log2 n), assuming that there are
O(n) vertices and edges on Π .

Let Π be a convex polyhedron. Let S be a set of edges (the step set) correspond-
ing (by incidence of vertices of the path) to a shortest path on the surface of Π .
Reference [24] shows that the cardinality |S| can be calculated in O(n4), where n

is the number of vertices of Π . Reference [24] constructs an example such that the
lower bound of |S| is n4.

Reference [1] gives an O(n6β(n) logn) algorithm to compute S, where β(n) is
an extremely slowly growing function. Reference [26] proves that a lower bound for
the number of maximal edge sequences (step sets which have a maximal number of
edges) of shortest paths is n3 by using the notion star unfolding [5]. Reference [11]
solves two-point queries (i.e., given are two points p and q on the surface, find the
surface ESP from p to q—after generating an auxiliary map in some preprocessing)
on a (not necessarily convex) polyhedral surface in O(logn) but with high complex-
ities for preprocessing and high demands for available space. Reference [7] focuses
on ‘terrain surfaces’ with various optimal path problems.

There are also already a few approximation algorithms for solving the surface
ESP problem. Let n be the number of edges of a convex polyhedron. Reference [2]
presents an algorithm for computing an (1 + ε)-shortest path on the surface of a
convex polyhedron in time O(n + 1/ε3). Reference [13] improves this result by an
O((logn)/ε1.5 + 1/ε3) algorithm with a preprocessing time of O(n). References
[3, 4, 17, 21] also discuss approximation algorithms for weighted surface ESP prob-
lems.

For calculating an ESP on the surface of a convex polyhedron (in R
3), reference

[22] states on page 667 the following open problem: Can one compute shortest paths
on the surface of a convex polyhedron in R

3 in subquadratic time? In O(n logn)?
In this chapter, we generalised an RBA from solving the 2D ESP of a simple

polygon (see [20] and Chap. 6 for this 2D algorithm) to a solution for the surface
ESP of polyhedrons. Although this RBA is not the most time-efficient, it follows a
straightforward design strategy, and the proposed algorithm is easy to implement.
See [19] for results on implementing RBAs for various shortest path problems.

For shortest paths on digital surfaces (in the context of 3D picture analysis), also
known as geodesics, see the monograph [16]. One of the earlier publications, related
to the calculation of surface geodesics, is [15].

210 7 Paths on Surfaces

References

1. Agarwal, P.K., Aronov, B., O’Rourke, J., Schevon, C.A.: Star unfolding of a polytope with
applications. SIAM J. Comput. 26, 1689–1713 (1987)

2. Agarwal, P.K., Har-Peled, S., Sharir, M., Varadarajan, K.R.: Approximate shortest paths on a
convex polytope in three dimensions. J. ACM 44, 567–584 (1997)

3. Aleksandrov, L., Lanthier, M., Maheshwari, A., Sack, J.-R.: An ε-approximation algorithm
for weighted shortest path queries on polyhedral surfaces. In: Abstracts European Workshop
Comput. Geom., pp. 19–21 (1998)

4. Aleksandrov, L., Lanthier, M., Maheshwari, A., Sack, J.-R.: An ε-approximation algorithm for
weighted shortest paths on polyhedral surfaces. In: Proc. Scand. Workshop Algorithm Theory.
LNCS, vol. 1432, pp. 11–22. Springer, Berlin (1998)

5. Aronov, B., O’Rourke, J.: Nonoverlap of the star unfolding. Discrete Comput. Geom. 8, 219–
250 (1992)

6. Balasubramanian, M., Polimeni, J.R., Schwartz, E.L.: Exact geodesics and shortest paths on
polyhedral surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1006–1016 (2009)

7. de Berg, M., van Kreveld, M.: Trekking in the alps without freezing or getting tired. Algorith-
mica 18, 306–323 (1997)

8. Canny, J.: Some algebraic and geometric configurations in PSPACE. In: Proc. Annu. ACM
Sympos. Theory Comput., pp. 460–467 (1988)

9. Canny, J., Reif, J.H.: New lower bound techniques for robot motion planning problems. In:
Proc. IEEE Conf. Foundations Computer Science, pp. 49–60 (1987)

10. Chen, J., Han, Y.: Shortest paths on a polyhedron. In: Proc. Annu. ACM Sympos. Comput.
Geom., pp. 360–369 (1990)

11. Chiang, Y.-J., Mitchell, J.S.B.: Two-point Euclidean shortest path queries in the plane. In:
Proc. ACM-SIAM Sympos. Discrete Algorithms, pp. 215–224 (1999)

12. Gewali, L.P., Ntafos, S., Tollis, I.G.: Path planning in the presence of vertical obstacles. Tech-
nical report, Computer Science, University of Texas at Dallas (1989)

13. Har-Peled, S.: Approximate shortest paths and geodesic diameters on convex polytopes in
three dimensions. Discrete Comput. Geom. 21, 217–231 (1999)

14. Kapoor, S.: Efficient computation of geodesic shortest paths. In: Proc. Annu. ACM Sympos.
Theory Comput., pp. 770–779 (1999)

15. Kiryati, N., Szekely, G.: Estimating shortest paths and minimal distances on digitized three
dimensional surfaces. Pattern Recognit. 26, 1623–1637 (1993)

16. Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)
17. Lanthier, M., Maheshwari, A., Sack, J.-R.: Approximating weighted shortest paths on polyhe-

dral surfaces. In: Proc. Annu. ACM Sympos. Comput. Geom., pp. 274–283 (1997)
18. Li, F., Klette, R.: Exact and approximate algorithms for the calculation of shortest paths. Re-

port 2141, IMA, The University of Minnesota, Minneapolis (2006)
19. Li, F., Klette, R.: Rubberband algorithms for solving various 2D or 3D shortest path problems.

Plenary Talk. In: Proc. Computing: Theory and Applications, Platinum Jubilee Conference of
The Indian Statistical Institute, pp. 9–18. IEEE, Los Alamitos (2007)

20. Li, F., Klette, R.: Euclidean shortest paths in simple polygons. Technical report CITR-
202, Computer Science Department, The University of Auckland, Auckland. http://www.citr.
auckland.ac.nz/techreports/2007/CITR-TR-202.pdf (2007)

21. Mata, C., Mitchell, J.S.B.: Approximation algorithms for geometric tour and network design
problems. In: Proc. Annu. ACM Sympos. Comput. Geom., pp. 360–369 (1995)

22. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.-R., Urrutia, J.
(eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)

23. Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J.
Comput. 16, 647–668 (1987)

24. Mount, D.M.: The number of shortest paths on the surface of a polyhedron. SIAM J. Comput.
19, 593–611 (1990)

25. Reif, J.H., Storer, J.A.: A single-exponential upper bound for shortest paths in three dimen-
sions. J. ACM 41, 1013–1019 (1994)

References 211

26. Schevon, C., O’Rourke, J.: The number of maximal edge sequences on a convex polytope. In:
Proc. Allerton Conf. Commun. Control Comput., pp. 49–57 (1988)

27. Sharir, M.: On shortest paths amidst convex polyhedra. SIAM J. Comput. 16, 561–572 (1987)
28. Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. SIAM J. Comput. 15, 193–215

(1986)
29. Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear

time. J. ACM 3, 362–394 (1999)

Chapter 8
Paths in Simple Polyhedrons

An approximate answer to the right problem is worth a good
deal more than an exact answer to an approximate problem.

John Tukey (1915–2000)

Since the pioneering work by L. Cohen and R. Kimmel in 1997 on finding a con-
tour as a minimal path between two endpoints, shortest paths in volume images
have raised interest in computer vision and image analysis. This chapter considers
the calculation of an ESP in a 3D polyhedral space Π . We propose an approxi-
mate κ(ε) · O(M|V |) 3D ESP algorithm, not counting time for preprocessing. The
preprocessing time complexity equals O(M|E| + |F | + |V | log |V |) for solving a
special, but ‘fairly general’ case of the 3D ESP problem, where Π does not need to
be convex. V and E are the sets of vertices and edges of Π , respectively, and F is
the set of faces (triangles) of Π . M is the maximal number of vertices of a so-called
critical polygon, and κ(ε) = (L0 −L)/ε where L0 is the length of an initial path and
L is the true (i.e., optimum) path length. The given algorithm approximately solves
three (previously known to be) NP-complete or NP-hard 3D ESP problems in time
κ(ε) · O(k), where k is the number of layers in a stack, which is introduced in this
chapter as being the problem environment. The proposed approximation method has
straightforward applications for ESP problems when analysing polyhedral objects
(e.g., in 3D imaging), of for ‘flying’ over a polyhedral terrain.

8.1 Types of Polyhedrons; Strips

In this chapter, we apply a rubberband algorithm (RBA) to present an approximate

κ(ε) ·O(
M|V |) +O

(
M|E| + |F | + |V | log |V |)

algorithm for ESP calculations when Π is a (type-2, see Definition 8.2 below) sim-
ply connected polyhedron which is not necessarily convex.

F. Li, R. Klette, Euclidean Shortest Paths,
DOI 10.1007/978-1-4471-2256-2_8, © Springer-Verlag London Limited 2011

213

214 8 Paths in Simple Polyhedrons

Fig. 8.1 Left: A type-1
polyhedron. Right: Type-2
polyhedron

This section provides necessary definitions and theorems. Section 8.2 describes
the mentioned RBA. Section 8.3 gives the time complexity of the algorithm. Sec-
tion 8.4 illustrates the algorithm by some examples. Section 8.5 concludes the chap-
ter.

We denote by Π a simple polyhedron (i.e., a compact polyhedral region which
is homeomorphic to a unit ball; see Chap. 1) in the 3D Euclidean space, which is
equipped with an xyz rectangular Cartesian coordinate system. Let E be the set of
edges of Π ; V = {v1, v2, . . . , vn} the set of vertices of Π . For p ∈ Π , let πp be
the plane which is incident with p and parallel to the xy-plane. The intersection
πp ∩ Π is a finite set of simple polygons; a singleton (i.e., a set only containing a
single point) is considered to be a degenerate polygon.

Definition 8.1 A simple polygon P , being a connected component of πp ∩ Π , is
called a critical polygon of Π (with respect to p).

Any vertex p defines in general a finite set of critical polygons. The notion of
a critical polygon is also generalised as follows: We assume a simply connected
(possibly unbounded) polyhedron Π , and we allow that the resulting (generalised)
critical polygons also be unbounded.

For example, a generalised critical polygon may have a vertex at infinity, or it can
be the complement of a critical polygon, as specified in Definition 8.1. (Section 8.4
will also make use of generalised critical polygons.)

Definition 8.2 We say that a simple polyhedron Π is a type-1 polyhedron iff any
vertex p defines exactly one convex critical polygon. We say that a simple polyhe-
dron Π is a type-2 polyhedron iff any vertex p defines exactly one simple critical
polygon.

Figure 8.1 shows a type-1 polyhedron on the left, and a type-2 polyhedron on the
right. Obviously, each type-1 simple polyhedron is also a type-2 simple polyhedron.
Our main algorithm below applies to type-2 simple polyhedrons.

In what follows, Π is a type-2 simple polyhedron. For a simple polygon P , we
denoted by P ◦ its topological interior, P • is the closure of P ◦, and ∂P = P •\P ◦
denotes the frontier of P . Let ρ(p,q) be a path from p to q .

8.1 Types of Polyhedrons; Strips 215

Fig. 8.2 Axis-aligned rectangles

Let (x0, y0, z0) be a point in 3D space. Let

S1 = {
(x, y, z0) : x0 ≤ x < ∞ ∧ y0 ≤ y < ∞}

,

S2 = {
(x, y, z0) : −∞ < x ≤ x0 ∧ y0 ≤ y < ∞}

,

S3 = {
(x, y, z0) : −∞ < x ≤ x0 ∧ −∞ < y ≤ y0

}
,

S4 = {
(x, y, z0) : x0 ≤ x < ∞ ∧ −∞ < y ≤ y0

}
.

Si is called a q-rectangle of type i, where i = 1,2,3,4. Furthermore, let (x1, y1, z0)

be a point in 3D space such that x1 > x0 and y1 > y0. Let

Sh = {
(x, y, z0) : −∞ < x < ∞ ∧ y0 ≤ y ≤ y1

}
,

Sv = {
(x, y, z0) : x0 ≤ x ≤ x1 ∧ −∞ < y < ∞}

.

Finally, let

Sh1 = {
(x, y, z0) : x0 ≤ x < ∞ ∧ y0 ≤ y ≤ y1

}
,

Sh2 = {
(x, y, z0) : −∞ < x ≤ x0 ∧ y0 ≤ y ≤ y1

}
,

Sv1 = {
(x, y, z0) : x0 ≤ x ≤ x1 ∧ y0 ≤ y < ∞}

,

Sv2 = {
(x, y, z0) : x0 ≤ x ≤ x1 ∧ −∞ < y ≤ y0

}
.

The sets Sh, Sv , Shj
, and Svj

are called horizontal or vertical strips, for j = 1,2.
According to their geometric shape, we notice that

(i) S1 [S2, S3, S4] is unbounded in direction (+x,+y) [(−x,+y), (−x,−y), (+x,

−y)];
(ii) Sh [Sv] is unbounded in direction ±x [±y];

(iii) Sh1 [Sh2 , Sv1 , Sv2] is unbounded in direction +x [−x,+y,−y].

The sets Si , Sh, Sv , Shj
, and Svj

are also called axis-aligned rectangles, where
i = 1,2,3,4 and j = 1,2. The stack S of axis-aligned rectangles is called terrain-
like if, for at least one of the four directions −x, +x, −y, or +y, each rectangle in
S is unbounded (see Fig. 8.2).

We recall a result in elementary geometry; see Fig. 8.3.

216 8 Paths in Simple Polyhedrons

Fig. 8.3 Illustration for
Lemma 8.1

Fig. 8.4 Two points p1 and
p2 and m = 6 line segments

Lemma 8.1 Let p be a point in �qrs such that p is not on any of the three line
segments qr, rs, and sq . Then de(p, q) + de(p, r) < de(s, q) + de(s, r).

Let {s1, s2, . . . , sm} be a set of m line segments and S the union of those segments.
Let p1 and p2 be two different points not in S; see Fig. 8.4. We recall that points in
R

3 may be sorted by the lexicographic order of their coordinates.

Lemma 8.2 de(p1,p) + de(p2,p) = min{de(p1, q) + de(p2, q) : q ∈ S} and lexi-
cographic order define a unique point in S which can be computed in O(m) time.

Proof Consider m = 1. For line segment si , there is a unique point qi ∈ si such that

de(p1, qi) + de(p2, qi) = min
{
de(p1, q) + de(p2, q) : q ∈ si

}
.

Consider the case m = 2 and points q1 and q2. If de(p1, q1) + de(p2, q1) <

de(p1, q2) + de(p2, q2), then p = q1. If de(p1, q1) + de(p2, q1) > de(p1, q2) +
de(p2, q2), then p = q2. If de(p1, q1) + de(p2, q1) = de(p1, q2) + de(p2, q2), then
we decide for that point which comes first in lexicographic order. Cases m > 2 fol-
low analogously. �

Let P be a convex critical polygon of Π , defined by the plane z = c. Let p1 and
p2 be two points such that their z-coordinates satisfy p1.z < c < p2.z.

For a convex critical polygon P of Π , let P.z be the z-coordinate of all points
in P . Let q1q2 be a segment such that q1.z = q2.z. Let p1 and p2 be two points such
that p1.z < q1.z < p2.z and de(p1, q1) + de(p2, q1) = de(p1, q2) + de(p2, q2). Let
p be a point on the line q1q2 such that

de(p1,p) + de(p2,p) = min
{
de(p1, q) + de(p2, q) : q ∈ q1q2

}
.

Then we have the following

Lemma 8.3 p is in between q1 and q2.

8.1 Types of Polyhedrons; Strips 217

Fig. 8.5 Illustration for the
proof of Lemma 8.3

Proof Without loss of generality, suppose that q1q2 is parallel to the x-axis. Let the
coordinates of pi be (ai, bi, ci), where i = 1,2. Let p = (x, b, c) be a point on the
line q1q2. See Fig. 8.5. Then,

de(pi,p) =
√

(x − ai)2 + (b − bi)2 + (c − ci)2

for i = 1,2. Let f (x) = de(p1,p) + de(p2,p). Then we have that

f ′(x) = x − a1
√

(x − a1)2 + (b − b1)2 + (c − c1)2

+ x − a2
√

(x − a2)2 + (b − b2)2 + (c − c2)2
.

By setting f ′(x) = 0, we can find the unique critical point xp of the function f (x),
that is, the coordinates of p equal (xp, b, c). Let the coordinates of qi be equal to
(aqi

, b, c), where i = 1,2. Since xp is the unique critical point of the function f (x),
it follows that f (x) is decreasing in the interval (−∞, xp) and increasing in the
interval (xp,∞). Because

de(p1, q1) + de(p2, q1) = de(p1, q2) + de(p2, q2)

implies f (aq1) = f (aq2), we have that aq1 ∈ (−∞, xp) and aq2 ∈ (xp,∞). Thus,
xp is located between aq1 and aq2 . �

This lemma is used in Lemma 8.4 which will be used for justifying the main
algorithm (Algorithm 30) of this chapter; see Theorem 8.1 below.

Let P be a convex critical polygon of Π . Let e1 and e2 be two edges of P . Let
p1 and p2 be two points such that p1.z < P.z < p2.z. Let P • be the closure of P .
Then we have the following

Lemma 8.4 There is a unique point p ∈ P • such that

de(p1,p) + de(p2,p) = min
{
de(p1, q) + de(p2, q) : q ∈ P •}.

Proof Let q be the intersection point between the plane z = P.z and the segment
p1p2.

Case 1. q ∈ P •. Let p = q .

218 8 Paths in Simple Polyhedrons

Fig. 8.6 The labelled vertex
v identifies a sequence of six
vertices of the critical
polygon Pv , defined by the
intersection of plane πv with
the shown (Schönhardt)
polyhedron

Case 2. q /∈ P •. Let e1, e2, . . . , em be all edges of P . By Lemma 8.2, there is
a unique point qi ∈ ei such that de(p1, qi) + de(p2, qi) = min{de(p1, q) +
de(p2, q) : q ∈ ei}, where i = 1,2, . . . ,m. Let di = de(p1, qi) + de(p2, qi),
where i = 1,2, . . . ,m. Let d = min{di : i = 1,2, . . . ,m}. Then there are no two
different numbers j
= k ∈ {1,2, . . . ,m} such that dj = dk = d . Otherwise, by
Lemma 8.3, there would be a point p between qj and qk such that

de(p1,p) + de(p2,p) = min
{
de(p1, q) + de(p2, q) : q ∈ P •}.

Because qj , qk ∈ ∂P , and P is convex, p must be in the interior P ◦ of P (with
P ◦ = P • \ ∂P). This contradicts Lemma 8.1.

Thus, there is a unique point p ∈ {qi : i = 1,2, . . . ,m} such that

de(p1,p) + de(p2,p) = min
{
de(p1, qi) + de(p2, qi) : i = 1,2, . . . ,m

}
.

This proves the lemma. �

8.2 ESP Computation

We start by presenting a procedure, used by a rubberband algorithm (Algorithm 30
below), and then repeatedly called in the main algorithm (Algorithm 32) of this
chapter.

Let F = {F1,F2, . . . ,Fm} be the set of all faces of Π , and V the set of all vertices
of Π . The following very basic Procedure 16 simply ‘walks around’ the polyhedron
by tracing an intersection with a given plane. See Fig. 8.6. We do not detail this
procedure; it is a fairly straightforward isoheight trace of a polyhedron, assuming
that the data structure of the polyhedron links edges to faces.

In Line 5 of Procedure 16 (see Fig. 8.7), e is not parallel to the plane πv1 . In Line
7, |πv1 ∩ e| > 1. Also note that e is parallel to the plane πv1 . In Line 9, the critical
polygon Pv1 is a triangle. In Line 15, vw2 ∈ E(Sv) and vw1 /∈ E(Sv). Lines 15–17
are modified from Lines 12–14.

The main ideas of Algorithm 30 (see Fig. 8.8) are as follows: For a start, we
randomly take a point in the closure of each critical polygon to identify an initial

8.2 ESP Computation 219

Procedure 16 (Compute a sequence of vertices of the critical polygon)
Input: Set F and a vertex v ∈ V such that πv intersects Π in more than just one
point.
Output: An ordered sequence of all vertices in Vv , which is the vertex set of the
critical polygon Pv .

1: Set Fv ← {F : F ∈ F ∧ e = uw ∈ E(F) ∧ (u.z ≤ v.z ≤ w.z ∨ w.z ≤ v.z ≤
u.z)}, and E(Fv) ← {e : ∃F ∈Fv ∧ e ∈ E(F)}.

2: Set Vv ← ∅, and v1 ← v.
3: Set Vv ← Vv ∪ {v1}.
4: Find a face F1 ∈ Fv such that v1 ∈ V (F1), and such that there exists an edge

e ∈ E(F1) with v1 /∈ e and πv1 ∩ e
= ∅, and
= v1.
5: if |πv1 ∩ e| = 1 then
6: Set v2 ← πv1 ∩ e and Vv ← Vv ∪ {v2}.
7: else
8: Let w1 and w2 be the endpoints of edge e.
9: if v1wi ∈ E(Fv), for i = 1 and 2, then

10: Set Vv ← Vv ∪ {w1,w2}.
11: else
12: if v1w1 ∈ E(Fv) and v1w2 /∈ E(Fv) then
13: Find a face F2 ∈ Fv such that w2 ∈ V (F2), w1w2 /∈ E(F2), and there

exists an edge e2 ∈ E(F2) such that w2 /∈ e2 and πw2 ∩ e2
= ∅.
14: Set F1 ← F2, v1 ← w2, e ← e2, Vv ← Vv ∪ {w2}, and go to Line 5.
15: else
16: Find a face F2 ∈ Fv such that w1 ∈ V (F2), w1w2 /∈ E(F2) and there

exists an edge e2 ∈ E(F2) such that w1 /∈ e2 and πw1 ∩ e2
= ∅.
17: Set F1 ← F2, v1 ← w1, e ← e2, Vv ← Vv ∪ {w1}, and go to Line 5.
18: end if
19: end if
20: end if
21: Let F2 ∈ Fv be that face which shares edge e with F1.
22: if v2
= v then
23: Set F1 ← F2 and v1 ← v2, and go to Line 3.
24: else
25: Output Vv , and Stop.
26: end if

Fig. 8.7 The pseudocode of Procedure 16

path from p to q . Then we enter a loop; in each iteration, we optimise locally the
position of point p1 by moving it within its critical polygon, then of p2, . . . , and
finally of pk . At the end of each iteration, we check the difference between the
length of the current path to that of the previous one; if it is less than a given accuracy
threshold ε > 0 then we stop. Otherwise, we go to the next iteration. Let p.x be the
x-coordinate of point p, v1.z the z-coordinate of point v1, and so forth.

220 8 Paths in Simple Polyhedrons

Algorithm 30 (An RBA for type-1 polyhedrons)
Input: Two points p and q , a set {P •

v1
,P •

v2
, . . . ,P •

vk
}, where Pvi

is a critical polygon
of a given polyhedron Π , k vertices vi ∈ ∂Pvi

such that p.z < v1.z < · · · < vk.z <

q.z, for i = 1,2, . . . , k, and there is no any other critical polygon of Π between p

and q; given is also an accuracy constant ε > 0.
Output: The set of all vertices of an approximate shortest path which starts at p,
then visits approximate optimal positions p1,p2, . . . , pk in that order, and finally
ends at q .

1: For each i ∈ {1,2, . . . , k}, let the initial vertex pi be a vertex of P •
vi

.

2: Let L0 = ∞. Calculate L1 = ∑k
i=0 de(pi,pi+1), where p0 = p and pk+1 = q .

3: while L0 − L1 ≥ ε do
4: for i = 1,2, . . . , k do
5: Compute a point qi ∈ P •

vi
such that

de(pi−1, qi) + de(qi,pi+1) = min{de(pi−1,p) + de(p,pi+1) : p ∈ P •
vi

}.
6: Update the path 〈p,p1,p2, . . . , pk, q〉 by replacing pi by qi .
7: end for
8: Let L0 = L1 and calculate L1 = ∑k

i=0 de(pi,pi+1).
9: end while

10: Return 〈p,p1,p2, . . . , pk, q〉.
Fig. 8.8 The pseudocode of Algorithm 30

A comment to Line 5 of this RBA: If pi−1pi+1 ∩ P ◦
vi

= ∅, then assign qi ←
pi−1pi+1 ∩ P ◦

vi
.

The set {P •
v1

,P •
v2

, . . . ,P •
vk

} in Algorithm 30 is the step set of this RBA. Iden-
tifying a ‘suitable’ step set is normally a main issue when defining a rubberband
algorithm.

Theorem 8.1 If Π is a type-1 polyhedron in the input of Algorithm 30, then the
solution obtained by Algorithm 30 is an approximate global solution to the 3D ESP
problem.

Proof Let X = ∏k
i=1 P •

ui
⊂Rk , where P •

ui
is as defined in Algorithm 30. As Π is a

type-1 polyhedron, then Pui
is a convex polygon, where i = 1,2, . . . , k. Let Y ⊂ X

be the set of all solutions obtained by Algorithm 30, for any initialisation in X and
the given ε > 0.

As each Pui
is a convex polygon, by Lemma 8.4, the point qi in Line 5 of Al-

gorithm 30 is unique, and qi depends continuously upon pi−1 and pi+1 defined in
Line 5 of Algorithm 30. Thus, Algorithm 30 defines a continuous function, denoted
by f , mapping X (i.e., an initialisation) into Y , with values depending on the used
accuracy ε > 0.1

1If each P •
ui

is degenerated into a single edge, then there exists a unique solution to the ESP
problem; independent of the chosen initialisation, solutions will converge to this unique solution if
ε goes to zero; see [8, 23, 26].

8.2 ESP Computation 221

Now let v̄ = (v1, v2, . . . , vk) ∈ Y . Then vi is either located on an edge of polygon
Pui

, which is contained in the frontier ∂Pui
, for i = 1,2, . . . , k, or vi is located in

the interior P ◦
ui

, and vi−1, vi and vi+1 are collinear. Thus, Y is a finite set.
It remains to prove that Y is a singleton. Let v̄0 ∈ Y ; we have that f −1(v̄0) ⊂ X.

For each initialisation v̄ ∈ f −1(v̄0), as f is a continuous function, there exists a
sufficiently small open neighbourhood (with respect to the usual topology on Rk)
of v̄, denoted by N(v̄, δv̄), such that for each v̄′ ∈ N(v̄, δv̄), f (v̄′) = v̄0. Thus,
N(v̄, δv̄) ⊆ f −1(v̄0) and

⋃
v̄∈f −1(v̄0)

N(v̄, δv̄) ⊆ f −1(v̄0).

On the other hand, because (simply by definition) f −1(v̄0) = {v̄ : v̄0 = f (v̄)} and
v̄ ∈ N(v̄, δv̄), we have that f −1(v̄0) ⊆ ⋃

v̄∈f −1(v̄0)
N(v̄, δv̄). Therefore, f −1(v̄0) =

⋃
v̄∈f −1(v̄0)

N(v̄, δv̄). Because N(v̄, δv̄) is an open set, f −1(v̄0) is also open. Let

f −1(v̄0) =
k⋃

i=1

Si

where Si is an open subset of P •
ui

, for i = 1,2, . . . , k. Recall that f −1(v̄0) ⊂ X, thus
there exists an Si such that ∅ ⊂ Si ⊂ P •

ui
.

Without loss of generality, suppose that ∅ ⊂ S1 ⊂ P •
u1

. This implies that there ex-
ists a point (x0, y0) ∈ P •

u1
such that ∅ ⊂ S1|x0 ⊂ P •

u1
|x0 .2 Thus, S1|x0 is a nonempty

open subset of P •
u1

|x0 . Set S1|x0 is a union of a countable number of open or half-
open intervals (see Proposition 5.1.4 in [24]).

Thus, there exists a point w1 ∈ P •
u1

|x0\S1 such that, for every positive ε1,
there exists a point w′

1 ∈ N(w1, ε1) ∩ S1 [again, N(w1, ε1) is an open neigh-
bourhood with respect to the usual topology on P •

u1
]. Therefore, there exists a

point v̄1 ∈ X\f −1(v̄0) such that, for each positive ε1, there exists a point v̄′
1 ∈

N(v̄1, ε1) ∩ f −1(v̄0). This contradicts that f is a continuous function on X. Thus,
Y is a singleton. �

As an informal interpretation of this proof: If ε is sufficiently small then Y is
a neighbourhood N(v̄, δv̄) of a single point v̄, where δv̄ is sufficiently small (de-
pending on ε) such that computers regard N(v̄, δv̄) as a single point v̄ because of
rounding.

If input Π is a type-2 polyhedron then the solution obtained by Algorithm 30
might not be an approximate global solution to the 3D ESP problem. However,
following Theorem 8.1, we propose with Algorithm 31 (see Fig. 8.9) a modification
of Algorithm 30 for type-2 polyhedrons, with an initial mapping of non-convex
polygons on their convex hulls:

Line 2 iterates through the closures of convex hulls. The iteration through step
sets C(P •

vi
) only occurs in Line 4 (i.e., when applying Algorithm 30 for the second

time, using the same ε). Algorithm 31 provides an (1 + (L2 − L1)/L)-approximate
global solution for the ESP, where L is the length of an optimal path; L1 is the
length of the path obtained in Line 2; L2 the length of the final path obtained in

2S|x0 = {(x0, y) : (x, y) ∈ S ∧ x = x0}.

222 8 Paths in Simple Polyhedrons

Algorithm 31 (An RBA for type-2 polyhedrons)
Both input and output are the same as in Algorithm 30.

1: For i ∈ {1,2, . . . , k}, apply, e.g., the Melkman algorithm for computing C(Pvi
),

the convex hull of Pvi
.

2: Let C(P •
v1

),C(P •
v2

), . . . ,C(P •
vk

), p, and q be the input of Algorithm 30 for
computing an approximate shortest route 〈p,p1, . . . , pk, q〉.

3: For i = 1,2, . . . , k − 1, find a point qi ∈ C(P •
vi

) such that de(pi−1, qi) +
de(qi,pi+1) = min{de(pi−1,p) + de(p,pi+1) : p ∈ C(P •

vi
)}. Update the path

for each i by pi = qi .
4: Let P •

v1
,P •

v2
, . . . ,P •

vk
, p and q be the input of Algorithm 30, and points pi as

obtained in Line 3 are the initial vertices pi in Line 1 of Algorithm 30. Continue
running Algorithm 30.

5: Return 〈p,p1, . . . , pk−1,pk, q〉 as provided in Line 4.

Fig. 8.9 The pseudocode of Algorithm 31

Line 5. Note that L2 ≥ L1, and L2 = L1 if all polygons Pi are convex. Also note
that L < L1, then (1 + (L2 − L1)/L) ≤ L2/L1. Thus, Algorithm 31 provides an
L2/L1-approximate global solution for the ESP problem.

A comment to Line 3 of this algorithm: If pi−1pi+1 ∩ P ◦
pi

= ∅, then set qi ←
pi−1pi+1 ∩ P ◦

pi
.

The main ideas of Algorithm 32 (see Fig. 8.10) below are as follows: We apply
Procedure 16 to compute the step set of a rubberband algorithm. Then we simply
apply this rubberband algorithm to compute (of course, approximately only, defined
by the chosen accuracy ε) the ESP.

For the input polyhedron, we assume that it is of type-2. For example, the Schön-
hardt polyhedron as shown in Fig. 8.6 is of type-2, but it might be rotated so that the
resulting polyhedron is not of type-2 anymore.

Line 4 of Algorithm 32 partitions the set V ′ into some subsets such that the
points in the same subset have an identical z-coordinate. In Line 6, we have that
u1.z < u2.z < · · · < uk.z). In Line 8, Vui

is a sequence of vertices of the critical
polygon Pui

. In Line 13, we delete pi if pi is not on an edge of Pui
.

By the discussions before Algorithm 31, we have the following

Theorem 8.2 Algorithm 32 provides an L2/L1-approximate global solution for the
ESP problem, where L1 is the length of the path obtained in Line 2 of Algorithm 31;
L2 is the length of the final path obtained in Line 5 of Algorithm 31.

8.3 Time Complexity

At first, we can show (calculation of upper time bounds for involved operations
is fairly straightforward) that Procedure 16 can be computed in O(|Vv||E(Sv)| +
|F |) time, where Sv = {F : F ∈ F ∧ e = uw ∈ E(F) ∧ (u.z ≤ v.z ≤ w.z ∨ w.z ≤

8.3 Time Complexity 223

Algorithm 32 (An RBA for an approximate ESP in a polyhedron)
Input: Two points p and q in Π ; sets F and V of faces and vertices of Π , respec-
tively.
Output: The set of all vertices of an approximate shortest path, starting at p and
ending at q , and contained in Π .

1: Initialise V ′ ← {v : p.z < v.z < q.z ∧ v ∈ V }.
2: Sort V ′ according to the z-coordinate.
3: We obtain V ′ = {v1, v2, . . . , vk′ } with v1.z ≤ v2.z ≤ · · · ≤ vk′ .z.
4: Partition V ′ into pairwise disjoint subsets V1,V2, . . . , and Vk such that Vi =

{vi1, vi2, . . . , vini
}, with vij .z = vij+1.z, for j = 1,2, . . . , ni − 1, and vi1.z <

vi+11.z, for i = 1,2, . . . , k − 1.
5: Set ui ← vi1, where i = 1,2, . . . , k.
6: Set V ′′ ← {u1, u2, . . . , uk}
7: for each ui ∈ V ′′ do
8: Apply Procedure 16 for computing Vui

.
9: end for

10: Set Fstep ← {P •
u1

,P •
u2

, . . . ,P •
uk

}.
11: Set P ← {p} ∪ V ′′ ∪ {q}.
12: Apply Algorithm 31 on inputs Fstep and P , for computing the shortest path

ρ(p,q) inside of Π .
13: Convert ρ(p,q) into the standard form of a shortest path by deleting all vertices

which are not on any edge of Π .

Fig. 8.10 The pseudocode of Algorithm 32

v.z ≤ u.z)}. Then we can show that the time complexity of Algorithm 30 equals
κ(ε) · O(

∑k
j=1 |Vvj

|), where κ(ε) is the number of iterations of the while loop in
Algorithm 30. By Lemma 8.2, Line 5 can be computed in O(|Vvj

|) time, where
Vvj

is as in Algorithm 30, for j = 1,2, . . . , k. Thus, each iteration of Algorithm 30
can be computed in O(

∑k
j=1 |Vvj

|) time. Obviously, Algorithm 31 has the same
time complexity as Algorithm 30. These three results allow us then to show that
Algorithm 32 can be computed in

κ(ε) ·O
(

k∑

j=1

|Vuj
|
)

+O
(

k∑

j=1

|Vuj
|∣∣E(Suj

)
∣
∣ + |F | + |V | log |V |

)

where the second term is the time for preprocessing. This can finally be reformulated
in the more compact form that Algorithm 32 is of complexity

κ(ε) ·O(
M|V |) +O

(
M|E| + |F | + |V | log |V |)

for M = max{|Vuj
| : j = 1,2, . . . , k}, where the second O(. . .) term is the time for

preprocessing.
In Algorithm 30, let κ(ε) = L0−L

ε
be a function which only depends upon the

difference between the lengths L0 of an initial path and L of the optimum path,
and the accuracy constant ε. Let Lm be the length of the mth updated path, for

224 8 Paths in Simple Polyhedrons

m = 0,1,2, . . . , with Lm − Lm+1 ≥ ε (otherwise the algorithm stops). It follows
that

κ(ε) = L0 − L

ε
≥ 1 + L1 − L

ε
≥ · · · ≥ m + Lm − L

ε
.

The sequence {m + Lm−L
ε

} is monotonously decreasing, lower bounded by 0, and
stops at the first m0 where Lm0 − Lm0+1 < ε.

We have implemented a simplified version of Algorithm 30 where all P •
vi

s were
degenerated to be line segments.

Thousands of experimental results indicated that κ(ε) does not depend on the
number k of segments but the value of ε.

We selected ε = 10−15 and k was in between 4 and 20,000, the observed
maximal value of κ(ε) was 380,000. It shows that the smallest upper bound of
κ(ε) ≥ κ(10−15) ≥ 380,000. In other words, the number of iterations in the while-
loop can be huge even for some small value of k. On the other hand, all these ex-
perimental results indicated that |Lm − Lm+1| ≤ 1.2, when m > 200 and L was
between 10,000 and 2,000,000. It showed that κ(1.2) ≤ 200 and the relative error
|Lm − Lm+1|/L ≤ 1.2 × 10−4.

In other words, these experiments showed that the algorithm already reached
an approximate ESP with a very minor relative error after 200 iterations of
the while loop; the remaining iterations were ‘just’ spent on improving a very
small fraction of the length of the path.

8.4 Examples: Three NP-Complete or NP-Hard Problems

We apply Algorithms 31 and 32 for approximate solutions of hard problems, char-
acterised below (by appropriate references) as being NP-complete or NP-hard. Let
p, q ∈ Π such that p.z < q.z. Let Vpq = {v : p.z < v.z < q.z ∧ v ∈ V }, where V

is the set of all vertices of Π . For doing so, we are allowing for input polyhedrons
different from the bounded type-2 polyhedrons so far, but only input polyhedrons
which allow us to use those algorithms without any further modification.

We consider unbounded polyhedrons (which also satisfy the type-2 constraint),
and, thus, generalised critical polygons.

Example 8.1 Let Π be a simply-connected polyhedron such that each critical poly-
gon is the complement of an axis-aligned rectangle. Following Sect. 8.3, the Eu-
clidean shortest path between p and q inside of Π can be approximately computed

8.4 Examples: Three NP-Complete or NP-Hard Problems 225

Fig. 8.11 A path from p to q

which does not intersect any
of the shown rectangles at an
inner point

in κ(ε)·O(|Vpq |) time. Therefore, the 3D ESP problem can be approximately solved
efficiently in such a special case. Finding the exact solution is NP-complete because
of the following3

Theorem 8.3 It is NP-complete to decide whether there exists an obstacle-avoiding
path of Euclidean length at most L among a set of stacked axis-aligned rectangles.
The problem is (already) NP-complete for the special case that the axis-aligned
rectangles are all q-rectangles of types 1 or 3.

For stacked axis-aligned rectangles, see Fig. 8.11. �

Example 8.2 Let Π be a simply-connected polyhedron such that each critical poly-
gon is the complement of a triangle. Finding the exact solution is NP-hard because
of the following4

Theorem 8.4 It is NP-hard to decide whether there exists an obstacle-avoiding path
of Euclidean length at most L among a set of stacked triangles.

Following Sect. 8.3, the Euclidean shortest path between p and q inside of Π can
be approximately computed in κ(ε) ·O(|Vpq |) time. �

Example 8.3 Let S be a stack of k horizontal or vertical strips. Finding the exact
solution is NP-complete because of the following5

Theorem 8.5 It is NP-complete to decide whether there exists an obstacle-avoiding
path of Euclidean length at most L among a finite number of stacked horizontal and
vertical strips.

The Euclidean shortest path for stack S can be approximately computed in κ(ε) ·
O(k) time. �

3See [20, Theorem 4].
4See [7].
5See [20, Theorem 5].

226 8 Paths in Simple Polyhedrons

Example 8.4 Let S be a stack of k terrain-like axis-parallel rectangles. The best
known algorithm for finding the exact solution has a time complexity in O(k4) due
to the following6

Theorem 8.6 Let S be a stack of k terrain-like axis-parallel rectangles. The Eu-
clidean shortest path among S can be computed in O(k4) time.

The Euclidean shortest path for stack S can be approximately computed in κ(ε) ·
O(k) time. �

8.5 Conclusions for the General 3D ESP Problem

This chapter described an algorithm for solving the 3D ESP problem when the do-
main Π is a type-2 simply connected polyhedron; the algorithm has a time com-
plexity in κ(ε) ·O(M|V |)+O(M|E|+ |F |+ |V | log |V |) (where O(M|E|+ |F |+
|V | log |V |) is the time for preprocessing). It was also shown that the algorithm ap-
proximately solves three NP-complete or NP-hard problems in time κ(ε) · O(k),
where k is the number of layers in the given stack of polygons.

Our algorithm has straightforward applications on ESP problems in 3D imaging
(where proposed solutions depend on geodesics), or when ‘flying’ over a polyhedral
terrain. The best result so far for the latter problem was an

O
(
(n/ε)(logn)(log logn)

)

algorithm for computing a (2(p−1)/p + ε)-approximation to the Lp-shortest path
above a polyhedral terrain.

As there does not exist an algorithm for finding exact solutions to the general
3D ESP problem,7 the presented method defines a new opportunity to find
approximate (and efficient!) solutions to the discussed classical, fundamental,
hard, and general problems.

8.6 Problems

Problem 8.1 Prove Lemma 8.1.

Problem 8.2 Provide a high level description for Procedure 16.

6See [20, Theorem 6].
7See [3, Theorem 9].

8.7 Notes 227

Problem 8.3 Algorithm 30 is also modified from Algorithm 7. Underline those
modifications of Algorithm 30 in Fig. 8.8.

Problem 8.4 Consider the proof of Theorem 8.1. Why does Algorithm 30 define a
continuous function?

Problem 8.5 Provide an example of a type-2 polyhedron is of such that a rotation
of this polyhedron is not anymore of type-2.

Problem 8.6 Can Theorem 8.1 also be true if Π is a type-2 polyhedron?

Problem 8.7 (Programming exercise) Implement and test Algorithm 32 for inputs
of varying complexity.

Problem 8.8 (Programming exercise) Implement the generic RBA (i.e., Algo-
rithm 11) for the 3D case, as described in Fig. 3.24, and compare its performance
with that of Algorithm 32.

Problem 8.9 (Programming exercise) Implement Papadimitriou’s algorithm as de-
scribed in Fig. 2.2, and compare its performance with that of the generic RBA for
the 3D case.

Problem 8.10 (Research problem) Prove the correctness of Theorem 8.1 based on
convex analysis (if possible at all).

Problem 8.11 (Research problem) Generalise Algorithm 32 such that input Π

might be a ‘tree shaped’ polyhedron that is homeomorphic to a sphere.

8.7 Notes

Section 8.1 follows [20].
Since the pioneering work in [10] on finding contours as minimal paths between

two end points, minimal paths in volume images have raised interest in computer
vision and image analysis; see, for example, [5, 11, 13]. In medical image analysis,
minimal paths were extracted in 3D images and applied to virtual endoscopy [11].
However, so far, minimal path computation is typically based on the Fast Marching
Method which only considers grid points as the possible vertices of the minimal
paths; but there exist Euclidean shortest paths such that none of its vertices is a grid
point; see, e.g., the example in Sect. 4 of [17]. Thus, paths detected by the Fast
Marching Method cannot be always the exact Euclidean shortest paths.

There already exist several approximation algorithms for 3D ESP calculations,
and we briefly recall those. Pioneering the field, [22] presents an

O
(
n4(m + log(n/ε)

)2
/ε2)

228 8 Paths in Simple Polyhedrons

algorithm for the general 3D ESP problem, where n is the descriptional complexity
of polyhedral scene elements (that is, vertices, edges, and faces of the polyhedron), ε
the accuracy of the algorithm, and m the maximum number of bits for representing a
single integer coordinate of elements of the polyhedral scene. This was followed by
[9], which presents an approximation algorithm for computing an (1 + ε)-shortest
path from p to q in time

O
(
n2λ(n) log(n/ε)/ε4 + n2 lognr log(n log r)

)

where r is the ratio of the Euclidean distance de(p, q) to the length of the longest
edge of any given obstacle, and

λ(n) = α(n)O(α(n)O(1))

where α(n) = A−1(n,n) is the inverse Ackermann function (see, e.g., [18]), which
grows very slowly.

Assume a finite set of polyhedral obstacles in R3. Let p, q be two points outside
of the union of all obstacles, and 0 < ε < 1. Reference [12] gives an O(log(n/ε))

algorithm to compute an (1 + ε)-shortest path from p to q such that it does not
intersect the interior of any obstacle. However, this algorithm requires a subdivision
of R3 which may be computed in O(n4/ε6).

Given a convex partition of the free space, [2] presents an

O
(
(n/ε3)(log 1/ε)(logn)

)

algorithm for the general 3D ESP problem. More recently, [1] proposes algorithms
for calculating approximate ESPs amid a set of convex obstacles. For results related
to surface ESPs, see [4].

Altogether, the task of finding efficient and easy-to-implement solutions in this
field is certainly challenging; see, for example, [19] saying on page 666 the fol-
lowing, when addressing mainly exact solutions: “The problem is difficult even in
the most basic Euclidean shortest-path problem. . . in a three-dimensional polyhe-
dral domain Π , and even if the obstacles are convex, or the domain Π is simply
connected.”

RBAs are characterised by sets of steps, defining possible locations of vertices
of Euclidean shortest paths, a local optimisation strategy, and a termination crite-
rion [6, 14–17, 21]. The given RBA solves approximately three NP-complete or
NP-hard 3D ESP problems in time κ(ε) · O(k), where k is the number of layers in
a stack, which was introduced as the problem environment. The presented RBA has
straightforward applications for ESP problems when analysing polyhedral objects
(e.g., in 3D imaging; for the extensive work using geodesics, we just cite [25] as
one example), or for ‘flying’ over a polyhedral terrain. The best known result for
the latter problem is due to [27] by proposing an O((n/ε)(logn)(log logn)) algo-
rithm for computing a (2(p−1)/p + ε)-approximation of an Lp-shortest path above a
polyhedral terrain.

