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Preface

In this book, we attempt to capture the excitement and inspiration that has been
generated during a series of Dagstuhl Seminars that have looked at visualization
and processing of tensor fields. This book includes contributions from attendees of
the third meeting held in July 2009. As in the two earlier volumes, the authors report
on recent research results as well as opining on future directions for the analysis and
visualization of tensor fields. Topics range from applications of the analysis of tensor
fields to purer research into their mathematical and analytical properties. One of the
goals of this seminar was to bring together researchers from along the axis between
pure and applied research, identifying new multidisciplinary research challenges.
This book, we hope, will continue to further that goal in a broader context.

The manuscript is organized into seven parts. The parts, to some degree, increase
in dimensionality and in mathematical sophistication. One change we implemented
in this third in a series of Dagstuhl seminars is that it no longer restricts the
underlying data models to second-order tensor fields. Research on representations
that go beyond second-order tensors are clearly necessary, as became more evident
during the seminars.

Part I, “Structure-Tensor Computation,” focuses primarily on the generation of
the so-called structure tensor to characterize image structure information. This
information is often needed for feature preserving image processing techniques.
The chapters present generalizations of the methodology of classic structure tensor
estimation and its application beyond scalar fields.

Part II, “Tensor-Field Visualization,” presents three results that extend our ability
to generate, utilize, and visualize tensor fields. One looks at fabric like visualizations
on surfaces. The second uses a Lagrangian metaphor to show the structure of
3D tensor fields. The third presents methods for designing tensor fields that have
different applications in visualization such as realizing sampled texture fields.

Part III, “Applications of Tensor-Field Analysis and Visualization,” offers con-
tributions from researchers in disciplines where the application of analysis and
visualization of second-order tensor fields is relevant. These applied domains
include the simulation of combustion and the measurement of material elasticity
using magnetic resonance imaging.
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Part IV, “Diffusion Weighted MRI Visualization,” breaks out one scientific area
where second-order tensor fields are often applied. The chapters in this part show
techniques for the specific study of diffusion tensor fields produced from magnetic
resonance imaging, typically of the brain. These tensor-valued images capture
properties of the brain white matter and, therefore, its structural connectivity. Brain
connectivity is complex and difficult to understand. These chapters take a step in
making that understanding easier. The last chapter especially focuses on uncertainty
visualization of features derived from the tensor field, which is a recently emerging
research topic.

Part V, “Beyond Second-Order Diffusion Tensor MRI,” expands the complexity
of the underlying data model used in the earlier chapters. Despite the challenges of
working with second-order tensor valued images, the use of second-order tensors
has limitations. In diffusion weighted imaging, it implies a model of the underlying
anatomy and physics that is not sufficiently accurate in some situations. In this
part, models that are more accurate or provide more information are presented.
In diffusion weighted imaging, they also require more complex acquisition and
processing. As the chapters in this part exemplify, some of the research in this field
focuses on limiting the extra complexity.

In Part VI, “Tensor Metrics,” some of the challenges of working with sampled
tensor fields are addressed. Tensor fields are intrinsically defined over a continuous
Euclidean space, and yet they must be represented for computation in some finite
way. Typically, this is done by sampling them spatially, keeping only one tensor
for each small region of an image. Furthermore, distance measures are needed
for several common image processing techniques, e.g., interpolation, segmentation,
and registration. However, the distance or metric between tensors is not uniquely
defined. The three chapters in this part discuss some of the consequences of various
choices for these distances.

Finally, in Part VII, “Tensor Analysis,” two mathematical areas are presented
that were judged to have relevance to researchers at this seminar, but which
were not widely known to them in advance. These two chapters offer moderately
deep introductions to the areas with the hope of stimulating cross-disciplinary
collaborations.

We hope that these offerings will, overall or individually, inspire in readers some
of the enthusiasm and energy that the seminar brought to its participants.

Providence, RI, USA David H. Laidlaw
Eindhoven, The Netherlands Anna Vilanova
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Sweden

Samer Barakat Purdue University, Lafayette, IN, USA

P. J. Basser The Eunice Kennedy Shriver National Institute of Child Health and
Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
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Structure Tensor Estimation:
Introducing Monomial Quadrature Filter Sets

Hans Knutsson, Carl-Fredrik Westin, and Mats Andersson

Abstract Description and estimation of local spatial structure has a long history
and numerous analysis tools have been developed. A concept that is widely
recognized as fundamental in the analysis is the structure tensor. It has, however,
a fairly broad and unspecific meaning. This chapter is intended to provide a
framework for displaying the differences and similarities of existing structure
estimation approaches. A new method for structure tensor estimation, which is a
generalization of many of it’s predecessors, is presented. The method uses pairs
of filter sets having Fourier directional responses in the form of monomials, one
odd order set and one even order set. It is shown that such filter sets allow for a
particularly simple way of attaining phase invariant, positive semi-definite, local
structure tensor estimates. In addition, we show that the chosen filter sets directly
links order, scale and the gradient operator. We continue to compare a number
of known structure tensor algorithms by formulating them in monomial filter set
terms. In conclusion we show how higher order tensors can be estimated using a
generalization of the same simple formulation.
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1 Introduction

Many of the popular image analysis concepts of today have roots that can be traced
to early work in signal processing and optics, e.g. Riesz transforms [64], Zernike
moments [9, 78], and Gabor signals [28]. The first steps towards analysis of digital
images were taken more than four decades ago [12, 34, 36, 65].

From the very start detecting edges and lines in images was considered a
fundamental operation [36, 65]. Since these early days new and more advanced
schemes for analysis of local image structure has been suggested in a seemingly
never ending stream [1–7, 10, 11, 13–27, 29–33, 37–50, 52–58, 60–63, 66–71, 73–
77, 79]. Local image orientation, scale, frequency, phase, motion and locality of
estimates are prominent examples of features that have been considered central in
the analysis.

Apart from sheer curiosity, the main force driving the research has been the
need to analyze data produced by increasingly capable imaging devices. Presently
produced data are also often intrinsically more complex. Both the outer and the
inner dimensionality can be higher, e.g. volume sequence data and tensor field data
respectively.

Regardless of this development the first stages in the analysis remain the same. In
most cases the processing starts by performing local linear combinations of image
values, e.g. convolution operators. Perhaps somewhat surprising after four decades
of research the design of these filters is still debated. In fact the object of this paper
is to contribute to this discussion in a way that hopefully will help in bringing it
closer to and end.

In particular we will focus on developments relating to the local structure tensor
concept [40,41]. There is potentially an almost unlimited amount of work that could
be mentioned and we do by no means claim to present a comprehensive presentation.
Some early work on corner and linear symmetry estimation has later been associated
with the local structure tensor, although the concept of a tensor was not discussed
in the original publications [10,27]. The earliest use of matrices relating to the local
structure tensor is perhaps to be found in the estimation of optical flow [33, 57].
Which contributions that are viewed as relevant in the present context is, in the end,
rather subjective. We believe, however, that we present an interesting account of the
developments.

1.1 This Chapter Presents

• A new general framework for structure tensor estimation.

– Introduction of monomial quadrature filter matrices
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– Mathematical derivation displaying the link between scale, order and the
gradient operator that exists for lognormal monomial filters.

– Notation for simple formulation of structure tensor estimation

• Formulations of most of the previously developed structure tensor estimation
approaches in terms of the new framework.

• A simple generalization for producing higher order structure tensor estimates.

2 Monomial Filters

All structure tensor estimation approaches are based on the use of a set of filters
onto which each local neigborhood is projected. The design of these filters directly
determines crucial aspects of the performance of the estimator. The filters should
provide an appropriate basis for representing the targeted features of the signal.
An important aspect, not further discussed here, is the locality of the estimates,
see [44].

In structure tensor estimation the central feature is the distribution of the local
signal orientations. A natural requirement is that the estimate directly reflects
rotations of the neigborhood, i.e. the estimate should be equivariant with rotation,
but be invariant to other transformations, e.g. change of scale. The locality of the
estimates is Here we present a class of filters that designed to meet these needs—
monomial filters. The monomial filters are spherically separable, i.e. defined as a
product of one radial and one directional part:

F.�/ D R.�/D. O�/ (1)

where � is the Fourier domain (FD) coordinate and � D k�k.

2.1 Radial Part

The radial part is a bandpass (BP) filter (R.0/ D 0) and the lognormal function is
our preferred choice.

R.�/ D exp
h
�˛ ln2

�
�

�0

�i
(2)

Here �0 is the center frequency and the relative bandwidth is determined by ˛. The
relative bandwidth of the lognormal filter function is constant for varying center
frequency. This provides a unique feature relating gradients and scale which will be
addressed in Sect. 3.
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2.2 Directional Matrix

The directional part consists of monomials i.e. products of non-negative integer
powers of the components of O�. Performing n repeated outer products of O� will
contain all order n component products.

O�˝n D O�˝ O� : : : ˝ O�„ ƒ‚ …
n entities

(3)

For convenience, rearrange the terms such that the directional part, Dn. O�/, becomes
a matrix:

Dn. O�/ D O�
j
O�˝.n�1/

kT
(4)

Here the “ b c ” notation implies a lineup operation which arrange the elements of a
multi-dimensional array into a lexicographic ordered column vector. The motivation
for introducing this notation is that letting Dn contain the elements of O�˝n arranged
as a matrix greatly simplifies the equations needed in the following analysis.

To handle the special cases of n D 1 and n D 0 we introduce the following
definitions:

O�
j
O�˝.�1/

k
� O�˝0 � I (5)

where I is the identity matrix. The need to introduce this definitions correspond to
the fact that order 0 implies a scalar entity that does not carry orientation information
and thus constitutes a special case, i.e. D0. O�/ D I . It is also worth noting here that
D1. O�/ corresponds to the Hilbert transform (i.e. sign(�) in the 1-dimensional case
and the Riesz transform for higher dimensions [64].

Using the notation O� D .�; �/T Eqs. (6)–(8) give D1. O�/, D2. O�/ and D3. O�/
for the 2D case.

D1. O�/ D
�
�

�

�j
O�˝ 0

k
D

�
�

�

�
(6)

ex

D2. O�/ D
�
�

�

���
�

�

��T

D
�
�

�

� �
� �

	
(7)

D
 
�2 ��

�� �2

!
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on

Table 1 Table giving the number of different filters needed for an
order n monomial filter matrix in dimension d . The cases marked
green are shown in Figs. 1–3

Order

0 1 2 3 4 5 6

1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7
3 1 3 6 10 15 21 28
4 1 4 10 20 35 56 84
5 1 5 15 35 70 126 210

D3. O�/ D
�
�

�

�6664
 
�

�

!̋ 2
7775
T

D
�
�

�

�$
�2 ��

�� �2

%T

D
�
�

�

� �
�2 �� �� �2

	

D
 
�3 �2� �2� ��2

�2� ��2 ��2 �3

!

(8)

For clarity of the presentation most examples in this paper are given in 2D. The
proposed concept is, however, valid for any signal dimension. Note that, NC , the
number of different directional matrix components needed grows, in a standard
combinatorial fashion, rather quickly with increasing order and dimensionality. The
number of components needed for order n and dimensionality d is given by Eq. (9)
and shown in Table 1 for a number of cases.

NC D
�
nC d � 1

n

�
D .nC d � 1/Š

nŠ .d � 1/Š (9)

2.3 Monomial Filter Matrices

The final step in attaining the filter matrices used in the local structure tensor
estimation is simply to multiply the matrix holding the directional responses,
Dn. O�/, with the radial function, R.�/. For each order n � 0 a monomial filter
matrix is defined as:

F n.�/ D R.�/ Dn. O�/ (10)

Figure 1 shows the 2D monomial filter components of order 0 and 1. Figure 2
shows the 2D monomial filter components of order 2. Figure 3 shows 2D monomial
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Fig. 1 Top: Fourier domain images of F0 D R.�/; F1.1/ D R.�/� and F1.2/ D R.�/�. High
values are bright and low values are dark. Green indicates positive real values and red indicates
negative real values. Bottom: Spatial domain images of the corresponding filters in the top row.
Yellow indicates positive imaginary values and blue indicates negative imaginary values. The black
contours are iso-level lines

Fig. 2 Top: Fourier domain images of F2.1; 1/ D R.�/�2; F2.1; 2/ D R.�/�� and F2.2; 2/ D
R.�/�2. High values are bright and low values are dark. Green indicates positive real values and
red indicates negative real values. Bottom: Spatial domain images of the corresponding filters in
the top row. The black contours are iso-level lines
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Fig. 3 Top: Fourier domain images of F3.1; 1/ D R.�/�3; F3.1; 2/ D R.�/�2�; F3.2; 2/ D
R.�/��2 and F3.2; 3/ D R.�/�3 . High values are bright and low values are dark. Green indicates
positive real values and red indicates negative real values. Bottom: Spatial domain images of the
corresponding filters in the top row. Yellow indicates positive imaginary values and blue indicates
negative imaginary values. The black contours are iso-level lines

filter components of order 3. The radial function (R.�/) used here is a lognormal
function having a bandwidth of two octaves, see [30]. Notice that, keeping the radial
function fixed, the spatial extent of the filters increase with increasing order thus
decreasing spatial locality.

3 Monomials Link Order, Scale and Gradients

Adding an index, j , representing scale we can write Eq. (10) as:

F n;j .u/ D Rj .�/ Dn. Ou/

D Rj .�/ Ou
j
Ou˝.n�1/

kT (11)

In the Fourier domain the spatial gradient operator corresponds to a multiplication
with the frequency coordinate, i.e.

rfn;j .x/
F ! u˝ F n;j .u/ (12)

Expanding the right hand side yields:

u˝ F n;j .u/ D Rj .�/ � Ou„ƒ‚…
u

˝ Ou
j
Ou˝.n�1/

kT
(13)
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Rearranging terms yields

u˝ F n;j .u/ D �Rj .�/ Ou
j
Ou ˝ Ou˝.n�1/

kT

D �Rj .�/ Ou
j
Ou˝ n

kT (14)

This shows that the effect of the gradient operator on the directional part, D, can be
directly identified as an increment in the order of D.

The Lognormal Radial Function

In Eqs. (11)–(14) the link between filter order and gradient operator were estab-
lished. We will now study the effect of the gradient operator when the radial
function,Rj .�/ in Eq. (11), is a lognormal function.

Rj .�/ D exp
h
�˛ ln2

�
�

�j

�i
(15)

where �j defines the center frequency and ˛ determines the relative bandwidth of
Rj .�/. We will now show that for this class of functions the effect of the gradient
operator on the radial part corresponds to a shift in scale and a change in magnitude.
Examining the radial part of Eq. (14) yields:

�Rj .�/ D � exp
h
�˛ ln2. �

�j
/
i

D exp
h
�˛

�
.ln� � ln�j /2 � ln�

˛

�i

D exp

�˛ � ln2 �C ln2 �j � 2 ln� . ln�j C 1

2 ˛
/
	�

(16)

To simplify the derivation we realize that this is a 2nd order polynomial in
ln � and we can directly identify the new center frequency by inspection, i.e.
ln �jC1

D ln �j C 1
2˛

. Inserting this into Eq. (16) yields:

�Rj .�/ D exp

�
�˛

�
ln2 �C .ln2 �jC1

� ln�jC1
˛
C 1

4˛2
/� 2 ln� ln�jC1

�

D exp

�
�˛

�
ln2 �C ln2 �jC1

� ln�j
˛
� 1

4 ˛2
� 2 ln� ln�jC1

�

D �j exp.
1

4 ˛
/ exp

�
�˛ ln2.

�

�jC1
/


(17)
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Fig. 4 A 1D example showing the linking of scale, order and gradients for a lognormal filter
F.u/. Multiplying the lognormal filter (blue) with u (dotted black) results in a new lognormal
filter function (red) with the same relative bandwidth at the next scale. Note that the new filter is
odd. This corresponds the change in order caused by the gradient operator since, in 1D, only two
‘orders’ exist, i.e. odd and even

D �j exp.
1

4 ˛
/

„ ƒ‚ …
a

RjC1
.�/

D aRjC1
.�/

This shows that a multiplication of the radial filter function Rj .�/ by � results
in a new lognormal function, RjC1

.�/, having the same relative bandwidth but
scaled in size and amplitude. This unique feature of the lognormal filter function
is powerful for scale space applications as implied by Eq. (18).The right hand side
of Fig. 4 shows a 1D example of this relation.

3.1 The Gradient Operator Increases Order and Shifts Scale

To summarize, the effect of the gradient operator is, in the frequency domain, given
by:

u˝ F n;j .u/ D aR.jC1/.�/ D.nC1/. Ou/
D aF .nC1/; .jC1/.u/

(18)

In the spatial domain this corresponds to:

rfn;j .x/ D a f.nC1/;.jC1/.x/ (19)

The above equations clearly show that the gradient operator increments the order by
one and changes the scale by a constant factor, �

r
. The factor is determined by the

bandwidth of the lognormal function used, �
r
D exp.1=2˛/, see Eqs. (16) and (17).

Figure 5 (and 4) illustrates this relation.
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Fig. 5 Figure showing the fundamental linking of scale, order and the gradient operator that is
provided by lognormal monomial filter sets. The gradient operator increases the order by one and
shifts the center frequency towards higher frequency by a constant factor �

r

4 Monomial Filter Response Matrices

The next step is to apply a monomial filter matrix to a signal, thus obtaining a
monomial filter response matrix. This can be done by convolving the signal with
each of the filters in the filter matrix and storing the results in the corresponding
positions. Using an FFT approach the same result can also be obtained multiplying
the Fourier transform of the signal by each filter in the Fourier domain.

Let the spatial domain (SD) correspondence of the monomial filter matrix
Fn be denoted Fn. Each element of Fn contains the convolution kernel of the
corresponding FD filter function in Fn. If the multi-dimensional signal is denoted
s.x/ where x denotes the SD coordinates the monomial filter response matrix,
Qn.x/, is defined as:

Qn.x/ D Fn.x/ � s.x/ (20)

where � denotes the convolution operator.
Denoting the Fourier transform of s by Sx the same relation is, in the Fourier

domain, expressed as:

Qn.x/ D F�1
2
4 X

˝F

Fn.�/ Sx.�/

3
5 (21)

Here F�1 denotes the inverse Fourier transform and ˝F defines the Fourier
coordinates to sum over.

In this general description each element of Qn.x/ contains the monomial filter
responses for the entire signal. Since all filtering operations in this paper are shift
invariant we may, in the interest of clarity, from now on omit to denote the spatial
coordinate vector x and, when doing so, consider each element of Qn to contain
monomial filter responses for any given spatial coordinate.
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4.1 Signal Classes

For clarity it is useful to define different classes of signals. We will here define three
different signal classes: sinusoidal, simple and rank p signals.

4.1.1 Sinusoidal Signals

We first present the simplest possible case, a sinusoidal signal with amplitude a,
spatial frequency u, and zero phase.

s.x/ D a cos.uT x/ (22)

For this case the monomial filter response matrix can be described in FD terms as:

Qn.u/ D a R.�/ Dn. Ou/ (23)

Note that in this special case of zero phase, i.e. a symmetric signal, the response will
be zero for odd n. For an odd signal, i.e.

s.x/ D a sin.uT x/ (24)

even orders will be zero and odd order responses are given by:

Qn.u/ D �i aR.�/ Dn. Ou/ (25)

For a general sinusoidal with phase � , i.e.

s.x/ D a cos.uT xC �/ (26)

both even and odd order filters will respond and we get:

Qn D
(

a cos.�/R.�/Dn. Ou/ for even n

�ia sin.�/R.�/Dn. Ou/ for odd n
(27)

4.1.2 Simple Signals

Following [30] we define signals that can be expressed by Eq. (28) to be termed
simple signals.

s.x/ D g. OuT x/ (28)
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Fig. 6 Two simple
neighborhoods in 3D. The
neighborhoods are
constructed using two
different signal functions
.g1.OuT x/ and g2.OuT x// but
the same signal orienting
vector ( Ou )

Here g.x/ is any real, one variable, function and x D OuT x. Ou is a unit vector giving
the orientation of the signal. For this case the monomial filter response matrix can
be described in FD terms as:

Qn. Ou/ D An Dn. Ou/

D An Ou
j
Ou˝.n�1/

kT (29)

Here A, the local amplitude of the filter response, is a function of the radial filter
function, R.�/, and the signal generating function, g.x/ The fact that the Fourier
transform of a simple signal is non-zero only on a line through the origin makes for
a simple solution. Denoting the Fourier transform of g.x/ by G.u/ we find the filter
response amplitude as:

8
<
:

An D Ae D
R
R.juj/G.u/ du for even n

An D Ao D
R
R.juj/G.u/ sign.u/ du for odd n

(30)

Unless explicitly mentioned all signals will in the following be regarded simple
(Fig. 6).

4.1.3 Rank p Signals

It is straight forward to classify more complex signals in a similar manner. Let OU be
a projection operator of rank p and g be a real function of p variables, then

s.x/ D g. OU x/ (31)

is a rank p signal. Thus, a simple signal is a rank one signal. A full rank signal
corresponds to OU D OI . In the following we will only distinguish between sinusoidal,
simple and non-simple signals.
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5 Monomial Structure Tensors

The next step towards obtaining a structure tensor is to compute the outer product
of the filter matrix.

T2n D Qn QT
n (32)

where “ T ” denotes complex conjugate transpose.

5.1 Two Simple Examples

We will present the case where the local neighborhood of the image consists of
a simple signal with direction Ou. As simple introductory examples we consider
2-dimensional monomial filters of orders 2 and 3. For order 2 we have:

Q2 D Ae

 
u2 uv

uv v2

!
(33)

Carrying out the sums we get:

T2 D Q2 QT
2

D A2e

 
u2 uv

uv v2

! 
u2 uv

uv v2

!

D A2e .u2 C v2/„ ƒ‚ …
D1

 
u2 uv

uv v2

!

D A2e

 
u2 uv

uv v2

!

(34)

And for order 3 monomial filters we obtain:

Q3 D Ao

 
u3 u2v u2v uv2

u2v uv2 uv2 v3

!
(35)

Carrying out the sums we get:

T3 D Q3 QT
3
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D AoA�o

 
u3 u2v u2v uv2

u2v uv2 uv2 v3

!
0
BBBBB@

u3 u2v

u2v uv2

u2v uv2

uv2 v3

1
CCCCCA

D jAoj2 .u2 C v2/2„ ƒ‚ …
D1

 
u2 uv

uv v2

!

D jAoj2
 

u2 uv

uv v2

!

(36)

5.2 General Structure Tensor Construction

In general the matrix product of Eq. (32) becomes:

T2n D An Ou
j
Ou˝.n�1/

kT
„ ƒ‚ …

Qn

j
Ou˝.n�1/

k
OuT A�n„ ƒ‚ …

QT
n

D An Ou
j
Ou˝.n�1/

kT j Ou˝.n�1/
k

„ ƒ‚ …
inner product

OuT A�n

(37)

The inner product of the lined up outer products above can be performed in reversed
order. Then, for n > 0, Eq. (37) simplifies to:

T2n D An Ou . OuT Ou/.n�1/„ ƒ‚ …
D1

OuT A�n (38)

By definition OuT Ou is equal to one. It follows that the under-braced term also equals
one and we have the desired result:

T2n D jAnj2 Ou OuT I n > 0 (39)

For n D 0 we have a special case since the filter is isotropic, Dn D 1, and T20 D
Q0 QT

0 D jAej2 I.
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5.3 Monomial Quadrature

As stated in Eq. (30) even and odd filters will have different local magnitudes.

