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Preface

The purpose of this book is to develop a generative theory of shape that has
two properties we regard as fundamental to intelligence – (1) maximization of
transfer: whenever possible, new structure should be described as the transfer
of existing structure; and (2) maximization of recoverability: the generative
operations in the theory must allow maximal inferentiability from data sets.
We shall show that, if generativity satisfies these two basic criteria of in-
telligence, then it has a powerful mathematical structure and considerable
applicability to the computational disciplines.

The requirement of intelligence is particularly important in the genera-
tion of complex shape. There are plenty of theories of shape that make the
generation of complex shape unintelligible. However, our theory takes the
opposite direction: we are concerned with the conversion of complexity into
understandability. In this, we will develop a mathematical theory of under-
standability.

The issue of understandability comes down to the two basic principles of
intelligence - maximization of transfer and maximization of recoverability. We
shall show how to formulate these conditions group-theoretically. (1) Maxi-
mization of transfer will be formulated in terms of wreath products. Wreath
products are groups in which there is an upper subgroup (which we will call
a control group) that transfers a lower subgroup (which we will call a fiber
group) onto copies of itself. (2) maximization of recoverability is insured when
the control group is symmetry-breaking with respect to the fiber group.

A major part of this book is the invention of classes of wreath-product
groups that describe, with considerable insight, the generation of complex
shape; e.g., in computer vision and computer-aided design. These new groups
will be called unfolding groups. As the name suggests, such a group works by
unfolding the complex shape from a structural core. The core will be called
an alignment kernel. We shall see that any complex object can be described
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as having an alignment kernel, and that the object can be generated from
this kernel by transferring structure from the kernel out to become the parts
of the object.

A significant aspect of all the groups to be invented in this book, is that
they express the object-oriented nature of modern geometric programming.
In this way, the book develops an object-oriented theory of geometry. For
example, we will develop an algebraic theory of object-oriented inheritance.

Our generative theory of shape is significantly different from current gen-
erative theories (such as that of Stiny and Gips) which are based on pro-
duction rules. In our theory, shape generation proceeds by group extensions.
The algebraic theory therefore has a very different character. Briefly speaking:
Features correspond to symmetry groups, and addition of features corresponds
to group extensions.

The major application areas in the book are visual perception, robotics,
and computer-aided design. In visual perception, our central principle is that
an intelligent perceptual system (e.g., the human perceptual system) is struc-
tured as an n-fold wreath product G1w©G2w©. . . w©Gn. In previous publica-
tions, we have put forward several hundred pages of empirical psychological
evidence, to demonstrate the correctness of this view for the human sys-
tem. We shall see that the fact that the visual system is structured as a
wreath product, has powerful consequences on the way in which perception
organizes the world into cohesive structures. Chapter 5 shows how the per-
ceptual groupings can be systematically predicted from the wreath product
G1w©G2w©. . . w©Gn.

Chapter six develops a group theory of robot manipulators. We require
the group theory to satisfy three fundamental constraints: (1) Perceptual and
motor systems should be representationally equivalent. (2) The group linking
base to effector cannot be SE(3) (which is rigid) but a group that we will call
semi-rigid; i.e., allowing a breakdown in rigidity at a specific set of points.
(3) The group must encode the object-oriented structure.

The theory of robotic kinematics continues in two ways: (1) within the
theory of mechanical CAD in Chapter 14; and (2) in the theory of rela-
tive motion (in visual perception, computer animation, and physics) given in
Chapter 9.

Chapter ten begins the analysis of static CAD by developing a theory of
surface primitives, showing that, in accord with the theory of recoverability,
the standard primitives of CAD (and visual perception) can be systematically
elaborated in terms of what we call iso-regular groups. Such groups are n-
fold wreath productsG1w©G2w©. . . w©Gn, in which each levelGi is an isometry
group and is cyclic or a one-parameter Lie group. To go from such structures
to non-primitive objects, one then uses either the theory of splines given
later in the book, or the theory of unfolding groups given in Chapters 11, 12
and 13.
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The basic properties of an unfolding group are that it is a wreath product
in which the control group acts (1) selectively on only part of its fiber, and
(2) by misalignment. In many significant cases, the fiber is the direct product
G1×. . .×Gn of the symmetry groups Gi of the primitives, i.e., the iso-regular
groups, and any fiber copy corresponds to a configuration of objects. The fiber
copy in which the object symmetry groups G1, . . . , Gn are maximally aligned
with each other is called the alignment kernel. The action of the control
group, in transferring fibers onto each other is to successively misalign the
symmetry groups. This gives an unfolding effect.

Chapter 14 then presents a lengthy and systematic analysis of mechan-
ical CAD using the above theory. We work through the main stages of
MCAD/CAM: part-design, assembly, and machining. For example, in part-
design, we give an extensive algebraic analysis of sketching, alignment,
dimensioning, resolution, editing, sweeping, feature-addition, and intent-
management.

Chapter 15 then carries out an equivalent analysis of the stages of archi-
tectural CAD. Then, Chapter 16 gives an advanced algebraic theory of solid
structure, Chapter 17 gives a theory of spline-deformation as automorphic
actions on groups; and Chapter 18 provides an equivalent analysis for sweep
structures.

Chapter 20 examines the conservation laws of physics, in terms of our
generative theory, although the next volume will be devoted almost entirely
to the geometric foundations of physics. Chapter 21 gives a theory of sequence
generation in music.

Finally, Chapters 2, 8, and 22, examine in detail the fundamental differ-
ences between our theory of geometry and Klein’s Erlanger program. Essen-
tially, in our theory, the recoverability of generative operations from the data
set means that the shape acts as a memory store for the operations. More
strongly, we will argue that geometry is equivalent to memory storage. This is
fundamentally opposite to the Erlanger approach in which geometric objects
are defined as invariant under actions. If an object is invariant under actions,
the actions are not recoverable from the object. We demonstrate that our
approach to geometry is the appropriate one for modern computational dis-
ciplines such as computer vision and CAD, whereas the Erlanger approach is
inadequate and leads to incorrect results.

June 2001 Michael Leyton
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1. Transfer

1.1 Introduction

The purpose of this book is to present a generative theory of shape that
significantly increases the power of geometry in the computational and design
disciplines, as well as the physical sciences. This is achieved by requiring the
generative theory to satisfy the following two criteria which we will regard as
fundamental to intelligent and insightful behavior:

(1) Maximization of Transfer. Any agent is regarded as displaying in-
telligence and insight when it is able to transfer actions used in previous
situations to new situations. The ability to transfer past solutions onto new
problems is at the very core of what it means to have knowledge. Thus, in our
generative theory of shape, the generative sequences must maximize transfer
along those sequences.

(2) Maximization of Recoverability. A basic factor of intelligence is the
ability to give causal explanations. Examples include the following: (a) An
agent must be able to infer the causes of its own current state, in order to
identify why it failed or succeeded. (b) The fundamental goal of science is
explanation, which is the inference of causes from effects. (c) Computational
vision requires inferring, from the retinal image, the environmental processes
that produced that image - an inference often referred to as inverse optics.
(d) Computer-aided manufacturing requires inferring, from the shape of an
object (on the computer screen), a means of generating the shape by simu-
lated machining operations such as drilling and milling. (e) A similar process
occurs in reverse engineering, which requires inferring, from a physical ex-
ample of an object, the operations needed to manufacture it. All of these
examples involve being presented with a data set, and inferring from the
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data set, a sequence of operations which will generate that data set. In other
words, there must be a set of inference rules by which the generative oper-
ations can be inferred from the data set. Generativity is not enough: One
must ensure the inferentiability of that generativity. We will usually refer to
this inferentiability as recoverability; i.e., the generative operations must be
recoverable from the data set.

The above two paragraphs presented our two criteria of intelligence: the maxi-
mization of transfer and the maximization of recoverability. We shall see that,
if the generativity satisfies these two criteria, then it has an enormously pow-
erful mathematical structure, to be elaborated over the course of this book.
Essentially, this involves giving a new theory of geometry that incorporates
intelligence into the very structure of shape.

1.2 Complex Shape Generation

The primary goal of this book is to handle complex shape. As an example
consider the problem of human perception. The human visual system is con-
fronted with an enormously complex environment. Yet it is able to convert
this complexity into an entirely understandable form. This exemplifies the
general problem that we will investigate:

(1) The conversion of complexity into understandability: Our ba-
sic purpose is to give a generative theory of complex shape such that the
complexity is entirely accounted for, and yet the structure is completely un-
derstandable.

(2) Understandability and intelligence: Deep consideration reveals that
understandability of a structure is achieved by maximizing transfer and re-
coverability.

(3) The mathematics of understandability: A significant portion of the
book will be the development of a mathematical theory of how understandabil-
ity is created in a structure.

To illustrate the theory, lengthy and detailed applications will be given in
the areas listed in Table 1.1 This volume will concentrate heavily on areas
1 - 9, and a second volume will be concerned mainly with the last three areas,
10 - 12.
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Table 1.1. Application areas of this book.

1. human perception 7. architectural design
2. computer vision 8. music
3. robotic kinematics 9. projective geometry
4. mechanical part design 10. general relativity
5. assembly planning 11. quantum mechanics
6. manufacturing 12. Hamiltonian mechanics

In order to describe highly complex shapes, a class of symmetry groups
will be invented, which will be called unfolding groups. As the name suggests,
an unfolding group works by unfolding the complex shape from a structural
core. The core will be called an alignment kernel. We shall see that any com-
plex object can be described as having an alignment kernel, and that the
object can be generated from this kernel by transferring structure from the
kernel out to become the parts of the object. By reducing the alignment
kernel to a minimum, the object is described maximally by transfer. The
very structure assigned to the object thereby embodies intelligence and in-
sight. Furthermore, by ensuring recoverability, one ensures that the entire
complexity of the object is understandable to the user. Using these groups,
we will be able to give a substantial algebraic account of complex shape
in computer vision, mechanical design, assembly-planning, constructive solid
modeling, architectural design, and so forth.

In this book, a number of classes of symmetry groups will be invented
that are particularly valuable in describing certain sub-classes of generative
shape. In increasing order of complexity, they are:

iso-regular groups ⊂ wreath-isometric groups ⊂ semi-rigid groups
⊂ unfolding groups.

Iso-regular groups will allow us to give a systematic classification of shape
primitives in human perception and computer graphics.Wreath-isometric and
semi-rigid groups will allow us to describe articulated structures such as robot
manipulators and relative-motion systems in classical and quantum physics.
Unfolding groups will allow us to describe arbitrarily complex objects and
scenes in CAD, computer vision, assembly planning, product specification,
and machining.

1.3 Object-Oriented Theory of Geometry

A crucial feature of our generative theory is that it models the object-oriented
nature of computer-aided design and graphics. In this way, we will develop
an object-oriented theory of geometry - which, to our knowledge, will be
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the first such theory to have been elaborated. Most importantly the object-
orientedness will be formulated in the group theory to be created, and will
lead to the classes of groups listed above. A particular concern will be to give
a group theory of the relationship between the command structure and the
internal structure of an object, as well as an algebraic theory of inheri-
tance - which will underlie most of the book.

1.4 Transfer

As stated above, the generative theory is founded on two principles of in-
telligent behavior: the maximization of transfer and the maximization of
recoverability. This chapter will give an intuitive introduction to transfer,
followed, in the next chapter, by an intuitive introduction to recoverability.
Then, Chapter 3 will begin the rigorous elaboration of the full theory.

A generative theory of shape characterizes the structure of a shape by
a sequence of actions needed to generate it. According to our theory, these
actions must maximize transfer. That is:

MAXIMIZATION OF TRANSFER. Make one part of the generative
sequence a transfer of another part of the generative sequence, whenever pos-
sible.

We will show that the appropriate formulation of this is as follows: A situation
of transfer involves two levels: a fiber group, which is the group of actions to
be transferred; and a control group, which is the group of actions that will
transfer the fiber group. The justification for these structures algebraically
being groups will be given later, but the theory of transfer will work equally
for semi-groups, which is the most general case one would need to consider
for generativity.

Now, one can think of transfer as the control group moving the fiber group
around some space; i.e., transferring it. This is illustrated in Fig. 1.1. The
transferred versions of the fiber group are shown as the vertical copies, and
will be called the fiber-group copies. The control group acts from above, and
transfers the fiber-group copies onto each other, as indicated by the arrow.

A basic part of this book will be to give an algebraic theory of transfer,
and to reduce complex situations down to structures of transfer. Transfer will
be modeled by a group-theoretic construct called a wreath product. This is a
group that will be notated in the following way:

Fiber Group w© Control Group.
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Fig. 1.1. The control group transferring the fiber group.

Intuitively, a wreath-product group contains the entire structure shown in
Fig. 1.1; that is, it has an upper subgroup that will be called a control group,
and a system of lower subgroups that will be called the fiber-group copies.
The control group sends the fiber-group copies onto each other. The system
of fiber-group copies, i.e., the entire lower block in Fig. 1.1, is the direct
product of the fiber-group copies. The lower system is related to the control
group above it by a semi-direct product. (Semi-direct products are explained
in Appendix A.)

The entire lower system is a normal subgroup of the wreath-product
group; however, any individual fiber-group copy is not. This turns out to
be fundamentally important to the generative theory.

Formulating transfer in terms of wreath products has enormous advan-
tages, as follows: (1) A wreath product is a group that contains all the trans-
ferred versions of the fiber group. Thus, rather than thinking of the trans-
ferred versions as separate algebraic entities, they are all integrated within
a single algebraic structure. (2) This single algebraic structure also encom-
passes the control group. Thus the wreath product contains the network of
algebraic connectivity that relates the control group to the fiber group. This
algebraic connectivity will explain an enormous amount in human perception,
computer vision, robotics, computer-aided design, navigation, manufacturing,
quantum mechanics, and so on.

The full mathematical theory will begin in Chapter 3, which will elaborate
in detail our claim that transfer is best modeled by a wreath product. In that
chapter, the structure of a wreath product will also be described in detail. For
now, the reader needs to understand only that the wreath product encodes the
transfer relationship between the control group and the fiber group; i.e., that
the control group moves the fiber group around. The purpose of the current
chapter is to give the reader an intuitive description of transfer, together
with several examples that will illustrate the power of transfer. Although it
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will not be required in the present chapter, a rigorous definition of wreath
product is given in footnote1 below.

We shall often use another term for transfer: nested control. That is, the
group Fiber Groupw©Control Group will be called a structure of nested
control; the 2-place operation w© will be referred to as the control-nesting
operation; and the fiber group will be said to be control-nested in the control
group.

The above discussion considered a 2-level structure of transfer; i.e., the
movement of a fiber group by a control group. An n-level structure of transfer
will be constructed by a recursive use of the 2-place operation w©, and the
resulting group will be written thus:

G1 w© G2 w© . . . w© Gn.

In this group, each level Gi acts as a control group with respect to its left-
subsequence G1w©G2 w©. . . w©Gi−1 as fiber. In other words, Gi transfers its
left-subsequence around some environment; but this left-subsequence is it-
self a hierarchy of transfer, and so on, recursively downwards. It will be
argued that any intelligent shape generation is given by an n-fold hierar-
chy of transfer. That is, generation is structured by a group of the form
G1w©G2w©. . . w©Gn.

It is now necessary for us to work through several examples so that the
reader can begin to become familiar with aspects of this approach, and see
also the wide range of applications.

1.5 Human Perception

In Leyton [87], [88], [89], [90], [91], [96], we put forward several hundred pages
of psychological evidence that lead to this conclusion:

1 Consider two group actions: the actions of groups, G(F ) and G(C), on sets, F
and C, respectively. The wreath product G(F )w©G(C) is the semi-direct product
{
Q

c∈C G(F )c} s©τG(C), where the product symbol
Q

means the (group) direct
product, and the groups G(F )c are isomorphic copies of G(F ) indexed by the
members c of the set C. The map τ : G(C) −→ Aut{

Q
c∈C G(F )c} is defined

such that τ (g) corresponds to the group action of G(C) on C, now applied to the
indexes c in

Q
c∈G(C)G(F )c. That is, τ (g) :

Q
c∈G(C)G(F )c −→

Q
c∈G(C)G(F )gc.

Finally, we have a group action of G(F )w©G(C) on F × C defined thus: For
φ ∈ G(F ), κ ∈ G(C), and (f, c) in F ×C, we have [φ, κ](f, c) = (φcf, κc), where
φc ∈ G(F )c.
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THE STRUCTURE OF
THE HUMAN PERCEPTUAL SYSTEM

The human perceptual system is structured as an n-fold
wreath product G1w©G2w©. . . w©Gn. The consequence is that
perceptual organizations are structured as n-fold wreath
products.

This view explains an enormous number of psychological results in the area
of perceptual organization, shape representation, and motion perception. For
example, all the Gestalt grouping phenomena can be explained very econom-
ically using this principle: the perceptual groupings correspond to symmetry
groups Gi that are control-nested recursively in a manner described above.
The principle applies not only to static shape perception but also to motion
perception.

In order to illustrate this, let us begin with a very simple example. We
will show how the human visual system structures a square. In a sequence
of psychological experiments, Leyton [89] [90], we showed that human vision
represents a square generatively, in the following way. It begins with the top
side. Perceptually the top side is generated by starting with a corner point,
and applying translations to trace out the side, as shown in Fig. 1.2.

Fig. 1.2. The generation of a side, using translations.

Next, this translational structure is transferred from one side to the next -
rotationally around the square. In other words, there is transfer of translation
by rotation. This is illustrated in Fig. 1.3.

Therefore, the transfer structure is defined as:

Translations w© Rotations.

where Translations is the fiber group and Rotations is the control group.
Recall that, in any transfer situation, the control group moves the fiber group
around.

The translation group will be denoted by the additive group R. The ro-
tation group is Z4, the cyclic group of order 4, represented as

Z4 = { e, r90, r180, r270 }
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Fig. 1.3. Transfer of translation by rotation.

where rθ means rotation by θ degrees. The successive group elements are
obviously rotations by successive 900 increments. Thus the transfer structure
illustrated in Fig. 1.3, is this:

R w© Z4. (1.1)

At first, the reader might question putting the entire group of translations
in the fiber position, even though the group is ”cut off” at the end points of
a side. However, this is handled very easily in our system by placing what we
will call an occupancy group, Z2 (a cyclic group of order 2), at each point
along the infinite line. The group switches between two states, ”occupied”
and ”non-occupied,” for the point at which it is located. Obviously, all the
points along the finite side of the square are occupied, and all the points past
its end-points are unoccupied. Algebraically, we place the occupancy group
as an extra level, in the structure of nested control, below the R group, thus:

Z2 w© R w© Z4. (1.2)

Occupancy structures will be investigated later, and shown to elegantly rep-
resent many phenomena, e.g., in Gestalt perception, quantum physics, etc.
For the moment, however we will omit the occupancy level, to keep the dis-
cussion focussed on the geometric (spatial) structure. Observe that the occu-
pancy group is a color group, not a geometrical group; i.e., it has no spatial
action.

Thus for now, let us return to the purely geometric structure, given in
expression (1.1) above. The next thing to do is show that this expression gives
generative coordinates to the square. As before, assume, without loss of
generality, that the top side is generated by translation from the left end; and
that the set of sides is generated from the top side by clockwise rotations. In
other words, we are using the standard scenario for drawing a square: simply
trace out the sides successively in the clockwise direction. The group Rw©Z4
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Fig. 1.4. Translation as a coordinate along side.

Fig. 1.5. The mapping of Z4 onto a square.

gives the structure of this trace, which we see is actually control-nested. The
control-nested structure will give the generative coordinates of each point, as
follows:

Because the structure is generative, one can consider the fiber group R

as mapped onto each side. For example, consider the top side. As shown in
Fig. 1.4, the zero translation, e, is mapped to the left corner on the side.
Then, any other point on the side is uniquely described by the translation t
that generated it from the initial point. Fig. 1.4a shows the actual translation
that was applied, i.e., as an action, and Fig. 1.4b shows the action converted
into the label for the point. The same structure occurs on any side.

Similarly, consider the control group Z4 = { e, r90, r180, r270 }. Again
because of generativity, this group is mapped onto the set of four sides, in
the manner shown in Fig. 1.5. Because, the top side is the starting side it
receives the identity element e from Z4. Any other side receives one of the
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rotations in Z4, i.e., the generative operation that was used to create the side
from the top side.

Any point on the square is therefore described by a pair of coordinates:

(t, r) ∈ R w© Z4

where t ∈ R and r ∈ Z4. For example, as shown in Fig. 1.6, a point on
the right side is labeled (t, r90) where t is the translation that was used to
generate it from the starting point of the side, and r90 was the rotation that
was used to generate the right side from the top side.

Fig. 1.6. The coordinates of a point on a square.

In order to describe the phenomenon to be investigated, it is necessary
to fill in some other coordinates on the square. Consider the top left-hand
corner point, as shown in Fig. 1.7. We have assumed that the entire history
starts here. Therefore the amount of translation here is zero - i.e., the point
is at the identity element e1 of the fiber group R. Furthermore, the amount of
rotation that has been applied so far is also zero - i.e., the side on which the
point sits is at the identity element e2 of the control group Z4. Therefore, as
shown in Fig. 1.7, the top left corner-point has the pair of coordinates (e1, e2)
in Rw©Z4. Now consider the point at translational distance t along the top
side. Its coordinates are clearly (t, e2), as shown in Fig. 1.7. Next consider the
top right-hand corner point, and consider its description as the first point on
the right-hand side. As such, it has undergone no translation along that side,
and is therefore at the identity element e1 of the fiber group R. However,
the point must have coordinate r90 in the control group Z4 because the right
side is achieved by a 90o rotation from the top side. Thus the point has the
pair of coordinates (e1, r90). Finally, as seen earlier, the lower labeled point
on the right-hand side has coordinates (t, r90).

The crucial thing to observe is the transfer structure involved in this.
First observe that the relationship between the two points on the top side
is the translation t given by the top straight arrow in Fig. 1.8. Similarly the
relationship between the two points on the right side is the translation t given
by the downward straight arrow. The transfer effect of rotation is to send the
translation on the top side to the translation on the right side. This is shown
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Fig. 1.7. The coordinates of four points.

Fig. 1.8. The control-nested structure of those coordinates.
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by the circular arrow in Fig. 1.8, which sends the straight arrow on the top
side to the straight arrow on the right side. As was said before, the control
group Z4, takes the fiber group R and transfers it from one side on to the
next,

Now observe that the group being studied, Rw©Z4, satisfies the following
three conditions:

IR1: The group is decomposable as a control-nested structure
G1w©G2w©. . . w©Gn.

IR2: Each level is ”1-dimensional”, i.e., either a cyclic group (in the discrete
case) or a 1-parameter group (in the continuous case).

IR3: Each level is represented as an isometry group.

We will call a group that obeys the above three conditions, an iso-regular
group. Intuitively, the three conditions will be summarized by saying that the
group is a control-nested hierarchy of repetitive isometries. Iso-regular groups
will be fundamental to our theory of shape-generation. In the theory, such
groups describe non-deformed objects. The theory of recoverability will show
that any shape has an underlying iso-regular group. To generate the shape,
one starts by generating its iso-regular group, and then adding actions that
create deformation. These actions are imposed as further levels of transfer on
the iso-regular structure.

As a simple illustration, consider the generation of a parallelogram. Its
underlying iso-regular group is the group Rw©Z4 of a square. Thus to generate
a parallelogram, we first generate the iso-regular group of a square, and then
add the general linear group GL(2,R), i.e., the group of invertible linear
transformations, as a higher level of control, thus:

R w© Z4 w© GL(2,R). (1.3)

Notice that, with this extra level, we no longer have an iso-regular group,
because the iso-regularity conditions IR2 and IR3 have been broken; i.e.,
the added level GL(2,R) is not ”1-dimensional” and is not an isometry group.

Notice that the operation used to add GL(2,R) on to the lower structure
Rw©Z4 is, once again, the control-nesting operation w© which means that
GL(2,R) acts by transferring Rw©Z4, as follows: Since the fiber group Rw©Z4

represents the structure of the square, this means that GL(2,R) transfers
the structure of the square onto the parallelogram. In particular, it transfers
the generative coordinates of the square onto the parallelogram. For example,
recall that Fig. 1.7 showed the generative coordinates of four of the points on
the square. The control action of GL(2,R) therefore takes the coordinates of
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Fig. 1.9. The transferred coordinates from a square.

these four points and transfers them onto the corresponding four points on
the parallelogram, as shown in Fig. 1.9.

More deeply still, the fiber group Rw©Z4 in expression (1.3) is itself a
transfer structure, as seen in Fig. 1.8, where rotation transferred the transla-
tion process from the top side onto the right side. This transfer structure is
itself transferred, by GL(2,R), onto the parallelogram, as shown in Fig. 1.10.
That is, we have transfer of transfer. This recursive transfer is encoded by
the successive w© operations in expression (1.3). This illustrates what was said
earlier, that, given a transfer hierarchy G1w©G2w©. . . w©Gn, each level Gi acts
as a control group with respect to its left-subsequence G1w©G2w©. . . w©Gi−1

as fiber. In other words, Gi transfers its left-subsequence around some envi-
ronment; but this left-subsequence is itself a hierarchy of transfer, and so on
recursively downwards.

The theory we give is equally applicable to 3-dimensional shape. For ex-
ample, consider the structure of a cylinder. The standard group-theoretic
description of a cylinder is

SO(2) × R (1.4)

where SO(2), the group of planar rotations around a fixed point, gives the
rotational symmetry of the cross-section, and R gives the translational sym-
metry along the axis. Notice that in (1.4) the operation linking the two groups
is the direct product operation ×.

For us, the problem with this expression is that it does not give a gener-
ative description of the cylinder. In computer vision and graphics, cylinders
are described generatively as the sweeping of the circular cross-section along
the axis, as shown in Fig. 1.11. To our knowledge, the group of this sweeping
structure has never been given. We propose that the appropriate group is:
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Fig. 1.10. The transfer of transfer.

SO(2) w© R. (1.5)

Notice that it uses the control-nesting operation w© rather than the direct
product ×, and therefore the group has a very different structure from that
in expression (1.4). The operation w© means that this new group has a fiber-
control structure, in which SO(2) is the fiber group and R is the control group.
This is exactly what is seen in the sweeping structure shown in Fig. 1.11. The
cross-section is generated first as a fiber, and then its position is controlled
by translation.

NORMAL SUBGROUPS AND GENERATIVITY. This comment
is fundamental to the entire theory, and will be illustrated with the example of
a cylinder. Although the direct product description SO(2)×R of the cylinder
is used universally, we argue that that there is a strong mathematical reason
why it cannot model the cylinder as a generative structure, and is therefore
inappropriate for modeling crystal growth in physics, drilling and milling in
manufacturing, assembly of revolute structures in robotics, etc. The reason is
as follows: In the generative representation of a cylinder, the group R must
move the group SO(2) along the cylinder. This movement must take place by
the conjugation g − g−1 of SO(2) by the elements g of R (conjugation is the
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Fig. 1.11. The sweep structure of a cylinder.

group-theorists tool for movement). However, in the direct product formula-
tion SO(2)×R, the rotation group SO(2) is a normal subgroup2; which means
that conjugation of SO(2) by R will leave SO(2) invariant. Therefore R will
not be able to move SO(2) along the cylinder. This means that the direct
product formulation cannot model generative structure (i.e., crystal growth,
drilling and milling, robot assembly, etc.). In contrast, we shall see that, in
the wreath-product formulation SO(2)w©R, the rotation group SO(2) is not a
normal subgroup. Therefore, in this latter formulation, R can move SO(2).
Indeed the fibering that occurs in a wreath product operation will ensure that
R moves SO(2) along the cylinder in the correct way.

The reader should observe that the control-nested group in (1.5) is what
we call an iso-regular group; i.e., it satisfies the conditions IR1-IR3 on
page 12. This fact is critical: The cylinder is an example of a standard shape
primitive in graphics. In Chapter 10, it will be argued that each of the stan-
dard primitives is characterized by an iso-regular group. In fact, it will be
shown that our algebraic methods lead to a systematic classification of shape
primitives.

We will also argue that, having generated a shape primitive via an iso-
regular group, one then obtains the non-primitive shapes by applying ad-
ditional fiber and control levels. For example, we will show how Boolean
operations and spline deformations can be algebraically formulated within
this framework.

Now let us turn to the deepest problem in human perception: the problem
of perceptual organization. This problem is standardly formulated as the fol-
lowing question: What are the structural principles by which the perceptual
system forms groupings? The problem of grouping is the longest unsolved
problem in perception - having been investigated for the entire 20th cen-
2 Normal subgroups are explained in Appendix A
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Fig. 1.12. A square distorted by projection.

tury. It underlies all aspects of perception, from image segmentation to 3D
shape representation. Yet literally no progress has been made in solving this
problem. However, using the theory developed in this book, the solution nat-
urally drops out of our algebraic theory of transfer, as follows: We have said
that the human perceptual system organizes any stimulus set generatively
into a recursive hierarchy of transfer, i.e., into a control-nested hierarchy of
groups: G1w©G2w©. . . w© Gn. In Chapter 5, we shall show that the perceptual
groupings come directly from this recursive transfer structure:

GROUPING PRINCIPLE. Any perceptual organization is structured as
an n-fold wreath product G1w©G2w©. . . w©Gn. The groupings in a perceptual
organization correspond to the left-subsequences G1w©G2w©. . . w©Gi−1 of the
wreath product.

Let us conclude this initial review of human perception by considering the
basic visual problem of projection. The visual image is the projection of some
environmental shape onto the retina. In Chapter 22, we will argue that the
appropriate approach to handle this is to describe the environmental shape
generatively, and to add the projective process as an extra generative level,
resulting in the shape on the image.

PROJECTION AND GENERATIVITY. The image shape is given
by an n-fold wreath product, G1w©G2w©. . . w©Gn, in which the left-subsequence
G1w©G2w©. . . w©Gn−1 represents the generation of the environmental shape,
and the final control group Gn represents the projective group. The image
shape is therefore given a completely generative description in which the pro-
jective process is merely the last phase.

As a simple example, consider the projection of a square onto the retina, pro-
ducing the projectively distorted square shown in Fig. 1.12. We have seen that
the undistorted square is represented as the group Rw©Z4. This group gives
the generative structure of the square in the environment. Now to add the
effect of projecting the square onto the retina, one merely adds the projective
group PGL(3,R) onto the generative sequence of the square thus:
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R w© Z4 w© PGL(3,R). (1.6)

Once again, notice that the operation used to add PGL(3,R) onto the
lower group Rw©Z4, is the control-nesting operation w©; which means that
PGL(3,R) acts by transferring Rw©Z4 from the undistorted square in the
environment onto the distorted square in the image3.

Another example is the grid of squares in Fig. 1.13. The undistorted grid
of squares is generated by the wreath product:

R w© Z4 w© ZH w© ZV

where, the first two levels Rw©Z4 is the square, as before; and the next level
ZH is the group of horizontal translations; and finally ZV is the group of
vertical translations. Then, to get the projective distortion, one merely adds
the projective group as an extra level of control thus:

R w© Z4 w© ZH w© ZV w© PGL(3,R). (1.7)

The important thing to notice is that the structure is exhaustively generative,
from the lowest to the highest level, and that this generativity has been
entirely described as a hierarchy of transfer.

Fig. 1.13. A grid of squares distorted by projection.

The approach we have defined differs substantially from the standard one
in projective geometry, in the following profound way: The group sequence in
(1.6) is built up from the Euclidean structure, which is given here by the iso-
regular group Rw©Z4. This means that the undistorted square is a privileged
figure in the space of quadrilaterals. The phenomenon of privileged figures in
a space of distorted figures is a basic inviolable result in human perceptual
psychology, as will be reviewed later. This completely violates Klein’s princi-
ple that geometric objects are the invariants of the specified transformation
group - which is the most famous principle of 20th century geometry and
3 The algebraic action of PGL(3,R) with respect to Rw©Z4 will be defined via
the action of PGL(3,R) on the projective plane represented intrinsically. The
mathematical details will be given later.
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physics. As will be seen, our generative theory of geometry is the direct op-
posite of Klein’s approach. In our system, geometric objects are characterized
by generative sequences. This means that they cannot be invariants, because
invariance destroys recoverability of the applied operations, and recoverabil-
ity is basic to our theory. Quite simply: You cannot characterize geometric
objects generatively, if you cannot recover their generative history. But you
cannot recover their generative history if they are invariants under generative
actions.

1.6 Serial-Link Manipulators

A generative theory of shape encodes shape by a system of actions. Since
we argue that the human perceptual system encodes shape generatively, this
means that the perceptual system represents shapes in terms of actions. It
will be argued that a major consequence of this is that the human perceptual
system is structured by the same principles as the motor system, since the
motor system is structured by action.

Now, we have said that actions are intelligently organized if they are
organized by transfer; and an initial set of illustrations have been given of
how the perceptual system is organized by transfer. We will now show that
the motor system must also be organized by transfer. To do so, consider the
most common type of motor system, the serial-link manipulator.

Review of serial-link manipulators: The most famous example of a serial-
link manipulator is the human arm: Such a structure is a series of rigid links
going from the base to the hand. Each link corresponds biologically to a
bone. Furthermore, each successive pair of links is connected by a joint. The
base end is called the proximal (near) end of the manipulator, and the hand
end is called the distal (far) end of the manipulator. Standardly, a serial-link
manipulator is specified by embedding a coordinate frame in each successive
link. Each frame is judged relative to the next frame in the proximal direction,
e.g., the frame of the hand is judged relative to the frame of the forearm, and
the frame of the forearm is judged relative to the frame of the upper arm,
etc. The relationship between two successive frames is given by a matrix Ai.
Thus the overall relationship between the hand coordinate frame and the
base coordinate frame is given by the product of matrices

A1A2 . . . An (1.8)

corresponding to the succession of links. In robotics, each matrix Ai is mod-
eled as a rigid motion, and is therefore a member of the special Euclidean
group SE(3), the group generated by translations and rotations (but no re-
flections). Standardly, the order from left to right along the matrix sequence
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(1.8) corresponds to the order from base to hand (proximal to distal). How-
ever, without loss of generality, we will choose the left-to-right order as corre-
sponding to the hand-to-base order (distal-to-proximal). This will maintain
consistency with our other notation.

An Algebraic Theory of Serial-Link Manipulators

According to the theory in this book, the basic property of serial-link ma-
nipulators is transfer: The hand has a space of actions that is transferred
through the environment by the fore-arm, which has a space of actions that
is transferred through the environment by the upper-arm, and so on down
to the base (e.g., the torso). Thus, we argue that the group of a serial-link
manipulator has the following wreath-product structure:

SE(3)1 w© SE(3)2 w© . . . w© SE(3)n (1.9)

where each level SE(3)i is isomorphic to the special Euclidean group SE(3),
and the succession from left to right corresponds to the succession from hand
to base (distal to proximal). Thus, each matrix Ai in expression (1.8) is
taken from its corresponding Euclidean group SE(3)i in (1.9). Although
ordinary matrix multiplication is used between any two successive matri-
ces in (1.8), we now see that the group product in the corresponding po-
sition in (1.9) is actually the wreath product. Thus each group SE(3)i
along the sequence (1.9) acts as a control group with respect to its left-
subsequence SE(3)1w©SE(3)2w© . . . w©SE(3)i−1 and this corresponds to the
fact that SE(3)i transfers the action structure of its left-subsequence around
the environment. As usual, the successive use of the w© operation, is inter-
preted recursively, and it is this that defines the hierarchical nature of the
motion spaces.

The entire group we have given in (1.9) for the serial-link manipulator,
is very different from the group that is normally given in robotics for serial-
link manipulators. Standardly, it is assumed that, because one is multiplying
the matrices in (1.8) together, and therefore producing an overall Euclidean
motion T between hand and base, the group of such motions T is simply
SE(3). However, we argue that this is not the case. The group is the much
more complicated group given in expression (1.9). This group encodes the
complex link-configurations that can occur between the hand and base. If
the group were simply SE(3), then there would be a single configuration
of links between hand and base and this would remain rigidly unaltered as
the hand moves. However, there are infinitely many different configurations
that the links can take between hand and base, and the group in (1.9) gives
the relationships between all these configurations. To put it another way: It
is conventionally assumed that, because the overall relation between hand
and base is a Euclidean motion, the group of motions between the hand and
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base is the group of rigid motions. However, the structure between hand and
base is not rigid. Therefore the group is not SE(3). It is the much more
complicated group (1.9).

Most crucially, notice that this group was produced by considering the
transfer relationships involved. It is this that allowed us to specify the alge-
braic structure. Let us finally put together what our theory says about the
human perceptual and motor systems:

PERCEPTUAL-MOTOR UNIFICATION

The human perceptual and motor systems are both struc-
tured as n-fold wreath products G1w©G2w©. . . w©Gn.

1.7 Object-Oriented Inheritance

The fact that each frame in a serial-link manipulator is judged relative to
the next frame in the distal-to-proximal direction, means that serial-link
manipulators are an example of what are called parent-child structures in
object-oriented programming. Parent-child relationships express the funda-
mental structuring principle of object-oriented software called inheritance.
Inheritance of properties can go from class to class (i.e., as specified stati-
cally in the software text), or can be formed at run-time by linking objects
together. Let us, for the moment, consider the latter type. Such object re-
lationships are basic, for instance, to assembly-subassembly organization in
mechanical CAD. For example, most major mechanical programs such as
Pro/ENGINEER provide menus which allow the designer to determine the
parent-child relationships in an assembly hierarchy, and most part informa-
tion windows in the program provide the user with the parent-child position-
ing of any selected part, because feasible modification of an individual part
is impossible without knowing these relationships. Parent-child relationships
are also a major explicit part of all animation software, such as 3D Stu-
dio Viz/Max, where kinematic relationships between limbs are given exactly
as defined in robotics. Again, all object-subobject relations in architectural
CAD are parent-child relations; e.g., doors are placed relative to walls and
move with them as the designer modifies the room.

The examples mentioned in the previous paragraph are all geometric
parent-child relationships. A major part of this book will be to give an al-
gebraic theory of such relationships in object-oriented programming. It will
be claimed that the inheritance structure of parent-child hierarchies is given
algebraically by wreath products G1w©G2w©. . . w©Gn, in order to maximize
transfer. This means that geometric parent-child hierarchies follow from our
generative theory of shape.
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1.8 Complex Shape Generation

The illustrations given in the previous sections were of relatively simple shape.
However, the primary goal of the theory is to handle complex shape. In fact, as
was said on p. 2, the goal is the representation of complex objects and scenes
such that the complexity is entirely accounted for, and yet the structure is
completely understandable. We argue that understandability is achieved by
maximizing transfer and recoverability.

Thus, the goal will be the development of a mathematics for converting
complexity into understandability. A key part of this will be the invention of
a class of groups we will call unfolding groups. Here, the fiber group, called
the alignment kernel, expresses the complex configuration in a maximally
collapsed form. The control group is then a hierarchical process of unfold-
ing that collapsed form outwards to become the complex configuration. The
unfolding is a structure of transfer in which the complex form is seen as the
unfolded image of the collapsed form.

A key factor is the size of the alignment kernel: By minimizing the size
of the alignment kernel, one maximizes the transfer structure of the complex
object. The very structure assigned to the object thereby embodies intelli-
gence and insight. Furthermore, by ensuring recoverability, one ensures that
the entire complexity of the object is understandable to the user.

1.9 Design

Superficially, design seems to involve the successive addition of structure.
How else can one account for the fact that the design object appears to
structurally grow. However, a careful analysis of how designers work, reveals
there is actually very little new structure added, as design proceeds. What
actually happens is that designers tend to create each additional structural
component as a transfer of an already existing component.

Let us illustrate this by looking at the typical process by which an archi-
tect draws the floor-plan of an apartment building. The eventual plan will
be extremely complex, however the architect can begin only by drawing very
simple elements. Let us assume that the architect is carrying out the design
on a computer using a standard drafting program.4

The architect begins by drawing a wall. To draw a wall, he first draws a
line, representing one side of the wall. He then copies the line at some small
distance to create the other side of the wall; i.e. creates an offset. An offset
is a transfer structure in which the first line is the fiber and the movement
of this fiber is the control. Next, to create the opposite wall of the room, the
4 Exactly the same thing happens with a high-level solid modeling program, except
that more of the stages are done by the computer rather than the user.
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architect copies this pair of lines as a single unit to the other position. That
is, he transfers the transfer.

This process is continued upward in the design at all levels. For example,
typically in the design of an apartment house, there are studio apartments,
one-bedroom apartments, two-bedroom apartments, etc. The standard pro-
cedure in an architects office is to first create the drawing for the studio
apartment. This drawing would be saved in its own computer file. Next,
rather than drawing the one-bedroom apartment from scratch, the architect
takes the drawing for the studio apartment and modifies it until he obtains
the one-bedroom apartment. This will involve copying the single room defin-
ing the studio, to make two rooms (living room and bedroom), scaling the two
rooms individually, rearranging copying and scaling the closets, etc. At all
stages the architect is simply transferring structure that exists in the studio
apartment.

Chapters 11, 12, and 13 will show how to formalize this using unfolding
groups, which were briefly mentioned in the last section. Such groups will
unfold the studio apartment into the one bedroom apartment, and so on.
Unfolding groups are a powerful way of formalizing the process of transfer.

1.10 Cognition and Transfer

What has been said here about design is true generally of cognition. Cognition
seems to proceed by describing new situations as versions of old situations.
For example, Rosch [132] [131] has argued that categorization proceeds by
seeing objects in terms of prototypes, and Carbonell [17] has argued that
learning proceeds by analogical reasoning; see also Gentner [40].

Essentially, we will say that the mind tries to avoid creating new structure,
and tries instead to adapt old structure. This should not be viewed as a
negative thing: It is the central means by which the cognitive system makes
sense of the world. Thus we can restate the principle of the maximization of
transfer as this:

FUNDAMENTAL PRINCIPLE OF COGNITION. Create any new
structure as the transfer of existing structure.

Notice that we apply this not only to the receptive process of seeing and
understanding the world, but also to the creative process of design. One can
regard this book as offering an algebraic theory of transfer.
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1.11 Transfer in Differential Equations

The next section will look at the nature of scientific laws, and show that
they are structured by transfer. However, the topic of transfer in science has
a more general setting within the theory of differential equations. Transfer
is, in fact, fundamental to methods of solving differential equations. Most
methods exploit the fact that the solutions of a differential equation can be
transferred onto each other. This phenomenon is considerably more profound
than it might at first seem. For example, it is basic to the structure of scientific
laws.

Differential equations are by far the most frequently used modeling
method throughout the world. It is no exaggeration to say that more than
several trillion differential equations are solved per second across the world,
e.g., in electrical power plants, factories, financial institutions, etc. Clearly
all this depends on methods for solving differential equations, and a large va-
riety of such methods have been developed. However, basic to these methods
is symmetry. This is the modern approach that was created by Sophus Lie,
and for which he formulated the machinery of Lie groups and Lie algebras.
In fact, the use of symmetry to solve differential equations is very familiar to
high-school students, as follows:

Consider the first-order differential equation:

dy

dx
= F (x). (1.10)

From high-school, everyone is familiar with the fact that its solution is the
integral

y =
∫
F (x)dx + C (1.11)

where C is a constant of integration. Because of this constant, one knows
that there are a whole set of solution curves, each one obtained by substitut-
ing a particular number for C. This means that the solution curves are all
translations of each other, as illustrated in Fig. 1.14.

This is the first example of Lie theory that anyone encounters. The dif-
ferential equation (1.10) admits a 1-parameter Lie group of translations in
the y direction. The consequence is that you can map the solutions onto each
other using this translation group. The group is represented by the constant
of integration C in (1.11).

Other types of differential equations can have other types of symmetry
groups. For example, a first-order differential equation of this type:

dy

dx
= F

( y
x

)
(1.12)

admits a 1-parameter group of scalings. You can then map its solution curves
onto each other via this group. Thus the constant C of integration will occur
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Fig. 1.14. Transfer of solutions onto solutions, in a differential equation.

not as an addition onto a solution, as in (1.11), but as a multiplicative fac-
tor on the solution. This constant will actually represent the scaling group
involved.

Clearly therefore what is being described here is the transfer of solutions
onto each other. This is basic to the solution of differential equations. In the
next section, we will see that this is fundamental to the structure of scientific
laws.

1.12 Scientific Structure

It will be argued that the very concept of a scientific law involves the phe-
nomenon of transfer.

At the foundations of any branch of physics there is a dynamical equa-
tion, which is regarded as the fundamental dynamical law of that branch
of physics. This law determines the evolution of a system state. For exam-
ple, in Newtonian mechanics, the dynamic equation is Newton’s second law,
F = ma, which determines the trajectory of a system in classical mechanics;
in quantum mechanics, the dynamical law is Schrödinger’s equation which
determines how a quantum-mechanical state will evolve over time; in Hamil-
tonian mechanics there are Hamilton’s equations which determine how a point
will move in phase space.

The law, being a dynamical equation, is expressed as a differential equa-
tion. Very profoundly, the lawful nature of the equation is given by the sym-
metries of the equation, as follows:

Consider Fig. 1.15. The bottom flow-line in the figure shows an experiment
being run in a laboratory in New York. The system is set up at time 0, in
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Fig. 1.15. The transfer of an scientific experiment.

initial state s(0), which is the left-most point on that flow-line. The flow-line
then represents the evolution of the system’s state in the experiment. Suppose
that the evolution is found to be governed by a particular dynamic equation.

Now, the upper flow-line in Fig. 1.15 shows the same experiment being
run in a laboratory in Chicago. By this we mean that the system in Chicago
is started in a translated version T [s(0)] of the initial conditions s(0) in
New York. That is, the left-hand point of the upper flow-line is T [s(0)]. The
upper flow-line then represents the evolution of the system’s state in the
Chicago experiment. Let us assume that the upper flow-line turns out to be
a translated version of the lower flow-line. This translation is shown by the
vertical arrows in Fig. 1.15.

The important question is this: Is the upper flow-line described by the
same dynamic equation that was discovered for the New York experiment? In
other words, can one say that both flow-lines are solution-curves for the same
dynamic equation? If one can, then the dynamic equation begins to appear
lawful, i.e., to apply everywhere. This lawfulness is equivalent to discovering
that the equation has translational symmetry. What we mean by this is the
following: A dynamical equation prescribes flow-lines; these are the solution-
curves to the equation. We ask: Does the translation of one flow-line in the
set of solution-curves produce another flow-line in that set? If it does, then
one says that the dynamical equation has translational symmetry. This is
equivalent to saying that it is a law; i.e., that it works anywhere.

The above illustrated the relation between symmetries and laws using
translational symmetry as an example. However, the same argument applies
to the choice of any other kind of symmetry, e.g., rotational symmetry. In
physics, the basic program is to hunt for dynamical equations that have sym-
metries; i.e., are lawful. Conversely, one can start with a symmetry group
and use it to help construct a lawful dynamical equation. For example, this
was Einstein’s technique in establishing the correct form of Maxwell’s elec-
tromagnetic equations.

In any branch of physics, the appropriate symmetry group will be one
that sends solution-curves to other solution-curves of the dynamic equation.
The appropriate groups for the following branches of physics are:
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Newtonian mechanics ←→ Galilean group
Special relativity ←→ Lorentz group

Hamiltonian mechanics ←→ Symplectic group
Quantum mechanics ←→ Unitary group

It is clear that the phenomenon we have been describing above is one of
transfer. That is, a dynamical equation permits transfer if the transferred
version of any solution-curve (flow-line) is also a solution-curve. It is this
that makes the equation lawful. Therefore the phenomenon of transfer is
equivalent to the lawful property of the equation.

Lawfulness ←→ Transfer.

Now, we have said that the lawful property is due to symmetries in the
equation. However, we shall see that, to describe this structure in terms of
transfer gives a deeper description - one that captures more fully the process
of scientific discovery.

Let us therefore describe the situation in terms of transfer. Observe first
that the flow itself is a symmetry across the state-space. This is because
a dynamical equation (differential equation) prescribes a vector field and a
vector field prescribes a 1-parameter group G1 of actions along the flow-lines
of the vector field.5

In particular, let us now isolate any individual flow line. The group G1

can be considered as ”confined” to that flow line. For example, in Fig. 1.15,
the group G1 would be moving along any one of the horizontal lines.

Now, let us consider the symmetry discussed above: the symmetry G2 of
the differential equation. This maps flow lines to flow lines. This is illustrated
by the vertical arrows in Fig. 1.15. Thus G2 is acting across the flow lines, and
G1 is acting along any flow line. This means that we can consider the flow-
lines as fibers, and G2 as a control group transferring G1 from one flow-line
(fiber) to another. That is, we have this control-nested structure:

G1 w© G2. (1.13)

Chapter 20 will show that this combined group fits the rigorous definition of
wreath product. Notice that this is a richer algebraic structure than is nor-
mally used to express symmetries in physics. First, there is an independent
copy of G1 on each of the fibers. One can think of this as representing experi-
ments that were independently done before a process of induction discovered
a relation between these experiments. Then after induction had established
5 For ease of discussion we are assuming that the dynamical equation is a first-
order differential equation. A first-order equation prescribes a flow like a ”fluid”
directly on the space of independent variables. This is the situation for example in
quantum mechanics and Hamiltonian mechanics. In Volume II, our analysis will
be easily extended to second-order equations, which are the basis, for example,
of Newtonian mechanics or Lagrangian mechanics.
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the control group G2, experiments could be coordinated and one could, for
example, establish a single ”wave front” of points moving along the flow. This
in fact, corresponds to the ”diagonal” of the wreath product. Thus all the
stages of scientific discovery are contained in the wreath structure, as op-
posed to the conventional symmetry structure in physics. This will be fully
exaborated in Chapter 3 when we deal with wreath products as hierarchies
of detection.

A related reason why one searches for symmetries of the dynamic equa-
tion comes from Noether’s theorem, which states that, to each continuous
symmetry of the dynamic equation, there is a conservation law; i.e., a con-
served quantity such as energy, linear momentum, angular momentum, etc.
It is clear therefore that the possible control groups G2 in the wreath product
(1.13) above, correspond to the possible conservation laws of the system. As
an illustration, let us consider quantum mechanics:

In quantum mechanics, a state of the world is given by a wave function.
The space of wave functions (world states) is called physical Hilbert space;
i.e., any point in this space is a world state. The dynamic equation tells us
how the world states evolve over time. This equation is called Schrödinger’s
equation. Schrödinger’s equation specifies a rigid rotation of Hilbert space.
Therefore the flow-lines generated by Schrödinger’s equation correspond to a
rotation group acting on Hilbert space. This rotation group will be denoted
by G1.

Now, because one wants to identify conservation laws, one wants to find
symmetry groups of the flow. These will send flow-lines onto flow-lines. Re-
markably, any such symmetry group will also be a rotation group G2 of
Hilbert space. This will rigidly rotate the flow-lines of the Schrödinger equa-
tion onto each other.

Thus there are two groups: G1, the rotation group prescribed by
Schrödinger’s equation, and G2, the rotation group of symmetries. Accord-
ing to our generative theory of shape, one should regard these two groups,
respectively, as the fiber group and control group of the wreath product in
expression (1.13).

What we have just said illustrates a basic point that will be made in
Chapter 20: With respect to scientific structure, there is the following corre-
spondence.

Conservation Laws ←→ Wreath Products.

Mathematically we will construct this by setting up a correspondence be-
tween any pair of commuting observables and the wreath product of their
1-parameter groups.
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1.13 Maximization of Transfer

In the preceding sections, we have seen that several major domains are struc-
tured by transfer.

(1) Human perception: The human perceptual system is organized as an n-
fold wreath product of groups, G1 w©G2w©. . . w©Gn.

(2) Robotics: The algebraic structure of a serial-link manipulator is of the
form G1w©G2w©. . . w©Gn, which is not the group that is conventionally used
to connect the effector to the base.

(3) Object-Oriented Programming: In geometric object-oriented program-
ming, a basic organizing devise called inheritance can be given by hierarchies
of transfer, and will be algebraically formalized as wreath products.

(4) Design: In creative design, new structure is added as the transfer of
existing structure. This will be modeled by classes of wreath products to be
invented in Chapters 11, 12, and 13.

(5) Differential Equations: The fundamental solution methods for differen-
tial equations rely on the fact that solutions can be transferred onto other
solutions.

(6) Scientific Structure: The conservation principles of physics can be for-
mulated as structures of transfer, in which commuting observables are corre-
sponded with wreath products of their 1-parameter groups.

In this book, these areas will be extensively investigated and mathematically
formalized, so that we fully understand how they are driven by the principles
of shape generation.

1.14 Primitive-Breaking

We now come to one of the fundamental rules of the generative theory: ex-
haustiveness. The theory is generatively exhaustive in the sense that there is
no level (in a shape) that is not given a generative explanation. One conse-
quence of this is the following:



1.14 Primitive-Breaking 29

THE NO-OBJECTS RULE. A basic consequence of generative exhaus-
tiveness is that there are no objects, only actions. Anything that one might
want to call an object is itself generatively described, and is therefore itself a
set of actions.

This rule is crucial for navigation, manipulation, and any planning in an
environment. In fact, we argue that planning generally is possible only to the
extent that the no-objects rule has been put into effect.

Let us illustrate what has just been said. Recall from p. 8, that our theory
gives the following generative description of a square:

Z2 w© R w© Z4 (1.14)

where, from right to left, Z4 is the 4-fold rotation group sending sides to
sides; R is the translation group generating a side from a point; and Z2 is the
occupancy group which switches a point on or off (e.g., at the ends of a side).
This description is generatively exhaustive, and illustrates the no-objects rule
as follows:

According to this description, a square, which people usually regard as
an object, is in fact, the 4-fold rotation of a side. But the side itself is not an
object. It is the translation of a point. But the point itself is not an object.
It is the action of the occupancy cycle Z2, causing the creation or erasure of
a point.

Each one of these levels of action is useful for the agent in terms of plan-
ning, e.g., the 4-fold rotation group Z4 can represent movements from side-
to-side around a square object; the translations R along a side can represent
a navigator moving along the edge of a square table, or a plotter drawing
the side, or a machine-cutter cutting the side; and the lowest group Z2 can
represent the first contact of the plotter with the paper, or the cutter with
the material, etc.

Failure to recognize that any level of an object is itself a space of actions,
means that that level of action is lost to the agent.

One can see therefore that an essential aspect of our approach is this:
Although a state-space can be viewed as an object being pushed through the
alternative states, the object itself must be ”opened up” and understood as
a state-space of some sub-object. This sub-object must then be opened up
and viewed as the state-space of some sub-sub-object, and so on. This means
that objects are state-spaces that are nested downwards.

This nesting is a crucial component of our theory of geometry, as we have
seen. It is equivalent to the notion of transfer. Any level is described as a
level below being transferred across some space. In this sense, the no-objects
rule can be regarded as equivalent to the maximization of transfer. This
also means that the no-objects rule can be algebraically realized as wreath
products.
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The ban on objects clearly extends to a ban on such concepts as ”prim-
itives” and ”features”. For example, since exhaustiveness requires that any
level is generatively described, then any primitive would be generatively de-
scribed, and would therefore not be a primitive. The process of describing
primitives generatively, will be called primitive-breaking. Clearly, it applies
successively downward through the shape.

The following chapters will often use the term ”primitive”. However, this
will be in order to give a generative theory of what people usually call prim-
itives.

1.15 The Algebraic Description of Machines

For reasons that emerge in the next section, it is profoundly important to
express the concepts of this book in terms of the algebraic theory of machines.
This section recalls the most basic algebraic facts about machines:

A machine is a pair of functions: (1) the state-transition function σ :
I × S −→ S, and (2) the output function τ : I × S −→ O, where I is the set
of inputs, S is the set of states, and O is the set of outputs; see Schmidt [134].
Standardly one assumes that the input and output sets are finite. The set
of input sequences of finite length form a semigroup, and this allows one to
establish the fundamental relation between the theory of machines and the
theory of semigroups. If the input semigroup is a group, then the machine
is called a group machine. In group machines, the input action is always a
permutation of the set of states. In contrast, a collapser is a machine where an
input can cause two distinct states to go to a single state. The fundamental
theorem of the algebraic theory of machines is by Kenneth Krohn and John
Rhodes, and says essentially that any machine can be decomposed into a set
of group machines and four elementary types of collapsers. A basic tool of
the algebraic theory of machines is wreath products of machines. See Krohn
& Rhodes [79], and the collection of papers in Arbib [2].

1.16 Agent Self-Substitution

In Leyton [87], [88], [89], [90], [91] [96], we presented a considerable amount
of psychological evidence that human cognition structures phenomena as ma-
chines. This view should be distinguished from the processing machine anal-
ogy which says that cognitive processes are structured as machines. In con-
trast, we called the view that we put forward, the representational machine
analogy. This says that cognitive representations are structured as machines;
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i.e., that cognition represents the environment as machines. We showed that
this view explains an enormous number of psychological results from percep-
tion, categorization, linguistic semantics, and so forth. In fact, in the 120-page
journal article (Leyton [88]), we reviewed six levels of the human cognitive
system and showed how an algebraic machine theoretic approach explains
the psychological data on each of these six levels. Indeed, the wreath prod-
ucts G1w©G2w©. . . w©Gn that we have been discussing, are wreath products
of machines. These wreath products constitute the structure of cognitive
representations. This approach makes the algebraic theory of machines the
foundation of cognitive science.

We now present one of the main reasons for developing a generative theory
of geometry, as follows:

AGENT SELF-SUBSTITUTION. A generative theory of shape char-
acterizes any shape as a program running on some machine. The power of a
generative theory of shape is that the agent can self-substitute for the machine,
and the program thereby becomes a plan, e.g., for navigation, manipulation,
design, manufacturing.

As an example, return to the generative description of a square.

Z2 w© R w© Z4 (1.15)

This structure can be be regarded as the input group of a machine. The agent
can therefore self-substitute for the machine or any of its components. For
example, the agent can self-substitute for the right-most control group, Z4,
and this corresponds to the plan of moving around the object from one side
to the next. Or the agent can self-substitute for the middle control group, R,
and this corresponds to the plan of translating along an individual side. Or
the agent can self-substitute for the left-most group, Z2, and this corresponds
to switching the movement on or off. Furthermore, plans can be made from
the machine structure as a whole. We will see later how to construct what will
be called canonical plans from wreath products. A canonical plan is a sys-
tematic means of travelling cyclically through the levels, using up elements.
For example, the canonical plan for the above wreath product of a square
produces the standard way of drawing a square - i.e., tracing out the sides
sequentially. Careful consideration reveals that this comes from a particular
cyclic process through the above wreath product.

The previous paragraph is only a simple example of the theory of planning
to be given in this book:

CONVERSION OF PERCEPTION INTO ACTION. Perception is
the description of phenomena as machines. The conversion of perception into
action is achieved by the agent’s self-substitution into the machines defined by
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its perceptual representations. This is the basis of navigation, manipulation,
design, manufacturing, etc.

In the following chapters, this will be applied to solve complex planning
problems in computer-aided manufacturing, robot assembly, etc.

1.17 Rigorous Definition of Shape

Despite the fact that the term ”shape” is used prolifically in mathematics,
it has never been rigorously defined. We now propose a definition of shape
which we will argue is the appropriate one for the physical, computational,
and design sciences. Indeed, we will argue that this definition actually leads
to a new understanding of what these sciences are:

The shape of a data set is the transfer structure of a machine
whose state space is the data set.

The first thing to observe about this claim is that we regard the concept
of machine to be at the core of the concept of shape. This claim has a two-
fold status. First, it is a psychological claim: The psychological research in
Leyton [96] demonstrates substantially that the concept of machine is basic to
peoples’ perception of shape. Second, it is a mathematical claim: We believe
that geometry should be regarded as a branch of the algebraic theory of
machines.

In fact, although we argue that the theory of shape should be regarded
as a branch of the algebraic theory of machines, our claim is much more
restrictive than this. We argue that shape is a specific part of the algebraic
theory of machines: It is the part that deals with the transfer of components
onto components within a machine. It is the structure of transfer that defines
shape.

Finally, observe that the above definition of shape realizes our aim of
ensuring that every aspect of a shape is defined by action.

1.18 Rigorous Definition of Aesthetics

Usually, the two stated goals of design are aesthetics and functionality. Func-
tionality is basic to our system because shape is understood as the descrip-
tion of phenomena as machines, and functional descriptions are descriptions
as machines.

However, aesthetics is also basic to our system. This book will give a
rigorous mathematical theory of aesthetics. We propose the following:



1.18 Rigorous Definition of Aesthetics 33

Aesthetics is the maximization of transfer.

Clearly, therefore, aesthetics is connected to the very foundations of our
generative theory of shape - i.e., it embodies our basic principle of the maxi-
mization of transfer. Let us now look at the role of aesthetics in design; and
then at its role in science.

Any major artist, such as Beethoven or Raphael, strives for the unifica-
tion of all elements in a work. A movement of a symphony by Beethoven
has remarkably few basic elements. The entire movement is generated by the
transfer of these elements into different pitches, major and minor forms, over-
lapping positions in counterpoint, etc. The equivalent is true of the paintings
of Raphael - see for example our lengthy analysis of Raphael’s and Picasso’s
paintings, in Leyton [96]. Transfer is the basic means by which an artist
generates a work from a minimal set of elements.

One of the powerful consequences of understanding that aesthetics is the
maximization of transfer is that, since we will give a complete mathematical
theory of transfer, we will be giving a complete mathematical theory of aes-
thetics. It is clear that one benefit of this theory is that it will be possible to
integrate aesthetics into CAD programs in a formal and explicit way.

Now let us turn to aesthetics in science. It is well known that the major
innovators of scientific history declared the fundamental importance of aes-
thetics in determining their contributions. For example, both Einstein and
Dirac strongly argued that the scientist should use aesthetics and not truth in
determining the structure of an equation. This point is not trivial: In forming
his famous relativitistic equation, Dirac violated one of the most established
truths of physics, that electrons are negative. His equation predicted the ex-
istence of positive electrons, for which there was literally no evidence, and for
which he was publically ridiculed. However, it was this equation that later
lead to the discovery of positive electrons. In contrast, relativistic equations
that had conformed to the established truth that electrons are negative, were
later rejected. Dirac stated that he had consciously structured his relativistic
equation by aesthetic criteria, and had deliberately ignored truth. Einstein
made exactly the same statement about his own work.

It is probably the case that all uses of the term aesthetics in physics
concern the symmetries of the dynamic equation (the Dirac equation is an
example of this). As seen in Sect. 1.12, the symmetries of a dynamic equation
correspond to the transfer of solutions onto solutions. This reinforces our
claim that aesthetics is the maximization of transfer.

Finally, note this: All artists and scientists strive for unity in their work;
i.e., the integration of all elements. What this book allows us to do is develop
a rigorous mathematical theory of unity. Unity comes from the maximization
of transfer, and transfer is expressed as wreath products.
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1.19 Shape Generation by Group Extensions

The concept of group extension is basic to our generative theory. A group
extension takes a group G1 and adds to it a second group G2 to produce a
third, more encompassing, group G, thus:

G1 E© G2 = G

where E© is the extension operation. See our book on group extensions, Leyton
[98].

It is clear, looking back over the previous sections, that according to our
theory:

Shape generation proceeds by a sequence of group extensions.

That is, shape generation starts with a base group and successively adds
groups obtaining a structure of this form:

G1 E© G2 E© . . . E© Gn.

This approach differs substantially from other current approaches to shape
generation, such as that of Stiny & Gips [147], [44], which is based on the ap-
plication of production rules. In our approach, rather than applying produc-
tion rules, one is adding structure. The successive addition of structure is rep-
resented by successive group extension. Furthermore, imposing the condition
of maximization of transfer demands that the structure G1 E©G2 E©. . . E©Gn
be actually of the form G1w©G2w©. . . w©Gn. In other words, the extension
operation E© is the control-nesting operation w©.



2. Recoverability

2.1 Geometry and Memory

A generative theory of shape represents a given data set by a program that
generates the set. This program must be inferrable from the set. We shall
say that the program is recoverable from the data set. Recoverability of the
generative program places strong constraints on the inference rules by which
recovery takes place, and on the programs that will be inferred. This, in turn,
produces a theory of geometry that is very different from the current theories
of geometry.

Essentially, the recoverability of generative operations from the data set
means that the shape acts as a memory store for the operations. More
strongly, we will argue that all memory storage takes place via geometry.
In fact, a fundamental proposal of our theory is this:

Geometry ≡ Memory Storage.

As we shall see, this theory of geometry is fundamentally opposite to that of
Klein’s in which geometric objects are defined as invariant under actions. If
an object is invariant under actions, the actions are not recoverable from the
object. Therefore Klein’s theory of geometry concerns memorylessness, and
ours concerns memory retention. We argue that the latter leads to a far more
powerful theory of shape.

2.2 Practical Need for Recoverability

We shall distinguish two different types of need for recoverability, the practical
and the theoretical need. This section considers the first of these, by going
through a number of areas where recoverability is fundamentally necessary:
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(1) Computer Vision. An image is formed on the retina because light
was emitted from a source, and then interacted with a set of environmen-
tal objects, and finally interacted with the retina. This is called the image-
formation process. Computational vision is the process of recovering the
image-formation process from the image. This is often referred to as inverse
optics; i.e., the recovery of the optical history. It is the dominant view in
computer vision, e.g., as exemplified by Berthold Horn’s book [60].

(2) Machine Learning. Carbonell [17] has emphasized that an intelligent
learning system must have the capacity to recover its own computations in
order to understand why it failed or succeeded.

(3) Computer-Aided Design (CAD). Hoffmann [58] has emphasized the
need for recovering the history of design operations in order to allow editabil-
ity of that history. All major CAD programs such as ProEnginneer in me-
chanical design, and AutoCAD in architecture, provide full history-recovery
at any stage of the design process. The same is true of solid modeling and
animation software such as 3D Studio Max, and 2D publication/image manip-
ulation programs such as Photoshop. It is probably the case that the history-
recovery operations in a CAD or Graphics program are amongst the most
frequently used operations in design.

(4) Computer-Aided Manufacturing (CAM). When the design phase
is completed, the CAD model is sent to a CAM file for machining. Computer-
aided process planning (CAPP) is the means by which the CAD model can
be used to generate a sequence of instructions to physically produce the part.
In machining, the part is created by taking the designed shape for the part
and subtracting it from the raw stock (usually a rectangular block). The
remaining shape is called the delta volume, as shown in Fig. 2.1. The delta
volume will be removed incrementally from the raw stock by a moving cutter.
Therefore, the cutter actually generates the delta volume. This means, once
again, that shape is described generatively, and the generativity must be
recovered from the object data.

(5) Science. Science is ultimately the recovery of the sequence of causal
interactions that lead up to the data on the measuring instruments. We shall
argue that recoverability fundamentally dictates the structure of scientific
laws, such as Schrödinger’s equation, Hamilton’s equations, etc.
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Fig. 2.1. The raw stock minus the designed object gives the delta volume.

2.3 Theoretical Need for Recoverability

The theoretical need for recoverability comes from the very nature of gen-
erative theories. A generative theory characterizes the structure of a data
set as a program for generating that set. In order to produce this structural
characterization one must be able to infer (recover) it from the data set. This
argument is simple, but places enormous constraints on the theory, as will be
seen.

2.4 Data Sets

It is now necessary to understand the constraints that recoverability places
on data sets. There are four basic conditions that data sets must fulfill:

(1) The data set is structureless.

Since the generative structure is the only structure we are interested in,
then, as far as we are concerned, the data set has no structure prior to the
inference of a generative program. The data set will therefore be regarded as
structureless.

(2) The data set is atemporal.

A particular consequence of the fact that the data set is structureless, is
that it has no temporal structure; it is atemporal. It is only the inferred
generative program that can give it temporal structure. In fact, time will be
understood as the sequence-parameter that organizes the generative program
as a succession of operations.

(3) The data set is observable within a single time-slice.
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Consider a doctor who has taken a set of X-rays of a tumor over time. These
X-rays are records of the tumor’s growth. In order for the doctor to under-
stand the development of the tumor, he needs to be able to compare all the
records within a single time-slice. Therefore he does what all doctors do: He
puts the entire set of X-rays up on a screen at the same time. From this, he
can infer what change there has been over time.

This is crucial for the inference of generative structure: Although a data
set might consist of a set of records taken at different points in time, they
must all be available simultaneously within a single time-slice. In the example
of the X-rays, the screen, onto which the X-rays are all placed simultaneously,
represents the single time-slice.

In order to grasp the fundamental power of this concept, let us consider
another example - the inference of motion. It is a logical fact that one can-
not infer motion unless states at different times are viewable simultaneously
within a single time-slice. As an example, consider the motion detector in the
visual system of a fly. Fig. 2.2 shows the structure of the detector as given by
Hassenstein & Reichardt [53], Reichardt [123]. At the top of the figure, two
receptors are shown, one at position P1 and the other at position P2. The
receptors are one unit distance apart. When a stimulus crosses a receptor, at
the top of the figure, the receptor gives a response which is sent along the
downward fiber from the receptor. Now consider a stimulus travelling from
left to right across the two receptors, and suppose the stimulus is travelling
at the speed of one unit distance per one unit time. The stimulus first passes
P1 which sends its response downward. However, this response is delayed, for
one unit time, by the DELAY cell shown in the figure. Meanwhile, the mov-
ing stimulus continues along the top and passes over the second receptor P2,
which then sends its response down its own fiber. But because the response
from the first receptor P1 has been delayed by one unit time, the response
from P1 arrives at the cell labeled A at the same time as the response ar-
rives from receptor P2. The cell A fires in exactly this situation, i.e. when it
receives a response simultaneously from both P1 and P2.

Generally, a data set consists of records. Whether the different records are
points recorded at different times by a motion detector, or X-rays taken at
different times by a doctor, they must all be available for comparison within
the present time-slice.

(4) The box of the present is cealed.

The fact that the entire data set is available for observation within a single
time-slice is crucial from the point of view of inference. The inference system
cannot go back in time, and observe any previous data; it must observe the
data as it exists now. The box of the present cannot be violated. Thus, one
must ensure that the box of the present contains the entire data set that is
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Fig. 2.2. The motion detector of a fly.

to be used. Then one must ”ceal” the box, and not allow the inference to
assume data outside the box. That is, the inference rules are applied to the
contents of the box, and only these contents.

For example, suppose that the doctor had taken twelve X-rays of the
tumor over the last twelve months. And suppose that one of these X-rays is
now missing - the one taken in March. The box of the present now contains
only eleven X-rays. Yet, as we shall see, a physicist will standardly make the
mistake of assuming that the missing X-ray is observable. This leads to many
incorrect arguments in statistical mechanics and quantum field theory.

Now consider the following situation. Suppose that, even though the
March X-ray has been lost, the doctor actually remembers what the March
X-ray looked like. In this case, he has a record of the tumor’s state in March,
in his head, right now. The box of the present therefore contains the eleven
X-rays and the record he has in his head. Inference can therefore act on all
twelve records. At no time, however, can he actually go back in time and
see the situation in March. He must have a record in the box of the present.
Thus, if he cannot remember what the state was in March, he has only the
eleven records.

Therefore, in all our inference situations, the following is critical: One
must always decide what data is available in the box of the present, and then,
having made this decision, allow only this data to be used by the inference
system. This fundamental constraint will actually determine the inference
rules, as we shall see.

2.5 The Fundamental Recovery Rules

This section will state our two fundamental rules for the recovery of gener-
ative programs from data sets. The discussion will begin with simple illus-
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Fig. 2.3. Psychological results found in Leyton [89] [90].

trations, and then get successively more difficult. Later, the representational
consequences of the rules will be rigorously formulated in terms of wreath
products.

Let us begin by looking at how the human visual system recovers gen-
erativity from a data set. In a series of psychological experiments (Leyton
[89] [90]), we found that, when subjects are presented with a parallelogram
oriented in the picture plane as shown in Fig. 2.3a, they see it as a rotated
version of the parallelogram in Fig. 2.3b, which they then see as a sheared
version of the rectangle in Fig. 2.3c, which they then see as a stretched ver-
sion of the square in Fig. 2.3d. The remarkable thing is that the only data
that they are actually given is the first figure, the rotated parallelogram.
The experiments found that, on being presented with this figure, their minds
elaborated the sequence shown.

It is clear that what is happening is that the subjects are giving the
first figure a generative description. In other words, given the rotated par-
allelogram as data, the subjects are saying that, at the previous generative
stage, the rotated parallelogram was not rotated, and in the generative stage
before that, the shape was not sheared, and in the generative stage before
that, the shape was not stretched. That is, they are recovering the generative
history by successively removing the generative operations. To emphasize:
The sequence from left to right is the reverse of the generative program; i.e.,
it corresponds to backwards time. Thus, the forward-time direction, in the
generative program, is right to left.

Now, close examination reveals that the subjects are accomplishing this
recovery by applying two rules, which we will call respectively the Asymmetry
Principle and Symmetry Principle:
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Asymmetry Principle.

At each stage, in Fig. 2.3, the subjects are removing one asymmetry to get
to the next stage (left-to-right). Let us, for the moment, define asymmetry
simply to be distinguishability - this will be rigorized later using group theory.
There are three distinguishabilities in the rotated parallelogram, Fig. 2.3a:

(D1) The orientation of the figure is distinguishable from the gravi-
tational orientation.

(D2) The adjacent vertex angles are distinguishable in size.

(D3) The adjacent sides are distinguishable in length.

One can see that the subjects are successively removing these three distin-
guishabilities to create the sequence from left to right. The sequence therefore
represents a process of successive symmetrization, backwards in time. There-
fore one sees that, in the forward time direction, the generative program is a
succession of symmetry-breaking operations. We shall call this the Asymmetry
Principle.

Symmetry Principle.

The subjects are also using another rule in the sequence Fig. 2.3. Any sym-
metry in the rotated parallelogram is being preserved backwards in time. For
example, the rotated parallelogram has the following two symmetries:

(S1) The opposite vertex angles are indistinguishable in size.

(S2) The opposite sides are indistinguishable in length.

Notice that these two symmetries are preserved through all the figures from
left to right. In fact, the condition is even stronger than this. We saw that,
by the Asymmetry Principle, each backwards transition recovers a symmetry.
Remarkably, what can now be seen is that, after any symmetry has been
recovered, it is also preserved backward through the remaining sequence. For
example, in going from Fig. 2.3b to Fig. 2.3c, the adjacent vertex angles,
which are initially different, are made the same size. This symmetry is then
preserved in all the remaining figures. We shall call the backward preservation
of symmetries, the Symmetry Principle.

The Asymmetry Principle and Symmetry Principle control the recovery of
the generative sequence in Fig. 2.3. Note that the data set is the first figure
(the rotated parallelogram), and the recovery takes place by applying the
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Asymmetry Principle and Symmetry Princple to the data set. This produces
the generative program in the reverse direction.

The full statements of the two fundamental rules will now be given. First,
the Asymmetry Principle will be stated and discussed:

ASYMMETRY PRINCIPLE (forward-time statement). Given a
data set D, a program for generating D is recoverable from D only if the
program is symmetry-breaking on the successively generated states.

It is important to understand that this principle concerns not simply genera-
tivity, but the actual recoverability of that generativity. This, in turn, depends
crucially on the data set.

To sharpen the reader’s mind concerning these issues, let us consider
(forward-time) symmetry-increasing processes. For example, let us consider
the basic theormodynamic situation of entropy increase. Suppose that an
isolated tank of gas is in an initial state in which the gas is entirely on the
left side of the tank. The gas is then allowed to settle to equilibrium in which it
is uniformly distributed over the tank. This is a symmetry-increasing process.
Now let us consider the recoverability of this process. The recoverability is
dependent entirely on the data set. Suppose that the data set consists only
of the gas in the final symmetric state. Then we would not be able to recover
from this state, any of the preceding history. For example, this state would
not tell us that the gas had been on the left rather than the right. In contrast,
suppose that the data set consists of a set of photographs that we had taken
over the course of the thermodynamic process. Being a data set, we can view
the photographs simultaneously. For example, without loss of generality, we
will assume, throughout the discussion, that the photographs are laid out
on a table from left to right. Then, from this data set, we would be able to
recover the process.

Now consider the generation of this data set. That is, the set of pho-
tographs is the set D in the above statement of the Asymmetry Principle,
and we are considering the program that generated this set. The states that
are successively generated by the program are the successively increasing
sets of photographs over time, leading to the final full set. Each successive
set is, in fact, asymmetry-increasing with respect to its preceding set: it in-
creases the left-right directionality (assuming that the photographs are laid
out from left-to-right on the table). Thus, although the thermodynamic pro-
cess is symmetry-increasing, it is recoverable only because it has left a suc-
cession of data sets that are symmetry-decreasing.

SYMMETRY-INCREASING PROCESSES. A symmetry-increasing
process is recoverable only if it is symmetry-decreasing on successive data
sets.
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An alternative statement of the Asymmetry Principle will now be given - one
that is particularly useful.

ASYMMETRY PRINCIPLE (backward-time statement). Given a
data set D, a program for generating D is recoverable from D only if each
asymmetry in D goes back to a symmetry in one of the previously generated
states. This symmetry will be called a symmetry ground-state.

Notice, for example, in the case of the thermodynamic process considered
above, the asymmetries are between photographs. They give the left-right
asymmetry of the data set, i.e., of the set of photographs as they are laid out
on a table. Notice that in accord with the above principle, these asymmetries
are removed backward in time through the successively decreasing set of
photographs. This situation will be fully analyzed later.

The Asymmetry Principle is the first of our two fundamental principles
of recoverability. The other fundamental principle is this:

SYMMETRY PRINCIPLE. Given a data set D, a program for generating
D is recoverable from D only if each symmetry in D is preserved backwards
through the generated sequence.

Let us consider an apparent counter-example to this principle. Suppose that
a person is walking along a beach, and sees a perfectly rounded rock. Anyone
of course knows that rocks are usually jagged (asymmetric) and therefore the
person easily infers that the rock was once asymmetric, and that it became
symmetric over time. This appears to violate the above Symmetry Principle.
That is, a symmetry in the present data set is not being preserved backward
in time.

However, the apparent violation is due to incorrectly defining the data
set. One has assumed that the data set consists only of the rounded rock.
It does not. It consists also of previous experiences of rocks - i.e., images in
the person’s head of previous rocks. The situation therefore becomes like the
thermodynamic example, in which the gas is initially asymmetric and then
becomes symmetric over time. Let us re-consider that example:

Recall the complete dependency of inference on the data set. If the data
set consists of a set of photographs taken over time, of the tank, then the
inference is made on the asymmetries between the photographs; i.e., these give
the left-right asymmetry of photographs on the table. These asymmetries
would be removed backwards in time, and this would mean the successive
removal of records backwards in time.

The inference would be completely different, however, if the data set con-
sists of only the final symmetric gas state: Here, one would not be able to
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infer the previous history of rightward movement - in particular the present
symmetry would exclude any preference for left or right in the conjectured
history. This is the Symmetry Principle. A symmetry in the data set has to
be preserved backwards in time because symmetry excludes prejudice towards
any of its alternative symmetry-breakings.

Exactly the same argument applies to the rock example, except that here
we have not just left-right symmetry, but symmetry in each direction. That
is, if the data set contained only the rock in its rounded state, i.e., we had
no previous experience of rocks, then the symmetry of the rock would ex-
clude prejudice towards any of its alternative symmetry-breakings. Thus no
previous asymmetry is inferrable.

Throughout this discussion, we see that the correct inferences depend
completely on the conditions given in Sect. 2.4, on data sets. In particular,
the fourth condition (p. 38) stated that the observer must decide what is
contained in the box of the present (the data set) and then ceal it such that
the inference process acts only on the contents of the box. If the only content
of the box was the rounded rock - i.e., the observer had no experience of any
other rocks - then he would not be able to infer that the rock was previously
asymmetric; i.e., symmetry is the only evidence.

2.6 Design as Symmetry-Breaking

The Asymmetry Principle states that the generative operations are recover-
able only if they are symmetry-breaking on successively generated states.

As an example, consider the process of architectural design on a computer.
The designer begins with an empty screen. Let us examine the meaning of
this. The screen is a 2-dimensional flat space, and therefore has the translation
group R2 as its symmetry group. In fact, the edge of the screen breaks this
symmetry. Therefore it is best to describe this situation as an infinite flat
plane, with symmetry group R2, that is broken by the edge of the screen.
This captures the well-known description of the screen as a view window.

Now, at the stage at which the designer begins, the screen is empty and
therefore there is still translational symmetry within the screen. Next, on this
empty screen, the architect draws the first object, e.g., a wall. This breaks the
translational symmetry within the screen. The wall however retains transla-
tional symmetry within its own border. Next, the architect draws a window
within the wall, and this breaks the translational symmetry across the wall,
and so on.

This illustrates the fact that the design process is one of successive
symmetry-breaking. Much more complicated examples of this principle will
be seen throughout the book - in the generation of extremely complex ob-
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Fig. 2.4. The 3-stage symmetry-breaking process involved in vision.

jects. Nevertheless, the same principle will still apply - design is a process of
symmetry-breaking.

Now consider the issue of recoverability. Notice that the preceding sym-
metry, at each of the stages described above, is completely recoverable. For
example, after drawing the wall, the background translational symmetry of
the screen is recoverable, because the designer understands that he can move
the wall across screen - i.e., using the translation group of the background.
In fact, we argue that the term background actually refers to the recoverable
symmetry that initiates the generative process.

Throughout this book, these concepts will be seen to underly even the
most sophisticated processes of design, e.g., spline manipulation, constructive
solid modeling, part assembly in mechanical CAD, etc.

2.7 Computational Vision and Symmetry-Breaking

In Leyton [96], we argued that the process by which the environment is pro-
jected onto the retina is symmetry-breaking. It is this that allows perception
(recoverability) to take place. Furthermore, we argued that the symmetry-
breaking is decomposed into three successive stages, as shown in Fig. 2.4.

As an example, consider a cube. This would be the initial symmetry state
on the far left of Fig. 2.4. The three subsequent stages are as follows: Stage 1:
Certain environmental actions distort the cube’s intrinsic geometry, e.g., twist
it, or drill a hole in it, etc. These are a first level of asymmetries on the cube.
Stage 2: The introduction of a light source causes a variation in brightness
across the surface, i.e., shading. This is an additional level of asymmetries
(distinguishable grey levels) that are ”painted” on the surface geometry. Stage
3: The projection of the object onto the retina creates what is standardly
called projective distortion, e.g., equal parallel lines project to unequal non-
parallel lines, etc. These are asymmetries by virtue of viewpoint.

COMPUTATIONAL VISION AND SYMMETRY-BREAKING.
According to the theory in Leyton [96], the sequence of processes leading up
to the formation of the image on the retina fall into three successive stages
each of which creates a new layer of asymmetries: (1) object asymmetries,
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(2) illumination asymmetries, and (3) projective asymmetries. The process of
vision is therefore that of undoing the asymmetries backward in time through
the generative sequence; i.e., the successive use of the Asymmetry Principle.

This explains the various components of computational vision, such as shape-
from-texture, shape-from-contour, shape-from-shading, regularization, etc.
For example, shape-from-texture and contour are the removal of Stage 3,
backwards in time (viewpoint asymmetries); shape-from-shading is the re-
moval of Stage 2, backwards in time (illumination asymmetries), and regu-
larization is the removal of Stage 1, backwards in time (object asymmetries).

Let us look at this in more detail. Consider shape-from-texture. Consider
a square grid in the environment, as shown in Fig. 2.5a. If it is projected onto
the retina using orthographic projection, as shown in Fig. 2.5b, it becomes a
rectangular grid. This breaks the 4-fold rotational symmetry of the squares. If
furthermore, the projection is a perspective one, as shown in Fig. 2.5c, then
the translational symmetry in the vertical direction has been additionally
destroyed, as can be seen by the fact that the quadrilateral elements now
decrease in size from the bottom to the top of the figure.

Fig. 2.5. Successive asymmetrization of texture through projection.

Now consider shape-from-shading. A standard assumption is that the light
flux is uniform (symmetric) before it hits the object. This is shown on the
left in Fig. 2.6. The different orientations of the object surface cause the light
rays to become non-uniform (asymmetric) after leaving the surface, as shown
on the right in Fig. 2.6. That is, the light-flux undergoes symmetry-breaking
in the forward-time direction. Notice that the created asymmetry is what we
mean by shading.

The above examples illustrate the fact that the Asymmetry Principle
is fundamental to computational vision. However, our other basic recovery
rule, the Symmetry Principle, is also fundamental. This principle states that
the generative operations are recoverable only if each symmetry is preserved
backwards through the generative sequence. We argue that this is the ba-
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Fig. 2.6. Asymmetrization of the light-flux.

sis of all non-accidentalness rules (e.g., Kanade [72], Witkin & Tenenbaum
[156]). Such rules state that properties such as parallelism, or perpendicular-
ity, found in the image, go back to the same in the environment. Our survey
of the literature concluded that all these properties are actually symmetries.
Therefore, their preservation backwards from the image to the environment
is a use of the Symmetry Principle.

A detailed exposition of the above theory of computational vision is given
as Chapter 3 in Leyton [96].

2.8 Occupancy

As was illustrated on page 8, our theory represents any structural incomplete-
ness in the following way: The complete structure is described by a group G.
The incomplete structure is described by wreath sub-appending an occupancy
group Z2 group below G, thus:

Z2 w© G.

This is a regular wreath product in which there is one copy Z2 for each
member of G. The copy of Z2 then switches on or off the corresponding
element of G. (Regular wreath products are described in Chapter 3.)

The crucial advantage of this method is that the group G is still present
in the structure, representing the observer’s sense of completion despite the
incompleteness of the data set. For example, consider a straight line, with
some gaps. The eye automatically fills in the gaps - which is an example of the
Gestalt phenomenon of completion. Our theory models this by representing
the complete line by R, and wreath sub-appending an occupancy Z2 group
thus:

Z2 w© R.

In this way, the complete structure R is assumed even after the occupancy
structure has been added.
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It is important for the reader to observe that we therefore view incomplete-
ness as a process of asymmetrization. One begins with the complete structure
(the upper group) and then adds its incompleteness (the lower group). This
accords with the Asymmetry Principle which states that, for recoverability,
the generative sequence must be symmetry-breaking forward in time.

A couple of comments will be useful: (1) If the upper group is itself an n-
fold wreath product, then each level can be given an incompleteness structure
by wreath sub-appending an occupancy group Z2 to that level. (2) It is often
convenient to think of occupancy as a process of occlusion. One starts with
a complete structure and understands its subsequent incompleteness as due
to another object that is in the way.

2.9 External vs. Internal Inference

Section 2.5 used a distinction that must now be examined carefully. We shall
call this the distinction between external and internal inference. These two
alternative types of inference depend on two alternative assumptions made
by the observer:

Definition 2.1. In external inference, also called the single-state as-
sumption, the observer assumes that the data set contains a record of only
a single state of the generative process. Any inferred preceeding state is there-
fore external to the data set.

This case was illustrated, for example, in the rotated parallelogram experi-
ment in Fig. 2.3 (p. 40). Here, the only data was the first figure, the rotated
parallelogram. The observer made the assumption that this was only a single
state of the generative process. Therefore, any inferred preceding state, was
external to what one could see in the data set. For example, the inferred
rectangle Fig. 2.3c was not contained in the data set Fig. 2.3a.

In contrast to external inference, the alternative assumption is this:

Definition 2.2. In internal inference, also called the multiple-state as-
sumption, the observer assumes that the data set contains records of multiple
states of the generative process. A preceeding state can therefore be internal
to the data set.

This case has been illustrated a number of times in the preceding discussion:
(1) The doctor who has several X-rays of a tumor taken over time, which he
views simultaneously. (2) The physicist who has several photographs of a tank
of gas taken over time, which he views simultaneously. (3) The individual,
on the beach, who has both the visual image of the rounded rock, and the
memory of past rocks. In all these three cases, the present data is assumed
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to contain multiple records of the generative process. Preceeding generative
states can therefore be found internal to the data set.

Notice that we also discussed versions of these situations based on exter-
nal inference. That is, we considered the thermodynamic situation in which
one possessed only the final symmetric state. Or we considered the rock sit-
uation in which the data contained only the rounded rock and no previous
experiences of rocks.

It was seen that the inference conclusions made in the external situation
and the internal situation are different from each other. Nevertheless, the
remarkable thing is that the inference rules are the same: the Asymmetry
Principle and Symmetry Principle. What is different is the nature of the
asymmetries and symmetries, as follows:

APPLICATION OF RULES. In external inference the Asymmetry Prin-
ciple and Symmetry Principle are applied to intra-record asymmetries and
symmetries. In internal inference the Asymmetry Principle and Symmetry
Principle are applied to inter-record asymmetries and symmetries.

For example, consider the rotated parallelogram, which is an example of ex-
ternal inference. Here the Asymmetry Principle is applied, for instance, to the
different angles, to make them equal. The different angles are within a single
record (the rotated parallelogram). In contrast, consider the thermodynamic
process, where we view a number of photographs lain out from left to right
on a table. Here the asymmetries are between the records. This creates the
left-right asymmetry of the data set.

2.10 Exhaustiveness and Internal Inference

As stated in Chapter 1, a primary goal of our theory is exhaustiveness, in the
sense that the entire data set must be generatively accounted for. It will now
be seen that this has powerful consequences on the issue of internal inference.
To illustrate this, let us go back to the rotated-parallelogram example, Fig. 2.3
(p. 40).

In this example, the backward-time sequence terminates at the square.
We saw that this sequence is produced by removing three distinguishabilities
from the rotated parallelogram: (1) the difference between the orientation of
the object and the orientation of the environment; (2) the difference between
the sizes of the angles; (3) the difference between the lengths of the sides.

However, further distinguishabilities still remain in the square. Although
the sides have been given equal length, they are nevertheless still distinguish-
able by position; i.e., there is a top side, a bottom side, a left side, and a right
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Fig. 2.7. Internal inference on a square.

side. By the Asymmetry Principle, there must have been a preceding gener-
ative state in which there was no positional distinguishability between the
sides. Observe that, since the size distinguishability, between the sides, has
already be removed, the removal of the positional distinguishability makes
the sides completely indistinguishable; i.e., they become the same side. This
means that a square, as shown in Fig. 2.7a, must have originated from a
situation of only a single side, as shown in Fig. 2.7b. This is the starting side,
i.e., the first side that is drawn.

Now observe that this single side (Fig. 2.7b) still contains a distinguisha-
bility: The points on the side are distinguishable by position. In fact, this is
the only distinguishability between the points on a side, because they are all
the same color and shape. Therefore, once the positional distinguishability
is removed from the points, one obtains a single point Fig. 2.7c. This is the
starting point, i.e., the first point to be drawn.

Notice that the two inference stages, shown in Fig. 2.7, are both the
removal of positional distinguishabilities. The generative process, in the for-
ward time direction (right-to-left) must therefore have been movement, since
movement is the process that creates positional distinguishability. Thus, the
square in Fig. 2.7a must be understood as the trace of the side in Fig. 2.7b;
and the side in Fig. 2.7b must be understood as the trace of the point in
Fig. 2.7c.

Now, let us consider again the backwards-time direction (left-to-right in
Fig. 2.7). Notice that, in each of the two inference stages, the assumption is
made that the present contains multiple states. That is, the square is assumed
to be the multiple states (positions) of a side, and a side is assumed to be
the multiple states (positions) of a point.

A multiple-state interpretation is, in fact, forced upon one, in any situa-
tion where one attempts to remove all distinguishabilities, achieving genera-
tive exhaustiveness. This is because, at some stage in the removal of distin-
guishabilities, one cannot remove any more without removing distinct parts.
At this point, backward-time must therefore represent the removal of the
parts and forward-time must represent the process of introducing the parts.
This means that different parts must have been introduced at different times;
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that is, they represent different moments in the generative process which in-
troduces them; i.e., different states in that process. Therefore, the collection
of parts is given a multiple-state interpretation.

The reader should recall from Definition 2.2 that a multiple-state inter-
pretation is associated with internal inference; i.e., the preceding states are
subsets of the present state. This can be seen in Fig. 2.7: Both the side and
the point are subsets of the square, i.e., the inference goes to past states that
are internal to the data set (the square).

Now let us take stock of the entire rotated parallelogram example. The
inference starts with the rotated parallelogram and goes through the set
of stages shown in Fig. 2.3 resulting in the square. But the inference then
continues from the square, and goes through the stages shown in Fig. 2.7,
resulting in the final stage, the point.

That is, there are a total of five successive transitions backwards in time,
the first three being shown in Fig. 2.3, and the last two being shown in
Fig. 2.7. Most crucially, one should understand that there are five transitions
because there are five distinguisabilities in the rotated parallelogram. They
are:

(D1) Distinguishability between the orientation of the figure and the
orientation of the environment.

(D2) Distinguishability between the sizes of adjacent angles.

(D3) Distinguishability between the lengths of adjacent sides.

(D4) Distinguishability between positions of the sides.

(D5) Distinguishability between positions of the points.

These five distinguishabilities are removed successively backwards in time, in
the five stages shown. The removal is required by the Asymmetry Principle
(p. 43) which states that any distinguishability must be removed backwards
in time.

The other thing to notice is that the first three distinguishabilities are
removed by external inference (Definition 2.1), and the last two are removed
by internal inference (Definition 2.2). That is, the inference sequence from
a rotated-parallelogram Fig. 2.3a, starts with a single-state assumption; i.e.,
the rotated parallelogram is assumed to be a single state and it is seen as
implying a state outside itself, a non-rotated parallelogram. The non-rotated
parallelogram, Fig. 2.3b, is in turn assumed to be a single state and it is seen
as implying a state outside itself, the rectangle, Fig. 2.3c. Then, the rectangle,
Fig. 2.3c, is in turn assumed to be a single state and it is seen as implying a
state outside itself, the square, Fig. 2.3d. Thus, a single-state interpretation
is held through the successive inference stages, in Fig. 2.3, until one reaches a
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square. Then, in order to remove the remaining distinguishabilities, i.e., those
in a square, one is forced to switch to internal inference, i.e., all subsequently
inferred states are internal to the square. Correspondingly, one switches to a
multiple-state interpretation; i.e., the square is seen as multiple positions of
a side and the side is seen as multiple positions of a point.

The assignment of a multiple-state interpretation necessitates the square
being viewed as a trace; i.e., the sides are ordered in time and so are the
points. We shall later look at how traces are structured, but it is worth
observing, here, that an obvious physical interpretation of the trace is that it
was produced by drawing. For example, starting with the point in Fig. 2.7c,
a pen traced out the points along a side, producing Fig 2.4b; and then the
pen traced out the successive sides around the square, producing Fig. 2.7a.
Of course, the implement need not have been a pen. It could have been a
cutter in a manufacturing process; or a robot spatially navigating along the
edge of a room.

2.11 Externalization Principle

One of the purposes of our generative theory of shape is to replace the differ-
ent sets of laws in the different sciences by a single set of scientific laws that
are universal across the sciences. This will be done by replacing the existing
laws by inferential laws that lead to the existing laws. These inferential laws
are, in fact, the laws for the recovery of generative history from data sets.

In this section, we are going to propose one of these universal scientific
laws. The power of this law cannot be over-estimated, as will be seen. We first
motivate it using the extremely simple example of the last section, but then
show that it is entirely general. The reader will recall from the last section
that the successive inferences, from the rotated parallelogram, started first
with a sequence of external inferences - from the rotated parallelogram back
to a square - and then changed to a sequence of internal inferences - from the
square back to a point. What one should now observe is that the square is
structured as an iso-regular group. This type of group was defined on page 12
by three conditions IR1 - IR3, and was intuitively described as a control-
nested hierarchy of repetitive isometries.

Recall also that, on page 8, the generative group of a square was given as

R w© Z4 (2.1)

where R is the translation group along a side, and Z4 is the 4-fold rotation
group between sides. Most crucially, this is an iso-regular group.

It can now be seen that the successive external inferences from a rotated
parallelogram back to a square, lead to an iso-regular group (the group of the
square). In fact, this iso-regular group describes the internal (trace) structure
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of a square. Remarkably, what is happening here turns out to be entirely
general. That is, we propose this rule:

EXTERNALIZATION PRINCIPLE. Any external inference leads
back, as much as possible, to an internal structure that is a control-nested
hierarchy of repetitive isometries; i.e., an iso-regular group.

We shall argue that each science is structured by the Externalization Princi-
ple, i.e., each science is founded on external inference back to an iso-regular
group. For example, we shall show that the structure of shape primitives and
shape modifications in computer-aided design (CAD) follows from the Ex-
ternalization Principle. Again, we shall argue that the Schrödinger equation
in quantum mechanics follows from the Externalization Principle. Again, the
distinguished role of special relativity with respect to general relativity follows
from the Externalization Principle. It is therefore important to understand
the justification of the principle:

JUSTIFICATION FOR THE EXTERNALIZATION PRINCIPLE.
An iso-regular group has three properties: (1) It is a wreath prod-
uct G1w©G2w©. . . w©Gn; (2) each level Gi is 1-dimensional (cyclic or 1-
parameter), and (3) each level Gi is an isometry group. The justification
for the Externalization Principle uses all three properties. Using (1) and (2):
A wreath product in which each level is 1-dimensional, maximizes transfer.
Using (3): Since isometries are the most constrained of the topological actions
on a space, external inference to a past state generated by isometries, maxi-
mizes recoverability. Therefore the Externalization Principle follows from the
maximization of transfer and recoverability.

Let us now understand the relationship between the Externalization Prin-
ciple and the other inference rules. Recall that one of the two fundamental
inference rules of our theory is the Asymmetry Principle which (in the form
given on p. 43) states that each asymmetry in the data set must go back
to a symmetry in one of the previously generated states. Recall also that
we distinguished between two realizations of the Asymmetry Principle: ex-
ternal inference which goes back to a past state outside the data set, and
internal inference which goes back to a past state inside the data set. The
Externalization Principle concerns the first of these two classes of inference.

The Externalization Principle is the Asymmetry Principle
in half of all possible cases: those of external inference.

Now let us consider a number of examples of the Externalization Principle,
as follows:
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Visual Perception.

In Leyton [88] [89] [90] [96], we have shown that the Externalization Principle
fundamentally underlies visual perception. Consider some simple examples:
When an individual goes down a street and sees a bent pipe, he/she infers that
the pipe was originally straight. This inference is external, i.e., the straight
pipe is not actually visible within the box of the present (the data set).
Notice that the straight pipe has the structure of a cylinder and is therefore
the iso-regular group

SO(2) w© R (2.2)

which is the generative group that we gave on p. 14 for the cylinder. Thus the
inference from the bent cylinder to the past straight cylinder is an example
of the Externalization Principle.

Similarly the process by which the environment is projected onto the
retina conforms to the Externalization Principle. For example, consider the
retinal image of a square which has been distorted due to the projection
process, as shown in Fig. 1.12 on p. 16. The inference that this is the projected
image of true symmetrical square in the environment is an external inference;
i.e., the symmetrical square is not visible in the data set (the image). This
external inference goes from the distorted image square to the symmetrical
environmental square, and the latter square is given by the iso-regular group:

R w© Z4. (2.3)

Notice, as was said on page 17, the complete generative structure of this
situation is this:

R w© Z4 w© PGL(3,R) (2.4)

where the projective group PGL(3,R) is added to the iso-regular group
R w© Z4 as an extra generative level. The justification for using the wreath
product to add this level was given on p. 17. The external inference is the
process of going to the identity element within this level. This yields the
undistorted iso-regular group given by the first two levels. Thus, one actually
sees the Externalization Principle represented within the wreath hierarchy of
expression (2.3). This becomes crucial in Chapter 22, when we give a theory
of the relation between Euclidean geometry and projective geometry.

To fully understand the powerful role of the Externalization Principle in
visual perception, it is necessary to return to our theory of computational
vision summarized in Sect. 2.7. We claimed that the process by which the en-
vironment is projected onto the retina consists of three successive symmetry-
breaking stages, as shown in Fig. 2.4 (p. 45). Each successive stage in Fig. 2.4
adds a layer of asymmetry, and the final image on the retina is an accumula-
tion of these three asymmetry layers. According to this theory, the process of
vision (i.e., inference) is that of undoing the asymmetries backward in time
through the generative sequence; i.e., the successive use of the Asymmetry
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Principle. This explains the various components of computational vision, such
as shape-from-texture, shape-from-contour, shape-from-shading, regulariza-
tion, etc.

Now, the use of the Asymmetry Principle on the image, to infer the pre-
vious generative stages, is the use of external inference. And it was said
that, in all cases of external inference, the Asymmetry Principle becomes
the Externalization Principle. Therefore each of the three inference stages in
Fig. 2.4 is a use of the Externalization Principle. This can be seen in the ex-
amples given in Sect. 2.7. For instance, in shape-from-texture, as illustrated
in Fig. 2.5 (p. 46), the succession backwards from the perspectively distorted
grid Fig. 2.5c, to Fig. 2.5b, to Fig. 2.5a, recovers the original square grid which
is a control-nested hierarchy of repetitive isometries, i.e., an iso-regular group.
Similarly, in shape-from-shading, Fig. 2.6 (p. 47) illustrates the fact that the
asymmetric light flux on the right of the figure, goes back in time to a light
flux on the left which is structured by an iso-regular group; i.e., the fiber of
this group is a light ray, and the translational symmetry across the light rays
is the control group.

Notice that the two examples given earlier in this section - the bent pipe
and the distorted square - fit into this analysis. The bent pipe is an example
of Stage 1 in Fig. 2.5 (p. 46), and the distorted square is an example of
Stage 3, i.e., shape-from-contour. As we said, both are determined by the
Externalization Principle.

Computer-Aided Design.

A large part of this book will be devoted to computer-aided design (CAD).
The process of design by computer usually starts with some shape primitive,
then adds another primitive, and so on, with the possibility that these suc-
cessive primitives can undergo distortion. There are two processes underlying
this standard procedure: Boolean operations and deformation. We shall see
that both of these are structured by the Externalization Principle. First, we
will show that any shape primitive is characterized by a control-nested hier-
archy of repetitive isometries; i.e., an iso-regular group. An example of this
has already been seen with the cylinder, which is one of the standard prim-
itives, and which was shown to be an iso-regular group on p. 14. This will
allow us, in Chapter 10, to give a systematic elaboration of shape primitives -
something that was not possible without the concept of an iso-regular group.

Next, given a design consisting of two primitives, e.g., a cube and a cylin-
der, consider the inference process that recovers the generation of this struc-
ture. Observe that the combined cube and cylinder is not an iso-regular group.
However, the reverse-generation, in which one of the two primitives is re-
moved leaving the other as the past state, does go back to an iso-regular
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group. Thus, shape-generation by Boolean combination conforms to the Ex-
ternalization Principle.1

Now let us consider the other generation process: deformation. It will be a
basic argument of our theory that one understands non-deformed objects to
be iso-regular groups, and that the deformed object is understood as a trans-
ferred version of an iso-regular group Giso under a diffeomorphism control
group Gdiff in a wreath product:

Giso w© Gdiff (2.5)

This deeply captures what is psychologically happening, as follows: Consider
for example a bent pipe. In order for people to see it as a bent version of a
straight one, they have to transfer onto it the structure of the straight one.
However, the straight one is given by the iso-regular group Giso = SO(2)w©R

of the cylinder. The group that transfers this onto the bent version is some
diffeomorphism group Gdiff . Hence one obtains a wreath product of the
type at (2.5). The recovery of that transfer (i.e., the reverse-generation) is
algebraically given by moving to the identity element within the diffeomor-
phism control group. This movement conforms to the Externalization Princi-
ple. That is, the wreath product (2.5) contains the Externalization Principle
within its structure.

The above considerations, with respect to Boolean operations and de-
formation, will allow us to give a systematic and detailed theory of part-
design, assembly-planning, and machining in mechanical engineering; as well
as conceptual design, design development, and construction documentation,
in architectural CAD.

General Relativity.

We shall now see that the Externalization Principle is fundamental to general
relativity. According to general relativity, a particle moving in a gravitational
field does not accelerate but maintains an unchanging velocity, i.e., travels
along a geodesic. This however means that the effect of gravity cannot be
observed in the motion of a single particle. In order to observe gravitational
influence, one needs two particles, like this: It follows from the structure of the
curvature tensor that, for curved manifolds, pairs of geodesics that start out
parallel cannot remain parallel; i.e., there is geodesic deviation. In contrast,
in a flat manifold, geodesics that start out parallel remain parallel. Now
1 In the case of subtraction and intersection, it is clear that backward generation
is given by external inference. In the case of union, the fact that the inference is
external becomes clear when one considers the bounding surfaces; i.e., the surface
of the union object does not contain the surfaces of the primitive objects. Thus, to
understand that the inference of Boolean union is external, we have to recognize
that it is a regularized Boolean operation.
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consider gravity. In the absence of matter, space-time is flat. When matter
is introduced, it causes space-time to have curvature. This is expressed in
the Einstein field equations G = 8πT , where T is the stress-energy tensor
and G is the Einstein curvature tensor. In this way, one can understand why
the effect of gravity is manifested in the relationship between two moving
particles; i.e., gravity causes geodesic deviation.

We now describe these considerations in terms of the generative theory
of shape. Consider the inference of gravity. The inference from curved space-
time back to flat space-time is an example of external inference. This is be-
cause a flat manifold is not a subset of a curved manifold; i.e., not in the box
of the present. Now it is easy to see that parallelism of geodesics in flat-space
time can be modeled as an iso-regular group in which a geodesic is a fiber,
and the action of translating a fiber, parallel to itself, corresponds to a control
group. Flatness corresponds to the fact that such iso-regular groups can be
constructed. Curvature corresponds to the fact that such iso-regular groups
cannot be constructed.

Thus consider the recoverability of gravity in general relativity. Given a
curved space-time manifold as a data set, the physicist’s inference that gravity
is responsible for the curvature, is the inference back to an origin state, flat
space-time, that corresponds to an iso-regular group. Therefore the inference
accords with the Externalization Principle.

Consider now special relativity, which is the physics of flat space-time. The
above considerations enable us to understand the role of special relativity as
follows: Special relativity corresponds to the iso-regular group recovered by
fully externalizing general relativity. Most crucially we argue that special
relativity arises from the need to maximize recoverability.

Quantum Mechanics.

We shall now see that the Externalization Principle is fundamental to quan-
tum mechanics. In quantum mechanics, any state |ψ〉 is a complex function,
and the space of states is a (physical) Hilbert space of such functions. Given
two states |ψ〉 and |φ〉, their inner product is defined in this way:

〈ψ|φ〉 =
∫ b

a

ψ∗φ. (2.6)

The associated norm is obviously given by ||φ||2 = 〈φ|φ〉, which is related to
the probability of the state.

An observable is a differential operator on this Hilbert space, and it in-
duces a 1-parameter group on the space. In fact, one should think of any
observable as belonging to a Lie algebra of observables, and its associated
1-parameter group is created by the usual exponentiation that goes from a
Lie algebra to a Lie group. In quantum mechanics, one standardly considers
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the Lie algebra to be a collection of Hermitian operators, and the associated
Lie group to be unitary. Thus the Lie group preserves the probability metric
defined at (2.6) above, and is therefore an isometry, in fact, a rotation. Given
an observable V , its associated 1-parameter group will be denoted by GV .

Now, measurement with respect to an observable V does not destroy the
information produced by another observable W only if the two observables
commute, that is, if [V,W ] = 0 within the Lie algebra of observables. In
Chapter 20, we shall argue that any commuting pair of observables should
be corresponded to a wreath product of their 1-parameter groups

[V,W ] = 0 ←→ GW w© GV . (2.7)

Most crucially, since both GW and GV are isometry groups, the wreath prod-
uct GW w©GV is iso-regular; i.e., it satisfies conditions IR1-IR3 on p. 12.
Therefore, we have this conclusion: In quantum mechanics, two observables
commute only if their 1-parameter groups form an iso-regular group.

Now let us consider how physical structure is generated in quantum me-
chanics. One starts with a symmetric structure, e.g., an atom with a spheri-
cally symmetric Hamiltonian, and one successively adds asymmetries, in ac-
cord with our generative theory of shape. The initial symmetry corresponds
to the commutation of observables, and successive addition of asymmetry
corresponds to the successive breaking of the commutation. This means that
the state is no longer described by the iso-regular group corresponding to the
starting commutation.

For example, suppose one begins with a spherically symmetric Hamilto-
nian H . This means, in particular, that H and Jz commute, where Jz is the
generator of rotations around the z-axis (i.e., the angular momentum observ-
able for the z-axis). According to (2.7) above, this commutation corresponds
to the wreath product GH w©GJz , which is iso-regular. The addition of an
external asymmetrizing field will change H and can therefore destroy the
commutation [H, Jz ]. Thus, the asymmetrized state will not be described by
the iso-regular group GH w©GJz .

Now consider the reverse-generation direction, i.e., the inference direction.
When one is given an asymmetric state, the procedure in quantum mechanics
is to define the state has having arisen generatively from a symmetric one,
in accord with our Asymmetry Principle (p. 43). Furthermore, the above
argument shows that the past symmetric state corresponds to an iso-regular
group. This demonstrates that the Externalization Principle is fundamental
to quantum mechanics.

2.12 Choice of Metric in the Externalization Principle

We shall argue that the Externalization Principle is the major organizing fac-
tor of any science. According to our theory, one obtains a science by selecting
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a particular metric for the isometries in the Externalization Principle. For
example,

Visual perception ←→ Euclidean group
General Relativity ←→ Lorentz group

Quantum mechanics ←→ Unitary group

Two comments should be made on this: (1) Note that computer-aided design
(CAD) is based on visual perception. The reason is that every aspect of
CAD is based on the interaction with a human agent via the visual medium.
Therefore, we will understand much of CAD to be within the science of
visual perception. For example, we shall show that the menu structure of
a CAD program is dictated by choosing the Euclidean metric within the
Externalization Principle. (2) Notice that the relativity group in General
Relativity is larger than the Lorentz group: It is the general diffeomorphism
group at any point on the curved space-time manifold. Nevertheless, the
action of gravity is understood as creating curvature from flatness, and the
physics of flatness is special relativity. Therefore, the isometry group in the
Externalization Principle of General Relativity is the Lorentz group.

2.13 Externalization Principle and
Environmental Dimensionality

Standardly one says that the environment is 3-dimensional. This is incorrect.
For example, in relativity, it is 4-dimensional, in certain forms of string-theory
it is 10-dimensional, and in quantum mechanics it is infinite-dimensional.
What we argue is that the number of dimensions is determined by the Ex-
ternalization Principle, in that one uses as many dimensions as will allow the
data set to be accounted for by an iso-regular group.

To illustrate, Fig. 2.8 shows a 2D image on the retina. Notice that in this
2-dimensional plane, the lines are of different lengths. Now, the visual system
interprets this configuration as the image of a cube in 3-space. The reason
is that, in 3-space, it can be described as having edges all the same length.
That is, in 3-space, it can be described by an iso-regular group.

Now let us rotate this hypothesized cube in 3-space. At some point it
looks like Fig. 2.9. However, the visual system does not interpret this figure
as a 3D object, but a 2D one. The reason is that two dimensions are sufficient
to give an account of the data by an iso-regular group.
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Fig. 2.8. The Externalization Principle requires three dimensions to give this data
an iso-regular group.

Fig. 2.9. The Externalization Principle requires only two dimensions to give this
data an iso-regular group - even though it is the image of a 3D cube.
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Fig. 2.10. Alternative routes from A to B.

The dimensionality of the environment is determined by
the Externalization Principle: An environment is given the
minimum number of dimensions that allows the data set to
be accounted for by an iso-regular group.

2.14 History Symmetrization Principle

It is clear that, when people infer generative history, they minimize that
history. Given for example, a set of alternative routes between states A and
B in Fig. 2.10, they will choose the route that is most direct. In physics this
is exemplified by the principle of least action - i.e., the route is chosen that
minimizes the action integral.

Intuitively, people think of the most direct route as the line of shortest
distance. In fact, the most direct route is the shortest one when the metric
is Euclidean, but, for example, in the Lorentz metric of special relativity, the
most direct route is the longest one. Thus to handle the general case, we need
to formulate the concept of the most direct route without dependence on the
notion of minimizing length:

HISTORY SYMMETRIZATION PRINCIPLE. The inferred gener-
ative history should contain the minimal distinguisability.
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That is, a history is the most direct if it contains the least distinguishability.
The reader should understand therefore that when we say that a history is
minimal, we shall mean that it has minimal distinguishability.

Close inspection reveals that the above principle is actually the applica-
tion of the Asymmetry Principle to internal history. Recall that the Asym-
metry Principle (p. 43) states that each asymmetry in the data set must go
back to a symmetry in one of the previously generated states. Applying this
to any of the conjectured routes in Fig. 2.10, what is recovered is the most
direct route.

We shall call the History Symmetrization Principle the second application
of the Asymmetry Principle. The first is to recover a generative history. The
second is to minimize that generative history. The mathematical consequences
of this are profound, as will now be seen.

What one needs to understand is how groups are used in the generative
structure:

USE OF GROUPS. Groups are used in two ways in the generative theory:
(1) to characterize the structure of the starting state, and (2) to characterize
the structure of the minimal history. The first use corresponds to the fiber level
and the second use corresponds to the control level in a transfer structure. In
an n-level structure of transfer, G1w©G2w©. . . w©Gn, these two uses become
coincident in each level (except perhaps the end-levels). This means that the
maximization of transfer and recoverability become essentially the same.

The above statement is extremely important, and an illustration is needed
as follows: Let us return to Fig. 2.10, which represents the use of the History
Symmetrization Principle. Here the minimal history is the straight line that
connects points A and B. The first thing to notice is that the history transfers
the point at A onto the point at B. These two points are in fact two copies of
the fiber group of a wreath product (i.e., the initial version and the transferred
version). The structure of the fiber group (i.e., the point) has not yet been
specified, so let us choose an example. Suppose that Fig. 2.10 represents
the projective situation in which point A is the fully symmetric square in
the environment, and point B is the projectively distorted square on the
observer’s retina, as in Fig. 1.12 on p. 16. Point A therefore represents the
symmetry group Gsquare of the square. This is the fiber group. The straight
line between points A and B represents the action of the projective group
in transferring the fiber group from A onto B (as a projectively distorted
representation). Therefore the straight line represents the control group. Thus
one has the following structure:

Gsquare w© PGL(3,R). (2.8)

One sees from this that the fiber group represents the starting state of the
square; and the control group represents minimal history. Furthermore, con-
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sider this: The starting state Gsquare is itself a structure of transfer:

R w© Z4 (2.9)

which is the generative group given for the square. However, this itself repre-
sents the minimal history for generating the square. That is, Z4 is the minimal
history of the side R around the square, and R is the minimal history of the
point {e} along a side. Both these levels are structures of transfer because
(2.9) is really this:

{e} w© R w© Z4. (2.10)

The conclusion therefore is that the starting state Gsquare in (2.8) is really
the minimal history in (2.10).

Now the starting states represent the phenomenon of recoverability, and
the minimal histories represent the phenomenon of transfer. We therefore see
that recoverability and transfer are forced to be coincident. This shows the
enormous economy of our system:

Each algebraic level is forced to take the roles of transfer
and recoverability simultaneously.

2.15 Symmetry-to-Trace Conversion

The Externalization Principle states that any external inference leads back
to an internal structure that is a control-nested hierarchy of repetitive isome-
tries; i.e., an iso-regular group. Internal structure means trace structure.
Thus, for example, the external inference from a rotated parallelogram goes
back to the trace structure of a square, which is given by an iso-regular group.