References 229

References

1. Agarwal, P.K., Sharathkumar, R., Yu, H.: Approximate Euclidean shortest paths amid convex
obstacles. In: Proc. ACM-SIAM Sympos. Discrete Algorithms, pp. 283–292 (2009)

2. Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Approximation algorithms for geometric short-
est path problems. In: Proc. ACM Sympos. Theory Comput., pp. 286–295 (2000)

3. Bajaj, C.: The algebraic complexity of shortest paths in polyhedral spaces. In: Proc. Allerton
Conf. Commun. Control Comput., pp. 510–517 (1985)

4. Balasubramanian, M., Polimeni, J.R., Schwartz, E.L.: Exact geodesics and shortest paths on
polyhedral surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1006–1016 (2009)

5. Benmansour, F., Cohen, L.D.: Fast object segmentation by growing minimal paths from a
single point on 2D or 3D images. J. Math. Imaging Vis. 33, 209–221 (2009)

6. Buelow, T., Klette, R.: Rubber band algorithm for estimating the length of digitized space-
curves. In: Proc. ICPR, vol. III, pp. 551–555. IEEE Comput. Soc., Los Alamitos (2000)

7. Canny, J., Reif, J.H.: New lower bound techniques for robot motion planning problems. In:
Proc. IEEE Conf. Foundations Computer Science, pp. 49–60 (1987)

8. Choi, J., Sellen, J., Yap, C.-K.: Precision-sensitive Euclidean shortest path in 3-space. In: Proc.
ACM Sympos. Computational Geometry, pp. 350–359 (1995)

9. Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In: Proc. ACM
Sympos. Theory Comput., pp. 56–65 (1987)

10. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path ap-
proach. Int. J. Comput. Vis. 24, 57–78 (1997)

11. Deschamps, T., Cohen, L.D.: Fast extraction of minimal paths in 3D images and applications
to virtual endoscopy. Med. Image Anal. 5, 281–299 (2001)

12. Har-Peled, S.: Constructing approximate shortest path maps in three dimensions. In: Proc.
ACM Sympos. Computational Geometry, pp. 125–130 (1998)

13. Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)
14. Li, F., Klette, R.: The class of simple cube-curves whose MLPs cannot have vertices at grid

points. In: Proc. Discrete Geometry Computational Imaging. LNCS, vol. 3429, pp. 183–194.
Springer, Berlin (2005)

15. Li, F., Klette, R.: Exact and approximate algorithms for the calculation of shortest paths. Re-
port 2141, IMA, Minneapolis. www.ima.umn.edu/preprints/oct2006 (2006)

16. Li, F., Klette, R.: Rubberband algorithms for solving various 2D or 3D shortest path problems.
In: Proc. Computing: Theory and Applications, The Indian Statistical Institute, Kolkata, pp. 9–
18. IEEE Comput. Soc., Los Alamitos (2007)

17. Li, F., Klette, R.: Analysis of the rubberband algorithm. Image Vis. Comput. 25, 1588–1598
(2007)

18. Liu, Y.A., Stoller, S.D.: Optimizing Ackermann’s function by incrementalization. In: Proc.
ACM SIGPLAN Sympos. Partial Evaluation Semantics-Based Program Manipulation, pp. 85–
91 (2003)

19. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.-R., Urrutia, J.
(eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)

20. Mitchell, J.S.B., Sharir, M.: New results on shortest paths in three dimensions. In: Proc. ACM
Sympos. Computational Geometry, pp. 124–133 (2004)

21. Pan, X., Li, F., Klette, R.: Approximate shortest path algorithms for sequences of pairwise dis-
joint simple polygons. In: Proc. Canadian Conf. Computational Geometry, pp. 1–4. Winnipeg,
Canada (2010)

22. Papadimitriou, C.H.: An algorithm for shortest path motion in three dimensions. Inf. Process.
Lett. 20, 259–263 (1985)

23. Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. SIAM J. Comput. 15, 193–215
(1986)

24. Wachsmuth, B.G.: Interactive real analysis. http://web01.shu.edu/projects/reals/topo/index.
html (2009). Accessed July 2011

230 8 Paths in Simple Polyhedrons

25. Wang, Y., Peterson, B.S., Staib, L.H.: 3D brain surface matching based on geodesics and local
geometry. Comput. Vis. Image Underst. 89, 252–271 (2003)

26. Yap, C.-K.: Towards exact geometric computation. Comput. Geom. 7, 3–23 (1997)
27. Zadeh, H.Z.: Flying over a polyhedral terrain. Inf. Process. Lett. 105, 103–107 (2008)

Chapter 9
Paths in Cube-Curves

When I was a Boy Scout, we played a game when new Scouts
joined the troop. We lined up chairs in a pattern, creating an
obstacle course through which the new Scouts, blindfolded,
were supposed to manoeuvre. The Scoutmaster gave them a few
moments to study the pattern before our adventure began. But
as soon as the victims were blindfolded, the rest of us quietly
removed the chairs.—I think life is like this game.

Pierce Vincent Eckhart

This chapter discusses a problem defined in a 3-dimensional regular grid. Such a
grid is commonly used in 3D image analysis. We may also assume that a general
3D space (e.g., for a robot) is regularly subdivided into cubes of uniform size. The
chapter considers shortest paths in such a cuboidal world.

9.1 The Cuboidal World

A grid point (i, j, k) ∈ Z3 is assumed to be the centre point of a grid cube, with faces
parallel to the coordinate planes, with edges of length 1, and vertices at its corners.
Cells are either cubes, faces, edges, or vertices. The intersection of two cells is either
empty or a joint side of both cells.

A cube-curve g is a loop of face-connected grid cubes in the 3D orthogonal grid;
the union g of those cubes defines the tube of g.

This chapter discusses ESPs in such tubes which are also known as minimum-
length polygonal curves (MLP).

See Fig. 9.1 for a polygonal curve defined by midpoints of cubes that can be used
as an initial curve for a rubberband algorithm for calculating an approximate MLP.

F. Li, R. Klette, Euclidean Shortest Paths,
DOI 10.1007/978-1-4471-2256-2_9, © Springer-Verlag London Limited 2011

231

232 9 Paths in Cube-Curves

Fig. 9.1 A cuboidal world: the bold curve is an initial guess for a 3D walk (or flight) through
the given loop of shaded cubes, being incident with the midpoints of those cubes. A 3D walk of
minimum length defines the minimum-length polygon (MLP) of this loop of shaded cubes

A cuboidal world is defined by cubes in Z3 as specified above, where objects are
sets of cubes.

A cuboidal world is a discrete subdivision of real spaces. The unit 1 in Z3

corresponds to a defined physical length in the real world.

This chapter provides three general and κ-linear approximate shortest path al-
gorithms, where the problem size equals the number of critical edges in the given
cube-curve, defined as follows:

Definition 9.1 A critical edge of a simple cube-curve g is a grid edge in Z3 which
is incident with exactly three different cubes contained in g.

Linear runs of cubes in a given cube-curve do not have an essential impact on the
computational complexity of the presented ESP (or MLP) algorithms.

Find the critical edges in Fig. 9.1! Note that it is already not so easy to count the
critical edges for this relatively short cube-curve, especially in the upper left part.
Non-critical edges are incident with two co-planar adjacent faces, or incident with
two faces that form a right angle.

Figure 9.2 shows all the critical edges (in red colour) of a cube-curve. Later we
will characterise this curve as being an example for a ‘first-class simple cube-curve
that has both middle and also end-angles’. A ‘simple cube-curve’ is, informally
speaking, a cube-curve that is not ‘crossing’ or ‘touching’ itself. A formal definition
is as follows:

9.1 The Cuboidal World 233

Fig. 9.2 Example of a simple
cube-curve. The critical edges
are numbered from 0 to 21

Fig. 9.3 Left: a first-class
simple cube-curve. Right:
a non-first-class simple
cube-curve

Definition 9.2 A cube-curve is simple iff n ≥ 4 and for any two cubes ci, ck ∈ g

with |i − k| ≥ 2(modn + 1), if ci ∩ ck �= φ then either |i − k| = 2(modn + 1) and
ci ∩ ck is an edge, or |i − k| ≥ 3(modn + 1) and ci ∩ ck is a face.

Curve ρ is complete with respect to tube g if ρ intersects every cube in g. A short-
est Euclidean curve ρ, that is contained and complete in a simple cube-curve g, is
always a polygonal curve (i.e., the MLP). The MLP is uniquely defined as long as
the cube-curve is not only contained in a single layer of cubes of the 3D grid. If it is
contained in such a single layer, then the MLP is uniquely defined up to a translation
orthogonal to that layer. However, we speak about the MLP of a simple cube-curve,
thus ignoring this extreme case of a single layer for language simplicity. We just cite
the following theorem1 (without giving a proof here):

Theorem 9.1 Let g be a simple cube-curve. Critical edges are the only possible
locations of vertices of the MLP of g.

Definition 9.3 A simple cube-curve g is called first-class iff each critical edge of g

contains exactly one vertex of the MLP of g.

Figure 9.3 shows a first-class simple cube-curve (left) and a non-first-class simple
cube-curve (right). For the latter one, note that the vertices of the MLP must be in
e1, e3, e4, e5, e6, e7, and e8, but the critical edge e2 does not contain any vertex of
the MLP of this simple cube-curve.

Let c0, c1, . . . , cn−1 be the sequence of all consecutive cubes of cube-curve g.
Cube cj is said to be after ci if j = i + 1(modn). Let e be a critical edge of g. Let
ci , cj , and ck be three consecutive cubes of g such that e ∈ ci ∩ cj ∩ ck , ck is after

1Published by Reinhard Klette and Thomas Bülow in 2000; see [32].

234 9 Paths in Cube-Curves

cj , and cj is after ci . Then, ci is called the first cube of e in g and ck is called the
third cube of e in g.

A simple cube-arc is a proper subsequence of a simple cube-curve (i.e., not re-
turning to its start cube). Let e and f be two different critical edges of g. Let ci be
the third cube of e in g and cj be the first cube of f in g. Let n be the total number of
cubes in g. 〈ci, ci+1, . . . , cj−1, cj 〉 (indices modn) is the arc (in g) between edges
e and f .

Assume that we have two different polygonal paths ρ and ρ′ in the same first-
class cube-curve g such that both paths are complete and contained in tube g. Both
paths have vertices pi = (xi, yi, zi) and p′

i = (x ′
i , y

′
i , z

′
i) on critical edges ei , respec-

tively, assuming n critical edges e1, . . . , en in a cyclic order in g. The following
theorem allows us to compare the lengths of both paths.

Let max{|x′
i − xi |, |y′

i − yi |, |y ′
i − yi |} < δ, for i = 1,2, . . . , n. Furthermore, let

de(i) =
√

(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2,

d ′
e(i) =

√(
x′
i+1 − x′

i

)2 + (
y′
i+1 − y ′

i

)2 + (
z′
i+1 − z′

i

)2

for i = 1,2, . . . , n(modn). Then, d = ∑n
i=1 de(i) or d ′ = ∑n

i=1 d ′
e(i) is the length

of path ρ or ρ ′, respectively.

Theorem 9.2 Let |de(i)| ≥ M2, for i = 1,2, . . . , n. We can define a constant
M1 > 0 such that

∣
∣d − d ′∣∣ < 12nM1δ/M2.

Proof Let

δxi+1 = xi+1 − x′
i+1, δxi

= x′
i − xi,

δyi+1 = yi+1 − y′
i+1, δyi

= y′
i − yi,

δzi+1 = zi+1 − z′
i+1, δzi

= z′
i − zi,

δx = δxi+1 + δxi
, δy = δyi+1 + δyi

, and δz = δzi+1 + δzi
.

Then we have that

|δx | ≤ 2δ, |δy | ≤ 2δ, and |δz| ≤ 2δ.

Since

(xi+1 − xi)
2 + (yi+1 − yi)

2 + (zi+1 − zi)
2

= [(
x ′
i+1 − x ′

i

) + (
xi+1 − x ′

i+1

) + (
x ′
i − xi

)]2

+ [(
y′
i+1 − y′

i

) + (
yi+1 − y′

i+1

) + (
y′
i − yi

)]2

9.1 The Cuboidal World 235

+ [(
z′
i+1 − z′

i

) + (
zi+1 − z′

i+1

) + (
z′
i − zi

)]2

= [(
x ′
i+1 − x ′

i

) + δx

]2 + [(
y′
i+1 − y ′

i

) + δy

]2 + [(
z′
i+1 − z′

i

) + δz

]2

and Lemma 9.2 below, we have that
∣
∣de(i) − d ′

e(i)
∣
∣ < 6M1 × 2δ/M2 = 12M1δ/M2.

Thus, |d − d ′| = |∑n
i=1(de(i) − d ′

e(i))| ≤
∑n

i=1 |de(i) − d ′
e(i)| < 12nM1δ/M2. �

Lemma 9.2 will be shown via Lemma 9.1. Let gl , gr , gf , gb , gd , and gu be six
numbers in R which define a hypercube [gl, gr] × [gf , gb] × [gd, gu], with gl ≤ gr ,
gf ≤ gb, and gd ≤ gu. Let (x, y, z) ∈ R

3 and

f (x, y, z) =
√

x2 + y2 + z2.

Let M > 0 be such that |f (x1, y1, z1)| ≥ M for any point (x1, y1, z1) in this hyper-
cube.

Lemma 9.1 There is a real δ > 0 such that max{|x2 − x1|, |y2 − y1|, |z2 − z1|} < δ,
for any (x2, y2, z2) in this hypercube. It also follows that |f (x2, y2, z2)| > M/2.

Proof Since the hypercube [gl, gr] × [gf , gb] × [gd, gu] is a compact set, the
function f (x, y, z) is uniformly continuous at any point of this hypercube. For
ε0 = M/2 > 0, it follows that there is a real δ > 0 such that

∣
∣f (x2, y2, z2) − f (x1, y1, z1)

∣
∣ < M/2

for any two points (x1, y1, z1), (x2, y2, z2) ∈ [gl, gr] × [gf , gb] × [gd, gu] which
satisfy

max
{|x2 − x1|, |y2 − y1|, |z2 − z1|

}
< δ.

That is,
∣
∣f (x1, y1, z1)

∣
∣ − M/2 < f (x2, y2, z2) <

∣
∣f (x1, y1, z1)

∣
∣ + M/2.

With |f (x1, y1, z1)| ≥ M it follows that |f (x2, y2, z2)| > M/2. �

Now let M1 = max{|gl |, |gr |, |gf |, |gb|, |gd |, |gu|} > 0, |f (x1, y1, z1)| ≥ M2,
and consider two points (x1, y1, z1) and (x2, y2, z2) in the hypercube which
max{|x2 − x1|, |y2 − y1|, |z2 − z1|} < δ. Then we have the following:

Lemma 9.2 |f (x2, y2, z2) − f (x1, y1, z1)| < 6M1δ/M2.

Proof Without loss of generality, assume that x1 < x2, y1 < y2 and z1 < z2. By the
mean-value theorem,

236 9 Paths in Cube-Curves

∣
∣f (x2, y2, z2) − f (x1, y1, z1)

∣
∣

= ∣
∣
[
f (x2, y2, z2) − f (x1, y2, z2)

] + [
f (x1, y2, z2) − f (x1, y1, z2)

]

+ [
f (x1, y1, z2) − f (x1, y1, z1)

]∣
∣

= ∣
∣fx(ξx, y2, z2)(x2 − x1) + fy(x1, ηy, z2)(y2 − y1) + fz(x1, y1, ζz)(z2 − z1)

∣
∣

=
∣
∣
∣
∣

ξx
√

ξx
2 + y2

2 + z2
2
(x2 − x1) + ηy

√
x1

2 + ηy
2 + z2

2
(y2 − y1)

+ ζz
√

x1
2 + y1

2 + ζz
2
(z2 − z1)

∣
∣
∣
∣

where ξx ∈ (x1, x2), ηy ∈ (y1, y2), and ζz ∈ (z1, z2). By Lemma 9.1, we have
∣
∣f (x2, y2, z2) − f (x1, y1, z1)

∣
∣ < 2M1δ/M2 + 2M1δ/M2 + 2M1δ/M2

= 6M1δ/M2.

This proves our lemma. �

We make use of Theorem 9.2 further below.

9.2 Original and Revised RBA for Cube-Curves

This section reports about the historical origin of RBAs. The first rubberband algo-
rithm was2 designed for calculating an MLP in a simple cube-curve. We show later
that it actually requires two repairs to make it deliver convergent solutions in the
general case. However, it is correctly converging to accurate solutions for the case
of first-class simple cube-curves, and with this property it also proves to be useful
as a subprocess in another algorithm.

Let ρ = (p0,p1, . . . , pm) be a polygonal curve contained in tube g of a cube-
curve g. A polygonal curve γ is a g-transform of ρ iff γ is obtained from ρ by
a finite number of operations, where each operation is a replacement of a triple
a, b, c of vertices by a polygonal sequence a, b1, . . . , bk, c such that the polygonal
sequence a, b1, . . . , bk, c is still contained in the same set of cubes of cube-curve g

as the polygonal sequence a, b, c was before.
Consider a polygonal curve ρ = (p0,p1, . . . , pm) and vertex indices i −1, i, and

i+1 in this curve. Let ρ be contained and complete in tube g. Three different options
for vertices pi−1, pi , and pi+1 result in corresponding g-transforms, and those are
the local optimisations in the original rubberband algorithm applied in repeated
iterations, starting with an initial polygonal path that is complete and contained in
tube g:

2Published between 2000 and 2002 in papers by Thomas Bülow and Reinhard Klette; see [11].

9.2 Original and Revised RBA for Cube-Curves 237

Fig. 9.4 Illustration for the
(original) Option 2

(O1) Point pi is deleted if pi−1pi+1 is a line segment within the tube. Then the
subsequence (pi−1,pi,pi+1) is replaced in the curve by (pi−1,pi+1). In this
case, the algorithm continues with vertices pi−1,pi+1,pi+2.

(O2) The closed triangular region
(pi−1,pi,pi+1) intersects more than just three
critical edges of pi−1,pi , and pi+1 (i.e., a simple deletion of pi would not
be sufficient anymore). This situation is solved by calculating a convex arc
and by replacing point pi by a sequence of vertices q1, . . . , qk on this con-
vex arc between pi−1 and pi+1 such that the sequence of line segments
pi−1q1, . . . , qkpi+1 lies in the triangular region and within the tube. In this
case, the algorithm continues with a triple of vertices starting with the calcu-
lated new vertex qk .

If (O1) and (O2) do not lead to any change, the third option may lead to an
improvement (i.e., a shorter polygonal curve which is still contained and complete
in the given tube):

(O3) Point pi may be moved on its critical edge to obtain an optimum position pnew
minimising the total length of both line segments pi−1pnew and pnewpi+1.
First, find popt ∈ le such that |popt − pi−1| + |popt − pi+1| = minp∈le L(p)

with L(p) = |p − pi−1| + |p − pi+1|, where le is the straight line containing
the critical edge e. Then, if popt lies on the closed critical edge e, let pnew =
popt. Otherwise, let pnew be that vertex bounding e and lying closest to popt.

See Fig. 9.4 for (O2). Here, vertices on critical edges e11, e14, and e18 are re-
placed by a convex arc with vertices on critical edges e11, e13, e16, and e18, and (in
general) it may be e11, e14, and e18 again within a subsequent loop—of course, for
a reduced length of the calculated path at this stage.

Option 3 of this original rubberband algorithm is not asking for testing inclusion
of the generated new segments within tube g. The authors of this book realised that
there are (rather complex) cube-curves where this test needs to be added, and that’s
the first (easy) repair for this Bülow–Klette algorithm for applying it to the general
case of simple cube-curves.

The situation with the original RBA was in 2002 as follows: Even for very small
values of ε > 0, the measured time complexity indicated O(n), where n is the num-
ber of cubes in g. However, there was no proof for the asymptotic time complexity of
the original RBA. For a small number of test examples, calculated paths seemed (!)
to converge toward the ESP. However, no implemented algorithm for calculating a
correct ESP was available, and, more generally, no proof whether the path provided

238 9 Paths in Cube-Curves

by the original RBA converges toward the ESP by increasing the number of itera-
tions (i.e., whether the algorithm is correct). The following theorem from 2005 by
F. Li and R. Klette provided a partial answer to those open questions:

Theorem 9.3 The original rubberband algorithm is correct for first-class simple
cube-curves. Let κ(ε) = (L0 − L)/ε. The computational complexity is κ(ε) ·O(n),
where n is the number of critical edges of the simple cube-curve.

L0 is the length of the initial path, L is the length of the MLP (i.e., of the ideal
solution), and ε is the usual numerical accuracy constant of an RBA.

9.3 An Algorithm with Guaranteed Error Limit

Based on Theorems 9.1, 9.2, and 9.3, we are now in a position to formulate Al-
gorithm 33 in Fig. 9.5, which combines an application of graph theory (Dijkstra’s
algorithm) with the original rubberband algorithm.

In Line 3 of Algorithm 33, pi0 and pim are the end points of ei . In Line 5, G is
a visibility graph as commonly used in computational geometry. In Line 7, N(v) is
the set of all neighbours of vertex v. In Line 13, l(ρv) is the length of the cycle ρv .
Line 21 is motivated by Theorem 9.3.

Example 9.1 We illustrate the algorithm by means of an input example; see Fig. 9.6.
Table 9.1 shows the data of the critical edges of a (short) simple cube-curve g, shown
in Fig. 9.6, upper left. Figure 9.6, upper left, also shows the subdivision points of
Line 1, where m = 3.

Figure 9.6, upper right, shows the graph, denoted by G = [V,E], constructed
in Line 5. Note that each edge of G is fully contained in tube g. To compute the
weight of an edge, say, of p3

2p
1
3 of G, see Table 9.1: the coordinates of p3

2 and p1
3

are (0.5,1,0.5) and

(0.5,1,1.5) + 1

m
× [

(0.5,2,1.5) − (0.5,1,1.5)
] = (0.5,1.3333,1.5),

respectively. It follows that the weight of segment p3
2p

1
3 equals

de

(
p3

2,p
1
3

) =
√

(0.5 − 0.5)2 + (1.3333 − 1)2 + (1.5 − 0.5)2 = 1.0541.

We illustrate Lines 6–21 by the (small) directed weighted graph shown in
Fig. 9.6, lower left. For Line 6, we have V = {v1, v2, v3, v4}, with N(v1) = {v3, v4},
N(v2) = {v1}, N(v3) = {v2}, and N(v4) = {v3}.

Consider vertex v1 and Line 9; for v3 ∈ N(v1), the directed shortest path from v1
to v3 equals (v1, v2, v3) with weight 3; the directed shortest path from v1 to v4 equals
(v1, v2, v3, v4) with weight 6. By Line 10, the local minimum-weight directed cycle,
which contains v3v1, equals (v1, v2, v3, v1) with weight 8; (v1, v2, v3, v4, v1) (with
weight 10) is the local minimum-weight directed cycle which contains v4v1.

9.3 An Algorithm with Guaranteed Error Limit 239

Algorithm 33 (Algorithm with guaranteed error limit)
Input: The set S of all critical edges of a simple cube-curve g.
Output: An approximate MLP of g.

1: Initialise an integer m ≥ 2 and a minimum length L = +∞.
2: for each critical edge ei ∈ S do
3: Let pi0 ,pi1, . . . , pim be subdivision points on ei such that the Euclidean dis-

tance between pij and pij+1 equals 1
m

, for j = 0,1,2, . . . ,m − 1.
4: end for
5: Construct the weighted directed graph G = [V,E], where

V = {pij : pij ∈ ei ∧ i = 1,2, . . . , n ∧ j = 1,2, . . . ,m},
E = {pij pkl

: pij pkl
completely contained in the cube-arc

between ei and ek in g}.
The weight of straight line segment pij pkl

is defined to be the Euclidean dis-
tance between pij and pkl

, where i = 1,2, . . . , n and j = 1,2, . . . ,m.
6: for each v ∈ V do
7: Let N(v) = {u : −→uv ∈ E}.
8: for each u ∈ N(v) do
9: Apply Dijkstra’s algorithm to compute the directed shortest path from v

to u.
10: Find the local minimum-weight directed cycle which contains directed line

segment −→
uv, denoted by ρv .

11: Let Sv be the set of critical edges such that each of the vertices of the local
minimum-weight directed cycle is on one of the edges in Sv .

12: end for
13: if l(ρv) < L then
14: Let L = l(ρv) and an approximate MLP: AMLP = ρv .
15: end if
16: end for
17: Let S′ = ∅.
18: for each vertex v of AMLP do
19: Find a critical edge e such that v ∈ e; let S ′ = S′ ∪ {e}.
20: end for
21: Apply the original rubberband algorithm on S′ and AMLP, and compute and

output the minimum-weight directed cycle.

Fig. 9.5 An algorithm with guaranteed error limit for computing an approximate MLP of a simple
cube-curve

Now consider vertex v2 and Line 9; for v1 ∈ N(v2), the directed shortest paths
from v2 to v1 are (v2, v3, v4, v1) with weight 9, and (v2, v3, v1) with weight 7.
By Line 10, the local minimum-weight directed cycle, which contains v1v2, equals
(v2, v3, v1, v2) with weight 8.

240 9 Paths in Cube-Curves

Fig. 9.6 Input example for
Algorithm 33; see text for
details

Next consider vertex v3 and Line 9; for v2 ∈ N(v3), the directed shortest paths
from v3 to v2 are (v3, v4, v1, v2) with weight 8, and (v3, v1, v2) with weight 6.
By Line 10, the local minimum-weight directed cycle, which contains v2v3, equals
(v3, v1, v2, v3) with weight 8.

Finally, consider vertex v4 and Line 9; for v3 ∈ N(v4), the directed shortest
path from v4 to v3 equals (v4, v1, v2, v3) with weight 7. By Line 10, the local
minimum-weight directed cycle, which contains v3v4, equals (v4, v1, v2, v3, v4)

with weight 10.
For Lines 13–15, compare all the local minimum-weight directed cycles obtained

in Line 10; the global minimum-weight directed cycle equals (v1, v2, v3, v1) with
weight 8.

The global minimum-weight directed cycle of G equals (p3
2,p

1
3,p

1
4,p

3
5,p

3
2),

which is denoted as AMLP; see Fig. 9.6, lower right. This AMLP has the weight
4.1082. The “associated” set of critical edges S′ equals {e2, e3, e4, e5}.

Table 9.1 Coordinates of endpoints of critical edges in Fig. 9.6

Critical edge xi1 yi1 zi1 xi2 yi2 zi2

e1 0.5 1 0.5 0.5 1 −0.5

e2 −0.5 1 0.5 0.5 1 0.5

e3 0.5 1 1.5 0.5 2 1.5

e4 1.5 1 1.5 1.5 2 1.5

e5 2.5 1 0.5 1.5 1 0.5

e6 1.5 1 0.5 1.5 1 −0.5

9.3 An Algorithm with Guaranteed Error Limit 241

For Line 21, apply the original rubberband algorithm on S ′ and AMLP to com-
pute the minimum-weight directed cycle ρ = (q2, q3, q4, q5, q2); see Fig. 9.6, lower
right. Cycle ρ has weight 4. (Actually, it is the true MLP of this simple cube-
curve.) �

For Algorithm 33, Lines 1–5 can be preprocessed. The main computation oc-
curs in Line 9, which is done in O(m2n2) time where n is the number of critical
edges and m the number of subdivision points on each critical edge.3 In Line 7,
|N(v)| ≤ mn. Thus, we have that the time complexity of Lines 7–15 is O(m3n3).
Since |V | ≤ mn, it follows that the time complexity of Lines 6–16 is O(m4n4).
Since |V (AMLP)| ≤ n, Lines 18–20 can be computed in O(n2).

By Theorem 9.3, Line 21 runs in time κ(ε) · O(n), where κ(ε) is as in Theo-
rem 9.3. Therefore, the time complexity of Algorithm 33 is O(m4n4 + κ(ε) · n).

Let L∗ be the length of the approximate MLP computed by Algorithm 33. By
Theorem 9.2, we have that

0 < L∗ − L(P) < 12nM1δ/M2.

This implies that

0 < L∗ < L(P) + 12nM1δ/M2 =
(

1 + 12M1

M2L(P)
nδ

)

L(P)

where M1, M2, n, and δ are as in Theorem 9.2. In other words, Algorithm 33 is a
δ′-approximation, where

δ′ = 1 + 12M1

M2L(P)
nδ.

Obviously, we may select m to be sufficiently large, say, m > n2. It follows that
δ < 1/n2, and we have

δ′ < 1 + 12M1

M2L(P)
n · 1

n2
= 1 + 12M1

M2L(P)
· 1

n
.

Therefore, mathematically, we can take a sufficiently large value of m to obtain
the approximate MLP of g with good accuracy.

Example 9.2 However, in practise, our experiments for N ≤ 106 and n ≤ 31 showed
that m = 5 is “quite sufficient”, with a running time of about 173.1 seconds; see
Table 9.2 for a Pentium 4 PC using Matlab 7.04. �

Following Lemma 9.2, if it were possible to find better bounds than M1 and M2,
then this would result in a smaller value of m.

3See, for example, [17], pages 595–601.

242 9 Paths in Cube-Curves

Table 9.2 Time complexity for Algorithm 33, where N is the number of cubes, n the number of
critical edges, and m the number of subdivision points on each critical edge; the time is in seconds
(on a Pentium 4 PC using Matlab 7.04)

N n m Time AMLP MLP

20 9 5 8.6 11.30 11.24

20 9 5 9.5 11.28 11.24

20 10 5 14.7 10.20 10.15

32 8 5 5.8 22.57 22.51

38 12 5 16.4 26.40 26.39

48 15 5 32.3 34.73 34.71

48 15 5 29.4 33.61 33.55

74 20 5 51.0 55.66 55.57

76 20 5 55.8 56.46 56.38

70 21 5 59.0 50.26 50.15

88 27 5 110.4 63.94 63.89

84 27 5 116.1 61.22 61.14

90 31 5 173.1 65.47 65.44

106 30 5 140.3 79.95 79.85

In summary, we presented a δ′-approximation algorithm for computing the MLP
of a general simple cube-curve, where

δ′ = 1 + 12M1

M2L(P)
nδ

M1, M2, n, and δ are as in Theorem 9.2. It runs in time O(m4n4 + κ(ε) · n), where
κ(ε) is as in Theorem 9.3, m is the chosen number of possible subdivision points
on any of the critical edges, and n is the number of critical edges. We recall also a
theorem of algorithmic graph theory:

Theorem 9.4 Assume as input a directed graph G. The all-pairs shortest paths
problem can be solved in O(n3(log logn/ logn)5/7) time, where n is the number of
vertices of G.

Since the graph G constructed in the algorithm has mn vertices, by Theorem 9.4,
the time complexity can be reduced to

O
(

m3n3
[

log log(mn)

log(mn)

]5/7

+ κ(ε) · n
)

,

but certainly not to κ-linear.

9.4 MLPs of Decomposable Simple Cube-Curves 243

This (slow) graph-theoretical algorithm allowed in 2005 for the first time to
evaluate results obtained by the original RBA in comparison to provably ap-
proximate MLPs.

9.4 MLPs of Decomposable Simple Cube-Curves

This section develops a provably correct MLP algorithm for a special type of first-
class simple cube-curves which can be decomposed (in a particular way) into a finite
number of simple cube-arcs. (The next section will also show that the formulas de-
rived for these simple cube-arcs are important for a correctness proof for the original
rubberband algorithm, considering the same special type of cube-curves.)

In this section, we analyse the “geometric structure” of simple cube-curves. By
introducing the concept of an “end-angle” (see Definition 9.4 below), we will be
able to decompose a special first-class simple cube-curve into finite simple cube-
arcs in a unique way. (In other words, the tube of such a special first-class simple
cube-curve is the union of the tubes of these simple cube-arcs.) We focus on such
a special subset of the family of all first-class simple cube-curves4 which have at
least one end-angle (e.g., as the cube-curve shown in Fig. 9.2). We also study a non-
trivial example of such a curve and show that the path calculated by the original
rubberband algorithm is converging toward the MLP. We also present an algorithm
for the computation of approximate MLPs for the special class (as defined in this
section) of simple cube-curves.

Definition 9.4 Assume a simple cube-curve g and a triple of consecutive critical
edges e1, e2, and e3 such that ei ⊥ ej , for i, j = 1,2,3 and i �= j . Let σ be a
metavariable for x, y, or z. If e2 is parallel to the σ -axis and the σ -coordinates
of e1 and e3 are identical (for σ = x, σ = y, or σ = z), then we say that e1, e2, and
e3 form an end-angle.

Cube-curve g has an end-angle, denoted by �(e1, e2, e3), in such a case. Oth-
erwise we say that e1, e2, and e3 form a middle-angle �(e1, e2, e3), and g has a
middle-angle in this case. In particular, if e2 is parallel to the σ -axis and the σ -
coordinates of e1 and e3 are not identical (for σ = x, σ = y, or σ = z), then we say
that e1, e2, and e3 form an inner-angle.

Example 9.3 Figure 9.2 shows a simple cube-curve which has five end-angles
�(e21, e0, e1), �(e4, e5, e6), �(e6, e7, e8), �(e14, e15, e16), and �(e15, e16, e17),
and 17 middle-angles, such as �(e0, e1, e2), �(e1, e2, e3), or �(e2, e3, e4), and so
on, where 11 of them are inner-angles: �(e0, e1, e2), �(e1, e2, e3), �(e2, e3, e4),

4Note that we can classify a simple cube-curve in linear time to be first-class or not, by using the
original rubberband algorithm: the curve is first-class iff option (O2) does not occur at all.

244 9 Paths in Cube-Curves

Fig. 9.7 Point pi(ti) on the
critical line γi which is
incident with critical edge ei .
Point (xi , yi , zi) is an end
point of ei

�(e3, e4, e5), �(e5, e6, e7), �(e7, e8, e9), �(e8, e9, e10), �(e9, e10, e11), �(e12, e13,

e14), �(e13, e14, e15), and �(e16, e17, e18), and the other six of them are non-inner-
angles. �

Definition 9.5 A straight line l which is incident with a critical edge e of g (i.e.,
e ⊂ l) is called a critical line (of e in g).

A critical line l and a critical edge e are corresponding if they are incident (i.e.,
e ⊂ l).

Definition 9.6 Let S ⊆ R3. The set {(x, y,0) : ∃z (z ∈ R ∧ (x, y, z) ∈ S)} is the
xy-projection of S, or projection of S for short. Analogously, we define the yz- or
xz-projection of S.

The next lemma is a basic result from computational geometry, and we already
cited it (in different form) in Chap. 3:

Lemma 9.3 There is a uniquely defined shortest path which passes through subse-
quent critical edges e1, e2, . . . , and ek in this order.

Let e1, e2, and e3 be three (not necessarily consecutive) critical edges in a sim-
ple cube-curve, and let l1, l2, and l3 be the corresponding three critical lines. As a
general approach in the remainder of this book, we consider points on critical lines
in parameterised form, allowing to study changes in their positions by means of
derivatives.

For example, point p2(t2) = (x2 + kx2 t2, y2 + ky2 t2, z2 + kz2 t2) on l2 is parame-
terised by t2 ∈ R. Analogously, p1(t1) or p3(t3) on l1 or l3 are parameterised by t1
or t3, respectively. See Fig. 9.7.

Lemma 9.4 Let d2(t1, t2, t3) = de(p1(t1),p2(t2))+de(p2(t2),p3(t3)), for arbitrary
reals t1, t2, and t3. It follows that ∂2d2/∂t2

2 > 0.

Proof Let the coordinates of pi(ti) be (xi + kxi
ti , yi + kyi

ti , zi + kzi
ti), where i

equals 1 or 3.

9.4 MLPs of Decomposable Simple Cube-Curves 245

Assume that pi ∈ ei ⊂ li (for i = 1,2,3), where ei is an edge of the regular 3D
orthogonal grid. It follows that only one of the values kxi

, kyi
, or kzi

can be equal
to 1; the other two must be equal to zero.

Let us look at one of these cases where the coordinates of p1 are (x1 + t1,

y1, z1), the coordinates of p2 are (x2, y2 + t2, z2), and the coordinates of p3 are
(x3, y3, z3 + t3). Then we have that d2(t1, t2, t3) = de(p1(t1),p2(t2)) + de(p2(t2),

p3(t3)) equals
√

(
t2 − (y1 − y2)

)2 + (x1 + t1 − x2)2 + (z1 − z2)2

+
√

(
t2 − (y3 − y2)

)2 + (x3 − x2)2 + (z3 + t3 − z2)2.

This can be briefly written as d2 =
√

(t2 − a1)2 + b2
1 +

√
(t2 − a2)2 + b2

2, where b1

and b2 are functions of t1 and t3, respectively. Then we have that

∂d2

∂t2
= t2 − a1

√
(t2 − a1)2 + b2

1

+ t2 − a2
√

(t2 − a2)2 + b2
2

(9.1)

and

∂2d2

∂t2
2

= 1
√

(t2 − a1)2 + b2
1

− (t2 − a1)
2

[(t2 − a1)2 + b2
1]3/2

+ 1
√

(t2 − a2)2 + b2
2

− (t2 − a2)
2

[(t2 − a2)2 + b2
2]3/2

.

This simplifies to

∂2d2

∂t2
2

= b2
1

[(t2 − a1)2 + b2
1]3/2

+ b2
2

[(t2 − a2)2 + b2
2]3/2

> 0. (9.2)

The other cases of positions of pi lead, analogously, also to such a positive second
derivative. �

With this lemma we introduce the very useful (at least, for this book) concept
that points pi(ti) are studied with respect to their derivatives. This approach
is followed repeatedly in the remainder of this book.

Note that we do not use pi(t) because different critical edges may have different
values of t representing varying speed of movements along these edges (e.g., when
adjusting the length of a curve which is passing through critical edges).

Lemma 9.4 is used in the proof of the following lemma. Let e1, e2, and e3 be three
critical edges (again: not necessarily consecutive critical edges), and let l1, l2, and l3

246 9 Paths in Cube-Curves

Fig. 9.8 Illustration of
Case 1 in the proof of
Lemma 9.6

be their corresponding critical lines, respectively. Let p1,p2, and p3 be three points
such that pi belongs to li , for i = 1,2,3. Let p2 = (x2 +kx2 t2, y2 +ky2 t2, z2 +kz2 t2).
Let d2 = de(p1,p2) + de(p2,p3).

Lemma 9.5 The function f (t2) = ∂d2
∂t2

has a unique real root.

Proof We refer to the proof of Lemma 9.4. Without loss of generality, we can as-
sume that a1 ≤ a2. Then, by Eq. (9.1), we have that f (a1) ≤ 0 as well as f (a2) ≥ 0.
The lemma follows with Eq. (9.2). �

We use this lemma for describing our next algorithm further below.
To continue our theoretical preparations, now let e1, e2, and e3 be three consec-

utive (!) critical edges of a simple cube-curve g.

Definition 9.7 Let D(e1, e2, e3) be the dimension of the linear space generated by
edges e1, e2, and e3.

Let l13 be a line segment with one end point (somewhere) on e1, and the other
end point (somewhere) on e3. Let deiej

be the Hausdorff distance between ei and ej

(i.e., the minimum of all Euclidean distances between a point p on ei , and a point q

on ej), where i, j = 1,2,3.

Lemma 9.6 The line segment l13 (for any choice of endpoints) is not com-
pletely contained in the tube g if D(e1, e2, e3) = 3, min{de1e2 , de2e3} ≥ 1, and
max{de1e2 , de2e3} ≥ 2, or if D(e1, e2, e3) ≤ 2 and min{de1e2 , de2e3} ≥ 2.

Proof Case 1. Let D(e1, e2, e3) = 3, min{de1e2 , de2e3} ≥ 1 and max{de1e2 ,

de2e3} ≥ 2. We only need to prove that the conclusion is true when min{de1e2 ,

de2e3} = 1 and max{de1e2 , de2e3} = 2. In this case, the parallel projection [denoted
by g′(e1, e2, e3)] of all of g’s cubes contained between e1 and e3 is illustrated in
Fig. 9.8, where AB is the projective image of e1, EF that of e3, and C that of one
of the end points of e2. Note that line segment AF must intercept grid edge BC at a
point G, and intercept grid edge CD at a point H . Also note that line segment GH

is not completely contained in g′(e1, e2, e3). Therefore, if l13 is a line segment with
one end point on e1 and the other one on e3, then l13 is not completely contained
in g.

Case 2. Let D(e1, e2, e3) = 2 and min{de1e2 , de2e3} ≥ 2. Without loss of general-
ity, we can assume that e1 ‖ e2.

9.4 MLPs of Decomposable Simple Cube-Curves 247

Fig. 9.9 Illustration of
Case 2.1 in the proof of
Lemma 9.6

Fig. 9.10 Illustration of
Case 2.2 in the proof of
Lemma 9.6

Case 2.1. e1 and e2 are on the same grid line; we only need to prove that the
conclusion is true when de1e2 = 2 and de2e3 = 2. In this case, the projective im-
age [denoted by g′(e1, e2, e3)] of all of g’s cubes contained between e1 and e3 is
illustrated in Fig. 9.9.

Case 2.1.1. g′(e1, e2, e3) is as on the left in Fig. 9.9, where A and B are the
projective images of either one end point of e1 or e2, respectively, and CD that
of e3. Note that line segment AD must intercept grid edge EC at a point F . Also
note that line segments AD and AC are not completely contained in g′(e1, e2, e3).
Therefore, if l13 is a line segment where one end point is on e1, and the other on e3,
then l13 is not completely contained in g. Similarly, we can show that the conclusion
is also true for Case 2.1.2, with g′(e1, e2, e3) as illustrated on the right in Fig. 9.9.

Case 2.2. Assume that e1 and e2 are on different grid lines. We only need to prove
that the conclusion is true when de1e2 = √

5 and de2e3 = 2. In this case, the projective
image [denoted by g′(e1, e2, e3)] of all of g’s cubes contained between e1 and e3 is
illustrated in Fig. 9.10, where A (B) is the projective image of one end point of e1
(e2), and CD that of e3. Note that line segment AD must intercept grid edge EC at
a point E. Also note that line segments AD and AC are not completely contained
in g′(e1, e2, e3). Therefore, if l13 is a line segment with one end point on e1, and one
on e3, then l13 is not completely contained in g.

Case 3. Let D(e1, e2, e3) = 1 and min{de1e2 , de2e3} ≥ 2. Without loss of general-
ity, we can assume that e1 ‖ e2.

Case 3.1. e1 and e2 are on the same grid line. We only need to prove that the
conclusion is true when de1e2 = 2 and de2e3 = 2. In this case, the projective image
[denoted by g′(e1, e2, e3)] of all of g’s cubes contained between e1 and e3 is illus-
trated on the left of Fig. 9.11, where A, B , and C are projective images of one end
point of e1, e2, and e3, respectively. Note that line segment AC is not completely
contained in g′(e1, e2, e3). Therefore, if l13 is a line segment with an end point on e1
and another one on e3, then l13 is not be completely contained in g.

Case 3.2. Now assume that e1 and e2 are on different grid lines. We only need
to prove that the conclusion is true when de1e2 = √

5 and de2e3 = 2. In this case, the
projective image [denoted by g′(e1, e2, e3)] of all of g’s cubes contained between e1

248 9 Paths in Cube-Curves

Fig. 9.11 Illustration of both
subcases of Case 3 in the
proof of Lemma 9.6

and e3 is illustrated on the right in Fig. 9.11, where A, B , and C are the projective
image of one end point of e1, e2, and e3, respectively. Note that line segment AC

is not completely contained in g′(e1, e2, e3). Therefore, if l13 is a line segment with
end points on e1 and e3, then l13 is not be completely contained in g. �

This lemma and the following Lemmas 9.7 and 9.8 are used to prove the fol-
lowing Theorem 9.5 which states a sufficient condition for the first-class simple
cube-curve.

Let g be a simple cube-curve such that any three consecutive critical edges
e1, e2, and e3 do indeed satisfy either D(e1, e2, e3) = 3, min{de1e2, de2e3} ≥ 1,
and max{de1e2 , de2e3} ≥ 2, or D(e1, e2, e3) ≤ 2 and min{de1e2 , de2e3} ≥ 2. By
Lemma 9.6, we immediately obtain:

Lemma 9.7 Every critical edge of g contains at least one vertex of g’s MLP.

Let g be a simple cube-curve, and assume that every critical edge of g contains
at least one vertex of the MLP. Then we also have the following:

Lemma 9.8 Every critical edge of g contains at most one vertex of g’s MLP.

Proof Assume that there exists a critical edge e such that e contains at least two
vertices v and w of the MLP P of g. Without loss of generality, we can assume
that v and w are the first (in the order on P) two vertices which are on e. Let u be a
vertex of P , which is on the previous critical edge of P . Then line segments uv and
uw are completely contained in g.

By replacing {uv,uw} by vw we obtain a polygon of length shorter than P ,
which is in contradiction to the fact that P is an MLP of g. �

Let g be a simple cube-curve such that any three consecutive critical edges
e1, e2, and e3 do indeed satisfy either D(e1, e2, e3) = 3, min{de1e2, de2e3} ≥ 1
and max{de1e2 , de2e3} ≥ 2, or D(e1, e2, e3) ≤ 2 and min{de1e2 , de2e3} ≥ 2. By Lem-
mas 9.7 and 9.8, we immediately obtain:

Theorem 9.5 The specified simple cube-curve g is first-class.

Let e1, e2, and e3 be three consecutive critical edges of a simple cube-curve g. Let
p1,p2, and p3 be three points such that pi ∈ ei , for i = 1,2,3. Let the coordinates

9.4 MLPs of Decomposable Simple Cube-Curves 249

of pi be (xi + kxi
ti , y2 + kyi

ti , zi + kzi
ti), where kxi

, kyi
, kzi

are either 0 or 1, and
0 ≤ ti ≤ 1, for i = 1,2,3. Let d2 = de(p1,p2) + de(p2,p3).

Theorem 9.6 ∂d2
∂t2

= 0 implies that we have one of the following representations for
t3: we can have

t3 = −c2t1 + (c1 + c2)t2

c1
(9.3)

if c1 > 0; we can also have

t3 = 1 −
√

c2
1(t2 − a2)2

(t2 − t1)2
− c2

2 or (9.4)

t3 =
√

c2
1(t2 − a2)2

(t2 − t1)2
− c2

2 (9.5)

if a2 equals either 0 or 1, and c1 and c2 are positive; and we can also have

t3 = 1 −
√

(t2 − a2)2[(t1 − a1)2 + c2
1]

(t2 − b1)2
− c2

2 or (9.6)

t3 =
√

(t2 − a2)2[(t1 − a1)2 + c2
1]

(t2 − b1)2
− c2

2 (9.7)

if a1, a2, and b1 are either equal to 0 or 1, and c1 and c2 are positive reals.

Proof We have that pi = (xi + kxi
ti , yi + kyi

ti , zi + kzi
ti), with kxi

, kyi
, kzi

equals 0
or 1, and 0 ≤ ti ≤ 1, for i = 1,2,3. Note that only one of the values kxi

, kyi
, kzi

can
be 1, and the other two must be equal to 0. It follows that for every i, j ∈ {1,2,3},
de(pi,pj) =

√
(tj − ti)2 + c2 or

√
(ti − a)2 + (tj − b)2 + c2, where a, b are equal

to 0 or 1, and c > 0. We have c �= 0 because otherwise e1 and e2 would be on the
same line, and that is impossible. Let d2 = de(p1,p2) + de(p2,p3). The following
three cases are possible:

Case 1. d2 =
√

(t2 − t1)2 + c2
1 +

√
(t2 − t3)2 + c2

2, with ci > 0, for i = 1,2. Then
we have

∂d2

∂t2
= t2 − t1

√
(t2 − t1)2 + c2

1

+ t2 − t3
√

(t2 − t3)2 + c2
2

,

and equation ∂d2
∂t2

= 0 implies the form of Eq. (9.3).