T2n D
(

A2e Ou OuT for even n

j Aoj2 Ou OuT for odd n
(40)

A phase invariant monomial quadrature tensor can now be computed as the sum
of one even index tensor and odd index tensor. Letting n be even and m odd we
obtain:

T2nm D T2n C T2m

D QnQ
T
n CQmQT

m

D jAe C Ao j2 Ou OuT

D q2 Ou OuT

(41)

Note that the tensor magnitude, q, will be the same regardless of the order of the
filters used.

5.4 Phase Invariance

The term ‘phase invariant’ stems from the fact that the tensor magnitude will be the
same for all phases if the signal is sinusoidal. For a sinusoidal signal with amplitude,
a, frequency, � and phase, � , we obtain:

q2 D jAe C Ao j2

D j a cos.�/R.�/� i a sin.�/R.�/ j2

D j a ei� R.�/ j2

D a2 R2.�/

(42)

5.5 Tensor Positivity

A more compact expression of the monomial quadrature tensor can be attained by
concatenating the even and the odd filter response matrices to a single matrix. The
“ ; ” notation implies concatenation of the arguments left to right.

Qnm D .Qn ; Qm/ (43)
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and compute the monomial quadrature tensor of origin (m; n) as

T2nm D Qnm QT
nm (44)

As the monomial quadrature tensor is computed from products of filter response
matrices

T2nm D QnmQT
nm D

X
k

�k Oek OeTk (45)

it follows that all �k � 0 which allows for robust certainty estimates for the local
structure estimation.

6 Structure Tensor Variations

Local structure analysis algorithms are quite complex and involve a lot more than the
filters used. This makes comparisons difficult to interpret from a filter point of view.
There are, however, a number of interesting similarities between different suggested
algorithms. A few previous comparisons can be found in [37] and [60] In the
following we point out the relation to the monomial approach for a number of well
known approaches to structure tensor estimation. We show that nearly all variants
can be formulated as special or modified versions of the monomial approach.

6.1 The Structure Tensor, Tq

The first publications mentioning tensors as a representation for local orientation
and structure is due to Knutsson [40, 41]. Similar to the earlier developed vector
representation [38, 39], the construction is based on a set of quadrature filters
oriented in a number of fixed orientations, qk , k indicating the orientation. The
orientation vector is obtained as:

v D
X
k

q
qkq�k vk (46)

The structure tensor is obtained in the same fashion:

T D
X
k

q
qkq�k Tk (47)
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The vector variant works for two dimensional signals but for three dimension,
or more, the tensor formulation is necessary. The loglet based structure tensor
estimation suggested in [43] also uses this weighted ‘basis tensor’ approach but
involve a different set of filters allowing higher order orientation ccomponents to be
incorporated.

Unlike the methods discussed below this method for structure tensor construction
is not possible to describe as a special or modified case of the monomial approach.

6.2 The Gradient Tensor, TG

The simplest way to obtain a matrix describing local orientation is exemplified by
Bigun-Granlund’s inertia matrix [10, 11] and Förstners corner detector [27]. This
matrix is constructed as the outer product of the local gradient and is, in the notation
introduced above and Q defined by Eq. (20), given by:

TG D T1

D Q1 QT
1

D ASR sin.�/ Ou Ou0„ ƒ‚ …
Q1

Ou0 OuT sin.�/ ASR„ ƒ‚ …
QT
1

D A2SR sin2.�/ Ou OuT

(48)

Although the authors never mention tensors in the original work this outer product
matrix estimate is often referred to as the gradient tensor or the structure tensor.

Since only a single order, i.e. order 1, is used this tensor is not phase invariant.
Another drawback is that the frequency bandwidth of the estimate can become twice
that of the original signal which may cause significant aliasing artifacts. Both these
shortcomings are in practice, to some extent, remedied by the use of an averaging
filter performing a weighted summation of local outer products. On the other hand
this decreases the spatial resolution of the estimate [44].

6.3 The Boundary Tensor, TB

The boundary tensor originally suggested by Köthe [52], uses orders 1 and 2 and
constitutes a special case of the monomial quadrature tensor.

TB D T12

D Q12 QT
12

(49)
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6.4 The Energy Tensor, TE

The energy tensor, suggested by Felsberg [23], is a variant where filters of
different orders are involved in the computed products. The energy tensor uses an
isotropically bandpassed filter signal, its gradient and its Hessian. It can in monomial
terms be expressed as:

TE D T1 C T.0;2/

D Q1Q
T
1 C q0Q2

(50)

Note that the filter response matrices here have different radial frequency response
and the mixing of different order terms will not give a positive semi-definite tensor
for all image neighborhoods.

6.5 Gradient Energy Tensor, TGE

The gradient energy tensor (GET) suggested in [24] can be said to use the same
formula as the energy tensor with the input signal replaced by it’s gradient. In
monomial terms the result can be expressed:

TGE D Q2 QT
2 C

1

2

�
Q1 QT

3 CQ3 QT
1

�
(51)

Note that also in this case the filter response matrices here have different radial
frequency response and that the mixing of different order terms will not give a
positive semi-definite tensor for all image neighborhoods.

6.6 Spatial 2nd Order Polynomial Tensor

Farnebäck [22] The 2nd order polymer tensor suggested by Farnebäck in [22] is a
sum of outer products of 1st and 2nd order monomial filters. The difference from
the monomial approach is that the filter are designed as windowed 1st and 2nd order
polynomials in the spatial domain.

TSP D T1 C T2

D Q1Q
T
1 C Q2Q

T
2

(52)

This spatial design results in 1st and 2nd order filter that have different radial
functions in the frequency domain. For this reason the result is not in general phase
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invariant i.e. components are not in quadrature. However, since it is a sum of squares,
the result is always positive semi-definite.

6.7 Spherical Harmonics

A somewhat different way to estimate a local structure tensor is suggested in [44].
This approach is based on sums of products of spherically separable filters. The
filter have the same radial function and the directional functions are spherical
harmonic functions. The structure tensor carries information about 0th and 2nd
order variations in orientation. A product between an order j filter and an order
k filter will contain signal components of orders j �k and j Ck. By an appropriate
weighted summation of a number of filter products it is possible to retain only order
0 and order 2 in the correct proportion while canceling out all other orders: i.e:

TSH D
X
jk

wjkHjHk (53)

This is a very general approach and, since spherical harmonic filter sets of orders
1 to N span the same function space as monomial filter sets of orders 1 to N , all
monomial tensor variations can also be expressed in this way. With proper weights
the result can also be made phase-invariant.

6.8 Sum of Monomial Tensors

Even more careful weighting of spherical harmonic filter products will give positive
semi-definite tensors, in this case the result will be equivalent to a sum of tensor
estimates over different order, n � 0 (even and odd), monomial filter matrices, Qn.

TSM D
X
n

wnQnQ
T
n (54)

7 Table of Structure Tensor Related Algorithms

The table below is a chronological list of a number of image processing algorithms
directly or indirectly related to local structure tensor estimation. The year mentioned
refers to the first publication discussing the addressed topic that the authors are
aware of.
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Sinusoidal Simple Complex
signals signals signals

Algorithm Dima Yr Pos Quad Pos Quad Pos Quad

GOP [29] 2 78 na � na � na �
Rot Inv Op [17] 2 80 na na na
Quad Vector [38, 47] 2 81 na � na � na �
Steerable filters [47, 48] 2 81 na � na � na �
5D Quad Vector [39] 3 85 na � na � na �
3D Quad Tensor [40, 41] 3 87 � � � � �
Grad outer prod [10, 27] 2 87 � � �
4D Quad Tensor [49] 4 91 � � � � �
SD Polynomial Tens [21] n 99 � � �
Loglet Tensor [43] n 03 � � � � �
Boundary Tensor [52] 2 03 � � � � �
Sp Harmonics Tens [44] n 05 � � � � �
Energy Tensor [24] 2 05 �
Grad Energy Tens [24] 2 05 �
Monomial Tensors [51] n 11b � � � � �
Sum of M-Tensors n 11 � � � � � �
a Dimension discussed in original publication
b Presented at Dagstuhl 09

8 Higher Order Structure Tensors

In Eq. (37) the filter matrix is constructed to produce a 2nd order tensor. However, a
simple rearrangement of the order n filter matrix components will allow tensors of
order 2p to be estimated.

T22p;n D An
j
Ou˝p

k j
Ou˝.n�p/

kT
„ ƒ‚ …

Q.p/n

j
Ou˝.n�p/

k j
Ou˝p

kT
An

„ ƒ‚ …
QT
.p/n

D An
j
Ou˝p

k j
Ou˝.n�p/

kT j Ou˝.n�p/
k

„ ƒ‚ …
inner product

j
Ou˝p

kT
An

(55)

As before the inner product of the lined up outer products above can be performed
in reversed order. Then, for n � p � 0, Eq. (37) simplifies to:

T22p;n D An
j
Ou˝p

k
. OuT Ou/.n�p/„ ƒ‚ …

D1

j
Ou˝p

kT
An (56)
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By definition OuT Ou is equal to one. It follows that the under-braced term also equals
one which gives:

T22p;n D jAnj2
j
Ou˝p

kj
Ou˝p

kT I n � p � 0 (57)

The result now holds the components of a tensor of order 2p. However, due to the
use of the lineup operator, the components are stored in matrix form and they need
to be re-organized in order to obtain the result as a proper tensor ‡ of order 2p.

‡2p;n D d T22p;ne (58)

The “ d e ” notation used here indicates a reshape operation that restores the proper
structure of the data, i.e. the result is a tensor having 2p indexes.

As 2nd order tensors are naturally represented as matrices the lineup operator
greatly simplifies the notation. For higher order tensors, however, the use of standard
tensor notation may be preferred by some readers. Equations (57) and (58) can then
be jointly expressed as:

‡
a1 ::: ap

n b1 ::: bp
D jAnj2 u

a1 ::: ap
apC1 ::: an u

apC1 ::: an

b1 ::: bp
(59)

According to the Einstein convention a summation is performed over equal indexes
and Eq. (59) clearly shows that the difference between tensors of different order is
how many indexes are summed over (contracted). Letting p D 0 means summing
over all indexes and the result is a scalar representing the local energy. For p D 1

we obtain the standard structure tensor. For p > 1 we obtain higher order tensors
having the power to represent more complex local structure.

8.1 Non-simple Signals

For such non-simple signals Eq. (59) is no longer applicable since there is no unique
local orientation, u. Directly expressed as a sum of filter products, corresponding to a
generalization of the monomial filter response matrix product in Eq. (32), we obtain
an order 2p structure tensor as:

‡
a1 ::: ap

n b1 ::: bp
D q

a1 ::: ap
apC1::: an q

apC1::: an

b1 ::: bp
(60)

Tensors of order 4 have been used to analyze situations with two orientations
present, e.g. [8, 59, 72]. Applications where tensors of order higher than four have
been used are so far not known to the authors but can be expected to prove a powerful
tool when more that two orientation are present.

To produce quadrature type tensors we still need to add a tensor from odd order
filter sets and a tensor from even order filter sets. In the most general case we
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can express the estimation of local structure tensors of order 2p as a weighted
summation of order 2p tensors, here of order .pp/, from monomial filter sets of
different orders, i.e:

‡
a1 ::: ap
b1 ::: bp

D
X
n

wn q
a1 ::: ap
apC1::: an q

apC1::: an

b1 ::: bp
(61)

9 Conclusion

Research concerning 2nd order structure tensor estimation is still continuing after
more than two decades. In this chapter we have presented a new general framework
for structure tensor estimation. Using this framework enabled a unified presentation
of most of the previously suggested estimation approaches. We concluded by pre-
senting a general estimation approach for higher order structure tensors. The higher
order tensor estimates produced by Eq. (61) contains a much richer representation
of the local structure and we expect that the future will hold considerable effort
towards fully understanding these new higher order constructs.
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21. Farnebäck, G.: Fast and accurate motion estimation using orientation tensors and parametric
motion models. In: Proceedings of 15th International Conference on Pattern Recognition,
Barcelona, vol. 1, pp. 135–139. IAPR (2000)
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Abstract Tensor voting is a well-known robust technique for extracting perceptual
information from clouds of points. This chapter proposes a general methodology to
adapt tensor voting to different types of images in the specific context of image
structure estimation. This methodology is based on the structural relationships
between tensor voting and the so-called structure tensor, which is the most popular
technique for image structure estimation. The problematic Gaussian convolution
used by the structure tensor is replaced by tensor voting. Afterwards, the results are
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appropriately rescaled. This methodology is adapted to gray-valued, color, vector-
and tensor-valued images. Results show that tensor voting can estimate image
structure more appropriately than the structure tensor and also more robustly.

1 Introduction

Medioni and colleagues [26] proposed tensor voting as a robust technique for
extracting perceptual information from a cloud of points. In 3D, tensor voting
estimates saliency measurements of how likely a point lies on a surface, a curve, a
junction, or it is an outlier. It is based on the propagation and aggregation of the most
likely normal(s) encoded by means of second-order tensors through a convolution-
like voting process, assuming that neighboring points belong to the same smooth
surface. This technique has been proven versatile, since it has successfully been
adapted to problems well beyond the ones to which it was originally applied with
excellent results. For example, this method has already been applied to a variety of
problems in image and video processing, such as perceptual organization [26, 43],
image restoration [15], image segmentation [22, 29], video segmentation [27, 36],
mesh analysis [17], 3D reconstruction [49] and dimensionality estimation [28].
Since the input data for most of these applications are not clouds of points, a
common approach is to apply tensor voting as described in [26] to clouds of points
derived from the original data. Although, in principle, it is more natural to apply
tensor voting to the original data, that application requires extensions of tensor
voting to different types of data, which, in most cases, have not been proposed so far.

Furthermore, extensions of tensor voting specifically tailored to applications
have also been proved effective. They are based on the incorporation of additional
application-dependent perceptual rules to the voting process. For example, the use
of specifically designed inhibitory voting fields has been reported beneficial for
perceptual organization in gray-scale images [25]. In addition, an extension of
tensor voting specifically tailored to color image denoising [30], robust color edge
detection [31] and color image segmentation [32] has yielded significantly good
results. Related to tensor voting, a voting process specifically designed for detecting
X- and T-shaped junctions has been proposed in [1].

In a different context, local image structure estimation methods aim at typifying
the region around every pixel. These methods estimate similarity measurements of
every local region with respect to certain patterns of interest, such as flat and textured
regions, and regions that contain edges, lines or corners. These measurements can
be used, for example, to steer image processing methods or to extract local features,
such as edges, lines and corners, in a further step.

During the last decades, the use of tensors has allowed local image structure
estimation methods to represent several types of local patterns with a same
mathematical entity. The most popular of these methods is the structure tensor [10],
which is able to typify flat regions, regions with edges and regions with corners,
through second-order tensors. It has been used in a multitude of applications, such
as edge detection [11], corner detection [16, 39], texture analysis [38, 40], image
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filtering [45], image compression [14], optic flow estimation [2, 24], and detection
of X- and T-shaped junctions [1]. It has gained popularity thanks to its robustness,
efficiency and easiness of implementation. In addition, it depends on a single
parameter, which is usually easy to tune.

The main hypothesis made by the structure tensor is that the orientation of the
gradient changes slowly in regions with edges, and quickly in regions with corners.
In addition, it assumes the size of the gradient to be small in flat regions, and large
in both regions with edges and regions with corners. Thus, the structure tensor
estimates local image structure by means of a weighted sum of gradients within
a neighborhood. For a gray-scale image, the structure tensor, J, is defined as the
convolution of a Gaussian with the tensorized gradient of the image [10]:

J D G� � ruruT ; (1)

where G� is the Gaussian with zero mean and standard deviation �, ru is the
gradient of the image u, and ruruT represents the tensorized gradient at every
pixel. A related approach based on quadrature filters has been proposed in [12, 19].
Furthermore, extensions using higher-order derivatives [9, 21], and extensions for
curved structures [3] have also been proposed.

Despite its popularity, the structure tensor also has important shortcomings, such
as detection of features in flat regions, loss of small features, detection of false
corners, and misplacement of corners. These shortcomings are mainly related to the
use of a Gaussian kernel, since it can propagate the gradient to pixels in flat regions.
Thus, the structure tensor can yield similar tensors for flat regions, and regions
with edges or corners, leading to errors in the extraction of features. This fact has
encouraged researchers to propose alternatives to the structure tensor.

Most of the strategies intend to avoid the integration of different orientations
of the gradient by adapting the neighborhood to the data in such a way that only
neighbors with similar orientations of the gradient are taken into account in the
summation. For example, Nagel and Gehrke [34] and Nath and Palaniappan [35] use
adaptive Gaussians instead of a Gaussian convolution; Köthe [20] uses a hourglass-
shaped kernel instead of the Gaussian; van de Weijer and van den Boomgaard [44]
use robust statistics to choose one of the ambiguous orientations at every pixel; Brox
et al. [4] and Hahn and Lee [13] propose non-linear diffusion processes in order to
aggregate contributions of the neighbors.

Although tensor voting and the structure tensor have been proposed in different
contexts, they have important similarities, as will be shown in Sect. 3. Thus, the aim
of this chapter is twofold: First, to propose a general methodology to extend tensor
voting to different types of images. This methodology is based on the similarities
between the formulations of both tensor voting and the structure tensor. Second, to
compare the performance of both methods in the specific context of image structure
estimation for different types of images. It is important to remark that application-
dependent extensions of tensor voting are not considered in this chapter, since their
formulation could not be related to the structure tensor.

Related to this work, two extensions of classical tensor voting in order to
directly apply it to gray-scale images have been proposed. First, Tai et al. [42]
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encode curveness and regionness in the tensors before applying tensor voting.
Unfortunately, discriminating edges from corners is not possible by applying this
strategy, since both types of structure will yield high curveness using this approach.
Second, Loss et al. [23] initialize the tensors with ball tensors (cf. Sect. 2) whose
size depends on the gray-scale value of the pixel. However, this strategy cannot be
used to extract corners.

The chapter is organized as follows. Section 2 summarizes the tensor voting
formalism. Section 3 shows the relationships between tensor voting and the structure
tensor. Section 4 describes a general methodology to extend tensor voting to
different types of images, in particular to gray-scale, vector- and tensor-valued
images in the specific application of image structure estimation. Section 5 shows
some results of tensor voting applied to image structure estimation. Finally, Sect. 6
discusses the obtained results and makes some final remarks.

2 Tensor Voting

Medioni et al. [26] proposed tensor voting as a technique for extracting perceptual
information from clouds of points, in particular in 3D. The method robustly
estimates saliency measurements of how likely a point lies on a surface, a curve,
a junction, or it is an outlier. It is based on the propagation and aggregation of the
most likely normal(s) encoded by means of second-order tensors modeled by means
of symmetric positive semidefinite matrices. In a first stage, a tensor is initialized at
every point in the cloud either with a first estimation of the normal, or with a ball-
shaped tensor if a priori information is not available. Afterwards, every tensor is
decomposed into its three components: a stick, a plate and a ball. Every component
casts votes, which are tensors that encode the most likely direction(s) of the normal
at a neighboring point taking into account the information encoded by the voter in
that component. Finally, the votes are summed up and analyzed in order to estimate
surfaceness, curveness and junctionness measurements at every point. Points with
low saliency are assumed to be outliers. More formally, the tensor voting at p, TV.p/
is given by:

TV.p/ D
X

q2neigh.p/

SV.v;Sq/C PV.v;Pq/C BV.v;Bq/; (2)

where q represents each of the points in the neighborhood of p, SV, PV and BV
are the stick, plate and ball tensor votes cast to p by every component of q, v D
p� q, and Sq, Pq and Bq are the stick, plate and ball components of the tensor at q
respectively. These components are given by:

Sq D .�1 � �2/
�
e1e1

T
�
; (3)

Pq D .�2 � �3/
�
e1e1

T C e2e2
T
�
; (4)

Bq D �3
�
e1e1

T C e2e2
T C e3e3

T
�
; (5)
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Sq

q

SV(v,Sq)
p

v

θpq l

2θpq

Fig. 1 The stick tensor
voting. A stick Sq casts a
stick vote SV.v;Sq/ to p that
corresponds to the most likely
tensorized normal at p

where �i and ei are the i -th largest eigenvalue and its corresponding eigenvector of
the tensor at q.

Saliency measurements can be estimated from an analysis of the eigenvalues of
the resulting tensors in (2). Thus, s1D .�1 � �2/, s2D .�2 � �3/, and s3D�3 can
be used as measurements of surfaceness, curveness and junctionness respectively.
Points whose three eigenvalues are small are regarded as outliers. In addition,
eigenvector ˙e1 represents the most likely normal for points lying on a surface,
whereas ˙e3 represents the most likely tangent direction of a curve for points
belonging to that curve.

Extensions of tensor voting to N-dimensions are straightforward. In this case,
tensors are decomposed into a stick, a ball and N-2 plate components, which are
processed through the N-D stick, N-D ball and N-D plate tensor voting respectively
[43]. These processes are natural extensions of the 3D case. The next subsections
describe how the stick, plate and ball votes are calculated in 3D.

2.1 Stick Tensor Voting

Stick tensors are used by tensor voting in 3D to encode the orientation of the surface
normal at a specific point. Tensor voting handles stick tensors through the so-
called stick tensor voting, which aims at propagating surfaceness in a neighborhood
by using the perceptual principles of proximity, similarity and good continuation
borrowed from the Gestalt psychology [5]. The stick tensor voting is based on
the hypothesis that surfaces are usually smooth. Thus, tensor voting assumes that
normals of neighboring points lying on the same surface change smoothly. This
process is illustrated in Fig. 1. Given a known orientation of the normal at a point q,
which is encoded by Sq, the orientation of the normal at a neighboring point p can be
inferred by tracking the change of the normal on a joining smooth curve. Although
any smooth curve can be used to calculate stick votes, a circumference is usually
chosen. A decaying function, ws , is also used to weight the vote as defined below.
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It is not difficult to show from Fig. 1 that for a circumference:

SV.v;Sq/ D ws
h
R2�pq Sq R

T
2�pq

i
; (6)

where �pq is shown in Fig. 1 and R2�pq represents a rotation with respect to the axis
v � .Sq v/, which is perpendicular to the plane that contains v and Sq. Let � be the
eigenvalue greater than zero of Sq. Angle �pq is given by:

�pq D arcsin

0
@
s

vT Sq v
�vT v

1
A: (7)

A point q can only cast stick votes for �pq � �=4, since the hypothesis that both
points p and q belong to the same surface becomes more unlikely for larger values
of �pq. On the other hand, the weighting function ws is used to reduce the strength
of the vote with the arc length, l , given by:

l D jjvjj �pq

sin.�pq/
; (8)

and with its curvature, �, given by:

� D 2 sin.�pq/

jjvjj : (9)

Thus, ws is defined as [33]:

ws.v;Sq/ D
(
e
� l2

2�2
�b�2

if �pq � �=4
0 otherwise,

(10)

where � is a scale parameter and b can be adjusted to give more importance to the
curvature. Following the methodology proposed in [33], b has been set to jjvjj2=4
in the experiments.