In fact, we now argue that the trace structure is derived from the group
using the following rule:

SYMMETRY-TO-TRACE CONVERSION PRINCIPLE. Any
symmetry can be re-described as a trace. The transformations defining the
symmetry generate the trace.

The inference of traces is crucial for all spatial planning, e.g., navigation
around a room, the machining of a surface, etc. We argue that the Symmetry-
to-Trace Conversion Principle is fundamental to the inference of all traces.
In fact, we propose:

Plans come from the symmetries of a structure. Symmetries
are the ”channels” along which actions take place.
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This proposal will be overwhelmingly corroborated in this book, in many ap-
plication areas, from manufacturing to quantum physics. It is now necessary
to look at the way in which the Symmetry-to-Trace Conversion Principle is
realized. The description in this section will be a very brief and intuitive sum-
mary of the theory elaborated in detail in Chapters 2 and 6 of Leyton [96].

Let us first define the basic properties of traces:

TRACE PROPERTIES.

(1) A trace consists of transformations that go between parts of the
data set.
(2) One part of the data set is a distinguished starting state.
(3) The other parts of the data set follow in sequence.

These three properties are realized in the following way: Recall from sec-
tions 1.15 - 1.17 that we consider that the theory of shape should be regarded
as belonging to the algebraic theory of machines. Using this concept, let us
now look at how to realize the above three properties in turn:

Trace Property (1) above is realized by converting the symmetry structure
of the data set into the input group of a machine. This is illustrated with a
square in Fig. 2.11. Only the Z4 level of the square has been shown here. The
figure represents the square as the state-transition diagram of a machine, in
which the input group is Z4, and the machine states are the four states of a
side. Notice therefore, that the entire input group acts on each of the sides -
i.e., four arrows emerge from each side, the arrows being labeled by the four
members of Z4.

Trace Property (2) above is realized by initializing the machine; i.e., desig-
nating one of the sides to be the starting state. This state receives the group
identity element, and the other states are then characterized by the input
operations that produce them from the starting state. In Fig. 2.12 the top
side is chosen as the initial state.

Trace Property (3) above is realized by using the group’s generative struc-
ture. For ease of exposition, let us consider discrete groups. Any discrete
group can be represented by a set of generators and algebraic relations be-
tween those generators. This is called a presentation of the group. In the
simple illustration being considered, Z4, a presentation is

r90 : (r90)4 = e (2.11)

where, to the left of the colon, there is the list of generators (here there is
only r90), and to the right of the colon there is the list of relations between
the generators (here there is only one relation).

Now, the information given in Fig. 2.12, does not yet have the generative
structure of the square. For example, it does not tell us the order in which the
elements were generated; e.g., the element r90 might have been produced by
applying r270 three times to the identity element. The generative structure
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Fig. 2.11. A square as the state-transition diagram of a machine.

Fig. 2.12. A square as an initialized machine.
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Fig. 2.13. A square as a trace.

will come from the chosen group presentation. Thus let us choose the presen-
tation given in expression (2.11) above. This gives Fig. 2.13, which explicitly
shows how the square was generated. Notice that the square is now defined
as a trace structure.

In summary, the reader can see that the trace structure is realized in three
stages:

INFERENCE OF TRACE STRUCTURE.

(1) Convert the symmetry group of the data set into an input group
for a machine describing the data set.
(2) Initialize the machine.
(3) Convert the input group into one of its group presentations.

2.16 Roots

It is worth giving here a definition which will be useful later in the book. Re-
call that, up to isomorphism, there exist only two connected 1-parameter Lie
groups: R and SO(2). Thus, in the case where the 1-dimensional groups used
in the Externalization Principle are continuous, then they will be isomorphic
to R or SO(2).

Definition 2.3. Given an iso-regular group G1w©G2w©. . . w©Gn, used for the
Externalization Principle, any level Gi that is isomorphic to either R or
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SO(2) will be called a root of the iso-regular group; and R or SO(2) will
be called the roots of the externalization process.

In other words, an iso-regular group is built up using the roots and/or cyclic
groups. Roots will be particularly important in understanding computer-
aided design. Notice for example that the generative group of a cylinder
SO(2)w©R consists only of roots.

2.17 Inferred Order of the Generative Operations

The Asymmetry Principle (p. 42) says that the sequence of generative ac-
tions are recoverable only if they are symmetry-breaking on the successively
generated states. The following concept will now be needed:

Definition 2.4. An operation will be said to be structurally allowable to
the extent to which it preserves the symmetry of a state.

This leads to the following rule:

INTERACTION PRINCIPLE. The symmetry axes of an organization
become the eigenvectors of the structurally most allowable operations appli-
cable to the organization.2

This rule is crucial in determining the order of the generative operations:

GENERATIVE ORDER RULE. The inferred order of the generative
operations is the order of their structural allowability.

In fact, this follows from the History Symmetrization Principle (p. 61) since
a generative sequence having the order of structural allowability will have
minimal distinguishability. Let us consider some examples.

Return first to the rotated parallelogram example Fig. 2.3 (p. 40). Con-
sider the starting state in that diagram - i.e., the square. It is important
to notice that the horizontal and vertical symmetry axes of the square are
aligned with the gravitational symmetry axes of the environment. These axes
are the most salient symmetry axes of the human visual system, and the
2 In this principle, we shall also use the term eigenvector with respect to an in-
variant line of a translation group. One can think of the invariant line as corre-
sponding to what could be called an ”affine” eigenvector.
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square is maximally aligned with this group. As the square is successively
altered into the rotated parallelogram, it will successively break the gravi-
tational symmetries. We shall now see that this succession accords with the
Interaction Principle and Generative Order Rule:

Stretch. The stretch operation from the square to the rectangle is symmetry-
breaking in that it destroys the diagonal symmetry axes. However, it preserves
the horizontal and vertical symmetry axes. Most crucially, these two axes in
the square become the eigenvectors of the stretch transformation - in accord
with the Interaction Principle.

Shear. The second applied operation, shear, destroys the vertical symmetry
axis, and retains the horizontal symmetry axis in a weakened form as the
bisection axis. Notice that shear has a single independent eigenvector and that
this is along the horizontal axis. Thus the eigenvector of shear is aligned with
the axis of horizontal bisection. This once again accords with the Interaction
Principle.

Rotation. The final generative operation, rotation, causes the square to
break both of the gravitational symmetry axes. Notice that the rotation has
0 eigenvectors.

Thus, relative to the gravitational symmetries, the order of the three op-
erations stretch, shear, and rotation, is the order of structural allowability.
Correspondingly, the eigenspace dimensions of the three operations are suc-
cessively 2, 1, 0. This accords with the Generative Order Rule.

As another example, consider the creation of a goblet, Fig. 2.14b. This
is a standard example of a sweep: i.e., the goblet is generated by moving
the circle cross-section upward along the vertical axis, while expanding and
contracting this cross-section. Now consider the starting state, the circle. It
is has two types of symmetry axes, both of which are shown in Fig. 2.14a:
(1) a rotation axis perpendicular to the plane containing the circle; and (2)
reflection axes along the circle’s diameters. In accord with the Interaction
Principle, these two types of symmetry axes become the eigenvectors of the
sweeping movement: The first type of axis (the rotation axis) becomes the
(affine) eigenvector of the upward sweeping motion. The second type of axis
(the reflection axes along the diameters) become the eigenvectors of the ex-
pansion and contraction operations.

Thus it can be seen that the sweeping operations consist of the most
structurally allowable operations on the circle (i.e., those that preserve the
symmetry axes). Now if one deforms the goblet - e.g., it melts in the sun - then
one would be destroying the symmetry axes. Notice therefore, if one wants
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Fig. 2.14. Symmetry axes of the circle (a) become eigenvectors of the sweeping
process (b).

to generate such a shape, one would first apply the structurally allowable
operations of sweeping - creating the goblet - and then apply the melting
deformation. One would not try to apply the operations in the reverse order.
This accords with the Generative Order Rule.

2.18 Symmetry-Breaking vs. Asymmetry-Building

The Asymmetry Principle says that the generative operations must be
symmetry-breaking in the forward-time direction. To maximize transfer and
recoverability, we need to strengthen this concept, as follows:

Let us consider the projection of an environmental square onto its dis-
torted image on the retina as shown in Fig. 2.15. It is clear that the environ-
mental square has symmetry group D4 (the dihedral group of order 8), and
the image square has symmetry group Z2, which corresponds to its vertical
symmetry. That is, the projective process creates the following transition of
symmetry groups:

D4 −→ Z2. (2.12)

Notice that the second group is a subgroup of the first group. Thus the
symmetry-breaking effect is given by going from the full symmetry group to
one of its subgroups.

Now we come to the crucial point: Because the group operations are being
lost, generative information is actually being lost. We are therefore going to
consider two different methods of representing the symmetry-breaking action
of the generative process. The first is the one just considered.
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Fig. 2.15. An environmental square projected onto the retina.

SPECIFICATION OF GENERATIVITY: METHOD 1. The gen-
erative process is specified as symmetry-breaking which is represented as the
reduction in symmetry group.

This method has certain advantages which will be exploited at times. How-
ever, there is a much more powerful method that we will now introduce, that
does not have the fault of loosing generative information. This method uses
transfer.

To illustrate, return to the example of the projection of a square in
Fig. 2.15. Instead of characterizing the transition as one of group reduction
D4 −→ Z2, we will characterize it as one of group increase, using transfer
thus:

D4 −→ D4w©PGL(3,R). (2.13)

Notice that the group D4 occurs both before and after the arrow. That is,
the group is not lost. What happens after the arrow is that we extend this
group by the projective group PGL(3,R); i.e., we enlarge the original sym-
metry group. This is exactly what we need to express the generativity - i.e.,
the increase in generative operations over time. Most crucially, the method
we choose to create the group extension is the wreath product - i.e., transfer.
Close examination reveals that this wreath product captures all the infor-
mation in the phrase ”projectively distorted square.” Notice that the wreath
product therefore captures the recoverable structure. In other words, it cap-
tures both transfer and recoverability.

Observe also that the group PGL(3,R), which is added as a control group,
is responsible for the asymmetrization of the square. This is essential to the
way we will set up control groups. We shall speak of any control group as the
symmetry group of the asymmetrizing process. In fact, any wreath level can
be described as such.

SPECIFICATION OF GENERATIVITY: METHOD 2. The gener-
ative process is specified as asymmetry-building which is represented by group
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extension via wreath product; i.e., transfer. The extending group is a symme-
try group of the asymmetrizing process.

We shall see that, in the generative theory, the wreath extensions can also
be built downward, i.e., the first group can become the control group with
respect to which the added group becomes the fiber group. For example, this
is basic to a very important class of generative situation we shall call sub-local
unfoldings. Nevertheless, the statement of Method 2 also characterizes this
type of situation.

Methods 1 and 2, described in this section, will be called respectively
symmetry-breaking and asymmetry-building. One should think of the two ap-
proaches as occurring in parallel during the generative process. However, be-
cause the term ”symmetry-breaking” is very familiar to the public, we shall,
in most cases, choose this term to describe the simultaneous action of the two
methods. Nevertheless, the reader should always understand that the second
approach is the far more powerful one that is actually occurring.

2.19 Against the Erlanger Program

Our theory of shape affords a theory of geometry which will be called gen-
erative geometry. It will be seen that generative geometry is fundamentally
the opposite of Klein’s theory of geometry, which has been the basis of much
of 20th century mathematics and physics. Klein’s theory, also called the Er-
langer Program, states that geometry is the study of invariants under some
assumed group of transformations.

It will take us a considerable amount of discussion to understand why the
two geometry theories are the opposite of each other. But, a basic sense of
this can be gained from the following point:

GENERATIVE GEOMETRY vs. KLEIN’S THEORY OF GEOM-
ETRY. You cannot recover a generative sequence from an object if it is
invariant under the generative actions.

The remarkable thing is that, although Klein’s theory has been the basis of
much of 20th century science, we shall argue that it is deeply inadequate
for the scientific, computational, and design disciplines. We argue that these
disciplines require the very different approach elaborated in this book. The
reason is that they all fundamentally rely on the recovery of causal or gen-
erative actions from shape. Thus, with respect to the scientific disciplines,
the entire program of a science is aimed at the recovery of the sequence of
environmental events that lead up to the state appearing on the measuring
instruments. Again, in the computational disciplines, computer vision is set
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up to recover the environmental structure from the image structure. Fur-
thermore, in machine learning, Carbonnel [17] has argued that any advanced
computational system needs to be able to recover its own computational his-
tory, in order to be able to modify that history, if the current state is not the
desired one. Again, in the design disciplines, Hoffmann [58], Chen & Hoff-
mann [20], have argued that recovering the design history is essential because
it allows editability of the design decisions. Again, in computer-aided manu-
facturing, the inference of machining operations is really the inference, from
the delta shape, of operations that will generate that shape.

Thus, in complete contrast to the Klein approach, which is non-recoverable
- due to invariance under operations - we argue that each of the above disci-
plines requires geometry to be defined in a recoverable way.

2.20 Memory

In our theory of shape, geometric objects are constructed in order to retain
information of past applied operations. In Klein’s theory, geometric objects -
being invariant under the applied operations - do not retain that information.

We argue that this issue is at the very basis of memory. Quite simply,
an object cannot be used for memory storage if it is invariant under applied
operations. That is, the object is memoryless with respect to the applied
operations. Memorylessness is equivalent to non-recoverability. Conversely,
the capacity to store information is equivalent to recoverability.

One of the principle aims of this book is to give a theory of memory
storage. We argue that all memory storage takes place via geometry. In fact,
a fundamental proposal of our theory is this:

Geometry ≡ Memory Storage.

Certainly, one can see that our theory says that geometry implies memory
storage, due to our principle of the maximization of recoverabilty. However,
we also claim the reverse implication, that memory storage implies geometry.
Currently we regard this reverse claim as an empirical one; i.e., any time an
object is used as a memory storage it is its geometry that entirely carries
that function.

This will enable our generative theory of shape to explain the structure
of memory storage devises in the world. For example, consider the structure
of a magnetic memory core in a computer. It consists of a grid with a Z2 flip
element located at each node point. This structure is given by an iso-regular
group, in which the translation lattice is the control group and the Z2 element
is the fiber group. Our theory explains why an iso-regular group is chosen.
Such a group best retains the effects of applied operations.
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Let us also look at two scientific examples. First, consider the large-space
structure of space-time. In general relativity, this is given by curvature. Cur-
vature holds the effect of gravitation, which deforms flat space-time into
curved space-time. This means that curvature is used to recover the defor-
mational action of gravitation on flat space-time. Thus curved space-time
is the memory store for gravitational action. We will call this the memory
structure of general relativity.

Now consider quantum mechanics. Consider, for example, the standard
method of modeling the hydrogen atom by successive perturbation. First,
the principal Hamiltonian of this atom holds the effect of the Coulomb elec-
trostatic potential; e.g., the shape of the potential energy function deviates
from the translationally symmetric (constant) structure of the free parti-
cle potential. The fine structure splitting of the Colomb model then records
the interaction between the electron’s spin and orbital angular momentum.
Then the hyperfine splitting records the interaction between the proton and
electron spins. Thus, the split spectroscopic structures are memory of those
perturbations. This exemplifies what we will call the memory structure of
quantum mechanics.

Generally, we will develop a theory of science in which the following is
our fundamental proposal:

THE MEMORY-RETRIEVAL THEORY OF SCIENCE. All the
laws of science have been set up for the single purpose of retrieving memory
from objects in the external environment (e.g., from space-time curvature,
spectroscopic data, biological tumors, etc.). In this view, science is the means
of extending the memory-retrieval functions, internal to the computational
system, to objects in the external environment of the computational system.
This retrieval forces the external environment to become part of the compu-
tational system itself.

2.21 Regularity

Regularity is almost never discussed as a cognitive concept. An exception
is the Bayesian approach to regularity advocated by Richards, Jepson &
Feldman [127]. and Feldman [35].

In contrast to that approach we develop here an algebraic approach. Con-
ceptually, we define regularity as transfer. As a simple illustration, consider
the regularity that on Monday afternoons I teach a course in a certain lecture
theater. To observe (or create) this regularity in my life I must be able to
transfer a system of actions across time, e.g., the walk to the lecture hall
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must be transferred from Monday to Monday, etc. Generally, some group (or
semi-group) of actions must be transferred under the action of another group
(or semi-group) of actions.

According to the mathematical theory, which begins in the next chap-
ter, the appropriate formulation for this is wreath products. More fully, this
algebraic approach will be substantiated by an intensive review of regular-
ity in branches of physical science such as general relativity and quantum
mechanics, as well as computational disciplines such as computer vision.

In this section, we point out the deep relation between the theory of
regularity and the issue of recoverability, as follows: One of our two main
rules for recoverability, the Asymmetry Principle, states that recoverability of
a generative program is possible only if the program is symmetry-breaking on
successive generative states. That is, the structure must become successively
more asymmetric over time - i.e., successively more irregular.

Now a major aspect of our theory is that all irregularity is described
by embedding it within a regular structure. The reader can begin to see
this from the discussion in Sect. 2.18, where we distinguished between two
methods of specifying the effects of the generative process. Method 1 specifies
the successive generative structure by a decrease of symmetry group. Method
2, which is the method invented in this book, specifies the successive structure
by group extension via wreath product; i.e., transfer. The extending group is
a symmetry group of the asymmetrizing process.

Because each level is a symmetry group, it creates a regularity. Yet because
it has a symmetry-breaking action on its fiber, which is also a symmetry
group, one is actually creating an irregular structure. Thus the irregularity is
entirely encompassed within a regularity. This is an extraordinarily powerful
devise as will be seen. The purpose of this book is to give a theory of complex
shape. No matter how complex, i.e., irregular, the shape becomes, it always
is described as a completely regular object.

2.22 Aesthetics

In Sect. 1.18 (p. 32), we proposed that aesthetics is the maximization of
transfer. In fact, this will be only half of our main proposal concerning the
nature of aesthetics. The other half involves recoverability, as follows:

Consider for example physics. Current models explaining the physical
constitution of the universe argue for a succession of symmetry-breakings
from the underlying starting state (first to hypercharge, isospin, and color,
and then to the electromagnetic guage group). There is considerable puzzle-
ment in physics as to why backward symmetrization from the present data
set should be the case, and this is linked to the general bewilderment that
Wigner expressed in his famous phrase concerning the ”unreasonable power
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of mathematics” in physics - by which he really meant the unreasonable power
of symmetry in physics. However, according to our theory, symmetry gener-
ally, and the backward symmetrization, in particular, is entirely explicable. It
comes from the Asymmetry Principle which states that a generative sequence
is recoverable only if present asymmetries go back to past symmetries in the
generative sequence. In other words, symmetries have an inferential role with
respect to discovering generative structure.

Now let us return to the issue of aesthetics. The term aesthetics in physics
is often linked to the use of symmetries to represent past generative states.
Therefore, putting this notion together with the considerations of Sect. 1.18,
there appear to be two uses for the term aesthetics in physics (1) the char-
acterization of transfer, and (2) the characterization of recovered states. In
fact, one can see this in all aspects of quantum mechanics; for example, in
spectroscopy, e.g., in the fine/hyperfine structure of the hydrogen atom as
described at the end of Sect. 2.20.

The question therefore is this: To what extent are these two situations
of aesthetic judgement separate from each other? Our theory tells that they
are not separate. We showed in sections 2.14 and 2.18 that each level of the
wreath hierarchy necessarily takes on simultaneously the role of transfer and
recoverability. To use physics as an example: The symmetry group acts both
as the past state and as the operational structure that transfers flow lines
of the Schrödinger equation onto each other. This is clearly evidenced for
example in spectroscopy. Thus our complete definition of aesthetics can now
be stated:

Aesthetics is the maximization of transfer and recoverability.

In this way, we will see that aesthetics is closely linked to functionality. Func-
tionality comes from the transfer structure, e.g., as in the differential equa-
tions of physics. Recoverability ensures that the functionality is inferrable.

This allows us also to give a theory of art-works:

Art-works are maximal memory stores.
The rules of aesthetics are therefore the rules of memory storage.

2.23 The Definition of Shape

In Sect. 1.17, we defined the shape of a data set as the transfer structure of a
machine whose state space is the data set. This again, is half of the definition,
since it corresponds to the transfer component of our theory. The definition
becomes complete when we add the recoverability component:

The shape of a data set is the recoverable transfer structure
of a machine whose state space is the data set.
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Notice, as a consequence of this, we have an equivalence between geometry,
memory storage and aesthetics. For example, only this will explain the link
between geometry, explanation, and aesthetics in scientific theory. This three-
fold equivalence will be mathematically rigorized in this book, starting with
the next chapter.
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3.1 Shape Generation by Group Extensions

The reader will recall that a basic principle of our generative theory of shape
states that one must make one part of the generative sequence a transfer of
another part of the generative sequence, whenever possible. We are going to
develop an algebraic theory of how this can be achieved.

First, our theory says this: Shape-generation proceeds by the successive
addition of structural elements. Each structural element corresponds to a
group. The successive addition of structural elements corresponds to succes-
sive group extensions.

Structural elements −→ Groups.

Addition of structural elements −→ Group extensions.

Next, we require that the group extensions maximize transfer. This will force
the group extensions to be wreath products. We then have to invent a number
of classes of groups that will allow us to represent complex shape generation
only in terms of transfer. The invention of these groups will occupy us in
subsequent chapters. The purpose of the present chapter however is to fully
understand what is needed algebraically in any transfer situation, and to
exactly correspond this to the various structural features of a wreath product
(which will be fully explained).

This chapter will concern 2-level transfer. We shall argue that it takes
five successive stages to build up this 2-level structure. The reason is that the
2-level hierarchy is not a simple hierarchy.

In order to illustrate the five successive stages, we shall take an extremely
simple example throughout this chapter - and move onto much more com-
plicated examples in the subsequent chapters, such as machine assemblies,
and entire apartment buildings. The simple example is that of a square. One
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Fig. 3.1. Transfer of translation by rotation.

can consider the square to be a large obstacle, e.g., a table, around which
a robot is expected to manoeuver in the environment, or the cross-section
of an object, e.g., a block, which the robot is expected to manipulate. We
argue that any sophisticated robot must be able to perceive and exploit the
structure of transfer in the square, which is this: An individual side of the
square allows translational movements along it; the robot should notice that
any translational movement discovered on one side can be transferred to be-
come translational movement along any other side. In fact, the structure of
transfer on a square is illustrated in Fig. 3.1. Whether, the robot is moving
in an environment with a square obstacle, or manipulating an object with a
square structure, the robot becomes intelligent when it discovers that it can
transfer its movements in this way.

3.2 The Importance of n-Cubes in
Computational Vision and CAD

It is worth noting that squares, and more generally n-cubes, are fundamental
to computational vision and computer-aided design for the following reasons.
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Fig. 3.2. The domain of a parametrized 2-surface.

(1) Squares and gravitational frames. We shall see that the gravita-
tional frame controls all human perceptual organization. The square is the
smallest-order polygon that contains the symmetry structure of the gravi-
tational frame, and for this reason is the principal means of specifying any
frame - e.g., of a picture or diagram.

(2) Bases in Projective Geometry. It takes four points, no three of which
are collinear, to establish an unambiguous coordinate system for the projec-
tive plane P2, and therefore four such points are called a projective basis. The
fundamental theorem of planar projective geometry states that, given two or-
dered projective bases for P2, then there is a unique projective transformation
that maps one basis onto the other and preserves the order. In Chapter 22,
we will see that projective distortion is relative to an undistorted basis cor-
responding to the symmetry group of the square; i.e., it is the latter group
that allows recoverability.

(3) Normalized boundaries of surface patches. The most frequent ex-
ample of a surface patch in geometric modeling is one where the boundary is
the image of the rectangle. This is frequently normalized to the unit square.
The domain of the parametrized surface is illustrated in Fig. 3.2. and the
codomain is illustrated in Fig. 3.3. Standardly one builds up any surface as
the blending of such square-based patches. Squares have a symmetry struc-
ture that can be generalized easily to n-dimensional cubes. Thus the same
argument applies to higher dimensions.

(4) Control volume for free-form deformation. Free-form deformation
is a standard and powerful tool in 3D solid-modeling, and was invented by
Sederberg & Parry [139]. Here, one surrounds a complex object with a scaf-
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Fig. 3.3. The codomain of a parameterized 2-surface.

fold, and applies actions to selected nodes in the scaffold. The object inside
the scaffold deforms accordingly. The most frequently used scaffold shape is
a cube-based structure. Indeed, cubes are now being used as input tools for
deformation instead of a mouse; i.e., the designer holds a cube in his/her
hands and deforms it, resulting in corresponding deformations of the control
volume on the screen, Murakami & Nakajima [111].

All the above examples attest to the power of squares, or generally n-cubes,
as reference devises for complex structures. We need to explain why this is
the case, and in order to do this we first need to give a mathematical theory
of what n-cubes actually are.

3.3 Stage 1: Defining Fibers and Control

We now go through the five-stage procedure for constructing a square as a
transfer structure.

Standardly, in mathematics, the square is regarded as having D4 as its
symmetry group. However, D4 does not characterize a square because it is
equally applicable, for example, to many types of snowflakes, etc. We want to
develop a symmetry group that uniquely characterizes a square. This group
will be intimately connected to the generative structure of a square, because
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our Symmetry-to-Trace Conversion Principle states that the plan for drawing
a square comes from its symmetries. This basic example will occupy us for
most of this chapter. When one fully grasps it, one will then be able to
understand transfer in any situation.

We shall see that any transfer structure involves five group actions. Recall
the definition of a group action from elementary group theory: If G is a group
and X is a set. Then a function

α :




G × X −→ X

( g , x ) �−→ gx

is called a group action if it satisfies:

G1: ex = x for ∀x ∈ X .

G2: g(hx) = (gh)x for ∀g, h ∈ G, ∀x ∈ X .

Standardly X is called a G-set. The function α will be called the action
equation.

Now we saw that a square has a transfer structure in which Level 1 is
given by the group of translations and Level 2 is given by Z4 as the group of
900 rotations. Both of these two levels should be expressed as group actions
thus:

LEVEL 1: The Fiber Level

Expressed as a group action, Level 1 consists of a set - the set of points
along a side - and a group - the group of translations along the side. Let us
assume that the side is of infinite length and that finiteness can be obtained
by wreath sub-appending an occupancy group Z2, in accord with Sect. 2.8.
The occupancy structure will be ignored in this chapter.

Now the set of points along the side will be called the fiber set, and
the translation group acting along this set will be called the fiber group.
Generally, the following notation will be introduced:

F = Fiber set
G(F ) = Fiber group.

The group action of the fiber group on the fiber set will be denoted by:


G(F ) × F −→ F

( T , f ) �−→ Tf

i.e., this describes the action of translations G(F ) along a side F .
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LEVEL 2: The Control Level

Expressed as a group action, Level 2 consists of a set - the set of four positions
of a side - and a group - the rotation group Z4 from side to side. The set of
side-positions is

c1 = top, c2 = right, c3 = bottom, c4 = left,

and the group of four rotations is

Z4 = { e, r90, r180, r270 }

where rθ means rotation by θ degrees.
The set will be called the control set, and the group will be called the

control group. Generally, the following notation will be introduced:

C = Control set
G(C) = Control group.

The group action of the control group on the control set will be denoted by:



G(C) × C −→ C

( r , c ) �−→ rc

i.e., this describes the rotations G(C) on the side-positions C.

Summarizing this section: Level 1 (the fiber level) and Level 2 (the control
level) are each given by a group action.

3.4 Stage 2: Defining the Fiber-Group Product

In this section, the action of rotations will be ignored, and the action of
translations will be studied further. Previously, translations were understood
as acting on an individual side. However, we will also understand them as
acting on the square as a whole, as follows:

There are four copies of the translations group G(F ), one on each side.
Let us simply label the copies by their respective sides thus:

G(F )c1 , G(F )c2 , G(F )c3 , G(F )c4 .

Notice, most crucially, that the four copies are labeled by the four members
of the control set C.

Now let us take the direct product of these four copies:
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Fig. 3.4. Composition of elements from the fiber-group product.

G(F )c1 ×G(F )c2 ×G(F )c3 ×G(F )c4 .

This group will be called the fiber-group product. Any element from this
group is a vector of the form

( Tc1 , Tc2 , Tc3 , Tc4 ) (3.1)

where Tci ∈ G(F )ci . Notice that Tci is a translation along side ci. Thus a
vector of the above form is a selection of one translation on each of the four
sides, respectively. Since these four translations are selected independently,
they can be translations by different amounts.

Because the fiber-group product is a direct product, multiplication of
elements in the group is componentwise. That is, given two vectors ( Tc1 ,
Tc2 , Tc3 , Tc4 ) and ( Sc1 , Sc2 , Sc3 , Sc4 ), from the fiber-group product,
multiplication is given thus:

( Tc1 , Tc2 , Tc3 , Tc4 ) ( Sc1 , Sc2 , Sc3 , Sc4 )
= ( Tc1Sc1 , Tc2Sc2 , Tc3Sc3 , Tc4Sc4). (3.2)

This is illustrated in Fig. 3.4, where the element ( Tc1 , Tc2 , Tc3 , Tc4 ) is
shown as the first figure; the element ( Sc1 , Sc2 , Sc3 , Sc4 ) is shown as the
second figure; and their composition is shown as the third figure. Notice the
following fact about the third figure: On each side, we have added together
the two translations from that side on the previous two figures. This means
that, within each side, we are simply using the group structure on that side.
Finally, observe that the multiplicative result, shown in the second line of
expression (3.2) is itself a vector from the fiber-group product, which means
of course that the fiber-group product is closed as a group.

Notation 3.1 When the square is being discussed, the fiber-group product
will be specifically notated as the 4-fold direct product, G(F )c1 × G(F )c2 ×
G(F )c3 × G(F )c4 , defined above. When the general case of transfer is being
discussed, the fiber-group product will be notated as an n-fold direct product,
G(F )c1 ×G(F )c2 × . . .×G(F )cn .
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Fig. 3.5. A square before the sides have been cut down by the occupancy group.

3.5 The Fiber-Group Product as a Symmetry Group

We are now going to see that the fiber-group product G(F )c1 × G(F )c2 ×
G(F )c3 × G(F )c4 acts as a symmetry group on the square. Notice that we
are using only the translational structure of the square, not the rotation
structure.

Fig. 3.5 shows the square. In this diagram, each side is indicated as infinite.
It is best to understand the square as four infinite wires.

Now let us take any element from the fiber-group product, that is, any
vector, ( Tc1 , Tc2 , Tc3 , Tc4 ), and apply it to the square. The vector tells us
to translate the top side - as an infinite wire - along itself, by the amount Tc1 .
It also tells us to translate the right side - as an infinite wire - along itself,
by the amount Tc2 . And so on for the other two sides. That is, each side is
translated as an infinite wire along itself, by the designated translation for
that side.

It is clear that, when these four translations are applied in the way just de-
scribed, the square will simply map to itself. That is, the fiber-group product
acts as a symmetry of the square.

3.6 Defining the Action of the Fiber-Group Product
on the Data Set

The symmetry defined in the previous section is based on a group action of
the fiber-group product on the square. We will define this group action in the
present section.

First, observe that any point on the square can be specified hierarchically
thus:

( f , c ) = ( position within side , position of side around square )

where f is a member of the fiber set F , and c is a member of the control set
C. Therefore, the set of points on the square can be defined to be this:
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Fig. 3.6. A vector of translations.

F × C

where × is the ordinary, set-theoretic Cartesian product. This set will often
be referred to as the data set.

Now the group action that will be considered is that of the fiber-group
product G(F )c1× G(F )c2× G(F )c3× G(F )c4 on the data set F×C. Thus
consider, for example, an element

( Tc1 , Tc2 , Tc3 , Tc4 )

from the fiber-group product, as shown in Fig. 3.6. It is necessary to under-
stand its effect on the particular point, for example:

(f, c2)

shown in Fig. 3.7. Notice that the coordinate c2 of this point indicates that
it is on the second side of the square. Its other coordinate f indicates the
position within that side.

Fig. 3.7. The pair of coordinates defining a point.

Let us consider the action. Observe first that, if the four translations
shown in Fig. 3.6 are applied to the whole square, each side would be trans-
lated along itself using on each side only the translation assigned to that side.
The consequence of this is that, when the four translations are applied only
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Fig. 3.8. The side selects the translation.

Fig. 3.9. The coordinates of a translated point.

to the point (f, c2) on the second side, only the translation assigned to the
second side will be used. The result of this translation in shown in Fig. 3.8.
Thus, the application of ( Tc1 , Tc2 , Tc3 , Tc4 ) to (f, c2) results in the point:

( Tc2f, c2)

where the reader can see that only the translation Tc2 has been applied.
This will be called the selective effect. Fig. 3.9 depicts the resulting action on
coordinates.

Generally, therefore, the group action of the fiber-group product on the
square is given by the following action equation

( Tc1 , Tc2 , Tc3 , Tc4 ) (f, ci) = ( Tcif , ci )

where one can see, on the right of this equation, that only the translation Tci

has been selected to act, because this is the translation belonging to the ci
side indicated on the left of the equation. In other words,

SELECTIVE EFFECT. In the group action of the fiber-group product
on the data set, the control coordinate ci in any data point (f, ci), selects the
component of the vector in the fiber-group product to be applied to the fiber
coordinate f of the data point.

The selective effect allows us to prove that the fiber-group product acts as
a symmetry group on the square. Recall the model of the square as depicted
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in Fig. 3.5. Notice that each side is really a set of the form:

( F , ci ) = the set of points on side ci.

Thus the entire square is of this form:

F × C = (F, c1) ∪ (F, c2) ∪ (F, c3) ∪ (F, c4).

The proof that the fiber-group product is a symmetry group of the square is
then simply this:

( Tc1 , Tc2 , Tc3 , Tc4 )[(F, c1) ∪ (F, c2) ∪ (F, c3) ∪ (F, c4)]
= (Tc1F, c1) ∪ (Tc2F, c2) ∪ (Tc3F, c3) ∪ (Tc4F, c4)

(by the action equation)
= (F, c1) ∪ (F, c2) ∪ (F, c3) ∪ (F, c4)

(by the group action of G(F ) on F )

IMPORTANCE OF THE FIBER-GROUP PRODUCT. The fiber-
group product captures that part of the full symmetry structure of the data set
which is due to the fiber group alone, i.e., without adding considerations of
the control group. Another way of saying this is that the fiber-group product
is the full symmetry structure of the data set before the additional control
symmetry has been detected.

The issue of detection is crucial to our system. As we shall see, it dictates
the order in which the stages are elaborated. Also note that Ishida [62] has
been concerned with a similar issue of detection.

Now consider this: We have seen that the fiber-group product of the square
translates each side independently. Thus, one can think of the direct-product
decomposition G(F )c1× G(F )c2× G(F )c3× G(F )c4 as allowing computation
with respect to each side to occur separately and simultaneously. Generally
we have this:

PARALLEL COMPUTATIONAL LEVEL. The fiber-group product
being a direct product allows for parallel computation. The fiber-group product
defines what will be called the parallel level in the computational system
detecting transfer; e.g., in a perceptual system.
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3.7 Stage 3: Action of G(C) on the Fiber-Group
Product

The previous stage considered only the translation structure of the square. In
the present stage, the rotation structure will be added. We can say therefore
that this stage corresponds to the detection of the rotation structure.

Now, before this rotational structure is detected, the individual transla-
tional structures of the four sides are seen as independent of each other, as
given by the direct-product operation of the fiber-group product. The detec-
tion of the rotational structure is equivalent to detecting a group action of
rotations on the fiber-group product. This group action rotates the trans-
lation structure from side to side around the square. The group action is
therefore equivalent to the transfer structure.

Section 3.3 defined the rotation structure as the control group G(C) = Z4

= { e , r90 , r180 , r270 }, acting on the control set C = { c1 , c2 , c3 , c4 },
the set of four positions for a side. This action is given by:

β :




G(C) × C −→ C

( r , c ) �−→ rc.
(3.3)

However, what interests us, in this section, is the effect of rotations on
the translation structure of the square. This will be specified by applying the
group action β in (3.3), to the indexes of the fiber-group product

G(F )c1 ×G(F )c2 ×G(F )c3 ×G(F )c4 .

Thus, given an element g from the control group G(C), its action on
the sides { c1 , c2 , c3 , c4 } is to send them to their rotated ver-
sions { gc1 , gc2 , gc3 , gc4 }. Correspondingly, its action on a vector
( Tc1 , Tc2 , Tc3 , Tc4 ) from the fiber-group product is to send it to the
vector:

( Tgc1 , Tgc2 , Tgc3 , Tgc4 ).

If one thinks of G(C) as permuting the members of C, then G(C) will have
the same permutational action on the indexes of the fiber-group product. In
particular, this will mean that G(C) permutes the fiber-group copies G(C)ci

amongst themselves. As we will see, this permutation corresponds to transfer.

Definition 3.1. Consider the action of the control group on the control set.
Consider correspondingly the action of the control group on the indexes of
the fiber-group product. This latter action will be called the raised action of
the control group from the control set to the fiber-group product. It is simply
this: Given an element g ∈ G(C), then its raised action on the fiber-group
product is this:

G(F )c1 ×G(F )c2 × . . .×G(F )cn −→ G(F )gc1 ×G(F )gc2 × . . .×G(F )gcn .
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Simple as it is to state the particular group action of G(C) on the fiber-
group product in terms of indexes, it turns out that this action is mathe-
matically very deep. The indexes are labels on algebraic structures, and the
action just defined has a powerful effect on those algebraic structures, which
will be explored as follows:

3.8 Transfer as an Automorphism Group

It will now be seen that any g ∈ G(C), applied to the fiber-group product
in the above way, is an automorphism of the fiber-group product. First of
all, the effect of g is obviously one-one and onto, since it merely ”permutes”
the fiber-group copies. Secondly, g acts homomorphically on the fiber-group
product; i.e., it preserves the group structure of the fiber-group product. That
is, the effect of g on the multiple of two vectors from the fiber-group product
is the same whether g is applied before or after the multiplication. To see this,
take any two vectors ( Tc1 , Tc2 , Tc3 , Tc4 ) and ( Sc1 , Sc2 , Sc3 , Sc4 )
from the fiber-group product. If they are multiplied together, using (3.2) on
p. 83, we get

( Tc1Sc1 , Tc2Sc2 , Tc3Sc3 , Tc4Sc4) = ( Vc1 , Vc2 , Vc3 , Vc4 ).

Then applying g to this, we get

( Vgc1 , Vgc2 , Vgc3 , Vgc4 ). (3.4)

Conversely, applying g first to both ( Tc1 , Tc2 , Tc3 , Tc4 ) and ( Sc1 , Sc2 ,
Sc3 , Sc4 ), and then multiplying the result, we get

( Tgc1Sgc1 , Tgc2Sgc2 , Tgc3Sgc3 , Tgc4Sgc4)

which is the same as (3.4). Therefore, it is clear that g acts homomorphically
on the fiber-group product, and is therefore an automorphism of the fiber-
group product.

This means that the raised action corresponds to a particular map τ from
the control group to the automorphism group of the fiber-group product. In
the case of the square, we have:

τ : G(C) −→ Aut[G(F )c1 ×G(F )c2 ×G(F )c3 ×G(F )c4 ].

Generally, we have this:

Definition 3.2. The representation of G(C), corresponding to the raised ac-
tion from the control set to the fiber-group product, will be called the transfer
representation or τ-representation of G(C). This representation is de-
fined as follows:
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τ : G(C) −→ Aut[G(F )c1 ×G(F )c2 × . . .×G(F )cn ]

where τ sends g ∈ G(C) to the automorphism

τ(g) : G(F )c1×G(F )c2×. . .×G(F )cn −→ G(F )gc1×G(F )gc2×. . .×G(F )gcn .

The raised action of G(C) will also be called the transfer action or τ-action
and, in this capacity, G(C) will be called the transfer-automorphism
group or τ-automorphism group, and the members of the group will be
referred to as the transfer automorphisms or τ-automorphisms.

Obviously, the letter τ will represent the word transfer. Notationally, its ac-
tion will be written from the left, thus:

τ(g)[( Tc1 , Tc2 , . . . , Tcn )] = ( Tgc1 , Tgc2 , . . . , Tgcn )

3.9 Stage 4: Splitting Extension of the Fiber-Group
Product by the Control Group

Stage 2 detected the translational structure of the entire square, and Stage
3 detected the fact that the translational structure had a transfer structure
given by rotations. We are now going to model the successive detection of
these two structures as a splitting extension1 of the first by the second.

Recall that a splitting extension is of the form

G = N s©σH (3.5)

where N is a normal subgroup of G, H is a complement of N in G, and

σ : H −→ Aut[N ]

is some chosen homomorphism which will be called a representation of H
in Aut[N ]. The structure of the extension depends on the particular chosen
automorphic representation σ.

Now, we are interested in creating a splitting extension of the fiber-group
product by the control group. In the case of the square, this means creating a
splitting extension of the translation structure G(F )c1 ×G(F )c2 ×G(F )c3 ×
G(F )c4 by the rotation structure G(C) = Z4. That is, using the notation
N s©σH , the components are:

N = G(F )c1 ×G(F )c2 ×G(F )c3 ×G(F )c4
H = G(C)

1 The reader who is not familiar with splitting extensions or semi-direct products,
should read Appendix A before continuing.
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and the splitting extension is this:

[G(F )c1 ×G(F )c2 ×G(F )c3 ×G(F )c4 ] s©τ [G(C)]. (3.6)

The following facts should be noticed about this structure: (1) The fiber-
group product is the normal subgroup of the extension. (2) The automorphic
representation, on which the extension is based is the transfer representation

τ : G(C) −→ Aut[G(F )c1 ×G(F )c2 ×G(F )c3 ×G(F )c4 ].

given in Definition 3.2. This means that the group G(C), to the right of the
semi-direct product symbol s© in expression (3.6) acts on the indexes of the
group G(F )c1 × G(F )c2 × G(F )c3 × G(F )c4 to the left of the symbol s©.
This is equivalent to rotating the translation structure from one side to the
next around the square; i.e., transfer. In the general case, we will describe
hierarchical detection of transfer thus:

HIERARCHICAL DETECTION OF TRANSFER. Detection is best
modeled as a splitting extension of a fiber-group product by a control group:

[G(F )c1 ×G(F )c2 × . . .×G(F )cn ] s©τ G(C) (3.7)

where
τ : G(C) −→ Aut[G(F )c1 ×G(F )c2 × . . .×G(F )cn ]

is the τ-representation given in Definition 3.2.

3.10 Wreath Products

Return to the example of the square. Although expression

[G(F )c1 ×G(F )c2 ×G(F )c3 ×G(F )c4 ] s©τ [G(C)] (3.8)

is lengthy, it is built up entirely using only two components G(F ) and G(C).
Extracting these two components we write

G(F ) w© G(C). (3.9)

The product w© is called a wreath product. In other words, there are two
different notations for the same construction, respectively (3.8) and (3.9).
The first uses the semi-direct product symbol s©, and places to the left of this
symbol, the entire fiber-group product. The second uses the wreath-product
symbol w©, and places to the left of this symbol, only the fiber group. In the
general case, the two notations are respectively:
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[G(F )c1 ×G(F )c2 × . . .×G(F )cn ] s©τ G(C) (3.10)

and
G(F ) w© G(C). (3.11)

Using the notation and terminology of the previous sections, a wreath
product can now be defined in the following way: Consider two group
actions: the actions of groups, G(F ) and G(C), on sets, F and C, re-
spectively. The wreath product G(F )w©G(C) is the semi-direct product
[G(F )c1 × G(F )c2 × . . . × G(F )cn ] s©τ G(C), where the groups G(F )c
are isomorphic copies of G(F ) indexed by the members c of the set C.
The map τ : G(C) −→ Aut[G(F )c1 × G(F )c2 × . . . × G(F )cn ] is de-
fined such that τ(g) corresponds to the group action of G(C) on C, now
applied to the indexes ci in G(F )c1 ×G(F )c2 × . . .×G(F )cn . That is, τ(g) :
G(F )c1 ×G(F )c2 × . . .×G(F )cn −→ G(F )gc1 ×G(F )gc2 × . . .×G(F )gcn .
The final component of the definition of a wreath product will be given later.

WREATH PRODUCTS & INTELLIGENT SYSTEMS. We argue
that wreath products are the entire structural basis of intelligent systems. This
is because systems are intelligent when they maximize transfer and recover-
ability, and we argue that the appropriate model for transfer and recoverability
is wreath products. In particular, we have argued that the entire perceptual
and motor systems of human beings are structured by wreath products.

This section will conclude with some comments on terminology: First note
that the terms fiber group and control group, with respect to wreath products,
are entirely ours. These terms are not standard group-theoretic terminology.
We have introduced them for the following reasons:

(1) Neurophysiological Fibers. We claim that the human perceptual
and motor systems are structured in this way. Thus fiber groups in a wreath
product will literally correspond to fibers or columns in the nervous system.

(2) Differential Geometry. The terminology will also allow us to relate
wreath products to fiber bundles in differential geometry - which will be
essential in physics and computer-aided design.2 The same applies to our
term fiber-group product. Conventionally, in group theory, one calls this group
the base group of a wreath product. However, in setting up a correspondence
between wreath products in group theory and fiber bundles in differential
geometry, this will become misleading. It is the control group, in a wreath
2 Note that, in the domain of CAD/CAM, Zagajac [157] and Kumar, Burns, Dutta,
& Hoffmann [80] have introduced fiber-bundle models for representing composite
material structures with tensor properties.
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product, that corresponds to the base manifold in differential geometry. Thus,
the fiber-group product of the wreath product does not correspond to the base
manifold in differential geometry, but to the fiber bundle. Thus the term ”base
group” will be abandoned in labeling the fiber-group product.

3.11 The Universal Embdedding Theorems

According to our theory:

Cognitive systems are structured as wreath products. The
process of representing the world is the process of mapping
situations into the wreath products.

Therefore, critical to this must be the major theorems in mathematics con-
cerning embeddings into wreath products. The two fundamental embed-
ding theorems are the Krasner-Kaloujnine theorem in group theory, and the
Krohn-Rhodes theorem in semi-group theory. Indeed these theorems demon-
strate a remarkable universal power of wreath products as a representating
structure.

The Krasner-Kaloujnine theorem states that any group extension N E©H
can be embedded in a wreath product N w©H constructed from the same
components N and H . In other words, wreath products define a universal
embedding space for all group extensions. We give a lengthy explanation of
this theorem in our book on group extensions, Leyton [98].

The Krohn-Rhodes theorem [79] constitutes the major decomposition
theorem for machines. The applicability to machines relies on the funda-
mental relation between semi-groups and machines. Expressed in terms of
semi-groups, the Krohn-Rhodes theorem states this: Any finite faithful semi-
group action 〈S,X, α〉 divides an n-fold wreath product of semi-group actions,
where each is given either by a simple group or one of four elementary types
of collapsers.

3.12 Nesting vs. Control-Nesting

In Chapter 1, we described transfer intuitively as a control group pushing a
fiber group around some space. What we have done in the present chapter is
taken this initial description of transfer, and given it a formulation in terms of
wreath products. This has enormous advantages, as follows: (1) The wreath
product is a group that contains all the transferred versions of the fiber group.
Thus, rather than thinking of the transferred versions as separate algebraic
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structures, they are all integrated within a single algebraic structure. (2) This
single algebraic structure also encompasses the control group. And thus the
wreath product contains the network of algebraic connectivity that relates
the control group to the fiber group.

In this section we want to look at a particularly deep aspect of the ”al-
gebraic connectivity” between the control group and the fiber group. To do
this, we are going to distinguish between what we will call nesting and the
much more powerful phenomenon we will call control-nesting.

We will simply say that the nesting of group G1 within a group G2 occurs
when one creates a splitting extension of G1 by G2. Notice that this means
that G2 acts as an automorphism group ofG1. (Appendix A explains splitting
extensions.)

In contrast, we will say that the control-nesting of a group G1 within a
group G2 occurs when one creates a wreath product of G1 and G2. A critical
feature emerges: G2 no longer acts as an automorphism group of G1; that is,
it does not send G1 onto itself. Instead G2 moves G1 around. In other words,
it controls the position of the group G1.

Nevertheless, the remarkable thing is that G2 does act as an automor-
phism group on something: It acts as an automorphism group of the fiber-
group product. It maps the fiber-group product to itself because - although it
does not send any individual copy of G1 to itself - it does send the total set
of copies to itself. This leads to the following profound effect:

DICHOTOMOUS EFFECT. Nested control arises from the following
dichotomous effect: By acting as an automorphism group on the fiber-group
product and not on the fiber group, the control group preserves the fiber-group
product but not the fiber group. This forces the fiber group to be moved around
within the fiber-group product. Thus the dichotomous effect is responsible for
transfer.

Notice that the reason for the dichotomous effect is that the fiber-group prod-
uct is a normal subgroup of the wreath product, whereas the fiber-group is
not. This relates to the comment p. 14 on normal subgroups and generativity,
where, in particular, we discussed the appropriate description of the cylinder
as a sweeping structure. The standard representation of a cylinder (e.g., in all
of crystallography) takes the direct product of the cross-section group SO(2)
and the sweeping group R. This is a splitting extension of SO(2) by R, and
therefore does not allow for the movement of the cross-section along the cylin-
der - because SO(2) is a normal subgroup of the extension; i.e., SO(2) will
be sent only to itself under the action of R. In contrast, in the wreath product
of the cross-section group SO(2) and the sweeping group R, the cross-section
group SO(2) is no-longer a normal subgroup. Therefore SO(2) necessarily
moves under the action of the sweeping group R. Remarkably, this move-
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Fig. 3.10. A group element in the control-nested structure of a square.

ment takes place because the entire structure of cross-sections does form a
normal subgroup, and R has an automorphic effect on that structure. Thus,
it is the dichotomous effect that allows the generative process to take place.
This illustrates a fundamental part of our generative theory of shape.

3.13 Stage 5: Defining the Action of G(F ) w©G(C) on
F×C

This is the final stage in our definition of transfer: specifying the action of the
wreath-product group on the data set. It is necessary to consider the effect
of the individual group elements on the data.

Again, this will be illustrated with a square. Here, the wreath product
G(F )w©G(C) has the structure:

[G(F )c1 ×G(F )c2 ×G(F )c3 ×G(F )c4 ] s©τ [G(C)]. (3.12)

This has the form of a semi-direct product:

N s©σH

where any group element is given thus:

〈 n | h 〉 (3.13)

for n ∈ N , and h ∈ H . Thus, an element of the wreath-product group (3.12),
has the form:

〈 ( Tc1 , Tc2 , Tc3 , Tc4 ) | rθ 〉 . (3.14)

where ( Tc1 , Tc2 , Tc3 , Tc4 ) corresponds to the element n, and rθ corre-
sponds to the element h in (3.13).

The wreath element (3.14) can be schematically represented by Fig. 3.10,
where, on the left, the square shows the vector of translations ( Tc1 , Tc2 , Tc3 ,
Tc4 ); and, on the right, the circular arrow represents the rotation rθ.

The application of this group element to the data set, the square, is as fol-
lows. First recall the model of the square, as shown in Fig. 3.5 (p. 84), i.e., as
four infinite wires. The application of the element 〈 ( Tc1 , Tc2 , Tc3 , Tc4 ) | rθ〉
to the square has two successive phases:
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(1) Translate each side ci by the amount Tci .
(2) Rotate the square by the amount rθ.

It is easy to see that this two-phase operation sends the square to itself; i.e.,
is a symmetry of the square.

We claim that the correct symmetry group of the square is the wreath
product

[G(F )c1 ×G(F )c2 ×G(F )c3 ×G(F )c4 ] s©τ [G(C)].

This is a much more complicated group than the usually stated symmetry
group D4, and provides the generative structure.

Let us now define the action of an individual element of the wreath-
product group on an individual point of the square. To illustrate, let us take
the group element to be

〈 ( Tc1 , Tc2 , Tc3 , Tc4 ) | r180 〉

and the point on the square, F×C, to be

(f, c2)

which is on the second side c2 (right side) of the square.
The two-phase operation defined above tells us to first apply the vector

( Tc1 , Tc2 , Tc3 , Tc4 ) to the point. By the selective effect, only the
translation Tc2 on the side containing the point can be applied. The result is
therefore the point:

( Tc2f , c2 ).

Hence, this first phase is as shown in Fig. 3.11a. The second phase is to apply
the rotation operation r180 to this point. This gives us the final point shown
in Fig. 3.11b. Thus, the total effect is this:

〈 ( Tc1 , Tc2 , Tc3 , Tc4 ) | r180 〉 (f, c2) = ( Tc2f , r180c2 )

Generally, therefore, for an arbitrary wreath product, we have:

ACTION EQUATION FOR WREATH PRODUCT. For a wreath
product G(F )w©G(C) acting on a data set F ×C, the action equation is this:

〈 ( Tc1 , Tc2 , . . . , Tcn ) | g 〉 (f, ci) = ( Tcif , gci )

This group defines the full symmetry of the data set F ×C, and will be called
the control-nested symmetry group. The elements of the group will be
called the control-nested symmetries.
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Fig. 3.11. The two-phase structure of an element in the wreath product.

3.14 Control-Group Indexes

So far, the index labels on the fiber-group copies, G(F )ci have been the
members ci of the control set. However, our theory is a generative theory of
shape, which means that the data points are labeled by the operations that
generated them. Thus, instead of some independent control set as a labeling
scheme, we should use the members of the control group itself.

To understand the consequences of this, return to the example of the
square, First, rather than using the control set C = { c1 , c2 , c3 , c4 } to la-
bel the four sides, we use the control groupG(C) = Z4 = {e, r90, r180, r270}, as
shown in Fig. 3.12. Now observe the algebraic consequences of this. Whereas
the fiber-group product was previously G(F )c1 ×G(F )c2 ×G(F )c3 ×G(F )c4 ,
it is now G(F )e×G(F )r180 ×G(F )r270 ×G(F )r270 . Most crucially, the action
of the control group on the fiber-group product now takes place by the action
of the control group on itself as the index structure. For example, applying
r90 to the vector

( Te , Tr90 , Tr180 , Tr270 )

produces
( Tr90e , Tr90r90 , Tr90r180 , Tr90r270 ).

But because each index is now a multiplication of two elements from the
control group, we get this:

( Tr90 , Tr180 , Tr270 , Te ).

Clearly this compositionality has enormous advantages for any of the appli-
cation areas of our generative theory, e.g., robot navigation, the description
of machining operations in manufacturing.
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Fig. 3.12. Control-group indexes.

The appropriate description of such structures is a type of wreath product
called a regular wreath product. In contrast, the type of wreath product being
described up till now uses an independent control set. This latter type is often
referred to as a permutational wreath product because the control group tends
to be understood as a permutation group of the control set. However, in a
regular wreath product, the control set is the control group itself, and the
action of the control group is therefore its own internal group composition.

3.15 Up-Keeping Effect of the Transfer
Automorphisms

Since a basic issue of our theory of shape is recoverability of the generative
sequence, we need to see how group multiplication in the wreath product
supports recoverability. A wreath product is an example of a semi-direct
product

N s©σH

and multiplication within a semi-direct product has this form:

〈 n1 | h1 〉〈 n2 | h2 〉 = 〈 σ(h2)[n1] n2 | h1h2 〉 (3.15)

as explained in Appendix A.
In the particular case of a wreath product, σ is the transfer representation.

This has a powerful role with respect to generativity, as we will show in this
section. Let us return to the square and consider two elements from the
wreath product, for example:

〈 ( Te , Tr90 , Tr180 , Tr270 ) | r180 〉

and
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Fig. 3.13. The pair of coordinates defining a point.

〈 ( Se , Sr90 , Sr180 , Sr270 ) | r90 〉.

Using expression (3.15), the multiplication of the two elements is this:

〈 τ(r90) [( Te , Tr90 , Tr180 , Tr270 )] ( Se , Sr90 , Sr180 , Sr270 ) | r180r90 〉.

It is important now to investigate the role of τ(r90) within this expression.
Let the two group elements, 〈 ( Te , Tr90 , Tr180 , Tr270 ) | r180 〉 and

〈 ( Se , Sr90 , Sr180 , Sr270 ) | r90 〉, be labeled g1 and g2 respectivity. And
let us consider a point P on the square. The question is: What is needed to
ensure the simple condition:

g1(g2P ) = (g1g2)P . (3.16)

Notice carefully that the left-hand side represents the generative sequence of
points: One starts with point P , and then applies g2 to obtain the point g2P ,
and then applies g1 to obtain the point g1g2P . In contrast, on the right-hand
side, one first multiplies the two group elements g1 and g2 together to obtain
another group element, and then applies this to the point P . Most crucially,
on the left-hand side, one does not actually use the group composition oper-
ation, only the direct effect of group elements on points. This contrasts with
the right-hand side which does use the group composition operation. Thus,
expression (3.16) demands that the group composition operation (right-hand
side) be defined so that it accord with the generative structure on points
(left-hand side).

To understand the important implications of this, we will work through a
specific example. Let the point be (f, c), on the second side of the square, as
shown in Fig. 3.13. The two elements g1 and g2 will be as before, and thus
the multiplication being considered is this:

〈 ( Te , Tr90 , Tr180 , Tr270 ) | r180 〉〈 ( Se , Sr90 , Sr180 , Sr270 ) | r90 〉 (f, c)
(3.17)

First let us evaluate this using the structure of the left-hand side in expression
(3.16).
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Fig. 3.14. Application of the first group element.

Left-Hand Side

The left-hand side of (3.16) tells us to work step-by-step from right to left, in
expression (3.17). That is, first take the point (f, c). Then apply the group
element, 〈 ( Se , Sr90 , Sr180 , Sr270 ) | r90 〉, and then apply the element,
〈 ( Te , Tr90 , Tr180 , Tr270 ) | r180 〉. Let us proceed:

The application of 〈 ( Se , Sr90 , Sr180 , Sr270 ) | r90 〉 to the point
(f, c) consists of a translation followed by a rotation. Since (f, c) is on the
second side, one must select the translation Sr90 from the second position of
the vector ( Se , Sr90 , Sr180 , Sr270 ). After applying this translation, one
applies the rotation r90. The result is a point on the third side:

( Sr90f , r90c ).

Fig. 3.14 shows the successive translation and rotation that have just been
applied, as well as the resulting point.

The next stage is to apply the group element 〈 ( Te , Tr90 , Tr180 , Tr270 ) |
r180 〉 to this point. It is fundamentally important to understand that, whereas
in the previous stage, when 〈 ( Se , Sr90 , Sr180 , Sr270 ) | r90 〉 was applied,
the translation used was the translation that belonged to the second side, we
now have to change this and use the translation that belongs to the third
side. The reason is that the point is now on the third side!

Algebraically, therefore the application of 〈 ( Te , Tr90 , Tr180 , Tr270 ) |
r180 〉 to the point (Sr90f, r90c), is

( Tr180Sr90f , r180r90c )

where one sees that the translation Tr180 from the third side has been used.
The rotation is r180, which has now moved the point onto the top side. This
successive translation and rotation are shown in Fig. 3.15.

Now put together the successive stages that have been carried out:
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Fig. 3.15. Application of the second group element.

〈 ( Te , Tr90 , Tr180 , Tr270 ) | r180 〉〈 ( Se , Sr90 , Sr180 , Sr270 ) | r90 〉(f, c)

= 〈 ( Te , Tr90 , Tr180 , Tr270 ) | r180 〉(Sr90f, r90c)

= ( Tr180Sr90f , r180r90c ) (3.18)

Right-Hand Side

Let us turn to the right-hand side of (3.16), which is:

(g1g2)P .

Here, one first multiplies the two group elements, g1 and g2, together, and
then applies the multiple g1g2 to the point P . The question we ask is this: How
should the multiplication of the two group elements, g1 and g2, be defined?

Using our example, the multiple g1g2 is this:

〈 ( Te , Tr90 , Tr180 , Tr270 ) | r180 〉〈 ( Se , Sr90 , Sr180 , Sr270 ) | r90 〉.

If the multiplication is defined here via the direct-product operation, i.e.,
componentwise, then the result would be this group element:

〈 ( Te , Tr90 , Tr180 , Tr270 ) ( Se , Sr90 , Sr180 , Sr270 ) | r180r90 〉.

Then, multiplying out the two vectors within this element, one gets:

〈 ( TeSe , Tr90Sr90 , Tr180Sr180 , Tr270Sr270 ) | r180r90 〉.
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Most importantly, observe that the subscripts i and j on each term TiSj are
exactly the same.

The consequence of this fact is that, when the above combined element
〈 ( TeSe , Tr90Sr90 , Tr180Sr180 , Tr270Sr270 ) | r180r90 〉 is applied to the
point (f, c), the result is the point:

( Tr90Sr90f , r180r90c ).

The crucial thing to notice here is that the subscripts on the TS term are
both r90. What can be seen therefore is that this TS term fails to remember
the rotation that occurred when the point was moved from the second side
to the third side. The equal indexes r90 indicate that both come from the
second side, whereas only the S part should come from second side, and the
T part should come from the third side. This is the deep reason why we must
not use the direct-product operation: Group multiplication in a direct product
fails to remember generative succession.

Thus, instead of using the direct-product operation, where the automor-
phism representation σ is the trivial map, let us see what happens if σ is
actually τ , the transfer representation. Using this representation, the mul-
tiplication of the two elements 〈 ( Te , Tr90 , Tr180 , Tr270 ) | r180 〉 and
〈 ( Se , Sr90 , Sr180 , Sr270 ) | r90 〉 becomes this:

〈 τ(r90) [( Te , Tr90 , Tr180 , Tr270 )] ( Se , Sr90 , Sr180 , Sr270 ) | r180r90 〉
(3.19)

where we see that the transfer automorphism τ(r90) is applied to the first
vector ( Te , Tr90 , Tr180 , Tr270 ). When the τ(r90) action is carried out
within the above expression, the expression becomes

〈 ( Tr90 , Tr180 , Tr270 , Te ) ( Se , Sr90 , Sr180 , Sr270 ) | r180r90 〉

which is

〈 ( Tr90Se , Tr180Sr270 , Tr270Sr180 , TeSr270 ) | r180r90 〉.

Notice now that the subscripts i and j on each term TiSj are not the same.
They have been shifted with respect to each other by 900.

The consequence of this fact is that, when the above group element
〈 ( Tr90Se , Tr180Sr270 , Tr270Sr180 , TeSr270 ) | r180r90 〉 is applied to the
point (f, c), the result is the point:

( Tr180Sr90f , r180r90c ). (3.20)

Here one sees that the Tr180Sr90 term remembers the rotation that occurred
when the point was moved from the second side to the third side. In fact,
one can see that the point in expression (3.20) is the same as was obtained
in expression (3.18) where the generative sequence of points was calculated
directly. We therefore conclude: Group multiplication in the wreath product
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remembers generative succession. This is due to what we call the up-keeping
effect of the transfer automorphisms in a wreath product.

3.16 The Direct vs. the Indirect Representation

Throughout this chapter so far, we have been using the τ -representation of the
control group G(C). This is the action in which G(C) acts on the subscripts
of the fiber-group product in the same way that it acts on the control set.

However, paradoxically, this has the opposite effect on the fiber-group
product. To illustrate, consider the square, and in particular, the rotation
r90. This operation has the effect of rotating the members of the control set
(the side positions) by 900 clockwise around the square. Now, when this action
is raised to the fiber-group product, and r90 is applied to the subscripts, we
find that it shifts the vector

( Tc1 , Tc2 , Tc3 , Tc4 )

one step to the left, thus:

( Tc2 , Tc3 , Tc4 , Tc1 ).

However, this is actually the anti-clockwise rotation of the Tci around the
square. For example, Tc2 , which was in the second position of the original
vector ( Tc1 , Tc2 , Tc3 , Tc4 ), i.e., the right side of the square, is now in the
first position of the vector, i.e., the top side of the square.

Definition 3.3. In direct raising, the application of a member g of the
control group to the control set { c1 , c2 , . . . , cn }, corresponds to the
application of g to the subscripts of the vectors in the fiber-group product:

( Tc1 , Tc2 , . . . , Tcn ) −→ ( Tgc1 , Tgc2 , . . . , Tgcn ).

This sends the vectors in the opposite direction to the control set. Direct
raising corresponds to the τ-representation, τ : G(C) −→ Aut[G(F )c1 ×
G(F )c2 × . . .×G(F )cn ].

In contrast to this representation, one can have the opposite repre-
sentation. For example, suppose, when r90 is applied to the control set
{ c1 , c2 , c3 , c4 }, its inverse r−1

90 is applied to the subscripts of
( Tc1 , Tc2 , Tc3 , Tc4 ). Then the result would be this:

( Tr−1
90 c1

, Tr−1
90 c2

, Tr−1
90 c3

, Tr−1
90 c4

).

Now, since r−1
90 is actually r270, the vector just given is
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( Tc4 , Tc1 , Tc2 , Tc3 )

which means that the original vector has been rotated one step clockwise
around the square. For example, Tc2 , which was in the second position of the
original vector ( Tc1 , Tc2 , Tc3 , Tc4 ), i.e., the right side of the square, is
now in the third position of the vector, i.e., the bottom side of the square.

Definition 3.4. In indirect raising, the application of a member g of the
control group to the control set { c1 , c2 , . . . , cn }, corresponds to the
application of g−1 to the subscripts of the vectors in the fiber-group product:

( Tc1 , Tc2 , . . . , Tcn ) −→ ( Tg−1c1 , Tg−1c2 , . . . , Tg−1cn
).

This sends the vectors in the same direction as the control set. The represen-
tation τ̂ : G(C) −→ Aut[G(F )c1 ×G(F )c2 × . . .× G(F )cn ] corresponding to
indirect raising will be called the τ̂ -representation.

Whether one chooses to use the τ - or the τ̂ -representation is purely a
matter of convenience. Thus, in the remainder of the book, either will be used,
depending on how easy this makes the local discussion. Both representations
will be referred to as the transfer representation.

Definition 3.5. The terms involving the word transfer in Defintion 3.2
(p. 89), will be equally applicable if one replaces τ for τ̂ throughout that
definition, and changes the direct raising to the indirect raising.

3.17 Transfer as Conjugation

Generally, in a splitting extension G = N s©σH , the automorphic action of
any element h ∈ H on N is by conjugation h − h−1 of N (see3 Appendix
A). Now, since a wreath product is a splitting extension of the fiber-group
product by the control group, we therefore conclude that the action of the
control group on the fiber-group product is by conjugation. That is, transfer is
a process of conjugation. The purpose of this section is to carefully understand
how this works, since it is linked ultimately to the issue of recoverability.

Let us return to the illustration of a square. Consider again the rotation
r90. When r90 is represented using the τ̂ -representation, then its effect on a
translation is illustrated in Fig. 3.16. Thus a vector
3 In the case of non-splitting extensions, one still uses conjugation, but since H is
not contained in G, conjugation of N is not by the elements h of H , but by their
transversal representatives t(h) in G. See our book on group extensions, Leyton
[98].
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Fig. 3.16. The action of τ̂(r90).

( Tc1 , − , − , − )

is sent to a vector
( − , Tc1 , − , − ).

What we are now going to see is this: Whereas Tc1 is a translation on the
top side, its conjugate

r90 Tc1 r
−1
90

is the same translation, Tc1 , but now acting on the second side.
In order to show this, let us apply the conjugate r90 Tc1 r−1

90 to a point
on the second side, and show that the effect of r90 Tc1 r

−1
90 on that point is

to put it through the translation Tc1 , on that second side.
The expression

r90 Tc1 r
−1
90

will be read from right to left, and has the three stages:

Stage 1: Apply r−1
90

Stage 2: Apply Tc1
Stage 3: Apply r90.

They are illustrated in Fig. 3.17. First, in part (a) of this figure, we see the
starting point on the second side. Then, in part (b), we see the effect of
applying Stage 1, the rotation r−1

90 , which sends the point to its equivalent
on the top side. Then, in part (c) of the figure, we see the effect of applying
Stage 2, which translates the point by the amount Tc1 . Finally, in part (d) of
the figure, we see the effect of Stage 3, which applies the rotation r90 sending
the point back to the second side.
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Fig. 3.17. Illustration of conjugation.

Fig. 3.18. The total effect of the conjugation in Fig. 3.17.

Fig. 3.19. Conjugate translations.
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Thus, the total effect is simply the translation shown in Fig. 3.18.
The next figure, Fig. 3.19, illustrates two conjugate translations. If the

top translation is Tc1 , the right translation is r90 Tc1 r−1
90 . The map that

relates these two translations is τ̂ (r90). That is:

τ̂ (r90) : Tc1 −→ r90 Tc1 r
−1
90 .

Now, if the above argument is applied to all the members of the fiber-
group copy G(F )c1 on the top side, it is clear that the conjugation will send
G(F )c1 to the fiber-group copy G(F )c2 on the right side:

G(F )c1
r90 − r−1

90−→ G(F )c2 .

Again, this is the same thing as the map τ̂ (r90). Generally, our conclusion is
this: Conjugation transfers the fiber-group copies from one fiber-set copy to
another. We end this section by proving this statement.

Theorem 3.2. Transfer is conjugation.

Proof: Strictly speaking G(C) is not a subgroup of G(F )w©G(C). It is
isomorphic to the subgroupG(C)* of G(F )w©G(C), where G(C)* denotes the
set of all those elements of G(F )w©G(C) that effect only the second coordinate
in the pair (f, c), i.e., only the control coordinate c. Let g* be a member
of G(C)* and let φ* be a vector (!!!) in the fiber-group product G(F )c1×
G(F )c2× . . . × G(F )cn , where the fiber-group copies have been indexed by
the members of the control set C. Let the symbol g represent the element
of G(C) that corresponds to g* under the obvious isomorphism G(C)* −→
G(C). One now sees this:

g* φ* g* −1(f, c) = g* φ* (f, g−1c)

= g* (φg−1cf, g
−1c)

= (φg−1cf, gg
−1c)

= (φg−1cf, c)

Notice that, in going from the left side to the right side of the first line, the
point (f, c) has been changed to (f, g−1c), which means that it has moved
from the fiber-set copy Fc backwards to the fiber-set copy Fg−1c. Then notice
that, in moving from the first line to the second, we see the selection of
component φg−1c (in the second line) from vector φ* (in the first line) ,
because we are now in the fiber-set copy Fg−1c, that is, the control coordinate
at the end of the first line is g−1c. Finally, in the last line, we see that
component φg−1c, originally in fiber-group copy G(F )g−1c, is now in the fiber-
group copy G(F )c because c is the control-set coordinate in the last line.
Clearly therefore, the fiber-group copy G(F )g−1c has been transferred from
the control position g−1c into the control position c. �
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3.18 Conjugation and Recoverability

We shall now see that the two foundations of our generative theory - recov-
erability and transfer - are deeply linked. This becomes clear by considering
again how transfer is represented by conjugation, as follows:

Return to the example in the last section. The translation on the second
side was described as the transfer of a translation on the first side. We saw
that this meant that the translation on the second side was described as the
conjugate r90 Tc1 r

−1
90 of the translation Tc1on the first side. The conjugation

representation is a three-stage process: (1) apply r−1
90 to rotate backwards to

the top side, (2) carry out the translation Tc1 on the top side, and (3) apply
r90 to rotate the result back to the right side.

This means that the translation on the second side depends on recovering
the translation on the first side. Therefore: Recoverability is basic to transfer.

Since transfer requires recoverability, it must obey the laws of recover-
ability established in Chapter 2. Must crucially, it must obey the Asymmetry
Principle (p. 42) which states that, given a data set D, a program for gener-
ating D is recoverable from D only if the program is symmetry-breaking on
the successively generated states (i.e., in the forward-time direction). Equiva-
lently, in the backward-time direction, the Asymmetry Principle, states that,
given a data set D, a program for generating D is recoverable from D only
if each asymmetry in D goes back to a symmetry in one of the previously
generated states.

The way the Asymmetry Principle is implemented depends on whether the
data set supports external or internal inference (recall Sect. 2.9). In external
inference, we do not require the records of past generative states within the
data set. In internal inference, the data set must contain the records of past
generative states.

Thus, consider a conjugacy automorphism representing transfer. It has
the structure:

τ̂ (g) : Tci −→ g Tci g
−1 . (3.21)

The right-most operation g−1 performs the recovery, i.e., it ”back-projects” to
the past state in the generative history. This operation must obey the Asym-
metry Principle, i.e., it must be asymmetry-reducing, backwards in time.
The data set will support either external inference or internal inference of
this operation. In the case of the square, the data set supports only internal
inference. This is because the square has no deformational structure, i.e., it
is characterized entirely as a trace structure given by an iso-regular group.
Thus, each side can have undergone only rigid movement. But this means
that the inference of the preceding state of any side is possible only if the
preceding state is present within the data set since there can be no other
cues to movement (recall sections 2.10 and 2.11). Therefore, the past state
of the right side must be visible within the data set (i.e., as the top side).
We conclude therefore that the data set supports only an internal inference
of the operation g−1 in expression (3.21).
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Fig. 3.20. The sweep structure of a cylinder.

In contrast, consider a parallelogram. This is not given by an iso-regular
group, and therefore contains deformation. By deformation, one means that
the present state implies a past state that is an iso-regular group (in accord
with the Externalization Principle, Sect. 2.11). Thus, we do not need an
actual record of the past state (the iso-regular group) within the data set. We
conclude therefore that this data set (the parallelogram) supports external
inference of the operation g−1 in expression (3.21).

3.19 Infinite Control Sets

Obviously, in the case of the square, the control set of side positions { c1 , c2 ,
c3 , c4 } is finite. However, in many cases, the control set can be infinite. An
example of this is a cylinder, as shown in Fig. 3.20, where the fiber group
SO(2) corresponds to an individual cross-section, and the control set is the
set of positions along the axis R. Since there is one copy of the cross-section
fiber group at each position along the axis, the fiber-group product must be
the direct product of an uncountably infinite number of copies of the fiber
group. The direct product structure in such cases is as follows:

A vector from the fiber-group product is constructed as a formal product,∏
ci∈C Tci , where any such product is a selection of one member Tci from each

of the fiber-group copies G(F )ci . It is clear that the set of all such formal
products forms a group, where the product rule ∗ is defined thus:

∏
ci∈C

Tci ∗
∏
ci∈C

Sci =
∏
ci∈C

TciSci .

The group is called the unrestricted direct product. To see its relation to direct
products generally, recall the definition of direct product: If G is a group, and
{Gci}ci∈C a set of its subgroups, indexed by the set C, then G is called the
direct product of {Gci}ci∈C if the following conditions hold:
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(1) Gci ✁G, ∀ci ∈ C
(2) G = 〈{Gci}ci∈C〉
(3) Gci ∩ 〈{Gcj |cj ∈ C�ci}cj∈C〉 = e, ∀ci ∈ C.

What should be observed is that, if C is infinite, then the fiber-group product,
as an unrestricted direct product, will satisfy conditions (1) and (3) but not
(2). In this book, all wreath products with infinite control sets will be based
on a fiber-group product as an unrestricted direct product.

In any expression involving the selective effect in a wreath product, one
needs to show a vector from the fiber-group product. This is impossible to
notate in the situation of an uncountably infinite control set. Thus, in such
a situation (and also, in any situation where the control set is countably
infinite) we will often represent the vector as ( Tc1 , Tc2 , . . . , Tcn ) and the
fiber-group product as G(F )c1× G(F )c2× . . . × G(F )cn which is a notation
that looks finite and certainly countable. Nevertheless, cn will be allowed to
stand for one of the infinite cardinals, and the countable appearance of the
notation can be notational abuse. This will be called the finitistic notation,
which refers only to the appearance of the notation, not the actual size of the
control set involved.

3.20 The Full Structure

We now have all the tools to present the five-stage definition of transfer. In the
particular case that the control set is infinite, the reader should understand
that the finitistic notation (Sect. 3.19) is being used.

ALGEBRAIC STRUCTURE OF TRANSFER

STAGE 1: Define the Fiber Level and Control Level

The data set is decomposed into two levels:

LEVEL 1.

(1) F = Fiber set
(2) G(F ) = Fiber group
(3) Define the group action of G(F ) on F .

LEVEL 2.

(1) C = Control set = { c1 , c2 , . . . , cn }
(2) G(C) = Control group
(3) Define the group action of G(C) on C.
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STAGE 2: Define the Fiber-Group Product

In the previous stage, one of the two actions defined was that of the fiber
group on the fiber set. However, G(F ) is now used to define an action on the
entire data set, as follows:

(1) Form the direct product [G(F )c1 ×G(F )c2 × . . .×G(F )cn
] con-

sisting of copies of the fiber group, G(F ), one copy for each member
of the control set. This is called the fiber-group product.
(2) Define the group action of the fiber-group product on the en-
tire data set F ×C, by making each copy of G(F )ci act on each copy
of the fiber set independently. The action therefore has the selective
effect.
(3) This action is a symmetry of the data set. It is the total symme-
try due to the fiber group alone.
(4) Notice that this stage represents the situation before the detection
of the control group. It gives the results of purely parallel computa-
tion.

STAGE 3: Define G(C) as an Automorphism Group on
G(F )c1 ×G(F )c2 × . . . G(F )cn

The previous stage encoded the independent action of the fiber-group copies
on the fiber sets. However, it failed to notice that these copies are equivalent
to each other. That is, the copies are related to each other by the control
group G(C). In other words, the control group sends the copies of the fiber
group around the data set, from one fiber set copy to another. This is achieved
in the following way:

(1) There is a group action of G(C) on the fiber-group product.
The action is either raised directly (the τ -representation), or it is
raised indirectly (the τ̂ -representation).
(2) This makesG(C) an automorphism group of the fiber-group prod-
uct. The automorphisms act by conjugation.
(3) This action of G(C) on [G(F )c1 ×G(F )c2 × . . .×G(F )cn

] is called
the control-nesting of G(F ) within G(C).

The structure just defined is dichotomous: That is, in its group action, G(C)
preserves [G(F )c1 ×G(F )c2 × . . . G(F )cn

], but nevertheless sends the copies
G(F )ci

from one fiber set, to another. This dichotomous structure is therefore
the basis of transfer.
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STAGE 4: Define a Splitting Extension of
[G(F )c1 ×G(F )c2 × . . .×G(F )cn

] by G(C)

One can regard the previous two stages as the successive detection of (i) the
fiber-group product and then (ii) the control group. This successive detection
can be modeled as a group extension of the fiber-group product by the control
group. That is, we do this:

(1) Create the semi-direct product:

[G(F )c1 ×G(F )c2 × . . .×G(F )cn
] s©τ [G(C)].

In this structure, only two basic groups are used: They are G(F ),
which is repeated a number of times to form the fiber-group product,
and G(C) which is then added to the fiber-group product.
(2) The creation of the entire structure from these two basic groups,
G(F ) and G(C), is called the wreath product of G(F ) and G(C):

G(F ) w©G(C).

STAGE 5: Define the Action of G(F ) w©G(C) on F×C

The wreath product G(F ) w©G(C) is itself a group. It is the control-nested
symmetry group of the data set, thus:

(1) Define the group action of G(F ) w©G(C) on the data set F ×C.
This group action is the hierarchical composite of two previous group
actions: (i) the group action of [G(F )c1 ×G(F )c2 × . . .×G(F )cn

] on
the data set, and (ii) the group action of the G(C) on [G(F )c1 ×
G(F )c2 × . . .×G(F )cn

].
(2) An element of G(F ) w©G(C) is called a control-nested symmetry
of the data set.

3.21 The Five Group Actions

Although, the previous section defined the algebraic structure of two-level
transfer, this actually involves five group actions! These five actions contain
the real power of any structure of transfer. One should think of the five actions
as locked together in a single tightly-knit organization that they mutually
help to construct. The actions are as follows:
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THE 5 GROUP ACTIONS IN 2-LEVEL TRANSFER

Action 1. The Fiber Group on the Fiber Set
Action 2. The Control group on the Control Set
Action 3. The Fiber-Group Product on the Data Set
Action 4. The Control Group on the Fiber Group Product
Action 5. The Wreath Product on the Data Set.

The five group actions are defined in sequential order over the five stages.
Each stage defines one group action, except the first stage which defines two
group actions and the fourth stage which, to compensate, defines no group
action. The actions are defined thus:

Action 1. The Action of the Fiber Group on the Fiber Set




G(F ) × F −→ F

( T , f ) �−→ Tf

Action 2. The Action of the Control group on the Control set




G(C) × C −→ C

( g , ci ) �−→ gci

Action 3. The Action of the Fiber-Group Product on the Full Data
Set




[G(F )c1 ×G(F )c2 × . . .×G(F )cn ] × [F × C] −→ [F × C]

( ( Tc1 , Tc2 , . . . , Tcn ) , (f, ci) ) �−→ (Tcif, ci)

where the selective effect is seen in the second line.

Action 4. The Action of the Control group on the Fiber-Group
Product

This is the action of the control group that is raised from the control set to
the fiber-group product, that is, it is the raised version of Action 2.
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G(C) × [G(F )c1 ×G(F )c2 × . . .×G(F )cn ] −→
[G(F )c1 ×G(F )c2 × . . .×G(F )cn ]

( g , ( Tc1 , Tc2 , . . . , Tcn ) ) �−→
( Tgc1 , Tgc2 , . . . , Tgcn )

Action 5. The Action of the Wreath Product on the Full Data Set.

This is created as the hierarchical composite of Action 3 and Action 4.



G(F )w©G(C) × [F × C] −→ [F × C]

( 〈 ( Tc1 , Tc2 , . . . , Tcn ) | g 〉 , (f, ci) ) �−→ (Tcif, gci)
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4.1 Introduction

In this chapter, we will present our general formalization of transfer. This ex-
tends the concept of a τ -automorphism, from the 2-level case, to the n-level
case. In the latter case, the transfer automorphism is, itself, a multi-level
structure in which transfer is going on within several layers simultaneously.
This will become fundamental for example to understanding robotics, where
limbs are being transferred simultaneously in several levels, or perceptual or-
ganization, which we argue is structured in the same way. The multi-level
structure of transfer will be algebraically formalized as a control-nested (i.e.,
multi-level) τ -automorphism. An ordinary τ -automorphism (Definition 3.2,
p. 89) has a control-nested relation with its fiber group. However, a control-
nested τ -automorphism has a control-nested hierarchy within itself. Corre-
spondingly the automorphism group is structured in this way. Once again,
formalizing transfer in terms of an automorphism group has a number of
profound advantages, the most important being the fact that all the trans-
ferred copies are contained within one group, together with the algebraic
relationships involved.

4.2 The Iterated Wreath Product

Control-nested transfer automorphisms will be understood as arising in n-fold
wreath products, where n > 2. Thus we first need a definition of an n-fold
wreath product. This is obtained by iterating the wreath-product operation.
This operation is a 2-level operation. Using it on two groups G1 and G2,
produces G1w©G2. Thus, to add a third group G3, the operation is applied
again, as follows:

Michael Leyton (Ed.): A Generative Theory of Shape, LNCS 2145, pp. 115-134, 2001. 

© Springer-Verlag Berlin Heidelberg 2001
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(G1w©G2)w©G3.

The parentheses indicate that G1w©G2 is a fiber group relative to the second
wreath-product symbol w©, and G3 is the control group of that symbol. The
hierarchy of control therefore ascends from left to right.

In the n-fold case, one gets this

(G1w©G2)w©G3)w©G4)w©G5)w© . . .)w©Gn. (4.1)

For readability, all the parentheses have been removed from the left end,
except one. In subsequent chapters, the parentheses across the entire sequence
will usually be omitted. However, it will be useful, in the current chapter, to
include those shown above.

It is important to understand that the n-fold wreath product is a group.
This is because the 2-place operation w© creates a single group from two
groups, and the n-fold wreath product is simply the iterated use of the 2-
place operation.

Notice that any group Gi along the n-fold sequence acts to its left, in
fact, on the entire hierarchy to its left. This hierarchy will be called the left-
subsequence of Gi. The relation between Gi and its left-subsequence is
simply that between a control group and its fiber group.

4.3 Opening Up

It is necessary to unpack the information contained in the n-fold structure.
First, of course, any 2-fold wreath product

G(F )w©G(C) (4.2)

is really the semi-direct product

[G(F )×G(F )× . . .×G(F )] s©τ G(C). (4.3)

The expressions (4.2) and (4.3) are simply two different notations for the same
group, and they will be referred to respectively as the wreath product
notation and semi-direct product notation of the wreath product.
The semi-direct product notation clearly reveals more of the structure of
the wreath product. In the discussion, we shall often pass from one notation
to the other. When passing from the first notation to the second, we shall
say that we are opening up the wreath product symbol. Conversely, when
passing from the second notation to the first, we shall say that we are closing
down the semi-direct product symbol.

Let us now use the opening-up procedure to unpack the information in
an n-fold wreath product.
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(G1w©G2)w©G3)w©G4)w©G5)w© . . .)w©Gn. (4.4)

When one opens up the first (left-most) wreath product symbol in this hier-
archy, one gets this:

([G1 ×G1 × . . .×G1] s©τG2)w©G3)w©G4)w©G5)w© . . .)w©Gn.

Most crucially, there are now three group-product symbols in this sequence:
the direct product ×, the semi-direct product s©τ and the wreath product
w©. Examining the sequence, the following rule is evident:

PRODUCT-HIERARCHY TABLE

× links two fiber groups on the same level
s©τ links a fiber-group product on left to a control group on right
w© links a fiber group on left to a control group on right.

Notice that the direct product operation × is non-hierarchical, whereas the
other two product operations are hierarchical.

This also has consequences for the numbers i that are the indexes on the
groups along the sequence. The relation between the indexes give a strong
sense of how the three operations ×, s©τ , and w©, glue the hierarchy together:

PRODUCT-INDEX TABLE

× index on left is same as on right
s©τ index on left is one lower than on right
w© index on left is one lower than on right.

Now let us open up the second wreath-product symbol in the n-fold
wreath product (4.4). Clearly, if all levels higher than 3 are ignored, we get:

[(G1w©G2)× (G1w©G2)× . . .× (G1w©G2)] s©τG3.

Substituting this into the n-fold wreath product, we get:

[(G1w©G2)× (G1w©G2)× . . .× (G1 w©G2)] s©τG3)w©G4)w©G5)w© . . .)w©Gn.
(4.5)

The reader is recommmended to apply the Product-Hierarchy Table and
Product-Index Table above to this sequence, to fully understand it.

Now, when the first wreath product symbol in (4.5) is opened up, the
result is:

[([G1 ×G1 × . . .×G1] s©τG2)×([G1 ×G1 × . . .×G1] s©τG2)× . . .×
([G1 ×G1 × . . .×G1] s©τG2)]
s©τG3)w©G4)w©G5)w© . . .)w©Gn. (4.6)
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Again it is worth the reader checking this expression against the two tables
given earlier.

To examine further the above structure, let us assign cardinalities to the
groups involved. For ease of exposition, it will be assumed that each of the
group components Gi is finite, and that its order is:

|Gi| = mi.

Also, it will be assumed that the wreath product in each case is a regular
wreath product; i.e., the control set is the control group itself. (Such products
were discussed in Sect. 3.14.)

Let us now return to the sequence (4.6), which we wish to study. On the
far left, there is the fiber-group product G1 ×G1 × . . .×G1. This is the first
level of fibers G1. Notice that this product consists of m2 copies of G1, since
there is one copy for each element in its immediate control group G2.

Progressing one step rightward along the sequence (4.6), we encounter
the semi-direct product symbol s©τ , which indicates that we are going up
one level, because the product symbol s©τ is hierarchical. That is, following
s©τ , there is G2. This completes the first hierarchy along the sequence; i.e.,

[G1 ×G1 × . . .×G1] s©τG2.

Now moving rightward along the sequence (4.6), it is evident that the
hierarchy just given is actually copied a number of times. In fact, it is copied
m3 times because there are m3 elements in the immediate control group
G3. We therefore conclude that the initial m2-fold duplication of G1 is itself
duplicated m3 times; that is, G1 is actually duplicated m2×m3 times. Thus,
there is a duplication of duplication phenomenon. This is basic to an
n-fold wreath product.

Thus, progressing rightwards, each new control group Gi duplicates the
entire hierarchy to its left, mi times. In particular, the first group G1 now
has m2 ×m3 × . . .×mi copies. In fact, generally, we have this: In an n-fold
wreath product, the hierarchy up to level i, that is, G1w© . . . w©Gi, occurs a
total of mi+1 ×mi+2 × . . . × mn times. This is because the groups Gmi+1 ,
Gmi+2 , . . . , Gn, comprising the right-subsequence of the fiber G1w© . . . w©Gi
have successivelymi+1, mi+2, . . . , mn elements. Note also: Because the semi-
direct product notation exhibits the fiber-group product, we shall say that it
reveals the duplicated copies of the fiber.

4.4 The Group Theory of Hierarchical Detection

Let us return to 2-fold nested control. In Sect. 3.9, we modeled the successive
detection of the fiber-group product and the control group as the splitting
extension of the first group by the second.
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It will now be seen that there are phenomena that arise in the successive
detection of n-fold nested control that did not arise in the 2-fold case, even
though the n-fold structure is built entirely out of the 2-fold case. We ar-
gue that these are group-theoretic phenomena that lie at the foundations of
perception organization and scientific measurement.

Consider first the 2-fold situation. The two levels will be represented by
Fig. 4.1. The dots on Level 1 are the copies of the fiber group G1 and the
single dot on Level 2 is the control group G2. It will be assumed that the
wreath product is a regular one, i.e., there are as many copies of G1, on
Level 1, as there are elements within the group G2 on Level 2. Note also
that G2 moves the copies of G1 around onto each other under the transfer
automorphims. In the remainder of this section, Fig. 4.1 will be called a tree.

Fig. 4.1. Relation of control level to fiber level, in a 2-fold wreath product.

With this diagram in mind, let us now consider the n-fold situation. In
exact analogy with what has just been said about the 2-fold situation, let us
consider two successive levels in the n-fold situation, for example, Level i and
Level i+ 1. There are a set of copies of Gi on Level i, that are connected to
a single copy of Gi+1 on the next level. In other words, the diagram is like
that shown in Fig. 4.1.

However, there is an extra feature: On the upper level, there are several
additional copies of Gi+1, one for each member of Gi+2 on the level above
this. So the diagram for Level i and i+ 1 is really that shown in Fig. 4.2.

Fig. 4.2. Two successive levels within an n-fold wreath product.

In fact, there is a still further feature: We have assumed that there is only
one copy of the Gi+2 on the level above the levels shown. In fact there are
several additional copies of Gi+2 on that level, one copy for each member
of Gi+3 two levels above the levels shown. So the entire structure indicated
in Fig. 4.2 is really duplicated several times horizontally, one time for each
member of Gi+3.

This process keeps on going. For each level Gi+k, further up the hierarchy,
there is an entire set of duplications of the structure horizontally, one dupli-
cation for each member of Gi+k. Thus, in accord with the previous section,
the total number of dots on the lower level in Fig. 4.2, i.e., the total number
of copies of Gi , will actually be mi+1 ×mi+2 × . . .×mn .
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Now consider one of the individual trees shown in Fig. 4.2. Within each
such tree, there is the single Gi+1 on the upper level, and the copies of Gi
on the lower level. Most crucially, the Gi+1, can move only these copies of
Gi onto each other. The Gi+1 cannot move the copies of Gi from one tree to
another.

What can move the copies of Gi from one tree to another is a higher
control group Gi+k. Let us look carefully at this. There are mi+1 ×mi+2 ×
. . .×mn copies of Gi along the bottom of Fig. 4.2. These are partitioned into
trees as shown in Fig. 4.2, by the individual copies of Gi+1 on the next level.
On the level above this (not shown), the trees themselves are partitioned into
blocks of trees by the individual Gi+2, to which they are connected. Using
Gi+2, one can now move the Gi, on the bottom level, out of one tree into
another within the same block.

If one wants to move the Gi horizontally out of the block of trees into
another block of trees, one has to go to a still higher level, and so on. To
move a Gi horizontally from any position x to any other position y, enough
levels have to be added above to get a tree high enough to encompass both
positions x and y.

Also observe that each Gi shown along the bottom of Fig. 4.2 is itself the
head of its own tree. This is the tree G1w© . . . w©Gi which is the fiber group of
the control group Gi+1, a node on the upper level of Fig. 4.2. Thus the reader
should think of the tree G1w© . . . w©Gi as hanging down from each lower node
in Fig. 4.2; and the upper Gi+1 as moving these trees around onto each other
within the set dominated by Gi+1.

Note therefore that, because there are mi+1 ×mi+2 × . . .×mn copies of
Gi along the bottom of Fig. 4.2, there are mi+1 ×mi+2 × . . .×mn copies of
the fiber group G1w© . . . w©Gi along the bottom of Fig. 4.2.

Now, it is part of the definition of nested control - in fact in Stage 1 of
that definition - that a fiber group acts on a fiber set. Furthermore, in Stage
2, we said that each copy of the fiber group acts on its own copy of the fiber
set. That is, the data set is partitioned into copies of the fiber set and, on
each copy of the fiber set, there acts only the copy of the fiber group that
has been assigned to it.

The implications for Fig. 4.2 are as follows: It was seen that there are
mi+1 × mi+2 × . . . × mn copies of the fiber group G1w© . . . w©Gi along the
bottom of Fig. 4.2. Each copy has its own copy of the fiber set on which it
acts. The conclusion therefore is that the data set is partitioned into mi+1 ×
mi+2 × . . . ×mn copies of this fiber set, each with a copy of G1w© . . . w©Gi
acting on it. In terms of Fig. 4.2, each node along the bottom level shown
corresponds to its own particular subset of the data set. The node acts on
that subset and only that subset.

Observe that, once the upper level shown in Fig. 4.2 has been detected,
this level can move the lower-level subsets onto each other, if these lower-level
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subsets occur within the same tree. However, before this detection, the only
action is that of a lower-level node on its own independent subset.

Let us therefore consider the detection problem. Suppose that we have
only detected up to (and including) Level i, which is the lower level shown
in Fig. 4.2. This means that we do not yet have Level i+1, that binds these
nodes themselves into larger subsets. That is, by removing the upper level
of Fig. 4.2, we are simply left with the lower level, and this is depicted in
Fig. 4.3. Each node in Fig. 4.3 can be regarded as representing the fiber group
G1w© . . . w©Gi, and each acts independently on its own particular subset of the
data set.

Fig. 4.3. Detection only up to, and including Level i.

How shall we group-theoretically describe the structure shown in Fig. 4.3?
Because there are mi+1 × mi+2 × . . . × mn independently acting copies of
G1w© . . . w©Gi, along Fig. 4.3, there is a direct product of these copies. This
direct product will be notated thus:

[G1w© . . . w©Gi]mi+1×mi+2×...×mn .

Most crucially, before any higher level groups Gi+1, Gi+2, . . . , Gn are
detected, the direct-product group just defined must be the entire detected
structure of the full data set. We therefore have:

Definition 4.1. The direct product
Deti = [G1 w© . . . w©Gi]mi+1×mi+2×...×mn will be called the detected sym-
metry group up to Level i.

Notice some simple features about the detected symmetry groups. When
we detect the next level above Deti, the detected symmetry group becomes

[G1w© . . . w©Giw©Gi+1]mi+2×...×mn

where the wreath product sequence has added a new factor Gi+1, but the
power has lost the factor mi+1.

The difference between the two successive detected symmetry groupsDeti
and Deti+1 is the single horizontal row of Gi+1 along Level i+ 1. This row
is the direct product of mi+2 × . . .×mn copies of Gi+1, that is

G
mi+2×...×mn

i+1 .

Thus, it is easy to see, group-theoretically, that this row can be obtained as
the factor group:

Deti+1/Deti = G
mi+2×...×mn

i+1 .
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Clearly, this is what was detected in order to raise the detected symmetry
group from Deti to Deti+1.

GROUP-THEORETIC CHARACTERIZATION
OF DETECTION. The detection of Level i+ 1 is a splitting extension of
Deti by G

mi+2×...×mn

i+1 .

We will show later that this characterizes detection in scientific experiments
and perceptual organization.

It is easy to show that each detected symmetry group Deti is a normal
subgroup of the next higher detected symmetry group Deti+1. To see this,
observe that each node Gi+1 in the upper row in Fig. 4.2, acts via con-
jugation as an automorphism group on a copy of the fiber-group product
[G1w© . . . w©Gi]mi+1 , which is formed from the set of nodes it dominates. This
automorphic action is easily extended to an automorphic action of the en-
tire upper row G

mi+2×...×mn

i+1 on the entire (partitioned) lower row. Therefore
Deti is a normal subgroup of Deti+1.

Thus the hierarchy of detected symmetry groups

Det1 ✁Det2 ✁Det3 ✁ . . .✁Detn

forms a subnormal series.1 In fact, further consideration reveals that
each Deti is normal in the full group Detn. That is, simply by ex-
tending the conjugation argument, each successively higher sequence
[Gi+1 w©...w©Gk]mk+1×...×mn , for k increasing up to n, must be acting via con-
jugation as an automorphism group of Deti where the automorphic action
must be control-nested. Therefore we conclude:

HIERARCHY OF DETECTED SYMMETRY GROUPS. In an
n-fold control-nested hierarchy G1w© . . . w©Gn, the detected symmetry groups
form a group-theoretic normal series, thus:

Det1 ✁Det2 ✁Det3 ✁ . . .✁Detn.

Now observe the following: Before Level i+1 has been detected, each of
the mi+1 ×mi+2 × . . .×mn copies of the G1w© . . . w©Gi in Deti are observed
1 In group theory, the definitions of subnormal series and normal series are as
follows: Let G be a group. Then the sequence

H1 ✁H2 ✁H3 ✁ . . .✁Hn

is called a subnormal series of G, if each Hi is a subgroup of G, and each Hi

is a normal subgroup of Hi+1. The subgroups H1 and Hn, at the ends of the
sequence, are the trivial subgroups {e} and G respectively. The series is called
a normal series if, in addition to these conditions, each Hi is normal in the full
group G.
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as unrelated to each other, i.e., it is only the higher level groups Gi+1, Gi+2,
. . . , Gn that will detect the relationships between the copies. Furthermore,
any copy of a lower fiber group G1w© . . . w© Gj , where j is below the highest
detected Level i within Deti, is related to its associated copies within G1w©
... w© Gj+1 (which is within Deti ). Therefore, the only unrelated objects
within Deti are the copies of Gi (these are the top level of Deti). The copies
of Gi are thus the only objects within Deti that correspond to computations
that are purely parallel. We therefore have this definition:

Definition 4.2. In the detected symmetry group Deti, the direct product
G
mi+1×...×mn

i constitutes the parallel computation level.

4.5 Control-Nested τ -Automorphisms

In this section, we will give our general formalization of transfer. This extends
the concept of a τ -automorphism, from the 2-level case, to the n-level case.
In the latter case, the transfer automorphism is, itself, a multi-level structure
in which transfer is going on within several layers simultaneously. This will
become fundamental for example to understanding robotics, where limbs are
being transferred simultaneously in several levels, or perceptual organization,
which we argue is structured in the same way. The multi-level structure of
transfer will be algebraically formalized as a control-nested (i.e., multi-level)
τ -automorphism. An ordinary τ -automorphism (Definition 3.2, p. 89) has
a control-nested relation with its fiber group. However, a control-nested τ -
automorphism has a control-nested hierarchy within itself. Correspondingly
the automorphism group is structured in this way. Once again, formalizing
transfer in terms of an automorphism group has a number of profound ad-
vantages, the most important being the fact that all the transferred copies
are contained within one group, together with the algebraic relationships
involved.

A control-nested τ -automorphism is illustrated in Fig. 4.4. Each node
at the bottom level of this figure represents a copy of the fiber group
G1w© . . . w©Gi. On the level above this, each node represents a copy of the
group Gi+1; on the level above this, each node represents a copy of the group
Gi+2; and so on . . . till the single node at the top level which represents the
final control group Gn. In this section, for notational convenience, the per-
mutational wreath product will be used, in which each group Gj acts on a
control set Cj . Thus, pick any node in Fig. 4.4. It is a copy of a group Gj . It
dominates a set of nodes below it. These are the copies of Gj−1 corresponding
to the members of the control set Cj . The copy of Gj can permute this set of
copies of Gj−1. This permutational action is indicated by the circular arrow
relating these copies. Of course, on level j there are several copies of Gj , each
with its own copy of the control set Cj . Therefore each dominates a set of
copies of Gj−1, where the set corresponds to a copy of the control set Cj .
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Fig. 4.4. The action of a control-nested τ -automorphism.

In fact, let each circular arrow in the hierarchy be some chosen element
from the control group above it. Then the entire collection of circular ar-
rows, shown in Fig. 4.4 (one element selected from each node), represents
what we will call a control-nested τ -automorphism. Clearly, it is acting on
several levels. This will become important for robot manipulation, perceptual
organization, etc.
On what does this collection of arrows act automorphically? On the bot-

tom level, which represents the detected symmetry group Deti. It is this
automorphic action that will allow us to move things around an environ-
ment.

Let us now rigorously formalize this. Choose any level j (above the bottom
level). The set of nodes in this level is simply the collection of copies of Gj . In
fact, the algebraic structure of the level is the direct product of these copies,
that is:

G
mj+1×...×mn

j .

Now, from each of these copies of Gj , we have selected one element, indicated
by the circular arrow below it, in Fig. 4.4. Thus an entire vector of elements
has been selected from the direct product Gmj+1×...×mn

j . The vector is of
length mj+1 × . . .×mn. It will be denoted by ḡj ,

ḡj ∈ G
mj+1×...×mn

j .

Fig. 4.4 shows one such vector for each level above the bottom level. Putting
all these vectors together, we obtain a single overall vector, which will
be written thus s©ḡi+1 s©ḡi+2 s© . . . s©ḡn. This is a member of the group
Gi+1 w© . . . w©Gn. That is, we have

s©ḡi+1 s©ḡi+2 s© . . . s©ḡn ∈ Gi+1w© . . . w©Gn.

On the one hand, the semi-direct product symbols s© on the left are an abuse
of notation, because a semi-direct product is a product between groups, not
elements. Furthermore, the symbol s© here is actually simply a comma in a
vector. On the other hand, there is some value to this notation. It represents
the following: Let us open Gi+1w© . . . w©Gn, the group on the right, in its
semi-direct product notation. This will reveal all the copies of all the control
groups, each with the appropriate duplication of duplications on its level.
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Each vector ḡj on the left is a vector from a level in the semi-direct product.
Thus the number of components in the vector ḡj is the number of group copies
in the semi-direct product, and the indexes also correspond. Therefore, the
semi-direct product symbol will be used in the vector to indicate this fact.

Now let us define the action of the control-nested τ -automorphism on
an individual element in the bottom row of the figure. As an example, let
us choose the element at the far right end of the bottom row. When the
automorphism s©ḡi+1 s©ḡi+2 s© . . . s©ḡn shown in Fig. 4.4 is applied to this
element, only certain group elements (circular arrows) are relevant, as shown
in Fig. 4.5. They are those that ”dominate” the chosen bottom node. This
is due to the selective effect that occurs generally in wreath products, as
described on p. 86.

Fig. 4.5. The action of control-nested τ -automorphism on a specific fiber.

Let us notate the selective effect in the multi-level structure now being
considered: A node on the bottom row is a copy of the fiber G1w© . . . w©Gi.
Its position along the bottom is determined by its position in the hierarchy
of control sets upwards from the bottom. Thus, let us label the node like this:

[G1w© . . . w©Gi]ci+1,ci+2,...,cn

where ci+1 is its position within the control set Ci+1 (level i+ 1), ci+2 is its
position within the control set Ci+2 (level i + 2) above that, . . . , and so on
upwards.

Now apply the control-nested τ -automorphism, s©ḡi+1 s©ḡi+2 s© . . . s©ḡn,
shown in Fig. 4.4. The automorphism is a vector of all the group elements
(circular arrows) shown in this diagram. The first level of this vector is the
vector ḡi+1, which is the vector of circular arrows along the bottom of the
figure. The selective effect ensures that only one element is chosen from this
vector - the circular arrow on the far right, which will be labeled gi+1. Now,
go up to the next level, and make the appropriate selection (far right); and
so on upward. On each level, which is the vector ḡj the selected element
will be labelled gj . Notice that this is just an abbreviation. The element gj
comes from a copy of the group Gj . The copy is indexed by its position in the
successive control sets upwards from it. That is, the copy is [Gj ]cj+1,cj+2,...,cn .
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Therefore, the element gj is really [gj ]cj+1,cj+2,...,cn . However, in this context,
the abbreviation gj will be used.

gj = [gj ]cj+1,cj+2,...,cn ∈ [Gj ]cj+1,cj+2,...,cn .

We are now ready to define how a control-nested τ -automorphism works:

Definition 4.3. Define a control-nested τ-automorphism
s©ḡi+1 s©ḡi+2 s© . . . s©ḡn of the group Deti thus:

[G1w© . . . w©Gi]ci+1,ci+2,...,cn
s©ḡi+1 s©ḡi+2 s© . . . s©ḡn

= τ(gn) . . . τ(gi+2)τ(gi+1)[G1 w© . . . w©Gi]ci+1,ci+2,...,cn .

= [G1w© . . . w©Gi]gi+1ci+1,gi+2ci+2,...,gncn . (4.7)

where each ḡj is a vector in Detj/Detj−1 and each gj is the component in ḡj
selected from the group copy [Gj ]cj+1,cj+2,...,cn.

Observe that the selective effect has occurred in going from the first line
to the second of Equation (4.7); that is, each gj has been selected from its
vector ḡj. The selected element gj has then been converted into a transfer
automorphism τ(gj) using the transfer representation τ (one might wish to
label τ for each level and control set copy). Now, since τ(gj) is the raised
action from the control set Cj , to the subscripts on the fiber-group copies,
this means that, to apply τ(gj), one merely applies gj to the corresponding
subscript cj .

Most crucially, the third line in Equation (4.7) gives the location to which
the node has been moved along the bottom of Fig. 4.5 under the control-
nested τ -automorphism. Notice that the automorphism has moved the node
successively: first within the smallest box shown in Fig. 4.5, then out of the
smallest box, then out of the next larger box, then out of the next larger box,
. . . , and so on.

This, of course, gives us the general method of transferring a node along
the bottom row: To move it from its position X to any other position Y
(assuming transitivity), one has to use an operation gi+1 from the node Gi+1

immediately above X in order to move X within the tree dominated by Gi+1,
and then one has to use an operation gi+2 from the node Gi+2 immediately
above that in order to move X out of the tree but within the block of trees
dominated by Gi+2, and then one has to use an operation gi+3 from the node
Gi+3 immediately above that in order to move X out of the block but within
the block of blocks of trees dominated by Gi+3, and so on upwards.

This illustrates the control-nested effect defined in the term control-nested
τ-automorphism; i.e., as opposed to an ordinary τ -automorphism (Definition
3.2, p. 89).

Associated with the above definition, we have this:
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Definition 4.4. The control-nested τ-conjugates
of [G1w© . . . w©Gi]ci+1,ci+2,...,cn are all the expressions of the form

[G1w© . . . w©Gi]ci+1,ci+2,...,cn
s©ḡi+1 s©ḡi+2 s© . . . s©ḡn

for all elements s©ḡi+1 s©ḡi+2 s© . . . s©ḡn ∈ Gi+1w© . . . w©Gn.

This becomes basic to understanding work-spaces in robotics and grouping
in perceptual organization.

Given a collection of elements gj, as in Definition 4.3, it will be often useful
to construct a canonical vector s©ḡi+1 s©ḡi+2 s© . . . s©ḡn from these elements.
Two such canonical candidates are as follows:

Definition 4.5. For a specific choice of ci+1 ∈ Ci+1, . . . , cn ∈ Cn, consider
a set of elements gj ∈ [Gj ]cj+1,cj+2,...,cn, for i + 1 ≤ j ≤ n. A canonical
control-nested τ-automorphism constructed from the gj, will be defined
as follows: (1) All entries in the vector, except gj are the identity element
in the group-copies corresponding to those entries. (2) All entries in the vec-
tor are the ”same” element gj in the corresponding group copies (i.e., this
is a multiple version of what is called the ”diagonal” in wreath products).
A canonical control-nested τ-automorphism constructed from the gj will be
notated as s©gi+1 s©gi+2 s© . . . s©gn (no bars).

We have seen that the definition of control-nested τ -conjugation divides
the n-fold wreath product thus:

[G1w© . . . w©Gi]w©[Gi+1w© . . . w©Gn]

where the control-nested τ -conjugation operation s©ḡi+1 s©ḡi+2 s© . . . s©ḡn
comes from the right half Gi+1w©...w©Gn of the partition. This half should be
regarded as the full control group of its left-subsequence G1w© . . . w©Gi. Thus,
a distinction will be made between the full control group Gi+1 w©...w©Gn, and
the immediate control group Gi+1 of the same left-subsequence. The imme-
diate control group will be referred to usually as just the control group of the
sequence. And the full control group will often be called the control-nested
τ-automorphism group, to emphasize that its actions are control-nested.

Group-theoretically, one should observe that the division just given with
the wreath-product symbol at the dividing point:

[G1w© . . . w©Gi]w©[Gi+1w© . . . w©Gn]

is the same as
Deti s©[Gi+1 w© . . . w©Gn]

with the semi-direct product symbol at the dividing point. TheDeti structure
is the direct product of all copies of the fiber group G1w© . . . w©Gi, that is,
all the nodes along the bottom of Fig. 4.5, not just the nodes at the bottom
of one sub-tree. Its control-nested τ -automorphism group is Gi+1 w©...w©Gn,
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the entire system of groups above it. This full group acts by conjugation on
the bottom nodes, and therefore the appropriate group product between the
bottom level, Deti , and everything above it, Gi+1w©...w©Gn , is the semi-
direct product.

Definition 4.6. The control-nested τ-automorphism group of Deti is
Gi+1 w©...w©Gn.

We are now able to state this:

GENERAL STRUCTURE OF TRANSFER

The transfer of action spaces around an environment is
carried out by control-nested τ-automorphism groups. The
set of transferred action spaces are the control-nested τ-
conjugates of their left-subsequences within the associated
wreath product.

This proposal becomes fundamental, for example, to our theory of percep-
tual organization. For instance, we argue that what the Gestalt psychologists
meant by symmetry is really a control-nested τ -automorphism group. Again,
the proposal is basic to our theory of robot manipulation and navigation. We
shall argue that work-spaces are related by control-nested τ -automorphism
groups. The same applies to the parts of any design. The same applies to
quark multiplets in quantum mechanics.

4.6 The Wreath Modifier

A number of times in this book, structures will be characterized in the fol-
lowing way: If Ω is a property of certain groups, then the term wreath-Ω will
be used as a label for some ”corresponding” class of wreath-product groups.
Usually the correspondence will be one of two alternative forms:

(1) If Ω is a property of certain groups, then a class of wreath-product groups
G1w©G2w© . . . w©Gn will be called wreath-Ω if its components Gi have the
property Ω.

(2) If Ω is a property of a certain class of group extensions G1 E©G2 E©. . . E©Gn,
then the corresponding class of wreath-product groups G1w©G2w©. . . w©Gn
will be called wreath-Ω.
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The placement of the word wreath in front of some group property Ω will be
called the wreath modifier. It will often be the case that the class, wreath-
Ω, will not have the property Ω. This will be enormously useful to us. To
illustrate, consider the most basic example possible: that in which wreath-Ω
is the property of being a wreath product. In this case, Ω is the property
that a group is a extension G1 E©G2. The corresponding property, wreath-Ω,
can be called the wreath-extension G1w©G2, which is the wreath product.
Then let us assume the usual convention that, in an extension G1 E©G2, the
component G1 is a normal subgroup of the extension. Observe that, in the
corresponding wreath-extension G1w©G2, the component G1 is not a normal
subgroup. Therefore one must conclude that a wreath-extension of G1 by
G2 is not an extension of G1 by G2. Notice that this corresponds to the
dichotomous effect (p. 94); i.e., in a wreath product, the subgroup G2 acts
automorphically on the fiber-group product but not on any fiber-group copy,
because the latter is not a normal subgroup. It is this that allows transfer
and generativity to take place. Thus, it is valuable to us that a wreath-
extension of G1 by G2 is not an ordinary extension of G1 by G2; i.e., in the
present example, the properties, Ω and wreath-Ω, do not coincide. In relation
to this example, the reader should re-read the comment on (p. 14) called
Normal Subgroups and Generativity, which contrasts the ordinary extension
SO(2) × R with the wreath extension SO(2)w©R and shows that only the
latter allows generativity.

The next section will illustrate some further issues concerning the relation
between properties Ω and properties wreath-Ω.

4.7 Iso-Regular Groups

In Chapter 1, a class of groups was defined which will be fundamental to
our generative theory: iso-regular groups (p. 12). We shall see that these
groups characterize the standard shape primitives of CAD and computer
vision. The justification for the link between iso-regular groups and shape
primitives is our Externalization Principle, which states that any external
inference applied to an arbitrary shape leads back to a shape that is generated
by an iso-regular group.

The concept of the wreath modifier (last section) will now be used to give
a new statement of the iso-regularity conditions, initially presented on p. 12.
We start with the following definition:

Definition 4.7. A group is c-cyclic if it is either a cyclic group or a con-
nected 1-parameter Lie group.

Recall from standard group theory that a group is polycyclic if it has the
structure G1 E©G2 E©. . . E©Gn, where each Gi is cyclic (Segal [140], Sims [146]).
Analogously, we now define:
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Definition 4.8. A group is c-polycyclic if it has the structure
G1 E©G2 E©. . . E©Gn, where each Gi is c-cyclic.

Now we use the wreath modifier (2) in Sect. 4.6, and obtain this:

Definition 4.9. A group is wreath c-polycyclic if it has the structure
G1w©G2w©. . . w©Gn, where each Gi is c-cyclic.

Comment 4.1 In Sect. 4.6, we discussed the possibility of a group having
a property wreath-Ω but not the corresponding property Ω. The definition
just developed, gives such an example: There are groups that are wreath c-
polycyclic but not c-polycyclic. An example is Zw©Z which is not even poly-
cyclic.2

The reader can now see that the iso-regularity condition IR2 (p. 12) is the
condition that a group is wreath c-polycyclic.

Now let us consider isometry conditions. If we say that Ω is the property
that G is an isometry group, then using the wreath modifier (1) in Sect. 4.6,
we have:

Definition 4.10. A group is wreath-isometric if it has the structure
G1w©G2w©. . . w©Gn, where each Gi is an isometry group.

Comment 4.2 Again we have a situation in which a group having a prop-
erty wreath-Ω does not necessarily have the corresponding property Ω. There
are many groups that are wreath-isometric but are not isometric. For exam-
ple, our symmetry group Rw©Z4 for the square, is wreath-isometric but not
isometric in its action on the square.

Finally, iso-regularity condition IR1 (p. 12) is simply the application of
wreath modifier (2) in Sect. 4.6 to the propertyΩ that G is a group extension.
This was discussed as an example in that section.

Using the above, we can now state the three iso-regularity conditions,
each as the application of the wreath modifier. This will be an important
formulation in the book:

IR1: The group is a wreath-extension G1w©G2w©. . . w©Gn.
2 The proof is as follows. A group G is said to satisfy the maximal condition if
every non-empty set S of subgroups of G contains a subgroup that is maximal
in S. A theorem states that a group is polycyclic iff it is soluble and satisfies
the maximal condition. Now, Zw©Z is soluble, because it is an extension of an
abelian normal subgroup (the fiber-group product) by an abelian group (the
control group). However, the set of subgroups

{e} < 〈x0, x1〉 < 〈x0, x1, x2〉 < . . .

does not have a maximum. Therefore Zw©Z not polycyclic.
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IR2: The group is wreath c-polycyclic.