250 9 Paths in Cube-Curves

Case 2. d2 =
√

(t2 − t1)2 + c2
1 +

√
(t2 − a2)2 + (t3 − b2)2 + c2

2, with a2, b2

equals 0 or 1, and ci > 0, for i = 1,2. Then we have

∂d2

∂t2
= t2 − t1

√
(t2 − t1)2 + c2

1

+ t2 − a2
√

(t2 − a2)2 + (t3 − b2)2 + c2
2

,

and equation ∂d2
∂t2

= 0 implies the form of Eqs. (9.4) or (9.5).

Case 3. d2 =
√

(t2 − a1)2 + (t1 − b1)2 + c2
1 +

√
(t2 − a2)2 + (t3 − b2)2 + c2

2,
with ai, bi equals 0 or 1, and ci > 0, for i = 1,2. Then we have

∂d2

∂t2
= t2 − a1

√
(t2 − a1)2 + (t1 − b1)2 + c2

1

+ t2 − a2
√

(t2 − a2)2 + (t3 − b2)2 + c2
2

,

and equation ∂d2
∂t2

= 0 implies the form of Eqs. (9.6) or (9.7). �

The proof of Case 3 of Theorem 9.6, and Lemma 9.6 also show the following:

Lemma 9.9 Let g be a first-class simple cube-curve. If e1, e2, and e3 form a middle-
angle of g then the vertex of the MLP of g on e2 cannot be an endpoint (i.e., a grid
point) on e2.

This lemma provides interesting information about the relationship between lo-
cations of vertices of an MLP and the geometric structure of the given simple cube-
curve.

Lemma 9.10 Let f (x) be a continuous function defined on an interval [a, b], and
assume f (ξ) = 0 for some ξ ∈ (a, b). Then, for every ε > 0, there exist a′ and b′
such that, for every x ∈ [a′, b′], we have |f (x)| < ε.

Proof Since f (x) is continuous at ξ ∈ (a, b), so limn→ξ f (x) = f (ξ) = 0. Then,
for every ε > 0, there exists a δ > 0 such that for every x ∈ (ξ − δ, ξ + δ) we have
that |f (x)| < ε. Let a′ = ξ − δ

2 and b′ = ξ + δ
2 . Then, for every x ∈ [a′, b′] we have

that |f (x)| < ε. �

We apply this auxiliary lemma to prove the following lemma:

Lemma 9.11 Let f (x) be a continuous function on an interval [a, b], with f (ξ) = 0
at ξ ∈ (a, b). Then, for every ε > 0, there are two integers n > 0 and k > 0 such that,
for every x ∈ [(k−1)(b−a)

n
,

k(b−a)
n

], we have that |f (x)| < ε.

Proof By Lemma 9.10, it follows that for every ε > 0, there exist a′ and b′ such
that for every x ∈ [a′, b′] we have that |f (x)| < ε. Select an integer n ≥ 2(b−a)

b′−a′ .

Then, b−a
n

≤ b′−a′
2 ≤ b′ − a′. Thus, there is an integer j (where j = 1,2, . . . , n − 1)

9.4 MLPs of Decomposable Simple Cube-Curves 251

such that a′ ≤ j (b−a)
n

≤ b′. If j (b−a)
n

≤ b′−a′
2 , then a′ ≤ j (b−a)

n
≤ (j+1)(b−a)

n
≤ b′. If

j (b−a)
n

≥ b′−a′
2 , then a′ ≤ (j−1)(b−a)

n
≤ j (b−a)

n
≤ b′. �

In the following, we discuss main ideas and operations of a numerical algo-
rithm for computing the MLP of a first-class simple cube-curve which has at
least one end-angle.

Subscripts are taken modulo n + 1. Let pi be a point on ei , where i =
0,1,2, . . . , n. Let the coordinates of pi be

(xi + kxi
ti , y2 + kyi

ti , zi + kzi
ti)

where i = 0,1, . . . , n. Then the length of the polygon p0p1 . . . pn equals

d = d(t0, t1, . . . , tn) =
n∑

i=0

de(pi,pi+1).

If the polygon p0p1 . . . pn is the MLP of g, then (by Lemma 9.3) we have that
∂d
∂ti

= 0, where i = 0,1, . . . , n.
Assume that ei, ei+1, and ei+2 form an end-angle, and also ej , ej+1, and ej+2,

and that no other three consecutive critical edges between ei+2 and ej form an end-
angle, where i ≤ j and i, j = 0,1,2, . . . , n. By Theorem 9.6, we have

ti+3 = fi+3(ti+1, ti+2),

ti+4 = fi+4(ti+2, ti+3),

ti+5 = fi+5(ti+3, ti+4),

. . .

tj = fj (tj−2, tj−1),

and

tj+1 = fj+1(tj−1, tj).

This shows that ti+3, ti+4, ti+5, . . . , tj , and tj+1 can be represented by ti+1, and
ti+2. In particular, we obtain an equation tj+1 = f (ti+1, ti+2), or

g(tj+1, ti+1, ti+2) = 0, (9.8)

where tj+1, and ti+1 are already known, or

g1(ti+2) = 0. (9.9)

252 9 Paths in Cube-Curves

Since ei, ei+1, and ei+2 form an end-angle it follows that ei+1 ⊥ ei+2. By the proof
of Theorem 9.6, we can express ∂d2

∂ti+2
in the form

ti+2 − b1
√

(ti+1 − a1)2 + (ti+2 − b1)2 + c2
1

+ ti+2 − a2
√

(ti+2 − a2)2 + (ti+3 − b2)2 + c2
2

. (9.10)

Then Eq. (9.10) has a unique real root between a2 and b1. In other words, there are
two real numbers a and b such that Eq. (9.10) has a unique root in between a and b.
If g1(a)g1(b) < 0, then we can use a bisection method5 to find an approximate root
of Eq. (9.10). Otherwise, by Lemma 9.11, we can also find an approximate root of
Eq. (9.10). Therefore, we can always find an approximate root for ∂d

∂tk
= 0, where

k = i +2, i +3, . . . , and j , and an exact root for ∂d
∂tk

= 0, where k = i +1 and j +1.

In this way, we find an approximate or exact root tk0 for ∂d
∂tk

= 0, where k =
0,1,2, . . . , n. Let t ′k0

= 0 if tk0 < 0 and t ′k0
= 1 if tk0 > 1, where k = 0,1,2, . . . , n.

Then (by Theorem 9.5) we obtain an approximation of the MLP [its length equals
d(t ′00

, t ′10
, t ′20

, . . . , t ′i0 , . . . , t
′
n0

)] of the given first-class simple cube-curve.
For the numerical algorithm in Fig. 9.12, the input is a first-class simple cube-

curve g with at least one end-angle. The output is an approximation of the MLP and
a calculated length value. The operations of this Algorithm 34 are presented in this
figure at a sufficient level of detail for proper understanding.

We give an estimate of the time complexity of Algorithm 34 depending on the
number of end-angles m and accuracy parameter ε.

Let the accuracy of approximation be upper-limited by ε = 1
2k . The applied bi-

section method6 needs to know initial endpoints a and b of the search interval [a, b].
At best, if we can set a = 0 and b = 1 to solve all the forms of Eq. (9.9) by the

bisection method. Then the algorithm completes each run in O(mk) time.
In the worst case, if we have to find out the values of a and b for every of the

forms of Eq. (9.9) by the bisection method. Then (by Lemma 9.11, and assuming
that we need f (k) operations to find out the values of a and b), the algorithm com-
pletes each run in O(mk · f (k)) time.

Example 9.4 We provide an example where we compare the results obtained with
Algorithm 34 with those obtained with the Bülow–Klette algorithm. We approxi-
mate the MLP of the first-class simple cube-curve shown in Fig. 9.2 by following
the defined lines of operations in Algorithm 34:

Line 1. See Table 9.3 which lists the coordinates of the critical edges e0, e1, . . . ,

e21 of g. Let pi be a point on the critical line of ei , where i = 0,1, . . . ,21.
Line 2. We calculate the coordinates of pi , where i = 0,1, . . .21, as follows:

(1 + t0,4,7), (2,4 + t1,5), (4,5,4 + t2), (4 + t3,7,4), (5,7 + t4,2), (7,09,1 + t5),
. . . , (2,2,7 + t21).

5See, for example, [12, page 49].
6See [12, page 49].

9.4 MLPs of Decomposable Simple Cube-Curves 253

Algorithm 34 (A numerical MLP approximation for cube-curves with an end-angle)
Input: A first-class simple cube-curve g with at least one end-angle.
Output: An approximation of the MLP and a calculated length value.

1: Represent g by the coordinates of the endpoints of its critical edges ei , where
i = 0,1,2, . . . , n. Let pi be a point on ei , where i = 0,1,2, . . . , n. Then, the
coordinates of pi are equal to (xi + kxi

ti, yi + kyi
ti , zi + kzi

ti), where only one
of the parameters kxi

, kyi
and kzi

can be equal to 1, and the other two are equal
to 0, for i = 0,1, . . . , n.

2: Find all end-angles �(ej , ej+1, ej+2),�(ek, ek+1, ek+2), . . . of g. For every i ∈
{0,1,2, . . . , n}, let di+1 = de(pi,pi+1) + de(pi+1,pi+2). By Lemma 9.5, we
can find a unique root t(i+1)0 of equation ∂di+1

∂ti+1
= 0 if ei , ei+1 and ei+2 form an

end-angle.
3: For every pair of two consecutive end-angles

�(ei, ei+1, ei+2) and � (ej , ej+1, ej+2)

of g, apply the ideas as described in Lemma 9.10 to find the root of equation
∂dk

∂tk
= 0, where k = i + 1, i + 2, . . . , and j + 1.

4: Repeat Line 3 until we find an approximate or exact root tk0 for ∂d
∂tk

= 0, where

d = d(t0, t1, . . . , tn) = ∑n−1
i=1 di , for k = 0,1,2, . . . , n. Let t ′k0

= 0 if tk0 < 0,
and t ′k0

= 1 if tk0 > 1, for k = 0,1,2, . . . , n.
5: The output is a polygonal curve p0(t

′
00

)p1(t
′
10

) . . . pn(t
′
n0

) of total length

d
(
t ′00

, t ′10
, . . . , t ′i0 , . . . , t

′
n0

)
.

This curve approximates the MLP of g.

Fig. 9.12 Algorithm 34: A numerical MLP approximation for first-class simple cube-curves with
an end-angle

Line 3. Now let d = d(t0, t1, . . . , t21) = ∑21
i=0 de(pi,pi+1(mod 22)). Then we ob-

tain

∂d

∂t0
= t0 − 1

√
(t0 − 1)2 + t2

21 + 4
+ t0 − 1

√
(t0 − 1)2 + t2

1 + 4
, (9.11)

∂d

∂t1
= t1

√
(t0 − 1)2 + t2

1 + 4
+ t1 − 1

√
(t1 − 1)2 + (t2 − 1)2 + 4

, (9.12)

∂d

∂t2
= t2 − 1

√
(t1 − 1)2 + (t2 − 1)2 + 4

+ t2
√

t2
2 + t2

3 + 4
, (9.13)

254 9 Paths in Cube-Curves

Table 9.3 Coordinates of endpoints of critical edges in Fig. 9.2

Critical edge xi1 yi1 zi1 xi2 yi2 zi2

e0 1 4 7 2 4 7

e1 2 4 5 2 5 5

e2 4 5 4 4 5 5

e3 4 7 4 5 7 4

e4 5 7 2 5 8 2

e5 7 8 1 7 8 2

e6 7 10 2 8 10 2

e7 8 10 4 8 11 4

e8 10 10 4 10 10 5

e9 10 8 5 11 8 5

e10 11 7 7 11 8 7

e11 12 7 7 12 7 8

e12 12 5 7 12 5 8

e13 10 4 8 10 5 8

e14 9 4 10 10 4 10

e15 9 2 10 9 2 11

e16 7 1 10 7 2 10

e17 6 2 8 7 2 8

e18 6 4 7 6 4 8

e19 4 4 7 4 4 8

e20 3 2 7 3 2 8

e21 2 2 7 2 2 8

∂d

∂t3
= t3

√
t2
2 + t2

3 + 4
+ t3 − 1

√
(t3 − 1)2 + t2

4 + 4
, (9.14)

∂d

∂t4
= t4

√
(t3 − 1)2 + t2

4 + 4
+ t4 − 1

√
(t4 − 1)2 + (t5 − 1)2 + 4

, (9.15)

and

∂d

∂t5
= t5 − 1

√
(t4 − 1)2 + (t5 − 1)2 + 4

+ t5 − 1
√

(t5 − 1)2 + t2
6 + 4

. (9.16)

By Eqs. (9.11) and (9.16), we obtain that t0 = t5 = 1.
Similarly, we have t7 = t15 = 0, and t16 = 1. Therefore, we find all end-

angles as follows: �(e21, e0, e1), �(e4, e5, e6), �(e6, e7, e8), �(e14, e15, e16), and
�(e15, e16, e17).

9.4 MLPs of Decomposable Simple Cube-Curves 255

By Theorem 9.6 and Eqs. (9.12–9.14), it follows that

t2 = 1 −
√

(t1 − 1)2[(t0 − 1)2 + 4]
t2
1

− 4, (9.17)

t3 =
√

t2
2 [(t1 − 1)2 + 4]

(t2 − 1)2 − 4, (9.18)

and

t4 =
√

(t3 − 1)2[t2
2 + 4]

t2
3

− 4. (9.19)

By Eq. (9.15), we have

t2
4

[
(t5 − 1)2 + 4

] = (t4 − 1)2[(t3 − 1)2 + 4
]
.

Let

g1(t1) = t2
4

[
(t5 − 1)2 + 4

] − (t4 − 1)2[(t3 − 1)2 + 4
]
. (9.20)

By Eq. (9.17), we have that t1 ∈ (0,0.5), g1(0.4924) = 3.72978 > 0, and also
g1(0.4999) = −51.2303 < 0. By Lemmas 9.3, 9.5, 9.9, and the bisection method,
we obtain the following unique roots of Eqs. (9.17–9.20):

t1 = 0.492416, t2 = 0.499769, t3 = 0.499769, and t4 = 0.507584,

with error g1(t1) = 4.59444 × 10−9. These roots correspond to the two consecutive
end-angles �(e21, e0, e1) and �(e4, e5, e6) of g.

Line 4. Similarly, we find the unique roots of equation ∂d
∂ti

= 0, where i =
6,7, . . . ,21. At first we have t6 = 0.5, which corresponds to the two consecu-
tive end-angles �(e4, e5, e6) and �(e6, e7, e8); then we also obtain t8 = 0.492582,
t9 = 0.494543, t10 = 0.331074, t11 = 0.205970, t12 = 0.597034, t13 = 0.502831,
t14 = 0.492339, which correspond to the two consecutive end-angles �(e6, e7, e8)

and �(e14, e15, e16); followed by t15 = 0, t16 = 1, which correspond to the two con-
secutive end-angles �(e14, e15, e16) and �(e15, e16, e17); and finally, t17 = 0.501527,
t18 = 0.77824, t19 = 0.56314, t20 = 0.32265, and t21 = 0.2151, which correspond
to the two consecutive end-angles �(e15, e16, e17) and �(e21, e0, e1).

Line 5. In summary, we obtain the values shown in the first two columns of
Table 9.4. The calculated approximation of the MLP of g is

p0
(
t ′00

)
p1

(
t ′10

)
. . . pn

(
t ′n0

)
,

and its length is d(t ′00
, t ′10

, . . . , t ′i0 , . . . , t
′
n0

) = 43.767726, where t ′i0 = ti0 for i limited
to the set {0,1,2, . . . ,21}.

The original RBA calculated the roots of Eqs. (9.11) through (9.16) as shown in
the third column of Table 9.4. Note that there is only a finite number of iterations
until the algorithm terminates (i.e., no threshold needs to be specified for the chosen

256 9 Paths in Cube-Curves

Table 9.4 Comparison of
results of both algorithms Critical points ti0 (Algorithm 34) ti0 (Original RBA)

p0 1 1

p1 0.492416 0.4924

p2 0.499769 0.4998

p3 0.499769 0.4998

p4 0.507584 0.5076

p5 1 1

p6 0.5 0.5

p7 0 0

p8 0.492582 0.4926

p9 0.494543 0.4945

p10 0.331074 0.3311

p11 0.205970 0.2060

p12 0.597034 0.5970

p13 0.502831 0.5028

p14 0.492339 0.4923

p15 0 0

p16 1 1

p17 0.501527 0.5015

p18 0.77824 0.7789

p19 0.56314 0.5641

p20 0.32265 0.3235

p21 0.2151 0.2157

input curve). From Table 9.4 we can see that both algorithms converge (within some
minor numerical deviations) to ‘basically’ identical values. �

In summary, this section reported a provably correct algorithm for the ap-
proximate calculation of an MLP for a special class of simple cube-curves
(namely, first-class simple cube-curves with at least one end-angle).

Mathematically, the problem is equivalent to solving equations having one vari-
able each. Applying methods of numerical analysis, we can compute their roots with
sufficient accuracy. We illustrated the algorithm by one non-trivial example, illus-
trating this way that our algorithm found the same approximation of an MLP as the
original RBA did.

9.5 Analysis of the Original RBA 257

9.5 Analysis of the Original RBA

This section still focuses on first-class simple cube-curves; general simple cube-
curves are discussed in Sect. 9.6. This section proves that the Bülow–Klette algo-
rithm has κ-linear time complexity κ(ε) ·O(m) for such cube-curves, where κ(ε) is
as defined in Theorem 9.3, and m is the number of critical edges of a given simple
cube-curve.

This answered in 2007 a question for this algorithm, which had been open until
then. However, in the course of analysing this time complexity, counterexamples
were found to Option 2 of the original RBA (for non-first-class simple cube-curves)
which led to a correction of Option 3 (by adding one missing test) of the original
RBA.

These counterexamples were found by studying the question:7 Is there a simple
cube-curve such that none of the nodes of its MLP is a grid vertex? This section
constructs an example of such a simple cube-curve, and we also characterise the
class of all of such cube-curves.

The basic importance of this class of cube-curves without any end-angle is
that it shows the need of further algorithmic studies: for such cube-curves
we cannot use the MLP algorithm proposed in Sect. 9.4 which is provably
correct.

We start with two rather technical definitions used in this section:

Definition 9.8 Let e be a critical edge of g. Let P1 and P2 be the two end points
of e. If one of the coordinates of P1 is less than the corresponding coordinate of P2,
then P1 is called the first end point of e, otherwise P1 is called the second end point
of e.

Let e1, e2, . . . , em be a subsequence of the sequence of all consecutive critical
edges . . . , e0, e1, . . . , em, em+1, . . . of a cube-curve g. Let m ≥ 2.

Definition 9.9 If e0 ⊥ e1, em ⊥ em+1, and ei ‖ ei+1, where i = 1,2, . . . ,m−1, then
e1, e2, . . . , em is a maximal run of parallel critical edges of g, and critical edges e0
or em+1 are called adjacent to this run.

Example 9.5 Figure 9.2 shows a simple cube-curve which has two maximal runs
of parallel critical edges: e11, e12 and e18, e19, e20, e21. The two adjacent critical
edges of run e11, e12 are e10 and e13; they are on two different grid planes. The two
adjacent critical edges of run e18, e19, e20, e21 are e17 and e0; they are also on two
different grid planes. �

7Formulated as an open problem on [33, page 406].

258 9 Paths in Cube-Curves

Fig. 9.13 Illustration for the
proof of Lemma 9.12

Let e0, e1, e2, . . . , em, and em+1 be m + 2 consecutive critical edges in a simple
cube-curve, and let l0, l1, l2, . . . , lm, and lm+1 be the corresponding critical lines.
We express a point pi(ti) = (xi + kxi

ti, yi + kyi
ti , zi + kzi

ti) on li in general form,
with ti ∈ R, where i equals 0,1, . . . , or m + 1.

In the following, pi(ti) will be denoted by pi for short, where i equals 0,1, . . . ,
or m + 1.

Lemma 9.12 If e1 ⊥ e2, then ∂de(p1,p2)/∂t2 can be written as (t2 − α)β , where
β > 0 is a function of t1 and t2, and α = 0 if e1 and the first end point of e2 are on
the same grid plane, or α = 1 otherwise.

Proof Without loss of generality, we can assume that e2 is parallel to the z-axis. In
this case, the parallel projection [denoted by g′(e1, e2)] of all of g’s cubes, contained
between e1 and e2, is illustrated in Fig. 9.13, where AB is the projective image of e1,
and C is that of one of the end points of e2.

Case 1. e1 and the first end point of e2 are on the same grid plane. Let the two
end points of e2 be (a, b, c) and (a, b, c + 1). Then the two end points of e1 are
(a − 1, b + k, c) and (a, b + k, c). Then the coordinates of p1 and p2 are (a − 1 +
t1, b + k, c) and (a, b, c + t2), respectively, and de(p1,p2) =

√
(t1 − 1)2 + k2 + t2

2 .
Therefore,

∂de(p1,p2)

∂t2
= t2

√
(t1 − 1)2 + k2 + t2

2

.

Let α = 0 and

β = 1
√

(t1 − 1)2 + k2 + t2
2

.

This proves the lemma for Case 1.
Case 2. Now assume that e1 and the first end point of e2 are on different grid

planes (i.e., e1 and the second end point of e2 are on the same grid plane). Let
the two end points of e2 be (a, b, c) and (a, b, c + 1). Then the two end points of
e1 are (a − 1, b + k, c + 1) and (a, b + k, c + 1). Then the coordinates of p1 and
p2 are (a − 1 + t1, b + k, c + 1) and (a, b, c + t2), respectively, and de(p1,p2) =

9.5 Analysis of the Original RBA 259

Fig. 9.14 Illustration for the
proof of Lemma 9.13. Left:
Case 1. Right: Case 2

√
(t1 − 1)2 + k2 + (t2 − 1)2. Therefore,

∂de(p1,p2)

∂t2
= t2 − 1

√
(t1 − 1)2 + k2 + (t2 − 1)2

.

Let α = 1 and

β = 1
√

(t1 − 1)2 + k2 + (t2 − 1)2
.

This proves the lemma for Case 2. �

Lemma 9.13 If e1 ‖ e2, then

∂de(p1,p2)

∂t2
= (t2 − t1)β

for some β > 0, where β is a function in t1 and t2.

Proof Without loss of generality, we can assume that e2 is parallel to the z-axis. In
this case, the parallel projection [denoted by g′(e1, e2)] of all of g’s cubes contained
between e1 and e2 is illustrated in Fig. 9.14, where A is the projective image of one
of the end points of e1, and B is that of one of the end points of e2.

Case 1. Edges e1 and e2 are on the same grid plane. Let the two end points of
e2 be (a, b, c) and (a, b, c + 1). Then the two end points of e1 are (a, b + k, c)

and (a, b + k, c + 1). Then the coordinates of p1 and p2 are (a, b + k, c + t1) and
(a, b, c + t2), respectively, and de(p1,p2) = √

(t2 − t1)2 + k2. Therefore,

∂de(p1,p2)

∂t2
= t2 − t1

√
(t2 − t1)2 + k2

.

Let

β = 1
√

(t2 − t1)2 + k2
.

This proves the lemma for Case 1.
Case 2. Now assume that edges e1 and e2 are on different grid planes. Let

the two end points of e2 be (a, b, c) and (a, b, c + 1). Then the two end points

260 9 Paths in Cube-Curves

of e1 are (a − 1, b + k, c) and (a − 1, b + k, c + 1). Then the coordinates of p1
and p2 are (a − 1, b + k, c + t1) and (a, b, c + t2), respectively, and de(p1,p2) =√

(t2 − t1)2 + k2 + 1. Therefore,

∂de(p1,p2)

∂t2
= t2 − t1

√
(t2 − t1)2 + k2 + 1

.

Let

β = 1
√

(t2 − t1)2 + k2 + 1
.

This proves the lemma for Case 2. �

This lemma will be used later for the proof of Lemma 9.17.
Let di = de(pi−1,pi) + de(pi,pi+1), for i = 1,2, . . . ,m.

Theorem 9.7 If ei ⊥ ej , where i, j = 1,2,3 and i �= j , then e1, e2, and e3 form an
end-angle iff the equation

∂(de(p1,p2) + de(p2,p3))

∂t2
= 0

has a unique root 0 or 1.

Proof Without loss of generality, we can assume that e2 is parallel to the z-axis.
(A) If e1, e2, and e3 form an end-angle, then by Definition 9.4, the z-coordinates

of two end points of e1 and e3 are equal.
Case A1. Edges e1, e3, and the first end point of e2 are on the same grid plane.

By Lemma 9.12,

∂de(p1,p2)

∂t2
= (t2 − α1)β1

where α1 = 0 and β1 > 0, and

∂de(p2,p3)

∂t2
= (t2 − α2)β2

where α2 = 0 and β2 > 0. Thus, we have

∂(de(p1,p2) + de(p2,p3))

∂t2
= t2(β1 + β2).

Therefore, the equation of the theorem has the unique root t2 = 0.
Case A2. Edges e1, e3, and the second end point of e2 are on the same grid plane.

By Lemma 9.12,

∂de(p1,p2)

∂t2
= (t2 − α1)β1

9.5 Analysis of the Original RBA 261

where α1 = 1 and β1 > 0, and

∂de(p2,p3)

∂t2
= (t2 − α2)β2

where α2 = 1 and β2 > 0. Thus, we have

∂(de(p1,p2) + de(p2,p3))

∂t2
= (t2 − 1)(β1 + β2).

Therefore, the equation of the theorem has the unique root t2 = 1.
(B) Conversely, if the equation of the theorem has a unique root 0 or 1, then e1,

e2, and e3 form an end-angle. Otherwise, e1, e2, and e3 form a middle angle. By Def-
inition 9.4, the z-coordinates of two end points of e1 are not equal to z-coordinates
of two end points of e3. (Note: Without loss of generality, we can assume that e2 ‖ z-
axis.) So e1 and e3 are not on the same grid plane.

Case B1. Edge e1 and the first end point of e2 are on the same grid plane, while
e3 and the second end point of e2 are on the same grid plane. By Lemma 9.12,

∂de(p1,p2)

∂t2
= (t2 − α1)β1

where α1 = 0 and β1 > 0, while

∂de(p2,p3)

∂t2
= (t2 − α2)β2

where α2 = 1 and β2 > 0. Thus, we have

∂(de(p1,p2) + de(p2,p3))

∂t2
= t2β1 + (t2 − 1)β2.

Therefore, t2 = 0 or 1 is not a root of the equation of the theorem. This is a contra-
diction.

Case B2. Edge e1 and the second end point of e2 are on the same grid plane,
while e3 and the first end point of e2 are on the same grid plane. By Lemma 9.12,

∂de(p1,p2)

∂t2
= (t2 − α1)β1

where α1 = 1 and β1 > 0, while

∂de(p2,p3)

∂t2
= (t2 − α2)β2

where α2 = 0 and β2 > 0. Thus, we have

∂(de(p1,p2) + de(p2,p3))

∂t2
= (t2 − 1)β1 + t2β2.

Therefore, t2 = 0 or 1 is not a root of the equation of the theorem. This is a contra-
diction as well. �

262 9 Paths in Cube-Curves

Fig. 9.15 Illustration of the proof of Lemma 9.14

Theorem 9.8 If ei ⊥ ej , where i, j = 1,2,3 and i �= j , then e1, e2, and e3 form an
inner-angle iff the equation

∂(de(p1,p2) + de(p2,p3))

∂t2
= 0

has a root t20 such that 0 < t20 < 1.

Proof If edges e1, e2, and e3 form an inner-angle, then by Definition 9.4, e1, e2, and
e3 do not form an end-angle. By Theorem 9.7, 0 or 1 is not a root of the equation
given in the theorem. By Lemma 9.12, we have

∂(de(p1,p2) + de(p2,p3))

∂t2
= (t2 − α1)β1 + (t2 − α2)β2

where α1, α2 are 0 or 1, β1 > 0 is a function of t1 and t2, and β2 > 0 is a function of
t2 and t3. Thus, α1 �= α2 (i.e., α1 = 0 and α2 = 1 or α1 = 1 and α2 = 0). Therefore,
the equation of the theorem has a root t20 such that 0 < t20 < 1.

Conversely, if the equation of the theorem has a root t20 such that 0 < t20 < 1
then, by Theorem 9.7, critical edges e1, e2, and e3 do not form an end-angle. By
Definition 9.4, e1, e2, and e3 do form an inner-angle. �

Assume that e0 ⊥ e1, e2 ⊥ e3, and e1 ‖ e2. Assume that p(ti0) is a vertex of the
MLP of g, where i = 1 or i = 2. Then we have the following:

Lemma 9.14 If e0, e3, and the first end point of e1 are on the same grid plane, and
ti0 is a root of

∂di

∂ti
= 0,

then ti0 = 0, where i = 1 or i = 2.

Proof From p0(t0)p1(0) ⊥ e1 it follows that

de

(
p0(t0)p1(0)

) = min
{
de

(
p0(t0),p1(t1)

) : t1 ∈ [0,1]}.
See Fig. 9.15. Analogously, we have

de

(
p2(0)p3(t3)

) = min
{
de

(
p2(t2),p3(t3)

) : t2 ∈ [0,1]}

9.5 Analysis of the Original RBA 263

and

de

(
p1(0)p2(0)

) = min
{
de

(
p1(t1),p2(t2)

) : t1, t2 ∈ [0,1]}.
Therefore, we have

min
{
de

(
p0(t0),p1(t1)

) + de

(
p1(t1),p2(t2)

) + de

(
p2(t2),p3(t3)

) : t1, t2 ∈ [0,1]}

≥ de

(
p0(t0),p1(0)

) + de

(
p1(0),p2(0)

) + de

(
p2(0),p3(t3)

)
.

This proves the lemma. �

Assume that we have e0 ⊥ e1, em ⊥ em+1, and ei ‖ ei+1 (i.e., the set {e1, e2, . . . ,

em} is a maximal run of parallel critical edges of g, and e0 or em+1 is the adjacent
critical edge of this set). Furthermore, let p(ti0) be a vertex of the MLP of g, where
i = 1,2, . . . ,m. Analogously to the previous lemma, we also have the following two
lemmas:

Lemma 9.15 If e0, em+1, and the first point of e1 are on the same grid plane, and
ti0 is a root of

∂di

∂ti
= 0,

then ti0 = 0, where i = 1,2, . . . ,m.

Lemma 9.16 If e0, em+1, and the second end point of e1 are on the same grid plane,
and ti0 is a root of

∂di

∂ti
= 0,

then ti0 = 1, where i = 1,2, . . . ,m.

Now we study the case that critical edges are on different grid planes. (Note that
even two parallel edges can be on different grid planes.)

Lemma 9.17 If e0 and em+1 are on different grid planes, and ti0 is a root of

∂di

∂ti
= 0,

where i = 1,2, . . . ,m, then 0 < t1 < t2 < · · · < tm < 1.

Proof Assume that e0 and the first end point of e1 are on the same grid plane, and
em+1 and the second end point of e1 are on the same grid plane. Then (by Lem-
mas 9.12 and 9.13), the derivatives ∂di

∂ti
, where i = 1,2, . . . ,m, have the following

264 9 Paths in Cube-Curves

forms:

∂d1

∂t1
= t1b11 + (t1 − t2)b12 ,

∂d2

∂t2
= (t2 − t1)b21 + (t2 − t3)b22 ,

∂d3

∂t3
= (t3 − t2)b31 + (t3 − t4)b32 ,

. . .

∂dm−1

∂tm−1
= (tm−1 − tm−2)bm−11 + (tm−1 − tm)bm−12 , and

∂dm

∂tm
= (tm − tm−1)bm1 + (tm − 1)bm2 ,

(9.21)

where bi1 > 0, bi1 is a function of ti and ti−1, bi2 > 0, and bi2 is a function of ti and
ti+1, for i = 1,2, . . . ,m.

If t10 < 0, then (due to ∂d1
∂t1

= 0) we have that t10b11 + (t10 − t20)b12 = 0. Since
b11 > 0 and b12 > 0, we also have t10 − t20 > 0 (i.e., t10 > t20).

Analogously, because of ∂d2
∂t2

= 0 we have (t20 − t10)b21 + (t20 − t30)b22 = 0. This
means that we also have t20 > t30 .

Analogously we can also verify that t30 > t40 , . . . , and tm−10 > tm0 . Therefore,
by Eq. (9.21), we have tm0 − 1 > 0. Altogether we have 0 > t10 > t20 > t30 > · · · >
tm0 > 1. This is an obvious contradiction.

If t10 = 0, then (since ∂d1
∂t1

= 0) we have that t20 = 0. Analogously, ∂d2
∂t2

= 0 im-
plies t30 = 0, and we also have t40 = 0, . . . , tm0 = 0 due to the same argument. But,
by Eq. (9.21), we have

∂dm

∂tm
= (tm − 1)bm2 = −bm2 < 0.

This contradicts ∂dm

∂tm
= 0.

If t10 ≥ 1, then (due to ∂d1
∂t1

= 0) we have t10b11 + (t10 − t20)b12 = 0. Due to

b11 > 0 and b12 > 0 we have t10 − t20 < 0 (i.e., t10 < t20). Analogously, from ∂d2
∂t2

= 0
it follows that (t20 − t10)b21 + (t20 − t30)b22 = 0. Then we have t20 < t30 , and we
also have t30 < t40 , . . . , tm−10 < tm0 . Therefore, by Eq. (9.21), we have tm0 − 1 < 0.
Altogether we have 1 ≤ t10 < t20 < t30 < · · · < tm0 < 1, which is again an obvious
contradiction. �

Let ti0 be a root of ∂di

∂ti
= 0, where i = 1,2, . . . ,m. We apply Lemmas 9.15, 9.16,

and 9.17 and obtain

Theorem 9.9 Edges e0 and em+1 are on different grid planes iff 0 < t10 < t20 <

· · · < tm0 < 1.

9.5 Analysis of the Original RBA 265

Fig. 9.16 Illustration for
Lemma 9.19

The previous three theorems characterise end-angles, inner-angles, and non-
coplanar critical edges. This knowledge will be useful for verifying a nec-
essary correction of Option 3 of the original RBA while analysing its time
complexity in the following.

The initial path of the original RBA is defined by midpoints of critical edges.
Let p1,p2 be points on a critical edge ei of curve g, and p a point on a critical

edge ej of g.

Lemma 9.18 If the line segments pp1,pp2 are contained and complete in tube g,
then the triangular region
(p1,p2,p) is also contained and complete in g.

Proof Without loss of generality, we can assume that i < j . Let a(ei, ej) be the arc
from the first cube which contains the critical edge ei to the last cube which contains
the critical edge ej . (Note that a set of consecutive critical edges will uniquely define
a cube-curve.) If line segments pp1,pp2 are contained and complete in g, then the
xy- (yz- and xz-) projection of
(p1,p2,p) is contained and complete in the xy-
(yz- and xz-) projection of a(ei, ej). Therefore, the triangular region
(p1,p2,p)

is contained and complete in the tube of a(ei, ej). �

Let O = (0,0,0), and let qi(xi, yi,0) be the projection of pi(xi, yi, zi) onto the
xy-plane, where i = 1,2; see Fig. 9.16.

Lemma 9.19 If q2 is on the left of Oq1 then p2 is on the left of Op1.

Proof This follows because (see Fig. 9.16)
Op1p2 can be obtained by continu-
ously moving qi toward pi , where i = 1,2. �

Lemma 9.20 Option 2 of the original rubberband algorithm (see Sect. 9.2) can be
computed in O(m) time, where m is the number of critical edges intersected by the
polygonal path between pi−1 and pi+1.

Proof We start with vertices of the initial polygon at the centre points of all critical
edges of the given cube-curve (as defined for the initial path of the original RBA).

266 9 Paths in Cube-Curves

It follows that the vertices of a resulting polygon, using only Option 1 of the
rubberband algorithm, are still at the centre points of critical edges.

Option 2 of the algorithm can now be implemented as follows: Let A be the
cube-arc starting at the first cube which contains critical edge ei−1, to the last cube
which contains critical edge ei+1. Proceed as follows:

1. Compute all the intersection points, denoted by SI , of the closed triangular region

(pi−1,pi,pi+1) with consecutive critical edges from ei−1 to ei+1 (note: they
are between both endpoints of a critical edge). This can be computed in O(m1)
time, where m1 = |SI | ≤ is the number of critical edges in A.

2. Let SP be the set of three planes: xy-plane, yz-plane, and zx-plane. Select a
plane α ∈ SP , such that α is not perpendicular to
(pi−1,pi,pi+1). This can be
computed in O(1) time,

3. Project SI onto α. Let the resulting set be S ′
I .

4. Apply the Melkman algorithm (i.e., Algorithm 15 which has linear time com-
plexity, see [58]) to find the convex arc, denoted by A′ in α.

5. By Lemma 9.19 (the projection of the convex hull of SI onto α is the convex hull
of S ′

I), compute a convex arc, denoted by A′′, in
(pi−1,pi,pi+1) such that A′
is the projection of A′′ onto α.

6. If each edge uw of A′′ is fully contained in the tube g, then A′′ is the required
shortest convex arc from pi−1 to pi+1. Otherwise, do not replace the arc from
pi−1 to pi+1.

Altogether, it follows that the convex arc can be computed in O(m) time,
where m is the number of critical edges intersecting the arc between pi−1 and
pi+1. �

Let κ(ε) be as in Theorem 9.3, and m is the number of critical edges of the tube g.
Due to the analysis in Sect. 3.5, we also know the following:

Lemma 9.21 Option 3 of the original RBA can be computed in κ(ε) ·O(m) time.

Together with Lemma 9.20 (which implies that all operations in Option 2 of the
original RBA can be computed in O(m) time), we have

Theorem 9.10 The original RBA is κ-linear.

In other words, the time complexity is κ(ε) · O(m), where κ(ε) is as in Theo-
rem 9.3, and m is the number of critical edges of the given simple cube-curve.

Example 9.6 We provide an example to show (in generalisation of the example) that
there are simple cube-curves such that none of the vertices of their MLPs is a grid
vertex.8 See Fig. 9.17 and Table 9.5 for an example of such a cube-curve, which lists

8This leads to two new open problems (smallest simple cube-curve without end-angle, and smallest
simple cube-curve where none of the MLP vertices is a grid point). See Problem 9.7 at the end of

9.5 Analysis of the Original RBA 267

Fig. 9.17 A simple
cube-curve such that none of
the vertices of its MLP is a
grid vertex

the coordinates of the critical edges e0, e1, . . . , e19 of g. Let v(t0), v(t1), . . . , v(t19)

be the vertices of the MLP of g such that v(ti) is on ei and ti is in [0, 1], where
i = 0,1,2, . . . ,19.

See the Appendix for a complete list of all ∂di

∂ti
(for i = 0,1, . . . ,19) for this cube-

curve g. It follows that there is no end-angle in g, but we have six inner-angles,
namely:

�(e2, e3, e4), �(e3, e4, e5), �(e6, e7, e8),

�(e9, e10, e11), �(e10, e11, e12), and � (e13, e14, e15).

By Theorem 9.8 we have that t3, t4, t7, t10, t11, and t14 are all in the open interval
(0, 1). Figure 9.17 shows that e1 ‖ e2, and e0 and e3 are on different grid planes. By
Theorem 9.9, it follows that t1 and t2 are in (0, 1), too. Analogously we have that t5
and t6 are in (0, 1), t8 and t9 are in (0, 1), t12 and t13 are in (0, 1), t15, t16, and t17 are
in (0, 1), and t18, t19, and t0 are in (0, 1). Therefore, each ti is in the open interval
(0, 1), where i = 0,1, . . . ,19, which proves that g is a simple cube-curve such that
none of the vertices of its MLP is a grid vertex. �

Example 9.7 We discuss a first counterexample (a simple cube-curve) to Option 2
of the original RBA; see Fig. 9.18. Critical edges and centres of the cubes of this
simple cube-curve, denoted by g, are shown in Tables 9.6 and 9.7, respectively.
Table 9.8 shows the vertices of the final polygon obtained by original rubberband
algorithm.

We discuss why the vertices of the final polygon are not those of the MLP, for
curve g as shown in Fig. 9.19:

The cyan polyline q3q5q7q11 is shorter than the red polyline p3p7p11. However,
according to Option 2, p3p7p11 cannot be improved. In other words, limited by (the

this chapter. We consider that the second problem (i.e., all MLP vertices not at a grid point) is more
difficult to solve.

268 9 Paths in Cube-Curves

Table 9.5 Coordinates of endpoints of critical edges of the curve of Fig. 9.17

Critical edge xi1 yi1 zi1 xi2 yi2 zi2

e0 −1 4 7 −1 4 8

e1 1 4 7 1 5 7

e2 2 4 5 2 5 5

e3 4 5 4 4 5 5

e4 4 7 4 5 7 4

e5 5 7 2 5 8 2

e6 7 7 2 7 8 2

e7 7 8 4 8 8 4

e8 8 10 4 8 10 5

e9 10 10 4 10 10 5

e10 10 8 5 11 8 5

e11 11 7 7 11 8 7

e12 12 7 7 12 7 8

e13 12 5 7 12 5 8

e14 10 4 8 10 5 8

e15 9 4 10 10 4 10

e16 9 0 10 10 0 10

e17 9 0 8 10 0 8

e18 9 1 7 9 1 8

e19 −1 2 7 −1 2 8

Fig. 9.18 All critical edges
of a simple cube-curve used
for testing Option 2 of the
original RBA; see
Example 9.7

original) Option 2, we cannot use the shorter polyline q3q5q7q11 instead of polyline
p3p7p11. This is because the vertices q3 and q7 are not in the set of the intersection
points between any critical edge in the set {ei : i = 4,5,6,7,8,9,10} and the closed
triangular region
(p3,p7,p11). �

Example 9.8 We also discuss a second counterexample (see Fig. 9.20) to Option 2
of the original RBA. The critical edges and centres of the cubes of this simple cube-
curve, again denoted by g, are shown in Tables 9.9 and 9.10, respectively. Table 9.11
shows the vertices of the final polygon obtained when applying the original rubber-
band algorithm.

9.5 Analysis of the Original RBA 269

Table 9.6 Coordinates of endpoints of critical edges of the curve of Fig. 9.18

Critical edge xi1 yi1 zi1 xi2 yi2 zi2

e1 −0.5 1 0.5 0.5 1 0.5

e2 −0.5 1 0.5 −0.5 2 0.5

e3 −1.5 1 0.5 −1.5 1 1.5

e4 −2.5 0 0.5 −2.5 0 1.5

e5 −2.5 −1 0.5 −2.5 0 0.5

e6 −3.5 −1 0.5 −2.5 −1 0.5

e7 −3.5 −3 −0.5 −3.5 −3 0.5

e8 −3.5 −4 0.5 −3.5 −3 0.5

e9 −4.5 −4 0.5 −4.5 −3 0.5

e10 −4.5 −4 1.5 −4.5 −3 1.5

e11 −5.5 −4 1.5 −5.5 −3 1.5

e12 −5.5 −4 1.5 −5.5 −4 2.5

e13 −6.5 −4 1.5 −6.5 −4 2.5

e14 −7.5 −5 2.5 −7.5 −4 2.5

e15 −8.5 −5 2.5 −7.5 −5 2.5

e16 −8.5 −7 2.5 −7.5 −7 2.5

e17 −7.5 −8 0.5 −7.5 −7 0.5

e18 −0.5 −7 −0.5 −0.5 −7 0.5

Table 9.7 Centres of the cubes in the simple cube-curve shown in Fig. 9.18

i (xi , yi , zi) i (xi, yi , zi) i (xi , yi , zi) i (xi, yi , zi)

1 (0, −7.5, 0) 12 (−1, 1.5, 1) 23 (−5, −3.5, 1) 34 (−8, −7.5, 1)

2 (0, −6.5, 0) 13 (−2, 1.5, 1) 24 (−5, −3.5, 2) 35 (−8, −7.5, 0)

3 (0, −5.5, 0) 14 (−2, 0.5, 1) 25 (−6, −3.5, 2) 36 (−7, −7.5, 0)

4 (0, −4.5, 0) 15 (−2, −0.5, 1) 26 (−6, −4.5, 2) 37 (−6, −7.5, 0)

5 (0, −3.5, 0) 16 (−3, −0.5, 1) 27 (−7, −4.5, 2) 38 (−5, −7.5, 0)

6 (0, −2.5, 0) 17 (−3, −0.5, 0) 28 (−8, −4.5, 2) 39 (−4, −7.5, 0)

7 (0, −1.5, 0) 18 (−3, −1.5, 0) 29 (−8, −4.5, 3) 40 (−3, −7.5, 0)

8 (0, −0.5, 0) 19 (−3, −2.5, 0) 30 (−8, −5.5, 3) 41 (−2, −7.5, 0)

9 (0, 0.5, 0) 20 (−3, −3.5, 0) 31 (−8, −6.5, 3) 42 (−1, −7.5, 0)

10 (0, 1.5, 0) 21 (−4, −3.5, 0) 32 (−8, −7.5, 3) 43 (0, −7.5, 0)

11 (0, 1.5, 1) 22 (−4, −3.5, 1) 33 (−8, −7.5, 2) 44 (0, −6.5, 0)

We discuss why the vertices of the final polygon are not those of the MLP of
curve g shown in Fig. 9.20:

The cyan polyline q9q10q12q14 is shorter than the red polyline p9p11p14. How-
ever, according to Option 2, p9p11p14 cannot be improved. In other words, by Op-

270 9 Paths in Cube-Curves

Table 9.8 An example
output of the original RBA.
i is the index of the critical
edge ei . Point pi is a vertex
(on ei) of a polygon
contained in the simple
cube-curve shown in Fig. 9.18

i pi (xi , yi , zi)

1 (−0.5, 1, 0.5)

3 (−1.5, 1, 1)

7 (−3.5, −3, 0)

11 (−5.5, −4, 1.5)

15 (−7.5, −5, 2.5)

16 (−7.5, −7, 2.5)

17 (−7.5, −7, 0.5)

18 (−0.5, −7, 0.5)

Fig. 9.19 Three critical
edges of the simple
cube-curve used for testing
Option 2 of the original RBA;
see Example 9.7

tion 2 we cannot identify the actual shorter polyline q9q10q12q14 when considering
the polyline p9p11p14. This is because the vertex q10 is not in the set of the inter-
section points between any critical edge in the set {ei : i = 10,11,12,13} and the
closed triangular region
(p9,p11,p14). �

Example 9.9 Figure 9.21 shows a non-first-class simple cube-curve. The figure
shows resulting polygons when applying the original RBA, or the revision of the
original RBA (called the revised RBA for short; to be detailed below), respectively.
At the top of the figure, edge p(t90)p(t130) is not contained in the tube g while
p(t̄90)p(t̄130) is contained in it. The bottom of the figure shows the same polygons
as at the top, but with all the cubes removed.