2.2 The Plate Tensor Voting

A plate tensor is a tensor with �1 D �2 � 0 and �3 D 0. Plate tensors are processed
through the so-called plate tensor voting. The plate tensor voting uses the fact that
any plate tensor, P, can be decomposed into all possible stick tensors inside the
plate. Let SP.ˇ/ D Rˇe1e1

T RTˇ be a stick inside the plate P, with e1 being its
principal eigenvector, and Rˇ being a rotation with respect to an axis perpendicular
to e1 and e2. Thus, P can be written as:

P D �1 C �2
2�

Z 2�

0

SP.ˇ/ dˇ: (11)
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Taking into account that SP.ˇ/ is a stick tensor, the plate vote is defined as the
aggregation of stick votes cast by all the stick tensors SPq.ˇ/ that constitute Pq.
Thus, the plate vote is defined as:

PV.v;Pq/ D �1

�

Z 2�

0

SV.v;SPq.ˇ// dˇ: (12)

Although this integral cannot be simplified, plate votes can be computed efficiently
by using the method proposed in [33].

2.3 The Ball Tensor Voting

A ball tensor is a tensor with �1 D �2 D �3 � 0. The ball tensor voting is defined
in a similar way as the plate tensor voting. Let SB.�;  / be a unitary stick tensor
oriented in the direction .1; �;  / in spherical coordinates. Then, any ball tensor B
can be written as:

B D �1 C �2 C �3
4�

Z

�

SB.�;  / d�; (13)

where � represents the surface of the unitary sphere. Using the same argument as
in the case of the plate tensor voting, the ball vote is defined as:

BV.v;Bq/ D 3�1

4�

Z

�

SV.v;SBq.�;  // d�: (14)

Similarly to the plate tensor voting, this integral cannot be simplified. However, ball
votes can be computed efficiently by using the method proposed in [33].

3 Relationships Between the Structure Tensor
and Tensor Voting

Although the structure tensor and tensor voting are usually applied to two different
scopes, images and clouds of points, both aim at estimating structure, as it will be
shown in this section. This section describes the relationships between the structure
tensor and tensor voting.

3.1 Similarities

With the exception of the rotation term and the restriction of �pq � �=4 in (10),
the formulation of the stick tensor voting in (6) has a structure similar to that of the
structure tensor in (1). In particular, the term ruruT in (1) plays a similar role as
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the term Sq in (6), while function ws of the stick tensor voting is closely related
to the Gaussian kernel used by the structure tensor. In addition to these structural
similarities, both methods have functional connections, since they can be adapted
to be applied to the same contexts. Especially, the structure tensor can be adapted
to estimation of structures in 3D, and tensor voting can be adapted to estimation of
structures in gray-scale images.

On the one hand, the structure tensor can be adapted to estimation of structures in
3D with the help of a norm estimator. For example, the local norm can be estimated
by computing the equation of the most likely tangent plane at every point. The norms
obtained with such an estimator can be tensorized and convolved with a Gaussian in
order to estimate structure in 3D. The resulting tensors yielded by both methods can
be analyzed in the same manner. For example, �1 � �2 can be used as a measure of
surfaceness, �2��3 as a measure of curveness, and �3 as a measure of junctionness,
as in the case of tensor voting [26].

In turn, tensor voting can be adapted to image structure estimation by designing
an appropriate encoding step. Taking into account that the normal, nq in a gray-scale
image corresponds to the normalized gradient,ruq=jjruqjj, the stick component Sq

in (3) can be written as:

Sq D .�1 � �2/
 ruqruTq
jjruqjj2

!
; (15)

which can be further simplified by choosing .�1 � �2/ D jjruqjj2. Thus:

Sq D ruqruTq : (16)

In addition, if the components Pq and Bq are set to zero, the input of both, the
structure tensor and tensor voting, becomes equivalent for gray-scale images. As in
the 3D case, the output of both methods can be analyzed in a similar way, since, in
2D, the shape of the tensors at edges is closer to a stick, while the shape tends to a
ball at corners in both cases (in 2D, the plate component is undefined). However,
the tensors obtained by means of tensor voting are in a different scale. Hence, it is
necessary to apply a rescaling function in order to have comparable results.

3.2 Differences

As already mentioned, both methods have two essential differences: the rotation
term in (6) and the restriction of �pq � �=4 in (10). These differences are
given by the different assumptions made by both methods. On the one hand, the
hypothesis of tensor voting is that p and q belong to the same smooth curve and
the voting processes are adjusted according to this hypothesis. On the other hand,
the hypothesis made by the structure tensor is that the orientation of the normal at
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Fig. 2 Left: the structure tensor seen as a voting process. Right: the stick tensor voting. The main
differences between both are the rotation term (see the difference of votes at p1) and the anisotropic
behavior of tensor voting (tensor voting does not cast votes to p2)

neighboring points should be similar, by taking into account that the orientation of
the normal in a smooth curve usually changes slowly.

These differences can be seen in Fig. 2. The structure tensor can be modeled
as a voting process in which every point votes for its own orientation with a
strength given by a Gaussian function. Thus, the structure tensor propagates its
own orientation isotropically. This approach can be seen as a displacement to p
of the surface at q. In turn, tensor voting propagates a rotated version of the original
orientation when �pq � �=4. It is expected that tensor voting performs better than
the structure tensor as it makes stronger assumptions.

4 Tensor Voting for Structure Estimation

The structural relationships shown in Sect. 3 lead to a general methodology to
extend tensor voting to different types of images. These extensions can be used
to improve the image structure estimation obtained by means of the structure tensor.
The methodology comprises three steps. First, tensors are initialized in the same way
as for the structure tensor in every different type of images. Second, the Gaussian
convolution used by the structure tensor is replaced by tensor voting. Finally, the
resulting tensors are rescaled in order to renormalize the total energy stored in
the tensors. The following subsections show how this general methodology can be
applied to different types of images.

4.1 Gray-Scale Images

From Sect. 3, tensor voting can be directly applied to image structure estimation in
gray-scale images by following the next three steps. First, the tensorized gradient,
ruruT , is used to initialize a tensor at every pixel. It is important to remark that
other types of tensor can be used in the initialization step, for example, ball tensors
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as proposed in [23]. However, the advantage of initializing the tensors with the ten-
sorized gradient is that the input of the structure tensor and tensor voting is the same,
easing the comparison between both methods. Second, the stick voting process is
applied in order to propagate the information encoded in the tensors. That is:

TV.p/ D
X

q2neigh.p/

SV.v;ruqruTq /: (17)

Notice that it is not necessary to apply the plate and ball voting processes since
the plate and ball components are zero at every pixel due to the initialization step.
Finally, the resulting tensors are rescaled by the factor:

	 D

X
p2˝

trace.ruprup
T /

X
p2˝

trace.TV.p//
; (18)

in order to renormalize the total energy of the tensorized gradient, where˝ refers to
the given image. This scaling is applied in order to get comparable results to those
obtained with the structure tensor.

4.2 Color and Vector-Valued Images

The structure tensor has already been extended to multivalued images in [7] and in
a more general way in [46]:

J D
dX
kD1

G� � wkru.k/ru.k/T D G� �
dX
kD1

wkru.k/ru.k/T ; (19)

where d is the number of channels, ru.k/ is the gradient at channel k, and wk are
weights used to give different relevance to every channel. From (19), the structure
tensor can be equivalently estimated either by adding d structure tensors, one for
every channel, or by applying a Gaussian kernel on the (weighted) summation of the
tensorized gradientsru.k/ru.k/T . The reason why both alternatives are equivalent
for computing the structure tensor is that Gaussian convolution is linear. However,
this equivalence does not hold for non-linear averaging methods, including tensor
voting. Thus, there are two options to extend tensor voting for this kind of images,
considering that tensor voting must replace the Gaussian convolution used in the
structure tensor. The first option is to apply the stick tensor voting independently to
every channel and then adding up the individual results:

TV.p/ D
dX
kD1

X
q2 neigh.p/

wk SV.v;ruq.k/ruq.k/
T /: (20)
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∇u(1)∇u(1)T
∇u(2)∇u(2)T

∇u(3)∇u(3)T

d

∑
k=1

∇u(k)∇u(k)T

Fig. 3 Tensor voting can be applied to the channels independently (the red, green and blue sticks)
or to the sum of the tensorized gradients (the ellipse)

Fig. 4 (a) Lenna. (b) Mandrill. (c, d) Pixels (in black) with �2 � 0:1 �1 of Tq for both images.
Processing channels independently is appropriate in most pixels of natural images

The second option is to apply (2) to the sum of tensorized gradients with Sq, Pq and
Bq being the stick, plate and ball components of Tq D Pd

kD1 wkruq.k/ruq.k/
T .

For two-dimensional images, Pq D 0. In both options, rescaling the calculated
tensors is performed in a similar way as described for the gray-scale images.
Figure 3 shows the options described above.

The first option has the advantage that only the application of the stick tensor
voting is necessary, whereas for the second option, the stick, plate (for 3D color
images) and ball tensor voting are required. On the other hand, the second option
tends to be more robust since it is less sensitive to bad initial estimations of the
gradient. However, in practice, Tq � Sq in most pixels of natural images. As an
example, in Fig. 4 the number of pixels with �2 greater than the 10 % of �1 of Tq

corresponds to only 0.8 % of the total for Lenna and 12.2 % for the more textured
Mandrill. Thus, the first option can be used in most of the pixels and the second one
only in those pixels in which the approximation is not valid.

4.3 Tensor-Valued Images

A tensor-valued image is an image in which a tensor is associated with every pixel or
voxel. As an example, images acquired through diffusion tensor magnetic resonance
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Fig. 5 Left: 2D slice extracted from a 3D DT-MRI data set (128� 128 voxels). Middle: magnified
slice around the lateral ventricles (40 � 55 voxels). Right: two synthetic data sets (32 � 32 voxels
each) of a spiral (top) and a cross (bottom). Ellipsoids are used to represent the tensors associated
with every voxel

imaging (DT-MRI) are tensor-valued. Figure 5 shows examples of this kind of
images.

Unlike gray-valued and color images, there are several ways to extend the
structure tensor concept to tensor-valued images. One of them was proposed by
Weickert and Brox [47] in which the structure tensor is calculated through (19), with
the channels corresponding to the entries in the tensors. Thus, the same methodology
presented in the previous subsection can be used for adapting tensor voting to
tensor-valued images by using the entries in the tensors as the channels of a vector-
valued image. Moreover, the factors wk can be set for tensor-valued images by using
the fact that any symmetric matrix, M, can be modeled by means of a vector, m,
which is given in an orthonormal tensorial basis with respect to the internal product
hA;Bi D trace.ABT / [18, 37]:

M D
2
4
m11 m12 m13

m21 m22 m23

m31 m32 m33

3
5 ” m D

2
66666664

m11p
2m12p
2m13

m22p
2m23

m33

3
77777775
: (21)

This modeling makes equivalent the Frobenius norm jMjF D
p

trace.MMT / and
the norm ofm. Thus, tensor voting can be applied to vectorsm instead of to tensors
M by using the methodology presented in the previous subsection, with wk D 1 for
the diagonal entries and wk D

p
2 for the other entries.
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Similarly to the case of color images, there are two options for applying tensor
voting: to compute six stick votes, one for every channel, or to compute the complete
tensor voting framework on the summation of six stick tensors, one for every channel
(cf. Fig. 3). As in the case of color images, the more expensive second option is only
necessary at pixels (voxels) where the gradient computed for one channel is very
different from the one computed for one another channel.

An alternative extension of tensor voting for diffusion images can be proposed
by taking into account the differential nature of this type of images. In DT-MRI, the
eigenvectors of the acquired tensors are tangent to the main diffusivity orientations
of the movement of water molecules at every voxel. Instead, normal orientations are
required to compute structure. Following the approach in [3], such orientations can
be extracted from tensors R computed as:

R D trace.T/ I� T; (22)

where T is the acquired tensor and I the identity matrix. This transformation only
modifies the eigenvalues, since tensors R and T share the same eigenvectors. The
eigendecomposition of these tensors is given by:

R D
3X
iD1

�ieieTi : (23)

Factor eieTi can be interpreted as tensorized gradients in the image. Thus, by using
this analogy, a structure tensor can be defined as:

J D G� �
3X
iD1

�ieieTi D
3X
iD1

G� � �ieieTi ; (24)

where the equivalence is given by the linearity of the Gaussian convolution.
Similarly to the case of Fig. 3, there are two approaches to extend tensor voting

to this type of images: to apply the stick tensor voting to every �ieieTi or to directly
apply the stick, plate and ball tensor voting to the tensors R.

In Chapter 13, the stick votes are represented and accumulated as higher-
order tensors, whose weight and orientation are derived from second-order tensors.
The analysis of these higher-order tensors is then performed through a low-rank
approximation, as proposed in [41].

More sophisticated methods have already been proposed for extending the con-
cept of the structure tensor to tensor-valued images. For example, Burgeth et al. [6]
use an algebraic approach to deal with the intrinsic third order nature of the gradient
of tensor-valued images. Nevertheless, an adaptation of tensor voting based on
these methods requires the extension of the voting processes for higher-dimensional
tensor-valued images, which is out of the scope of this chapter.
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Fig. 6 (a) A fingerprint with a region of interest (ROI). (b)ruruT in the ROI. (c, d) The structure
tensor and tensor voting in the ROI respectively (� D 2=

p
2). Tensor voting preserves gaps

Fig. 7 (a–c) Color coded orientation (green D 0, yellow D pi=4, red D �=2, blue D 3�=4) of
ruqruq

T , the structure tensor and tensor voting respectively (� D 3=
p
2) for the fingerprint of

Fig. 6a. Both methods smooth the orientation of the gradient

5 Experimental Results

Figures 6–8 present the structure estimation in a fingerprint by means of both the
structure tensor and tensor voting. Figure 6 shows that tensor voting is able to
preserve the gaps in the image, while the structure tensor is not. This means that
tensor voting avoids estimating structure in unstructured regions, which is one of
the known problems of the structure tensor.

Figure 7 shows that the orientation of the gradient is smoothed by both the
structure tensor and tensor voting. This is a good property of a structure estimator,
since orientation usually changes slowly in an image and is noisy in ruruT .
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Fig. 8 (a, b) Map of �1 � �2 obtained with the structure tensor for � D 1=
p
2 and � D 2=

p
2

respectively. (c, d) Map of �1 � �2 obtained with tensor voting for the same values of �. The
structure tensor is more sensitive to �

Fig. 9 (a) Original image. (b, c) Map of �1 � �2 for the structure tensor and tensor voting
respectively (� D 3=

p
2). The structure tensor blurs the edges

Figure 8 shows the map of �1 � �2, which can be used to extract edges. It can
be seen that the structure tensor is more sensitive to the selection of the parameter
�, while tensor voting yields similar results for a greater range of values. Thus, it is
more difficult to tune the parameter of the structure tensor than the scale parameter
of tensor voting.

Figure 9 shows an example for edge detection. Since ideal edges are character-
ized by stick tensors, edges can be obtained by applying non-maximum suppression
and hysteresis to the map of �1 � �2, which measures how far every pixel is from
that condition. It can be seen that the structure tensor blurs that map. This can lead
to misplacements of the binary edges extracted from these maps and to loss of small
edges. For example, edges inside faces are completely lost, and the eyebrow of the
totem at the left-hand side is misplaced. Tensor voting is able to keep edges thinner,
reducing in that way the problems of the structure tensor.
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Fig. 10 (a) Original image. (e) Noisy image (truncated Gaussian noise with 
 D 100). (b–d)
Maps of �1 obtained with the structure tensor, and tensor voting with and without rotation term
(WRT) in (6) respectively for the original image (� D 3=

p
2). (f–h) Maps of �1 obtained with

the three methods for the noisy image. (j–l) Maps of �2 obtained with the three methods for the
original image. (n–p) Maps of �2 obtained with the three methods for the noisy image. (i) Detected
corner at a peak of the star by the structure tensor (red), tensor voting (green) and tensor voting
without the rotation term (blue). (m) Detected corners at two valleys of the star by the structure
tensor (red) and both versions of tensor voting (green)

Most corner detectors apply a function on the eigenvalues of the structure
tensor [16]. Hence, accuracy and robustness in the estimation of eigenvalues are
requirements for this application. Figure 10 shows plots of �1 and �2 from tensors
estimated by means of both the structure tensor and tensor voting for a noiseless and
a noisy synthetic image. Figure 10 shows that tensor voting is more robust and more
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Fig. 11 (a) Original image with the detected corners with the structure tensor (in red) and tensor
voting with and without rotation term in (6) (in green). (b–d) Maps of �2 obtained with the three
methods respectively for the original image (� D 3=

p
2)

accurate than the structure tensor in the estimation of �1. In addition, the structure
tensor mistakenly introduces a maximum in �1 in the middle of the small hole inside
the star, while tensor voting does not.

In addition, Fig. 10 shows that the structure tensor has a bad performance for
both noiseless and noisy images. Actually, it blurs �2 in such a way that the
corners are displaced. In addition, it is very sensitive to noise and generates a false
maximum in the hole at the middle of the star. On the other hand, tensor voting has
a more consistent performance in estimating �2 in both noiseless and noisy images.
Although tensor voting generates a halo near edges, it can be filtered out by taking
into account that it only appears near edges and has smaller values of �2 than in the
corners.

Figure 10 also shows the effect of the rotation term in (6). This figure shows
plots of �1 and �2 from tensors estimated by means of tensor voting without the
rotation term for the image of the star. It can be seen that the effect of the rotation
term in (6) on �1 is almost negligible, since the results are similar for both the
noiseless and noisy images (see Fig. 10c vs. 10d, and Fig. 10g vs. 10h). Regarding
�2, tensor voting without the rotation term has a better performance in the noiseless
image, since it does not insert halos (see Fig. 10l). However, its performance is not
robust, since it is difficult to extract maxima from its estimation for the noisy image
(see Fig. 10p). Thus, tensor voting with the rotation term is more robust in the
estimation of �2. This effect also appears in curved edges, as shown in Fig. 11.
In conclusion, the rotation term of (6) robustifies the estimation of �2 at a cost of
introducing halos that should be filtered out a posteriori. It is noteworthy to remark
that the method proposed by Köthe [20] is closely related to tensor voting without
the rotation term. The only difference between both methods is the use of a different,
but still closely related, weighting function.

Regarding precision, tensor voting both with and without the rotation term is
able to detect corners with a smaller error. Corners have been detected by looking at
local maxima in the map of �2 (see Figs. 10i, m and 11a). Table 1 shows the mean
errors yielded by both the structure tensor and tensor voting. The strategies based
on tensor voting yield better results than the structure tensor in all cases. Notice that
corners at the peaks of the star are more difficult to detect, since the angles between
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Table 1 Mean error in corner detection (in pixels) for the synthetic images of Figs. 10 and 11

Structure tensor Tensor voting Tensor voting (WRT)

Peaks of the star 6.4 3.1 0.9
Valleys of the star 6.5 0.2 0.2
Center of the spiral 9.5 0.0 0.0
Ends of the spiral 4.1 0.0 0.0

Fig. 12 (a, b) Maps of �1 � �2 calculated with the method by Loss et al. [23] for the images of
Fig. 10a, e respectively (� D 3=

p
2). (c, d) Maps of �2 calculated with he method by Loss et al.

[23] for the images of Fig. 10a, d respectively (� D 3=
p
2). Values have been inverted for a better

visualization

the edges that abut at the corner are smaller. In turn, binary edges extracted from
the star and the spiral through non-maximum suppression coincide with the ground-
truth for both versions of tensor voting. The accuracy of the edges extracted from
the structure tensor is also good in regions far away from corners, but it is largely
degraded in regions close to corners.

Moreover, the method proposed by Loss et al. [23] has been implemented in
order to compare two different approaches for extending tensor voting to gray-
scale images. Figure 12 shows the results of applying this method to the images
of Fig. 10a, e. As can be seen, �1��2 generates similar responses at both edges and
flat regions, making it difficult to detect edges in noisy images. In turn, �2 gives no
additional information, since it yields a smoothed version of the original image.

Finally, Fig. 13 shows that tensor voting is also a better option to be used instead
of the structure estimation for tensor-valued images. This figure shows the results
yielded for the images of Fig. 5 by both the structure tensor and tensor voting
computed through the two alternatives described in Sect. 4.3, that is, by modeling
tensors as vectors, and by applying (24) and its extension to tensor voting. Notice
that both alternatives are not comparable since the former estimates structure in the
input tensorial image, while the latter estimates structure in an image related to the
inverse gradient [8] of the input image. This fact explains, for example, why tensor
voting detects two edges in Fig. 13j for every leg of the cross, while it detects only
one edge in Fig. 13l. As appreciated in these images, the structure tensor blurs the
resulting tensors in such a way that it is difficult to extract edges and corners from
them. On the contrary, tensor voting is able to estimate structure in a better way.
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Fig. 13 Resulting tensor fields after applying the structure tensor and the two alternative exten-
sions of tensor voting described in Sect. 4.3 respectively (� D 5=

p
2) for the images of Fig. 5.

Alt. 1 models tensors as vectors, and Alt. 2 is based on (24)

6 Concluding Remarks

This chapter proposes a general methodology to adapt tensor voting for estimating
image structure based on the fact that the stick tensor voting and the structure
tensor are structurally similar, as shown in Sect. 3. Section 4 has shown how this
methodology can be applied to different types of images. Experimental results
show that tensor voting can estimate structure more appropriately than the structure
tensor. In addition, tensor voting yields more robust estimations of structure than
the structure tensor. The rotation term in the stick tensor voting leads to more robust
estimations of �2 but also generates halos that should be filtered out a posteriori.

It is interesting to remark that the close relationship between the structure
tensor and tensor voting has advantages and shortcomings. On the one hand, this
relationship can be used to extend tensor voting to different types of images, as
proposed in this paper. On the other hand, this relationship also limits the scope
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of use of tensor voting to structure estimation. Thus, there are three options to
extend tensor voting to other applications. The first one is to use tensor voting in
the processing step where structure estimation is required, as many previous works
have done. The second one is to model the problem in terms of structure estimation,
for example, by using different encoding steps. The third one is to adapt the voting
process by encoding new application-dependent perceptual rules. Given its recent
success [30–32], the third option appears to be the most promising approach for the
majority of applications.