IR3: The group is wreath-isometric.

4.8 Canonical Plans

Wreath c-polycyclic groups are fundamental for our generative theory not
only because they are required for iso-regularity, but because they yield, very
directly, a generative structure, as will now be seen.

First observe that, since each level in a wreath c-polycyclic group is ”1-
dimensional,” it can be regarded as corresponding to the time parameter, i.e.,
the parameter along the generative sequence. Second, the wreath organization
of such a group allows for a canonical means of unpacking that time parameter
from the group, as follows:

The procedure can be illustrated with a square. We shall see that the
standard way of drawing a square - i.e., simply drawing the sides successively
around the figure - comes from the wreath c-polycyclic group characterizing
the square. Recall that we gave the symmetry group of the square to be

Rw©Z4.

This is a wreath c-polycyclic group. It yields the standard plan for drawing
a square as follows: Start with the identity element of the control group Z4;
move down one level to the fiber group, R, and apply this lower group as
a whole to generate the first side. Then go back up to the control group
and apply the next element r90. Move back down to the fiber level, R, and
apply this group as a whole again to generate the second side. And so on,
oscillating in cycles between the control level and the fiber level. In each
cycle, one applies only a single element from the control level, but the entire
fiber level. This procedure successively rotates around the square and draws
a side at each individual rotation position.

For a wreath c-polycyclic group with n levels, one goes through an anal-
ogous n-level procedure, which is this:

GENERATION OF CANONICAL PLAN FROM A WREATH C-
POLYCYCLIC GROUP. Given a wreath c-polycyclic group G1w©G2w©. . .
w©Gn, one repeats a cycle consisting of an entire downward movement through
the levels. In each cycle, one uses only a single element from each successive
downward level Gi, except on the bottom level G1, where one uses the entire
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group. The order of elements within any level is the order prescribed by the
generator of that level. One fills levels from the bottom up.3

Observe that this procedure exploits the Symmetry-to-Trace Conversion
Principle (p. 63). That is, the generativity comes from the symmetries in-
volved, as can be seen from the example of the square. In fact, one is using
the inference rules given in Chapter 2, principally, the Asymmetry Principle
and Symmetry Principle, as explained in that chapter.

From the above procedure, one can see that wreath c-polycyclic groups
correspond to nested do-while loops in computer programming. Control
moves down from an element in an upper loop, and the loop below is per-
formed ”while” that upper element has been selected (and so on downward).
According to our theory, do-while loops come from symmetries in the data,
and are inferred using the recoverability rules of Chapter 2. As we have said
before, there should be no difference between the theory of programming and
the theory of memory objects. Both are structured by symmetries, in fact,
by geometry, as it is defined in this book.

4.9 Wreath Poly-X Groups

Conceptually it is valuable to have both wreath modifiers. However, some-
times this can lead to conflicting terminology. An example is stated in the
present section. We want to define a class of groups that will turn out to be
extremely important for perception and robotics, due to the recursive nature
of the latter two areas:

Definition 4.11. Given a group X, a wreath product of the form

X w© X w© . . . w© X

i.e., where each level is isomorphic to X, will be called a wreath poly-X
group.

For example, the group we propose for a serial-link manipulator will be the
wreath poly-SE(3) group:

SE(3) w© SE(3) w© . . . w© SE(3).

3 Since each level is c-cyclic, it is given by a single generator - either a discrete
element in the case of a cyclic group, or a vector in a Lie algebra in the case
of a 1-parameter group. One can therefore think of the loop on any level as the
repetition of the generator. In the continuous case, the repetition is at infinitessi-
mally close intervals, and therefore one makes the usual discrete approximation
to program the structure.
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Similarly, we shall argue that a group that is fundamentally important for
the human perceptual system is the wreath poly-G group

G w© G w© . . . w© G

where G is the symmetry group of a reference frame; i.e., the reference frame
is recursively substituted into itself to many levels. Again, a group that we
shall argue is fundamental to musical structure is the wreath poly-S group:

. . . w© S w© S w© S w© S.

where S is the group of a scale.
The term wreath poly-X is really a use of the wreath modifier (2). How-

ever, the term will be used judiciously because it can lead to conflicts with
the use of wreath modifier (1). For example, the type of group we have called
a wreath-isometric group, using modifier (1), might be called a wreath poly-
isometric group, using modifier (2). One could of course simply eliminate the
use of modifier (1). However, both modifiers capture conceptually important
phenomena, and, for this reason, both will be used.

4.10 Wreath Covering

The definition of a wreath product requires the fiber-set copies to be in-
dependent sets. However, consider for example a typical situation where the
work-spaces of a robot are overlapping within an environment. Here, we would
want the work-spaces to be fiber-set copies.

The solution to this problem is to define an abstract wreath product,
together with a set of functions, one for each fiber-set copy, mapping each
onto the environment. Note that there is no way that one would have a group
action of the wreath product on the environment itself. The group action
would be defined, as usual, with respect to fiber structure of the wreath
product, and the effects of the action would then be mapped down onto the
environment. However, with respect to the environment these effects might
be multi-valued. This actually accords with the way an intelligent system
works. The multi-valuedness corresponds to the different intentions of the
intelligent system with respect to the environment, and a single point in the
environment can serve several intentions. Thus we have this:

Definition 4.12. Let S be a set. A wreath-covering of S is a wreath prod-
uct together with a set of maps φci : Fci −→ S, one for each fiber-set copy
Fci , for all ci in the control set. The wreath product without the maps will
be called the abstract wreath product, and the maps will be called the
covering maps.
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In nearly all cases considered in this book, the wreath products will be
wreath-coverings of some set S. This will be so obvious, in most cases, that
we will assume it without explicitly pointing it out.



5. Theory of Grouping

5.1 Introduction

Our fundamental claim about human perception is that the perceptual sys-
tem is structured as a wreath product, G1w©G2w©. . . w©Gn. This has powerful
consequences on the way in which perception groups the world into cohesive
structures. In the current chapter, we will show how the groupings can be
systematically predicted from the wreath product G1w©G2w©. . . w©Gn. This
theory applies equally to organization in physics, for example, to the struc-
turing of quark multplets in quantum mechanics, or to software cohesion in
object-oriented design.

5.2 Grouping from Wreath Products

By far the largest body of research on perceptual grouping was provided by
the Gestalt school in the first part of the twentieth century. However, despite
the discovery of many empirical phenomena, no actual theory of grouping
has ever been put forward. A complete mathematical theory of grouping will
be presented over a number of chapters in this book. Nevertheless, the basic
principles will be given in the present chapter.

In the conventional literature, the term grouping is closely related to the
term perceptual organization. The stimulus array is a set of independent data
points, and therefore highly ambiguous with respect to grouping. Perceptual
organization concerns how the perceptual system decides to choose one or-
ganization of the stimulus set as opposed to another. It was discovered by
the Gestalt psychologists that the choice of organization was determined by
criteria for grouping. Examples of such criteria were these: The perceptual
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Fig. 5.1. A classic Gestalt example.

system chooses to put stimuli together in the same grouping if they are sym-
metric to each other, or if they are near to each other, etc. Thus, stimuli that
are not symmetric to each other, and not near to each other, etc., are not
put in the same grouping.1

In order to develop our theory of grouping let us begin by analyzing
one of the most famous examples from the Gestalt literature. It is shown in
Fig. 5.1. In both Fig. 5.1a and 5.1b, there are the same number of squares,
arranged six vertically and six horizontally. However, in Fig. 5.1a, the per-
ceptual system groups the squares into rows, whereas, in Fig. 5.1b, the per-
ceptual system groups the squares into columns. The reason given for this,
by Gestalt psychologists, is that the perceptual system uses the criterion of
proximity: Nearer stimuli are grouped together - hence the grouping into rows
in Fig. 5.1a and the grouping into columns in Fig. 5.1b.

Our main proposal will be this: All Gestalt phenomena arise from the
maximization of transfer and recoverability.

Let us begin by examining Fig. 5.1a. This configuration is in fact a 5-level
hierarchy of transfer. That is, it is given by a 5-fold wreath product

G1 w© G2 w© G3 w© G4 w© G5.

The levels are as follows: First, the lowest level G1 is the individual point,
which will be represented by the trivial group {e}. The point is transferred

1 In spite of the fact that the Gestalt school showed that symmetry is enormously
important to human vision, there has been almost no psychological research
on symmetry in the last 60 years. The exceptions have been Leyton [87]-[97],
Carlton & Shepard [18], [19], Shepard [142], Ishida & Kotovsky [63], Lenz [83],
See also Foote, Mirchandani, Rockmore, Healy & Olson [36] which uses wreath
products in the domain of signal-processing. Finally, an outstanding paper on
the relationship between Gestalt theory and computational vision is Vishwanath,
[151].
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along an individual side by the translation group and therefore G2 is R. Next,
a side is transferred around an individual square by the 4-fold rotation group,
and therefore G3 is Z4. Next, a square is transferred along a particular row
by integral translations Z, and therefore G4 will be given as ZH , where the
superscript H means horizontal. Finally, a row is transferred in the vertical
direction by the group of integral translations, and therefore G5 will be given
as ZV , where the superscript V means vertical.

The 5-fold wreath product describing Fig. 5.1a is therefore,

{e} w© R w© Z4 w© ZH w© ZV .

Now our theory is that grouping - the cohesiveness across perceptual
elements - is created by transfer across the elements. This means that one can
enumerate the perceptual groupings by enumerating the left-subsequences
of the wreath product that models the stimulus set. The following table
elaborates the left-subsequences of the above 5-fold hierarchy. They are

{e} a point
{e} w© R a side
({e} w© R) w© Z4 a square
({e} w© R) w© Z4) w© ZH a row
({e} w© R) w© Z4) w© ZH) w© ZV the whole.

It is clear that this list corresponds exactly to what people would regard
as the groupings, or ”objects,” in Fig. 5.1a. Later in this book, when we
investigate much more complex shape, we shall see that exactly the same
rules apply.

Page 138 gives our basic law of grouping, and the reader should work
through each of the statements on that page, before continuing.

Note the way in which perceptual levels are linked according to this law,
as follows: Express the grouping G1 w© . . . w© Gi in its semi-direct product
notation:

[(G1 w© . . . w©Gi−1)×(G1 w© . . . w©Gi−1)×. . .×(G1 w© . . . w©Gi−1)] s©τ [Gi].

Observe that the perceptual elements, which are the copies of (G1 w© . . .
w© Gi−1) along this sequence, are linked by the direct-product operation, ×.
As listed in the Product-Hierarchy Table p. 117, groups that are linked by ×
are on the same level of the hierarchy. Therefore the sequence shown above
acknowledges that the perceptual elements, that are bound together, are on
the same level of the hierarchy.

Now move one step to the right along the above sequence. To the right
of the fiber-group product, there is the semi-direct product symbol s©τ . As
listed on the Product-Hierarchy Table, this symbol is hierarchical. It links
one level (left of s©τ ), to the next higher level (right of s©τ ). Indeed, on the
right of s©τ , in the above sequence, there is the control group Gi, which,
as the Law of Grouping states, is the grouping factor. Thus the semi-direct
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LAW OF GROUPING

(1) Grouping is created by transfer.

(2) Therefore the groupings in an organization are enu-
merated as the left-subsequences G1 w© . . . w© Gi in an n-fold
wreath product (for all i ≤ n).

(3) Consider a particular grouping G1 w© . . . w© Gi. Because
grouping is created by transfer, the cohesive structure of this
grouping is the expression of the grouping as its wreath product
(G1 w© . . . w© Gi−1) w© Gi, where the relevant wreath product
symbol is that after the parentheses. The various factors in the
cohesive structure can then be read directly from this wreath
product as follows:

(4) A perceptual element of the grouping is the fiber
G1 w© . . . w© Gi−1.

(5) The set of elements grouped is the set of fiber copies
(G1 w© . . . w© Gi−1)g1 , . . . , (G1 w© . . . w© Gi−1)gn .

(6) The grouping factor is transfer, i.e., the control group
Gi.

(7) The grouping action is the τ -automorphic action of Gi

on its fiber-group product.

————————————————————————————————–
Grouping = G1 w© . . . w© Gi= left-subsequence
Cohesive structure = (G1 w© . . . w© Gi−1) w© Gi = wreath product
Individual Element = (G1 w© . . . w© Gi−1) = fiber
Set of elements grouped = (G1 w© . . . w© Gi−1) , . . . , (G1 w© . . . w© Gi−1)

= fiber copies
Grouping factor = Gi = control group
Grouping action = τ -automorphic action of Gi on its fiber-group product
————————————————————————————————–

product symbol s©τ links the set of elements on the left to the grouping factor
on the right. This exhibits the algebraic structure of transfer.
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5.3 Grouping as Algebraic Action

According to Sect. 3.17, transfer is achieved by conjugation; i.e., given a
member g of the control group, its action, in sending the fiber-group copy
G(F )ci onto the fiber-group copy G(F )gci , is given thus:

G(F )ci

g−g−1

−→ G(F )gci .

This means that the second fiber-group copy G(F )gci is really the conjugate
gG(F )cig

−1 of the first fiber-group copy G(F )ci .
Now, our Law of Grouping states that grouping is transfer and that the

elements that are grouped are the fiber-group copies. Thus we are lead to the
following conclusion:

GROUPING IS CONJUGATION. The cohesive action in grouping
is carried out by conjugation. The elements that are grouped are conjugate
copies of each other.

There is a deep consequence of the above statement: As argued
in Sect. 3.18, conjugation is really a memory structure. The definition
gG(F )cig

−1 of the second fiber-group copy G(F )gci is really a three-stage
definition, which says that, if you want to carry out any action within the
second fiber-group copy, you should go through the following three steps: (1)
apply g−1 to get you from the second fiber-group copy back to the first, (2)
then carry out the required action within the first fiber-group copy G(F )ci ,
and (3) then apply g to transfer the result forwards to second fiber-group
copy. Therefore, the conjugation process recalls the action within the first
fiber-group copy G(F )ci .

We therefore conclude that, since grouping works by conjugation, it is
actually a memory structure. Therefore it relies on recoverability, which is
the other main component of our theory, besides transfer. The relation to
recoverability, particularly, to external and internal inference was given in
Sect. 3.18. The example of Fig. 5.1a uses only internal inference, since all
levels are traces. This is because the group defining this particular figure is
an iso-regular group (Sect. 4.7). However, the theory applies equally well to
the case where external inference is required. Such a case would occur if, for
example, the figure were deformed, e.g., by the projective process or by some
spline-based action.
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5.4 Generative Crystallography

It is worth characterizing the particular Gestalt example in Fig. 5.1a by
defining a class of groups, as follows:

Fig. 5.1a has a type of regularity that is evidenced in crystallographic
structures. Such structures are based on lattices, and are important in sev-
eral areas. Examples are image screens such as the human retina, and most
memory-storage devises. Furthermore, crystallographic methods have been
used to solve shape-from-texture problems in computer vision, Liu & Collins
[100]; to characterize ornamental structures, Jablan [64], Washburn & Crowe
[155]; and for solving robot assembly problems, Liu [99], Liu & Popplestone
[101], Popplestone, Liu & Weiss [120].

Standardly, a crystallographic group is defined as

G = [Z × Z × . . .× Z] E© H (5.1)

where the normal subgroup Z × Z × . . . × Z is the translation group of the
lattice and H is the point group, which is a subgroup of the orthogonal group
O(n). The extension is not necessarily splitting. However, because the normal
subgroup is maximal abelian in G, the map

σ : H −→ Aut[Z × Z × . . .× Z]

on which the extension is based, is a momomorphism. See Ascher & Janner
[3], [4], Shubnikov & Koptsik [143], Schwarzenberger [138].

In contrast to this approach, we want to characterize crystallographic
structure generatively. To do this, we argue that one must use a different kind
of extension from that given in expression (5.1). We do this by proposing the
following definition:

Definition 5.1. A generative crystallographic group is an iso-regular
group (wreath c-polycyclic, wreath-isometric) of the form

G = H w© [Z w© Z w© . . . w© Z]. (5.2)

Note that the component H, being iso-regular, has itself a wreath c-polycyclic
wreath-isometric decomposition G1w©G2w©. . . w©Gn.

The upper group in expression (5.2) is now the translation group. Observe
that it is a wreath product Zw©Zw© . . . w© Z in contrast to the direct product
Z × Z × . . . × Z in standard crystallography (5.1). This means that it is
now a generative structure, and can therefore model physical processes such
as crystal growth. For example, consider the 2-dimensional case Zw©Z, which
can model, for instance, an image screen created by a moving scan-line. Notice
the important role of the dichotomous effect in the wreath product: Because
the fiber Z is not a normal subgroup, is moved by the control group Z. This
means that Zw©Z correctly models the successive movement of the scan-line
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down the screen. If instead the group were a direct product Z×Z, the scan-
line could not move because it would correspond to a normal subgroup. The
same issue would arise in crystal physics where one would wish to model the
successive accumulation of layers in a crystal structure, i.e., in crystal growth.
The wreath product would model this, and the direct product would not.

The group in extension (5.2) should be understood as a lattice translation
group moving around an iso-regular group H from lattice position to lattice
position. In an intuitive sense, one can understand the extension in (5.2)
as reversing the positions of the translation group and point group H in
(5.1). This however, should not be emphasized too strongly, for the following
reasons: First, the point group in (5.1) is literally an automorphic property
of the lattice, and this is not the case in (5.2). There is no restriction in (5.2)
that H should pick up any symmetries in the translation group. Second,
the H group in (5.2) corresponds more to what crystal physicists would call
the asymmetric element - a molecule or configuration of molecules, which is
repeated throughout the array. What we have done therefore in (5.2) is to
express this repetition as a process of transfer, i.e., the group of the ”molecular
element” is transferred from lattice site to lattice site. Furthermore, the entire
structure is given as an iso-regular group. This means that one can generate
the entire structure via a canonical plan, as described in Sect. 4.8.

Finally, returning to the Gestalt example in Fig. 5.1a, one can see that
it is an instance of what we have called here a generative crystallographic
group (the above definition). Such groups will appear in this book a number
of times, e.g., in mechanical and architectural CAD.

5.5 Using the Law of Grouping

Our basic proposal is that grouping is transfer, i.e., that the environment is
unified by transfer. The Law of Grouping tells us exactly how this is achieved.
In this section, we learn more about this law by applying it carefully to the
5-fold wreath product defining the grid of squares. Throughout, we will use
the regular wreath product, i.e., there is one copy of the fiber group for each
member of the control group. Also, we will use the finitistic notation (p. 110)
in which infinite direct products are shown in a finite notation.

Let us go left-to-right through the 5-fold wreath product for the grid of
squares

{e} w© R w© Z4 w© ZH w© ZV . (5.3)

The first left-subsequence is {e} which is the trivial grouping, a point.
Moving to the first non-trivial left-subsequence

{e} w© R
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one gets the grouping that people call a ”side”. Opening up this wreath
product, one gets:

[{e} × {e} × . . .× {e}] s©τ [R]

where there is one copy of the fiber group {e} for each element in the control
group R. The set of copies of {e} in the fiber-group product {e}×{e}×. . .×{e}
is the set of points within a side. It is this set of elements that are perceptually
grouped together. In accord with the Law of Grouping (p. 138), cohesiveness
is created by the control group R (in the above sequence), which we call the
grouping factor. Furthermore the law states that the way in which R achieves
the cohesiveness is via its transfer of points {e} onto each other. This is
carried out by the τ -automorphic action of R on the fiber-group product.
The action takes place by conjugation of the copies of {e}, thus:

{e}ci

g−g−1

−→ {e}gci.

In other words, the second element {e}gci is really the conjugate g{e}cig
−1

of the first element {e}ci. Thus the points along a line are conjugate copies
of each other.

RECURSIVENESS OF THE VISUAL SYSTEM. We shall show
that the visual system is recursive, and therefore a large non-trivial wreath
group H1 w© H2 w© . . . w© Hn can be substituted for the point {e} at the left-
end of any wreath sequence {e} w© G1 w© G2 w© . . . w© Gn. For example,
an entire Cartesian frame can be substituted for each fiber copy of {e}. The
ability to perceptually map between these frames is then carried out by the
τ-automorphic conjugacy structure that we just described.

Now move one step to the right in the full sequence and obtain the next
left-sub-sequence:

({e} w© R) w© Z4.

This correponds to the grouping people call a square. Much time was spent
in Chapter 3 understanding the wreath-product structure of a square, but
some extra comments should now be made:

According to the Law of Grouping, the cohesive structure is given by the
final wreath product symbol w© in the above left-subsequence. The various
factors in this grouping can be read directly from this wreath product: An
individual element in this grouping is given by the fiber ({e} w© R), a side.
The set of elements that are grouped are revealed when the wreath-product
symbol is opened up in its semi-direct product notation, thus:

[({e} w© R)× ({e} w© R)× ({e} w© R)× ({e} w© R)] s©τ [Z4]. (5.4)

To the left of s©τ , there is the fiber-group product ({e} w© R)× ({e} w© R)×
({e} w© R)×({e} w© R), which consists of the four sides. The Law of Grouping
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states that the elements are bound together by the grouping factor, which
is the (right-most) control group Z4. The grouping is achieved by the τ -
automorphic action of Z4 on the fiber-group product. Since this action cor-
responds to transfer, we see that grouping is achieved by transfer. Again:
Environmental unification is achieved by transfer!

Note also that the τ -automorphic action is conjugation:

({e} w© R)ci

g−g−1

−→ ({e} w© R)gci .

In other words, the second fiber-group copy ({e} w© R)gci is really the con-
jugate g({e} w© R)cig

−1 of the first fiber-group copy ({e} w© R)ci . Thus the
elements that are grouped in a cohesive structure are conjugate copies of each
other.

Note that the sequence (5.4) involves all three group-product symbols,
×, s©, and w©. It is worth the reader checking the hierarchical information
that these products give in (5.4), in accord with the Product-Hierarchy Table
(p. 117).

In the sequence (5.4), notice that the first product that occurs is a wreath
product w©. From this we see that the grouping actions are control-nested.
That is, within the fiber-group product of the sequence, there are copies of
the previous left-subsequence ({e} w© R), in which the grouping factor is R,
which groups the points within a side.

Thus opening up each of the wreath products ({e} w© R), in the sequence
(5.4), one gets this:

[([{e} × {e} × . . .× {e}] s©τ [R])
×([{e} × {e} × . . .× {e}] s©τ [R])
×([{e} × {e} × . . .× {e}] s©τ [R])
×([{e} × {e} × . . .× {e}] s©τ [R])]

s©τ [Z4]. (5.5)

This sequence explicitly shows the effect of the first two levels of the binding
structure: Each of the first four lines gives the grouping of the points by
the translation control group. Then the fifth line gives the grouping of the
previous four lines by adding a transfer level Z4 across them.

Let us now move one step further to the right in the full 5-fold sequence
(5.3), and thus obtain the following left-subsequence.

({e} w© R w© Z4 w©) ZH .

Because this is a left-subsequence, the Law of Grouping implies that it is a
perceptual grouping. And indeed it is. It is the grouping people call a row.

According to the law, the cohesive structure of this subsequence is given
by the final wreath-product symbol w©, and the various grouping factors can
be read directly from this wreath product, as follows: An individual element
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in this grouping is given by the fiber ({e} w© R w© Z4), which represents a
square. The set of perceived elements in the grouping are revealed when the
wreath product is opened up in its semi-direct product notation, thus:

[({e} w© R w© Z4)×({e} w© R w© Z4)× . . .×({e} w© R w© Z4)] s©τ [ZH ]. (5.6)

Observe that, to the left of the semi-direct product symbol s©τ , there is the
fiber-group product which is the direct product of the perceived elements
(squares), one element for each member of the control group ZH , shown to
the right of s©τ . The group ZH is the group of horizontal movements along
a row. This is the grouping factor. It works by its τ -automorphic action
- i.e., transferring one square onto another horizontally. Again, the action
is conjugation: Any member g of the control group ZH sends the square
({e} w© R w© Z4)ci to the square ({e} w© R w© Z4)gci , via the action g− g−1:

({e} w© R w© Z4)ci

g−g−1

−→ ({e} w© R w© Z4)gci .

Thus, the squares within a row are really conjugates of each other.
Notice, in the grouping structure (5.6), that even though the direct-

product symbols × link the individual fibers, the fibers themselves are in-
ternally structured by wreath-product symbols w©. This indicates that the
fibers are themselves groupings, in fact, the groupings we have studied pre-
viously. Thus, within any such fiber ({e} w© R w© Z4), let us open its second
wreath-product symbol, in its semi-direct product notation. Expression (5.6)
then becomes this:

[([({e} w© R)× ({e} w© R)× ({e} w© R)× ({e} w© R)] s©τ [Z4])
×([({e} w© R)× ({e} w© R)× ({e} w© R)× ({e} w© R)] s©τ [Z4])

× . . .×([({e} w© R)× ({e} w© R)× ({e} w© R)× ({e} w© R)] s©τ [Z4])]

s©τ [ZH ]. (5.7)

In the top line, the fibers, ({e} w© R) represent the sides of the square, and
the control group Z4, at the end of the line, is the grouping factor that binds
the sides together. This structure is repeated on the next two lines. The final
line is the grouping factor that binds all the previous lines together.

Notice, in the above structure, that one wreath-product symbol is still
not opened, that in the fiber ({e} w© R). Opening this, one gets:

[{e} × {e} × . . .× {e}] s©τ [R]

which is the grouping of points in a side. This opened structure can then be
substituted in the sequence (5.7), thus revealing all elements.

Finally, one comes to the highest level of grouping in Fig. 5.1a: the bind-
ing of the set of rows into the full percept. This is given by the final left-
subsequence, which is the full 5-fold wreath product itself:
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({e} w© R w© Z4 w© ZH w©) ZV .

According to the Law of Grouping, the cohesive structure of this left-
subsequence is given by the final wreath-product symbol, and thus an in-
dividual element in this grouping is the fiber ({e} w© R w© Z4 w© ZH), which
represents a row. The set of perceived elements in the grouping are the copies
of the fiber revealed when the wreath product is opened up in its semi-direct
product notation:

[({e} w© R w© Z4 w© ZH)×({e} w© R w© Z4 w© ZH)

× . . .×({e} w© R w© Z4 w© ZH)]

s©τ [ZV ].

The grouping factor that binds the elements together is the (right-most) con-
trol group in this sequence. This is ZV , the group of vertical movements. The
grouping action is its τ -automorphic action on the fiber-group product to its
left. Observe that this is the means by which each row is transferred verti-
cally through the visual configuration. Since transfer is algebraic conjugation,
g − g−1, the rows are conjugate copies of each other.

Finally, by opening up the wreath-product symbols w©, in the above se-
quence, one reveals the grouping hierarchies below the highest level just de-
scribed. This shows that the cohesive structures are control-nested in each
other.

5.6 Hierarchical Detection in Grouping

The reader will recall from Sect. 4.4 that, given an n-fold wreath product
G1w© . . . w© Gn, we defined the detected symmetry group up to Level i as

Deti = [G1w© . . . w©Gi]mi+1×mi+2×...×mn

(where |Gj | = mj). At this level, all fibers G1w© . . . w©Gi are independent,
not just the fibers within a particular fiber-group product of the next level.
Then the group

Deti+1/Deti = G
mi+2×...×mn

i+1 .

is what is detected in order to raise the detected symmetry group from Deti
to Deti+1. Thus the detection of Level i+ 1 is a splitting extension of Deti
by G

mi+2×...×mn

i+1 . Successive hierarchical detection therefore corresponds to
a group-theoretic normal series, thus:

Det1 ✁Det2 ✁Det3 ✁ . . .✁Detn.
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We shall now see that the issue of hierarchical detection relates funda-
mentally to grouping. To illustrate, consider Fig. 5.1a, after the points have
been grouped into sides, but before the sides have been grouped into squares.
At this stage, the perceptual organization is a set of independent sides. How-
ever, this set consists not only of the sides within a particular square, but
the sides in the entire configuration. This means that the symmetry group of
the entire set is not simply the fiber-group product of the next level but

Det2 = [{e} w© R]m3×m4×m5 (5.8)

where the sequence {e} w© R is the group of an individual side, and the power
m3 ×m4 ×m5 is the cardinality of the right-subsequence Z4 w© ZH w© ZV of
{e} w© R in the full 5-fold sequence {e} w© R w© Z4 w© ZH w© ZV (using fini-
tistic notation on the cardinals). What (5.8) expresses is the entire grouping
that has taken place up to and including the level of the sides, but not be-
yond. This views the entire grid as a purely parallel structure of independent
sides.

Next, when one detects the squares, what one has detected is this:

Det3/Det2 = (Z4)m4×m5 .

In accord with our group-theoretic characterization of detection (p. 122), the
detection of the squares is the splitting extension of Det2 by (Z4)m4×m5 . This
extension gives the symmetry group of the entire set of independent squares,
which is

Det3 = [{e} w© R w© Z4]m4×m5 . (5.9)

Notice that the symmetry group of the set of sides is a normal subgroup of
the symmetry group of the set of squares.

Thus, if we consider the full Gestalt created by Fig. 5.1a, the successive
detection of the groupings is given by the following normal series:

Det1 ✁ Det2 ✁ Det3 ✁ Det4 ✁ Det5.

5.7 Perceptual Relationship between Similar
Groupings

It is necessary to understand the relationship between similar groupings in an
organization. As an example, consider the two sides that have been empha-
sized in Fig. 5.2. Assume now that all perceptual levels have been detected.
The two sides are groupings. However, because all higher levels have been de-
tected, the two sides now have a perceptual relationship between each other.
They are not simply independent. What is the perceptual relationship?
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Fig. 5.2. Calculating the Gestalt relationship between two elements.

The reader will recall the difference between a τ -automorphism and a
control-nested τ -automorphism (Sect. 4.5). In the first case, one considers
the control group of a left-subsequence G1 w©G2w© . . . w©Gi to be the next
level, Gi+1. In the second case, one considers the control group to be the en-
tire right-subsequence Gi+1 w©Gi+2 w© . . . w©Gn. The τ -automorphisms in the
former case are single-level, coming from Gi+1, and the τ -automorphisms in
the second case are multi-level, coming from Gi+1 w©Gi+2 w© . . . w©Gn.

Thus we argue that the perceptual relationship between the two sides in
Fig. 5.2 is a control-nested τ -automorphism. Notice that such an automor-
phism moves one side onto the other via a hierarchical action that uses the
successive control groups above the side. Since the side is

{e} w© R

and the full 5-fold sequence is

{e} w© R w© Z4 w© ZH w© ZV

the successive control groups above the side are Z4 , ZH , and ZV .
Thus, let us see how this control-nested movement works. Note that each

side exists in a particular orientation, on a particular square, on a particular
row. To move one of the sides onto the other, one must first use an element
from Z4 to rotate it until it has the same position within its own square as
the other side. Then one must use an element from ZH to move its square
horizontally, till this is in the same position on its row as the other square.
Finally, one must use an element from ZV to move its row onto the other
row.

This three-fold hierarchical operation is a control-nested τ -automorphism
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ḡ3 s©ḡ4 s©ḡ5

which comes from the group Z4 w© ZH w© ZV .
Now the first of the two sides is a copy of the fiber group {e} w© R. One

knows which copy it is by the control indexes that appear on it, thus

[{e} w© R]c3,c4,c5

where c3 is the position of the side within the square, c4 is the position of the
square within the row, and c5 is the position of the row within the whole.

When one applies the control-nested automorphism ḡ3 s©ḡ4 s©ḡ5 to this,
one obtains

[{e} w© R]c3,c4,c5 ḡ3 s©ḡ4 s©ḡ5

which is the other copy of the side. Evaluating this expression, one gets

[{e} w© R]g3c3,g4c4,g5c5

in accord with Definition 4.3 (p. 126). Since the successive elements g3 ,
g4 , and g5 , each act by conjugation, this second side is the control-nested
τ-conjugate of the first side.

Now, each of the two sides is a grouping in its own right. Furthermore,
these two groupings are on the same level as each other. With this in mind,
we are now conceptually ready to make the following statement:

EXTENSION OF LAW OF GROUPING. All occurrences of a group-
ing G1 w© . . . w© Gi in a perceptual organization, are of the form

[G1 w© . . . w© Gi]ci+1,ci+2,...,cn
s©ḡi+1 s©ḡi+2 s© . . . s©ḡn

where s©ḡi+1 s©ḡi+2 s© . . . s©ḡn is a member of the control-nested τ-auto-
morphism group Gi+1 w© Gi+2 w© . . . w© Gn.

The Law of Grouping, as stated on p. 138, concerns the structure down-
wards in a grouping. The extension just given concerns the structure above
a grouping.

This proposal becomes crucial, for example, to our theory of robot
workspaces. A grouping can be considered to be a workspace, because it is
defined by actions. The control-nested τ -automorphisms transfer workspaces
around the environment. The system of transfer actions is itself a workspace.
Thus, one gets what we call a transfer diagram:

Workspace-1
Workspace−2−→ Workspace-1.

where to the left and right of the arrow there are two copies of Workspace-1,
and over the arrow, creating the transfer, there is Workspace-2, which is the
system of control-nested τ -automorphisms.
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As a simple example, a side is really a workspace - e.g., it could be the
edge of a block along which a robot finger can move. Furthermore, the system
of transfer actions from side to side is also a workspace. Thus, as an example
of the above transfer diagram, one gets the following mapping between sides:

[{e} w© R]c3,c4,c5

ḡ3 s©ḡ4 s©ḡ5∈
Z4 w© Z

H w© Z
V

−→ [{e} w© R]g3c3,g4c4,g5c5 .

Of course, the view that groupings are workspaces (and vice versa) is
an example of our view that cognition organizes the environment as ma-
chines, and that intelligence consists of maximizing transfer of machines.
A workspace, or grouping, is a machine. The transfer structure is given by
wreath products of machines.

5.8 Product Ordering

We have so far examined Fig. 5.1a. Let us now establish what underlies the
difference between the perceptual organization of Fig. 5.1a and Fig. 5.1b.

Observe first that the generative structure of Fig. 5.1a and 5.1b use the
same groups. This is because the configurations have the same symmetries,
and the generative structure comes from the symmetries, by the Symmetry-
to-Trace Conversion Principle. However, what is different about the two con-
figurations is this: In Fig. 5.1a, the group of vertical movements, as control,
acts on a horizontal row as fiber; and in Fig. 5.1b, the group of horizontal
movements, as control, acts on a vertical column as fiber. This means their
respective wreath products have a different order, as follows:

{e} w© R w© Z4 w© ZH w© ZV (5.10)

{e} w© R w© Z4 w© ZV w© ZH (5.11)

i.e., the last two factors are reversed in the two sequences.
We shall now study the issue of product ordering. A basic fact will be

important to us: A wreath product is an asymmetric construction, in the
sense that, the control group makes copies of the fiber group, but the fiber
group does not make copies of the control group.

Let us now ask why it is that the perceptual system chooses the specific
wreath-product orderings that it does. The answer consists of applying the
History Symmetrization Principle, which says that the history must contain
minimal distinguisability (Sect. 2.14). When the metric being considered is
Euclidean, as it is in the visual domain, the principle can be regarded as the
History Minimization Principle.
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Fig. 5.3. Incorrect groupings are produced when the levels of control are reversed.

We now claim that this principle determines the ordering of the wreath
components. First let us illustrate this claim by considering a square, and
then give a general proof of the claim.

The square has two non-trivial levels: R describing a side, and Z4 describ-
ing the rotations between the sides. The wreath product of these two groups
has two alternative orders:

R w© Z4

Z4 w© R

Each of these orders is of course preceded by the group {e}, representing a
point.

The preceding sections have studied the first of these two orders. Let us
however now consider the second order, Z4 w© R. In this case, the fiber group
becomes Z4 and the control group becomes R. This means that R now makes
copies of the fiber Z4. What do these fiber copies look like?

To answer this, note that the wreath product, now being examined, is
really

{e} w© Z4 w© R.

Thus, working from left to right, along this sequence, there is first a point,
{e}, which (without loss of generality) can be assumed to be the central point
on the top side. To this point, one applies the four rotations Z4. This results
in the four points shown in Fig. 5.3a. Then, at the end of this wreath product
one applies R, the translation group, to produce the copies of Z4. There is
some ambiguity about how to apply translations to Fig. 5.3a, but for the sake
of argument, one can consider that the copies of Z4 produced by R are the
sets shown in Fig. 5.3b, c, . . . , etc. That is, these are the translations of the
four points along their respective sides, by equal amounts on each side.

The crucial fact however occurs at the level of the fiber Z4 below R. In
Fig. 5.3a, one sees that the trajectory taken by Z4 around the square is four
points that are separated by large distances. Most importantly, although Z4

has gone all around the square in Fig. 5.3a, it has accounted for very little in
the square, i.e., only four points. The same is true of each of the other fiber
copies of Z4, shown in Fig. 5.3b, c, . . . , etc.
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The consequence is that this wreath product produces a history that is
very long: The history consists of the trajectories shown in Fig. 5.3a, b, c,
. . . , etc. That is, one starts by drawing the successive four points around
Fig. 5.3a, then one draws the successive four points around Fig. 5.3b, then
one draws the successive four points around Fig. 5.3c, and one continues like
this till one has produced all the points on the square. This means that, in
completing the history, one will have gone many times around the square,
because each time, one could put down only four points.

Let us now contrast this with the alternative ordering for the wreath
product of a square - the ordering which was studied in Chapter 3:

{e} w© R w© Z4.

We will call this, the standard ordering. Working from left to right, along
this sequence, there is first a point, {e}. To this one applies the translations,
R. This results in a single side. Then, at the end of the wreath product one
applies, Z4, the four rotations. This merely rotates the side around the square.

Concerning this history, observe the following: (1) The fiber group R, of
translations, takes extremely small steps (infinitessimal) from one point to
the next along an individual side. These steps are then duplicated by the
control group, and therefore the history consists of copies of small steps.
This contrasts with the history in Fig. 5.3, where the fiber (e.g., Fig. 5.3a)
involved large steps, and these large steps were duplicated in the other fiber
copies (Fig. 5.3b, c, a, etc.), thus resulting in a history consisting of copies of
large steps. (2) Next, in the standard ordering, Z4 is the control group, and
is therefore used only once; i.e., in any wreath product, it is the fiber that is
copied, not the control group. Thus the entire standard history involves going
around the square only once. This contrasts with the history in Fig. 5.3, which
involved going around the square many times; i.e., because Z4 is the fiber in
Fig. 5.3, and, in a wreath product, it is always the fiber that is copied.

The above argument shows that the standard ordering gives a much
shorter history than the alternative ordering. We now generalize this argu-
ment to all cases, and thus establish the relationship between wreath-product
orderings and the History Minimization Principle. To do so, consider two ar-
bitrary groups that must be brought together in a wreath product. The goal
is to understand which ordering satisfies the History Minimization Principle,
as follows:

The first important point to understand is that the stimulus set (data
set) is the same for both of the alternative wreath-product orderings. The
individual groups involved represent trajectories through the same set. The
group elements are the steps in these trajectories.

Now, let us suppose that the elements in one group take short steps in
the stimulus set, and the elements in the other group take long steps in
the stimulus set. Call the first group, the short-step group, GS , and call the
second group, the long-step group, GL. Our question is this: In which order
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should these two groups be put together, in the wreath product? That is,
should the order be GL w©GS , or should it be GS w© GL?

Let us consider the first alternative, GL w©GS . That is, in this alternative,
the assumption is that the fiber group is the long-step group. It will generate
a trajectory in which the steps are long, and this will be called a long-step
trajectory. The control group then makes copies of this long-step trajectory.
In other words, it creates further long-step trajectories. So, the history that
generates the stimulus set is a concatenation of long-step trajectories!

Now consider the other ordering for the wreath product, that is GS w© GL.
Most crucially, the fiber group is now the short-step group GS . It will gen-
erate a trajectory in which the steps are short, and this will be called a
short-step trajectory. The control group then makes copies of this short-step
trajectory. In other words, it creates further short-step trajectories. So the
history that generates the stimulus set is a concatenation of short-step trajec-
tories! Furthermore, in this history, the long-step group is the control group,
and is therefore used only once; i.e., in any wreath product, it is the fiber
group that is copied, not the control group. This contrasts with the other
wreath-product ordering, which involves a number of copies of the long-step
trajectory, because, in this case, the long-step trajectory was the fiber group.
Thus we conclude:

CONTROL-NESTING: ORDERING RULE. The order in which
components are control-nested is determined by the following rule: Smaller
steps are assigned to lower levels of control, and larger steps to higher levels
of control. Only this will satisfy the History Minimization Principle.

5.9 Local-to-Global in a Wreath Product

The argument given in Sect. 5.8 on product-ordering can be regarded as
related to the argument that we will now give:

Ultimately, there is only one issue that determines the ordering in a wreath
product: Higher levels must transfer lower levels. The following statement can
be considered to be a corollary of this:

LOCAL-TO-GLOBAL ORDERING. Because the fiber group acts only
within a fiber, and the control group acts across the fibers, the fiber-to-control
ordering, along a wreath product G1w©G2w©. . . w©Gn, tends to correspond to
a local-to-global ordering.
Examples so far in this book include:
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Fig. 5.4. Another classic Gestalt example.

(1) Structure of square: This is given by Rw©Z4. The lower level R is the local
action within side. The higher level Z4 is the global action across sides.

(2) Gestalt grouping: Rows of squares in a vertical array. This is given by
ZH w©ZV . The lower level ZH is the local action within fiber (a row). The
higher level ZV is the global action across rows.

(3) Robotics: On p. 19, we gave the structure of a serial-link manipulator to
be SE(3)1w© SE(3)2w© . . . w©SE(3)n. The highest control level is with respect
to world frame. The successive levels downwards are successively more local
because they belong to the successively more dependent smaller limbs; e.g.,
they are successively down the arm from torso to finger.

5.10 Perceptual Effect of Inclusion
and Omission of Levels

Another way of showing that the perception of a grouping depends crucially
on the arrangement of the transfer structure, is by causing the omission of
one of the levels in the wreath hierarchy. To illustrate this, let us consider
a classic Gestalt effect due to Wertheimer (cited in Rock [128] p273). In the
sequence of dots in Fig. 5.4, the separation between pairs ab, cd, ef and gh is
only slightly less than between bc, de, fg and hi. Depending on whether the
observer sees this difference in spacing, a different percept arises: The dots
are perceived either as a line partitioned into pairs, or as a homogeneous line
(without pairing). According to our theory, the visual difference is determined
by the difference in the respective structures of transfer.

Let us look at the non-homogeneous case first (i.e., where the pairing
occurs). There are three levels of symmetry in this configuration. These are
given by the following three groups:

{e}, which maps a single point to itself.

Z2 , which describes the fact that an individual pair of points is
reflectionally symmetric about its bisecting vertical axis.

Z, which describes the fact that the pairs of points are indistinguish-
able from each other under integer translations.
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Observe that these symmetries are arranged in a hierarchical transfer
structure: Z2 transfers the symmetry structure {e} from one point to another
point within a pair, and Z transfers the symmetry structure Z2 from one
pair to the next. Thus, the full structure is the following hierarchy of nested
control:

{e} w© Z2 w© Z.

Now, according to the Law of Grouping, the perceptual groupings must
be given by the left-subsequences, which, in this case, are:

{e} a point
{e} w© Z2 a pair
{e} w© Z2 w© Z the whole.

We now use the Extension to the Law of Grouping (p. 148) to enumerate the
entire set of occurrences of these groupings in the organization. According
to the Extension, all the occurrences of a grouping G1 w© . . . w© Gi, in a
perceptual organization, are of the form

[G1 w© . . . w© Gi]ci+1,ci+2,...,cn
s©ḡi+1 s©ḡi+2 s© . . . s©ḡn

where s©ḡi+1 s©ḡi+2 s© . . . s©ḡn is any member of the control-nested τ -auto-
morphism group Gi+1 w© Gi+2 w© . . . w© Gn. That is, the occurrences of
the grouping are its control-nested τ-conjugates with respect to the latter
group. Thus, let us now take each of the above left-subsequences, in turn,
and elaborate the conjugates:

(1) The control-nested τ-conjugates of {e}

Choose a particular point. It is of the form

{e}c2,c3

where the two indexes c2 and c3 are from the two levels above the level of
points in the hierarchy. The control-nested τ -conjugates of this point must
be of the form

{e}c2,c3 s©ḡ2 s©ḡ3

where ḡ2 s©ḡ3 comes from the control-nested τ -automorphism group Z2 w© Z.
There is something important that must be understand about this struc-

ture. We are actually considering how a point is moved along the sequence of
points, i.e., transferred onto any other point in the organization. The above
expression tells us that the point cannot be moved directly onto any other
point. This is because there is an intervening level Z2 between {e} and Z in
the wreath structure {e}w©Z2w©Z. Thus for example, Z cannot move a point
to its adjacent point within a pair. It is only Z2 that can do this. Thus if
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one wants to move the point to an arbitrary point along the row, one has to
use Z2 to move the point within its pair, and then use Z to move the point
out of the pair to the target point in some other pair. That is, movement
along the line of points is control-nested, exactly as illustrated in Fig. 4.5
(p. 125). Therefore the above expression gives each point a control-nested
position along the line. This is different from simply its linear position along
the line.

(2) The control-nested τ-conjugates of {e} w© Z2

Choose a particular pair. It is of the form

[{e} w© Z2]c3

where the index c3 comes from the level above the level of pairs in the hier-
archy. The conjugates of this point must be of the form

[{e} w© Z2]c3 s©g3

where g3 comes from Z. The set of such conjugates must be the set of pairs in
the organization. Each is transferred onto each other by whole-number steps
in Z.

(3) The control-nested τ-conjugates of {e} w© Z2 w© Z

There is only one control-nested conjugate of {e} w© Z2 w© Z in the sequence

{e} w© Z2 w© Z.

It is the sequence {e} w© Z2 w© Z itself. This is of course the whole line. Thus
a consequence of the Law of Grouping is that the whole is a grouping itself
- which accords with perceptual experience.

The reader can easily check that any subsets of the data set, other than the
control-nested τ -conjugates of left-subsequences, do not produce perceptual
parts. This is because any such subsets break out of the transfer structure.

Let us now turn to the homogeneous case. As in the non-homogeneous
case, we first consider the levels of symmetry. There are two such levels:

{e} , which maps a single point to itself.

Z , which describes the fact that the points are indistinguishable
under translations by integer amounts.
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These symmetries are arranged in a hierarchical structure, thus:

{e} w© Z.

Now let us look at the control-nested τ -conjugates of left-subsequences. The
first left-subsequence is {e}, a point. Any particular point is a copy

{e}c2

where c2 comes from the control level above {e}. The conjugates of this copy
are all of the form

{e}c2 s©g2

where g2 comes from Z. This means that Z now acts directly on a point, and
can therefore move the point onto any other, without an intermediate group.
This accounts for one’s sense that the percept is homogeneous.

In this section, we have seen the critical role of intermediate transfer
levels in determining the percept. Such levels cause non-accessibility of control
groups above the intermediate levels to fibers below the intermediate levels.
In Chapter 9, we shall see that the same mathematics expresses what the
Gestalt psychologists called the separation of systems in motion perception.

5.11 Non-iso-regular Groups

The illustrations used so far in this chapter have been given by iso-regular
groups. However, the Law of Grouping applies equally to structures that
are not iso-regular, as will be seen many times in the book. Nevertheless,
the iso-regularity condition has an important general status with respect to
grouping as follows: The Externalization Principle (p. 53) implies that any
shape is perceived as having an underlying iso-regular group, e.g., a deformed
shape is perceived as having an underlying un-deformed shape, and the latter
is characterized by an iso-regular group.

The relation between this and grouping is that the groupings of the un-
derlying iso-regular group are preserved upwards into the non iso-regular
structure. The reason is that the iso-regular structure is a left-subsequence
of the non iso-regular structure.

As an example, consider a cylinder, as shown in Fig. 5.5a. We have said
(p. 14) that it is structured as the iso-regular group

{e} w© SO(2) w© R. (5.12)

Notice that the Law of Grouping therefore predicts that the cross-sections
are seen as visual groupings because they correspond to the left-subsequence
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Fig. 5.5. A cylinder and a deformed version.

{e} w© SO(2). In fact, the set of cross-sections are the τ -conjugates of this
fiber in the overall group.

Now let us apply a deformation to the cylinder, e.g., as shown in Fig. 5.5b.
One method of producing a deformation is to apply a spline-shaping process
(e.g., to the axis). This is formalized in Chapter 17 by adding spline-control
as a group H of tensors above the group of the cylinder, thus:

{e} w© SO(2) w© R w© H. (5.13)

The group H then deforms the cylinder below it in the wreath hierarchy.
Now notice, in expression (5.13), that the left-subsequence {e} w© SO(2),

corresponding to the cross-sections, still exists. Therefore, one still under-
stands the deformed cylinder as having cross-sections as groupings. This is
a general result: The groupings deduced from the iso-regular structure are
preserved upwards through the deformation. Notice the relation between this
and the issue of recoverability. The constraint of recoverability forces the
generative sequence to be what we called asymmetry-building rather that
symmetry-breaking (Sect. 2.18). Symmetry-breaking proceeds by the destruc-
tion of symmetry groups, whereas asymmetry-building proceeds by increas-
ing the symmetry group by group extension via wreath product; i.e., transfer.
The extending group is a symmetry group of the asymmetrizing process. In
this way, one ensures recoverability.

Notice that this process of extension increases the number of group-
ings, exactly as one would want. For example, the cross-sections of the non-
deformed cylinder now have additional conjugates within the deformed cylin-
ders. This is because the group H has been added as an extra level of con-
jugation; thus, in expression (5.13), the cross-section {e} w© SO(2) now has
a control-nested τ -automorphism group given by the right sequence R w© H.
This exactly captures the perceptual situation.

Notice also that the addition of the new level H means that we have a
unification of the class of deformed cylinders within one grouping. This is
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Fig. 5.6. A square distorted by projection.

because the cylinder is a left-subsequence of expression (5.13), and any of its
deformed versions

[{e} w© SO(2) w© R]c4 s© g4 (5.14)

for all g4 ∈ H are conjugates via H. This captures the psychological sense
that the cylinders are perceptually related to each other.2

Thus grouping applies not just to the structure of a particular shape but
to systems of shapes. As another example, consider a projectively distorted
square shown in Fig. 5.6. We saw on p. 17 that this percept is structured by
the following wreath product:

{e} w© R w© Z4 w© PGL(3,R) (5.15)

where the first three factors give the structure of the square (the iso-regular
group), and the last gives the projective group creating the distortion. Notice
that the left-subsequence {e} w© R w© Z4 has conjugates

[{e} w© R w© Z4]c4 s© g4 (5.16)

where g4 is any element in the projective group PGL(3,R). An example of
expression (5.16) is Fig. 5.6 itself. In other words, the expressions of the form
(5.16) for all g4 ∈ PGL(3,R) give the set of projectively distorted squares.
According to our theory of grouping, any such distorted square must be a
grouping, because it is a left-subsequence. Furthermore, the perceptual sys-
tem unifies the class of distorted squares within one grouping via PGL(3,R).
This again illustrates our theory that transfer is the process that creates
cognitive unification.
2 For consistency, we shall often use the semi-direct product symbol for situations
like expression (5.14) where the control-nested τ -automorphism has only one
level. This makes the notation easy to extend when higher groups are added to
this structure. Notice that, in any situation like (5.14), a bar is not needed on
the group element above the semi-direct product symbol; i.e., because the vector,
in this case, has only one component (g4, in the present case). This is generally
the case for the highest control level. However, when levels higher than this are
added, the bar will be needed.
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Fig. 5.7. A grid of squares distorted by projection.

Recall also that, in Chapter 1, the projected grid of squares shown in
Fig. 5.7 was given as

R w© Z4 w© ZH w© ZV w© PGL(3,R). (5.17)

We can characterize groups of this type in the following way:

Definition 5.2. A projective generative crystallographic group is a
group of this form

G = H w© [Z w© Z w© . . . w© Z] w© PGL(n+ 1,R). (5.18)

where H is iso-regular, and the wreath-lattice [Z w© Z w© . . . w© Z] is n-fold.

The groupings can then be read off the full wreath sequence in accord with
the Law of Grouping. This can easily be checked with the example given by
expression (5.17) above.3

3 A final level of complexity will concern unfolding groups, to be defined later. In
such groups, a control level can act selectively on some lower level which we will
call an unfolding fiber. In these cases, we replace an ordinary fiber by an unfolding
fiber, in the theory of grouping. A grouping is then defined by its transfer, as is
basic to our theory.
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6.1 Three Algebraic Conditions

A generative theory of shape encodes shape by a system of actions. An im-
portant part of our approach has been to develop a theory of how actions are
organized intelligently. This theory is equally applicable to perceptual sys-
tems as it is to motor systems. In the present chapter, we apply this theory
to motor systems. We will return to this topic a number of times in the book
to develop it further, e.g., in Chapter 14 on mechanical design.

The present chapter concentrates on the structure of manipulators. Sig-
nificant work on manipulators has been done in robotics. Our theory differs
from current approaches in that it attempts to fulfill three conditions:

(1) We argue that perceptual systems and motor systems are structured
in the same way. As indicated above, this follows from our generative theory.

(2) The second condition concerns rigidity. It is standardly assumed that,
because the successive matrices that relate successive links from the hand to
the manipulator-base are members of the special Euclidean group SE(3), then
the group linking the hand to base must be SE(3). However, we argue that
this is not the case. If the group were SE(3) then the manipulator (e.g., arm)
would be rigid, i.e., frozen. But it is not. The very fact that there are joints
means that the manipulator is not rigid. We will call structures that are rigid,
except at a discrete set of points, semi-rigid. The goal is to develop groups
to describe such structures. We shall call such groups, semi-rigid groups.

(3) The third condition is to express the object-oriented structure of ma-
nipulators. Manipulators have an inheritance hierarchy. We need to develop a
group theory that describes such hierarchies. This will be done in Chapter 7.
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Thus our three conditions are as follows:

THREE CONDITIONS ON A GROUP THEORY OF MANIPU-
LATORS. The group theory of manipulators should express:

(1) Perceptual-Motor Equivalence.
(2) Semi-Rigidity.
(3) Object-Oriented Structure.

Satisfying these three conditions will allow us to establish what we will call
the full group of a manipulator. For example, in a later section, we will sys-
tematically elaborate a single symmetry group that captures the entire joint
structure of the human body.

6.2 Object-Centered Frames as Transfer

All robot motion and manipulation exploits object-centered frames: i.e., coor-
dinate frames fixed to the object being moved (including to the robot itself).
In this section, we show that the power of such frames is that they maximize
transfer.

Notation 6.1 Any point in 3-space, described relative to a coordinate frame
R, will be specified by coordinates (xR, yR, zR).

Suppose first that one has only a single Cartesian reference frame, W , the
world-frame fixed to the environment. In this environment, there is an object
to which one applies a translation T , for example, moving it from left to right
as shown in Fig. 6.1. Suppose that one knows the coordinates (xW1 , yW1 , zW1 )
of each point in the object, prior to the translation. In order to specify the new
position of the object, there is no alternative but to specify the coordinates
(xW2 , yW2 , zW2 ) of each point of the object in the second position. The only
way to arrive at these new coordinates is to perform the calculation for each
point in the object individually, e.g., by adding the translation vector to each
of the points in the previous position.

However, let us now consider an alternative strategy. If, in addition to the
world-frame W , one uses a second frame which is defined relative to the first
frame, then the calculation can be simplified enormously, as follows: Let the
second frame be a Cartesian frame F that is embedded in the object such
that it is fixed relative to the object, as shown in Fig. 6.2. Then all points
in the object are now described relative to frame F thus: (xF , yF , zF ).
Furthermore, this description is the same before and after the translation. It
remains only to establish the relationship between the object-frame F and
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Fig. 6.1. Use of only global frame.

the world-frame W . This relationship is given simply by a vector translating
the origin of the world-frame W to the origin of the object-frame F . To
anticipate the later discussion, we shall call any such vector a control vector.
The control vectors for the object in the first and second position are v1 and
v2, respectively, as shown in Fig. 6.2.

Obviously the translational effect on the object is given by the vector

v = v2 − v1.

However, a considerable simplification has occurred. Rather than having to
apply this vector to all the points in the object, one needs to apply it to only
the origin of frame F . This is because the points in the object have a fixed
relation to the frame F .

Generally, the calculation of the position of any object-point, relative to
the world-frameW , is obtained by simply adding the point’s fixed description
within the object-frame F to the control vector going from W to F . Thus,
there is a two-step decomposition from the object-point back to the origin of
W . This means that, in any movement, one can re-use the previous object-
centered description. The reader can see that this re-usability is actually an
example of transfer; i.e., the object-centered description is transferred across
locations. The only additional thing required is the calculation of the two
vectors, v1 and v2, which relate the positions of F back to W . This itself
embodies the notion of transfer because it relies on the fact that all the
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Fig. 6.2. Use of object-centered frames.

changes go on in the control vectors, not in the object-frame. We argue that
this is best formalized using a wreath product, thus:

OBJECT-CENTERED FRAMES & WREATH PRODUCTS. The
use of an object-centered frame, to specify object movement, maximizes trans-
fer. The transfer structure is given by the wreath product

G1 w© G2 (6.1)

where the fiber group G1 specifies the relationship of object-points to the
object-frame, and the control group G2 specifies the relationship between the
object-frame and the world-frame.

The main form of the two groups G1 and G2 will be defined as follows:
So far only translations have been considered. However, these consider-

ations can easily be extended by adding rotations. The group generated by
translations and rotations is the special Euclidean group, SE(3). Define a
configuration of an object-frame F with respect to a world-frame W to be a
member of SE(3). Note that SE(3) gives the space of alternative configura-
tions of F with respect to W . Observe that two ammendments need to be
made to the purely translational situation: First, the two vectors v1 and v2 in
Fig. 6.2 need to be replaced by two members g1 and g2 of the group SE(3).
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Second, the relationship between the two placements of F is no longer simply
the difference between the two vectors

v = v2 − v1

but the ”difference” between the two group members g1 and g2, thus:

g = (g2)(g1)−1

where, by group closure, g must also be a member of SE(3), and must there-
fore also be a Euclidean motion.

Everything else we said about the translation case still applies. Most cru-
cially, what was said about the object-centered frames as embodying transfer,
still applies. Thus, we now have the wreath product

SE(3) w© SE(3).

Clearly, the second SE(3) is the group of configurations of the object frame.
One could leave the first SE(3) as simply the group of vectors characterizing
the positions of points within F . However, as we will argue many times in
this book, the perceptual/motor system is recursive, and one can substitute
whole frames for individual points, and therefore it is useful to consider the
first group also to be SE(3). In this case, the individual points each carry a
copy of the Cartesian frame. For example, this feature is useful for generative
crystallographic groups which were defined in Sect. 5.4, and which we argue
are fundamental to perception.

6.3 The Serial-Link Manipulator

The main purpose of our discussion of robot motion is to show that the repre-
sentation of this motion maximizes transfer. As a mathematical consequence,
we will be able to establish the full group of the serial-link manipulator. This
will be accomplished in the next section.

The present section will briefly review the standard attachment of frames
to a serial-link manipulator. Any reader who is familiar with this topic can
go directly to the next section.

A serial-link manipulator is exemplified by its most important example -
the human arm. It is a sequence of links (limbs) each connected to the next
by an actuated joint. The sequence starts with what is called the base (e.g.,
the torso), and progresses outwards from the base to the end-effector (e.g.,
the hand or finger-tip). Each link corresponds to a bone in human biology,
and it has a proximal end, that nearer the base, and a distal end, that nearer
the effector.



166 6. Robot Manipulators

✏✏✏✏✏✏✏

✏✏✏✏✏✏✏

✏✏✏✏✏✏✏

✏✏✏✏✏✏✏

✏✏✏✏✏✏✏i
✏✏✏✏✏✏✏✶

❇
❇

❇
❇

❇❇


Fi

✏✏✏✏✏✏✏

✏✏✏✏✏✏✏

✏✏✏✏✏✏✏

✏✏✏✏✏✏✏

✏✏✏✏✏✏✏i
�

�
�

��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��i−1

✏✏✏✏✏✏✏✶

❇
❇
❇

❇
❇❇


Fi




�
��✼

Fi−1

Fig. 6.3. Frame-assignment in serial-link manipulator (2D).

The most common means of assigning Cartesian frames to a serial-link
manipulator is based on the work of Denavit & Hartenberg [26]. In this
description, there is one Cartesian coordinate frame attached to each link.
Standardly, it is attached to the distal end of the link. This is illustrated on
the left in Fig. 6.3, where the ith link is shown as the thick line labelled i. Its
own Cartesian frame labelled Fi is attached to its distal end (the proximal
to distal direction is left to right). For readability, this diagram shows the
Cartesian frame to consist of only two orthogonal axes, but we will always
assume a 3D orthogonal frame.

The right of Fig. 6.3 shows the addition of the next link in the distal
direction, which is labelled i− 1. Its own frame Fi−1 is also shown attached
to its own distal end. For purely notational reasons that will emerge later,
the links (and frames) are numbered in decreasing order from the proximal
to the distal end - which is the reverse order from that usually used in the
literature.

Most crucially, the relationship between frame Fi and frame Fi−1 is given
by a special Euclidean motion (rotation and translation), i.e., a member of
SE(3). This motion is standardly represented by a matrix called the A-matrix
linking those two frames. Usually, this is given as a homogeneous 4×4 matrix:



R11 R12 R13 t1
R21 R22 R23 t2
R31 R32 R33 t3
0 0 0 1


 (6.2)

where the upper-left 3× 3 block represents the rotation component, and the
upper-right block (t1, t2, t3) represents the translation component.1

1 The particular representation depends on the particular way a frame is aligned
with the end of the limb. The most famous such alignment method is given by
an algorithm of Paul [117], where the z-axis of the frame is made coincident
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6.4 The Full Group of a Serial-Link Manipulator

A basic proposal of this book is that both the perceptual system and motor
system are structured by the attempt to maximize transfer of action spaces.
In this section, we are going to demonstrate this proposal with the serial-
link manipulator. This will then allow us to develop the full group of the
manipulator, which, to our knowledge has not previously been developed.
Using this, we will be able to establish a rigorous algebraic definition of
transfer in a manipulator.

Consider an n-chain serial-link manipulator. Let the transformation ma-
trix from the base frame B to the effector frame E be labelled ET

B. Stan-
dardly, in robotics, one decomposes this transformation in accord with the
serial-link structure thus:

ET
B = ET

1 ∗ 1T
2 ∗ . . . ∗ n−2T

n−1 ∗ n−1T
B (6.3)

where each symbol i−1T
i denotes the Euclidean transformation from frame Fi

(fixed to link i) to frame Fi−1 (fixed to link i−1). Notice that we are writing
the direction from base to effector as right-to-left in the above sequence,
which is the opposite of the usual notation in the literature - this is done to
provide consistency with the notation used throughout this book (as will soon
become clear). Thus the frames are labelled n to 1, from proximal to distal.
Each of the component transformations is given by an 4 × 4 homogeneous
A-matrix, and forward matrix multiplication will have to be right-to-left.

Now, it is a matter of considerable elegance in robotics that the same
mathematical language is used to describe the movement of (1) an object
being manipulated and (2) any link within the manipulator itself. This is
the language of object-centered coordinate frames. To illustrate, return to
Fig. 6.2 (p.164). The diagram shows the object frame F being expressed in

with the joint axis (e.g., the rotation axis of a revolute joint), the x-axis is
made parallel to the common normal between the two successive joint-axes, and
the y-axis is then determined by the right-hand rule. Only four parameters are
needed to determine the relationship between two successive frames: two types
of translation - associated respectively with (1) the length of the link and (2) the
distance between links - and two types of rotation - associated respectively with
(3) the angle between links and (4) the twist angle between joint-axes. These are
the four transformations that connect one frame to the next. When one multiplies
these transformations together, one gets a single Euclidean transformation that
relates one frame to the next. This is what is called the A-matrix. For example,
the particular Euclidean transformation that goes from frame Fi to frame Fi−1

in Fig. 6.3 is given by an A-matrix. Here we give some basic group-theoretic
work on robotics and locomotion: Lie-group theoretic methods can be found
in Karger & Novak [73], Brockett [16], Chevallier [21], Murray, Li and Sastry
[112], Park, Bobrow & Ploen [115]. Also, interesting group-theoretic work has
been done on locomotion by Collins & Stewart [24], Golubitsky, Stewart, Buono
& Collins [46], and related work on coupled systems with wreath products by
Dionne, Golubitsky, & Stewart [28], and Dias [27]. See also Gallistel [37] [38] for
extensive analysis of coordinate systems in animal motion.
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relation to the world-frame W , the relationship being given by a Euclidean
transformation from W out to F . Now, exactly the same method is used to
express the relationship between two successive links in a serial-link manipu-
lator; that is, one makes the link frame Fi equivalent to the world-frame W -
so frame Fi will be called the referent frame - and one makes the link frame
Fi−1 equivalent to the object-frame F .

For us, the power of this approach resides in the conclusion, in Sect. 6.2,
that object-centered frames express transfer. Thus the sequence of transfor-
mations (6.3) expresses the serial-link manipulator as a hierarchy of transfer.

Based on this, we are now ready to give the full group of the serial-
link manipulator. Each transformation i−1T

i in the above sequence comes
from the group SE(3). Furthermore, each expresses a structure of transfer,
which we gave in Sect. 6.2 as a wreath product SE(3) w© SE(3), where the
control group SE(3) represents the outward Euclidean transformations from
the referent frame to the object frame, and the fiber group SE(3) represents
the outward relation from the object frame to the object points. Using this
relation recursively, we conclude:

FULL GROUP OF A SERIAL-LINK MANIPULATOR. The full
group of the n-chain serial-link manipulator is the n-fold wreath-product:

SE(3) w© . . . w© SE(3) w© SE(3).

i.e., a wreath poly-SE(3) as in Definition 4.11.

This means, of course, that the Euclidean groups along this sequence are
control-nested. That is, any group along this sequence acts as a control group
on its entire left-subsequence. This embodies the physical fact that any limb
can transfer the action space of its lower limbs through the environment. We
will now go on to define transfer rigorously in the manipulator.

6.5 Transfer in the Serial-Link Manipulator

In order to algebraically define the structure of transfer in a serial-
link manipulator, let us index each of the groups along the sequence
SE(3) w© . . . w© SE(3) w© SE(3) by the level on which it occurs; i.e.,
by the limb to which it corresponds. In particular, consider the group
SE(3)i+1 along this sequence, i.e., the group corresponding to limb i+1. First
note that this group acts as a control group on its entire left-subsequence
SE(3)1 w© . . . w© SE(3)i. However, observe also that the entire right-
subsequence SE(3)i+1 w© . . . w© SE(3)n acts on the left-subsequence, moving
it from one part of the environment to the other.
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This gives us a rigorous expression of transfer as follows: Consider an
element s©ḡi+1 s©ḡi+2 s© . . . s©ḡn from the right-subsequence. Transfer is the
application of this element to a specific copy of the fiber below it. That is,
transfer is the conversion of the copy at one position into the copy at another
position.

Thus, let the copy at the first position be

[SE(3)1 w© . . . w© SE(3)i]ci+1,ci+2,...,cn .

The copy corresponds to a particular node on the bottom of the tree in Fig. 4.5
(p. 125). The sequence of indexes ci+1, ci+2, . . . , cn give the chosen sequence
of nodes that dominate the bottom node. Transfer is the action of moving
the bottom node across the bottom level of the diagram. The transferring
action of s©ḡi+1 s©ḡi+2 s© . . . s©ḡn is represented thus:

[SE(3)1 w© . . . w© SE(3)i]ci+1,ci+2,...,cn
s©ḡi+1 s©ḡi+2 s© . . . s©ḡn.

To find out where this node is moved to, we algebraically evaluate this ex-
pression, as follows: From each level ḡj on the right, the relevant component
gj is really a control τ -automorphism τ(gj). Therefore, the above expression
actually means this:

τ(gn) . . . τ(gi+2)τ(gi+1)[SE(3)1 w© . . . w© SE(3)i]ci+1,ci+2,...,cn .

However, recall that each τ(gj) is the raised action from the control set Cj ,
to the subscripts on the fiber-group copies - note, the members of the control
set Cj are the configurations of the jth limb. This means that, to apply τ(gj),
one merely applies gj to the corresponding subscript cj . Therefore the above
expression becomes

[SE(3)1 w© . . . w© SE(3)i]gi+1ci+1,gi+2ci+2,...,gncn .

To summarize:

TRANSFER IN A SERIAL-LINK MANIPULATOR. Transfer in
a serial-link manipulator is defined by the control-nested τ-automorphisms;
that is, as follows:

[SE(3)1 w© . . . w© SE(3)i]ci+1,ci+2,...,cn
s©ḡi+1 s©ḡi+2 s© . . . s©ḡn.

= [SE(3)1 w© . . . w© SE(3)i]gi+1ci+1,gi+2ci+2,...,gncn .

The group we have given for the serial-link manipulator is consider-
ably more complicated than the standard SE(3), but embodies the in-
formation needed to express the hierarchy of limb control in the ma-
nipulator. In particular, the limb structure SE(3)1 w© . . . w© SE(3)i is
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pushed around the environment by its control-nested τ -automorphism group,
SE(3)i+1 w© . . . w© SE(3)n. Note that this means that transferred action
spaces in the serial-link manipulator are control-nested τ -conjugates of each
other.

The reader will recall, from our theory of perceptual grouping in Chap-
ter 5, that groupings consist of control-nested τ -conjugates. The crucial con-
nection between our theory of grouping and our theory of robot motion is
the fact that, according to the theory of grouping, environmental cohesion
is provided by the transfer of action spaces. Thus our approach achieves the
first of the three group-theoretic conditions given on p. 162, that of making
perception and action structurally equivalent.

6.6 The Full Group of a General-Linked Manipulator

So far, in this chapter, only serial-linked manipulators have been examined.
We now generalize the discussion to producing the full group of general-linked
manipulators. An example of such a manipulator is the human body where,
for instance, the two arms are not in serial relation to each other.

The way we handle the general case is to introduce this rule:

PRODUCT RULE. The groups of independent units are joined by direct
products, the groups of dependent units are joined by wreath products.

We will now give the full group of the human body. This will be done
by choosing one of the body parts as the base frame, and generating the full
group by using the above product rule. The structure of the group is therefore
entirely dependent on the choice of base frame. In this illustration, the torso
will be chosen as base frame. Therefore we get this:

[[GArm w© Z2] × [GLeg w© Z2] × GHead] w© GTorso. (6.4)

Let us examine this sequence from right to left. On the far right, there is
the group of motions of the torso. These are motions relative to the world
frame (the torso is the base frame within the body). Immediately to the left
of GTorso, in the above sequence, there is a wreath-product symbol which
indicates that everything to the left of this is judged relative to the torso.
There are three groups to the left, connected by direct products, which means
that they are independent. Let us go through these three groups from left to
right. First, GHead is the group of motions of the head relative to the torso.
One knows that this is relative to the torso, because it is connected rightward
to the group of the torso by a wreath product.
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The second group is [GLeg w© Z2], which is the group for the pair of
legs. The legs are reflectionally related to each other as spaces of action, and
therefore we have the group Z2 mapping the group GLeg of one leg onto the
group GLeg of the other leg.

The same structure holds for the two arms, thus giving the group
[GArm w© Z2] for the pair of arms.

Now, each arm and leg is a serial-link manipulator, and we have already
worked out the group of such structures. Thus, one can make the following
substitutions into the group sequence shown at (6.4):

GArm = GHand w© GForeArm w© GUpperArm (6.5)

GLeg = GFoot w© GShin w© GThigh. (6.6)

Furthermore, one can continue to expand this as follows: First, the hand
consists of a palm and five fingers. Thus into (6.5), make the substitution:

GHand = [GFinger1 × GFinger2 × . . . × GFinger5 ] w© GPalm (6.7)

where the wreath product to the left of GPalm indicates that the frames of the
fingers are linked referentially upwards to the palm; and the direct products
between the groups GFingeri indicate that the fingers are independent of each
other,

There remains only one final substitution stage: Each finger is a serial-link
manipulator consisting of three segments. Therefore, into the sequence (6.7)
we make the substitution:

GFinger = GSeqment1 w© GSeqment2 w© GSeqment3 (6.8)

where the wreath-product symbols indicate that the finger-segments are se-
rially linked. Notice that this three-fold wreath product (6.8) is substituted
for each of the five finger groups in (6.7), and therefore the direct products
in (6.7) will be between three-fold wreath products.

Now, what we have done here, in successively expanding GHand in (6.5),
should also done for GFoot in (6.5). When all the successive substitutions are
made back into (6.4), we obtain the full group of the human body.

Note the following about reading this group sequence: Each of the G-
labeled groups is an instance of SE(3). Furthermore, each relates a higher
Cartesian frame to a lower one. The lower one is indicated by the suffix on
the G-group. The higher frame is indicated by the suffix on the next higher
G-group in the wreath hierarchy. It is worth considering an example: Return
to the sequence:

[[GArm w© Z2] × [GLeg w© Z2] × GHead] w© GTorso.

There are two kinds of group here: the G-labeled groups, and the Z2-labeled
groups. To understand the reference-frame structure, consider as an example,
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the group GArm on the far left. It relates a higher frame to a lower frame. The
lower frame is that indicated by its suffix ”Arm”. To find the higher frame,
move right-ward to the next G-group in the wreath sequence; i.e., ignore the
Z2 groups, and any other groups linked to GArm by direct products, and find
that the next higher group is GTorso. The lower reference frame of GTorso
is indicated by its suffix ”Torso”. Thus group the GArm relates the frame
”Arm” indicated by its own suffix, to the frame ”Torso” indicated by the
suffix on the next higher group GTorso.

Two final comments: First, we have developed a single group that captures
the full motion of the human body - which is a highly complex object. This is
the general power of the theory being elaborated in this book: giving a single
symmetry group for any arbitarily complex object. The group theory will be
developed much further in the following chapters.

Second, in Leyton [88], we gave an initial formulation of this theory, and
based on this formulation, Kirupaharan & Dayawansa [77] developed an ap-
proach to posture control. Their approach is to elaborate successive stabi-
lizations from the base frame through the hierarchy. Thus, an example which
they consider in detail is posture control in a human infant, where the base
is in fact, the head. Kirupaharan and Dayawansa give a dynamical equation
for the head, and argue that the infant must first master a control law to
stabilize that equation. Then, they formulate the larger problem of control-
ing the head and torso in such a way that the previous solution to head
stabilization is used in solving this expanded problem. This process contin-
ues as the successive frames are added. Note that, in terms of the theory in
the present section, this corresponds to successive expansions of the group
sequences downward through the wreath hierarchy.

6.7 Semi-Rigid Groups

The group given in the previous section, for the human body, illustrates the
class of groups we now wish to define:

Definition 6.1. A group will be called a semi-rigid group if it is a wreath
product, each of whose levels is a direct product of isometry groups or wreath
products . . . of isometry groups. The dots mean repeat, a number of times, the
phrase ”each of whose levels is a direct product of isometry groups or wreath
products”.

Notice the way in which the group of the human body, given in expression
(6.4), is a semi-rigid group: The fiber [[GArm w© Z2] × [GLeg w© Z2] × GHead]
is a direct product where the three components are GHead, which is an isom-
etry group SE(3), and [GLeg w© Z2] and [GArm w© Z2] which are each wreath
products of isometry groups.



6.8 Including Manipulator Shape 173

In fact, in this chapter, we have developed a group theory in which the
semi-rigid structure of the manipulator comes from its object-oriented struc-
ture. This will become clear in the next chapter, where we give an algebraic
theory of object-oriented inheritance. We now have the following inclusion
hierarchy of the classes of groups so far proposed in this book:

iso-regular ⊂ wreath-isometric ⊂ semi-rigid.

For example, notice that the group we gave for the square is semi-rigid.

6.8 Including Manipulator Shape

In this chapter, what was meant by the ”full” group of a robot manipulator
was the full group of its reference frames. In Chapter 14, this group will
be extended to include manipulator shape. To obtain the full group in this
extended sense, we will need to define a class of still more complex groups,
which we will call unfolding groups. This will be added to the right of the
above group inclusion hierarchy.



7. Algebraic Theory of Inheritance

7.1 Inheritance

The term inheritance in object-oriented programming refers to the passing
of properties from a parent to a child. The child incorporates these parent
properties, but also adds its own. The former properties will be called the
inherited ones, and the latter will be called the personal ones.

This kind of structure covers two types of situation. The first is class
inheritance. Here, a class (e.g., the class of squares) can inherit a property
(e.g., having four sides) from a more extensive class (e.g., the class of rectan-
gles). The former class is called the child class, and the latter class is called
the parent class. Thus one says that child is related to the parent by the is-a
relationship (e.g., a square is-a rectangle). This form of inheritance is speci-
fied in the actual software which defines the classes; i.e., it is independent of
the particular run-time sessions in which the software is used. For example,
a rectangle and square can be two classes of objects specified in the software
text of a design program (see e.g., Meyer [108]).

The second type of inheritance will be called (run-time) linking inheri-
tance. Here, parent-child relationships are set up within the run-time session.
The sequence of events is as follows: At run time, the user creates specific
examples from classes (e.g., specific examples of rectangles from the class of
rectangles). These run-time examples are called objects; i.e., objects are run-
time instances of classes. Once created, objects can be linked in parent-child
relationships. For example, a sphere representing the moon can be linked, as
child, to a sphere representing the earth, as parent. The moon will inherit
properties of the earth. This linking is created in 3D Studio Max by clicking
the ”link” button, and dragging the mouse from an object to another object,
thereby defining them as linked in a child-parent relationship. This type of
inheritance is basic to design. For example, in architectural design, a door can
be inserted in a wall and inherit the position of the wall - so that if the wall
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is moved (in the design process), then the door will move with it. All major
design programs allow one to form parent-child linking between objects, and
to view these created hierarchies in detailed information windows as the de-
sign process continues. Design would be impossible without this facility. This
type of inheritance is also the basis of serial-link manipulators, where the
successive manipulator links are linked upward (distal-to-proximal) in suc-
cessive child-parent relationships; i.e., each inheriting the transform of the
parent above it, and adding its own.

Terminology 7.1 Throughout this book, the term inheritance will mean
(run-time) linking inheritance; unless explicitly stated as class inheritance.

7.2 Geometric Inheritance

Any use of the term inheritance in this book will refer to what one can call
geometric inheritance - inheritance with respect to shape or kinematic struc-
tures. Inheritance of this type rests ultimately on relationships between local
coordinate frames because each object is created with its local coordinate
frame. The object hierarchy is described as a hierarchy of nodes. At each
node, there is a local coordinate system and a transformation matrix. Each
node inherits the transformation of its parent and adds its own transforma-
tion.

Fig. 7.1. The representation of parent-child relations in 3D Studio Max.

A good diagrammatic representation of this is used by 3D Studio Max,
as illustrated in Fig. 7.1. Here, inheritance is represented by indentation -
i.e., an indented object is a child of the next object above with respect to
which it is indented. A line connects the child object to the parent object.
In this illustration there are four objects, the World object at the top, and
three successive objects below. The indentation sequence, in this example,
indicates that each successive object is a child of the object above it. Now
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observe that each object, except the World object, has a transform shown
just below it. The transform relates the coordinate frame of the object to the
coordinate frame of its parent. This transform is the ”personal” transform of
the object. In addition, the object inherits the transform of its parent. The
object therefore adds its personal transform to its inherited transform. This
means, of course, that via its parent, it inherits the transform of its parent’s
parent, and so on.

7.3 Theory of Inheritance

We shall now give an algebraic theory of inheritance in geometric structures.
Notice first that the structure of inheritance is unidirectional; i.e., inheritance
is only downward in the hierarchy. To quote the manual of 3D Studio Viz,
”The linkage is unidirectional in that superior objects control subordinates
but subordinates have no effect on their superiors.”

We argue that this unidirectionality makes inheritance extremely appro-
priate for description in terms of wreath products. Thus we propose the
following theory:

ALGEBRAIC THEORY OF INHERITANCE. Inheritance in geo-
metric structure corresponds to wreath products, as follows:

I1 (Parent): A parent corresponds to a control group G(C). A prop-
erty of a parent is a member g of that group.

I2 (Child): A child corresponds to a fiber-group G(F ). A property of
a child is a member γg of a fiber-group copy G(F )g, where γ ∈ G(F )
and g ∈ G(C). Its personal property is γ. Its inherited property is g.

I3 (Inheritance): Inheritance therefore arises from the wreath
structure: It is the labeling of members of the fiber-group copies by
members of the control group.

As an example, consider any successive pair of links in a serial-link manip-
ulator. According to our theory, this is algebraically characterized as follows:
The parent property, i.e., the position/orientation of the parent frame, is a
member g of a control group G(C). A property of the child link is a member
γg of a fiber-group copy G(F )g. The copy index g is the inherited member
from the control group. This sets the referent with respect to which γ is the
personal transformation of the child’s frame.

Now consider the example of a square Rw©Z4. A point is a child of the
parent, a side. It is judged relative to the side on which it occurs. The orien-
tation of the side sets the referent with respect to which the point is judged.
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The point has two properties: (Inherited property) the orientation it inher-
its from the control group Z4; and (Personal property) the point’s position
within its particular side, i.e., the translation within the fiber group R.

What is powerful about the theory given in I1-I3 above, is that it gives
an algebraic theory of inheritance structure, as will now be seen. First observe
this:

INHERITANCE AS TRANSFER. Inherited properties h ∈ G(C) send
child properties γg onto child properties γhg.

This is conceptually very important according to our theory. In our approach
to shape and kinematics, transfer is what inheritance is about.

Notice that the group generated by the child properties corresponds to the
fiber-group product. Thus we conclude that inherited properties h ∈ G(C)
act as automorphisms on that group. Generally, therefore, we conclude this:

INHERITANCE AS CONTROL-NESTED
τ-AUTOMOROPHISMS. Since our theory implies that multi-level in-
heritance is given by an n-fold wreath product G1w©G2w© . . . w©Gn, one
can see that the inherited properties of any level i correspond to the mem-
bers of the control-nested τ-automorphism group Gi+1w©. . . w©Gn of that
level. That is: Inherited properties correspond to control-nested τ-
automorphisms.

Every shape and kinematic example in this book will illustrate this proposal.
Finally, notice that a parent can have several children. To handle the

group theory of this situation, we offer this rule:

PRODUCT RULE FOR INHERITANCE. The transforms Gi of chil-
dren 1 ≤ i ≤ n are connected to the transform of a parent by a wreath product;
whereas the transforms of the children are connected to each other by a direct
product. That is, one has:

[G1 × · · · ×Gn] w© G.

7.4 Relating Inheritance Diagrams to Algebra

It will be useful to understand the relation between an inheritance diagram
of the type shown in Fig. 7.1 (p. 176), and the algebraic structure we have
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given for inheritance. First consider the particular example shown in that
figure. Here, there are four objects starting with the world frame, and each
successive object downward is a child of the object above it. Notice there
are therefore three transforms, because a transform relates the frame of an
object to the frame of its parent object, and the World object cannot have a
transform, because there is no object above it. The transform is the personal
transform of the object to which it is connected. Let us assume that the
transform for Object i, is the group Gi.

Now, to relate this diagram to the algebra. Our algebraic method is to
take the successive transforms downward and form their wreath product,
thus:

G1 w© G2 w© G3.

To code, on this expression, the successive frames used, let us use the symbol
W for the world frame, and the symbol Fi for the frame of Object i. Then
the frames are indicated in the wreath structure thus:

F1G
F2
1 w© F2G

F3
2 w© F3G

W
3 .

Here we have adapted the notation used earlier for frames in robot manipu-
lators: The group Gi relates the frame of its upper index to the frame of its
lower index. The relation between the indexes is given by the general case,
as follows:

GROUP OF ENTIRE TRANSFORM STRUCTURE. Consider a
set of n + 1 objects: Object 1 to n, and the World. Suppose that they are
linked such that Object i is the child of Object i+1, and Object n is the child
of the World. Then the group of the entire transform structure is the wreath
product:

F1G
F2
1 w© F2G

F3
2 w© . . . w© FnG

W
n

where

(1) Object i has personal transform Gi and frame Fi.
(2) Personal transform Gi relates frame Fi+1 of the parent (upper
index) to the personal frame Fi (lower index).

Notice that the subscript i of the group Gi is the same as the subscript i of its
lower index Fi; that is, Gi and Fi are both personal to the Object i defining
that level.

7.5 Class Inheritance

Let us now turn to class inheritance. Consider a typical class-inheritance
hierarchy for closed figures, based on Meyer [108] p528. It is shown as Fig. 7.2.
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Fig. 7.2. A typical class-inheritance hierarchy based on Meyer [108] p528.

In object-oriented programming there is currently no systematic way of
explaining such a hierarchy. However, our generative theory of shape very
clearly explains it. The two basic principles of the theory are the maximization
of transfer and recoverability. Consider first recoverability. This is ensured by
the Asymmetry Principle which recovers symmetries from asymmetries. In
particular, the Externalization Principle says that any use of the Asymmetry
Principle for external inference must eventually lead back to an iso-regular
group.

Our theory in fact predicts the class-inheritance hierarchy shown in
Fig. 7.2, as follows: We observe that, as one descends through the hierar-
chy, one is reaching successively more symmetrical states - in accord with the
Asymmetry Principle. Furthermore, the end-point of any downward branch
is an iso-regular group - in accord with the Externalization Principle. Thus,
we view class inheritance as a recovery procedure.

Let us now formulate an algebraic theory of the is-a relation that is basic
to class-inheritance. Notice that is-a means sub-class of rather than mem-
ber of; that is, as is often stated, it really means is-a-kind-of. To illustrate
our algebraic theory of this, consider the inheritance descent from the node
QUADRANGLE. This is shown in Fig. 7.3. In fact, an extra node, PARAL-
LELOGRAM, has been added here, since our psychological studies, Leyton
[88] [89], show that this should be included.
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Fig. 7.3. A downward branch in a class-inheritance hierarchy.

At the top, there is the class QUADRANGLE. One can consider its class
text, in the software, as including an invariant stating that there are four
sides, and a feature stating that the four side-lengths are real numbers.

Let us now ask what the symmetry group of this structure is. We claim
it is

R w© {e}

as a permutational wreath product in this way: Let the control set be
c1, c2, c3, c4, corresponding to the four sides. The fiber-group product is there-
fore Rc1 × Rc2 × Rc3 × Rc4 . The permutational action of the control group
{e} is to leave each side where it is. This corresponds to the fact that, on
an arbitrary quadrangle, there is no symmetry group that carries the sides
onto each other, because, typically, the sides have different lengths and the
vertices have different angles.

Now move one step down in the class-inheritance hierarchy (Fig. 7.3) to
the next node PARALLELOGRAM. This class inherits the invariant (four
sides) and feature (side-lengths are real numbers) from the class above. How-
ever, the symmetry group now increases. It is

R w© Z2

where the control group Z2 represents 1800 rotation of the parallelogram
(about its center). This sends the figure onto itself.

Now let us move one step further down the class-inheritance hierarchy
to the next node RECTANGLE. The symmetry group increases still further,
thus:

R w© [Z2 × Z2]
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where the control group [Z2 × Z2] is the Klein-four group; i.e., this sends a
rectangle onto itself.

Finally move one step further down to the bottom node which is the class
SQUARE. Here, the symmetry group increases still further, thus:

R w© [[Z2 × Z2] s©τ Z2].

where the control group [Z2 × Z2] s©τ Z2 is actually D4 the dihedral group
of order 8.

Therefore, at each successive class downwards, the symmetry group in-
creases. In other words, the downward hierarchy is a sequence of group ex-
tensions:

R w© {e}
R w© Z2

R w© [Z2 × Z2]
R w© [[Z2 × Z2] s©τ Z2]. (7.1)

In relation to this, the reader should see our book on group extensions, Ley-
ton [98].

We will call the group on each level (i.e., each group listed above), the
internal symmetry group of that level. Furthermore, we will regard each
of these groups as a fiber group in relation to the command operations (mod-
ifications) on that level; e.g., the stretches, shears, rotations, translations,
etc., that can be applied to an object on that level. Typically, in a model-
ing program, the command operations would be the same for each level. For
example, in 3D Studio Max, they appear as operations on the tool bar and
can be applied to the coordinate frame of any object. Technically, one sets
this up by making the command operations part of the specification text
of a root class such as GRAPHIC OBJECT. Thus the various shape classes
(being subclasses of the root) inherit these operations.1 Let us therefore call
the group of command operations, the command group, and denote it by
G(C). By our transfer-based theory, the command group has a wreath re-
lation to the internal symmetry group of the object. That is, the command
operations transfer the internal symmetry group onto each of the shapes re-
sulting from those command actions, e.g., the deformations.2 Therefore, we
wreath super-append the command group to each of the internal symmetry
groups in the above list (7.1), thus:

1 In fact, at the level of GRAPHIC OBJECT the operations would be abstract
(partial implementations), and their implementations would be completed in the
individual subclasses in a way that is appropriate for each of those respective
subclasses.

2 This theory of command and internal groups was first presented by us in Leyton
[87]-[90], where they were referred to respectively as the external and internal
groups.
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R w© {e} w© G(C)
R w© Z2 w© G(C)
R w© [Z2 × Z2] w© G(C)
R w© [[Z2 × Z2] s©τ Z2] w© G(C). (7.2)

Observe that the total group of each level is a subgroup of the next level
down in the inheritance hierarchy. Notice that this conforms to the is-a rela-
tionship necessary in class inheritance. That is, the class of objects satisfying
the group on one level is a subclass of the objects satisfying the group on the
level above. Thus we conclude:

THEORY OF CLASS INHERITANCE. Each geometric class is given
by a wreath product:

Gsym w© G(C)

where Gsym is the internal symmetry group of a figure in the class, and G(C)
is the group of command operations. Class-inheritance is given by a sequence
of group extensions of the internal symmetry group:

Gsym −→ Gsym E© G.



8. Reference Frames

8.1 Reference Objects

In all aspects of perception and action, the generation of shape involves refer-
ence objects - points, axes, and Cartesian frames - with respect to which the
other objects are judged and constructed. For example, in human perception,
reference frames strongly determine the visual organization of a stimulus set:
The same stimulus set can have different perceptual representations depend-
ing on how the frames are oriented with respect to the set; see Mach [102],
Goldmeier [45], Leyton [96]. In categorization, Rosch [130], has shown that
cognitive categories have reference points with respect to which the remaining
stimulus members are judged, e.g., diagonal orientations are seen in terms of
vertical or horizontal orientations, the number 99 in terms of 100. In animal
motor control and navigation, Gallistel [37] [38] has put forward substan-
tial neurophysiological and behavioral evidence demonstrating the significant
role of reference frames in determining the animal’s computation of directed
action. In computer-aided design, the design process moves fowards by the
successive use of reference objects, starting with the construction plane. In
mechanical design, several types of reference objects are explicitly available
and are usually called datum objects. These are employed for every phase of
the design - from initial sketching, to full part design, to assembly planning.
They are crucial in establishing constraints, which are required in all aspects
of design. In 3D solid modeling, systems of reference objects are continually
used; e.g., in free-form deformation, a shape is framed by a reference scaffold
which is distorted, thereby distorting the embedded shape. A corresponding
process occurs in warping. In robotics, we saw that reference frames determine
the representation of kinematic structure. The same applies to 3D animation,
where kinematics works on the same principles as in robotics.

This chapter will give a theory of what reference objects actually are, and
how they function in the generative process. We shall argue that they arise
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from the group theory of shape generation. This will be used, in the following
chapters, to significantly increase the understanding of the cognitive and
design disciplines.

Throughout the discussion, the term reference frames (2D or 3D) rather
than reference objects will usually be used. However, the theory will apply
equally to lower dimensional reference objects such as points and lines.

8.2 Non-coordinate-free Geometry

Section 2.19 began to show that our generative theory of shape is fundamen-
tally opposite to Klein’s Erlanger program, which says that the objects of
geometry are invariants under operations. The oppositeness of the generative
theory is due to the fact that it is based on recoverability of the generative
operations, and one cannot recover generative operations from objects if the
objects are invariant under those operations.

This issue links to that of reference frames, which can be regarded as
coordinate systems. Klein’s program is coordinate-free. That is, invariance
under groups of transformations is invariance under changes of coordinate
system - which means that the geometric properties must be those that are
coordinate-free.

The program of geometry and physics for the entire 20th century is the
program of making objects coordinate-free. It is the basis for example of Ein-
stein’s approach to physics: Einstein’s fundamental proposal was that a phys-
ical object is one that is coordinate-free. In special relativity, coordinate-free
means invariant with respect to Lorenz transformations. In general relativity,
coordinate-free means invariant with respect to more general transformations:
local diffeomorphisms. The general-relativistic program was so powerful that
it lead substantially to the development of tensor geometry, which is the
foundation of differential geometry. The author remembers the great differ-
ential geometer S.S. Chern once saying: ”Differential geometry is the study
of objects with transient coordinates.”

We are going to argue in this book that the coordinate-free approach is
fundamentally wrong for the real needs of geometry. We will argue what one
actually wants is complete non-freedom from coordinates. This is required not
only for the computational and design sciences, but ironically for the very
physical sciences which promoted the coordinate-free approach to geometry.

We call the geometry developed in this book generative geometry, and
argue that generative geometry is necessarily non coordinate-free. One of the
basic reasons is this:

NON COORDINATE-FREEDOM OF GENERATIVE GEOME-
TRY. A reference frame cannot be removed from an object because it is
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part of the generative structure of the object. A change of reference frame
changes the structure of the object.

8.3 Processes and Phases

Before giving a theory of reference frames, it is first necessary to define pro-
cesses and phases in the generative history. It will be seen that the most
economical generative history proceeds by repeating an operation as many
times as required, then repeating another operation as many times as re-
quired, and so on. This obviously helps to minimize the history because one
does not have to go through the proceedure of setting up a particular opera-
tion several times if one groups together all similar occurrences of that oper-
ation. Thus, for example, in drawing a line in CAD, one does not draw a few
points on the line, and then return to it several times to add more points, in
between working on parts of another line elsewhere. Grouping the operations
into repetitions, whenever possible, is a fundamental means of minimizing
history. In fact, this signficantly determines the psychological structuring of
a shape, whether in the domain of human perception, or CAD, or theoretical
physics, as follows:

In Leyton [96], we argued that, psychologically, any process is understood
as the repetition of a generator. Recall that a c-cyclic group was defined
earlier as a group on one generator, i.e., a cyclic group, in the discrete case,
or a 1-parameter Lie group, in the continuous case. Thus we have this:

DEFINITION OF PROCESS. Psychologically, a process is a c-cyclic
group; i.e., the discrete or continuous repetition of a generator.

We said that the need for grouping into repetitions comes from history mini-
mization, but more strictly in comes from the History Symmetrization Prin-
ciple (p. 61), i.e., maximal symmetry across the history. It is this that implies
repetition of a generator. We claim that this is why, in physics, the most
advanced formulations, e.g., Hamiltonian mechanics and general relativity,
represent trajectories as geodesics; i.e., continuous repetitions of a generator
along itself. Similarly, this is why Schrödinger’s equation in quantum mechan-
ics is the continuous repetition of the Hamiltonian operator as generator.

In fact, the data situation might allow one only to decompose the history
into a sequence of processes. One tries, as much as possible, to force the
asymmetry to be concentrated at a point, and let the remainders of the
history be simply repetitions of generators.

Definition 8.1. A phase is a sequence of processes (repetitions of genera-
tors).



188 8. Reference Frames

An example is the design process in CAD. It proceeds by repeating a
generator till some stop-point, at which one then repeats a new generator till
some stop-point, at which one then repeats a new generator . . . etc. Consider
some examples: In the sweep creation of a cylinder, one repeats the rotation
generator to obtain the circular cross-section. One then repeats the transla-
tion generator to sweep the cross-section through space. Thus, by the above
definition, the cylinder is a phase in the design process. Notice that this ap-
plies not just to simple objects such as cylinders. For example, in mechanical
CAD (e.g., in ProEngineer and also AutoCAD Mechanical Desktop), one cre-
ates a mechanical part by first drawing a 2D polyline, which is a sequence of
straight-line segments, hinged at turning points. One then extrudes the poly-
line in the perpendicular direction, thus obtaining a 3D part. By the above
definition, the initial 2D polyline is a phase. Furthermore, the definition im-
plies that the entire part is also a phase, since it is a sequence of processes
(repetitions of generators).

8.4 Theory of Reference Objects

Let us return to using the term reference objects, and use the term reference
frames later when considering specific examples of 2D and 3D coordinate
frames. This section will give our basic theory of reference objects, and the
remainder of the chapter will show how this theory works.

It is obviously the case that a reference object begins a phase of the shape-
generation procedure. This is because it is used as a reference for the phase.

Now the previous section started to give a theory of phases. A phase was
understood as a sequence of processes, and a process as a repetition of a gen-
erator. The crucial factor to now bring into consideration is the Asymmetry
Principle (p. 42). This says that the generation of a shape is recoverable from a
data set only if it is symmetry-breaking on successively generated states. Thus
recoverable shape-generation must proceed from a symmetry ground-state to
an asymmetrization of that ground-state. All apparent counter-examples are
due to a failure to correctly define the boundary of the data set, as shown in
Chapter 2.

Thus by using the Asymmetry Principle, we conclude that any phase of
shape-generation must be a progression from symmetry to asymmetry. This
leads us to propose the following:

THEORY OF REFERENCE OBJECTS. Any reference object corre-
sponds to the symmetry ground-state of a phase. When there is a sequence of
phases, a reference object occurs at a phase-transition. It corresponds to the
point of maximal symmetry (start point) of the new phase and the point of
maximal asymmetry (end point) of the previous phase.
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8.5 The Necessity of Reference Frames

Let us now return to the issue of coordinate freedom. The Erlanger pro-
gram is coordinate free. In contrast, generative geometry is necessarily non
coordinate-free. We can now see why:

NON COORDINATE-FREEDOM OF GENERATIVE GEOME-
TRY. A reference frame cannot be removed from an object because it is
the symmetry ground-state which defines the object as an asymmetrization
of the ground-state. This means that it is part of the generative structure of
the object, and that a change of reference frame will change the generative
structure of the object.

8.6 Structure of the 2D Reference Frame

The conventional theory of Cartesian frames does not explain the enormous
importance of these frames in all shape computation, from human perception,
to CAD, to navigation. We are now going to give a theory of the 2D Cartesian
frame which will become fundamental to understanding these areas as they
are elaborated in rest of the book.

It is first necessary to analyze more fully the structure of the square
because it is closely related to the 2D frame. Up to now we have taken the
control group of the square to be the rotation group Z4. This is a subgroup
of D4, the dihedral group of order 8. One can construct D4 from Z4 as a
splitting extension thus:

D4 = Z4 s© Z2

where Z2 is a reflection group. Then one can add this as a control group to
the group of a side R, thus:

R w© Z4 s© Z2

to give the full symmetry group of the square. However, the problem with
this expression is that it is not wreath c-polycyclic, which means that one
cannot extract from it a canonical plan for drawing a square (Sect. 4.8).

The obstruction is the semi-direct product decomposition occurring in the
D4 component. Thus, the problem would be solved if D4 itself had a wreath
c-polycyclic decomposition. Remarkably it does. In order to understand it,
one must take a look at the subgroup diagram of D4, shown in Fig. 8.1.

Notice that there are four levels in this diagram. The single subgroup
on the top level has eight elements (the total group); the subgroups on the
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D4
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✏✏✏✏✏✏✏
Z4
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Z2 ×Z2
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Z2

{e,mD}
Z2

{e,mH}
Z2
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{e,mV }

�������

✏✏✏✏✏✏✏

�������

✏✏✏✏✏✏✏

{e}

✏✏✏✏✏✏✏

�������

✭✭✭✭✭✭✭✭✭✭✭✭✭✭

❤❤❤❤❤❤❤❤❤❤❤❤❤❤

Fig. 8.1. Subgroup diagram of D4.

second level each have four elements; the subgroups on the third level each
have two elements; and the subgroup on the bottom level has one element.
The elements themselves are represented as actions on a square. As usual,
each element rθ represents rotation by θ degrees; obviously there are four
of them in 900 increments. The remaining four elements mi are reflections,
where m means ”mirror”, and the subscript means the axis about which the
reflection is taken. The subscripts are V = vertical; H = horizontal; D = one
diagonal; and d = other diagonal.

Now constructing D4 as a splitting extension N s© H of two of its sub-
groups means taking a normal subgroup N from the group, and adding a
complement subgroup H . The complement condition is that N ∩H = {e},
and NH = D4. To satisfy this, notice that the previous decomposition
D4 = Z4 s©Z2 took the normal group N = Z4 from the second level down in
Fig. 8.1, and took its complement H = Z2 to be one of the subgroups on the
third level - a subgroup that must intersect Z4 only at the identity element.

We now want a new decomposition of D4, one that is a wreath product.
Of course a wreath product is also a semi-direct product. To construct it,
take as normal subgroup N , one of the Z2 × Z2 groups on the second level
down, in Fig. 8.1. In fact, take the one on the far left, which can be written
as

Z2 × Z2 = { e, mV } × { e, mH } (8.1)

i.e., it is generated by the vertical and horizontal reflections.
The complement H of this normal subgroup N will be taken to be

Z2 = { e, mD } (8.2)

from the third level down, in Fig. 8.1.
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Fig. 8.2. Three of the four reflection axes of a square.

Then form the semi-direct product of these two subgroups thus:

D4 = [Z2 × Z2] s© Z2.

Of course this is not yet fully defined because the way in which the comple-
ment Z2 acts as an automorphism group on the normal subgroup [Z2 × Z2],
has not yet been specified.

The automorphic action one needs to choose can best be understood by
considering a diagram of the square, Fig. 8.2. In this figure, the vertical and
horizontal reflection axes define the normal subgroup [Z2 × Z2], by equation
(8.1). Obviously this is the Klein-four group. In contrast, the diagonal axis
gives the complement subgroup, by equation (8.2). Notice that the diagonal
reflection exchanges the vertical reflection axis and the horizontal reflection
axis. This is exactly what will be used as the automorphic action. The di-
agonal group Z2 = { e, mD } will simply exchange the vertical group
Z2 = { e, mV } and the horizontal group Z2 = { e, mH }. Notice
that this means that it will simply reverse the two reflection components of
expression (8.1).

This automorphic action actually transfers the vertical and horizontal
reflection structures onto each other. Thus the automorphic action is the τ -
automorphic action. The normal subgroup and the complement are therefore
glued together as follows:

D4 = [Z2 × Z2] s©τ Z2 (8.3)

which explicitly shows that the transfer structure τ is being used; i.e. it
reverses the two reflection components within the [Z2 × Z2] structure. Ex-
pression (8.3) is now a wreath product, written in its semi-direct product
notation. In its wreath product notation, it is:

D4 = Z2 w© Z2. (8.4)
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Table 8.1. D4 in two different decompositions.

[Z2 ×Z2] S©Z2 Z4 S©Z2

〈 e , e | e 〉 e e identity
〈 mH , e | e 〉 mH mV r180 H-reflection
〈 e , mV | e 〉 mV mV V-reflection
〈 mH , mV | e 〉 mHmV r180 rotation by 1800

〈 e , e | mD 〉 mD mV r90 D-diagonal reflection
〈 mH , e | mD 〉 mDmH r270 rotation by 2700

〈 e , mV | mD 〉 mDmV r90 rotation by 900

〈 mH , mV | mD 〉 mDmHmV mV r270 d-diagonal reflection

This can be somewhat confusing. This is a wreath product of Z2 and Z2.
Therefore, it should not be confused with the Klein-four group, which is
a direct product of Z2 and Z2. However, the wreath product contains the
Klein-four group as its fiber-group product!

We shall see that, to analyze the applications of reference frames to human
perception, CAD, robotics, and navigation, it is necessary to understand what
the elements of D4 look like in the wreath-product decomposition. For this,
one needs to use the semi-direct product notation of the wreath product, that
is:

[Z2 × Z2] s© Z2.

Here, each element must have the triple-form:

〈 z1 , z2 | z3 〉

where each zi comes from the corresponding Z2 in the expression directly
above this. There are eight elements inD4. Using the triple-form, the elements
are presented down the left column in Table 8.1.

Let us concentrate on this left-hand column. The first thing to understand
is that, in the triple-form, each of the elements is expressed only in terms of
reflections - no rotations! It is of course the case that, when the reflections are
multplied out, some of the multiple reflections will actually be equivalent to
rotations. However, all entries in this column use only the mirror operations
mV , mH , and mD.

Next, observe the middle horizontal line in the table. It divides the top
set of four elements from the bottom set. The top set is the Klein-four group;
i.e., the fiber-group product. Notice that, in the left-hand column, these four
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elements all have e as the control component, thus:

〈 − , − | e 〉.

In contrast, the lower four elements all have mD as the control component:

〈 − , − | mD 〉.

Therefore, the lower set of elements is a coset of the Klein-four group, with
coset leader mD.

Let us now move on to the second column. Here, the reflections in the
first column have been multiplied together. Also, the control-group reflection
has been brought up to the front of each triple. This has certain benefits.

Now for a crucial point. The entire table shows two decompositions of
D4. The wreath-product decomposition [Z2 ×Z2] s© Z2 is shown in the first
column; and the alternative decomposition Z4 s© Z2 is shown in the third
column. In this third column, the following notation has been used:

D4 = { e, r90, r180, r270, (8.5)
mV , mV r90, mV r180, mV r270 }.

Notice, in this expression, that the upper line is the rotation subgroup Z4,
which is the normal subgroup of this decomposition. The lower line is the
coset mV Z4, which is the set of four reflections, each written as a multipli-
cation of mV with a rotation.

Returning to Table 8.1, one can see that this latter coset decomposition
does not correspond to the coset decomposition of the Klein-four group, i.e.,
the division given by the middle horizontal line. That is, the rotations Z4

distribute across the two cosets of the Klein-four group.
The final column gives the overall effect of each element. For example, it

gives the overall effect of each of the triple-reflections in the first column.

8.7 Canonical Plan from the 2D Reference Frame

The wreath decomposition D4 = Z2w©Z2 becomes basic to drawing a square,
i.e., its generative structure. We must first add the side-level R, thus:

R w© Z2 w© Z2. (8.6)

Notice that this is a wreath c-polycyclic group. Therefore it can be used for
a canonical plan to generate a square. Recall from p. 131, that one derives
a canonical plan from a wreath c-polycyclic group G1w©G2w©. . . w©Gn, by
repeating a cycle consisting of an entire downward movement through the
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levels. In each cycle, one uses only a single element from each successive
downward level Gi, except on the bottom level G1, where one uses the entire
group. The order of elements within any level is the order prescribed by the
generator of that level. One fills levels from the bottom up.

When this is applied to the particular wreath c-polycyclic group given
above for a square, we obtain one of the most common scenarios for drawing
a square: draw the top side, then the bottom side, then the left side, and
finally the right side. This is a control-nested structure, as follows: The first
two sides (top and bottom) are drawn as reflectional copies of each other
about the horizontal axis. The drawing structure of the first two sides is then
reflected, as a whole, about the diagonal to obtain the drawing structure
of the second two sides (left and right). In other words, the left and right
sides are a transferred version of the top and bottom sides, under the control
action of diagonal reflection. In terms of group elements, we have this: The
first two sides are e and mH respectively, both with control parameter e. The
second two sides are exactly the same elements, but with control parameter
mD. Thus, the control parameter mD has tranferred e and mH from one
fiber-group copy Z2 to the other fiber-group copy Z2, within the fiber-group
product Z2 × Z2.

Finally observe this: The two most frequent scenarios for drawing a square
come from the two alternative wreath c-polycyclic groups we have given for
the square:

R w© Z4 and R w© Z2 w© Z2.

The first one, discussed in Chapter 3, uses a rotation control structure, i.e.,
it traces the pen around the square. The second one uses a reflection control
structure, i.e., drawing the sides in opposite pairs. These two scenarios are
respectively the most common, and the second most common, ways in which a
person draws a square. One can therefore clearly see the power of our method
of assigning to the data set a symmetry group that has a wreath c-polycyclic
structure, and deriving from the wreath c-polycyclic structure its canonical
plan.

8.8 Organizing Role of the Cartesian Reference Frame

The symmetry structure of the 2D Cartesian frame is closely related to the
symmetry structure of the square. Thus, we will often take the symmetry
structure of the Cartesian frame to be

R w© Z2 w© Z2,

which will be called the hyperoctahedral wreath hyperplane group, to
be discussed fully in Chapter 16. In fact, it will become clear that the most
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significant component of this structure is the wreath reflection component
Z2 w© Z2. We shall argue that this reflection group is the single most impor-
tant structuring factor in all of human perception, CAD, robotics, navigation,
etc. It explains numerous phenomena in perception, the choice of datum and
sketch planes in mechanical CAD, basic aspects of assembly planning, feature-
extraction in NC-machining, the structure of buildings, the representation of
path structures in navigation, and so on. The reason is that this group de-
rives from the gravitational structure of the environment and the way the
gravitational structure is manifested in the organization of the moving agent
and its moving parts. We argue that virtually any real-world use of geometry
begins with the imposition of the reflection wreath product Z2 w© Z2. This
will become very evident, as this book proceeds.

Most crucially, this will emerge in the theory of complex shape generation
to be developed over the following chapters. However, the next section will
give some simple examples relating to human perception. Simple as these
examples are, they profoundly undermine the belief that Klein’s Erlanger
program is correct, and will become the basis of our attack on the Erlanger
program in Chapter 22.

8.9 Orientation-and-Form

The orientation-and-form effect is perhaps the single most important phe-
nomenon in human perception. It is completely ignored by the computer
vision community, and we believe that this is ultimately the reason why
computer vision systems do not work, despite the enormous research in that
area.

The orientation-and-form phenomenon is this: The same figure in differ-
ent orientations can be perceived as two entirely different figures. Fig. 8.3
shows an example due to Goldmeier: Subjects fail to notice that the two
shapes shown in this figure are actually the same - but in different orienta-
tions. It should be pointed out that this effect comes from Goldmeier’s PhD
thesis [45], which was written in 1936, but published in English almost 40
years later because of the extraordinary power of its ideas. One can quite
categorically say that anyone who has not read Goldmeier’s thesis will never
get a computer vision system to work. Consider for example the standard
optics/camera model used in computer vision: No optics model will explain
why the two shapes in Fig. 8.3 are seen as completely different figures. Con-
sider also the invariants program in computer vision. If invariant descriptions
were the actual representations used by the visual system, then the two fig-
ures would be seen as the same, since they are exactly congruent under the
2D rotation group. However, the figures are given entirely different represen-
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tations. We shall argue that this is because the wreath reflection structure
Z2 w© Z2 is assigned completely differently to the two shapes.

Fig. 8.3. One of Goldmeier’s orientation-and-form examples.

The orientation-and-form phenomenon was in fact discovered by Ernst
Mach [102]. His famous example is called the square/diamond effect. It is
considerably weaker than the Goldmeier example, but is nevertheless ex-
tremely important to understand. Mach pointed out that the two shapes
shown in Fig. 8.4 appear to be somewhat different, despite the fact that they
are merely the same shape in two different orientations. He called the left
figure a square, and the right figure a diamond. Whereas most people are
convinced about the Goldmeier effect Fig. 8.3, they are less convinced about
the Mach effect Fig. 8.4. However, the following will show that the Gold-
meier effect actually exploits the Mach effect, and therefore it is necessary to
understand the Mach effect first.

The theory of the Mach effect was given by us in Leyton [96]. We argued,
using a large amount of empirical data, that the human visual system con-
tains a double reflection group Z2 × Z2, with its two reflection components
aligned with the two axes of the gravitational Cartesian frame. In fact, we
argued that this Z2×Z2 group is the most significant structuring component
in the human visual system - fundamentally determining the hierarchical or-
ganization of every visual representation. Notice that it is the fiber-group
product of Z2 w© Z2.

Thus, returning to the Mach effect Fig. 8.4, we argued that the difference
between the left and right figures, is that, in the left figure, the Z2 × Z2

reflection axes are aligned with the side-bisectors; whereas, in the right figure,
the Z2 × Z2 reflection axes are aligned with the angle-bisectors. This means
that the two figures have different generative structures. That is, in the left
figure, the opposite sides are generatively related by reflection, whereas, in
the right figure, the adjacent sides are generatively related by reflection.
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Fig. 8.4. Ernst Mach’s Square/Diamond Effect.

Table 8.2. The theory of the square/diamond effect given by Leyton [96].

———————————————————————————

INTERNAL STRUCTURE

Square: Z2 ×Z2 axes aligned along side-bisectors
Diamond: Z2 ×Z2 axes aligned along angle-bisectors

INTERACTION PRINCIPLE: The symmetry axes of an organization be-
come the eigenvectors of the most structurally allowable actions on that
organization.

PURE DEFORMATION STRUCTURE

Square: eigenvectors aligned along side-bisectors
Diamond: eigenvectors aligned along angle-bisectors

———————————————————————————

Our theory continued in this way: Not only are the two figures distin-
guished by this major difference in ”internal” structure, but also by a major
difference in ”external” structure. To see this, one first requires the Interac-
tion Principle (p. 67) which states that the symmetry axes of an organization
become the lines of flexibility (eigenvectors) of the structurally most allowable
operations applicable to the organization. Thus the first figure (the square)
is seen as changeable easily into a rectangle - since its symmetry axes are
along side-bisectors, and these axes become the directions (eigenvectors) of
most allowable stretch. In contrast, the second figure (the diamond) is seen
as changeable easily to elongated diamonds - since its symmetry axes are
along angle-bisectors, and these axes become the directions (eigenvectors)
of most allowable stretch. This puts the two figures in two different cate-
gories - the square belongs to the category of rectangles, as shown in the top
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Fig. 8.5. A square and a diamond belong to different deformation spaces.

row of Fig. 8.5; whereas the second figure belongs to the category of general
diamonds, as shown in the bottom row of Fig. 8.5. In particular, a square
necessarily has 900 angles, whereas in a diamond, the 900 angles are hardly
even noticed and are regarded as inessential. The theory is summarized in
Table 8.2.

Now let us turn to the Goldmeier shapes in Fig. 8.3. Clearly, the transfor-
mations responsible for obtaining these shapes from the square and diamond
are less structurally allowable than those just described, since neither shape
in Fig. 8.3 can be obtained by linear deformation along the symmetry axes of
the square or diamond; i.e., greater deformation is involved. We shall regard
the minimal group containing these new transformations as the projective
group PGL(3,R).

According to our theory, the projective group is then added as a control
group transferring Rw©Z2w©Z2 from the undistorted square or diamond onto
the distorted square or diamond. This means, that one has the 4-fold wreath
product:

R w© Z2 w© Z2 w© PGL(3,R). (8.7)

It is worth the reader checking how each level is transferred by the next level
above it in the hierarchy.

Most crucially, expression (8.7) tells us that the wreath reflection group
Z2w©Z2 is transferred by the projective group onto each figure. According
to p. 189, this is the meaning of assigning a Cartesian reference frame; i.e.,
reference-frame assignment defines the symmetry ground-state as the reflec-



8.9 Orientation-and-Form 199

Fig. 8.6. The assignment of axes in the Goldmeier figures.

tion wreath product Z2w©Z2. Since the generative theory says that the pre-
sented state must be an asymmetrized version of the ground-state, and that
asymmetrization must take place by transfer, the reflection wreath product
must be transferred onto the presented state.