See Table 9.12 for the data of this curve shown in Fig. 9.21 and for the final t

values obtained via the original or the revised RBA. p(t90)p(t130) is not contained
in tube g (see also Fig. 9.21). p(t̄90)p(t̄130) is contained in the curve.

We start with the polygonal curve L1. After applying Option 1, we obtain the
curve L2. Then we apply Option 2 and obtain the curve L3. Finally, we apply Op-
tion 3 as given in the original RBA, and we obtain curve L4 as the final result.

For the resulting polygon L4, note that edge p(t90)p(t130) is not contained in the
tube g. This means that the final polygon is not contained in the tube g! This is be-
cause Option 3 of the original RBA did not check whether pi−1pnew and pnewpi+1
are both contained in the tube g. A minor but essential correction is required to fix
this problem.

The figure also shows the corrected polygon L5. Note that edge p(t̄90)p(t̄130) is
now contained in the tube g. �

9.5 Analysis of the Original RBA 271

Fig. 9.20 Three critical
edges of a simple cube-curve
also used for testing Option 2
of the original RBA; see
Example 9.8

Figure 9.22 shows that there are cases where none of the two endpoints of an
edge of the polygonal curve (resulting from Option 2) is allowed to do any move
along a critical edge. This leads to a further modification of the original Option 3.

We consider cubes c1 and c2, and two different critical edges e1 and e2. Line
p1p2 is contained and complete in the arc from the cube which contains e1 to the
cube which contains e2. p1p2 intersects with c1 and c2 only at a single point each.
If p1 moves to the left along e1, then p1p2 will not intersect with c2 anymore. If
p1 moves to the right along e1, then p1p2 will not intersect with c1 anymore. If p2

moves up along e2, then p1p2 will not intersect with c2 anymore. If p2 moves down
along e2, then p1p2 will not intersect with c1 anymore.

Table 9.9 Coordinates of endpoints of critical edges of the curve of Fig. 9.20

Critical edge xi1 yi1 zi1 xi2 yi2 zi2

e1 0.5 1 −0.5 0.5 1 −0.5

e2 −0.5 1 −0.5 0.5 1 −0.5

e3 −0.5 2 −0.5 0.5 2 −0.5

e4 0.5 4 −1.5 0.5 4 −0.5

e5 0.5 4 −0.5 0.5 5 −0.5

e6 1.5 4 −0.5 1.5 5 −0.5

e7 1.5 4 −0.5 1.5 4 0.5

e8 2.5 4 −0.5 2.5 4 0.5

e9 2.5 3 0.5 2.5 4 0.5

e10 2.5 3 1.5 3.5 3 1.5

e11 3.5 3 1.5 3.5 3 2.5

e12 4.5 2 1.5 4.5 3 1.5

e13 5.5 2 1.5 5.5 3 1.5

e14 6.5 2 0.5 6.5 3 0.5

e15 7.5 2 −0.5 7.5 3 −0.5

e16 9.5 2 −0.5 9.5 3 −0.5

e17 9.5 2 −0.5 10.5 2 −0.5

e18 9.5 1 −0.5 9.5 1 0.5

272 9 Paths in Cube-Curves

Table 9.10 Centres of the cubes in the simple cube-curve shown in Fig. 9.20

i (xi , yi , zi) i (xi , yi , zi) i (xi , yi, zi) i (xi , yi , zi)

1 (10, 0.5, 0) 11 (0, 0.5, 0) 21 (3, 3.5, 0) 31 (7, 2.5, –1)

2 (9, 0.5, 0) 12 (0, 1.5, 0) 22 (3, 3.5, 1) 32 (8, 2.5, –1)

3 (8, 0.5, 0) 13 (0, 1.5, –1) 23 (3, 3.5, 2) 33 (9, 2.5, –1)

4 (7, 0.5, 0) 14 (0, 2.5, –1) 24 (3, 2.5, 2) 34 (10, 2.5, –1)

5 (6, 0.5, 0) 15 (0, 3.5, –1) 25 (4, 2.5, 2) 35 (10, 2.5, 0)

6 (5, 0.5, 0) 16 (0, 4.5, –1) 26 (5, 2.5, 2) 36 (10, 1.5, 0)

7 (4, 0.5, 0) 17 (1, 4.5, –1) 27 (5, 2.5, 1) 37 (10, 0.5, 0)

8 (3, 0.5, 0) 18 (1, 4.5, 0) 28 (6, 2.5, 1) 38 (9, 0.5, 0)

9 (2, 0.5, 0) 19 (2, 4.5, 0) 29 (7, 2.5, 1)

10 (1, 0.5, 0) 20 (2, 3.5, 0) 30 (7, 2.5, 0)

Table 9.11 An example
output of the original RBA.
i is the index of the critical
edge ei . Point pi is a vertex
(on ei) of a polygon
contained in the simple
cube-curve shown in Fig. 9.20

i pi (xi , yi , zi)

1 (0.5, 1, −0.5)

5 (0.5, 4.3626, −0.5)

9 (2.5, 3.6374, 0.5)

11 (3.5, 3, 2)

14 (6.5, 2.5044, 0.5)

15 (7.5, 2.2955, −0.5)

16 (9.5, 2, −0.5)

18 (9.5, 1, −0.5)

The following (revised) Option 3 ensures that the final polygon is always
contained and complete in the tube g.

We use Fig. 9.23 for an illustration of the revised Option 3.
Let pi = pi(ti) and pnew = pi(ti0). By Option 3 in the original RBA, ti , ti0 ∈

[0,1]. Let ε be a sufficiently small positive real number.
(Case 1. ti < ti0 .) See Fig. 9.23 on the left.
(Case 1.1. Both pi−1p(ti + ε) and pi+1p(ti + ε) are inside the arc from pi−1

to pi+1.) If both pi−1pnew and pi+1pnew are inside the arc from ei−1 to ei+1, then
p̄new = pnew. Otherwise, by Lemmas 9.18 and 9.4, use binary search to find a value
t̄i0 ∈ (ti , ti0), and then let p̄new = p(t̄i0).

(Case 1.2. Either pi−1p(ti + ε) or pi+1p(ti + ε) is outside the arc from ei−1 to
ei+1.) Then let p̄new = pi(ti) = pi .

(Case 2. ti0 < ti .) See Fig. 9.23 on the right.
(Case 2.1. Both pi−1p(ti − ε) and pi+1p(ti − ε) are inside the arc from pi−1

to pi+1.) If both pi−1pnew and pi+1pnew are inside the arc from ei−1 to ei+1, then

9.5 Analysis of the Original RBA 273

Fig. 9.21 An example of a
non-first-class simple
cube-curve. See text for
details

p̄new = pnew. Otherwise, (again by Lemmas 9.18 and 9.4) use binary search to find
a value t̄i0 ∈ (ti0, ti), and then let p̄new = p(t̄i0).

(Case 2.2. Either pi−1p(ti − ε) or pi+1p(ti − ε) is outside the arc from ei−1 to
ei+1.) Then let p̄new = pi(ti) = pi .

This revised Option 3 now contains the test of inclusion (which was missing in
the original algorithm), and it details the operations for minimising the length of
the calculated polygonal curve, providing a more specific description of Option 3
compared to the original RBA.

The revised Option 3 defines the revised RBA, which is short for ‘revision of the
original RBA’.

To summarise this section, we constructed a non-trivial simple cube-curve such
that none of the vertices of its MLP is a grid vertex. Indeed, Theorems 9.7 and 9.9,
and Lemmas 9.16 and 9.17 allow for the following conclusion:

Corollary 9.1 Given a simple first-class cube-curve g. None of the vertices of its
MLP is at a grid point position iff g has no end angle and, for every maximal run of
parallel edges of g, its two adjacent critical edges are not on the same grid plane.

It follows that the (provably correct) MLP algorithm proposed in Sect. 9.4 can-
not be applied to such a cube-curve because this algorithm requires at least one
end-angle for decomposing a given cube-curve into arcs. Of course, the original or
revised RBA is applicable, and will produce a result (i.e., a polygonal curve).

We also proved that the original or revised RBA has κ-linear time complexity
κ(ε)×O(m), where m is the number of critical edges of a given simple cube-curve,
and ε > 0 the accuracy parameter.

274 9 Paths in Cube-Curves

Table 9.12 Coordinates of endpoints of critical edges in Fig. 9.21. See text for details

Critical edge xi1 yi1 zi1 xi2 yi2 zi2 ti0 t̄i0

e0 0.5 1 −0.5 0.5 1 0.5 1 1

e1 −0.5 1 0.5 0.5 1 0.5 − −
e2 −0.5 2 1.5 0.5 2 1.5 0.7574 0.7561

e3 −0.5 3 1.5 0.5 3 1.5 0.5858 0.5837

e4 −0.5 4 1.5 0.5 4 1.5 0.4142 0.4113

e5 −0.5 5 1.5 0.5 5 1.5 0.2426 0.2388

e6 −0.5 6 1.5 0.5 6 1.5 − −
e7 −0.5 6 1.5 −0.5 6 2.5 1 0.9581

e8 −0.5 6 2.5 −0.5 7 2.5 − −
e9 −1.5 6 3.5 −1.5 7 3.5 0 0.5

e10 −2.5 6 3.5 −2.5 6 4.5 − −
e11 −3.5 6 4.5 −2.5 6 4.5 − −
e12 −3.5 5 4.5 −3.5 6 4.5 − −
e13 −3.5 5 5.5 −3.5 6 5.5 0.2612 0.5

e14 −4.5 5 5.5 −3.5 5 5.5 − −
e15 −4.5 5 6.5 −3.5 5 6.5 − −
e16 −3.5 4 6.5 −3.5 5 6.5 1 1

e17 1.5 4 6.5 1.5 5 6.5 0.5455 0.5455

e18 1.5 4 0.5 2.5 4 0.5 0 0

e19 1.5 1 −0.5 1.5 1 0.5 1 1

Fig. 9.22 An example where
any move of one of the two
end points of a line segment
along critical edges is
impossible

9.6 RBAs for MLP Calculation in Any Simple Cube-Curve

In this section, we finally present two provably correct RBAs for the MLP calcu-
lation in any simple cube-curve. At first, we summarise the revised RBA under the
name edge-based RBA; it uses Option 2 of the original RBA and revised Option 3.
The step set of this algorithm is given by critical edges. Furthermore, we also pro-
pose a face-based RBA where the step set is defined by cube faces incident with
critical edges. The face-based RBA moves vertices of constructed curves within
faces of cubes, rather than along critical edges; it does not use Option 2 at all but it
is conceptually somehow more complicated than the edge-based algorithm.

9.6 RBAs for MLP Calculation in Any Simple Cube-Curve 275

Fig. 9.23 Illustration for revised Option 3. Left: Case 1. Right: Case 2

With respect to asymptotic time, both the edge-based and the face-based RBA
are κ-linear in the number of critical edges of a given simple cube-curve. We start
with defining a simple but very useful notion:

Definition 9.10 If f is a face of a cube in g and one of f ’s edges is a critical edge e

in g then f is called a critical face of e in g, or simply a critical face. In this case,
we say that e is in critical face f .

The basic computational task of the graph-theoretical algorithm in Sect. 9.3
(addressed by Lines 1 through 20) consists in selecting this set, but this graph-
theoretical algorithm is not time-efficient for large inputs. Option 2 of the original
RBA was also designed having this goal in mind, but (we discussed that) it was
flawed.

We need to undertake a very close observation of the geometric structure of sim-
ple cube-curves, and introduce for this purpose a few rather technical definitions:

Definition 9.11 Let e be a critical edge of a simple cube-curve g and f1, f2 be
two critical faces of e in g. Let c1, c2 be the centres of f1, f2, respectively. Then a
polygonal curve can go in the direction from c1 to c2, or from c2 to c1, to visit all
cubes in g so that each cube is visited exactly once. If e is to the left of line segment
c1c2, then the orientation from c1 to c2 is called counter-clockwise orientation of g.
f1 is called the first critical face of e in g. If e is to the right of line segment c1c2,
then the direction from c1 to c2 is called clockwise orientation of g.

Definition 9.12 A minimum-length pseudo-polygon of a simple cube-curve g, de-
noted by MLPP, is a shortest curve ρ which is contained and complete in tube g
such that each vertex of ρ is on the first critical face of a critical edge in g.

The number of vertices of an MLPP is the number of all critical edges of g.
Let fi1 and fi2 be two critical faces of ei in g, for i = 1,2. Let ci1 and ci2 be the
centres of fi1 and fi2, respectively, for i = 1,2. Obviously, the counter-clockwise
orientation of g defined by c11 and c12 is identical to the one defined by c21 and c22.

Definition 9.13 Let e0, e1, e2, . . . , em, and em+1 be all consecutive critical edges
of g in counter-clockwise orientation of g. Let fi be the first critical face of ei in

276 9 Paths in Cube-Curves

Fig. 9.24 A simple
cube-curve and its MLP. See
Example 9.10 and Table 9.13

g, and pi be a point on fi , for i = 0,1,2, . . . ,m,m + 1. Then the polygonal curve
p0p1 . . . pmpm+1 is called an approximate minimum-length pseudo-polygon of g,
denoted by AMLPP.

Example 9.10 Figure 9.24 shows 19 critical faces fi , where i = 0,1, . . . ,18. This
cube-curve is not first-class because there are no vertices of the MLP on the follow-
ing critical edges: e1, e4, e5, e6, e8, e9, e10, e11, and e14. (If not yet clear at this point
then we refer to experiments which are later reported in this section for the shown
curve.)

Figure 9.24 shows all critical edges (e0, e1, e2, . . . , e18) and their first critical
faces (f0, f1, f2, . . . , f18) of a simple cube-curve, denoted by g19.

Curve p4
0p

4
1 . . . p4

18 (see Table 9.15) is the MLPP of g as shown in Fig. 9.24.
The polygonal curve p1

0p
1
1 . . . p1

18 (see Table 9.14) is an AMLPP of g18 shown in
Fig. 9.24. �

Definition 9.14 Let p1, p2, and p3 be three consecutive vertices of an AMLPP of a
simple cube-curve g. If p1, p2, and p3 are collinear, then p2 is called a trivial vertex
of the AMLPP of g. Point p2 is called a non-trivial vertex of the AMLPP of g if it
is not a trivial vertex of that AMLPP of g.

We recall that a simple cube-arc is an alternating sequence

ρ = (f0, c0, f1, c1, . . . , fk, ck, fk+1)

of faces fi and cubes ci with fk+1 �= f0, denoted by ρ = (f0, f1, . . . , fk+1), or
ρ(f0, fk+1) for short; it is a connected part of a simple cube-curve. A subarc of an
arc ρ(f0, fk+1) is an arc ρ(fi, fj), where 0 ≤ i ≤ j ≤ k + 1.

Definition 9.15 Let a polygonal curve ρ = p0p1 · · ·pmpm+1 be an AMLPP of g

and pi ∈ fi , where fi is a critical face of g, for i = 0,1,2, . . . ,m + 1. A cube-arc
ρ(fi, fj) is called

9.6 RBAs for MLP Calculation in Any Simple Cube-Curve 277

Table 9.13 Coordinates of endpoints of critical edges shown in Fig. 9.24: these data are used later
in an experiment

Critical edge xi1 yi1 zi1 xi2 yi2 zi2

e0 −0.5 1 −0.5 −0.5 1 0.5

e1 −0.5 2 −0.5 −0.5 2 0.5

e2 −1.5 3 −0.5 −1.5 3 0.5

e3 −2.5 3 −0.5 −2.5 4 −0.5

e4 −3.5 3 −0.5 −3.5 4 −0.5

e5 −3.5 3 −1.5 −3.5 4 −1.5

e6 −4.5 3 −1.5 −4.5 4 −1.5

e7 −5.5 4 −2.5 −5.5 4 −1.5

e8 −6.5 4 −2.5 −5.5 4 −2.5

e9 −6.5 4 −2.5 −6.5 5 −2.5

e10 −6.5 4 −3.5 −6.5 5 −3.5

e11 −7.5 4 −3.5 −7.5 5 −3.5

e12 −7.5 4 −4.5 −7.5 5 −4.5

e13 −8.5 4 −5.5 −7.5 4 −5.5

e14 −8.5 4 −6.5 −8.5 4 −5.5

e15 −8.5 3 −6.5 −8.5 3 −5.5

e16 −9.5 −1 −5.5 −8.5 −1 −5.5

e17 −8.5 −2 −0.5 −8.5 −1 −0.5

e18 −0.5 −1 −0.5 −0.5 −1 0.5

• a (2,3)-cube-arc with respect to ρ if each vertex pk is identical to pk−1 or pk+1,
where k = i + 1, . . . , j − 1,9

• a maximal (2,3)-cube-arc with respect to ρ if it is a (2,3)-cube-arc and pi is not
identical to pi+1 and pi−1, and pj is not identical to pj−1 and pj+1,

• a 3-cube-arc unit with respect to ρ if it is a (2,3)-cube-arc such that j = i +
4(modm + 2) and pi+1, pi+2, pi+3 are identical,

• a 2-cube-arc with respect to ρ if it is a (2,3)-cube-arc and no three consecutive
vertices of ρ on a are identical,

• a maximal 2-cube-arc with respect to ρ if it is both a maximal (2,3)-cube-arc and
a 2-cube-arc as well,

• a 2-cube-arc unit with respect to ρ if it is a 2-cube-arc such that j = i +
3(modm + 2) and pi+1 is identical to pi+2,

• a regular cube-arc unit with respect to ρ if a = (fi, fi+1, fj) such that pi is not
identical to pi+1 and pj is not identical to pi+1,

• a cube-arc unit with respect to ρ if a is a regular cube-arc unit, 2-cube-arc unit or
3-cube-arc unit, or

9Note that it is impossible that four consecutive vertices of ρ are identical.

278 9 Paths in Cube-Curves

Table 9.14 Comparison of results of operations of the face-based RBA. Points p1
0,p1

1, . . . , p1
18

are the results of Line 2; points p2
0,p2

1, . . . , p2
18 are the results of Line 3

p1i x1i y1i z1i p2i x2i y2i z2i

p1
0 −0.5 1 0 p2

0 −0.5 1 −0.21

p1
1 −0.5 1 0 p2

1 −0.5 1 −0.21

p1
2 −1.5 3 −0.34 p2

2 −1.5 3 −0.34

p1
3 −2.5 3.29 −0.5 p2

3 −2.5 3.23 −0.5

p1
4 −2.5 3.29 −0.5 p2

4 −2.5 3.23 −0.5

p1
5 −3.5 3.5 −1.11 p2

5 −3.5 3.45 −1.11

p1
6 −4.15 3.64 −1.5 p2

6 −4.15 3.64 −1.5

p1
7 −5.5 3.94 −2.32 p2

7 −5.5 3.94 −2.32

p1
8 −5.8 4 −2.5 p2

8 −5.69 4 −2.5

p1
9 −5.8 4 −2.5 p2

9 −5.69 4 −2.5

p1
10 −6.5 4 −3.32 p2

10 −6.5 4 −3.32

p1
11 −6.65 4 −3.5 p2

11 −6.65 4 −3.5

p1
12 −7.5 4 −4.5 p2

12 −7.5 4 −4.5

p1
13 −7.95 4 −5.5 p2

13 −8 4 −5.5

p1
14 −7.95 4 −5.5 p2

14 −8 4 −5.5

p1
15 −8.5 3 −5.5 p2

15 −8.5 3 −5.5

p1
16 −8.5 −1 −5.5 p2

16 −8.5 −1 −5.5

p1
17 −8.5 −1 −0.5 p2

17 −8.5 −1 −0.5

p1
18 −0.5 −1 −0.1 p2

18 −0.5 −1 −0.1

• a regular cube-arc with respect to ρ if no two consecutive vertices of ρ on a are
identical.

Example 9.11 This example continues with Example 9.10. Tables 9.14 and 9.15 are
also used further down for the face-based RBA which has not yet been defined at
this point.

Let ρi
18 = pi

0p
i
1 · · ·pi

18 (see Tables 9.14 and 9.15), where i = 1,2,3,4. Then
there are four maximal 2-cube-arcs with respect to ρi

18: (pi
18, pi

0, pi
1, pi

2), (pi
2, pi

3,
pi

4, pi
5), (pi

7, pi
8, pi

9, pi
10), and (pi

12, pi
13, pi

14, pi
15) in total, where i = 1,2,3. They

are also maximal 2-cube-arcs and 2-cube-arc units with respect to ρi
18, where i =

1,2,3. There are no 3-cube-arc units with respect to ρi
18, where i = 1,2. (pi

1, pi
2,

pi
3) is a regular cube-arc unit with respect to ρi

18, and (pi
4, pi

5, pi
6, pi

7, pi
8) is a regular

cube-arc with respect to ρi
18, where i = 1,2,3.

There are three maximal 2-cube-arcs with respect to ρ4
18: (p4

18, p4
0, p4

1, p4
2), (p4

2,
p4

3, p4
4, p4

5), and (p4
12, p4

13, p4
14, p4

15) in total. They are also maximal 2-cube-arcs
and 2-cube-arc units with respect to ρ4

18. (p4
6, p4

7, p4
8, p4

9, p4
10, p4

11, p4
12) is a (2,3)-

9.6 RBAs for MLP Calculation in Any Simple Cube-Curve 279

Table 9.15 Comparison of results of operations of the face-based RBA. Points p3
0,p3

1, . . . , p3
18

are the results of Line 4; points p4
0,p4

1, . . . , p4
18 are the results of Line 7

p3i x3i y3i z3i p4i x4i y4i z4i

p3
0 −0.5 1 −0.21 p4

0 −0.5 1 −0.5

p3
1 −0.5 1 −0.21 p4

1 −0.5 1 −0.5

p3
2 −1.5 3 −0.41 p4

2 −1.5 3 −0.5

p3
3 −2.5 3.23 −0.5 p4

3 −2.5 3.22 −0.5

p3
4 −2.5 3.23 −0.5 p4

4 −2.5 3.22 −0.5

p3
5 −3.5 3.47 −1.13 p4

5 −3.5 3.48 −1.17

p3
6 −4.09 3.62 −1.5 p4

6 −4 3.61 −1.5

p3
7 −5.5 3.95 −2.38 p4

7 −5.5 4 −2.5

p3
8 −5.69 4 −2.5 p4

8 −5.5 4 −2.5

p3
9 −5.69 4 −2.5 p4

9 −5.5 4 −2.5

p3
10 −6.5 4 −3.4 p4

10 −6.5 4 −3.5

p3
11 −6.59 4 −3.5 p4

11 −6.5 4 −3.5

p3
12 −7.5 4 −4.5 p4

12 −7.5 4 −4.5

p3
13 −8 4 −5.5 p4

13 −8 4 −5.5

p3
14 −8 4 −5.5 p4

14 −8 4 −5.5

p3
15 −8.5 3 −5.5 p4

15 −8.5 3 −5.5

p3
16 −8.5 −1 −5.5 p4

16 −8.5 −1 −5.5

p3
17 −8.5 −1 −0.5 p4

17 −8.5 −1 −0.5

p3
18 −0.5 −1 −0.27 p4

18 −0.5 −1 −0.5

cube-arc with respect to P 4
18. (p4

6, p4
7, p4

8, p4
9, p4

10) is a unique 3-cube-arc unit with
respect to ρ4

18. �

Definition 9.16 Let ρ = (fi, fi+1, . . . , fj) be a simple cube-arc and pk ∈ fk ,
for k = i, j . A minimum-length arc with respect to pi and pj of ρ, denoted by
MLA(pi,pj), is a shortest arc (from pi to pj) which is contained and complete in
ρ such that each vertex of MLA(pi,pj) is on the first critical face of a critical edge
in ρ.

Let si and s′
i be ith side of faces f and f ′, respectively (i = 1,2,3,4). If f

contains f ′ and the Euclidean distance between si and s ′
i is ε (i = 1,2,3,4), then

we say that f ′ is obtained from f by ε-dilation, or, in short, is a (first critical)
dilation face (see Fig. 9.25).

The following lemma is used for the description of the edge-based RBA fur-
ther below. Let pi ∈ fi , where fi is the first critical face of ei in g, for i =
0,1,2, . . . ,m + 1. We consider a polygonal curve ρ = p0p1 · · ·pmpm+1.

Lemma 9.22 Let pi and pi+1 be two consecutive vertices of an AMLPP of g. If pi

is identical to pi+1 then pi and pi+1 are on a critical edge of g.

280 9 Paths in Cube-Curves

Fig. 9.25 Illustration of
ε-dilation. Left: a first critical
face. Right: a first critical
ε-dilation face

Analogously to the proof of Theorem 9.1, we also obtain (see Definition 9.14)
the following:

Lemma 9.23 If a vertex p of an AMLPP of g is on a first critical face f but not on
a critical edge of it, then p is a trivial vertex of the AMLPP.

We present below three algorithms for MLP calculation in simple cube-curves
which are all κ-linear-time and provably correct (i.e., the calculated curves are
converging to the MLP of a simple cube-curve).

We start with describing some useful procedures which are part of the first two
of those three algorithms (in the sense of subroutines). The third algorithm is simple
and does not apply any of the following procedures.

Given a critical e in g, and two points p1 and p3 in g such that neither p1 nor p3

is an endpoint of e,10 by Procedure 17 (see Fig. 9.26),11 we can find a unique point
p2 in e such that

dp1p2 + dp3p2 = min{dp1p + dp3p : p ∈ e}.
For the next Procedure 18 (see Fig. 9.27), assume a critical face f of a critical

edge in g, and two points p1 and p3 in the tube g; by Procedure 18 we find a point
p2 in f such that dp1p2 + dp3p2 = min{dp1p + dp3p : p ∈ f }.

Procedure 17
Input: A critical edge e in g, and two points p1 and p3 in g such that neither p1 nor
p3 is an endpoint of e.
Output: A unique point p2 in e such that dp1p2 + dp3p2 = min{dp1p + dp3p :
p ∈ e}.

1: Let a and b be the two endpoints of e.
2: Let p2 = a + t × (b − a), where t = −(A1B2 + A2B1)/(B2 + B1); A1, A2, B1,

and B2 are functions of the coordinates of p1, p3, a, and b.

Fig. 9.26 Procedure for computing an optimal point on a critical edge

10Otherwise, we update e by removing a sufficiently small segment(s) from its endpoint. This is
another way to handle the degenerate case (see Sect. 3.4) of the used RBA.
11For Line 2, see Lemma 6 in [40].

9.6 RBAs for MLP Calculation in Any Simple Cube-Curve 281

Procedure 18
Input: A critical face f of a critical edge in g, and two points p1 and p3 in tube g.
Output: A point p2 in f such that dp1p2 + dp3p2 = min{dp1p + dp3p : p ∈ f }.

1: if p1p3 and f are on the same plane then
2: if p1p3 ∩ f �= ∅ then
3: Let p2 be that end point of this segment which is closer to p1.
4: else
5: Apply Procedure 17 on the four edges of f , denoted by e1, e2, e3, and e4;

we obtain p2i
such that dp1p2i

+dp3p2i
= min{dp1p +dp3p : p ∈ ei}, where

i = 1,2,3,4.
6: Compute a point p2 such that dp1p2 + dp3p2 = min{dp1p2i

+ dp3p2i
: i =

1,2,3,4}.
7: end if
8: else
9: if p1p3 ∩ f �= ∅ then

10: p1p3 ∩ f must be a unique point. Let p2 be this point.
11: else
12: Compute p2 exactly the same way as Lines 4–6.
13: end if
14: end if

Fig. 9.27 Procedure for computing an optimal point on a critical face

Fig. 9.28 Position of point
p2

In Line 3 of Procedure 18, in this case, p1p3 ∩f is a line segment. See Fig. 9.28.
In Line 5, by Lemma 8.1, p2 must be on the edges of f . By Lemma 9.4, p2 must be
uniquely on one of the edges of f .

The next Procedure 19 (see Fig. 9.29) is used to convert an MLPP into an MLP.
Given are a polygonal curve ρ = p0p1 · · ·pmpm+1 and three pointers addressing
vertices at positions i − 1, i, and i + 1 in this curve. Delete pi if pi−1, pi , and
pi+1 are collinear. Next, the subsequence (pi−1,pi,pi+1) is replaced in the curve
by (pi−1,pi+1). Then, continue with vertices (pi−1,pi+1,pi+2) until i + 2 equals
m + 1.

Let pi ∈ li ⊂ fi, . . . , pj ∈ lj ⊂ fj be a sequence of some consecutive vertices
of the AMLPP of g, where fi, . . . , fj are some consecutive critical faces of g, and
lk is a line segment on fk , k = i, i + 1, . . . , j . Let ε = 10−10 be an example for
an accuracy parameter. We can apply the method of Option 3 of the original RBA
(see Sect. 9.2), also including its correction in the previous section, for a cube-
arc ρ(fi, fj) and for finding an approximate minimum-length arc MLA(pi,pj).

282 9 Paths in Cube-Curves

Procedure 19
Input: A polygonal curve ρ = (p0,p1, . . . , pm,pm+1).
Output: A polygonal curve (p′

0,p
′
1, . . . , p

′
m′,p′

m′+1) such that any three consec-
utive vertices p′

i−1, p′
i , and p′

i+1 are not collinear, where i = 1,2, . . . ,m′ and
m′ ≤ m.

1: Let i = 1.
2: while i + 2 < m + 1 do
3: while pi−1, pi , and pi+1 are collinear do
4: Update the curve ρ by replacing the subsequence (pi−1,pi,pi+1) in the

curve by (pi−1,pi+1).
5: end while
6: Let i = i + 1.
7: end while

Fig. 9.29 Procedure for removing redundant vertices from a polygonal curve

Procedure 20 (RBA for finding an approximate MLA)
Input: Let pi ∈ li ⊂ fi, . . . , pj ∈ lj ⊂ fj be a sequence of some consecutive vertices
of the AMLPP of g, where fi, . . . , fj are some consecutive critical faces of g, and
lk is a line segment on fk , k = i, i + 1, . . . , j and an accuracy parameter ε > 0.
Output: An approximate MLA(pi,pj).

1: Lcurrent ← ∑j

j ′=i
de(pj ′,pj ′+1); and let Lprevious ← ∞.

2: while Lprevious − Lcurrent ≥ ε do
3: for each j ′ ∈ {i, i + 1, . . . , j} do
4: Apply Procedure 17 for computing a point qj ′ ∈ lj ′ such that

de(pj ′−1, qj ′) + de(qj ′,pj ′+1) = min{de(pj ′−1,p) + de(p,pj ′+1) : p ∈
lj ′ }.

5: Update the path (pi,pi+1, . . . , pj) by replacing pj ′ by qj ′ .
6: end for
7: Let Lprevious ← Lcurrent and Lcurrent ← ∑j

j ′=i
de(pj ′ ,pj ′+1).

8: end while
9: Return the path (pi,pi+1, . . . , pj).

Fig. 9.30 RBA for finding an approximate MLA

This application is as in Procedure 20, shown in Fig. 9.30 (and is used later on in
Procedure 22).

Let e0, e1, e2, . . . , em, and em+1 be all the consecutive critical edges of g in the
counter-clockwise orientation of g. Let fi be the first critical face of ei in g, and ci

be the centre of fi , for i = 0,1,2, . . . ,m + 1. All indices of points, edges and faces
are taken mod(m + 2). Using the following Procedure 21 (see Fig. 9.31), we can
compute an AMLPP of g and its length.

Given is an m′-cube-arc unit (fi, . . . , fj) with respect to a polygonal curve ρ

of g, where m′ = 2 or 3. Let pi ∈ fi and pj ∈ fj . We can calculate an MLA(pi,pj)

by applying Procedure 22 (see Fig. 9.32).

9.6 RBAs for MLP Calculation in Any Simple Cube-Curve 283

Procedure 21 (RBA for finding an approximate AMLPP)
Input: Let e0, e1, e2, . . . , em, and em+1 be all consecutive critical edges of g in the
counter-clockwise orientation of g. Let fi be the first critical face of ei in g, and ci

be the centre of fi , for i = 0,1,2, . . . ,m + 1; and an accuracy constant ε > 0.
Output: An approximate AMLPP and its length.

1: Let ρ be a polygonal curve (p0,p1, . . . , pm,pm+1), where pi = ci , the centre
of the first critical face fi of ei in g, i = 0,1,2, . . . ,m + 1.

2: Lcurrent ← ∑m+1
j=0 de(pj ,pj+1); and let Lprevious ← ∞.

3: while Lprevious − Lcurrent ≥ ε do
4: for each j ∈ {0,1, . . . ,m + 1} do
5: Apply Procedure 18 for computing a point qj ∈ fj such that

de(pj−1, qj) + de(qj ,pj+1) = min{de(pj−1,p) + de(p,pj+1) : p ∈ fj }.
6: Update the curve (p0,p1, . . . , pm+1) by replacing pj by qj .
7: end for
8: Let Lprevious ← Lcurrent and Lcurrent ← ∑m+1

j=0 de(pj ,pj+1).
9: end while

10: Return the curve (p0,p1, . . . , pm+1) and its length.

Fig. 9.31 RBA for finding an approximate AMLPP

Lemma 9.24 For each cube-arc unit ρ(fi, fj) with respect to ρ, MLA(pi,pj) can
be computed in O(1) time.

Proof If ρ is a regular cube-arc unit, then MLA(pi,pj) can be found by Proce-
dure 18 which has complexity O(1). Otherwise, ρ is an m′-cube-arc unit, where
m′ = 2 or 3. Then, by Lemma 9.23, MLA(pi,pj) can be found by Procedure 22,
which can be computed in O(1) because m′ = 2 or 3. �

We extend now the revised RBA (see the previous section) into the following
(provably correct) Algorithms 35 and 36.

The presentation of the edge-based RBA (i.e., Fig. 9.33) has been sufficiently
prepared in prior discussions.

In Line 3 of Algorithm 36 (see Fig. 9.34), by Lemma 9.22, the input line seg-
ments of Procedure 20 are critical edges. As usual for RBAs, the updated AMLPP
is “sufficiently accurate” if the previous length minus the current length is smaller
than a defined accuracy parameter ε > 0.

The first difficult task for applying an RBA is to find a proper step set. Another
issue when applying an RBA is to deal with the degenerative case of the RBA.
The following Algorithm 37 (see Fig. 9.35) overcomes the first difficulty by simply
taking all the initial critical faces as the step set. It handles the second task by ε2-
dilation, for some ε2 > 0.

284 9 Paths in Cube-Curves

Procedure 22 (Exhaustive search for computing an approximate MLA)
Input: m′-cube-arc unit (fi, . . . , fj) with respect to a polygonal curve ρ of g, where
m′ = 2 or 3. Let pi ∈ fi and pj ∈ fj .
Output: An approximate MLA(pi,pj).

1: Compute the set E = {e : e is a critical edge of fk ∧ k = i + 1, . . . , j − 1}.
2: Let I = 1 and L = +∞.
3: while I < m′ do
4: Compute the set SE = {S : S ⊆ E ∧ |S| = I }.
5: for each S ∈ SE do
6: Input pi, e1, . . . , el,pj to Procedure 20 to compute an approximate

MLA(pi,pj) such that it has minimal length with respect to all sets
S ∈ SE , denoted by AMLA(I, SE), where ek ∈ S, for k = 1,2, . . . , l and
l = |S|.

7: if the length of AMLA(I, SE) < L then
8: Let MLA(pi,pj) = AMLA(I, SE) and L equal the length of

AMLA(I, SE).
9: end if

10: end for
11: Let I = I + 1.
12: end while

Fig. 9.32 Exhaustive search for computing an approximate MLA

Regarding the output of Algorithm 37, it follows that limε1→0 r(ε1) = 0. In this
algorithm, all subscripts are taken modulo m + 1. Line 4 is illustrated by Fig. 9.36;
on the left it shows that pi−1pi+1 ∩fi = qi , the middle shows that pi−1pi+1 ∩fi = ∅
and qi is on one side of fi , the right shows that pi−1pi+1 ∩ fi = qiq

′
i (qiq

′
i is a line

segment inside of fi).

9.7 Correctness Proof

We first prove the correctness of Algorithm 37 (i.e., the convergence of the output
polygonal path toward the MLP if the accuracy parameter goes to zero), and then
that of Algorithms 35 and 36. We apply basic results of convex analysis:

Theorem 9.11 Let S1 and S2 be convex sets in R
m and R

n, respectively. Then S1 ×
S2 is a convex set in Rm+n, where m, n ∈N.

Proposition 9.1 Each norm on Rn is a convex function; a nonnegative weighted
sum of convex functions is a convex function.

Proposition 9.2 Let f be a convex function. If x is a point where f has a finite
local minimum, then x is a point where f has its global minimum.

9.7 Correctness Proof 285

Algorithm 35 (The edge-based RBA for cube-curves)
Input: Let e0, e1, e2, . . . , em, and em+1 be all consecutive critical edges of g in
counter-clockwise orientation of g. Let fi be the first critical face of ei in g, and
ci be the centre of fi , for i = 0,1,2, . . . ,m + 1.
Output: An approximate MLP of g.

1: Let ρ0 be the polygon obtained by the revised RBA.
2: Find a point pi ∈ fi such that pi is the intersection point of an edge

of ρ0 with fi , for i = 0,1,2, . . . ,m + 1. Let ρ be a polygonal curve
(p0,p1, . . . , pm,pm+1). Let Search = true.

3: while Search = true do
4: for each cube-arc unit ρ = (fi, fi+1, . . . , fj) with respect to ρ do
5: Apply Procedure 22 to update the arc (pi,pi+1, . . . , pj).
6: end for
7: Let Search′ = true.
8: for each cube-arc unit ρ = (fi, fi+1, . . . , fj) with respect to ρ and Search′ =

true do
9: if the arc (pi,pi+1, . . . , pj) = MLA(pi,pj) then

10: Let Search = false.
11: else
12: Let Search = true and Search′ = false.
13: end if
14: end for
15: end while
16: Apply Procedure 19 to polygonal curve (p0,p1, . . . , pm,pm+1) to obtain the

final MLP.

Fig. 9.33 The edge-based RBA for calculating an MLP in a simple cube-curve

For a start, we state for later reference:

Proposition 9.3 Each face or dilated face is a convex set.

By Theorem 9.11 and Propositions 9.1 and 9.3, we have the following

Corollary 9.2 Lg : f0 × f1 × · · · × fm+1 × f0 → R is a convex function, where Lg

is a mapping from an AMLPP to its length, and fi is defined in Algorithm 37, for
i = 0,1, . . . ,m + 1.

Theorem 9.12 If the chosen accuracy value ε is sufficiently small, then Algo-
rithm 37 outputs a {1 + 4(m + 1) · [r(ε1) + √

2 × ε2]/L}-approximate global MLP.

Proof By Proposition 9.2, Algorithm 37 outputs an approximate global MLP. For
each i ∈ {0,1,2, . . . ,m + 1}, the error of the difference between de(pi,pi+1) and
de(vi, vi+1) is at most 4 × r(ε1)+√

2 × ε2 because of de(pi, vi) ≤ r(ε)+√
2 × ε2.

286 9 Paths in Cube-Curves

Algorithm 36 (The face-based RBA for cube-curves)
Input: The same as for Algorithm 35.
Output: The same as for Algorithm 35.

1: Take a point pi ∈ fi , for i = 0,1,2, . . . ,m + 1.
2: Apply Procedure 21 to find an AMLPP of g, denoted by ρ.
3: Find all maximal 2-cube-arcs with respect to ρ, apply Procedure 20 to update

the vertices of the AMLPP, which are on one of the 2-cube-arcs. Repeat this
operation until the length of the updated AMLPP is sufficiently accurate.

4: Apply Procedure 21 to update the current AMLPP.
5: Find all maximal (2,3)-cube-arcs with respect to the current ρ; apply Proce-

dure 20 to update those vertices of the current AMLPP which are on one of
the (2,3)-cube-arcs. The input line segments of Procedure 20 can be found such
that they are on the critical face and parallel or perpendicular to the critical
edge of the face. Repeat this operation until the length of the updated AMLPP
is sufficiently accurate.

6: Apply Procedure 21 to update the current AMLPP.
7: Apply Procedure 22 to all cube-arc units of ρ. If the arc (pi,pi+1, . . . , pj) is

equal to MLA(pi,pj) for each cube-arc unit ρ = (fi, fj) with respect to P ,
then ρ is the MLPP of g; go to Line 8. Otherwise, go to Line 3.

8: Apply Procedure 19 to obtain the final MLP.

Fig. 9.34 Main operations of the face-based RBA for simple cube-curves

Algorithm 37 (Approximate MLP algorithm)
Input: Let f0, f1, f2, . . . , fm, and fm+1 be all the consecutive critical faces of g in
counter-clockwise orientation of g; chose two accuracy values ε1 > 0 and ε2 > 0.
Output: An updated closed {1 + 4(m + 1) × [r(ε1) + √

2 × ε2]/L}-approximation
path (MLP) ρ(p0,p1, . . . , pm+1), where L is the length of an optimal path, r(ε1) the
upper error bound for distances between pi and the corresponding optimal vertex
p′

i : de(pi,p
′
i) ≤ r(ε1), for i = 0,1, . . . ,m + 1.

1: For each i ∈ {0,1, . . . ,m+1}, update face fi by ε2-dilation; let pi be the centre
of fi ; let L0 be

∑m+1
i=0 de(pi,pi+1); and let L1 be ∞.

2: while L1 − L0 ≥ ε1 do
3: for each i ∈ {0,1, . . . ,m + 1} do
4: Compute qi ∈ fi such that de(pi−1, qi) + de(qi,pi+1) =

min{de(pi−1, q) + de(q,pi+1) : q ∈ fi};
update ρ by replacing pi by qi .

5: end for
6: Let L0 be L1; calculate the perimeter L1 of ρ.
7: end while
8: Output ρ and its length L1.

Fig. 9.35 Simplified approximate MLP algorithm for simple cube-curves

9.8 Time Complexities and Examples 287

Fig. 9.36 Illustration of
Line 4 in Algorithm 37

We obtain that

L ≤
m+1∑

i=0

de(pi,pi+1) ≤
m+1∑

i=0

[
de(vi, vi+1) + 4 × r(ε1) + √

2 × ε2
]

= L + 4(m + 1) × [
r(ε1) + √

2 × ε2
]
.

Thus, the output path is a {1 + 4(m + 1) × [r(ε1) + √
2 × ε2]/L}-approximation

path. �

Note that, both (see Lines 15 and 7) the edge-based rubberband algorithm and the
face-based rubberband algorithm return an AMLPP which converges to the output
of Algorithm 37. By Theorem 9.12, both algorithms are thus correct as well. Thus,
we obtain the following

Theorem 9.13 ρ is an MLPP of g iff for each cube-arc unit ρ(fi, fj) with respect
to ρ, the arc (pi,pi+1, . . . , pj) is equal to MLA(pi,pj).

9.8 Time Complexities and Examples

We discuss the time complexity of the edge-based and the face-base RBA. For a
start, Procedures 17 and 18 can be computed in O(1), and Procedure 19 can be
computed in O(m), where m is the number of critical edges of g.

By Lemma 9.21, Procedure 20 can be computed in κ(ε) ·O(n) time, where κ(ε)

is as in Theorem 9.3, and n is the number of vertices of the arc. Analogously, Pro-
cedure 21 can be computed in κ(ε) ·O(m) time, where m is the number of vertices
of the polygonal curve.

By Theorem 9.10, the original RBA can be executed in κ(ε) · O(m) time,
where m is again the number of critical edges of g. The main additional operations
of the edge-based RBA are Lines 3–15 (i.e., the while-loop) which can be computed
in O(m), where m is the number of critical edges of g (by Lemma 9.24). It follows
that the edge-based rubberband algorithm can be executed in κ(ε) ·O(m) time.

For the face-based RBA, Line 1 requires O(m) time. Lines 2, 4, and 6 have the
same time complexity as Procedure 21. Again, by Lemma 9.21, Line 3 can be com-
puted in κ(ε) ·O(m) time, where m is the number of vertices of the polygonal curve.

288 9 Paths in Cube-Curves

Table 9.16 Results of the
edge-based RBA.
p4

0,p4
1, . . . , p4

18 are the
vertices of the MLP of the
simple cube-curve shown in
Fig. 9.24

finalpi
xi yi zi

p4
0 −0.5 1 −0.5

p4
2 −1.5 3 −0.5

p4
3 −2.5 3.22 −0.5

p4
7 −5.5 4 −2.5

p4
12 −7.5 4 −4.5

p4
13 −8 4 −5.5

p4
15 −8.5 3 −5.5

p4
16 −8.5 −1 −5.5

p4
17 −8.5 −1 −0.5

p4
18 −0.5 −1 −0.5

Analogously, Line 5 can be computed in κ(ε) ·O(m) time. (Note that there is a con-
stant number of different combinations of input line segments of Procedure 20.)
By Lemma 9.24, Line 7 can be computed in O(m) time. Therefore, the face-based
rubberband algorithm can be computed in κ(ε) ·O(m) time.

Regarding the time complexity of Algorithm 37, we state that the main compu-
tation is in the two stacked loops. The while-loop takes κ(ε1) iterations; the for-
loop can be computed in time O(k). Thus, Algorithm 37 can be computed in time
κ(ε1) ·O(k), where ε1 and k are as defined in the algorithm.

Example 9.12 We approximate the MLP of the simple cube-curve g19 shown in
Fig. 9.24. Table 9.13 lists all coordinates of critical edges of g19. We take the cen-
tres of the first critical faces of g19 to produce an initial polygonal curve for the
face-based rubberband algorithm. The updated polygonal curves are shown in Ta-
bles 9.14 and 9.15.12 We take the centres of each critical edge of g19 for the initiali-
sation of the polygonal curve of the revised RBA. The resulting polygon is shown in
Table 9.16. Table 9.17 illustrates that the edge-based and face-based RBAs converge
to the same MLP of g19. �

We conclude the section with a few experimental results. See Fig. 9.37 for some
statistics about measured run time. Half of a simple cube-curve was generated ran-
domly, and the second half was then generated using three straight arcs to close

Table 9.17 Lengths of calculated curves at different operations of the face-based RBA, compared
with the lengths calculated by the edge-based RBA (column EBRA)

Line Initial 2 3 4 8 EBRA

Length 35.22 31.11 31.08 31.06 31.01 31.01

12Two digits are used only for displaying coordinates. Obviously, in the calculations it is necessary
to use higher precision.

9.8 Time Complexities and Examples 289

Fig. 9.37 Edge-based RBA implemented in Java, run under Matlab 7.0.4, Pentium 4, using
ε = 10−10

the curve. The number of cubes in generated curves was between 10 and 630. The
break-off criterion was defined by ε = 10−10.