Future work includes comparing different ways to perform tensor voting on
tensor-valued images and extending the proposed methodology to higher-order
tensors. In addition, the inclusion of new perceptual rules in the voting process
will be explored in order to eliminate the halos generated by tensor voting in the
estimation of �2 without a post-processing step. Furthermore, comparisons with
other approaches in order to combine tensors locally, e.g. [48], are planned.
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1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) is a well-established
technique to examine in vivo the structure of soft body tissue, such as brain or
muscle tissue. However, ubiquitous measurement errors during acquisition produce
noise and smeared out edges in the final visualisation. It would be desirable to have
a method available that diminishes noise and enhances edge-like structures at the
same time. A method achieving this goal for scalar and vector-valued images is
already at our disposal: Edge-enhancing diffusion filtering [18]. It is governed by
the equation

@t u � div .D.u/ � ru/ D 0 in ˝ � I;

@nu D 0 on @˝ � I; (1)

u.x; 0/ D f .x/ in ˝;

where ˝ � R
d is the image domain and I D Œ0; T Œ a potentially unbounded

time interval. The Neumann boundary conditions ensure preservation of the total
amount of grey-values. An essential part of this equation is the diffusion tensor D W
.x; t/ 7! D.u.x; t// of the scalar image u.�; t/ with t 2 I which steers the diffusion
process: It amplifies smoothing of the image within a relatively homogeneous region
and inhibits diffusion across edges marking region boundaries. To the authors’ best
knowledge, no extension of this method to matrix-valued images, matrix fields for
short, has been reported in the literature.

Postponing the detailed construction of D to the subsequent Sect. 2, for now we
only remark that it is a function of the structure tensor [10] which is given by

S�.u.�; t// WD G� �
�ru.�; t/ � .ru.�; t//>

� D �G� �
�
@xi u.�; t/ � @xj u.�; t/

��
i;jD1;:::;d

Here G�� indicates a (spatial) convolution with a Gaussian of standard deviation �,
however, more general averaging procedures can be used. If ru.x; t/ ¤ 0 for the
spatial gradient r the matrix

�ru.x; t/ � .ru.x; t//>
�

has rank one, the eigenvector ru.x; t/ belongs to the only non-zero eigenvalue
jru.x; t/j2. The eigenvalues are a measure for the contrast in the directions of
the eigenvectors. The averaging process then creates a matrix with full rank which
contains valuable directional information. Note that the averaging of the structure
tensor avoids cancellation of directional information. If one would average the
gradients instead, neutralisation of vectors with opposite sign would occur. In many
applications it is advantageous to use a presmoothed image u� WD G� � u instead of
u in order to reduce the influence of noise for better numerical results. The structure
tensor is a classical tool in image processing to extract directional information from
an image, for more details the reader is referred to [2] and the literature cited there.
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It is not straightforward to generalise both the structure and the diffusion tensor
concept to the setting of matrix-valued images. To fix notation in this work matrix-
valued images or matrix fields M are considered as mappings from R

d into the set
Symn.R/ of symmetric n � n-matrices

M W x 7!M.x/ D �mi;j .x/
�

i;jD1;:::;n
2 Symn.R/

and denoted by capital letters while indexed lower case letters indicate their
components. In [3, 22] di Zenso‘s approach to a structure tensor for multi channel
images is generalised: Each channel considered as independent scalar image gives
rise to a structure tensor, then these structure tensors are summed up to give the
structure tensor of Weickert

.J�.U.�; t///.x/ WD
nX

i;jD1

.S�.ui;j .�; t///.x/ :

In [16] a more sophisticated construction results in a structure tensor that is a
weighted sum of tensors of scalar quantities that are now not just the channels, but
other meaningful scalar quantities derived from the matrix field. It is important to
mention that in case of a 3D matrix field of 3�3 symmetric matrices these concepts
yield also 3�3 structure tensors, the very same order as a 3D scalar image. Here we
opt for a different approach: We assume an operator-algebraic view on symmetric
matrices as finite dimensional instances of selfadjoint Hilbert space operators. The
exploitation of the algebraic properties of matrices alone ensures already the proper
interaction between different matrix channels.

Promising proposals to generalise nonlinear regularisation methods and related
diffusion filters for scalar images to matrix fields have been made in [5, 6]. These
approaches are based on a basic differential calculus for matrix fields, which will
be useful in this context as well. Other approaches to tensor field regularisation
have a more differential geometric background (i.e. [9,17]) where the set of positive
definite matrices is endowed with a Riemannian metric stemming from the DT-MRI
field. In this chapter we will present a general concept for a large size structure
tensor that carries all the directional information of the matrix field. We will show
how this information can be deduced from this large tensor by a reduction process.
We will follow the presentation in [7].

The structure of the article is as follows: The next Sect. 2 is devoted to a
brief review of edge-enhancing diffusion (EED) filtering of scalar images. Notions
necessary to construct the diffusion tensor and a basic differential calculus for
matrix fields necessary to construct the diffusion tensor is provided in Sect. 3. In
Sect. 4 we present the structure tensor concept for matrix fields, study some of
its properties by investigating the connection to already known structure tensors
for matrix-valued data. Employing this structure tensor concept we introduce
edge-enhancing diffusion for matrix fields in Sect. 5. We then describe in Sect. 6
how explicit schemes for two-dimensional data can be extended by a Sobel-type
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method to three-dimensional data. The results of our experiments with matrix-
valued edge-enhancing diffusion applied to real DT-MRI images are discussed in
Sect. 7. Section 8 is made up by concluding remarks.

2 Edge-Enhancing Diffusion

The construction of the diffusion tensor D.u.�; t//.x/ as a function of the matrix
.S�.u.�; t///.x/ is guided by the following reasoning: The matrix .S�.u.�; t///.x/ is
the positive average of different symmetric positive semidefinite matrices, and as
such is positive definite as well. Hence .S�.u.�; t///.x/ possesses an orthonormal
system fw1; : : : ; wd g of eigenvectors corresponding to the non-negative eigenvalues
�1 � �2 � : : : � �d � 0 indicating the contrast in each direction. Although
not indicated to avoid notational clutter these eigenvectors and eigenvalues depend
on x and t . In the line defined by w1, the contrast is the highest compared to other
orientations, since w1 belongs to the highest eigenvalue �1. This indicates an edge or
a boundary between image regions perpendicular to w1. Hindering diffusion across
image borders the more the higher the contrast, and leaving it basically unaltered in
other directions suggests the following design for D: The matrix D has the same
eigenvectors as S�, however, its eigenvalues �i are functions of the �i according to

�1 WD g.�1/

and

�i WD 1 for i D 2; : : : ; d

where g stands for a diffusivity function. We use either the Perona-Malik diffusi-
vity [15]

g.s2/ D 1

1C s2

c2

(2)

or Weickert’s diffusivity [21]

g.s2/ D

8
<̂
:̂

1 if s D 0;

1 � exp

�
� �3:31488

.s=c/8

�
else.

(3)

with a threshold parameter c > 0. The procedure described above transforming S�

into D induces a mapping H W Symn.R/ �! Symn.R/ which we call a tensor map
for future reference, and we write

H.S�/ D D: (4)
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In this chapter we show how edge-enhancing diffusion filtering can be extended to
matrix fields. We follow the exposition in [7] and provide basic notions of a calculus
for matrix fields in the next section.

3 Basic Differential Calculus for Matrix Fields

This section contains a brief account of the basic definitions for the formulation of
a differential calculus for matrix fields. A previous version of this material can be
found in [4] but for a more detailed exposition the reader is referred to [5].

1. Functions of matrices. Given a real-valued function h of one variable the
standard definition for its extension h to Symn.R/ (usually denoted with the same
letter) is given by [11]:

h.M / D V >diag.h.�1/; : : : ; h.�n//V 2 Symn.R/;

if M D V >diag.�1; : : : ; �n/V is the spectral/eigen decomposition of the sym-
metric matrix M , and if �1; : : : ; �n lie in the domain of definition of h.

2. Partial derivatives. Let ! 2 fx1; : : : ; xd ; tg stand for a spatial or temporal
variable, and set .x; t/ D .x1; : : : ; xd ; t/. The partial derivative for matrix fields
is naturally defined componentwise as the limit of a difference quotient:

@!U.x; t/ D lim
h!0

U..x; t/C h � ek/� U.x; t/

h

D
�

lim
h!0

uij ..x; t/C h � ek/ � uij .x; t/

h

�

i;j

D �
@!uij .x; t/

�
i;j

where ek WD .0; : : : ; 0; 1; 0; : : : ; 0/ 2 R
dC1 stands for the kth unit vector

of space-time R
dC1. The generalisation to directional derivatives is straight

forward, then ! would denote an appropriate unit vector, for example, a normal
vector n to the boundary of the domain @˝:

@nU.x; t/ D n1 @x1 U.x; t/C : : :C nd @xd
U.x; t/:

Higher order partial differential operators, such as the Laplacian, or other more
sophisticated operators, find their natural counterparts in the matrix-valued
framework in this way as well.

3. Generalised gradient of a matrix field. The (spatial) gradient of a matrix field
with sufficiently smooth component functions is defined via

rU.x; t/ WD .@x1 U.x; t/; : : : ; @xd
U.x; t//> 2 .Symn.R//d :
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Table 1 Extensions of elements of scalar valued calculus (middle) to the matrix-valued setting
(right)

Setting Scalar valued Matrix-valued

Function h W
�
R �! R

x 7! h.x/
h W

�
Symn.R/ �! Symn.R/

U 7! V >diag.h.�1/; : : : ; h.�n//V

Partial @!u, ! 2 ft; x1; : : : ; xd g @!U WD �
@!uij

�
ij

, ! 2 ft; x1; : : : ; xdg
derivatives

Gradient ru.x; t/ WD .@x1 u.x; t/; : : : ;

@xd u.x; t//>,
rU.x; t/ WD .@x1 U.x; t/; : : : ; @xd U.x; t//>,
rU.x; t/ 2 .Symn.R//d

ru.x; t/ 2 R
d

Structure
tensor

G���ru.x; t/ � .ru.x; t//>
�

S G .U.x; t// WDG���rU.x; t/�.rU.x; t//>
�

Product a � b A �J B WD 1
2
.AB C BA/

Hence, the generalised gradientrU.x; t/ at a voxel x and time t is regarded as an
element of the module .Symn.R//d over Symn.R/ in close analogy to the scalar
setting where for the spatial gradient one has ru.x; t/ 2 R

d . In the sequel we
will call a mapping from R

d into .Symn.R//d a module field rather than a vector
field.

4. For the sake of completeness we include the formal definition of the generalised
structure tensor of a matrix field here. We will discuss its derivation, properties
and application in the next section. The structure tensor for a matrix field is
given by

S G .U.x; t// WD G� �
�
rU.x; t/ � .rU.x; t//>

�

D
�
G� �

�
@xi U.x; t/ � @xj U.x; t/

��
i;jD1;:::;d

: (5)

5. Symmetrised product of symmetric matrices. The product of two symmetric
matrices A; B 2 Symn.R/ is not symmetric unless the matrices commute.
However, it is vital to our interests to have a symmetrised matrix product at our
disposal. There are numerous options to define a symmetrised matrix product,
however, we concentrate on a specific one known from algebra and called Jordan
product:

A �J B D 1

2
.AB C BA/ for A; B 2 Symn.R/ : (6)

For commuting A and B we have A �J B D A �B . This product is commutative
and distributive but not associative. Most important, it does not preserve the
positive semidefinitness of its arguments [7].

We summarised the definitions from above and juxtapose them with their scalar
counterparts in the subsequent small Table 1. The matrix field U.x; t/ is assumed to
be diagonisable with U D .uij /ij D V >diag.�1; : : : ; �n/V , where V 2 O.n/, the
set of all orthogonal n � n-matrices, and �1; : : : ; �n 2 R.
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4 The Generalised Structure Tensor S G for Matrix Fields

In order to extract d-dimensional information we reduce the large structure tensor
S G .U / 2 Symnd .R/ to a structure tensor S.U / 2 Symn.R/ in a generalised
projection step employing the block operator matrix

TrA WD

0
B@

trA � � � 0
:::

: : :
:::

0 � � � trA

1
CA (7)

containing the trace operation trA W Symn.R/ �! R, M 7! tr.A � M / with a
fixed user-defined d � d -matrix A. The operator matrix TrA acts on elements of
the space .Symn.R//d as well as on block matrices via formal blockwise matrix
multiplication:

0
B@

trA � � � 0
:::

: : :
:::

0 � � � trA

1
CA

0
B@

M11 � � � M1n
:::

: : :
:::

Mn1 � � � Mnn

1
CA D

0
B@

trA.M11/ � � � trA.M1n/
:::

: : :
:::

trA.Mn1/ � � � trA.Mnn/

1
CA 2 Symn.R/ ;

provided that the square blocks Mij are compatible with trA, that means here, have
the same size as A. The reason for choosing trA as reduction operators is their
linearity:

trA.M1 C t M2/ D trA.M1/C t trA.M2/

for all t 2 R and M1; M2 2 Symn.R/, which is usefull to infer directional
information from S G , see [7] for details. As remarked in [7] the Weickert tensor
J� is a elementarily (A D I ) reduced version of S G ,

TrI S G .U / D J�.U / 2 Symn.R/ :

The reduction operation is accompanied by an extension operation defined via
the so-called Kronecker product: The In-extension operation is the mapping from
Symd .R/ to Symnd .R/ given by the Kronecker product˝:

0
B@

v11 � � � v1d

:::
: : :

:::

vd1 � vdd

1
CA 7�!

0
B@

v11 � � � v1d

:::
: : :

:::

vd1 � � � vdd

1
CA˝ In WD

0
B@

v11In � � � v1d In

:::
: : :

:::

vd1In � � � vdd In

1
CA :

If the d � d -matrix .vij /ij is Kronecker-multiplied with a matrix C we speak of a
C -extension.
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4.1 A Diffusion Tensor D for Matrix Fields

Now it is possible to give an analog D to the diffusion tensor D in the framework
of matrix fields. We proceed in four steps:

1. The matrix field R
d 3 .x; t/ 7! U.x; t/ provides us with an module field

of generalised gradients rU.x; t/ from which we construct the generalised
structure tensor S G U.x; t/ possibly with a certain integration scale �. This step
corresponds exactly to the scalar case.

2. We infer reliable d-dimensional directional information by reducing S G U.x; t/

with trA with the help of the block operator matrix given in (7) leading to a
symmetric d � d -matrix S , for example S D J� if A D In.

S WD

0
B@

trA � � � 0
:::

: : :
:::

0 � � � trA

1
CAS G U.x; t/ :

3. The symmetric d � d -matrix S is spectrally decomposed, and the tensor map H

is applied to S yielding the diffusion tensor D,

D WD H.S/ :

4. Finally we enlarge the d � d -matrix D to a nd � nd -matrix D by the extension
operation:

D D D ˝ C

This last step gives another possibility to steer the filter process by the choice of
the matrix C . However, this is the subject of current research. For this work we
restricted ourselves to C D In.

5 Edge-Enhancing Diffusion Filtering for Matrix Fields

Now we have gathered the necessary ingredients to formulate the matrix-valued
equivalent to the scalar edge-enhancing diffusion as expressed in Eq. (1):

@t U �
dX

iD1

@xi

�
D.U / � rU

�
D 0 in ˝ � I;

@nU D 0 on @˝ � I; (8)

U.x; 0/ D F.x/ in ˝:
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Note that the Jordan-multiplication in D �rU is understood in the blockwise sense
of partitioned matrices. Moreover, we translated the divergence differential operator
acting on a vector-valued function u D .u1; : : : ; ud / div u D Pd

iD1 @xi u into its
matrix-valued counterpart acting on a module field W 2 Symn.R/d by

div W D
dX

iD1

@xi W :

Remark. It becomes apparent that the PDE describing coherence-enhancing diffu-
sion filtering (CED) has the same form as the equation above, see [7]. However,
for CED a different tensor map is employed [8], namely the one that alters the
eigenvalues �1; : : : ; �d of S into

�i WD ˛ for i D 1; : : : ; d � 1

and

�d WD
8
<
:

˛ if � D 0;

˛ C .1 � ˛/ exp
�
� c

�

�
else,

with a threshold c > 0, the eigenvalues of the diffusion marix G.S/. The quantity

� WD
d�1X
iD1

dX
jDiC1

.�i � �j /2

has been proposed in [20] to measure coherence.

6 Numerical Issues

In the scalar, two-dimensional case an explicit scheme can be found in [19]. We
used a matrix-valued version employing the calculus framework for matrix fields as
presented before. This provides us with a matrix-valued solution scheme for matrix
fields defined over a two-dimensional image domain ˝ .

We derive a three-dimensional scheme by employing a Sobel-type construction
using the 2D discrete divergence approximation. The idea is based on the following
decomposition:

div

0
@
0
@

2a b c

b 2d e

c e 2f

1
Aru

1
A

D div

0
@
0
@

a b 0

b d 0

0 0 0

1
Aru

1
AC div

0
@
0
@

a 0 c

0 0 0

c 0 f

1
Aru

1
AC div

0
@
0
@

0 0 0

0 d e

0 e f

1
Aru

1
A : (9)
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Fig. 1 Construction of a 3D-stencil specific for the z�direction. Each layer represents a discrete
approximation of an essentially 2D divergence term

Each term on the right hand side of (9) can be approximated by a two dimensional
discretisation where we employ additionally a Sobel-type construction with a weight
! 2 Œ0; 1

2
� as indicated in Fig. 1 (however, only ! < 1

3
leads to good results).

For each of the three summands associated with the z�,y� and x� directions a
3 � 3 � 3-stencil is obtained which, when added give the final stencil. We used the
matrix-valued version of this stencil. Note that this construction can be applied to
more sophisticated two-dimensional stencils.

7 Experiments

In our experiments we use both synthetic and real-world tensor fields of 3 � 3-
symmetric matrices. The data are represented as ellipsoids via the level sets
of the quadratic form fv>U�2.x; t/v D const: W v 2 R

3g associated with a matrix
U.x; t/ 2 SymC.3/. By using U�2 the lengths of the semi-axes of the ellipsoid
correspond directly with the three eigenvalues of the matrix. In the following, we
demonstrate the denoising and enhancing capabilities of our edge-enhancing filter-
ing (EED) compared to coherence-enhancing filtering (CED) [8]. Both approaches
are implemented according to the 3D numerical scheme described in Sect. 6 with
! D 1

4
, unless stated otherwise. Before processing, the matrix fields will be pres-

moothed with a Gaussian kernel of width � . In EED, we map the largest eigenvalue
�1 using the Perona-Malik diffusivity (2) with manually adjusted parameter c. In
CED, we map the smallest eigenvalue �d with parameters ˛ D 0:001 and c D 1.

We have added (noise) random positive definite matrices to our synthetic data
sets. The eigenvectors of the noisy matrices were obtained by choosing Gaussian-
distributed numbers with standard deviation � and taking the absolute value
for positive definiteness. The eigenvectors of the noise result in choosing three
uniformly distributed angles and rotating the matrix by these angles around the
coordinate axes. The top row of Fig. 2 displays an original matrix field (maximum
eigenvalue 2,500) and its noisy version (� D 1;000) with simple line-like structures
imitating a crossing of nerve fibres. Depending on the choice of the reduction matrix
A in trA different filtering effects can be achieved. When no directional preference
is sought, i.e. A D I , the middle row of Fig. 2 shows that both EED and CED can
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Fig. 2 From left to right: Top
row: Synthetic 2D data set
and its noisy version. Middle
row: EED (c D 100) and
CED (� D 3) filtering at
diffusion time t D 5. No
specified preferred direction.
Bottom row: EED (c D 100)
and CED (� D 3) filtering at
diffusion time t D 15.
Diagonal-downwards
preferred direction. All cases
with presmoothing � D 0:5

preserve and enhance edges. However, EED has a more local effect than CED. This
is expected as the latter integrates directional information from its neighbouring
voxels—here we set � D 2 as the width of a Gaussian neighbourhood [8]. The

bottom row of Fig. 2 shows the effect of choosing A D
�

1 1

1 1

�
to give preference

to diagonal structures directed downwards. Also due to the argument above, CED
is able to complete the central isotropic region in a directional fashion faster than
EED. As a general remark, note that these diffusion-like approaches decrease the
overall size of matrices since the total mass, that is, the volume of the ellipsoids is
only redistributed due to the property of mass conservation of diffusion processes.

The top two rows of Fig. 3 display a synthetic 3D spiral (maximum eigenvalue
9,000) and two noisy versions. The first one was generated by adding Gaussian
noise with � D 6;000 to the matrices on the spiral’s surface, while in the second
one further Gaussian noise with � D 3;000 was added to 20 % of the background
voxels. The bottom two rows of Fig. 3 show the corresponding filtering results using
EED and CED without directional preference. It is clear that both approaches are
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Fig. 3 Top: 3D synthetic
spiral. Left column, from top
to bottom: Noisy spiral (noise
on its surface) and its filtered
versions with EED (c D 100)
and CED (� D 2) at diffusion
time t D 2. Right column,
from top to bottom: Noisy
spiral (noise on its surface
and background) and its
filtered versions with EED
(c D 100) and CED (� D 2)
at diffusion time t D 2. All
cases with presmoothing
� D 2:0 and no specified
preferred direction

capable to smoothly restore the spiral’s surface while keeping its sharp boundaries.
Note that at the same diffusion time (t D 2) EED produces slightly more convincing
(smoother) results than CED. The latter should thus be run a little longer for a better
result, fact that we will take into account later in our experiments with real-world
data. Figure 4 shows the effect of using different values of ! in our numerical
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Fig. 4 From top to bottom, left to right: EED (c D 100) filtering of the noisy spiral shown in
Fig. 3 using ! D 0:0; 0:1; 0:2; 0:3 in the numerical scheme at diffusion time t D 2. All cases with
presmoothing � D 2:0 and no specified preferred direction

scheme. A small ! gives more importance to the central layer (cf. Fig. 1). It can
be noted that our scheme produces good results with ! < 1

3
.

Figure 5 displays an original 3D data set obtained by diffusion tensor magnetic
resonance imaging (DT-MRI). A close-up around the lateral ventricles shows
isotropic (round) tensors as well as anisotropic (elongated) tensors in the area of
the genu and the corpus callosum. It has been proven [14] that this type of data are
corrupted with multivariate Gaussian noise. Our previous noise model is therefore
consistent with these real-world data and we can similarly test our EED and CED
filtering approaches on it. Figure 6 shows these results, where EED was stopped at
t D 1 and CED at t D 2 so that both methods achieve similar smoothness. Both
approaches produce pleasant results, denoising isotropic and anisotropic structures,
preserving and enhancing sharp boundaries, and reconstructing areas with missing
tensors. The main difference between both methods can be observed in the upper
region, where CED tends to elongate the ventricles as they are considered coherent
structures, which changes the original ventricular shape. This effect could have
been stronger with � > 1. Figure 6 also displays the fractional anisotropy (FA)
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Fig. 5 Left: Original 3D DT-MRI data set of a human head, 128�128�30 voxels. Right: Close-up
region around the lateral ventricles, 40� 55 � 3 voxels

Fig. 6 From top to bottom: Left column: Original 2D slice, 40 � 55 � 1 voxels, and its
corresponding FA map. Middle column: EED (c D 50) filtering at diffusion time t D 1 and
its corresponding FA map. Right column: CED (� D 1) filtering at diffusion time t D 2 and its
corresponding FA map. Both approaches were run on the full 3D data set, but to avoid clutter we
visualised the results on 2D slices. All cases with presmoothing � D 0:5 and no specified preferred
direction
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Fig. 7 Two viewpoints of 3D tractography results obtained from the data set shown in Fig. 5.
Top row: without filtering. Middle row: with CED filtering. Bottom row: with EED filtering. The
paremeters were chosen as in the experiment of Fig. 6.

maps [1] of the shown 2D DT-MRI slices. Note that FA 2 Œ0; 1�: FA D 0 at voxels
with isotropic tensors (�1 	 �2 	 �3), while FA D 1 at voxels with anisotropic
tensors (�1 
 �2 	 �3 	 0). These maps exhibit the regularising and edge-
enhancing properties of both diffusion approaches: EED seems to produce more
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homogeneous results at regions with different degrees of anisotropy; and CED
highlights anisotropic regions even if they are composed of only a few coherent
voxels. These properties are also observed in Fig. 7, which shows that our EED
approach is a powerful preprocessing technique that provides algorithms such as
tractography [12] with filtered and gap-completed tensors fields, which results in
better fibre tracts. These characteristics are important for the study of diseases
associated with certain abnormalities in brain anatomy [13].