How does this transfer take place? The answer comes from the History
Minimization Principle, i.e., one must choose the shortest generative sequence
that goes from the ground-state to the presented state. Now, the ground-state
Z2w©Z2 has its fiber-group product [Z2 ×Z2] positioned such that one of the
Z2 fibers is aligned with the gravitational vertical axis and the other is aligned
with the gravitational horizontal axis. The minimal projective transformation
going from this assignment to Fig. 8.3a, must be one in which these axes
were aligned with the side bisectors, i.e., the ground-state was a square. The
result of the transfer is shown in Fig. 8.6a. Secondly, the minimal projective
transformation going from the gravitational assignment to Fig. 8.3b, must be
one in which the reflection axes were aligned with the angle bisectors, i.e., the
ground-state was a diamond. The result of the transfer is shown in Fig. 8.6b.

Finally notice this: In this section, our inference rules were used to recover
the generative history of the two shapes. The inferential proceedure concluded
that the Cartesian axes were the reflection axes of the symmetry ground-
state of the generative process. We shall see that this theory of reference
frames is entirely general, and explains the use of reference frames throughout
all of human perception, CAD, assembly planning, manufacturing, robotics,
navigation, etc.
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8.10 Cartesian Frame Bundle

We have seen that the reflection structure, defining the Cartesian reference
frame, is extremely salient. In fact, we now propose that the salience indicates
that this structure is actually hard-wired into the visual system. Our claim
is that the nervous system uses these specific hardwired units to impose the
reflection structure on anything it possibly can, and at every level of scale.
For example, a square receives the structure not only globally, as described
above, but along its edges, as shown in Fig. 8.7, where each disc indicates the
placement of the Klein-four group Z2 × Z2, which is that part of the wreath
reflection structure that the visual system can instantiate at each of these
points. That is, locally, the edge possesses two axes of reflection, one along
the edge and one perpendicular to the edge. The same applies to any curved
edge.

Fig. 8.7. Part of a Cartesian frame bundle.

Recall also that we have proposed (p. 142) that the human visual system is
recursive, with the recursion taking place via wreath products - to maximize
transfer. We shall call any recursive use of the reflection wreath product, a
Cartesian frame bundle. The visual salience of such bundles is enormous
as will now be demonstrated.

Fig. 8.8. Attneave’s pointing triangle.

To build up these examples, it is first necessary to consider the phe-
nomenon of multistability discovered by Attneave [5], [6]. In Fig. 8.8 there is
an equilateral triangle oriented so that none of its three bisectors are aligned
with the gravitational axes. Attneave discovered that, despite the fact that
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the triangle is equilateral, it appears to point in only one direction, and that
this direction changes periodically from one bisector to another. Attneave
also made the discovery that this extends to fields of equilateral triangles as
shown in Fig. 8.9. All the triangles in the field are perceived as pointing in
the same direction simultaneously. They then flip and point simultaneously
in one of the other two directions.

Fig. 8.9. Attneave’s field of pointing triangles.

The importance of these multi-stability phenomena is that they show fun-
damental aspects of the structure of the human visual system, which have
been ignored in computer vision, and indicate why computer vision systems
actually don’t work. Consider for example the standard optics/camera model
used in computer vision: No optics model will explain why an equilateral tri-
angle is seen as pointing, i.e., as having a prejudice not contained in the optic
array. Consider also the invariants program in computer vision. If invariant
descriptions were the actual representations used by the visual system, then
a triangle would not point. Notice that the pointing phenomenon violates
Klein’s Erlanger program.

We are now going to explain the Attneave phenomena. Consider first the
single pointing triangle. If the only group that were operating here were the
symmetry group of the triangle, then there would be no prejudice. However,
we argue that the Cartesian frame is being imposed on the triangle - specif-
ically, the Klein-four group Z2 × Z2 is being imposed. The frame has two
perpendicular reflection axes which the triangle does not possess. Therefore
the imposition of the frame cannot actually use the center of the triangle.
The two reflection axes are imposed like this: (1) One reflection axis is instan-
tiated as one of the bisectors of the triangle, i.e., through one of the vertices.
(2) The perpendicular reflection axis is instantiated as the triangle-side op-
posite to that bisected vertex. Notice that the two reflection axes pick out
two different levels of the triangle structure. The first axis is a global axis of
the triangle, and the second axis is a reflection axis of one of the sides (along



202 8. Reference Frames

that side). The salience of the Z2 × Z2 structure is so great for the visual
system, that the system must find it where it can.

Now let us consider the field of pointing triangles. To describe this, we
simply control-nest the Klein-four group within the planar translation group,
thus:

[Z2 × Z2] w© [R × R]. (8.8)

That is, the translation component acts as a control group transferring the
double-reflection structure from one point to another. This means that all
the triangles can point in only the same direction at the same time.

In the example just given, the reflection group was control-nested within
the translation group. However, in Leyton [96], we have shown that the re-
flection group can be control-nested within itself. To demonstrate this, we
devised the stimuli shown in Fig. 8.10. Here, we combined the pointing tri-
angle with the square-diamond effect. Notice that Fig. 8.10a and b are ex-
actly the same stimulus in two different orientations. However, the figures
are perceived differently. In Fig. 8.10a, the visual system groups together the
triangles on opposite sides and therefore the triangles are seen as parallel: two
pointing vertically and two pointing horizontally. In contrast, in Fig. 8.10b,
the triangles are not seen as parallel. The two triangles on the top half are
grouped together and are therefore seen as pointing away from each other;
correspondingly the two triangles on the bottom half are grouped together
and are therefore seen as pointing towards each other.

Fig. 8.10. The orientation-and-form phenomenon of Leyton [96] p362.

The two figures give strong evidence for the recursive nature of the human
visual system. Each figure consists of a 2-level wreath product in which both
the lower level and upper level are given by the double reflection group.
Therefore the structure is this:
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[Z2 × Z2] w© [Z2 × Z2]. (8.9)

This is an example of what we call a a wreath poly-Z2 × Z2 group as in
Definition 4.11. We claim that such groups are fundamental to the human
perceptual system. Considerably more has been written by us on this; e.g.,
see particularly p324-363 in Leyton [96].

8.11 External Actions on Frames: Decomposition

The rotated parallelogram example in Fig. 2.3 (p. 40) is particularly sig-
nificant with respect to reference frames in the human perceptual system.
The rotated parallelelogram goes back to the square which can essentially
be identified with the Cartesian frame as the hyperoctahedral wreath group
Z2 w© Z2.

One needs to encode the fact that, although the overall transformation
from the square to the rotated parallelogram is a single linear transformation,
i.e., a member of the general linear group GL(2,R), the subjects decompose
it into a stretch, shear, and rotation. This decomposition corresponds to
what is called, in Lie groups, the Iwasawa decomposition. We have written
several hundred pages about the Iwasawa decomposition in human percep-
tion Leyton [87], [88], [89], [90], [91], [96], because we have demonstrated
the enormous significance of this decomposition in revealing the underlying
structuring principles of the human perceptual system. Perhaps the most
comprehensive account is the 200-page Chapter 6 in Leyton [96].

It is clear that the subjects are using the Iwasawa decomposition in the
rotated parallelogram example. Additional experiments showed that subjects
take either of two strategies: They either try to preserve area, or they try to
preserve width. In either case, one is dealing not with all of GL(n,R), but
with a 3-parameter subgroup; i.e., one parameter for each of stretch, shear,
and rotation. Without loss of generality, let us assume they are using the
first strategy - that of preserving area. This means that they are using the
3-parameter subgroup SL(2,R), the group of area-preserving linear transfor-
mations. Its Iwasawa decomposition is this:

SL(2,R) = A.N.SO(2) (8.10)

where A is the group of stretches, N is the group of shears, and SO(2) is
the group of rotations. Notice that the order - stretch, shear, rotation - in
this sequence, corresponds to the generative order (right-to-left) in Fig. 2.3
(p. 40).

The expression of the group in this form does not encode the parent-child
hierarchy on Cartesian frames. Also, a parent-child hierarchy on frames cor-
responds to a global-to-local hierarchy on frames (Sect. 5.9). Consider the
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global-to-local structure in the current situation. At one end of the sequence
(8.10), the stretch group A is relative to the intrinsic structure of frame of the
square, i.e., the symmetry axes of the square become the eigenvectors (direc-
tions) of the stretch transformation in accord with the Interaction Principle
(p. 67). Therefore, the frame is local at this end of the sequence. At the other
end of the sequence, the rotation group SO(2) relates the object to the global
frame of the environment; i.e., the world frame. Therefore, the order of frames
in the sequence (8.10), is local-to-global in the left-to-right direction.

Using our correspondence between parent-child hierarchy, global-to-local
hierarchy, and wreath hierarchy, replace the sequence in (8.10) with this se-
quence:

SL(2,R)w© = A w© N w© SO(2). (8.11)

The group SL(2,R)w© is formed out of the same components as SL(2,R),
except that the components are now put together using the wreath product
operation. Generally, it is valuable for us to define the following:

Definition 8.2. Let a group G have a decomposition into components G1,
G2, . . . , Gn. Then a wreath product Gw© = G1w©G2w©. . . w©Gn, will be called
a wreath-reconstituted version of G.

Thus expression (8.11) gives a wreath-reconstituted version of SL(2,R). The
advantage of this version is that it encodes the parent-child structure and
global-local structure of the reference frames. (Note that the group Special-
Linear used in Chapter 6 of Leyton [96] is actually the wreath-reconstituted
version of SL(2,R)).

Now expression (8.11), as it stands, can be considered to involve only the
ordinary Cartesian frames of conventional mathematics. However, let us now
use our formulation of the Cartesian frame as the hyperoctahedral wreath
group Z2 w© Z2, which also represents the square. We wreath sub-append
this group to the sequence (8.11) as follows:

[Z2 w© Z2] w© A w© N w© SO(2). (8.12)

Thus, the higher groups A, N , SO(2), act successively on this structure,
which is exactly the generative effect; i.e., left-to-right in this sequence we
have: square −→ rectangle −→ parallelogram −→ rotated parallelogram.

The reader should observe that the symmetry axes of the hyperoctahedral
fiber become the eigenvectors of the structurally most allowable group, A,
that is, the group that is next to it in the sequence. In Leyton [96], we
encode this fact as follows:

[Z2 w© Z2] ∧ A w© N w© SO(2) (8.13)

where the symbol, ∧, stands for the wreath product in which the most salient
symmetry axes of the fiber group are aligned with eigenvectors of the immedi-
ately higher control group. The reader should recall Sect. 2.17 on the ordering
of the successive control groups.



8.12 The 3D Reference Frame 205

One can add higher levels of action above the linear actions, A, N , SO(2).
For example, consider warping, which is a facility offered in 3D solid modeling.
In warping, the world frame is itself deformed. Within our formulation, this
is easily encoded by wreath super-appending a diffeomorphism group Gwarp
to sequence (8.11) thus:

[Z2 w© Z2] w© A w© N w© SO(2) w© Gwarp. (8.14)

Again, this sequence correctly encodes the parent-child and global-local or-
dering on frames. The reader should note that this ordering is exactly that
found in the geometry pipelines of 3D solid modeling programs such as 3D
Studio Max. Thus we have succeeded in giving a systematic means of alge-
braically formulating the generative hierarchies in both human perception
and solid modeling.

However, the above has presented only a fraction of the complete theory
elaborated in Chapter 6 of Leyton [96]. That theory gives much deeper insight
into the sequence (8.14), exploiting the recursive nature of the Cartesian
frame and the Externalization Principle.

8.12 The 3D Reference Frame

It was argued above that the most important factor in the 2D gravitational
frame is the reflection structure, and that this is given by a wreath product.
Correspondingly it will now be argued that the most important factor in the
3D gravitational frame is the reflection structure, and that this is also given by
a wreath product. Later, the enormous significance of this wreath product will
be demonstrated in all areas of human perception, CAD, assembly planning,
manufacturing, robotics, and navigation.

First one needs to understand how the 3D wreath product works. Just as
the 2D frame is related to the square, the 3D frame is related to the cube.
Also: just as the control group in the 2D case is a 2-fold cyclic group, the
control group in the 3D case is a 3-fold cyclic group, which implies that the
cube has a 3-fold axis which acts as a control group in a wreath product.
To understand this axis, we need to go through the following two stages:
Draw a hexagon, as shown in Fig. 8.11a, with a pair of opposite vertexes
aligned vertically. Then draw a line from every alternate vertex to the center,
starting with the bottom vertex. The result is shown in Fig. 8.11b, which
gives a compelling impression of a cube.

Now observe the following: The outline of Fig. 8.11b is a hexagon. How-
ever, the figure has only 3-fold symmetry because of the central 3 lines. This
means that the figure has the symmetry group D3 of a triangle, not D6 of a
hexagon.
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Fig. 8.11. Understanding the 3-fold axis of a cube.

Note that D3 is isomorphic to the permutation group Σ3 on three ele-
ments. In the geometric situation illustrated in Fig. 8.11b, it will be more
convenient to write the symmetry group as Σ3 rather than D3, because this
will generalize to n dimensions.

The structure Σ3 acts as a control group in a wreath product constructed
in the following way: The cube has six faces. These form three reflectionally
opposite pairs. The two members of each pair are related by the reflection
group Z2. Thus, there are three copies of Z2, one for each pair of opposite
sides. Therefore, form the wreath product:

[Z2 × Z2 × Z2] s© Σ3. (8.15)

The fiber-group product [Z2 × Z2 × Z2] combines the three reflection struc-
tures as independent entities. The control group Σ3 then transfers the three
reflection structures onto each other by its τ -automorphic action on the fiber-
group product.

Notice that the wreath product (8.15) is

Z2 w© Σ3. (8.16)

Observe also that this is a permutational wreath product rather than a regular
wreath product. That is, there are three copies of the fiber (one for each
member of the set on which Σ3 acts), rather than six copies of the fiber (one
for each member of Σ3 itself).

The group Z2 w© Σ3 can be generalized to n-dimensions, obtaining

Z2 w© Σn (8.17)

which is called the hyperoctahedral group of degree n. This is a symmetry
group of the n-dimensional cube. The main two examples in this book are
the hyperoctahedral group of degree 2 and degree 3. The case of degree 2
is the dihedral group D4 (order 8), since this is the permutational wreath
product Z2 w© Z2 which is Z2 w© Σ2. Therefore this is the reflection group
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we gave for the 2D Cartesian frame. The case of degree 3 was defined in this
section.

Whereas the 2D case Z2 w©Σ2 is wreath c-polycyclic, the 3D case Z2 w©Σ3

is not, because Σ3 is not cyclic. Wreath c-polycyclic groups are important
to us because canonical plans can be derived from them. In the 2D case, the
wreath c-polycyclic nature of the frame allowed us to derive a standard means
of drawing a square. We want a wreath c-polycyclic group for the 3D case in
order to obtain a standard means of generating a cube. Although Z2 w© Σ3

is not wreath c-polycyclic, it has a maximal normal subgroup that is. This is
simply:

Z2 w© Z3 = [Z2 × Z2 × Z2] s© Z3. (8.18)

The control level only rotates each reflection pair onto each other. Given
this wreath structure, one can now derive the following canonical plan for
generating a cube: First place one side, then its opposite side. Then rotate
and do the same. Finally rotate and do the same. Notice that the cube is
thereby generated purely by transferring previous actions.

Of course each side is given by the double-translation group. Therefore
to complete the frame we add this group below the hyperoctahedral group
via a wreath product (i.e., wreath sub-append the translation group). Often
we shall take the translation component for granted and omit it from the
notation, to emphasize the reflection structure. As a point of terminology,
the hyperoctahdral group will often be referred to as the hyperoctahedral
wreath group, to emphasize the wreath-product decomposition of the group.
There are of course other decompositions.

8.13 Assigning Triple-Reflection Structures to Surfaces

In human perception, CAD, assembly planning, manufacturing, robotics, and
navigation, it is often very important to attach a 3D Cartesian frame to a
surface. We shall show that a basic aspect of this is the assignment of the
hyperoctahedral group to the surface. The assignment is as follows:

The hyperoctahedral group (degree 3) contains a triple-reflection struc-
ture Z2 ×Z2 ×Z2 as its fiber-group product. The three component reflection
groups are assigned as illustrated in Fig. 8.12. One mirror plane is made
coincident with the object plane - because the object plane is reflectionally
symmetric about itself. The other two mirror planes are assigned perpen-
dicularly to the object plane because the plane also has these symmetries.
Observe that, if the object plane were the boundary of a solid object, then the
reflection plane that lies in that plane would also have to reverse occupancy;
i.e., the reflection operation m in this Z2 would also be a color operation.

Now, a frequently-used technique in shape generation (e.g., human per-
ception) is to assign a Cartesian frame to each of the surfaces of an object, as
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Fig. 8.12. Triple-reflection structure assigned to a plane.

shown in Fig. 8.13. For example, in CAD, one might need to add a sky-light
window to the slanting roof shown in this figure. This is easy to draw in the
coordinate system defined by the slanting roof, and very difficult to draw in
any of the other coordinate systems. Most crucially, we argue that this means
that the triple-reflection structure is being assigned to the surface; i.e., the
visual system is picking out the local reflection structure of the surface.

Fig. 8.13. Triple-reflection structure assigned to several planes of a house.

Recall our argument that the visual system is recursive, i.e., that a large
non-trivial wreath group H1 w© H2 w© . . . w© Hn can be substituted for the
point {e} at the left-end of any wreath sequence {e} w©G1 w©G2 w© . . . w©Gn.
For example, an entire Cartesian frame can be substituted for each fiber copy
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of {e}. The ability to perceptually map between these frames is then carried
out by the τ -automorphic conjugacy structure within the higher sequence
G1 w© G2 w© . . . w© Gn.

In particular, let us consider any one of the planes in Fig. 8.13. We can
regard it as structured like this:

{e} w© [R × R]. (8.19)

The left end of this sequence, {e}, represents the individual point on the
surface, as fiber, duplicated by the translation control group. Using the above
concept of recursion, one can substitute the entire 3D Cartesian frame for
{e}. Thus one obtains a Cartesian frame at each point on the surface. This
is particularly significant in human perception, where we argue that a triple-
reflection structure is detected at each point of the surface, as illustrated in
Fig. 8.14. The structure is an example of what we call a frame bundle, and
is analogous to the assignment of a 2D Cartesian frame at each point along
the side of the square, as shown in Fig. 8.7 (p. 200).

Fig. 8.14. Triple-reflection structures are assigned massively in human perception.

Now the frames in Fig. 8.14 are related to each other by the τ -automorphic
conjugacy structure provided by the translation control group. This exploits
the wreath-product symbol in the sequence (8.19) into which the frames
have been substituted. Notice that there must be a particular frame which is
the fiber-group copy associated with the identity element in the translation
control group. This is a reference starting frame, with respect to which the
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other frames on the surface are generated. Our theory of reference objects
(p. 188) says that a reference object is a phase-transition and therefore is
either a point of maximal symmetry or maximal asymmetry. Therefore, on
each of the faces of the house shown in Fig. 8.14, there is a distinguished
reference frame located either at the center of the face - i.e., point of maximal
symmetry - or at one of its corners - i.e., point of maximal asymmetry.

8.14 Construction Plane

In CAD and solid modeling, the creation of an object involves the crucial use
of a construction plane, which is a base reference plane with respect to which
the object is generated. Standardly the drawing of the object is decomposed
into two phases, in which the first phase is a drawing on the plane and the
second is a sweeping outward of the drawing, e.g., by translation, revolution,
etc. The two phases can be given by the movement of the cursor or numerical
specification.

For example, Fig. 8.15 illustrates the standard procedure for drawing a
block in solid modeling, using a cursor. The two-phase procedure is this:
The first phase, labeled by 1 in the diagram, is the movement of the cursor
that creates the first face of the object. The second phase, labeled by 2, is the
movement of the cursor that translates the face in the perpendicular direction.
In more complex object design, e.g., part design in mechanical CAD, phase 1
is the drawing of a polyline or spline on the construction plane, and phase 2
is again a sweeping of the drawing in the perpendicular direction. Using the
terminology of sweeps, the shape in the construction plane is the profile, and
the perpendicular movement is the path.

Fig. 8.15. Drawing a block using two phases.

Sweeping structures will be algebraically formalized in Chapter 18 of this
book. Such structures exemplify our claim that shape-generation is intelligent
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when it maximizes transfer. Here, the 3D shape is generated by the transfer
of a profile along a path. Algebraically we will formulate this via a wreath
product, in which the profile is the fiber and the path is the control:

Sweep = Profile w© Path.

Notice that the wreath-product symbol w© predicts correctly that there is one
copy of the profile for each member of the path.

The purpose of the present section is to show that the construction plane
conforms with our theory of reference frames. The theory says that a reference
frame defines a phase-transition. Clearly, this is seen in the above discussion:
The construction plane defines the first phase of the drawing process, and,
by the transfer structure, becomes the basis for the second phase.

Most crucially, the theory says that the phase-transition must define the
symmetry ground-state of a phase. This is also evident here: The construc-
tion plane is reflectionally symmetric about itself. Therefore, a profile on a
construction plane possesses the same reflectional symmetry.

Now observe that, from this initial symmetry, sweeping will create an
asymmetry: it will create positional distinguishability between the successive
cross-sections, i.e., internal history (the term internal is defined in Sect. 2.9).
This accords with our theory of shape-generation, in the following fundamen-
tal ways: The sweeping asymmetrization actually goes along a symmetry of
the final object, i.e., in conformance with our view that plans, and there-
fore asymmetrizations, go along symmetries as channels. Furthermore, the
symmetry group of the asymmetrization process is used as the control group
moving the fiber - again in accord with the theory of asymmetry-building
(Sect. 2.18).

Notice also that the construction plane containing the profile is matched
with the reflectional symmetry of a face (or cross-section) within the final
object. Thus the symmetry of the construction plane is not actually lost in
the asymmetrization process. This is because it is a fiber of the final object.
This, as we said, is the power of describing generativity using asymmetry-
building by transfer: The previous structure is not lost - it is part of the
representation of the final structure, and is recoverable from it because the
control group is an asymmetrization.

Finally observe this: The construction plane is a reflectional fiber taken
from the hyperoctahedral group defining the Cartesian frame. In fact, in
major programs such as ProEngineer, the user is asked to select a construction
plane from the three perpendicular Cartesian planes given on the screen. The
crucial thing is that this fiber from the Cartesian frame is then matched to a
profile fiber of the goal object. Our full theory is given by the panel on p. 212.
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THEORY OF CONSTRUCTION PLANES

(1) A construction plane is a reflectional Z2 fiber taken from the
hyperoctahedral wreath group defining the Cartesian frame.

(2) Any drawing on a construction plane is reflectionally
symmetric about the plane.

(3) In standard CAD and 3D modeling, the drawing is
swept into the perpendicular direction. This creates a structure
of transfer, and therefore a wreath product, in which the profile
drawing is the fiber, and the sweeping is the control.

(4) The drawing fiber contains not only a reflectional sym-
metry of the construction plane, but a reflectional symmetry of
the fiber within the final 3D object - i.e., usually the reflectional
symmetry of a face (or cross-section) of the final goal object.

(5) Therefore, in setting up the drawing, the construction
plane’s reflectional symmetry is chosen to coincide with the
reflectional symmetry of one of the faces (or cross-sections) of
the goal object, and the sweeping is chosen to coincide with
a perpendicular continuous symmetry of the goal object (e.g.,
translation or rotation).

(6) The construction plane defines the first phase of the
drawing process, and, by the transfer structure, becomes the
basis for the second phase. It therefore accords with our theory
that reference frames (a) constitute phase transitions in the
generative history, and (b) arise from symmetries of the object -
since a phase transition corresponds to a symmetry ground-state
for generation.

(7) In particular, the use of the construction plane is a
way of matching a reflectional Z2 fiber from Cartesian hyperoc-
tahedral wreath group to a reflectional fiber of the goal object,
so that the fiber of Cartesian frame can become the symmetry
ground-state in the generation of the goal object.



9. Relative Motion

9.1 Introduction

As was said in Chapter 1, the major purpose of our theory is the conversion
of complexity into understandability. Any intelligent system is faced
with an environment, e.g., a 3D scene, of enormous complexity, and must
convert this into an understandable structure. We argue that the conversion
of complexity into understandability is achieved by maximizing transfer and
recoverability. Furthermore, we show how to give transfer and recoverability
a well defined mathematics. Therefore this book gives a mathematical theory
of understandability.

Relative motion is an important phenomenon in a number of areas such as
human perception, robot manipulation, computer animation, and physics. It
is in fact used to simplify the representation of motion that would otherwise
be complex. This chapter will show that relative motion accords exactly with
our theory; i.e., it works by maximizing transfer and recoverability. This
allows us to give a group-theoretic representation of relative motion that has
not so far been given in the literature, and deepens the understanding of
what relative motion is.

In a sense, Chapter 6 on robot manipulators can be regarded as concern-
ing relative motion, and the present chapter can be regarded as continuing
that chapter. Whereas that former chapter concerned relative motion in robot
kinematics, the present chapter will concern relative motion in human per-
ception, computer animation and physics.

Michael Leyton (Ed.): A Generative Theory of Shape, LNCS 2145, pp. 213-227, 2001. 
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9.2 Theory of Relative Motion

In this section, we will propose a theory of relative motion. In order to un-
derstand it, an important example of relative motion will first be studied
in human perception. It is important because it shows the relevance of our
hyperoctahedral theory of reference frames, as well as our algebraic theory
of grouping, to the phenomenon of relative motion.

The example is a motion experiment carried out by Johansson [65]. The
stimulus used in this experiment is illustrated in Fig. 9.1a which shows two
dots moving perpendicularly, along the arrows M1, M2, backwards and for-
wards in phase. Johansson found that subjects did not see the configuration
like this; i.e., as perpendicular motion. Instead, they saw the dots as moving
to and from each other along the diagonal line marked R1 R2 in Fig. 9.1b.
Furthermore, they saw this diagonal line as moving, as a whole, along the
opposite diagonal - that given by the arrow marked C in Fig. 9.1b.

Fig. 9.1. The Johansson 1950 motion phenomenon.

Johansson’s explanation was that the motion, as shown in Fig. 9.1a, is
decomposed into two factors: (1) the motion that the two dots have relative
to each other, i.e. to and from each other, given by the arrows R1 and R2

in Fig. 9.1b; and (2) the motion that the two dots have in common, given
by the arrow C in 9.1b. The two components were called, respectively, the
relative motion, and the common motion. This vector decomposition is shown
in Fig. 9.1c.

It will now be argued that the Johansson motion phenomenon is explained
by our generative theory of shape. Let us begin by examining the two dots
themselves, without the motion, as shown in Fig. 9.2a. Observe that the pair
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of dots is reflectionally symmetric about two axes: (1) the line that joins the
dots, shown as line m1 in Fig. 9.2b; and (2) the line that perpendicularly
bisects them, labeled m2 in Fig. 9.2b. That is, reflecting the dots about
either of these lines sends the dot-pair to itself. This means that the internal
structure of the dots is the Klein-four group. In fact, using occupancy, one can
say that the group structuring this situation is the hyperoctahedral wreath
group Z2 w© Z2, which we have claimed can be identified with the Cartesian
frame.

Fig. 9.2. The symmetry structure of two dots.

Now examine the motion of the dot-pair. Consider first the relative mo-
tion shown as R1, R2 in Fig. 9.1b. The motion R1 can be described by the
translation group R (in the direction R1). If this motion is put below the
hyperoctahedral wreath group Z2 w© Z2, it will be reflected to produce the
motion of the other dot R2. Thus the relative motion structure is given by

R w© Z2 w© Z2

which is the hyperoctahedral wreath hyperplane group, introduced in Sect. 8.8
as a fuller version of the Cartesian frame.

Now turn to the common motion, shown as C in Fig. 9.1b. This translation
moves the entire previous structure along the axis C. Therefore, it is given by
wreath super-appending the translation group R above the previous structure
thus:

[R w© Z2 w© Z2] w© R.

Notice that the fact that this added motion is common motion is captured
exactly by the wreath product. It codes the fact that the common motion is a
structure of transfer; i.e., the higher R transfers copies of the hyperoctahedral
wreath reflection structure from one position to the next along its path.
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Finally, the entire structure is rotated relative to the World frame, and
thus we wreath super-append the rotation group SO(2) to the entire previous
structure thus:

[R w© Z2 w© Z2] w© R w© SO(2). (9.1)

Examining this sequence, one can see that it is constructed by tak-
ing the group for the Cartesian frame [R w© Z2 w© Z2] and wreath super-
appending successively the translation group R and then the rotation group
SO(2). Therefore, the Johansson motion phenomenon corroborates our the-
ory that perceptual organization is fundamentally based on the hyperocta-
hedral wreath group.

Notice also that the full group (9.1) is wreath c-polycyclic. Furthermore,
the symmetry axes correspond with the lines of flexibility (affine eigenvectors)
of the motion, in accord with our Interaction Principle (p. 67).

Now let us turn to the inheritance structure: According to our theory
of inheritance, inherited properties are the control-nested τ -automorphisms
(Sect. 7.3). In order to see the inheritance structure, let us first use a diagram
similar to the type used in 3D Studio Max (described on p. 176), and then
use the method described in Sect. 7.4 (p. 178) for converting such inheritance
diagrams into algebra.

For the Johansson situation, the diagram would be as shown in Fig. 9.3.
It shows three frames: the World, Frame 2, and Frame 1. By the indentation
structure of this diagram, Frame 2 is a child of the World, and Frame 1
is a child of Frame 2. The transform that relates Frame 2 to the World is
450 rotation (which is assumed to be clockwise): It re-orients the horizontal
(x) and veritcal (y) axes of the World into the diagonal orientation shown
in Fig. 9.2. The transform that relates Frame 1 to Frame 2 is the common
motion translation C. It moves Frame 1 along the y-axis of Frame 2.

Fig. 9.3. The inheritance diagram for the Johansson phenomenon.

Using the symbols F1, F2, and W , for Frame 1, Frame 2, and World,
respectively, the group structure in expression (9.1) is now given as:

[R w© Z2 w© Z2] w© F1RF2 w© F2SO(2)W . (9.2)
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Observe that, in going from right-to-left in this group sequence, the frame
indexes go from W to F2 to F1. The question we therefore ask is: What is
the frame F1, which appears as the final (left-ward) index along this group
sequence? The answer is this: F1 is the fiber group to the left of it in the
sequence, i.e., it is the hyperoctahedral reference frame group [R w© Z2 w© Z2].

With this in mind, let us now look at the inheritance structure. Consider
the reference frame group [R w© Z2 w© Z2]. It is a fiber group within the full
group sequence, and its fiber-group copies are given thus:

[R w© Z2 w© Z2]y,r

where y comes from its immediate control group R; and r comes from the
final control group SO(2). According to our algebraic theory of inheritance
(p. 177), the inherited properties are therefore y and r. These are, respec-
tively, (1) the distance along the common motion direction, and (2) the
amount of rotation relative to the World frame. Notice that our theory pre-
dicts that this inheritance is hierarchical: The common motion is translation
along the y direction within the frame that has been rotated from the world
frame.

Similarly, consider the next larger left-subsequence: [R w© Z2 w© Z2]
w© F1RF2 . It is a fiber group within the full group sequence, and its fiber-
group copies are given thus:

[[R w© Z2 w© Z2] w© F1RF2 ]r

where r comes from the final control group SO(2). The fiber-group copy
therefore has one inherited property r. This is the rotation from the World
frame.

Our theory therefore predicts the correct inherited properties at each level
of the hierarchy. Notice that, since the inherited properties come from the
right-subsequences of the respective fibers, they correspond to control-nested
τ -automorphisms, as our theory states.

So far we have not mentioned what Johansson called the relative motion
Ri in Fig. 9.1. This is given by the group R at the left-most end of the
group sequence. Its inheritance is similarly correct. This motion occurs within
the y-translated, rotated, world frame, where the y-translation and rotation
are those that have just been discussed. Therefore, within the y-translated
rotated world frame, this motion is actually the x-translation.

We are now ready to give our general theory of relative motion:

THEORY OF RELATIVE MOTION. A motion is decomposed into a
hierarchy of relative motion systems in order to maximize transfer and recov-
erability. Therefore it is represented by an n-fold wreath product G1w©G2w©. . .
w©Gn in which any left-subsequence is a relative motion system, which itself
undergoes relative motion within its control-nested τ-automorphism group.
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Notice the similarity between this and our theory of grouping (Chapter 5),
which says that groupings are left-subsequences and their occurrences are
given by their control-nested τ -automorphism groups.

The remainder of this chapter will continue to investigate this theory.

9.3 Induced Motion

Let us now consider the following phenomenon discovered by Duncker [29].
Suppose the visual field is completely empty, except for a rectangular frame
and a dot within the frame, as shown in Fig. 9.4. Then, if the frame is moved
and the dot is fixed, the viewer perceives the motion to be the opposite: That
is, the frame is seen as fixed and the dot is seen as moving. The explanation
offered was that the larger surrounding system is chosen to be a referent for
a smaller system within, rather than the reverse.

Fig. 9.4. Duncker effect: Rectangle moving and dot fixed, is seen as opposite by
observer.

Duncker observed that the dot-frame illusion is a phenomenon with which
people are quite familiar in their daily lives: When one looks up at the sky
on a stormy night, one sees the moon moving quickly through a large cloud.
Of course, relative to the viewer the moon is actually still and the cloud is
actually moving. Nevertheless, one perceives the movement to be the opposite
way round.

Duncker also observed that several such systems can be embedded within
each other. For example, if one sees the moon and cloud between tall build-
ings, as shown in Fig. 9.5, then the moon is seen as moving relative to the
cloud, and the cloud is seen as moving relative to the buildings. This of
course is simply an embedding of the dot-frame pair within itself. That is,
on one level, the moon corresponds to the dot and the cloud corresponds to
the frame; and on the next level, the cloud corresponds to the dot and the
buildings correspond to the frame.

Notice that, within the time-scale of observation, the moon and buildings
are both at rest; i.e., should be assigned the same velocity as each other.
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Fig. 9.5. Successive embeddings of the Duncker effect.

Nevertheless, the moon is seen as moving because it is judged relative to
the clouds, but the buildings are seen at rest. Thus the moon and buildings
are assigned different velocities. The Gestaltists put forward the following
principle to explain this phenomenon: The motion of an object is judged
relative to the next larger surrounding system but not the system beyond that.
This is called the Principle of the Separation of Systems.

Of course, if one is viewing the buildings from the window of a passing
ship, then the buildings appear to move. But their movement is seen as
relative to the surrounding window frame, not relative to anything within
the scene. This 4-level structure (moon-cloud-buildings-window) is shown
schematically in Fig. 9.6, where the largest rectangle is the window frame,
and the successive inward objects are the buildings, the cloud, and the moon.

Now examine this structure in terms of our algebraic theory of relative
motion: Start with the original dot-frame structure in Fig. 9.4. Recall that,
for this experiment, the visual field was entirely empty except for the rect-
angle and dot. In particular, there were no visual features outside the rect-
angle. This ensures that the rectangle is not seen as moving. Most crucially,
it ensures that the rectangle is identified with the World frame. Generally,
therefore, we conclude that, even in the multi-level embedded examples, the
largest surrounding frame is identified with the World frame.

Now let us consider the inheritance diagrams. Return to the basic dot-
rectangle example. The inheritance diagram is shown in Fig. 9.7. Here the
rectangle is identified with the World frame, and the dot is a child of the
rectangle, as indicated by the indentation in this diagram. Notice that there
is no transform under the rectangle itself. This is because it is identified with
the World frame, and the World frame is not transformationally related to
anything above it, because the World has no parent. In contrast, the dot is
the child of the World, and therefore has a transform (translation) giving the
relation of its frame to the frame of the World.
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Fig. 9.6. The ship example.

Fig. 9.7. The inhertance diagram of the dot-rectangle illusion.
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Now let us go to the 4-level structure of the ship example (moon-cloud-
buildings-window). The inheritance diagram for this situation is shown in
Fig. 9.8. Here, the window is identified with the World frame (since it is the
largest rectangle). Its child is the buildings, and the child of the buildings
is the cloud, and the child of the cloud is the moon. Again, the top level,
the window, does not have an associated transform, but each of the children
underneath do have a transform, and this relates the frame of each child
upwards to the frame of its parent. The transform in each case is translation,
which can be taken to be R as translation in the x direction.

Fig. 9.8. The inhertance diagram for the ship example.

Using the theory developed in Sect. 7.4 (p. 178) for converting inheritance
diagrams into algebra, we form the group of the situation by taking the wreath
product of the transforms (in the diagram), and assigning to each component
group Gi of the wreath product, an lower index giving the frame on level i,
and an upper index giving the frame of the parent. The wreath product is
therefore:

F1R
F2 w© F2RF3 w© F3R

W (9.3)
where F3 is the frame of the buildings, F2 is the frame of the cloud, and F1

is the frame of the moon.
This structure supports our view that a relative motion system is given

by an n-fold wreath product in which any level undergoes a relative motion
hierarchy given by its control-nested τ -automorphism group.

9.4 Inheritance via Extra Frames

In relative motion structures, it is often valuable to create extra frames, in
order to simplify the motion. This should be understood in terms of our
generative theory of shape, as follows:
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As an example, consider the representation of the moving solar system by
computer animation. Let us confine ourselves to the sun-earth-moon struc-
ture: i.e., the earth orbiting around the sun and the moon orbiting around
the earth. This example is often used to illustrate the importance of creating
dummy objects in animation (e.g., Elliot et al., [31]). The argument is this:
There are two contrasting methods for representing the structure:

Method 1. In this method, one makes the moon a child of the earth, and
the earth a child of the sun. However, one moves the center of the moon’s
coordinate system to the center of the earth. Then, when one applies the
rotation to the moon-object, the latter will rotate around the center of the
earth because a transform is always applied to the coordinate frame of an
object, and because the coordinate frame of the moon is centered in the earth.

In order to establish the movement of the earth around the sun, one does
the analogous thing: One moves the center of the earth’s coordinate system
to the center of the sun. Then, at animation time, one applies a rotation
to the earth-object, which will result in the earth rotating around the sun,
because the coordinate frame of the earth is centered in the sun.

Method 2. The problem with the previous method is that it does not allow
additional rotation that can typically be required: For example, one might
want a planet to rotate around its own axis, which would be difficult to set
up if its coordinate frame is centered in another planet. Thus, much more
convenient than Method 1, is to use extra coordinate frames. Standardly, one
obtains them by creating ”dummy objects”. Since any object carries with it
a coordinate frame, one has therefore created extra coordinate frames. These
frames will be called dummy frames.

Fig. 9.9. Planet frames in a solar system.
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Fig. 9.10. Addition of dummy frames in a solar system.

Fig. 9.9 shows the frames that belong to the actual physical planets.
Unlike Method 1, each remains at the center of its own planet. Next, in
Fig. 9.10, two dummy frames are added: Each is represented by a square
with cross-hairs. The dummy objects will be called the sun-dummy and the
earth-dummy. The former is located at the center of the sun and the latter
is located at the center of the earth.

Now let us specify the inheritance structure. This is shown in Fig. 9.11.
There are six objects including the World. Each successive object downward
is a child of the object directly above it, as indicated by the indentation
structure. The successive transforms are as follows: The transform of the sun
is translation by a single amount t from the World’s coordinate frame. The
transform of the sun-dummy is continuous rotation r relative to the sun.
The transform of the earth is translation by a single amount t′ from the
coordinate frame of the sun-dummy. The transform of the earth-dummy is
continuous rotation r′ relative to the earth. And finally, the transform of the
moon is a translation by a single amount t′′ from the coordinate frame of the
earth-dummy.

Now let us use our method for converting inheritance diagrams into alge-
bra. That is, form the group of the situation by taking the wreath product of
the transforms (in the inheritance diagram), and assign to each component
group Gi of the wreath product, a lower index giving the frame on level i,
and an upper index giving the frame of the parent. The wreath product is
therefore:

mT
ed w© edSO(2)e w© eT

sd w© sdSO(2)s w© sT
w. (9.4)

The symbols are as follows: There are two groups involved: T , the 2D transla-
tion group, and SO(2) the rotation group. These two groups alternate down
the sequence. Also, going down the sequence, the respective frame-symbols
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are w = world; s = sun; sd = sun-dummy; e = earth; ed = earth-dummy;
m = moon. (Here, lower case letters have been used for frames, to help read-
ability.)

Fig. 9.11. Inheritance hierarchy for a solar system.

In order to complete the structure, now add the group of the frame it-
self, i.e., the hyperoctahedral structure [R w© Z2 w© Z2]. This is wreath sub-
appended to the sequence (9.4), to obtain:

[R w© Z2 w© Z2] w© mT
ed w© edSO(2)e w© eT

sd w© sdSO(2)s w© sT
w. (9.5)

Notice that all the copies of the frame are of the form:

[R w© Z2 w© Z2]t′′,r′,t′,r,t (9.6)

where the five subscripts come from the five respective control groups.
Notice that the fiber-group copy
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[R w© Z2 w© Z2]e,e,e,e,e

corresponds to the World frame, and

[R w© Z2 w© Z2]e,e,e,e,t

corresponds to the sun frame, and

[R w© Z2 w© Z2]e,e,e,r,t

corresponds to the sun-dummy frame, and so on.
The crucial thing to observe is that the action of each of the control group

components is to cause a symmetry-breaking of the frame. This can easily
be seen by looking at the successive actions in Fig. 9.10. For example, each
dummy frame has been drawn as a square. This follows the convention in 3D
computer animation (e.g., in 3D Studio Max), of drawing a dummy object
as a cube. In other words, dummy objects - the default objects that carry
coordinate frames - are given a hyperoctahedral structure. What can be seen
therefore is that the successive actions in animation break the symmetries of
this structure.

Generally then, what the group in expression (9.5) illustrates for us is
this:

THEORY OF ANIMATION. Animation follows precisely the rules
of our generative theory of shape: That is, animation is given by a wreath
product of symmetry-breaking phase-transitions, where coordinate frames are
the symmetry ground-states of the successive phase-transitions.

9.5 Physics

In physics there is the following well-known result concerning angular mo-
mentum: The total angular momentum of a system of particles about an
origin O is decomposable into two components: The first is the angular mo-
mentum of the particles with respect to the center of mass. The second is
the angular momentum of the center of mass with respect to the origin O,
all masses being considered to be concentrated at the center of mass. The
decomposition is this:

︷ ︸︸ ︷∑
r′i ×miv′

i +
︷ ︸︸ ︷
r̄×M v̄ . (9.7)

where the r′i and v′
i are the position vectors and velocity vectors of the

particles in the center of mass frame; and r̄ and v̄ are the position vector
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and velocity vector of the center of mass in the origin frame. An example
is of course the decomposition of the earth’s angular momentum into its
”personal” rotation about its own center of mass, and its orbit around the
sun.

Clearly the angular momentum decomposition fits exactly a wreath struc-
ture; i.e., the angular momentum about the center of mass corresponding to
a fiber group and the angular momentum of the center of mass about the
origin O corresponding to a control group. The control group transfers the
fiber group around the environment. The groups involved can be those as
given in Sect. 9.4.

Now consider a system of two particles, where the position vectors of the
particles are r1 and r2 with respect to the origin O, and the potential energy
V (|r1 − r1|) depends only on the radial distance between the two particles.
Let the conjugate momenta of the two particles be p1 and p2. Then the
(classical) two-particle Hamiltonian is

H(r1,p1; r2,p2) =
p2

1

2m1
+

p2
2

2m2
+ V (|r1 − r1|). (9.8)

Most crucially, notice that, on phase space, the coordinate system (r1, p1;
r2, p2), used here, corresponds to the two particles.

Now apply a coordinate transformation:

(
Mass1︷ ︸︸ ︷
r1, p1;

Mass2︷ ︸︸ ︷
r2, p2 ) −→ (

MassCM︷ ︸︸ ︷
rCM , pCM ;

MassRel︷ ︸︸ ︷
rRel, pRel ) (9.9)

where (rCM , pCM ) are the center-of-mass motion coordinates, and (rRel,
pRel) are the relative motion coordinates. These are defined as follows:

Center-of-Mass Motion:

rCM =
m1r1 + m2r2

m1 +m2

pCM = p1 + p2. (9.10)

Relative motion:

rRel = r1 − r2

pRel =
m2p1 − m1p2

m1 +m2
. (9.11)

These two pairs of coordinate vectors can be thought of as corresponding
to two fictitious masses. The first is called the total particle, and the second
is called the relative particle. The two associated masses are, respectively:
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mCM = m1 + m2

mRel =
m1m2

m1 +m2
. (9.12)

The first is called the total mass. The second is called the reduced mass; i.e.,
it is the geometrical mean of the two masses m1 and m2.

The Hamiltonian can now be written in terms of this new coordinate
system, thus:

H(
MassCM︷ ︸︸ ︷

rCM , pCM ;
MassRel︷ ︸︸ ︷

rRel, pRel )) =

HCM︷ ︸︸ ︷
p2
CM

2mCM
+

HRel︷ ︸︸ ︷
p2
Rel

2mRel
+ V (rRel). (9.13)

Compare this coordinization of the Hamiltonian to the previous one given
in (9.8), i.e., where the two particles were the actual ones. Inspection of
the previous Hamiltonian (9.8) reveals that it cannot be separated into two
components corresponding to the two actual particles, because the potential
energy has terms dependent on both particles. In contrast, in the new co-
ordinization, (9.13), the Hamiltonian can be separated into two components
corresponding to the two fictitious particles.

Notice that there is no rCM term in the new equation, which means that
rCM is a cyclic coordinate and that the momentum of the center of mass
must be constant. This means of course that the center of mass moves in
uniform rectilinear motion, i.e., that of a free particle.

Physics has long recognized the importance of the above fictitious particle
decomposition. According to our theory, this importance is as follows:

IMPORTANCE OF DECOMPOSITION INTO FICTITIOUS
PARTICLES. The above decomposition into fictitious particles corre-
sponds to a structure of transfer, i.e., a wreath product. The motion of the
total particle corresponds to the control group; and the motion of the relative
particle corresponds to the fiber group.

Notice that one can regard the above decomposition as analogous to the
decomposition in the Johansson motion phenomenon (Sect. 9.2).
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10.1 Defining and Classifying Primitives

It is generally accepted that complex objects are created by deforming and
combining primitives. However, what are primitives? No one has precisely
defined them, or given them a systematic classification. In this chapter, we
give a rigorous theory of primitives. Primitives, we argue, arise from the
maximization of transfer and recoverability. When we fully understand how
they fulfill these conditions, then we will know what they are and how to
classify them.

To begin with basics: It is generally accepted that primitives are simpler
than the objects that are created from them. For example, standardly in CAD
and solid modeling, one uses Boolean operations to combine solid primitives
into some required shape, as illustrated in Fig. 10.1. The bottom nodes of
this figure show the primitives, and their successive combination upwards is
achieved through the Boolean operations (union, subtraction, intersection)
to achieve the top shape. The progression upwards is clearly one of greater
complexification.

Thus, one has the following progression in the generative direction:

simplicity −→ complexity.

In fact, although it is never stated like this, the above arrow actually means:

symmetry −→ asymmetry.

There are two advantages to the latter formulation: (1) We can use group-
theory to rigorously understand what building-with-primitives actually is. (2)
We discover that building-with-primitives is a form of symmetry-breaking, or
more strongly, asymmetry-building.

Michael Leyton (Ed.): A Generative Theory of Shape, LNCS 2145, pp. 229-238, 2001. 
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Fig. 10.1. Boolean operations used to combine solid primitives into a complex
shape.
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This chapter develops a theory of primitive surfaces. These are basic also
to primitive solids, because they constitute the bounding surfaces of the lat-
ter. Primitive solids will be classified later in the book.

The most crucial fact is that when one uses the principles of maximization
of transfer and recoverability, one obtains a rigorous theory of primitives and
primitive-building.

10.2 Level-Continuous Primitives

A standard classification of the surface primitives (e.g., Heo, Kim, & Elber
[57] p33) is the following:

plane
natural quadrics (sphere, circular cylinder, circular cone)
torus

In order to achieve our aim of ensuring that primitives maximize transfer and
recoverability, we should first express the above list as wreath c-polycyclic
groups. We do so as follows:

STANDARD PRIMITIVES: LEVEL-CONTINUOUS

Plane: R w© R

Sphere: SO(2) w© SO(2)
Circular cylinder: SO(2) w© R

Circular cone: R w© SO(2)
Torus: SO(2) w© SO(2)

This table will now be discussed in detail. But first, the following definition
is required:

Definition 10.1. An n-fold wreath product will be called level-continuous
if each of its levels is a continuous group. If at least one of its levels is discrete
it will be called level-discrete.

Clearly, each of the primitives in the above table is represented as a level-
continuous wreath product. Since each level in any of these wreath products
is c-cyclic, each level is either SO(2) or R. Observe also that each primitive
is described as a 2-level hierarchy. Thus according to the above description,
each of the primitives is a 2-level wreath c-polycyclic, level-continuous, group.

In order to achieve maximization of transfer and recoverability, we now
need to examine relationships between the members of the above list.
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10.3 Sphere and Torus

Observe that the wreath structure given above for the sphere and the torus
are the same, that is, both are SO(2) w© SO(2). This implies that there is
a higher-order symmetry involved, and this higher level can be expressed as
an extra level of transfer that changes the sphere into the torus, as follows:

To understand the symmetry, let us describe a sphere as an example of a
torus. For ease of exposition, let us assume that the torus lies horizontally.
In a torus, one has two planar rotation groups SO(2), one around the central
vertical axis of the torus, and the other around the horizonal rotation axis
of the any of the tube cross-sections. The former group acts as the control
group rotating the latter group as a fiber around the torus. Hence we obtain
the wreath structure, given above: SO(2) w© SO(2).

Now consider one of the cross-sections of the tube, i.e., a fiber SO(2).
Its horizontal axis is perpendicular to the vertical axis of the control group,
and some distance away from the latter axis. This distance will be called the
control radius.

The control radius can be varied giving smaller or larger tori. When this
distance is zero, i.e., the two axes intersect, the torus becomes a sphere. Notice
that the sphere, described like this, is structured exactly as the standard
description of the globe: The fiber SO(2)-groups on the torus tube become
the longitudes on the sphere, and the control SO(2)-group of the torus is
represented by the latitudes on the sphere. It is in this way that both the
sphere and the torus have the structure SO(2) w© SO(2). In fact, the sphere
can be considered to be a singular case of a torus - the case where the control
radius is zero.

Now let us represent the control radius by the additive group R (negative
values produce an American football structure). This group R will be added
as a third level of control to the structure SO(2) w© SO(2) of a torus, thus:

SO(2) w© SO(2) w© R. (10.1)

Within this structure, the sphere is the copy of the fiber SO(2) w© SO(2)
that corresponds to the zero point in the control group R. As the control
radius is increased within R from zero, one gets ”proper” tori as the other
fiber copies of SO(2) w© SO(2).

Now consider the issue of maximization of transfer and recoverability.
With respect to transfer, observe that a great benefit of the structure just
given is that the organization of the sphere is transferred onto the torus.
This is extremely valuable for applications: For example, notice that the
standard wire-frame description of a sphere can now be seen to be related to
the standard wire-frame description of a torus. Again, the action structure
associated with the sphere - that is, the two orthogonal rotational actions -
can be transferred onto the torus, e.g., in relating the structure of spherical
and toroidal cutting tools.
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With respect to recoverability, notice that the operation of moving the con-
trol radius away from zero within R can be regarded as symmetry-breaking on
the sphere; i.e., the sphere allows its latitude-longitude description in any di-
rection, whereas the torus does not. This exemplifies our use of control groups
as symmetry-breaking operations. In fact, this third level R, in the sequence
(10.1), is asymmetry-building, in accord with the theory in Sect. 2.18.

Finally, observe this: level R is used here as an external group. That is,
any shape (e.g., a sphere or a torus) elaborated in that structure, corresponds
to the occupancy of only one point in the third level R. Thus, we should
regard only the fiber SO(2) w© SO(2) as the primitive and add the action
of R when deformations of that primitive are required. Notice that since the
R is symmetry-breaking, then to allow recoverability, the primitive must be
chosen to be the sphere; i.e., in accord with the Asymmetry Principle. We
therefore conclude this:

To maximize transfer and recoverability, two of the standard primitives, the
sphere and torus, must be replaced by just the sphere. The torus must be
classified as a derived shape under the external symmetry-breaking action of
increasing control radius.

10.4 Cylinder and Cone

Notice that the wreath structure given for the circular cylinder and the cir-
cular cone in Sect. 10.2 are reverse structures of each other, SO(2) w© R and
R w© SO(2) respectively. The description given there of the cylinder is that
of a circular cross-section (as fiber) undergoing translation (as control). This
will be called the cross-section cylinder. In contrast the description given of
the cone is that of a line (as fiber) undergoing rotation, such that the line
and rotation axis intersect; i.e., forming the apex. In this way, the cone is
described as a ruled-surface.

Now it is often useful to describe a cylinder also as a ruled surface; i.e.,
as a line that is rotated around an axis. Observe, however, that the cylinder
given this alternative representation can be understood as a cone where the
intersection point of the surface-line and axis (i.e., the apex) is at infinity.
This will be called the ruled cylinder.

Therefore, what is emerging from this discussion is the fact that an extra
group is needed to control the angle of the surface-line to the axis in the cone.
Let us describe this in the following way. Select a surface-line on the cone.
Insert in it a copy of SO(2) with its center-point on the line, and its rotation
plane containing the line and the cone axis. This will control the angle of the
line to the axis. The angle will be called the control angle, and the zero angle
will be chosen to be the case where the line is parallel to the cone axis.
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The control angle can be varied - giving wider or narrower cones. When
this angle is zero, i.e., the surface-line and cone-axis are parallel, the cone
becomes a ruled-cylinder. It is in this way that both the ruled cylinder and the
cone have the structure R w© SO(2). Notice that the case where the surface-
line has rotated to intersect with the cone-axis perpendicularly, corresponds
to the plane with polar coordinates (as opposed to the plane structure given
previously in Sect. 10.2).

As stated above, the action of increasing and descreasing the control angle
can be viewed as the effect of a higher SO(2) group. We thus obtain the
following 3-fold structure:

R w© SO(2) w© SO(2). (10.2)

Notice that the additional SO(2) should be considered as controlling the
angle of each of the surface lines simultaneously.

Now let us consider the issue of maximization of transfer and recover-
ability. With respect to transfer, observe that a great benefit of the structure
just given is that the organization of the ruled cylinder is transferred onto the
cone. With respect to recoverability, notice that the operation of increasing
the control angle above zero can be regarded as symmetry-breaking on the
ruled cylinder: That is, the formation of the cone from the cylinder breaks
the north-south symmetry of the cylinder. This exemplifies our use of control
groups as symmetry-breaking operations. In fact, more strongly, the third
level in (10.2) is asymmetry-building, in accord with the theory in Sect. 2.18.

Observe also that this third level is used as an external group. That is,
any shape (e.g., a ruled cylinder or a cone) elaborated in that structure,
corresponds to the occupancy of only one point in the third level SO(2).
Thus, we should regard only the fiber R w© SO(2) as the primitive and add
the action of the control-angle SO(2) when deformations of that primitive are
required. Notice that since this SO(2) is symmetry-breaking, then to allow
recoverability, the primitive must be chosen to be the ruled cylinder; i.e., in
accord with the Asymmetry Principle. This is a primitive in addition to the
cross-section cylinder described earlier. Therefore we conclude this:

To maximize transfer and recoverability, two of the standard primitives, the
cylinder and cone, must be replaced by a cross-section cylinder and ruled
cylinder. The cone must be classified as derived from the ruled cylinder under
the external symmetry-breaking action of increasing control angle.

10.5 Level-Discrete Primitives

Surveying the CAD literature on primitives, there is one standard primitive
that has not been mentioned in the list in Sect. 10.2. This is the block. The list
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in Sect. 10.2 was of what we call the level-continuous primitives (Definition
10.1, p. 231). The block, however, is level-discrete; i.e., one level in the wreath
representation must be discrete. In fact we are going to argue that there are
three alternative wreath representations of a block. Each is important because
each implies a different action structure to be exploited by a designer, a robot
manipulator, navigator, etc.

(1) The cross-section block.
In this first representation, the block is created by taking the cross-section
cylinder SO(2) w© R and discretizing the rotation group SO(2) to its subgroup
Z4. We will assume this block is primitive because, to obtain a block with a
rectangular cross-section, one simply applies an external deformation group.
Thus the primitive block has the structure:

Z4 w© R.

However, this representation omits one piece of important information: Each
face of the block is continuous. To include this information, the full structure
becomes this:

R w© Z4 w© R.

Notice that the first two levels constitute the structure of the square as
described it in Chapter 3. This structure should now be understood in a new
light. In the transition from the cross-section cylinder SO(2) w© R to the
cross-section block, the SO(2) group is replaced by R w© Z4, not just Z4.
This preserves the continuity of the cross-section.

Definition 10.2. The transition:

{e} w© SO(2) −→ R w© Zn

will be called a continuity-splitting of SO(2).

Intuitively, the {e} on the left can be considered as expanding to become R

on the right, and SO(2) on the left as contracting to become Zn on the right.
Notice that we are permitting the discrete order n to take on any value, and
this allows primitive blocks to have a regular polygonal cross-section of any
degree. Throughout the discussion, the case n = 4 will frequently be used -
simply as the main example.

Finally, we emphasize that this block is called a cross-section block be-
cause it is the translation of the cross-section R w© Zn, as fiber, along its
control group R.

(2) The ruled or planar-face block.
In this second representation of a block, a continuity-splitting of SO(2) is
performed in the wreath representation R w© SO(2) of the ruled cylinder,
thus obtaining the following 3-fold hierarchy:
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R w© R w© Z4.

Notice that, in this 3-fold wreath hierarchy, the 2-level fiber R w© R is a
planar face of the block. It is sent around onto the other faces by the highest
control group Z4. In contrast, in the previous representation of the block,
the faces were not encoded at all. The 2-level fiber was the square cross-
section, which was then moved along the block by the highest control group
R. Thus two very different generative structures are encoded in these two
block representations.

It should be emphasized that the planar-face block is related to the fre-
quent representation of the block as produced by planes as half-spaces. How-
ever, in our formulation, there is the additional generative structure that
transfers the plane around the block. Notice also that in this block repre-
sentation, the planar fiber R w© R is one of our previously given primitives
(Sect. 10.2). Thus we can choose to encode or not encode the plane within
this block representation.

There are alternative names we can give this block representation to be
consistent with the terms used so far: Either we can call it the ruled block, to
emphasize its relation to the ruled cylinder - this also emphasizes its Level 1
fiber R - or we can call it the planar-face block, to emphasize its 2-level fiber
R w© R, a planar face, which does not exist in the cross-section block.

(3) The cube.
The third representation of a block is non-primtive: It is as a deformation
of a cube. In this non-primitive representation, the block has memory of the
reflection structure of the cube. Thus the cube must be added as the final
primitive to our list. Expressed as a wreath c-polycyclic group, the cube has
the wreath-polycyclic hyperoctahedral structure

Z2 w© Z3.

However, the information that the faces are planes, has not yet been included.
Since the plane is a primitive in its own right, we can again either understand
the hyperoctahedral structure to be combined with the plane as primitive, or
include the plane as part of the description of the cube. In either case, the
plane enters as a lower fiber thus:

︷ ︸︸ ︷
R w© R w© Z2 w© Z3.

Finally a comment about wedges: The wedge is sometimes included as a
primitive in the literature. However, since our generative theory maximizes
transfer and recoverability, the wedge will be understood to be a planar-face
block which has undergone an external symmetry-breaking operation that
rotates a face, in much the same way that we defined a cone to be a ruled
cylinder with a rotating action on the fiber.
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Table 10.1. Classification of primitives by maximizing transfer and recoverability

LEVEL-CONTINUOUS

Plane R w© R

Sphere SO(2) w© SO(2)
Cross-Section Cylinder SO(2) w© R

Ruled Cylinder R w© SO(2)

LEVEL-DISCRETE

Cube R w© R w© Z2 w© Z3

Cross-Section Block R w© Zn w© R

Ruled or Planar-Face Block R w© R w© Zn

10.6 Formulation of Primitives to Maximize Transfer
and Recoverability

The purpose of sections 10.2 - 10.5 has been to develop a classification of
primitives to maximize transfer and recoverability. The results are given in
Table 10.1.

Notice that there is no torus or cone. To maximize transfer and recover-
ability these two shapes are regarded as the result of applying an external
symmetry-breaking action on the sphere and the ruled cylinder respectively.
Similarly, the wedge is omitted because it is regarded as the result of applying
an external symmetry-breaking action in the planar-face block.

Notice also the important relations in the table: The cross-section and
ruled cylinders are the same as each other except that their component groups
are reversed in the transfer structure - thus giving a different generative
structure. Correpondingly the cross-section block and ruled block are the
same as each other except that their second and third factors are reversed.
This follows directly from reversal of the two factors in the cross-section
cylinder and ruled cylinder, since the two blocks are derived from the two
cylinders by continuity splitting.

Notice that the cube is not derivable by continuity splitting, e.g., from
the sphere SO(2) w© SO(2), although its control structure Z2 w© Z3 might
at first seem to come from the sphere. The reason is that the Z2 of the cube
is the reflection group, not a rotation group and therefore not derivable from
the fiber SO(2) of the sphere; and also the control group Z3 of the cube,
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although being a rotation group, is on a diagonal axis, unlike the control
rotation group of the sphere.1

Finally, it should be emphasized that, by ensuring the maximization of
transfer and recoverability, we have provided a description that maximally
yields the required generative structures for applications, e.g., in design, nav-
igation, manipulation, assembly, milling, etc.

10.7 Externalization

By far the most profound property of the primitives, as we have described
them, is that they arememoryless with respect to external history. We propose
that this is the deep reason why they are the main primitives in perception
and CAD. To explain:

Recall that the Externalization Principle (p. 53) says that any external
inference goes back to an object whose trace-structure is given by an iso-
regular group (wreath c-polycylic, wreath-isometric). What we see is that
each of the primitives, as given in Table 10.1, is an iso-regular group. None
involves an external history, e.g., of deformation.

This is crucial because each can therefore be used as a memory store for
external actions, i.e., such actions are recoverable. Notice that those actions
could not be recoverable if the primitives themselves already contained ex-
ternal action. By making the primitives iso-regular, we make them ”clean”
as memory stores, and therefore they maximize recoverability.

1 The cube is the hyperoctahedral wreath group of degree 3, and we could sub-
stitute the degree 2 version for Zn in the cross-section of ruled blocks of n = 4.
This will be taken for granted without explicitly saying so.
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11.1 Symmetry Group of a Complex Environment

We now turn to the main purpose of this book: the representation of complex
shape. Our goal is to develop algebraic methods for fully generating complex
structures.

Consider the main problem: In the generative theory, complexity will
necessarily be regarded as corresponding to the amount of asymmetry; i.e.,
the greater the complexity, the greater the asymmetry. Now, start with a
very simple object, such as a square, and sequentially add some asymmetries.
The symmetry group reduces very quickly to the identity element. Thus a
complex structure, e.g., an architectural or mechanical design, a real-world
scene, a metalurgical compound, etc., is so asymmetric that its symmetry
group is apparently just the identity element. For this reason, most people
have regarded group theory as inappropriate for handling complex structures.
Yet group theory is the largest and most powerful branch of algebra.

What we will do here is develop a symmetry group for a complex environ-
ment. This will be a powerful structure because it will contain all the required
information: A complete specification of the structure of the environment, in-
cluding all the asymmetries, as well as all the generative information. In fact,
by using our theory of recoverability, the asymmetries and the generativity
are closely related. Thus the addition of complexity, rather than loosing in-
formation, in the sense of reducing the symmetry group, will increase the
latter.

Some of the practical advantages of the method to be developed will be
as follows:

Michael Leyton (Ed.): A Generative Theory of Shape, LNCS 2145, pp. 239-255, 2001. 
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(1) Robot Navigation: By being able to describe a complex scene in terms
of a single symmetry group, one will be able to capture the navigational
information needed by the robot to move through the environment.

(2) Computer-Aided Design: By being able to describe a complex design
in terms of a single symmetry group, one will be able to capture all the
generative information needed by the designer to produce the design.

(3) Computer-Aided Manufacturing: By being able to describe a complex
product in terms of a single symmetry group, one will be able to capture all
the manufacturing information, e.g., NC-milling, needed by a manufacturer
to create the product.

(4) Physical sciences: By being able to describe a complex object (e.g., an
actual rock, etc.) in terms of a single symmetry group, one will be able to
capture all the historical processes that produced the object. In fact, repre-
senting this generativity - causal generativity - is we claim the main purpose
of science.

(5) Computation: We argue that a complex program can be represented by a
single symmetry group, and that this captures both the asymmetries (break-
downs in nesting, etc.,) and the generative structure of the program; in par-
ticular, it captures structured-programming and object-oriented issues. Fur-
thermore, since we argue that the mathematics of program structure must
ultimately be the same as the mathematics of memory storage, we will be
able to assign a single symmetry group to a memory configuration - a group
that exactly captures the memory content of the store.

(6) Human perceptual representation: We argue that the human perceptual
representation of a complex scene is a single symmetry group, and that this
is a group of the type that will be developed here.

11.2 Concatenation as Symmetry-Breaking

The representation of two or more bodies in a space is a fundamental problem
in all the physical sciences, computational disciplines, and design disciplines.
In the physical sciences, it appears in issues of causality; i.e., in the interaction
between two bodies. In the computational disciplines such as computer vision,
it appears in the representation of real-world scenes. In the design disciplines,
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it appears as the successive concatenation of bodies in the construction of the
compound design object.

Let us use the word concatenation about all these situations; i.e., where
two bodies, represented seperately are brought together in a compound situ-
ation that is itself given a representation. We now propose this:

CONCATENATION AS SYMMETRY-BREAKING. In the physi-
cal sciences, computational disciplines, and design disciplines, concatenation
of two objects is organized such that the objects individually have greater sym-
metry than their compound structure. Thus concatenation is organized as a
symmmetry-breaking operation.

Consider, for example, the cube and cylinder shown in Fig. 11.1. If the cube
were alone in space, then the situation would have several symmetries; for
example, the reflectional symmetries of the pairs of opposite faces; i.e., the
hyperoctahedral structure. If the cylinder were alone in space, then the situ-
ation would be symmetric in a somewhat different way; e.g., there would be
the continous rotational symmetry SO(2) around the central vertical axis of
the cylinder.

Fig. 11.1. Concatenation breaks symmetry.

However, let us now consider space as containing both objects as shown in
Fig. 11.1. Several of the symmetries have been lost. For example, whereas the
cube had mirror symmetry between the left-most face shown and its opposite,
the combined situation does not have this symmetry because the cylinder
exists on only one side of the mirror plane involved. Also, the rotational
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symmetry of the cylinder has been lost, i.e., no axis can be found in this
compound situation such that the situation can be continuously rotated onto
itself. In conclusion therefore, concatenation is structured as a symmetry-
breaking operation.

Now, when one looks at this combined figure one naturally decomposes
it into a cube and cylinder. However, there are other decompositions: For
example, one could consider a single plane that slices obliquely through both
the cube and cylinder simultaneously. This plane decomposes the configu-
ration into two asymmetric parts: (1) the part below the plane and (2) the
part above the plane. Then concatenation of these two parts would not be
symmetry-breaking. In fact, it might be symmetry-increasing. For example,
the combined situation (i.e., Fig. 11.1) has reflection symmetry about the
common vertical mirror plane through the cube and cylinder. This symme-
try did not exist in the two oblique parts (i.e., prior to the concatenation).

The important question is this: Why does one not define the decomposi-
tion and concatenation in the particular way given in the previous paragraph?
The answer is crucial: This concatenation operation is non-recoverable. The
reason is that it is arbitrary. As we have said in Chapter 1 of Leyton [96], if
one tries to recover a past asymmetric structure from a symmetric data set,
then one can only be arbitrary, because the relationship between a symmetry
and asymmetry is one-many. For exactly this reason, recoverability works
only in the opposite direction: From asymmetry back to symmetry.

CONCATENATION AND RECOVERABILITY. The reason why
the physical sciences, computational disciplines, and design disciplines, orga-
nize concatenation as a symmetry-breaking operation is because only this will
allow recoverability of concatenation.

11.3 Concatenation as Asymmetry-Building

Describing concatenation as a symmetry-breaking operation has consider-
able power. However, we argue that much more powerful descriptions are
possible in terms of the algebraic method introduced in Sect. 2.18, which we
call asymmetry-building, and which is the entire basis of our generative the-
ory. In asymmetry-building, one does not loose the initial symmetry ground-
state; i.e., there is no actual symmetry-breaking. Instead one creates a group-
extension of the ground-state using the symmetry group of the asymmetrizing
process as the extending group. In fact, the type of extension used is a wreath
product, in which the symmetric ground-state is the fiber, and the control
group is the asymmetrizing symmetry group. In this way, the control group
transfers the initial symmetry onto the current asymmetric data set. The
power of this approach is that it maximizes both transfer and recoverability.
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Using this approach, we will now show how concatenation can be de-
scribed as an asymmetry-building operation. To illustrate, return to Fig. 11.1.

The generative history starts out with the two independent objects, and
therefore the symmetry of this starting situation is given by

Gcylinder ×Gcube (11.1)

which is the direct product of the groups of the two independent objects.

Warning. The direct product symbol in (11.1) should not be regarded as
representing a direct product between fibers, as previously. It is within a single
fiber.

Now, by the maximization of transfer, the starting group, i.e., the direct prod-
uct group (11.1), must be transferred onto subsequent states in the generative
history, and therefore it must be the fiber of the wreath product in which
the control group creates the subsequent generative process. Let us take the
control group to be the affine group AGL(3,R) on three-dimensional real
space.1 The full structure, fiber plus control, is therefore the following:

[Gcylinder ×Gcube] w© AGL(3,R). (11.2)

It is necessary to fix the group representation of this wreath product.
First, by our basic theory, the control group must have an asymmetrizing
action. Thus proceed like this: The particular fiber-group copy

[Gcylinder ×Gcube]e

corresponding to the identity element e in AGL(3,R), must be the most
symmetrical configuration possible. This exists only when the cube and the
cylinder are coincident with their symmetry structures maximally aligned.
For example, their centers, reflection planes, rotation axes, must be maxi-
mally coincident.

Next choose one of the two objects to be a reference object. This will
remain fixed at the origin of the coordinate system. Let us choose the cube
as the referent.

Given this, now describe the action of the control group AGL(3,R) as
providing an affine motion of the cylinder relative to the cube. Each fiber
copy

[Gcylinder ×Gcube]g

for some member g of AGL(3,R) is therefore an arrangement of this system.
In fact, any fiber copy will be called a configuration of the system. For
example, Fig. 11.1 shows a configuration.
1 An element of this group is a linear transformation composed with a translation.
AGL means Affine General Linear.
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It is necessary to understand the action of the affine control group in two
respects: First, with respect to the abstract group theory, a member a of the
affine control group sends one fiber-group copy onto another, like this2:

[Gcylinder ×Gcube]g
a−→ [Gcylinder ×Gcube]ag . (11.3)

However, with respect to the group representation theory, the affine effect
is confined to only the cylinder. The best way to understand this is not
to consider this as an isolated effect on the cylinder but as an effect on the
configuration that contains the cylinder and cube. We defined a configuration
to be a fiber-group copy [Gcylinder × Gcube]g. Therefore, the consequence of
the affine action on the cylinder is to alter the configuration of cube and
cylinder. This is the real meaning of expression (11.3).

Recall that, in the symmetry-breaking view of the last section, the com-
bined configuration of the cube and cylinder had virtually no symmetry
group. In particular, the configuration had almost none of the starting sym-
metries of the individual cube and cylinder. In contrast, the approach we have
taken, using expression (11.2), retains all the information. It codes exactly
the visual effect, which is that the configuration is seen as containing a cube
and a cylinder, and therefore containing both their symmetry groups. Notice
that, correspondingly, expression (11.2) acknowledges the presence of these
symmetry groups as parts in the whole structure.

One way of understanding expression (11.2) is that it contains three sym-
metries: That of the cube; that of the cylinder; and that of the affine action
that relates them.

Most importantly these three symmetry groups appear because a gener-
ative theory is being given of the compound configuration, and, according to
our theory, the generative operations must come from the symmetry groups.
Furthermore, since the generative structure is required to be recoverable from
the data set, this places strong constraints on how the groups are put together
and represented as actions.

Expression (11.2) is the complete symmetry group of the situation. It
contains an enormous amount of powerful information: It contains all the
generative information, as well as the information about the parts, and the
information about how the parts are related.

Let us now understand how to add a further object, for example a sphere.
First of all, the fiber becomes:

Gsphere ×Gcylinder ×Gcube.

In such expressions, our rule will be that each object encoded along this se-
quence provides the reference for its left-subsequence of objects. Thus the
2 In fact, this can be defined in terms of a wreath-direct action as defined in
Sect. 13.3. In the present case, the control group would be AGL(3,R)w©{e}.
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cube is the referent for the cylinder-and-sphere, and the cylinder is the ref-
erent for the sphere. Accordingly, there are now two levels of control, each of
which is AGL(3,R), and each of which is added via a wreath product. Thus
we obtain the 3-fold wreath product:

[Gsphere ×Gcylinder ×Gcube] w© AGL(3,R) w© AGL(3,R). (11.4)

This is interpreted in the following way: Initially, the three objects (cube,
cylinder, sphere) are coincident with their symmetry structures maximally
aligned. The higher affine group AGL(3,R) moves the cylinder-sphere pair
in relation to the cube. The lower affine group AGL(3,R) moves the sphere
in relation to the cylinder.

Any configuration is expressed as a fiber copy

[Gsphere ×Gcylinder ×Gcube]g1,g2

where the indexes g1 and g2 come from the two successive affine groups. The
index g2 expresses the relation of the cylinder-sphere pair to the cube, and
the index g1 expresses the relation of the sphere to the cylinder. Notice that
any element,

[h1, h2, h3]g1,g2 (11.5)

in this fiber copy, expresses a symmetry relation within the configuration;
e.g., h3 exchanges sides within the cube, while h2 simultaneously rotates the
cylinder about its axis, while h1 simultaneously rotates the sphere about
any one of its axes. We argue that this symmetry exists despite the affine
action created by the two control elements g1 and g2. If we call the symmetry
[h1, h2, h3], a triple isometry of the starting configuration, then the element
(11.5) is a control-nested τ -conjugate of the triple isometry.

The above discussion has been illustrating a class of groups we are soon
going to propose, which we will call telescope groups. This class is part
of a still larger class which we will also be proposing, which we will call
unfolding groups. Unfolding groups will be the most important class of
algebraic structures introduced in this book. The reader should now read
p. 246 describing unfolding groups, following by p. 247 describing telescope
groups; and then return here.

Comments on p. 246 and p. 247.

(1) As stated in Sect. 1.14, a basic principle of our generative theory is exhaus-
tiveness, which means that there are no primitives; i.e., there is generativity
all the way down. This means that what have been called primitives on p. 246
are in fact objects that themselves have generative structures, which is what
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UNFOLDING GROUPS

Unfolding groups are characterized by the following two proper-
ties:

SELECTION: The control group acts selectively on only
part of its fiber.

MISALIGNMENT: The control group acts by mis-
alignment.

The control group will be called the unfolding control; and the
selected part of the fiber will be called the unfolding fiber or
target. In major classes of unfoldings the above two conditions,
selection and misalignment, are achieved in the following way:

(1) There are n objects which have symmetry groups G1, . . . , Gn

respectively. These will also be called the primitives.

(2) One forms the direct product G1 × . . . × Gn, and makes
this the fiber group of a wreath product, with control group
C(G).

(3) In this wreath product, any fiber-group copy, i.e., any
copy of G1 × . . . × Gn, is called an object-configuration, or just
configuration.

(4) Let the fiber-group copy in which the object symme-
try groups G1, . . . , Gn are maximally aligned with each other, be
called the alignment kernel. Choose this to be the fiber-group copy
corresponding to the identity element of the control group. By
abuse of language, the fiber-group itself will often be referred
to as the alignment kernel.

(5) Notice that the above structure realizes transfer and
recoverability, in the following way: (a) It is a transfer struc-
ture because the control group maps object-configurations
[G1 × . . .×Gn]gi onto object-configurations [G1 × . . .×Gn]gj . (b) It
achieves recoverability because (at least locally to the identity
element), the action of the control group is to pull the objects
out of alignment - which creates asymmetrization.
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TELESCOPE GROUPS

(1) Conceptually, a telescope group is an unfolding group that
has an opening telescope structure, as follows:

(2) The fiber group is an alignment kernel of n primitives,
possibly including repetitions of those primitives. It is written
like this [G1 × . . .×Gn]T , where T denotes ”telescope”.

(3) The unfolding control group itself is a wreath product
of order n − 1, and hence, with the alignment kernel, the entire
unfolding group is a wreath product of order n.

[G1 × . . .×Gn]T w© C(G)1 w© . . . w© C(G)n−1. (11.6)

(4) The telescope opening effect is realized in the following
way. Work down the control groups: The highest control group,
C(G)n−1, moves only the left subsequence G1 × . . . × Gn−1 of the
alignment kernel - thus moving it out of alignment with Gn.
Nevertheless it keeps the alignment of groups G1, . . . , Gn−1 with
respect to each other. Similarly, the next lower control group,
C(G)n−2, moves only the left subsequence G1 × . . .× Gn−2, of the
alignment kernel - thus moving it out of alignment with Gn−1.
Nevertheless it keeps the alignment of groups G1, . . . , Gn−2 with
respect to each other. And so on down the control groups.

(4) The unfolding is called a projective (affine, or Euclidean)
telescope group if each of the control groups C(G)i is a copy of the
projective (affine, or Euclidean) group.
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the groups G1, . . . , Gn actually give. The objects are understood as primi-
tives only in relation to the higher actions provided by the unfolding control
groups.

(2) In defining the group representation of the alignment kernel, there can
be a number of alternative maximal alignments. For example, a cylinder can
maximally align with a cube in three alternative ways, i.e., with its cross-
section parallel to either of the three pairs of opposite sides of the cube.
Furthermore, by starting with one configuration of maximal alignment, the
action of the control group can pull it eventually into another. Nevertheless,
the configuration will first travel through intervening states of non-alignment.
Thus, the control group will be understood as creating asymmetrization lo-
cally to its identity element. This is, in fact, all that is needed.

(3) In expression (11.6), there are n components to the telescope fiber, and
n−1 components to the control chain. However, even if a Cartesian reference
frame were not included in the primitives 1 to n, both chains could be made
of equal length n, by adding an extra control component C(G)n on the right,
that gives the relation between the right-most primitive (n) to the implicit
Cartesian frame. Nevertheless, in many examples of unfolding groups, the
Cartesian frame will be explicitly given as the cube.

(4) We will define three classes of unfolding groups that will be of particular
significance in this book. They will be introduced in three successive chapters,
starting with the present one:

Chapter 11 : Telescope Groups
Chapter 12 : Super-Local Unfoldings
Chapter 13 : Sub-Local Unfoldings

11.4 Serial-Link Manipulators as Telescope Groups

We will now argue that it is valuable to formulate serial-link manipulators as
telescope groups. This formulation will be developed in three stages, each of
which will emphasize particular properties:

(Stage 1) In Chapter 6, a serial-link manipulator was formulated as a wreath-
isometric group

SE(3) w© . . . w© SE(3) w© SE(3). (11.7)
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It is important to notice the Cartesian-frame assignment to this group. By
Cartesian frame, we mean here the conventional sense of the term. Each level
in the above group sequence is assigned its Cartesian frame, and this defines
the group representation of that level on Cartesian space. Correspondingly,
each link in the manipulator receives one frame, and standardly this is placed
at the distal end of the link.

Most crucially, the structure follows our algebraic theory of parent-child
hierarchies in Sect. 7.3. Each level in the wreath product is the parent of the
level to the left of it, in the sequence.

(Stage 2) We have called the group (11.7), the ”full” group of the serial-link
manipulator for the following reason: The standard assumption in robotics is
that, because the transformations connecting the base frame to the effector
frame are special Euclidean transformations, the group linking those two
frames is the special Euclidean group. We have argued that this is incorrect
because it assumes that the link-structure is frozen. Instead, the structure is
semi-rigid and therefore should be given by the much larger group, expression
(11.7).

However, we now wish to go further, and add even more algebraic struc-
ture. The reason is as follows: The Cartesian frames used in the above discus-
sion are the ordinary ones in the standard literature. The problem with these
is that they do not explain why one assigns the frames to the links in the
typical way. The placement of an ordinary frame can effectively be arbitrary.
However, when one examines the usual attachment of frames one finds that
they are assigned to the symmetry structure of links. For example, Fig. 11.2
shows a typical link. The n+ 1 frame is the one assigned to the link, and we
see that it is aligned with the symmetry structure of end. Indeed, the frame
of the previous link n is also shown, and we see that it also corresponds to
symmetries in this link. (This diagram uses the conventional numbering of
frames from proximal to distal.)

Chapter 14 will discuss this symmetry structure in much greater detail,
but for now, its most significant component will be used - which we argue
is the hyperoctahedral wreath group Z2 w© Σ3 (Sect. 8.12, p. 205). Its fiber-
group product expresses the reflection structure associated with the cube.

Its clear therefore, that the assignment of a Cartesian frame to a link uses
this symmetry structure. This greatly reduces the arbitrariness of where to
assign the Cartesian frame. To code this, we place the hyperoctahedral group
Z2 w© Σ3 as a fiber of the wreath sequence of special Euclidean groups, thus:

[Z2 w© Σ3] w© SE(3) w© . . . w© SE(3) w© SE(3). (11.8)

The hyperoctahedral group is interpreted as corresponding to the identity
element of each of the control groups, and simultaneously being assigned to
the maximal symmetry structure of each of the link-joints.
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Fig. 11.2. In a robot link, coordinate frames correspond to symmetries.

(Stage 3) This stage provides an additional convenient way of describing
manipulators. Here the lowest fiber is no longer a single hyperoctahedral
wreath group, i.e., a single Cartesian frame, but the configuration of frames
across the links.

This approach is offered because we argue that there is a strong similar-
ity between the serial-link manipulator and an ordinary physical telescope.
Consider a telescope. It consists of a set of components that are initially in a
collapsed form, i.e., they are maximally aligned. When one extends the tele-
scope, one pulls the components out of alignment with each other. We argue
that exactly this structure is the basis of assigning frames to a serial-link
manipulator. The fact that the frames are related by the special Euclidean
group, means this: In the case where one selects the identity element in each
of the link groups, the frames are all coincident at the base frame of the ma-
nipulator. This is exactly analogous to the telescope in its collapsed form. The
pulling out of the manipulator frames in relation to each other corresponds
to extending the telescope out from its collapsed form.

To describe such structures, we have created a class of groups which we call
telescope groups (p. 247). The telescope group for the serial-link manipulator
is this:

[[Z2 w© Σ3]1 × . . .× [Z2 w© Σ3]n × [Z2 w© Σ3]n+1]T
w© SE(3)1 w© . . . w© SE(3)n. (11.9)
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The first line in this expression is the alignment kernel, and the second line
is the control group which will unfold the kernel as an opening telescope.
The alignment kernel consists of the direct product of n + 1 copies of the
hyperoctahedral wreath group, one for each each link (indicated by the sub-
scripts 1 to n), and an additional copy (subscript n+1), for the origin frame.
The subscripts 1 to n+ 1 are ordered distal-to-proximal, as in Sect. 6.4, be-
cause this will produce the control ordering 1 to n that corresponds to the
numbering used in this book for wreath products. Initially, the frames are
maximally aligned - i.e., in the collapsed form. The telescope opening effect
is realized by the second line, in the following way. Work down the control
groups: The highest control group, SE(3)n, moves only the left-subsequence
[Z2 w© Σ3]1 × . . . × [Z2 w© Σ3]n of the alignment kernel - thus moving it
out of alignment with [Z2 w© Σ3]n+1. Nevertheless it keeps the alignment of
groups [Z2 w© Σ3]1, . . . , [Z2 w© Σ3]n with respect to each other. Similarly,
the next lower control group, SE(3)n−1, moves only the left subsequence
[Z2 w© Σ3]1 × . . . × [Z2 w© Σ3]n−1, of the alignment kernel - thus moving it
out of alignment with [Z2 w© Σ3]n. Nevertheless it keeps the alignment of
groups [Z2 w© Σ3]1, . . . , [Z2 w© Σ3]n−1 with respect to each other. And so on
down the control groups.

11.5 Constructive Solid Geometry (CSG)

In CAD, solid primitives are standardly combined using Boolean operations,
and the theory of combination is called Constructive Solid Geometry (CSG).
The purpose of the remainder of this chapter is to formulate Constructive
Solid Geometry group-theoretically.

This paragraph quickly reviews CSG for readers not familiar with it: The
procedure of CSG is illustrated in Fig. 10.1 (p. 230). One starts with the
simple primitive solids - shown at the terminal (lowest) nodes of the tree -
and successively combines the primitives upward through the tree, until one
obtains the object shown as the top node. Each node is a use of one of the
three Boolean operations: subtraction, intersection or union. Observe that the
object at the top is more complex than any one of the primitives. Essentially,
the Boolean operations are being used to add or remove material. Notice
that, for the procedure to work, the primitives must be sized and positioned
in space. Secondly, all objects in the hierarchy must be closed sets in the
sense of topology; i.e., they must contain their own limit points - that is, a
boundary. Thirdly, the Boolean operations used cannot be the standard weak
operations of ordinary set theory, but considerably more powerful operations
- called regularized Boolean operations - that satisfy the following properties:
When a Boolean operation is used to combine the closed set A with the closed
set B, the resulting set C must (1) also be closed, (2) preserve the dimension
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of A and B, and (3) not lead to inhomogeneous objects - i.e., objects with
dangling or disconnected parts of lower dimensions. A good introduction to
regularized Boolean operations is Mortenson [110] p318-332. For a detailed
survey of CSG, the reader should consult Requicha and Rossignac [124].
Throughout this book, regularized Boolean operations will be referred to
simply as Boolean operations.

11.6 Boolean Operations as Symmetry-Breaking

According to our theory, the most important fact about Boolean operations
in CSG is that are actually symmetry-breaking. It is worth considering this
carefully, by looking at the three operations as illustrated in Fig. 11.3, to
which we will return a number of times in the book. The left-most part of the
figure shows two primitive solids - a cube and cylinder - to which the Boolean
operations will be applied. The remaining parts of the figure show the actual
application of the Boolean operations to the primitives; i.e., respectively:

Cube
⋃

Cylinder , Cube− Cylinder , Cube
⋂

Cylinder

Each of these will be called a ”compound object”.
The crucial thing to observe is that the resulting object in each case has

much less symmetry than the two independent primitives. The three Boolean
operations are each therefore symmetry-breaking. This re-inforces our claim
that the design process generally is symmetry-breaking.

Fig. 11.3. The Boolean operations.

Most importantly therefore, when presented with one of these compound
objects as a data-set, the inference that a Boolean operation was used in the
construction of that object, is an example of the Asymmetry Principle, which
says that recoverability is possible only if a present asymmetry goes back to
a past symmetry ground-state.

Observe that this relates to the fact that the mind chooses to define the
compound object as a Boolean combination of highly symmetric primitives.
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That is, as pointed out in an argument on p. 242: One could, theoretically,
choose to decompose the compound object into primitives that are extremely
complex; but one does not do this because this inference would be arbitrary.
Only by making the inference go back to more symmetric objects can arbi-
trariness be eliminated.

Thus we observe that the primitives maximize symmetry so that the de-
sign process can maximize generativity and recoverability.

We can deeply characterize the idea of primitives maximizing symmetry,
as follows: Recall the Externalization Principle (Sect. 2.11), which states that
any external inference goes back to an iso-regular group, i.e., a wreath c-
polycyclic, wreath-isometric group (intuitively described as a control-nested
hierarchy of repetitive isometries).

Now, our theory of solid primitives (Chapter 16) says that solid prim-
itives are characterized by having bounding surfaces which are iso-regular
groups. In contrast, observe that the bounding surfaces of the compound
objects in Fig. 11.3 are not characterized by iso-regular groups. This means
that in the backwards generation of a Boolean operation - from the com-
pound object back to the independent primitives - one is going from a non
iso-regular group back to iso-regular groups. This exactly conforms to the
Externalization Principle.

BOOLEAN OPERATIONS AND THE EXTERNALIZATION
PRINCIPLE. Each Boolean operation conforms to the Externalization
Principle. It is an external operation, whose past application is inferred
from the compound object by going back to an iso-regular group (a wreath
c-polycyclic, wreath-isometric group).

11.7 Boolean Operations as Telescope Groups

In the previous section, we claimed that Boolean operations are constructed
so that they are symmetry-breaking. By symmetry-breaking, we mean that
there is a reduction in symmetry group. This corresponds to Method 1 for
specifying generativity (p. 70). However, fundamental to our theory is the
approach we developed called Method 2 (p. 70). Here symmetry-breaking
is re-described as an increase in symmetry group, i.e., a group extension.
The extension is created by a wreath product, thus expressing transfer. The
extending group is a symmetry group of the asymmetrizing process. We called
this approach asymmetry-building.

The asymmetry-building approach supports our goal of maximizing trans-
fer and recoverability. Therefore it is extremely important to formulate
Boolean operations in terms of asymmetry-building.
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GOAL

Formulate Boolean operations as group extensions via
wreath products (transfer) where the extending group is
the group of the asymmetrizing process involved in con-
catenation. This goal is achieved using unfolding groups.

Our solution is to use the particular class of unfolding groups we call
telescope groups (defined p. 247). Thus, consider two primitives that one
wishes to combine via a Boolean operation. Let their symmetry groups be
respectively G1 and G2. Form the direct product G1 ×G2 of these symmetry
groups. Then wreath super-append the affine group AGL(3,R) as the control
group thus:

[G1 ×G2]T w© AGL(3,R).

The subscript T indicates that the direct product is the fiber of a tele-
scope group. This defines the group-representational aspects as follows: First,
the fiber-group copy [G1 × G2]e, corresponding to the identity element e in
the control group, is the configuration in which the two objects have their
symmetry-structures maximally aligned. Next, choose one of the objects (that
corresponding to the final member of the direct product), as the referent ob-
ject, and define AGL(3,R) as moving the other object relative to the referent.

Generally, for an n-fold concatenation of objects, follow the full instruc-
tions given on p. 247 for constructing telescope groups.

11.8 Spatial Group Equivalence of Boolean Operations

It is important to observe that, according to our approach, each of the
Boolean operations - union, intersection, difference - is represented in the
same way. That is, starting with two primitive objects in a fixed spatial and
deformational relationship to each other, then, no matter whether one takes
the union, intersection, or difference, the resulting object will have the same
symmetry group. Thus for example in Fig. 11.3, the union object, intersec-
tion object, and difference object, all have the same symmetry group. This is
extremely valuable. For example, it solves a particularly important problem
in shape-representation: the completion of information, e.g., after occlusion,
or merging, or machine-milling, etc. Whether one takes union, intersection, or
difference, information on parts of the separate primitives is perceptually lost
- e.g., in the union operation in Fig. 11.3, one looses the cylinder information
within the object since the material from the cube and cylinder is merged;
again, in the difference operation in Fig. 11.3, one looses the extension of the
negative shape (the cylinder) out past the edges of the cube. The complete
information is essentially the same in all three operations and is given by the



11.8 Spatial Group Equivalence of Boolean Operations 255

group structure we have defined. It is well known in computer vision (e.g.,
occlusion phenomena), or in scientific discovery (e.g., the prediction of com-
plete multiplets of quantum-mechanical particles), etc., that the complete
information is more important than the incomplete data set. Our approach
shows how to represent the complete information, and indeed makes this in-
formation the dominant factor in defining the object. Generally, this can be
understood as solving the problem of ”Gestalt completion”, which is basic to
processes of insight and intelligence.

Given what has just been said, one then asks: How is it possible to dis-
tinguish between the three particular Boolean operations? The distinction
will be provided by the occupancy group Z2, which we wreath sub-append
to the entire structure, i.e., there is copy of the group at each point in the
structure. The type of Boolean operation determines the occupancy switch
state for each point, in the obvious manner: Union forces all on-switches in
the separate objects to be on in the compound object; intersection switches
off all on-switches which were not shared in the separate objects, etc.

This is a very convenient formulation, as follows:

TWO-LEVEL DEFINITION OF A BOOLEAN OPERATION. We
divide a Boolean operation into two levels: (1) The spatial level: Here, the
three Boolean operations all have the same structure, which is an important
requirement for occlusion phenomena, etc. This level is given by a telescope
group. (2) The color level: Here, the Boolean operations are distinguished,
corresponding to the membership difference. This level is given by the occu-
pancy group.
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12.1 Importance of Selection in Generativity

Selection is a profound phenomenon in generativity: In many situations, it
is necessary for an agent to be able to select part of an existing structure
and perform generative operations with respect to only that part. Examples
are as follows: (1) Navigation: It is often the case that a path is defined as
progressing from one of the surfaces of a scene, while ignoring other surfaces,
which might be moving independently. For example, a path might be defined
with respect to a wall but not an opening door in the wall; or conversely the
manipulation of a door-handle might be defined with respect to the opening
door rather than the wall. (2) Computer-Aided Design: During the design
process, one frequently needs to modify only part of the existing design; e.g.,
move a block face with respect to the rest of the block, rotate only a subset
of nodes in a facial animation. (3) Computer vision: The representation of
a scene can often involve the creation of a tree of relationships through the
scene, such that any particular branch selectively connects only some of the
objects and not others. (4) Science: A causal trajectory might depend on a
property that only a specific class of objects in the situation possess, e.g.,
those that are not electrically neutral. (5) Biology: The limbs on a body
emerge at only specific points. (6) Music: Marsella & Schmidt [103] have
identified structures in which there is dependency selectively between a part
in one hierarchy and a part in another hierarchy.

Because our generative theory requires that transfer is maximized, we
want to be able to describe the above selective type of generativity as a pro-
cess of transferring structure. This in turn will give us access to the math-
ematics of wreath products. It is not at first easy to see how to do this.
Nevertheless, the elaboration of a solution is fundamentally important be-
cause so many generative processes have a selective action. There is also
another deep reason for developing a solution: We want to be able to give a
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single symmetry group for an arbitrarily complex object, and any such object
inevitably involves selective action.

In this chapter and the next, we develop two alternative solutions, re-
spectively, to this problem: super-local and sub-local unfoldings. To begin to
understand these terms, we introduce the following:

Definition 12.1. Transfer is super-local if it is selective (local) and is
created by wreath-appending a control group above the existing wreath se-
quence. Transfer is sub-local if it is selective (local) and is created by wreath-
appending a group below some existing level in the wreath sequence.

The super-local and sub-local actions to be defined will be called unfoldings
because they asymmetrize by misalignment. That is, they fullfil the basic
requirments of unfoldings as defined on page 246.

In order to illustrate the concepts in this and the next chapter, a par-
ticular example will be progressively constructed: The structure of a house.
This example happens to be in architecture. However, in later chapters, ex-
amples will be given in many other areas such as mechanical design, assembly
planning, etc.

12.2 Super-Local Unfolding

In this chapter, we will define a type of group structure which has the fol-
lowing action:

SUPER-LOCAL UNFOLDING. In super-local unfolding, one applies
a higher level control group, which although acting in a control-nested fashion
on the entire situation, actually only affects part of the situation, unfolding
new structure from that part, by transfer.

A control group having a super-local unfolding action is labelled by the part
X it selects beneath it in the hierarchy, thus:

[G1 . . .Gj ] w© GXn

where X is some selection from the group sequence [G1 . . . Gj ]. It is crucial
to observe that the group GXn is added to the sequence [G1 . . .Gj ] via a
wreath product, and therefore acts by transfer on [G1 . . . Gj ]. Thus, like any
wreath product, the control group GXn sends copies of [G1 . . .Gj ] onto copies
of [G1 . . . Gj ] via conjugation by elements g ∈ GXn , thus:

[G1 . . .Gj ]g1
g−g−1

−→ [G1 . . . Gj ]gg1 (12.1)
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Fig. 12.1. Two rooms that need to be connected by a door-opening.

In this particular expression, we are assuming that the wreath product is
regular, i.e., that the copies of the fiber group [G1 . . .Gj ] are indexed in the
control group GXn . For example, in expression (12.1), not only is g in GXn ,
but so is the indexing element g1.

Now, we have just discussed the algebraic action, which is standard for
a wreath product. However, let us now consider the group-representational
aspect. By this we mean the effect of this action on the fiber sets. As usual,
each copy [G1 . . . Gj ]g1 of the fiber group acts on its own copy Fg1 of the
fiber set. In super-local unfolding, the crucial thing is that each fiber set is
exactly the same as each other fiber set, except for some selected subset. The
selected subsets of each of the fiber sets are transformationally related by the
control group GXn . This will now be illustrated.

12.3 Establishing a Target for Super-Local Unfolding

Any unfolding acts on a target, that part of the overall structure selected for
generativity. It is necessary to understand how a target is set up in the full
group sequence.

In the present section, this will be illustrated by formalizing a standard
procedure in architectural drawing: Fig. 12.1 (p. 259) shows the floor-plan of
two rooms that need to be connected by a door-opening. A standard design
technique is this:

(1) Draw two infinite lines where the door-opening will be, as shown
in Fig. 12.2.
(2) Trim the lines, as shown in Fig. 12.3.
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Fig. 12.2. Standardly, the door-opening is first specified with infinite lines.

Fig. 12.3. Finally, one trims the lines.
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Someone who is not a designer would probably be horrified by the ap-
parent wastefulness of a procedure in which, to draw the two small vertical
edges of the door-opening in the final figure, one first draws them as infinite
lines. However, this procedure is used in several thousand architecture and
design firms throughout the world, every day. Why?

The answer comes from our generative theory. The two vertical door-
edges shown in the final figure might be small, but they each are specified
by a tracing generator - an infinitessimal translation - that is repeated in one
direction to produce that small door-edge. The order of information increase,
over the course of the procedure, is this: The repetition of a generator defines
an infinite line, the group R, and to make the line finite, one then has to
specify extra information to switch the repetition off. This is therefore a
process of asymmetry-building.1

We argue that this descriptive procedure is general; for example, it is
exactly the procedure used by the human perceptual system: i.e., one un-
derstands the short segment in terms of its infinite completion (standard
Gestalt principle), and sees the segment as the result of surgery performed
by the occupancy group. Perception works by the same principle as the design
system because both are generative. Indeed both are generative-recoverable.
This means that the generative procedure is powerfully constrained by the
fact that its recovery is produced by the Asymmetry Principle. Thus, in the
forward-time direction, one must start with the infinite line, and then cut it
down.

Let us now understand the full group-structure of the final figure. First
note that in human perception, the smaller rectangle is referenced to the
larger one. This has been well-corroborated in the Gestalt literature (see Ley-
ton [96] for review), where is has been shown that smaller objects in a scene
are referred to larger ones. Furthermore, exactly this referential structure is
exploited in navigational situations.

In fact, according to our theory, the referential structure must involve
at least two stages: Not only is the smaller rectangle referred to the larger
one, but the larger one, must in turn be referred to a square because it
is seen as a deformed version of a square. This latter stage is an example of
external inference (Sect. 2.9), and according to our Externalization Principle,
an external inference must lead back to an iso-regular group, which in the
present case, must correspond to a square. Simply because it is easier to
notate, the group to be used for a square (and Cartesian frame) will be
the 2-level group Rw©Z4 based on rotation, rather than the 3-level group
Rw©Z2w©Z2 based on reflection. This will make the group sequences shorter.

According to our theory, the full group structure is this:
1 Recall that asymmetry-building can also occur by wreath sub-appending the
added group. Here, the added group is the occupancy group Z2.
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[[[Re × Rr90 × Rr180 × Rr270 ] s© Z4]P1 ]U
w© baP1,eaP1AGL(2,R)aP1 w© aP1AGL(2,R)P1 w© ReaRr90 (12.2)

Let us explain this sequence.
The first line gives the alignment kernel, indicated by the subscript U

on the outer brackets. Within this bracket, we will generally have the direct
product of the primitives to be used, each bracketed by a symbol Pi labeling
the primitive. In the above example, the alignment kernel contains only one
primitive P1, which is the square, given by [Re ×Rr90 ×Rr180 ×Rr270 ] s© Z4.
Because there are no other primitives, there is no actual alignment of prim-
itives, and therefore no (non-trivial) alignment kernel. Therefore, one could
simply use the group given for the square as an ordinary fiber. However, in
the next chapter, extra primitives will be added, and therefore it is useful to
start using the notation of unfolding groups.

The second line in expression (12.2) exhibits the control groups. There are
three of them: two affine groups and one translation group. To understand
the structure of any unfolding group, one starts with the control-group level
which has the primitives Pi as its superscripts. In the present example, this
is the higher affine group aP1AGL(2,R)P1 .

As a superscript, P1 represents the square in its starting state, i.e., the
copy of the fiber group P1 corresponding to the identity element in each of
the three control groups. This copy is the unit square at the origin of the
world frame.

Therefore, the higher affine group aP1AGL(2,R)P1 acts on the unit square
P1 at the origin of the world frame and moves and stretches it to become the
major rectangle aP1 in Fig. 12.1 (p. 259). Thus the label aP1 is placed as
the lower index on the affine group aP1AGL(2,R)P1 , indicating that it is the
result of the affine action a on the primitive P1 given in the superscript.

Notice that we have adapted the notation used in Sect. 6.3 for serial-link
manipulators, i.e., where a transformation T going from frame i to frame
i− 1 was given as i−1T

i. On the group aP1AGL(2,R)P1 , the upper index P1

will be called the input index, and the lower index aP1 will be called the
output index.

Now consider the lower affine group baP1AGL(2,R)aP1 in the above se-
quence. This is used to move and stretch the major rectangle to produce the
minor one. Thus, the input (upper) index on this affine group is aP1, which
was the output index from the previous affine group. There are two output
indexes baP1, eaP1 on the lower affine group. We will generally work from
right to left along indexes, numbering them in that order. The first index
eaP1 is the major rectangle aP1 multiplied by the identity element e of this
second affine group. The second index baP1 is the first rectangle aP1 having
undergone an affine transformation b, producing the smaller rectangle. Thus
the two affine groups produce the two rectangles. (The mathematics of double
indexes will be fully explained in the next chapter.)
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So far, there was no reason to use the unfolding-group notation of indexes.
We could have simply used the notation employed so far in this book:

[R s© Z4] w© AGL(2,R) w© AGL(2,R). (12.3)

However, there is an extra piece of structure that now has to be encompassed:
the placing of the two additional lines in Fig. 12.2 that will form the doorway.
Let us assume that the designer has created these lines as offsets (parallel
displacements) of the right side of the major rectangle, i.e., as transfers of
the right side. This is a typical trick in CAD.

For this, we use super-local unfolding, which is an action that targets only
part of an existing structure. Here the target is the right side of the major
rectangle. The remainder of the structure is unaltered.

This is expressed as follows: Add the group ReaRr90 , as an extra wreath
level above the existing group sequence, as shown in expression (12.2). This
is the parallel translation group R applied to the target indicated by its
superscript eaRr90 . This target eaRr90 is derived from the component Rr90

within the alignment kernel (first line), but after the action a has been applied
from the higher affine group. We deduce this because its two prefixes ea
come respectively from the two copies of AGL(2,R) in the above sequence.
Therefore, we infer that the target eaRr90 is the right side of the major
rectangle. Thus what has been encoded is the fact that each of the two infinite
door-lines is a translate of this right side. Note that, according to our theory,
the right side is itself an infinite line underlying an occupancy structure.
Therefore, the infinite door-lines can truly be understood as translates of
the infinite line underlying the right side. Finally, the lines are trimmed by
switches in the occupancy groups.

It is now necessary to understand the real meaning of a super-local un-
folding, as follows:

12.4 Super-Local Unfolding and Wreath Coverings

We now need to understand what distinguishes super-local unfoldings from
other kinds of wreath products. All wreath products are about actions. What
distinguishes a super-local unfolding is the type of action.

The super-local unfolding group given in expression (12.2) above is a 5-fold
wreath product. The first thing to understand is that, algebraically, it works
exactly in accord with everything said earlier about n-fold wreath products.
In particular, it is structured by control-nested τ -automorphisms. To grasp
the full meaning of super-local unfolding, it is necessary to understand what
these automorphisms do in this particular example.

Fig. 12.4 shows this group schematically. The five levels in the figure
correspond to the five levels of the group. Each node in the figure is a copy of
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the group on its level in the list on the far left. The diagram is schematic in the
sense that, on each level, a set of nodes dominated by a single node above it,
should have a cardinality equal to the order of the group of that dominating
node. For example, in the third level down, a set of nodes dominated by a
single node above should correspond to all the members of the affine group
AGL(2,R) rather than just the three nodes shown. Similarly, the set of nodes
on the second level down should form a continuum equivalent to the real line
R above it.

Fig. 12.4. A control-nested τ -automorphism in the group (12.2) on p. 262.

The entire set of circular arrows in the diagram constitutes an example
of a control-nested τ -automorphism in the group. Notice that there is no
difference between the structure of this diagram and the general schematic
diagram given earlier for a control-nested τ -automorphism in an arbitrary
wreath product, Fig. 4.4 (p. 124).

Now consider the lowest type of subtree in Fig. 12.4. It consists of four
nodes on the bottom level, dominated by a node above it. The four nodes
are the fiber copies Re,Rr90 ,Rr180 ,Rr270 . The node above is their control
group Z4. Thus the subtree corresponds to the wreath product [Re × Rr90 ×
Rr180 × Rr270 ] s©Z4 which is Rw©Z4. Therefore the subtree will be referred to
as a [Rw©Z4]-subtree. Clearly, the bottom of the figure is the set of [Rw©Z4]-
subtrees.

It is now necessary to understand the indexes on the group in expression
(12.2) on p. 262. First, we said that the meaning of P1 as a superscript (i.e.,
on the upper affine group) is the square primitive located at the origin of the
world frame. In Fig. 12.4, the identity element of each group will be taken to
be the left-most node in the node set corresponding to the group. Therefore
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the superscript P1, the starting state of the square, corresponds to the left
most [Rw©Z4]-subtree in Fig. 12.1. Note that this has been marked by P1 in
the diagram (extreme bottom left).

Now, this [Rw©Z4]-subtree is the input index on the upper affine group
in expression (12.2) on p. 262. Thus, the affine group sends it to aP1, as
indicated by the output index on that group. aP1 is the [Rw©Z4]-subtree
shown as eaP1 on the bottom of Fig. 12.4.

Then the lower affine group in expression (12.2) on p. 262 has the effect
of sending this subtree to the subtree baP1 shown at the bottom of Fig. 12.4.
Notice that the two subtrees eaP1 and baP1 correspond respectively to the
larger and smaller rectangles in the architectural plan Fig. 12.1.

Let us now understand the effect of the highest control group R. Observe
that the bottom of Fig. 12.4 has been divided into blocks. Notice that each
block corresponds to one node on the second level down in the diagram.
However, the set of nodes on the second level correspond to the set of members
of the group on the top level. Therefore each block corresponds to one value
in the control group R.

Most crucially, the control group R has the effect of translating one block
onto the next block along the bottom. It is necessary now to understand what
effect this has on the geometry.

The effect on the geometry is given by the input index on the highest
control group ReaRr90 in expression (12.2) on p. 262. This index eaRr90 refers
to the right side of the major rectangle in the floor-plan. This is the side that
will be translated to create the extra two lines as offsets.

The crucial thing to understand now is that this right side, i.e., the input
index eaRr90 (on the control group), is actually a node in the hierarchy of
nodes in Fig. 12.4. The index eaRr90 is actually the second node along the
bottom of the subtree labeled eaP1. The reader should carefully locate this
node before continuing.

Now, the top control group R targets this node (which the right side of the
rectangle) and translates it by some distance in Euclidean space. Therefore,
the equivalent node in Block 2 in Fig. 12.4 will represent a translated version
of the right side. Furthermore the equivalent node in Block 3 will represent
the right side translated even further; and so on.

Note that, according to the notation ReaRr90 , it is only the right side that
is translated; i.e., the other three sides of the rectangle are left the same as
they are in Block 1.

Now for a crucial question: What do we mean by targeting the sec-
ond node? Algebraically, the targeting does not exist. The control-nested
τ -automorphism shown in Fig. 12.4 has a circular arrow for each of the nodes
of the hierarchy. Thus, no actual node is privileged. This means for example,
that all the nodes along the bottom are affected algebraically by the transla-
tion on the top. This effect is conjugation. In fact, each circular arrow in the
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figure represents a conjugation, and these conjugations are perfectly uniform
across the whole diagram. Therefore, no privileged nodes exist.

The targeting is therefore not in the abstract algebra of the group. It
occurs somewhere else: in the representation on Euclidean space.

In order to understand this representation, it is necessary to invoke the
concept of a wreath covering from p. 133. That is: Let S be a set. A wreath-
covering of S is a wreath product together with a set of maps φci : Fci −→ S,
one for each fiber-set copy Fci , for all ci in the control set. The wreath product
without the maps is called the abstract wreath product, and the maps are
called the covering maps.

At the time of defining a wreath covering, we had observed that nearly
all the wreath products in this book are wreath coverings, because there is
some overlap of the sets that one would wish to call the fiber-set copies. For
example, in the wreath product of a square, the sides overlap at the corners.
This means that the sides are not independent sets, as one requires for fiber-
set copies. Thus one has to go to sets that cover the sides. The covering sets
are independent, and can therefore consititute the fiber copies. As was said
on p. 134, in nearly all cases considered in this book, the fact that the wreath
products are wreath coverings will be so obvious that this will usually be
assumed without explicitly pointing it out.

However, in the case of super-local unfoldings, the concept of a wreath-
covering gains a strongly explicit importance. This is because the fiber sets
are coincident except at a selected subset, the target. The set coincidence
means the necessary specification of a wreath covering.

To understand this, consider our example. Each of the [Rw©Z4]-subtrees
along the bottom of Fig. 12.4 corresponds to a four-sided figure. It is worth-
while re-considering some cases: The subtree marked P1 is the square at the
origin of the world frame, the subtree marked eaP1 is the larger rectangle,
the subtree marked baP1 is the smaller rectangle, . . . , etc. In Block 2, the
right-hand side in each of these four-sided figures is moved by a small amount;
in Block 3, the right-hand side in each of these four-sided figures is moved
by a larger amount; and so on. However, the other three sides in each figure
are coincident with their corresponding versions in each of the other blocks;
i.e., these sides, as sets of points, are not independent. Thus it is necessary
to use wreath coverings of the sides. Therefore do this:

Each node along the bottom of Fig. 12.4 represents a copy Rci of the fiber
group R, where c1 stands for the multi-index of control sets above the node.
Now the fiber-group copy Rci acts on its own fiber-set copy Fci which is a
copy of the real line. The copies of the real line are independent (and not
in any space). This completely defines the abstract wreath product involved,
since we now have all the fiber sets involved, and all of the control sets above
these (because all the wreath product operations in the hierarchy are regular).

The final stage is to define the effects in the Euclidean plane R2, on which
the designer is working. To do this, one converts this abstract wreath product
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into a wreath covering, by defining a set of maps φci : Fci −→ R2, one for
each fiber-set copy Fci of the real line, for all ci. This images the lines in the
Euclidean plane.

One can now understand the nature of the index eaRr90 on the highest
control group ReaRr90 . We had said that the index refers to the second node
along the bottom of the subtree labeled eaP1 in Fig. 12.4. In fact, the index
says this: Consider the covering map for this second node, and the covering
map for the corresponding second node in Block 2, and the covering map for
the corresponding second node in Block 3, and so on. The images of these
covering maps are related by the control group R represented as a horizontal
leftward action on the Euclidean plane.

This means that the control group ReaRr90 has two actions as follows:

(1) Algebraic: This is its conjugation g − g−1 action within the abstract
wreath product, sending any node x in Block 1 onto its conjugate g(x)g−1

in Block 2 (and that node onto its conjugate in Block 3, and so on). In
particular, it sends the ”second” node eaRr90 in Block 1 onto its conjugate
g(eaRr90)g−1 in Block 2 (and that node onto its conjugate in Block 3, and
so on).

(2) Representational: This is its action of translating the images of the
covering maps defined on each of these conjugate nodes. Thus, let FeaRr90

be
the fiber-set copy (real-line copy) corresponding to the ”second” node eaRr90 ,
and let φeaRr90

be the covering map associated with this node, that is

φeaRr90
: FeaRr90

−→ R2.

Then let g be any member of the control group ReaRr90 , that is, a translation.
The covering map associated with the conjugate node g(eaRr90)g−1 of the
node eaRr90 is this:

φg(eaRr90 )g−1 : Fg(eaRr90 )g−1 −→ R2.

The representational effect of g is to relate the covering maps; specifically to
relate their images thus:

g : φeaRr90
(FeaRr90

) −→ φg(eaRr90 )g−1 (Fg(eaRr90 )g−1) = g[φeaRr90
(FeaRr90

)].

In contrast, the effect of g on the images of all other covering maps is to leave
their images unchanged. This latter effect can be understood as analogous
to the freezing effect that can be chosen in advanced drafting systems such
as AutoCAD, i.e., freezing an entire structure except for some target to be
altered.
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12.5 The Symmetry Group of a Complex Object

Now observe this: What we have done in the previous section is to describe
the final figure on p. 259 by a single large symmetry group, that given by
expression (12.2) on p. 262. This single group powerfully encodes the com-
plex structure that a designer, manufacturer, perceiver, navigator, etc., uses
in creating, seeing, manipulating, or moving through, that structure. If we
had taken the conventional approach used to define the symmetry group of
a figure, the group would have consisted of only the identity element - be-
cause the operations of creating the rectangles and joining them would have
successively broken all the symmetries; i.e., the final organization has no re-
flectional and rotational symmetries. By capturing the generative operations
by group extensions via wreath products, we not only preserve the previous
symmetries by transfer, but successively build up recoverable record of the
generative procedure, rather than loosing it. This is the true power of our
approach.

12.6 Exploitation of Existing Structure

The most important fact about super-local unfolding is its capacity to exploit
existing structure. For example, the two vertical lines that appeared in the
middle figure on p. 260, were translates of a side of the room.

Clearly, therefore, such groups exemplify our goal of maximizing transfer.
Indeed they embody our Fundamental Principle of Cognition (p. 22), which
states that any new structure should be created as the transfer of existing
structure.

In super-local unfolding, one ”digs” into an existing structure and finds a
part that one can transfer for the creation of the required additional structure.
This is used endlessly in computer-aided design - from the design of fuselages
for aerospace to the design of heating and ventilation systems for architecture.
Furthermore it is the basis of great artworks, such as the symphonies of
Beethoven, or the paintings of Raphael (see Leyton [96]). In these works
what is ultimately being exploited is the fact that transfer is maximized by
the human perceptual systems.

12.7 Cross-Hierarchy in Super-Local Unfolding

As we have said, super-local unfolding ”digs into” the existing structure and
extracts a part that can be used to create additional structure. In fact, the
extracted part can be arbitrarily complex in the following sense:
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CROSS-HIERARCHY ACTION OF SUPER-LOCAL UNFOLD-
ING. An important benefit of super-local unfolding is that it can act on a
selection that cuts across hierarchical boundaries.