Figure 9.38 shows two resulting MLPs (in red) obtained by Algorithm 37 when
both chosen accuracy constants ε1 and ε2 are set to be 10−6 and 10−3, respectively.
The initial paths are in green. Table 9.18 shows the difference in the numbers of
iterations taken in Algorithm 37 when the first accuracy constant ε1 was set to 10−6

while the second accuracy constant ε2 was set to 10−3 or 10−1.
In this chapter, we presented an edge-based and two face-based RBAs and have

shown that all three are provably correct for any simple cube-curve. We also have
shown that their time complexity is κ(ε) · O(m), where κ(ε) is as in Theorem 9.3,
and m is the number of critical edges of g.

We identified one criterion (see Theorem 9.13) for testing whether a polygonal
curve inside of a simple cube-curve is actually the MLP of this curve, or not.

The main idea of this test is implemented by Procedure 22.
The chapter introduced the concept of a critical face to deal with “combinatorial

hardness”.13 It also solved the difficulty in redesigning Option 2 of the original RBA
algorithm. (This option attempted to solve the “combinatorial hardness”, but it was
flawed in its original design.)

13This “hardness” is described in [45], page 666, or in [46].

290 9 Paths in Cube-Curves

Fig. 9.38 Illustration of results of Algorithm 37

The “most powerful” operations of the original RBA are summarised in its
Option 3. All the RBAs discussed in this book for various applications in
computational geometry are based on this.

Option 2 is still very useful even if it may not detect the correct subset of critical
edges which contain the vertices of the MLP of a given simple cube-curve. This
is because Option 2 is (in general) significantly speeding up and simplifying the
algorithm when comparing the edge-based with the face-based RBA.

9.9 The Non-existence of Exact Solutions

This section proves that there does not exist any exact arithmetic algorithm for solv-
ing the general MLP problem for any simple cube-curve.

Option 3 of the original RBA can be expressed as solving a system of partial
derivative equations (PDEs) involving parameters ti ∈ R for critical edges ei of the
step set. The result ensures that pi(ti) is the optimum point on ei .

Example 9.13 Considering the cube-curve illustrated in Fig. 9.39 (see also Fig. 9.2
and Table 9.3), calculating the MLP is equivalent to the problem of finding the roots
of

p(x) = 84x6 − 228x5 + 361x4 + 20x3 + 210x2 + 200x + 25

9.9 The Non-existence of Exact Solutions 291

Table 9.18 Resulting data obtained from Algorithms 37: i and i ′ are the indices of experiments;
m and m′ the numbers of critical edges; I and I ′ the numbers of iterations taken; L0 and L′

0 the
lengths of initial paths; L and L′ the lengths of resulting paths; δ = L0 − L; and δ′ = L′

0 − L′

i m I L0 L δ i ′ m′ I ′ L′
0 L′ δ′

1 13 37 19.35 15.85 3.49 1 12 1,559 19.73 15.59 4.14

2 19 30 29.40 24.72 4.69 2 19 1,505 33.35 26.99 6.36

3 26 27 45.02 38.97 6.04 3 25 3,832 42.94 35.04 7.90

4 33 25 54.49 46.58 7.91 4 36 1,674 43.99 35.57 8.42

5 40 34 46.25 36.53 9.72 5 40 3,610 58.00 46.84 11.16

6 48 38 69.34 57.02 12.32 6 48 5,877 75.52 64.13 11.39

7 54 92 79.30 67.67 11.63 7 59 1,831 78.29 62.95 15.34

8 58 22 103.61 87.29 16.32 8 64 2,127 106.23 88.28 17.95

9 74 48 103.57 88.49 15.08 9 69 1,777 88.33 68.27 20.06

10 78 81 95.75 78.38 17.37 10 81 2,281 116.83 94.37 22.46

Fig. 9.39 Calculation of t1
and t2 such that the polyline
p0(t0)p1(t1)p2(t2)p3(t3) is
fully contained in g. Point p1
is on e1, and p2 on e2

(as detailed below). In fact, this problem is not solvable by radicals over the field of
rationals.14 �

It is well-known that there is no exact arithmetic algorithm for calculating the
roots of polynomials of degree ≥ 5.15 Our example allows a more specific corollary:

Corollary 9.3 There is no exact arithmetic algorithm for calculating 3D ESPs.

C. Bajaj showed this in 198516 for the general case of 3D ESPs based on a poly-
nomial of degree 20. Example 9.13 shows that there is even no exact arithmetic
algorithm for calculating MLPs in simple cube-curves; it defines a polynomial of
degree 6 only, and for a restricted 3D ESP problem defined by simple cube-curves.

14A proof can be based on a theorem by C. Bajaj [6] and the factorisation algorithm by E.R.
Berlekamp [7]. Details are given further below. Chandrajit Bajaj is with the University of Texas.
Elwyn R. Berlekamp is with the University of California at Berkeley.
15Theorem by E. Galois; see also B.L. van der Waerden’s famous example p(x) = x5 − x − 1.
16See Theorem 9 in [5], saying that the ESP problem is in general not solvable by radicals over the
field of rationals.

292 9 Paths in Cube-Curves

This fundamental non-existence of exact arithmetic algorithms is valid, no
matter what magnitude of time-complexity is allowed.

As discussed earlier, the MLP is uniquely defined. This shortest path passes
through subsequent line segments e1, e2, . . . , ek in 3D space in this order. Obvi-
ously, vertices of a shortest path can be at real division points, and the following
theorem means that they are even at points which cannot be represented by radicals
over the field of rationals:

Theorem 9.14 The MLP problem for simple cube-curves is in general not solvable
by radicals over the field of rationals.

In the remainder of this section, all polynomials are monic (i.e., the coefficient
of the highest order term is 1) and with integer coefficients. Let ψ be a prime. We
recall that the set of integers {0,1,2, . . . ,ψ − 1}, with operations

a ⊕ b = a + b modψ and a � b = ab modψ

forms a field with these two operations, denoted by Zψ .
Let deg(p(x)) be the degree of the polynomial p(x).17 Let

p(x) = xn + an−1x
n−1 + an−2x

n−2 + · · · + a1x + a0.

Then we have that deg(p(x)) = n. The discriminant of p(x) is defined as a
(2n − 1) × (2n − 1) determinant, which equals 0 iff p(x) has one or more mul-
tiple roots.

For a square matrix of order greater than 3, evaluating the determinant from
its definition (as a sum of products) is hopelessly inefficient, and so its determi-
nant should be evaluated by triangularising the matrix (with pivoting). That process
preserves the determinant, except that each pivotal interchange changes the sign.
Hence, if the triangularisation involves k inter-changes, then the determinant of the
original matrix equals the product of the diagonal elements of the triangularised
matrix, except that the sign is changed for odd k. If all potential pivots are 0 at any
stage in the triangularisation, then the original matrix has zero determinant.

17The following results are well known in mathematical algebra; proofs can be found, for example,
in [6, 24].

9.9 The Non-existence of Exact Solutions 293

An example is shown below for the case of n = 5:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 a4 a3 a2 a1 a0 0 0 0
0 1 a4 a3 a2 a1 a0 0 0
0 0 1 a4 a3 a2 a1 a0 0
0 0 0 1 a4 a3 a2 a1 a0
5 4a4 3a3 2a2 1a1 0 0 0 0
0 5 4a4 3a3 2a2 1a1 0 0 0
0 0 5 4a4 3a3 2a2 1a1 0 0
0 0 0 5 4a4 3a3 2a2 1a1 0
0 0 0 0 5 4a4 3a3 2a2 1a1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

A good prime18 for a given polynomial p(x) is a prime which does not divide the
discriminant of p(x). Let Q be the set of all rational numbers. We cite (see reference
section) without proof:

Lemma 9.25 Let n = deg(p(x)). If n > 2 is even, then the joint occurrence of

(i) an (n − 1)-cycle,
(ii) an n-cycle, and

(iii) a permutation of the type 2+ (n−3) on factoring the polynomial p(x) modulo
good primes

implies that the Galois group of p(x) over Q is the symmetric group Sn.

We explain the used notation. An (n − 1)-cycle occurs if there exists a good
prime ψ1 such that

p(x)modψ1 = f 1
1 (x)f 1

2 (x)

where deg(f 1
1 (x)) = 1 and deg(f 1

2 (x)) = n − 1, and f 1
2 (x) is irreducible over Zψ1 .

An n-cycle occurs if there exists a good prime ψ2 such that

p(x)modψ2 = f (x)

where deg(f (x)) = n is irreducible over Zψ2 .
A permutation of the type 2+ (n−3) occurs if there exists a good prime ψ3 such

that

p(x)modψ3 = f 3
1 (x)f 3

2 (x)f 3
3 (x)

where deg(f 3
1 (x)) = 1, deg(f 3

2 (x)) = 2, deg(f 3
3 (x)) = n− 3, and f 3

2 (x), f 3
3 (x) are

irreducible over Zψ3 .
We recall that the finite symmetric group Sn is the group of all permutations

of n elements; it has order n! and it is not Abelian (i.e., not commutative).19 Every

18We follow [6]. However, this notion is not uniformly defined in literature; for a different use, see
[62], for example.
19Named after the Norwegian mathematician Niels Henrik Abel (1802–1829).

294 9 Paths in Cube-Curves

element of Sn can be written as a product of cycles. A k-cycle is a permutation of
the given n elements such that a k-times repeated application of this permutation
maps at least one of the n elements onto itself.

A subgroup H of G is said to be a normal subgroup of G iff ghg−1 ∈ H , for
each g ∈ G and h ∈ H . A group G is said to be solvable iff there exist subgroups
G = H0 ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hr such that Hr is a singleton (i.e., it only contains the
identity element of G), Hi is normal in Hi−1, and Hi−1/Hi is Abelian.

Assume that f (x) ∈ Q[x]; then a finite extension E of Q is said to be a splitting
field over Q for f (x) iff f (x) can be factored over E into a product of linear factors,
but not over any proper subfield of E.

The Galois group over Q of p(x) is defined as a group of automorphisms of the
splitting field over Q for f (x).20

Lemma 9.26 The symmetric group Sn is not solvable for n > 5.

Lemma 9.27 If p(x) ∈ Q[x] is solvable by radicals over Q, then the Galois group
over Q of p(x) is a solvable group.

The following methodology (which is used below) is a simplification of a 1967
algorithm by Elwyn R. Berlekamp. This algorithm was designed for the factorisation
of polynomials.21

Let ψ be a prime number. In this remainder of this section, all arithmetic on
polynomials is done modulo ψ . Let

u(x) = xn + un−1x
n−1 + · · · + u1x + u0

for ui ∈ Zψ and i = 0,1, . . . , n − 1. Let

α0 = (
0 0 . . . 0 1

)

and

α = (
an−1 an−2 . . . a1 a0

)

be two n-dimensional row vectors, where ai ∈ Zψ and i = 0,1, . . . , n − 1. We up-
date α by Procedure 23 (see Fig. 9.40). We illustrate Procedure 23 by the following
example.

Example 9.14 Let ψ = 19. Consider the input

u(x) = x6 + 12x3 + 12x2 + 13x + 15

also expressed by

β = (
0 0 12 12 13 15

)
.

20See, for example, [24] for more details. The following two lemmas are Theorems 5.7.1 and 5.7.2
in [24].
21See, for example, [36].

9.9 The Non-existence of Exact Solutions 295

Procedure 23 (Update a row vector α)
Input: Two n-dimensional row vectors α0 = (0 0 . . . 0 1) and β = (un−1 un−2
. . . u1 u0), and a prime ψ .
Output: Updated row vector α.

1: Let k = 1.
2: while k < ψ do
3: Let α = α0.
4: Let t = an−1,

an−1 = (an−2 − tun−1)modψ,

. . .

a1 = (a0 − tu1)modψ

and

a0 = (−tu0)modψ

5: Let k = k + 1.
6: end while
7: Output α.

Fig. 9.40 Update of a row vector α

Procedure 24 (Update of matrix Q)
Input: An n × n zero matrix Q, two n-dimensional row vectors α0 = (0 0 . . . 0 1)

and β = (un−1 un−2 . . . u1 u0), and a prime ψ .
Output: Updated n × n matrix Q.

1: Let k = 1.
2: while k < n do
3: Let α0, β and ψ as input; apply Procedure 23 to update α.
4: Update Q by replacing its kth row by the reversed α.
5: Let α0 = α.
6: Let k = k + 1.
7: end while
8: Output α.

Fig. 9.41 Update a matrix Q

Table 9.19 shows the updated row-vectors αk , each corresponding to a number k of
iterations. �

Procedure 24 (see Fig. 9.41) computes a matrix Q which is used for testing the
irreducibility of a polynomial. We provide the following example for illustrating
Procedure 24:

296 9 Paths in Cube-Curves

Table 9.19 Illustration of Procedure 23; see Example 9.14

k ak,5 ak,4 ak,3 ak,2 ak,1 ak,0

0 0 0 0 0 0 1

1 0 0 0 0 1 0

2 0 0 0 1 0 0

3 0 0 1 0 0 0

4 0 1 0 0 0 0

5 1 0 0 0 0 0

6 0 0 7 7 6 4

7 0 7 7 6 4 0

8 7 7 6 4 0 0

9 7 6 15 11 4 9

10 6 15 3 15 13 9

11 15 3 0 17 7 5

12 3 0 8 17 0 3

13 0 8 0 2 2 12

14 8 0 2 2 12 0

15 0 2 1 11 10 13

16 2 1 11 10 13 0

17 1 11 5 8 12 8

18 11 5 15 0 14 4

19 5 15 1 15 13 6

Example 9.15 We start with u(x) = x6 + 12x3 + 12x2 + 13x + 15, as obtained in
the example before; and reverse the last row in Table 9.19. We have

β = (
6 13 15 1 15 5

)

as input for Procedure 24. Table 9.20 shows the updated vector α corresponding to
the number k = 3 of iterations. Thus,

(
2 5 6 2 13 0

)

is now the third row of Q. �

Let I be the n × n identity matrix and deg(u(x)) = n. The following proposition
by Elwyn R. Berlekamp22 gives a necessary and sufficient condition for testing the
irreducibility of a given polynomial; this condition is later used below:

Proposition 9.4 u(x) is irreducible iff the rank of matrix Q − I equals n − 1.

22See [36], page 441.

9.9 The Non-existence of Exact Solutions 297

Table 9.20 Illustration of Procedure 24: calculation of the third row of Q (before reversing)

k ak,5 ak,4 ak,3 ak,2 ak,1 ak,0

0 5 15 1 15 13 6

1 15 1 12 10 17 1

2 1 12 1 8 15 3

3 12 1 15 3 9 4

4 1 15 11 17 0 10

5 15 11 5 7 16 4

6 11 5 17 7 18 3

7 5 17 8 0 12 6

8 17 8 16 9 17 1

9 8 16 14 3 8 11

10 16 14 2 7 2 13

11 14 2 5 0 14 7

12 2 5 3 17 15 18

13 5 3 12 10 11 8

14 3 12 7 8 0 1

15 12 7 10 2 0 12

16 7 10 10 8 8 10

17 10 10 0 0 14 9

18 10 0 13 8 12 2

19 0 13 2 6 5 2

Example 9.16 For illustrating this theorem, we consider the simple cube-arc ρ be-
tween e0 and e3 in Fig. 9.2 (see also Table 9.3). The coordinates of p0(t0) and p3(t3)

are equal to (1, 4, 7) and (4, 7, 4), respectively, where t0 = t3 = 0.
We want to detect t1, t2 ∈ [0, 1] such that a polyline p0(t0)p1(t1)p2(t2)p3(t3) is

fully contained in ρ. By Eqs. (9.12) and (9.13), we have that

0 = t1
√

t2
1 + 5

+ t1 − 1
√

(t1 − 1)2 + (t2 − 1)2 + 4
, (9.22)

0 = t2 − 1
√

(t1 − 1)2 + (t2 − 1)2 + 4
+ t2

√
t2
2 + 4

. (9.23)

In the following, we show that the MLP problem defined by the simple cube-
curve in Fig. 9.2 is reduced to finding the roots of the polynomial

p(x) = 84x6 − 228x5 + 361x4 + 20x3 + 210x2 − 200x + 25.

298 9 Paths in Cube-Curves

Let t1 = x and t2 = y in Eqs. (9.22) and (9.23), respectively. Equations (9.24),
(9.26)–(9.32) represent, step by step, the simplification of Eq. (9.22); Eqs. (9.25),
(9.27)–(9.33) show the operations of simplifying Eq. (9.23):

0 = x√
x2 + 5

+ x − 1
√

(x − 1)2 + (y − 1)2 + 4
, (9.24)

0 = y − 1
√

(x − 1)2 + (y − 1)2 + 4
+ y

√
y2 + 4

, (9.25)

x√
x2 + 5

= − x − 1
√

(x − 1)2 + (y − 1)2 + 4
, (9.26)

y − 1
√

(x − 1)2 + (y − 1)2 + 4
= − y

√
y2 + 4

, (9.27)

x

√

(x − 1)2 + (y − 1)2 + 4 = −(x − 1)
√

x2 + 5, (9.28)

(y − 1)

√

y2 + 4 = −y

√

(x − 1)2 + (y − 1)2 + 4, (9.29)

x2[(x − 1)2 + (y − 1)2 + 4
] = (x − 1)2(x2 + 5), (9.30)

(y − 1)2(y2 + 4) = y2[(x − 1)2 + (y − 1)2 + 4
]
, (9.31)

x2[(y − 1)2 + 4
] = 5(x − 1)2, (9.32)

4(y − 1)2 = y2[(x − 1)2 + 4
]
. (9.33)

Equations (9.34), (9.35), and (9.36) show the operations for representing y in
terms of x, based on Eq. (9.32):

(y − 1)2 = 5(x − 1)2

x2
− 4

= 5(x − 1)2 − 4x2

x2

= 5(x2 − 2x + 1) − 4x2

x2

= x2 − 10x + 5

x2 , (9.34)

y − 1 = −
√

x2 − 10x + 5

x
, (9.35)

y = 1 −
√

x2 − 10x + 5

x
. (9.36)

9.9 The Non-existence of Exact Solutions 299

Substituting y in Eq. (9.33) by the right-hand side of Eq. (9.36), we have the fol-
lowing:

4

(

1 −
√

x2 − 10x + 5

x
− 1

)2

=
(

1 −
√

x2 − 10x + 5

x

)2[
(x − 1)2 + 4

]
. (9.37)

Equations (9.38), (9.39)–(9.43) show the operations of simplifying Eq. (9.37):

4
x2 − 10x + 5

x2
=

(
x − √

x2 − 10x + 5

x

)2[
(x − 1)2 + 4

]
, (9.38)

4(x2 − 10x + 5)

(x − 1)2 + 4
= (

x −
√

x2 − 10x + 5
)2

= x2 + x2 − 10x + 5 − 2x
√

x2 − 10x + 5

= 2x2 − 10x + 5 − 2x
√

x2 − 10x + 5, (9.39)

4(x2 − 10x + 5)

(x − 1)2 + 4
− (

2x2 − 10x + 5
) = −2x

√
x2 − 10x + 5, (9.40)

4(x2 − 10x + 5) − (2x2 − 10x + 5)(x2 − 10x + 5)

x2 − 2x + 5

= −2x
√

x2 − 10x + 5, (9.41)

[4(x2 − 10x + 5) − (2x2 − 10x + 5)(x2 − 10x + 5)]2

(x2 − 2x + 5)2

= 4x2(x2 − 10x + 5
)
, (9.42)

[
4
(
x2 − 10x + 5

) − (
2x2 − 10x + 5

)(
x2 − 2x + 5

)]2

= 4x2(x2 − 10x + 5
)(

x2 − 2x + 5
)2

. (9.43)

The left-hand side of Eq. (9.43) can be further simplified as follows:

[
4
(
x2 − 10x + 5

) − (
2x2 − 10x + 5

)(
x2 − 2x + 5

)]2
,

[
4x2 − 40x + 20 − (

2x4 − 14x3 + 35x2 − 60x + 25
)]2

,

[−2x4 + 14x3 − 31x2 + 20x − 5
]2

,

4x8 − 56x7 + 320x6 − 948x5 + 1541x4 − 1380x3 + 710x2 − 200x + 25.

The right-hand side of Eq. (9.43) can be further simplified as follows:

4x2(x2 − 10x + 5
)(

x2 − 2x + 5
)2

,

300 9 Paths in Cube-Curves

4x2(x2 − 10x + 5
)(

x4 − 4x3 + 14x2 − 20x + 25
)
,

4x2(x6 − 14x5 + 59x4 − 180x3 + 295x2 − 350x + 125
)
,

4x8 − 56x7 + 236x6 − 720x5 + 1180x4 − 1400x3 + 500x2.

Altogether, we obtain the following polynomial

84x6 − 228x5 + 361x4 + 20x3 + 210x2 − 200x + 25 = 0

as a simplification of Eq. (9.43). In the following, we consider this polynomial

p(x) = 84x6 − 228x5 + 361x4 + 20x3 + 210x2 − 200x + 25.

After having the polynomial derived, we need to find three good primes.

To prove Theorem 9.14, by Lemmas 9.25 to 9.27, it suffices to find three good
primes, ψ1, ψ2, and ψ3 for p(x) such that:

1. p(x)modψ1 can be factorised as one irreducible polynomial f 1
1 (x) over the field

Zψ1 such that

deg
(
f 1

1 (x)
) = deg

(
p(x)

);
2. p(x)modψ2 can be factorised as two irreducible polynomials f 2

1 (x) and f 2
2 (x)

over the field Zψ2 such that

deg
(
f 2

1 (x)
) = 1 and deg

(
f 2

2 (x)
) = deg

(
p(x)

) − 1;

3. p(x)modψ3 can be factorised as three irreducible polynomials f 3
1 (x), f 3

2 (x)

and f 3
3 (x) over the field Zψ3 such that

deg
(
f 3

1 (x)
) = 1, deg

(
f 3

2 (x)
) = 2 and deg

(
f 3

3 (x)
) = deg

(
g(x)

) − 3.

Indeed, using mathematical software23 we identified three good primes as desired
(for further details, see the Appendix), namely:

1. ψ1 = 19:

f 1
1 (x) = Z(19)3 ∗ x6 + x3 + x2 + Z(19)8 ∗ x + Z(19)14;

2. ψ2 = 37:

f 2
1 (x) = Z(37)24 ∗ x + Z(37)0,

23We used GAP, see [22].

9.9 The Non-existence of Exact Solutions 301

f 2
2 (x) = x5 + Z(37)26 ∗ x4 + Z(37)22 ∗ x3

+ Z(37)30 ∗ x2 + Z(37)9 ∗ x + Z(37)10;
3. ψ3 = 13:

f 3
1 (x) = Z(13)5 ∗ x + Z(13)10,

f 3
2 (x) = x2 + Z(13)5,

f 3
3 (x) = x3 + Z(13)3 ∗ x2 + Z(13)2 ∗ x + Z(13)3.

We need to show that all those polynomials are irreducible.

Case of f 1
1 (x): We prove that f 1

1 (x) is irreducible.
(1) We simplify f 1

1 (x) to a monic polynomial. Because 2 is a primitive element
of Z19,24 we have

f 1
1 (x) = Z(19)3 ∗ x6 + x3 + x2 + Z(19)8 ∗ x + Z(19)14

= 23 ∗ x6 + x3 + x2 + 28 ∗ x + 214

= 8x6 + x3 + x2 + 9x + 6.

Because 8 × 12 ≡ 1 mod 19,

f 1
1 (x) = 8x6 + x3 + x2 + 9x + 6

= 12(8x6 + x3 + x2 + 9x + 6)

= x6 + 12x3 + 12x2 + 13x + 15.

The final row is the desired monic representation.
(2) We apply Proposition 9.4 to prove that f 1

1 (x) is irreducible. We summarise
the computation here; for details see Tables 9.19 and 9.20, and the remaining tables
in the Appendix. Note that the rows computed in these tables have to be reversed to
be the rows of the following matrix Q. We obtain that

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
6 13 15 1 15 5
2 5 6 2 13 0
2 10 13 13 0 14

17 10 10 1 2 7
4 16 8 10 18 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and Q − I =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
6 12 15 1 15 5
2 5 5 2 13 0
2 10 13 12 0 14
17 10 10 1 1 7
4 16 8 10 18 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

24For each a ∈ Z19, there exists a number j ∈ {0,1, . . . ,18} such that 2j ≡ a mod 19.

302 9 Paths in Cube-Curves

Since
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

6 12 15 1 15
2 5 5 2 13
2 10 13 12 0

17 10 10 1 1
4 16 8 10 18

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= −160,520 ≡ 11 mod 19,

we finally obtain that rank(Q − I) = 5. By Proposition 9.4, we can conclude that
f 1

1 (x) is irreducible.
Case of f 2

2 (x): To prove that f 2
2 (x) is irreducible, we proceed as follows:

(1) We simplify f 2
2 (x). Because 2 is a primitive element of Z37, we have the

following:

f 2
2 (x) = x5 + Z(37)26 × x4 + Z(37)22 × x3

+ Z(37)30 × x2 + Z(37)9 × x + Z(37)10

= x5 + 226 × x4 + 222 × x3 + 230 × x2 + 29 × x + 210

= x5 + 3x4 + 21x3 + 11x2 + 31x + 25.

(2) Now we apply Proposition 9.4 to prove that f 2
2 (x) is irreducible. We sum-

marise the computation here; for details see the tables in the Appendix. We obtain
that

Q =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
3 1 11 21 36
28 29 22 34 33
23 7 1 22 31
32 35 24 35 28

⎤

⎥
⎥
⎥
⎥
⎦

and Q − I =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
3 0 11 21 36
28 29 21 34 33
23 7 1 21 31
32 35 24 35 27

⎤

⎥
⎥
⎥
⎥
⎦

.

Since
∣
∣
∣
∣
∣
∣
∣
∣

3 0 11 21
28 29 21 34
23 7 1 21
32 35 24 35

∣
∣
∣
∣
∣
∣
∣
∣

= 9,835 ≡ 30 mod 37,

we finally have that rank(Q − I) = 4. By Proposition 9.4, this proves that f 2
2 (x) is

irreducible.
Case of f 3

2 (x): To prove that f 3
2 (x) is irreducible, we proceed as follows:

(1) We simplify f 3
2 (x). Because 2 is a primitive element of Z13, we have the

following:

f 3
2 (x) = x2 + Z(13)5

= x2 + 6.

9.10 Problems 303

(2) We apply Proposition 9.4 to prove that f 3
2 (x) is irreducible. For details see

the table in the Appendix. We obtain that

Q =
[

1 0
0 12

]

and Q − I =
[

0 0
0 11

]

.

Thus, we have that rank(Q− I) = 1. By Proposition 9.4, this shows that also f 3
2 (x)

is irreducible.
Case of f 3

3 (x): To prove that f 3
3 (x) is irreducible, we proceed as follows:

(1) We simplify f 3
3 (x). Since 2 is a primitive element of Z13, we have the fol-

lowing:

f 3
3 (x) = x3 + Z(13)3 ∗ x2 + Z(13)2 ∗ x + Z(13)3

= x3 + 8x2 + 4x + 8.

(2) We apply Proposition 9.4 to prove that f 3
3 (x) is irreducible. For details see

tables in the Appendix. We obtain that

Q =
⎡

⎣
1 0 0
1 3 0
1 6 9

⎤

⎦ and Q − I =
⎡

⎣
0 0 0
1 2 0
1 6 8

⎤

⎦ .

From this we see that rank(Q − I) = 2. By Proposition 9.4, we know that f 3
3 (x) is

irreducible. This concludes the example. �

We have shown that there does not exist an exact algorithm for solving the gen-
eral MLP problem for simple cube-curves, thus also not for more general ESP prob-
lems.

Interestingly, this result is also true for the 2.5D case (surface ESP, see Sect. 7.5)
but not true for the 2D case. In 2D, there exist exact algorithms for ESP problems,
such as, for example, the MLP problem in 2D space.

9.10 Problems

Problem 9.1 Discuss differences between critical edge, critical line, and critical
face, first-class simple cube-cube versus non-first-class simple cube-cube, and be-
tween end-angle, middle-angle, and inner-angle.

Problem 9.2 What has been changed in the original RBA compared to the revised
RBA discussed in Sect. 9.5.

Problem 9.3 Discuss differences between (2,3)-cube-arc, maximal (2,3)-cube-arc,
2-cube-arc, maximal 2-cube-arc, 2-cube-arc unit, 3-cube-arc unit, regular cube-arc
unit, and cube-arc unit.

304 9 Paths in Cube-Curves

Problem 9.4 Show that Procedure 22 can be computed in O(1).

Problem 9.5 Procedures 20 and 21 are both modified from Algorithm 7. Underline
the modifications of Procedure 20 in Fig. 9.30, and of Procedure 21 in Fig. 9.31.

Problem 9.6 Can Algorithm 36 be simplified?

Problem 9.7 Algorithm 37 is also modified from Algorithm 7. Underline modifi-
cations of Algorithm 37 in Fig. 9.35.

Problem 9.8 Consider the last line of Algorithm 33. Would it be possible to replace
the original RBA by Algorithm 7 by or Algorithm 8?

Problem 9.9 Consider Line 9 of Algorithm 33. Assume that the Dijkstra algorithm
is implemented in a Fibonacci heap. This defines a smaller upper bound for the time
complexity of Algorithm 33. Identify such a smaller upper bound.

Problem 9.10 Find a non-trivial lower bound for the length of an MLP, as calcu-
lated by Algorithm 33.

Problem 9.11 (Programming exercise) Design an “arc” version of an rubberband
algorithm for computing MLPs for cube-curves with an end-angle, and compare its
performance with that of Algorithms 34 in Fig. 9.12.

Problem 9.12 Prove that the approximation factor {1 + 4(m + 1) · [r(ε1) + √
2 ×

ε2]/L} in Theorem 9.12 can be replaced by {1 + 2(m + 1) · [r(ε1) + √
2 × ε2]/L}.

Problem 9.13 (Programming exercise) Implement the generic RBA (i.e., Algo-
rithm 11 for the 3D case) as described in Fig. 3.24, and compare its performance
with those of Algorithms 33 (in Fig. 9.5) and 37 (in Fig. 9.35).

Problem 9.14 (Open problems)

(a) What is the smallest (say, in number of cubes or in number of critical edges—
both are equivalent) simple cube-curve which does not have any end-angle?

(b) What is the smallest (say, in number of cubes or in number of critical edges—
both are equivalent) simple cube-curve which does not have any of its MLP
vertices at a grid point location?

Problem 9.15 (Research problem) Design an algorithm for generating random sim-
ple cube curves. Note that there cannot be any crossings or ‘touchings’.

9.11 Notes

The difficulty of ESP problems can also be verified by combinatorial considerations;
see [45, 46]. For the MLP problem, a combinatorial difficulty is characterised by the

9.11 Notes 305

complexity of computing the step set (i.e., a subset of the set of all critical edges).
such that each edge in this set contains (exactly) one vertex of the MLP.

The problem of length estimation in picture analysis dates back to the beginning
of the 1970s. For example, [47] presented a method for extracting a smooth polygo-
nal contour from a digitised image aiming at a minimum-length polygonal approx-
imation. For later work, we cite [3, 4, 18, 20] as examples which were focused on
the problem in 2D. Reference [33, 34] compared the DSS and MLP techniques25

for measuring the length of a digital curve in 2D (in fact, both techniques allow gen-
eralisations to 3D and beyond) based on time-efficient (linear) algorithms for both
2D techniques.

For the 3D case, [1] presents two methods for estimating the length of digitised
straight lines. Reference [13] gives four types of characterisation schemes for this
problem. Reference [31] studies shortest paths between points on a digital 3D sur-
face. Reference [30] considers local length estimators for curves in 3D space, de-
rived from their chain codes. Reference [48] discusses the problem of approximat-
ing the length of a parametric curve γ (t), with γ : [0,1] →Rn, from sampled points
qi = γ (ti), where the parameters ti are unknown. See also [14, 15, 50, 53].

The computation of the length of a simple cube-curve in 3D Euclidean space was
a subject in [27], but the proposed method may produce errors for specific curves.
Reference [11] presents the original rubberband algorithm (see Sect. 9.2) for com-
puting an approximating MLP in the tube g of cube-curve g, with a measured run-
time allowing to expect a general O(n) behaviour, where n is the number of grid
cubes in the given cube-curve. However, no proof was given that this original rub-
berband algorithm actually converges toward the correct MLP, and also no analysis
of its worst-case time complexity.

3D MLP calculations generalise MLP computations in 2D; see, for example, [29,
54] for theoretical results and [19, 59] for 2D robotics scenarios. Shortest curve cal-
culations in image analysis also use graph metrics instead of the Euclidean metric;
see, for example, [57].

Interest in 3D MLPs was also raised by the issue of multigrid-convergent length
estimation for digitised curves. The length of a simple cube-curve in 3D Euclidean
space can be defined by that of the MLP; see [33, 55, 56], which is there charac-
terised to be a global approach toward length measurement. A local approach for
3D length estimation, allowing only weighted steps within a restricted neighbour-
hood, was considered in [26] and [27]. Alternatively to the MLP, the length of 3D
digital curves can also be measured (within linear time in the number of grid points
on the curve) based on DSS-approximations [16] (DSS = digital straight segment).

The computation of 3D MLPs was first published in [9–11, 32], proposing a
‘rubberband’ algorithm.26 This iterative algorithm was experimentally tested and

25The DSS technique represents a digital curve, assumed to be a sequence of grid points, by subse-
quent digital straight segments (DSSs) of maximum length; the MLP technique considers a digital
curve as a sequence of grid cells, calculating a minimum-length polygon (MLP) in the union of
these cells.
26Not to be confused with a 2D image segmentation algorithm of the same name [44].

306 9 Paths in Cube-Curves

showed “linear run-time behavior” with respect to a pre-selected accuracy constant
ε > 0. It proved to be correct for tested inputs, where correctness was possible to
be tested manually. However, in [9–11, 32], no mathematical proof was given for
linear run time or general convergence (in the sense of our definition of approximate
algorithms) to the exact solution. Nevertheless, the algorithm has been used since
2002 (e.g., in DNA research).

This original RBA is also published in the book [33]. Applications of this algo-
rithm are also in 3D medical imaging; see, for example, [21, 61].

The correctness and linearity problem of the original RBA was approached along
the following steps:

Reference [38] only considered a very special class of simple cube-curves and
developed a provable correct MLP algorithm for this class. The main idea was to de-
compose a cube-curve of that class into arcs at end angles (see Definition 3 in [38]),
which means that the cube-curves have to have end-angles, and then the algorithm
can be applied.

Reference [39] constructed an example of a simple cube-curve whose MLP does
not have any of its vertices at a corner of a grid cube. It follows that any cube-curve
with this property does not have any end angle, and this means that we cannot use
the MLP algorithm as proposed in [38]. This was the basic importance of the result
in [39]: it showed the existence of cube-curves which require further algorithmic
studies.

Reference [42] showed that the original RBA requires a modification (in its Op-
tion 3) to guarantee that calculated curves are always contained in the tube g. This
revised RBA achieves (as the original RBA) minimisation of length by moving ver-
tices along critical edges.

Reference [41] (finally) extended the revised RBA into the edge-based RBA
and showed that it is correct for any simple cube-curve. [41] also presented a to-
tally new algorithm, the face-based RBA, and showed that it is also correct for any
simple cube-curve. [43] proposed a very simple approximate face-based RBA. It
was proved that the edge-based and the face-based RBAs have time complexity
κ(ε) ·O(m), where m is the number of critical edges in the given simple cube-curve,
and

κ(ε) = (L0 − L)/ε (9.44)

where L0 is the length of the initial path, L is the true (i.e., optimum) path. This
chapter reported about those publications. We also recall from Chap. 1 that an algo-
rithm is an (1 + ε)-approximation algorithm for a minimisation problem P iff, for
each input instance I of P , the algorithm delivers a solution that is at most (1 + ε)

times the optimum solution [25].
The introduction of MLPs in simple cube curves follows [32, 55, 56].
Visibility graphs are common in computational geometry; see, for example, [2,

23, 28, 37, 49, 60].
For convex analysis, see, for example, [8, 51, 52]. For Theorem 9.11, see [52],

Theorem 3.5. For Proposition 9.1, see [8], page 72. For Proposition 9.2, see [52],
page 264.

Lemma 9.25 is the first part (i.e., in the case that n is even) of Lemma 8 in [6].

References 307

References

1. Amarunnishad, T.M., Das, P.P.: Estimation of length for digitized straight lines in three di-
mensions. Pattern Recognit. Lett. 11, 207–213 (1990)

2. Asano, T., Asano, T., Guibas, L., Hershberger, J., Imai, H.: Visibility of disjoint polygons.
Algorithmica 1, 49–63 (1986)

3. Asano, T., Kawamura, Y., Klette, R., Obokata, K.: Minimum-length polygons in approxima-
tion sausages. In: Proc. Int. Workshop Visual Form. LNCS, vol. 2059, pp. 103–112. Springer,
Berlin (2004)

4. Bailey, D.: An efficient Euclidean distance transform. In: Proc. Int. Workshop Combinatorial
Image Analysis. LNCS, vol. 3322, pp. 394–408. Springer, Berlin (2004)

5. Bajaj, C.: The algebraic complexity of shortest paths in polyhedral spaces. In: Proc. Allerton
Conf. Commum. Control Comput., pp. 510–517 (1985)

6. Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete Comput. Geom.
3, 177–191 (1988)

7. Berlekamp, E.R.: Factoring polynomials over large finite fields. Math. Comp. 24, 713–735
(1970)

8. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge,
UK (2004)

9. Bülow, T., Klette, R.: Rubber band algorithm for estimating the length of digitized space-
curves. In: Proc. Intern. Conf. Pattern Recognition, vol. 3, pp. 551–555 (2000)

10. Bülow, T., Klette, R.: Approximation of 3D shortest polygons in simple cube curves. In: Proc.
Digital and Image Geometry. LNCS, vol. 2243, pp. 281–294. Springer, Berlin (2001)

11. Bülow, T., Klette, R.: Digital curves in 3D space and a linear-time length estimation algorithm.
IEEE Trans. Pattern Anal. Mach. Intell. 24, 962–970 (2002)

12. Burden, R.L., Faires, J.D.: Numerical Analysis, 7th edn. Brooks Cole, Pacific Grove (2000)
13. Chattopadhyay, S., Das, P.P.: Estimation of the original length of a straight line segment from

its digitization in three dimensions. Pattern Recognit. 25, 787–798 (1992)
14. Choi, J., Sellen, J., Yap, C.-K.: Approximate Euclidean shortest path in 3-space. In: ACM

Conf. Computational Geometry, pp. 41–48. ACM Press, New York (1994)
15. Choi, J., Sellen, J., Yap, C.-K.: Precision-sensitive Euclidean shortest path in 3-space. In: Proc.

Annu. ACM Sympos. Computational Geometry, pp. 350–359 (1995)
16. Coeurjolly, D., Debled-Rennesson, I., Teytaud, O.: Segmentation and length estimation of

3D discrete curves In: Proc. Digital and Image Geometry. LNCS, vol. 2243, pp. 299–317.
Springer, Berlin (2001)

17. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press,
Cambridge (2001)

18. Dorst, L., Smeulders, A.W.M.: Length estimators for digitized contours. Comput. Vis. Graph.
Image Process. 40, 311–333 (1987)

19. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.: Touring a sequence of polygons. In: Proc. STOC,
pp. 473–482 (2003)

20. Ellis, T.J., Proffitt, D., Rosen, D., Rutkowski, W.: Measurement of the lengths of digitized
curved lines. Comput. Graph. Image Process. 10, 333–347 (1979)

21. Ficarra, E., Benini, L., Macii, E., Zuccheri, G.: Automated DNA fragments recognition and
sizing through AFM image processing. IEEE Trans. Inf. Technol. Biomed. 9, 508–517 (2005)

22. GAP—Groups, Algorithms, Programming—a system for computational discrete algebra.
www-gap.mcs.st-and.ac.uk/gap.html (2011). Accessed July 2011

23. Ghosh, S.K., Mount, D.M.: An output sensitive algorithm for computing visibility graphs.
SIAM J. Comput. 20, 888–910 (1991)

24. Herstein, I.N.: Topics in Algebra, 2nd edn. Wiley, New York (1975)
25. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problems. PWS Pub. Co.,

Boston (1997)
26. Jonas, A., Kiryati, N.: Length estimation in 3-D using cube quantization. In: Proc. Vision

Geometry. SPIE, vol. 2356, pp. 220–230 (1994)

308 9 Paths in Cube-Curves

27. Jonas, A., Kiryati, N.: Length estimation in 3-D using cube quantization. J. Math. Imaging
Vis. 8, 215–238 (1998)

28. Kapoor, S., Maheshwari, S.N.: Efficient algorithms for Euclidean shortest path and visibil-
ity problems with polygonal. In: Proc. Annu. ACM Sympos. on Computational Geometry,
pp. 172–182 (1988)

29. Karavelas, M.I., Guibas, L.J.: Static and kinetic geometric spanners with applications. In:
Proc. ACM–SIAM Symp. Discrete Algorithms, pp. 168–176 (2001)

30. Kiryati, N., Kubler, O.: On chain code probabilities and length estimators for digitized three-
dimensional curves. Pattern Recognit. 28, 361–372 (1995)

31. Kiryati, N., Szekely, G.: Estimating shortest paths and minimal distances on digitized three-
dimensional surfaces. Pattern Recognit. 26, 1623–1637 (1993)

32. Klette, R., Bülow, T.: Critical edges in simple cube-curves. In: Proc. Discrete Geometry Com-
putational Imaging. LNCS, vol. 1953, pp. 467–478. Springer, Berlin (2000)

33. Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)
34. Klette, R., Yip, B.: The length of digital curves. Mach. Graph. Vis. 9, 673–703 (2000)
35. Klette, R., Kovalevsky, V., Yip, B.: Length estimation of digital curves. In: Proc. Vision Ge-

ometry. SPIE, vol. 3811, pp. 117–129 (1999)
36. Knuth, D.E.: The Art of Computer Programming, vol. 2, 3rd edn. Addison-Wesley, Reading

(1997)
37. Lee, D.T.: Proximity and reachability in the plane. Ph.D. thesis, University of Illinois at

Urbana–Champaign, Urbana (1978)
38. Li, F., Klette, R.: Minimum-length polygon of a simple cube-curve in 3D space. In: Proc. Int.

Workshop Combinatorial Image Analysis. LNCS, vol. 3322, pp. 502–511. Springer, Berlin
(2004)

39. Li, F., Klette, R.: The class of simple cube-curves whose MLPs cannot have vertices at grid
points. In: Proc. Discrete Geometry Computational Imaging. LNCS, vol. 3429, pp. 183–194.
Springer, Berlin (2005)

40. Li, F., Klette, R.: Minimum-length polygons of first-class simple cube-curves. In: Proc. Com-
puter Analysis Images Patterns. LNCS, vol. 3691, pp. 321–329. Springer, Berlin (2005)

41. Li, F., Klette, R.: Shortest paths in a cuboidal world. In: Proc. Int. Workshop Combinatorial
Image Analysis. LNCS, vol. 4040, pp. 415–429. Springer, Berlin (2006)

42. Li, F., Klette, R.: Analysis of the rubberband algorithm. Image Vis. Comput. 25(10), 1588–
1598 (2007)

43. Li, F., Pan, X.: An approximation algorithm for computing minimum-length polygons in 3D
images. In: Proc. The 10th Asian Conference on Computer Vision (ACCV 2010). LNCS,
vol. 6495, pp. 641–652. Springer, Berlin (2011)

44. Luo, H., Eleftheriadis, A.: Rubberband: an improved graph search algorithm for interactive
object segmentation. In: Proc. Int. Conf. Image Processing, vol. 1, pp. 101–104 (2002)

45. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.-R., Urrutia, J.
(eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)

46. Mitchell, J.S.B., Sharir, M.: New results on shortest paths in three dimensions. In: Proc. SCG,
pp. 124–133 (2004)

47. Montanari, U.: A note on minimal length polygonal approximations to a digitalized contour.
Commun. ACM 13, 41–47 (1970)

48. Noakes, L., Kozera, R., Klette, R.: Length estimation for curves with different samplings. In:
Digital and Image Geometry. LNCS, vol. 2243, pp. 334–346. Springer, Berlin (2001)

49. Overmars, M.H., Welzl, E.: New methods for constructing visibility graphs. In: Proc. Annu.
ACM Sympos. on Computational Geometry, pp. 164–171 (1988)

50. Papadimitriou, C.H.: An algorithm for shortest path motion in three dimensions. Inf. Process.
Lett. 20, 259–263 (1985)

51. Roberts, A.W., Varberg, V.D.: Convex Functions. Academic Press, New York (1973)
52. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
53. Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. SIAM J. Comput. 15, 193–215

(1986)

References 309

54. Sklansky, J., Kibler, D.F.: A theory of nonuniformly digitized binary pictures. IEEE Trans.
Syst. Man Cybern. 6, 637–647 (1976)

55. Sloboda, F., Zat’ko, B., Klette, R.: On the topology of grid continua. In: Proc. Vision Geome-
try. SPIE, vol. 3454, pp. 52–63 (1998)

56. Sloboda, F., Zat’ko, B., Stoer, J.: On approximation of planar one-dimensional grid continua.
In: Klette, R., Rosenfeld, A., Sloboda, F. (eds.) Advances in Digital and Computational Ge-
ometry, pp. 113–160. Springer, Singapore (1998)

57. Sun, C., Pallottino, S.: Circular shortest path on regular grids. CMIS Report 01/76, CSIRO
Math. Information Sciences, Australia (2001)

58. Sunday, D.: Algorithm 15: convex hull of a 2D simple polygonal path. www.softsurfer.com/
Archive/algorithm_0203/ (2011). Accessed July 2011

59. Talbot, M.: A dynamical programming solution for shortest path itineraries in robotics. Electr.
J. Undergrad. Math. 9, 21–35 (2004)

60. Welzl, E.: Constructing the visibility graph for n line segments in O(n2) time. Inf. Process.
Lett. 20, 167–171 (1985)

61. Wolber, R., Stäb, F., Max, H., Wehmeyer, A., Hadshiew, I., Wenck, H., Rippke, F., Wit-
tern, K.: Alpha-Glucosylrutin: Ein hochwirksams Flavonoid zum Schutz vor oxidativem
Stress. J. Dtsch. Dermatol. Ges. 2, 580–587 (2004)

62. Wolfram Mathworld. Good Prime. mathworld.wolfram.com/GoodPrime.html (2011). Ac-
cessed July 2011

Part IV
Art Galleries

The image above shows a hallway in Bertel Thorvaldsen’s Museum in Copenhagen.
Museums often come with the challenge of optimising a walkway for visiting the
offered exhibits within given time constraints.

This fourth part applies rubberband algorithms for solving shortest path prob-
lems such as the safari, zookeeper, or watchman route problem, which are all
in the category of art gallery algorithms. This part also provides a κ-linear
approximate solution for touring a finite number of simple polygons, which
are pairwise disjoint and not necessarily convex, and it also provides an ap-
proximate solution to the unconstrained touring polygons problem which is
known to be NP-hard.