8 Concluding Remarks

Based on an operator-algebraic view on matrices we described in this chapter a
structure tensor concept for matrix fields that allows for edge-enhancing diffusion
(EED) filtering of matrix fields by employing a generic differential calculus
framework for matrices. To solve the underlying matrix-valued partial differential
equation we have described a 3D numerical solution scheme that can be realised
as a Sobel-type construction that uses 2D discrete divergence approximations. This
allows us to employ all 27 voxels in the numerical discretisation rather than only
seven voxels as in standard 3D schemes.

Our matrix-valued EED filtering exhibits behaviour similar to its scalar coun-
terpart. As confirmed with experiments on synthetic and DT-MRI data sets, the
expected strength of EED is edge enhancement rather than line completion, the latter
being a typical feature of coherence enhancing diffusion (CED) filtering. In general,
both approaches represent suitable alternatives for denoising matrix fields with
different degree of anisotropy, preserving sharp edges and reconstructing areas with
missing tensors. Future research will focus on further applications of the generic
differential calculus framework for matrices in image processing for matrix fields.
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Fabric-Like Visualization of Tensor Field Data
on Arbitrary Surfaces in Image Space

Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamann,
and Gerik Scheuermann

Abstract Tensors are of great interest to many applications in engineering and
in medical imaging, but a proper analysis and visualization remains challenging.
It already has been shown that, by employing the metaphor of a fabric structure,
tensor data can be visualized precisely on surfaces where the two eigendirections
in the plane are illustrated as thread-like structures. This leads to a continuous
visualization of most salient features of the tensor data set.

We introduce a novel approach to compute such a visualization from tensor field
data that is motivated by image space line integral convolution (LIC). Although our
approach can be applied to arbitrary, non-self-intersecting surfaces, the main focus
lies on special surfaces following important features, such as surfaces aligned to the
neural pathways in the human brain. By adding a postprocessing step, we are able
to enhance the visual quality of the results, which improves perception of the major
patterns.
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1 Motivation and Related Work

Since the introduction of tensor lines and hyperstreamlines [6], there have been
many research efforts directed at the continuous representation of tensor fields,
including research on tensor field topology [11,22,23]. Zheng and Pang introduced
HyperLIC [31], which makes it possible to display a single eigendirection of a
tensor field in a continuous manner by smoothing a noise texture along integral lines,
while neglecting secondary directions. Recent approaches to visualize Lagrangian
structures on tensor fields [12] provide information on one chosen tensor direction
and are especially useful for diffusion tensor data, where the main tensor direction
can be correlated to neural fibers or muscular structures, whereas the secondary
direction only plays a minor role. More recently, Dick et al. [7] published an
interactive approach to visualize a volumetric tensor field for implant planning.

Hotz et al. [13] introduced Physically Based Methods (PBM) for tensor field
visualization in 2004 as a means to visualize stress and strain tensors arising in
geomechanics. A positive-definite metric that has the same topological structure as
the tensor field is defined and visualized using a texture-based approach resembling
LIC [4]. Besides other information, eigenvalues of the metric can be encoded by free
parameters of the texture definition, such as the remaining color space. Whereas
the method’s implementation for parameterizable surfaces that are topologically
equivalent to discs or spheres is straightforward, implementations for arbitrary
surfaces remains computationally challenging. In 2009, Hotz et al. [14] enhanced
their approach to isosurfaces in three-dimensional tensor fields. A three-dimensional
noise texture is computed in the data set and a convolution is performed along
integral lines tangential to the eigenvector field. LIC has been used in vector field
visualization methods to imitate Schlieren patterns on surfaces that are generated
in experiments where a thin film of oil is applied to surfaces, which show patterns
caused by the air flow. In vector field visualization, image space LIC is a method to
compute Schlieren-like textures in image space [9,17,27,28], intended for large and
non-parameterized geometries. Besides the non-trivial application of image space
LIC to tensor data, image space LIC has certain other drawbacks. Mainly because
the noise pattern is defined in image space, it does not follow the movement of the
surface and, therefore, during user interaction, the three-dimensional impression is
lost. A simple method proposed to circumvent this problem is animating the texture
pattern by applying randomized trigonometric functions to the input noise. Weiskopf
and Ertl [26] solved this problem for vector field visualization by generating a three-
dimensional texture that is scaled appropriately in physical space.

In contrast to other real-time tensor-field visualizations like [30], we developed
and implemented an algorithm similar to the original PBM but for arbitrary non-
intersecting surfaces in image space. Our algorithm can perform at interactive frame
rates for large data sets on current desktop PCs. We overcome the drawbacks
present in image space LIC implementations by defining a fixed parameteriza-
tion on the surface. Thus, we do not require a three-dimensional noise texture
representation defined at sub-voxel resolution for the data set. Our approach is
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Fig. 1 Flowchart indicating the five major steps (bold font) of the algorithm: projection, which
transforms the data set in an image space representation and produces the initial noise texture on the
geometry; silhouette detection, required for the advection step and the final rendering; advection,
which produces the two eigenvector textures; compositing, which combines intermediate textures;
and the postprocessing, which adds additional shading and improves the perceptual quality of the
final visualization. Between consecutive steps, the data is transferred using textures

capable of maintaining local coherence of the texture pattern between frames when
(1) transforming, rotating, or scaling the visualization, (2) changing the surface by,
e.g., changing isovalues or sweeping the surface through space, and (3) changing the
level of detail. In addition, we implemented special application-dependent modes to
ensure our method integrates well with existing techniques. Besides this, we also
apply several postprocessing steps to further increase the visual quality and clarity
of the shown structures.

2 Method

We employ a multi-pass rendering technique that consists of five major rendering
passes as outlined in Fig. 1 using bold typesetted boxes. The complete pipeline is
processed in one single render-frame and offscreen. In the following sections we
describe each single step in our pipeline and imply that all operations are done on
a per-pixel basis, if not denoted differently. We additionally rely on Fig. 1 in many
sections, as this figure shows all needed inputs and generated outputs of each step.

After generating the basic input textures once, the first pass calculates and
projects all required data into image space. This encompasses the eigenvector-
decomposition and projection, the noise projection to the surface, lighting and
further color-mapping. Using the calculated eigenvalues, the fractional anisotropy is
calculated as well. It is used later for clipping and color-mapping. Pass two performs
a silhouette detection on the depth-buffer if the rendered geometry. That is used to
guarantee integrity of the advection image, computed by multiple iterations of pass
three. Pass three uses the projected eigenvectors to smear the projected noise on
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Fig. 2 Illustration of the reaction diffusion texture used (right) and the noise texture mapped to
geometry (left)

the surface in k iterations along the eigenvectors. Eventually, pass four composes
the intermediate textures in an image, which is then post-processed by step five and
rendered on-screen.

2.1 Initial Noise Texture Generation

In contrast to standard LIC approaches, to achieve a proper visual representation of
the data, high-frequency noise textures, such as white noise, are not suitable for the
compositing of multiple textures. Therefore, we compute the initial noise texture
using the reaction diffusion scheme first introduced by Turing [24]. It simulates the
mixture of two reacting chemicals, which leads to larger but smooth “spots” that
are randomly and almost uniquely distributed (cf. Fig. 2, right). This can be pre-
computed on the CPU once. The created texture can then be used for all consecutive
frames. For the discrete case, the governing equations are:

�ai;j D F.i; j /CDa � .aiC1;j C ai�1;j C ai;jC1 C ai;j�1 � 4 � ai;j /;

�bi;j D G.i; j /CDb � .biC1;j C bi�1;j C bi;jC1 C bi;j�1 � 4 � bi;j /; where

F.i; j / D s.16 � ai;j � bi;j / and G.i; j / D s.ai;j � bi;j � bi;j � ˇi;j /: (1)

Here, we assume continuous boundary conditions to obtain a seamless texture in
both directions. The scalar s allows one to control the size of the spots where a
smaller value of s leads to larger spots. The constants Da and Db are the diffusion
constants of each chemical. We use Da D 0:125 and Db D 0:031 to create the
input textures. We gained both constants empirically. They directly influence the
shape and density of the created spots.
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2.2 Projection Step

The first step of our algorithm is the projection pass. Its purpose is to project the
geometry as well as the tensorial data to image space. Besides this, the initial noise
texture created earlier is mapped to the surface. After the projection step, the tensors,
the noise and the rendered geometry are available in image space and can be used
by the consecutive passes. As the next steps are all operating in image space, we
state that all consecutive steps are done on a per-pixel basis. The operations of
the projection step are done on a per-fragment basis. Only the projection of the
geometry is done vertex-wise.

2.2.1 Projection into Image Space

In the first step, we project the data into image space by rendering the surface using
the default OpenGL rendering pipeline. Notably, the surface does not need to be
represented by a surface mesh. Any other representation that provides proper depth
and surface normal information works just as well (e.g., ray-casting methods for
implicit surfaces, cf. Knoll et al. [16]). In the same rendering step, the tensor field is
transformed from world space to object space, i.e., each tensor T , that is interpolated
at the point on the surface from the surrounding two- or three-dimensional tensor
field is projected onto the surface by

T 0 D P � T � P T ; (2)

with a matrix P defined using the surface normal n as

P D
0
@

1 � n2
x �nynx �nznx

�nxny 1 � n2
y �nzny

�nxnz �nynz 1 � n2
z

1
A : (3)

The camera viewing system configuration and the available screen resolution
imply a super- or sub-sampling of the data. We obtain an interpolated surface tensor
in every pixel, which is decomposed into the eigenvector/eigenvalue representation
using a method derived from the one presented by Hasan et al. [10], only using
iteration-free math functions. This causes a tremendous acceleration on the GPU.
With this method, we calculate the three real-valued, orthogonal eigenvectors v�1�3

and the corresponding eigenvalues �1 � �2 � �3. In our method, we are only using
the first two eigenvectors, showing the two main directions. The eigenvectors, still
defined in object space, are projected into image space using the same projection
matrices MM and MP used for projecting the geometry to image space. These
usually are the standard modelview and projection matrices OpenGL offers:

v0�i
D MP �MM � v�i , with i 2 f1; 2g: (4)

After the projection, the two eigenvectors are not necessarily orthogonal anymore.
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2.2.2 Noise Texture Transformation

Mapping the initial texture to the geometry is a difficult and application-dependent
task. Even though there exist methods to parameterize a surface, they employ
restrictions to the surface (such as being isomorphic to discs or spheres), require
additional storage for texture atlases (cf. [15,19]) and, in general, require additional
and often time-consuming pre-processing.

Another solution, proposed by Turk et al. [25], calculates the reaction diffusion
texture directly on the surface. A major disadvantage of this method is the
computational complexity. Even though these approaches provide almost distortion-
free texture representations, isosurfaces, for example, may consist of a large amount
of unstructured primitives, which increases the pre-processing time tremendously.

Whereas previously published approaches for image space LIC either use
parameterized surfaces to apply the initial noise pattern to the surface or use
locally or globally defined three-dimensional textures [26], we define an implicit
parameterization of the surface that provides an appropriate mapping of the noise
texture to the surface.

For our purpose, a simple, yet fast and flexible mapping strategy is used. We
implicitly split the world space in voxels of equal size. These voxels fill the bounding
volume of the geometry but are never created explicitly. The seamless noise texture
is mapped onto each side of each voxel exactly once (no tiling). This creates a
seamless mapping of the noise onto the surface of any connected block of voxels.
During rendering, each point p of the surface can then be classified to belong to one
certain voxel. This can be interpreted as discretization of the surface with the help
of the implicit voxels. The normal at p on the surface is then used to find the most
similar side of the voxel associated with p. Therefore, the scalar product between
the surface normal and the normals of each side are compared. Once the side-plane
is found, the following table determines the point’s p texture coordinates:

Side-normal Texture coordinates

.1; 0; 0/ or .�1; 0; 0/ .py ; pz/

.0; 1; 0/ or .0;�1; 0/ .px ; pz/

.0; 0; 1/ or .0; 0;�1/ .px ; py/

Please note, that we assume the texture coordinates to be defined in a wrapped
and continuously defined coordinate system, which is common in OpenGL. This
allows the seamless tiling of the input noise texture on each voxel surface, which
then is mapped to the surface. This can be interpreted as an orthographic projection
of the voxel side plane onto the surface along the plane’s normal vector.

Regardless of its simplicity, this method supports a fast and flexible parameter-
ization of the surface space that only introduces irrelevant distortions (cf. Fig. 2),
which vanish during the advection step.

By changing the size of voxels during the calculation, different frequencies of
patterns can easily be produced and projected onto the geometry. This capability
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Fig. 3 Comparison of two different voxel sizes during noise mapping. This demonstrates the
possibility for dynamic refinement of the input noise to achieve different levels of detail

allows one to change the resolution of the texture as required for automatic texture
refinement when zooming. A comparison of two different levels of detail is shown
in Fig. 3.

2.3 Silhouette Detection

Following the projection pass, the silhouette detection pass uses the rendered
surface’s depth as input. To avoid advection over geometric boundaries, a silhouette
of the object is required to stop advection in these areas [17]. Otherwise, tensor
advection would lead to a constant flow of “particles” across surface boundaries
which makes the surface’s geometry and topology unrecognizable.

A standard three-by-three Laplacian filter, defined by the convolution mask

2
4

0 1 0

1 �4 1

0 1 0

3
5 (5)

applied to the depth values followed by thresholding, has proven to be suitable for
our purposes. The silhouette image e for each pixel .x; y/ is then provided to the
next pass.

2.4 Advection

We have discussed how to project the geometry and the corresponding tensor field
to image space. With the prepared image space eigenvectors and the input noise
texture on the geometry, the advection can be done. Another important input is the
advected image of the previous advection pass, created during the last render-frame.
For the first frame, the geometry mapped noise is used as initialization.
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Fig. 4 Advection texture after ten iterations. Left: red channel containing advected noise along
the eigenvectors v0

�1
; Right: green channel containing the advected noise along the second

eigenvectors v0

�2

In the advection step, an Euler integration is applied to both vector fields
separately. In our case, we do not calculate streamlines at each position of both
vector fields, as normally done in LIC. We directly advect the noise input texture
with the given vector fields, which provides the same results as locally filtering
the data along pre-computed streamlines. During the advection pass, the previous
advection results are, again, advected along the both eigenvector-fields separately.
Each pass thereby only does one step along the two vector-fields. This decision was
based on the fact that massively parallel architectures like modern GPUs are able to
perform this task in parallel for each pixel several hundred times per second.

An important abortion-criteria here is the silhouette image e. If an edge is
crossed, integration is stopped. The advection iteration can also be stopped if the
advection reaches a saturation; i.e. the resulting advected images do not differ from
the previous ones. Due to this saturation effect, we do not use the iteration count k as
abortion criterion. Since the eigenvectors do not have an orientation, the advection
needs to be done in direction of v0

�1
and �v0�1

and for v0�2
and �v0�2

respectively. At
this point, we have two advected images for each eigenvector. These get composited
equally to for both eigenvectors at this pixel. Furthermore, the advection results for
each eigenvector again get blended with the input noise. The blending ratio between
noise and the advected images determines how crisp the results are. Lower ratios
produce crispier images. Higher ratios produce more smooth and more smeared
images. Throughout this paper, we use a ratio of 1

10
.

The resulting images, one for each eigenvector, are then used as input during
the next render-frame. They can be stored in one single texture in different color
channels. We use the red color channel for the first eigenvector and the green color
channel for the second one. Figure 4 shows the resulting images of the advection
step after ten iterations (kD 10). For later reference, we denote these advected
images after k steps with Ak

�1
and Ak

�2
. The number of iterations k hereby equals the

number of rendered frames as we do only one advection step per frame.



Fabric-Like Visualization of Tensor Field Data on Arbitrary Surfaces in Image Space 79

2.5 Compositing

In a subsequent rendering pass, an initial fabric-like texture is composed. For the
sake of simplicity and the limitations of some graphics boards, we split the final
image creation step in an initial compositing followed by a postprocessing step
described in the next section. The compositing step combines the advection results
Ak

�1
and Ak

�2
into one image, whereas the postprocessor mainly improves visual

quality. The input of the compositing step are the both advected images Ak
�1

and

Ak
�2

, the depth-buffer, the silhouette e as well as the light and colormap information
from the projection pass. On the GPU, these inputs get composed to the final RGB
triple for each pixel:

R D r � Ak
�2

8 � .Ak
�1

/2
;

G D .1 � r/ � Ak
�1

8 � .Ak
�2

/2
;

B D 0: (6)

Equation 6 is a weighting function between the two advected images for both
eigenvectors. The scalar factor r is used to blend between the two tensor directions.
If both directions are equally important, a value of 0:5 ensures an equal blending
of both directions. To explain the above compositing scheme, we are using the
red component as an example. The red color should represent the main tensor
direction. We therefore reduce the intensity of the second eigenvector image Ak

�2

using the over-emphasized first eigenvector image Ak
�1

. To furthermore emphasize
the influence of a high intensity in the advected image for the first eigenvector, the
denominator is squared. This way, pixels with a high intensity in the first eigenvector
direction get a high red intensity. This is done vice versa for the green channel. The
compositing implicitly utilizes the clamping to Œ0; 1� which is done for colors on the
GPU. This approach creates a mesh resembling the tensor field’s structure. The light
information is not yet composited. This is done during postprocessing.

2.6 Postprocessing

Additional filters can be applied to the composed image, such as contrast enhance-
ment or sharpening filters, which are commonly used in vector field LIC [9, 26].
Figure 5 shows the result of Eq. 6 combined with Blinn-Phong shading. Even though
Blinn-Phong shading [2] provides the required depth cues, additional emphasis of
the third dimension using depth-enhancing color coding has proven to provide a
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Fig. 5 The composited image produced by the compositing shader. Please note, that we added the
light for illustration only. Left: the whole geometry. Right: a zoomed part of the geometry to show
the still blurry fabric structure on the surface

better overall understanding of the data [5]. These techniques can be incorporated
in our compositing scheme easily. Anyhow, the results still look blurry and justify
the need for additional postprocessing. We have implemented two postprocessings
which reduce blur and create crisp and appealing images.

Bump mapping, first introduced by Blinn [3] to simulate three-dimensionality in
planar surfaces, can be used to improve spatial perception of the fabric surface.
Bump mapping is normally done in world space, where the three-dimensional
tangent space is known. In image space, this information is not available anymore.
Therefore, we use a modified approach that can be applied in image space. Bump
mapping requires the surface normal at each point of the surface. We obtain this
normal by estimating the normalized gradient on the two-dimensional texture:

g D jjr.RCG/jj: (7)

The resulting two-dimensional vector g describes the gradient on the image plane
using each pixel’s intensity. The blue color channel is not used as it does not contain
relevant information. It is also worth noting that Eq. 6 did not include edge and
light information to the red and green channel. This ensures that the gradient can
be estimated on basis of the tensor fabric intensity only. Besides the gradient, the
surface-normal in image space is needed too. The image space surface normal can
be retrieved in projection step by projection each normal the same way a vertex
gets projected. Using this gradient, the new normal is a weighted sum of the surface
normal and the gradient and is used for calculating per-pixel Phong lighting as seen
in Fig. 6. So, we achieve the bump mapping effect by doing per-pixel Phong lighting
on the surface with normals modified by the fabric pattern. For later reference, we
call this B.
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Fig. 6 The final image produced by the postprocessing shader in combination with bump
mapping, the geometry’s Phong shading and combined edges. Left: standard bump mapping. Right:
the same zoomed part of the original geometry to show the effect of weighting the resulting Phong
intensities by the original R.x; y/ and G.x; y/ intensities. This approach creates a more fabric-like
impression that can be misunderstood as rotating ribbons similar to stream ribbons

Figure 6 (right) shows the additional scaling of the red and green color channels
by the original color intensities, to lead to a more fabric-like impression of the lines.
Equation 8 shows this in more detail and defines the final output color triple as:

Rfinal D B � .R �G CR2/C e;

Gfinal D B � .R �G CG2/C e;

Bfinal D e: (8)

Again, this utilizes the clamping to Œ0; 1� done on the GPU for colors automatically.
With the help of bump mapping, we achieve a better spatial impression of the

fabric-like pattern. A further visual improvement can be achieved by interpreting
the structure on the surface as streamtubes [29] along the surface. Therefore, an
approach similar to the ones in [18, 20] is appropriate to create the visual effect
of streamtubes on the geometry’s surface, without actually creating tubes. First,
we need to have a tangential coordinate system, similar to the one needed for
bump mapping. The eigenvectors v0�1

and v0�2
from Eq. 4 are interpreted as the

tube tangents for the first and second eigenvector field. These tangents denote the
direction of the tube along the surface and, together with the trivial surface normal of
.0; 0; 1/T , define the bi-normal vector. The bi-normal b for each eigenvector field i :

b�1 D jj.0; 0; 1/T � v0�1
jj and b�2 D jj.0; 0; 1/T � v0�2

jj (9)

To simplify the further descriptions, we describe the next steps for rendering the
tubes of v0�1

. These steps need to be done for the second eigenvector too.
The area of the tube on the surface itself is already drawn in the composited

image red channel, but their proper shading is missing. The bi-normal b�1 is now
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Fig. 7 Left: Interpreting the final image from Fig. 5 as streamtubes along the geometry’s surface,
and lighting them accordingly, results in a less blurry surface. Right: zoomed part of the left
geometry to show the tube effect. Although there are plenty of artifacts in the zoomed image, they
do not influence the overall impression of images not zoomed as much. Especially, such strongly
zoomed images are not useful for gathering an overview over the tensor field’s structure

used to find the correct normal on the tube-surface at the current pixel for lighting.
Therefore, we sample in very small steps in direction of the bi-normal, to find the
border of the tube. This check can be done using the red color channel from the
composited image, since it is 0 if not on the respective tube anymore. In other words,
we search for the smallest, positive scaling factors ap and an which scale the bi-
normal b�1 and �b�1 to point to the nearest 0 in the red channel. If both factors
are 0, the current pixel is not on a tube and further calculations can be skipped. The
width of the tube passing the current pixel is defined by ap C an and

p D 2 �
�

0:5 � ap

ap C an

�
2 Œ�1; 1� (10)

defines the relative position of the current pixel on this tube regarding the (normal-
ized) bi-normal, where 0 is the middle of the tube. Also note that ap and an are both
positive.