This facility is required an extraordinary number of times in any shape gen-
eration. For example, consider computer-aided design or 3D solid modeling.
A situation that occurs many times within a single work session is this: The
designer has created a structure - e.g., a plan of an apartment complex, a
3D model of a biological organ such as a liver, etc. What is required at the
next stage is to act on some selection of parts that cuts across the hierarchy
of that structure. For example, in the plan of an apartment complex, one
might need to select two of the walls in a room in one of the apartments, and
the entire room in another apartment, and an entire apartment on a differ-
ent floor - and apply a single operation to this selection. Again, in the 3D
modeling of a liver, one might need to select certain mesh faces, on one side,
certain points on another side, and a particular volume within - and apply
a single operation, such as rotation, to this selection. This will give the liver
the subtle deformation needed to make it realistic. Furthermore, this kind of
situation occurs not only in the design disciplines, but also in the physical
sciences: One might need to define a process that targets only certain parts
of a complex molecule - e.g., those parts with negative charge.

What characterizes such situations is that the selection cuts across hi-
erarchical boundaries in two senses: (1) horizontally; i.e., one selects from
different sub-hierarchies, (2) vertically; i.e., one selects from different hierar-
chical levels.

It is to handle the above range of situations, that we developed the concept
of super-local unfolding. Although, the example in Sect. 12.3 operated on only
a single selected element from the existing structure, one can equally operate
on a cross-hierarchy selection from the structure. For example, consider the
two-room apartment as shown in the final figure on p. 259. Supposing that
we want to simultaneously select the larger room and the bottom wall of the
smaller room, so that a rotation could be applied simultaneously to these.
This is a typical operation used in the architectural work of Eisenman, Gehry,
and Libeskind. What we do is take the group developed so far for that figure,
and we wreath super-append the rotation group SO(2) above this, so that
SO(2) has a non-trivial representation for only the target parts, thus:

[[[Re × Rr90 × Rr180 × Rr270 ] s© Z4]P1 ]U
w© baP1,eaP1AGL(2,R)aP1 w© aP1AGL(2,R)P1 w© ReaRr90

w© SO(2) {baRr180 , eaP1}. (12.4)

The first two lines of this expression give the existing structure, which was
the previous group. The last line gives the appended SO(2). Its target sites
are eaP1 which is the larger room, and baRr180 which is the bottom wall
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of the smaller room. It is easy to check that our wreath-covering analysis of
super-local unfolding is extendible to this type of situation. Notice that braces
”{ }” have been put around the target list, in the super-local unfolding. This
will distinguish it from the case without braces, to be discussed later.

What can be observed in this example is the powerful sense in which this
type of action is an asymmetrization by misalignment. Prior to the SO(2)
action, there is a certain amount of symmetry in the room structure, by virtue
of the existing hierarchy. That is, the rooms are parallel to each other, and
the wall-structure of an individual room has a double-reflectional symmetry.
However, after the SO(2) action, the rooms cease to be parallel to each other,
and the wall-structure of the smaller room no longer has a double-reflectional
symmetry. One can regard this situation as having been created by pulling
the major room and bottom wall ”out of alignment”.

The reader can begin to see, from this example, how our tools can generate
and represent an arbitrarily complex shape as a sequence of unfoldings via
transfer. As we said before, all the complexities of a structure become entirely
comprehensible as the transfers of a minimal set of components in the object’s
core.
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13.1 Introduction

We now need to invent one final class of unfolding groups, in order to deal
with an important remaining type of asymmetry (complexity) that can occur
in shape generation. These groups will be called sub-local unfoldings because
they wreath sub-append some group below a selected component in a level.

The following should be pointed out: We invented the three classes of
unfolding groups - telescope, super-local, and sub-local unfolding groups - for
the following reason: The recoverability component of the generative theory
implies that plans concerning an object are inferrable from its symmetries,
e.g., plans for designing the object, manufacturing it, manipulating it, nav-
igating with respect to it, etc. This is true whether the object is simple or
complex, e.g., a complex environment. Expressing simple objects in terms of
symmetry groups is easy. Consequently we had to invent classes of symmetry
groups to describe complex objects.

In order to establish these groups, our procedure was this: We worked
through every single operation in each of several main CAD, solid modeling,
assembly, and animation programs, including AutoCAD 2000, Architectural
Desktop, Mechanical Desktop, ProEngineer, 3D Studio Viz, etc., as well as
all the major manuals on each of the programs - approximately 15,000 pages
of text. Each individual situation was characterized by a group, and a new
class of groups was invented for any situation that could not be formalized in
terms of any previously created class of groups. Proceeding in this manner,
it was eventually found that three classes of groups - telescope, super-local,
and sub-local unfolding groups - could handle any newly created situation.

Michael Leyton (Ed.): A Generative Theory of Shape, LNCS 2145, pp. 271-298, 2001. 

© Springer-Verlag Berlin Heidelberg 2001
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Thus our current assumption is that these groups can handle any complexity
in shape generation.1

13.2 Symmetry Group of an Apartment

It is now necessary to motivate the final class of unfolding groups, and fully
characterize their properties. To do so, we will construct a symmetry group
of a seven-room apartment consisting of a central main room and six outer
rooms, as shown in Fig. 13.1.

Fig. 13.1. A seven-room apartment.

Within the theory so far given in this book, the symmetry group of this
apartment is easy to construct. It is simply this:

[R w© Z2 w© Z2]
w© AGL(2,R)
w© AGL(2,R). (13.1)

Here, the first line is the square, as the hyperoctahedral wreath hyperplane
group of degree 2, which can be identified with the Cartesian frame. The
control group on the last line, takes the square understood as the World frame
and converts it (by affine transformation) into the rectangle constituting the
main room. Then the control group on the middle line, takes the main room
rectangle and converts it into each of the six outer rooms. To understand this
1 Notice that the term complexity is being used here not in the usual contemporary
sense related to instability, but in the sense of amount of structure.
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second stage, open up the wreath product in the final line, in its semi-direct
product notation. Thus the bottom two lines become:

[. . .×AGL(2,R)×AGL(2,R)×AGL(2,R)× . . .]
s© AGL(2,R). (13.2)

The upper line shows the fiber-group product, and now the bottom line ex-
hibits the semi-direct product symbol. The six outer rooms are in fact six
occupied fiber-group copies within the fiber-group product. That is, each
component of the fiber-group product, can be regarded as taking the main
room and transforming it outwards to become one of the outer rooms. Ob-
serve that each of the six rooms can therefore be transferred onto each other
via the control group.

It is worth understanding this structure as analogous to a serial-link ma-
nipulator. This is particularly clear in the unopened wreath structure in ex-
pression (13.1). One has simply converted the special Euclidean groups SE(2)
of the manipulator into the affine groups AGL(2,R) of the room structure.
The main room corresponds to a parent link. There is a single child link to
this parent. This is the affine group in the middle line. Therefore the six outer
rooms correspond to six work-spaces of that single child robot link. These six
work-spaces can be transferred onto each other via the highest control group.
Notice, most crucially that, because the parent link has only one child, the
manipulator is purely serial.

Structures of the form shown in Fig. 13.1 therefore present no problem
to the theory we have developed so far. However, let us now make a local
ammendment. Let us suppose that someone builds an extension to the room
labeled 5, as shown in Fig. 13.2. The extension is on the bottom right of
Room 5.

Fig. 13.2. A local ”anomaly” - an extension is built onto Room 5.
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The problem is that the addition is local to only one of the rooms. This
problem occurs in many situations: For example, in architecture a number of
design firms (perhaps in different parts of the world) may each be working
on the design of a different part of a large building. The decisions are being
made independently and are local to the particular needs of the part they are
working on. This of course occurs in any large-scale mechanical design - e.g.,
the design of an airplane. It is also an important problem in defect-crystal
physics, where defects tend to be local structures on a crystal.

Let us return to the apartment as now shown in Fig. 13.2 with the ”anoma-
lous” extension. There are two solutions to representing this situation: The
first is that we can assume that there is the possibility of a corresponding
anomaly on each of the other outer rooms. This is reasonable - because at
any later time, the owner might wish to make an extension to any of those
rooms. Since each room allows for an extension, we therefore loose the sense
that an extension is an anomaly. Most crucially, we can mathematically ac-
count for the possibility of an extension onto each outer room by wreath
sub-appending a further affine group below the sequence of affine groups in
(13.1), thus obtaining:

[R w© Z2 w© Z2]
w© AGL(2,R)
w© AGL(2,R)
w© AGL(2,R) (13.3)

where the group on the second line is the new group. Notice that this structure
is still of the serial-link type. In robotic terms, there are three successive links:
The main room, one outer room, and one extension. What we see as parallel
rooms are merely fiber-group copies arising from a purely serial structure.
This means that the rooms on any level can be transferred onto each other.

In the above approach, the anomaly was removed by making a purely
serial structure. However, let us consider the following situation in biology:
A human body has a head and two arms. Each are extensions of the torso.
Certainly the two arms can be mapped onto each other. However, the head
cannot be mapped onto either of the two arms. The head therefore constitutes
a genuine anomaly. Thus it is necessary to characterize such situations. For
this, the final class of groups is needed: sub-local unfoldings. To create such
groups, we first need to define a type of wreath product which we will call a
wreath-direct group.

13.3 Wreath-Direct Groups

Sub-local unfoldings will require us to define the following class of groups:
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Definition 13.1. A group of the form

[H1 ×H2] w© [G1 ×G2] (13.4)

will be called a wreath-direct group, if (1) the wreath product is regular,
i.e., the control group and control set are both G1 × G2; (2) if the control
group acts on the control set component-wise, i.e., imitating the direct product
operation; (3) if the fiber-set is structured as a Cartesian product F1 × F2;
and (4) the fiber group H1×H2 acts on the fiber-set F1×F2 component-wise.

As usual, of course, where wreath products are concerned, the term group
tends to mean group action.

A number of different types of examples of wreath-direct groups will occur
in sub-local unfoldings. One of the most frequent is this:

[P1 × P2] w© [AGL(2,R)×AGL(2,R)] (13.5)

where P1 and P2 are primitives, and AGL(2,R) are their command groups.
We shall now use this example to illustrate Definition 13.4. For this illustra-
tion, let the primitive P1 be the generative action SO(2) for a circle, and
the primitive P2 be the generative action for the square, which will be given
simply as Z4, rather than Rw©Z4, to avoid including unnecessary details. So
the group (13.5) will be taken to be:

[SO(2)× Z4] w© [AGL(2,R)×AGL(2,R)]. (13.6)

The best way to understand the definition of this group is to go through the
5-stage structure of transfer given in Sect. 3.20.

STAGE 1: Define the Fiber Level and Control Level

The data set is the set of all configurations of a single square and circle. It is
decomposed into two levels:

FIBER LEVEL.

An individual fiber is an individual circle-square configuration. Now define:

(1) Fiber set = S1×Sq, where S1 is the unit circle and Sq is the unit square
(both of which will be taken here to be point-sets, for ease of exposition).
(2) Fiber group = SO(2)× Z4.
(3) Action of fiber group on fiber set is component-wise:


[SO(2)× Z4] × [S1 × Sq] −→ [S1 × Sq]

( (s , z) , (p, q) ) �−→ (sp, zq)
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CONTROL LEVEL.

This level concerns the mapping of configurations to configurations. The
wreath product will be assumed to be regular, i.e., the control set and the
control group are the same. Now define:

(1) Control set = AGL(2,R)×AGL(2,R).
(2) Control group = AGL(2,R)×AGL(2,R).
(3) Action of control group on control set is component-wise: That is, given
an element (a, b) from the control group, and an element (ai, bi) from the
control set, the application of the former to the latter is

(a, b)(ai, bi) = (aai, bbi). (13.7)

Notice that this action is equivalent to multiplication in the direct product
AGL(2,R)×AGL(2,R).

STAGE 2: Define the Fiber-Group Product and Its Action on the
Data Set

Since the wreath product is regular, there are as many copies of the fiber
group SO(2)×Z4 as there are members (ai, bi) in the control groupAGL(2,R)
×AGL(2,R). The copies of the fiber group SO(2)× Z4 will be labeled

[SO(2)× Z4](ai,bi) (13.8)

for all (ai, bi) ∈ [AGL(2,R)×AGL(2,R)]. Therefore, the fiber-group product
is this:

[[SO(2)× Z4](a1,b1) × . . .× [SO(2)× Z4](a∞,b∞)]. (13.9)

Now, define the group action of the fiber-group product on the entire
data set, as follows: The data set is the Cartesian product of the fiber set
S1 × Sq (circle × square) and the control set AGL(2,R)×AGL(2,R). That
is, it consists of all copies

[S1 × Sq](ai,bi)

of the fiber set, for all members (ai, bi) of the control set AGL(2,R) ×
AGL(2,R). The fiber-set copies are the circle-square configurations.

The group action of the fiber-group product on the entire data set is de-
fined by making each copy [SO(2)× Z4](ai,bi) of the fiber group act on each
copy [S1 × Sq](ai,bi) of the fiber set independently. The action therefore has
the selective effect.
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STAGE 3: Define the Control Group as an Automorphism Group
on the Fiber-Group Product

The fiber-group copies (configurations) will now be related to each other by
the control group AGL(2,R)× AGL(2,R). This is achieved in the following
way: The control group AGL(2,R) × AGL(2,R) acts as a τ -automorphism
group on the fiber-group product. Thus, given an element (a, b) from the
control group, it corresponds to the τ -automorphism τ((a, b)) on the fiber-
group product thus:

τ((a, b))[[SO(2) × Z4](a1,b1) × . . .× [SO(2)× Z4](a∞,b∞)] (13.10)

which, by applying the action on the indexes, is this

[[SO(2)× Z4](a,b)(a1,b1) × . . .× [SO(2)× Z4](a,b)(a∞,b∞)] (13.11)

which, by raising the control group action (13.7) from the control set to the
fiber-group product, is simply this:

[[SO(2)× Z4](aa1,bb1) × . . .× [SO(2)× Z4](aa∞,bb∞)]. (13.12)

In other words, the τ -automorphism corresponds to multiplication in the
direct product AGL(2,R)×AGL(2,R), raised to the indexes.

STAGE 4: Define a Splitting Extension of the Fiber-Group Product
by the Control Group

This of course is the same as opening up the wreath product symbol in (13.6),
in the semi-direct product notation. Thus, the wreath product is this:

[[SO(2)× Z4](a1,b1) × . . .× [SO(2)× Z4](a∞,b∞)]
s©τ [AGL(2,R)×AGL(2,R)]. (13.13)

STAGE 5: Define the Action of the Wreath Product on the Data
Set

Any element of the wreath product group (13.13) is of the form:

〈 (s1, z1) , . . . , (s∞, z∞) | (a, b) 〉. (13.14)

An element in the data set is of the form

(p, q)(ai,bi) (13.15)
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i.e., a point p on the circle, and a point q on the square, in the particular
circle-square configuration indexed by (ai, bi) in the control group.

The action of the group element (13.14) on the data element (13.15) goes
in two stages: (1) By the selective effect, one first selects the (ai, bi)-indexed
component from the vector within (13.14). This is the component (si, zi)
along this vector, i.e., an element from the fiber-group copy [SO(2)×Z4](ai,bi).
It is first applied to the data element (p, q)(ai,bi). This results in

(sip, ziq)(ai,bi). (13.16)

Notice that this action has occurred within the particular circle-square con-
figuration [S1 × Sq](ai,bi).

(2) One then applies the control element (a, b) from (13.14) to the result
(13.16). This is raised to the indexes of the data point, thus:

(sip, ziq)(aai,bbi).

That is, the data point is moved from the circle-square configuration [S1 ×
Sq](ai,bi) to the circle-square configuration [S1 × Sq](aai,bbi).

13.4 Canonical Unfoldings

Let us now go back to the apartment discussed in Sect. 13.2. A problem had
arisen because we wished to create an ”anomaly” that was particular to Room
5. There were two alternative solutions: (1) The anomaly is transferred as a
possibility onto each of the other rooms, i.e., it ceases to be an anomaly. (2)
The option of transfer is dis-allowed, i.e., the status of anomaly is preserved.

We showed how to represent alternative (1). Now we show how to rep-
resent alternative (2). Let us first deal with the seven-room case as shown
in Fig. 13.1. Let us also make the assumption that each of the outer rooms
is going to be handled independently by a different design company; i.e.,
each will carry a set of ”anomalies” that are particular to that room, i.e.,
non-transferrable. Previously we gave the group to be this:

[R w© Z2 w© Z2]
w© AGL(2,R)
w© AGL(2,R). (13.17)

There is only one component on the second line - it is responsible for all
six outer rooms. These are copies within the fiber-group product associated
with the second line as fiber. However, we now wish to make the outer rooms
more strongly independent within the second line. Thus the group to be
constructed is this:
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[R w© Z2 w© Z2]U
w©[AGL(2,R)×AGL(2,R)×AGL(2,R)×AGL(2,R)×AGL(2,R)
×AGL(2,R)]w©AGL(2,R). (13.18)

The second line is now a direct product of the groups representing the six
outer rooms. Notice most crucially that the direct-product symbols are not
within a fiber-group product; i.e., they are not between fiber-group copies.
That is, none of the wreath products in the above expression have been
opened up in their semi-direct product notation, which means that we do not
actually see any fiber-group copies in the expression. In particular, the second
line is a single fiber group, and therefore the direct product is a decomposition
of that fiber group, not a decomposition of the fiber-group product.

The analogy to the robot manipulator is that, whereas the six rooms
were previously described as six states of one link, they are now described
in terms of six links. Using the more general concept of inheritance, we say
that, whereas previously there was only one child, there are now six children.

Now look at the top line. It contains a suffix U , which we now explain:

Definition 13.2. A wreath product of the form

[. . .]U w© G1 w© G2 w© . . . w© Gn

will be called a canonical unfolding. The symbol [. . .]U brackets an align-
ment kernel consisting of a direct product of all primitives required by all the
wreath-direct actions from the control hierarchy.

Therefore, in the particular case of expression (13.18), the first line
[R w© Z2 w© Z2]U means a direct product of six copies of the group
R w© Z2 w© Z2. The action of its control group, on the second line, will
be wreath-direct on this direct product. That is, the direct product on the
second line will act component-wise on the direct product on the first line.

Now let us add indexes to expression (13.18) to show how the rooms are
generated:

[[R w© Z2 w© Z2]P1 ]U
w© [ g1aP1AGL(2,R)aP1 × g2aP1AGL(2,R)aP1 × g3aP1AGL(2,R)aP1

× g4aP1AGL(2,R)aP1 × g5aP1AGL(2,R)aP1 × g6aP1AGL(2,R)aP1 ]

w© aP1AGL(2,R)P1 (13.19)

In the top line, the primitive square has now been labeled P1. Thus, go to the
last line. The input (upper) index P1 on this line represents this primitive in
its initial state, where it is the World frame. The output (lower) index aP1

represents this primitive after the application of the affine transformation a
which converts the World frame square into the rectangle constituting the
main central room of the apartment. Next, this output index becomes the
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input to the direct product above it. Most crucially, notice that this index is
now the input index for each of the six individual components of the direct
product. Each component produces as output an index of the form giaP1

representing the fact that the component has applied the transformation gi
to the main room rectangle aP1, thus producing one of the outer rooms giaP1.

Now let us understand the symmetry effect of an individual element
from this group. For this, use the type of diagram introduced in Sect. 4.5
for control-nested τ -automorphisms. The particular diagram needed here
is Fig. 13.3. This is a 3-level structure, corresponding to the three levels
in expression (13.18). The top node in the diagram is the highest control
group AGL(2,R). Each node below this is a copy of the 6-fold structure
AGL(2,R)×AGL(2,R)×AGL(2,R)×AGL(2,R)×AGL(2,R)×AGL(2,R).
There are as many copies as there are elements in the top node (infinite).
Each bottom node is a copy of the alignment kernel, which is the 6-fold di-
rect product of the primitive R w© Z2 w© Z2. Each node above the bottom
level dominates an infinite set of nodes on the level below it. The finiteness
in the diagram is only schematic.

Fig. 13.3. The group action corresponding to the seven-room apartment.

Let us now obtain the form of an element of this group. Given a wreath
product G(F )w©G(C), the notation will be this:

〈 T1 , T2 , . . . , Tn | r 〉

where each Ti comes from its corresponding copy of G(F ), and r comes from
G(C). The string T1 , T2 , . . . , Tn will be called the vector of the element.
We will assume that there are as many elements Ti along the vector as there
are elements in G(C); i.e., the wreath product is regular.

Now return to the symmetry group of the apartment, as depicted in
Fig. 13.3. An element of the group is a selection of an element from each
of the nodes. To understand such an element, let us first consider only the
top two levels. These two levels correspond to the wreath product:

[AGL(2,R)×AGL(2,R)×AGL(2,R)×AGL(2,R)×AGL(2,R)
×AGL(2,R)]w©AGL(2,R). (13.20)

We now obtain an element from this group by selecting an element from each
of the nodes of the top two levels of Fig. 13.3. Thus an element looks like
this:
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〈 (h1, h2, . . . , h6) , (g1, g2, . . . , g6) , . . . , (k1, k2, . . . , k6) | a 〉. (13.21)

The right-most symbol a is an element from the top-level node. Then, to the
left of this, is the vector. Each of its components, for example (h1, h2, . . . , h6),
will be called a sub-vector. A sub-vector is an element from a node on Level
2 of Fig. 13.3. Since such a node is a copy of the 6-fold direct product
AGL(2,R)×AGL(2,R)×AGL(2,R)×AGL(2,R)×AGL(2,R)×AGL(2,R),
the sub-vector has six components. There are obviously an infinite number
of sub-vectors along the vector in expression (13.21).

Now let us extend expression (13.21) so that we obtain a full group el-
ement; i.e., for the entire three levels of Fig. 13.3. To do this, convert each
sub-vector in (13.21) into a control element with respect to its own vector,
which will be called a sub-sub-vector. That is, obtain

〈 〈 u1, u2, u3, . . . , u∞|(h1, h2, . . . , h6) 〉 ,
〈 v1, v2, v3, . . . , v∞|(g1, g2, . . . , g6) 〉 ,
. . . ,

〈 w1, w2, w3, . . . , w∞|(k1, k2, . . . , k6) 〉 ,
| a 〉. (13.22)

Notice that this new expression is the same as (13.21) except that each sub-
vector, for example, (h1, h2, . . . , h6) is now extended to its left by a sub-sub-
vector, for example, u1, u2, u3, . . . , u∞. In a sub-sub-vector, each component,
ui is a selection from a bottom node of Fig. 13.3. That is, it is a selection
from a copy of the alignment kernel, which is a 6-fold direct product of
R w© Z2 w© Z2. A particular sub-sub-vector u1, u2, u3, . . . , u∞ corresponds
to a set of bottom nodes dominated by only one node on the second level
(i.e., is an element-wise selection from the dominated set). There are as many
components to the sub-sub-vector u1, u2, u3, . . . , u∞ as there are elements in
the 6-fold direct product AGL(2,R)×AGL(2,R)×AGL(2,R)×AGL(2,R)×
AGL(2,R)×AGL(2,R), representing a dominating node.

The action of the group element in expression (13.22) is as follows: Con-
sider a configuration of six outer rooms. The configuration actually corre-
sponds to a bottom node of the diagram. It is a fiber-group copy, and its
copy index is given by the succession of nodes upward from it in the diagram.
Now apply the group element in expression (13.22). By the selective effect in
a wreath product, the configuration will select only those elements in (13.22)
to which its index corresponds. Thus on the lowest level, it selects an element
from a sub-sub-vector, let’s say ui. Since this is a selection from a copy of the
alignment kernel, which is a 6-fold direct product of R w© Z2 w© Z2, the effect
of ui will be to apply translations to each of the sides of the rooms, and a
2-level hierarchy of reflections to those sides. The translations will be individ-
ual to each side, and the reflection hierarchy will be individual to each room.
Then, also by the selective effect, on the next higher level, one applies the
associated sub-vector, which for ui is (h1, h2, . . . , h6). This applies an affine
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transformation hi to each room individually, relative to the main room. No-
tice that, in relation to the element ui, this is using the wreath-direct action.
That is, ui can be regarded as a 6-fold structure, each component of which
is personal to each room, and the transformation (h1, h2, . . . , h6) also acts
personally to each room.

Finally, the element a from the top node is applied, and this is an affine
transformation of the referent main room. The six rooms will, of course,
inherit this transformation, in accord with our algebraic theory of inheritance
in Sect. 7.3.

13.5 Incorporating the Symmetry of Referents

Two more pieces of algebraic structure need to be added to the group being
studied, in order to complete its symmetry action. The first is this:

The reader will notice that, while the above group allows for internal
symmetry transformations of each outer room (translations and reflections
of the walls), it does not allow such transformations of the main room. The
reason is that, in fact, we do not yet have a main room, as follows:

What we have are six outer rooms, each of which started as coincident
with the World frame. They were first transformed to be coincident with
what would be the main room. The bottom nodes of Fig. 13.3 allow us to do
internal symmetry transformations independently on each of these copies. It
is this that tells us that, although they are coincident with what would be the
main room, none of them could actually be the main room, since there is no
criterion to particularly choose one of them as such, by symmetry. This was
not a problem in the purely serial case. In fact, the six rooms in this position
must be interpreted as a particular configuration of the six outer rooms - the
particular configuration in which they happen to be coincident with what
would be the main room. Furthermore, these internal symmetry transforma-
tions, which are applied independently to each of them, are equivalent to the
internal symmetry transformations that could be applied independently to
them after they have been moved out from this position.

A seventh room is therefore required which will be the main room - and
which can receive its own internal symmetry transformations even after the
other six rooms have been moved outwards.

The solution therefore is to add an extra copy of the square to the align-
ment kernel. Thus the kernel becomes the direct product of seven copies of
the group R w© Z2 w© Z2. Furthermore, this will be controlled by an extra
component to be added to the 6-fold direct product on the level above; i.e.,
the middle line in expression (13.18). The component need not be the full
affine group because the main room is not going to be moved in relation to
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itself (only in relation to the World frame which is an affine movement al-
ready encoded in the highest control group). Therefore the added component
need only be the group {e}, thus:

[R w© Z2 w© Z2]U
w©[AGL(2,R)×AGL(2,R)×AGL(2,R)×AGL(2,R)×AGL(2,R)
×AGL(2,R)× {e}]w©AGL(2,R) (13.23)

where the third line shows the added control component. Now, in this ex-
pression, we infer that there are seven copies of the group R w© Z2 w© Z2

in the alignment kernel, because the suffix U tells us that the unfolding is
canonical (Definition 13.2), and this means that the alignment kernel must
contain as many copies of primitives as are required by the wreath-direct ac-
tion from above. Thus we infer the number of copies in the alignment kernel
from the number of components in the direct product above - which, in this
case, is seven. It should be emphasized that, even though the extra compo-
nent in the middle-level control group is the trivial {e}, it nevertheless is
explicitly required to make the middle level act on the alignment kernel via
a wreath-direct action; i.e., the components of the 7-fold middle level act on
the components of the 7-fold alignment kernel component-wise.

When indexes are put on the groups, expression (13.23) then becomes

[[R w© Z2 w© Z2]P1 ]U
w© [ g1aP1AGL(2,R)aP1 × g2aP1AGL(2,R)aP1 × g3aP1AGL(2,R)aP1

× g4aP1AGL(2,R)aP1 × g5aP1AGL(2,R)aP1 × g6aP1AGL(2,R)aP1

× aP1{e}aP1 ]

w© aP1AGL(2,R)P1 . (13.24)

Careful consideration reveals that there is one more copy of the Cartesian
frame (square) that needs to be added to the alignment kernel. This gives
the internal symmetry group of the World frame. The reason this is needed is
because, according to our theory, the World symmetry group is actually used
in shape generation. For example, it defines the symmetry structure of the
starting construction plane in CAD, as given in the theory of construction
planes on p. 212.

With this addition to the alignment kernel, we need to add a correspond-
ing component {e} onto the highest control group, via direct product, to
obtain the requisite wreath-direct action. The {e} will mean that the World-
frame will not actually be moved, but can undergo internal symmetry trans-
formations from its corresponding component in the alignment kernel. The
new group is thus:
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[[R w© Z2 w© Z2]P1 ]U
w© [ g1aP1AGL(2,R)aP1 × g2aP1AGL(2,R)aP1 × g3aP1AGL(2,R)aP1

× g4aP1AGL(2,R)aP1 × g5aP1AGL(2,R)aP1 × g6aP1AGL(2,R)aP1

× aP1{e}aP1 ]

w© aP1AGL(2,R)P1 × P1{e}P1 . (13.25)

The reader will recall that P1, as an input index on a control group, means the
primitive P1 in its initial state. Here P1 is the square, i.e., the hyperoctahedral
wreath group which is the group of the Cartesian frame. Therefore the input
index P1 means the Cartesian frame in its initial state, which is the World
frame W . Therefore all occurences of the index P1 in the last line can be
written as W .

13.6 Why Internal Symmetry Groups

The reader might wonder why we have been so careful to ensure the presence
of an internal symmetry group for each object. The reason is extremely pow-
erful: A basic claim of our system is that plans are inferred from symmetries.
This comes from our recoverability rules in Chapter 2. Thus the actual use
of the rooms - e.g., to draw them, to build them, to navigate them, etc. - is
inferrable from their symmetry structures.

13.7 Base and Subsidiary Alignment Kernels

When defining unfolding groups (p. 246), we characterized them by two prop-
erties: their effect is selective, and they act by misalignment. We have seen
how canonical unfoldings are selective - they use the mechanism of wreath-
direct products. What now needs to be understood is the way in which they
work by misalignment.

Let us consider expression (13.25). What one can see here is that there is a
successive misalignment effect, as follows: In the last line, the two component
groups both have input indexes P1, the World frame. Now the output index
on the component {e} is P1; that is, there has been no alteration of P1

via this component. In contrast, the output index on the other component
AGL(2,R) is aP1, which is P1 having undergone an affine movement a.
Therefore the output indexes on the two components indicate that there has
been a misalignment with respect to the World frame P1.

Now go to the next level, as shown by the three lines above this. Here the
input index, on all of the seven direct-product components, is aP1. Notice
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that the output index on the component {e} is of course the same as the
input index. In contrast, observe that the output indexes on all the other
components are different. This means that there has been a misalignment
with respect to aP1.

It can be seen therefore that, as one progresses up the lines in expression
(13.25), there is a successive misalignment, first with respect to the World
frame, and second with respect to the altered World frame, which is the main
room.

Notice that alignments are actually represented by common input indexes
on the same level. That is, on the first level (i.e., the last line) the common
input index P1 represents the alignment of copies of P1. On the next level,
the common input indexes aP1 represent the alignment of copies of aP1.

Also notice the following: In the last line the two input indexes P1 ac-
tually present eight copies of P1. This is easy to infer from the structure of
indexes in the entire group. Thus the input indexes on the last line repre-
sent the entire eight objects in the alignment kernel. Next, on the three lines
above, the seven indexes represent seven aligned copies aP1. Therefore we can
consider this to be a subsidiary alignment kernel. Thus the initial alignment
kernel will be referred to as the base alignment kernel, and any remaining
alignment kernels, on subsequent levels, will be referred to as subsidiary
alignment kernels. Of course the subsidiary alignment kernels correspond
to those subsets of the base alignment kernel where alignments have not yet
been broken.

13.8 Cloning

Cloning is a basic operation in object-oriented software. Computer-aided
design and solid modeling would be almost impossible without it. Also,
cloning is fundamental to prototype-based languages, because, unlike the
conventional object-oriented approach, which starts with classes and gen-
erates objects by instantiating classes, the prototype approach starts with
actual objects and generates further objects by cloning and modification, see
Blaschek [11].

Using the concepts developed so far in this chapter, we are now able to
give an algebraic representation of cloning. Expression (13.25) illustrates our
approach. As was pointed out, one infers from the wreath-direct action in this
expression that there are a total of eight copies of the World frame W = P1.
The group therefore keeps a record of the number of copies created of an
object. We thus offer the following algebraic theory of cloning:

ALGEBRAIC THEORY OF CLONING. The set of cloned objects is
given by the alignment kernel. As each clone is created, extend the alignment
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kernel by its symmetry group, and simultaneously extend a direct product
within one of the control levels by a component representing the command
group of the cloned object. This is captured by a canonical unfolding group.

The fact that command groups act by misalignment on clones is im-
portant: This feature can clearly be seen in CAD and solid modeling,
where clones are initially coincident, and are subsequently moved away from
each other and deformed. Thus, generally, successive actions on clones is
symmetry-breaking.

13.9 The Inference Structure

The notation in (13.25) is complete in the sense that it allows us to infer the
entire structure of the group and its action. The inference is as follows: The
symbol U tells us that the unfolding is canonical, and that there are therefore
as many copies of the given primitive as are required by the wreath-direct
actions from above it. Thus the required copies must be counted by going
through those wreath-direct actions. Start with the last line. Here there are
two components each with an input index P1. Furthermore, the output index
aP1, on one of these two components, becomes the input index on the seven
components of the direct product on the next level. Therefore, the conclusion
is that there are a total of eight copies in the alignment kernel.

13.10 Group Elements

It is now necessary to understand what an element of the group (13.25) looks
like. For this, a notation is required that is slightly more explicit than that just
given. We must register the fact that the middle level of the group is not a 7-
fold direct product but is actually an 8-fold direct product. This is inferrable
from the previous notation: The notation lead to the conclusion that the
alignment kernel is 8-fold. Therefore, to allow a wreath-direct action from
the middle level, there must actually be an eighth component in the middle
level. The missing component is simply P1{e}P1 from the final line. This
component must be copied into the middle-level direct product. Although
the crucial role of this component occurs only in the final line, where it is
part of defining the misalignment represented there, the algebraic structure
requires that it is carried over into the middle level, where it is simply a
”dummy” place-holder allowing the wreath-direct action. Therefore a more
explicit notation for the group is:
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[[R w© Z2 w© Z2]P1 ]U
w© [ g1aP1AGL(2,R)aP1 × g2aP1AGL(2,R)aP1 × g3aP1AGL(2,R)aP1

× g4aP1AGL(2,R)aP1 × g5aP1AGL(2,R)aP1 × g6aP1AGL(2,R)aP1

× aP1{e}aP1 × P1{e}P1 ]

w© aP1AGL(2,R)P1 × P1{e}P1 . (13.26)

Notice that the last component of the final line has been copied directly
above it. The entire direct product on lines 2, 3, and 4, will be called the
middle-level direct product.

With this notation, one can more easily understand an element of the
group, as follows. Again, let us use Fig. 13.3 (p. 280). One obtains a group
element by selecting an element from each of the nodes simultaneously. The
top node corresponds to the last line in expression (13.26), and each of the
middle-level nodes is a copy of the entire the middle-level direct product in
expression (13.26). Each bottom node in the graph is a copy of the alignment
kernel which is an 8-fold direct product of the primitive R w© Z2 w© Z2.

The process of constructing a group element is the same as given in
Sect. 13.4. However, in the current situation, the group element will actu-
ally record the misalignments as follows:

First, as before, considering only the top two levels of Fig. 13.3, the group
element is structured like this:

〈 (h1, h2, . . . , h6, e, e) , (g1, g2, . . . , g6, e, e) , . . . , (k1, k2, . . . , k6, e, e) | a, e 〉.
(13.27)

Obviously, the control element a, e at the far right comes from the final line
in (13.26), and each of the sub-vectors comes from a copy of the middle-level
direct product. Most importantly, we see the introduction of a number of
identity elements, not contained in the previous formulation (13.21) on p. 281.
These will be crucial to both contructing the misalignments and allowing
internal symmetries of the referents, as will be seen.

Next extending expression (13.27), to get a full group element, one obtains

〈 〈 u1, u2, u3, . . . , u∞|(h1, h2, . . . , h6, e, e) 〉 ,
〈 v1, v2, v3, . . . , v∞|(g1, g2, . . . , g6, e, e) 〉 ,
. . . ,

〈 w1, w2, w3, . . . , w∞|(k1, k2, . . . , k6, e, e) 〉 ,
| a, e 〉. (13.28)

where each sub-vector has been extended leftward by an associated sub-sub-
vector, for example, u1, u2, u3, . . . , u∞. In this new version, each component,
ui is a selection from a copy of an 8-fold alignment kernel, rather then a 6-fold
kernel as before.

The action of the group element in expression (13.28) is as follows: Any
configuration can be considered to be a configuration of eight ”rooms”, where
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the eighth is the World frame. The above group operation will be applied to
such a configuration.

In particular, let us take the configuration to be the starting one, where
all eight rooms are coincident clones of the World frame. This starting con-
figuration (as with any configuration) will correspond to a particular node
on the bottom of the tree (in fact, the left-most node, for the starting config-
uration) - and will select its corresponding elements upward in the full group
element. Thus, let us suppose that the configuration corresponds to u1 in the
first sub-sub-vector in expression (13.28), and therefore selects sub-vector
(h1, h2, . . . , h6, e, e) above it.

Now apply the full group element to the starting configuration. The con-
trol element a, e, on the last line in expression (13.28), prescribes an affine
transformation for these eight clones, in the following way: The e applies to
the World frame, which will therefore not move. The a applies to the seven
actual rooms, and will mean that they move out together from the World
frame, to become seven coincident copies of the main room.

Next, apply the associated sub-vector (h1, h2, . . . , h6, e, e). The six hi will
move six of the rooms to become the outer rooms, and the first e will retain
the seventh room as the unaltered main room, and the second e will retain
the eighth as the unaltered World frame.

Finally, apply the internal symmetry u1. Since this is a selection from a
copy of the alignment kernel, which is a 8-fold direct product of R w© Z2 w© Z2,
the effect of u1 will be to apply translations to each of the sides of the eight
rooms, and a 2-level hierarchy of reflections to those sides. The translations
will be individual to each side, and the reflection hierarchy will be individual
to each room.

We have just described the application of the group element to the starting
configuration. But the same group element can be applied to any configura-
tion, i.e., any other node along the bottom of the figure, and the selective
effect will work accordingly. Most crucially, the identity elements e will allow
misalignments with respect to the same referents as before (main room and
World frame), because the identity elements e occur in the same positions.
Furthermore, these identity elements concern only the affine movements on
the referents. The referents can still alter internally via their associated sym-
metry groups in the alignment kernel.

13.11 Adding the Anomaly

We are now ready to solve the main issue of this chapter: adding an anomaly.
The example being considered is the apartment in Fig. 13.2 where an exten-
sion has been built onto Room 5, and we are choosing to regard this as an
anomaly.
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The techniques developed so far in this chapter were designed to handle
this in a natural way. First, for convenience, let us take expression (13.26),
for the apartment without the anomaly, and re-write it here, thus:

[[R w© Z2 w© Z2]P1 ]U
w© [ g1aP1AGL(2,R)aP1 × g2aP1AGL(2,R)aP1

× g3aP1AGL(2,R)aP1

× g4aP1AGL(2,R)aP1

× g5aP1AGL(2,R)aP1

× g6aP1AGL(2,R)aP1

× aP1{e}aP1 × P1{e}P1 ]

w© aP1AGL(2,R)P1 × P1{e}P1 . (13.29)

Here, for readability the groups for Rooms 3, 4, 5 and 6, have been put on
Lines 3, 4, 5 and 6, respectively. These are easily identifiable by the fact that
the left-most index gi identifies Room i. Each of these groups on these lines,
generates the associated Room i (output index) from a copy of the main
room (input index).

Now, to generate the anomaly, we merely wreath sub-append a component
to Room 5 on the Line 5 as follows:

[[R w© Z2 w© Z2]P1 ]U
w© [ g1aP1AGL(2,R)aP1 × g2aP1AGL(2,R)aP1

× g3aP1AGL(2,R)aP1

× g4aP1AGL(2,R)aP1

× [[s1g5aP1AGL(2,R)g5aP1 × g5aP1{e}g5aP1 ] w© g5aP1AGL(2,R)aP1 ]

× g6aP1AGL(2,R)aP1

× aP1{e}aP1 × P1{e}P1 ]

w© aP1AGL(2,R)P1 × P1{e}P1 . (13.30)

Before explaining the added component, observe that, because it is wreath
sub-appended to only one of the direct-product components, it will affect
only those parts of the alignment kernel controlled by the direct-product
component to which it is sub-appended.

Definition 13.3. A sub-local unfolding group is a canonical unfolding
group in which one of the control groups in a wreath-direct action, within the
group, is wreath sub-appended.

THEORY OF ANOMALIES. Anomalies are modeled by sub-local un-
folding groups.
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Now let us study expression (13.30). The wreath product symbol w© on Line
5 indicates that the output objects on the left of w© are children of the output
objects to the right of w©, in accord with our theory of (run-time) link inher-
itance in Chapter 7. Now let us look at the wreath sub-appended component
on Line 5, that is:

[s1g5aP1AGL(2,R)g5aP1 × g5aP1{e}g5aP1 ]

Here, the left group is s1g5aP1AGL(2,R)g5aP1 which moves a coincident copy
of Room 5 out to become the extension room, the anomaly. The right group
is g5aP1{e}g5aP1 which merely holds Room 5 where it is. In other words,
we have created a misalignment of two clones of Room 5. Notice that the
input indexes on both the left and right group are the same, that is, g5aP1.
Furthermore, this is the output index from the group g5aP1AGL(2,R)aP1

on the right of the wreath product w© in Line 5. Therefore, intuitively, the
parent-child relationships are as follows: The anomaly is a child of Room 5,
and Room 5 is a child of self. However, rigorously, one should express this in
terms of the clones involved.

The inference rules tell us that the alignment kernel now has nine clones
of the group R w© Z2 w© Z2. It is worth the reader tracking down the fate
of these copies. Notice in particular that the input index aP1 on Line 5 now
represents two copies, rather than one as before. These are fed out to the two
direct-product components that are wreath sub-appended in this line.

Let us give the label G to the wreath product on Line 5; that is:

G = [s1g5aP1AGL(2,R)g5aP1 × g5aP1{e}g5aP1 ] w© g5aP1AGL(2,R)aP1 .
(13.31)

Notice that an element in this wreath product is of the form:

h5 = 〈 (b1, e) , (b2, e) , . . . , (b∞, e) | h̃5 〉 (13.32)

where h̃5 is selected from the affine control group in G, and each (bi, e) is
from a copy of the direct-product constituting the fiber. The control element
h̃5 acts on two clones within the alignment kernel, clone 5 (which is Room 5)
and clone 9, which is the anomaly. It moves them simultaneously out from the
main room. Then any fiber element (bi, e) acts on these two rooms thus: the
bi moves the anomaly out from Room 5, and the e keeps Room 5 unchanged.
Because the anomaly is the ninth clone, it will be referred to as Room 9, even
though it is actually the eighth room of the eight actual rooms.

Now let us go back to the entire group in (13.30). It is necessary to
understand how an element in this group acts on configurations. For this,
an appropriate modification should first be made to the graph in Fig. 13.3
(p. 280). Consider any tree descending from a middle-level node. Let us call
this a terminal tree. An example is shown on the left in Fig. 13.4. Next
consider any branch in a terminal tree. This is illustrated in the center of
Fig. 13.4. In the new situation (i.e., with anomaly), each such branch has
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to be expanded as shown on the right in Fig. 13.4. This will be called an
expanded branch. It encompasses the extra structure in Line 5 of the group
(13.30). The expanded branch in Fig. 13.4 means this: In Line 5, there is
a newly introduced level, the direct product, i.e., the wreath sub-appended
level. This corresponds to the newly introduced middle node in the expanded
branch. The extra nodes at the bottom arise from extra fiber-group copies,
due to the introduction of this middle level.

Fig. 13.4. Expansions of the branches of a terminal tree.

Notice that the terminal tree on the left, and any branch as shown in
the center, come from the previous situation, where there was no anomaly.
The expansion on the right is the situation after the anomaly is introduced.
Furthermore, this expansion is applied to every branch in the terminal tree
on the far left. This expansion should be understood more fully, as follows:

As was said, the branch in the center of Fig. 13.4 comes from the previous
situation of the apartment without the anomaly. Consider the bottom node
in the branch. It is a copy of the alignment kernel and therefore has index:

(h1, . . . , h4, h5, h6, e, e) (13.33)

in the node above it. This index represents a configuration of the six outer
rooms in relation to the main room. In the new situation (with anomaly), the
index from the upper node is exactly the same, except that the fifth entry h5

now comes from the wreath-product group that constitutes Line 5 in (13.30);
that is the group labeled G in expression (13.31). As stated, any element of
G is of the form (13.32) above. Therefore, substituting (13.32) in (13.33), one
gets:

(h1, . . . , h4,

h5︷ ︸︸ ︷
〈 (b1, e) , (b2, e) , . . . , (b∞, e) | h̃5 〉, h6, e, e) (13.34)

Most crucially, notice that within the overbrace, there is now a list of elements
(bi, e). They correspond to the different alternative misalignments of Room
9 with respect to Room 5. These correspond to the nodes at the bottom of
the expanded branch in Fig. 13.4.
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We can therefore express the structure in the following way: In the previ-
ous situation, the bottom node of a branch (center of Fig. 13.4) corresponded
to a single configuration of the outer six rooms. Furthermore, each of the bot-
tom nodes in the expansion (right of Fig. 13.4), corresponds to exactly the
same configuration of six outer rooms. However, each of those bottom nodes
have a different relation of Room 9 to Room 5. To repeat: All the bottom
nodes in an expanded branch have the same configuration of the six outer
rooms, but a different relation of Room 9 to Room 5.

Next, let us look at the index structure of a bottom node in the expanded
set. Each bottom node is a copy of the alignment kernel. This is a configura-
tion of the nine rooms, including the World frame and Room 9 (the anomaly).
The index on a copy of the alignment kernel, is the group element (13.34),
except for this: only one of the (bi, e) must be selected from the list of such
elements within the overbrace. In other words, the index is of the form:

(h1, . . . , h4, 〈 (bi, e) | h̃5 〉, h6, e, e). (13.35)

The elements along this index tell us exactly what to do with each of the
nine rooms. Any element of the form hi tells us to move Room i in relation
to the main room by the amount hi. The element 〈 (bi, e) | h̃5 〉 tells us to
move Rooms 5 and 9 together by amount h̃5, and then Room 9 by amount
bi. Finally, the two elements e fix the World frame and main room.

Notice that an extra index (a, e) must be added at the end telling us the
misalignment of the main room from the World frame. Thus one gets this:

[(h1, . . . , h4, 〈 (bi, e) | h̃5 〉, h6, e, e), (a, e)]. (13.36)

Therefore, any bottom node is of the form:

[[R w© Z2 w© Z2]U ][(h1,...,h4,〈(bi,e)|h̃5〉,h6,e,e),(a,e)]

where the symbol U here indicates the 9-fold direct product of the iso-regular
group it encloses.

Let us now define an element from the entire group in expression (13.30).
Again, one obtains such an element by selecting an element from each of the
nodes simultaneously. First, as before, considering only the top two levels of
the entire graph, we find that the group element is structured like this:

〈 (h1, . . . , h5, h6, e, e) , (g1, . . . , g5, g6, e, e) , . . . , (k1, . . . , k5, k6, e, e) | a, e 〉.
(13.37)

Although this looks the same as in the previous sections, the fifth entry in
any sub-vector, for example entry h5, is now of the wreath form shown in
(13.32).

Therefore element (13.37) is really
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〈 (h1, . . . , h4,

h5︷ ︸︸ ︷
〈 (b1, e) , (b2, e) , . . . , (b∞, e) | h̃5 〉, h6, e, e) ,

(g1, . . . , g4,

g5︷ ︸︸ ︷
〈 (c1, e) , (c2, e) , . . . , (c∞, e) | g̃5 〉, g6, e, e) ,

. . . ,

(k1, . . . , k4,

k5︷ ︸︸ ︷
〈 (d1, e) , (d2, e) , . . . , (d∞, e) | k̃5 〉, k6, e, e) ,

| a, e 〉. (13.38)

However, for readability, use the shorter notation (13.37). To get a full group
element, one extends expression (13.37) to obtain:

〈 〈 u1, u2, u3, . . . , u∞|(h1, . . . , h5, h6, e, e) 〉 ,
〈 v1, v2, v3, . . . , v∞|(g1, . . . , g5, g6, e, e) 〉 ,
. . . ,

〈 w1, w2, w3, . . . , w∞|(k1, . . . , k5, k6, e, e) 〉 ,
| a, e 〉. (13.39)

Finally, one can apply the group element to any configuration. A configu-
ration is a bottom node, and its index is of the form (13.36), which will now
be re-written with primes, thus:

[(h′1, . . . , h
′
4, 〈 (b′i, e) | h̃′5 〉, h′6, e, e), (a′, e)]. (13.40)

The group element is a simultaneous selection from each of the nodes in the
graph. When it is applied to a configuration, the configuration selects only
those components that correspond to its upward path in the graph. In this
way, one configuration is sent to another configuration by a control-nested
τ -automorphism.

Most crucially therefore, the group we have constructed acts as a sym-
metry group on the space of configurations. According to our theory, this
symmetry description is basic to any plans involving the configuration, i.e.,
its design, construction, navigation, etc.

13.12 Adding more Primitives

This chapter has so far discussed the situation in which the alignment kernel
consists of several clones of only one primitive. However, many situations
require more than one primitive. According to our theory, primitives are iso-
regular groups (wreath c-polycyclic, wreath-isometric). One adds primitives
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Fig. 13.5. A structure using two iso-regular groups.

by adding iso-regular groups to the alignment kernel. The remaining hierarchy
of the group is constructed using the same rules as before.

An example is shown in Fig. 13.5. Here the anomaly has been chosen to
be a circle. This means that the alignment kernel contains a second primitive
P2 which labels a circle. The full group of the structure is now:

[[SO(2)]P2 × [R w© Z2 w© Z2]P1 ]U
w© [ g1aP1AGL(2,R)aP1 × g2aP1AGL(2,R)aP1

× g3aP1AGL(2,R)aP1

× g4aP1AGL(2,R)aP1

× [[s1g5aP2AGL(2,R)g5aP2 × g5aP1{e}g5aP1 ]

w© g5aP2 , g5aP1AGL(2,R)aP2 , aP1 ]

× g6aP1AGL(2,R)aP1

× aP1{e}aP1 × P1{e}P1 ]

w© aP2 , aP1 AGL(2,R) P2 , P1 × P1{e}P1 . (13.41)

This is exactly the same as the previous group (13.30) on p. 289, except for
quite simple modifications on the first, fifth and final lines, as follows: The
modification on the first line is to add the new primitive into the alignment
kernel. The symbol U now means that there will be as many clones of each
primitive Pi within the kernel as are required by the wreath-direct actions
defined from above by the control groups.

Next, go to the last line. Here the only modification is that the input
index on the affine group now contains both primitives, and that the output
index aP2, aP1 is the application of the affine transformation a to this pair
of primitives.
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The final modification is in Line 5. The input index aP2, aP1 on this line
is the output index from the bottom line. The affine control group applies g5
to this pair, and then the two components of the direct-product fiber-group
misalign this pair, the affine component acting on only the circle and the
identity component acting on only the square.2

Notice that all other lines in expression (13.41) are the same as those in
the previous expression (13.30). Notice also that the double inputs in the
index on Line 5 also existed in the previous group, but had to be inferred
from its direct-product fiber.

One sees therefore that the addition of primitives is easily handled in our
system. The underlying reason for this is the power of canonical unfoldings.
For example, it was this that allowed the change from the square anomaly
to the circle anomaly to be made so easily. The algebraic change very much
mirrors the actions that a designer would make in changing his/her design,
and the inheritance effects that would propagate as a result of the changes.

13.13 Multi-index Notation

In fact, we actually did not define the meaning of the multi-indexes that
appear in the last line and Line 5 of expression (13.41). This is done now:

Notation 13.1 In canonical unfoldings, multi-indexes will be interpreted as
(group) direct products, thus:

x,yG
u,v = xG

u × yG
v for x �= u; y �= v.

For example, the affine component in the last line of (13.41) is:

aP2 , aP1AGL(3,R) P2 , P1 = aP2AGL(3,R)P2 × aP1AGL(3,R)P1 .

Similarly, on Line 5, the double index on the control group means that this
group is a direct product. Observe an implication of this: The wreath product
symbol w© on Line 5 relates a direct-product control group and a direct-
product fiber group. The consequence is that one can now understand that
the w© means a wreath-direct action.
2 Note that, throughout this expression, there is no use of the identity group for
the circle. This is because there is no referent circle explicitly used in the design -
which means that it is not necessary to hold, within the alignment kernel, a copy
of the independent internal symmetries for such a referent circle (i.e., only for
the circle that is actually explicit). Internal symmetries for a non-explicit copy
would be unnecessary because the symmetries serve the role of plans, e.g., for
design and navigation, and plans are not needed for non-explicit copies. Note
that the cloning structure of the alignment kernel therefore gives us a system for
specifying occupancy that is different from our other system using an occupancy
group.
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On Line 5, the fiber-group direct product can also be reduced using a
double index, via the following rule:

Notation 13.2 In canonical unfoldings, multi-indexes with an unchanged
coordinate y will be interpreted thus:

x,yG
u,y = xG

u × y{e}y

(with the corresponding expression for an unchanged first coordinate).

13.14 Symmetry Streaming

The issue to be examined now applies equally to the first anomaly using the
square primitive, and the second anomaly using the circle primitive. There-
fore, let us return to the former example.

The issue is this: When one inspects the extension room, one notices that
it is not merely derived from a square, e.g., by deformation, but it actually is
square. This means that it is open to two interpretations, corresponding to the
two types of inference defined in Sect. 2.9, external vs. internal inference. All
inferences are of one of these two forms, as follows. (1) In external inference,
the data set is assumed to contain a record of only one state of a process, and
any past state is therefore assumed to be outside what is observable in the
data set. With respect to this, note that the Externalization Principle says
that any external inference goes back to an iso-regular group. (2) In internal
inference, the data set is assumed to contain records of more than one state
of a process, and therefore past states are observable in the data set.

Now let us see what the two types of inference do with the square anomaly.
(1) In the case of external inference, the square, being an iso-regular group,
is assumed to be a starting state. (2) In the case of internal inference, one
sees the square as derived by deformation from the rectangular Room 5 to
which it is attached.

Both inferences are possible. The advantage of the external inference is
that one does not assume an unnecessary history of deformation; i.e. start-
ing with a square primitive, then deforming to produce the main room and
Room 5, and then un-deforming to produce the square extension room. How-
ever, the disadvantage is that one looses the child-parent relationship that
the anomaly has with respect to Room 5. In contrast, the advantage of the
internal inference is that one retains the child-parent relation to Room 5, but
introduces apparently unnecessary deformations.

The problem is resolved by regarding some of the parameters of the affine
group as external and some as internal. In accord with the theory of Chap-
ter 2, it is appropriate to regard the deformational parameters as external,
and the translational ones as internal. The result is this: The clone of the
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square primitive, used by the anomaly, was initially situated at the World
frame exactly like the others. This clone underwent the translation to the
main room position - i.e., maintaining positional alignment - and the fur-
ther translation to the position of Room 5 - again maintaining positional
alignment - however, it did not undergo the deformations that were used to
create the main room and Room 5. In this way, the symmetry of the square
is protected through the derivational history till it becomes the square of the
anomaly. We will call this process symmetry streaming; i.e., it streams
the symmetry through the derivational history.

In the particular example being studied, the effect of the symmetry
streaming is that alignment is preserved with respect to position but not
with respect to deformation. This means that deformational misalignment
started earlier than was coded in the previous formulation. In other words,
without symmetry streaming, deformational misalignment is delayed so that
it can occur together with the positional misalignment.

There is thus a choice in formulation: either one can use the previous
formulation, in which case our inference structure is entirely internal; or one
chooses the new formulation in which the inference structure is partially ex-
ternal. The diagram of the apartment is perceptually ambiguous as to which
formulation one should choose, and the empirical validity of this ambigu-
ity is easy to demonstrate in psychological experiments. Therefore, rather
than regarding the ambiguity as a disadvantage, one should code for both
interpretations. The formulation of the first interpretation has been given in
expression (13.30) on p. 289. In fact, we need only two modifications of that
formulation to give the second interpretation. The latter is given thus:

[[R w© Z2 w© Z2]P1 ]U
w© [ g1aP1AGL(2,R)aP1 × g2aP1AGL(2,R)aP1

× g3aP1AGL(2,R)aP1

× g4aP1AGL(2,R)aP1

× [[s1g9bP1AGL(2,R)g9bP1 × g5aP1{e}g5aP1 ]

w© ∗g9bP1 , g5aP1AGL(2,R)bP1 , aP1 ]

× g6aP1AGL(2,R)aP1

× aP1{e}aP1 × P1{e}P1 ]

w© ∗bP1 , aP1AGL(2,R) P1 , P1 × P1{e}P1 . (13.42)

The modifications occur in only the fifth and last lines. In the last line, the
affine group now has two input indexes, both P1. The first output index is aP1

where a is the translation and deformation needed to produce the main room.
The second output index is bP1 where b is only the translation needed to move
a copy of the square out to the main room position, without deformation. In
other words, b is the isometric component of the transformation a used for
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the rectangle. A star * is put in front of b to indicate this fact. Thus we
introduce following notation:

Notation 13.3 Consider two maximally aligned objects x and y. Then, a
starred multi-index of the form:

∗ax,byG
x,y = ∗axG

x × byG
y

will mean that operation a is the isometric part of operation b shown in
the index immediately to its right. The star will ensure that ax and by are
maximally aligned up to deformation. (Notationally, a star will prefix a
particular index only when that index is output; i.e., at the point of application
of a.)

To return to the group sequence (13.42). The index aP1 in the bottom
line will eventually become the square anomaly. Thus, the two output indexes
bP2, aP1 become the two input indexes on Line 5, and the rest of Line 5 is
altered accordingly. Notice another use of the star notation in that line. This
will help ensure that the anomaly is square. In more general circumstances,
the successive use of the star can delay deformation for as long as the designer
wishes it to be delayed.

13.15 Complex Shape Generation

Unfolding groups formulate fundamental aspects of our theory of complex
shape. For we argue:

Complex shape generation proceeds by a series of symmetry-
breaking phase-transitions, that occur by selective misalign-
ment. This is given by a wreath-product hierarchy in which
the fiber groups, representing the symmetry ground-states,
are the alignment states, and the successive control groups
create the selective misalignments by transfer. We call this
process, unfolding.

While we have, in the preceding chapters developed the structure of un-
folding groups, much more now needs to be said about about how they work
in shape-generation. For this we will take the approach of applying them to
particular areas such as mechanical and architectural design. In particular,
the next chapter on mechanical design is crucial for all readers.



14. Mechanical Design and Manufacturing

14.1 Introduction

The techniques developed in this chapter are relevant to
all areas of shape representation from human perception to
quantum mechanics, and therefore this chapter should not
be omitted by the reader.

For example, a structural factor that is important to all domains is as-
sembly - the fitting together of objects. Assembly works by the imposition of
constraints, e.g., that the side of one object must mate with the side of an-
other object, or that their axes must align. Such constraints are basic to our
world on every level. For example, on the visual level, a garage is attached to
a house, and objects are placed on tables, or in chemistry the spin axes of two
particles can be aligned. Thus assembly structure should be regarded as basic
to perceptual psychology (where it has been completely ignored) as well as
physics and chemistry, etc. Assembly is analyzed in the final sections of this
chapter. Furthermore, several other sections have this general importance to
shape representation.

14.2 Parametric, Feature-Based, Solid Modeling

Mechanical computer-aided design (MCAD) and mechanical computer-aided
manufacturing (MCAM) are enormously sophisticated disciplines, capable,
for example, of designing an airplane of several million assembled parts.

The major software systems for mechanical design (MCAD) are para-
metric, solid-modeling, feature-based systems. These terms are explained as
follows:

Michael Leyton (Ed.): A Generative Theory of Shape, LNCS 2145, pp. 299-363, 2001. 
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(1) Parametric. This means that the physical shape of an object is deter-
mined by a number of constraints - e.g., a hole appears at the center of a
block, or at a specific distance from one edge. If you modify the object, e.g.,
change the size of the block, the constraints will propagate with the changes,
e.g., the hole will appear at the center of the modified block, or at the same
specific distance from one of its edges.

(2) Solid modeling. This refers to the fact that what is constructed is not a
surface model, but a model with material between the surfaces. This is useful
for many aspects of MCAD, for example, because the eventual machining of
the object will be achieved by the removal of material, e.g., by drilling or
milling.

(3) Feature-based. This means that the object is designed by adding suc-
cessive features1. Standardly, MCAD programs such as Pro/Engineer and
Mechanical Desktop use three types of features:

(a) Sketched features. These begin with sketching a profile curve on
a 2D plane. The sketch is then resolved (i.e., cleaned up); and finally
it is swept to create a 3D object.

(b) Placed features. These are standard features such as holes, cuts,
pockets, chamfers, rounds, slots, and shafts. They are pre-existing
in the software, and therefore the user merely has to instance and
place them at run-time. Therefore, the use of these features avoids
sketching.

(c) Datum features. Conventionally these are understood not as phys-
ical parts of the object, but are used as reference elements in the
process of designing the object; e.g., as reference points, axes, and
planes.

One often refers to (a) and (b) as physical features, and (c) as non-physical
(reference) features.

14.3 A Generative Theory of Physical Features

The physical features of a part tend to be defined with respect to func-
tions/actions in which they are involved rather than by the geometric struc-
ture that they represent. For example, a feature such as a hole is defined
1 Cunningham & Dixon [25], Rossignac [133], Shah [141], Hoffmann & Juan [59],
Chen & Hoffmann [20].
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by the function of drilling in the manufacturing stage. The term ”hole” is
therefore used, rather than its geometric term, which would be ”cylinder”.
Other examples of features are cuts, slots, pockets, chamfers, rounds, shafts,
etc. Because of the use of functionally-dependent terms rather than geometric
terms, there are often considerable problems converting features defined in
one phase of the product life-cycle (e.g., design) into features defined in an-
other phase of the product life-cycle (e.g., manufacturing). Problems include
the fact that, in the design phase, one tends to use both addition and removal
of material, whereas in the machining phase, one tends to use only removal
of material. Therefore an object, created in the design stage by addition and
removal of material, has to be converted into an object created only by re-
moval, in the manufacturing stage. Because of this, there are considerable
difficulties in defining features, as well as recognizing them and converting
them.

According to this book, the reason why there are these difficulties is this:
The distinction between geometry and function is incorrect. In our generative
theory, function and geometry are the same. Shape is simply the frozen repre-
sentation of action, and the construction of this representation, is achieved by
rules for recoverability. These actions include the drawing actions of the de-
signer, the machining actions of the manufacturing process, the manipulating
actions of the user, etc.

We argue that the widely-accepted distinction between shape and func-
tion is due to the history of mathematics having taken an entirely incorrect
approach in which figures are essentially ”dead” sets, and geometric prop-
erties are memoryless with respect to action, i.e., invariant under groups of
actions (see Chapter 22).

In accord with the system developed in the present book, the argument
will be that the fundamental problems of mechanical CAD/CAM are solved
when one takes the following two-part approach: (1) Representation: Shape
must be represented generatively - which means in terms of action/function.
(2) Recoverability: The generative representation of shape must be recover-
able from data sets.

The method developed in this book, for solving the representational prob-
lem, is based on our fundamental claim that shape generation proceeds by
group extensions. Applying this approach to the issue of features, we say this:
Shape-generation proceeds by the successive addition of features. Each fea-
ture corresponds to a group. The successive addition of features corresponds
to successive group extensions.

Features −→ Mathematical Groups Gi.
Addition of Features −→ Group Extensions G1 E©G2 E©. . . E©Gn.

Furthermore, we place the additional restriction of maximizing transfer,
which means that, in any such extension, G1 E©G2, the lower group G1 has a
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decomposition into fibers, and the upper group G2 transfers the fibers onto
each other; i.e., the extension corresponds to a wreath product.

The issue of recoverability is solved by ensuring that the upper group is
symmetry-breaking/asymmetry-building on the fibers of the lower group.

The enormous power of this approach comes when one understands the
following:

THE ROLE OF GROUPS. The groups Gi in the generative group
extensions, correspond simultaneously to:

(1) symmetries of the object;
(2) phases of the generative process;
(3) ground-states of the generative process.

The correspondence between (1) and (2) is due to the History Symmetrization
Principle. This essentially implies one of our basic principles that symmetries
are the channels of action and therefore that plans are inferred from the
symmetry structure of a situation. The correspondence between (2) and (3)
is due to the fact that, by transfer, i.e., the wreath construction, a phase
becomes a fiber on which the next control level acts. The phase thus becomes
the symmetry-ground state for the next generative level.

Given this, our overall theory of features can now be stated as follows:
We argue that features are generative phases:

features ←→ generative phases.

Generative phases are given by the fiber structure of the wreath hierarchy
describing the object:

phase-structure ←→ fiber-structure.

Notice that, by our theory of grouping (Chapter 5), the groupings in an orga-
nization are given by the fibers (left-subsequences) of the wreath hieararchy:

fiber-structure ←→ grouping-structure.

This idea is important because features must be perceptually identified by
grouping. Therefore, inferentially, we argue that one goes from the symmetry
structure to the features, and this proceeds in the following way:
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THEORY OF FEATURE-EXTRACTION

symmetry-structure −→ generative-structure

−→ phase-structure
−→ fiber-structure

−→ grouping-structure

−→ feature-structure. (14.1)

We claim that this approach solves several major problems in mechanical
CAD/CAM. It explains deeply many aspects of features, their structure, their
relation to function, the ways that they can be added to each other, their
relation to assembly, etc. In the contemporary literature, all these aspects re-
main separate, non-systematic and confused. In contrast, in our theory, these
different aspects come together in a single unified structure that explains
them and shows their powerful logical organization.

14.4 Datum Features

According to the theory to be elaborated, the contemporary distinction be-
tween physical and datum features is due to a lack of insight into the gen-
erative process. Our claim will be that datum features are really a subset of
physical features:

THEORY OF DATUM FEATURES

Since datum features are reference objects for generative
phases, they must correspond to phase-transitions. There-
fore, by our theory of reference objects (Chapter 8), da-
tum features must be the symmetry ground-states of successive
phases. The generative process proceeds by breaking the
symmetries of the datum features.

Let us contrast our view with the standard view of datum features, which
can be represented by the following quotation:

”Datum planes and axes are features used to provide references for
other features, like sketching planes, dimensioning references, view
references, assembly references, and so on. Datum planes and axes
are not physical (solid) parts of the model, but are used to aid in
model creation (or, eventually, in an assembly). A datum is a plane
(or axis) that extends off to infinity.” Toogood [148] p5-2.
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It will be useful to go successively through each sentence in the above
quotation and to interpret it in terms of our generative theory of shape.

Sentence (1): ”Datum planes and axes are features used to provide refer-
ences.”

Interpretation: As said above, in our theory, references are starting points of
generative phases, and they are therefore the symmetry ground-states of the
successive asymmetry building (symmetry-breaking) processes.

Second part of sentence (1): ”references for other features, like sketching
planes, dimensioning references, view references, assembly references, and so
on.”

Interpretation: This quotation shows the wide applicability of datum ob-
jects. Nevertheless, it will be seen, throughout this chapter, that our sym-
metry ground-state theory of datum objects works for each of these areas
of applicability, from sketching planes at the beginning of part-design, to
constraint-imposition in the final assembly phase.

Sentence (2): ”Datum planes and axes are not physical (solid) parts of the
model, but are used to aid in model creation (or, eventually, in an assembly).”

Interpretation: The view we take is very different. We argue that the datum
features are actually part of the objects geometry. Because they correspond
to symmetry states, they correspond to either the fiber group or the control
group of the wreath hierarchy describing the geometry of the object. For
example, a datum plane corresponding to the side of a block, represents a
fiber of the wreath product.

Sentence (3): ”A datum is a plane (or axis) that extends off to infinity.”

Interpretation: According to our theory, the extension to infinity means that
the datum corresponds to the full symmetry group of the fiber or control in
the wreath product, i.e., before occupancy has been imposed. This supports
our view that the full group underlies the organizational (e.g., perceptual
structure) of the object. Occupancy is imposed by adding another level to that
full symmetry structure but not removing it. This is critical for the percep-
tual representation of the shape by the user, as well as feature-decomposition
in manufacturing. Generally, according to our theory: All objects, fill their
entire group. That is, the entire group is relevant in perception, design, man-
ufacturing, etc.
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14.5 Parent-Child Structures as Wreath Products

All mechanical CAD, from part-design to assembly, is structured into parent-
child hierarchies as the design proceeds. In any major program, such as
Pro/Engineer, these hierarchies are available to the designer in clearly laid
out tables, which the designer can access at any point in time. That is, the
designer can click on a feature, and request its position in the parent-child
hierarchy, and the program will show the parents and children of the feature
both by highlighting these in the model, as well as displaying them as lists in
a hierarchy table. This information is crucial for all designers. The reason is
that, typically, a designer needs to modify features, and the modification of
a feature will, in most cases, seriously affect the children of a feature. It will
be seen throughout this chapter that, in accord with our algebraic theory of
inheritance in Sect. 7.3, parent-child structures in MCAD are best modeled
by wreath products.

14.6 Complex Shape Generation

This chapter will develop a theory of part design, assembly and manufactur-
ing, in mechanical CAD/CAM. The argument exemplifies our general the-
ory of complex shape-generation: A complex shape is best represented as
generated from a hierarchy of symmetry-ground states by a succession of
asymmetry-building (symmetry-breaking) phase-transitions that maximize
transfer and recoverability via unfolding groups.

Each phase in the design and manufacturing of the object will follow
this structure, from the creation of the base feature of a part, to feature
attachment, to assembly, to machining.

We will claim that this theory captures the CAD/CAM process in a pow-
erful way that maximizes the goals of the designer - which include the in-
telligent and insightful organization of the design, as well as the optimal
organization of the manufacturing end-point.

14.7 Review of Part Design

Mechanical design proceeds by designing parts and then assembling them.
This section will briefly review the main aspects of mechanical part design,
and then, Sect. 14.9 will start to present our own theory of this process.

The design of a mechanical part begins with a phase which has major
ramifications on all aspects of the design and assembly process. This phase is



306 14. Mechanical Design and Manufacturing

called sketching - which is a rough drawing of the mechanical part - a drawing
that will later be resolved by the program into an accurate drawing.

The role of sketching is very profound and is not simply that of allowing
initial inaccuracy. It is, in fact, a powerful means of allowing parameters and
constraints to be defined - and these eventually become basic to the assembly-
linking and kinematic aspects of mechanical design that distinguish it, for ex-
ample, from architectural design. The reader should note that sketching and
its extraordinary relation to parameters and constraints is basic to major me-
chanical software packages such as Pro/Engineer and AutoCAD Mechanical
Desktop.

Let us begin by describing and illustrating the role of sketching. First,
the work-flow sequence in the design of a mechanical part follows these eight
stages:

WORK-FLOW IN MECHANICAL PART-DESIGN

(1) Choose a construction plane.
(2) Sketch.
(3) Align.
(4) Dimension: Define parameters.
(5) Resolve.
(6) Edit constraints and parameters.
(7) Resolve again.
(8) Sweep (e.g., extrude, revolve, etc).

This procedure will now be illustrated in order to show the critical role of
sketching. For this initial illustration, the simplest possible example will be
taken: the drawing of a rectangular block. It is necessary to fully understand
this example before going on to complex part design.

(1) Choose a construction plane.
It was seen in Sect. 8.14 (p. 210), that the standard procedure for drawing
a block has two phases: The designer traces out one face of the block on a
construction plane, and then extrudes (sweeps) this face in the perpendicular
direction to produce the block. This procedure is used here in the above
work-flow sequence, except for the additional factor that the initial face of
the block is merely ”sketched”.

The procedure is as follows: The first phase is the same as in any 3D
solid modeling program: the definition of a construction plane, as was seen in
Sect. 8.14. Pro/Enginneer visually presents the designer the three Cartesian
planes, as shown in Fig. 14.1, and asks the designer to select one of these
as the construction plane - called the sketch plane (the term ”sketch plane”
is also used in AutoCAD Mechanical Desktop). Each of the three planes is a
datum plane - called DTM1, DTM2, DTM3. In our particular example, the
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assumption will be that the designer choosesDTM3 as the construction plane
(sketch plane). The program then rotates this plane to become the view plane
facing the designer; i.e., identified with the screen itself. The program thus
becomes like a drafting program, except that in the next phase, sketching, a
new set of issues appears.

Fig. 14.1. The designer chooses one of the 3 Cartesian planes as a construction
plane.

(2) Sketch.
As said above, the designer will sketch the first face of the block on the
construction plane (sketch plane). Let us consider how the issue of inaccuracy
first appears here. In standard 3D modeling, the drawing of the first face of
the block is entirely accurate. This is because the designer has explicitly
selected the block option on the program, and the program therefore knows
that the edges are parallel or perpendicular to each other and to the grid
lines of the construction plane. That is, these constraints are built into the
choice of the block option.

However, in ”sketching” in mechanical CAD, one will not explicitly choose
the block option. This is because one will want to discover the constraints
in the process of design - to drive the subsequent assembly and kinematic
aspects.

Therefore, because one has not explicitly selected the block option on the
program, one is going necessarily to be inaccurate in drawing. The nature
of this inaccuracy is as follows: To draw the face of the block, one draws
a polyline - consisting of a sequence of four straight lines. These lines are
accurately straight, because straight lines are the easiest kind of lines to draw
in CAD - one merely selects the endpoints by clicking the cursor at points
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Fig. 14.2. The sketch-resolve sequence in mechanical CAD.

on the screen and the program provides a straight line between any pair of
successive endpoints. However, what is inaccurate is the designer’s placement
of the points. Thus one obtains a somewhat skewed rectangle, with sides not
really parallel or perpendicular to each other and the grid lines. The situation
is therefore as shown in Fig. 14.2a.

Note that the vertical and horizontal axes represent datum planes DTM1
and DTM2 respectively; the sketch plane facing the viewer is DTM3.
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(3) Align.
In this phase, one starts the procedure by which the constraints of the design
will be determined. Specifically, one specifies alignment with the axes of the
construction plane. Typically, in this example, one will specify that the left
edge of the rectangle is aligned with the vertical datum plane, DTM1, and
that the bottom edge of the rectangle is aligned with the horizontal datum
plane, DTM2. One specifies alignment by clicking the pair of entities to be
aligned; for example, in Fig. 14.2b, the two dots represent the two clicks that
select the left line and the vertical axis to be aligned.

(4) Dimension: Define parameters.
Here one chooses certain sides on which one will create dimensions, as shown
in Fig. 14.2c. These dimensions will be specified by symbols (not numbers!)
at this stage, for example, d1and d2, as shown (Fig. 14.2c). The dimensions
are the parameters of the drawing.

(5) Resolve.
This phase is extraordinarily powerful: The program is asked to interpret
the sketch. The result of this interpretation will be that the program will
return a new version of the drawing, as illustrated in Fig. 14.2d, which is
a ”cleaned up” version of the original sketch. (The term ”resolve” is taken
from AutoCAD Mechanical Desktop; the programPro/Engineer uses the term
”regenerate” for this phase.)

Standardly, one considers resolution as a problem in geometric constraint
solving (Bouma, Chen, Fudos, Hoffmann, & Vermeer [13]). The constraints
are of three types:

(a) Geometric constraints.
(b) Alignments.
(c) Dimensioned parameters.

It was seen that type (b) is supplied by the designer in phase (3) above.
Furthermore, it was seen that the designer also supplies type (c) - but in a
symbolic form; for example, the symbols d1, d2, in Fig. 14.2c. These sym-
bolic dimensions are now given actual numerical values by the program; for
example, d1 = 8 and d2 = 7, as shown in Fig. 14.2d.

Type (a), the geometric constraints, are added by the program. To illus-
trate these, observe, in Fig. 14.2d, that the program has added a number of
symbols not of the numerical-dimension type. In this example, the symbols
are (1) the letter V on the right side, indicating that the computer has in-
terpreted this side as a vertical line, even though it was not really vertical
in the original sketch; (2) a parallel-bar symbol on both the top and bottom
lines, indicating that the computer has interpreted the top and bottom lines
as parallel.
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Table 14.1. Geometric constraints and interpretation rules in mechanical CAD

Constraints Interpretation Rules

HORIZONTAL Interpret approximately horizontal lines as horizontal.
VERTICAL Interpret approximately vertical lines as vertical.

PERPENDICULAR Interpret almost perpendicular lines as perpendicular.
PARALLEL Interpret approximately parallel lines as

parallel.
TANGENT Interpret approximately tangential line/arc pairs as

tangential.

COLINEAR Interpret approximately colinear lines as colinear.
CONCENTRIC Interpret approximately concentric arcs as concentric.

CLOSURE Interpret nearly closed figures as closed.

EQUAL X-VALUE Interpret almost equal X-values as equal.
EQUAL Y -VALUE Interpret almost equal X-values as equal.

EQUAL RADIUS Interpret circles with approximately equal radius as
having equal radius.

EQUAL LENGTH Interpret lines with approximately equal lengths as
having equal lengths.

REFLECTION Interpret approximately reflectional parts
as truly reflectional.

The addition of geometric constraints is a product of several rules that
the program uses. These are shown in Table 14.1.

(6) Edit constraints and parameters.
Having now been presented with the resolved sketch, the designer can edit the
two factors appearing in the resolved sketch: (1) geometric constraints, e.g.,
the designer can remove the parallelism constraint that appears in Fig. 14.2d;
and (2) dimension values, e.g., the designer can change the numerical value
of the length of a line.
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(7) Resolve again.
The resolve instruction is given again, and the drawing regenerates to exhibit
the consequences of the previous constraint editing.

(8) Sweep (e.g., extrude, revolve, etc).
In this final stage the designer sweeps the profile in the perpendicular di-
rection from the construction plane. As in Chapter 18, the term sweep will
be used to cover extrusion (translation) and revolving (rotating), as well as
more general sweeping, i.e., along an arbitrary smooth path. However, in the
initial examples, the sweepings considered here will be pure translations - for
ease of exposition.

14.8 Complex Parts

The work-flow for part-design, as listed on page 306 is used to create not
just rectangular blocks, but more complex parts. An illustration is given in
Fig. 14.3. The top diagram shows the rough sketch made by the designer,
and the middle diagram shows the resolution made by the program. The
resolution used more interpretation rules and constraints than the resolution
of the previous rectangular block. For example, consider the lines A and B
in the sketch at the top. As can be seen from the resolution in the middle,
these lines have been interpreted not only as vertical but as colinear. Also
observe that the rounds (arcs) C and D in the sketch at the top, have been
interpreted as having the same radius in the resolution in the middle, even
though they were not the same in the sketch at the top. Again, notice that
the two protrusions on the left have been interpreted as having the same
shape.

Finally, the bottom diagram shows the 3D extrusion.

14.9 A Theory of Resolution

We now begin our theory of resolution, which will be developed over the next
few sections. In developing this theory, we will provide an explanation of
certain crucial aspects of current resolution programs, but we also argue for
a substantial expansion of those programs, to make them much more helpful
to both the designer and manufacturer.

To present an initial overview of our argument, recall from p. 309 that
resolution involves the incorporation of three types of constraints:
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Fig. 14.3. Sketching, resolution, and extrusion for a more complex object.
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Fig. 14.4. Subjects were discovered to go through this reference sequence.

(a) Geometric constraints.
(b) Alignments.
(c) Dimensioned parameters.

Each of these constraints will be interpreted in terms of our generative
theory of geometry, as follows:

(a) Geometric constraints.

Let us consider again the psychological experiment reported in Chapter 2:
We found that subjects, presented with a rotated parallelogram, produced
the successive-reference shown in Fig. 14.4.

The theory of what is happening in this example was also presented there,
and is complex, involving issues such as the alignment of eigenvectors with
symmetry axes, externalization to control-nested hierarchies of isometries,
and so on. However, the two most basic factors are these: The subjects are
using the Asymmetry Principle, which factorizes asymmetries to obtain sym-
metries, and also the Symmetry Principle, which preserves symmetries.

One can see that this is exactly what is going on in the resolution in
Fig. 14.2. Indeed the transition from Fig. 14.2a, the sketch, to Fig. 14.2d, the
resolution, has strong similarities with Fig. 14.4. Why?

The answer comes from examining the list of interpretation rules in Table
14.1. Most crucially, we propose this:

THE MEANING OF GEOMETRIC CONSTRAINTS AND
THEIR INTERPRETATION RULES. The geometric constraints are
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symmetries. The interpretation rules in Table 14.1 are uses of (1) the Asym-
metry Principle, i.e., asymmetries in the current configuration are removed
leaving symmetries; and (2) the Symmetry Principle, i.e., symmetries in the
current configuration are preserved backwards in time. Both give the symme-
try ground-states of the generative process.

Notice also another important similarity between the successive reference
example in Fig. 14.4, and the resolution in Fig. 14.2: The symmetries to which
one returns are the symmetries of the reference frame. This accords with our
theory that a reference frame embodies the symmetry ground-state in the
generative process.

Comment 14.1 It is important to understand that, in resolution, the asym-
metries that are removed are those that are within the tolerances set by the
system or designer. For example, the interpretation of a slanting line as verti-
cal occurs only if the angle of slant lies within a tolerance around the vertical
direction. The slanting line is then captured by the vertical constraint and
pulled into the vertical position. However, if the line lies outside the tolerance,
then it is left alone by this constraint. Thus, it is important to recognize that
the rotated parallelogram in Fig. 14.4 is resolved to a square, only if it falls
within the associated tolerance. We will soon return to this issue.

(b) Alignments.

Alignments are indistinguishabilities, and are therefore symmetries; i.e.,
ground states. Thus, from now on, they will be classed structurally with
geometric constraints. Notice their similar role: as illustrated in Fig. 14.2
alignments are often with respect to reference frames, which we claim are
symmetry ground-states. (The main difference between the geometric con-
straints and the alignments is that the former are discovered by the resolution
program and the latter are specified by the designer.)

(c) Dimensioned parameters.

This is the final class of resolution constraints. The first crucial point we
wish to make about these constraints, is that, whereas the first two classes of
constraint were symmetry ground-states of the generative process, this third
class are asymmetry end-states of the generative process. However, this issue
is enormously subtle and requires careful examination as follows.

One needs to distinguish between two types of asymmetries that occur
within the sketch, as follows: Comment 14.1 said that resolution to the sym-
metry ground-states, i.e., to geometric constraints, occurs only if the asym-
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metries fall within the tolerances of those ground-states. The consequence
is that the rotated parallelogram in Fig. 14.4 could be treated in either of
two different ways by the resolution program: (1) if it fell within the toler-
ance, then it would resolved to the symmetry ground-state; or (2) if it did
not fall within the tolerance, then it would not be resolved to the symmetry
ground-state.

TWO CLASSES OF ASYMMETRIES. The asymmetries in the con-
figuration fall into two classes: (1) Inessential asymmetries - those falling
within the tolerance of the geometric constraints, and therefore removed from
the sketch to obtain the symmetry ground-states expressed by the geometric
constraints. (2) Essential asymmetries - those falling outside the tolerance,
and therefore not removed from the sketch.

However, we argue that, even though the second type are actually not re-
moved from the sketch, they are removed in the inference process that pro-
duces an intelligent resolved sketch. The reason is that the second class of
asymmetries must also be given a generative description, from symmetry
ground-states, in order that the resolved sketch is one that provides a use-
ful feature-based structure for the designer and manufacturer. It will take a
number of sections to fully grasp this, but we begin as follows:

Conceptually, one should understand the two classes of asymmetries as
two levels, one above the other. The inessential asymmetries are removed
first, and then the essential asymmetries. The reason is this: The inessential
asymmetries are like noise, and their removal can be conceived of as the
removal of noise. This removal leaves the resolved sketch. One then has to
remove the essential asymmetries in order to give a generative description of
the resolved sketch.

As an illustration, consider Fig. 14.5, which is the rotated parallelogram
sequence except that it has been preceded by an additional figure, which
is the actual sketch drawn by the designer. Notice for example, that the
opposite sides are not parallel in this first figure. Now, let us suppose that
this non-parallelism falls within the tolerance of the parallelism geometric
constraint, i.e., the non-parallelism is a inessential asymmetry. It is then
removed in going from the first figure to the second, leaving a figure with
truly parallel sides. Now suppose that the asymmetries in this second figure
do not fall within any of the tolerances of the geometric constraints; i.e., the
asymmetries in this figure are essential asymmetries. Then the second figure
corresponds to the resolved sketch, and the remaining sequence back to the
square gives the generative explanation of the resolved sketch.

One can now understand the role of the first phase, removing the inessen-
tial asymmetries (i.e., going from the first figure to the second). It was seen
that the removal of the inessential asymmetries (non-parallelism) in the first
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Fig. 14.5. Removal of inessential asymmetries followed by essential asymmetries.

figure, produced the symmetries (parallelism) in the second figure. Now, ac-
cording to the Symmetry Principle, these symmetries must be preserved back-
wards in time through the generative process; that is, the parallelism must
be preserved back to the square. This means that what the removal of the
inessential asymmetries did was to provide the symmetries that would be
preserved in the generative explanation of the essential asymmetries. This
generative explanation is the remaining sequence back to the square.

THEORY OF GEOMETRIC CONSTRAINTS. Geometric con-
straints establish the symmetries that are to be input to the Symmetry Prin-
ciple, in giving a generative description of the resolved sketch.

Let us now understand the full structure of symmetries and asymmetries
in the resolution process. This is shown in Fig. 14.6. On the left, there is the
designer’s sketch. It consists of three levels: inessential symmetries (sketch-
ing noise), essential asymmetries, and some symmetries. In accord with the
Asymmetry Principle, both levels of asymmetries will have to be removed
leaving symmetries. The two removals are shown by the two successive arrows
in the diagram. First, the inessential asymmetries are removed in producing
the middle stage, which is the resolved sketch. Then, the essential asymme-
tries are removed in producing the final stage on the left. Notice therefore
that, on the right, all three levels are symmetries.

The diagram shows the uses of the Asymmetry Principle. However, at each
stage, one uses also the Symmetry Principle. This acts on the symmetries in
a stage, preserving them for the next stage. Thus the Symmetry Principle
goes between any two successive blocks that are labeled as symmetries.

Thus each of the phases backwards through the generative sequence uses
both the two main rules of our generative theory, the Asymmetry and Sym-
metry Principles. There is no difference between the inference structure that
produces the second stage from the first, and the inference structure that
produces the third stage from the second.
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Fig. 14.6. The structure of asymmetries and symmetries in resolution.

Now turn to the dimensioned parameters; i.e., the third class of resolution
constraints. These are necessarily asymmetries. To see this consider first, the
specification of the dimension parameter of a line, i.e., the specification of its
length. It is clear that this gives what we call the occupancy structure of the
line, and in particular, the points where the occupancy changes from off to
on (at one end of the line) and from on to off (at the other end of the line).
These are the asymmetries of the line; i.e., the end-points in the process for
generating the line. The same concept applies to angular dimensions: The
specification of an angle gives the end-point of a rotation process.

The crucial point is that the dimensioned parameters are a subclass of
the essential asymmetries. For example, in the first figure in Fig. 14.5, one
would not dimension the angle of convergence of the non-parallel opposite
sides because one would want this non-parallelism to disappear in the sketch
resolution; i.e., in going to the next figure. However, one might wish to di-
mension the angle of the figure with respect to the horizontal line. This is
because the angle lies outside the specified tolerances of the geometric con-
straints, and will therefore be an essential part of the figure. Notice that this
angle is given a generative explanation in the remainder of the sequence.

The dimensioned parameters are in fact a chosen subclass of the essential
asymmetries, such that the remainder of the essential asymmetries can be
produced from them; i.e., by a geometric constraint solver. We shall call
them the core essential asymmetries.

In conclusion, the three types of constraints used in resolution have the fol-
lowing roles in our generative theory of shape:

SYMMETRY/ASYMMETRY INTERPRETATION
OF CONSTRAINTS.
Geometric and alignment constraints = symmetries that will be pre-
served in the generative description of the resolved sketch. Dimensioned
constraints = core essential asymmetries.

With the description of the constraints in terms of symmetries and asym-
metries, it is now possible to turn to the generative description that we will
argue is at basis of the resolved sketch.
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14.10 A Theory of Sketching

We now give a generative theory of the resolved sketch. The argument is that
only a generative description (one that maximizes transfer and recoverability)
will contain the information needed for intelligent and insightful design. This
generative description must be based on a theory of the designer’s sketching
process. Thus it is first necessary for us to give a theory of sketching. This
will be elaborated over several sections.

The first thing to understand about sketching is that the designer has an
envisioned goal object in mind. The goal object is different from the physical
sketch that is produced, but the designer creates the sketch in such a way
that he/she hopes that the resolution process will result in the desired goal
object. Thus the imagined goal object guides the sketch process. It dominates
the designer’s mind during the entire sketching process.

One must therefore distinguish between the goal object, which is a mental
construct, and the physical sketch that results from the designer’s drawing
movements. Based on this distinction, the overall components of the sketch
process can be stated thus:

(1) The designer’s mental analysis of the mental goal object.
(2) The designer’s physical sketch which is guided by the mental
analysis.
(3) The computer’s resolution of the physical sketch, resulting in a
physical realization of the designer’s mental goal object.

Thus, since the designer’s mental analysis drives the entire process, it is
crucial for us to give a mathematical theory of the designer’s mental analysis,
as follows:

14.11 A Mathematical Theory of the Designer’s
Mental Analysis

As said earlier, one cannot understand the design process, without first giving
a rigorous theory of the designer’s mental analysis of the mental goal object.
It is the way human beings analyze goal objects that unconsciously drives
the way CAD software is structured. Furthermore, if one is to improve this
software, one must rigorously understand the designer’s mental analysis. Let
us proceed:

The mental goal object is a 3D organization which the designer structures
in a certain way. In fact, we argue that, since this mental object will itself
embody the designer’s insight and intelligence, it will maximize transfer and
recoverability. Therefore it will embody our mathematical theory for realizing
those aims.
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For an illustration, suppose that the 3D mental object which the de-
signer imagines is the object shown in Fig. 14.7a. Chapters 11, 12, and 13
argued that the way to represent a complex object - such that the representa-
tion maximizes transfer and recoverability - is to generate it using unfolding
groups. Let us show how this is done using this particular example.

First let us consider the issue of the solidity of the object: Mechanical
CAD is conceptually driven by solid modeling. One tends, for example, to
understand a model such as Fig. 14.7a to be solid. Chapter 16 will give our
theory of solid structure. That chapter will show that it is possible to corre-
spond the solid primitives with the surface primitives (iso-regular groups) of
Chapter 10; i.e., since the latter can be considered to be the bounding sur-
faces of the solid primitives. Thus for ease of exposition, the present chapter
will refer to the surface primitives (iso-regular groups) of Chapter 10, when
in fact, we will mean the corresponding solid primitives of Chapter 16.

Let us begin: The basis of an unfolding group is an alignment kernel
which contains the Cartesian frame as a primitive. According to our theory,
the Cartesian frame contains the hyperoctahedral wreath group,

Z2 w© Σ3 = [Z2 × Z2 × Z2] s© Σ3.

and in particular, the triple reflection group which is the fiber-group product
Z2 × Z2 × Z2 of that wreath product. This structure will act as a control
group on the triple of planes which represent the Cartesian system - with
the crucial understanding that the planes are reflection planes. (This will be
discussed in detail in Chapter 16).

Now let us assign this triple-reflection structure to the 3D mental model
shown in Fig. 14.7a. The most obvious way to do this is as follows:

First reflection plane: Considering the plan view, shown in Fig. 14.7b, it
is obvious that the figure is reflectionally symmetric about the dashed line
shown. Therefore, the first reflection plane should be assigned along this axis.
Let us call it Datum Plane 1, that is, DTM1. To emphasize: datum planes, in
our system are reflection structures - in fact, fibers from the hyperoctahedral
wreath group.

Second reflection plane: Looking at the 3D object itself, Fig. 14.7c, there
are three obvious candidates for the second reflection plane: (1) The bottom
plane of the object, as shown. This is a reflection plane of the bottom face
of the object as an independent fiber in its own right. (2) The top plane
of the object, which is a reflection plane of the top face as an independent
fiber. (3) The middle plane shown, i.e., half-way between the bottom and top
planes. This is a reflection plane of the entire object. Any one of these three is
suitable, and will be called Datum Plane 2, that is, DTM2. These are exactly
the three choices offered by mechanical CAD programs such as Pro/Engineer
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Fig. 14.7. Assignment of the triple-reflection structure to an particular mechanical
part.
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and we explain them here in terms of the symmetry groups involved and, in
particular, in terms of the wreath structure of those symmetry groups.

Third reflection plane: This is determined to be perpendicular to the other
two planes. Because it must be a reflectional plane, it must lie along one of
the faces (fibers) of the object, or one of the reflectional symmetries of the
main unfolded primitives. Here, this plane has been chosen to lie along the
central reflectional symmetry of the central rectangular component, as shown
in Fig. 14.7d, where it is labeled DTM3. One could have equally chosen the
corresponding reflection plane of either the left main block, or the right main
block. The issue is a matter of which block one wishes to unfold the structure
from, in the sense of unfolding groups. This is because our theory says that
the Cartesian frame is the symmetry ground-state of the unfolding process.
We will return to the issue of choice later, when discussing the meaning of
intent managers in mechanical CAD programs.

Now according to our theory, this triple-reflection structure can be regarded
as equivalent to the cube primitive. That is, both can be given as the hyper-
octahedral wreath hyperplane group of dimension 3,

R2 w© Z2 w© Σ3.

Note the meaning of using two wreath products in this expression: Each
reflection group carries with it two translation planes (Sect. 16.5).

In this way, we identify the frame with the cube primitive within the
alignment kernel. Most crucially, whether it is understood as the Cartesian
frame, or as a cube, it is unfolded from the world coordinate system, which
is the first position of this hyperoctahedral wreath structure.

Now let us unfold the entire object shown in Fig. 14.7a. The unfolding
will first be described intuitively, and then rigorously: The cube primitive is
unfolded by an affine action (translation and stretch) to become the central
rectangle shown by the number 1, in Fig. 14.8. From this position, it is then
pulled leftward, under an affine action, to become the rectangle indicated by
2 in Fig. 14.8. From this new position, two copies of it are then pulled in
vertically opposite directions to become rectangles 3 and 4 in Fig. 14.8. This
produces the component grouping 2,3,4 on the left of the figure.

Now for the right side. While there is a leftward movement of the cube
primitive from 1 to 2, there is also a simultaneous rightward movement to pro-
duce Component 5. The simultaneity really means that the relation between
left and right is that of a direct product.

Also, moving rightward from 1, there is the cylinder primitive. It moves
to position 5 (aligned with the moving cube primitive) but then is moved to
positions 6 and 7, where it becomes the rounds shown (curved edges). This
completes the entire unfolding.
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Fig. 14.8. Numbering the unfolded primitives.

Now let us look at the structure rigorously.

(1) The alignment kernel. This contains the cube primitive P1 and the
cylinder primitive P2. It is therefore written as follows:

[[Gcylinder]P2 × [Gcube]P1 ]U .

Algebraically, the alignment kernel is thus the direct product of a number of
clones of each primitive. From a group-representation point of view, all of the
clones should be understood as maximally aligned with each other and with
the World-frame. The number of clones will be determined by the wreath-
direct actions with the control groups. Until the number of clones of each
primitive is determined, we shall often speak of the cube, and the cylinder.

(2) The hierarchy of rectangular components. Let us first consider only
the rectangular components in the structure; i.e., those derived from the cube.
They have a particular referential order which is given by the following group:

[[Gcylinder ]P2 × [Gcube]P1 ]U
w© faP1AGL(3,R)aP1 ]

× [[daP1AGL(3,R)baP1 × cbaP1AGL(3,R)baP1

× baP1{e}baP1] w© baP1AGL(3,R)aP1 ]

× aP1{e}aP1 ]

w© aP1AGL(3,R)P1 × P1{e}P1 . (14.2)

Let us go through the above expression from bottom-to-top. In the bottom
line, the right-hand group fixes a copy of P1, the World frame. The purpose
of this is to hold a copy of the internal symmetries of the construction plane,
as is required by the theory of construction planes, summarized on p. 212.
The left-hand group also takes the cube primitive P1 as input, but outputs
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an affine-altered version of it, aP1, corresponding to the central rectangular
component - numbered 1 in Fig. 14.8.

The output index aP1 then becomes the input index on each of the three
lines above; i.e., at the right-hand end of each of these lines. Each of these
lines determines a different fate for aP1. Thus working upwards through these
lines: Line 4 fixes a copy of Component 1 - that copy seen in Fig. 14.8. Next,
considering Line 3, the right-most group takes aP1 and applies an affine
transformation b to it, producing the output index baP1, which represents
Component 2 in the plan-view in Fig. 14.8. Then, moving left-ward on this
line, there is a wreath-product symbol w©, the fiber of which is a direct prod-
uct, each component of which takes baP1 as input. The first component is
the identity group {e} which fixes a copy of baP1, which is Component 2
as seen in Fig. 14.8. The other two groups in the direct product have out-
put cbaP1 and dbaP1 respectively, which correspond to Components 3 and 4
in Fig. 14.8. The direct product shows that these two objects are misalign-
ments with respect to the copy held by the identity component; i.e., there
are symmetry-breakings by misalignment.

Finally, Line 2 also takes aP1 as input, but outputs faP1 which represents
Component 5 in the plan-view Fig. 14.8.

Thus, the reader can see from the entire expression (14.2) that there must
be six clones of the cube primitive in the alignment kernel.

(3) The addition of rounds 6 and 7. Now add the rounds shown as 6
and 7 in the plan-view, Fig. 14.8. These are understood as coming off the
rectangular Component 5. However, Component 5 is understood as coming
off Component 1, which is itself derived from the alignment kernel. Thus,
the rounds are passed up from the alignment kernel, where they start as
clones of the cylinder primitive P2. Then they are moved to be aligned with
Component 1; then moved again to be aligned with Component 5; and finally
misaligned to become rounds 6 and 7. The appropriate group description is
therefore the following:

[[Gcylinder ]P2 × [Gcube]P1 ]U
w© [[[w′vuP2AGL(3,R)vuP2 × wvuP2AGL(3,R)vuP2 × faP1{e}faP1]

w© ∗vuP2 , faP1AGL(3,R) uP2 , aP1 ]

× [[daP1AGL(3,R)baP1 × cbaP1AGL(3,R)baP1

× baP1{e}baP1 ] w© baP1AGL(3,R)aP1 ]

× aP1{e}aP1 ]

w© ∗uP2 , aP1AGL(3,R) P2 , P1 × P1{e}P1 . (14.3)

This is the same as the group given at (14.2), except that the new Line 2
has been inserted above the previous Line 2. This new line is wreath sub-
appended onto the previous Line 2, and represents the final positioning of the
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two rounds. The only other changes are the extra cylinder indexes (i.e., based
on P2) that are inserted in two of the remaining lines.

Thus, starting with the bottom line, the affine group now has two input
indexes representing the cube and cylinder primitives P1 and P2 from the
alignment kernel. By Notation 13.3 (p. 298), the affine group here actually
means the direct product of affine groups:

∗uP2 , aP1AGL(3,R) P2 , P1 = ∗uP2 AGL(3,R)P2 × aP1AGL(3,R)P1 .

The output index uP2 is prefixed by an star because the u is chosen such that
the cylinder remains maximally aligned with the cube up to deformation; that
is, u is the non-deformation part of a.

The two lines above the bottom line are the same as before, because they
concern only the grouping of rectangular blocks on the left in Fig. 14.8.

Then above this, Line 3 is the same as the previous Line 2 except that it
now has cylinder indexes. Notice that the input to this line is the output of
the affine component of the bottom line. Also, the double index on the group
of this line indicates that it is a direct product, thus:

∗vuP2 , faP1AGL(3,R) uP2 , aP1 = ∗vuP2 AGL(3,R)uP2 × faP1AGL(3,R)aP1 .

The effect of this line is to move the cylinder out together with the rectangular
component, which becomes Component 5 in Fig. 14.8. As indicated by the
star, the cylinder is not deformed but remains maximally aligned with the
rectangular component, up to deformation.

Finally, go to the wreath sub-appended Line 2. Working from right to left
in Line 2, there is first an identity component which fixes a copy of faP2,
Component 5. The next two affine groups on this line move the two cylinders
out from alignment with respect to Component 5, thus becoming the two
rounds.

Notice that Line 2 allows us to infer the distribution of clones in Line 3. It
tells us that the cylinder index in Line 3 actually corresponds to two clones;
and the cube index in Line 3 corresponds to only one clone.

Using this, we can work down the lines in the group and conclude that
there are a total of eight clones: six cubes and two cylinders. These all start
maximally aligned in the alignment kernel, and are successively pulled out of
alignment. Notice, for example, that since, in the bottom line, the right-hand
group fixes the World-frame, the left-hand group must take, as input, the five
remaining cube clones and the two cylinder clones. It applies the affine trans-
formation a to the five cube clones, and the affine transformation u to the
two cylinder clones. The bottom line has therefore broken two alignments,
that of the World-frame in relation to all the other clones, and the deforma-
tional alignment of the cubes in relation to the cylinders. However, in the
output from the bottom line, there is still considerable alignment remaining;
i.e., the cubes with respect to each other, and the cylinders with respect to
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each other. Then, in the successive lines above, all of these alignments will
eventually be broken.

If one wishes to compress the notation of the group maximally, then one
can collapse all direct products into multi-indexes (except the direct product
of wreath products). The result is:

[[Gcylinder]P2 × [Gcube]P1 ]U
w© [w′vuP2 , wvuP2 , faP1AGL(3,R)vuP2 , vuP2 , faP1

w© ∗vuP2 ,faP1AGL(3,R) uP2 , aP1 ]

× [dbaP1 , cbaP1 , baP1AGL(3,R)baP1 , baP1 , baP1

w© baP1 , aP1AGL(3,R)aP1 , aP1 ]

w© ∗uP2 , aP1 , P1AGL(3,R) P2 , P1 , P1 . (14.4)

It is worth examining this carefully because it emphasizes certain features
more strongly. Notice for example, the triple of identical indexes in the middle
of the third line, indicating the alignment at this stage. Then notice the
triple of output indexes coming from this line (far left), showing how the
misalignment has been formed with respect to one of the indexes in the
triple.

Generally then, the group developed in this section illustrates the main
aspect of our theory of complex shape: Complex shape generation proceeds
by a series of symmetry-breaking phase-transitions, that occur by selective
misalignment. This is given by a wreath-product hierarchy in which the fiber
groups, representing the symmetry ground-states, are the alignment states,
and the successive control groups create the selective misalignments by trans-
fer. We call this process, unfolding.

14.12 Constraints and Unfolding

Before continuing with our theory of sketching, let us consider the issue of
constraints. This issue arises later - in fact, it occurs several times later.
However, according to our theory, it is fundamentally related to the unfolding
structure of the object. Since this unfolding structure has just been discussed,
it is best to look at the issue of constraints at this point.

Section 14.9 gave a lengthy discussion of constraints and argued that the
geometric constraints correspond to the symmetries of the resolved sketch,
and the dimension constraints correspond to the (core) asymmetries. It can
now be seen that these arise from the unfolding groups. For example, consider
again the part we have been discussing in Fig. 14.7.
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Symmetries. Observe in Fig. 14.7, that the symmetries consist, for in-
stance, of reflections between the sides of each block. These clearly come from
the Z2 components within the alignment kernel. They would correspond to
the geometric constraints. Notice this important fact: Whereas, in standard
constraint-solving programs, such symmetries have a relatively ”flat” struc-
ture, in our theory, they are placed hierarchically within an unfolding group,
and thus have substantial relations to each other. For example, the reflec-
tional symmetries within a block are related hiearchically to each other, and
this hierarchy is itself related to the reflectional hierarchy in another block
through the unfolding structure. The relations building the hierarchies are
the other type of constraints (asymmetries - as described below).

However, we are not arguing against constraint-solvers. In fact, we believe
that they are deeply important, and have contributed much to mechanical
CAD. We are asking only that they be expanded by the generative approach
elaborated in this book - i.e., based on maximization of transfer and recov-
erability, and the associated wreath/symmetry group formulation.

Asymmetries. The asymmetries of the part are the factors that relate the
symmetries to each other. For example, a block is itself a hierarchy of sym-
metries and the relation of one block to another block within the part is
given by the unfolding group; i.e., the unfolding group gives the relation be-
tween hierarchies of symmetries. This relation is misalignment which is the
type of asymmetry embodied in unfolding. Now the distances between blocks
are given by dimensions, e.g., between their centers. Since distances between
blocks are produced by the unfolding control groups, dimensions relating
blocks give information about the unfolding control groups.

In fact, dimensions must account for all asymmetries, not just unfolding
asymmetries. They must account for the lengths of sides, which are occupancy
asymmetries in the translational symmetries of individual sides.

14.13 Theory of the Sketch Plane

The previous section discussed constraints again because of the close relation
between constraints and unfolding. However, it is now necessary to return
to the issue of sketching. This will collapse the unfolding structure to a 2D
plane, and it is necessary to understand how this is done.

Recall that we have divided the sketch process into three stages:

(1) The designer’s mental analysis of the mental goal object.
(2) The designer’s physical sketch which is guided by the mental
analysis.
(3) The computer’s resolution of the physical sketch, resulting in a
physical realization of the designer’s mental goal object.
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The first stage was dealt with above, where we said that the designer’s mental
analysis of the mental goal object, is to generate it using unfolding groups.
Let us now go onto the second stage.

The designer’s physical sketch of the mental goal object uses a 2D con-
struction plane - usually called the sketch plane in mechanical CAD. It is
now necessary to develop a theory of how the designer uses the construction
plane. For this we will incorporate the theory of construction planes devel-
oped in Sect. 8.14. Again, for ease of exposition, assume that the sweeping
structure is given by a pure translation; however, the theory can easily be
extended to revolved structures and general sweepings. The point is that all
cases are, according to our theory, control-nested hierarchies of symmetries.

The main points of our theory of construction planes were as follows:
A construction plane is a reflectional Z2 fiber taken from the hyperoctahe-
dral wreath group defining the Cartesian frame. Now, because the plane is
a reflection plane, any drawing made on the plane is necessarly reflection-
ally symmetric about the plane. In mechanical CAD, the designer will make
a drawing on the plane, and then sweep it in the perpendicular direction.
Most crucially, this creates a structure of nested control (a wreath product)
in which the drawing is the fiber, and the sweeping is the control. The impor-
tance of identifying this structure of nested control, is that the reflectional
symmetry of the 2D drawing is not lost in the final 3D model: This is be-
cause the 2D drawing is a fiber of the 3D model. That is, according to our
theory, the power of a structure of nested control is that the asymmetrizing
process is added onto the symmetry of the fiber via a wreath product, and
therefore both the symmetry group of the fiber, and the symmetry group of
the asymmetrizing process are present in the final structure.

With this in mind, we now propose the main aspects that determine the
choice of construction plane:

CHOICE OF CONSTRUCTION PLANE. The designer must select
two symmetry groups in the goal object:

(1) A triple reflection structure Z2 × Z2 × Z2 within the object.
(2) A translation symmetry R of the object.

The construction plane will be the particular Z2 component in (1) that
maximizes, perpendicular to itself, the translational symmetry R in (2).

The maximization clause just given leads to the following:

Definition 14.1. We will speak of the (Z2,R) choice for construction plane.

The maximization clause is crucial, and to illustrate it, return to the example
shown in Fig. 14.7a (p. 320). Recall that the three lower parts of this figure
show the choice of the three hyperoctahedral Z2 fibers - which, according
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to our theory, provide the three datum planes DTM1, DTM2, and DTM3.
The logic behind this selection was given on page 319.

One of these planes will be the candidate for the construction plane.
Which one? In order to decide this, look at the translation structure in
the perpendicular direction to the plane. First, consider DTM1, shown in
Fig. 14.7b. The translation direction would be vertical in the diagram. No-
tice that the translational symmetry in this direction is not optimal for a
number of reasons: For example, the line on the left side zigzags up the fig-
ure, i.e., destroys translational symmetry vertically. Furthermore, the fillets
on the right also destroy vertical translational symmetry.

In contrast, consider DTM2, shown in Fig. 14.7c. This is either the bot-
tom, middle or top plane, because each of these is a reflectional symmetry
of the object or one of its fibers, as noted on page 319. The crucial thing to
observe is that either one of these reflection planes maximizes translational
symmetry in its perpendicular direction. In particular, there are only straight
parallel lines in that perpendicular direction.

Now, consider the final case DTM3, shown in Fig. 14.7d. Here the trans-
lational movement perpendicular to DTM3 would have to be horizontal.
Clearly, translational symmetry does not exist in the horizontal direction.

Thus, in conclusion, one sees that the Z2 fiber, DTM2, maximizes trans-
lational symmetry in its perpendicular direction. Therefore it is this fiber,
from the hyperoctahedral group, that should be chosen as the construction
plane.

Comment 14.2 It is important to understand here that we have not even
begun to consider the actual sweeping of the construction plane done by the
computer program. What has been examined here is the far more critical
thing of the mental analysis that the designer must make of the model so as
to choose the construction plane on which to do the drawing. That is, the
designer takes the mental model and identifies in it the two symmetry groups
defined above - in order to discover an optimal plane on which to do the
sketch.

Comment 14.3 For ease of exposition, the preceding sections have referred
to the sweeping control group as a translational symmetry. In fact, the more
general case is given in Chapter 18 in our theory of sweep representations.
The sweeping group is a continuous isometry group (translation or rotation)
that can have external action that deforms it. The theory presented above
still holds for this more general structure: The designer must identify the
sweeping group as a symmetry group in the 3D model.
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14.14 Solidity

The solidity of the model can now be considered. In Chapter 16, the solid
structure is given by the wreath c-polycyclic group Rw©Rw©R, which is the
successive hierarchical sweeping of the three translational dimensions of ordi-
nary space. We argue that this is related to the construction plane as follows:

THE FUNDAMENTAL ALIGNMENT. After making the (Z2,R)
choice (Definition 14.1) to determine the construction plane, one then makes
the following correspondence between the construction choice (Z2,R) and the
solid structure R w© R w© R :

Z2 ←→ first two levels R w© R in R w© R w© R

R ←→ final level R in R w© R w© R.

This correspondence will be called the fundamental alignment of a solid
model.

The fundamental alignment is a deep and very powerful concept that brings
together much of our theory of solid modeling. It is not simply an issue
of bringing together the construction plane and the solid structure, but it
involves this: Recall that the construction plane actually comes from the
hyperoctahedral wreath hyperplane group. This group is essentially the sur-
face that distinguishes the cube from the other primitives. In Chapter 16,
a distinguishing surface is called a surface kernel. A surface kernel breaks
the symmetry of the infinite solid structure, the wreath c-polycyclic group
R w© R w© R. What the fundamental alignment does is tell us how the two
components - the surface kernel and solid structure - are aligned when this
symmetry-breaking occurs. The components of this symmetry-breaking are
not arbitrarily aligned. They are aligned in the manner described by the fun-
damental alignment. This phenomenon is profound in its own right - and
affects all of design. However, still more profound is the underlying basis of
the phenomenon: What justifies the fundamental alignment is the History
Minimization Principle, which implies that, although we have symmetry-
breaking, it must be the minimal that can occur. Hence, even the two groups
that break each other’s symmetry, must preserve as much of each other’s
symmetry as possible.

14.15 A Comment on Resolution

In the above sections, we have discussed the mental analysis that the de-
signer makes in the production of the 3D base part. With the completion of
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his/her mental analysis, the designer then draws a 2D sketch on the sketch-
plane chosen by this analysis. This collapses the 3D unfolding structure onto
a 2D unfolding structure - with no real loss of information because of the
translational symmetry in the third dimension.

Resolution can then begin. The main factors in our theory of resolution
have been given in the previous sections. In particular, according to our
theory: Resolution is the attempt to recover the designer’s unfolding struc-
ture of the object. For example, as was argued in Sect. 14.12, the geometric
constraints correspond to the symmetries in the alignment kernel and the
dimension constraints give information about the unfolding control groups.

At first, the reader might question our theory of resolution as the recov-
ery of the designer’s unfolding, accusing this theory of attempting a ”psychic
mind-reading”. However, in mechanical CAD, design intent controls every-
thing - e.g., the managing of constraints and feature relationships, etc. Major
programs such as Pro/Engineer contain powerful facilities called ”intent man-
agers”, which will be discussed later. Any system within the computer, that
can rigorously ”read the mind” of the designer from the designers actions, is
strongly in keeping with the way in which modern CAD programs are set up.
We are suggesting that this ”mind reading” should be formulated as a re-
covery problem on shape. CAD intent-management and resolution are among
our main motivations in creating a generative theory of shape that maximizes
recoverability.

14.16 Adding Features

The above sections described the creation of what is generally called a base
part. Standardly, in mechanical CAD, the designer proceeds by first creat-
ing a base part, and then adding features such as holes, slots, etc., to this
base. Usually features correspond to machining operations in the manufac-
turing process; for example, a hole corresponds to the use of a drill to remove
material.

Let us therefore take the base part constructed in the previous sections,
and add to it some standard features: three holes (left) and a slot (right) in
Fig. 14.9. Notice the following: These features could not have been created in
the preceding design phase because they destroy the translational symmetry
in the sweeping direction (vertical). It was for this reason that they had to
be inserted after the sweeping phase. This again reinforces our claim that the
design (and manufacturing) process is one of symmetry-breaking/asymmetry-
building.

It is now necessary to understand how the addition of these features is rep-
resented in terms of our generative theory of shape. There are two methods,
within the theory, of representing this structure: (1) super-local unfolding,
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Fig. 14.9. The addition of three holes (left) and a slot (right)

and (2) sub-local unfolding. The two representations describe two different
structures as follows:

(1) Super-local unfolding.

In the first of these methods, we take the unfolding group defining the base
part, i.e., as given in expression (14.3) on p. 323, and we wreath super-
append control groups that each unfold the extra primitives corresponding
to the new features. For example, consider the central hole in Fig. 14.9.
This is a cylinder unfolded from the alignment kernel, via an affine control
group that is super-appended to expression (14.3), and acts (like any control
group) on its entire fiber, but acts non-trivially on only the cylinder from
the alignment kernel; i.e., it keeps the remaining structure frozen. Indeed, a
number of design programs such as AutoCAD allow the designer to explicitly
freeze the structure while such operations take place. According to our theory,
one super-appends a control group for each of the features, and does so in
the order in which the features are created.

The advantage of super-local representation is that the wreath hierarchy
corresponds to the order of the design decisions. This is not a necessary part
of our theory. The reader will recall that the true power of the wreath hierar-
chy is that it corresponds to the hierarchy of control rather than the order of
generation; for example, in a wreath polycyclic group, the canonical plan cor-
responds to nested do-while loops in a computer program - and this nesting
corresponds to the wreath hierachy, whereas the execution point oscillates
between the levels in the hierarchy. A simple example is the standard gener-
ation of the square: One draws a side (lower level), then executes a rotation
(upper level), then draws the next side (lower level), then executes another
rotation (upper level), etc.

Thus, it is not necessary to want the wreath hierarchy to correspond to
the generation order. However, super-local unfolding has the advantage that
this correspondence is the natural interpretation.
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It is important to observe however that, in this representation, the move-
ment of the hole is in complete disregard to the unfolding structure of the
base part. One can think of the base part as a single solid of one uniform
material with no internal boundaries, and the hole as having been moved
with respect to this uniform material.