Chapter 10
Touring Polygons

The more constraints one imposes, the more one frees one’s self.
And the arbitrariness of the constraint serves only to obtain
precision of execution.

Igor Stravinsky (1882–1971)

Assume that two points p and q are given as well as a finite ordered set of sim-
ple polygons, all in the same plane; the basic version of a touring-a-sequence-of-
polygons problem (TPP) is to find a shortest path such that it starts at p, then visits
these polygons in the given order, and ends at q . This chapter describes four ap-
proximation algorithms for unconstrained versions of problems defined by touring
an ordered set of polygons. It contributes to an approximate and partial answer to the
previously open problem “What is the complexity of the touring-polygons problem
for pairwise disjoint, simple, and not necessarily convex polygons?” by providing
κ(ε)O(n) approximation algorithms for solving this problem, either for given start
and end points p and q, or allowing to have those variable, where n is the total num-
ber of vertices of the given k simple and pairwise disjoint polygons; κ(ε) defines
the numerical accuracy depending on a selected ε > 0.

10.1 About TPP

The touring-polygon problem (TPP), as defined above, does have various applica-
tions such as for parts cutting in the industry (e.g., moving the head of a cutting
robot to subsequent start positions of planar shapes) or for route planning in general
when the task consists in visiting selected polygonal regions.

Let π be a plane. Consider simple, pairwise disjoint polygons Pi ⊂ π , where i =
1,2, . . . , k, and two points p, q ∈ π \⋃k

i=1 Pi . As always in the book so far, a simple
polygon P is a planar region whose frontier ∂P is represented by a polygonal path
(i.e., a sequence of line segments whose endpoints define the vertices of P).

Let ρ(p,p1,p2, . . . , pk, q) be a polygonal path in π that starts at p0 = p, is then
incident with points pi in the given order, and ends at pk+1 = q , with pi ∈ π , for

F. Li, R. Klette, Euclidean Shortest Paths,
DOI 10.1007/978-1-4471-2256-2_10, © Springer-Verlag London Limited 2011

313

314 10 Touring Polygons

i = 1,2, . . . , k. We denote such a path briefly by ρ(p,q) if this does not cause any
confusion (i.e., if intermediate points pi are known by context or not important to
be listed).

Definition 10.1 A path ρ(p,q) visits a polygon P at point r ∈ P if the path inter-
sects P , and r is the first (i.e., along the path) point in P on this path.

Obviously, r ∈ ∂P . The (unconstrained) fixed TPP is defined as follows:

Find a shortest path ρ(p,p1,p2, . . . , pk, q) such that it visits each of the poly-
gons Pi in the given order at point pi , for i = 1,2, . . . , k.

The path may be further constrained by some predefined properties, and we dis-
cuss examples below.—If the start and end points of the path are not given then the
problem becomes the (unconstrained) floating TPP:

Let P0 = Pk . Find a cyclic shortest path ρ(p0,p1,p2, . . . , pk−1,pk), with
p0 = pk , such that it visits each of the polygons Pi in the given order at point
pi , for i = 0,1,2, . . . , k.

Obviously, in this case it does not matter at which polygon to start, and we could
re-order the polygons modulo k.

We just mention an example of further constraints (without discussing it further
in this chapter). Let F ⊂ π be a simple, not necessarily convex polygon which
contains the union of some polygons, all given in the plane π . Then F is called a
fence with respect to those polygons.

In our case, we have polygons P1, . . . ,Pk . Let Fi ⊂ π be a fence for polygons
Pi and Pi+1, for i = 0,1,2, . . . , k, with degenerated polygons P0 = {p = p0} and
Pk+1 = {q = pk+1}. An example of a constrained fixed TPP is defined as follows:

Find a shortest path ρ(p,p1,p2, . . . , pk, q) such that it visits each of the poly-
gons Pi in the given order at point pi , for i = 1,2, . . . , k, also satisfying the
condition that Fi contains the subpath from pi to pi+1, for i = 0,1,2, . . . , k.

The subpath from pi to pi+1, for i = 0,1,2, . . . , k, needs to be a shortest path
within a given polygon Fi .

In a variety of industries, such as clothing, window manufacturing, or metal sheet
processing, it is necessary to cut a set of parts (modelled by polygons) from large
sheets of paper, cloth, glass, metal, and so forth. Motivated by such applications, we
can consider the following three models of cutting scenarios:

10.2 Contributions in This Chapter 315

Fig. 10.1 The general ordered P-TSP. Not necessarily convex polygons are assumed to be given
in a particular order. The cutting tool may travel across the given polygons

• Continuous cutting. The path of the cutting tool visits each object (i.e., polygon)
to be cut just once. The tool can engage the object at any point on its frontier,
but must cut the entire object before it travels to the next object. Accordingly, the
same frontier point must be used for entry and departure from the object.

• Endpoint cutting. The tool can enter and exit the object only at some predefined
frontier points; however, it may cut the object in sections (i.e., it may visit an
object repeatedly).

• Intermittent cutting. This is the most general version of the problem in which the
object can be cut in sections and there is no restriction on the frontier points that
can be used for entry or exit.

The continuous cutting problem, where each object is a polygon, is also called the
plate-cutting travelling salesman problem (P-TSP). The P-TSP is a generalisation
of the travelling salesman problem (TSP). If each polygon degenerates into a single
vertex then the P-TSP becomes the TSP which is known to be NP-hard. It follows
that the P-TSP is NP-hard as well.

The ordered P-TSP is a simplified TSP by providing a predefined order of visits;
see Fig. 10.1. The polygons may still be nonconvex as well. This simplifies further if
polygons are all assumed to be convex; see Fig. 10.2. If, additionally, the start point
is also given (see Fig. 10.3), then we have a ‘fixed problem’. This fixed ordered P-
TSP coincides with the fixed TPP as defined earlier; in this chapter we prefer to use
the naming based on touring polygons rather than on a travelling salesman.

10.2 Contributions in This Chapter

In this chapter, we focus on the unconstrained fixed TPP (i.e., given start and end
point of the path) and floating TPP (i.e., no given start or end point) under the

316 10 Touring Polygons

Fig. 10.2 Illustration for the ordered P-TSP also assuming that all polygons are convex

Fig. 10.3 The P-TSP, now also with a given start point s

condition that the convex hulls of the input polygons Pi are pairwise disjoint, but
the polygons Pi itself may be nonconvex.

Algorithm 39 in Sect. 10.3 is for solving the fixed TPP by providing an approxi-
mation algorithm running in time κ(ε) ·O(n), where n is the total number of vertices
of all polygons. Previously proposed solution techniques1 can only handle the fixed
TPP, the fixed safari problem, and the fixed watchman route problem, all for convex
polygons only. Our solution technique is suitable for solving both the fixed and the
floating TPP with the same time complexity, also allowing nonconvex polygons Pi

with pairwise disjoint convex hulls. (Our method might also be useful for solving
the floating watchman route, the floating safari problem, and the floating zookeeper
problem; but this is not yet a subject in this chapter; see Chaps. 11 and 12.)

1See [2].

10.3 The Algorithms 317

Fig. 10.4 Repositioning in
Line 5 of Algorithm 38.
Point pi moves into a new
position qi

Our approximate algorithms are based (again) on the idea of a rubberband algo-
rithm. We recall that such an algorithm starts with an initial path through a provided
sequence of steps (here polygons Pi), and runs then in iterations through those (pos-
sibly “adjusted”) sequence again while reducing (compared to the previous run) the
length of the current path in each run. The important issue is to guarantee that the
resulting Cauchy sequence of lengths is actually converging to the minimum length
(i.e., the global minimum).

We recall (see Chap. 1) that a Euclidean path is a δ-approximation (Euclidean)
path for an ESP problem iff its length is at most δ times the optimum solution.

We will also refer to a convex hull algorithm. We provided different options in
Chap. 4, such as Algorithm 15 or Algorithm 14. Such an algorithm reads an ordered
sequence of vertices of a planar simple polygonal curve ρ and outputs an ordered
sequence of vertices of the convex hull of ρ; its running time is O(|V (ρ)|).

The chapter is structured as follows: Sect. 10.3 provides approximation algo-
rithms for the case of the fixed TPP, with either convex or not necessarily convex
input polygons, and then some modifications of those two algorithms for solving the
floating TPP, with either convex or not necessarily convex input polygons, in the ap-
proximate sense. Section 10.4 reports about experiments, and Sect. 10.5 concludes.

10.3 The Algorithms

In this section, we do not only deal with the fixed TPP, we also discuss an approxi-
mate solution for the floating TPP.

First, we provide Algorithm 38 which is only guaranteed to find a fixed TPP
solution as a local minimum, and not necessarily as the intended global minimum.
However, if the input polygons Pi are all convex, then this simple algorithm already
outputs an approximate fixed TPP solution (with adjustable accuracy) in the global
sense.

Line 5 of Algorithm 38, the local optimisation step, is illustrated in Fig. 10.4.
Analogously to the proof of Theorem 3.3, we analyse the approximation factor

of Algorithm 38 (see Fig. 10.5) as follows: This algorithm calculates a (1 + 2k ×
r(ε)/L)-approximate solution for the fixed TPP, and it is not necessarily only re-
stricted to convex polygons Pi , where L is the length of a shortest path (i.e., the
intended global minimum), r(ε) the upper error bound for distances between pi and
its corresponding optimal vertex p′

i (i.e., de(pi,p
′
i) ≤ r(ε), for i = 1, . . . , k), and

we recall that de is the Euclidean metric.

318 10 Touring Polygons

Algorithm 38 (RBA for a sequence of pairwise disjoint simple polygons)
Input: A sequence of k pairwise disjoint simple polygons P1,P2, . . . ,Pk in the same
plane π ; two points p, q /∈ ⋃k

i=1 Pi , and an accuracy constant ε > 0.
Output: A sequence 〈p,p1,p2, . . . , pk, q〉 which starts at p = p0, then visits poly-
gons Pi at points pi in the given order, and finally ends at q = pk+1.

1: For each i ∈ {1,2, . . . , k}, let initial vertex pi be a vertex of Pi .
2: Let L0 = ∞. Calculate L1 = ∑k

i=0 de(pi,pi+1), where p0 = p and pk+1 = q .
3: while L0 − L1 ≥ ε do
4: for i = 1,2, . . . , k do
5: Compute a point qi ∈ ∂Pi such that de(pi−1, qi) + de(qi,pi+1) =

min{de(pi−1,p) + de(p,pi+1) : p ∈ ∂Pi}.
6: Update the path 〈p,p1,p2, . . . , pk, q〉 by replacing pi by qi .
7: end for
8: Let L0 = L1 and calculate L1 = ∑k

i=0 de(pi,pi+1).
9: end while

10: Return 〈p,p1,p2, . . . , pk, q〉.
Fig. 10.5 RBA for solving the fixed TPP problem for a sequence of pairwise disjoint simple
polygons

This approximation factor follows because, for each i ∈ {1,2, . . . , k}, the error of
the difference between de(pi,pi+1) and de(p

′
i , p

′
i+1) is at most 2 × r(ε) because of

de(pi,p
′
i) ≤ r(ε). We obtain that

L ≤
k∑

i=0

de(pi,pi+1) ≤
k∑

i=0

[
de

(
p′

i , p
′
i+1

) + 2 × r(ε)
]

= L + 2k × r(ε).

Thus, the output path is a {1 + 2k × r(ε)/L}-approximation path.
Recall the analysis of κ(ε) in Sect. 8.3, where κ(ε) = L0−L

ε
is the usual function

which only depends upon the difference between the length L0 of an initial path
and L of the optimum path, and the accuracy constant ε. Let Lm be the length
of the mth updated path, for m = 0,1,2, . . . , with Lm − Lm+1 ≥ ε (otherwise the
algorithm stops). It follows that

κ(ε) = L0 − L

ε
≥ 1 + L1 − L

ε
≥ · · · ≥ m + Lm − L

ε
. (10.1)

The sequence {m + Lm−L
ε

} is monotonously decreasing, lower bounded by 0, and
stops at the first m0 where Lm0 − Lm0+1 < ε. This defines a local minimum in this
approximation process. However, it is still possible that Lm0+1 is not yet “close”
to L in the case of nonconvex polygons.

For convex input polygons, we apply the following

Lemma 10.1 For the unconstrained TPP, if all input polygons are pairwise disjoint
and convex, then local optimality is equivalent to global optimality.

10.3 The Algorithms 319

Algorithm 39 (Algorithm for the fixed TPP; polygons may be nonconvex)
Input: A sequence of k simple polygons P1,P2, . . . ,Pk such that the convex hulls
C(P1),C(P2), . . . ,C(Pk) are pairwise disjoint; two points p, q /∈ ⋃k

i=1 C(Pi), and
an accuracy constant ε > 0.
Output: A sequence 〈p,p1,p2, . . . , pk, q〉 which starts at p, then visits polygon Pi

at pi in the given order, and finally ends at q .

1: For i ∈ {1,2, . . . , k}, apply a linear-time convex hull algorithm for computing
the convex hull C(Pi).

2: Let C(P1),C(P2), . . . ,C(Pk), p, and q be the input of Algorithm 38 for com-
puting an approximate shortest route 〈p,p1, . . . , pk, q〉.

3: For i = 1,2, . . . , k − 1, find a point qi ∈ ∂Pi such that de(pi−1, qi) +
de(qi,pi+1) = min{de(pi−1,p) + de(p,pi+1) : p ∈ ∂Pi}.

4: Update the path for each i by pi = qi .
5: Let P1,P2, . . . ,Pk , p and q be the input of Algorithm 38, and points pi as

obtained in Line 3 are the initial vertices pi in Line 1 of Algorithm 38. Continue
with running Algorithm 38.

6: Return 〈p,p1, . . . , pk−1,pk, q〉 as provided in Line 4.

Fig. 10.6 An improved version of RBA for solving the fixed TPP problem for a sequence of
pairwise disjoint simple polygons

Thus, we immediately obtain

Corollary 10.1 If all input polygons are convex then Algorithm 38 outputs an ap-
proximate global solution for the fixed TPP.

Obviously, limε→0 r(ε) = 0. Thus, Algorithms 38 may be “tuned” by a very
small ε > 0 to be of very high accuracy. The time complexity of the algorithm is
discussed later below.

Now we provide a second (heuristic) algorithm which applies Algorithm 38 on
the convex hulls C(P) of the input polygons P in order to obtain an ‘improved’ ini-
tial path whose vertices are located on the frontier of the convex hulls (see Fig. 10.6);
then we transform this path in the algorithm into another one such that its vertices
are on the frontier of the input polygons; finally, the algorithm applies Algorithm 38
again on the input polygons to find a further improved solution to the fixed TPP.

Line 2 iterates through the convex hulls. The iteration through step sets Pi only
occurs in Line 4 (i.e., when applying Algorithm 38 for the second time, using the
same ε). Algorithm 39 provides a (1 + (L2 − L1)/L)-approximate global solution
for the floating TPP, where L is the length of an optimal path, L1 is the length of
the path obtained in Line 2, and L2 the length of the final path obtained in Line 5.
Note that L2 ≥ L1, and L2 = L1 if all polygons Pi are convex.

Theorem 10.1 Algorithms 38 and 39 may be computed in time κ(ε)O(n), where n

is the total number of vertices of the involved k polygons Pi .

320 10 Touring Polygons

Algorithm 40 (The “floating version” of Algorithm 38)
Input: A sequence of k pairwise disjoint simple polygons P0,P1, . . . ,Pk−1 in a
plane π ; an accuracy constant ε > 0.
Output: A sequence 〈p0,p1,p2, . . . , pk〉 (where pk = p0) which visits poly-
gon Pi at pi in the given order i = 0,1,2, . . . , k − 1, and finally i = 0
again.

1: For each i ∈ {0,1, . . . , k − 1}, let initial pi be a vertex of Pi .
2: Let L0 = ∞. Calculate L1 = ∑k−1

i=0 de(pi,pi+1).
3: while L0 − L1 ≥ ε do
4: for i = 0,1, . . . , k − 1 do
5: Compute a point qi ∈ ∂Pi such that de(pi−1, qi) + de(qi,pi+1) =

min{de(pi−1,p) + de(p,pi+1) : p ∈ ∂Pi}.
6: Update the route 〈p0,p1, . . . , pk−1〉 by replacing pi by qi .
7: end for
8: Let L0 be L1 and calculate L1 = ∑k−1

i=0 de(pi,pi+1).
9: end while

10: Return 〈p0,p1, . . . , pk−1,pk〉.
Fig. 10.7 RBA for solving the floating TPP problem for a sequence of pairwise disjoint simple
polygons

Proof In Line 5 of Algorithm 38, each locally optimal point qi can be computed
using on the order of |V (Pi)| operations, where V (Pi) is the set of vertices of Pi .
Thus, each iteration of the for loop takes O(n) operations at most. Furthermore,
the number of runs through the outer while-loop is upper bounded by κ(ε); see
Eq. (10.1). Thus, Algorithm 38 runs in time κ(ε)O(n). �

Extensive experiments showed that κ(ε) was always much too large to estimate
the actual number of runs through the outer while-loop. Obviously, κ(ε) also de-
pends on the selection of the initial path. By taking fixed initial points pi (e.g., the
uppermost, leftmost vertex of Pi), the function κ(ε) would only depend on ε and
the configuration of the input polygons Pi .

Now we propose two algorithms for the floating TPP. They are derived in a
straightforward way from the two algorithms described above.

Algorithm 40 (see Fig. 10.7) calculates a [1 + 2k · r(ε)/L]-approximate solution
for the floating TPP and convex polygons Pi , where L is the length of an optimal
path, and r(ε) the upper error bound for distances between pi and a corresponding
optimal vertex p′

i .
2

Algorithm 41 (see Fig. 10.8) provides a (1+ (L2 −L1)/L)-approximate solution
for the floating TPP with not necessarily only convex polygons Pi , where L is the

2Regarding a proof of correctness for Algorithm 40 and convex polygons Pi , it is analogous to the
proof of Theorem 3 in [11]. This proof is actually theoretically challenging, but it is too long for
this chapter. The method of [2], as cited before for the fixed TPP and convex polygons Pi , is not
applicable here for showing correctness for the case of convex input polygons.

10.4 Experimental Results 321

Algorithm 41 (The “floating version” of Algorithm 39)
Input: A sequence of k simple polygons P0,P1, . . . ,Pk−1 such that convex hulls
C(P0),C(P1), . . . ,C(Pk−1) are pairwise disjoint and an accuracy constant ε > 0.
Output: A sequence 〈p0,p1,p2, . . . , pk−1,pk〉 (where pk = p0) which visits
polygon Pi at pi in the given order i = 0,1,2, . . . , k − 1, and then i = 0
again.

1: For i ∈ {0,1, . . . , k − 1}, apply a linear-time convex hull algorithm for comput-
ing C(Pi).

2: Let C(P0),C(P1), . . . ,C(Pk−1) be the input of Algorithm 40 for computing an
approximate shortest route 〈p0,p1, . . . , pk〉.

3: For i = 0,1,2, . . . , k − 1, find a point qi ∈ ∂Pi such that de(pi−1, qi) +
de(qi,pi+1) = min{de(pi−1,p) + de(p,pi+1) : p ∈ ∂Pi}.

4: Update pi by letting pi be qi .
5: Let P0,P1, . . . ,Pk−1 be the input of Algorithm 40, and points pi as obtained

from Line 3 be the initial points in Line 1 of Algorithm 40 for computing an
approximate shortest route 〈p0,p1, . . . , pk−1,pk〉.

6: Return 〈p0,p1, . . . , pk−1,pk〉.
Fig. 10.8 An improved version of RBA for solving the floating TPP problem for a sequence of
pairwise disjoint simple polygons

length of an optimal path, L1 is the length of the path obtained in Line 2, and L2 the
length of the final path in Line 5.

Regarding the time complexity of Algorithms 40 and 41, it is obvious that they
are the same as that of Algorithms 38 and 39, that is, running in time κ(ε)O(n),
where n is the total number of vertices of the k involved polygons Pi , and κ(ε) is
the function as defined before.

10.4 Experimental Results

Both Algorithms 39 and 41 were implemented in Java. On the left (on the right) in
Fig. 10.9, the red route is obtained by Line 2 of Algorithm 39 (of Algorithm 41),
the blue one is the initial route in Line 4 of Algorithm 39 (of Algorithm 41), and
the green one is the final route of Algorithm 39 (of Algorithm 41) when applying
ε = 10−10. Routes follow the predefined order of those polygons.

In Table 10.1, L1, L2, and L are as defined in the output of Algorithm 39, while
L′

1, L′
2, and L′ are the corresponding values defined in the output of Algorithm 41.

Values δ and δ′ are defined by (1 + (L2 − L1)/L) and (1 + (L′
2 − L′

1)/L
′), re-

spectively. Note their closeness to 1.0. Both L and L′ are approximate because they
are found by running Algorithms 38 and 39 for 100,000 times (each time with a
randomly selected initial path), and then selecting the minimum. Note that L2 ≥ L

(L′
2 ≥ L′) follows from being approximate solutions for the fixed or the floating

TPP. For more examples of measured run times, see Fig. 10.10.

322 10 Touring Polygons

Fig. 10.9 Routes as calculated in Lines 2, 4, and 5 of Algorithms 39 and 41

Table 10.1 Resulting data
obtained from Algorithms 39
and 41 on the input example
shown in Fig. 10.9

L1 L2 L δ

2,867.069 2,888.999 2,887.736 1.0076

L′
1 L′

2 L′ δ′

2,521.294 2,532.700 2,532.700 1.000

Fig. 10.10 Running time (in
seconds) of Algorithm 41, for
numbers of randomly
generated polygons up to 230.
Implementation: in Java on a
PC with Pentium Dual-Core
CPU E5200 2.50 GHz,
1.99 GB memory; all input
polygons with 14 vertices.
(Obviously, this
implementation was not
optimised for speed, but
indicates an approximate
linear increase for this small
set of samples.)

10.5 Concluding Remarks and Future Work

In this chapter, we present (1 + (L2 −L1)/L)-approximation algorithms for finding
approximate solutions for both the fixed and the floating TPP, where simple input
polygons have to satisfy the condition that their convex hulls are pairwise disjoint.

10.6 Problems 323

For extensive experimental results, showing the practical appearance of the the-
oretical upper time bound κ(ε)O(n), see Sects. 3.8 and 8.3.

The presented algorithms appear to be suitable for solving both the fixed and
the floating TPP, and they have identical theoretical time complexity.3 The RBA
method could also be useful for solving the floating watchman route problem, the
floating safari problem, and the floating zookeeper problem, and we will discuss
those problems in the next two chapters.

It also remains an open problem to handle cases where the convex hulls of the
polygons are not necessarily pairwise disjoint.

10.6 Problems

Problem 10.1 Discuss the differences between the fixed TPP, the floating TPP, and
the constrained fixed TPP.

Problem 10.2 What are the differences between continuous cutting, endpoint cut-
ting, and intermittent cutting.

Problem 10.3 Discuss the difference between P-TSP, TSP, and TPP.

Problem 10.4 Algorithm 38 is also modified from Algorithm 7. Underline the mod-
ifications of Algorithm 38 in Fig. 10.5.

Problem 10.5 Prove Lemma 10.1.

Problem 10.6 Algorithm 39 is modified from Algorithm 31. Underline the modifi-
cations of Algorithm 39 in Fig. 10.6.

Problem 10.7 Algorithm 40 is also modified from Algorithm 7. Underline the mod-
ifications of Algorithm 40 in Fig. 10.7.

Problem 10.8 Algorithm 41 is also modified from Algorithm 31. Underline the
modifications of Algorithm 41 in Fig. 10.8.

Problem 10.9 Consider the input of Algorithm 39. Why is it required that the con-
vex hulls C(P1),C(P2), . . . ,C(Pk) be pairwise disjoint?

Problem 10.10 (Programming exercise) Implement Algorithms 38, 39, 40, and 41,
and compare their performance.

3While the method of [2] is only suitable for the fixed TPP and convex polygons. Moreover, RBAs
appear to be simpler and easier to understand and to implement than the algorithm in [2].

324 10 Touring Polygons

Problem 10.11 Consider input polygons in 3D space (not necessarily in parallel
planes) for Algorithms 38, 39, 40, and 41. Would those algorithms still solve the
TPP defined by those input polygons?

Problem 10.12 Read reference [2]. Conclude why the method presented there can-
not be generalised to deal with the floating TPP.

Problem 10.13 (Research problem) Generalise the generic RBA (i.e., Algorithm 10
described in Fig. 3.22) for solving the TPP for a sequence of pairwise disjoint simple
polygons. Compare its performance with that of Algorithm 38.

10.7 Notes

Notations in this chapter follow [2]; Lemma 10.1 is Lemma 1 in this paper. Our
approximate algorithms apply RBAs; see Chap. 3 for the basic design of an RBA,
and see also [10], for variants of RBAs.

The TPP already has a history of publications addressing its various applications;
see, for example, [1, 2, 7, 10, 13]. The given three models of cutting scenarios have
been defined in [7]; this paper discusses the general ordered P-TSP as illustrated
in Fig. 10.1. In [1], it was assumed that all the polygons in an ordered P-TSP are
convex.

Reference [7] focused on solving the continuous cutting problem where each
object is a polygon [i.e., the plate-cutting travelling salesman problem (P-TSP)].
The P-TSP is a generalisation of the well-known travelling salesman problem (TSP)
[9]. The P-TSP is more general than the generalised TSP (GTSP) as discussed in [8,
13]. If each polygon degenerates into a single vertex then the P-TSP becomes the
TSP which is known to be NP-hard [3]. It follows that the P-TSP is NP-hard as well.
Figure 10.3 shows the P-TSP as considered in [2]. See also [6].

Reference [7] solved the ordered P-TSP by a heuristic approach based on a La-
grange relaxation method as discussed in [4, 5], without providing a time complexity
analysis for this proposed approach. As a follow-up of this work, [1] proved that a
further simplified ordered P-TSP, where polygons are all assumed to be convex (see
Fig. 10.2), is solvable in polynomial time. If, additionally, the start point is also
given (see Fig. 10.3), then the authors of [2] claim that they can solve this fixed
problem in time O(kn log(n/k)), where n is the total number of vertices of poly-
gons Pi ⊂ π , for i = 1,2, . . . , k. According to [2], “one of the most intriguing open
problems” identified by their results “is to determine the complexity of the fixed TPP
for pairwise disjoint nonconvex simple polygons”.

Assuming that Chazelle’s triangulation method actually defines a linear-time al-
gorithm (see our discussion in Chap. 5), a shortest path, connecting two given points
within a simple polygon, and fully contained in this polygon, can then be con-
structed in time linear in the number of vertices of this polygon [12].

For a convex hull algorithm, see, Chap. 4.

References 325

References

1. Dror, M.: Polygon plate-cutting with a given order. IIE Trans. 31, 271–274 (1999)
2. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.: Touring a sequence of polygons. In: Proc. STOC,

pp. 473–482 (2003)
3. Garey, M.R., Graham, R.L., Johnson, D.S.: Some NP-complete geometric problems. In: Proc.

ACM Sympos. Theory Computing, pp. 10–22 (1976)
4. Geoffrion, A.M.: Lagrangian relaxation and its uses in integer programming. In: Mathematical

Programming Study, vol. 2, pp. 82–114. North-Holland, Amsterdam (1974)
5. Guignard, M., Kim, S.: Lagrangian decomposition: a model yielding stronger Lagrangian

bounds. Math. Program. 39, 215–228 (1987)
6. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problems. PWS Pub. Co.,

Boston (1997)
7. Hoeft, J., Palekar, U.S.: Heuristics for the plate-cutting traveling salesman problem. IIE Trans.

29, 719–731 (1997)
8. Laporte, G., Mercure, H., Nobert, Y.: Generalized traveling salesman problem through n clus-

ters. Discrete Appl. Math. 18, 185–197 (1987)
9. Lawler, E., Lenstra, J., Rinnooy Kan, A., Shmoys, D.: The Traveling Salesman Problem.

A Guided Tour of Combinatorial Optimization. Wiley, New York (1985)
10. Li, F., Klette, R.: Rubberband algorithms for solving various 2D or 3D shortest path problems

(invited talk). In: IEEE Proc. Computing: Theory and Applications, pp. 9–18. The Indian
Statistical Institute, Kolkata (2007)

11. Li, F., Klette, R.: Watchman route in a simple polygon with a rubberband algorithm
(with downloadable source of algorithm). Mi-tech report-51. www.mi.auckland.ac.nz/
index.php?option=com_content&view=article&id=127&Itemid=113

12. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.-R., Urrutia, J.
(eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)

13. Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman prob-
lem. Inf. Syst. Oper. Res. 31, 39–44 (1993)

Chapter 11
Watchman Routes

Sometimes the path you are on is not as important as the
direction you are heading. For, no matter if you take the Holland
Tunnel or the George Washington Bridge you get to New Jersey,
so long as you are heading west. The procedure involved in your
path to Nirvana may meander, but a road worth travelling will
have its twists and turns.

Kevin Patrick Smith (born 1970)

So far, the best result in running time for solving the floating watchman route
problem (i.e., shortest path for viewing any point in a simple polygon with given
start point) is O(n4 logn), published in 2003 by M. Dror, A. Efrat, A. Lubiw, and
J. Mitchell. This chapter provides an algorithm with κ(ε) ·O(kn)+O(k2n) runtime,
where n is the number of vertices of the given simple polygon P , and k the num-
ber of essential cuts; κ(ε) defines the numerical accuracy depending on a selected
constant ε > 0. Moreover, the presented RBA appears to be significantly simpler,
easier to understand and to be implemented than previous ones for solving the fixed
watchman route problem.

11.1 Essential Cuts

Let P be a planar, simple, topologically closed polygon (i.e., P = P •) with n ver-
tices, and let ∂P be its frontier. A point p ∈ P is visible from point q ∈ P iff
pq ⊂ P . The (floating) watchman route problem (WRP) of computational geom-
etry is defined as follows:

Compute a shortest route ρ ⊂ P such that any point p ∈ P is visible from at
least one point on ρ.

F. Li, R. Klette, Euclidean Shortest Paths,
DOI 10.1007/978-1-4471-2256-2_11, © Springer-Verlag London Limited 2011

327

328 11 Watchman Routes

Fig. 11.1 A watchman route.
Note that the positions of the
vertices on the dashed lines
need to be optimised for
obtaining an ESP

This is actually equivalent to the requirement that all points p ∈ P are visible just
from the vertices of the path ρ, that is, for any p ∈ P there is a vertex q on ρ such
that pq ⊂ P . See Fig. 11.1. We also cite an important theorem from this area:

Theorem 11.1 There is a unique (floating) watchman route in a simple polygon,
except for those cases where there is an infinite number of different shortest routes,
all of equal length.

If the start point of the route is given, then this refined problem is known as being
the fixed WRP. In the rest of this chapter, let s be the start point of a fixed WRP.

Given the large time complexity of published exact algorithms for solving the
WRP, finding efficient approximation algorithms became an interesting subject in
recent years.

Recall the definition of a δ-approximation (see Definition 2.2). In case of the
WRP, the optimum solution is defined by the length of the shortest path. We also
recall that a Euclidean path is a δ-approximation path for an ESP problem iff its
length is at most δ times the optimum solution.

A vertex v of P is called reflex or concave if v’s internal angle is greater than
180◦. Let u be a vertex of P which is adjacent to a reflex vertex v. Assume that the
straight line uv intersects an edge of P at v′. Then the segment C = vv′ partitions
P into two parts.

Definition 11.1 Such a segment C is called a cut of P if C makes a convex vertex
at v in the part containing the starting point s; v is called the defining vertex of C,
and v′ is called the hit point of C.

For the floating WRP, each reflex vertex defines two cuts because there does not
exist a starting point. That part of P which contains s is called an essential part of
C and is denoted by P(C). See Fig. 11.2. The other part of P is called the pocket
induced by cut C, and C is the associated cut of the pocket.

11.1 Essential Cuts 329

Fig. 11.2 Example of cuts
and essential cuts. There are
eight cuts C1, C2, C3, C4,
C5, C6, C8, and C12. There
are five essential cuts C1, C3,
C5, C8, and C12, where v6 is
the starting point

Definition 11.2 A cut C dominates a cut C′ iff P(C) contains P(C′). A cut is
called essential if it is not dominated by another cut. A pocket is called essential if
it does not contain any other pocket.

A pocket is essential iff its associated cut is essential.
If two points u and v are on two different edges of P , such that the segment

uv partitions P into two parts, then we say that uv is a general cut of P . We may
arbitrarily select one of both endpoints of the segment uv to be its start point. In the
rest of this chapter, for an essential cut C of P , we identify the defining vertex of C

with its start point.
If C0,C1, . . . ,Ck−1 are all the essential cuts of P such that their start points are

ordered clockwise around on the frontier ∂P of P , then we say that C0,C1, . . . ,

Ck−1, and P satisfy the condition of the fixed (or floating) watchman route problem
(WRP).

Example 11.1 In Fig. 11.2, polygon P and the essential cuts C1, C3, C5, C8, and
C12 satisfy the condition of the fixed WRP, where v6 is the starting point. �

Let e be an edge of P , and u and v be the endpoints of e. We say that the direction
of edge e is from u to v if this is the same direction as defined by a counterclockwise
scan of ∂P . The direction of an essential cut is the same direction as the one of that
edge where it is collinear with.

We also say that a point lies to the right (left) of an essential cut if the point
lies locally to the right (left) in the subpolygon separated by the essential cut (i.e.,
possibly also on that essential cut).

Definition 11.3 An essential cut C is called redundant if there is a watchman route
ρ such that ρ is completely contained in the pocket P(C); cut C is called non-
redundant otherwise.

Definition 11.4 Let C be a cut, v the defining vertex of C, and v ′ the hit point of C.
Let u be a vertex of P such that u, v and v′ are collinear. Let w be a vertex of P

330 11 Watchman Routes

Fig. 11.3 The dashed line is
an example of a redundant
essential cut

such that w is incident with u and w �= v. If w is a reflex vertex, then the straight
line uw intersects an edge of P at w′. The segment ww′ is called the associated cut
of C. The part containing both C and its associated cut is called an associated part
of C, denoted by P ′(C).

Example 11.2 Figure 11.3 shows one redundant essential cut. The figure also shows
a shortest watchman route, and the watchman route is not uniquely defined for this
example. C5 is an associated cut of C0. The polygon v0v9v8v

′
8v6v5v

′
0v0 is the asso-

ciated part of C0. �

There exist only three categories of contacts between a watchman route ρ and an
essential cut C:

• A reflection contact if ρ and C have exactly one point in common,
• a crossing contact if both have two points in common (i.e., C is redundant in this

case), and
• a tangential contact if ρ and C share a line segment of nonzero length.

We say that ρ contacts an essential cut if ρ makes a reflection, crossing or tangential
contact with such a cut. An essential cut C is active if ρ makes a reflection contact
with C.1

Figure 11.4 shows a watchman route ρ = (p0,p1,p2, v6,p4,p3,p4, v6,p0)

which makes reflection contacts with C1, C5, and C8 at p0, p2, and p3, respec-
tively. Path ρ makes a crossing contact with C3 at p1 and p′

1; ρ makes a crossing

1We do not have to consider any non-essential cuts when defining active cuts. Otherwise the route
would be longer.

11.1 Essential Cuts 331

Fig. 11.4 Reflection and
crossing contacts between a
watchman route ρ and
essential cuts

Fig. 11.5 Three types of
contacts between a watchman
route ρ and essential cuts

contact with C12 at p4 (both incident points are identical to p4); ρ does not make a
tangential contact with any of the cuts.

In Fig. 11.5, ρ makes reflection contacts with C1 and C3 at p1 and p2, respec-
tively, a crossing contact with C4 at p3 and p4, and a tangential contact with C2.
Path ρ and cut C2 share a line segment p1p2. Cuts C1 and C3 are active cuts.

Now let {C0,C1, . . . ,Ck−1} be the sequence of all essential cuts of P .

Definition 11.5 {C0,C1, . . . ,Ck−1} is called in good order iff v0, v1, . . . , vk−1 are
located around ∂P in order; vi is the defining vertex of Ci , for i = 0,1, . . . , k − 1.

Now let {Ca0,Ca1 , . . . ,Cam−1} be the sequence of all active cuts.

Definition 11.6 {Ca0 ,Ca1 , . . . ,Cam−1} is called in good order iff

0 ≤ a0 < a1 < · · · < am−1 ≤ k − 1.

Consider two points p, q ∈ P . If the segment pq ⊂ P then we say that q can
see p (with respect to P), and p is a visible point of q . Let q ∈ P and consider a
segment S ⊂ P . If, for each point p ∈ S, q can see p, then we say that q can see S.

Let q be a point in P , S ⊂ P a segment, p ∈ S, and point p is not an endpoint
of S. If q can see p, but for any sufficiently small ε > 0, q cannot see p′, where
p′ ∈ S and Euclidean distance de(p,p′) = ε, then we say that p is a visible extreme
point of q (with respect to S and P).

332 11 Watchman Routes

Consider a segment S ⊂ P and a point q ∈ P \ S. If there exists a subsegment
S ′ ⊆ S such that q can see S′, and each endpoint of S′ is a visible extreme point of
q or an endpoint of S, then we say that S ′ is a maximal visible segment of q (with
respect to P).

Let S0, S1, . . . , Sk−1 be k segments (k ≥ 2) in 3-dimensional Euclidean space,
and p ∈ S0 and q ∈ Sk−1. Let LS(p,q) be the length of the shortest path, starting at
p, then visiting segments S1, . . . , Sk−2 in this order, and finally ending at q , where
S = 〈S0, S1, . . . , Sk−1〉.

Let p and q be points in P . We denote by LP (p,q) the length of the shortest
path from p to q inside of P . Let ρ be a polygonal path and V (ρ) the set of all
vertices of ρ; |V (ρ)| is the number of vertices of ρ. Denote by C(S) the convex hull
of a set S. For k non-empty sets S0, S1, . . . , Sk−1,

∏k−1
i=0 Si is the cross product of

those sets.
This ends our introduction of technical terms. We also recall here in one place

four results and four algorithms for later use:
Let ρ be a shortest watchman route, and assume that ρ makes a tangential contact

with an essential cut C at a segment p1p2, where p1 and p2 are the endpoints of the
segment p1p2.

Lemma 11.1 There exist two active cuts C1 and C2 such that ρ contacts C1 and C2

at p1 and p2 successively.

Lemma 11.2 There is a shortest watchman route that contacts the sequence of all
active cuts in good order.

Lemma 11.3 A closed curve is a watchman route if and only if the curve has at
least one point to the left of (or on) each essential cut.

Theorem 11.2 Given a simple polygon P , the set C of all essential cuts for the
watchman route in P can be computed in O(n) time.

We also refer to an algorithm for the 2D ESP problem (see Chap. 6 for options)
that has as input a simple polygon P and two points p,q ∈ P and computes a short-
est path from p to q inside of P as follows: first a decomposition into triangles or
trapezoids (see Chap. 5), and then the shortest path on those triangles or trapezoids,
using, e.g., some adaptation of the Dijkstra algorithm. For the running time of such
an algorithm we use O(|V (∂P)|) in this chapter (i.e., assuming that triangulation
can actually be done in linear time). However, there are other (slower, but already
implemented) ways for solving the problem ‘ESP in a simple polygon’, as Chap. 6
discusses.

We also use a tangent calculation2 which has as input an ordered sequence of
vertices of a planar convex polygonal curve ∂P and a point p /∈ P ; its output are

2See [29].

11.2 Algorithms 333

Fig. 11.6 The floating
watchman route algorithm
and the call-structure of
procedures used in the
algorithm

two points ti /∈ P such that pti are tangents to ∂P , for i = 1,2; the running time is
O(log |V (∂P)|).

Finally, we also use a winding number inclusion3 which has as input a polygon
P and a point p; its output tells us whether p is inside of P or not; the running time
is O(|V (∂P)|).

The remainder of this chapter is organised as follows: Sect. 11.2 proposes the
main algorithm of this chapter. Section 11.3 discusses its correctness and time com-
plexity.

11.2 Algorithms

In this section, we describe and discuss the algorithm for solving the floating watch-
man route problem, thus (finally) arriving at the problem this chapter is aiming at:
solving this problem with reasonable run times.

The call-structure of used procedures is shown in Fig. 11.6. The main algorithm
of this chapter is based on Procedure 26 in Fig. 11.7, which applies the 2D ESP
algorithm and Procedure 25. We present the used procedures first and the main
algorithm at the end.

We apply again the following ‘3-point local optimisation strategy’ of an RBA: In
each iteration, we update (by finding a local minimum or optimal vertex) the second
vertex pi for every 3-subsequent-vertices subsequence pi−1, pi , pi+1, constrained
by the step set {S1, S2, . . . , Sk}. The first procedure below computes the maximal
visible segment, which is actually an element of the step set of the used RBA. The
second procedure is used for updating the vertices.

For Procedure 25, see the pseudocode in Fig. 11.7:
Case 1: p is not an endpoint of C. For i ∈ {1,2}, if q can see vi (see left of

Fig. 11.8), let p′
i be vi ; otherwise, let Vi be the set of vertices in V (∂P) such that

each vertex in Vi is in �qpvi . Apply the convex hull algorithm to compute C(Vi).

3See [30].

334 11 Watchman Routes

Procedure 25 (Compute a maximal visible segment)
Input: Polygon P and a general cut C of P ; let v1 and v2 be the two endpoints of
C; two points p and q such that p ∈ C and p is a visible point of q ∈ ∂P \ C.
Output: Two points p′

1,p
′
2 ∈ C such that p is in the segment p′

1p
′
2, and p′

1p
′
2 is the

maximal visible segment of q .

1: if p /∈ ∂P then
2: for i ∈ {1,2} do
3: if qvi ∩ ∂P = ∅ then
4: Let p′

i = vi .
5: else
6: Let Vi be the set of vertices in V (∂P) such that each vertex in Vi is

inside of �qpvi .
7: Apply a linear-time convex hull algorithm to compute C(Vi).
8: Apply the tangent algorithm to find a point p′

i ∈ C such that qp′
i is a

tangent to C(Vi).
9: end if

10: end for
11: else
12: Without loss of generality, assume that p = v1. Let p′

1 = p.
13: Proceed analogously as in Lines 4–8, but now for i = 2.
14: end if
15: Output p′

i , for i = 1,2, and Stop.

Fig. 11.7 Compute a maximal visible segment of a general cut

Fig. 11.8 Illustration for
Procedure 25

Apply the tangent algorithm to find a point p′
i ∈ C such that qp′

i is a tangent to
C(Vi) (see on the right of Fig. 11.8).

Case 2: p is an endpoint of C. Without loss of generality, assume that p = v1.
Let p′

1 be p. Let V2 be the set of vertices in V (∂P) such that each vertex in V2 is
in �qpvi . Apply the convex hull algorithm to compute C(V2). Apply the tangent
algorithm to find a point p′

2 ∈ C such that qp′
2 is a tangent to C(V2).

In Line 1 of Procedure 25, p is not an endpoint of C. In Line 3, q can see vi , see
left of Fig. 11.8. Line 8 is illustrated on the right of Fig. 11.8. In Line 11, p is an
endpoint of C.

11.2 Algorithms 335

Fig. 11.9 Illustration for
Line 2 of Procedure 26

Fig. 11.10 Illustration for
Line 4 of Procedure 26

Now we turn to Procedure 26. In Line 2 of this procedure, q1, p2, q3 appear
consecutively in V . See Fig. 11.9.

We call the line segment S2 in Line 4 of Procedure 26 (in Figs. 11.10 and 11.11)
associated to the updated (optimal) point p2.

The pseudocode in Fig. 11.12 defines now Algorithm 42. In this algorithm, all
subscripts are taken modulo k. In Line 1 (see Fig. 11.13), pk = s and pk+1 = p0. In
Line 5, Ck = pk = s and Ck+1 = C0. In Line 7, sequence V1 is the updated sequence
V0, after inserting Ui . In Line 9, we use the updated original sequence V instead of
V1 for the next iteration.

In order to describe the main algorithm of this chapter conveniently, we introduce
some symbols for the input and output of Algorithm 42. Let SC be the sequence
{C0,C1, . . . ,Ck−1}. Let the route obtained by Algorithm 42 be ρ(SC,V, ε, ε1) on
input SC , V , ε, and ε1, where V is defined as in Line 9 of Algorithm 42.

The ‘key idea’ of Algorithm 43 in Fig. 11.14 is to maintain a watchman route
by shrinking it properly so as to compute the set of all non-redundant essential cuts.
When the loop ends, there does not exist any redundant essential cut in SC , and the
program terminates.

We choose accuracy value ε0 = 1 to speed up in Lines 1, 3, and 5 during main-
taining the watchman route. Finally, we choose the accuracy constant ε to be suffi-
ciently small, such as 10−15 in Line 8 to obtain a high accuracy.

336 11 Watchman Routes

Procedure 26 (Handling of three general cuts)
Input: Three general cuts C1, C2 and C3 of P , three points pi ∈ Ci , for i = 1,2,3,
and a degeneration accuracy constant ε1 > 0.
Output: An updated shorter path ρ(p1, . . . , p2, . . . , p3) that might also contain ver-
tices of the polygon P .

1: For each i ∈ {1,2}, let {pi,pi+1} (where pi ∈ Ci) be the input for the 2D ESP
algorithm; the output is a set Vii+1—the set of vertices of a shortest path from
pi to pi+1 inside of P . Let V be V12 ∪ V23.

2: Find q1 and q3 ∈ V such that 〈q1,p2, q3〉 is a subsequence of V .
3: Let C = C2, p = p2, q = qi , apply Procedure 25 (in Fig. 11.7) to find the

maximal visible segment Si = p′
1p

′
2 of qi , i = 1,3.

4: Find vertex p′
2 ∈ S2 = S1 ∩ S3 such that de(q1,p

′
2) + de(p

′
2, q3) =

min{de(q1,p
′) + de(p

′, q3) : p′ ∈ S2}.
5: If C2 ∩ C1 (or C3) �= ∅ and p′

2 is the intersection point, then ε1-transform p′
2

into another point (still denoted by p′
2) in C2.

6: Update V by letting p2 be p′
2.

Fig. 11.11 Calculation of a shorter subpath based on three subsequent general cuts

11.3 Correctness and Time Complexity

Lemma 11.4 There is a shortest watchman route that contacts the sequence of all
non-redundant essential cuts in good order.

Proof Let Ca0 ,Ca1, . . . ,Cam−1 be all the active cuts (where “a” is for “active”) such
that

0 ≤ a0 < a1 < · · · < am−1 ≤ k − 1.

By Lemma 11.2, path ρ contacts Ca0,Ca1 , . . . ,Cam−1 in this order. Let ρ contact
active cut Cai

at point pai
, where i = 0,1, . . . ,m − 1; ρ(paj

,paj+1) the section of
ρ from paj

to paj+1 inside of P , where j = 0,1, . . . ,m − 1 (all subscripts are taken
modulo m); see Fig. 11.15.