This information is enough to define a diffuse shaded surface. However, we want
proper per-pixel Phong shading and therefore need to use this to calculate the tube
normal at the current pixel:

ntube D .1 � p2/.0; 0; 1/T C p2b�1 : (11)

The value of p is additionally squared to achieve the effect of a round surface. The
normal ntube is then used to calculate the Phong shading on the surface and produces
the tube-like effect with proper spatial impression on the surface, as can be seen in
Fig. 7. Again, this needs to be done for both eigenvectors separately. The resulting
Phong intensities are then used as red and green color of the pixel in the final image
and can be enhanced with the edge, as done in Eq. 8.
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The artifacts seen in Fig. 7 result from the local approach we are using to
calculate the tubes. As we do not integrate along the eigenvector-field, there may be
discontinuities along a tube in the produced image. There are also artifacts caused by
a blurry input field, where borders cannot be found clearly. But, since the frequency
of the fabric structure is normally much higher, these effects are not visible anymore,
as can be seen in Fig. 7, left.

2.7 Implementation

The implementation of the pipeline shown in Fig. 1 is straight forward. The figure
clearly shows the input and output textures of each step and their execution order.
The whole pipeline is implemented using OpenGL and framebuffer objects (FBO),
which allow the efficient offscreen rendering and image space based processing
we need. The projection step is the beginning of the pipeline and the only step
which is not in image space. For the consecutive steps, we render a quad, filling the
whole viewport of the FBO. The inputs and outputs are then bound as textures to
the FBO and the quad respectively. Since texture space is limited on the hardware, it
is important to store as much information as possible in each texture (four channels
per texture available). The steps itself are all implemented as fragment shaders using
GLSL. This way, we can work on a per-pixel basis easily. There are only some
implementation specifics we want to mention here.

2.7.1 Projection Step

Our implementation is not limited to a special kind of geometry. It is able to handle
almost every tensor field defined on a surface. It is, for example, possible to calculate
an isosurface on a derived scalar metric, like fractional anisotropy, or on a second
data set to generate a surface in a three-dimensional data domain. Other methods
include hyper-stream surfaces [6], wrapped streamlines [8], or domain-dependent
methods like dissection-like surfaces presented in [1]. The only requirement for the
surface is that it is non-self-intersecting and that smooth normals are provided as
they are required for the projection step and for proper lighting.

As the tensors are symmetric, it is sufficient to transfer six floating-point values
per vertex to the GPU. In our case, two three-dimensional texture coordinates
are used per vertex to upload the tensor information along with the geometry.
Assuming the tensor T is available on the GPU, it is possible to map the two
main directions to the surface described by the normal n at the current vertex
using Eq. 2. This projection is implemented in a per-vertex manner in the vertex
shader. In contrast, to ensure proper interpolation, eigenvalue decomposition and
eigenvector calculation together with image space projection need to be done in
the fragment shader. Since the eigenvectors are without orientation, it is possible
to have sign flips between adjacent vertices. If the interpolation takes place after
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Table 1 Frames per second (fps) for different data sets with given number of triangles and
numbers of tensors. The frame rates are compared to simple rendering of the geometry using Phong
shading. The frame rates were obtained for an AMD Athlon(tm) 64 � 2 Dual Core Processor
3800 C (512 K L2 Cache) with an NVIDIA G80 GPU (GeForce 8,800 GTS) and 640 MB of
graphics memory at a resolution of 1,024� 768 pixels. The geometry share relates the time used
by the GPU to rasterize the geometry to the overall rendering time, which contains all steps of the
pipeline. The time used to render the geometry clearly dominates the rendering times and reaches
up to 90% of the overall rendering time even for medium-sized geometries

Figure Nb triangles Nb tensors fps fps (Phong only) ¿ Geometry share

9 41472 63075 32 61 72%
5 58624 88803 30 60 69%
10 571776 861981 14 16 90%

the eigenvector decomposition, these sign changes can render the interpolation
useless. The eigenvectors v0�1

and v0�2
need to be scaled since textures are used for

transportation where each value must be in the interval Œ0; 1�. To simplify further
data handling and storage on the GPU, we scale the eigenvectors as follows:

kvk1 D maxfjvxj; jvy jg (12)

v00�i
D v0�i

kv0�i
k1 with i 2 f1; 2g; and kv0�i

k1 ¤ 0 (13)

The maximum norm (L1-norm) ensures that one component of the eigenvector is 1

or�1 and, therefore, one avoids numerical instabilities arising when limited storage
precision is available, and can use memory-efficient 8-bit textures. The special case
kv0�i
k1 D 0 only appears when the surface normal and the eigenvector point in the

same direction. This case needs to be handled in the shader.

2.7.2 Advection Step

During each advection iteration, the input and output texture need to be switched.
This way, the advection result of the previous advection iteration can be used as
input without the need to allocate and deallocate a separate texture for each iteration.

3 Results

We have introduced a method to create a fabric-like surface tensor LIC in image
space, similar to the one introduced in [13]. We used ideas from [17] to transform
the algorithm into image space. Our implementation, using this method, is able to
reach frame rates high enough for real-time user interaction. The only bottleneck is
the hardware’s ability to render large and triangle-rich geometry. All further steps
can be done in constant time, see Table 1.
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Fig. 8 Analytic test data sets. We applied our method to isosurfaces and the scalar field’s
Laplacian to demonstrate the suitability for complicated surfaces. Shown are the final images using
our method for a sphere, torus, Tangle, and Bretzel5 data set (Eqs. 14–16)

3.1 Artificial Test Data Sets

We first applied our method to artificial test data sets that have complex topology: a
torus, the Bretzel5, and the Tangle data set (cf. [16]), defined as implicit surfaces:

.1 �
p

x2 C y2/.1 �
p

x2 C y2/C z2 � 0:125 D 0; (14)

..x2 C :25 � y2 � 1/ � .:25 � x2 C y2 � 1//2 C z2 � 0:1 D 0, and (15)

x4 � 5 � x2 C y4 � 5 � y2 C z4 � 5 � z2 C 11:8C w D 0: (16)

We used the Laplacian on the surfaces as tensor fields. The results displayed in Fig. 8
show that neither the topology nor our artificial parameterization of the input noise
texture influences the quality of the final rendering.
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Fig. 9 An axial slice through a human brain: Corpus callosum (CC) (red), pyramidal tract (blue),
and parts of the cinguli (green in front and behind the CC) are visible. The main direction in three-
dimensional space is indicated by the RGB color map, where red indicates lateral (left–right),
green anterior–posterior, and blue superior–inferior direction. The left–right structure of the CC
can clearly be seen in its center, whereas color and pattern indicate uncertainty towards the outer
parts. The same is true for the cinguli’s anterior–posterior structure. As seen from the blue color, the
pyramidal tract is almost perpendicular to the chosen plane and, therefore, secondary and ternary
eigenvectors dominate the visualization. Alternatively, we could easily fade out those out-of-plane
structures in cases where they distract the user

3.2 Modification for Medical Data Processing

Even though many higher-order methods have been proposed, due to scanner,
time, and cost limitations, second-order tensor data is still dominant in clinical
application. Medical second-order diffusion tensor data sets differ from engineering
data sets because they indicate one major direction whereas the secondary and
ternary directions only provide information in areas where the major direction is
not well-defined, i.e., the fractional anisotropy—a measure for the tensor shape—
is low. Almost spherical tensors, which indicate isotropic diffusion, occur in areas
where multiple fiber bundles traverse a single voxel of the measurement or when
no directional structures are present. Therefore, we modulate the color coding
using additional information: In areas where one fiber direction dominates, we only
display this major direction using the standard color coding for medical data sets,
where x, y, and z alignment are displayed in red, green, and blue, respectively. In
areas where a secondary direction in the plane exists, we display this information
as well but omit the secondary color coding and display the secondary direction in
gray-scale rendering mode and always below the primary direction (cf. Fig. 9). We



Fabric-Like Visualization of Tensor Field Data on Arbitrary Surfaces in Image Space 87

Fig. 10 Diffusion tensor data set of a human brain. We employed the method by Anwander
et al. [1] to extract a surface following neural fibers and applied our method with an alternative
color coding that is more suitable and can be incorporated more easily into medical visualization
tools

use the method of Anwander et al. [1] to extract surfaces that are, where possible,
tangential to the fiber directions. Hence, we can guarantee that the projection error
introduced by our method in the surface’s domain remains small. Even in areas
where the fractional anisotropy is low and the color coding does no longer provide
directional information, such as in some parts of the pyramidal tract in Fig. 9, the
texture pattern still provides this information (Fig. 10).

3.3 Mechanical Datasets

Our approach is not only applicable to medical datasets, but it can also be applied to
many other tensor data sets. Figures 11 and 12 show a slice in an earthquake dataset
and an analytical strain tensor field. The analytical data set is the well-known single
point load data set, where a single infinitesimally small point source pushes on an
infinite surface. The forces and distortions inside the object are represented by stress
and strain tensors, which are symmetric, second-order tensors. The earthquake data
set is a simulation of a single concrete pile in solid ground excited by a measured
earthquake pattern from the Kyoto earthquake (cf. Fig. 12). As shown, the material
stress tensors, are defined on an irregular grid. We extracted a plane perpendicular
to the pile and show the tensor information in that plane. Due to the time-dependent
nature of the simulation, static images are quire complex.
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Fig. 11 A slice in the well-known single point load data set, showing the symmetric strain tensor
at the surface of the slice

Fig. 12 A concrete pile in solid ground. Left: the original grid shown in purple. Right: a slice of
the dataset showing the symmetric part of the tensor field

3.4 Performance

As indicated before, the only “bottleneck” in the visualization pipeline is the
strongly geometry-dependent projection step. Since the surface needs to be rendered
repeatedly in case of user interaction, the performance measures of our method
consider repeated rendering of the geometry. The frame rate with geometry not
being moved and, therefore, making the projection step and the edge detection step
unnecessary, is considerably higher. The advection step can be done multiple times
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per frame. This reduces the number of frames needed until the advection is saturated.
To ensure high frame-rates and smooth user-interaction, we do only one advection
step per frame. To make the frame rates in the following tables comparable, user
interaction is assumed and, therefore, rendering a single frame always consists of

• One projection step, including geometry rendering;
• One edge detection pass;
• Three advection iterations; and
• One output processing pass.

As seen in the previous sections, fragments not belonging to the geometry are
discarded as soon as possible without using deferred shading. This also leads to
performance gain in advection and output processing. In Table 1, a selection of data
sets with their corresponding number of triangles and tensors are listed. The frame
rates shown were obtained on an AMD Athlon(tm) 64 X2 Dual Core Processor
3800+ (512 K L2 Cache) with a NVIDIA G80 GPU (GeForce 8800 GTS) and
640 MB of graphics memory at a resolution of 1,024� 768 pixels.

The assumption that geometry rendering with projection is the weakest com-
ponent in this pipeline and that edge detection, advection, and output processing
perform at a data-independent frame rate is confirmed by the frame rates shown
in Table 1. It confirms that for large geometries, rendering the geometry alone is
the dominant component. Since the vertex-wise calculations during projection are
limited to tensor projection (Eq. 2) and noise texture transformation (Sect. 2.2.2),
the most expensive calculations during projection are executed per fragment. This
means that the expensive eigenvalue decomposition and eigenvector calculations
are only required for fragments (pixels). To further decouple the calculation effort
from the geometry’s size, the depth test should be performed before performing
the eigenvector decomposition. This goal can be achieved by first rendering
the projected tensors to a texture, and computing the decomposition for visible
fragments only. Nevertheless, this is not necessary for our current data set and screen
sizes where the time required to render the geometry itself clearly dominates the
time required to compute the texture pattern in image space. This can be seen in the
increasing values in Table 1 with increasing size of vertices rendered.

4 Conclusions and Possible Directions for Future Research

We have presented a novel method for rendering fabric-like structures to visualize
tensor fields on almost arbitrary surfaces. We have extended our method with an
additional postprocessing step, which ensures crisp and clear results. With this, the
tensor field structure can be grasped even better.

As our method works without generating three-dimensional textures that span
the whole data set at sub-voxel resolution, it can be applied to complex data sets
without introducing texture memory problems common to methods relying on three-
dimensional noise textures. As major parts of the calculation are performed in image
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space, the performance of our algorithm is almost independent of data set size,
provided that surfaces can be drawn efficiently, e.g., by using acceleration structures
to draw only those parts of the geometry that intersect the view frustum or using ray
tracing methods.

Whether the surface itself is the domain of the data, a surface defined on
the tensor information (e.g., hyperstream surfaces), or a surface defined by other
unrelated quantities (e.g., given by material boundaries in engineering data or
anatomical structures in medical data) is independent from our approach. Neverthe-
less, the surface has to be chosen appropriately because only in-plane information
is visualized. To overcome this limitation, information perpendicular to the plane
could be incorporated in the color coding, but due to a proper selection of the plane
that is aligned with our features of interest, this has not been necessary for our
purposes.

Especially in medical visualization, higher-order tensor information is becoming
increasingly important and different methods exist to visualize these tensors,
including local color coding, glyphs, and integral lines. Nevertheless, an extension
of our approach is one of our major aims. In brain imaging, experts agree that the
maximum number of possible fiber directions is limited. Typically, a maximum
of three or four directions in a single voxel are assumed (cf. Schultz et al. [21]).
Whereas the number of output textures can easily be adapted, the major remaining
problem is a lack of suitable decomposition algorithms on the GPU. Image space
techniques, by their very nature, resample the data and, therefore, require one to
use such proper interpolation schemes. In addition, maintaining orientations and
assigning same fibers in higher-order data to the same texture globally is not possible
today and, therefore, is a potential topic for further investigation.
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Abstract Topology was introduced in the visualization literature some 15 years
ago as a mathematical language to describe and capture the salient structures of
symmetric second-order tensor fields. Yet, despite significant theoretical and algo-
rithmic advances, this approach has failed to gain wide acceptance in visualization
practice over the last decade. In fact, the very idea of a versatile visualization
methodology for tensor fields that could transcend application domains has been
virtually abandoned in favor of problem-specific feature definitions and visual
representations. We propose to revisit the basic idea underlying topology from a
different perspective. To do so, we introduce a Lagrangian metaphor that transposes
to the structural analysis of eigenvector fields a perspective that is commonly used
in the study of fluid flows. Indeed, one can view eigenvector fields as the local
superimposition of two vector fields, from which a bidirectional flow field can
be defined. This allows us to analyze the structure of a tensor field through the
behavior of fictitious particles advected by this flow. Specifically, we show that
the separatrices of 3D tensor field topology can in fact be captured in a fuzzy and
numerically more robust setting as ridges of a trajectory coherence measure. As a
result, we propose an alternative structure characterization strategy for the visual
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1 Introduction and Motivation

Tensor fields are ubiquitous in the theory of continuum mechanics. They offer
an elegant mathematical language to describe the forces acting upon solids and
fluids. Their analysis is therefore needed in application disciplines ranging from
structural mechanics and fluid dynamics to geophysics, earthquake research, mate-
rials engineering, and aeronautics. The theoretical and practical importance of
tensor fields has led to a dedicated research effort in the scientific visualization
community aimed at devising analysis tools that allow scientists and engineers to
make sense of the corresponding datasets. Yet, the task is challenging owing to the
size, dimensionality, and many degrees of freedom of the data.

To address this difficulty, a general approach in the visualization literature
consists in extracting salient structures from the data in a pre-processing stage.
The information obtained through this computation is then used to facilitate the
visual inspection of large and complex datasets. Specifically, it allows subsequent
data depictions to focus on remarkable geometric descriptors, thus avoiding visual
clutter while improving the interactivity of the visualization. Topology in particular
provides a theoretical framework within which the notions of structure and saliency
can be articulated in a principled way. Following the introduction of this formalism
in vector field visualization, topology was extended to tensor fields over 15 years
ago and a complete algorithmic framework is now available for the extraction of the
so-called topological skeleton in three-dimensional datasets [18].

One could therefore assume that a general solution has been found to the
visual analysis of 3D tensor fields. Unfortunately, a rapid glance at the recent
literature reveals unambiguously that topology has fallen short of offering a globally
valid approach for this problem and it has not been adopted by visualization
practitioners in the investigation of their tensor data. The shortcomings of the
topological approach in 3D concern its significant algorithmic complexity and its
lack of numerical robustness. The latter aspect is particularly problematic since
it essentially disqualifies this method from being applied to any measured or
simulated numerical dataset. Instead, the characterization of important structures
in application datasets has been mainly driven by domain-specific feature of interest
that lack generality and are typically defined in an ad-hoc manner. A prime example
of this trend concerns the large body of work dedicated to diffusion tensor imaging
(DTI) data, where anatomical structures such as fiber bundles are the natural focus
of both analysis and visual representation.

We propose in this paper to revisit the basic idea underlying topology from
a different perspective. Specifically, we introduce a Lagrangian metaphor that
transposes to the structural analysis of eigenvector fields a mathematical theory that
has recently gained popularity in the fluid dynamics community. Building upon the
strong theoretical connections that exist between vector and eigenvector fields, we
show that the topology of 3D tensor fields can be characterized through extremal
manifolds of a trajectory coherence measure obtained by processing eigenvector
fields. This approach significantly improves upon the topological method however in
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that it yields a fuzzy and numerically more robust characterization that is well suited
for practical datasets. We demonstrate our technique and compare the extracted
structures to topology in a benchmark analytical datasets and in a computational
fluid dynamics simulation. Our results document the potential of this general
strategy for the visual analysis of symmetric 3D tensor fields across engineering
and scientific applications.

The remainder of this paper is organized as follows. We review previous
work in tensor field visualization with an emphasis on the topological framework
in Sect. 2. The theoretical foundations of our approach, which span dynamical
systems, differential geometry, and computer vision, are summarized in Sect. 3. The
proposed model of structure is described in Sect. 4 along with some algorithmic
considerations. Finally, results are shown in Sect. 5 and we point out promising
avenues for future research in Sect. 6.

2 Related Work

2.1 Topological Methods

The topological framework was first applied to the visualization of second-order
tensor field by Delmarcelle and Hesselink [4]. Leveraging ideas introduced pre-
viously for the topology-based visualization of vector fields [9, 12], these authors
proposed to display a planar tensor field through the topological structure of its two
orthogonal eigenvector fields. As discussed in their work, the lack of orientation of
eigenvector fields leads to singularities that are not seen in regular vector fields.
Indeed, those degenerate points correspond to locations where the tensor field
becomes isotropic, i.e. where both eigenvalues are equal and the eigenvectors are
undefined. Yet, this seminal work shows that a similar synthetic representation is
obtained in the tensor setting through topological analysis: degenerate points are
connected in graph structure through curves called separatrices that are everywhere
tangent to an eigenvector field. Refer to Fig. 1.

The three-dimensional case was first considered in a subsequent paper by
Hesselink et al. [13]. Interestingly, their discussion was primarily focused on the
types of degenerate points that can occur in this setting. As such it did not explicitly
mention that the most typical singularities in 3D are lines and not isolated points.
In fact, this basic property was first pointed out in the work of Zheng and Pang [34]
who also proposed the first algorithm for the extraction of these line features. In a
nutshell, their method consists in computing the intersection of these lines with the
faces of a voxel grid, by solving a set of seven cubic equations. This method was
later improved by allowing for the continuous tracking of intersection points across
the voxel interior [35]. Additionally, a geometric formulation was proposed as an
alternative to the system of equations [35]. Most recently, Schultz et al. discussed
three-dimensional tensor field topology in the context of DT-MRI data [27].
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Fig. 1 Topological graph. Singularities correspond to the nodes of the graph, while separatrices
form the edges. Left: vector field topology of a turbulent flow. Right: topology of a rate of strain
symmetric tensor field

Following a systematic approach, their work demonstrates the shortcomings of this
mathematical framework in the structural analysis of the typically noisy images
acquired in practice. As an alternative, they proposed an approach where structure
is defined with respect to a stochastic assessment of the connectivity along integral
curves.

2.2 Ridges and Valleys

The detection of creases, in other words ridges and valleys, in scalar images is a
topic of traditional interest in a variety of disciplines, most prominently in image
processing and computer vision [17]. Among the multiple definitions proposed in
the literature, the one introduced by Eberly et al. is widely used in practice [5]. In
essence, this definition generalizes the intuitive height-based definition of ridges and
valleys [3] to d -dimensional manifolds embedded in n-dimensional image space [6].

From an algorithmic standpoint, several methods have been proposed that permit
the extraction of these manifolds from numerical data. Many of them apply a
principle similar to Marching Cubes [19], effectively interpreting creases as 0-level
sets of the dot product between the gradient of the considered scalar image and
one or several eigenvectors of its hessian matrix. The lack of intrinsic orientation of
those eigenvectors requires the use of heuristics to provide them with an arbitrary
but locally consistent orientation. Some authors match sets of eigenvectors across
the faces of a voxel [21] while others determine a local reference by computing the
average orientation of the eigenvector field over a face [30]. A scale-space approach
is discussed in [7]. Peikert and Roth introduced the notion of Parallel Vector
Operator [22] as a computation primitive in flow visualization and they showed
that it could be used to find the intersection of ridge and valley lines with the faces
of a computational mesh [23]. Computationally, the method can be implemented in
a variety of ways, including isocontour intersection, iterative numerical search, and
through the solution of an eigensystem.
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It is interesting to observe that several applications of this general methodology
to Scientific Visualization problems have been presented in recent years. Sahner
et al. extract a skeleton of vortices in three-dimensional flows as valley lines of
a Galilean invariant (invariant under changes of inertial reference frame) called
�2 [25]. Their algorithm combines ideas developed by Eberly with a Feature Flow
Field approach [31]. In a work most closely related to ours, Kindlmann et al. extract
ridge and valley surfaces of the Fractional Anisotropy (FA) in DTI volumes using
a modified version of Marching Cubes. In particular, their scheme uses smooth
reconstruction kernels and an orientation tracking scheme along edges to assign
a coherent orientation to an eigenvector field on a voxel face. In addition, Sadlo and
Peikert applied the scheme proposed by Furst and Pizer [8] to extract Lagrangian
Coherent Structures from transient flows as ridge and valley surfaces of a scalar
measure of particle coherence [24].

3 Theory

We review in this section the two major models proposed to date in the visualization
literature to identify salient structures in tensor fields, namely topology and
creases, and underscore their connections. In doing so, we explicitly restrict our
considerations to techniques applicable to a broad range of applications and as such
do not assume a specific physical interpretation for the tensor field. We then briefly
introduce the notion of Lagrangian coherent structures, which has recently attracted
significant attention in the fluid dynamics community and stems from the theory
of dynamical systems. Finally, we describe how this conceptual framework can be
extended to apply to tensor field, a generalization that we justify by the mathematical
link that exists between vector and line fields.