There is however a very different representation, to which we now turn.

(2) Sub-local unfolding.

Using constraints in the attachment of features is a fundamental part of
design, assembly, and manufacturing. Such constraints should be modeled in
the most powerful and informative way. We propose that these constraints
are best modeled by sub-local unfolding.

First observe that constraints in feature-attachment use the unfolding
hierarchy within the pre-existing structure - which is the base part in the
current situation.

Let us consider the particular example of Fig. 14.9 (p. 331). Observe the
following obvious visual facts: The two side-holes are each centered on their
respective small side-blocks. The intervening hole is centered on the entire
part. The slot is centered on its own block. These are constraints that one
might wish to keep in the entire design. In fact, the advantage of parametric
feature-based design is exactly that it allows one to define constraints that
will hold despite modification of the design at later stages. Thus, one could
have the following constraints for the four features added in Fig. 14.9:

Constraint 1: Assume that the middle hole will eventually contain an
axle around which the object will rotate in the final assembly. Thus
require the constraint that this hole runs centrally through the thin
neck of the object.
Constraint 2: The slot feature is central to the end-block which con-
tains it, even if the block is widened or moved in later phases of the
design.
Constraints 3 and 4: Assume that the two side-holes are actually
screw-holes that will attach the small side-blocks to the larger left
block. Thus, one would wish to keep the constraint that they are cen-
tered on the small side-blocks throughout the design process, despite
the fact that the dimensions of the part might be altered at some
point.

Observe that these constraints use the unfolding structure of the base
part; i.e., expression (14.3). For example, the fact that the side-holes are
aligned with the center of the small side-blocks, means that they are con-
strained - within the parent-child unfolding hierarchy of the base part - such
that they are aligned with the side-blocks as children of the large parent block
to which the small blocks are attached.
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In this method of representation, the features are placed directly within
the parent-child structure described by the unfolding group of the base part,
expression (14.3). In this way, one realizes Constraints 1-4 (given above) in
a very natural way, as follows.

Constraint 1: Here the central hole is unfolded as a cylinder together with the
block defining the central neck. The constraint embodies the fact that the two
are aligned - i.e., they have coincident symmetry structures. By the Symmetry
Principle, which states that symmetries are preserved backwards through the
generative sequence, this alignment is preserved backwards, which means that
it comes from the alignment of the cylinder and block in the alignment kernel.
Thus the constraint is expressed in terms of the unfolding structure from the
alignment kernel.

One should be aware of the following: This hole, being an axle hole, runs
through the entire part. At first this might seem to be a problem because
it runs through subsidiary blocks such as the large block at either end, even
though these are unfolded later than the central neck. However, this is not a
problem. First, one must understand that a hole is really a solid. For example,
Pro/Engineer lists it as a solid, and manuals for Pro/Engineer explain this
by the fact that a hole corresponds to the solid of material which is to be
removed. Furthermore, from a theoretical point of view, a hole is a solid in
the sense of constructive solid geometry.

Thus the hole is a solid that is unfolded from the alignment kernel together
with the solid neck with which it is aligned. Now, the cylinder defining the
hole does not require its end-planes - i.e., the cylinder can be considered to be
infinite. The ends of the hole become defined when the two large blocks are
added at each end of the neck. In other words, the end-planes of the cylinder
are given indirectly as the boundary planes of the two large end-blocks. This
is a reasonable description.

Constraint 2: The slot is unfolded as a block together with the block in
which it is located - the right block. The constraint specifies that the slot is
vertically central to the right block. This is a symmetry that is preserved from
the alignment kernel. However, the slot is non-central to the right block in
the horizontal direction - which means that symmetry has been broken in the
horizontal direction. Thus the slot has been unfolded one step further, i.e.,
with respect to the right block, since misalignment is created by unfolding.
This is achieved by wreath sub-appending the additional unfolding group
below that of the right block. Thus the slot becomes a child of the right
block.

Constraint 3 and 4: This is the constraint that the two side-holes are aligned
with the centers of the two small blocks on the left end. This constraint is
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realized by making the two hole cylinders follow the same unfolding history
as the two small blocks in which they are located. In other words, the original
alignment of cylinder with block, within the alignment kernel, is preserved
through the unfolding process, first to the central neck, then leftward to the
large block, and then splitting into two copies (i.e., a direct product). There-
fore Constraints 3 and 4 are actually described as memory of the original
alignment in the alignment kernel. This is the advantage of the symmetry-
breaking nature of our generative theory: One does not need to create these
constraints as extra events - they already exist in the origin of the object.
Only the loss of these constraints would have to be represented - i.e., as
symmetry-breaking.

In this section, it was assumed that the feature constraints were center-based
with respect to the unfolded primitives. A frequent alternative, in mechanical
CAD, is to base a feature (and its constraint) on one of the faces of the
unfolded primitive. Here, the same theory applies except that alignments are
preserved with respect to faces as fiber groups. This will be studied later in
our theory of assembly.

14.17 Model Structure

There are substantial differences between the way we specify the model struc-
ture and the way in which current CAD programs specify this structure.
According to our theory, the model is represented by its unfolding group.
This expresses the structure maximally in terms of transfer and recoverabil-
ity - which gives the designer the most important information concerning the
model structure. In contrast, consider the representation that would be given
in a major program such as Pro/Engineering- where the representation is
called the model tree. For example, the model tree of the part we have been
constructing would be this:

1. Datum Plane
2. Datum Plane
3. Datum Plane
4. Coordinate System
5. Base Part
6. Hole
7. Hole
8. Hole
9. Slot

It is important to notice a number of things about this structure: First,
item 5, the Base Part is not given any structure. This is because there is
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no real structural analysis of this item by the program. While the sketch-
resolution performs a constraint-solving analysis on the part, the constraints
- geometric and dimensional - are not given any organization in the powerful
sense defined in the previous sections where the geometric constraints are
elements of the alignment kernel, and the dimension constraints are elements
of the unfolding control groups and the occupancy groups. It is only when
one understands these constraints to be elements from an unfolding group,
that one obtains a organization for the base part. We argue that this organi-
zation is essential for all later aspects of the design and manufacturing. For
example, it is basic for understanding how the added features are related to
the base part - i.e., into whose components they are to be placed - and for un-
derstanding design intent and design reformulation. This is discussed in the
next section. Furthermore, the unfolding group is basic for understanding
the intelligent structuring of manufacturing operations. Also observe that,
according to our theory, the lower Items 1 to 4 - the datum planes and coor-
dinate system - are part of the unfolding structure, i.e., they are symmetries
of that structure, and should be understood as such in order to obtain more
intelligent design.

14.18 Intent Manager

Major programs such as Pro/Engineer now have what is called an intent
manager. The principle issue here is that a design can be produced in a
number of different ways, and therefore be structurally defined in a number
of different ways. Thus for example, the constraints will change with different
ways of defining the structures.

Now, our generative theory provides a particularly powerful way of enu-
merating these alternative ways. Consider for example the part we were de-
signing in Fig. 14.7, p. 320. In our generative representation of the part, we
chose the Cartesian frame as centered on the neck of the part, as shown in the
bottom diagram on p. 320. However, we could have equally chosen the center
of either of the two main side blocks, or the fiber faces. Our theory exactly
predicts the alternative ways in which the part could have been generated
because the unfolding comes from the alignment kernel, which contains the
Cartesian frame, and the Cartesian frame is a symmetry structure. Thus the
alternative methods of generating the figure can be produced from only the
alternative symmetry structures, which are limited, and easy to enumerate.

For each alternative, the unfolding group changes. For example, if one
chooses the generative origin to be the reflection structure at the center of
the main left block, then the neck is placed on the wreath level below this,
and the right block is placed on the level below that. This means that the
right block is now two wreath levels below the left block. However, if one
chooses the generative origin to be the neck (as we did before), then the right
and left block are on the same level.
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Notice how the issue of constraints naturally arises here. According to
our theory, the geometric constraints are symmetries from the alignment
kernel and the dimension constraints are asymmetries from the unfolding
control groups (and occupancy groups). It can be seen therefore that, with the
change of unfolding groups, one gets a change in the geometric and dimension
constraints.

14.19 Intent Managers: Gestalt Principles

A powerful function of some intent managers, such as that in Pro/Engineer,
is that they can work ”online” with the designer’s sketching actions, to as-
sign geometric and dimensioning constraints to the sketched elements as the
designer proceeds with sketching. For example, as the designer draws a new
line, the intent manager will try to judge whether it should be regarded as
parallel to an existing line; and, if the verdict is affirmative, will assign a
parallelism constraint, which will then be explicitly shown on the screen.

Thus the intent manager literally acts like a gestalt perceiver, i.e., like the
human visual system. We therefore propose that an intent manager should
incorporate our theory of gestalt perception; i.e., the theory of grouping in
Chapter 5 and its extension to unfolding groups (Chapters 11, 12, and 13).

14.20 Slicing as Unfolding

Slicing an object is an essential part of most design. For example, in me-
chanical design, one needs to slice through mechanisms to show how the
pieces interlock; and in architectural design, one needs to take horizontal
slices through a massing study in order to generate the floorplates. Slicing is
also basic in 3D modeling programs for chemical structure, geological data,
etc.

Although, to our knowledge, the following fact has never been pointed out,
the most important thing to recognize about slicing is that it is a symmetry-
breaking operation. Almost inevitably, an object after it has been sliced is
more asymmetric than before slicing. If this were not the case, one would
have created the second more symmetric state first - because it is more easily
generated.

What is the appropriate mathematical description of slicing? We argue
that it is unfolding groups. To understand this, let us begin by considering
an example in detail: slicing a cylinder with a plane, as shown in Fig. 14.10.

The first thing to observe is that each half of the cylinder is more asym-
metric than the initial unbroken cylinder. Thus, as we have said: Slicing tends
to break symmetries. Notice that one obtains an individual part by regarding
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Fig. 14.10. Slicing tends to create asymmetrical parts.

the slice-plane as a (one-sided) occupancy boundary. One can cycle between
the two parts by simply reversing the on-off sides of the plane. The cycle is
given by Z2 understood as a color group.

The second thing to observe is that not all slicings produce the same
amount of asymmetry. In Fig. 14.11, the slice plane is off-center, and therefore
produces two unequal parts. Furthermore, each part is more asymmetric than
a part in Fig. 14.10. Even further, if the plane sliced the cylinder obliquely,
then the parts would be more asymmetric still.

Fig. 14.11. The asymmetry of slicing can be increased further.

We argue that the way to capture this information is by using unfolding
groups. Create an unfolding group in which the alignment kernel contains
both the plane and cylinder; i.e., their symmetries are maximally aligned.
Then unfold this using the affine group. Group theoretically, the structure is
this:

[[R2]P2 × [SO(2) w© R]P1 ]]U w© aP2 , P1AGL(3,R) P2 , P1 .

The primitive [SO(2) w© R]P1 is the cylinder, and the primitive [R2]P2 is the
plane. The affine group aP2 , P1AGL(3,R) P2 , P1 is shown as unfolding the
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plane with respect to the cylinder. Notice that, in this particular example,
the group sequence happens to be the same as that of a telescope unfolding -
but this is only a coincidence.

The successively greater asymmetrizations described above are given by
the levels of structural allowability within the affine group, as follows: Recall
that structural allowability (Sect. 2.17) depends on the extent to which the
actions preserve the symmetry structure of the configuration on which one
is acting. Thus, horizontal or vertical translations of the plane with respect
to the cylinder, will preserve some of the symmetries of the initial objects.
However, rotation of the plane about some non-vertical axis will destroy
those symmetries. Thus one can hierarchically rank the structural allowability
of operations within AGL(3,R), and this will correspond to the degree of
asymmetry of the associated slicings.

14.21 Assembly: Symmetry-Breaking Theory

Mechanical CAD involves two successive stages: (1) creating the parts, each
of which is produced in its own separate file; and (2) assembling the parts
together. The second phase is achieved by viewing the parts simultaneously
on the screen, and successively fitting them together. The process is called
virtual assembly. Throughout this chapter, the term assembly will usually
mean the process of virtual assembly in MCAD, although much of what we
say is generalizable to all assembly situations.

A number of powerful approaches have been developed to represent the
assembly process; for example, using degree-of-freedom analysis, e.g., Miura
& Ikeuchi [109], or the group-intersection approach of Liu [99], Popplestone,
Liu, & Weiss [120], and Liu & Popplestone [101]. We will propose here a
different approach based on unfolding groups. Each of the alternative ap-
proaches is valuable because it offers a different conceptual analysis of the
problem of assembly. Our approach emphasizes the generative structure of
the assembly, and therefore accords strongly with the perceptual and design
aspects.

It is well established that assembly takes place by enforcing a succession
of constraints that are alignments. To illustrate, consider a typical assembly
situation that can occur in mechanical design: Fig. 14.12c shows a cylinder
that needs to be inserted in the hole in the cube. This assembly task is solved
by establishing two successive constraints:

Constraint 1: The axis of the cylinder must be aligned with the
axis of the hole. This constraint is achieved by moving the cylinder
from its position in Fig. 14.12c to its position in Fig. 14.12b.
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Constraint 2: The center of the cylinder should be aligned with
the center of the hole (understood as a complete cylinder). This con-
straint is achieved by translating the cylinder down along its com-
mon axis with the hole in Fig. 14.12b, until the centers of the cylin-
der and hole are aligned. The result is the assembled configuration
Fig. 14.12c.

Fig. 14.12. From (c) to (a): Assembling a cylinder and cube.

The important thing to observe is that both Constraint 1 and Con-
straint 2 are alignments, and therefore the successive imposition of the
constraints is a successive imposition of alignments.

Our theory of assembly planning can now be stated: It is given on p. 340,
which the reader should read carefully before continuing.

14.22 Unfolding Groups, Boolean Operations, and
Assembly

The issue of alignment in assembly planning can be further clarified by using
unfolding groups to shed light on the difference between ordinary construc-
tive solid modeling and assembly. Let us look at how to generate the cube and
cylinder shown in Fig. 14.13. First let us consider how to generate the config-
uration using constructive solid modeling (CSG), which is the method that
uses Boolean operations. In this method, one simply takes the Boolean union
of the cube and the cylinder. Within our theory of CSG, this is achieved by
an unfolding group, where one starts with the cube and cylinder with their
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SYMMETRY-BREAKING THEORY OF ASSEMBLY PLANNING

(1) Because, assembly takes place by creating successive
alignments, and because unfolding takes place by successive
mis-alignment, assembly can be described as reverse unfolding.

(2) One should plan assemblies using two successive unfolding
stages, thus:

alignment kernel
unfolding−→ assembled state

unfolding−→ dis-assembled state

(3) The two stages successively break alignments in the align-
ment kernel. The alignments broken at the second stage are
what people call the ”assembly constraints”. Notice that this
means that an assembly constraint is the alignment of two unfolded
versions of the same fiber from the alignment kernel.

(4) The action of assembling is the reverse of the second
phase. What is called the ”imposition of constraints” is actually
the recovery of a particular subset of alignments in the alignment
kernel.

Fig. 14.13. A cylinder/cube configuration that can be described either by CSG or
assembly.

symmetries maximally aligned. One then introduces the affine group as a
control group that creates the required symmetry-breaking.

One must distinguish however between a CSG representation of this fig-
ure, and an assembly representation. Most crucially, whereas in the CSG
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representation, one uses only one copy of the cylinder, in the assembly repre-
sentation, one requires two copies of the cylinder, one representing the hole
and the other representing the solid that will exist in the hole. This conforms
to part (3) of our theory of assembly on p. 340 - that an assembly constraint
is two coincident fibers transferred up from the alignment kernel.

This is reinforced by what one needs to do to generate the configuration
on a computer, using a full solid modeling program2. To draw the figure as
a CSG configuration, one (1) creates a cube and a cylinder, (2) moves the
cylinder to the required position/orientation, and (3) performs a Boolean
union of the cylinder and cube. However, to draw the figure as an assembly
configuration, one needs to create two coincident copies of the cylinder. One
of them will be Boolean subtracted from the cube, creating the hole. The
other will be left coincident with the hole. Inexperienced students in CAD
often do not anticipate requiring the second copy - not realizing that the first
copy will ”disappear” in the creation of the hole.

Let us now use unfolding groups to contrast the CSG representation with
the assembly representation. The CSG structure is given by this group:

[[Gcylinder ]P2 × [Gcube]P1 ]U
w© aP2 , P1 AGL(3,R) P2 , P1 (14.5)

Notice that there are only two input (upper) indexes on the bottom line: one
copy of the cube P1 and only one copy of the cylinder P2. Because they are
brought from the alignment kernel, their symmetries are maximally aligned;
i.e., their reflection planes are coincident, etc. The affine group on the bottom
line then misaligns the cube and cylinder by creating the angle between the
cylinder and the cube. This is indicated by the fact that the lower indexes are
P1 showing that the cube is unchanged, and aP2 showing that the cylinder
has undergone the affine transformation a.

In contrast, the assembly structure is given by this group:

[[Gcylinder ]P2 × [Gcube]P1 ]U
w© aP2 , aP2 , P1 AGL(3,R) P2 , P2 , P1 (14.6)

Notice that there are now three indexes entering the bottom line - a single
copy of the cube P1 and two copies of the cylinder P2. The output (lower)
indexes in the bottom line show that the cube has remained unaltered, but
the two cylinders have undergone the same transformation a. This means
that the two cylinders are still aligned with each other, despite being at an
angle to the cube.
2 By a ”full” solid modeling program, we mean an advanced animation program
like 3D Studio Max or AutoCAD Architectural Desktop which begin with 3D
solid primitives, rather than a mechanical program like Pro/Engineer which be-
gins with 2D sketching. We believe that a ”full” solid modeling program best
corresponds to the designer’s conceptual design phase that precedes the sketching
phase that begins a mechanical program.
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The most crucial thing about this expression is that it embodies our theory
that the progression from left to right in Fig. 14.12 (p. 339) is preceded by
a previous phase, which goes from the alignment kernel to Fig. 14.12a. This
preceding phase is the first phase in the two-phase unfolding in

alignment kernel
unfolding−→ assembled state

unfolding−→
dis-assembled state

which was given in part (2) of our theory of assembly on p. 340. The first
phase, while destroying some alignments from the alignment kernel, does not
destroy all of them. In the second phase (dis-assembly), further alignments
will be destroyed. However, most crucial in our theory - these latter align-
ments nevertheless came up from the original alignment kernel.

Let us therefore move on to the second phase, i.e., dis-assembly. This cor-
responds to the sequence of stages from Fig. 14.12a to Fig. 14.12c (p. 339).
Since this is a further phase of unfolding, one must add further unfolding con-
trol groups to expression (14.6) in order to create the further mis-alignments.
The full group is this:

[[Gcylinder ]P2 × [Gcube]P1 ]U
w© cbaP2 SE(3) baP2

w© baP2 , aP2 Transz aP2 , aP2

w© aP2 , aP2 , P1 AGL(3,R) P2 , P2 , P1 (14.7)

This is expression (14.6) with two extra lines (Lines 2 and 3) giving the break-
ing of the two assembly constraints. First consider Line 3: The input (upper)
indexes are the two aligned cylinders brought up from Line 4. The control
group Transz on Line 3 breaks Constraint 2 (page 338) by translating the
second cylinder along its z-axis out of the hole. This translation is indicated
by the b on one of the output (lower) indexes on Line 3. The other index (the
hole) has remained untouched.

The actual mis-alignment created by this translation group is as follows:
According to our theory of solid cross-section cylinders, in Sect. 16.10 (p. 413),
any such cylinder is swept from a circle in a starting plane which can be con-
sidered to be the reflection mid-plane of the object. Let us call this reflection
plane the generating plane. Returning to the cube and cylinder example, we
conclude that the translation action has mis-aligned the generating plane of
the solid cylinder with respect to the generating plane of the cylindrical hole.

Now go on to Line 2 in expression (14.7): This creates the final dis-
assembly phase Fig. 14.12b to 14.12c, by breaking Constraint 1 (page 338).
The group used here is the special Euclidean group SE(3) applied to the solid
cylinder - as shown on Line 2. (For readability, various identity components
have been omitted from Lines 2 and 3, but can easily be inferred, in accord
with our theory of cannonical unfoldings.)



14.23 The Designer’s Conceptual Planning 343

The important point is that expression (14.7) contains the entire informa-
tion of assembly and dis-assembly: The bottom line describes the assembled
configuration shown in Fig. 14.12a. The line above this produces the first
stage of dis-assembly, shown in Fig. 14.12b. The line above this produces the
last dis-assembly stage shown in Fig. 14.12c.

Movable parts. Suppose the solid cylinder in the above example is an axel
that will be rotating within the hole in the functioning assembly. In our
system, this is represented very easily. The solid cylinder is rotating with
respect to the hole cylinder. This means that the two cylinders - initially
aligned because they were brought up together from the alignment kernel -
undergo rotational mis-alignment. However, this type of mis-alignment does
not break the assembly structure, and therefore is on the wreath control level
above (i.e., line below) the dis-assembly groups in expression (14.7); that is,
we insert the rotation group SO(2) between the third and fourth lines in that
expression. Notice that this copy of SO(2) is the circular symmetry contained
within the generative structure of the cylinder:

[Gcylinder ]P2 = SO(2) w© R.

This structure [Gcylinder ]P2 is in the alignment kernel in expression (14.7).
Therefore SO(2), used as a control group to actually rotate the cylinder in
the hole, is pulled up from the cylinder’s generative structure SO(2) w© R

within the alignment kernel. Similarly, the dis-assembly control groupTransz
originated as the R component from this SO(2) w© R structure within the
alignment kernel.

14.23 The Designer’s Conceptual Planning

Before continuing with our theory of assembly, the reader might wonder at
the validity of regarding the assembled state as generatively preceding the
dis-assembled state, as in part (2) of our theory on p. 340 - and furthermore,
of regarding the final assembly as recovered, as in part (4) in the theory. After
all, mechanical CAD, with major programs such as Pro/Engineer, begins with
the sketching of parts, each within their separate files, and only subsequently
creates assembly by bringing the parts together.

However, although the use of the software begins with part-design, no
mechanical designer begins the design process here. The process begins with
a long conceptual phase, in which the designer’s first drawings, usually on
paper, are of the assembled object. Only when this is done, is the designer
ready to draw the actual independent parts with the software. The reason
is simple: Parts must actually match: The fact that a cylinder is supposed
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to fit in a hole is not suddenly discovered later in the design process, after
the cylinder and hole have been created in independent part files. They fit
because, in the initial conceptual phase, the designer drew the cylinder ac-
tually in the hole. This is crucial because, from this, the designer will know,
from the beginning, that the radii of the cylinder and hole have to be the
same. Thus, in the next phase, when the designer draws the cylinder and hole
separately, in different part files, he will use the same radius values in the
two parts. He will know to do this only because the alignment was present in
the initial design drawings in the conceptual phase. Thus, later still, when he
fits the part files together into an assembly, the imposition of the alignment
constraints merely recovers what was present at the beginning.

It is surprising that major mechanical programs do not incorporate an
initial conceptual phase in the software, i.e., allowing the designer to do all
this work within the program, rather than before-hand. The conceptual phase
drives the entire design process. Observe that such a phase is incorporated in
the major architectural program, AutoCAD Architectural Desktop. Anyone
familiar with this program knows the powerful advantages of having this
phase as part of the software.

An important thing should be observed: The conceptual phase in Au-
toCAD Architectural Desktop is a full 3D solid modeling program. By full,
we mean that it is 3D from the beginning, and works by bringing together
solid primitives, rather than starting with 2D line sketching as in standard
mechanical CAD. We have worked extensively with both types of programs
and found that the conceptual phase in the former type is enormously valu-
able exactly because it accomplishes what one needs to do in any case before
sketching in mechanical CAD.

Most crucially, the conceptual phase accords with the psychological design
process. We have said before that the unfolding of solid primitives from an
alignment kernel into a complex object corresponds to the process of solid
modeling in a major 3D animation program such as 3D Studio Max/Viz.
For example, one can understand the menu of standard primitives in such a
program, as corresponding to the alignment kernel of an unfolding group, and
the parameter window of each primitive, as well as the parent/child model
hierarchy, as corresponding to the unfolding group structure.

Accomplishing this true type of 3D solid modeling corresponds to the first
phase of the two-phase unfolding in our theory of assembly:

alignment kernel
unfolding−→ assembled state

unfolding−→
dis-assembled state.

Any mechanical designer must actually go through this in the conceptual
phase, whether the software allows this or not. The subsequent sketching of
individual parts - each in its own separate part file - is really the dis-assembly
of the object, i.e., corresponding to the second phase in our theory. Then the
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later assembly of the independent part-structures, into one object, is really
the recovery of the original assembly in the initial conceptual phase.

14.24 Holes through Several Layers

Let us consider the following frequently encountered situation in MCAD:
a multi-layered structure requiring a hole through all the layers. A typical
example is where an axel has to go through a pulley wheel, and through
washers on either side of that wheel, and through bushings on either side of
those washers, etc. The wheel, the washers, and the bushings, will all have a
hole of the same radius. To assemble them from a dis-assembled state, one
will typically use the constraint of aligning the holes3. Another situation is
illustrated in Fig. 14.14a where a bolt will eventually bind together a number
of flat plates, e.g., of different materials. Each of the plates will have the
same radius hole. To assemble them from a dis-assembled state shown in
Fig. 14.14b, one will use the same constraint - that the holes in the different
plates must be aligned.

Fig. 14.14. A hole through layered objects.

3 There will be two constraints (1) the hole-alignment constraint just mentioned,
and (2) a face-mating constraint of the type discussed later in Sect. 14.26.
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The issue to be considered now is this: Ignoring the bolt which will even-
tually go through the hole, we seem to need only one cylinder to go through
all the layers, to create the hole. This is not correct.

To understand this, it is useful again to consider what one does in a full
solid-modeling program. One first creates the assembled structure shown in
Fig. 14.14a. However, if one used only a single cylinder for the hole, and
subtracted it from the set of layers, then one would not be able to separate
the layers, because the set of layers would be a parent to the single hole
cylinder. Therefore, in a solid-modeling program, one needs to create as many
coincident copies of the hole-cylinder as there are layers. Each cylinder-copy
is subtracted from one layer. Then, when the layers are dis-assembled (moved
away from each other) each layer moves away with its own hole, as shown in
Fig. 14.14b. For re-assembly, one can then exploit the constraint of aligning
the hole-cylinders.

For exactly the same reasons, our generative theory requires us to pull
up from the alignment kernel, as many coincident copies of the hole-cylinder
as there are layers. Dis-assembly will then mis-align these copies, and re-
assembly will then recover their original alignment.

14.25 Analogy with Quantum Mechanics

The idea of creating coincident copies, which are then separated, is remark-
ably analogous to the splitting of degeneracy in quantum mechanics: A degen-
erate state has multiply coincident eigenvalues; i.e., where linearly indepen-
dent eigenstates have the same eigenvalue. The splitting of this degeneracy,
by a perturbation force, pushes the coincident eigenvalues apart. Thus, lin-
early independent eigenstates, which previously had the same eigenvalue, now
have different eigenvalues under the perturbing action.

14.26 Fiber-Relative Actions

In this section, we are going to introduce two operations which together have
the power to generate a wide range of assembly configurations and their
associated constraints.

A number of assembly constraints (e.g., mating constraints) are specified
as relative to particular surfaces. To handle this, it is first necessary to state
part of our theory of solid structure as presented in Chapter 16. To illustrate
this statement, let us give the structure of the solid cross-section cylinder
as presented in Sect. 16.10 (p. 413). The structure is shown in Fig. 14.15
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which is explained as follows: In Fig. 14.15a, there is the alignment kernel
which consists of the straight line and the circle maximally aligned - i.e.,
these are the primitive lines from which the primitive solids are generated,
as follows: From the straight line one generates the infinite solid structure of
3D space as the wreath c-polycyclic group R w© R w© R, where the first two
factors R w© R generate the horizontal plane, and the last factor R translates
the plane in the vertical direction. This gives the stack of planes shown in
Fig. 14.15b. According to our theory, this is the solid structure common to
all solid primitives.

Fig. 14.15. The structure of a solid cross-section cylinder.

Then, in Fig. 14.15c, one unfolds the infinite cylindrical surface from the
circle primitive. This cuts down the infinite symmetry of the solid structure
of the previous figure. We call this cutting surface, the surface kernel of the
primitive. A surface kernel is what distinguishes a particular solid primitive
from all the other solid primitives. Finally, in Fig. 14.15d, one generates
the two bounding planes of the cylinder (top and bottom): these break the
infinite symmetry of the cylindrical surface. These two planes are respectively
a half unit above and a half unit below the starting horizontal plane; they are
related by the reflection group Z2. The full group of the solid cross-section
cylinder is

[[SO(2)]P2 × [R]P1 ]U alignment kernel

w© [R w© R]P1 solid structure

w© RP2 surface kernel

w© Z
[R w© R]1/2
2 top and bottom planes (14.8)

where the four successive lines correspond to the four successive parts of
Fig. 14.15, and each of the unfoldings is super-local.

Notice in particular how Line 4 of expression (14.8), works: The input
index consists of the horizontal Cartesian plane [R w© R] which has undergone
a translation by 1/2 vertically. This translation was provided by the last R of
the Line 2. This translated plane is the top plane of the cylinder. The control
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group on Line 4 makes also a reflectional copy of this plane, producing the
bottom plane.

Now, using this structure let us consider how to express the mating con-
straint in Fig. 14.16. The constraint is that the top of the lower cylinder
mates with the bottom of the upper cylinder.

Fig. 14.16. Two cylinders mated at a plane.

What we observe is that the contact structure here can be described by a
reflection operation; i.e., the material above the contact surface is reflection-
ally symmetric to the material below the surface. This fact can be exploited
very simply in generating the configuration shown: That is, the generation
starts with two coincident copies of the cylinder (pulled up from the align-
ment kernel of solid primitives); then one of the two coincident cylinders is
reflected about the top plane understood as a reflection plane. This creates
the configuration shown. The only thing that is necessary to account for is the
reflection plane in the top plane. This is easy enough. Recall that, according
to expression (14.8), the top plane started out as the horizontal Cartesian
plane. This is coincident with the reflection plane of the entire cylinder - i.e.,
the reflection plane given in the aligned hyperoctahedral wreath structure
which would also be in the alignment kernel of solid primitives. Therefore,
we merely demand that, in translating the horizontal mid-plane to become
the top plane, one translates with it a copy of the hyperoctahedral wreath
structure. Then use the translated horizontal reflection plane to produce the
structure shown in Fig. 14.16. This accords completely with the psychological
theory of Cartesian frames presented in Chapter 8, where it was argued that
the human visual system ”snaps” a Cartesian triple-reflection structure to
every flat surface of an object, e.g., recall Fig. 8.13 (p. 208).

We shall call the operation of reflecting an object about the reflection
plane coincident with one of its flat faces, a face-relative reflection.

This type of operation can be combined with another type of operation,
which we will now define, to produce a wide range of contact constraints.
This other class of operations will be called sub-primitive operations.

Sub-primitive operations again rely on the components of the solid struc-
ture, as defined for example by expression (14.8) in the case of the solid
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cross-section cylinder. This book so far has tended to apply unfolding op-
erations to primtives Pi as a whole. However, there is no problem applying
them to parts of primitives. In particular, it will be useful to apply them to
surfaces in the primitive. According to the theory in Chapter 16, the surfaces
of a typical solid primitive are (1) the surface kernel - which is the surface
that distinguishes the particular primitive from the other primitives, and (2)
the top and bottom planes. These surfaces will be indicated by the letters

S = Surface Kernel
T = Top Plane
B = Bottom Plane. (14.9)

When wishing to explicitly refer to these surfaces in a primitive Pi, we shall
write Pi(S, T,B). A control group can act specifically on one or more of these
surfaces. For example, the notation:

Pi(aS,T,B) AGL(3,R) Pi(S,T,B)

means that an affine transformation a has been applied to the surface kernel
S but the top and bottom planes have not been altered. For example, a
cylinder has been widened without altering the top and bottom.

An operation of this kind will be called a sub-primitive operation.
We shall now argue that sub-primitive operations are a powerful means

of expressing alignment in assembly. Let us illustrate this by first generating
a bolt. Start with two coincident cylinders P1 brought up from the align-
ment kernel - these are shown in Fig. 14.17a which represents two coincident
cylinders. One of the cylinders, Cylinder1, will be left untouched. The other
cylinder, Cylinder2, will undergo a sub-primitive operation, narrowing its sur-
face kernel and translating its bottom plane downwards. The result is shown
in Fig. 14.17b.

Fig. 14.17. Example of sub-primitive unfolding.
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Notice that, because the top plane has been left untouched, the top planes
of the two cylinders have remained aligned, whereas the bottom planes are
no longer aligned, and the surface kernels are now of different widths. The
sub-primitive operation that was used on Cylinder 2, was

P1(aS,T,bB) AGL(3,R) P1(S,T,B)

where a is the contraction on the surface kernel S, and b is the downward
translation on the bottom plane B. To understand this as an unfolding (mis-
alignment) control group, write simply this:

P1(aS,T,bB) , P1(S,T,B) AGL(3,R) P1(S,T,B) , P1(S,T,B).

Notice how much information this expression gives us: The input (upper)
indexes tell us that all surfaces of the two cylinders are aligned. The output
(lower) indexes tell us that the top planes remain aligned whereas the surface
kernels have been mis-aligned and the bottom planes have been mis-aligned.

Using the Boolean operations, different structures can now be created
from this. Thus, if one uses Boolean union of the two cylinders, one gets
a bolt. Alternatively, let us duplicate Cylinder2 - that is, add another P1

index in the above expression and make it undergo the same sub-primitive
operation as Cylinder2. Then let us subtract this second copy of Cylinder2
from Cylinder1, producing a hole in Cylinder1. The first copy of Cylinder2
now sits in the hole in Cylinder1 with the top faces aligned. This expresses
another common assembly situation.

Notice that the two constraints in this structure - the alignment of the
top faces, and the axial alignment - came up from the alignment kernel.
That is, in generating this structure, we have gone through phase 1 of the
symmetry-breaking theory of assembly on p. 340:

alignment kernel
unfolding−→ assembled state

unfolding−→
dis-assembled state.

The second phase, dis-assembly, will then translate one of the cylinders away
from the other along their common z-axis, breaking the alignment of their top
surfaces, and will then apply an arbitrary Euclidean movement to that moved
cylinder, breaking the axial alignment. These two actions (z-translation and
arbitrary Euclidean movement) are represented in exactly the same way as
in expression (14.7) on p. 342 for the dis-assembly of the cube and cylinder;
that is, merely add the translation group Transz, and the special Euclidean
group SE(3), sub-locally to the sub-primitive operation defined above (which
gave phase 1).

Sub-primitive operations are powerful also when they are combined with the
other type of operation defined in this section: face-relative reflections. Let us
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Fig. 14.18. Mating = combination of sub-primitive unfolding and face-relative
reflection.

generate the situation in which two different size cylinders are axially aligned
and in face contact, as shown in Fig. 14.18.

Again start with two coincident cylinders from the alignment kernel
Fig. 14.17a, and apply the appropriate sub-primitive operation to Cylinder2,
to obtain Fig. 14.17b. Then simply apply a face-relative reflection of Cylin-
der2, using the top face of Cylinder1. This generates Fig. 14.18. Again, notice
that the alignment (mating) of the two faces came up from the alignment ker-
nel. That is, we have gone through phase 1 of the sequence

alignment kernel
unfolding−→ assembled state

unfolding−→
dis-assembled state.

The second phase, dissembly, will then move the two cylinders apart, break-
ing the remaining alignment of the two faces, and then breaking their axial
alignment. Again, this is achieved merely by sub-locally adding the relevant
translation group Transz, and the special Euclidean group SE(3), to break
the respective constraints.

It is important to note that the two objects in Fig. 14.18 need not have
been both cylinders. For example, exactly the same generation procedure
works for a cylinder and block; i.e., one starts with a maximally aligned
cylinder and block from the alignment kernel, then applies the appropriate
sub-primitive operation adjusting there relative sizes, but leaving their top
faces aligned, and finally one applies a face-relative reflection, flipping one
about the top face of the other.

To demonstrate further the remarkable versatility one gets by combining
the face-relative reflections with sub-primitive operations, let us generate a
bolt placed in a block, as shown in Fig. 14.19. The procedure is easy:

(1) Start with an alignment kernel of a block-primitive and cylinder-primitive,
i.e., with their symmetries maximally aligned.
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Fig. 14.19. A bolt and block.

(2) Apply a sub-primitive operation to the cylinder to contract it while main-
taining the alignment of its top face with the top face of the block. The result
is shown in Fig. 14.20a.

Fig. 14.20. Unfolding the bolt and block.

(3) Apply a face-relative reflection of the cylinder about its top face. It now
sits on top of the block as shown in Fig. 14.20b.
(4) Create a copy of this cylinder4.
(5) Apply a sub-primitive operation to the copy, contracting the radius of its
surface kernel, lowering its bottom face, but maintaining the alignment of its
top face5. The result is shown in Fig. 14.20c. The first and second cylinder
now form the bolt.
(6) Create a copy of the second cylinder and subtract it from the block. This
creates the hole in the block.
4 As is standard in our system, creating a copy of some unfolded primitive means
unfolding it together with the latter, so that it has the same generation history
as the latter and occurs together with the latter as an index.

5 Top and bottom will now refer to viewer’s top and bottom.
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The assembled structure in Fig. 14.19 is now complete. There are two as-
sembly constraints: (1) The bottom face of the bolt head is aligned with the
top face of the block, and (2) the bolt is axially aligned with the hole. To
break these constraints, i.e., remove the bolt from the hole, insert the groups
Transz and SE(3) as usual.

14.27 The Full Group of the Robot Serial-Link
Manipulator

We will now continue our theory of mechanical assembly by giving the full
group of a serial-link manipulator.

In Chapter 6, when giving the ”full group” of a robot serial-link manip-
ulator, we meant this: In standard group-theoretic representations of such
manipulators, one collapses the transformations across the successive joints
to obtain a single transformation from base to effector, and thus defines the
group of such transformations as SE(3). In contrast, in the ”full group” ap-
proach that is taken in this book, we construct a group which represents the
fact that the links form a control-nested hierarchy of action spaces, and we
therefore argue that the group from base to effector is not SE(3), but the
much more complicated SE(3) w© SE(3) w© . . . w© SE(3).

In the current section, this notion of a full group will be extended still
further. By ”full”, we will now mean, not only that the group involves the
wreath structure just defined - which expresses the reference-frame organi-
zation of the link hierarchy - but we also include in the group the geometric
shape of the link hierarchy. This is particularly important when it comes to
expressing the workspace structure of the robot - for example, it gives a pow-
erful algebraic representation of configuration space, Minkowski sums, and
the sweeping structure involved.

First, we propose the following: The Denavit-Hartenberg representation
of the serial-link structure, i.e., as a succession of Cartesian frames outward
from the base, should be re-interpreted as a symmetry-breaking structure
using unfolding groups.

Let us show why this is the case: First of all, it is clear that the Cartesian
frames assigned along the manipulator links, always coincide with the sym-
metries of the links: i.e., given a coordinate frame, one of the axes coincides
with the rotation axis in a revolute joint, or the translation axis of a prismatic
joint, and all pairs of coordinate axes coincide with the reflectional symme-
tries of the link structure (usually its fibers). This is illustrated in Fig. 14.21,
which is a link connecting a revolute and prismatic joint; the assignment of
Cartesian frames shown is the standard assignment, and clearly corresponds
to the translational, rotational, and reflectional symmetries.
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Fig. 14.21. In a robot link, coordinate frames correspond to symmetries.

Now, in the Denavit-Hartenberg [26] representation of the serial-link
structure, one ”pushes” the reference frames successively outward from the
base. According to our theory, this means that what one is actually doing is
creating a successive mis-alignment of the symmetry structures; i.e., one is
unfolding the joint symmetry groups outward from initial alignment in the
base. Therefore, one can regard the Denavit-Hartenberg representation as
corresponding to an unfolding group, with an alignment kernel centered in
the base.

The approach just defined is the key to understanding how to obtain the
full group of the geometry of the robot manipulator. One unfolds not only
the symmetries represented by the frames, but the symmetries of each of the
solid primitives represented by the joints and connecting links. To do this, all
of the concepts developed in our theory of assembly will be used, as follows:

Let us discuss an example: a robot arm consisting of a base and one link.
This is shown in a dis-assembled state in Fig. 14.22. Begin by considering the
assembly task. This is solved by establishing two successive constraints:

Constraint 1: The circular surface of the hole in the proximal joint
of the link must be aligned with the circular surface of the drum on
the top of the base, as indicated in Fig. 14.23.

Constraint 2: The flat bottom surface of the solid cylinder defining
the proximal joint of the link must mate with the upper surface of
the round at the end of the base, as shown in Fig. 14.24.
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Fig. 14.22. Unassembled robot arm (two link manipulator).

Fig. 14.23. First assembly constraint.
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Fig. 14.24. Second assembly constraint.

With this in mind, the unfolding of the entire structure then becomes
easy: Simply unfold the assembled arm Fig. 14.24 from left to right in the
figure by sub-local unfolding, starting with an alignment kernel of only two
primitives, a block and a cylinder. These two primitives start out at the
left end of the base, where their symmetries are maximally aligned. This is
the starting configuration of the shape. All parts of the arm are successively
pulled leftwards from these two primitives by cloning and mis-alignment.
The above two constraints are two alignments that have not been broken in
this process, as follows: Constraint 1 expresses the fact that there are two
cylinders at the joint whose surface kernels are coincident - the drum cylinder
and hole cylinder. Constraint 2 expresses the fact that the solid joint cylinder
at the proximal end of the link, is generated from the cylindrical round below
it by a sub-primitive affine transformation that preserves the top face of the
round, followed by a face-relative reflection with respect to that top face.

Finally, in this unfolding group, the following three groups are inserted
between the base and the link parts: the rotation group SO(2) to create
rotation between the base and link; and the groups Transz and SE(3) to
successively break the two assembly constraints. Section 14.22 showed how
to insert these three groups. In conclusion:

FULL GROUP OF THE ROBOT ARM. We have given a full group of
the robot arm, expressing its shape, kinematics and dis-assembly, by unfold-
ing, i.e., by a succession of symmetry-breaking operations via mis-alignment.
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Fig. 14.25. The raw stock minus the designed object gives the delta volume.

14.28 Machining

When the design phase (CAD) is completed, one can begin the manufacturing
phase (CAM). The CAD model of a part is sent to a CAM file for machining.
Computer aided process planning (CAPP) is the means by which the CAD
model can be used to generate a sequence of instructions to physically create
the part. In machining, the part is produced by taking the designed shape for
the part and subtracting it from the raw stock (usually a rectangular block).
The remaining shape is called the delta volume. This is the shape that the
machining process must remove from the raw stock. Fig. 14.25 illustrates the
fact that the raw stock minus the designed object gives the delta volume.

The delta volume will be removed incrementally from the raw stock by
a moving cutter. Therefore, the cutter actually generates the delta volume.
This means that, once again, shape must be treated generatively. This is a
recovery problem because the generative operations must be inferred from
the delta volume which is the required goal-state of the generative process.
This means that the situation exactly accords with our generative-recoverable
theory of shape.

The primitives that must be unfolded through the delta volume are the
shapes of the cutters. The most frequent cutter shape is the cylinder, shown
in Fig. 14.26. As it rotates, it removes material from the stock. This type
of cutter produces three basic types of machined features: (1) the cylindrical
hole, (2) the slot, and (3) the pocket. These correspond respectively to the
three shapes shown in Fig. 14.26, Fig. 14.27, and Fig. 14.28.

Let us express these three basic machined features in terms of our gen-
erative theory. First consider the cutting structure that produces the hole:
The cutter itself is a cylinder, SO(2) w© R. This is rotated with respect to
itself, and therefore the rotation is the use of SO(2) as a control group with
respect to the cylinderical cutter as fiber, thus:

cutter︷ ︸︸ ︷
[SO(2) w© R] w©

rotation︷ ︸︸ ︷
SO(2) .

Now, also include the fact that the cutter can approach or withdraw from
the raw stock, along its z axis. Since the cutter is rotating much faster than
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Fig. 14.26. A rotating cylindrical cutter.

its approach-withdrawal translation, the translation acts as a control group
which sets the height of the rotation. Therefore, this translation factor is
wreath-appended as an extra control group above the previous expression.
That is, the resulting structure is this:

The Cutting Structure of a Hole

[SO(2) w© R] w© [SO(2) w© R]. (14.10)

Notice that this consists of two cylinders [SO(2) w© R], one placed above the
other in a wreath relation. That is, the symmetry group of the cylindrical
cutter is used as the group of its motion, and the latter acts on the former
as a wreath control group. This reinforces our claim that plans come from
symmetries. In fact, it is the symmetries that provide the structurally most
allowable actions on an organization.

Notice, carefully, why the relation between the upper cylinder and lower
cylinder is a wreath product. The upper cylinder of movements makes copies
of the lower cylinder, one for each position and orientation of the latter.

Notice the power of the structure just given. It is actually a 4-fold wreath
product, and this entire structure is needed to fully describe the situation.
For example, the cutter cylinder is described internally as the wreath product
SO(2) w© R, which means that it is the transfer of the cross section through
its height. This is its sweeping structure. However, this sweeping structure is
itself transferred through a higher level sweeping structure which represents
the motion of the cylinder. That is, there is transfer of transfer.

Our theory of aesthetics says that aesthetics is the maximization of trans-
fer. The above structure shows that the choice of cutter and motion is dic-
tated by aesthetics, i.e., maximizing transfer. We argue that this is a general
principle in engineering and science.
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Fig. 14.27. A machined slot.

Fig. 14.28. A machined pocket.
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Given the above structure, it is a simple matter now to give the cutting
structure of the slot, Fig. 14.27. One merely wreath super-appends, to the
previous structure, a control group giving one-dimensional horizontal trans-
lation of the cutter, thus:

The Cutting Structure of a Slot

[SO(2) w© R] w© [SO(2) w© R] w© R. (14.11)

Notice that this translational action is one of the symmetries of the flat
end-face of the cutter. This is part of the solid structure of the cutter, and
it appears in our full symmetry group of the solid cross-section cylinder in
expression (14.8) on p. 347, and Fig. 14.15, p. 347. This is fully dealt with in
the chapter on solid structure.

Finally, it is easy to give the expression of the pocket, Fig. 14.28. Merely
wreath super-append an extra translation group to the previous expression,
thus:

The Cutting Structure of a Pocket

[SO(2) w© R] w© [SO(2) w© R] w© [R w© R]. (14.12)

Notice that the pocket perimeter is given by the occupancy structure of the
final double-translation group.

Now, as said above, the problem of machining is essentially that of gener-
ating the delta volume in terms of motions of the cutters used. Furthermore,
this generative structure must be recovered from the delta volume. Notice
that this implies that the CAD/CAM system must decompose the delta vol-
ume in terms of machined features (e.g., hole, slot, and pocket), because,
according to our theory, the machined features are phases in the genera-
tive history - in fact, wreath fibers in the full group. Current research on
CAD/CAM integration views the problem of inferring features as that of a
feature-recognition task, and feature-recognition is the subject of a major
research effort in computer-aided process-planning6.

A major problem is that of intersecting features; for example, slots can
cross and overlap each other, e.g., as can be seen in the part shown in
Fig. 14.29, which is similar to one of the benchmark parts (Han Part 1)
used in the 1997 special ASME panel on feature recognition7.

A major way of dealing with this problem is to use the observation that the
machining operations, producing the features, should leave traces on the part,
even when the features overlap or cross. This is the basis of what is called the
6 Kyprianou [81], Henderson & Anderson [56], Choi, Barash & Anderson [23],
Falcidieno & Giannini [32], [33], Joshi & Chang [68], Kim [75]; see also p1019-20
of Lee & Kim [82] for a classification of the methods developed.

7 See the special issue of the journal Computer Aided Design Vol 30, No.13.
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hint-based approach to feature-recognition8. Hints are partial surfaces, which,
when subjected to a completion procedure, produce the maximally extended
removal volume compatible with the hint. For example, in Fig. 14.29, the
large diagonal slot has a number of incomplete faces. These faces hint at the
slot, which, on completion, will itself become the trace of the cutter. In other
words, the boundary of the cutter movement will actually be a completed
version of these incomplete surfaces.

The reader should notice the enormous similarity between hint-completion
and Gestalt perception in human psychology - which involves the human per-
ceptual system conjecturing completed structures (Gestalts) despite missing
parts. In our book, Leyton [96], we gave a theory of human Gestalt percep-
tion, arguing that any grouping is a history. This exactly accords with the
view in MCAD that completions come from the traces of the machine cut-
ters. In Chapters 2 and 6 of Leyton [96], we gave a theory of the inference of
traces.

Now let us return to the present book - to Chapter 5, which gives a theory
of Gestalt grouping. According to that theory, a grouping corresponds to a
fiber (left-subsequence) in a wreath hiearchy. The link to generative history
comes from our argument that the phase-structure of a generative history
corresponds to the fiber structure of a wreath product - the reason being
that the generative history is structured by maximizing transfer; i.e., a phase
of the generative history becomes the symmetry ground-state for the next
higher control group. Now it is clear that machined features correspond to
phases in the generative history of the part:

machined features ←→ phase-structure.

However, our theory of grouping claims:

phase-structure ←→ fiber structure ←→ grouping structure.

This means that the machined features correspond to the fiber structure
which itself corresponds to the grouping structure.

One sees therefore that the recovery of the machined features (e.g., slots)
is given by the recovery of groupings. Let us see how this is done. First con-
sider an individual machined feature (e.g., a slot). This is a trace, a phase
of internal structure (Sect. 2.9). Now the interference of another machined
feature, (e.g., a second overlapping slot), creates external structure, in the
form of breaks in the occupancy structure. That is, the second machined fea-
ture breaks the symmetry of the first machined feature, by introducing those
external asymmetries. Therefore, the recovery of the first machined feature
as a complete grouping (trace) means removing the external asymmetries,
leaving the original symmetries of that trace structure.

This is exactly what one can see in the example shown in Fig. 14.30,
which uses the hint-based method developed by Han, Regli & Brooks [48].
8 Vandenbrande [149], Vandenbrande & Requicha [150], Han & Requicha [49],
Gupta, Nau, Regli, & Zhang [?], Regli [122], Han, Regli & Brooks [48].



362 14. Mechanical Design and Manufacturing

This figure gives the machined features inferred from Fig. 14.29. Seven slots
and two holes are inferred. In Fig. 14.29, the surfaces of these features were
incomplete; in Fig. 14.30 they are complete, and give the boundary struc-
tures of the machined features. According to our theory, the completions are
symmetries inferred from the asymmetries in Fig. 14.29. The symmetries are
given by the mathematical groups:

Hole = [SO(2) w© R] w© [SO(2) w© R]
Slot = [SO(2) w© R] w© [SO(2) w© R] w© R

Pocket = [SO(2) w© R] w© [SO(2) w© R] w© [R w© R]. (14.13)

Notice that, in accord with our theory, this fully defines the grouping struc-
ture.



14.28 Machining 363

Fig. 14.29. Part similar to Han Part 1 (see, Han, Regli & Brooks [48]).

Fig. 14.30. Machining analysis similar to Fig 3 of Han, Regli & Brooks [48].



15. A Mathematical Theory of Architecture

15.1 Introduction

Our mathematical theory of architecture is a means of de-
scribing the entire complex structure of a building (from the
large-scale massing volumes down to the heating and ven-
tilation systems) by a single symmetry group. This single
group is required for all planning with respect to the build-
ing, because, by our theory of recoverability, plans come
from the symmetries of a structure.

To explain further: Since almost all of the environment is artificially con-
structed, the rigorous study of architecture is essential not just for the under-
standing of design but for the study of perception, motor control, navigation
and robotics.

We argue that all plans used with respect to a building - e.g., plans for
designing the building and plans for navigating through the building - come
from the same generative description of the building. Therefore, we must ask:
What is the mathematical structure of a building such that this structure
facilitates the user’s plans with respect to the building?

The answer, we propose, is a generative theory of the building such that
the representation maximizes transfer and recoverability. This maximization
is essential for any intelligent use of the building.

Our theory of recoverability says that all plans that maximize intelli-
gence come from a particular kind of symmetry group - a wreath product
(transfer structure) in which each transfer level is the symmetry group of an
asymmetrizing process. For complex structures, such a group is an unfolding
group.

Michael Leyton (Ed.): A Generative Theory of Shape, LNCS 2145, pp. 365-395, 2001. 
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Comment 15.1 Substantial parts of our theory of mechanical design are rel-
evant to this theory of architecture but will not be repeated here, to save space.
We will therefore assume that the reader has thoroughly absorbed Chapter 14
on mechanical design and regards most of that chapter as part of the present
chapter.

15.2 The Design Process

Essentially, the design process in architecture follows the successive stages1

shown in Table 15.1 p. 369. The reader should go through the table before
continuing.

Two of our basic proposals will be as follows:

BASIC PROPOSALS.
1. The standard architectural design process (Table 15.1) moves forward by
successive symmetry-breaking, or more deeply, asymmetry-building.
2. The process is a sequence of unfoldings - in the strict mathematical sense
of our unfolding groups.

The approach we develop gives considerable insight into the nature of ar-
chitectural structure. For example, it will be seen that the mass groupings
in a building are in fact unfoldings. Furthermore, it will also be seen that
the slicings of a building - to produce floor plates - uses exactly the same
mathematics - that of unfoldings. The difference is merely one of dimension.
Thus, all phases of the design process are formulated in terms of unfolding
groups.

15.3 Massing Studies

Let us start at the top of Table 15.1, with the first phase of the design process.
It is generally accepted that architectural design begins with a massing

study. This should be strongly distinguished from architectural drafting which
1 I am extremely grateful to Dhanraj Vishwanath for his enormously informa-
tive explanations of current architectural practice. As an experienced architect,
he made himself constantly available for highly detailed expositions on all the
systems (engineering, etc.) involved in the architectural process. Also of consid-
erable help was the outstanding software documentation of AutoCAD Architec-
tural Desktop, which is the most advanced architectural design program currently
available.
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is a late phase in the design process and which is concerned with producing
precise 2D blue-prints for communicating with construction personel. The
purpose of a massing study is very different: to define the main distinctive
structure of the building. It can be characterized by three features: (1) It is
inherently 3-dimensional despite being represented by 2D drawings. (2) It is
conceptual - defining the large-scale structure that characterizes the building
both for the designer and the future viewer. (3) It is exploratory, allowing the
architect to try to develop and discover different solutions.

15.4 Mass Elements

A massing study proceeds by creating, deforming, and combining, mass ele-
ments; i.e., solid primitives. Chapter 16 will give our theory of solid structure.
That chapter will show that it is possible to correspond the solid primitives
with the surface primitives (iso-regular groups) of Chapter 10; i.e., since the
latter can be considered to be the bounding surfaces of the solid primitives.
Thus for ease of exposition, the present chapter will refer to the surface
primitives (iso-regular groups) of Chapter 10, when in fact, we will mean the
corresponding solid primitives of Chapter 16.

In fact, we call the surface primitives of Chapter 10, the surface kernels, of
the corresponding solid primitives. Surface kernels are the surface components
that distinguish one solid primitive from another. The full specification of
the surface kernels (surface primitives) was presented in Table 10.1 (p. 237).
In our theory of solid structure, each solid primitive essentially consists of
two components: (1) the infinite solid component, which is the wreath c-
polycyclic translation group R w© R w© R, and (2) a surface kernel which
breaks the symmetry of the solid component in a way that is particular to
that primitive alone.

15.5 The Hierarchy of Mass Groups

Generally, a mass element can undergo two types of operation (1) deforma-
tion, and/or (2) combination with another element; i.e., the operations of
constructive solid modeling (CSG). Our theory of CSG has been given in the
chapters on unfolding groups.

In architecture one considers mass elements to be combined into mass
groups. These mass groups are themselves grouped into higher groupings, and
so on. Our main claim will be this:
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ARCHITECTURAL MASS GROUPS.
(1) A mass group is the unfolding of an alignment kernel; i.e., there is a
correspondence between mass groups and alignment kernels.

mass groups ↔ alignment kernels

(2) The alignment kernels are themselves unfolded hierarchically from a base
alignment kernel up through subsidiary alignment kernels.
(3) A single symmetry group gives the entire unfolding structure of the build-
ing.
(4) This maximizes transfer and recoverability.

To understand the above proposals, and to appreciate the deep power
of our generative theory to reveal the structural relationships in a massing
study, the reader should go carefully through the worked example in the next
section.

15.6 Symmetry Group of a Massing Structure

Let us systematically analyze a particular example, a massing study of an
office building. Two views of this study are shown in Fig. 15.1. The reader
should note that the study is inherently 3D, as are all massing studies, despite
being given by 2D images.

In our discussion, the masses will be labeled by numbers, as shown in the
plan in Fig. 15.2. Conventionally plans are 2D structures that come later in
the design process. However, a plan has been given here merely to show the
labeling of the masses by numbers.

Let us first give an intuitive description of the massing structure of the
building. A much more powerful description will be given in the mathematical
discussion that follows this, because, by the use of wreath products and direct
products, we will really be able to understand how the masses are grouped.

However, to begin intuitively: Observe that, because the largest mass is
mass 1, shown in the plan, the eye takes this to be the mass to which the
others are referred. All the masses are clustered around this main mass, and
therefore one can regard the entire structure as a mass grouping. However,
within this, there are subsidiary mass groups:

(1) Clearly, masses 2, 3, and 5, form a mass group that goes off the main
mass 1.

(2) Furthermore, it is obvious from the massing study Fig. 15.1, that the
large cylindrical tower with its dome forms a mass group. The dome is con-
ceptually part of a sphere which is aligned with the cylinder as shown in the
wire-frame view in Fig. 15.3. In the massing views shown in Fig. 15.1, the
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Table 15.1. The architectural design process.

I. Conceptual Design.
1. The massing study.
2. Slicing the massing study to create floorplates.
3. Space Planning.

II. Design Development.
1. Choice of materials.
2. Doors and windows.
3. Structural column grid.
4. Ceiling grid.
5. Stairs.
6. Shafts.
7. Roof.
8. Development of accuracy.

III. Construction Documentation.
1. Creating elevations and sections.
2. Dimensioning.

Fig. 15.1. Two views of a massing study.
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Fig. 15.2. Plan of the massing study.

Fig. 15.3. Wireframe side-view of the massing study.
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dome is that part of the sphere which is visible above the cylinder. The com-
plete tower is therefore the Boolean sum of the cylinder and sphere masses.

(3) In addition, there are some individual elements that come off the main
mass: (a) The thin rectangular spine, mass 4 in the plan; and (b) the two
cylindrical lobby entrances, shown as mass 8 and 9 in the plan.

Having described the massing structure intuitively, we shall now under-
stand it much more deeply using the generative theory of shape. The structure
will be constructed in stages:

(1) The alignment kernel. This contains three primitives: the cube P1,
the cylinder P2, and the sphere P3. It is therefore written as follows:

[[Gsphere]P3 × [Gcylinder]P2 × [Gcube]P1 ]U .

Algebraically, the alignment kernel is thus the direct product of a number of
clones of each primitive. From a group-representation point of view, all of the
clones should be understood as maximally aligned with each other and with
the World-frame. The number of clones will be determined by the wreath-
direct actions with the control groups. Until we determine the number of
clones of each primitive, we shall often speak of the cube, the cylinder and
the sphere.

(2) The hierarchy of rectangular masses. Let us first consider only the
rectangular masses in the structure. They have a particular referential order
which is given by the following group:

[[Gsphere]P3 × [Gcylinder ]P2 × [Gcube]P1 ]U
w© [daP1AGL(3,R)aP1

× [[cbaP1AGL(3,R)baP1 × baP1{e}baP1 ] w© baP1AGL(3,R)aP1 ]

× aP1{e}aP1 ]

w© aP1AGL(3,R)P1 × P1{e}P1 . (15.1)

Let us go through this expression from bottom-to-top. In the bottom line the
right-hand group fixes a copy of P1, the World frame. The purpose of this
is to hold a copy of the internal symmetries of the construction plane, as is
required by the theory of construction planes, summarized on p. 212. The
left-hand group also takes the cube primitive P1 as input, but outputs an
affine-altered version of it, aP1, corresponding to the main rectangular mass
- numbered 1 in Fig. 15.2.

The output index aP1 then becomes the input index on each of the three
lines above; i.e., at the right-hand end of each of these lines. Each of these lines
determines a different fate for aP1. Thus working upwards through these lines:
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Line 4 fixes a copy of mass 1 - that copy seen in Fig. 15.2. Next, considering
Line 3, the right-most group takes aP1 and applies an affine transformation
b to it, producing the output index baP1, which represents mass 2 in the
plan-view in Fig. 15.2. Then, moving left-ward on this line, there is a wreath-
product symbol w©, the fiber of which is a direct product, each component
of which takes baP1 as input. The first component is the identity group {e}
which fixes a copy of baP1, which is mass 2 as seen in Fig. 15.2. The other
group in the direct product has output cbaP1 which corresponds to mass 3 in
Fig. 15.2. The direct product shows that this object is a misalignment with
respect to the copy held by the identity component; i.e., we have symmetry-
breaking by misalignment.

Finally, Line 2 also takes aP1 as input, but outputs daP1 which represents
mass 4 in the plan-view Fig. 15.2.

Thus, the reader can see from the entire expression (15.1) that there must
be five clones of the cube primitive in the alignment kernel.

(3) The addition of mass 5. We now add the cylinder shown as mass 5
on the plan-view, Fig. 15.2. This is understood as coming off the rectangu-
lar mass 2. However, mass 2 is understood as coming off mass 1, which is
itself derived from the alignment kernel. Thus, the cylinder comes from the
alignment kernel and is moved to be aligned with mass 1, and moved again
to be aligned with mass 2, and finally misaligned to become mass 5. The
appropriate group description is therefore the following:

[[Gsphere]P3 × [Gcylinder]P2 × [Gcube]P1 ]U
w© [daP1AGL(3,R)aP1

× [[wvuP2AGL(3,R)vuP2 × cbaP1AGL(3,R)baP1 × baP1{e}baP1]

w© ∗vuP2 , baP1AGL(3,R) uP2 , aP1 ]

× aP1{e}aP1 ]

w© ∗uP2 , aP1AGL(3,R) P2 , P1 × P1{e}P1 . (15.2)

This is the same as the group given before, except that a cylinder mass
has been added into the direct product in Line 3, where it is the left-most
component. For notational reasons the control group has been moved down
a line. A cylinder index (based on P2) has been placed on this control group
and that on the bottom line.

Thus, starting with the bottom line, the affine group now has two input
indexes representing the cube and cylinder primitives P1 and P2 from the
alignment kernel. By Notation 13.3 (p. 298), the affine group here actually
means the direct product of affine groups:

∗uP2 , aP1AGL(3,R) P2 , P1 = ∗uP2AGL(3,R)P2 × aP1AGL(3,R)P1 .
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The output index uP2 is prefixed by an star because the u is chosen such that
the cylinder remains maximally aligned with the cube up to deformation; that
is, u is the non-deformation part of a.

Then, two lines above this, Line 4 takes as input the output of the affine
component of the bottom line. Also, the double index on the group of this
line indicates that it is a direct product, thus:

∗vuP2 , faP1AGL(3,R) uP2 , aP1 = ∗vuP2 AGL(3,R)uP2 × faP1AGL(3,R)aP1 .

The effect of this line is to move the cylinder out together with the rectan-
gular mass, which becomes mass 2 in Fig. 15.2. As indicated by the star, the
cylinder is not deformed but remains maximally aligned with the rectangular
mass, up to deformation.

Next, go upward one line to Line 3. Working from right to left, there is
first an identity component which fixes a copy of aP2, mass 2. The next affine
group on this line moves the rectangle out from alignment with respect to
mass 2, to become Mass 3; and the next affine group moves the cylinder out
from alignment with respect to mass 2, to become the entrance mass 5.

Notice that Line 3 allows us to infer the distribution of clones in Line 4.
It tells us that the cube index in Line 4 actually corresponds to two clones;
and the cylinder index in Line 4 corresponds to only one clone.

Finally, Line 2, which produces mass 4, is the same as before.

(4) The mass grouping (6,7). The tower shown as (6,7) in the plan consists
of the sphere and cylinder. This is unfolded in parallel with the mass grouping
(2,3,5). Therefore, it will be in direct-product relation to the latter. However,
one also needs to bring in the sphere P3 from the alignment kernel so that
this can happen. The resulting group is:

[[Gsphere]P3 × [Gcylinder]P2 × [Gcube]P1 ]U
w© [daP1AGL(3,R)aP1

× [[wvuP2AGL(3,R)vuP2 × cbaP1AGL(3,R)baP1 × baP1{e}baP1]

w© ∗vuP2 , baP1AGL(3,R) uP2 , aP1 ]

× muP3 , muP2 AGL(3,R) uP3 , uP2

× aP1{e}aP1 ]

w© ∗uP3 , ∗uP2 , aP1AGL(3,R) P3 , P2 , P1 × P1{e}P1 . (15.3)

Notice that this is the same as the previous expression (15.2), except for
two changes: An extra index has been added to the last line, indicating the
unfolding of the sphere primitive P3. And one extra line has been inserted,
Line 5. The inputs to this line are the (sphere, cylinder) outputs from the
bottom line. This produces the new mass grouping (6,7). Notice that this line
is in parallel with the mass grouping (2,3,5) and also in parallel with mass 4.
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Consequently, there are the three direct product symbols shown down the
left side of the entire group-sequence.

(5) The addition of lobby-entrances 8 and 9. Finally, we add the cylin-
drical lobby entrances 8 and 9 (in plan-view Fig. 15.2). These come off the
main mass 1, and are therefore parallel to the spine mass 4, and to the mass
grouping (2,3,5), and also to the tower mass grouping (6,7). The full group
is therefore given thus:

[[Gsphere]P3 × [Gcylinder]P2 × [Gcube]P1 ]U
w© [daP1AGL(3,R)aP1

× [[wvuP2AGL(3,R)vuP2 × cbaP1AGL(3,R)baP1 × baP1{e}baP1]

w© ∗vuP2 , baP1AGL(3,R) uP2 , aP1 ]

× huP2AGL(3,R)uP2 × guP2AGL(3,R)uP2

× muP3 , muP2 AGL(3,R) uP3 , uP2

× aP1{e}aP1 ]

w© ∗uP3 , ∗uP2 , aP1AGL(3,R) P3 , P2 , P1 × P1{e}P1 . (15.4)

This is the same as the previous expression in (15.4) except that a new Line 5
has been inserted, unfolding the two cylinder lobbies. This of course does not
merely alter the algebraic structure by this one insertion, but adds two extra
cylinder clones to the alignment kernel, and to each cylinder index below
Line 5.

15.7 Massing Structure and Generativity

The previous section began by giving an intuitive description of the mass-
ing structure of the example building. This description gave a list of mass
groupings in the building. However, this description, which is typical of ar-
chitectural dialogue, does not give what we regard as the most important
information in a massing structure: the generative organization. Most im-
portantly, it is only by considering generativity, that the deep relationships
between the masses become evident.

Thus, after the intuitive description, we gave a description based on our
generative theory of shape. In this, the massing structure is truly revealed.
According to our theory, any mass grouping comes from its own alignment
kernel - recall the distinction, in Sect. 13.7, between base and subsidiary
alignment kernels. Indeed there is a correspondence between the mass group-
ings and the alignment kernels in the generative structure. Furthermore, a
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mass grouping is the unfolding of the associated kernel. These kernels are
themselves unfolded ultimately from the base kernel.

This description reveals other powerful structural factors. The genera-
tive hierarchy contains direct products and wreath products. These show
the complex and subtle relationships between the masses. Masses and mass
groupings that are linked by direct products are unfolded parallel to each
other in the full structure. Masses and mass groupings that are linked by
wreath products are unfolded in a control-nested fashion, and are therefore
referentially related, in accord with our algebraic theory of parent-child hier-
archies. The entire unfolding structure then becomes a configuration of direct
and wreath products that tell us exactly the unfolding relationships within
the mass structure.

15.8 Slicing the Massing Study to Create Floorplates

With the massing structure completed, the next phase in the architectural
design process is to slice through the 3D structure to obtain the floorplates.
Floorplates give the perimeter geometry of the building. Therefore, what one
is really slicing are the boundary surfaces of the solid model.

In Sect. 14.20 (starting p. 336), we showed how slicing can be expressed
by unfolding. Now apply this theory to architecture, as follows: To obtain the
slicing that produces floorplates from the 3D model, take one of the planes
from the cube primitive within the alignment kernel. This primitive always
exists in the alignment kernel either explicitly or as its surrogate, the gravita-
tional frame. The cube is given in Table 10.1 (p. 237) as the hyperoctahedral
wreath hyperplane group consisting of a control group Z2 w© Σ3 acting on the
fiber-group product which consists of six copies of the plane - the six sides of
the cube. The particular copy of the plane that will be selected for slicing, is
the bottom plane. This becomes the ground plane of the building. It is then
unfolded upwards through the building to become the successive floorplates.

Now the following important distinction needs to be made: The plane
which became the bottom plane of the cube was actually produced earlier in
the generation sequence: Recalling Fig. 14.15 (p. 347), it is the first plane to
appear in the creation of the infinite solid, i.e., the plane is the first two levels
R w© R of the solid as a 3-fold wreath c-polycyclic group R w© R w© R. Prior
to the introduction of the cube, this plane has already been swept upward
via the third level of R w© R w© R because this was how the infinite solid
was created. Thus, it seems that, to maximize transfer, one does not need to
sweep this plane upward again to create the floor plates; i.e., one can regard
the floor plates as particular selected members of the original continuum of
parallel planes that constitute the solid.



376 15. A Mathematical Theory of Architecture

However, the floor planes have a different role: Being slice structures,
they are actually boundary surfaces. This means that conceptually one should
think of them as transferred versions of the bottom plane of the cube as a
boundary structure - i.e., their existence occurs only after the establishment
of the cube not before. Remember: The cube is a boundary structure because
it is introduced as cutting the previously established infinite solid. The floor
planes, as slice structures, are conceptually transfers of this cutting structure.

The way we handle this is to use the theory of super-local unfolding. The
reader should think of the situation as being exactly analogous to the example
given in Sect. 12.3 - particularly the figures on p. 259 - where a door opening
was created by two slice-lines which were transferred versions of the sides of
one of the rooms. That previous example is simply a version which is one
dimension lower than the example now being studied.

Most crucially therefore, the group generating the slice planes is placed
on a control level higher than the group creating the massing structure, and
unfolds only part of that lower structure. That is, we have this:

K w© Gm w© Ga...bPs

where K is the alignment kernel, Gm is the unfolding group of the massing
structure, and Gs is the unfolding group of the slice structure. The input
index a . . . bP on Gs is the plane P taken from the bottom plane of the cube,
but after P has undergone some of the unfolding operations a . . . b from the
lower unfolding group Gm. Notice that this is therefore a super-local action.

Some additional comments: The fact that we defined the gravitational coor-
dinate system as algebraically equivalent to the cube primitive, is particu-
larly relevant here: The unfolded slice plane literally represents the horizontal
plane with respect to gravity; i.e., floors must necessarily be gravitationally
horizontal.

This fact becomes particularly conspicuous in deformed structures. For
example consider Gallery 304 shown in the center of Gehry’s Guggenheim
Museum in Fig. 15.4. This gallery is a mass that is deformed upwards, as can
be seen by its upper roof-line, and yet its floor must be horizontal. Notice
that this floor is actually coincident with the third-floor slice-plane shown
in the rectangular structures on the right. Thus the plane has been unfolded
through the deformed structure and ignores that deformation. This illustrates
the power of super-local unfolding to ignore chosen aspects of a structure -
as discussed in Sect. 12.7.

Let us now turn to the issue of regularity and irregularity in the spaces be-
tween slice-planes. It is often the case that floors are spaced at equal intervals
upward through the building, in which case the affine action that moves the
slice plane through the building will be an occupied subset of the infinite
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Fig. 15.4. Frank Gehry and Associates, Inc: Guggenheim Museum at Bilbao.
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cyclic group Z. However, in some buildings, certain floors can be of different
spacings; for example, in an apartment building it is often the case that the
ground floor has a greater ceiling height than the other floors. This can be
modeled as a deviation from the regular action of Z established by the other
floors; i.e., an additional layer of external history, in accord with our Ex-
ternalization Principle which says that any external history goes back to an
internal structure that is a control-nested hierarchy of repetitive isometries.
Here the internal structure is the regular floor structure Z, and the local
deviation becomes the fiber to that group.

15.9 Space Planning: Unfolding of Space Volumes

The next phase in the design process is space planning. We shall formalize
this using a two-stage cycle.

Space-planning begins by considering the volumes between the floorplates.
There is no architectural term for these volumes, and the term ”floor volume”
is ambiguous because it could be confused with the floor-slab volume, which
will be needed later. So the French word étage will be used, thus:

ÉTAGE VOLUME. The volume between two successive floorplates will
be called the étage volume.

To make the discussion easier to follow, let us assume that the étage volumes
are rectangular. It becomes an simple matter to extend the discussion to
non-rectangular étage volumes.

It is necessary to consider the étage volumes as entities in their own right,
as follows: Consider how these volumes were derived. The first design stage
created the massing volumes that will form the basis of the entire design pro-
cess. The second stage unfolded the slice-planes through the massing volumes,
creating the floorplates. Clearly, one can define the étage volumes between
the floorplates merely as parts of the original volume. Most crucially, in this
description, they are relics of the original volume, in the same sense that the
slices of a cake are relics of the complete cake that existed before the slicing
operation.

However, in space planning, one needs to incorporate also a different de-
scription of the étage volumes as follows: These part volumes should be re-
described as whole volumes, in their own right. By this we mean that each
étage volume should now correspond to a whole primitive in the alignment
kernel.

When the étage volume is rectangular, the particular primitive from which
it is derived can be regarded either as a cube or a primitive block. There are
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some advantages to using the latter alternative, because the CAD architect
will often define aspects of the étage volume by an upward sweeping structure.
This again is strongly evident in a major CAD program such as AutoCAD
Architectural Desktop.

Therefore, to allow this to occur, the block primitive must be added to
the alignment kernel. Table 10.1 (p. 237) of primitives gives two alternative
versions of the block primitive: the cross-section block or ruled block. In
the current situation, the cross-section block is the appropriate description
because it is generated by taking a cross section R w© Z4, and sweeping
it along the perpendicular translation direction R, which acts as a control
group moving the cross-section as a fiber: Thus the cross-section block has
this structure:

R w© Z4 w© R

where the upper R is the sweeping control group. Now, this translation control
group follows the same direction as the translation movement that pulled the
slice-planes through the building to produce the floorplates. Thus the struc-
ture of the cross-section block accords with the control action that has already
been established in the symmetry structure of the floorplate arrangement.

To conclude: To generate an étage volume, as a conceptual entity in its
own right, load a primitive cross-section block into the alignment kernel.

An additional factor needs to be specified: The block primitive is a cube,
whereas the étage volumes are rectangular; i.e., the floors break the symmetry
of the cube. Therefore, unfold the étage volumes not only using the floorplate
translation group, but also using the appropriate stretch transformation from
the remainder of the affine group.

In this section, we have defined two stages, thus:

INDIRECT/DIRECT UNFOLDING CYCLE.
(1) Indirect unfolding: Slice through a whole volume that corresponds to
an unfolded primitive, thereby producing part-volumes.
(2) Direct unfolding: Then unfold these part-volumes directly from their
own primitives; i.e., redescribing them as whole-volumes.

The Indirect/Direct Unfolding Cycle will be used again and again at ever
smaller scales, as follows.

15.10 Space Planning: Unfolding the Boundary and
Void Spaces

The next stage in space planning is to define the boundary of the étage vol-
umes as having thickness; i.e., they are actual floors and ceilings. The reason
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for defining these thicknesses is that, in space planning, the designer begins to
incorporate factors that will be important to the main engineering systems:
load-bearing factors (structural systems), and the heating and ventilation
ducts (building systems), etc.

We shall formalize this stage using the Indirect/Direct Unfolding Cycle,
as follows: Take any whole-volume coming out of the previous stage, i.e., any
étage volume - a volume between the successive floorplates - and do this:

(1) Indirect Unfolding: Slice the étage volume into four parallel part-
volumes: The floor-slab; the spatial void above (through which people will
move); the ceiling slab; and the above-ceiling clearance. Notice that this in-
volves unfolding slice-planes through the étage volume.

(2) Direct Unfolding: Take the part-volumes just produced by indirect un-
folding, and directly unfold them from their own primitives in the alignment
kernel.

15.11 Unfolding the Room Volumes

Let us regard the next stage of space planning as the partitioning of the
étage into individual room volumes. Again, carry this out by another use of
the Indirect/Direct Unfolding Cycle. However, now use vertical slice planes:

(1) Indirect Unfolding: Slice the étage using vertical slice-planes. The
resulting part-volumes will be the room volumes.

(2) Direct Unfolding: Take the part-volumes just produced by indirect un-
folding, and directly unfold them from their own primitives in the alignment
kernel; i.e., the rooms will be described as whole-volumes in their own right.

Notice that this is the first time that the plan structure of an étage has
appeared.

15.12 Unfolding the Wall Structure

The walls are vertical slab boundary volumes to the rooms, and are unfolded
using the same cycle. Conceptually, one can regard this phase as the vertical
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equivalent to the unfolding of the floor-slabs as boundary volumes of the
étage.

Comment 15.2 Looking back over the entire space planning process, it can
be seen that we have simply used the Indirect/Direct Unfolding Cycle repeat-
edly at ever smaller scales. Thus, the cycle was used to create the étage vol-
umes from the mass volumes; then to create the boundary volumes (floor and
ceiling slabs) of the étage volumes; then vertically to create the room volumes
(and hence the first plan); and finally to create the boundary volumes (walls)
of the room volumes.

15.13 Complex Slicing

The approach we have defined allows for complex slicing. Consider for exam-
ple the slicing of an étage into a complex room-structure. Fig. 15.5 shows a
slicing which is not simply a sequence of planes across the étage. Consider, for
instance, the room labeled A. Its right and bottom wall were created together
as a single polyline - that shown on the far right of the figure. A polyline in
CAD is a continuous set of line and arc segments, drawn sequentially from
one end to the other. At first, this approach might seem very different from
the scenario given above. But close examination reveals that it is not, as
follows:

In drawing a polyline, the computer prompts one with a series of questions
starting with: ”Line or circular arc?” With the selection of a line, one chooses
the direction together with the start and end point. With the selection of an
arc, one chooses the center together with the start and end point. At each end
point, the computer offers again the option of drawing another line or arc.
Note also that in modern architectural CAD (e.g., AutoCAD’s Architectural
Desktop), one has the option of drawing a wall directly in this manner; i.e.,
a polyline with height in the third dimension. If this facility is not available,
one standardly sweeps the polyline vertically to create the wall height.

Now, close examination of what has just been described reveals that it
conforms to the method we described for slicing by unfolding, as follows: As
was said, in drawing the polyline wall, the computer first prompts one with
the question ”Line or arc?”. We argue that the choice of line, is equivalent to
bringing a plane up from the alignment kernel. The plane will have a start
and finish point, i.e., an occupancy specification on its infinite extent, but
this was the case with our previous scenario. Thus, as in our basic scenario,
one is unfolding an infinite plane from the alignment kernel to slice the space.
A sequence of planes along the polyline is simply a sequence of such slicings.

Supposing instead that one chooses the ”arc” alternative, at some step
along the creation of a polyline wall. Although we did not previously handle
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Fig. 15.5. Polyline-to-Volume Conversion.

slicings by non-planes, the principles are exactly the same. The slice-objects
are pulled up from the alignment kernel. For an arc, the slice object is a cylin-
drical surface; and again the start and end points merely specify occupancy.

The wall polyline is therefore simply a set of slice planes and cylinder
surfaces unfolded sequentially from the alignment kernel.

This stage in fact corresponds formally to the first stage in the Indi-
rect/Direct Unfolding Cycle; i.e., the creation of part-volumes by the unfold-
ing of slice objects from the alignment kernel. Thus, for example, the room
volume shown at A in Fig. 15.5, has been created by a slicing produced by
the wall-polyline that was discussed. The room volume is a part volume of
the étage - a part volume that has been created by the slicing.

In the second stage of the Indirect/Direct Unfolding Cycle, one re-
describes this part volume by directly unfolding whole volumes as primi-
tives from the alignment kernel. For this room, the unfolding is shown in the
bottom-right diagram in Fig. 15.5. Notice that the previous slice planes are
actually boundaries of the rectangular whole-volumes. This is exactly as it
should be: These slice planes in fact came from the edge-planes of the cube
in the alignment kernel, and the cube is the primitive now used to create
the whole-volume. Similarly, the circular arc was previously created by us-
ing exactly the same cylinder as the cylinder that is now brought up as a
whole-volume.

One final thing should be noticed: The second stage described here - i.e.,
the direct unfolding of a room volume - is an example of sub-local unfolding
(Chapter 13). For example, the diagram given here for unfolding a single
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room - the bottom right diagram in Fig. 15.5 - is strongly reminiscent of
the type of diagram produced when we unfolded the eight-room house in
Fig. 13.5 (p. 294). Observe for example, in the room example being described
here - bottom right diagram Fig. 15.5 - the circle is clearly seen as a misalign-
ment from the center of the main rectangle. The same is true of the minor
rectangles. An arbitrarly complex room can thus be generated by sub-local
unfolding in the same way as an arbitrarily complex house was generated
previously.

This strongly attests to the power of our theory to provide a single gen-
erative method for a large variety of shape situations.

15.14 Design Development Phase

The previous section essentially ended the conceptual development phase,
and we now come onto design development. There are a number of purposes
of design development:

1. Choice of materials.
2. Doors and windows.
3. Structural column grid.
4. Ceiling grid.
5. Stairs.
6. Shafts.
7. Roof.
8. Development of accuracy.

15.15 Choice of Materials

So far the space-division plans of the building have been purely geometric.
In such a plan, there has been no distinction between the space within a
wall and the space outside it. In the design-development phase, one has to
choose different materials for these spaces. For example, a masonary material
is chosen for the space within a wall, and one implicitly acknowledges the fact
that this is not the material, air, that is outside the wall.

Since our theory is generative, we want to be able to describe the choice
of materials generatively. Furthermore, since the theory ultimately rests on
identifying the symmetry structure of a situation, we propose to do this by us-
ing color groups. Recall the fundamental reason why the Russians developed
color groups: Enormous benefits had been gained by describing the geometric
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properties of crystals in terms of symmetry and therefore group theory. How-
ever, this approach seemed unable to handle non-geometric properties, which
were usually referred to as material properties. It was in order to overcome
this barrier, that the Russians, Heesch (in the 1920’s) and later Belov and
Shubnikov, developed the concept of color groups. A color group consists of
transformations that are non-geometric, but instead change material.

Let us apply this concept to architecture. Consider the boundary between
a stone wall and air. First ignore the materials involved. The wall and air are
separated by a plane which reflects one side onto the other. Now consider the
material properties. This reflection operation has to change material from
stone to air. The material change is not a geometric operation, but a color
one. (The term ”color” is the technical term used for any property that is
not geometric.)

The incorporation of color groups into our theory is an easy matter. No-
tice that the ”symmetry” in the color group actually generates the asymme-
try involved in the distinguishability between colors/materials. This accords
exactly with our theory of recoverability which states that the generative op-
erations produce asymmetries, which are encompassed within a higher order
symmetry group.

15.16 Doors and Windows

As can be seen from Fig. 15.6, doors and windows are almost always ar-
rangements of rectangular blocks. A door consists of a door panel (which is
a rectangular block), a frame (built of rectangular blocks), and door-stops
(which are rectangular blocks). A window consists of a sheet of glass (which
is a rectangular block), a frame (which is built of rectangular blocks), and
sash components (which are rectangular blocks) 2.

It should be clear to the reader by now that the natural way to generate
these two structures is by sub-local unfolding (Chapter 13).

Since the placement of doors and windows is being given as an unfolding
process, this means that their placement is being represented in terms of
creating misalignment from initial alignment. This accords perfectly with
architectural CAD. For example, in the placement of doors and windows in
AutoCAD’s Architectural Desktop, the program prompts the designer with
the option ”Automatic Offset/Center”, which means the positioning of the

2 Occasionally, doors and windows can have non-rectangular elements - and these
can be easily handled within our system, i.e., by pulling additional primitives
from the alignment kernel. However, it is almost certainly the case that the room
in which the reader is sitting now has doors and windows that constructed only
from rectangular blocks; and therefore, for ease of discussion, we shall assume
that we are dealing with this typical case.
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Fig. 15.6. A door and window consist of blocks.

door or window at either an offset distance from one end of the wall, or at the
center of the wall. Clearly, the placement of the door or window at the center
of the wall means the maximal alignment of their symmetry structure: Then,
at a later stage, the designer has the option of moving the door or window,
thus creating misalignment from the center - i.e., unfolding as we have defined
it. The same is true of the offset option. The placement of the door or window
at the end of the wall actually means the alignment of the boundary fiber
(edge face) of the door or window with the the boundary fiber (edge face) of
the wall; i.e., there is maximal alignment of the R2 symmetry structures of
their boundary fibers. The theory of this kind of structure was given by us
in the sections on assembly in Chapter 14 on mechanical CAD. Finally, the
creation of an offset distance becomes the creation of misalignment of these
symmetry structures.

The Within-Wall Constraint.
Doors and windows are constrained to lie within walls. Therefore, in unfold-
ing them from the wall structures, one must use only that subgroup of the
affine group that keeps them within the wall; e.g., involving only the two-
dimensional translation group corresponding to the length and height of the
wall. This is an easy matter to specify because the subgroup is based on the
symmetries of the wall pulled up from the alignment kernel.
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The Influence of the Gravitational Frame.
The fact that doors and windows tend to be built of rectangular blocks attests
to the over-riding importance of the gravitational frame. We have argued
that the gravitational frame is equivalent to the cube primitive, and the
cube primitive is the generative starting state of the blocks unfolded from
the alignment kernel. In other words the blocks in a door and window are
memory of the gravitational frame.

The Symmetry-Breaking Effect of Doors and Windows.
One can see that there is a successive diminishing of scale starting with
the building masses, then going to the étage volumes, then the rooms, the
walls, and now the doors and windows. This is a natural process of symmetry
breaking. Furthermore, each successive level can be moved within the higher
level preceding it, making use of the symmetry of the higher object. For
example, the étage volumes can be moved within the mass volumes; the
doors and windows can be moved within the wall volumes, etc.

This is the very deep form of symmetry-breaking described in this book.
Consider for example a wall before the addition of doors. The wall has trans-
lational symmetry along it until the wall’s edges. Then, when one adds the
door, this translational symmetry is broken. Observe, most importantly, that,
in the design process, one moves the door along the wall until one finds the
right position. This uses the symmetry of the wall. Thus the very symmetry
that is broken in the wall, is used by the object (the door) that breaks that
symmetry. This is an essential part of our system. Symmetries are not actu-
ally lost in our system: one adds asymmetries by control-nesting symmetries
within each other.

15.17 Structural Column Grid

A grid of columns is one of the fundamental structures of architecture: It is
the basic means by which the weight is supported in a building - from an-
cient temples to modern libraries, banks, and airports. One starts by defining
a regular grid of columns through the building so that it will support the
higher structures; i.e., so that it satisfies the structural engineering analysis.
One then might move some of the columns out of regular alignment, to sat-
isfy other constraints such as the building functions, skin geometry, etc, but
always with the ultimate goal of maintaining weight support. Modern engi-
neering allows the columns to be moved further from regularity than classical
architecture, but nevertheless the design proceeds by starting with the reg-
ular grid, and then creating deviations from that regularity. For example,
this is the way that the menus are standardly set up in architectural CAD;
that is, the first menu allows one to choose the spacing of a regular grid, and
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then one can choose subsequently to move selected columns out of regular-
ity. This means that the design of the column grid proceeds by a process of
symmetry-breaking, which is exactly what our theory predicts.

Let us begin by looking at the first stage: The formation of the regular
column grid.

COLUMN GRIDS. A column grid is an example of what we defined in
Sect. 5.4 as a generative crystallographic group.

Recall that a generative crystallographic group was defined as an iso-regular
group (wreath c-polycyclic, wreath-isometric) of the form

G = H w© [Z w© Z w© . . . w© Z]. (15.5)

Note that the componentH , being iso-regular, has itself a wreath c-polycyclic
wreath-isometric decomposition G1w©G2w©. . . w©Gn (Definition 5.1 p. 140).

Apply this structure to the column grid, as follows: The column grid has
a generative crystallographic group, in which the grid group is the control
group, and the column group is the fiber. The grid group is Z w© Z, that is,
the movement of a line of columns through the discrete set of intervals in
the perpendicular direction. The column group is given by Table 10.1 p. 237
as SO(2) w© R if the column is understood as a cross-section cylinder, and
R w© SO(2) if the column is understood as a ruled cylinder. Without loss of
generality, assume that the cylinder is the cross-section type. The total group
of the column grid is therefore

[SO(2) w© R] w© [Z w© Z].

Both the control translation-group and the fiber column-group are pulled up
from the alignment kernel. The translation group is a discrete subgroup of the
continuous translation group R w© R that forms the bottom plane of the cube
primitive; and the column group is the cylinder primitive in the alignment
kernel.

Now, to handle the deviation of columns from the regular grid points,
merely wreath-append the same bottom continuous plane R w© R, of the
cube, below the control group Z w© Z but above the column SO(2) w© R,
thus:

column︷ ︸︸ ︷
[SO(2) w© R] w©

deviation︷ ︸︸ ︷
[R w© R] w©

grid︷ ︸︸ ︷
[Z w© Z]

To understand this consider the wreath product symbol just below the grid.
For this wreath product, the control group is the grid, and the fiber is ev-
erything below, which means that a plane of deviation exists at each grid
point. Furthermore, because the deviation plane is the control group of the
column below it (as shown in the above sequence), there is a deviation of the
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column within the plane located at the grid point. The structure just given
therefore beautifully describes the column grid, with its allowed deviation.
Note that, because the levels, in the above expression, are entirely linked by
wreath products, the structure is entirely described as a hierarchy of transfer,
thus satisfying the goal of maximization of transfer.

15.18 Ceiling Grid

The ceiling grid can be specified mathematically in the same way as the
column grid. The repetitive placing of lighting fixtures, which is typical in a
ceiling-grid situation (e.g., in a restaurant), can again be given as a generative
crystallographic structure. A lighting fixture is given by an unfolding group.
This group is then put below the grid group in the wreath hierarchy.

15.19 Stairs

As can be seen from Fig. 15.7, stairs are a repetitive use of a horizontal
block. We now argue that they are best understood in terms of transfer and
unfolding.

Fig. 15.7. Stairs are a wreath product.
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First observe that, functionally, a person walking up a stair transfers the
same cycle of motion from one step to the next. That is, there is a transfer
structure in the very motion of the person. Correspondingly, the steps form
a transfer structure. Each step is a block, which can be assumed to be an
affine transformation of the cross-section block R w© Z4 w© R in Table 10.1,
p. 237. The block is transferred by the cyclic group Z along to the successive
positions. This gives a nested hierarchy of control and an obvious wreath
product, with the block as the fiber and Z as the control group.

It is insightful now to consider this as an unfolding structure. Notice first
that the purpose of the stair is to allow the person to move upwards from the
floor. This is actually basic to the unfolding structure, as follows: Observe
that the primitive block, from which an individual step is formed, is within
the alignment kernel. Most crucially, it is pulled from the kernel at the same
time as the block defining the floor; that is, regard the step-block as initially
aligned with the floor-block. Then, in creating the individual steps away from
the floor, pull the step-block out of alignment with the floor-block; i.e., by
the successive action of the cyclic group. In this way, the successive transfer
structure in the stairs breaks the initial symmetry of the alignment.

This illustrates again our general method of describing symmetry-breaking
by a control group that is itself a symmetry group. In the present case, the
control group is Z. It is this that creates the misalignment and hence the
symmetry-breaking. Nevertheless, it also describes the symmetry and struc-
ture of transfer across the set of stairs.

Observe that, notationally, this means that there will be two input indexes
on Z in the unfolding control group: the floor-block and the step-block; i.e.,
both being aligned transforms of the primitive block from the alignment
kernel. In the output index, the floor-block will be untouched and the step-
block will be duplicated. Thus, the two indexes correspond to a wreath-direct
action in which the control group is Z × {e}.

15.20 Shafts

The insertion of shafts is an important factor at the design development
phase. Shafts are required for

(1) Plumbing
(2) Stairs
(3) Elevators
(4) HVAC Systems (Heating, Ventilation, and Air-Conditioning).

Shafts are vertical rectangular blocks that slice upward through the floors.
By now, the reader can easily predict that we will handle them as unfolded
from the cross-section block primitive in the alignment kernel.
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15.21 Roof

On a typical large office building, the roof is a horizontal plate, and can
therefore be handled mathematically in the same way that the floor slabs
were handled; i.e., unfolded together with the initial floor-slab block and
pulled upward through the building parallel with the successive floor slabs
till it reaches the required height.

On a conventional house, where the roof is given by a reflectional pair of
sloped planes, follow exactly the same procedure, except that an additional
two stages are needed. (1) To obtain the sloping of the roof, simply rotate
the roof slab to the required slope angle - we shall represent this action as we
have typically done, using the overall ALG(3,R) affine group. (2) To obtain
the reflectional pair of roofs, simply add the reflection group Z2.

We propose that the most elegant way to express this is to have the
reflection group above the rotation group in the wreath hierachy

ALG(3,R) w© Z2.

Use the diagonal elements of the wreath product for sides of equal slope, and
the non-diagonal elements for sides of unequal slope.

15.22 Development of Accuracy

Whereas the documents in the conceptual phase were not accurate, one of
the main goals of the current phase is the development of documents that
are truly accurate (to within the demanding tolerance required by engineer-
ing, building codes, etc). In Leyton [88], we developed an approach to the
description of accuracy, using the concept of nested control. Let us illustrate
this with decimal numbers, which can be extended to any desired accuracy.

In decimal numbers, any digit along the number is to base 10, and can
therefore be represented by the cyclic group Z10. We shall now show that a
decimal can be represented by a wreath product of this form:

. . . w© Z10 w© Z10 w© Z10 w© Z10

where the right-to-left order represents the left-to-right number order in the
decimal. Let us take any example of Z10 along this sequence. The selection of
a number n from this group means the selection of a particular fiber copy from
the Z10 immediately below it. This fiber copy is itelf divided into 10 units. The
selection of a particular member of this group, then selects a particular fiber
copy of 10 units below this, etc. It is easy to check that all aspects of a wreath
product are satisfied by this structure. Most crucially, the control group on
any level, maps the copies on the next level below onto each other. Fig. 15.8
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illustrates this: The unit numbers shown, 0, 1, 2, 3, . . .10, can be considered to
be a translation group that slides the individual blocks, existing between the
unit numbers, onto each other. The unit numbers therefore act as a control
group permuting the blocks as fiber-copies.

Fig. 15.8. Decimals as a wreath product.

Most crucially each fiber is a refinement in accuracy of the control group.
In this way, the issue of accuracy has been defined as an issue of transfer.

15.23 Construction Documents

Two of the main aspects of construction documents are (1) the creation of
sections and elevations, and (2) dimensioning. Other aspects, such as anno-
tation and scheduling, can be seen as supporting aspects of these and the
previous phases.

Dimensioning was discussed in the theory of mechanical design (Chap-
ter 14). Therefore the only major topic left to handle is sections and eleva-
tions.

15.24 Sections and Elevations

The creation of a section is the creation of a slicing, and we have already
established a theory of slicing. Furthermore, we have already encountered
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Fig. 15.9. Sections of a plan view of Fig. 15.1.

a major example of architectural slicing in the concept development phase,
when the massing study was sliced to produce the floor-plates. In this previous
case, the slice was produced by horizontal planes, unfolded from the alignment
kernel - in fact, from the bottom face of the primitive cube in the kernel. In
contrast, in the case of a building section, the slicing is produced by a vertical
plane - which therefore must be unfolded from a side face of the primitive
cube in the alignment kernel. As an example, in the plan view Fig. 15.9a, the
line AA corresponds to a vertical plane slicing through the building. It has
been unfolded from the alignment kernel.

Now, when one examines the concept of slicing in architecture, one realizes
that, although a slice plane is the most obvious object with which one deals, it
is more accurate to say that one deals with a slice volume. Fig. 15.9b shows an
obvious volume associated with the same slice plane. The section view of the
building will be northwards into this volume. The reason for understanding
the slice as defining a volume is that the architect often wants the section
to include only part of the building beyond the slice plane. This is shown
in Fig. 15.9c, where the slice volume - which will still be viewed northward
from the slice plane AA - will encompass only the part of the building; and
therefore only this part will be visible in the three-dimensional northward
view. For example, in AutoCAD Architectural Desktop, the definition of a
section line automatically defines a section volume which the designer can
then modify as required.

The use of a slice volume can easily be encompassed by our unfolding
theory: One merely unfolds the entire cube primitive from the alignment
kernel (with affine modification) rather than just one of the cube’s faces.

A crucial aspect of the theory is that this slicing creates a further level
of asymmetrization. For example, observe that the slicing cuts through the
set of floors, i.e., destroying the translational symmetry across the floors.
Generally because the slicing can cut through the existing structures without
accordance to the shape and positioning of those structures, the slicing is a
significant addition of asymmetrization.

As an example, consider again Fig. 15.4 (p. 377) showing a section through
Frank Gehry’s Guggenheim Museum. Consider the spaces in the left half
of the building as well as the top center. These are deformed versions of
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blocks unfolded from the alignment kernel. Their deformation has introduced
some level of asymmetrization. However, the vertical slicing now creates an
additional level of asymmetrization of those volumes.

Finally let us turn to elevations. One can consider elevations to be a
somewhat weakened form of slicing. In fact, in a highly advanced program
such AutoCAD Architectural Desktop, sections and elevations are treated by
many of the same menus. For example, both involve the creation of the same
type of volumes that can be modified in the same way.

15.25 Conclusion

This chapter has shown that all stages of the architectural design process
can be insightfully described as the successive use of unfolding groups. This
is valuable not just for understanding the design process generally, but for
understanding how computer vision should represent building environments,
and for understanding how navigational robotics should deduce motion and
manipulation plans in such environments.

An unfolding group is an elegant means of realizing our two primary
principles of generativity: the maximization of transfer and recoverability.
Unfolding maximizes transfer by expressing the successive stages of genera-
tivity as wreath expansions of the previous stages, such that the increasing
complexity of the structure is expressed by transferring targeted aspects of
the previous stages; i.e., by sub-local or super-local unfolding. The procedure
maximizes recoverability by expressing the successive stages as misalignments
of the previous stages - ultimately traceable to misalignments of the limited
set of primitives constituting the alignment kernel. These misalignments al-
ways have a symmetry-breaking (asymmetry-building) effect - which is the
primary condition required for recoverability according to our Asymmetry
Principle. One also sees the enormous economy of this representation as the
system continually uses and re-uses preceding stages, which are themselves
used and re-used versions of the limited structural elements in the alignment
kernel. This enormous economy embodies our claim that aesthetics is the
same thing as intelligence.

15.26 Summary of a Mathematical Theory of
Architecture

According to our approach, the mathematical theory of architecture is a
means of describing the entire complex structure of a building by a single
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symmetry group. This group is required for all plans with respect to the
building, because, by our theory of recoverability, plans come from the sym-
metries of a structure. The group is constructed by the following means:

CONCEPTUAL DESIGN.

Massing Study.
A massing study is a misaligned transfer of the alignment kernel. This alge-
braic structure expresses the hierarchical organization of the mass groupings
with a level of rigor that has never been achieved before in architecture.

Slicing the Massing Study to Create Floorplates.
Slicing is expressed as the unfolding of the ground-plane fiber of the cube
primitive from the alignment kernel. The fiber is unfolded upward through
the building to create the floorplates.

Space Planning
The successive stages of space planning - the production of étage volumes,
the boundary and void spaces, the room volumes, etc., are all achieved by the
repeated use of the Indirect/Direct Unfolding Cycle, which has two phases:
(1) Indirect phase: One first slices through a whole volume that corresponds
to an unfolded primitive - thereby producing part volumes. (2) Direct phase:
One then unfolds these part volumes directly from their own primitives; i.e.,
redescribing them as whole volumes.

We also saw that complex slicing, e.g., slicing a complex room structure
via a polyline in plan view, is really the unfolding of successive planes and
cylinders from the alignment kernel.

DESIGN DEVELOPMENT PHASE.

Choice of Materials.
This is achieved generatively by expressing the configuration of materials via
color groups.

Doors and Windows.
Doors and windows are expressed as arrangements of blocks unfolded from
the alignment kernel. They are appended to the overall structure by sub-local
unfolding.
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Structural Column Grid.
The structural column grid is an example of what we call generative crys-
tallography. The grid placement is the wreath-lattice control group, and the
column is a fiber group sub-appended to that wreath structure.

Ceiling Grid.
An exactly analogous structure expresses the ceiling grid.

Stairs.
Stairs are also best understood in terms of transfer and unfolding. The step
is an affine transform of the cube primitive, and the sequence of steps is a
translation control group.

Shafts.
Shafts are rectangular blocks that slice upward through the floors, and again
are produced by unfolding the block primitive from the alignment kernel.

Roof.
The flat roof is unfolded in the same way as the foor slabs. The standard roof
of a house - i.e., a reflectional pair of sloped planes - is given by a wreath
product: the control group is the reflection group, and the fiber group is the
affine group responsible for rotation of the pair of unfolded planes.

The Development of Accuracy.
We gave a theory of accuracy in which refinement was expressed as transfer.

CONSTRUCTION DOCUMENTS.

Sections and Elevations.
Sections and elevations are really slice volumes that are unfolded from the
alignment kernel.



16. Solid Structure

16.1 Introduction

This chapter develops a theory of solid structure. Indeed, since most of the
concepts of this book are involved in this theory, one can regard most of the
analysis so far as an elaboration of that theory. All that in fact remains is
to define, in detail, the nature of solid primitives - which is the main topic
of this chapter. The theory of modeling, in the previous chapters - e.g., the
theory of CSG, construction planes, constraints, assembly, etc. - provide the
rest.

3D solid modeling is a true miracle of computer science. It is now basic to
most of CAD, where once 2D drafting drove the entire process. When CAD
was essentially 2D drafting, it looked very much like design before the use of
computers - plans or blueprints were drawn and dimensioned; the actions of
the designer produced lines and arcs. In 3D solid modeling, the actions of the
designer produce 3D solids which imitate the desired goal object. Thus the
designer begins with the representational language of the goal object and this
allows the first design phase to be strongly conceptual - which is a massive
stimulus to creativity.

16.2 The Solid Primitives

In solid-modeling, the generation of the initial 3D model standardly begins by
choosing and combining 3D solid primitives. Currently, there is no systematic
analysis and classification of these primitives. We argue that the absence
of such an analysis severely holds back understanding in nearly all aspects
of CAD. For example, without a real understanding of solid primitives, one
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cannot understand the relation of primitives to construction planes and other
datum features, and one cannot understand the nature of assembly.

The purpose of most of this chapter is to develop a systematic theory of
solid primitives. What we will do is develop symmetry groups for the solid
primitives - symmetry groups that contain enormous amounts of information
that we argue is exploited in all solid modeling. These groups are used in
other parts of the book to explain powerful aspects of mechanical engineering,
assembly, and spline structure - aspects which could not have otherwise been
explained. We have left the detailed discussion of the primitives till late in
the book, i.e., till this chapter, exactly because this level of detail might have
been a barrier to the reader continuing.

16.3 The Solid n-Cube

The solid n-cube is basic to our physical world. As such it is a fundamental
structure occurring in all the physical, computational, and design sciences.
For example, it is basic in determining most of the crystallographic hierarchy
of point groups, basic to solid-state physics, basic to computer storage media,
basic to 3D graphics where solid n-cubes constitute the parameter domains
of splines, etc.

The first half of this chapter will develop a symmetry group of the solid
n-cube. It is currently assumed, in the research literature, that the group
of the n-cube is reasonably trivial. We will argue that it is not. To con-
struct this group one needs almost every aspect of our generative theory of
shape: nested control, symmetry-breaking, memory-inference, super-local ac-
tion, and so on. The very group theory is determined by issues of generativity
and recoverability.

16.4 The Hyperoctahedral Wreath Hyperplane Group

Definition 16.1. When the hyperoctahedral group is expressed in its wreath-
decomposed form thus

Z2 w© Σn

it will be called the hyperoctahedral wreath group.

We now come to one of the most important groups in our generative theory
of shape. It explains much in human perception, mechanical and architectural
CAD, etc.
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Definition 16.2. When the hyperoctahedral wreath group is wreath sub-
appended by the translation hyperplane Rn−1 group, the resulting group

Rn−1 w© Z2 w© Σn

will be called the hyperoctahedral wreath hyperplane group HWH(n).

As usual, throughout this book, we will use the term ”hyperplane” for any
translated version of a hyperplane.

Definition 16.3. The degree n of the hyperoctahedral wreath hyperplane
group HWH(n), will be the degree n of the hyperoctahedral component - which
is also the dimension of the space Rn of action. The figure corresponding to
the hyperoctahedral wreath hyperplane group will be called the n-cube. The
Rn−1 fiber in the hyperoctahedral wreath hyperplane group will be called a
face of the cube, and will be assumed to be parallel to one of the coordinate
hyperplanes in Rn, called the corresponding coordinate hyperplane.

Degree 1.
In this case, the hyperoctahedral wreath hyperplane group is HWH(1), which
is

R0 w© Z2 w© Σ1.

The space in which the group acts is R1, the line. To see what the corre-
sponding cube looks like, work from left-to-right up the hierarchy. First, a
face of the cube is R0, which is a point. Next, the intermediate control group
Z2 makes a reflectional copy of the point about the origin. Finally, the high-
est control group Σ1 is trivial, and therefore no more structure is added.
The 1-cube therefore consists of two points on either side of the origin (in
one-dimensional space).

Degree 2.
In this case, the hyperoctahedral wreath hyperplane group is HWH(2), which
is

R1 w© Z2 w© Σ2.

The space in which the group acts is R2, the plane. To see what the corre-
sponding cube looks like, work from left-to-right up the hierarchy. First, a
face of the cube is R1, which is a straight line. Next, the intermediate con-
trol group Z2 makes a reflectional copy of the line about its corresponding
coordinate axis. Finally, the highest control group Σ2 makes two copies of
the line-pair just generated: one about one coordinate axis and one about the
other. The 2-cube is therefore a square (i.e., with infinite ”wires” as sides -
as we have standardly described it).
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Degree 3.
In this case, the hyperoctahedral wreath hyperplane group is HWH(3), which
is

R2 w© Z2 w© Σ3.

The space in which the group acts is R3. To see what the corresponding
cube looks like, work from left-to-right up the hierarchy. First, a face of the
cube is R2, which is a plane. Next, the intermediate control group Z2 makes
a reflectional copy of the plane about its corresponding coordinate plane.
Finally, the highest control group Σ2 makes three copies of the plane-pair
just generated: one pair about each of the coordinate planes. The 3-cube is
therefore the ordinary cube (i.e., with infinite planes as faces - as we have
standardly described it).

Degree n.
In this case, the hyperoctahedral wreath hyperplane group is HWH(n), which
is

Rn−1 w© Z2 w© Σn.

The space in which the group acts is Rn. To see what the corresponding
cube looks like, work from left-to-right up the hierarchy. First, a face of the
cube is Rn−1, which is a hyperplane. Next, the intermediate control group
Z2 makes a reflectional copy of the face about its corresponding coordinate
hyperplane. Finally, the highest control group Σn makes n copies of the face-
pair just generated: one pair about each of the coordinate hyperplanes. The
n-cube therefore has n pairs of hyperplanes as faces.

16.5 Cubes as Cartesian Frames

The content of this section is extraordinarly profound. Simple as it is, this
book demonstrates that it explains truly fundamental issues in perception,
navigation, and CAD - e.g., the structure of the human visual system, and
mechanical engineering design.

We have often argued that there is a strong relationship between the
cube and the Cartesian reference frame. Indeed, our generative theory has
often taken the cube and the Cartesian frame as the same thing, both with
respect to their internal generation and with respect to their use in generating
other shapes. Our theory regards them as essentially the same group, i.e.,
the hyperoctahedral wreath hyperplane group, i.e., the wreath-decomposed
hyperoctahedral group wreath sub-appended by the translation hyperplane:

Rn−1 w© Z2 w© Σn
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In fact, the Cartesian frame can be regarded as the cube with its faces coin-
cident with the coordinate planes; i.e., a cube of width zero, but with faces
still of infinite extent as with a cube - the latter’s finiteness being given by
occupancy.

This approach is very natural, as can be seen in the case where n = 3. Here
the fiber structure corresponds to the six standard orthographic projection
planes; i.e., when one projects (orthographically) an object from one of its
sides, one standardly uses a projection plane in one of six positions: ”top”,
”bottom”, ”left”, ”right”, ”front”, ”back”. They are positioned exactly at the
six faces of some imaginary cube. These six projection planes are therefore
related by exactly the same symmetries as the faces of a cube.

When considering the 3D Cartesian frame in the conventional description
of three coordinate planes (located at the origin), we will name the three
planes:

(1) View Plane (or Image Plane).
(2) Vertical Travel Plane (i.e., direction of movement).
(3) Ground Plane.
Notice however, when the Cartesian frame is understood as the hype-

roctahedral wreath hyperplane group, there will actually be six coordinate
planes, in three pairs - i.e., there are two coincident xy planes, two coincident
yz planes, and two coincident xz planes. The two members of each pair are
reflectionally symmetric to each other.

With this in mind, let us now rigorously define the relation between the
Cartesian frame and the cube. The intuitive idea behind our approach will
be to regard the cube as an ”expanded” version of the Cartesian frame -
that is, the cube will be regarded as a Cartesian frame where each pair of
coincident planes has been been pulled apart by a parallel distance from the
origin along the axis perpendicular to the pair of planes. Since the cube is
symmetrical, the parallel movement of each of the pair of planes along its own
axis, will be the same for each pair. Therefore the amount of movement can
be given by a value on R which will be understood as a translation group - the
translation value will be the distance a plane has moved from the origin. This
translation group R will be wreath super-appended to the hyperoctahedral
wreath hyperplane group, thus:

Rn−1 w© Z2 w© Σn w© R.

To understand what is going on here, consider the newly appended control
group R. Its fiber group is Rn−1 w© Z2 w© Σn, and any of the fiber copies

[Rn−1 w© Z2 w© Σn]g

is really a cube of a width 2g. Notice that the subscript g on the fiber copy
is, of course, a member of the control group R. Thus there is one cube for
each member of the control group. Negative values of g will produce what
one can regard as negative cubes - i.e., holes.
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Two cubes will be particularly important in this book: The cube corre-
sponding to the identity element e in the control group, will be called the
Cartesian frame. This is the cube of size 0. The cube corresponding to the
translation distance 1/2 in the control group, will be called the unit cube,
because it is of width 1. In fact, in most cases, 1/2 will be written for g, even
when a unit cube is not actually needed.

Depending on context, we will sometimes regard the Cartesian frame as
possessing n pairs of distinct hyperplanes (i.e., a total of 2n hyperplanes)
and sometimes regard the two hyperplanes within each pair as indistinct -
thus reducing the total number of hyperplanes to n. Most crucially, in the
latter case, the hyperplanes can be identified with the mirror hyperplanes
themselves. Furthemore, when these mirror hyperplanes are moved out to
become the faces of cube (of non-zero width), they then express the reflec-
tional symmetry of each individual face in its own right - and thus express
the reflectional symmetry of the face as a fiber within the cube.

To illustrate, consider the crucial case of 3D. Let us consider first the
Cartesian frame with the two planes within each pair as indistinct - thus
reducing the total number of planes to three. The planes can be identified
with the mirror planes themselves. Furthemore, when these mirror planes are
moved out to become the faces of cube (of non-zero width), they then express
the reflectional symmetry of each individual face in its own right - and thus
express the reflectional symmetry of the face as a fiber within the cube.

16.6 The Symmetry Group of the Solid n-Cube

We want now to develop a symmetry group for the solid n-cube. According to
the generative theory, this is a fundamentally important group to all of human
perception, 3D solid modeling, and physical structure in the sciences. Up to
now, we have been discussing the n-cube as an empty box. Its generative
structure was defined as being a wreath product in which the control group
is a reflection structure given by the hyperoctahedral group Z2 w© Σn, and
the fiber is given by the translation hyperplane representing a face of the
cube. The resulting structure was this:

Rn−1 w© Z2 w© Σn

which we call the hyperoctahedral wreath hyperplane group HWH(n). Exam-
ples, of this group for dimensions 1, 2, and 3, were given in Sect. 16.4 (p. 398).
In the case of dimension 1, the empty n-cube is the empty interval, i.e., the
set of two end-points of the interval. In the case of dimension 2, the empty
n-cube is the empty square, i.e., the square as a line drawing. In the case of
dimension 3, the empty n-cube is the empty box. The goal now is to fill these
structures - i.e., so that they are solid.



16.6 The Symmetry Group of the Solid n-Cube 403

The description will be a generative description, because in this book,
structural descriptions are generative descriptions. Furthermore, the descrip-
tion must be dictated by our two fundamental criteria for generativity: the
maximization of transfer, and the maximization of recoverability. We be-
gin by using the second criterion: recoverability. To fulfill recoverability, one
must make sure that the generative structure satisfies the Asymmetry Prin-
ciple, which means that the generative history of the solid n-cube must be
symmetry-breaking forward in time. Some consideration reveals that there are
two alternative methods that ensure this. These methods are the reverses of
each other:

(1) The first method takes infinite swept space and breaks its sym-
metry using the boundary of a cube.

(2) The second method takes the boundary of a cube and breaks
its symmetry using infinite swept space.

Both methods are very important, and as shown elsewhere in the book, they
are the basis of different generative techniques; e.g., in CAD. For example,
we argue that method (1) is basic to splines, and method (2) is basic to con-
tinuous slicing structures that appear for instance in mechanical engineering.

The reader might wonder why two methods, that are reverses of each
other, fulfill the recoverability condition of our theory. The reason comes
from the discussion in Sect. 11.2 and is as follows: When bringing two sym-
metric objects together, there is usually a reduction in symmetry. Thus, if
the two objects are generated sequentially, then, which-ever order is chosen,
the symmetry of the first object will be destroyed by the second object.

This section will develop method (1). The other method, which is based
on slicing, was described in Sect. 14.20.

The first method of ensuring symmetry-breaking is this: Observe that the
solid in an n-cube has translational symmetry up to its boundaries, which
breaks this translational symmetry. Thus the generative history can be un-
derstood to be one in which the full translational symmetry once existed,
but was cut down by introducing the bounding box. That is, start with the
full translation group of space Rn, and cut it down with the hyperoctahedral
wreath structure Rn−1 w© Z2 w© Σn, which will generate the boundaries.

Since the full translation group Rn is the preceeding symmetry state, and
the asymmetrization process is produced by the introduction of the hyperoc-
tahedral structure, our standard technique requires us to make the translation
group the fiber and the hyperoctahedral structure the control group. That
is, we obtain a wreath product something like this:

Translation︷︸︸︷
Rn w©

Hyperoctahedral︷ ︸︸ ︷
Rn−1 w© Z2 w© Σn (16.1)
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where the first overbrace gives the translation fiber, and the second overbrace
gives the hyperoctahedral control group. The idea is that the hyperoctahedral
component breaks the symmetry of the translation component.