It is sufficient to prove that for any j ∈ {0,1, . . . ,m − 1}, if aj + 1 < aj+1,
then for any integer n ∈ [aj + 1, aj+1 − 1], essential cut Cn is visited (i.e., con-
tacted) by a section of ρ, that is, the polyline ρ(paj

,paj+1). By definition of Cai

(i = 0,1, . . . ,m − 1), Cn is not an active cut. Thus, ρ contacts Cn by either a cross-
ing contact or a tangential contact.

Case 1: If ρ contacts Cn by a tangential contact, then by Lemma 11.1, Cn must
intersect with two successive active cuts which must be Caj

and Caj+1 at points paj

and paj+1 where ρ contacts Caj
and Caj+1 . Thus, Cn is contacted by the polyline

ρ(paj
,paj+1). See Fig. 11.16.

Case 2: ρ contacts Cn by a crossing contact. Then Cn must be contacted by the
polyline ρ(paj

,paj+1). [In Fig. 11.4, C3 is contacted by the polyline ρ(p0,p2) =

11.3 Correctness and Time Complexity 337

Algorithm 42 (Approximate solution for the WRP with start point)
Input: A starting point s, k essential cuts C0,C1, . . . ,Ck−1, and P , which satisfy the
condition of the fixed WRP, points pi ∈ Ci , where i = 0,1,2, . . . , k−1, an accuracy
constant ε > 0, and a degeneration constant ε1 > 0.
Output: An updated closed {1 + 2k[r(ε) + ε1]/L}-approximation path
ρ(s,p0, . . . , p1, . . . , pk−1, s), which may also contain vertices of P , where L

is the length of an optimal path, r(ε) the upper error bound for distances between pi

and the corresponding optimal vertex p′
i : de(pi,p

′
i) ≤ r(ε), for i = 0,1, . . . , k − 1.

1: For i ∈ {0,1, . . . , k − 1}, let pi be an arbitrary point of Ci .
2: Let V0 and V be a sequence of points 〈p0,p1, . . . , pk−1〉, L1 be∑k

i=0 LP (pi,pi+1), and L0 be ∞.
3: while L0 − L1 ≥ ε do
4: for each i ∈ {0,1, . . . , k − 1} do
5: Let Ci−1, Ci , Ci+1, pi−1, pi , pi+1 and P be the input for Procedure 26,

which updates pi in V0.
6: Let Ui be the sequence of vertices of the path ρ(pi−1, . . . , pi, . . . , pi+1)

with respect to Ci−1, Ci and Ci+1 (inside of P); let Ui be 〈q1, q2, . . . , qm〉.
7: Insert (after pi−1) the points of sequence Ui (in the given order) into V0,

producing V1 = 〈p0,p1, . . . , pi−1, q1, q2, . . . , qm,pi+1, . . . , pk−1〉.
8: end for
9: Let L0 be L1 and V0 be V .

10: Compute the perimeter L1 of the polygon, given by the sequence V1 of ver-
tices.

11: end while
12: Output sequence V1, and the desired length equal to L1.

Fig. 11.12 Calculation of an approximate solution for the fixed WRP

(p0,p1,p2).] Otherwise, Cn must be contacted by polyline ρ \ ρ(paj
,paj+1). As

the defining vertices of Caj
, Cn, and Caj+1 are located in order around ∂P , and Cn

is not contacted by the polyline ρ(paj
,paj+1), the polyline ρ \ ρ(paj

,paj+1) must
cross ρ(paj

,paj+1) at least twice so as to contact Cn by a crossing contact. Let two
points p,q ∈ ρ(paj

,paj+1) be given such that ρ \ρ(paj
,paj+1) enters ρ(paj

,paj+1)

at point p to contact Cn at r ∈ Cn, and finally leaves ρ(paj
,paj+1) at point q . Note

that ρ contacts Cn by a crossing contact. Thus, polyline ρ(p, r, q) is the shortest
path from p to q inside of the simple polygon P . Also note that the polyline from
p to q along with the polyline ρ(paj

,paj+1) is a shortest path inside of the simple
polygon P . Therefore, we obtain two different shortest paths from p to q inside of
the simple polygon P . See Fig. 11.17. This is a contradiction. �

Lemma 11.5 The final set SC in Algorithm 43 is the set of all non-redundant essen-
tial cuts.

338 11 Watchman Routes

Fig. 11.13 Illustration for
Line 1 of Algorithm 42

Proof Let S′
C be the set of all non-redundant essential cuts. In Algorithm 43, let

Si
C be SC obtained after the ith while-loop. Let SN

C be the final SC , where i =
0,1,2, . . . ,N , and N is a non-negative integer. By Lemma 11.3, we have that

S ′
C ⊆ Si

C

where i = 0,1,2, . . . ,N . On the other hand, we have that

SN
C ⊂ SN−1

C ⊂ SN−2
C ⊂ · · · ⊂ S1

C ⊂ S0
C.

Thus, S′
C = SN

C . This proves the lemma. �

We cite a few basic results of convex analysis which are used in the following
(also partially already used in Chap. 9):

Algorithm 43 (Algorithm for solving the floating WRP)
Input and output: the same as for Algorithm 42 except that we do not have to select
a start point s.

1: Apply Algorithm 42 on the input SC , V , ε0, and ε1 for finding a watchman route
ρ(SC,V, ε0, ε1).

2: for i ∈ {0,1, . . . , k − 1} do
3: if Ci ∈ SC is such that the pocket P(Ci) completely contains the route

ρ(SC,V, ε0, ε1) then
4: Update SC and V by removing Ci and pi from SC and V , respectively,

where pi is the vertex of ρ in Ci .
5: Apply Algorithm 42 on updated SC , V (obtained from last step), ε0, and

ε1 for finding a watchman route ρ(SC,V, ε0, ε1).
6: end if
7: end for
8: Apply Algorithm 42 on SC , V , ε, and ε1 for finding a watchman route R.

Fig. 11.14 Main algorithm for calculating an approximate solution of the floating WRP

11.3 Correctness and Time Complexity 339

Fig. 11.15 Illustration for
Lemma 11.4: ρ(paj

,paj+1),
a section of ρ

Theorem 11.3 Let S1 and S2 be convex sets in Rm and Rn, respectively. Then,
S1 × S2 is a convex set in Rm+n, where m, n ∈N.

Proposition 11.1 Each line segment is a convex set.

Proposition 11.2 Each norm on Rn is a convex function.

Proposition 11.3 A non-negative weighted sum of convex functions is a convex
function.

Proposition 11.4 Let f be a convex function. If x is a point where f has a finite
local minimum, then x is a point where f has its global minimum.

By Theorem 11.3 and Propositions 11.1–11.3, we have the following

Corollary 11.1 LS(p,q): S0 × Sk−1 → R is a convex function.

Let C1, C2, and P satisfy the condition of the floating WRP. By Corollary 11.1,
we also have the following

Corollary 11.2 LP (p,q): C1 × C2 →R is a convex function.

Let Si ⊆ Ci be the line segment associated with the final updated point pi ∈ Ci

in Algorithm 43, where i = 0,1,2, . . . , k −1. Analogously to Theorem 3.3, we have
the following

Theorem 11.4 If the chosen accuracy constant ε is sufficiently small, then Algo-
rithm 43 outputs a {1 + 2k · [r(ε) + ε1]/L}-approximation path (in fact, a loop)
with respect to the step set 〈S0, S1, . . . , Sk−1, S0〉, for any initial path.

We sketch the proof of Theorem 11.4. Algorithm 7 is called an arc version of an
RBA because we do not return from q to p. If we use points p and q for fixing two
points on the ESP, but we find a shortest path which is a loop and passes through

340 11 Watchman Routes

Fig. 11.16 Illustration for
Case 1 in Lemma 11.4

Fig. 11.17 Illustration for
Case 2 in Lemma 11.4, where
the polyline ρ(paj

,paj+1) is
in red colour,
ρ \ ρ(paj

,paj+1) green, and
ρ(p, r, q) is dark green. The
shortest path from p to q ,
being a section of the polyline
ρ(paj

,paj+1), is in dark red
(colour refers to the e-copy of
the book)

line segments 〈S1, S2, . . . , Sk, S1〉 in this order, then we obtain a loop version of
Algorithm 7.

Basically, following the same way as demonstrated with the proof of Theo-
rem 3.3, we can prove that the loop version of Algorithm 7 outputs a {1 + 2k ·
[r(ε) + ε1]/L}-approximation path which is a loop. In this sense, Algorithm 43
defines a {1 + 2k · [r(ε) + ε1]/L}-approximation path (a loop) for the step set
〈S0, S1, . . . , Sk−1, S0〉. We do not provide details of the proof here because of simi-
larities with previous proofs.

Theorem 11.4 says that Algorithm 43 outputs an approximate local minimal so-
lution to the floating WRP. We also have the following

Theorem 11.5 Algorithm 43 outputs a {1 + 2k · [r(ε) + ε1]/L}-approximation so-
lution to the floating WRP.

Proof By Corollary 11.2,

k−1∑

i=0

LP (pi,pi+1) :
k−1∏

i=0

Ci →R

is a convex function, where

LP (pi,pi+1)

is defined as in Line 2 of Algorithm 42. By Proposition 11.4 and Theorem 11.4, we
have shown the theorem. �

11.3 Correctness and Time Complexity 341

Regarding the time complexity of our solution to the floating WRP, we first state
two corollaries without proofs:

Corollary 11.3 Procedure 25 can be computed in time O(|V (∂P)|).
Corollary 11.4 Procedure 26 can be computed in time O(|V (∂P)|).

Furthermore, note that the main computation is in two stacked loops. The while-
loop takes κ(ε) iterations. By Corollary 11.4, the for-loop can be computed in time
O(k · |V (∂P)|). Thus, we have the following

Corollary 11.5 Algorithm 42 can be computed in time κ(ε) ·O(k · |V (∂P)|).
This finally allows us to summarise the complexity results for the main algorithm

of this chapter:

Theorem 11.6 Algorithm 43 can be computed in time

κ(ε) ·O(
k · ∣∣V (∂P)

∣
∣
) + κ(ε0) ·O(

k2 · ∣∣V (∂P)
∣
∣
)
.

Proof By Corollary 11.5, Line 1 can be computed in time κ(ε0) · O(k · |V (∂P)|).
Inside of the for-loop, Line 3 can be computed in time O(k · |V (∂P)|); Line 4 can
be computed in time O(k). The main computation of the for-loop occurs in Line 5.
By Corollary 11.5, it can be performed in time κ(ε0) ·O(k · |V (∂P)|).

As the computation inside of the for-loop can happen at most k times, the for-
loop can be computed in time κ(ε0) · O(k2 · |V (∂P)|). By Corollary 11.5, Line 8
can be executed in time κ(ε) ·O(k · |V (∂P)|). Thus, Algorithm 43 requires

κ(ε) ·O(
k · ∣∣V (∂P)

∣
∣
) + κ(ε0) ·O(

k2 · ∣∣V (∂P)
∣
∣
)

computation time. �

By Lemmas 11.4 and 11.5, and Theorems 11.2 and 11.6, we conclude:

Theorem 11.7 This chapter provided a {1 + 2k · [r(ε) + ε1]/L}-approximation so-
lution to the floating WRP, having time complexity κ(ε) · O(k · |V (∂P)|) + κ(ε0) ·
O(k2 · |V (∂P)|), where k is the number of essential cuts, and L is the length of an
optimal watchman route.

The main algorithm of this chapter (Algorithm 43) is just another example for
following the general RBA methodology. In some simple polygons, we find the ex-
act solution for the floating WRP, in others we ‘just’ converge to the correct solution.

A large number of experiments also indicates that κ(ε) does not depend on k,
where k is the number of essential cuts. It remains an open problem to prove
a smallest upper bound for κ(ε).

342 11 Watchman Routes

11.4 Problems

Problem 11.1 Describe simple polygons P such that there exists a single point q1

in P for which every point q in P is visible from q1. In this case, what is the shortest
watchman route for P ?

Problem 11.2 Does there always exist at least one cut or general cut for any simple
polygon P ? Given a cut C of P , does there always exist an associated cut of C?

Problem 11.3 Consider the floating WRP. How to define a cut, essential part of that
cut, and the pocket induced by the cut? When is a cut active?

Problem 11.4 Consider the fixed WRP. Is there any difference for the performance
of Algorithm 42 if the starting point s is identical to a vertex of P , on ∂P (i.e., the
frontier of P), or in P ◦ (i.e., the interior of P)?

Problem 11.5 Consider the following problem: Compute a shortest route ρ ⊂ P

such that any frontier point p ∈ ∂P is visible from at least one point on ρ. Would
that be equivalent to the floating WRP?

Problem 11.6 Show that there exists a shortest watchman route ρ for any simple
polygon P such that there exists a tangential contact between ρ and at least one
essential cut of P .

Problem 11.7 How do cuts differ when addressing either the fixed WRP or the
floating WRP?

Problem 11.8 Show that in the case of the floating WRP, there is the possibility of
an existence of an infinite number of shortest watchman routes. Provide an example
of such a polygon.

Problem 11.9 Consider the case of the fixed WRP. Prove that each essential cut is
also a non-redundant cut.

Problem 11.10 (Research problem) Discuss the difference in computational time
complexity between the fixed WRP and the floating WRP by providing ‘sharp’ up-
per or lower bounds.

Problem 11.11 (Programming exercise) Implement the Algorithm 43 and discuss
its performance for inputs of varying complexity.

Problem 11.12 (Research problem) Specify the generic RBA (see Sect. 3.10) for
the particular case of solving the fixed WRP.

11.5 Notes 343

11.5 Notes

The (floating) watchman route problem (WRP) of computational geometry is dis-
cussed in [4]. Definitions in this chapter, related to the general WRP, follow [13,
34], but some definitions also follow [9, 11]. In particular, see page 379 in [9].
Figure 11.5 is a modification of Fig. 2 in [11]. For Lemma 11.1, see page 14
in [11]. See [9] for Lemma 11.2 (Lemma 3.2 in the source) and Lemma 11.3
(Lemma 2.1). Theorem 11.2 is Theorem 1 in [34]. For Algorithm 2D ESP, see [20],
pages 639–641. For linear-time convex hull algorithms, see Algorithm 15 or Algo-
rithm 14 in Chap. 4. An expanded version of this chapter is MI-tech report no. 51 at
www.mi.auckland.ac.nz/.

For convex analysis, see, for example, [5, 27, 28]. For example, Theorem 11.3
is Theorem 3.5 in [28], for Proposition 11.2 see page 72 in [5], and for Proposi-
tion 11.4, see page 264 in [28].

A simplified WRP of finding a shortest route in a simple isothetic polygon was
solved in 1988 in [10] by presenting an O(n log logn) algorithm. In 1991, [11]
claimed to have presented an O(n4) algorithm, solving the fixed WRP. In 1993,
[36] obtained an O(n3) solution for the fixed WRP. In the same year, this was fur-
ther improved to a quadratic time algorithm [35]. However, four years later, in 1997,
[17] pointed out that the algorithms in both [11] and [36] were flawed, but presented
a solution for fixing those errors. Interestingly, two years later, in 1999, [37] found
that the solution given by [17] was also flawed. By modifying the (flawed) algorithm
presented in [36, 37] gave an O(n4) runtime algorithm for the fixed WRP.

In 1995 and 1999, [22] and [9] each gave an O(n6) algorithm for the WRP.
This was improved in 2001 by an O(n5) algorithm in [31]; this paper also proved
Theorem 11.1.

So far the best known result for the fixed WRP is due to [13] by presenting in
2003 an O(n3 logn) runtime algorithm.

In 1995, [19] published an O(logn)-approximation algorithm for solving the
WRP. In 1997, [8] gave a 99.98-approximation algorithm with time complexity
O(n logn) for the WRP. In 2001, [32] presented a linear-time algorithm for an ap-
proximate solution of the fixed WRP such that the length of the calculated watch-
man route is at most twice of that of the shortest watchman route. The coefficient
of accuracy was improved to

√
2 in [33] in 2004. Most recently, [34] presented a

linear-time algorithm for the WRP for computing an approximate watchman route
of length at most twice of that of the shortest watchman route.

There are several generalisations and variations of watchman route problems;
see, for example, [6, 7, 9, 12, 14–16, 18, 21–26]. [1–3] show that some of these
problems are NP-hard, and the authors solve them by approximation algorithms.

References

1. Alsuwaiyel, M.H., Lee, D.T.: Minimal link visibility paths inside a simple polygon. Comput.
Geom. 3(1), 1–25 (1993)

344 11 Watchman Routes

2. Alsuwaiyel, M.H., Lee, D.T.: Finding an approximate minimum-link visibility path inside a
simple polygon. Inf. Process. Lett. 55, 75–79 (1995)

3. Arkin, E.M., Mitchell, J.S.B., Piatko, C.: Minimum-link watchman tours. Report, University
at Stony Brook (1994)

4. Asano, T., Ghosh, S.K., Shermer, T.C.: Visibility in the plane. In: Sack, J.-R., Urrutia, J. (eds.)
Handbook of Computational Geometry, pp. 829–876. Elsevier, Amsterdam (2000)

5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge,
UK (2004)

6. Carlsson, S., Jonsson, H., Nilsson, B.J.: Optimum guard covers and m-watchmen routes for
restricted polygons. In: Proc. Workshop Algorithms Data Struct. LNCS, vol. 519, pp. 367–
378. Springer, Berlin (1991)

7. Carlsson, S., Jonsson, H., Nilsson, B.J.: Optimum guard covers and m-watchmen routes for
restricted polygons. Int. J. Comput. Geom. Appl. 3, 85–105 (1993)

8. Carlsson, S., Jonsson, H., Nilsson, B.J.: Approximating the shortest watchman route in a sim-
ple polygon. Technical report, Lund University, Sweden (1997)

9. Carlsson, S., Jonsson, H., Nilsson, B.J.: Finding the shortest watchman route in a simple poly-
gon. Discrete Comput. Geom. 22, 377–402 (1999)

10. Chin, W., Ntafos, S.: Optimum watchman routes. Inf. Process. Lett. 28, 39–44 (1988)
11. Chin, W.-P., Ntafos, S.: Shortest watchman routes in simple polygons. Discrete Comput.

Geom. 6, 9–31 (1991)
12. Czyzowicz, J., Egyed, P., Everett, H., Lenhart, W., Lyons, K., Rappaport, D., Shermer, T.,

Souvaine, D., Toussaint, G., Urrutia, J., Whitesides, S.: The aquarium keeper’s problem. In:
Proc. ACM–SIAM Sympos. Data Structures Algorithms, pp. 459–464 (1991)

13. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.: Touring a sequence of polygons. In: Proc. STOC,
pp. 473–482 (2003)

14. Gewali, L.P., Lombardo, R.: Watchman Routes for a Pair of Convex Polygons. Lecture Notes
in Pure Appl. Math., vol. 144 (1993)

15. Gewali, L.P., Ntafos, S.: Watchman routes in the presence of a pair of convex polygons. In:
Proc. Canad. Conf. Comput. Geom., pp. 127–132 (1995)

16. Gewali, L.P., Meng, A., Mitchell, J.S.B., Ntafos, S.: Path planning in 0/1/infinity weighted
regions with applications. ORSA J. Comput. 2, 253–272 (1990)

17. Hammar, M., Nilsson, B.J.: Concerning the time bounds of existing shortest watchman routes.
In: Proc. FCT’97. LNCS, vol. 1279, pp. 210–221 (1997)

18. Kumar, P., Veni Madhavan, C.: Shortest watchman tours in weak visibility polygons. In: Proc.
Canad. Conf. Comput. Geom., pp. 91–96 (1995)

19. Mata, C., Mitchell, J.S.B.: Approximation algorithms for geometric tour and network design
problems. In: Proc. Ann. ACM Symp. Computational Geometry, pp. 360–369 (1995)

20. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.-R., Urrutia, J.
(eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)

21. Mitchell, J.S.B., Wynters, E.L.: Watchman routes for multiple guards. In: Proc. Canad. Conf.
Comput. Geom., pp. 126–129 (1991)

22. Nilsson, B.J.: Guarding art galleries: methods for mobile guards. Ph.D. thesis, Lund Univer-
sity, Sweden (1995)

23. Nilsson, B.J., Wood, D.: Optimum watchmen routes in spiral polygons. In: Proc. Canad. Conf.
Comput. Geom., pp. 269–272 (1990)

24. Ntafos, S.: The robber route problem. Inf. Process. Lett. 34, 59–63 (1990)
25. Ntafos, S.: Watchman routes under limited visibility. Comput. Geom. 1, 149–170 (1992)
26. Ntafos, S., Gewali, L.: External watchman routes. Vis. Comput. 10, 474–483 (1994)
27. Roberts, A.W., Varberg, V.D.: Convex Functions. Academic Press, New York (1973)
28. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
29. Sunday, D.: Algorithm 14: tangents to and between polygons. http://softsurfer.com/Archive/

algorithm_0201/ (2011). Accessed July 2011
30. Sunday, D.: Algorithm 3: fast winding number inclusion of a point in a polygon.

http://softsurfer.com/Archive/algorithm_0103/ (2011). Accessed July 2011

References 345

31. Tan, X.: Fast computation of shortest watchman routes in simple polygons. Inf. Process. Lett.
77, 27–33 (2001)

32. Tan, X.: Approximation algorithms for the watchman route and zookeeper’s problems. In:
Proc. Computing and Combinatorics. LNCS, vol. 2108, pp. 201–206. Springer, Berlin (2005)

33. Tan, X.: Approximation algorithms for the watchman route and zookeeper’s problems. Dis-
crete Appl. Math. 136, 363–376 (2004)

34. Tan, X.: A linear-time 2-approximation algorithm for the watchman route problem for simple
polygons. Theor. Comput. Sci. 384, 92–103 (2007)

35. Tan, X., Hirata, T.: Constructing shortest watchman routes by divide-and-conquer. In: Proc.
ISAAC. LNCS, vol. 762, pp. 68–77 (1993)

36. Tan, X., Hirata, T., Inagaki, Y.: An incremental algorithm for constructing shortest watchman
route algorithms. Int. J. Comput. Geom. Appl. 3, 351–365 (1993)

37. Tan, X., Hirata, T., Inagaki, Y.: Corrigendum to ‘An incremental algorithm for constructing
shortest watchman routes’. Int. J. Comput. Geom. Appl. 9, 319–323 (1999)

Chapter 12
Safari and Zookeeper Problems

The obstacle is the path.
Zen Proverb

So far, the best result in running time for solving the fixed safari route prob-
lem (SRP) is O(n2 log n) published in 2003 by M. Dror, A. Efrat, A. Lubiw, and
J. Mitchell. The best result in running time for solving the floating zookeeper route
problem (ZRP) is O(n2) published in 2001 by X. Tan. This chapter provides an
algorithm for the “floating” SRP with κ(ε) · O(kn + mk) runtime, where n is the
number of vertices of the given search space or domain D (a simple polygon), k

the number of convex polygons Pi in D, and mk is the total number of vertices of
all polygons Pi . This chapter also provides an algorithm for the floating ZRP with
κ(ε) · O(kn) runtime, where n is the number of vertices of all polygons involved,
and k the number of the “cages”. Extensions of the presented algorithms can solve
more general SRPs and ZRPs if each convex polygon is replaced by a convex region
such as convex polybeziers (beziergons, or parabolic splines) or ellipses.

12.1 Fixed and Floating Problems; Dilations

Let a search space or domain D contain k pairwise-disjoint convex polygons Pi

(i = 0,1, . . . , k − 1) such that exactly one edge of each of these polygons Pi is
incident with the frontier of D. We are interested in a route with vertices pi ∈ ∂Pi ,
for i = 1,2, . . . , k. We consider indices modulo k, and identify index k with index 0
this way. The start point p and end point q are assumed to be identical; that means
we have p = q = p0 ∈ ∂P0. Recall that P ◦

i denotes the interior of Pi . The safari
route problem (SRP) is defined as follows:

F. Li, R. Klette, Euclidean Shortest Paths,
DOI 10.1007/978-1-4471-2256-2_12, © Springer-Verlag London Limited 2011

347

348 12 Safari and Zookeeper Problems

Fig. 12.1 Left: εd -outer polygon of a convex polygon P . Right: εd polygon of P , where εd = ε3

Compute a shortest route ρ ⊂ D inside of D such that ρ visits each Pi at a
point pi on the frontier of Pi , allowing that straight segments pipi+1 (mod k)
intersect P ◦

i in one or several segments, for i = 0,1, . . . , k − 1.

If the start point of the route is given then this refined safari problem is known as
the fixed SRP. Otherwise, the problem is known as the floating SRP.

This chapter provides an algorithm for the floating SRP with κ(ε) ·O(kn + mk)

runtime, where n is the number of vertices of the given simple polygon D, k the
number of convex polygons Pi , and mk is the total number of vertices of all polygons
Pi ; κ(ε) defines the numerical accuracy depending upon a selected parameter ε > 0.

The zookeeper route problem (ZRP) is defined as follows (informally speaking,
“the zookeeper is not supposed to enter any of the cages on his path, but to visit
all”):

Compute a shortest route ρ inside of D such that ρ visits each “cage” Pi

(a convex polygon) at a point pi on its frontier, and such that this path is not
intersecting any of the interiors P ◦

i , for i = 0,1, . . . , k − 1.

Analogously to the SRP, if the start point of the route is given then this refined
zookeeper route problem is known as the fixed ZRP. Otherwise, the problem is
known as the floating ZRP.

This chapter provides an algorithm for the floating ZRP with κ(ε) · O(kn) run-
time, where n is the number of vertices of the given simple polygon D and all the
convex polygons Pi , k is the number of convex polygons Pi , and κ(ε) is defined as
before in this book.

Let P be a convex polygon such that exactly one edge of P , denoted by e, is
incident with ∂D (i.e., the frontier of D). Let P ′ be a convex polygon such that
P ′ completely contains P , and such that P ′ represents a Minkowski addition (also
known as dilation) of P such that the distance between each edge of P ′ and its
corresponding edge in P is εd > 0 (where d is for dilation), then P ′ is called an εd -
outer polygon of P 1 (see Fig. 12.1 left). Let le be the straight line which contains

1The εd -outer polygon of P is a “shell” around P of uniform thickness εd > 0.

12.1 Fixed and Floating Problems; Dilations 349

Fig. 12.2 An example of
three polygons which satisfy
the SRP (or ZRP) condition.
The light shaded simple
polygon P is the domain that
contains two convex polygons
P1 and P2. The figure also
shows a shortest path
connecting a point p1 in P1
with a point p2 in P2

the edge e. Line le cuts P ′ into two polygons. One of them completely contains P .
We call this polygon the εd -polygon of P (with respect to e). See Fig. 12.1, right.

Let P0,P1, . . . ,Pk−1, and D be k convex polygons and one simple polygon such
that Pi and Pi+1 are pairwise-disjoint; any Pi is completely contained in D, and
exactly one edge ei of Pi is incident with the frontier ∂D of the simple polygon D,
where i = 0,1,2, . . . , k − 1. Note that D is not required to be convex.

Definition 12.1 If those edges e0, e1, . . . , ek−1 are ordered clockwise around ∂D,
then we say that convex polygons P0,P1, . . . ,Pk−1, and domain D satisfy the SRP
(or ZRP) condition.

For example, in Fig. 12.2, P1, P2, and P satisfy the SRP (or ZRP) condition.
Let polygons Pi and D satisfy this condition; Pi ∩ D = ei (i.e., ei is an edge of

Pi which is incident with ∂D). If two points pi
1,p

i
2 ∈ ∂Pi\ei , and pi

1, pi
2 (pi

1 and
pi

2 may be identical) are ordered counterclockwise around ∂Pi , then we say that
(pi

1,p
i
2) is a ZRP pair.

Let D′ be the simple polygon obtained by modifying D by replacing ei by
∂Pi\ei , where i = 0,1,2, . . . , k − 1.

For generalisations at the end of the chapter, also recall that a simple curve is a
curve in a plane such that each point of it can be expressed as (x(t), y(t)), where
t varies in an interval [a, b], and both x(t) and y(t) are differentiable in [a, b].
A simple region is a planar, convex, topologically-closed region such that its fron-
tier consists of finite simple curves. Such simple regions will generalise the convex
polygons Pi at the end of this chapter.

This ends the introduction of technical terms for this chapter. We also recall here
in one place two results and two algorithms for later use:

Lemma 12.1 A solution to the safari problem must visit polygons Pi in the same
order as it meets ∂D.

350 12 Safari and Zookeeper Problems

Procedure 27 (Handling of three polygons for SRP)
Input: A degeneration parameter ε1 > 0 and a constant εd ≥ ε1, four polygons P1,
P2, P3, and D that satisfy the SRP condition, an εd -polygon of P2, denoted by P ′

2,
and three points pi ∈ ∂Pi , where i = 1,2,3.
Output: An updated shorter path ρ(p1, . . . , p2, . . . , p3) which might also contain
vertices of the polygon D.

1: For each i ∈ {1,2}, let {pi,pi+1} (where pi ∈ ∂Pi) be the input for the 2D
ESP algorithm; the output is a sequence of vertices Vii+1 of ρD(pi,pi+1). Let
V = V12 ∪ V23.

2: Calculate points q1 = ρD(p1,p2) ∩ ∂P ′
2 and q3 = ρD(p2,p3) ∩ ∂P ′

2.
3: Let e be the edge of P2 such that e is contained in the frontier of D; let e′ be

e’s corresponding edge in P ′
2. Let u and v (u′ and v′) be the two endpoints of e

(e′). Let u′′ (v′′) be a point in the line segment uu′ (vv′) such that de(u
′′, u) = ε1

(de(v
′′, v) = ε1). If q1 or q3 is located on segment uu′′ or vv′′, then reset it to

be u′′ or v′′.
4: if q1q3 ∩ P ′

2 	= ∅ then
5: Let p′

2 be the point in segment q1q3 ∩ P ′
2 such that de(q1,p

′
2) =

min{de(q1,p
′) : p′ ∈ q1q3 ∩ P ′

2}.
6: else
7: Find vertex p′

2 ∈ ∂P ′
2 such that de(q1,p

′
2) + de(p

′
2, q3) = min{de(q1,p

′) +
de(p

′, q3) : p′
2 ∈ ∂P ′

2}.
8: end if
9: Update V by letting p2 = p′

2.

Fig. 12.3 Handling of three polygons for the SRP case

Lemma 12.2 A solution to the zookeeper problem must visit polygons Pi in the
same order as it meets ∂D.

We again assume (as in Chap. 11) an algorithm for calculating a 2D ESP (as
discussed in Chap. 6) that has as input a simple polygon D and two points p,q ∈ D

and which calculates a set of vertices of a shortest path from p to q inside of D, and
we assume that this algorithm is in linear time O(|V (∂D)|) for simplicity.

We also use again tangent calculation which has as input an ordered sequence of
vertices of a planar convex polygonal curve ∂D and a point p /∈ D; its output are
two points ti /∈ D such that pti are tangents to ∂D, for i = 1,2; the running time is
in O(log |V (∂D)|).

12.2 Solving the Safari Route Problem

The algorithm for solving the SRP is modified from Algorithm 42. All modifications
are underlined. We start presenting Procedure 27 in Fig. 12.3 which is frequently
used by the Algorithm 44, which is later specified in Fig. 12.7.

12.2 Solving the Safari Route Problem 351

Fig. 12.4 Illustration for
Procedure 27. Parts of P2 and
P ′

2 (indicated by the
rectangle) are shown
magnified in Fig. 12.5

Fig. 12.5 Magnified sections
of P2 and P ′

2 (the rectangle in
Fig. 12.4)

In Line 2 of Procedure 27, q1 (q3) is the intersection point between path
ρD(p1,p2) (path ρD(p2,p3)) and P ′

2 (εd -polygon of P2). See Fig. 12.4. Line 3
is also illustrated in Fig. 12.4.

In Line 7 of Algorithm 44, sequence V1 is the updated sequence V0, after insert-
ing Ui . In Line 9, we use the updated original sequence V instead of V1 for the next
iteration.

Let P be a convex region, ∂P is the boundary of P , p1 and p2 are two points
outside of P such that P ∩p1p2 = ∅, where p1p2 is the straight line passing through
points p1 and p2. Then elementary geometry (we include this for completeness)
shows the following

Corollary 12.1 There is a unique point q in ∂P such that

de(p1, q) + de(p2, q) = min
{
de(p1, q) + de(p2, q) : q ∈ P

}
.

Proof If p is a point in P such that

de(p1,p) + de(p2,p) = min
{
de(p1, q) + de(p2, q) : q ∈ P

}
(12.1)

352 12 Safari and Zookeeper Problems

Fig. 12.6 Illustration for the
proof of Corollary 12.1

then p must be located on ∂P . Otherwise, there exists a point p′ in �pp1p2 ∩ ∂P

such that

de(p1,p
′) + de(p2,p

′) < de(p1,p) + de(p2,p).

This is a contradiction to Eq. (12.1). See Fig. 12.6.
Suppose that there exist two points qi in ∂P such that

de(p1, qi) + de(p2, qi) = min
{
de(p1, q) + de(p2, q) : q ∈ P

}

where i = 1,2. By Lemma 8.3, there exists a point p in-between q1 and q2 such that

de(p1,p) + de(p2,p) < min
{
de(p1, q) + de(p2, q) : q ∈ P

}
. (12.2)

As P is a convex region, and q1, q2 are in ∂P , p must be in P \∂P . Then there
exists a point p′ in �pp1p2 ∩ ∂P such that

de(p1,p
′) + de(p2,p

′) < de(p1,p) + de(p2,p).

By Inequality (12.2), we have that

de(p1,p
′) + de(p2,p

′) < min
{
de(p1, q) + de(p2, q) : q ∈ P

}
.

This is a contradiction. �

Theorem 12.1 Algorithm 44 outputs a {1 + 2k · [r(ε) + ε1]/L}-approximation so-
lution to the SRP.

Proof Algorithm 44 (see Fig. 12.7) defines a function f mapping from
∏k−1

i=0 ∂Pi

to R. Analogously to the proof of Corollary 3.5, the total number of different values
of f is finite. By Corollary 12.1, f is a continuous function. Thus, the range of f

must be a singleton. By Lemma 12.1, this proves the theorem. �

Regarding the time complexity of this solution to the SRP, note that the main
computation is in the two stacked loops. The while-loop takes κ(ε) iterations. Pro-
cedure 27 can be computed in time O(|V (∂D)| + |V (∂Pi)|). Thus, the for-loop can
be computed in time O(k · |V (∂D)| + ∑k−1

i=0 |V (∂Pi)|). We obtain

Corollary 12.2 Algorithm 44 requires κ(ε) ·O(k · |V (∂D)|+∑k−1
i=0 |V (∂Pi)|) time.

By Lemma 12.1, Theorem 12.1, and Corollary 12.2, we have the following

12.3 Solving the Zookeeper Route Problem 353

Algorithm 44 (Algorithm for solving the SRP)
Input: An accuracy constant ε > 0, a degeneration parameter ε1 > 0
and a constant εd ≥ ε1; k convex polygons P0,P1, . . . ,Pk−1, and a domain D,
which satisfy the condition of the SRP, and points pi ∈ ∂Pi , where i = 0,1,

2, . . . , k − 1.
Output: An updated closed {1 + 2k · [r(ε) + ε1]/L}-approximation path (i.e., the
route) ρ(p0, . . . , p1, . . . , pk−1) which may also contain vertices of polygon D.

1: For each i ∈ {0,1, . . . , k − 1}, let pi be a point in ∂Pi .

2: Let V0 = V = 〈p0,p1, . . . , pk−1〉, let L1 be
∑k−1

i=0 LD(pi,pi+1), and let L0

be ∞.
3: while L0 − L1 ≥ ε do
4: for each i ∈ {0,1, . . . , k − 1} do
5: Let Pi−1,Pi,Pi+1, pi−1, pi , pi+1 and D be the input for Procedure 27,

which updates pi in V0.
6: Let Ui be the sequence of vertices of the path ρ(pi−1, . . . , pi, . . . , pi+1)

with respect to Pi−1,Pi and Pi+1 (inside of D); let Ui = 〈q1, q2, . . . , qm〉.
7: Insert (after pi−1) the points of sequence Ui (in the given order) into V0,

i.e., we have V1 = 〈p0,p1, . . . , pi−1, q1, q2, . . . , qm,pi+1, . . . , pk−1〉.
8: end for
9: Let L0 = L1 and V0 = V .

10: Compute the perimeter L1 of the polygon, given by the sequence V1 of ver-
tices.

11: end while
12: Output sequence V1, and the length value of interest equals L1.

Fig. 12.7 Algorithm for solving the SRP. The algorithm is modified from Algorithm 42, and all
modifications are underlined

Theorem 12.2 Algorithm 44 is a {1 + 2k · [r(ε) + ε1]/L}-approximation solution
to the SRP, having time complexity κ(ε) ·O(k|V (∂D)| + ∑k−1

i=0 |V (∂Pi)|), where k

is the number of convex polygons, and L is the length of an optimal safari route.

12.3 Solving the Zookeeper Route Problem

In this section, we modify the algorithms and theorems of Sect. 12.2 for solving the
ZRP. All modifications are underlined in the algorithms.

In Line 2 of Procedure 28 (see Figs. 12.8, 12.9, 12.10), q1 (q3) is the intersection
point between the path ρD′(p1,p2) (path ρD′(p2,p3)) and P ′

2 (εd -polygon of P2).
Recall that D′ is the simple polygon obtained by modifying D by replacing ei by
∂Pi\ei , where i = 0,1,2, . . . , k − 1. Line 3 is also illustrated in Fig. 12.8.

In Line 7 of Algorithm 45 (see Fig. 12.11), sequence V1 is the updated sequence
V0, after inserting Ui . In Line 9, we use the updated original sequence V instead

354 12 Safari and Zookeeper Problems

Fig. 12.8 Illustration for
Procedure 28, where
pi = pi

1 = pi
2 (i = 1,2,3),

and p′
2 = p′2

1 = p′2
2.

Magnified sections of P2 and
P ′

2 (the rectangle) are shown
in Fig. 12.9

Fig. 12.9 Magnified sections
of P2 and P ′

2 (the rectangle in
Fig. 12.8)

of V1 for the next iteration. Note: sequence V1 is the updated sequence V0, after
inserting Ui .

Analogously to the proof of Theorem 12.1, we obtain

Theorem 12.3 Algorithm 45 outputs a {1 + 2k · [r(ε) + ε1]/L}-approximation so-
lution to the ZRP.

Analogously to the proof of Theorem 12.2, we can prove that

Theorem 12.4 This chapter provided a {1 + 2k · [r(ε) + ε1]/L}-approximation so-
lution to the ZRP, having time complexity κ(ε) ·O(k(|V (∂D)| + ∑k−1

i=0 |V (∂Pi)|)),
where k is the number of convex polygons, and L is the length of an optimal
zookeeper route.

By underlining text, we illustrate the adaptivity of the RBA approach to a range
of varying route problems.

12.4 Some Generalisations 355

Procedure 28 (Handling of three polygons for ZRP)
Input: A degeneration parameter ε1 > 0 and a constant εd ≥ ε1; four polygons P1,
P2, P3, and D satisfying the ZRP condition; the εd -polygon of P2, denoted by P ′

2;
three ZRP pairs (pi

1,p
i
2) ∈ ∂Pi , where i = 1,2,3.

Output: An updated shorter path ρ(p1
1, . . . , p

1
2, . . . , p

2
1, . . . , p

2
2, . . . , p

3
1, . . . , p

3
2),

which might also contain vertices of the polygon D.

1: For each i ∈ {1,2}, let {pi
2,p

i+1
1 } (where pi

2 ∈ ∂Pi , pi+1
1 ∈ ∂Pi+1) be the in-

put for the 2D ESP algorithm; the output is a sequence of vertices Vii+1 of
ρD′(pi

2,p
i+1
1). Let V be V12 ∪ V23.

2: Calculate points q1 = ρD′(p1
2,p

2
1) ∩ ∂P ′

2 and q3 = ρD′(p2
2,p

3
1) ∩ ∂P ′

2.

3: Let e be the edge of P2 such that e is contained in the frontier of D; let e′ be
e’s corresponding edge in P ′

2. Let u and v (u′ and v′) be the two endpoints of e

(e′). Let u′′ (v′′) be a point in the line segment uu′ (vv′) such that de(u
′′, u) = ε1

(de(v
′′, v) = ε1). If q1 or q3 are located on segment uu′′ or vv′′, then reset it to

be u′′ or v′′.
4: if q1q3 ∩ P ′

2 	= ∅ then
5: Apply the tangent algorithm to find two points p′2

1,p
′2
2 ∈ ∂P2 such that

q1p
′2
1(q3p

′2
2) is a tangent to P2, and p′2

1, p′2
2 are ordered counterclockwise

around ∂P2.
6: else
7: Find vertex p′

2 ∈ ∂P ′
2 such that de(q1,p

′
2) + de(p

′
2, q3) = min{de(q1,p

′) +
de(p

′, q3) : p′
2 ∈ ∂P ′

2}, let p′2
1 and p′2

2 be p′
2.

8: end if
9: Update V by letting (p2

1,p
2
2) = (p′2

1,p
′2
2).

Fig. 12.10 Handling of three polygons for solving the ZRP

12.4 Some Generalisations

So far, algorithms for solving various Euclidean shortest path problems typically
only consider an environment containing geometric objects which have straight
edges. For example, the search space or obstacles in ESPs are modelled by poly-
gons in 2D, polyhedrons in 3D, or the surface of polyhedrons in 2.5D. However,
obstacles with smooth surfaces started to be investigated in computational geome-
try. In this section, we discuss some generalisation of the SRP and ZRP, where each
convex polygon is replaced by a simple region as defined earlier in this chapter.

In the SRP, if the simple polygon D is ignored (i.e., D = R
2) and instead of

convex polygons Pi we consider arbitrary simple polygons, then this SRP is known
as the touring polygons problem (TPP); see Chap. 10.

In this section, we modify (or generalise) the SRP so that the simple polygon D

is ignored, and all the convex polygons Pi are replaced by ellipses. See Fig. 12.12.
We call this the touring ellipses problem (TEP). By Ei we denote the k pairwise-

356 12 Safari and Zookeeper Problems

Algorithm 45 (Algorithm for solving the ZRP)
Input: An accuracy constant ε > 0, a degeneration parameter ε1 > 0, a constant
εd ≥ ε1; k convex polygons P0,P1, . . . ,Pk−1, and D, which satisfy the condition of
the ZRP, and ZRP pair (pi

1,p
i
2) ∈ ∂Pi , where i = 0,1,2, . . . , k − 1.

Output: An updated closed {1 + 2k · [r(ε) + ε1]/L}-approximation path (i.e., the
“route”) ρ(p0

1, . . . , p
0
2, . . . , p

1
1, . . . , p

1
2, . . . , p

k−1
1 , . . . , pk−1

2), which may also con-
tain vertices of polygon D.

1: For each i ∈ {0,1, . . . , k − 1}, let (pi
1,p

i
2) be a ZRP pair in ∂Pi .

2: Let V0 = V = 〈p0
1, . . . , p

0
2, . . . , p

1
1, . . . , p

1
2, . . . , p

k−1
1 , . . . , pk−1

2 〉; let L1 be
∑k−1

i=0 LD(pi
1,p

i+1
2); and let L0 be ∞.

3: while L0 − L1 ≥ ε do
4: for each i ∈ {0,1, . . . , k − 1} do
5: Let Pi−1, Pi , Pi+1, (pi−1

1 ,pi−1
2), (pi

1,p
i
2), (pi+1

1 ,pi+1
2), and D be the in-

put for Procedure 28, which updates (pi
1,p

i
2) in V0.

6: Let Ui be the sequence of vertices of the path ρ(pi−1
1 , . . . , pi−1

2 , . . . ,

pi
1, . . . , p

i
2, . . . , p

i+1
1 , . . . , pi+1

2) with respect to Pi−1, Pi , and Pi+1 (inside

of D); let Ui = 〈q1, q2, . . . , qm〉.
7: Insert (after pi−1

2) the points of sequence Ui (in the given order) into

V0, i.e., we have V1 = 〈p0
1, . . . , p

0
2, . . . , p

1
1, . . . , p

1
2, . . . , p

i−1
1 , . . . , pi−1

2 ,

q1, q2, . . . , qm,pi+1
1 , . . . , pi+1

2 , . . . , pk−1
1 , . . . , pk−1

2 〉.
8: end for
9: Let L0 = L1 and V0 = V (note: we use the updated original sequence V

instead of V1 for the next iteration).
10: Compute the perimeter L1 of the polygon, given by the sequence V1 of ver-

tices.
11: end while
12: Output sequence V1, and the desired length equals to L1.

Fig. 12.11 Main algorithm for solving the ZRP. This is a modification of the provided SRP algo-
rithm in the previous section. All modifications are underlined

disjoint ellipses, where i = 0,1, . . . , k − 1; E◦
i is the interior of Ei and ∂Ei the

frontier of Ei .

Compute a shortest route ρ such that ρ visits each ellipse Ei at a point pi

on ∂Ei (the frontier of Ei), allowing that straight segments pipi+1 (mod k)
intersect E◦

i in one or several segments, for i = 0,1, . . . , k − 1.

We describe Algorithm 46 (see Fig. 12.13) for solving the TEP. It is derived from
Algorithm 7. In this algorithm, all subscripts are taken modulo k.

12.4 Some Generalisations 357

Fig. 12.12 An example of
touring a sequence of ellipses

The optimal point qi in Line 5 can be computed as follows: Each point p on ∂Ei

can be expressed as (x(t), y(t)), where

x(t) = xc + a cos t cos θ − b sin t sin θ,

y(t) = yc + a cos t sin θ + b sin t cos θ,

the parameter t varies from −π to π , (xc, yc) is the centre of the ellipse Ei , a and b

are Ei ’s semi-major and semi-minor axes, respectively, and θ is the angle between
the X-axis and the major axis of Ei . Therefore, the coordinates of p have the form

(a1 cos t − b1 sin t + c1, a2 cos t + b2 sin t + c2)

where t ∈ [−π,π], ai , bi , and ci (i = 1,2) are functions of xc, yc, a, b, and θ . Let
pi−1 = (x1, y1) and pi+1 = (x2, y2).

Algorithm 46 (RBA for the fixed ESP problem of pairwise-disjoint ellipses in 2D
space)
Input: A sequence of k pairwise-disjoint ellipses E0,E1, . . . ,Ek−1 and an accuracy
constant ε > 0.
Output: A sequence 〈p0,p1,p2, . . . , pk−1,p0〉 of a [1 + 2(k + 1)r(ε)/L]-
approximation path which starts at p0, then visits ∂Ei at pi in the given order,
and finally ends at p0.