3.1 Tensor Field Topology

A three-dimensional second-order symmetric tensor (simply called tensor hereafter)
is fully represented by its three real eigenvalues (tensor shape) and an associated
set of mutually orthogonal eigenvectors (tensor orientation). For a tensor field,
the ordering of the three eigenvalues �1 � �2 � �3 thus defines major, medium,
and minor eigenvector fields. Because such fields carry neither norm nor intrinsic
orientation, they form line fields. In each eigenvector field, one can define curves
that are everywhere tangent to the field. These curves are generally referred to as
hyperstreamlines in the visualization literature [4].

One can characterize the topology of an eigenvector field in terms of the
connectivity established by its hyperstreamlines. In other words, topology segments
the domain into regions where hyperstreamlines share the same end points. This for-
malism is directly related to the topological framework used to study vector fields,
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where it characterizes regions of similar asymptotic behavior of the corresponding
flow [26]. Note that the three eigenvector fields associated with a tensor field are
mutually orthogonal and their topologies are closely related.

In the tensor setting, singularities of the topology corresponds to locations where
the directional information of an eigenvector field is degenerate, which occurs when
two or more eigenvalues are equal. Three degenerate configurations are possible
in 3D, namely �1 D �2 > �3 (planar anisotropy), �1 > �2 D �3 (cylindrical
anisotropy), and �1 D �2 D �3 (spherical isotropy). While the latter case is in
fact numerically instable and typically absent from practical datasets, the first two
degeneracies are stable features of the tensor topology. In their recent work Zheng
and Pang have shown that these features are in general lines [34, 35].

A major drawback of the topological approach lies in its lack of robustness.
Indeed, the structures identified by a topological analysis are very sensitive to
noise and therefore essentially meaningless in the context of measured data such
as Diffusion Tensor Imaging (DTI), where low signal-to-noise are typical in clinical
practice [27]. This result echoes our observation that alternative structure definitions
are needed to address the visual analysis needs of a variety of problems. We illustrate
this point with our results on FA in DTI in Sect. 5.

3.2 Crease Manifolds in Tensor Fields

The ridges and valleys (collectively, creases) of a scalar field f can be defined in
terms of the gradient g D rf and Hessian H of the field [6]. In other words, creases
are the manifolds along which f is at a local extremum, when constrained to the
line or plane defined by one or two eigenvectors of the Hessian. A function is at
extrema where its gradient is orthogonal to the constraint surface [20], thus ridges
and valleys are where the gradient g is orthogonal to one or two of the unit-length
eigenvectors fe1; e2; e3g (with corresponding eigenvalues �1 � �2 � �3) of the
Hessian H:

Surface Line

Ridge g � e3 D 0 g � e2 D g � e3 D 0

�3 < 0 �3; �2 < 0

Valley g � e1 D 0 g � e1 D g � e2 D 0

�1 > 0 �1; �2 > 0

Observe that the sign and the magnitude of the eigenvalue(s) determine the crease
strength. In particular, j�1j (resp. j�2j) measure the feature strength of a valley line
(resp. surface), while j�3j (resp. j�2j) measure the feature strength of a ridge line
(resp. surface) [6].

A link between creases and tensor fields can be established through the study
of scalar invariants. Invariants of second-order three-dimensional tensors can be
intuitively understood as measurements of tensor shape, which is independent of
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tensor orientation. As such, they are defined in terms of the tensor’s eigenvalues. In
particular, an invariant called mode [2] provides a conceptual link between creases
and tensor field topology [33] while the ridge manifolds of FA have been shown
to delineate the one- and two-dimensional core structures of major fiber bundles
in the brain white matter, and valley surfaces of FA constitute boundaries between
adjacent fiber bundles with distinct orientations [15, 16, 28, 33].

We show in the following that creases can be applied to the direction information
of a tensor field to reveal salient manifolds that relate to the topological skeleton.

3.3 Lagrangian Coherent Structures

As a preamble to the Lagrangian definition of structure for tensor fields that we
discuss in the next section, we briefly introduce in the following the notion of
Lagrangian coherent structures in vector fields. The conceptual link between these
two structure types is established in Sect. 4.1 through the interpretation of an
eigenvector field as a bidirectional flow.

A vector field v can be associated with a dynamical system through following
equations. � Px.t; t0; x0/ D v.t; x.t; t0; x0//

x.t0; t0; x0/ D x0;

where the dot designates derivation with respect to the time variable t , x0 is
the initial condition. The trajectory x.�; t0; x0/ W t 7! x.t; t0; x0/ is obtained
by integrating the system. The map xt WD x.t; t0; �/ is called flow map: xt.x0/

corresponds to the position reached at time t by a particle released at x0 at time t0.
The coherence of particle trajectories can be quantified through the finite-time

Lyapunov exponent (FTLE) [11]. Specifically, stable and unstable Lagrangian
coherent structures (LCS) are characterized as ridge manifolds of the FTLE field.
With previous notation, one considers the flow map xT which maps a position x0

occupied by a particle at initial time t0 to the position reached by this particle
at time T D t0 C � , where � is finite. The spatial variations of this flow map
around a given position x0 are locally determined by its spatial gradient, the
Jacobian matrix Jx.t; t0; x0/ WD rx0 x.t; t0; x0/ at x0. This gradient can be used to
determine the maximal dispersion after time � of particles in a neighborhood of x0

at time t0 as a function of the direction dt0 along which we move away from x0:
dt D Jx.t; t0; x0/ dt0 . Maximizing the norm jdtj over all possible unit directions
dt0 corresponds to computing the spectral norm of Jx.t; t0; x0/ (i.e., the square
root of the maximum eigenvalue of J T J ). Therefore, maximizing the dispersion of
particles around x0 at t0 over the space of possible directions around x0 is equivalent
to evaluating

�� .t0; x0/ WD
q

�max.Jx.t; t0; x0/T Jx.t; t0; x0//: (1)
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Linearization and normalization by advection time � yields following expression for
the finite-time Lyapunov exponent:

�.t; t0; x0/ D 1

j� j log
p

�max. Jx.t; t0; x0/T Jx.t; t0; x0/ /: (2)

This rate can be evaluated for both forward and backward advection (positive or
negative �). Large values of � for forward (resp. backward) advection correspond to
unstable (resp. stable) manifolds with repelling (resp. attracting) impact on nearby
particles.

It is key to note that the separatrices of the topology belong to the hyperbolic
manifolds that are characterized as LCS. Therefore the structures that are identified
in numerical datasets using the standard topological method can typically be
characterized in the LCS framework. The LCS method is also more robust to noise
and uncertainty since it defines structures as the ridge surfaces of a continuously
varying measure. Hence, the LCS approach provides a conceptual framework that
elegantly generalizes the topological method while overcoming some of its most
basic limitations in visual data analysis.

4 A Lagrangian Model of Structure in Tensor Fields

4.1 An Extension of LCS to Tensor Fields

As previously defined, LCS and FTLE are notions that pertain only to vector fields.
Yet, visualization research has successfully exploited the connections between
vector and eigenvector fields. A profound mathematical link exists between vector
fields and so-called line fields (in other words a field associated each point with a line
direction [29]), of which eigenvector fields are a particular example. This connection
can be intuitively understood by considering the projection that associates a vector
field defined over a twofold covering space and a line field. Branching points in the
covering result in (topological) singularities. Refer to Fig. 2.

It was shown in previous work [26, 32] that it provides a high-level theoretical
justification for the transposition of the topological (and other vector field visualiza-
tion approaches) to the study of eigenvector fields. In the light of the parallel drawn
in Sect. 3.3 between LCS and vector field topology, this fundamental connection
permits an extension of the notion of LCS to tensor fields.

To provide a more formal motivation for this generalization, it is necessary
to consider the definition of the separatrices in the topological skeleton of a
tensor field. In the 3D case, these separatrices are two-dimensional manifolds that
originate along the 1D singularities. More specifically, these manifolds form in the
vicinity of the singularity the boundary of so-called hyperbolic sectors [32, 37].
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Fig. 2 Covering spaces provide a theoretical connection in the form of a projection between a
vector field defined over a self intersecting two-manifold embedded in a 3D ambient space and a
2D eigenvector field. (a) Twofold covering. (b) Branched covering

Parabolic Hyperbolic Elliptical

Fig. 3 Sector types in the vicinity of a singularity correspond to different patterns form by integral
curves. Left: parabolic type. Center: hyperbolic type. Right: elliptic type. These patterns are the
only possible ones

Fig. 4 FTLE computed in a locally defined and normalized vector field that is everywhere tangent
with the underlying eigenvector field

Refer to Fig. 3 for an illustration of the possible sector types. It is the dispersion
of the hyperstreamlines in the vicinity of separating manifolds that enables their
characterization as ridges of a measure similar to FTLE.

Eigenvector fields do not possess an orientation and the presence of singularities
in the topology clearly makes a globally consistent orientation of hyperstreamlines
impossible in general. However, such an orientation can be assigned locally to yield
a partial vector field and associated flow. The magnitude of this vector field is
meaningless and can be considered normalized. Observe that the construction we
just described is in fact the one that is implicitly taking place when hyperstreamlines
are being constructed through numerical integration: a vector field is locally fitted to
the underlying line field to advance the integration. With that setup in place, we can
now define a finite-time Lyapunov exponent computed in this locally valid vector
field. Refer to Fig. 4 for an illustration of this procedure.
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Like the standard FTLE definition, this construction yields two values �1 and
�2 at any domain location, corresponding to a measure of dispersion rate of the
local flow in either direction. In contrast to a real flow however, the lack of globally
consistent orientation of this piecewise defined vector fields makes it impossible to
globally distinguish between these two directions. A simple solution to this problem
however consists in selecting the maximum of both measures �max D max.�1; �2/,
thus effectively revealing the underlying salient hyperbolic manifolds.

The second fundamental difference between a vector and an eigenvector field
from the point of view of this structure characterization concerns the eigenvectors’
lack of intrinsic norm. The local vector field mentioned previously can be assumed
to be normalized. This, in turn, means that the integration time � present in the
definition of FTLE (Eq. 1) amounts to a spatial length in this context. This new
meaning suggests that this parameter should in fact be considered as a scale
parameter. We discuss the practical implications of this observation in further detail
in the following sections.

4.2 Computation

The computation of LCS requires the integration of tangent curves in the considered
field from a dense set of locations distributed over the domain of definition. In the
context of tensor fields, the integration must be carried out along each eigenvector
field in both directions to allow for the determination of �max . Practically we follow
the approach described by Hlawitschka et al. [14] that we summarize here for
completeness.

Bidirectional integration associates each initial location x0 with two end positions
x1 and x2. As previously pointed out, the lack of globally valid orientation of the
eigenvector field implies that the respective order of these positions is arbitrary.
Hence to compute the Jacobian of the flow map in each direction Jx.t; t0; x1;2/, we
record at each point the vector chosen locally to play the role of forward direction.
This vector is then used in a subsequent step to determine what indices should be
used to compute the two Jacobian values through central differences.

The integration length (denoted t by analogy with the vector case) is a spatial
scale parameter that must be selected carefully to reveal interesting structures.
Excessive values not only lead increase the complexity of the characterized struc-
tures (by compounding the impact on multiple manifolds on individual trajectories),
they also lead to issues associated with the boundaries of the domain. Indeed,
trajectories whose requested length cannot be reached within the domain cause
normalization issues in the computation of �1;2. Our solution to this problem consists
in computing �max across a range of integration lengths in order to identify a
posteriori the most relevant length. These discrete length samples can also be used to
form a scale space in which a continuous analysis could be performed. Though we
did not explore this avenue depth in the present work, we illustrate in the following
section the incidence of this parameter on the resulting structures.
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Once the FTLE fields have been computed, the next stage consists in extracting
the ridges that form the salient manifolds of the tensor field’s structure. We are using
to that effect the method recently proposed by Barakat and Tricoche [1], in which
the ridge extraction is formulated as a ray casting problem in a view-dependent
setting. This method offers indeed the significant benefit of running interactively
on the GPU, thus allowing us to test the implications of various parameters used to
filter the ridges.

5 Results

To show the relationship between the separatrices of tensor field topology and
the LCS computed in eigenvector fields we first consider the double point load
dataset that has been studied in previous work [34–37] since it provides a basis
for comparison. Specifically, we applied the method described by Zheng et al. [36]
to extract separating surfaces along the degenerate lines of the topology. These
degenerate lines are shown as red curves in the images below. Unfortunately, this
method turned out to be numerically challenging in the context of this particular
dataset, as shown next.

We start by looking at the structures associated with the major eigenvector field,
see Fig. 5. It can be seen that the separatrices of the topology were only incompletely
characterized, owing to the near degeneracy of the tensor field in the entire region
surrounding the upper part of the P-type degenerate lines. As expected, the ridges
of the FTLE field in contrast prove much more robust and properly capture the
symmetric geometry of the separatrices. A close-up (Fig. 5, bottom row) sheds some
additional light on the issues associated with the topology. It can indeed be observed
that the separating surfaces are starting along inconsistent directions. Again, the
LCS do not suffer from this shortcoming. The topology associated with the minor
eigenvector field (linear type degenerate lines) is shown in Fig. 6.

As mentioned previously, the integration length used in the construction of the
FTLE field is a degree of freedom of the analysis that can be tuned to control the
geometric complexity of the structures. We document the impact of this parameter
on the resulting visualization in Fig. 7 where the topology of the minor eigenvector
field can be seen increase monotonically with the integration length.

While topology has been shown in previous work [27] to yield fragile and
therefore unreliable structures in the context of noisy numerical datasets, our
proposed approach is fundamentally more robust and enables the analysis of
challenging engineering datasets. To document the performance of our method in
such demanding scenarios, we considered two CFD simulations exhibiting turbulent
flows in canonical configurations. The first dataset correspond to a single time
step out of a transient simulation of a flow past a protruding cone, leading to the
formation of downstream vortices. In the second dataset fast and slow fluid flow
layers mix after passing a thin plate. The shear induced by the differing velocities
causes strong turbulence. In these flow phenomena, the considered symmetric tensor
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Fig. 5 Comparison between the separating surfaces associated with planar type (blue) degenerate
lines and LCS computed in the major eigenvector field of the double point load dataset. Left: Ridges
of FTLE. Right: separating surfaces and their corresponding degenerate lines

Fig. 6 Separatrices of the planar-type degenerate lines of the double point load dataset extracted
as ridges of the minor eigenvector field

field is the rate of strain, which is known to be closely related to major features of
interest such as vortices and flow separation in fluid dynamics problems [10].

The surfaces characterized in those datasets form boundaries between regions of
different strain behaviors, whereby each region is associated with a locally uniform
pattern of a principal strain direction. The interpretation of the role of these regions
and associated boundaries in the behavior of the flow in turn depends on additional
parameters such as the relative magnitude of the eigenvalues, i.e. the tensor
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Fig. 7 Evolution of the extracted manifolds under increasing integration length in the minor
eigenvector field of the double point load dataset

Fig. 8 Vortex shedding through a cone obstacle

field anisotropy. Note that while these quantitative considerations are basically
orthogonal to the structure of the eigenvector fields, they offer a complementary
perspective that is key to a physical analysis of the considered phenomenon.

We start by considering the simpler of the two datasets, in which a protuberant
cone causes vortex shedding. An illustration of the resulting vortices is presented in
Fig. 8.

To reveal the relationship between the salient manifolds in the tensor FTLE field
and the patterns of coherent orientation of the strain principal direction, we show
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Fig. 9 Major eigenvector of the strain tensor in shedder dataset combined with salient surfaces of
tensor FTLE

Fig. 10 Salient structures in major eigenvector field of shedder dataset

Fig. 11 Major eigenvector of the strain tensor in plate dataset and associated salient surfaces

in Fig. 9 color coding of the eigenvector orientation (using the standard symmetric
RGB encoding) combined with the geometry of those manifolds. It can be seen
that these surfaces (shown in a 2D slice) properly delineate regions of different
behaviors, corresponding to different colors. A 3D view of the surfaces is shown in
Fig. 10.

The plate dataset considered hereafter exhibits significantly more complicated
structures due to higher turbulence. This leads to convoluted patterns of the major
eigenvector field of the strain tensor that are visible in Fig. 11. Here again the
salient surfaces obtained through Lagrangian processing successfully highlight the
boundaries of significantly different regions and their impact on the flow.
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Fig. 12 Plate dataset. The top left image shows a overview of the instantaneous flow structures
formed by the interaction of a shearing flow with a plate obstacle. The resulting turbulence induces
the effective mixing of slow and fast moving layers. The bottom left image corresponds to the major
eigenvalue of the strain tensor field. The right image shows the ridge surfaces extracted from the
FTLE field computed in the strain tensor field

A detailed 3D view of this dataset is proposed in Fig. 12. The patterns of the
flow itself (top left), as characterized through the standard LCS approach computed
in the velocity vector field at fixed time, shows the typical turbulent patterns that
are expected in this case. The major eigenvalue of the strain tensor (lower left)
takes on high values that are directly correlated with the location of these structures.
Hence we use this field as a mask to spatially confine the Lagrangian computation
of salient structures. The result is shown on the right hand side in Fig. 12. It can be
seen that very complicated geometric structures emerge from this analysis. Further
investigation would be necessary to determine their role in the organization of the
flow. As stated previously, such a study requires to take into account the influence
of the eigenvalues and their interplay with the geometry of the eigenvector field.

6 Conclusion and Future Work

We have presented a generalization to tensor fields of Lagrangian coherent struc-
tures, a dynamical systems’ concept applied so far to the analysis of vector fields.
Our proposed approach is built upon a Lagrangian metaphor for eigenvector fields
that finds its theoretical justification in the connection that exists between vector
fields and line fields. After reviewing the state of the art of structure-based tensor
field visualization techniques, we have shown that LCS improve upon the results
achieved by the topological method in a standard benchmark synthetic dataset.
More importantly, our results document the ability of a LCS-based analysis to reveal
salient structures in highly complex 3D tensor fields, such as those associated with
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large-scale CFD simulations of turbulent flows. This latter aspect opens promising
avenues for future research as this new structure model appears to overcome the
limitations that have so far strongly restricted the relevance of the topological
method in demanding application scenarios.
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Tensor Field Design:
Algorithms and Applications

Eugene Zhang

Abstract Tensor field design has found increasing applications in computer graph-
ics, geometry processing, and scientific visualization. In this chapter, we review
recent advances in tensor field design and discuss possible future research direc-
tions.

1 Introduction

In this survey we review recent advances in tensor field design, which refers to
creating a tensor field based on user and application-specific constraints. Tensor
field design has many applications in computer graphics, geometry processing,
and scientific visualization. A tensor field can be used to guide the orientations of
many objects in their respective applications, such as brush strokes and hatches
in non-photorealistic rendering [13–15], texture and geometry patterns in pattern
synthesis [23, 40, 44], mesh elements in geometry remeshing [1, 24, 27, 33], and
road network in street modeling [5]. Different tensor fields can lead to different
visual effects in these applications. Tensor field design can also be used to modify
an input tensor field, such as the curvature tensor, in order to remove errors or reduce
geometric complexity in the input field, as well as to add synthetic features in order
to achieve some application-specific goals [51]. For visualization, tensor field design
can be used to create data sets with specific geometric and topological characteristics
in order to test the efficiency of certain visualization methods [4, 41, 42, 51].

There are some fundamental challenges in tensor field design. First, tensors of
different orders have drastically different properties, which in turn require different
design approaches (Sect. 2). Second, the requirements of tensor field design are
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highly application-dependent. Consequently, a design system needs to be tailored
with respect to application-specific goals. Third, tensor field design requires efficient
tensor field analysis. However, past research has largely focused on first- and
second-order tensors, and relatively few methods support higher-order tensor field
analysis. Fourth, in many applications tensor field design is performed on surfaces.
The geometric and topological features in the surface often make design more
challenging. Finally, a tensor field design system needs to provide interactive design
and feedback capabilities. Consequently, design operations need to be implemented
efficiently, and proper visualization techniques should be supplied.

The remainder of this survey is organized as follows. We will discuss applications
of tensor field design in Sect. 2. Theory and algorithms for the design of first-order,
second-order, and higher-order tensor fields are described in Sects. 3, 4, and 5,
respectively. Adapting these techniques to manifold surfaces is discussed in Sect. 6.
Interactive higher-order tensor field visualization is reviewed in Sect. 7. Finally, we
discuss future research directions in tensor field design in Sect. 8.

2 Applications of Tensor Field Design

In this survey we focus on tensor fields defined on two-dimensional manifolds, as
most applications of tensor field design involve surfaces [4, 5, 11, 28, 34, 35, 50, 51].

The behaviors of a tensor greatly depend on its order N , which is the number
of indices for the entries in the tensor. A first-order tensor V D .vi / and second-
order tensor M D .mij / is a vector and a matrix, respectively. When N > 2, a
tensor T D .ti1;i2;:::;iN / is referred to as a higher-order tensor. Existing applications
of tensor field design require that the tensors be symmetric, i.e., given a tensor
T D ti1;i2;:::;iN , we have tI D tI 0 if I 0 is a permutation of I . Under this definition, any
vector is automatically, although trivially, symmetric. When N D 2, this definition
corresponds to the set of symmetric matrices. For convenience, we will mean
symmetric tensors when mentioning tensors in the remainder of the chapter.

A tensor field is a continuous tensor-valued function defined over some domain.
In this section we will review applications of tensor field design based on the order
of the tensor field.

2.1 Vector Field Design

A first-order tensor is a vector. There are a number of motivating applications for
vector field design.

In example-based texture synthesis, an input 2D texture is used to decorate a
surface [32, 40, 44] (Fig. 1 (middle)). When the texture is anisotropic, a vector field
is needed to orient the texture on the surface. Different vector fields can lead to
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Fig. 1 A vector field is needed to guide texture and geometry synthesis on surfaces. The
singularities in the vector field (left) can lead to the breakup of the synthesis pattern (middle).
A leaf pattern is placed on the Bunny surface following a vector field (not shown) (The right image
is a courtesy of [23], c�2011 IEEE)

different visual effects. Moreover, the quality of the synthesis is affected by the
properties of the vector field. For example, the singularities in the vector field (Fig. 1
(left): colored dots) can lead to the breakup of texture patterns (Fig. 1 (middle)). In
addition, the lack of smoothness in the field can make synthesis more difficult. It is
therefore important to control the topology of the vector field such as the number
and location of the singularities as well as the smoothness of the field. Moreover,
more natural looking result can be obtained if the vector field aligns with the sharp
edges in the underlying surface [48]. Vector field design can also guide geometry
pattern synthesis [2, 23, 53] with similar requirements (Fig. 1 (right)).

Another use of vector field design is to guide particle motions in fluid simula-
tion [6, 36]. In this application the vector field modifies either the velocity of the
particles or the external force. Vector field design can also be used to drive crowd
simulation [31, 38] in which a potential field (scalar field) representing the goal
and obstacles helps the crowd moving quickly and smoothly in the environment.
The gradient of the potential field, which is a vector field itself, is used as a
force that constantly modifies the velocity of the individuals in the crowd. In both
applications the vector fields of interest are time-varying. Consequently, we will
defer the discussion of them pending future development in time-varying vector
field design.