However, (16.1) is only a first guess at the structure that is required.
To fully create the structure, one must employ also the other of our funda-
mental criteria: the maximization of transfer. To do this, observe that the
hyperplane component Rn−1, within the hyperoctahedral part, is a subgroup
of the translation part to the far left. This is a non-trivial observation as
follows:

Let us consider the case of a 3-dimensional cube. The idea to be used is
this: The side of the cube is coincident with a planar slice of 3-space. Thus
the generative procedure should go like this: The previous translation phase
starts with a plane, and generates all of space by translating that plane along
its perpendicular axis. This generates all of space as a stack of planes. Then
take one of the planes, and apply the hyperoctahedral group to it, producing
the six sides of the cube. If the plane taken from the stack is the one at
distance 1/2 along the translation axis, then the six planes will produce the
unit cube.

Generally therefore, in the n-dimensional case, start off not with the or-
dinary translation group Rn, but the wreath-reconstituted translation group
Rn−1 w© R. This is the fiber hyperplane Rn−1 pulled through n-space and
therefore structuring n-space as a stack of parallel hyperplanes. Then, in the
next phase, the hyperoctahedral group takes the particular hyperplane that
is at distance 1/2 along the translation axis, and produces the 2n sides of the
n-cube. The resulting structure is this:

Translation︷ ︸︸ ︷
Rn−1 w© R w©

Hyperoctahedral︷ ︸︸ ︷
Rn−1 w© Z2 w© Σn (16.2)

Inspecting this expression carefully, one can see that both the translation
component and the hyperoctahedral component act on on a hyperplane Rn−1.
The translation component translates the hyperplane through space, and the
hyperoctahedral component reflects the hyperplane to become the faces of
the cube.

All that remains to do is to specify the fact that the hyperplane selected
by the hyperoctahedral component is the same as that already used by trans-
lation component; in other words, there is transfer. The way this will be
done is as follows. First remove the hyperplane from the hyperoctahedral
component thus:

Translation︷ ︸︸ ︷
Rn−1 w© R w©

Hyperoctahedral︷ ︸︸ ︷
Z2 w© Σn (16.3)

This is because the hyperoctahedral component uses the same hyperplane
as that shown at the beginning of the sequence. However, the other thing
that we must do is indicate that the hyperoctahedral component uses only
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one particular fiber copy of the hyperplane, the copy at translation distance
1/2. That is, the translation component has generated all the copies of the
hyperplane as fibers of its own wreath product; and then the hyperoctahedral
group must select only one of these fibers, that at translation distance 1/2.
This will be indicated in the following way:

Translation︷ ︸︸ ︷
Rn−1 w© R w© [

Hyperoctahedral︷ ︸︸ ︷
Z2 w© Σn ]R

n−1
1/2 (16.4)

The superscript at the far right is on the hyperoctaheral component. It indi-
cates what that component will specifically act on. The superscript is Rn−1

1/2

which is the hyperplane Rn−1 indexed by 1/2, indicating that it is the copy
of the hyperplane at translation distance 1/2. This is the only fiber copy
selected from the wreath translation structure below. This is an example of
what we call a super-local action. In such an action, one applies a higher level
control group, which although acting in a control-nested fashion on the lower
structure, actually only affects part of the lower structure - that referenced
in the superscript. Super-local action was discussed at length in Chapter 12.

The crucial point is that, because the hyperoctahedral component uses a
hyperplane that is a fiber in the pervious translation component, it maximally
exploits existing structure rather than creating new structure - which is a
basic principle of our generative theory, embodied in the maximization of
transfer.

Definition 16.4. The solid hyperoctahedral wreath hyperplane
group S-HWH(n) is the group

Translation︷ ︸︸ ︷
Rn−1 w© R w© [

Hyperoctahedral︷ ︸︸ ︷
Z2 w© Σn ]R

n−1
1/2

where the translation component generates infinite n-space as a stack of paral-
lel hyperplanes, and the hyperoctahedral component takes one of those hyper-
planes Rn−1

1/2 and generates from it 2n hyperplanes that cut down the previous
translation group.

Example 16.1. Let us compare the specific cases for dimension n, 3, 2, and
1. At this stage, the overbraces used previously, will be removed:

Dimension n:
Rn−1 w© R w© [ Z2 w© Σn]

R
n−1
1/2 (16.5)

Dimension 3
R2 w© R w© [ Z2 w© Σ3]R

2
1/2 (16.6)
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Dimension 2
R w© R w© [ Z2 w© Σ2]R1/2 (16.7)

Dimension 1
R0 w© R w© [ Z2 w© Σ1]R

0
1/2 (16.8)

Using the above groups as a basis, one can now move onto constructing
the group of a solid n-cube. The construction procedure will be illustrated
with the case of the solid 3-cube. This is based on expression (16.6) above.
Now, a bounding face of the solid 3-cube is actually a solid 2-cube, i.e., a
solid square, and is therefore based on expression (16.7). This is an infinite
plane which is cut by lines, as hyperplanes. However, each line is really a
solid 1-cube; i.e., a solid interval, which is based on expression (16.8). This
is an infinite line cut by points, as hyperplanes, which are solid 0-cubes.

We conclude therefore that each successive solid face downward through
the ordinary solid 3-cube corresponds to the solid hyperoctahedral wreath
hyperplane group of one dimension lower, and so on downward. Thus we can
capture the entire structure of all faces downwards merely by recursively sub-
stituting solid hyperoctahedral wreath hyperplane groups downwards. How-
ever, this must be done so as to use pre-existing structure in the hierarchy.
This problem will be solved shortly.

Observe also that, in order to further increase transfer, the hyperplane in
the translation component, should be re-constituted as a translation hierarchy
of sub-hyperplanes all the way down, i.e., as a wreath c-polycyclic group
R w© R w© . . . w© R. The fibers of this recursion are then transferred in the
recursion defined in the previous paragraph.

Using these two recursions, the full symmetry group for the solid 3-cube
can now be constructed. This will be done by generating first an edge of the
cube, then a face of the cube, and finally, the full cube itself.

3-Cube: Solid Edge

R0 w© R w© R w© R

w© [ Z2 w© Σ1]R
0
1/2,1/2,1/2 . (16.9)

Here the top line explicity begins the sequence with the point R0. In our
theory, all generative sequences begin with the point, but we often do not
mention this.

Now, following the point in the top line of the above expression is the
wreath re-constitution of R3 as the wreath c-polycyclic group R w© R w© R.
In the second line of the expression, the superscript R0

1/2,1/2,1/2 indicates
that we have selected, from the wreath product on the first line, the point
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fiber-copy corresponding to the triple index 1/2, 1/2, 1/2 in the triple wreath
c-polycyclic group R w© R w© R. This point then enters the hyperoctahedral
group Z2 w© Σ1 on that line, and is reflected to become the other endpoint
on the particular edge bisected by the single reflection group involved. Thus
the total resulting structure is 3-space (top line) with a particular pair of end
edge points suspended at some perpendicular distance from the origin. The
line interval between the endpoints is filled - i.e., we have a solid interval -
because the entire space is filled with lines by the preceding R0 w© R w© R w© R

structure. The newly generated endpoints select a specific line and cut it down
- in accord with the symmetry-breaking requirement in the generative theory.

3-Cube: Solid Face

R0 w© R w© R w© R

w© [ Z2 w© Σ1]R
0
1/2,1/2,1/2

w© [ Z2 w© Σ2][R
0 w© R]1/2,1/2 w© [ Z2 w© Σ1]

R
0
1/2,1/2,1/2

. (16.10)

The first two lines are the entire previous expression (16.9) for the solid
edge of the cube. The third line will take that edge and reflect it sufficient
times to create a square. It does this in the following way: In its super-
script R0 w© R1/2,1/2 w© [ Z2 w© Σ1]R

0
1/2,1/2,1/2 , it takes the infinite line

R0 w© R1/2,1/2 along that edge. Notice that this is a fiber-copy of a line gen-
erated by the wreath c-polycyclic group on the top line; i.e., it is selected from
the structure already generated. Furthermore, in this subscript, the compo-
nent [ Z2 w© Σ1]R

0
1/2,1/2,1/2 selects, in addition, the two previous endpoints

generated on the line above - that cut down that infinite line. It should be
recognized that the entire superscript on the final line, is a selection of pre-
viously generated structure from the previous lines - i.e., most crucially one
of the fibers from the previous two lines.

Then this superscript - which represents the infinite line cut down by
its endpoints - enters the hyperoctahedral group shown (on the final line)
which reflects it sufficient times to become a square. The square is filled
because the entire space is filled by infinite wreath planes by the preceding
R0 w© R w© R w© R. The square selects a particular infinite plane to cut it
down - in accord with the symmetry-breaking requirement in our generative
theory.
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3-Cube: Entire Solid

R0w©Rw©Rw©R

w©[Z2w©Σ1]R
0
1/2,1/2,1/2

w©[Z2w©Σ2][R
0 w©R]1/2,1/2 w©[Z2 w©Σ1]

R
0
1/2,1/2,1/2

w©[Z2w©Σ3][R
0 w©Rw©R]1/2 w©[Z2 w©Σ2]

[R0 w©R]1/2,1/2 w©[Z2 w©Σ1]
R
0
1/2,1/2,1/2

. (16.11)

The first three lines of this expression are the entire previous expression
(16.10) for a face of the cube. The final line follows the principles set out
earlier: Select a previously generated boundary together with the infinite
hyperplane that it cuts down. Then feed this into its corresponding hyperoc-
tahedral group. This process, is repeated recursively downward through the
superscripts. The consequence is the solid 3-cube.

SOLID n-CUBE

The symmetry group of the solid n-cube is this:

R0w©Rw©Rw©Rw© . . .

w©[Z2w©Σ1]R
0
1/2,1/2,1/2,...

w©[Z2w©Σ2][R
0 w©R]1/2,1/2,... w©[Z2 w©Σ1]

R
0
1/2,1/2,1/2,...

w©[Z2w©Σ3][R
0 w©Rw©R]1/2,... w©[Z2 w©Σ2]

[R0 w©R]1/2,1/2,... w©[Z2 w©Σ1]
R
0
1/2,1/2,1/2,...

. . . (16.12)

where each of the dot sequences represent a completion up
to n-fold recursion. The group will be called the recursive
solid hyperoctahedral wreath hyperplane group, RS-HWH(n).

The reader might wonder why we choose to give such a long name to
the group: recursive solid hyperoctahedral wreath hyperplane group. The
reason is that this name identifies the main stages by which the group was
constructed, thus:

(1) First we started with the hyperoctahedral wreath group - which is the
reflection structure. It was argued that this is the single most important
structure of the human visual system - and it corresponds to what is probably
the most fundamental determining physical organization on this planet - the
reflection structure arising from the gravitational system. Furthermore, most
crucially for us, it is the most significant structure of the alignment kernel,
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and the structure with respect to which all other primitives are aligned in
the kernel.

(2) Then, we wreath sub-appended the translation hyperplane group, i.e.,
making the reflection structure act on hyperplanes. This produced the hype-
roctahedral wreath hyperplane group, HWH(n).

(3) Then we added the solid component. This was expressed as an infinite
solid whose symmetry was broken by the HWH(n) group. The resulting group
was called the solid hyperoctahedral wreath hyperplane group, S-HWH(n).

(4) Finally, in order to gain the hierarchy of solid faces within the S-HWH(n)
group, we substituted that group within itself recursively for descending val-
ues of n - while making sure that transfer was maximized. The result was
the final group, the recursive solid hyperoctahedral wreath hyperplane group,
RS-HWH(n).

In most contexts, the particular structural considerations of the context will
require us to mention only part of this full group. When this happens, there
will tend to be an order of priority of what is mentioned - and this is de-
termined exactly by the derivation order just described. Thus, typically, the
structure that will almost always be mentioned is the starting one: the hy-
peroctahedral wreath group. Then the second most likely structure to be
mentioned is the appended hyperplane group, and so on through the above
derivation order. In some contexts, however, such as the theory of splines, all
the structure will be needed.

16.7 Solid Interval and Solid Square

Besides giving the structure of the general solid n-cube, the last section also
gave the particular example of the solid 3-cube. This book also requires the
filled interval - which will be called the solid interval - and the filled square
- which will be called the solid square. In fact, most of applied mathematics
involves the solid interval [a, b], which acts as the most frequently used domain
of a function.

Solid Interval

This is the group RS-HWH(1), which is given thus:
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R0 w© R

w© [ Z2 w© Σ1]R
0
1/2 (16.13)

The two lines of this expression correspond to the first two lines of the general
formula (16.12) - where the n-fold wreath c-polycyclic translation component
in the first line of the general formula is now 1-fold, and the index on the
second line is ammended appropriately.

Let us carefully understand what is going on in this group. According to
our theory, the interval is an infinite straight line which has been cut down
by two endpoints. Line 1 in the above expression is the initial infinite straight
line. Line 2 generates the endpoints, in this way: The index is the starting
point - the origin translated to position 1/2 along the line. This translated
point comes from the first line of the expression and is a particular fiber
copy from the structure generated by the wreath product on that line. Line 2
uses this super-locally, as the input index. The control group Z2 w© Σ1 is the
hyperoctahedral wreath group of order 1. Its action is as follows: It takes the
point given by the input index, and first applies the fiber Z2 - which produces
the reflectionally symmetric endpoint. It then applies the permutation group
Σ1 which is trivial. This generates the required pair of endpoints.

It is important that the entire expression (16.13) is a symmetry-breaking
structure: Start with the infinite straight line and break its translational
symmetry by introducing the endpoints. Most crucially this is all done by
transfer. The first symmetry-breaking endpoint is created as a translation-
transfer of the origin (first line) and the second symmetry-breaking endpoint
is created by the reflection-transfer (second line).

Solid Square

This group is RS-HWH(2), which is given thus:

R0 w© R w© R

w© [ Z2 w© Σ1]R
0
1/2,1/2

w© [ Z2 w© Σ2][R
0 w© R]1/2 w© [ Z2 w© Σ1]

R
0
1/2,1/2

. (16.14)

The three lines of this expression correspond to the first three lines of the
general formula (16.12), where the n-fold wreath c-polycyclic translation com-
ponent in the first line of the general formula is now 2-fold, and the index
on the subsequent lines is ammended appropriately. To understand surface
splines, it is necessary to fully understand the three lines of (16.14), as follows:

Line 1: This gives the initial infinite structure, i.e., solidity. The required
solid structure is a filled plane, which is the wreath c-polycyclic translation
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group of order 2, that is, R w© R. Lines 2 and 3, then generate the square
boundary as follows:

Line 2: This generates the endpoints of the first side of the square, in the
following way: The 3-fold index R0

1/2,1/2 on Line 2 is a fiber taken from
the 3-fold wreath product R0 w© R w© R on Line 1. The index represents the
origin R0 after it has been translated to position 1/2 along the first generated
straight line, which is itself moved a parallel distance of 1/2 from the origin.
Because this doubly-translated point is selected from the entire set of fiber
points on Line 1, it is being used super-locally as the input index in Line 2.
The control group Z2 w© Σ1 on Line 2 is the hyperoctahedral wreath group of
degree 1. It creates the opposite endpoint on that side of the square. Notice
that by this stage, the side is a filled interval because it is on an infinite
straight line that already exists on Line 1.

Line 3: This takes the side created on Lines 1 and 2, and reflects it suffi-
cient times to create a square boundary. It does this in the following way:
In its superscript R0 w© R1/2 w© [ Z2 w© Σ1]R

0
1/2,1/2 , it takes the infinite line

R0 w© R1/2 along that side. Notice that this is a fiber-copy of a line gener-
ated by the wreath c-polycyclic group on Line 1; i.e., it is selected from the
structure already generated. Furthermore, in this subscript, the component
[ Z2 w© Σ1]R

0
1/2,1/2 selects, in addition, the two previous endpoints generated

on Line 2 - which cut down that infinite line. It should be recognized that
the entire superscript on the final line, is a selection of previously generated
structure from the previous lines - i.e., most crucially one of the fibers from
Lines 1 and 2.

Then this superscript - which represents the infinite line cut down by
its endpoints - enters the hyperoctahedral group (on Line 3) which reflects it
sufficient times to become a square. The square is filled because the entire 2D
parameter space is filled by the wreath c-polycyclic structure R0 w© R w© R

on Line 1. The square boundary generated on Lines 2 and 3, cuts this down -
in accord with the symmetry-breaking requirement in our generative theory.

16.8 The Other Solid Primitives

We now come onto the other solid primitives besides the cube. Chapter 10
derived the set of 3D primitive surfaces that maximize transfer and recov-
erability. These primitives are given again here in Table 16.1 (p. 412). Our
concern now is to use these surfaces as a basis for developing their solid coun-
terparts. Of course, the first primitive in Table 16.1, the plane, has no solid
counterpart and will therefore be omitted. Also, the solid version of the cube



412 16. Solid Structure

in Table 16.1 has already been derived in the present chapter as the group
RS-HWH(3).

Table 16.1. The 3D surface primitives established in Chapter 10

LEVEL-CONTINUOUS

Plane R w© R

Sphere SO(2) w© SO(2)
Cross-Section Cylinder SO(2) w© R

Ruled Cylinder R w© SO(2)

LEVEL-DISCRETE

Cube R w© R w© Z2 w© Z3

Cross-Section Block R w© Zn w© R

Ruled or Planar-Face Block R w© R w© Zn

Some comments should be made before beginning:
(1) We shall see that all solid primitives contain the corresponding primi-

tive surface that was developed previously. This surface is important and will
be called the surface kernel. The surface kernel is different from the alignment
kernel because the latter occurs at the lowest level of the group wreath hier-
archy. In contrast the surface kernel does not - for a very important reason:
it breaks the symmetry of the infinite solid which exists at the lower level.

SURFACE KERNEL. The surface kernel of a solid primitive is obtained from
the group of the solid primitive by omitting the space translation group ex-
pressing the solid component as a wreath c-polycyclic group, and omitting also
any bounding hyperplanes that make the primitive of finite length. Conceptu-
ally, the surface kernel is the first structure to break the infinite symmetry of
the translational solid component.

(2) All the solid primitives to be developed here have the same solid
component - i.e., the triple wreath translation group R w© R w© R. This is the
commonality that exists before the surface primitive enters and differentiates
one solid from another.

(3) We shall see that the solid versions of the level-continuous primitives
in Table 16.1 will all have alignment kernels. This is because they are unfolded
from both a circle and a straight line. In contrast, the solid versions of the
level-discrete surfaces will not require alignment kernels, because they are
made entirely out of straight lines.



16.9 The Solid Sphere 413

16.9 The Solid Sphere

According to Table 16.1, the sphere has surface structure, SO(2) w© SO(2).
We now propose its solid structure:

[[SO(2)]P2 × [R]P1 ]U
w© [R w© R]P1

w© SO(2)P2 (16.15)

To understand this expression, let us go through it line-by-line, starting from
the top:

Line 1: The first line is the alignment kernel, consisting of the straight line
primitive P1 = R, and the circle primitive P2 = SO(2). Being in the kernel,
their symmetries must be maximally aligned, which means either that (1) the
straight line is in the plane of the circle, and is one of its diameters, or (2)
the straight line is the rotation axis of the circle. Assume the first alternative.
Furthermore, without loss of generality, assume that the straight line is in
the ground plane. (This will lead to a sphere where the north and south poles
are in the horizontal plane.)

Line 2: Here one generates the entire 3D space as R w© R w© R. The lowest
fiber R of this triple is already in the alignment kernel, and therefore we
simply enter it as the index P1 at the right end of the second line. Thus the
group R w© R on the second line is the upper two control groups of the triple
R w© R w© R. From a group-representation point of view, assume that the
final R is vertical, and the preceding two R are both horizontal.

Line 3: This line corresponds to the expression SO(2) w© SO(2) in Table 16.1
for the sphere; i.e., the surface kernel. Because the fiber SO(2) is already in
the alignment kernel as the primitive P2, it is necessary only to give it as
the index P2 on the SO(2) component of the third line, thus bringing it up
super-locally.

16.10 The Solid Cross-Section Cylinder

According to Table 16.1, the cross-section cylinder has surface structure,
SO(2) w© R. This is an infinite structure. The cross-section cylinder will now
be given as a solid. Furthermore, this solid will be finite, as used, for example,
in a 3D modeling program. The structure we propose is this:
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[[SO(2)]P2 × [R]P1 ]U
w© [R w© R]P1

w© RP2

w© Z
[R w© R]1/2
2 (16.16)

To explain, let us go successively down the lines in this expression. Without
loss of generality, assume that the cylinder axis is vertical.

Line 1: This is the alignment kernel, consisting of the straight line primitive
P1 = R, and the circle primitive P2 = SO(2). Being in the kernel, their
symmetries must be maximally aligned, which means either that (1) the
straight line is in the plane of the circle, and is one of its diameters, or (2)
the straight line is the rotation axis of the circle. Assume the first alternative.
This is shown in Fig. 16.1a.

Fig. 16.1. The structure of a solid cross-section cylinder.

Line 2: Here one generates the entire 3D space as R w© R w© R. The same
discussion applies here as that given in Line 2 for the sphere (Sect. 16.9). The
result is shown in Fig. 16.1b.

Line 3: This line corresponds to the expression SO(2) w© R in Table 16.1
for this cylinder. Because, the SO(2) component is already in the alignment
kernel as the primitive P2, we have only to give it here as the index P2 on
the R component, thus bringing it up super-locally. To emphasize, there is
this equivalence:

Surface kernel:
SO(2) w© R ←→ w© RP2

The surface kernel is illustrated in Fig. 16.1c.
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Line 4: This line creates the bottom and top planes of the cylinder; i.e.,
making the cylinder finite. The index [R w© R]1/2 is the plane positioned at
parallel distance 1/2 above the ground plane. This plane has already been
generated in the preceding structure. Specifically, this index [R w© R]1/2 is
really a fiber copy within the triple R w© R w© R. The subscript 1/2 indicates
the chosen member from the third group of the triple.

Notice carefully how this is all given in the above expression. First of all
the index [R w© R]1/2 is really [P1 w© R]1/2. That is, the P1 = R comes from
the alignment kernel, and the other R appears at the beginning of the second
line. Then the index 1/2 is the position of this fiber in the second R on the
second line (which is the third member of the triple R w© R w© R).

Finally, the main group on the fourth line is Z2 which is understood as
reflection about the ground plane. This produces a reflectional copy of the
1/2 bounding plane at -1/2. This is illustrated in Fig. 16.1d.

16.11 The Solid Ruled Cylinder

According to Table 16.1, the ruled cylinder has surface structure, R w© SO(2).
We now propose its solid structure to be:

[[SO(2)]P2 × [R]P1 ]U
w© [R w© R]P1

w© P
[1/2]P1 w© e w© R

2

w© Z
[R w© R]1/2
2 (16.17)

To explain, let us go successively down the lines in this expression. Without
loss of generality, assume that the cylinder is vertical.

Lines 1 & 2: These are the same as for the cross-section cylinder discussed
above (Sect. 16.10).

Line 3: This line corresponds to the expression R w© SO(2) given in Table
16.1 for the ruled cylinder. To understand this correspondence, note first that
the ruled cylinder is a vertical straight line (fiber) that is rotated around a
horizontal circle (control). First consider the index

[1/2]P1 w© e w© R

in the third line of (16.17). This represents the straight line. The index is
a subset of the triple R w© R w© R, the first member of which is P1. Thus
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the index 1/2 is the specific point 1/2 in the primitive line P1. The second
member e of the index is the identity element of the second member of the
triple and therefore does nothing to that point. The third member of the
index is R which acts in the perpendicular direction, and thus produces a
vertical straight line from the point. Finally on the third line, the group P2 is
the primitive SO(2), which is now used as a control group rotating the staight
line given in the index. Again, the third line gives this correspondence:

Surface kernel:

R w© SO(2) ←→ w© P
[1/2]P1 w© e w© R

2

Line 4: This is the same as for the cross-section cylinder, and provides the
cutting planes of the cylinder.

16.12 The Solid Cross-Section Block

According to Table 16.1, the cross-section block has surface structure,
R w© Zn w© R. We now propose its solid structure to be:

R0 w© R w© R w© R

w© [Zn w© R][R
0 w© R]1/2,0

w© Z
[R0 w© R w© R]1/2
2 (16.18)

Again, let us go downward through these lines in sequence:

Line 1: The first line is the translation group R3 of infinite solid space, wreath
re-constituted as a wreath c-polycyclic group, as occurs in all the solids. The
starting point R0 is being explicitly mentioned, as was done with the solid
cube.

Line 2: The upper index on the second line is a particular straight line selected
from this previous structure - it is the straight line at perpendicular distance
1/2 from the origin, within the first generated 2D plane. Notice how this
information is given: This index [R0 w© R]1/2,0 is of length four, and is a fiber
taken from the 4-fold wreath product on the first line.

Finally, the control group Zn w© R on this line takes this index as fiber,
and first applies the group Zn to it - generating the regular n polygon, in the
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first generated plane - and then the higher R sweeps the polygon out in the
perpendicular direction.

Notice that Line 2 gives the surface kernel for the solid; that is, there is
this correspondence:

Surface kernel:

R w© Zn w© R ←→ w© [Zn w© R][R
0 w© R]1/2,0

(the starting point has been included on the right side).

Line 3: This again is the pair of reflectional cutting planes that make the
block of unit length.

16.13 The Solid Ruled or Planar Block

According to Table 16.1, the ruled or planar block has surface structure,
R w© R w© Zn. Its solid structure is:

R0 w© R w© R w© R

w© [R w© Zn][R
0 w© R]1/2,0

w© Z
[R0 w© R w© R]1/2
2 (16.19)

which is exactly the same as the structure of the solid cross-section block,
except that there is an order-reversal of Zn and R within the control group
of the second line. Notice most crucially that the index on the second line is
the same as before - and this means that the same straight line is selected
from the first generated plane. The reversal within the control group means
that the straight line is now swept to create a plane, which is then rotated -
rather than rotated first to create a polygon which is then swept (as in the
cross-section block).

16.14 The Full Set of Solid Primitives

Table 16.2 gives the entire set of solid primitives we have proposed. Notice
the following features of this table:

(1) The level-continuous primitives all have an alignment kernel, and the
level-discrete primitives do not. The alignment kernel for the level-continuous
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primitives are all the same - the straight line and the circle. These are the
two continuous roots of the Externalization Principle.

(2) The level-discrete primitives all begin with R0 w© R w© R w© R, which
is the infinite solid structure expressed as a wreath c-polycyclic group. In fact,
this structure is also contained in each of the continuous level primitives.

(3) For readability, the starting point R0 has been omitted in the level-
continuous primitives. However, it should be placed before the entire align-
ment kernel.

(4) The cube is the only recursive structure.

The following comment is crucial:

COMPLEXITY OF THE SOLID SYMMETRY GROUPS. The symmetry
groups for the solid primitives are much more complicated than has been
previously suspected - e.g., in mathematical crystallography. These complex
groups give crucial information not just for the physical sciences (such as
solid-state physics and electromagnetism), but are essential for understanding
mechanical CAD (e.g., the choice of construction plane), as well as assembly
planning (e.g., the contact structure), and also spline manipulation (e.g., the
effects of tensor control on parametric sub-surfaces).

The reader might wonder why objects called primitives are actually com-
plex. The reason is this: According to our theory, the shape of an object is
its history. We have seen that a solid primitive possesses quite a substantial
history. In fact, it is historically reducible down to more basic primitives - the
straight line and the circle. What the solid primitives therefore represent is an
intermediate level of complexity (history!!) - between (1) the root primitives
(line and circle) and (2) the arbritary solids which are made by deforming
and Boolean-combining the solid primitives.

Because the groups of the solid primitives are complex, we shall often use
the surface kernel as a short-hand expression for these objects. This short-
hand is adequate because, by the above theory, the actual solid component is
the same in all the primitives - i.e., it is the wreath c-polycyclic translation
group. The surface kernel therefore acts as a signature of the solid.

16.15 Externalization in the Solid Primitives

Now observe that the symmetry-breaking step of adding the surface kernel
to the infinite solid space, is an external transformation. By this we mean
that the inference, made backward in time from the final solid primitive,
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Table 16.2. The 3D solid primitives

LEVEL-CONTINUOUS

Sphere [[SO(2)]P2 × [R]P1 ]U
w© [R w© R]P1 w© SO(2)P2

Cross-Section Cylinder [[SO(2)]P2 × [R]P1 ]U

w© [R w© R]P1 w© R
P2 w© Z

[Rw© R]1/2
2

Ruled Cylinder [[SO(2)]P2 × [R]P1 ]U

w© [R w© R]P1 w© P
[1/2]P1 w© e w© R
2 w© Z

[Rw© R]1/2
2

LEVEL-DISCRETE

Cube R
0 w© R w© R w© R

w© [ Z2 w© Σ1]
R

0
1/2,1/2,1/2

w© [ Z2 w© Σ2]
[R0 w© R]1/2,1/2 w© [ Z2 w© Σ1]

R
0
1/2,1/2,1/2

w© [ Z2 w© Σ3]
[R0 w© Rw© R]1/2 w© [ Z2 w© Σ2]

[R0 w© R]1/2,1/2 w© [ Z2 w© Σ1]
R
0
1/2,1/2,1/2

Cross-Section Block R
0 w© R w© R w© R

w© [Zn w© R][R
0 w© R]1/2,0w© Z

[R0 w© Rw© R]1/2
2

Ruled or Planar-Face Block R
0 w© R w© R w© R

w© [R w© Zn]
[R0 w© R]1/2,0w© Z

[R0 w© Rw© R]1/2
2

back to the infinite solid space, is an external inference (Sect. 2.9). Now the
Externalization Principle says that any external inference goes back to a
control-nested hierarchy of repetitive isometries (a wreath isometric, wreath
c-polycyclic group). This is exactly what happens here. The removal of the
symmetry-breaking step, backwards in time, leads back to the infinite solid,
which is a control-nested hierarchy of repetitive isometries. Thus the Exter-
nalization Princple is fulfilled.

Observe also the following: The asymmetrizing object, the surface kernel,
is also a control-nested hierarchy of repetitive isometries. This means that the
initial control-nested hierarchy of repetitive isometries (the infinite solid) has
its symmetry broken, forward in time, by another control-nested hierarchy of
repetitive isometries (the surface kernel). This is not a problem. Our theory
of asymmetrization accounts for this. In particular the reader should recall
our discussion in Sect. 11.2 and observe that Fig. 11.1 (p. 241) is also an
example of symmetry-breaking by the concatenation of two objects, both of
which are control-nested hierarchies of repetitive isometries. Note that the
Boolean combination of any pair of primitive surfaces is also an example of
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symmetry-breaking by the concatenation of two objects, both of which are
control-nested hierarchies of repetitive isometries; see Sect. 11.6 and Fig. 11.3
(p. 252).

16.16 The Unfolding Group of a Solid

Conventionally, a solid model is constructed as a Boolean combination of
solid primitives. According to our theory, Boolean combination is realized by
unfolding groups. In the case of a solid, we will see that the unfolding groups
are more complex than the examples considered previously. Our goal of max-
imizing transfer will force the alignment kernel to have a transfer structure
of four levels. That is, the alignment kernel is a 4-fold wreath product. This
is described in Table 16.3, which will now be explained.

The alignment kernel gives the set of primitives that will be used in the
particular solid which is to be constructed. Suppose Gprimitive is the sym-
metry group of one of those solid primitives. This means that Gprimitive is
one of the groups in Table 16.2 (not Table 16.3!!!). What the four levels in
the new Table 16.3 do is to take Gprimitive and successively factor out from
it all those levels which it has in common with the other primitives that are
to be used in the particular solid. The succesive factorizations correspond to
the successive four levels in Table 16.3, as follows:

Level 1
First, Gprimitive has the starting point R0 in common with all the other
primitives. So R0 is factored out and moved to the front of the alignment
kernel.

Level 2
Next, Gprimitive has the first translation level R in common with all the other
primitives, because this is the first translation level of the solid structure. So
R is factored out and moved to the front of the alignment kernel, but just
above the first level R0. Notice that R is the continuous translation root
of externalization (Sect. 2.16). However, parallel with this root is the other
continuous root SO(2), if it occurs in any of the solid primtives used (e.g., if
the solid cylinder is one of the primitives to be used in the solid). Therefore,
form, at this level, an alignment kernel of the two continuous roots, thus:

[[SO(2)]P2 × [R]P1 ]U . (16.21)
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Table 16.3. The alignment kernel of a solid object.

THE ALIGNMENT KERNEL IN SOLID MODELING

The alignment kernel for a solid object is a 4-fold wreath
product, whose successive levels upward are:

(Level 1) The starting point

R
0 .

(Level 2) The alignment of the continuous roots:

[[SO(2)]P2 × [R]P1 ]U .

(Level 3) The wreath unfolding of the translation root through
space; i.e., the group

[R w© R]P1 .

(Note that this completes the infinite solid structure; i.e. the
wreath c-polycyclic translation group R

0 w© R w© R w© R.)

(Level 4) The direct product of the remainders of each of
the symmetry groups of the solid primitives involved:

GKn × . . .×GK2 ×GK1 .

Essentially, this last expression is the direct product of the
surface kernels, GK1 , GK2 , . . . , GKn . However, for any cylinder or
block, the GKi will also include the bounding planes.

The total alignment kernel is therefore

R
0

w© [[SO(2)]P2 × [R]P1 ]U

w© [R w© R]P1

w© [GKn × . . .×GK2 ×GK1 ] (16.20)

Level 3
Next, all primitives have in common the remainder of the translation hierar-
chy R w© R w© R that defines the infinite solid. The first R has already been
factored downward as the continuous root P1 in Level 2. So now unfold this
first R = P1 via the remaining two translation levels in R w© R w© R, in this
way:

[R w© R]P1 .

Notice that P1 originates from expression (16.21) on the previous level (Level
2). Notice that Level 2 and 3 have together generated the complete infinite
unbroken solid, R w© R w© R.
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Level 4
Finally, there is what is left of Gprimitive after all these previous factoriza-
tions. Mainly what is left of Gprimitive is its surface kernel. This is what is
not in common with the other primitives - since each primitive has its own
surface kernel. So, on this new level, take the direct product of those com-
ponents of what is not in common between the primitives - essentially their
surface kernels. The direct product is expressed as

GKn × . . .×GK2 ×GK1 .

where one can think of the GK1 , GK2 , . . . , GKn as essentially the alignment
kernels.

At this stage the reader should read through Table 16.3 to fully grasp what
has been said above.

Having now constructed the alignment kernel of the solid object, let us turn
to the unfolding of the alignment kernel. Suppose we want to unfold the
primitive Gprimitive from the kernel. Again, Gprimitive is one of the groups
in Table 16.2 (not Table 16.3!!!). What unfolding it means is that it will
become an input index for a control group above the alignment kernel. To
unfold Gprimitive from the kernel, one has to ”compile” it from the kernel, as
follows: One has to move left-to-right along the kernel and select those factors
that comprise Gprimitive as it is defined in Tables 16.2 and 16.3. In compiling
it, one must use the same group product operations that exist between the
components as they occurred in the alignment kernel.

Notation 16.1 As a short hand, we often express the alignment kernel as
the direct product of the solid primitive groups, e.g.,

Gsphere ×Gcylinder × . . .×Gcube.

However, the reader should understand that this is an abuse of notation. The
correct group is the hierarchical 4-level wreath product we defined for the
solid alignment kernel. However, the direct product notation shown here can
be regarded as being Level 4, that is, ”essentially” the direct product of the
surface kernels.



17. Wreath Formulation of Splines

17.1 The Goal of This Chapter

According to our generative theory, a shape is a frozen machine, which can be
converted into an active machine using the recovery rules, so that the agent
can self-substitute into the machine and thereby use the shape for plans; e.g.,
for design, manufacturing, manipulation, navigation, etc.

This chapter will elaborate a theory of splines as machines in which there
are two levels, each of which is a machine. From higher to lower, the levels
are:

Machine 2: In this level, the designer controls the shape of the spline - in
fact, splines were invented for exactly this type of control.

Machine 1: A spline can be described internally as a space of actions, i.e., as
a machine. For example, the spline surface is described as a surface of motion;
e.g., in ordinary navigation, or NC machining where the surface has to be
milled. This is also fundamental to the use of splines in CAD-based robot
kinematics and animation, where trajectories are set up as interpolations
between points or key-frames; see Ge & Ravani [39], Jüttler [69], Jüttler &
Wagner [70], Kim, Kim, & Shin [74], Park & Ravani [116], Pletinckx [119],
Schoemake [136], Röschel [129], Zefran & Kumar [158].

Hierarchically, Machine 2 is above Machine 1, and shapes the action structure
of the latter. Thus we will talk of spline-shaping as machine-shaping.

Michael Leyton (Ed.): A Generative Theory of Shape, LNCS 2145, pp. 423-441, 2001. 

© Springer-Verlag Berlin Heidelberg 2001
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GOAL

Formulate a spline as a single machine that contains Ma-
chine 1 (actions internal to the spline) and Machine 2 (ac-
tions that shape the spline) as well as the structural relation-
ship between these two machines. That structural relation-
ship is best expressed by the following wreath product of
machines:

Spline = Machine 1 w© Machine 2.

This means that the action of Machine 2 on Machine 1
is one of transfer; i.e., spline-shaping will be understood
algebraically by τ-automorphisms of groups. Notice that
the agent can self-substitute into either machine. Thus,
when self-substituting into Machine 2, the agent could be
a designer manipulating the spline shape, and when self-
substituting into Machine 1, the agent could be a kinematic
arm moving along the spline.

This chapter will give a generative theory of splines that accords with
our fundamental principles: the maximization of transfer and recoverability.
Thus, in particular, Machine 1, the internal structure of the spline, will itself
be decomposed into a hierarchy of transfer. Indeed, this hierachy will give
an exhaustive generative account of the internal structure of splines. Fur-
thermore, any level within this exhaustive hierarchy will be recoverable. The
importance of this is that it will explain different aspects in the use of spline
shape, for example in Mechanical CAD. It will be seen that the different lev-
els are in fact exploited at different times by agents - e.g., in the choice of a
construction plane to initiate the spline.

Let us now see how to proceed. A spline is a parameterized n-surface. Such
a surface is a differentiable map from a solid n-cube (in n-space) into a higher
dimensional space. For example, consider the 2-dimensional case. The domain
of the parametrized surface is shown in Fig. 17.1. It is the solid 2-cube, i.e.,
a filled square, in R2. Fig. 17.2 shows the codomain for the parametrized
surface, i.e., the image of the square from Fig. 17.1, under the differentiable
map. Intuitively, one can think of the codomain as a ”deformed” version of
the ”flat” domain. The deformed version exists in 3-space.

Obviously, this example can be expressed in the following typical way
from differential geometry:

s :




[0, 1]× [0, 1] −→ R3

(u, v) �−→ s(u, v).
(17.1)

Here the domain is the (filled) 2-cube, expressed as the ordinary Cartesian
product of two unit intervals, that is, [0, 1] × [0, 1]. This cube is called the
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Fig. 17.1. The domain of a parametrized 2-surface.

Fig. 17.2. The codomain of a parameterized 2-surface.
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parameter domain of the spline. Because the codomain is an image of
this cube, it is really a patch. However, we will use the standard abuse of
terminology, and call it a surface, rather than merely a patch.

This example illustrates the standard way in which the domain, the solid
n-cube, is described in the literature: Simply as the set-theoretic Cartesian
product of n copies of the unit interval which is itself understood only set-
theoretically.

The first step in expressing splines as machines is to convert the or-
dinary set-theoretic description of the spline parameter domain, i.e., as
[0, 1] × [0, 1] × . . . × [0, 1], into an algebraic structure, in fact, into the re-
cursive solid hyperoctahedral wreath hyperplane group RS-HWH(n)

R0 w© R w© R w© R w© . . .

w© [ Z2 w© Σ1]R
0
1/2,1/2,1/2,...

w© [ Z2 w© Σ2][R
0 w© R]1/2,1/2,... w© [ Z2 w© Σ1]

R
0
1/2,1/2,1/2,...

w©[Z2 w©Σ3][R
0 w©R w© R]1/2,... w©[Z2 w© Σ2]

[R0 w©R]1/2,1/2,... w©[ Z2 w© Σ1]
R
0
1/2,1/2,1/2,...

. . . (17.2)

Recall from section 16.6 (p. 402), the main facts about this group. (1) The
group realizes the Asymmetry Principle, by starting with n-space as an infi-
nite solid, and then cutting it down using hyperplanes as faces to produce the
n-cube. The hyperplane faces are related by the hyperoctahedral group. (2)
Our expression of infinite n-space is as the sweeping of the hyperplane Rn−1

via the perpendicular action R. It is this hyperplane that is then used for the
faces transferred by the hyperoctahedral group. (3) However, the hyperplane
faces are themselves solid n− 1 cubes, which have solid n− 2 cubes as faces;
and so on downwards. Therefore, we recursively substitute solid cubes for
successively descending values of n. (4) Furthermore, transfer is maximized
by wreath re-constituting the original infinite solid n-space as a wreath c-
polycyclic translation group - i.e., a hierarchical sweeping of hyperplanes of
descending dimensions - and we transfer these descending hyperplanes into
the descending orders of hyperoctahedral components.1

1 Throughout, this chapter there will be a simple abuse of notation: When de-
scribing the surface as a function of the form shown in (17.1), we will assume
that the parameter domain is not centered at the origin - i.e., it is as indicated
[0, 1] × . . .× [0, 1], with one corner at the origin. However, when describing the
same parameter domain group-theoretically, we shall assume that the domain is
centered at the origin, with its hyperoctahedral reflectional symmetries aligned
with the coordinate planes. We could, using an extra group action, simply move
this out from the origin to be coincident with [0, 1]× . . .× [0, 1], but this would
be inappropriate: The conventional parameter domain [0, 1]× . . .× [0, 1] is always
expressed as an arbitrary choice in CAD; whereas our group theoretic choice is
non-arbitrary.
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Table 17.1. The wreath formulation of splines.

STRATEGY FOR EXPRESSING SPLINES AS MACHINES

(1) Convert the ordinary set-theoretic description of the spline
parameter domain (i.e., as [0, 1]× [0, 1]× . . .× [0, 1]), into a group, in
fact, into the recursive solid hyperoctahedral wreath hyperplane
group RS-HWH(n)

R
0 w© R w© R w© R w© . . .

w© [ Z2 w© Σ1]
R

0
1/2,1/2,1/2,...

w© [ Z2 w© Σ2]
[R0 w© R]1/2,1/2,... w© [ Z2 w© Σ1]

R
0
1/2,1/2,1/2,...

w©[Z2w©Σ3]
[R0w©Rw©R]1/2,...w©[Z2w©Σ2]

[R0 w©R]1/2,1/2,... w©[Z2 w©Σ1]
R
0
1/2,1/2,1/2,...

. . . (17.3)

(2) Form the set of control tensors into a group T .

(3) Form the infinite group direct product of copies of the
recursive solid hyperoctahedral wreath hyperplane group RS-
HWH(n), with one copy for each member of the tensor group T .

(4) Let the tensor group T be the control group of a wreath
product where the fiber-group product is the infinite direct
product just defined.

(5) Each spline will correspond to one of the copies in the
fiber-group product.

(6) The shaping action that deforms splines onto each other will
correspond to the wreath automorphic action that sends copies
of the fiber group RS-HWH(n) onto each other.

Let us now move onto the shaping operations on splines. A spline shape
is controlled by a finite set of vectors; these include various position control
vectors, tangent vectors, twist vectors, etc. This set of vectors become the
entries of a matrix. The matrix is an example of a tensor, i.e., a multi-linear
form. One deforms the surface by changing the entries of the tensor.

Let us now see how to realize our goal of expressing splines as machines.
The strategy we shall take is presented in Table 17.1 (p. 427). Stage (1)
on this table has already been discussed above. The reader should now go
through the remainder of the table.
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To illustrate the table, return to Figs 17.1 and 17.2 (p. 425). Fig. 17.1
represents the parameter domain for the 2D case. In stage (1) of the table, this
is expressed as the recursive solid hyperoctahedral wreath hyperplane group
RS-HWH(2). Fig. 17.2 is a spline using one of the control tensors. In stage
(2) the set of control tensors is formed into a group T . Then, stage (3) forms
the infinite group direct product of copies of the first diagram (Fig. 17.1),
with one copy for each member of the tensor group T . (4) Then let the
tensor group T be the control group of a wreath product where the fiber-
group product is the infinite direct product just defined. (5) Each spline, like
Fig. 17.2, will correspond to one of the copies in the fiber-group product. (6)
The shaping action that deforms splines onto each other will correspond to
the wreath automorphic action that sends copies of the first figure (Fig. 17.1)
onto each other. This illustrates a fundamental principle of our approach:

SPLINE-SHAPING AS AUTOMORPHIC ACTIONS
ON GROUPS. Our theory of splines will formulate the action of deforming
splines onto each other as an automorphic action on groups.

17.2 Curves as Machines

The remainder of this chapter goes systematically up dimension, from 1 to 3
(curves to 3D solids) showing how splines can be usefully formulated in terms
of our generative theory of shape. Start first with parameterized curves:

Parameterized curves are used prolifically in CAD. They are usually de-
scribed as functions that send the unit interval [0, 1] into R3, as follows:

c :




[0, 1] −→ R3

t �−→ c(t)

It is well-accepted in CAD that parameterized curves are useful because
they can be regarded as representing the locus of a moving point (e.g.,
Mortenson [110]). According to the theory being developed in this book,
such curves can represent the trajectory of a machine for which an agent can
self-substitute in some plan, e.g., as the servo system of a plotter in a drawing
process, an electron-beam deflection system in a vector display, or a robot
moving through an environment where the curve is the shape of a wall or
hillside.

To go from the set of points on a curve, to an actual machine that will
trace out the set, one needs our rules for the inference of generative history.

Now the machine, which corresponds to the parametrized curve, is an
example of Machine 1, given in Sect. 17.1. It represents the first level of
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control in our discussion of such curves. In contrast, the designer’s control is
given by the level above this, Machine 2. Thus for example, supposing that
the plan represented by the parametrized curve is one that an end-user, e.g.,
robot, will use as it moves along the edge of a shape. Then the design control,
which manipulates that curve, is the ability to alter that plan, e.g., deform
and move it through space.

As said earlier, these two levels of control, i.e., end-user and designer,
will rigorously form a wreath product. Conceptually, the designer can there-
fore be viewed as transferring the trajectories of the end-user around the
environment. The end-user is control nested within the designer.

Now let us turn to the algebraic description of the curve as a machine
- a machine whose state-space will be shaped by the designer. According
to our theory, the parameter domain will be given by the recursive solid
hyperoctahedral wreath hyperplane group, which in the 1D case must be
RS-HWH(1). This was presented in Sect. 16.7, and is given again here:

R0 w© R

w© [ Z2 w© Σ1]R
0
1/2 (17.4)

The two lines of this expression correspond to the first two lines of the general
formula (17.3) - where the n-fold wreath c-polycyclic translation component
in the first line of the general formula is now 1-fold, and the index on the
second line is ammended appropriately.

To understand this structure, the reader should review the discusion con-
cerning the solid interval on p. 409 - 410.

17.3 Cubic Hermite Curves

This section considers a particular well-known example of parameterized
curves: the cubic Hermite curves. When looking later at surfaces and 3D
solids, we will again choose the Hermite formulation. However, this is not
really a restriction. It will be obvious that exactly the same argument applies
to any other of the main spline types - Bézier, B-spline, NURBS, etc.

This section will show that the cubic Hermite curve can easily be ex-
pressed in terms of our generative theory.

Usually, the control of a cubic Hermite curve-segment is determined by
the positions of its endpoints and the tangent vectors at those points. If one
simply calls the curve c(t), then the standard endpoints are c(0) and c(1),
and the corresponding tangent vectors, at the endpoints, are c′(0) and c′(1)
(recall the footnote on p. 426). The geometric form of the curve is as follows:

c(t) = c(0)h1(t) + c(1)h2(t) + c′(0)h3(t) + c′(1)h4(t). (17.5)
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which should be read as an ordinary linear combination; i.e., a sum of basis
vectors hi pre-multiplied by coefficients. The four coefficients are the curve
endpoints and end-tangents: c(0), c(1), c′(0), c′(1). The four basis vectors hi,
in this linear combination, are the four Hermite basis functions. These are
the four cubic equations h1 = 2t3−3t2+1; h2 = −2t3+3t2; h3 = t3−2t2+t;
h4 = t3 − t2.

To obtain the other cubic Hermite curves, hold the four basis functions
hi fixed and change the four coefficients, c(0), c(1), c′(0) and c′(1), as one
does in any linear combination. Now these four coefficients are each vectors
in R3, since the curve is a map into R3. So the four coefficients give together
4 × 3 = 12 variables. Therefore, they define a 12-parameter group H which
is isomorphic to R12. Let this be the control group H of our wreath product,
i.e., Machine 2. The fiber is Machine 1, and this is RS-HWH(1), which was
given in expression (17.4). Therefore the full wreath product describing cubic
Hermite curves is:

R0 w© Rw© [ Z2 w© Σ1]R
0
1/2 w© H (17.6)

Notice that, although H is a 12-parameter group, it is infinite. Thus there
are an infinite number of copies of the fiber R0 w© Rw© [ Z2 w© Σ1]R

0
1/2 .

Each copy gives one of the cubic Hermite curves. The control group thereby
elaborates all the cubic Hermite curves as the fiber-group copies. It deforms
and moves them onto each other in 3-space.

The reader should grasp the following important fact: The fiber-group
product is the direct product of all the cubic Hermite curves! This means that
the control group H, the designer control, acts as an automorphism group on
the entire system of curves. In other words, we have expressed spline shaping
as automorphic action on a group - which is an extremely powerful concept.
Notice of course that the automorphic action is the τ -action (or τ̂ -action) on
the fiber-group product.

Most crucially, we can move between equivalent points on the curves by
using this automorphic (conjugacy) operation of the control group. That is,
consider a fixed point R0

u, and its image point c(R0
u) on the curve c. Then one

can move to its equivalent point ĉ(R0
u) on another curve ĉ by conjugation.

Thus, the structure of one curve is transferred onto the structure of another
curve. That is, the fiber group can be transferred from one curve to another.

As an example, fix the two endpoints c(0) and c(1) in R3. This has fixed
6 of the parameters of the control group H. Fix also the directions of the
end-vectors c′(0) and c′(1), but not their magnitudes. This has fixed an extra
4 of the parameters of H. Thus only two parameters are left - the magnitudes
of the end-vectors. Varying through these two parameters elaborates a family
of curves where all the members of the family share the same endpoints, and
the same normalized end-vectors. This is illustrated in Fig. 17.3.

What then do these curves represent? Each curve represents a machine.
These machines are deformed onto each other. The action of deformation is
the control group.
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Fig. 17.3. Some Hermite splines sharing the same end-points, but with coincident
tangent vectors of different magnitudes.

It is worthwhile comparing the case of cubic Hermite curves with the
wreath product we gave for the square:

R w© Z4.

First replace the unbroken infinite description R given for the side of a square
with the group RS-HWH(1), which expresses the side as a finite segment.
Thus the above expression of a square is now changed to:

R0 w© Rw© [ Z2 w© Σ1]R
0
1/2 w© Z4.

This settles the occupancy issue.
Now let us compare the case of the square with that of cubic Hermite

curves. In the case of a square, there were four ”curves,” the four copies of R.
The control group was Z4 considered as a rotation group. The four copies of
RS-HWH(1) remain rigidly straight under the action of the control group. In
the Hermite case, there are an infinite number of copies of RS-HWH(1), and
the action of the control group H deforms them and moves them through
space. The elegance of the wreath product analysis is that it shows that,
despite these differences, the two situations have very deep similarities: Both
are organized as translation-structures along lines, i.e., translation-machines,
such that these machines are transferred from one line to another by a higher
level group into which the machines are control-nested.

Let us now return fully to the cubic Hermite group:

R0 w© Rw© [ Z2 w© Σ1]R
0
1/2 w© H . (17.7)

It is crucial to understand that the group H controls the image of its fiber
R0 w© Rw© [ Z2 w© Σ1]R

0
1/2 . It does so via the equation (17.5). The clear-

est way to understand this control is to notice that equation (17.5) has the
form of a 1-tensor action. Any tensor, being a multi-linear form, can be
expressed as a matrix. Thus, the 1-tensor, which here is the 1 × 4 matrix
(c(0), c(1), c′(0), c′(1)), is applied to the 4× 1 vector (h1,h2,h3,h4) by ordi-
nary matrix multiplication thus:
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(
c(0), c(1), c(3), c(4)

)



h1

h1

h1

h1




to produce the linear combination in equation 17.5. The control group H is
loaded into the 1-tensor on the left.

TENSOR EQUATIONS AS WREATH PRODUCTS. The above
tensor equation prescribes the way in which H acts as a control group with
respect to the fiber group R0 w© Rw© [ Z2 w© Σ1]R

0
1/2 within the wreath product

given in (17.7).

17.4 Parametrized Surfaces as Machines

Now go up one dimension and deal with parameterized surfaces. Again these
are used prolifically in CAD, where they usually are described as functions
that send the unit square interval [0, 1]× [0, 1] differentiably into R3, thus:

s :




[0, 1]× [0, 1] −→ R3

(u, v) �−→ s(u, v) .
(17.8)

In many applications, it is useful to consider a parameterized surface as a
1-parameter family of curves that completely decomposes the surface. For
example, if one fixes a value v′ in the parameter v, then any such curve
on the surface has the form sv′(u). These curves are called iso-parametric
curves. Clearly, this expresses the surface in terms of the wreath c-polycyclic
translation group R w© R which accords exactly with what is predicted by our
theory - giving the surface a generative description that maximizes transfer.

Observe now that this wreath c-polycyclic group is what we have called
the ”solid” structure - which is infinite. We need to create a symmetry-
breaking of this structure using the square boundary, i.e., a 2D cube - and
this means incorporating the hyperoctahedral group of degree 2. Further-
more, each side of the boundary is a 1D cube, i.e., an interval, and this has a
boundary - the two endpoints - which are themselves related by the hyperoc-
tahedral group of degree 1. Thus there is a recursive downward structure of
hyperoctahedral groups and matching wreath c-polycyclic translation groups.
This means, of course, that the full structure of the parameter domain - i.e.,
the filled square - is given by the recursive solid hyperoctahedral wreath hy-
perplane group, which in the 2D case must be RS-HWH(2). This group was
given in Sect. 16.7 as:
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R0 w© R w© R

w© [ Z2 w© Σ1]R
0
1/2,1/2

w© [ Z2 w© Σ2][R
0 w© R]1/2 w© [ Z2 w© Σ1]

R
0
1/2,1/2

. (17.9)

To understand our discussion of surface splines, the reader should first thor-
oughly review our discussion of the solid square p. 410 - 411.

Finally, observe that what has been constructed here is Machine 1 in the
2D case. It is now necessary to add Machine 2 which is the shaping of the 2D
surface. This is illustrated in the next section with bicubic Hermite surfaces.

17.5 Bicubic Hermite Surfaces

Now consider the surface corresponding to the cubic Hermite curve: The
bicubic Hermite surface. This will be formulated in terms of our generative
theory.

First some terminology and notation: Using the conventional description
of a parameterized surface

s :




[0, 1]× [0, 1] −→ R3

(u, v) �−→ s(u, v)
(17.10)

we have the following notation for the partial derivatives:

∂s(u, v)
∂u

= su(u, v) ,
∂s(u, v)
∂v

= su(u, v)

∂2s(u, v)
∂u∂v

= suv(u, v) = svu(u, v) =
∂2s(u, v)
∂v∂u

.

It is well-known that the shape and position of a bicubic Hermite surface is
fully controlled by 16 vectors, which can be taken to be:

4 position vectors: the position vectors of the four corners: s(0, 0),
s(0, 1), s(1, 0), s(1, 1).

8 tangent vectors: the end-tangents to each of the four bound-
ary curves, that is, the vectors su(0, 0), su(0, 1), su(1, 0), su(1, 1),
sv(0, 0), sv(0, 1), sv(1, 0), sv(1, 1).

4 twist vectors: the twist vectors at the four corners - these are
the second order derivatives suv(0, 0), suv(0, 1), suv(1, 0), suv(1, 1).
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A convenient way to conceptualize this is as follows: Essentially the patch is
being controlled by the four boundary curves - the images of the four sides
of a square. These four curves are cubic Hermite curves. Now, according to
Sect. 17.3, a single cubic Hermite is controlled by four vectors: the position
vectors of the two end-points, and the two end-tangents. Thus, having four
boundary curves to control, and four control vectors for each, there are a total
of 4×4 = 16 control vectors. However, because the end-points of each bound-
ary curve coincide with the end-points of the adjacent two curves around the
boundary, there are a total of only four independent end-points. This reduces
the number of control vectors from 16 to 12. These are the first 12 vectors in
the above list.

Four extra control vectors then have to be added to gain full control over
the shape of the patch, these are the four twist vectors above.

The full set of 16 vectors can be inserted as entries in a matrix thus:

H =




s(0, 0) s(0, 1) sv(0, 0) sv(0, 1)

s(1, 0) s(1, 1) sv(1, 0) sv(1, 1)

su(0, 0) su(0, 1) suv(0, 0) suv(0, 1)

su(1, 0) su(1, 1) suv(1, 0) suv(1, 1)




Notice that the matrix divides simply into four quandrants: (1) The upper-left
quadrant consists of the four end-points; (2) the lower-left quadrant consists
of the end-tangents to the two boundary u-curves ; (3) the upper-right quad-
rant consists of the end-tangents to the two boundary v-curves; and (4) the
lower-right quadrant consists of the four twist vectors.

The most important thing for us to understand is that this matrix controls
various aspects of the image of the recursive solid hyperoctahedral wreath
hyperplane group RS-HWH(2) which is given again here:

R0 w© R w© R

w© [ Z2 w© Σ1]R
0
1/2,1/2

w© [ Z2 w© Σ2][R
0 w© R]1/2 w© [ Z2 w© Σ1]

R
0
1/2,1/2

. (17.11)

The control is as follows: Let us suppose that the u parameter is the lower R

in Line 1 of the group, and the v parameter is the upper R in Line 1. Let us
now go through the four quadrants of the matrix.

Top left quadrant: The bottom right entry of this quadrant corresponds to
the index R0

1/2,1/2 on Line 2 of the group (17.11). This point is the first
distinguished corner of the square. The entry above this in the matrix is the
reflectional image of this corner as generated by the control group on Line 2
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of the group. The first column of the quadrant will control the additional two
corners generated by the hyperoctahedral structure in Line 3 of the group.

Bottom left quadrant: The second column of this quadrant controls the
straight line that goes through the first pair of corners just mentioned. The
first column controls the straight line that goes through the second pair of
corners just mentioned. This is the first pair of reflectional lines generated by
the Z2 group in Line 3 of the above group. Notice that this group produces
the pair of lines from one of the lines - that given by the index [R0 w© R]1/2
on Line 3 of the group.

Upper right quadrant: This quadrant of the matrix concerns the other pair
of reflectional lines that bound the square. This pair is generated by the Σ2

component in Line 3 of the group, acting on its Z2 fiber which generated the
first pair of reflectional boundary lines.

Lower right quadrant: This quadrant controls the relationships between the
two directions in the wreath c-polycyclic translation group.

Notice that what has been meant by control, in the discussion of the quad-
rants, has been control of the images of the various components of the group.
The matrix therefore corresponds to Machine 2 which is the designer’s control
over spline shape. The input group to this machine is the group HS of matri-
ces H . Thus, we take the group RS-HWH(2), given in expression (17.11) as
Machine 1, and the group HS as Machine 2, and form their wreath product:

R0 w© R w© R

w© [ Z2 w© Σ1]R
0
1/2,1/2

w© [ Z2 w© Σ2][R
0 w© R]1/2 w© [ Z2 w© Σ1]

R
0
1/2,1/2

w© HS . (17.12)

It is crucial to understand that the final line controls the image of the previous
lines. It does so in the following way:

Whereas the equation for the cubic Hermite curve was a linear equation,
i.e., a 1-tensor action:

c(t) = c(0)h1(t) + c(1)h2(t) + c′(0)h3(t) + c′(1)h4(t). (17.13)

the equation for the bicubic Hermite surface is the bilinear equation

s(u, v) = [h1(u),h2(u),h3(u),h4(u)]H [h1(v),h2(v),h3(v),h4(v)]T (17.14)
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i.e., in the form of a 2-tensor action, where H , in the center, is the matrix
given above, and the symbols hi represent the same Hermite basis functions
as in curve equation (17.13).

To elaborate the set of bicubic Hermite surfaces, hold fixed the four basis
functions hi on either side of the matrix H in equation (17.14), and vary the
16 vector-entries ofH . Note that a vector-entry is a 3-vector in (x, y, z)-space,
and is therefore changed by altering any one of its (x, y, z) coordinates. Thus
H is a 4×4×3 = 48 matrix of independent coefficents. That is, the alteration
of any one of the 48 coefficients will change the surface. Therefore H defines
a 48-parameter group which we called HS which is isomorphic to R48.

TENSOR EQUATIONS AS WREATH PRODUCTS. The tensor
equation in (17.14) prescribes the way in which HS acts as a control group
with respect to the fiber group RS-HWH(2) within the wreath product given
in (17.12).

Note that, although HS is a 48-parameter group, it is infinite. Thus there are
an infinite number of copies of the fiber group RS-HWH(2). Each copy gives
one of the bicubic Hermite surfaces. The control group thereby elaborates all
the surfaces as the fiber-group copies. It deforms and moves them onto each
other in 3-space.

Again, the reader should grasp the following important fact: The fiber-
group product is the direct product of all the bicubic Hermite surfaces! This
means that the control group HS , the designer control, acts as an automor-
phism group on the entire system of surfaces. In other words, we have once
again expressed spline shaping as automorphic action on a group. Notice of
course that the automorphic action is the τ -action (or τ̂ -action) on the fiber-
group product.

Most crucially, one can move between equivalent points on the surfaces by
using this automorphic (conjugacy) operation of the control group. That is,
consider a fixed point R0

u,v in the wreath c-polycyclic fiber R0 w© R w© R and
its image point s(R0

u,v) on the surface s. Then one can move to its equivalent
point ŝ(R0

u,v) on another surface ŝ by conjugation. Thus, the structure of one
surface is transferred onto the structure of another surface. That is, the fiber
group is transferred from one surface to another.

17.6 Parametrized 3-Solids as Machines

Now go up one dimension and deal with parameterized three-dimensional
solids. Again these are used prolifically in CAD, where they usually are de-
scribed as functions that send the unit three-dimensional interval
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[0, 1]× [0, 1]× [0, 1] into R3, as follows:

s :




[0, 1]× [0, 1]× [0, 1] −→ R3

(u, v, w) �−→ s(u, v, w).
(17.15)

In many applications it is useful to break this structure into iso-parametric
substructures: Thus, for a fixed value w′ of w, there is the iso-surface sw′(u, v)
obtained by varying u and v. The solid is then obtained by sweeping this sur-
face along the w parameter; thus giving a 1-parameter set of iso-surfaces.
Similarly, given any one of these iso-surfaces sw′(u, v), fixing a value v′ for
v, produces an iso-line sv′w′(u) within that surface. The iso-surface is then
obtained by sweeping the iso-line along the v parameter. Clearly, this ex-
presses the entire 3-solid in terms of the wreath c-polycyclic translation group
R w© R w© R which accords exactly with what is predicted by our theory -
giving the surface a generative description that maximizes transfer.

Observe now that this wreath c-polycyclic group is what we have called
the ”solid” structure - which is infinite. We need to create a symmetry-
breaking of this structure using the cube boundary, i.e., a solid 3-cube; and
this means incorporating the hyperoctahedral group of degree 3. Each face
of the 3-cube is a solid 2-cube, i.e., a solid square; and this has a boundary -
the four edges - which are themselves related by the hyperoctahedral group
of degree 2. Furthermore, each edge of the square is a solid 1-cube, i.e.,
a solid interval; and this has a boundary - the two endpoints - which are
themselves related by the hyperoctahedral group of degree 1. Thus there
is a recursive downward structure of hyperoctahedral groups and matching
wreath c-polycyclic translation groups. This means, of course, that the full
structure of the parameter domain, i.e., the solid 3-cube, is given by the
recursive solid hyperoctahedral wreath hyperplane group, which in the 3D
case is RS-HWH(3). Using the general formula for RS-HWH(n) in (17.3),
one can see that RS-HWH(3) must be:

R0 w© R w© R w© R

w© [ Z2 w© Σ1]R
0
1/2,1/2,1/2

w© [ Z2 w© Σ2][R
0 w© R]1/2,1/2 w© [ Z2 w© Σ1]

R
0
1/2,1/2,1/2

w© [ Z2 w© Σ3][R
0 w© R w© R]1/2 w©[Z2 w© Σ2]

[R0 w© R]1/2,1/2 w© [Z2 w© Σ1]
R
0
1/2,1/2,1/2

(17.16)

This structure was fully explained on pages 406 to 408, by building it up
from solid edge to solid face to entire solid cube.

Finally, observe that what has been constructed here is Machine 1 in the
3D case. It is now necessary to add Machine 2 which is the shaping of the
solid. This will be illustrated in the next section with tricubic Hermite solids.
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17.7 Tricubic Hermite Solid

This section discusses the tricubic Hermite solid, and shows that it can easily
be expressed in terms of our generative theory.

The shape and position of a tricubic Hermite solid is fully controlled by
64 vectors. These vectors can be easily understood by considering a single
corner. At a corner, one has the following eight vectors:

1 position vector: this gives the corner position.

3 tangent vectors: each is the end-tangent to one of the three
boundary curves meeting at the corner.

3 twist vectors: each is a twist vector for one of the three curves
meeting at the corner.

1 derivative-of-twist vector: the third-order mixed derivative at
the corner.

Since there are eight corners, there are a total of 8×8 = 64 control vectors.
These can be placed in a 4× 4× 4 matrix. The structure of this matrix can
be understood as follows:

Consider the matrix as a cube. Each face of the cube is a 4 × 4 matrix.
Pick the front face, and fill it with the 16 entries corresponding to the matrix
H given in Sect. 17.5 for the bicubic Hermite surface on variables u and v. As
observed before, this 4×4 matrix (face) divides simply into four quandrants:
(1) The upper-left quadrant consists of four point vectors; (2 and 3) the
lower-left and upper-right quadrants consist of the tangent vectors; and (4)
the lower-right quadrant consists of the four twist vectors.

Having completed the front face, now rotate the matrix cube about the
top left corner, till one obtains the top face, which is again a 4 × 4 matrix.
Fill this with the corresponding entries for the variables u and w. Perform
the rotation once more till the left face is obtained, which is again a 4 × 4
matrix. Fill this with the corresponding entries for the variables v and w.
The rest of the matrix is easy to fill from this. The full 4× 4× 4 matrix itself
is obviously divided into 3D quadrants each of which is a 2×2×2 block. The
front top quadrant is the set of 8 corner points of the solid. Its diagonally
opposite quadrant (bottom back quadrant) is the set of 8 third-order mixed
derivatives. Each remaining quadrant is either a set of tangent vectors, or a
set of twist vectors - easily computed from the matrix faces given above.

The entire matrix will be denoted by H̄.
The most important thing for us to understand is that this matrix controls

various aspects of the image of the recursive solid hyperoctahedral wreath
hyperplane group RS-HWH(3) given in 17.16. The way to see this is to follow
the argument we gave in the 2D case, starting p. 434, since this corresponds
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to significant sections of the 3D case. The remainder of the 3D case can be
easily deduced from that previous discussion.

It is important to understand that the controlling role of the matrix is the
control of the images of the RS-HWH(3) group which acts as the fiber. That
is, the matrix corresponds to Machine 2 which is the designer’s control over
spline shape. The input group to this machine is the group H̄S of matrices H̄ .
Thus, we take the group RS-HWH(3), given in expression (17.16) as Machine
1, and the group H̄S as Machine 2, and form their wreath product:

R0 w© R w© R w© R

w© [ Z2 w© Σ1]R
0
1/2,1/2,1/2

w© [ Z2 w© Σ2][R
0 w© R]1/2,1/2 w© [ Z2 w© Σ1]

R
0
1/2,1/2,1/2

w©[ Z2 w© Σ3][R
0 w© R w© R]1/2 w©[Z2 w© Σ2]

[R0 w© R]1/2,1/2 w© [ Z2 w© Σ1]
R
0
1/2,1/2,1/2

w© H̄S . (17.17)

It is crucial to understand that the final line controls the image of the previous
lines. It does so in the following way:

Whereas the equation for the cubic Hermite curve was a linear equation,
i.e., a 1-tensor action,

c(t) = c(0)h1(t) + c(1)h2(t) + c′(0)h3(t) + c′(1)h4(t). (17.18)

and the equation for the bicubic Hermite surface was the bilinear equation,
i.e., a 2-tensor action,

s(u, v) = [h1(u),h2(u),h3(u),h4(u)]H [h1(v),h2(v),h3(v),h4(v)]T (17.19)

the equation for the tricubic Hermite solid is obviously the trilinear equation

s(u, v, w) = H̄{[h1(u),h2(u),h3(u),h4(u)],
[h1(v),h2(v),h3(v),h4(v)],
[h1(w),h2(w),h3(w),h4(w)]} . (17.20)

In other words, the action of H̄ is in the form of a 3-tensor, taking the three
arguments shown in the successive three lines. Thus one applies H̄ as a matrix
first to the 4-vector [h1(u),h2(u),h3(u),h4(u)] of Hermite basis functions on
u, which collapses the matrix to a 4×4 matrix; one then applies this collapsed
matrix to the 4-vector [h1(v),h2(v),h3(v),h4(v)] of Hermite basis functions
on v, which collapses the matrix to a 4 × 1 matrix; and finally one applies
this further collapsed matrix to the 4-vector [h1(w),h2(w),h3(w),h4(w)] of
Hermite basis functions on w, which yields a 1× 1 matrix. This result is:

s(u, v, w) =
4∑
i=0

4∑
j=0

4∑
k=0

pijk hi(u)hj(v)hk(w). (17.21)
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To elaborate the set of tricubic Hermite solids, hold fixed the basis func-
tions hi, and vary the 64 vector-entries of the matrix H̄. Note that a vector-
entry is a 3-vector in (x, y, z)-space, and is therefore changed by altering any
one of its (x, y, z) coordinates. Thus H̄ is actually a 4 × 4 × 4 × 3 = 192
matrix of independent coefficents. That is, the alteration of any one of the
192 coefficients will change the solid. H̄ therefore defines a 192-parameter
group H̄S which is isomorphic to R192. Let this group be the control group
H̄S of the wreath product given in (17.17).

TENSOR EQUATIONS AS WREATH PRODUCTS. The tensor
equation in (17.20) prescribes the way in which H̄S acts as a control group
with respect to the fiber group RS-HWH(3) within the wreath product given
in (17.17).

Note that, although H̄S is a 192-parameter group, it is infinite. Thus there
are an infinite number of copies of the fiber group RS-HWH(3). Each copy
gives one of the tricubic Hermite solids. The control group thereby elaborates
all the solids as the fiber-group copies. It deforms and moves them onto each
other in 3-space.

Again, the reader should grasp the following important fact: The fiber-
group product is the direct product of all the tricubic Hermite solids! This
means that the control group H̄S , the designer control, acts as an automor-
phism group on the entire system of solids. In other words, we have once again
expressed spline shaping as automorphic action on a group. Notice of course
that the automorphic action is the τ -action (or τ̂ -action) on the fiber-group
product.

Most crucially, one can move between equivalent points in the solids by us-
ing this automorphic (conjugacy) operation of the control group. That is, con-
sider a fixed point R0

u,v,w in the wreath c-polycyclic fiber R0 w© R w© R w© R

and its image point s(R0
u,v,w) in the solid s. Then one can move to its equiva-

lent point ŝ(R0
u,v,w) in another solid ŝ by conjugation. Thus, the structure of

one solid is transferred onto the structure of another solid. That is, the fiber
group can be transferred from one solid to another.

17.8 Final Comment

Although only Hermite cubic structures have been used as illustrations in
this chapter, it is clear that exactly the same formulation works for the other
main splines - Bézier, B-splines, Nurbs, etc. The reason is as follows: First
the fiber group in all cases is the same: it is RS-HWH(n) of the appropriate
degree. Second, in all cases, the control group is a matrix group whose action
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on images of the fiber group is prescribed by a tensor equation. Third, in
all cases, the fiber-group product represents the product of all the splines in
that class. Fourth, in all cases, the spline-shaping is given by the τ -action
(or τ̂ -action) on the fiber-group product. This will deform one spline (in the
class) onto another. Furthermore, it does this by transfer; i.e., transferring
the fiber group from one spline to another.



18. Wreath Formulation of Sweep
Representations

18.1 Sweep Representations

Nearly all the representations developed in this book are sweep represen-
tations - the movement of some object (e.g., a curve) along a path. The
reason for this is that, according to our theory, generativity is maximized
by making the representation a wreath c-polycyclic group; i.e., a group that
can be decomposed as a wreath product of c-cyclic groups. Each c-cyclic
group represents the time parameter - i.e., the parameter along which gener-
ativity takes place. In a wreath c-polycylic group, each level represents the
time parameter, and generativity is maximized by maximizing transfer, i.e.,
control-nesting the time parameter. One can say therefore that the entire
object is swept out; i.e., each level sweeps out the previous level - all the way
down.

Most of the discussion in this book has therefore been about representa-
tions that are sweep representations all the way down. However, this chapter
is going to discuss the specific class of situations that are referred to in the
graphics literature as sweep representations. Such representations are explic-
itly offered as a choice on most CAD and 3D modeling programs. Usually,
the designer is presented a menu in which he or she can select a profile
curve and a path, along which the profile is to be swept; e.g., as shown in
Fig. 18.1a (p. 445). Specific examples of this include an extrusion, which is
usually defined to be the case where the path is a straight line (Fig. 18.1b),
and a revolution, which is usually defined to be the case where the path
is a circle (Fig. 18.1c). In many software programs, these latter two types
are separated from the general sweep option because they are used so fre-
quently. However, in this book, the term ”sweep representation” will also
include these two options. Also, in the research literature, the profile object
can be a higher-dimensional object such as a surface or a solid. Our discus-
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sion will also apply to these cases, and the term ”profile” will be retained for
the higher-dimensional object being swept.

There are a number of set-theoretic and algebraic methods of representing
sweep structures in the literature, e.g., equations of affine motion, Minkowski
sums. We shall argue this:

SWEEP REPRESENTATIONS

Sweep representations are inherently wreath products in
which the profile corresponds to the fiber and the path cor-
responds to the control; i.e., sweep representations are at-
tempts to define shape as structures of transfer:

Sweep = Profile w© Path .

In fact, we will, in addition, decompose the fiber and the control themselves
into wreath products, because the resulting structure will best explain the
special cases discussed in the literature. Our basic claim will, in fact, be this:
Sweep representations have the following fundamental structure:

(Gprofile w© Extprofile) w© (Gpath w© Extpath). (18.1)

To understand this structure observe that there is a central wreath symbol
w©, and the sequence divides naturally into two components, one to the left
and one to the right of this central symbol. The part to the left describes the
profile, and the part to the right describes the path. However, observe that
the two components have exactly the same structure. In fact, each is a 2-fold
wreath product. Thus the entire structure is an action of a 2-fold wreath
product (the right) on a 2-fold wreath product (the left) via an intervening
wreath product (the center).

Now let us look at this structure more deeply. Either component, the left
or right, has a structure that is illustrated using Fig. 18.2. Purely for the sake
of illustration the structure will be assumed to be a curve. According to our
theory, this structure has two kinds of asymmetry: (1) External asymmetry
in which the structure is seen as a deformed version of a more symmetric
object. (2) Internal asymmetry which is a set of distinguishabilities between
parts (e.g., points) within the object and which implies the trace structure
of the object (recall Sect. 2.9). Thus, in case of the curve shown, the external
asymmetry implies that the object is a deformed version of a straight line;
and the internal asymmetry implies that the object is the trace of a point.
Notice that this description conforms to the Externalization Principle, which
states that any external inference goes back to an internal structure that is
an iso-regular group; i.e., a control-nested hierarchy of repetitive isometries.
In this example, the external inference (removal of deformation) goes back
to a straight line whose internal structure is a control-nested hierarchy (only
one level) of repetitive translations.
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Fig. 18.1. The sweeping of a profile along a path.
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Fig. 18.2. A curve contains both external and internal asymmetry.

Let us return to the general case shown at (18.1) above. Consider the left
half (Gprofile w© Extprofile). This should be interpreted as follows: Extprofile
is the group describing the external (deformation) structure of the profile; and
Gprofile is the group describing the internal structure. In accord with the
Externalizaiton Principle, Gprofile is an iso-regular group. When Extprofile
is factored from (Gprofile w© Extprofile), we are left with Gprofile the wreath-
isometric trace structure.

Now, the right half of (18.1), which describes the path, has exactly the
same structure; i.e., an external group Extpath which deforms the path, and
an internal group Gpath which describes the trace structure when that de-
formation has been removed. Once again, the internal structure Gpath is an
iso-regular group.

Note the following: Either the external group Extprofile or Extpath can
be a tensor control group as described in our wreath formulation of splines.
For example, suppose that Fig. 18.2 is a profile curve, and it is given by a
cubic Hermite curve. In this case the group Extprofile would be H given in
Sect. 17.3, and the group Gprofile would be R. Thus the group of the curve
would be:

Gprofile w© Extprofile = R w© H. (18.2)

This however assumes that the curve is infinite. If the curve has endpoints,
as it inevitably does, then the infinite structure R must be cut down by
endpoints, thus giving us the filled interval - what we have called the solid
interval. We have argued that the group for this is

RS-HWH(1) = R0 w© Rw© [ Z2 w© Σ1]R
0
1/2 (18.3)

which was explained in Sect. 16.7 (p. 409). Thus in the case where the profile
is given by a cubic Hermite curve, its group would be the group we gave
(p. 430) for the cubic Hermite curve:

Gprofile w© Extprofile = R0 w© Rw© [ Z2 w© Σ1]R
0
1/2 w© H. (18.4)



18.1 Sweep Representations 447

One should carefully understand how the right-hand side partitions into the
internal component Gprofile and external component Extprofile shown on the
left. Recall the addition of endpoints is an external action (see Sect. 16.15,
p. 418). Therefore, the endpoint component [ Z2 w© Σ1]R

0
1/2 in the group

RS-HWH(1) , is an external group, and must therefore be included in the
external component Extprofile of the profile, rather than the internal compo-
nent Gprofile. Thus the partitioning of the profile into internal and external
components would be as follows:

Gprofile w© Extprofile =

Gprofile︷ ︸︸ ︷
R0 w© R w©

Extprofile︷ ︸︸ ︷
[ Z2 w© Σ1]R

0
1/2 w© H . (18.5)

Having shown how the endpoint factor is incorporated, we will, for ease of
exposition, ignore the endpoint factor - in the remainder of the chapter. Thus
the external component will be considered to consist only of deformation.

Now let us return to the entire structure given in (18.1). The power of
this full structure is as follows: (1) The profile and path are described as
having the same structure. (2) They are placed in a control-nested relation
- the central wreath product. (3) The special classes of sweep structure are
explicitly expressed in this structure, as we shall now demonstrate.

Case 1: The External Group Extpath is trivial. When Extpath is trivial,
the path is given only by its internal group Gpath, which is a control-nested
hierarchy of repetitive isometries; i.e., a wreath c-polycylic wreath-isometric
group. Fig. 18.1b shows an example where Gpath is simply the translation
group R; and Fig. 18.1c shows an example where Gpath is simply the rotation
group SO(2). A further condition constraining these two examples shown
is that the deformation of the profile is constant, i.e., only one element of
Extprofile is being used in each example. This restriction can be lifted, as
will be illustrated later.

Case 2: The External Group Extprofile is trivial. In this case, where
there is no external group Extprofile for the profile, the profile is purely an
iso-regular group. However, it can be moved along a path which is a de-
formed structure. An example is the case of ruled surfaces, where the profile
is a straight line, and the path is a deformed curve. An example is shown
in Fig. 18.3. Ruled surfaces have many applications in CAD and robot kine-
matics. A valuable pair of articles analyzing such structures in terms of line
geometries is Pottmann, Peternell & Ravani [121], and Peternell, Pottmann
& Ravani [118].

We are considering here the case where Extprofile is trivial. We can par-
tition this case as follows: Since Gprofile has to be a control-nested hierarchy
of repetitive isometries, consider first the case where the hierarchy has only
one level. Within this case, there are only two types (1) where Gprofile is the
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Fig. 18.3. A ruled surface.

1-parameter translation group R, which is the case of ruled surfaces, and (2)
where Gprofile is the 1-parameter rotation group SO(2). In the latter case
the swept structure is a tube.

Now let us consider the case where Gprofile is a two level hierarchy. If both
levels are R then the profile is a plane, and the resulting swept structure is
related to developable surfaces. If the two levels are different groups then
one must be R and the other SO(2). In this situation, we can get a cylinder.
The resulting swept structure is a moving cylinder, and this structure appears
often in CAD/CAM as the trajectory of a cylindrical cutting tool of a milling
machine (e.g., Jüttler & Wagner [71]).

Case 3: Both Extprofile and Extpath are non-trivial. As an example
of this case, consider what is called the synchronous sweep illustrated in
Fig. 18.4, and analyzed by Choi & Lee [22]. The reader can see that the
profile deforms as it moved along the path. In Choi and Lee’s scheme, the
profile is contained in a plane. They control the successive deformation of the
profile by a correction calculation to the shape of the profile.

This is interpreted in our scheme as follows: The un-deformed path is the
straight line; i.e., the internal group of the path is R. This is deformed by
Extpath, which can be considered, for example, to be the control group of the
cubic Hermite curve. Similarly, the un-deformed profile is the straight line;
i.e., with internal group R. This is deformed by Extpath, which again can be
considered, for example, to be the control group of the cubic Hermite curve.
The successive section planes along the sweeping correspond to the successive
fibers of the group Gpath, and one can think of each plane as containing its
own copy of Extprofile. In each fiber, some member of Extprofile creates the
deformed version of the profile appearing in that fiber.

Note that the above analysis of swept structures exemplifies our method
of describing asymmetries in terms of higher order symmetry spaces. For
example, deformations of the profile are described in terms of the group
Extprofile which is a higher order symmetry group acting with respect to
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Fig. 18.4. Deformation of the profile along the path.

the lower order symmetry described by the group Gprofile. What allows this
characterization purely in terms of symmetry groups is the fact that ”higher”
and ”lower” are defined with respect to a wreath hierarchy, and therefore the
group action of the higher group is on a fiber-group product of the lower
group, where each fiber copy is one of the deformed versions. For example,
the fiber-group product can be the space of cubic Hermite curves, and the
higher symmetry group be H. What is being exemplified here is the fact that,
in a wreath product, the higher group does not act as an automorphism group
on the fiber itself, but on the fiber-group product. This means that one gets
the following double effect: (1) The asymmetrizing deformation is actually a
movement of the fiber copy off itself onto another fiber copy; i.e., a failure in
symmetry of the actual fiber. However, (2) this effect is described purely as
an automorphic action, i.e., symmetry of the space of fiber copies.

18.2 Aesthetics and Sweep Representations

Choi & Lee [22] say that one of the important motivations for using a sweep
representation is that ”the resulting surface is aesthetically pleasing”. This
greatly reinforces our theory of aesthetics as the maximization of transfer.
When one looks at Fig. 18.4, one finds it aesthetically pleasing exactly because
its structure of transfer is very visible: i.e., one sees the surface to be the
result of transferring the profile curve P0P1 along the sweep direction. Thus
the surface is defined as a structure of transfer - and according to our rigorous
definition of aesthetics, this is an aesthetical structuring of the surface.
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Fig. 18.5. A ray-representation of an object, based on Hartquist, et al. [52].

18.3 Ray Representations

Ray representations have been commonly used for rendering in computer
graphics, and have been advocated for a number of demanding CAD ap-
plications, such as NC verification, by Hartquist, Menon, Suresh, Voelcker,
& Zagajac, [52] (see also Ellis, Kedem, Lyerly, Thielman, Marisa, Menon &
Voelcker [30]; Hartquist [51], Menon, Marisa & Zagajac [107]).

Consider Fig. 18.5 which illustrates the scheme of Hartquist, et al, as
follows: The three-dimensional ambient space is divided into a regular grid G
of parallel lines. These lines are clipped by the boundary of an object within
that space. Set-theoretically, a ray representation is specified like this:

RR(A;G) =
⋃
m,n

(Lm,n ∩A) (18.6)

where Lm,n is a grid-line indexed by m and n, and A specifies the object.
Hartquist, et al. ([52] p181), argue that ”the very simple and regular structure
of ray-reps makes them easy to store, retrieve, and address.” Furthermore,
these representations satisfy the valuable property of Boolean simplification
illustrated in Fig. 18.6: Part (a) of the figure shows a Boolean formula which
some chosen shapes must satisfy. Part (b) shows the way in which the shapes
themselves satisfy the formula. Part (c) then illustrates the crucial property
of Boolean simplification: When one performs the Boolean composition of two
objects, the ray representation of the composite is obtained by composing the
ray representation of the two objects. In this, the 3D problem will be reduced
to a series of independent 1D problems. Hartquist, et al, also argue that the
highly regular structure of ray representations makes them appropriate to
parallel processing architectures, which these researchers have exploited (see
also Voelcker & Riquicha [152]).

The scheme of Hartquist, et al, is expressed by them in a set-theoretic
form, as exemplified by equation (18.6) above. We argue that, behind ex-
pressions of this form is actually a symmetry structure organized in accord
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Fig. 18.6. Boolean simplification in ray-representations, based on Hartquist,
et al. [52].

with the generative theory of this book, and that this symmetry structure
should be used as the explicit representation of the design. After all, by our
Symmetry-to-Trace Conversion Principle (Sect. 2.15), the symmetry struc-
ture will be what is exploited in the planning and action that is to be based
on the design.

Let us therefore give a wreath-symmetry representation of the scheme of
Hartquist, et al. In particular, we convert equation (18.6) into what we argue,
is its wreath-symmetry structure. First the 2-parameter (m,n) grid structure
is really the wreath product hierarchy:

R w© R2

where the fiber group R represents a grid line, and the control group R2

represents the 2-parameter structure (m,n) which parameterizes these lines
through 3D space. However, Hartquist, et al, also parameterize the individual
grid line, and therefore we extend the above structure like this:

R0 w© R w© R2

where R0 is the starting point. This is almost completely a generative struc-
ture, i.e., a wreath c-polycyclic group, except the final R2 control group. To
make the entire structure generative, we wreath re-constitute the final group.
The total structure now becomes

R0 w© R w© R w© R

which is, of course, our standard wreath c-polycyclic group for the infinite
3-solid.
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Now, having established the grid structure, we can then add the object A
which will clip the infinite grid lines. Observe that this clipping is the concept
explicitly used by Hartquist, et al, and it exactly accords with our theory:
One starts with the infinite symmetry structure of the grid and breaks its
symmetry by bringing in the boundary object A.

Our theory of solid modeling provides a detailed analysis of how this is
done: In order to maximize transfer and recoverability, one must use unfolding
groups. This means that the grid structure just given is part of an alignment
kernel, and we will unfold this kernel by various control groups. In Sect. 16.16,
we argued that the complete alignment kernel of a solid model is a 4-fold
wreath product:

R0

w© [[SO(2)]P2 × [R]P1 ]U
w© [R w© R]P1

w© [GKn × . . .×GK2 ×GK1 ]. (18.7)

The successive four levels are given on the successive four lines, and these are
(1) the starting point R0, (2) the aligned continuous roots SO(2) and R, (3)
the remainder R w© R of the infinite solid structure R0 w© R w© R w© R, and
(4) the direct product of the surface kernels GKi of any of the solid primi-
tives to be used in generating the solid. Notice that the wreath c-polycyclic
translation group R0 w© R w© R w© R given for the grid structure is now
distributed over the first three lines of this expression.

Recall, according to our theory of solid modeling, that in order to unfold
the solid primitives, one first has to compile them from the alignment kernel
- this is fully explained in Sect. 16.16. One then wreath super-appends the
control groups to unfold the compiled primitives, and obtain the required
boundary object A which will break the symmetry of the infinite solid. Thus
for example, in Fig. 18.6, which is similar to the illustrating example given
by Hartquist, et al., we would have this: (1) The entire object would be
unfolded as a rectangular block from the primitive block compiled from the
alignment kernel. (2) The two circular holes would be unfolded as cylinders
from the primitive cylinder compiled from the kernel. (3) Similarly, the two
fillets (rounded corners), on the right, would be unfolded as cylinders from
the primitive cylinder compiled from the kernel. (4) The removed section on
the left, would be an unfolded compiled block and unfolded compiled cylinder
as fillet.

Notice that the requirement by Hartquist, et al, that the scheme has
Boolean simplification, is easily satisfied in our system. The initial ray-
structure is an infinite wreath c-polycyclic group and unfolding will cut out
from the infinite structure as many bounded objects as are needed.

Let us now turn to the fact that Hartquist, et al. have argued that the
highly regular structure of ray representations makes them appropriate to
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parallel processing architectures. At this stage the reader should recall that,
in Sect. 3.6, we argued that the independence of fiber copies in the fiber-group
product, together with the symmetry which the control group has over the
fiber-group product, means that the fiber level is best handled by a parallel
architecture. In the case being discussed here, the grid structure is a wreath
c-polycylic group, and the wreath aspect of the structure makes any level a
direct product, for example:

R × R × . . .× R. (18.8)

Recall also that Hartquist et al. exploit the independence of the fibers, for ex-
ample, when they say (in [52] p178) ”This property reduces an n-dimensional
(usually 3D) problem into a series of independent 1D problems”. In our ap-
proach, this independence is captured in the group-theoretic direct-product
symbol × in the expression (18.8). Notice that the fact that the individual
units within the parallel structure are identical comes from the symmetry
expressed in the control group. That is, the very uniformity inherent in the
parallelism is captured by the wreath product in its semi-direct expression,
for example:

[R × R × . . .× R] s© R . . .

18.4 Multiple Sweeping

Abdel-Malik & Othman [1] define multiple-sweeping as hierarchical succes-
sive sweeping. To quote one of their illustrations: ”A circle, for example, is
extruded along an axis to produce a cylindrical surface characterized by two
parameters. This surface is revolved about another axis to yield a volume
characterized by three parameters. Again, the volume is now extruded to
yield a more complex solid in four parameters” (p567, [1]).

Clearly such a structure is what our generative theory calls a hierarchy
of nested control, and can therefore be described conveniently by wreath
products. Furthermore, one should note this: Abdel-Malik & Othman’s pa-
per is concerned with hierarchical sweeps where each successive sweep is
either an extrusion or revolution. This is a frequently occuring situation in
computer-aided design. Abdel-Malik & Othman develop a valuable formula-
tion of this using the Denavit & Hartenberg [26] representation commonly
applied in robot kinematics. They observe that an extrusion can be mod-
eled as prismatic joint, and a revolution can be modeled by a revolute joint.
Then using the standard assignment of Cartesian frames for the Denavit-
Hartenberg approach, they develop a representation of the swept structure
using the standard serial-link kinematic matrix composition:

ET
B = ET

1 ∗ 1T
2 ∗ . . . ∗ n−2T

n−1 ∗ n−1T
B (18.9)
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where the successive indexes give the successive Cartesian frames. In Sect. 6.4,
we showed that this structure is conveniently expressed by the wreath prod-
uct:

SE(3) w© . . . w© SE(3) w© SE(3)

exploiting our claim that the algebraic structure of parent-child relationships
is best given by wreath products.



19. Process Grammar

19.1 Introduction

The purpose of this chapter is to describe a grammar that we elaborated
in Leyton [94], [96], to describe curve evolution with respect to a set of
landmarks in that evolution. These landmarks are given by the curvature
extrema. The grammar therefore relates the curvature extrema along the
curve evolution. It accords with the theory of this book, in that the gram-
mar is a symmetry-breaking grammar; i.e., it proceeds by a succession of
symmetry-breaking phase-transitions. Since the grammar has been substan-
tially discussed in Chapters 1 and 2 of our previous book (Leyton [96]), it
will be described only briefly in the present chapter.

The shapes analyzed by the grammar are smooth closed curves in the 2D
plane.

19.2 Inference from a Single Shape

According to Sect. 2.9, there are exactly two types of inference problems
with respect to recovering a generative history: (External Inference) the data
set contains what is assumed to be a record of a single state, and (Internal
Inference) the data set contains what is assumed to be records of multiple
states. This section considers the first of these two problems, and Sect. 19.3
considers the second.

The concept of symmetry is basic to all aspects of our generative the-
ory. It is therefore necessary to establish the way in which symmetry is to
be defined for smooth closed curves. There are three types of analysis that
have been invented - all based on pushing a circle through the shape, while
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ensuring the circle is always tangential to the shape at two points, A and B,
simultaneously, as shown in Fig. 19.1. The first analysis, the Symmetric Axis
Transform (SAT), due to Blum [12], defines a symmetry axis to be the locus
of circle centers. The second analysis, the Smooth Local Symmetry (SLS),
due to Brady [14], defines a symmetry axis to be the locus of the midpoint
of the chord AB. The third analysis, the Process-Inferring Symmetry Analy-
sis (PISA), due to Leyton [94], is actually shown in Fig. 19.1, and defines a
symmetry axis to be the locus of the point Q, which is the midpoint of the
arc AB. Extensive discussion of these three different symmetry axes is given
in Leyton [96].

We now present the three inference rules that accomplish the task of
inferring history from an individual smooth shape:

Rule 1.
A theorem proved by us in Leyton [92], constitutes the first rule in this
inference system.

SYMMETRY-CURVATURE DUALITY THEOREM (Leyton [92]).
Any smooth section of curve, that has only one curvature extremum, has only
one symmetry axis. This is forced to terminate at the extremum itself.

Fig. 19.2 illustrates the theorem: The section of curve between the two letters
m, has only one curvature extremum - that indicated by the letter M . The
theorem says that this section of curve can have only one symmetry axis, and
that the axis is forced to terminate at the extremum, as shown.

The Symmetry-Curvature Duality Theorem is the first of our inference
rules, and says that each curvature extremum can be assigned a unique sym-
metry axis leading to the extremum.

Rule 2.
The second rule in the inference system is a particular consequence of the
Symmetry Principle (p. 43), which says that, given a data set D, a program
for generatingD is recoverable from D only if each symmetry in D is preserved
backwards through the generative history. The particular consequence is that
symmetry axes must be preserved backwards in time. In fact, this means
that, in running time backwards, processes ”withdraw” along the symmetry
axes. For example, in running time backwards in the growth of the human
hand, the growth processes ”withdraw” along the symmetry axes. Thus, in
the forward-time direction, the growth processes must have gone along the
symmetry axes - which indeed is exactly what happened in the growth of the
fingers. As an inference rule, this consequence is stated as follows:
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Fig. 19.1. The PISA symmetry analysis.

Fig. 19.2. Illustration of the Symmetry-Curvature Duality Theorem.
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INTERACTION PRINCIPLE. Symmetry axes are the directions along
which processes are hypothesized as most likely to have acted.

Rule 3.
The third rule to be used in the inference system is the Asymmetry Princi-
ple (p. 42), which says that, given a data set D, a program for generating
D is recoverable from D only if the program is symmetry-breaking on the
successively generated states. The particular kind of symmetry we are going
to consider is the rotational symmetry around a curve, and reflectional sym-
metry of each of its normals. These symmetries are maximized on a circle,
which has constant curvature, and are broken by introducing curvature vari-
ation. Furthermore, the symmetry-breaking increases with greater curvature
variation.

Putting this rule together with the previous two rules, the consequence
is that, on an arbitrary smooth shape (e.g., an embryo), the processes are
assumed as having gone along symmetry axes in the direction of increasing
curvature variation: in fact, they created the curvature extrema at the ends
of the symmetry axes. For example, in the human hand, the growth processes
went along the symmetry axes leading to the curvature extrema at the tips of
the fingers, and were responsible for creating those curvature extrema. Notice
that the starting state was the human egg in which there were no curvature
extrema, i.e., curvature was constant. Generally, according to Leyton [96],
biological growth concerns the successive creating of curvature extrema, each
one of which corresponds to a limb.

Application of the three rules.
To see that the three rules consistently yield appropriate process-histories, let
us obtain the processes that these rules give for a large set of shapes. Figures
19.3-19.5 take all smooth shapes with up to and including, eight curvature
extrema, and apply the inference rules to each of these shapes. The processes
inferred by the rules are given by the arrows shown.

Note that the total set of shapes fall into three levels: shapes with four
extrema, shapes with six extrema, and shapes with eight extrema. The reason
is that there cannot be shapes with an odd number of extrema - because
maxima have to alternate with minima of curvature - and there cannot be
shapes with less than four extrema by the four-vertex theorem in differential
geometry. There are a total of 21 shapes, of successively increasing complexity.

Observe that each extremum is marked by one of four symbols: M+,
M−, m+, m−, meaning respectively positive maximum, negative maximum,
positive minimum, and negative minimum.

Surveying the shapes, one finds that there is the following simple rule that
relates the type of extremum to an English word for a process:
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Fig. 19.3. The inferred histories on the shapes with 4 extrema.

Fig. 19.4. The inferred histories on the shapes with 6 extrema.

SEMANTIC INTERPRETATION RULE.

M+ ←→ protrusion
m− ←→ indentation
m+ ←→ squashing
M− ←→ internal resistance.
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Fig. 19.5. The inferred histories on the shapes with 8 extrema.
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19.3 Intervening History

Let us now turn to a type of problem occurring, for example, in
a doctors office: The doctor is examining two X-rays of a tumor -
one taken a month ago, and the other taken today. The doctor is
trying to infer what happened in the intervening time.

Observe now that, since the later shape is assumed to emerge
from the earlier shape, the doctor will try to explain it, as much as
possible, as the outcome of processes seen in the earlier shape. In
other words, he or she will try to explain the later shape, as much
as possible, as the extrapolation of what can be seen in the earlier one.

As a simple first cut, let us divide all extrapolations of processes into two
types:

(1) Continuations.
(2) Bifurcations (i.e. branchings).

What we will do now is elaborate the only forms that these two alterna-
tives can take. There are four types of extrema, M+, m−, m+, M−. We will
look at continuations at each of these four, and then at bifurcations at each
of these four. This gives a total of eight cases to consider.

However, the first two are structurally trivial with respect to alteration
of curvature extrema, as follows: Consider any one of the M+ extrema in
Fig. 19.6. It is the tip of a protrusion, as predicted by the Semantic Interpre-
tation Rule, above. Observe that, if one continued the process creating that
protrusion, i.e., continued pushing out the boundary in the direction shown,
the protrusion would remain a protrusion. That is, the M+ extremum would
remain a M+ extremum. This means that continuation at a M+ extremum
does not structurally alter the boundary, and can therefore be ignored. Ex-
actly the same argument applies to continuation at a m− extremum (inden-
tation), and therefore continuation at this extremum can also be ignored.

Fig. 19.6. Continuation at M+ and m− do not change extremum-type.
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Therefore, from the eight cases, we are left with a total of six, each of which
is structurally non-trivial with respect to alteration of curvature extrema,
as follows: We derived the six cases by analyzing the singularities in the
curvature function. This derivation is omitted here, and only the six results
are stated:

Operation Cm+. This is illustrated in Fig. 19.7. Here, the downward pro-
cess, at the top of the left shape, continues pushing on the boundary, changing
the extremum from the m+ (left shape) to the m− (right shape). Necessarily,
two zeros of curvature (indicated by dots) are introduced on either side of the
extremum (right shape). Therefore, the transition is given by this operation:

Cm+ : m+ −→ 0m−0.

Operation CM−. This is illustrated in Fig. 19.8. Here, the upward process,
in the center of the left shape, continues pushing on the boundary, changing
the extremum from theM− (left shape) to theM+ (right shape). Necessarily,
two zeros of curvature (indicated by dots) are introduced on either side of the
extremum (right shape). Therefore, the transition is given by this operation:

CM− : M− −→ 0M+0.

Operation BM+. This is illustrated in Fig. 19.9. Here, the upward process,
at the top of the left shape, branches, sending the M+ (left shape) to two
copies of itself (right shape). Necessarily, a new extremum m+ is introduced
at the top, between the twoM+ copies (right shape). Therefore, the transition
is given by this operation:

BM+ : M+ −→ M+m+M+.

Operation Bm−. This is illustrated in Fig. 19.10. Here, the downward pro-
cess, in the center of the left shape, branches, sending the m− (left shape) to
two copies of itself (right shape). Necessarily, a new extremum M− is intro-
duced between the copies (right shape). Therefore, the transition is given by
this operation:

Bm− : m− −→ m−M−m−.

Operation Bm+. The above two bifurcation operations indicate that a bi-
furcation has the following form: Send the extremum to two copies of itself
with a new extremum in between of the same sign but the opposite type
(Max vs. min). Thus one can immediately write bifurcation at m+ as:
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Bm+ : m+ −→ m+M+m+.

Operation BM−. Similarly, bifurcation at M− can be immediately given
as:

BM− : M− −→ M−m−M−.

Fig. 19.7. Continuation at m+.

19.4 Process Grammar

The six operations given above form a grammar that we call, the process
grammar:

Cm+ : m+ −→ 0m−0
CM− : M− −→ 0M+0
BM+ : M+ −→ M+m+M+

Bm− : m− −→ m−M−m−

Bm+ : m+ −→ m+M+m+

BM− : M− −→ M−m−M−.

Fig. 19.11 gives an example of shape evolution as inferred by the grammar.
The first and last figures represent two shapes of a tumor that a doctor might
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Fig. 19.8. Continuation at M−.

Fig. 19.9. Bifurcation at M+.
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Fig. 19.10. Bifurcation at m−.

be examining - taken a month apart. The grammar infers the intervening his-
tory. It says that the history (from the first to the last shape) is generated by
three successive operations: CM−, BM+, and Cm+. The inferred evolution
is this:
(1) The entire history is dependent on a single crucial process: the inter-
nal resistance represented by the bold upward arrow in the first shape of
Fig. 19.11.
(2) This process continues upward until it creates the protrusion shown in
the second shape.
(3) This process then bifurcates, creating the upper lobe shown in the third
shape. The bifurcation is due to the downward squashing process at the top
of this shape.
(4) Finally, that downward squashing process continues till it causes the in-
dentation in the top of the fourth shape.

Fig. 19.11. A sequence of grammatical operations.
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19.5 Other Literature

Smooth curves are used not only to model biological forms, but also in the
design of highway and railway routes, Baas [9], Hartman [50]; as well as robot
trajectories, Schmitt [135]; and general planar curve design in CAD, Farin
[34], Hoschek & Lasser [61], Walton & Meek [153], [154].

Important work on smooth symmetry axes has been done by Leymarie &
Levine [85], Leymarie & Kimia [84], Giblin & Sapiro [43]. Related to their
work is the shock-based approach to shape representation: Kimia, Tannen-
baum, Zucker [76], Siddiqi, Shokoufandeh, Dickinson & Zucker [144], Giblin
& Kimia [41], [42]. A crease-based approach has been substantially investi-
gated by Brassard [15]. Also, because of the importance of curvature extrema
in biological shape, their significance can be seen in computer-aided design
of garment’s, Au & Yuen [7], [8]. Finally, Hayes & Leyton [55] extended the
grammar described in this chapter by a further rule that creates smoothness-
breaking. In addition, the reader should see the paper by Hayes [54] which
presents a view of smooth liquid boundaries as historical entities.



20. Conservation Laws of Physics

20.1 Wreath Products and Commutators

This chapter considers very briefly a topic to be examined in much greater
depth in Volume II: the conservation laws of physics. To keep the discussion
brief, we will try to avoid the full technical details.

Let V and W be two smooth vector fields on a differentiable manifold.
Let GV and GW be the 1-parameter groups that they generate, respectively.
These groups are the flows, as illustrated in Fig. 20.1. Suppose now that the
vector fields commute; that is, [V,W ] = 0. This implies, in particular, that V
pushes the flow-lines of W onto each other. What we propose doing is this:

Fig. 20.1. Two flows V and W .
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Create a wreath product in which GV is the control group and GW is the
fiber group. That is:

COMMUTATOR WREATH-PRODUCT CORRESPONDENCE.
Set up a correspondence between commuting vector fields and the wreath prod-
uct of their 1-parameter groups:

[V,W ] = 0 ←→ GW w© GV . (20.1)

Notice that the arrow links two different kinds of organizations of the man-
ifold. For example, with respect to the structure [V,W ] = 0, the group GW
moves simultaneously along all its flow lines. However, in the wreath product
GW w© GV , there is an independent copy of GW on each individual flow-line.
That is, a copy of GW can slide along its own flow-line, without affecting
the copy of GW on any other flow line. This can be thought of as represent-
ing experiments that were independently done before a process of induction
discovered a relation between these experiments. Then after induction had
established the control group GV , experiments could be coordinated and one
could, for example, establish a single ”wave front” of points moving along the
flow. This in fact, corresponds to the diagonal of the wreath product. Thus
all the stages of scientific discovery are contained in the wreath structure,
as opposed to the commutator. We will consider Chapter 3 as describing
fully how wreath products capture the process of scientific discovery. This is
because Chapter 3 described wreath products as hierarchies of detection.

Therefore, in the present chapter, one should understand that, whenever
a commuting pair of operators is converted into a wreath product, we are
importing the entire description of scientific discovery that a wreath product
gives; i.e., all of Chapter 3. This will not be pointed out again; but the reader
should be strongly aware of it.1

With respect to the topic of detection, note that Ishida [62] has developed
a computational system for specifying, deriving, and generalizing mathemat-
ical equations in physics using symmetry-based production rules.

1 The correspondence given above, between commutation and wreath products,
has been stated without specifying the localness or globalness of the action. For
example, on certain domains, the correspondence might hold only in some local
version, in which case one can define a local wreath product, etc. Because of
brevity, the local vs. global issue will not be mentioned again, in the remainder
of this chapter. In fact, this is quite typical of books on mathematical physics.
The issue of local boundedness of operators is so complicated in mathematical
physics that to mention the vast labyrinth of results - needed to make even a
quite simple statement - would be an enormous obstactle to following the main
line of the argument.
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20.2 Transfer in Quantum Mechanics

The remainder of this chapter illustrates the above concepts in the area of
Quantum Mechanics.

The role of transfer is a powerful one in classical mechanics, for example,
because of the fundamental importance of the three conservation principles:
conservation of energy, linear momentum, and angular momentum. These
are all derivable from Newton’s 3rd Law, which states that action and reac-
tion are equal and opposite. However, remarkably, conservation laws are even
more important in quantum mechanics than in classical mechanics. The need
for measurement operators that commute with the Hamiltonian underlies
virtually every line of quantum mechanics since without commuting observ-
ables, no proper measurements can take place. Because commuting operators
correspond to conservation principles, every step of the way in quantum me-
chanics uses a conservation principle. Furthermore, since our theory says that
the commutation of operators corresponds to transfer, every step in quantum
mechanics is based on transfer. Quantum mechanics manifests our principle
of the maximization of transfer in the strongest possible way. It is not sur-
prising therefore that quantum mechanics is regarded as the most aesthetic
of all sciences - for our formal theory of aesthetics states that aesthetics is
the maximization of transfer.

20.3 Symmetries of the Schrödinger Equation

Schrödinger’s equation merely rotates Hilbert space; i.e., its action is unitary.
Therefore it generates a flow in which each flow-line is simply the continuous
rotation of a state through Hilbert space. We want to consider the trans-
fer of flow-lines onto each other. This is given by a symmetry group of the
Schrödinger equation. The symmetry group is also unitary. That is, it simply
rotates the Schrödinger flow-lines onto each other.

Now, given a physical system, its Schrödinger equation

i�
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 (20.2)

is particular to that system in the sense that the Hamiltonian H , in this
equation, is specific to the system. That is, the Hamiltonian contains the
potential energy function of that system, and this function is different for
each different system. Therefore, since the Hamiltonian H is determined by
the potential energy function, and the Schrödinger equation is determined by
the Hamiltonian, the Schrödinger flow on Hilbert space will have a different
shape for different systems.
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We are considering symmetries of the particular flow induced by the par-
ticular Schrödinger equation for a particular system. A symmetry is provided
by a symmetry operator U which rotates flow-lines onto flow-lines for that
particular system. This means that, given any one of the flow-lines |ψ(t)〉, its
rotated version under U , that is, U |ψ(t)〉, will also be a flow-line in the flow;
i.e., it will satisfy the same Schrödinger equation, thus:

i�
∂

∂t
U |ψ(t)〉 = HU |ψ(t)〉. (20.3)

In order to see what this condition requires, multiply both sides of equation
(20.2) from the left by U , and insert the trivial identity operator U−1U as
shown thus:

i�
∂

∂t
U |ψ(t)〉 = UHU−1U |ψ(t)〉. (20.4)

Now, equating (20.4) with the symmetry condition (20.3), one gets

H = UHU−1 (20.5)

which means that the following commutation relation holds:

[U,H ] = 0. (20.6)

The reverse argument is also true. Thus, U is a symmetry of the Schrödinger
flow, if and only if it commutes with the Hamiltonian. This is our condition
for transfer: U transfers flow-lines onto flow-lines, if and only if [U,H ] = 0.

As a consequence, it is now possible to use our rule that commuting
actions can be converted into wreath products, thus: If Gsym is a symme-
try group of the Schrödinger equation, the following wreath product can be
formed:

GH w© Gsym (20.7)

where GH is the 1-parameter group generated by the Hamiltonian.

20.4 Space-Time Transfer in Quantum Mechanics

The remainder of the chapter will look closely at various examples of the
wreath product in (20.7) above. Let us first consider the space-time symme-
tries of (non-relativistic) quantum mechanics. Here, the group of continuous
symmetries is the Galilean group, which is a 10-parameter group: The ten
parameters are: (1-3) translations along the three spatial axes; (4-6) rotations
around the three spatial axes; (7-9) boosts in velocity along the three spatial
axes; (10) translations along the time axis. The situation of a free-particle
(i.e., without external fields) has all these symmetries. The addition of ex-
ternal fields successively breaks these symmetries. Nevertheless, some of the
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Table 20.1. Going from the Galilean group to Quantum-mechanical observables.

Space-time representation Unitary representation Observables

Spatial translations
along axes µ = 1, 2, 3

xµ → xµ + aµ e−iaµPµ Pµ

Spatial rotations
around axes µ = 1, 2, 3

v → rµ(θµ)v e−iθµJµ Jµ

Velocity boosts
along axes µ = 1, 2, 3

xµ → xµ + vµt eivµGµ Gµ

Temporal translations

t→ t+ τ eiτH H

symmetries might remain. For example, in a spherically symmetric field (e.g.,
the basic hydrogen atom), the rotational symmetry has remained.

By Noether’s theorem, any continuous symmetry in a system corresponds
to a conservation law. This means that the components of the Galilean group
provide significant observables which one would wish to measure in a system.
One goes from the parameters of the Galilean group to their corresponding
observables in the following way: Any parameter of the Galilean group is a
1-parameter group acting on space-time. This corresponds to a 1-parameter
unitary group acting on Hilbert space. The generator of this group is a vector
in the (1-dimensional) Lie algebra of that unitary group. This generator is the
quantum-mechanical observable. The relation between the observable and its
1-parameter unitary group is given simply by exponentiation (which is the
standard means of going from a Lie algebra to a Lie group). Thus, Table 20.1
shows the 10 parameters of the Galilean group, their corresponding unitary
operators, and their corresponding observables. The observables are chosen
to be Hermitian. The Lie algebra generated by the full set of 10 observables
will be called the Galilean Lie algebra, G.
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Table 20.2. The structure of the Galilean Lie algebra G.

[Pµ, Pν ] = 0 [Pµ,H ] = 0 [Jµ,H ] = 0

[Jµ, Jν ] = iεµνγJγ [Jµ, Pν ] = iεµνγPγ [Jµ, Gν ] = iεµνγGγ

[Gµ, Gν ] = 0 [Gµ, H ] = iPµ [Gµ, Pν ] = iδµνMI

Now, we are interested in the capacity to transfer experiments. Transfer
is given by symmetries, in fact, by the commuting of operators. Therefore, it
is necessary to give the commutation relationships between the 10 generators
of the Galilean Lie algebra G. These relationships are given in Table 20.2.

Notice the entries of the table where a commutator equals 0. In each of
these cases there is transfer, and hence a wreath product, as described in
the correspondence on p. 468. Most significantly, observe from the top line
in Table 20.2, that the three generators Pµ of spatial translations, and the
three generators Jµ of spatial rotations, each commute with the generator H
of temporal translations. Since H corresponds to the Schrodinger equation,
this means that these six generators define symmetries of that equation; i.e.,
map flow-lines to flow-lines. These therefore correspond to wreath products
that represent conservation laws.

Table 20.2 defines the Lie algebra of the Galilean group. As noted above,
the dynamics of a free particle are invariant under this entire group.2 Now
let us introduce a field, making the particle non-free. The fundamental conse-
quence of this is that the form of the temporal generatorH changes. However,
the six generators Pµ and Jµ do not change. This means that any of the com-
mutation relations that H had with Pµ and Jµ might now be altered. Since
each of these commutation relations were zero, an altered commutation rela-
tion means that there is a loss of symmetry. That is, there is no longer the
corresponding transfer of flow-lines onto flow-lines in the Schrödinger equa-
tion. This means that the associated wreath product has been lost. Volume II
will consider means of expressing this not as the loss of the wreath product
(i.e., symmetry-breaking) but as the transfer of the wreath product under
a still higher wreath level (i.e., asymmetry-building). However, the present
discussion will talk of symmetry-breaking and the loss of the wreath product.

2 In fact, they are invariant under the larger Lie group associated with the
Schrödinger algebra. This algebra consists of the Galilean algebra together with
two more generators, that which generates dilatations, and that which generates
conformal transformations. Each acts on space and time independently.
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20.5 Non-solvability of the Galilean Lie Algebra

It is necessary to observe the following significant complexity in the structure
of the Galilean Lie algebra G. The complexity is given by the entire second
line in Table 20.2. This line shows that, under the commutation process, the
generators Jµ keep on re-generating themselves as well as the Pµ and Gµ.

The consequences of this should be understood, as follows: Recall that an
ideal h of a Lie algebra g is a subalgebra which ”collapses” into itself under
commutation with the entire algebra g; that is:

[g, h] ⊆ h.

An ideal corresponds to the concept of normal subgroup in group theory.
Recall also the definition of the solvability of a Lie algebra: That is, define
g(1) = [g, g], which is an ideal of g; and then define g(2) = [g(1), g(1)], which
is an ideal of g(1); and so on. Then g is said to be solvable if the sequence
terminates at 0. The radical of a Lie algebra is the maximal solvable ideal. It
is unique and contains all other solvable ideals.

What can be seen therefore is that the second line of Table 20.2 shows that
the angular momentum operators Jµ prevent the Galilean Lie algebra from
being solvable. Thus consider the subalgebra r generated by the remaining
generators. It is the radical of the Lie algebra; i.e., the maximal solvable ideal.
Therefore, the factor algebra G/r is isomorphic to the subalgebra generated
by the three angular momentum observables Jµ. This is isomorphic to so3,
the Lie algebra of the rotation group SO(3). This means that G can be de-
composed as the semi-direct sum of the radical r and the angular momentum
algebra so3, thus:

G = r ⊕s so(3).