1: For each j ∈ {0,1, . . . , k − 1}, let pj be a point ∂Ej .
2: Lcurrent = ∑k−1

j=0 de(pj ,pj+1), where p0 = pk ; and let Lprevious = ∞.
3: while Lprevious − Lcurrent ≥ ε do
4: for each j ∈ {0,1,2, . . . , k − 1} do
5: Compute a point qj ∈ Sj such that de(pj−1, qj) + de(qj ,pj+1) =

min{de(pj−1,p) + de(p,pj+1) : p ∈ ∂Ej }.
6: Update the path 〈p0,p1, . . . , pk−1,p0〉 by replacing pj by qj .
7: end for
8: Let Lprevious = Lcurrent and Lcurrent = ∑k−1

j=0 de(pj ,pj+1).
9: end while

10: Return {p0,p1, . . . , pk−1,p0}.
Fig. 12.13 RBA for the fixed ESP problem of pairwise-disjoint ellipses in 2D space

358 12 Safari and Zookeeper Problems

The optimal point qi in Line 5 can be computed as follows: We rotate and
translate the coordinate system so that each point p on ∂Ei can be expressed as
(x(t), y(t)), where x(t) = a cos t and y(t) = b sin t . Parameter t varies from −π

to π , and a and b are Ei ’s semi-major and semi-minor axes, respectively, and the
original O is the centre of Ei . Let pi−1 = (x1, y1) and pi+1 = (x2, y2).

By the distance formula, we have that

de(pi−1,p) =
√

(a cos t − x1)2 + (b sin t − y1)2

and

de(p,pi+1) =
√

(a cos t − x2)2 + (b sin t − y2)2.

Let p′
i−1 (or p′

i+1) be the intersection point between line segment pi−1O (or
pi+1O) and Ei . Let t1 (or t2) in [−π,π] such that p′

i−1 = (x(t1), y(t1)) [or p′
i+1 =

(x(t2), y(t2))]. Then, by Lemma 8.1 and Fig. 8.3, we obtain an interval [t1, t2] for
an optimal point qi = (x(ti), y(ti)) where ti is in [t1, t2].

Analogously to Corollary 12.1, the optimal value of t is unique. It can be com-
puted using binary search as follows: Rewrite [t1, t2] as [a1, b1]. Let

d(t) = de(pi−1,p) + de(p,pi+1)

=
√

(a cos t − x1)2 + (b sin t − y1)2

+
√

(a cos t − x2)2 + (b sin t − y2)2.

Let d ′(t) be the derivative of d(t) with respect to t . Since d(t) has a unique min-
imum d(ti) when t is in [a1, b1], it follows that d ′(a1) < 0 and d ′(b1) > 0. Let
t0 = (a1 + b1)/2. If d ′(t0) = 0, then let ti = t0, and we are done. Otherwise, if
d ′(t0) < 0 (or d ′(t0) > 0), then let a2 = t0 and b2 = b1 (or a2 = a1 and b2 = t0). We
shrink the search interval [a1, b1] by half to be [a2, b2]. Repeat this procedure until
we obtain an interval [an, bn] such that bn − an is sufficiently small. Then, we let
ti = (an + bn)/2. Since bn − an = (b1−a1)

2n−1 (n = 1,2, . . .) converges rapidly to 0, and
because binary search is of O(logn) time complexity, the optimal value of t can be
found in constant time.

Thus, analogously to the analysis in Sect. 3.5 and to the proof of Theorem 12.1,
we have the following

Theorem 12.5 Algorithm 46 outputs a {1 + 2k · [r(ε)]/L}-approximation solution
to the TEP in time κ(ε)O(k).

In the SRP (or ZRP) case, if each convex polygon is replaced by a simple region,
then this results in a general SRP (or ZRP). For example, Fig. 12.14 (or Fig. 12.15)
shows an initial route of the general SRP (ZRP). It is clear that Algorithm 44 (or
Algorithm 45) can be modified to solve such a SRP (or ZRP) without increasing the
asymptotic time complexity.

12.5 Problems 359

Fig. 12.14 An example of an
initial route of a SRP defined
by ellipses

Fig. 12.15 An example of an
initial route of a ZRP defined
by ellipses

12.5 Problems

Problem 12.1 Each point p on the frontier ∂E of the ellipse E can be expressed
as (x(t), y(t)), where x(t) = 3 cos t and y(t) = 2 sin t . Parameter t varies from −π

to π . Let p1 = (−4,−3) and p2 = (5,−4). Compute an optimal point q in ∂E such
that de(p1, q) + de(q,p2) is minimal.

Problem 12.2 In Problem 12.1, let d(t) = de(p1,p)+de(p,p2). Derive an explicit
formula for d(t). Solve the equation d ′(t) = 0 without converting the trigonometric
equation into a polynomial equation; rather solve the trigonometric equation numer-
ically for t . Hint: We can start with the finite interval [0,2π) which contains all real
roots, apply binary search to generate an interval containing at least one of the roots,
and then apply the Newton–Raphson method to compute that root at high accuracy.

Problem 12.3 What is the difference between the fixed SRP (ZRP) and the floating
SRP (ZRP)?

360 12 Safari and Zookeeper Problems

Problem 12.4 What is the difference between the SRP and the ZRP?

Problem 12.5 In cases of both SRP and ZRP, why do we have to assume for the
discussed solution that all polygons Pi are convex and pairwise-disjoint?

Problem 12.6 In the case of the ZRP, why do we have to consider a ZRP pair
(pi

1,p
i
2) instead of a single point pi on the frontier of convex polygon Pi , as we did

in the case of the SRP?

Problem 12.7 (Programming exercise) Implement both Algorithms 44 and 45 and
discuss their performance on input examples.

Problem 12.8 (Research problem) Consider the SRP or ZRP. Assume that for at
least one of the given convex polygons Pi , there is such an endpoint of an edge e

of Pi , e is contained in the frontier of domain D, that this endpoint is also a vertex
of D. How to define and compute the εd -polygon of Pi? How does the existence of
such a case affect the performance of the algorithm?

Problem 12.9 (Research problem) Discuss how variations (i.e., smaller or larger)
of degeneration parameter ε1 > 0 and constant εd ≥ ε1 affect the run-time of Algo-
rithms 44 and 45.

Problem 12.10 (Research problem) Starting with the generic RBA (see Sect. 3.10),
specify an RBA for solving the fixed SRP and the fixed ZRP.

Problem 12.11 (Research problem) Is there any simpler way to compute the opti-
mal point qj in Line 5 of Algorithm 46? In particular, consider the case where all
ellipses are disks.

Problem 12.12 (Research problem) Generalise Algorithm 46 for handling a se-
quence of k pairwise-disjoint ellipsoids (or, in particular, balls) E0,E1, . . . ,Ek−1 in
3D space. Does this change the time complexity of the algorithm compared to the
provided algorithm for the 2D case?

12.6 Notes

The safari route problem (SRP) was introduced in [9]. Reference [9] claimed to have
an O(kn2) time algorithm for solving this problem, where n is the total number of
vertices of polygon D and of all polygons Pi , for i = 1,2, . . . , k. In 1994, [14]
improved the result to an O(n2) time algorithm for the floating SRP, not using any-
more the restriction used in [9] of forcing the route through a specific point. In 2003,
[15] showed that there is an error in the algorithm proposed in [9], and presented
an O(n3) time algorithm for the fixed SRP, where n is again the total number of
vertices of D and all polygons Pi , for i = 1,2, . . . , k. The algorithm runs in O(n4)

References 361

time for the floating SRP. In the same year, the result was improved by [4] with an
algorithm running in time O(kn log(n/k)) for the fixed SRP.

The zookeeper route problem (ZRP) was introduced in [3]. Both [2] (in 1987)
and [3] (in 1992) present an O(n2) algorithm for the fixed ZRP, where n is the total
number of vertices of D and Pi , and i = 1,2, . . . , k. In 1994, [5] improved this to
O(n log2 n). In 2003, [1] improved this further to O(n logn); the algorithm is still
for the fixed ZRP, and n is the input size as defined above. Reference [13] (in 2001)
gave an O(n2) algorithm for the floating ZRP.

Lemma 12.1 is Lemma 2 in [9]. Lemma 12.2 is Lemma 2 in [3]. For Algo-
rithm 2D ESP, see [7], pages 639–641. For the tangent calculation, see [12].

The touring polygons problem (TPP) was discussed in [4]; see also Chap. 10.
Obstacles with smooth surfaces start to be discussed in computational geometry;
see, for example, [8, 10, 11].

For binary search algorithms, see, for example, [6].

References

1. Bespamyatnikh, S.: An O(n logn) algorithm for the zoo-keepers problem. Comput. Geom.
24, 63–74 (2003)

2. Chin, W.-P., Ntafos, S.: Optimum zookeeper routes. Congr. Numer. 58, 257–266 (1987)
3. Chin, W.-P., Ntafos, S.: The zookeeper route problem. Inf. Sci. 63, 245–259 (1992)
4. Dror, M.A., Efrat, A., Lubiw, A., Mitchell, J.: Touring a sequence of polygons. In: Proc.

STOC, pp. 473–482 (2003)
5. Hershberger, J., Snoeyink, J.: An efficient solution to the zookeeper’s problem. In: Proc.

Canad. Conf. Comput. Geom, pp. 104–109 (1994)
6. Knuth, D.E.: The Art of Computer Programming: Volume 3, 3rd edn., pp. 409–426. Addison-

Wesley, Reading (1997)
7. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.-R., Urrutia, J.

(eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)
8. Mitchell, J.S.B., Sharir, M.: New results on shortest paths in three dimensions. In: Proc. SCG,

pp. 124–133 (2004)
9. Ntafos, S.: Watchman routes under limited visibility. Comput. Geom. 1, 149–170 (1992)

10. Pocchiola, M., Vegter, G.: Computing the visibility graph via pseudo-triangulations. In: Proc.
ACM-SIAM Sympos. Discrete Algorithms, pp. 248–257 (1995)

11. Pocchiola, M., Vegter, G.: Minimal tangent visibility graphs. Comput. Geom. 6, 303–314
(1996)

12. Sunday, D.: Algorithm 14: tangents to and between polygons. http://softsurfer.com/Archive/
algorithm_0201/. Accessed July 2011

13. Tan, X.: Shortest zookeeper routes in simple polygons. Inf. Process. Lett. 77, 23–26 (2001)
14. Tan, X., Hirata, T.: Shortest safari routes in simple polygons. In: LNCS, vol. 834, pp. 523–531

(1994)
15. Tan, X., Hirata, T.: Finding shortest safari routes in simple polygons. Inf. Process. Lett. 87,

179–186 (2003)

Appendix
Mathematical Details

All’s well that ends well.

A.1 Derivatives for Example 9.6

We provide a complete list of all ∂di

∂ti
(for i = 0,1, . . . ,19) for the cube-curve g used

in Example 9.6 and shown in Fig. 9.17:

dt0 = t0
√

t2
0 + t2

1 + 4
+ t0 − t19

√
(t0 − t19)2 + 4

,

dt1 = t1
√

t2
0 + t2

1 + 4
+ t1 − t2

√
(t1 − t2)2 + 5

,

dt2 = t2 − t1
√

(t2 − t1)2 + 5
+ t2 − 1

√
(t2 − 1)2 + (t3 − 1)2 + 4

,

dt3 = t3 − 1
√

(t2 − 1)2 + (t3 − 1)2 + 4
+ t3

√
t2
3 + t2

4 + 4
,

dt4 = t4
√

t2
3 + t2

4 + 4
+ t4 − 1

√
(t4 − 1)2 + t2

5 + 4
,

dt5 = t5
√

(t4 − 1)2 + t2
5 + 4

+ t5 − t6
√

(t5 − t6)2 + 4
,

dt6 = t6 − t5
√

(t6 − t5)2 + 4
+ t6 − 1

√
(t6 − 1)2 + t2

7 + 4
,

dt7 = t7
√

(t6 − 1)2 + t2
7 + 4

+ t7 − 1
√

(t7 − 1)2 + t2
8 + 4

,

F. Li, R. Klette, Euclidean Shortest Paths,
DOI 10.1007/978-1-4471-2256-2, © Springer-Verlag London Limited 2011

363

364 Mathematical Details

dt8 = t8
√

(t7 − 1)2 + t2
8 + 4

+ t8 − t9
√

(t8 − t9)2 + 4
,

dt9 = t9 − t8
√

(t9 − t8)2 + 4
+ t9 − 1

√
(t9 − 1)2 + t2

10 + 4
,

dt10 = t10
√

(t9 − 1)2 + t2
10 + 4

+ t10 − 1
√

(t10 − 1)2 + (t11 − 1)2 + 4
,

dt11 = t11 − 1
√

(t11 − 1)2 + (t10 − 1)2 + 4
+ t11

√
t2
11 + t2

12 + 1
,

dt12 = t12
√

t2
11 + t2

12 + 1
+ t12 − t13

√
(t12 − t13)2 + 4

,

dt13 = t13 − t12
√

(t13 − t12)2 + 4
+ t13 − 1

√
(t13 − 1)2 + (t14 − 1)2 + 4

,

dt14 = t14 − 1
√

(t13 − 1)2 + (t14 − 1)2 + 4
+ t14

√
t2
14 + (t15 − 1)2 + 4

,

dt15 = t15 − 1
√

t2
14 + (t15 − 1)2 + 4

+ t15 − t16
√

(t15 − t16)2 + 16
,

dt16 = t16 − t15
√

(t16 − t15)2 + 16
+ t16 − t17

√
(t16 − t17)2 + 4

,

dt17 = t17 − t16
√

(t17 − t16)2 + 4
+ t17

√
t2
17 + (t18 − 1)2 + 1

,

dt18 = t18 − 1
√

t2
17 + (t18 − 1)2 + 1

+ t18 − t19
√

(t18 − t19)2 + 101
,

dt19 = t19 − t18
√

(t19 − t18)2 + 101
+ t19 − t0

√
(t19 − t0)2 + 4

.

A.2 GAP Inputs and Outputs

1. To Compute the Factors of the Determinant of Polynomial f(x) =
84*x^6-228*x^5+361*x^4+20*x^3+210*x^2-200*x+25.

1.1 Create the rows of a (2n-1)x(2n-1) matrix, where n is 6.

r1:=[1,-228,361,20,210,-200,25,0,0,0,0];
r2:=[0,1,-228,361,20,210,-200,25,0,0,0];
r3:=[0,0,1,-228,361,20,210,-200,25,0,0];
r4:=[0,0,0,1,-228,361,20,210,-200,25,0];
r5:=[0,0,0,0,1,-228,361,20,210,-200,25];

A.2 GAP Inputs and Outputs 365

r6:= [6*1,-5*228,4*361,3*20,2*210,-200,0,0,0,0,0];
r7:= [0,6*1,-5*228,4*361,3*20,2*210,-200,0,0,0,0];
r8:= [0,0,6*1,-5*228,4*361,3*20,2*210,-200,0,0,0];
r9:= [0,0,0,6*1,-5*228,4*361,3*20,2*210,-200,0,0];
r10:=[0,0,0,0,6*1,-5*228,4*361,3*20,2*210,-200,0];
r11:=[0,0,0,0,0,6*1,-5*228,4*361,3*20,2*210,-200];

m:=[r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11];

1.2 Compute the Determinant.

gap> d:=DeterminantMatDestructive(m); 31364519252281021125000000

gap> d:=84*d; 2634619617191605774500000000

1.3 Compute the Factors of the Determinant.

gap> FactorsInt(d); [2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 5, 5,
5, 5, 5, 5, 5, 5, 5, 7, 11,
19249, 204797, 214309]

2. Factorising f(x) mod 13.

gap> F:=GaloisField(13); GF(13) gap> e:=Elements(F); [0*Z(13),
Z(13)^0, Z(13), Z(13)^2, Z(13)^3, Z(13)^4, Z(13)^5, Z(13)^6,
Z(13)^7, Z(13)^8, Z(13)^9, Z(13)^10, Z(13)^11]

gap> x:= X(F,"x"); x gap>
f:=84*x^6-228*x^5+361*x^4+20*x^3+210*x^2-200*x+25;;
gap> Factors(f); [Z(13)^5*x+Z(13)^10, x^2+Z(13)^5,
x^3+Z(13)^3*x^2+Z(13)^2*x+Z(13)^3]

3. Factorising f(x) mod 19.

gap> F:=GaloisField(19); GF(19) gap> e:=Elements(F); [0*Z(19),
Z(19)^0, Z(19), Z(19)^2, Z(19)^3, Z(19)^4, Z(19)^5, Z(19)^6,
Z(19)^7, Z(19)^8, Z(19)^9, Z(19)^10, Z(19)^11, Z(19)^12,
Z(19)^13, Z(19)^14, Z(19)^15, Z(19)^16, Z(19)^17]

gap> x:= X(F,"x"); x gap>
f:=84*x^6-228*x^5+361*x^4+20*x^3+210*x^2-200*x+25;;
gap> Factors(f); [Z(19)^3*x^6+x^3+x^2+Z(19)^8*x+Z(19)^14]

4. Factorising f(x) mod 37.

gap> F:=GaloisField(37); GF(37) gap> e:=Elements(F); [0*Z(37),
Z(37)^0, Z(37), Z(37)^2, Z(37)^3, Z(37)^4, Z(37)^5, Z(37)^6,
Z(37)^7, Z(37)^8, Z(37)^9, Z(37)^10, Z(37)^11, Z(37)^12,
Z(37)^13, Z(37)^14, Z(37)^15, Z(37)^16, Z(37)^17, Z(37)^18,
Z(37)^19, Z(37)^20, Z(37)^21, Z(37)^22, Z(37)^23, Z(37)^24,
Z(37)^25, Z(37)^26, Z(37)^27, Z(37)^28, Z(37)^29, Z(37)^30,
Z(37)^31, Z(37)^32, Z(37)^33, Z(37)^34, Z(37)^35]

gap> x:= X(F,"x"); x gap>
f:=84*x^6-228*x^5+361*x^4+20*x^3+210*x^2-200*x+25;;
gap> Factors(f); [Z(37)^24*x+Z(37)^0,
x^5+Z(37)^26*x^4+Z(37)^22*x^3+Z(37)^30*x^2+Z(37)^9*x+Z(37)^10]

366 Mathematical Details

A
.3

M
at

ri
ce

s
Q

fo
r

Se
ct

.9
.9

Ta
bl

e
A

.1
C

om
pu

ta
tio

n
of

fo
ur

th
(P

ar
ta

),
fif

th
(P

ar
tb

),
an

d
si

xt
h

(P
ar

tc
)

ro
w

of
m

at
ri

x
Q

fo
r

pr
ov

in
g

th
at

fu
nc

tio
n

f
1 1
(x

)
is

ir
re

du
ci

bl
e

k
a
k
,5

a
k
,4

a
k
,3

a
k
,2

a
k
,1

a
k
,0

Pa
rt

a

0
0

13
2

6
5

2

1
13

2
6

5
2

0

2
2

6
1

17
2

14

3
6

1
12

16
7

8

4
1

12
1

11
6

5

5
12

1
18

13
11

4

6
1

18
2

0
0

10

7
18

2
7

7
16

4

8
2

7
0

9
17

15

9
7

0
4

12
8

8

10
0

4
4

0
12

9

11
4

4
0

12
9

0

12
4

0
2

18
5

16

13
0

2
8

14
2

16

14
2

8
14

2
16

0

15
8

14
16

11
12

8

16
14

16
10

11
18

13

17
16

10
14

2
2

18

18
10

14
0

0
0

7

19
14

0
13

13
10

2

k
a
k
,5

a
k
,4

a
k
,3

a
k
,2

a
k
,1

a
k
,0

Pa
rt

b

0
14

0
13

13
10

2

1
0

13
16

13
10

18

2
13

16
13

10
18

0

3
16

13
6

14
2

14

4
13

6
12

0
15

7

5
6

12
15

11
9

14

6
12

15
15

13
12

5

7
15

15
2

1
1

10

8
15

2
11

11
5

3

9
2

11
2

15
17

3

10
11

2
10

12
15

8

11
2

10
13

16
17

6

12
10

13
11

12
18

8

13
13

11
6

12
11

2

14
11

6
8

7
4

14

15
6

8
8

5
4

6

16
8

8
9

8
4

5

17
8

9
7

3
15

13

18
9

7
2

14
4

13

19
7

2
1

10
10

17

k
a
k
,5

a
k
,4

a
k
,3

a
k
,2

a
k
,1

a
k
,0

Pa
rt

c

0
7

2
1

10
10

17

1
2

1
2

2
2

9

2
1

2
16

16
2

8

3
2

16
4

9
14

4

4
16

4
4

9
16

8

5
4

4
7

14
9

7

6
4

7
4

18
12

16

7
7

4
8

2
2

16

8
4

8
13

13
1

9

9
8

13
3

10
14

16

10
13

3
9

13
7

13

11
3

9
9

3
15

14

12
9

9
5

17
13

12

13
9

5
4

0
9

17

14
5

4
6

15
14

17

15
4

6
12

11
9

1

16
6

12
1

18
6

16

17
12

1
3

10
14

5

18
1

3
18

3
1

10

19
3

18
10

8
16

4

A.2 GAP Inputs and Outputs 367

Table A.2 Computation of the second (Part a) and third (Part b) row of matrix Q for proving that
function f 2

2 (x) is irreducible

k ak,4 ak,3 ak,2 ak,1 ak,0

Part a

0 0 0 0 0 1

1 0 0 0 1 0

2 0 0 1 0 0

3 0 1 0 0 0

4 1 0 0 0 0

5 34 16 26 6 12

6 25 15 2 31 1

7 14 32 15 3 4

8 27 17 34 14 20

9 10 22 13 34 28

10 29 25 35 14 9

11 12 18 28 35 15

12 19 35 14 13 33

13 15 22 26 36 6

14 14 7 19 22 32

15 2 21 16 5 20

16 15 11 20 32 24

17 3 1 15 3 32

18 29 26 7 13 36

19 13 27 27 25 15

20 25 13 30 19 8

21 12 23 3 10 4

22 24 10 26 2 33

23 12 3 34 29 29

24 4 4 8 27 33

25 29 35 20 20 11

26 22 3 34 0 15

27 11 16 17 36 5

28 20 8 26 34 21

29 22 13 36 30 18

30 21 18 10 2 5

31 29 13 30 20 30

32 0 13 34 19 15

33 13 34 19 15 0

34 32 5 20 4 8

35 20 14 22 15 14

36 28 9 17 23 18

37 36 21 11 1 3

k ak,4 ak,3 ak,2 ak,1 ak,0

Part b

0 36 21 11 1 3

1 24 32 12 34 25

2 34 26 29 21 29

3 35 18 17 11 1

4 24 22 33 26 13

5 24 10 21 9 29

6 12 35 4 25 29

7 36 11 4 27 33

8 14 25 1 27 25

9 20 3 21 35 20

10 17 8 0 29 18

11 31 13 27 9 19

12 31 5 1 20 2

13 23 16 12 3 2

14 21 10 9 29 17

15 21 12 20 32 30

16 23 23 23 8 30

17 28 21 14 20 17

18 11 18 8 0 3

19 22 36 27 32 21

20 7 9 12 5 5

21 25 13 2 10 10

22 12 32 31 12 4

23 33 1 28 2 33

24 13 1 9 9 26

25 36 32 14 30 8

26 35 35 4 2 25

27 4 9 24 13 13

28 34 14 6 0 11

29 23 32 33 30 1

30 0 31 36 28 17

31 31 36 28 17 0

32 17 6 9 1 2

33 29 22 36 30 19

34 9 19 7 8 15

35 29 3 20 32 34

36 27 3 9 23 15

37 33 34 22 29 28

368 Mathematical Details

Table A.3 Computation of the fourth (Part a) and fifth (Part b) row of matrix Q for proving that
function f 2

2 (x) is irreducible

k ak,4 ak,3 ak,2 ak,1 ak,0

Part a

0 33 34 22 29 28

1 9 32 36 4 26

2 5 32 16 6 34

3 17 22 25 27 23

4 8 1 25 14 19

5 14 5 0 30 22

6 0 2 24 32 20

7 2 24 32 20 0

8 18 27 35 12 24

9 10 27 36 21 31

10 34 11 22 17 9

11 20 11 13 28 1

12 25 0 30 10 18

13 36 23 31 20 4

14 26 15 31 35 25

15 11 3 8 33 16

16 7 36 23 8 21

17 15 24 5 26 10

18 16 23 9 26 32

19 12 6 35 17 7

20 7 5 33 5 33

21 21 34 2 1 10

22 8 5 29 25 30

23 18 9 11 4 22

24 29 3 28 19 31

25 27 11 33 20 15

26 4 21 19 29 28

27 9 9 22 15 11

28 19 18 27 28 34

29 35 35 4 0 6

30 4 9 22 31 13

31 34 12 24 0 11

32 21 13 33 30 1

33 24 36 21 16 30

34 1 35 11 26 29

35 32 27 15 35 12

36 5 9 16 19 14

37 31 22 1 7 23

k ak,4 ak,3 ak,2 ak,1 ak,0

Part b

0 31 22 1 7 23

1 3 16 36 24 2

2 7 10 28 20 36

3 26 29 17 4 10

4 25 26 14 18 16

5 25 7 2 18 4

6 6 32 2 6 4

7 14 24 14 3 35

8 19 16 34 8 20

9 33 5 21 23 6

10 17 31 30 19 26

11 17 6 17 17 19

12 29 30 15 10 19

13 17 35 24 8 15

14 21 0 6 6 19

15 11 9 34 34 30

16 13 25 24 22 21

17 23 10 27 25 8

18 15 25 31 35 17

19 17 12 18 33 32

20 35 31 31 23 19

21 0 36 8 7 13

22 36 8 7 13 0

23 11 28 24 31 25

24 32 15 21 17 21

25 30 15 35 28 14

26 36 34 31 9 27

27 0 15 20 21 25

28 15 20 21 25 0

29 12 2 8 16 32

30 3 15 32 30 33

31 6 6 34 14 36

32 25 19 22 35 35

33 18 15 19 0 4

34 35 11 24 1 31

35 17 29 23 19 13

36 15 36 17 4 19

37 28 35 24 35 32

A.2 GAP Inputs and Outputs 369

Table A.4 Computation of
the second row of matrix Q

for proving that function
f 3

2 (x) is irreducible

k ak,1 ak,0

0 0 1

1 1 0

2 0 7

3 7 0

4 0 10

5 10 0

6 0 5

7 5 0

8 0 9

9 9 0

10 0 11

11 11 0

12 0 12

13 12 0

Table A.5 Computation of the second (Part a) and third (Part b) row of matrix Q for proving that
function f 3

3 (x) is irreducible

k ak,2 ak,1 ak,0

Part a

0 0 0 1

1 0 1 0

2 1 0 0

3 5 9 5

4 8 11 12

5 12 6 1

6 1 5 8

7 10 4 5

8 2 4 11

9 1 3 10

10 8 6 5

11 7 12 1

12 8 12 9

13 0 3 1

k ak,2 ak,1 ak,0

Part b

0 0 3 1

1 3 1 0

2 3 1 2

3 3 3 2

4 5 3 2

5 2 8 12

6 5 4 10

7 3 3 12

8 5 0 2

9 12 8 12

10 3 3 8

11 5 9 2

12 8 8 12

13 9 6 1

Index

Symbols
π , 8

A
Abel, H. N., 293
Accuracy, 13

global and local, 59
Accuracy parameter, 35
Adjacency

in a graph, 15
of cuts, 193

Adjacent
4- and 8-, 10
polygonal cuts, 193

Adjacent to, 257
Alexandria, the ancient city of, 12
Algorithm, 4

δ-approximate, 32
κ-linear, 6
A� search, 19
approximate, 35, 74
approximate MLP, for cube-curves, 286
approximative, 35
arithmetic, 4, 290
arithmetic over the rational numbers, 4
art gallery, 311
breadth-first search, 16
Bülow–Klette, 237, 257
Chazelle, 177, 178
Dijkstra, 17, 27, 56, 81, 85, 156, 208, 238,

332
discrete surface ESP, 208
exact, 31, 74
for tangent calculation, 332
Gisela’s, 120
Graham, 101
iterative, 34

iterative ESP, 34
Klette, 107
Klette–Kovalevsky–Yip, 113
Melkman, 107, 119, 120, 122
Mitchell, 160
numerical for MLP in cube-curve, 253
optimised, 7
Papadimitriou, 33, 227
quickhull, 103
recursive, 116
recursive MLP, 118
rubberband, 57
scientific, 4
Seidel, 138
Sklansky, 106
straightforward, 100
Thorup, 197
Toussaint, 114
with guaranteed error limit, 239
within guaranteed error limits, 32
without guarantee, 32

Algorithm, exact, 31
AMLPP, 276
Angle, 96

end-, middle-, and inner-, 243
Annulus, 93
Ants, 91
Arc, minimum-length, 279
Area, 97

of a simple polygon, 98
Asymptotic time, 5
Attraction, 24, 54

B
Babylonian method, 37
Bajaj, C., 291
Band, 194

F. Li, R. Klette, Euclidean Shortest Paths,
DOI 10.1007/978-1-4471-2256-2, © Springer-Verlag London Limited 2011

371

372 Index

Bands, continuous, 195
Berlekamp, E. R., 291, 294, 296
Bhowmick, P., 28
Bisection method, 252
Bolzano, B. P. J. N., 38, 45
Border, inner and outer, 122
Border tracing, 122
Bruckstein, A. M., 55
Bülow, T., 233, 236

C
Canopic Gate, 13
Cartesian coordinate system, 9
Cartesius, 9
Case, degenerate, 70
Cauchy, A.-L., 37, 48
Cauchy Convergence Criterion, 38
CAV, 98
Cavity, 93

of a simple polygon, 98
Cell, 75, 231
CH, 97
Chasing tactics, 53
Chazelle, B., 178
Chord

in a polygon, 172
in a visibility map, 154
of a function, 47

Closure, 42
Collinearity, 96
Complexity

computational, 4
linear, 5
of shape, 127
time, 4

Component, 42
Compound, of polynomials, 63
Computer

abstract, 4
normal sequential, 4

Conformality, 155
Constraint, partitioning, 130
Contact, 330
Convergence, 36

multigrid, 49
of a path, 63
of an RBA, 58
of pursuit paths, 55
speed of, 49

Convexity, 93
Coordinate system

Cartesian, 19
right-hand, 20

Copenhagen, 311

Corridor, 192
Cover, of a cavity, 98
Cross product, of sets, 67
Cube, 194, 205
Cube-arc

(2,3)-, 2- and 3-, 277
maximal (2,3)-, 277
maximal 2-, 277
simple, 234, 276

Cube-arc unit, 277
2- and 3-, 278
regular, 277

Cube-curve, 231
first-class, 233
simple, 233

Curve, 12
complete for tube, 233
Jordan, 21
polygonal, 12
simple, 21
skeletal, 31

Cut, 328
associated, 330
essential, 328
polygonal, 193

Cut-edge, 142
Cycle, 293

approximate, 194

D
De Beaune, F., 54
Decision tree, binary, 132, 134, 146
Descartes, R., 9
Destination, 24
Determinant, 97
Dijkstra, E.W., 17
Dijkstra’s algorithm, 17
Dilation, 279, 349
Disk, 95
Distance

Euclidean, 9, 20
forest, 11
Minkowski, 9

Distance measure, Minkowski, 10
Dror, M., 327, 347
DSS, 305

E
Edge, 231

critical, 232
in a cell, 75
in a graph, 15
interior, 173
maximal and minimal, of a polygon, 141

Efrat, A., 327, 347

Index 373

Ellipse, 355
End-angle, 243
Endoscopy, 227
Equivalence

asymptotic, 26
topological, 43, 192

ESP, 11, 23
generic, 75
in a corridor, 192
in a simple polyhedron, 192
on the surface of a polyhedron, 192

ESP problem
fixed, 56
fixed line-segment, in 3D, 59
floating, 56
general 3D, 33

Euclid of Alexandria, 9, 12
Euclidean shortest path, 171
Event, closure and vertex, 159

F
Face, 132, 231

critical, 275
of a partitioning, 128
of a polyhedron, 22

First end point of e, 257
Free space, generic ESP, 75
Frontier, 22, 40, 42

of a band, 195
Function

characteristic, 97
concave, 39
continuous, 43, 45, 65, 67
convex, 39

Fundamental Theorem of Algebra, 7
Funnel, 173

G
Galois, È., 8, 291
Game, 56, 127
Gauss, C. F., 7, 31
Geodesic, 16, 209
Geometry

digital, 113
Euclidean, 9

Good prime, 293
Graham, R., 101
Graph, 15

cell visibility weighted, 76
cell visibility weighted, for a point, 77
dual, 130, 155, 174, 176, 194
weighted, 15

Grid, 231
Hippodamian, 14

regular orthogonal, 10
Grid cube, 231
Group

Abelian, 293
Galois, 293
normal sub-, 294
solvable, 294
symmetric, 294

Guanajuato, 1

H
Half-plane, 95
Halmos, P. R., 6
Heron of Alexandria, 37
Hoare, C. A. R, 53, 103
Hole, 93

in a polygon, 128
Homeomorphism, 43
Hull, convex, 93, 96
Hull, convex, relative to outer polygon, 111

I
Iff, 6
Initialisation, of an RBA, 57–59, 63, 68
Inner-angle, 243
Interior, 22, 40, 42
Interval

closed, 40
monotonous, 67
open, 40

Iterations, number of, 62, 86

J
Jordan, C., 21

K
Klette, G., 32, 98, 124

L
La Cumbrecita, 91
Length, 9, 45

of a curve, 44
of a path, 11, 12

Limit, 36
Line

critical, 244
oriented, 95

Line segments, non-disjoint, 69
Linear, κ-, 62
Listing, J. B., 22, 128
Loop, 21
Lubiw, A., 327, 347

M
Map, shortest-path, 160

374 Index

Maximal run of parallel critical edges, 257
Measure, 3
Melkman, A., 108
Method

binary search, 45
Chazelle triangulation, 83, 154
fast marching, 227
for handling degenerate cases, 71
n-section, 46
Newton–Raphson, 46, 48

Metric, 10
Euclidean, 20

Middle-angle, 243
Minimum, global and local, 66
Minkowski, H., 9
Minkowski addition, 349
Mitchell, J. S. B., 160, 327, 347
MLA, 279
MLP, 114, 231–233, 305
MLPP, 275
MPP, 111

N
Neighbourhood, ε-, 40
Newton, I., 44, 46
Node, 15

in a graph, 15
Non-existence, 207
Non-trivial vertex, 276
NP, complete and hard, 28, 224, 228, 315
Number

complex, 7
natural, 5
rational, 4, 293

O
Obstacle, 11, 24, 192
Operation, basic, 4
Optimisation, local, for an RBA, 58
Option 3, revised, 273
Orientation

clockwise, 275
counter-clockwise, 275

Origin, of a coordinate system, 20

P
Paneum, 13
Paramesvara, V., 48
Parameter, free, 6
Partitioning, 127, 128
Parts cutting, 25
Path, 11

4- or 8-, 113
Euclidean shortest, 11

in a tree, 131
polygonal, 99
pursuit, 53
shortest, in a graph, 16
total weight of a, 15
visits a polygon, 314

Pattern recognition, 127
Permutation, 293
Perry, S., 88
Pheromones, 91
Plane, 20
Pocket, 329
Point

extreme, 100
visible, 331

Points, collinear, 96
Polygon, 21

approximate minimum-length pseudo, 276
critical, 214
inner, 139
isothetic, 106
minimum-length, 114, 232
minimum-length pseudo, 275
minimum-perimeter, 111
monotone, 123, 141
simple, 21, 44, 128
strictly monotone, 123, 141
up- and down-, 139
visible from the outside, 105

Polygonal cut, 193
Polygonal cuts, sequence of, 193
Polygons, non-overlapping, 191
Polyhedron, 22, 192

Listing, 128
Schönhardt, 218, 222
simple, 22, 192, 214
toroidal, 129
type-1 and type-2, 214

Polyline
downward visible, 193
simple, 107
upward visible, 193

Polynomial, 7
convex, 48
unsolvable, 8

Principle
binary search, 45
brute-force, 6
divide-and-conquer, 103
throw-away, 6, 100

Problem
continuous Dijkstra, 156
ESP, 24
general surface ESP, 207

Index 375

Problem (cont.)
obstacle avoidance, 192
parts-cutting, 314
safari route, 347
touring ellipses, 355
touring-polygons, 313
travelling salesman, 315
unsolvable, 7
watchman route, 327
zookeeper route, 348

Problem size, 5
Projection, 244
Ptolemaic dynasty, 14
Puzzle, triangle, 127

Q
Query point, 133

R
Radicals, solvable by, 7
Raphson, J., 46
RBA, 57

edge-based, for cube-curves, 285
face-based, for cube-curves, 286
for a sequence of simple polygons, 318
for an approximate AMLPP, 283
for an approximate MLA, 282
for convex hull calculation, 104
for convex hull of a simple polygon, 110
for ESP based on trapezoidal

decomposition, 180
for fixed line-segment ESP problem in 3D,

72
for floating WRP, 338
for polygonal cuts, 197
for safari route, 353
for surface ESP, 205
for the fixed TPP, 319
for the floating TPP, 320
for touring ellipses, 357
for type-1 polyhedrons, 220
for type-2 polyhedron, 222
for WRP with start point, 337
for zookeeper route, 356
generic, 80
generic for 2.5D case, 208
generic for 3D case, 227, 304
original, 236, 238, 257, 273
revised, 273

RCH, 116
Rectangle

axis-aligned, 215
q-, 215

Rectangles, stacked, 25

Relative convex hull, 111
Resolution, of decomposition, 75
Result, accurate, 60
Robotics, 28
Root, 7

isolated, 66
Root of 2, 37
Rosenfeld, A., 10
Rubberband, 88
Rubberband algorithm, original, 237

S
Scale, geometric, 13
Schorr, A., 57
Search, breadth-first, 16
Search domain, 24

polygonal, 24
polyhedral, 24

Search space, 75
Second end point of e, 257
Segment, visible, 332
Seidel, R., 137
Sequence, 12

Cauchy, 37
Serapeum, 13
Set

bounded, 41, 93
closed, 40, 41
compact, 41
convex, 93
open, 40, 41
topologically connected, 42

Shape complexity, 127
Shape factor, 123
Sharir, M., 57
Shift distance, 139
Shortest path

in a simple polygon, 25
on the surface of a simple polyhedron, 25

Shortest-path problem, of graph theory, 17
Signal tree, 160
Simple polygon, 171
Singleton, 98, 128
Skeleton, 31
Sklansky, J., 103
Sklansky test, 102
Solution

approximate, 8
exact, 8, 24
for an ESP problem, 24
interval, 66
isolated, 66

Source, 24
Space

376 Index

Space (cont.)
3D, 20
metric, 20

SPM, 160
SRP condition, 349
Star unfolding, 209
Step

of a pursuit path, 54
of an RBA, 56

Step set, 220
Stop criterion, 36, 87

of an RBA, 58
Strip, horizontal and vertical, 215
Subarc, 276
Submap, 154
Subsurface, 194
Sweep space, 159

T
Tan, X., 347
Tangent calculation, 350
Tee, G., 47
Theorem, mean-value, 48, 235
Theory, Galois, 8
Thinning, 31
Thorup, M., 197
Thorvaldsen, B., 311
Time

constant, 7
linear, 5

Time bound, asymptotic upper, 5
Time unit, 4, 5
Topology, 40, 42
TPP, 313

fixed, 314
floating, 314

Tractrix, 53
Trapezoid, 129
Trapezoidation, 129, 132
Tree, 130

fractal, 129
shortest-path, 160
signal, 160

Triangle, 97
Triangularity, 10

Triangulation, 129
Tube, 231
Turn, right or left, 103
Type-1 polyhedron, 214
Type-2 polyhedron, 214
Tzintzuntzan, 23

U
Unsolvability, 74
Upper bounded, 5

V
Van der Waerden, B.L., 8, 291
Vertex, 11, 231

concave, 103, 328
concave or convex, 103
convex, 103, 328
extreme, 100
funnel, 173
reflex, 328
trivial, 276

Visibility, 105, 193, 331
for a polygon, 22
for a polyhedron, 22
of cells, 76

Visibility graph, indirect, 83
Visibility map, 154
Visit

for the first time, 42
of a set by a path, 42

Volume, 97

W
Wavelet, 157
Weierstrass, K. T. W., 38
Weight

of a face, 154
of an edge in a graph, 15

World, cuboidal, 231, 232
WRP, 327

fixed, 328

Z
Zero, of a function, 45
ZRP condition, 349

	Cover
	Euclidean Shortest Paths
	ISBN 9781447122555
	Foreword
	Preface
	Contents
	Abbreviations

	Part I: Discrete or Continuous Shortest Paths
	Chapter 1: Euclidean Shortest Paths
	1.1 Arithmetic Algorithms
	1.2 Upper Time Bounds
	1.3 Free Parameters in Algorithms
	1.4 An Unsolvable Problem
	1.5 Distance, Metric, and Length of a Path
	1.6 A Walk in Ancient Alexandria
	1.7 Shortest Paths in Weighted Graphs
	1.8 Points, Polygons, and Polyhedra in Euclidean Spaces
	1.9 Euclidean Shortest Paths
	1.10 Problems
	1.11 Notes
	 References

	Chapter 2: Deltas and Epsilons
	2.1 Exact and delta-Approximate Algorithms
	2.2 Approximate Iterative ESP Algorithms
	2.3 Convergence Criteria
	2.4 Convex Functions
	2.5 Topology in Euclidean Spaces
	2.6 Continuous and Differentiable Functions; Length of a Curve
	Derivatives
	Length of a curve

	2.7 Calculating a Zero of a Continuous Function
	n-section method
	Binary-search method
	Newton-Raphson method

	2.8 Cauchy's Mean-Value Theorem
	2.9 Problems
	2.10 Notes
	 References

	Chapter 3: Rubberband Algorithms
	3.1 Pursuit Paths
	3.2 Fixed or Floating ESP Problems; Sequence of Line Segments
	3.3 Rubberband Algorithms
	3.4 A Rubberband Algorithm for Line Segments in 3D Space
	3.5 Asymptotic and Experimental Time Complexity
	3.6 Proof of Correctness
	3.7 Processing Non-disjoint Line Segments as Inputs
	3.8 More Experimental Studies
	3.9 An Interesting Input Example of Segments in 3D Space
	3.10 A Generic Rubberband Algorithm
	The main idea behind the generic RBA

	3.11 Problems
	3.12 Notes
	 References

	Part II: Paths in the Plane
	Chapter 4: Convex Hulls in the Plane
	4.1 Convex Sets
	4.2 Convex Hull and Shortest Path; Area
	4.3 Convex Hull of a Set of Points in the Plane
	Graham algorithm
	Sklansky test
	A quickhull algorithm
	A rubberband algorithm

	4.4 Convex Hull of a Simple Polygon or Polyline
	Sklansky algorithm
	Klette algorithm
	Melkman algorithm
	A rubberband algorithm

	4.5 Relative Convex Hulls
	4.6 Minimum-Length Polygons in Digital Pictures
	4.7 Relative Convex Hulls-The General Case
	Toussaint algorithm
	Preliminaries for a recursive algorithm
	Recursive algorithm

	4.8 Problems
	4.9 Notes
	 References

	Chapter 5: Partitioning a Polygon or the Plane
	5.1 Partitioning and Shape Complexity
	5.2 Partitioning of Simple Polygons and Dual Graphs
	Shortest path in a tree

	5.3 Seidel's Algorithm for Polygon Trapezoidation
	5.4 Inner, Up-, Down-, or Monotone Polygons
	5.5 Trapezoidation of a Polygon at Up- or Down-Stable Vertices
	Procedures for Algorithm 20

	5.6 Time Complexity of Algorithm 20
	5.7 Polygon Trapezoidation Method by Chazelle
	5.8 The Continuous Dijkstra Problem
	5.9 Wavelets and Shortest-Path Maps
	5.10 Mitchell's Algorithm
	5.11 Problems
	5.12 Notes
	 References

	Chapter 6: ESPs in Simple Polygons
	6.1 Properties of ESPs in Simple Polygons
	6.2 Decompositions and Approximate ESPs
	Triangulations
	Trapezoidal decomposition

	6.3 Chazelle Algorithm
	6.4 Two Approximate Algorithms
	6.5 Chazelle Algorithm Versus Both RBAs
	6.6 Turning the Approximate RBA into an Exact Algorithm
	6.7 Problems
	6.8 Notes
	 References

	Part III: Paths in 3-Dimensional Space
	Chapter 7: Paths on Surfaces
	7.1 Obstacle Avoidance Paths in 3D Space
	7.2 Polygonal Cuts and Bands
	7.3 ESPs on Surfaces of Convex Polyhedrons
	7.4 ESPs on Surfaces of Polyhedrons
	7.5 The Non-existence of Exact Algorithms for Surface ESPs
	7.6 Problems
	7.7 Notes
	 References

	Chapter 8: Paths in Simple Polyhedrons
	8.1 Types of Polyhedrons; Strips
	8.2 ESP Computation
	8.3 Time Complexity
	8.4 Examples: Three NP-Complete or NP-Hard Problems
	8.5 Conclusions for the General 3D ESP Problem
	8.6 Problems
	8.7 Notes
	 References

	Chapter 9: Paths in Cube-Curves
	9.1 The Cuboidal World
	9.2 Original and Revised RBA for Cube-Curves
	9.3 An Algorithm with Guaranteed Error Limit
	9.4 MLPs of Decomposable Simple Cube-Curves
	9.5 Analysis of the Original RBA
	9.6 RBAs for MLP Calculation in Any Simple Cube-Curve
	9.7 Correctness Proof
	9.8 Time Complexities and Examples
	9.9 The Non-existence of Exact Solutions
	9.10 Problems
	9.11 Notes
	 References

	Part IV: Art Galleries
	Chapter 10: Touring Polygons
	10.1 About TPP
	10.2 Contributions in This Chapter
	10.3 The Algorithms
	10.4 Experimental Results
	10.5 Concluding Remarks and Future Work
	10.6 Problems
	10.7 Notes
	 References

	Chapter 11: Watchman Routes
	11.1 Essential Cuts
	11.2 Algorithms
	11.3 Correctness and Time Complexity
	11.4 Problems
	11.5 Notes
	 References

	Chapter 12: Safari and Zookeeper Problems
	12.1 Fixed and Floating Problems; Dilations
	12.2 Solving the Safari Route Problem
	12.3 Solving the Zookeeper Route Problem
	12.4 Some Generalisations
	12.5 Problems
	12.6 Notes
	 References

	Appendix : Mathematical Details
	A.1 Derivatives for Example 9.6
	A.2 GAP Inputs and Outputs
	A.3 Matrices Q for Sect. 9.9

	Index