This is an example of what is called the Levi decomposition of a Lie algebra:
Every Lie algebra can be decomposed as the semi-direct sum of its radical
and a semisimple subalgebra. A semisimple Lie algebra is a Lie algebra that
does not have an abelian ideal except {0}. The reader will find Fig. 20.2 useful
for the different kinds of Lie algebras that are being discussed.

It is easy to prove that so(3) is semisimple. In fact, the first entry on the
second line of Table 20.2 shows that it is simple (i.e., there are no non-trivial
ideals). That is, if one tried to construct an ideal of only two of the generators
it would produce the third, which again constructs all of so(3). Thus, since
so(3) is simple, it must be semisimple: That is, since it does not have any
ideals, it does not, in particular, have any abelian ideals.

Most of the structure of the physical universe comes from the structure of
semisimple Lie algebras. These algebras have extensive symmetry properties
with respect to the Schrödinger equation, and this allows them to yield crucial
conservation laws. With respect to our considerations, this means that they
have significant transfer structures, as will now be seen.
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Fig. 20.2. Containment relations between the different types of Lie algebras.

20.6 Semisimple Lie Algebras in Quantum Mechanics

We are interested in transfer, which means that a symmetry group of the
Hamiltonian should be considered. Let G be such a group. Consider its action
on the chosen Hilbert space. It is necessary to look first at those subspaces
of the Hilbert space that remain invariant under G. In particular, the funda-
mental concern is with the irreducible invariant subspaces; i.e., those invariant
subspaces that do not contain proper subspaces that are also invariant. An
irreducible invariant subspace is called a multiplet of G.

In particular, let us suppose that G is the most important type of sym-
metry group encountered in quantum mechanics:

G is a semisimple Lie group with n generators and rank k.

The rank k is the maximal number of mutually commuting generators; i.e.,
they generate the Cartan subalgebra.

Now for a fundamentally important theorem by Racah: For any such
group G, there exist k operators Ci, which are functions of the n generators,
and which commute with every operator of the group. The eigenvalues of the
operators Ci uniquely characterize the multiplets of the group. The operators
Ci are called invariant operators or Casimir operators. Note that the Casimir
operators are not members of the group, nor usually members of the Lie
algebra, but belong to the center of the universal enveloping algebra of the
Lie algebra.

To illustrate the power of Racah’s theorem, consider the most frequently
encountered example of a Casimir operator: the square J2 of the angular
momentum operator. To understand its relation to the theorem, let us assume
(for ease of exposition) that J represents only orbital angular momentum. The



20.6 Semisimple Lie Algebras in Quantum Mechanics 475

symmetry group being considered is SO(3). It is semisimple, as shown in the
previous section. Clearly its Lie algebra has rank 1, since any generator of
SO(3) commutes with only itself. Racah’s theorem then states that a set of
Casimir operators for this group consists of only one element. In fact, it is J2.
Observe that J2 is a function of the three generators, thus: J2 = J2

1 +J
2
2 +J

2
3 .

Observe still further that its irreducible invariant subspaces are the subspaces
generated (as vector spaces) by the spherical harmonics Ylm(θ, π), for fixed
l. The fixed l is associated with the fixed eigenvalue of J2 on this subspace.
This value uniquely selects this eigenspace, which is the associated multiplet.
We know that the multiplet is (2l + 1)-fold degenerate. Notice that, being a
Casimir operator, J2 commutes with the entire set of operators. Therefore,
it is its status as a Casimir operator that allows us to choose it together with
J3 to produce the good quantum numbers (l,m) for the angular momentum
eigenstates.

Let us now turn fully to the issue of transfer. In the above example,
SO(3) is being assumed to be a symmetry group. For example, the system
could be the spherically symmetric Hamiltonian of a spinless particle in a
central field. The symmetry effect of SO(3) on the Hamiltonian means that
the entire group (in its unitary form) will commute with H . In particular, the
generators J1, J2, and J3, will commute with H . Therefore, to each of these
operators, there will be a conservation law (since the operator is a conserved
quantity). This means that the 1-parameter group generated by any of these
conserved generators can be the control group Gconserved in the following
wreath product

GH w© Gconserved (20.8)

where the fiber GH represents the symmetry action along a flow-line of the
Schrödinger equation.

The important thing however to observe is that these three conservation
laws cannot hold simultaneously. This is because the rank of the algebra is 1.
In other words, when setting up the wreath product (20.8) representing one
of the conservation laws, the possibility has been excluded of setting up any
of the other wreath products representing a conservation law. In contrast, in
a Lie algebra of rank k, we can set up k such wreath products simultaneously
using each of the k commuting generators. Notice why this works: The whole
group is a symmetry group of the Hamiltonian, which means that any member
of the group commutes with H . However, the k generators also commute with
each other! Therefore, they will correspond to k simultaneous conservation
laws. Thus they will correspond to k simultaneous wreath products of the
form (20.8).

Let us go back to SO(3). Even though the rank of SO(3) is 1, which
means that only one of the generators can be used to set up a conservation
wreath product at any one time, we can actually set up one other conservation
wreath product: that corresponding to the Casimir operator.
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More generally therefore, the situation is as follows: Let the symmetry
group of the Hamiltonian be a semisimple unitary Lie group on n generators
with rank k. Then, 2k wreath products can be set up, of the form (20.8),
simultaneously. The control groups of k of these wreath products will come
from the k commuting generators. The control groups of the remaining k of
these wreath products will come from the k Casimir operators. Each of these
2k operators pushes flow-lines onto flow-lines in the Schrödinger equation; i.e.,
creates a transfer structure in the equation. In Volume II, we will describe a
means of stacking the 2n operators hierarchically within a single (2n+1)-fold
wreath product.



21. Music

21.1 Introduction

Section 2.22 gave the fundamental proposal of our formal theory of aesthetics:

Aesthetics is the maximization of transfer and recoverability.

In addition, we proposed the following concerning art-works:

Art-works are maximal memory stores.
The rules of aesthetics are therefore the rules of memory storage.

Chapters 2 and 20 showed how these proposals explain the role of aesthet-
ics in science. That argument will be continued in Volume II. The present
chapter will show how these proposals explain the structure of music. Our
corresponding theory of the structure of paintings was given in Chapter 8 of
the previous book, Leyton [96].

21.2 Motival Material

A great work of art is based on only a minimum of motival material, which
is used and re-used throughout the work in different forms and positions.
This chapter will show that the use and re-use conforms to our rigorous
mathematical theory of transfer.

Thus the work is constructed out of transfer. Schönberg, in his enormously
insightful study of classical music, stated:

”The motive generally appears in a characteristic and impressive
manner at the beginning of the piece. ... And since it is included
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in every subsequent figure, it could be considered the ‘greatest com-
mon factor’ ”(p8, [137]).

Anyone who has written a symphony knows that the first few notes of a
movement are taken by the ear to be motival and, if the remainder of the
movement is not the continual use of those first few notes, the piece will sim-
ply sound bad. Indeed, in the process of composition, if one happens to add
new material that does not come from existing material, the effect is catas-
trophic. The piece suddenly fragments and one looses one’s way. No matter
how beautiful the new material might intrinsically be, a great composer like
Beethoven learns that it has to be removed if it is not heard as the transfer
of the motival material presented at the outset of the piece.

This chapter gives a mathematical theory of how this works.

21.3 Modulation as a Wreath Product

One of the basic principles of Western music is that, given a scale, one can
transpose the scale to any position in that scale. For example, given the
diatonic scale, one can transpose it from the tonic to the dominant, so that
the dominant now becomes the tonic. The same applies to the chromatic
scale, the harmonic series, etc. The transposition of scales is the basis of the
compositional procedure called modulation. In fact, for ease of exposition,
we shall refer to scale-transposition simply as modulation, even though the
former is more general.

Modulation is clearly a structure of transfer. We argue that it is best
described by a wreath product. Let S be the group of movements in a scale.
Then the ability to move the scale to any position within the scale, i.e.,
modulation, can be described as the following wreath product:

S w© S.

The control group represents the home scale, often called the home key. The
fiber group represents the key into which modulation occurs. There is one
such fiber for each member of the home key (control group).

Notice, of course, that when one is in the modulated key, one can then
modulate to any position within that key, and so on. Thus, the structure of
modulation is:

. . . w© S w© S w© S w© S.

Notice that this is very similar to the type of group we gave for the serial-link
manipulator in Chapter 6:

. . . w© SE(3) w© SE(3) w© SE(3) w© SE(3).
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The reason is simple but profound: In both cases, the hierarchy represents a
hierarchy of workspaces. Furthermore, in both cases, the workspace on any
level has the same structure as the workspace on any other level. This means
that a workspace moves an identical workspace about itself. We have called
the resulting type of group hierarchy a wreath poly-X group (Definition
4.11, p. 132), where X is the group that is repeated down the hierarchy.

ALGEBRAIC STRUCTURE OF MODULATION. Modulation is
structured by a wreath poly-S group.

Notice that the above algebraic theory of modulation conforms to our theory
of object-oriented inheritance given in Chapter 7: The fiber group is the child
and the control group is the parent. Notice also that this algebraic theory of
modulation exactly corresponds to the theory of relative motion developed
in Chapter 9.

21.4 Psychological Studies of Sequential Structure

Most of this chapter will be concerned with developing a group theory of
sequential structure in music. For this, it is first necessary to recapitulate
some previous research:

Significant progress has been made in understanding sequential structure
by psychologists working on the generation of serial patterns. Herbert Simon,
himself an outstanding musician, together with collegues, was the first to con-
sider rule-systems for psychological sequence generation, Simon & Kotovsky
[145], Kotovsky & Simon [78]. A further advance was made by Restle [125],
who used hierarchies of rules. Fig. 21.1 shows a example typical of one of
Restle’s hierarchies. Three generative rules are used in this hierarchy: T =
transpose by one unit upwards in the scale; R = repeat; and M = mirror
about the scale center. Here the scale is assumed to consist of 12 notes. Each
of the operators takes the entire subsequence that it dominates via its left
node and maps it to the entire subsequence dominated by its right node.
Notice that the tree is binary, and that it is strictly nested, the term used
by Greeno & Simon [47], meaning that all the operators within a level are
exactly the same. The condition of strict nesting is equivalent to the fact that
the tree can be represented by a recursive formula. In the example shown,
the formula is:

M(T (R(T (1)))). (21.1)

The symbol 1 in this formula, is the left most 1 in Fig. 21.1; and the formula
generates the remainder of the sequence.
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Fig. 21.1. An example of one of Restle’s rule hierarchies.

An additional advance came when a number of researchers independently
started to use groups to structure the rules; Babbit [10], Leyton [86], Greeno
& Simon [47], Jones [66]. The major school for the use of group theory in
music has become that of Guerino Mazzola in Switzerland: Mazzola [104],
[105], [106]. See also the work of Thomas Noll [113], [114].

21.5 Transfer in Musical Sequence Structure

Our theory of aesthetics says that aesthetics is the maximization of transfer
and recoverability. This section will concentrate on transfer.

We argue that, when one examines the hierarchical theory of Restle, one
must conclude that the human mind is maximizing transfer. That is, the
process of sequence comprehension or generation is a process of transferring
previous structure onto future structure. The fact that the mind tries to
maximize this can be seen by the psychological studies carried out by Restle
to support his hierarchical rules - e.g., profiles of anticipation errors showed
that subjects were mapping previous structure onto the anticipated structure,
Restle & Brown [126].

This chapter will develop a group-theoretic approach to such sequence
structure. Our claim is that, because one seeks to maximize transfer, such
structure should be modeled by wreath products, as follows:

Let us call a group generated by a set of compositional operators, a rule
group �i. Given a hierarchy of the type shown in Fig. 21.1, the levels will
be numbered upward from 1 to n. Now assign a rule group to each node.
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Within any level i, the nodes should each receive the same rule group �i. We
argue that the rule-structure of the hierarchy is given by taking the wreath
product of the groups �i, thus:

�1 w© �2 w© . . . w© �n.

Notice that, in this formulation, there is no reason why the tree should be
binary. The requirement is merely that, given a node x on Level i, the number
of nodes Ni−1 immediately dominated by x is the same for all nodes on
Level i.

In the remainder of this chapter, we will create an important class of
such groups, those dealing with meter. Jones [67] has given an extensive
psychological analysis of meter structure using rule hierarchies similar to
those of Restle. Our purpose will be to lay out the group theory of such
structures.

21.6 Meter

Starting with the next section, we will develop an algebraic theory of me-
ter. The present section will review the basic facts of meter, and give the
terminology to be used. There are considerable differences among various re-
searchers, in the terminology by which meter is described. Thus, clarifying
the terminology, to be used here, is necessary.

In the West, a musical work moves forward with a regular beat, called
the beat stream. A very obvious example is given by the first movement of
Mahler’s 6th symphony shown in Fig. 21.2. Here the beats are successive
quarter note steps.

Fig. 21.2. Mahler: Symphony No. 6, first movement.

Let us now review the standard groupings in the beat stream in Western
music. As with all perception, the structure of grouping is equivalent to the
structure of division; i.e., the percept is divided into its groupings.
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Primary accent grouping.
Within the beat stream, there are particular beats that are perceived as ac-
cented, and are marked as the beginning of a grouping within the stream.
These are the groupings that are standardly called bars. In the Mahler exam-
ple, they have four beats. Generally, the bar-grouping of the beat stream is
called meter. Standardly, a bar consists of two, three or four beats - referred
to respectively as duple, triple and quadruple meters.

Meter Simple Compound

two beats (duple meter) 2/8 2/4 2/2 6/16 6/8 6/4.
three beats (triple meter) 3/8 3/4 3/2 9/16 9/8 9/4.
four beats (quadruple meter) 4/8 4/4 4/2 12/16 12/8 12/4.

Table 21.1. Time signatures classified with respect to meters.

Table 21.1 shows how the standard time signatures are classified with
respect to meters. The terms ”simple” and ”compound”, along the top of the
table, will be explained later. For the moment, only the vertical classification
of duple, triple, and quadruple, will be needed. Notice, for example, that
6/4 is considered to be a duple meter, whereas 12/8 is considered to be a
quadruple meter; even though their bar-length is the same.

An example of 6/4 is the first movement of Brahms Piano Concerto No.1,
illustrated in Fig. 21.3. There are only two beats in each bar. Each beat is a
dotted half note. In contrast, the Bach Two-Part Invention No. 12, shown in
Fig. 21.4, is in 12/8, which means that the bar has four beats. Each beat is
a dotted quarter note.

Fig. 21.3. Brahms: Piano Concerto No. 1, first movement.

Secondary accent grouping.
Meters that have more than three beats in a bar, tend to be perceived as
having secondary accents that organize the bar into subgroupings of two or
three beats. For instance, bars with a 4/4 time signature are perceived as
divided into two successive subgroupings each of two beats. An example of
this is Fig. 21.5 which shows a passage from the first movement of Bruckner’s
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Fig. 21.4. Bach: Two-Part Inventions, No. 12.

9th symphony. The subgrouping here is supported by a number of devises:
First there is the two-note descending octave motive that begins the first,
third and fifth measures shown. This is on the tonic (the work is in D minor).
The octave interval of this descent is then vertically contracted to produce
the two-note descent that begins the second and fourth bars. That two-note
descent is then followed by its inversion, the two-note ascent. The base line
further supports the grouping.

Fig. 21.5. Bruckner: Symphony No. 9, first movement.

Now let us turn from the 4/4 to the 12/8 time signature. The reader will
recall that a 12/8 signature means a meter of four beats to the bar. The
secondary accent in 12/8 partitions the bar into two. The previous example
from Bach (Fig. 21.4) illustrates this. Notice the end of the base line at the
middle of the bar. This emphasizes the division. The reader can find many
other examples of this division of 12/8, for instance in the woodwind theme
of the first movement of Sibelius’s Symphony No. 5 (bars 20-21); also the
third movement of Prokofieff’s Piano Sonata No. 8, and so on.

Now let us turn to the 6/4 time signature. Generally, this is considered to
be duple meter, as listed in Table 21.1. However, when used in a slow tempo,
it can be perceived as a sextuple meter; i.e., as six beats to a bar, each beat
being a quarter note. The distinction is illustrated with the first and second
movements of the Brahms Piano Concerto No. 1. Both movements are in
6/4, but the first is in duple meter, and the second is in sextuple meter. The
first was illustrated in Fig. 21.3, where the beat is half the bar. The second is
illustrated in Fig. 21.6. Here the successive quarter-note beat is carried, for
example, by the chords in the right hand in the second bar.
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Fig. 21.6. Brahms: Piano Concerto No. 1, second movement.

The reason for choosing this example here is that it illustrates the fact
that, when 6/4 is used as a sextuple meter, it has a subgrouping structure:
The bar is divided in two, with three beats to each subgrouping.

Beat division.
Not only can a beat be grouped with others in the above way, but it can be
divided; i.e., the single beat forms a grouping in its own right. There are two
standard divisions of a beat: (1) simple meter, which is division into two; and
(2) compound meter, which is division into three.

The time signature 12/8 is an example of compound meter, as illustrated
by the previous Bach example Fig. 21.4. The beat, which is the dotted quarter
note, is divided by three, as shown in the base. Similarly, the time signature
6/4 is an example of compound meter in the case where it is used as duple
meter, as illustrated with the first movement of the Brahms Piano Concerto
No.1, in Fig. 21.3. The beat, which is half the bar, is divided into three quarter
notes.

Now let us consider again the second movement of this concerto, illus-
trated in Fig. 21.6. As noted earlier, this is in sextuple meter, i.e., each beat
is a quarter note. What can be observed here is that there is a simultaneous
use of simple and compound meter: The left hand has a division of the beat
into two notes (simple meter), and the right hand has a division of the beat
into three notes (compound meter).

This phenomenon of a simultaneous use of simple and compound meter is
illustrated very strongly in Fig. 21.7 from the second movement of Bartok’s
String Quartet No. 4. The second violin and viola are in 2/4; and the first
violin and cello are in 6/8. Both 2/4 and 6/8 are duple meters (recall Table
21.1). Thus the beats coincide in all four instruments. Nevertheless, the divi-
sions do not. In the second violin and viola, the division is into two; whereas
in the first violin and cello, the division is into three.

Beat subdivision.
The beat can be further divided into subdivisions. The previous Bach example
Fig. 21.4 illustrates subdivision: Because the time-signature is 12/8, there are
four beats to the bar; i.e., the beat is the dotted quarter note. The 1/8th note
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Fig. 21.7. Bartok: String Quartet No. 4, second movement.

division of the beat is carried in the base. The 1/16 note subdivsion is carried
in the treble.

21.7 Algebraic Theory of Meter

Section 21.5 said that, because the mind tries to maximize transfer in a
musical sequence - indeed in any sequence - the sequence is best described as
a wreath product

�1 w© �2 w© . . . w© �n
where �i are rule groups used to generate levels of transfer in the sequence.
An important class of such wreath products will now be developed to describe
musical meter. The main principle of our theory of meter is as follows:

ALGEBRAIC THEORY OF METRICAL STRUCTURE. Given
a metrical unit (e.g., a bar, a subgrouping, a beat), its occurrence within the
next higher unit is given by a cyclic group Zi, and its subdivision is given
by a cyclic group Zj . The upper group Zi transfers copies of the lower group
Zj as fiber, along the musical work. Therefore, the relation between the upper
and lower group is that of a regular wreath product:

Zj w© Zi.

The full metrical structure (encompassing all levels) is therefore given by an
n-fold wreath product Z1 w©Z2w© . . . w©Zn. If one defines the standard invariant
metric on time, then this wreath product is an iso-regular group (wreath c-
polycyclic, wreath-isometric).
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A particular aspect of this statement can be given as follows:

THEORY OF DIVISION. Division by j is wreath sub-appendment
by Zj .

This, in fact, is simply our theory of refinement given in Sect. 15.22. To illus-
trate the above theory of meter, let us first concentrate on a single bar, and
look at its internal grouping. The analysis will go down successive divisions
of the bar.

Primary and secondary accent grouping.
The first subdivision of the bar is given by the secondary accent structure.
Examples of standard time signatures that have such subgroupings are 4/4,
12/8, and 6/4 (in the sextuple version) - all of which divide the bar into
two. According to our theory of division, the division of the single bar into
S number of subgroupings, is wreath sub-appendment by the cyclic group
ZS . Since, for the moment, only a single bar is being considered, the wreath
product is

ZS w© {e}. (21.2)

When one considers a sequence of bars, e.g., represented by the 1-dimensional
lattice Z, then the group of the sequence will be substituted for the control
group {e}; for instance, yielding the group ZS w© Z, which is an example
of what we call a generative crystallographic group (Definition 5.1, p. 140).
However, for the moment, only a single bar is being considered; i.e., the
control group is {e}. To save space, {e} will be omitted from the notation.

Now, the action of ZS is to cycle between the subgroupings in a bar. Thus,
in the standard cases of 4/4, 12/8, and 6/4 (sextuple version), the group ZS
is actually Z2.

Next, going down one level, each subgrouping is a grouping of regular
beats. Thus, within a subgrouping, the beat structure will be given by a cyclic
group ZB , where B is the number of beats in a subgrouping. Therefore, in
accord with our theory of division, the beat structure of a bar is given by the
following wreath product:

ZB w© ZS . (21.3)

Most crucially, notice that this means that ZS , which cycles between sub-
groupings, acts as a control group, transferring the beat structure of one
subgrouping onto the beat structure of another subgrouping. This, for exam-
ple, is exactly what can be seen in the Bruckner example Fig. 21.5. Here, the
subgrouping is the two-note motive; and it is mapped from one subgroup-
ing to another. Therefore, for this example, the wreath product, ZB w©ZS ,
becomes:

Z2 w© Z2
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which is the hyperoctahedral wreath group of degree 2. This then is the
primary-secondary structure of the 4/4 time signature. Exactly the same
group Z2 w© Z2 applies to the time signature 12/8, because this has four
beats divided into two halves.

When one regards 6/4 as a sextuple meter, the bar is divided into two
subgroupings, each of which has three beats. In this case, the group ZB w©ZS
becomes:

Z3 w© Z2.

In time signatures where there is no subgrouping structure between the
level of the bar and the level of the beat, we will simply omit ZS , and include
only ZB. Section 5.10 discussed exactly this type of situation (inclusion and
omission of levels) in the visual domain. Notice, for example, how Fig. 5.4
(p. 153) is an example of the same kind of phenomenon.

Beat division.
The fact that the beat itself can be divided will now be modeled, in accord
with our theory of division, by wreath sub-appending the cyclic group ZD to
the previous sequence ZB w©ZS , where D is the number into which the beat
is divided. That is, the following is obtained:

ZD w© ZB w© ZS .

Thus, there have now been three successive divisions, each according with
our theory of division.

As an example, recall that, in the time signature 12/8, the subgrouping
structure ZB w©ZS is the hypeoctahedral group Z2w©Z2. The 12/8 signature
requires that the beat is divided by three, and therefore one must wreath
sub-append the group Z3 to the hyperoctahedral group, as follows:

Z3 w© Z2 w© Z2.

Now let us turn to cases where there is simultaneous use of simple and
compound meter, for instance, the Brahms and Bartok examples, Fig. 21.6
and Fig. 21.7 respectively. Let us deal with the general case first:

SIMULTANEOUS DIVISION. Simultaneous division of an interval by
different numbers D1, D2, . . .Dn, will be given by wreath sub-appendment by
the direct product ZD1 × ZD2 × . . .× ZDn .

Therefore, the simultaneous use of simple and compound meter is given by
wreath sub-appending the group Z2×Z3 to the beat-division group ZB w©ZS .
This allows us to give the full metrical groups for the Brahms and Bartok
examples, as follows:
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Brahms Piano Concerto No. 1, second movement (Fig. 21.6). The
time signature is 6/4, which is interpreted here as a sextuple meter due to
the slowness of the tempo. Such 6/4 meter decomposes the bar into two
subgroupings, each of three quarter notes, thus yielding ZB w©ZS = Z3w©Z2.
Then the simultaneous use of simple and compound meter shown in Fig. 21.6,
subdivides the beat into two (in the right hand) and into three (in the left
hand), which results in wreath sub-appending Z2×Z3. That is, the full group
of the metrical structure is:

[Z2 × Z3] w© Z3 w© Z2.

Bartok String Quartet No. 4, second movement (Fig. 21.7). The time
signature 2/4 does not have a subgrouping structure intervening between the
level of the bar and the level of beats. Therefore ZB w©ZS is simply ZB = Z2.
Then the simultaneous use of simple and compound meter shown in Fig. 21.7,
subdivides the beat into two (in the second violin and viola) and into three
(in the first violin and cello), which results in wreath sub-appending Z2 ×Z3

to the beat group. That is, the full group of the metrical structure is:

[Z2 × Z3] w© Z2.

The reader should note that the groups given above for these Brahms and
Bartok cases are examples of what we call semi-rigid groups (Definition 6.1,
p. 172). Recall that we first introduced such groups in the context of robotics.

Beat subdivision.
Clearly, beat subdivision takes place by wreath sub-appending a further cyclic
group, in accord with our theory of division. An example is the following

Bach Two-Part Invention No. 12 (Fig. 21.4). The time signature 12/8
has a subgrouping structure that divides the bar into two halves each of
which has two beats; thus yielding ZB w©ZS = Z2w©Z2. The right hand in the
Bach example further divides the beat by three, and the left hand creates an
additional division by two. This gives the following as the full metrical group:

Z2 w© Z3 w© Z2 w© Z2.

Musical forms. This section has considered the successive division of a
bar. To get higher-order structures, one simply wreath super-appends higher
order control groups onto the wreath products considered. Examples are the
standard musical forms - which can obviously be given by wreath products
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THEORY OF METRICAL MOVEMENT (PULSE)

(1) Metrical movement is given by transfer along the metrical
sequence.

(2) According to our generative theory of shape, transfer
is given by control-nested τ -automorphisms. For example, the
structure of arrows in Fig. 21.8 (p. 490) illustrates a control-
nested τ -automorphism acting on a metrical hierarchy.

(3) When such an automorphism is applied to the left-
most element, the selective effect in wreath products results in
the selection of the particular arrows shown in Fig. 21.9 (p. 491).

(4) This moves the left-most element in the following way:
first within the smallest box shown, then out of the smallest
box, then out of the next larger box, then out of the next
larger box, . . . , and so on. This results in the movement of the
element across the sequence.

(5) The successive arrows upwards (i.e., components of
the automorphism) yield the accent structure of the movement;
i.e., the pulse.

(6) Notice that the movement comes from the symmetry
structure: The symmetries of the meter are its control-nested
τ -automorphisms. The Symmetry-to-Trace Conversion Principle
(p. 63) states that traces, i.e., temporal asymmetries, come from
the symmetries of an organization.

(representing the various levels - phrases, periods, etc.) that can be wreath
super-appended, extending the hierarchy upward.

21.8 Theory of Metrical Movement (Pulse)

The above argument allows us to give a theory of metrical movement, i.e.,
pulse. The main points of the theory are presented in the table on p. 489.
The reader should first read that table and then return here.

The remainder of this section will present certain additional details of this
theory, as follows: The bottom row of dots in Fig. 21.8 represents a sequence
of equivalent metrical units in a musical work. Now these units can themselves
be divided, so that the tree can be extended downward. Thus let us assume
that the entire hierarchy is of height n, and that the diagram represents Level
i up to n. According to our theory in Sect. 21.7, the entire symmetry group
of the metrical structure is given by an iso-regular group
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Zm1 w© Zm2 w© . . . w© Zmn

where each Zmj is a cyclic group of order mj.
Now, since each node at the bottom of Fig. 21.8 is itself divided downwards

to Level 1, each of the bottom nodes shown in the figure represents a copy of
the fiber group Zm1 w© . . . w©Zmi from Level i down to 1. On the level above
this fiber, each node represents a copy of the group Zmi+1 ; on the level above
this, each node represents a copy of the group Zmi+2 ; and so on . . . till the
single node at the top level which represents the final control group Zmn .

Fig. 21.8. A control-nested τ -automorphism used to structure meter.

Now, as in any wreath product, each level of Zm1 w©Zm2 w© . . . w©Zmn , that
is, each control group Zmj , acts on a corresponding control set Cj . In the me-
ter situtation, the control set represents a set of grouped metrical units; e.g.,
the set could be the four beats of a bar; or the three notes in a triplet. Such
a set will be called a metrical set. Furthermore, as in any wreath product,
there is a group action of the control group on the control set (metrical set).
Notice that the size of the control group and its metrical set are the same.

Now let us look at the structure of the bottom set of nodes in Fig. 21.8.
These represent a sequence of equivalent metrical groupings, e.g., bars. Each
node (e.g., each bar) is structured by the fiber group Zm1 w© . . . w©Zmi up to
Level i. For example, the node can be a bar divided into subgroupings, which
are divided into beats, which are divided into triples. Now, since the structure
of the bottom level shown is parallel, the group of the entire bottom level is
the direct product of all these copies of the fiber group Zm1 w© . . . w©Zmi . In
other words, the group of the bottom level shown (e.g., the bar level) is Deti
= [Zm1 w© . . . w©Zmi ]mi+1×mi+2×...×mn .

Claim. The metrical structure up to Level i is isomorphic to Deti for
some wreath product Zm1 w© . . . w©Zmn . In the context of musical discussion,
the group Deti will be re-labelled Meti (for metrical structure). That is:

Meti = [Zm1 w© . . . w©Zmi ]
mi+1×mi+2×...×mn .

The hierarchy of metrical structures in a meter forms a group-theoretic sub-
normal series:

Met1 ✁ Met2 ✁ Met3 ✁ . . . ✁ Metn.
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Notice, if one considers only an individual level j, then its group-theoretic
structure is

Zmj+1×...×mn
mj

= Metj/Metj−1.

The direct product structure here also indicates that the level has a parallel
organization.

Now return to Fig. 21.8. Let each circular arrow in the hierarchy in
Fig. 21.8 be some chosen element from the control group Zmj above it. Then
the entire collection of circular arrows, shown in Fig. 21.8 (one element se-
lected from each node), represents a control-nested τ -automorphism.

The automorphic action expresses a symmetry of the metrical structure
Meti. This will be called a transfer symmetry, to distinguish it from
the internal symmetry within any node, i.e., within any fiber-group copy
of Zm1 w© . . . w©Zmi . Such an internal symmetry can be thought of as analo-
gous to a guage symmetry in quantum field theory. In contrast, the transfer
symmetry is a re-arrangement of the bottom level set of nodes.

It is the control-nested τ -automorphic action (transfer symmetry) that
will allow the movement of metrical units along the bottom of the diagram.
The musical sequence begins with the left-most node. When one applies the
control-nested τ -automorphism shown in Fig. 21.8, to this node, the node
selects upwards only those circular arrows which dominate it. The result is
Fig. 21.9, and one obtains movement along the time dimension. The selective
effect involved was fully formalized in Sect. 4.5.

Fig. 21.9. How a control-nested τ -automorphism achieves movement.

21.9 Algebraic Structure of Grouping

Chapter 5 developed an algebraic theory of grouping. It will now be shown
that the structure of meter conforms exactly to that theory. The basic prin-
ciples of the theory were given by the Law of Grouping on p. 138. The reader
should read that page and then return here.
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The grouping law will now be applied to musical meter in order to under-
stand the structure of the latter. First let us take item (2) in the law (p. 138);
i.e., the statement that the groupings in an organization are enumerated as
the left-subsequences G1 w© . . . w© Gi of an n-fold wreath product. In order
to understand this with respect to meter, return to Fig. 21.8 (p. 490). A left-
subsequence corresponds to the tree hanging down from a single node in that
diagram. The node is a metrical unit and the tree hanging down from it are
its successive divisions; e.g., a node could be a bar which is divided down-
wards successively into subgroupings then beats and then triplets. It is clear
therefore that, in accord with the law, a grouping does indeed correspond to
a left-subsequence G1 w© . . . w© Gi.

Now let us consider item (3) in the law (p. 138). This says that the cohesive
structure of a grouping G1 w© . . . w© Gi, is given by its wreath product
(G1 w© . . . w© Gi−1) w© Gi, where the relevant wreath product symbol is
that after the parentheses. The various factors in the cohesive structure can
then be read directly from this wreath product using items (4)-(7) in the law,
as follows:

First, item (4), which says that a perceptual element of the grouping
G1 w© . . . w© Gi is the fiber G1 w© . . . w© Gi−1. Thus, having chosen a node
Gi in Fig. 21.8, consider any node beneath it. It corresponds to the fiber
G1 w© . . . w© Gi−1. It is clear that this represents a perceptual element of
the grouping.

Next turn to item (5), which says that the set of elements grouped is the
set of fiber copies (G1 w© . . . w© Gi−1)g1 , . . . , (G1 w© . . . w© Gi−1)gn . Clearly
this corresponds to the set of nodes dominated by the node Gi. And again,
this is the set of elements grouped.

Next turn to item (6) which says that the grouping factor is transfer, i.e.,
the control group Gi. Clearly, the group action at node Gi has the effect
of grouping the fibers it dominates by mapping them onto each other, e.g.,
beats are mapped onto each other.

Next turn to item (7) which says that the grouping action is the τ -
automorphic action ofGi on its fiber-group product. Notice that the algebraic
structure of the set of nodes dominated by Gi is the fiber-group product con-
sisting of those nodes. Clearly, the Gi acts as a τ -automorphism group on
this fiber-group product; and it is this that gives the transfer action on the
grouping.

Finally, apply the Extension of the Law of Grouping, page 148. This says
that all occurrences of a grouping are its control-nested τ -conjugates. This
can again be seen in the case of meter. All occurrences of the grouping defined
by Gi (e.g., a bar) are its control-nested τ -conjugates; i.e., the other nodes
on that level. These are reached by control-nested τ -conjugation, e.g., in the
manner shown in Fig. 21.9.

In relation to this, it is worth considering the visual example in Fig. 5.2
(p. 147). This concerns calculating the Gestalt relationship between two el-
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ements, the two sides highlighted in different regions of the entire configu-
ration. Section 5.7 (p. 146) shows how to perform the calculation, and it is
worth reviewing this section in relation to the issue of meter.



22. Against the Erlanger Program

22.1 Introduction

Klein’s Erlanger program has constituted much of the basis of 20th century
geometry and physics. According to that program, geometry is the study of
invariants under some assumed group of transformations.

This chapter will show that our generative theory - which we will call
generative geometry - takes a fundamentally opposite view of the nature
of geometry. The chapter will define the main differences between the two
approaches. The chief difference centers around the issue of recoverability, as
follows:

Klein defines geometry as the study of invariants under transformation
groups. The phenomenon of invariance is really one of memorylessness, as
follows: When one applies a transformation to an invariant, one will not be
able to recover the transformation from the invariant. In other words, an
invariant is not a memory store for the transformation. Klein’s geometry
therefore is a study of those properties that cannot be used as memory stores
for actions. A geometric object, in Klein’s theory, is a memoryless object.

Our generative theory is the extreme opposite. In this theory, a geometric
object is that from which one can maximally recover applied actions. This is
because the object is defined by the sequence of generative actions that pro-
duced the object, and these actions are set up to be recoverable. In this way,
a geometric object is a memory store for past action. Thus the fundamental
difference between Klein’s theory and ours is this:

KLEIN’S GEOMETRY: A geometric object is one from
which the transformations are non-recoverable; i.e., a ge-
ometric object is memoryless.

Michael Leyton (Ed.): A Generative Theory of Shape, LNCS 2145, pp. 495-529, 2001. 
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GENERATIVE GEOMETRY: A geometric object is one
from which the transformations are recoverable; i.e., a ge-
ometric object is a memory store. In fact, we claim the
following equivalence:

Geometry ≡ Memory Storage.

We propose that Klein’s theory of geometry is an inadequate and incor-
rect one for the scientific, computational, and design disciplines. We argue
that these disciplines require the very different approach elaborated in this
book. The reason is that all these disciplines fundamentally rely on the re-
covery of causal or generative actions from shape. Thus, with respect to the
scientific disciplines, the entire program of a science is aimed at the recovery
of the sequence of environmental events that lead up to the state appear-
ing on the measuring instruments. Again, in the computational disciplines,
computer vision is set up to recover the environmental structure from the
image. Furthermore, in machine learning, Carbonnell [17] has argued that
any advanced computational system needs to be able to recover its own com-
putational history, in order to be able to modify that history, if the current
state is not the desired one. Again, in the design disciplines, Hoffmann [58],
[20], has argued that keeping a record of the design history is essential be-
cause it allows editability of the design decisions. Indeed, all advanced design
programs now offer the user access to the design history of an object - ex-
actly for the purpose stated by Hoffmann. In fact, the recovery of design
history is one of the most frequently used operations by any computer-based
designer. Also observe that computer-aided manufacturing is really the in-
ference of construction and milling operations from the design geometry. In
our chapters on computer-aided manufacturing, we showed that this requires
geometry to be defined in a generative-recoverable way.

Thus, in complete contrast to the Klein approach, which is non-recover-
able, we argue that each of the above disciplines requires geometry to be
defined in a recoverable way.

Other important differences between Klein’s theory and the generative
theory follow from this basic contrast between non-recoverability and recov-
erability. For example, this chapter shows that the two theories of geometry
oppose each other fundamentally on the following issues: (1) symmetry, (2)
geometric levels, (3) transformational exhaustiveness, (4) transitivity, (5) ob-
server independence, (6) coordinate freedom, and (7) uniqueness of descrip-
tion.

In order to fully understand the difference between the two theories, the
chapter will carefully study how they differ on these important issues.
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22.2 Orientation-and-Form

It will be possible to illustrate most of the differences between Klein’s the-
ory and the generative theory by examining a particular example of the
orientation-and-form phenomenon in perceptual psychology: the example
shown in Fig. 22.1 due to Goldmeier [45]. The reader might need to review
Sect. 8.8 on orientation-and-form.

Fig. 22.1. One of Goldmeier’s orientation-and-form examples.

We are going to consider the relation between the orientation-and-form
phenomenon and Klein’s Erlanger program. According to the Erlanger pro-
gram, the two figures shown in Fig. 22.1 are the same because they are invari-
ant under rotations. One cannot simply argue that human subjects do not
see the rotation group - they do, endlessly. The rotation group is hard-wired
into the human perceptual system. Thus, according to the Erlanger program,
a ”figure” should not be orientation-dependent.

What this chapter will show is that the human visual system is not based
on the Klein theory of geometry, but on the very opposite theory proposed
in this book.

22.3 The Generative Structure of Quadrilaterals

We are now going to explain the Goldmeier effect. It will be argued that the
first figure is seen as a deformation of a square, and the second figure is seen
as the deformation of a diamond. This argument will powerfully undermine
Klein’s program for geometry - because the two figures, being simply rotations
of each other, ought to be seen as a deformation of the same object.

Let us begin by concentrating on the first object. It is clear that this is
not an affine transformation of a square - since the parallel lines of a square
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Fig. 22.2. A complete quadrangle.

are destroyed in the deformation - and affine transformations preserve paral-
lelism. Thus it is necessary to go to a less restrictive deformation. The minimal
deformation which will account for the figure is a projective transformation.
Therefore assume that the figure is a subset of the projective plane P2.

P2 = R2
1 ∪ P1. (22.1)

In fact, more precisely, the sides will be described as parts of infinite lines that
are independent subsets of the plane. The notation means this: Generally, for
Rn+1, the final coordinate will be labelled w. Define Rn

0 to be the hyperplane
given by w = 0, and Rn

1 to be the coset at w = 1, parallel to that hyperplane.
Throughout the chapter, this coset will also be referred to as a hyperplane.

Now, rather than evoking ”extrinsic” perspective transformations that
map between different projective planes slanted at different angles in pro-
jective 3-space, the ”intrinsic” view will be taken; i.e., that the perspective
transformations are sending the projective plane to itself. In other words, as-
sume that the group which is acting is PGL(3,R) as an automorphism group
of P2.

Now the Goldmeier Fig. 22.1a can be understood as a quadrangle of points
A, B, C, D, in the projective plane. Fig. 22.2 shows what, in projective
geometry, is called the complete quadrangle ABCD. This is constructed by
taking all six lines determined by the four points A, B, C, D, and finding
the three extra intersection points, which are

P = AB ∩ CD, Q = AC ∩BD, R = AD ∩BC. (22.2)

These three points are usually called the diagonal points. The reader should
note that our analysis can use equally the complete quadrangle, or complete
quadrilateral, since these figures are dual to each other (points dual to lines).
However, as illustration, the complete quadrangle will be used.
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Fig. 22.3. The square on the projective plane.

Now, the fundamental theorem of planar projective geometry says that
PGL(3,R) is transitive on ordered complete quadrangles. This means that
there is some projective transformation that takes the quadrangle ABCD
shown in Fig. 22.2 to the square shown in Fig. 22.3. For ease of viewing, the
central point R will be left out of the diagram; but will be brought back later
in the discussion.

Notice, most crucially, that two of the diagonal points P and Q have gone
to infinity. However, observe that the intersection equations (22.2) above,
nevertheless hold. Most particularly, consider P . In Fig. 22.3, this is still the
intersection of the two lines AB and CD. However, because the two lines
are parallel, their intersection P is at infinity. Furthermore, this intersection
point lies in both directions. Therefore, the single point P is at the end of
the two parallel lines in both directions, as is shown by having the letter P
label four ends of lines in Fig. 22.3. Exactly the same argument applies to
the intersection Q of lines AC and BD in Fig. 22.3. Therefore, the single
point Q is shown as labeling four ends of lines in that figure.

We now want to define the generative structure of quadrilaterals. Accord-
ing to our theory, the generative structure must start with visually the most
symmetrical state, which is the square configuration Fig. 22.3. If the four in-
finite lines shown are considered to be Euclidean lines, R1, then, according to
our theory, the structure of this configuration is the hyperoctahedral wreath
hyperplane group,

HWH(2) = R1 w© Z2 w© Σ2.

Now let us extend each of these Euclidean lines R1 by their ideal point P0,
thus obtaining the projective line:

P1 = R1
1 ∪ P0. (22.3)

Using the projective line as the fiber in the HWH(2) group, the following
”group” is obtained:
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P1 w© Z2 w© Σ2.

However, there is a problem in this expression. The fiber P1 is not actually
a group; it is the set shown in expression (22.3). Thus it must be given a
group structure; and this will be done by giving the set a group action that
corresponds to its partition P1 = R1

1 ∪ P0. Thus we do this:

Definition 22.1. The group GP1 is defined by the direct product

GP1 = R1 × {e}

together with the group action corresponding to the partition, P1 = R1
1 ∪ P0,

of the projective line; that is, the group action

GP1 × P1 −→ P1

is defined as the composition of the two natural group actions:

R1 × R1
1 −→ R1

1

and
{e} × P0 −→ P0.

Now, using this as a recursive basis, the n-dimensional case can be defined
as follows:

Definition 22.2. The group GPn is defined recursively by the direct product

GPn = Rn × GPn−1

together with the group action corresponding to the partition, Pn = Rn
1∪Pn−1,

of projective n-space; that is, the group action

GPn × Pn −→ Pn

is defined as the composition of the two natural group actions:

Rn × Rn
1 −→ Rn

1

and
GPn−1 × Pn−1 −→ Pn−1.

With this in mind, return now to the generative structure of the square
(Fig. 22.3) which we propose is the hyperoctahedral wreath hyperplane group,
but where the hyperplane is now given by group GP1. Thus, the transfer
structure of the square is now
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GP1 w© Z2 w© Σ2. (22.4)

This gives the most symmetrical quadrilateral, the square. Now the goal is
to generate, from this, any arbitrary quadrilateral. According to our theory,
this is done by wreath appending an asymmetrizing group as a control group.
This will transfer the structure of the square configuration onto each non-
square one.

To achieve this, we wreath super-append the projective group PGL(3,R)
to the group in expression (22.4), thus:

Proj-HWH(2) = GP1 w© Z2 w© Σ2 w© PGL(3,R). (22.5)

This will be called the projective hyperoctahedral wreath hyperplane group
of degree 2. The degree corresponds to the degree of the hyperoctahedral
component, which is the same as the projective dimension of the highest
projective space involved, which is the plane; i.e., not the projective lines
within the plane. That is, our intrinsic structure is that of the plane rather
than the lines. This fact is important for the wreath structure; that is, the
action of the projective control group will move the lines within the projective
plane.

Before continuing, let us generalize the above structure to the n-dimen-
sional case, thus:

Definition 22.3. The projective hyperoctahedral wreath hyperplane
group of degree n, will be defined as

Proj-HWH(n) = GPn−1 w© Z2 w© Σn w© PGL(n+ 1,R).

The reader should notice carefully the dimensionalities involved. The under-
lying real space is of dimension n+1. We are dealing with a projective n-cube.
Its faces are projective n−1 spaces, Pn−1, as can be seen from this expression.
The permutational action sending reflectional pairs of Pn−1, is the symmetric
group of degree n.

The present section will be dealing with the degree-2 case, given in ex-
pression (22.5), although the dimension will be increased in later sections.

It is now necessary to understand the group action in the degree-2 case,
as follows: Observe first that, according to the generative theory, the square
configuration shown in Fig. 22.3 is associated with the copy of fiber group
GP1 w© Z2 w© Σ2 that corresponds to the identity element in the projective
control group PGL(3,R) in expression (22.5):

square ←→ [GP1 w© Z2 w© Σ2]e .

Then apply a projective transformation obtaining the Goldmeier figure
shown in Fig. 22.2 (point R is still being ignored but will be considered later).
This means that a particular element g is being applied from the PGL(3,R)
control group in expression (22.5) above. Thus the non-square configuration
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is associated with the copy of fiber group GP1 w© Z2 w© Σ2 that corresponds
to the element g in the projective control group PGL(3,R). thus:

non-square ←→ [GP1 w© Z2 w© Σ2]g .

With this in mind, it is necessary to look at the group action of GP1 on
any one of the lines, for example, the line along PCD. The line is a projective
line P1, and the group action of GP1 on P1 was defined to correspond to the
partition of the projective line P1 = R1

1 ∪ P0. This action was given
in Definition 22.1. In the original square configuration, the group component
R1 of GP1 in Definition 22.1 acted on the Euclidean line through CD in
Fig. 22.3. Furthermore the group component {e} of GP1 in Defintion 22.1
acted on the point at infinity P . To define the action of GP1 on the projected
version of P1 in the non-square configuration Fig. 22.2, simply use the wreath
product structure. In other words, to find out the effect of a group member
x ∈ GP1 on the projected line P1, simply look at the action of x ∈ GP1 in
the original square configuration, and the apply the projective transformation
g ∈ PGL(3,R). That is, simply use the conjugacy by which the control group
(in any wreath project) sends fiber group copies onto each other.

In particular, the direct-product component {e} of GP1, which acted on
the point at infinity P in the square configuration, now acts on the visible
point P in the non-square configuration. And the direct-product component
R1 (of GP1) which acted on the Euclidean line through CD in the square
configuration, now acts on the non-Euclidean line P1\P in the non-square
configuration. So it acts in a deformed way on this line. However, the action
is well defined by simply using conjugacy between the square and non-square
fiber-group copies.

Let us now examine the asymmetrization process. To do this, it is nec-
essary to point out some deeper issues in the symmetric configuration, the
square. Thus return to Fig. 22.3. First observe that the mirror reflecting the
two infinite vertical lines is half-way between them, and parallel to them.
Therefore the mirror actually meets these two lines at their ideal point Q,
both in the up direction and down direction. Similarly, the two infinite hor-
izontal lines and the mirror between them all intserest at the ideal point P ,
both in the left direction and the right direction.

Then apply a projective transformation to obtain the Goldmeier figure
shown in Fig. 22.2. The two ideal points P and Q have now moved in from
infinity and have become vanishing points.

The crucial thing to understand is that this movement of the ideal points
has created a visual asymmetrization. To see this, observe first that, in the
square configuration (Fig. 22.3), the ideal point Q was symmetric about the
horizontal mirror, because it was at infinity both at the top and bottom of
the figure. However, after the projective transformation producing Fig. 22.2,
this visual symmetry with respect to the horizontal mirror has been broken
- i.e., point Q is now only above the horizontal mirror. Similarly, the change
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of P from being a point at infinity in the square configuration - both left
and right - to being a vanishing point on the left has destroyed the left-right
symmetry with respect to the vertical mirror plane.

We conclude therefore that the projective transformation has caused two
asymmetrizations - and that this is embodied in the two vanishing points.
That is, there is this correspondence:

Asymmetrizations ←→ Vanishing points.

Notice that this view only makes sense because of three propositions which
are basic to our theory:

(1) Recoverability requiries that the starting states of generativity
are symmetries.
(2) The gravitational frame is a symmetry.
(3) The observer imposes the gravitational symmetry frame.

These three propositions allow us to define the Goldmeier figure Fig. 22.2
generatively; and furthermore to make that generativity an asymmetrization,
which means that it is recoverable.

Now let us contrast this with Klein’s view of geometry. As far as the
Klein view is concerned, each configuration created by the projective group
is ”equal”, because the projective space on which it acts is symmetric in the
following important sense: Return, for example, to the projective line PCD
which was discussed earlier. Topologically a projective line is a circle with no
distinguished point. This means that with respect to conventional projective
geometry, a point at infinity has the same status as a point not at infinity.
In contrast, in our generative theory of geometry, the observer’s imposition
of the gravitational symmetry frame, results in a great difference between a
point being an ideal point versus a vanishing point. Most crucially, our view
requires all operations to be recoverable.

To emphasize: Klein’s geometry attempts to achieve non-recoverability;
whereas the generative geometry attempts to achieve recoverability.

22.4 Non-coordinate-freedom

One of the fundamental doctrines of 20th century geometry is that geometry
is coordinate free. This concept is not only associated with the Kleinian view
of geometry, but it becomes the criterion for defining physics - for example,
Einstein defined the proper objects of physics to be those objects that are
frame independent (e.g., the electromagnetic field tensor).

However, our generative geometry takes a very different view: Because
an object, in that view, is a structure generated from a symmetric ground
state, and because a coordinate frame is really a symmetric ground state, one
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cannot remove the coordinate frame without removing the object’s structure
(Sect. 8.4). In fact, in more detail, the object is the transferred structure of
the symmetry ground state, since asymmetrization takes place by a wreath
control group. Thus without the coordinate system, the object looses the
structure of which it is a transferred image.

This section will begin to look at the non coordinate-free nature of our
generative theory of projective geometry. It is necessary to understand the
relation between the asymmetrization defined in Sect. 22.3 and the notion of
coordinate frame.

Fig. 22.4. The complete quadrangle square on the projective plane.

To explore this, let us return to the square configuration, which is shown
again in Fig. 22.4, but with the point R included, making it a complete
quadrangle. Let us define this configuration with respect to the standard
projective basis [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1], where the first three points
are the standard projective simplex, i.e., the ordinary vector basis of R3,
and the final point is the unit point determined by that simplex. In terms of
Fig. 22.4, the projective basis is naturally described as:

[1, 0, 0] = P

[0, 1, 0] = Q

[0, 0, 1] = R

[1, 1, 1] = B (22.6)

To be clear about this: The underlying space is R3 = {(x, y, z)}, with the
z-axis perpendicular to the plane of the paper at point R. The plane of the
paper is the plane R2

1 at position z = 1 in R3. The first three of the members
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of the above projective basis correspond to the ordinary vector basis of the
underlying 3-space, i.e., the basis [1, 0, 0], [0, 1, 0], [0, 0, 1]. Notice therefore,
the first basis member [1, 0, 0], is horizontal and parallel to the plane of the
paper, and one unit away from it. Similarly, the second basis member [0, 1, 0]
is vertical and parallel to the plane of the paper, and one unit away from it.
Finally, the third basic member [0, 0, 1], corresponds to the origin R of the
plane R2

1 of the paper.
Let us consider symmetry issues. First consider the basis member P =

[1, 0, 0]. In terms of the projective plane represented by the plane of the
paper, P = [1, 0, 0] is the point at infinity directly leftward and rightward. In
Sect. 22.3, it was seen that this point is symmetric with respect the vertical
reflection axis. However, it is necessary to be a little more careful about this:
The point is actually symmetric about any of the vertical lines, since each
is infinitely far from the point, in both the left and right directions. The
role of the origin basis member R = [0, 0, 1] can now be seen. By creating
a distinguishable point, i.e., the origin R = [0, 0, 1], one destroys all these
possible reflectional symmetries, except the one through the origin itself.

Exactly the corresponding argument holds for the other ideal basis mem-
ber Q = [0, 1, 0]. Together with the origin, it creates reflectional symmetry
about the x-axis.

Thus, the three ordinary vector basis members in R3 correspond to two
reflection axes in the projective plane. Note that these two reflection axes
correspond to the two Z2 fibers of the hyperoctahedral wreath group. In fact,
this is easily generalized to projective n-space, as follows:

The standard vector basis of n+1 real space, Rn+1, expresses
the hyperoctahedral wreath symmetry of projective n-space
Pn.

Notice that this is because n of the vector basis members are points at infinity
in projective n-space, and the remaining member is the origin.

The above statement accounts for the n + 1 members of the projective
basis. There is only one other member of the basis. It is the unit element
[1, 1, . . . , 1].

In order to understand its role, return to the example of projective 2-
space, which has the four basis members listed at (22.6). Notice that the first
basis member P = [1, 0, 0] is the point at which all horizontal lines meet.
Similarly, the second basis member Q = [0, 1, 0] is the point at which all
vertical lines meet. Thus the first two basis members [1, 0, 0] and [0, 1, 0] to-
gether define the infinite grid - i.e., two crossing parallel systems of lines.
This grid has infinite vertical/horizontal reflectional symmetry - i.e., verti-
cal/horizontal reflectional symmetry at each of its points. Therefore, one way
of understanding the third basis member, the origin [0, 0, 1], is that it estab-
lishes which reflectional vertical/horizontal symmetry will be chosen for this
grid.
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Now, with the grid structure in mind, it is possible to understand the role
of the fourth member of the projective basis, the unit element [1, 1, 1]. What
this point does is to select two of the lines AB and BD (see Fig. 22.4) from
this infinite grid; i.e., because [1, 1, 1] is at the intersection of these two lines.
Furthermore, by the symmetry operations, point [1, 1, 1] implies the other
corners of the square. Thus the point [1, 1, 1] selects one square from the full
grid. However, each of the lines of the square is a hyperplane of the plane
containing the square. Therefore, one can wreath sub-append the hyperplane
to the hyperoctahedral wreath group. In conclusion: The standard projective
basis corresponds to the hyperoctahedral wreath hyperplane group. Of course,
what is actually meant by hyperplane, in this statement, is the group GPn−1

It can be seen therefore that the purpose of the standard projective basis
is to set up a particular symmetry structure - in fact, the hyperoctahedral
wreath hyperplane group centered at the origin - and define a particular
square on which it should act. This accords with our theory in Chapter 8
that reference frames actually arise out of symmetry structures: They express
the maximally symmetric state with respect to which actions are going to be
applied and be understood as destroying that symmetry.

22.5 Theorem-Proving in Geometry

While the study of affine, Euclidean, and projective geometry claims to be
founded on Klein’s Erlanger program, close examination reveals something
much deeper that accords more with our generative theory of shape.

To illustrate, let us begin by looking at affine geometry. Consider the
theorem which states that the medians of a triangle intersect two-thirds the
way down those medians. The standard proof is simply this: Begin by proving
the theorem for the easy case: for equilateral triangles, i.e., the symmetric
case. Then use the fact that an invariant of the affine group is ratios of lengths
along a line; and use the fact that the affine group can map any triangle onto
any other triangle. This extends the result from the symmetric case to the
asymmetric case.

This style of proof is used also with enormous frequency in projective ge-
ometry - where one usually proves a theorem in the standard projective basis
- i.e., the most symmetric case - and then extends to asymmetric projective
bases, using the projective group.

Clearly, this frequent style of proof does use Klein’s program. However,
when we examine how Klein’s program is being used here, we find that it is
being used in the service of our generative theory of geometry, as follows:

Observe that these proofs generate the arbitrary case by first starting with
the most symmetric case, and then applying the geometry group that extends
the result to the asymmetric case. Most crucially, the style of proof follows



22.6 The Geometry Hierarchy 507

the generative order prescribed by our generative theory; i.e., symmetry −→
asymmetry.

Furthermore, as prescribed by the theory, the geometry group is used as
the symmetry group of an asymmetrizing action.

Notice also that, while the Erlanger program does not recognize distin-
guished figures within the orbit of the geometry group - i.e., a symmetric
shape has no privileged status in the orbit - the proofs nevertheless identify
and exploit distinguished starting states. This recognition of distinguished
starting states is again a feature of our generative theory; i.e., the geometry
group is actually used asymmetrically rather than symmetrically. Notice that
this is emphasized in our wreath formulation of geometry, where a symmetric
state is described by the fiber copy corresponding to the identity element of
the control group.

What role do we give to the invariants of the geometry group? In fact,
they correspond to the use of our Symmetry Principle on internal struc-
ture, as follows: The Symmetry Principle (p. 43) says that, for recoverability,
indistinguishabilities must be preserved backwards in time. In the case of
internal structure - i.e., trace structure - these indistinguishabilities must be
inter-state indistinguishabilities (Sect. 2.9). But inter-state indistinguishabil-
ities are invariants. Thus the invariants of Klein’s geometry are actually the
inter-state indistinguishabilies of our inferential theory of shape.

Klein’s geometry can therefore be understood as a part of our generative
theory. However, our generative theory does considerably more than Klein’s;
for example, it accounts for the structure of proofs in geometry - whereas
Klein’s does not.

22.6 The Geometry Hierarchy

Standardly in geometry, one has this hierarchy:

1. Euclidean Geometry
Transformations: Isometries
2. Affine Geometry
Transformations: Affinities (products of stretches, shears, and isome-
tries)
3. Projective Geometry
Transformations: Collineations.

By the Kleinian view, this hierarchy is one of successively less restrictiveness.
In contrast, from our point of view, because we are interested in recover-
able generativity, and because this depends on the Asymmetry Principle, the
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hierarchy represents successively greater asymmetrization. The difference be-
tween the Klein view and our view of this hierarchy is profound, as will be
seen:

The consequence of our asymmetrization view is that the hierarchy repre-
sents the order in which operations are applied in the nested hierarchy. Thus
the generative order is:

1. Euclidean. According to our theory, the underlying structure of any
shape is a control-nested hierarchy of Euclidean operations; i.e., an iso-regular
group. That is, according to the Externalization Principle, when one removes
all external operations, one arrives back at Euclidean operations.

2. Affine. After generating the underlying structure using Euclidean oper-
ations, one then applies affine transformations. These do not preserve Eu-
clidean metric but nevertheless preserve parallelism.

3. Projective. Finally one applies the projective operations. These do not
even preserve parallelism. Thus one obtains distortions such as the Goldmeier
figure.

A major difference between the generative theory and the Kleinian theory
can now be seen: In the generative theory, each level provides a symmetric
structure, relative to which the next level is an asymmetrization. However,
in the Kleinian view, the next level does not recognize the difference between
symmetric and asymmetric structures, and therefore it is irrelevant which
structures on that level were inherited from the previous level.

Most crucially, in the generative theory, figures created on any level are
transferred upward onto figures created on any higher level. For example, the
structure of a square is transferred onto the first Goldmeier figure. Thus the
geometry hierarchy represents a hierarchy of nested control; i.e., a wreath
hierarchy.

It is now possible to understand the way in which Klein’s theory of ge-
ometry fits as a component in the generative theory. As was said, each suc-
cessive level in this control-nested hierarchy, acts as an asymmetrization of
any structure defined at a lower level. However, in the generative system, an
asymmetrization is carried out by what we have called the symmetry group
of the asymmetrizing process. As a symmetry group, the control level acts in
the way intended by Klein - that is, the level defines what he would call a
geometry. However, because, in the generative system, the levels are glued
together into a wreath hierarchy, this means that, because any lower struc-
ture is symmetric relative to anything produced by the higher control, the
lower structure must correspond to the identity element in the higher control.
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Thus Klein’s ”symmetry group” is forced to have an asymmetrizing action.
Of course, what gives the hierarchy this order is our fundamental constraint
of maximizing recoverability. Klein’s geometry-group becomes, in the genera-
tive theory, the symmetry group of an asymmetrizing action. In this capacity,
it becomes a control group in a wreath hierarchy, and thus maximizes transfer
and recoverability of generative structure.

22.7 Projective Asymmetrization: Extrinsic View

It will now be argued that projective structure destroys the observer’s sym-
metry. First, we shall see that the image plane is an unfolded version of the
hyperoctahedral symmetry of the observer - destroying the observer’s sym-
metry by misalignment (which is part of the basis of unfolding) - and then
projective asymmetrization further destroys the observer’s symmetry by ad-
ditional misalignment and perspective transformation.1

To demonstrate this, it is now necessary to go to an extrinsic descrip-
tion of the image plane. So far, asymmetrization has been discussed from
an intrinsic point of view; i.e., the mapping of the projective plane to itself.
An extrinsic approach involves the mapping of one projective plane to an-
other, each embedded in projective 3-space, each at a different orientation
with respect to an observer who is in that projective 3-space. To keep the
figures simple, the situation will be represented using diagrams of one dimen-
sion lower - i.e., projective lines in the projective 2-space. However, it must
be understood that we are always representing a situation of one dimension
higher.

In Fig. 22.5, the plane of the paper represents projective 3-space with
coordinates [x, y, z, w] in R4. The computer graphics convention will be used
of making the last coordinate w the ”dummy” coordinate. In other words,
the hyperplane R3

0 that yields the points at infinity will be considered to be
positioned at w = 0. Thus the ”Euclidean” part of P3 will be the parallel
”hyperplane” R3

1 situated at w = 1. Projective 3-space therefore decomposes
like this:

P3 = R3
1 ∪ P2. (22.7)

Thus, in Fig. 22.5, the plane of the paper can be considered to be in R3
1,

and the y coordinate perpendicular to the plane of the paper will also be in
that hyperplane. Finally the coordinate w, also perpendicular to the plane of
the paper, is the axis on which the two hyperplanes R3

0 and R3
1 are positioned.

1 Strictly, unfolding involves misalignment and selection. We will concentrate, in
this chapter, on the misalignment aspect. The selection here can be considered
to be trivial, in the sense that the whole structure is selected. Note that we will
not commit here to a particular kind of unfolding group.
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Fig. 22.5. Image plane preserves the observer’s symmetries as much as possible.

Fig. 22.6. Projective asymmetrization destroying the observer’s symmetries.
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The observer will be placed at the origin of P3, as shown. For ease of ex-
position, the observer will be referred to as ”he”. Most crucially, the observer
will view the entire P3 via the image plane π shown in the diagram. This will
be the standard embedded projective plane π[0, 0, 1,−1].

Now we come to the fundamental issue of symmetry. The observer has
the symmetry structure given by the hyperoctahedral wreath group, which
Chapter 8 argued is the main structure of the Cartesian frame in R3

1. The
observer’s three symmetry planes can be seen in Fig. 22.5 as follows: (1)
the plane of the page corresponds to one symmetry plane; (2) the x-axis is
aligned with another symmetry plane perpendicular to the plane of the page;
and (3) the z-axis is aligned with another symmetry plane perpendicular to
the plane of the page. These planes will be referred to respectively as the y-,
x-, and z-symmetry planes.

Now, the observer structures the image plane π with the same symme-
try group - the hyperoctahedral wreath group. What this actually means is
that the observer unfolds, from his own position, a copy of the hyperocta-
hedral wreath group to structure the image plane. Unfolding is a process of
misalignment. Thus what the observer is doing is misaligning two copies of
the hyperoctahedral wreath group.2 This is the beginning of the symmetry-
breaking structure.

Now, by the History Minimization Principle, the observer creates the
minimal asymmetrization that is compatible with the data, and therefore
the unfolding tries to keep the misaligned copy of the hyperoctahedral wreath
group as similar to the original copy - in fact, it will keep two of the same
mirror planes as those at the origin, and the third will be kept parallel to
that at the origin.

Now let us assign coordinates to the embedded projective plane π. In
computer graphics, one says that the natural coordinates are those deter-
mined by the standard projective simplex. Why? From the previous sections,
we see that this is because the projective simplex is the most symmetrical
in projective space. In fact, we see that it is the one that most preserves the
symmetry of the observer - since the plane π is unfolded from the observer
by minimal misalignment. The projective basis for π therefore consists of the
four points Fig. 22.5,

O = [0, 0, 1, 1]
U = [1, 1, 1, 1]
Ix = [1, 0, 0, 0]
Iy = [0, 1, 0, 0] (22.8)

The first three are shown in Fig. 22.5. The fourth is in the y-direction per-
pendicular to the plane of the page.
2 Notice, in this case, we do not need an alignment kernel (for example, as in
canonical unfoldings). The misalignment can be considered to occur here between
two copies within one fiber-group product.
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Fig. 22.5 tries to indicate some of the important symmetry structure, as
follows: Notice that the ideal point Ix, shown by the double arrow, is indicated
as being reflectionally symmetric about the z-axis; and is therefore reflection-
ally symmetric about the z-symmetry plane. The same is true of the other
ideal point Iy, coming vertically out of the plane of the paper. And again,
the same is true of the origin O. That is, the projective simplex, O, Ix, Iy, is
reflectionally symmetric about the z-symmetry plane. In fact, further consid-
eration reveals that the projective simplex is reflectionally symmetric about
each of the symmetry planes of plane π.

One member of the basis exists outside the simplex, and this is the unit U .
This, as seen before, selects the square in π from infinite grid in π.

Now let us look at how one gets projective asymmetrization extrinsically.
Unfold from the plane π another plane µ as shown in Fig. 22.6. Notice that it
takes along with it, a copy of the projective basis O, Ix, Iy, U , and therefore
has internally the same symmetry structure as the plane π.

Now, the observer is viewing this plane via the image plane π. The crucial
thing to notice is that the basis O, Ix, Iy , U on plane µ is projected to a
new basis O′, I ′x, I

′
y, U

′ on the image plane π. This new basis destroys the
symmetry structure of the plane π. Notice for example, that point Ix at
infinity, now comes in from infinity to become the point I ′x which is therefore
a vanishing point. We saw this in the Goldmeier effect, where this was point
P in Fig. 22.2 (p. 498). Notice that ultimately, one has further destroyed the
symmetry structure of the observer.

Thus one sees here again how the Klein view of geometry is not natural.
The research literature talks about projective distortion, which we called
projective asymmetrization.

PROJECTIVE ASYMMETRIZATION. Projective asymmetrization
occurs because one is assuming that the observer is structured by the hyperoc-
tahedral wreath group which is successively broken as follows: (1) The image
plane is an unfolded version of the hyperoctahedral symmetry of the observer
- destroying the observer’s symmetry by misalignment (which is the basis of
unfolding) - and then (2) the observer’s symmetry is further destroyed by
additional unfolding of the plane and perspective transformation.

Notice that the Klein view, in which all projective bases are equally valid,
does not allow for recoverability. That is, in accord with our theory, recov-
erability of an action is possible only if the action breaks symmetry. This
means that not all projective bases are equal. Notice furthermore, that be-
cause recoverability now becomes possible, we are building the observer up as
a memory object - i.e., after the two successive symmetry-breaking actions,
the observer’s image now has asymmetry, and thus the observer has a layered
structure of asymmetry. This conforms generally with our view of science as
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adding structure to the observer as a memory object - and in particular as
asymmetrizing the measuring instruments so that they can be causal memory
of the environmental structure.

22.8 Deriving Projective Coordinate Systems

It will now be argued that the Goldmeier effect shows that the derivation of
projective coordinate systems is more complicated than has previously been
suspected. This again will be based on our proposal that the projective plane
is structured, as near as possible to the hyperoctahedral wreath structure of
the observer.

First observe this: Our research program, Leyton [87], [88], [89], [90], [91],
[96],, has demonstrated the enormous psychological salience of the quadri-
lateral and its reference to a square. One might ask why the quadrilateral is
so salient to the human perceptual system. We conjecture that the answer is
this: The quadrilateral is associated with a projective basis, and this defines
a projective coordinate system on the entire plane.

This however, is only the first stage in the argument. The second stage
is this: We argue that the derivation of a projective coordinate system from
a quadrilateral is different depending on the orientation of the quadrilateral.
This is basic to understanding the human visual system.

Let us however pretend that the second stage does not exist, and that
there is a single way to derive a projective coordinate system from a quadri-
lateral. The most direct way possible will be developed. The reader should
note the following: The intrinsic projective plane will be used, and this turns
out to be critical in later sections. Furthermore, it will not matter whether
one uses the quadrilateral or quadrangle - and thus no distinction between
the two will really be made. Also the computer graphics convention will be
used of choosing the last coordinate to the ”dummy” variable.

To begin: Return to the first Goldmeier figure, and look again at the
construction we gave it as a complete quadrangle in Fig. 22.2 (p. 498). Using
this structure, let us now construct a projective coordinate system. This will
be done by assigning a projective basis to the figure. This basis, which is
the same as that used before, is the natural one arising from the symmetry
structure of the observer. The four points of the projective basis are therefore
as follows: The point R is chosen to be the origin [0, 0, 1]; the points P and
Q are chosen to be the two vanishing points [1, 0, 0] and [0, 1, 0] respectively;
and the point B is chosen to be the unit point [1, 1, 1]. The x- and y-axes
are thereby completely determined, as follows: The x-axis must go through P
and R; and the y-axis must go through Q and R. This is shown in Fig. 22.7.
The symmetry structure now becomes very apparent: That is, the x- and
y-axes now obviously represent the symmetry axes. That is, if the figure is
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Fig. 22.7. A projective coordinate system from the first Goldmeier figure.

un-distorted, then they become the symmetry axes of the figure and the
observer’s coordinate system.

From this diagram, one can quite easily derive the projective coordinates
for any point in the plane. First establish the coordinates of points along axes,
as follows: Consider an arbitrary point on the x-axis; for example, the point
indicated as [x, 0, 1]. The value x is simply calculated as the cross-ratio of the
following four points on the x-axis: The vanishing point, the origin, the unit
point to the right of the origin (i.e., the point where the x-axis first crosses
the quadrilateral from the right); and the point [x, 0, 1] itself. The method
works because one can regard the cross ratio as the projective scaling along
the axis. Similarly, use this method to calculate the value y of an arbitrary
point [0, y, 1] on the y-axis.

Thus, having calculated the values of any points on the two axes, the
value can be calculated of an arbitrary point shown as [x, y, 1]. This point is
determined as the intersection of the two dashed lines shown. Therefore one
merely reads off the values where the dashed lines hit the coordinate axes.

Therefore, what has been seen above is how to construct, from a quadri-
lateral, a projective coordinate system for the entire plane. Notice again that
it exploits the hyperoctahedral symmetry structure of the observer.

Now, if Klein’s view of geometry were correct, then this method would be
the appropriate one for all quadrilaterals. In fact, according to our theory, it
is appropriate for only half of them. A different method must be chosen for
the other half. Let us proceed.

Turn now to the second Goldmeier figure; i.e., that shown in Fig. 22.1b
(p. 497). If one applied exactly the same method to this figure, one would
obtain the coordinate system shown in Fig. 22.8. In other words, this figure
is merely a rotated version of the previous one (Fig. 22.7).

The problem is that this does not correspond to the symmetry structure
of the observer. In fact, it is the furthest possible rotational distance from the
observer’s symmetry structure, since the x- and y-axes are now maximally
diagonal. In contrast, in this quadrilateral, the nearest axes that would corre-
spond to the observer’s symmetry structure would be horizontal and vertical
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Fig. 22.8. If Klein were right: A projective coordinate system.

- i.e., through the vertices of the figure. Thus the x- and y-axes should be as
shown in the next diagram, Fig. 22.9.

We now want to construct a coordinate system based on these two axes.
Our argument is as follows: First construct the vertical coordinate lines - i.e.,
those parallel to the y-axis. Observe that, whatever the coordinate system,
the sides of the figure produce the same two vanishing points, i.e., the top-left
and top-right converging points in Fig. 22.9. The line shown as connecting
these two points along the top is called the horizon line. As shown, take the
y-axis (vertical) as crossing this line at the point [0, 1, 0]. Now all coordinate
lines parallel to the y-axis will converge at this point. In particular, the two
vertical parallel lines through the left and right vertices of the quadrilateral
will converge at that point.

Next construct the coordinate lines parallel to the x-axis. Symmetry is
not broken about the y-axis. Therefore the coordinate lines parallel to the
x-axis converge at infinity, in fact at the point [1, 0, 0]. This is shown both on
the left and right of the diagram as the double-headed arrows labeled [1, 0, 0].
The parallel horizontal lines represent the lines parallel to the x-axis, and this
single ideal point is at the end of all of them (at both ends).

The figure therefore shows the three points [1, 0, 0], [0, 1, 0], [0, 0, 1], of the
projective simplex that arises by corresponding the symmetry structure of
the figure maximally with that of the viewer. The point outside the simplex,
i.e., the unit point [1, 1, 1], which sets the scale, can be chosen to be the inter-
section of the positive x- and y-coordinate lines that go through the vertex.
This point is less important than the others, because the others determine
the parallel grid structure of the plane. However, this point does let us assign
coordinate numbers to those lines. Thus, a completely specified coordinate
system has now been obtained, created by a projective basis [1, 0, 0], [0, 1, 0],
[0, 0, 1], [1, 1, 1].
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Fig. 22.9. The appropriate projective coordinate system for the second Goldmeier
figure.

A remarkable fact now emerges from what has been done. To clarify this,
let us extract from the figure, the coordinate system just created. This coordi-
nate system is shown separately in the next diagram Fig. 22.10. To emphasize
however: This is the coordinate system inferred from the second Goldmeier
figure. The remarkable thing that can be seen is that this coordinate system
is much more symmetric than the coordinate system derived from the first
Goldmeier figure Fig. 22.7.

This symmetry can be precisely understood as follows: In the coordinate
system for the first Goldmeier figure, the coordinate lines in the x-direction
converge at a vanishing point; and the coordinate lines in the y-direction con-
verge at a vanishing point. However, in the coordinate system for the second
Goldmeier figure, the coordinate lines in the x-direction do not converge at
a vanishing point; i.e., they remain parallel. Only the coordinate lines in the
y-direction converge at a vanishing point.

The issue of vanishing points relates to the issue of symmetry. The more
vanishing points in the coordinate lines, the greater the asymmetry - because
the coordinate lines correspond to the symmetry structure. That is, in the
first Goldmeier figure, the existence of a vanishing point for the coordinate
lines in the x-direction means that symmetry about the y-axis is broken.
Similarly, the existence of a vanishing point for the coordinate lines in the y-
direction means that symmetry about the x-axis is broken. Now, in the second
Goldmeier figure the non-existence of a vanishing point for the coordinate
lines in the x-direction means that symmetry is not broken about the y-axis,
as can be seen by directly inspecting Fig. 22.10. Similarly, the existence of
a vanishing point only for the coordinate lines in the y-direction means that
symmetry is broken only about the x-axis.
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Fig. 22.10. The projective coordinate system for the second Goldmeier figure.

Here, therefore, is another crucial violation of Klein’s view of geometry:
The projective coordinate systems derived from the two Goldmeier figures
imply that the first figure is more asymmetric than the second. This conclu-
sion violates Klein’s view - in which the figures would be equally symmetric.

22.9 Non-transitivity of the Geometry Group

The above concepts in mind, let us take a moment to consider the relation
of our approach to that of Klein’s. First observe that our approach is made
possible by transfer - i.e., the transfer of symmetric structures onto asymmet-
ric structures. This is realized as a wreath product in which the fiber is the
symmetry group of the symmetrical structure, and the symmetrical structure
is then identified with the identity element of the control group. The control
group is Klein’s geometry group but realized, via the wreath action, as an
asymmetrizing group.

Notice that this can result in the non-transitivity of the Klein geometry
group. For example, because of the symmetry assignment in the two Gold-
meier figures, they are no longer in the same orbit of the Klein group. In
contrast, transitivity is basic to the Klein view. For example, the fundamen-
tal theorem of Kleinian projective geometry states that the projective group
is transitive on projective bases - e.g., on complete quadrilaterals. This cannot
be allowed in our system.

The reasons for the non-transitivity of our generative geometry is ex-
tremely profound, and are as follows:
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The generative structure is inferred from a data set of points, using a sys-
tem of interpretation rules (i.e., our recovery rules). The application of these
rules implies the existence of an observer. Therefore application depends on
the relation of the structure of the observer to the data set. Furthermore,
generative geometry, being exhaustive does not allow any ambiguity in the
inferred generative sequence assigned to the data set - and therefore all as-
pects of the generative sequence are dependent on the relation of the structure
of observer to the data set.

In contrast, the structure of two data sets in Klein geometry can be equiva-
lent simply because such geometry is not generatively exhaustive with respect
to rules applied by an observer and dependent on the observers relation to
the data set. Equivalence of this trivial nature cannot occur in our generative
geometry.

22.10 Regular Translation Structure

Let us concentrate on the grid-line structure created in the previous section.
Grid lines correspond to translational symmetry. The action of the projective
group on this translation structure will now be considered. Since one of the
goals of our theory is generative exhaustiveness, the structure of the grid will
be described as the wreath c-polycyclic group R w© R, and therefore, together
with the projective group as the control group, the following is obtained:

R w© R w© PGL(3,R).

By our anti-Klein view, the fiber copy of R w© R corresponding to the identity
element of the projective control group is that which corresponds to the
Euclidean translation action on the embedded Euclidean plane.

Notice that the above sequence can be wreath sub-appended by an iso-
regular group G, and the result corresponds what we called a projective gen-
erative crystallographic group (p. 159), when R w© R is discretized to Z w© Z.
Thus, the total structure is this:

G w© Z w© Z w© PGL(3,R).

Again, the fiber copy of G w© Z w© Z corresponding to the identity element
in the projective group, would correspond to the configuration which allows
the maximal action of the Euclidean group.

The issue of crystallographic structure is mentioned here because it is our
argument that measuring instruments and other recording devises are nec-
essarily structured as regular hierarchies, that is, wreath c-polycylic wreath-
isometric groups, because such groups allow the maximal recovery of any
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Fig. 22.11. Projective asymmetrization of centered cube.

applied action. In accord with our Externalization Principle, an external in-
ference of past action goes back to a wreath c-polycylic wreath-isometric
group because such a group is maximally ”clean” - and therefore maximally
receptive to recoverability, and hence data registration and memory storage.

22.11 3D Projective Asymmetrization

Let us now move from 2D to 3D perspective. All textbooks explain 3D per-
spective using cubes. Why? The answer we propose follows from our gener-
ative theory and its anti-Erlangen property: Despite the fact that the pro-
jective group is transitive on projective bases, one uses the most symmetric
projective basis as the starting point for generating any arbitrary basis, and
applies the projective group as an asymmetrizing action.

This, we argue, is behind all textbook discussions of how it is possible
to make images more informative. Standardly, the discussion begins with a
cube centered at the origin and facing the viewer, as shown in Fig. 22.11.
The standard textbook points out that this is the least informative view.

To gain more information, the textbook then argues that one must apply
a translation from the origin, e.g., along the x-axis, as shown in Fig. 22.12.
Notice however that if the cube were solid, then all that would be revealed
here would be the front side, and the left side.

Thus, to gain more information, the textbook argues, one must apply
a translation from the origin, that is not along an axis, e.g., as shown in
Fig. 22.13. Now, three sides are visible: the front, left, and bottom sides. The
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Fig. 22.12. Asymmetrization caused by translation of cube along one symmetry
axis.

figure has kept the back side partially visible to reveal that is still parallel to
the viewplane, as is the front side.

Now the fact that the front and back planes are still parallel to the view-
plane means that less depth-cue information is available than one wants for
a compelling image of the cube. Thus the standard textbook then argues
that, to overcome this, one must rotate the cube. Fig. 22.14 shows the cube
rotated about the vertical axis. The front face itself can be seen to contain a
compelling sense of depth. Similarly, Fig. 22.15 shows the cube rotated about
the horizontal axis. Again, the front plane has a compelling sense of depth,
but in a different direction.

The textbook then goes onto to explain that, in each of the rotation figures
just considered (p. 522), only two sides can be seen. Thus to reveal a third
side, a combination of these two rotations must be applied. This is shown
in Fig. 22.16. The textbook points out that, clearly, this view is the most
informative.

This completes the standard argument given in textbooks. The question we
now wish to ask is this: What is actually going on in the standard argument?
What do the writers actually mean by a diagram being ”informative” and by
the successive ”increase of information” over the series of diagrams?

We argue that the term information actually means asymmetry. The value
of expressing it in this way is that the information can be rigorously defined
in terms of group theory. In addition, we argue that the informative nature
of the asymmetry is that it is used by the Asymmetry Principle to infer the
generative structure that encodes the configuration. Our argument proceeds
as follows:
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Fig. 22.13. Additional asymmetrization caused by translation of cube not along a
symmetry axis.

Fig. 22.14. Asymmetrization caused by rotation of cube about vertical axis.
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Fig. 22.15. Asymmetrization caused by rotation of cube about horizontal axis.
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Fig. 22.16. Perspective asymmetrization using arbitrary rotation.

First, one can use the viewing configuration defined in Sect. 22.7, and
illustrated in Figs 22.5 and 22.6 on p. 510. That section was examining the
projective asymmetrization in the Goldmeier effect, which we argued is in
the projective plane. However, this was being done from an extrinsic point
of view, which meant that the projective plane was embedded in projective
3-space. The current section concerns intrinsic 3D projective action, which
means that we are actually using, once again, projective 3-space. Thus the
structure illustrated in Figs 22.5 and 22.6 on p. 510 can be used. If the reader
has forgotton the argument in that section, then he or she should review it -
i.e., starting p. 509.

The only difference between that previous section and the present one is
this: The previous section considered only a 2D projective basis O, Ix, Iy, U .
Now it is necessary to consider a 3D projective basis, and we do so simply by
adding the ideal point Iz to the 2D basis. This will be a ”double-arrow” in the
z direction in Fig. 22.5. Most importantly, observe that the projective simplex
O, Ix, Iy, Iz , of this basis, is the most symmetrical simplex possible relative to
the observer’s structure, which is the hyperoctahedral wreath group of degree
3. In fact, the degree 3 version was already being used in that previous section
because we wanted to consider symmetry with respect to the 3D extrinsic
structure.

Now the cube starting-state maximizes the observer’s symmetry, in the
manner described in Sect. 22.7. The cube is obtained from the hyperoctahe-
dral wreath group by wreath sub-appending the hyperplane representing the
cube face as a fiber. That is, the cube is given by the hyperoctahedral wreath
hyperplane group HWH(3). The hyperoctahedral structure within this group
is a unfolded version of the hyperoctahedral structure of the observer - again
in the manner described in Sect. 22.7.
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With this in mind, now turn to the sequence of figures in the present
section. To fully understand them, it will be sometimes valuable to consider
them to be 3D structures obtained by a perspective transformation - i.e., prior
to usual parallel projection onto the viewing plane.

According to our analysis, each of the figures breaks one or more of the
three fiber reflectional symmetries of the hyperoctahedral wreath group. This
group should be considered fixed to the starting state of the cube. Now let
us interpret each of the figures in terms of symmetry-breaking.

Fig. 22.11: Here the reflectional symmetry between the front and back planes
is broken - as represented by the fact that they are of different sizes in the
image.

Fig. 22.12: Here, in addition, the left-right reflectional symmetry is broken.

Fig. 22.13: Here, in addition, the top-bottom reflectional symmetry is also
broken.

Thus the above three figures successively break the three reflectional fiber
symmetries of the hyperoctahedral wreath group.

Before turning to the remaining figures - the rotations - a new level of
understanding needs to be introduced: The issue that needs to be considered
is this: Although the symmetries of the cube are being broken, it is not
necessarily the case that the symmetries of the 2D fibers, the faces, are being
broken, or the symmetries of the lines that are the edges. To understand what
is going on here, we need to use the recursive structure of the recursive solid
hyperoctahedral wreath hyperplane group, RS-HWH(n), which we proposed as
being the symmetry group of the solid n-cube (Sect. 16.6). Recall that a basic
aspect of this group is that each of the hyperplane faces are themselves solid
n−1 cubes, which have solid n−2 cubes as faces; and so on downwards. Thus,
in the case of the solid 3-cube, begin considered here, each face is a solid 2-
cube, and face edge is a solid 1-cube. They are recursively nested within each
other, in the manner described in Sect. 16.6. Note, generally, the reader should
not confuse the recursive nature of the RS-HWH(n) group, with the recursive
nature of the GPn. The former is recursive on the hyperoctahedral structure
- recognizing that each face, sub-face, etc., is structured by a hyperoctahedral
group. The latter is recursive on the translation structure of a projective sub-
space. It is essentially used as a fiber group, substituting for each Rj (of any
level) in the former recursive group, an extended group GPj .

The overall action of the projective group can now be considered as af-
fecting each of the recursive levels. For example, in Fig. 22.13, the most
asymmetrical of the configurations just described, even though the cube has
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been asymmetrized, the front face has not; i.e., it does not have a vanishing
point. Thus the projective action has not affected this fiber copy; i.e., it has
not broken the RS-HWH(2) structure of this fiber copy.

With this in mind, one can now understand what is going on in the
rotation figures, as follows:

Fig. 22.14: In this figure, let us go successively down the recursive hierarchy.
At the top level, the cube has retained its reflectional symmetry about the
horizontal plane, but lost its symmetries about the other Cartesian planes.
Now go down one recursive level. Here the RS-HWH(2) group of each fiber
face (2-cube) has been broken, because each fiber face is a plane that con-
tains a vanishing point. Observe furthermore, that the top and bottom faces
each contain two vanishing points, whereas the side faces contain only one
vanishing point. Therefore there has been greater symmetry-breaking in the
top and bottom faces than the side-faces. We emphasize that the symmetries
being broken here are the 2D reflectional symmetries associated with the
square - i.e., that map opposite edges of the square onto each other. Now go
down one more recursive level. Observe that, while the RS-HWH(1) group
on each ”horizontal” fiber line (1-cube) has been broken - by the presence of
a vanishing point - the RS-HWH(1) group on each vertical fiber line has not.
We emphasize that the symmetries being broken here are the 1D reflectional
symmetries associated with the internal structure of lines; i.e., not between
lines as in the level above. That is, the symmetry-breaking of a line; is due
to the ideal point being pulled along the line, inwards from infinity.

Fig. 22.15: Here, there is exactly the same structure as that just defined,
except that horizontal is exchanged for vertical.

Fig. 22.16. Here all hyperoctahedral levels in the recursive hierarchy have
been fully broken. That is, the cube RS-HWH(3) has been broken in all
its three reflection planes; each face RS-HWH(2) has been broken in both
its reflection axes; each edge RS-HWH(1) has been broken in its reflection
point.

INFORMATIVENESS OF A PROJECTIVE IMAGE. The infor-
mativeness of a projective image can be fully characterized by its particular
symmetry-breaking of the RS-HWH(n) group, including all recursive fibers
within that group.

Notice also, on each of the three recursive levels, the visual salience of
the symmetry-breaking of that level, means that the visual system is anti-
Kleinian on all levels.
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Notice finally that, by using the Asymmetry Principle, one can thereby
recover the unfolding actions - translations and/or rotations - that produced
the configuration by movement from its original location and orientation at
the origin of the world coordinate system (identified with the observer). This
is exactly how a human observer defines the configuration.

22.12 Against the Erlanger Program: Summary

—————————————————————————————————
NON-MEMORY VS. MEMORY

Klein geometry: This geometry concerns memorylessness. A geometrical ob-
ject is defined as an invariant under transformations. An invariant is that
part of a configuration that is memoryless with respect to any applied trans-
formation.

Generative geometry: This geometry concerns the creation of memory. A
geometric object is defined as a structure from which one can recover the
sequence of actions that created its current state. In other words, in our
view, there is an equivalence between the concept of geometry and the concept
of memory-storage.
—————————————————————————————————
NON-RECOVERABILITY VS. RECOVERABILITY

Klein geometry: Concerns non-recoverability.

Generative geometry: Concerns recoverability.
—————————————————————————————————
SYMMETRIZATION VS. ASYMMETRIZATION

Klein geometry: The group of a geometry acts symmetrically on the chosen
space.

Generative geometry: The group of a geometry acts asymmetrically on the
chosen space, converting symmetric figures into asymmetric ones; not the
reverse.
—————————————————————————————————
—————————————————————————————————
EQUALITY VS. INEQUALITY OF FIGURES
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Klein geometry: Figures linked by the transformation group are equal.

Generative geometry: Figures linked by the transformation group can be
unequal, in the sense that one comes from the level below (i.e., is more sym-
metric)
—————————————————————————————————
EUCLIDEAN −→ AFFINE −→ PROJECTIVE HIERARCHY

Klein geometry: A level in this hierarchy does not recognize the difference be-
tween structures generated on the previous level and structures not generated
on the previous level, i.e., symmetric vs. asymmetric structures.

Generative geometry: Each level provides the symmetric structures, relative
to which the next level is an asymmetrization. Furthermore, each asymmetric
structure, in a level, is a transferred version of a symmetric structure on the
previous level.
—————————————————————————————————
NON-EXHAUSTIVENESS VS. EXHAUSTIVENESS OF TRANSFORMA-
TIONAL DESCRIPTION

Klein geometry: A geometry uses a single group of transformations; and on
only one level.

Generative geometry: Geometry must be exhausively generative. Therefore
it must use a group of transformations on every level. Furthermore, it can
use different groups on different levels.
—————————————————————————————————
THE GEOMETRY GROUP ACTS ON A SET VS. A GROUP

Klein geometry: The geometry group acts on an ordinary set. This is because
structure is not generative all the way down.

Generative geometry: Structure is defined as a wreath product in which the
fiber is the symmetry group of a symmetrical structure, and the symmetrical
structure is then equated with the identity element of the control group. Thus
the action of the geometry group on figures, is the action of a group on a
group, rather than a set, and this action is algebraically complex.
—————————————————————————————————
—————————————————————————————————
INVARIANCE VS. TRANSFER
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Klein geometry: What is shared between a figure A and its transformed
version B is an invariant.

Generative geometry: What is shared between a figure A and its transformed
version B is actually figure A. This is because figure B is a transferred version
of figure A.
—————————————————————————————————
TRANSITIVITY VS. NON-TRANSITIVITY

Klein geometry: The group has wide transitivity in its action, since figures
are merely point sets. For example, the two Goldmeier figures can be mapped
onto each other.

Generative geometry: The group has limited transitivity in its action, since
figures are themselves generative structures. For example, the two Goldmeier
figures cannot be mapped onto each other, and indeed one is more symmetric
than the other, despite having the same point sets.
—————————————————————————————————
OBSERVER-INDEPENDENT VS. OBSERVER-RELATIVE

Klein geometry: The observer structure is irrelevant.

Generative geometry: All structure is ultimately a transferred version of the
observer structure.
—————————————————————————————————
COORDINATE-FREE VS. COORDINATE-FREE

Klein geometry: A geometric object is coordinate free.

Generative geometry: A geometric object is non-coordinate free. Because an
object is a structure generated from a symmetric ground state, and because
a coordinate frame is really a symmetric ground state, one cannot remove
the coordinate frame without removing the object’s structure.
—————————————————————————————————
—————————————————————————————————
EQUIVALENCE VS. NON-EQUIVALENCE BETWEEN IDEAL
AND VANISHING POINTS

Klein geometry: Points at infinity have the same structural status as the
vanishing points into which they are transformed after projective action.
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Table 22.1. Comparison between Klein’s theory of geometry and the generative
theory.

Klein’s Generative

Memoryless Memory storage.
Non-recoverability Recoverability.
Symmetric action Asymmetric action.
Figure equality under group action Figure inequality under group action.
Levels unlinked Levels linked.
Non-exhaustive Exhaustive
Group acts on set Group acts on group
Source and target share invariant Source and target share source
Wide transitivity Narrow transitivity
Observer independent Observer dependent
Coordinate free Non coordinate free
Unique description Multiple descriptions

Generative geometry: The points at infinity correspond to observer symme-
tries, and the vanishing points into which they are transformed are observer
asymmetries. Therefore the former are generative ground states, and the lat-
ter are derived states.
—————————————————————————————————
ONE DESCRIPTION PER SET VS. SEVERAL DESCRIPTIONS PER SET

Klein geometry: A particular set always has the same description.

Generative geometry: A particular set can have a number of non-equivalent
descripitions. This is because the description given to the data set is a gen-
erative version of the observer’s structure, and thus, if the data set has a
different relationship (e.g., orientation) to the observer, then the data set
will receive a different structural description.
—————————————————————————————————
These points are listed in Table 22.1.



A. Semi-direct Products

A.1 Normal Subgroups

A group extension is a means of extending one group by another. A semi-
direct product is a particular type of group extension, called a splitting ex-
tension. Standardly, a group extension is built up by starting with a type of
group called a normal subgroup, and extending the latter. Therefore we need
to understand what a normal subgroup is.

Any subgroup S of a group G is a subset that is also a group. One writes

S < G

where < means ”subgroup of”. Amongst the subgroups of a group, a par-
ticular type, called normal subgroups, are the most significant. The reason is
that they provide maps from the group, as follows:

A homomorphism π : G −→ H from a group G onto a group H is a map
which preserves the group operation; that is:

π(g1g2) = π(g1)π(g2).

Now consider the subset N of elements of G that are sent to the identity
element e in H , as illustrated in Fig. A.1. The subset N forms a subgroup of
G, called the kernel of the homomorphism. A normal subgroup is a subgroup
that can be the kernel of some homomorphism. One writes:

N ✁G

where ✁ means ”normal subgroup of”.
A direct way of defining a normal subgroup is this: A normal subroup N

of G is a subgroup such that, for any element g in G,

gN = Ng (A.1)
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Fig. A.1. The kernel N of a homomorphism.

By this one means: Suppose the subgroup N can be written like this:

N = { n1, n2, n3, . . . }.

Then the set gN can be written like this:

gN = { gn1, gn2, gn3, . . . },

and the set Ng can be written like this:

Ng = { n1g, n2g, n3g, . . . }.

The condition gN = Ng states that gN and Ng are equal as sets. The
two sets are called left and right cosets of N . They can be considered to be
translates of the subgroup N under the action of g. The element g is called
the coset leader.

The normal subgroup condition (A.1) can obviously be re-written like
this:

gNg−1 = N. (A.2)

This is an extremely important expression. One calls the bracketing g − g−1

around N a conjugation operation. Expression (A.2) states that a normal
subgroupN is invariant under conjugation by any member g of G. By this one
really means that g−g−1 sends N isomorphically onto itself. An isomorphism
is a homomorphism that is 1-1 and onto. An isomorphism of a group onto
itself is called an automorphism of the group. Thus, expression (A.2) states
that a subgroup N is normal if conjugation of N by any member g ∈ G acts
as an automorphism of N .
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A.2 Semi-direct Products

A group extension is a means of extending one group by another. Standardly,
a group extension is built up by starting with a normal subgroup, and adding
another group. A semi-direct product is a particular type of group extension,
called a splitting extension.

Semi-direct products are by far the most frequent means of combining
groups in group theory. This section will give an easy example of a semi-
direct product. It is very important, for the remainder of the book, that the
reader fully grasp this example.

Consider the group D4, which can be regarded as the symmetry group of
the square, i.e., the group of transformations that send the square back onto
itself. D4 has eight elements which will be written in this way:

D4 = { e, r90, r180, r270, (A.3)
mV , mD, mH , md }.

The top row are the four rotations rθ that send the square to itself, and the
bottom row are the four reflections that send the square to itself, where

mV = reflection about the vertical axis,
mH = reflection about the horizontal axis,
mD = reflection about one of the diagonal axes D,
md = reflection about the other diagonal axis d.

Two particular subgroups of D4 will now be considered: The first is the
subgroup Z4 of four rotations:

Z4 = { e, r90, r180, r270 }. (A.4)

The successive group elements here are obviously rotations by successive 900

increments. The other subgroup is the group generated by reflection mV

about the vertical axis:

Z2 = { e, mV } (A.5)

which is obviously a cyclic group of order 2.
Now the subgroup Z2, just defined, is not a normal subgroup of D4.

However, the subgroup Z4 is a normal subgroup. This means that, in D4 the
subgroup Z4 can be the kernel of a homomorphism. In fact, let us construct
a homomorphism

π : D4 −→ Z2.

as shown in Fig. A.2. Notice that the kernel is Z4. Notice also that, in the par-
ticular case being considered, the image Z2 = {e,mV } of the homomorphism
happens to be a subgroup of D4.
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Fig. A.2. A homomorphism from D4 onto Z2 with kernel Z4.

We now have the ingredients for constructing a semi-direct product. The
group D4 will be constructed by starting with the normal subgroup Z4 and
adding the subgroup Z2. This is written as follows:

D4 = Z4 s© Z2

where the symbol s© means semi-direct product. Notice that the normal sub-
group Z4 is written on the left of s© and the non-normal subgroup Z2 is
written on the right of s©.

Other features should be noticed about this construction. The first is that
the two component groups Z4 and Z2 intersect only at the identity element.
This can be seen instantly by recalling that Z4 = { e, r90, r180, r270 } and
Z2 = { e, mV }.

The second feature is that, if these two subgroups are multiplied element-
wise, we get the entire 8 elements of D4. That is Z4Z2 = D4. Generally
therefore, the following gives the definition of a semi-direct product:

Definition A.1. Consider two subgroups N and H of G. Then G is a
called a semi-direct product of N and H if

(1) N ✁G
(2) N ∩H = {e}
(3) NH = G.

G is also called a splitting extension of N by H. Any subgroup H, fulfilling
conditions (2) and (3), is called a complement of N in G.

Splitting extensions therefore have a particularly ”clean” property: One
can think of them as allowing G to be split into N and a complement H
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which is also part of G. There also exist non-splitting extensions. In such
cases, N does not have a complement H in G. For details on such extensions,
the reader should consult our book on group extensions, Leyton [98].

A.3 The Extending Group H as an Automorphism
Group

The reader will recall from Sect. A.1 that a normal subgroup N of G has the
property that, for any element g of G,

gNg−1 = N. (A.6)

That is, each element g acts on N as an automorphism, when g is used as
the conjugation g − g−1.

In particular, it is clear that, whenG is constructed as a splitting extension
of N by H , the elements of H will act on N as automorphisms of N . Now
the set of automorphisms of N form a group, simply by composition. Thus
if Aut[N ] denotes the group of automorphisms of N , then the fact that each
member of H is understood as an automorphism of N is equivalent to saying
that there is a map

σ : H −→ Aut[N ].

This map is in fact a homomorphism from H into Aut[N ].
Let us illustrate how this works with our example of D4. Here we are

creating the splitting extension:

D4 = Z4 s© Z2

which means that Z2 acts as an automorphism group of Z4. In other words,
there is a map

σ : Z2 −→ Aut[Z4].

This map is easy to understand. The identity element of Z2 is sent to the
identity element of Aut[Z4], that is, the element that has no effect on Z4.
The other element of Z2 is sent to the automorphism of Z4 which makes a
vertically reflected copy of Z4. That is, Z4 can be defined as the group of
clockwise rotations. The automorphism creates the reflected version of this;
i.e., it sends the clockwise version of Z4 onto the counter-clockwise version.
This automorphism is shown in Fig. A.3. In this figure, the four elements
down the left side comprise Z4. Similarly, the four elements down the right
side comprise Z4. The arrows therefore map Z4 to itself. This map sends
every clockwise rotation on the left to its reflected version on the right. For
example, r90 is sent to r270, which is r90 in the reverse direction.
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Fig. A.3. Reflection acting as an automorphism on Z4.

Now let us return to the general case of a splitting extension of N by H .
It was said that, associated with the splitting extension, there is a homomor-
phism of the form

σ : H −→ Aut[N ].

This represents H within Aut[N ]. There are of course several alternative
representations that H can have within Aut[N ], that is, several alternative
maps σ. Each one of these different representations of H can be chosen to
produce a different splitting extension of N . That is, the extension, which
is being created, depends on the particular representation σ of H that is
chosen. Thus, it is necessary to indicate which representation σ was chosen
in the extension. This is shown thus:

G = N s©σH.

A.4 Multiplication in a Semi-direct Product

It is now necessary to see how group multiplication is defined in a group G
that has been created as a semi-direct product N s©σH .

Let any element from the group N s©σH be written like this:

〈 n | h 〉

where n is from the group N , and h is from the group H . It is necessary to
specify what happens when two elements 〈 n1 | h1 〉 and 〈 n2 | h2 〉 are
multiplied together, thus:

〈 n1 | h1 〉 ◦ 〈 n2 | h2 〉.

Obviously, the simplest method would be to do componentwise multiplication
thus:
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〈 n1n2 | h1h2 〉. (A.7)

However, in a semi-direct product, an ammendment has to be made to the
first element n1 in this expression. Instead of using n1, one uses the au-
tomorphic version of n1 supplied by h2, as follows: Recall that h2 acts as
an automorphism of N . Its automorphism is called σ(h2), using the map
σ : H −→ Aut[N ]. Thus one supplies σ(h2)[n1] instead of n1 to the first
position in the product. That is, instead of (A.7), one gets

〈 σ(h2)[n1] n2 | h1h2 〉.

The reader can see therefore that multiplication of group elements in a semi-
direct product G = N s©σH uses the particular way in whichH is represented
as an automorphism group of N .

A.5 Direct Products

As said above, each splitting extension is determined by a choice of repre-
sentation σ : H −→ Aut[N ]. Now let us consider the simplest example of a
representation. Let all of H be mapped to the identity element Id of Aut[N ].
Clearly Id is the automorphism that does nothing to N .

This particular choice of σ produces the simplest possible multiplication
structure within G = N s©σH . Recall that generally, group multiplication
〈 n1 | h1 〉 ◦ 〈 n2 | h2 〉 is defined thus:

〈 σ(h2)[n1] n2 | h1h2 〉.

However, in the particular choice we have now made for σ, the automorphism
σ(h2) is simply the identity map Id. This means that multiplication becomes
this:

〈 n1n2 | h1h2 〉.
Thus, the multiplication 〈 n1 | h1 〉 ◦ 〈 n2 | h2 〉 has been carried out compo-
nentwise. This gives the simplest of all types of splitting extension, called a
direct product. It is written thus:

G = N ×H.

In a direct product, both the subgroups N and H are normal subgroups of
G.

As an example, return to the case of D4 as a semi-direct product

D4 = Z4 s©σZ2.

We saw that, here, the map σ : Z2 −→ Aut[Z4] was not trivial. In particular,
one of the members of Z2 is not sent to Id, but to the reflection automorphism
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in Aut[Z4]. However, another splitting extension could be created in which
σ : Z2 −→ Aut[Z4] sends all of Z2 to the identity element Id of Aut[Z4]. In
this case, one would get the direct product

Z4 × Z2.

This is not the group D4. Thus we have constructed two different groups, D4

and Z4 × Z2. Both were created as splitting extensions of Z4 and Z2. But
they used different maps σ : Z2 −→ Aut[Z4] and therefore lead to different
resulting groups.



B. Symbols

✁ normal subgroup, p. 531
C control set p. 82
D4 the dihedral symmetry group a square, p. 533
Dn the dihedral symmetry group of a regular n-sided polygon.
Deti the detected symmetry group, p. 121
F fiber set p. 81
G(C) control group p. 82
G(F ) fiber group p. 81
HWH(n), hyperoctahedral wreath hyperplane group degree n p. 398-409
�, a group generated by a chosen set of compositional operators, p. 480
RS-HWH(n), recursive solid wreath hyperoctahedral wreath
hyperplane group, p. 408
s© semi-direct product, p. 531-538
s©τ semi-direct product via the τ -representation p. 91
SE(3), the special Euclidean group on 3-space
S-HWH(n), solid hyperoctahedral wreath hyperplane group, p. 405
SO(2), the continuous group of rotations of the plane
SO(3), the continuous group of rotations of the 3-space
τ = transfer p. 89
w© wreath product p. 4, p. 91
Z4 the cyclic group of order 4 represented as the group of 900 rotations, p. 7
Zn the cyclic group of order n
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A. Semi-direct Products

A.1 Normal Subgroups

A group extension is a means of extending one group by another. A semi-
direct product is a particular type of group extension, called a splitting ex-
tension. Standardly, a group extension is built up by starting with a type of
group called a normal subgroup, and extending the latter. Therefore we need
to understand what a normal subgroup is.

Any subgroup S of a group G is a subset that is also a group. One writes

S < G

where < means ”subgroup of”. Amongst the subgroups of a group, a par-
ticular type, called normal subgroups, are the most significant. The reason is
that they provide maps from the group, as follows:

A homomorphism π : G −→ H from a group G onto a group H is a map
which preserves the group operation; that is:

π(g1g2) = π(g1)π(g2).

Now consider the subset N of elements of G that are sent to the identity
element e in H , as illustrated in Fig. A.1. The subset N forms a subgroup of
G, called the kernel of the homomorphism. A normal subgroup is a subgroup
that can be the kernel of some homomorphism. One writes:

N ✁G

where ✁ means ”normal subgroup of”.
A direct way of defining a normal subgroup is this: A normal subroup N

of G is a subgroup such that, for any element g in G,

gN = Ng (A.1)
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Fig. A.1. The kernel N of a homomorphism.

By this one means: Suppose the subgroup N can be written like this:

N = { n1, n2, n3, . . . }.

Then the set gN can be written like this:

gN = { gn1, gn2, gn3, . . . },

and the set Ng can be written like this:

Ng = { n1g, n2g, n3g, . . . }.

The condition gN = Ng states that gN and Ng are equal as sets. The
two sets are called left and right cosets of N . They can be considered to be
translates of the subgroup N under the action of g. The element g is called
the coset leader.

The normal subgroup condition (A.1) can obviously be re-written like
this:

gNg−1 = N. (A.2)

This is an extremely important expression. One calls the bracketing g − g−1

around N a conjugation operation. Expression (A.2) states that a normal
subgroupN is invariant under conjugation by any member g of G. By this one
really means that g−g−1 sends N isomorphically onto itself. An isomorphism
is a homomorphism that is 1-1 and onto. An isomorphism of a group onto
itself is called an automorphism of the group. Thus, expression (A.2) states
that a subgroup N is normal if conjugation of N by any member g ∈ G acts
as an automorphism of N .
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A.2 Semi-direct Products

A group extension is a means of extending one group by another. Standardly,
a group extension is built up by starting with a normal subgroup, and adding
another group. A semi-direct product is a particular type of group extension,
called a splitting extension.

Semi-direct products are by far the most frequent means of combining
groups in group theory. This section will give an easy example of a semi-
direct product. It is very important, for the remainder of the book, that the
reader fully grasp this example.

Consider the group D4, which can be regarded as the symmetry group of
the square, i.e., the group of transformations that send the square back onto
itself. D4 has eight elements which will be written in this way:

D4 = { e, r90, r180, r270, (A.3)
mV , mD, mH , md }.

The top row are the four rotations rθ that send the square to itself, and the
bottom row are the four reflections that send the square to itself, where

mV = reflection about the vertical axis,
mH = reflection about the horizontal axis,
mD = reflection about one of the diagonal axes D,
md = reflection about the other diagonal axis d.

Two particular subgroups of D4 will now be considered: The first is the
subgroup Z4 of four rotations:

Z4 = { e, r90, r180, r270 }. (A.4)

The successive group elements here are obviously rotations by successive 900

increments. The other subgroup is the group generated by reflection mV

about the vertical axis:

Z2 = { e, mV } (A.5)

which is obviously a cyclic group of order 2.
Now the subgroup Z2, just defined, is not a normal subgroup of D4.

However, the subgroup Z4 is a normal subgroup. This means that, in D4 the
subgroup Z4 can be the kernel of a homomorphism. In fact, let us construct
a homomorphism

π : D4 −→ Z2.

as shown in Fig. A.2. Notice that the kernel is Z4. Notice also that, in the par-
ticular case being considered, the image Z2 = {e,mV } of the homomorphism
happens to be a subgroup of D4.
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Fig. A.2. A homomorphism from D4 onto Z2 with kernel Z4.

We now have the ingredients for constructing a semi-direct product. The
group D4 will be constructed by starting with the normal subgroup Z4 and
adding the subgroup Z2. This is written as follows:

D4 = Z4 s© Z2

where the symbol s© means semi-direct product. Notice that the normal sub-
group Z4 is written on the left of s© and the non-normal subgroup Z2 is
written on the right of s©.

Other features should be noticed about this construction. The first is that
the two component groups Z4 and Z2 intersect only at the identity element.
This can be seen instantly by recalling that Z4 = { e, r90, r180, r270 } and
Z2 = { e, mV }.

The second feature is that, if these two subgroups are multiplied element-
wise, we get the entire 8 elements of D4. That is Z4Z2 = D4. Generally
therefore, the following gives the definition of a semi-direct product:

Definition A.1. Consider two subgroups N and H of G. Then G is a
called a semi-direct product of N and H if

(1) N ✁G
(2) N ∩H = {e}
(3) NH = G.

G is also called a splitting extension of N by H. Any subgroup H, fulfilling
conditions (2) and (3), is called a complement of N in G.

Splitting extensions therefore have a particularly ”clean” property: One
can think of them as allowing G to be split into N and a complement H
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which is also part of G. There also exist non-splitting extensions. In such
cases, N does not have a complement H in G. For details on such extensions,
the reader should consult our book on group extensions, Leyton [98].

A.3 The Extending Group H as an Automorphism
Group

The reader will recall from Sect. A.1 that a normal subgroup N of G has the
property that, for any element g of G,

gNg−1 = N. (A.6)

That is, each element g acts on N as an automorphism, when g is used as
the conjugation g − g−1.

In particular, it is clear that, whenG is constructed as a splitting extension
of N by H , the elements of H will act on N as automorphisms of N . Now
the set of automorphisms of N form a group, simply by composition. Thus
if Aut[N ] denotes the group of automorphisms of N , then the fact that each
member of H is understood as an automorphism of N is equivalent to saying
that there is a map

σ : H −→ Aut[N ].

This map is in fact a homomorphism from H into Aut[N ].
Let us illustrate how this works with our example of D4. Here we are

creating the splitting extension:

D4 = Z4 s© Z2

which means that Z2 acts as an automorphism group of Z4. In other words,
there is a map

σ : Z2 −→ Aut[Z4].

This map is easy to understand. The identity element of Z2 is sent to the
identity element of Aut[Z4], that is, the element that has no effect on Z4.
The other element of Z2 is sent to the automorphism of Z4 which makes a
vertically reflected copy of Z4. That is, Z4 can be defined as the group of
clockwise rotations. The automorphism creates the reflected version of this;
i.e., it sends the clockwise version of Z4 onto the counter-clockwise version.
This automorphism is shown in Fig. A.3. In this figure, the four elements
down the left side comprise Z4. Similarly, the four elements down the right
side comprise Z4. The arrows therefore map Z4 to itself. This map sends
every clockwise rotation on the left to its reflected version on the right. For
example, r90 is sent to r270, which is r90 in the reverse direction.
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Fig. A.3. Reflection acting as an automorphism on Z4.

Now let us return to the general case of a splitting extension of N by H .
It was said that, associated with the splitting extension, there is a homomor-
phism of the form

σ : H −→ Aut[N ].

This represents H within Aut[N ]. There are of course several alternative
representations that H can have within Aut[N ], that is, several alternative
maps σ. Each one of these different representations of H can be chosen to
produce a different splitting extension of N . That is, the extension, which
is being created, depends on the particular representation σ of H that is
chosen. Thus, it is necessary to indicate which representation σ was chosen
in the extension. This is shown thus:

G = N s©σH.

A.4 Multiplication in a Semi-direct Product

It is now necessary to see how group multiplication is defined in a group G
that has been created as a semi-direct product N s©σH .

Let any element from the group N s©σH be written like this:

〈 n | h 〉

where n is from the group N , and h is from the group H . It is necessary to
specify what happens when two elements 〈 n1 | h1 〉 and 〈 n2 | h2 〉 are
multiplied together, thus:

〈 n1 | h1 〉 ◦ 〈 n2 | h2 〉.

Obviously, the simplest method would be to do componentwise multiplication
thus:
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〈 n1n2 | h1h2 〉. (A.7)

However, in a semi-direct product, an ammendment has to be made to the
first element n1 in this expression. Instead of using n1, one uses the au-
tomorphic version of n1 supplied by h2, as follows: Recall that h2 acts as
an automorphism of N . Its automorphism is called σ(h2), using the map
σ : H −→ Aut[N ]. Thus one supplies σ(h2)[n1] instead of n1 to the first
position in the product. That is, instead of (A.7), one gets

〈 σ(h2)[n1] n2 | h1h2 〉.

The reader can see therefore that multiplication of group elements in a semi-
direct product G = N s©σH uses the particular way in which H is represented
as an automorphism group of N .

A.5 Direct Products

As said above, each splitting extension is determined by a choice of repre-
sentation σ : H −→ Aut[N ]. Now let us consider the simplest example of a
representation. Let all of H be mapped to the identity element Id of Aut[N ].
Clearly Id is the automorphism that does nothing to N .

This particular choice of σ produces the simplest possible multiplication
structure within G = N s©σH . Recall that generally, group multiplication
〈 n1 | h1 〉 ◦ 〈 n2 | h2 〉 is defined thus:

〈 σ(h2)[n1] n2 | h1h2 〉.

However, in the particular choice we have now made for σ, the automorphism
σ(h2) is simply the identity map Id. This means that multiplication becomes
this:

〈 n1n2 | h1h2 〉.
Thus, the multiplication 〈 n1 | h1 〉 ◦ 〈 n2 | h2 〉 has been carried out compo-
nentwise. This gives the simplest of all types of splitting extension, called a
direct product. It is written thus:

G = N ×H.

In a direct product, both the subgroups N and H are normal subgroups of
G.

As an example, return to the case of D4 as a semi-direct product

D4 = Z4 s©σZ2.

We saw that, here, the map σ : Z2 −→ Aut[Z4] was not trivial. In particular,
one of the members of Z2 is not sent to Id, but to the reflection automorphism
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in Aut[Z4]. However, another splitting extension could be created in which
σ : Z2 −→ Aut[Z4] sends all of Z2 to the identity element Id of Aut[Z4]. In
this case, one would get the direct product

Z4 × Z2.

This is not the group D4. Thus we have constructed two different groups, D4

and Z4 × Z2. Both were created as splitting extensions of Z4 and Z2. But
they used different maps σ : Z2 −→ Aut[Z4] and therefore lead to different
resulting groups.



B. Symbols

✁ normal subgroup, p. 531
C control set p. 82
D4 the dihedral symmetry group a square, p. 533
Dn the dihedral symmetry group of a regular n-sided polygon.
Deti the detected symmetry group, p. 121
F fiber set p. 81
G(C) control group p. 82
G(F ) fiber group p. 81
HWH(n), hyperoctahedral wreath hyperplane group degree n p. 398-409
�, a group generated by a chosen set of compositional operators, p. 480
RS-HWH(n), recursive solid wreath hyperoctahedral wreath
hyperplane group, p. 408
s© semi-direct product, p. 531-538
s©τ semi-direct product via the τ -representation p. 91
SE(3), the special Euclidean group on 3-space
S-HWH(n), solid hyperoctahedral wreath hyperplane group, p. 405
SO(2), the continuous group of rotations of the plane
SO(3), the continuous group of rotations of the 3-space
τ = transfer p. 89
w© wreath product p. 4, p. 91
Z4 the cyclic group of order 4 represented as the group of 900 rotations, p. 7
Zn the cyclic group of order n
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