Vector field design has been used to generate data sets to test the efficiencies of
vector field visualization techniques [4, 41, 42]. In these applications, it is crucial to
have control over the scale and complexity of the features in the field. For example,
Chen et al. [4] develop techniques to generate periodic orbits in order to test their
technique for periodic orbit extraction and vector field simplification.

The gradient of a scalar field is a curl-free vector field. Consequently, scalar field
design can be considered as a special instance of vector field design. Applications of
scalar field design include stable surface feature extraction [10], topological noise
removal [47], topological shape matching [16], surface parameterization [26, 49],
and remeshing [8, 9]. These applications often make use of the Reeb graph or
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Fig. 2 This figure demonstrates how painterly rendering can benefit from tensor field design [51]:
(left) an input image of a human eye and a user-designed tensor field, and (right) a van Gogh
style rendering in which brush strokes follow the tensor field. The arrows and boxes indicate user-
specified design constraints, and the colored dots show the singularities in the field. The painterly
image was produced by the algorithm of Hays and Essa [13] (Image courtesy of [51], c�2007
IEEE)

Morse-Smale complex derived from the scalar field or its gradient vector field.
The quality of Reeb graph and Morse-Smale complex greatly impacts subsequent
applications.

2.2 Second-Order Tensor Field Design

Some original motivating applications of vector field design such as painterly
rendering and pen-and-ink sketching of surfaces [50], have been shown to be better
addressed as second-order or higher-order tensor field design [28, 51].

Unlike vector fields, second-order tensor fields can represent bidirectional
objects such as the edges in an image, principal curvature directions of a manifold
surface, and street networks. This is due to the fact that if a vector v is an eigenvector
of a second-order tensor M , so is �v.

Zhang et al. [51] advocate the use of second-order tensor field design to align
brush strokes along the edges in an image in painterly rendering [13, 14] (Fig. 2) as
well as hatches with the curvature tensor in pen-and-ink sketching of surfaces [51].
In these applications, tensor field design can be used to create different visual
effects, add synthetic features to the rendered result, and reduce errors of the
numerical estimates of the curvature tensor. The latter is also useful in quadrangular
geometry remeshing [1,24], in which excessive umbilical points can lead to meshing
difficulties.

Tensor field design has also found applications in the modeling of street
networks [5], in which highways as well as major and minor roads are designed
to follow the major and minor eigenvectors of a tensor field. The tensor field can be
created from scratch or based on a terrain map, and it may or may not respect the
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Fig. 3 Tensor field design for procedural street modeling of part of Chicago: (a) a designed tensor
field respecting topographical water maps and (b) a road network generated from hierarchical,
evenly-spaced hyperstreamlines following the major and minor eigenvectors of this tensor field
(Image courtesy of Guoning Chen)

natural features in the terrain, such as lake shores (Fig. 3). Moreover, the tensor field
can be discontinuous.

2.3 Higher-Order Tensor Field Design

For pen-and-ink sketching, Hertzmann and Zorin [15] treat the hatches in the cross-
hatch regions as a set of crosses rather than two families of mutually perpendicular
lines. There are two benefits to this. First, smoothing a cross field typically
generates a smoother directional layout than smoothing two line fields. Second, the
singularities of a line field can sometimes better model sharp corners in a surface.

In a parallel development, Ray et al. [33] propose the concept of periodic global
parameterization, which they use for quadrangular remeshing. Instead of tracing
streamlines according to the major and minor eigenvectors of the curvature tensor as
done in [1], a global parameterization is computed on the mesh surface such that the
parameter lines (levelsets in the parameter space) can have a rotation of a multiple
of �

2
when crossing an edge in the mesh. Since a quad element is invariant under a

fourfold rotational symmetry, the parameter lines naturally form a quadrangulation
of the mesh. Similar to pen-and-ink sketching, allowing the fourfold rotational
symmetry greatly increases the quality of resulting quad meshes and can better
model corner points in the mesh.

Nieser et al. [27] show the benefit of designing a sixfold rotational symmetry
field for triangular remeshing and surface tiling with regular texture and geometry
patterns. Palacios and Zhang point out that N-fold rotational symmetries can be
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Fig. 4 Higher-order tensors have been used to present N-way rotational symmetries
(N-RoSy [28]), with applications in pen-and-ink sketching (a), regular pattern synthesis (b), archi-
tectural modeling (c), and geometry remeshing (d) (Image (a) and (c) are courtesy of [29], c�2011
IEEE)

represented as symmetric N-th order tensor fields. Consequently, four-fold and six-
fold rotational symmetries can be treated as fourth and sixth order tensors.

In all of these applications, tensor field design can be used to create any arbitrary
tensor field or to remove artifacts from an intrinsic tensor field derived from the
surface. See Fig. 4 for some example applications of higher-order tensor field design.
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Table 1 Applications of tensor field design and their respective design requirements. A design
capability is desirable when it is not required

Tensor field Field Feature Topological Editing from
Application order smoothness alignment control existing fields

Texture synthesis First- Required Desirable Required Desirable
Geometry synthesis First- Required Desirable Required Desirable
Painterly rendering Second- Required Desirable Required Required
Street modeling Second- Required Required Desirable Required
Pen-and-ink

sketching
Fourth- Required Required Required Required

Quadrangular
remeshing

Fourth- Required Required Required Required

Surface
parameterization

Fourth- and
sixth-

Required Required Required Required

Regular surface
tiling

Fourth- and
sixth-

Required Desirable Required Required

Triangular
remeshing

Sixth- Required Required Required Required

Scientific
visualization

Any Required Required Required Desirable

2.4 Requirements

A tensor field can be designed either from scratch or by modifying an existing tensor
field. The field must satisfy the user requirements, which can be a combination of
geometric constraints, such as field smoothness and surface feature alignment, as
well as topological ones, such as the control over the number, type, and location of
the singularities in the field. These requirements are the result of the application.
For instance, recall that the singularities in a vector field can lead to the breakup of
texture patterns in texture synthesis. Also, in remeshing applications it is important
that the higher-order tensor field is aligned with sharp features in the surface.
Table 1 lists the applications of tensor field design as well as for each application
its requirements and the order of tensors used. Notice that these requirements often
conflict with each other, and when this happens the desirable properties will be given
a lower priority.

3 First-Order Tensor Field Design

In this section we will describe past work in first-order tensor field design, or vector
field design which will be the term used in the remainder of this survey.

A number of requirements exist for vector field design:
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Fig. 5 An initial vector field can be created using singular elements (left, colored boxes), and
regular elements (middle, colored arrows). The centers of the colored boxes are the locations of
the desired singularities. Notice that there can be unspecified singularities in these examples

1. Any vector field can be generated.
2. The design process should be interactive and intuitive to a user.
3. Geometric and topological aspects of a vector field can be controlled, possibly

based on the characteristics of the underlying manifold.

Given these desired properties, various design techniques have been proposed.
The input to these techniques is a set of user design primitives (or design elements),
which include regular elements and singular elements. A regular element consists
of a point p0 on the surface and a tangent vector v.p0/, while a singular element
includes a point p0, a tangent vector v.p0/ D 0, and a matrix M.p0/ which is
the desired Jacobian at p0. Singular elements can be used to generate singularity
patterns such as sources, sinks, saddles, swirls, and centers. Figure 5 shows regular
elements (colored arrows) and singular elements (colored boxes) with some example
vector fields. Note that singularities can also be generated with a set of regular
elements. However, doing so often leads to difficulty in fine control over the exact
patterns near the singularities.

A regular design primitive can be specified with two points: the first point gives
the center location of the primitive, and a second point whose displacement with
respect to the first point provides the vector value of the regular primitive. For a
singular design primitive, one needs to specify the center location of the primitive
and the desirable Jacobian. The location of the design primitive as well as the
Jacobian can be modified through a graphical user interface.

It is often more convenient for the user to draw a desired streamline, which could
be a periodic orbit. Vector field design systems then sample the streamline and create
a dense set of regular elements [4, 5, 11, 35] (Fig. 6).

Given the constraints, there have been two classes of methods that can generate
a vector field respecting the constraints.

In the first class, each design primitive is used to generate a basis vector
field vi .p/ and summed. Zhang et al. [50] provide the formulas for the basis
vector fields for regular and singular elements. Chen et al. [4] propose additional
formulas for basis vector fields in order to create periodic orbits (Fig. 7). While
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Fig. 6 Given an oriented loop (left), a sequence of sample points are created (middle: dots) where
tangent vectors are evaluated (middle: arrows). A vector field that contains a periodic orbit (right:
red dashed lines) is then generated based on these vector values (Image courtesy of [4], c�2007
IEEE)

Fig. 7 This figure compares the basis vector field corresponding to a regular element (left) and an
attachment element (middle). The periodic orbit in the right was created by using four attachment
elements (Image courtesy of [4], c�2007 IEEE)

this technique is efficient for vector field design on the plane, its complexity is
linearly dependent on the number of design elements. Moreover, when performing
vector field design on surfaces, a surface parameterization is needed for each design
primitive. Consequently, this method is rather ineffective for surfaces. In the second
class, the design primitives are converted into the boundary conditions of an energy
minimization problem whose solution gives rise to the resulting vector field. This
method, while faster, often lacks control over the exact patterns near singular
constraints.

Topological control is of paramount importance in various graphics applications
vector field design. Specifically, the number, location, and type of singularities
are important quality measures for a vector field. To control these aspects, two
classes of methods have been proposed. In the first class, vector field smoothing is
performed either globally or locally [1,37]. This method, while efficient in reducing
the geometric and topological complexity, does not provide the fine control over the
number and location of singularities. The second technique is based on the notions
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Fig. 8 Two consecutive topological editing operations are performed on a vector field shown in
the left: (1) one of the center singularity is cancelled with a nearby saddle, and (2) the remaining
saddle is moved

of singularity pair cancellation [39] (Fig. 8 (left and middle)). Given the well-
known Poincaré index theory [39], a singularity cannot be removed from the field
without other topological implications. The atomic operation is to cancel a pair of
singularities with opposite indexes. Tricoche et al. [39] cancel a pair of singularities
connected by an orbit by finding a narrow region around this orbit and iteratively
modifying the vector values in the region. This process is computationally expensive
and often ineffective due to the region being too narrow. Zhang et al. [50] propose
a different algorithm, based on Conley index theory [25]. According to this theory,
given an isolating block with a trivial Conley index, it is possible to modify the
vector field inside the region so that it is free of singularities. Given a singularity pair
that consists of a repeller and an attractor, Zhang et al. [50] find an isolating block
for the pair by computing the intersection between two regions, one reachable from
the repeller in the singularity pair following the vector field, and the other reachable
from the attractor in the pair following the reversed flow. Local smoothing is then
performed inside the isolating block.

To control the location of singularities, Zhang et al. [50] also propose a new
operation: singularity movement. Given the current and desirable locations of a
singularity, the system finds an isolating block that contains both locations. Then
a small region surrounding the new location will be specified such that it forces a
singularity inside. The boundary of the two regions bounds a ring-shaped region that
has a trivial Conley index. Results from Conley index theory state that it is possible
to construct a vector field in such a region so that it is free of singularities. Again,
Zhang et al. use Laplacian smoothing inside the ring. The aggregated effect of this
computation is a moved singularity (Fig. 8 (middle and right)).

Chen et al. [4] extend the idea of singularity pair cancellation to pair cancellations
involving periodic orbits. They have identified six direct cancellation scenarios and
seven indirect scenarios. Besides the aforementioned singularity pair cancellation,
the other five direct cancellation scenarios are shown in Fig. 9.

It is also desirable to use the features in the surface, such as ridges and valleys,
to guide the vector field. Xu et al. [48] handle this by iteratively selecting a vector
at each feature to increase the smoothness in the field. However, such an approach
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(1) (2) (3) (4) (5)

Fig. 9 Five direct cancellation scenarios that involve periodic orbits (Image courtesy of [4],
c�2007 IEEE)

cannot adequately solve the problem as it attempts to use a vector field to model
bidirectional objects (sharp edges in a surface). A more effective approach is to
make use of second-order tensor field design, which we describe next.

4 Second-Order Tensor Field Design

Second-order tensors, or matrices, possess an interesting property: if a vector v is an
eigenvector of a matrix M , so is �v. This property has the following significance.

1. A second-order tensor can represent line features, such as silhouettes, contours,
ridges and valleys, as well as principal curvature directions.

2. A second-order tensor field has very different geometric and topological proper-
ties than vector fields.

In fact, as summarized in [51], a second-order tensor field possesses more
complicated structures than a vector field in the following sense. Given a continuous
vector field V , one can construct a continuous second-order tensor field T such
that V.p/ is an eigenvector of T .p/ except when V.p/ D 0. Consequently, the
hyperstreamline plot of T will resemble the streamline plot of V . Moreover,
any first-order singularity in V is a second-order singularity of T . In contrast,
given a continuous second-order tensor field T , one in general cannot produce a
continuous vector field whose streamline plot matches the hyperstreamline plot of
T . In particular, no first-order singularity in T (Fig. 10: wedge, trisector) can be
represented by any singularity in V .

Because of the fundamental differences between vectors and second-order
tensors, the design of the latter has practical uses in applications that deal with
lines, or bidirectional objects. For example, to correct errors in numerical estimates
of the curvature tensor of a surface or edges in an image, vector field design is



122 E. Zhang

Fig. 10 Some canonical first- and second-order singularities in a second-order tensor field. Notice
that the second-order points (node, focus, center, and saddle) are visually similar to first-order
singularities in a vector field (Image courtesy of [51], c�2007 IEEE)

Fig. 11 This figure illustrates the difference between vector-based image edge fields (VIEF) and
tensor-based image edge fields (TIEF). For the rectangle (top row), the image gradient vector field
along the walls points to the other side (left, red arrows). This causes VIEF to point in opposite
directions, and extrapolating values from the wall to the interior of the rectangle cause singularities
(middle, green and blue arrows). TIEF does not suffer from this problem due to the sign ambiguity
of directions (right). For the heart, TIEF (right) is smoother than VIEF (left) in the interior region
due to the richer vocabulary in tensor fields than vector fields. Inside the heart region, VIEF can
only have an elongated center as the singularity. On the other hand, TIEF contains a trisector and
two wedges, which are more natural here (Image courtesy of [51], c�2007 IEEE)

inadequate as converting the tensor field to a vector field will lead to additional,
artificial singularities and the loss of umbilical points such as wedges and tri-
sectors. Second-order tensor field design, on the other hand, will not have these
problems. See Figs. 11 and 12 for examples and justification. Here, a vector-based
edge field (VIEF) is obtained by rotating the image gradient vector field by �

2

counterclockwise everywhere in the domain. In contrast, a tensor-based edge field
(TIEF) satisfies that its minor eigenvector field is always collinear with the image
gradient vector field. We refer to [51] for more detailed discussion on the topic.
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Fig. 12 Comparison between
the vector-based image edge
field (VIEF, left) and the
tensor-based image edge field
(TIEF, right) for painterly
rendering of an image of a
duck. Notice that TIEF is
smoother than VIEF (top
row), and their impact on the
painterly results are clearly
visible near the beak of the
duck (Image courtesy of [51],
c�2007 IEEE)

The actual design of second-order tensor fields is surprisingly similar to that
of vector fields. This is because, the kind of second-order symmetric tensors we
are interested in, can be converted into a vector field that has the same set of
singularities. More specifically, any symmetric, traceless second-order tensor has
the following form:

�
a b

b �a

�
D �

�
cos � sin �

sin � � cos �

�
(1)

The major eigenvectors of this tensor are ˙�

�
cos �

2

sin �
2

�
(� > 0). The following

map � from the set of symmetric, traceless second-order tensors to vectors

�.

�
a b

b �a

�
/ D

�
a

b

�
(2)

is bijective and continuous. Consequently, the set of singularities in a second-order
tensor field T has a one-to-one correspondence to the set of singularities in the
vector field �.T / (see Fig. 13). Moreover, any algebraic operations applied to the
tensors, which are needed by operations such as field interpolation, basis field
blending, constrained optimization, smoothing, field arithmetic, and topological
editing, can be performed in terms of the corresponding vectors. Consequently, the
design of second-order tensor fields, can be converted into vector field design.

There are several items that this conversion cannot handle, such as tensor field
analysis and visualization. Fortunately, tensor field analysis for 2D manifolds have
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Fig. 13 Tensor-to-vector conversion are applied to two canonical tensor fields (left and middle-
left). In the left, after doubling the angle between the major eigenvector field (indicated by red
double arrows) and the x-axis and then converting it into a vector field (green arrows), a wedge
is turned in a source. In the middle-left, a trisector is transformed into a saddle. In the third, also
more sophisticated example, a tensor field (middle-right) is converted into a vector field (right).
Notice this conversion does not change the number and location of the singularities (Image courtesy
of [51], c� 2007 IEEE)

been thoroughly inspected in [7]. Zhang et al. [51] adapt the image-based flow
visualization technique from vector field visualization to tensor field visualization.
The detail of this will be covered in Sect. 7.

Chen et al. [5] apply second-order tensor field design to street modeling. In this
case, evenly-spaced hyperstreamlines following a second-order tensor field is used
to generate a street network, which include highways, major roads, or minor roads.
Moreover, there can be discontinuity in the field, as local roads do not always match
along major roads. Furthermore, at the street intersection the angle between the two
roads is not always �

2
. In fact, the user can adjust this angle by designing a scalar

field.

5 Higher-Order Tensor Field Design

In various applications it has been pointed out that N -way rotational symmetries
(N-RoSy) play an important role, such as 4-RoSy’s for quadrangular remeshing [33]
and pen-and-ink sketching [15] as well as 6-RoSy’s for triangular and hexagonal
remeshing [28, 35]. Furthermore, 4- and 6-RoSy’s can be used to tile 3D surfaces
with wallpaper patterns with fourfold or sixfold rotational symmetries [21, 28, 35]
(Fig. 4b and c).

Given a RoSy field, there are a number of issues to address before it can be
designed. The following is a list of such questions:

1. How to interpolate two N-RoSy’s, defined at two points in the domain?
2. How to smooth an N-RoSy field?
3. What is the topology of an N-RoSy field?
4. How to exact the topology of an N-RoSy field?

To address these questions it is crucial to find a mathematical representation for
N-RoSy fields, and the following realization provides the answer [28]:
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Fig. 14 The separatrices of an N -RoSy field are the boundaries of the hyperbolic sectors in the
vicinity of a singularity. These sectors overlap. Here we show the cases for a positively indexed
singularity (left) and a negatively indexed singularity (right)

Given an N -RoSy

s D f
�

R cos.� C 2k�
N

/

R sin.� C 2k�
N

/

�
j 0 � k � N � 1g (3)

it can be represented by the following N -th order symmetric tensor:

ti1:::iN D

8̂
<̂
ˆ̂:

R cos.N�/ if i1 C i2 C ::C iN � 0 mod 4

R sin.N�/ if i1 C i2 C ::C iN � 1 mod 4

�R cos.N�/ if i1 C i2 C ::C iN � 2 mod 4

�R sin.N�/ if i1 C i2 C ::C iN � 3 mod 4

(4)

in the sense that the N directions in s are exactly the set of the local maxima of
ti1:::iN on the set of unit vectors. In fact, this correspondence is unique. Note that
the set of N -RoSy’s is a proper subset of N -th order symmetric tensors when
N > 1. Palacios and Zhang [28] further point out that such tensors have only
two independent variables, namely, t00:::0 and t10:::0, which enables the following
bijective map between the set of such tensors to the set of two-dimensional vectors:

�.ti1:::iN / D
�

t00:::0

t10:::0

�
(5)

This correspondence allows us to perform algebraic operations on N-RoSy’s
such as addition, subtraction, and scalar multiplication based on vector algebra.
Consequently, we can perform linear interpolation and smoothing on RoSy fields.
Moreover, we are now able to define and extract singularities in an N-RoSy field
as well as to trace separatrices (Fig. 14). Finally, this representation allows one to
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convert higher-order field design to vector field design, much like the second-order
case (a special instance when N D 2).

Kälberer et al. [19] cover an N -RoSy field defined on a surface M with a vector
field on an N -fold covering space of M . Consequently, the processing of N -RoSy
fields can be treated as vector field processing. Note that this is a different way of
converting an N -RoSy field into a vector field than the conversion shown in Eq. 5. In
the latter (not based on covering spaces), a singularity of an index k in the N -RoSy
field will correspond to a singularity of an index kN in the vector field. In contrast,
with covering spaces [19], a singularity of an index k will correspond to a singularity
of an index of kN � .N � 1/.

6 Tensor Field Design on Manifold Surfaces

Many applications of tensor field design require that the underlying domain be a
mesh surface. The geometry and topology of the underlying surface can have a
profound impact on the design process as well as the quality of the resulting tensor
field.

First, due to a lack of a global surface parameterization for an arbitrary surface,
it is no longer a trivial task to build a basis tensor field from a design primitive.
Surface geometry often makes it more difficult to generate a high-quality basis
field, especially around the center of the design primitive. To address this, Zhang
et al. [50] compute a geodesic polar map [45] for each design primitive. To construct
a geodesic polar map with respect to a point p0 on the surface, one can first use a fast
marching technique such as that of Kimmel and Sethian [20] to compute the radial
component � for each vertex. The gradient of �, a vector field, can then be used to
trace each vertex in the mesh back to center of design primitive. The direction in
which this trajectory approaches the center location gives the angular component
� (an example is shown in Fig. 15). While this method leads to better control of
the field behavior near the center of design primitives, it requires the construction
of a geodesic polar map for each design primitive and thus can make interactivity
prohibitively expensive.

Second, design with constrained optimization, while faster than using basis
fields, faces from some serious difficulties. One of these challenges is in which
domain is the constrained optimization performed. Chen et al. [4] solves the
Laplacian equation in 3D, i.e., treating the vector field as a 3D vector field, before
projecting the result onto the tangent plane at each vertex. While this method is
efficient in matching the constraints, it often generates additional singularities and
large divergent and convergent regions. Palacios and Zhang [28] use the notion
of parallel transport from classical differential geometry, which treats the tensor
field as a tangent bundle. When solving the Laplacian at a vertex, tangent tensors
from neighboring vertices are parallel transported onto the vertex’s tangent plane.
This leads to more desirable results. A similar method has been used in generating



Tensor Field Design: Algorithms and Applications 127

Fig. 15 A visualization of the angular component of the geodesic polar map on the bunny when
the origin is in the middle of the tail. Zhang et al. [50] use such polar maps to compute a tangent
vector field on the surface based on design elements. Notice the discontinuity in the polar map
away from the origin (right). This can lead to excessive singularities in the resulting vector field
that need to be removed with additional design elements

the hatching field in non-photorealistic rendering [15] and the direction field for
quadrangular remeshing [33].

Third, there are often excessive singularities in the design field, and they often
appear in undesirable locations on the surface. To deal with this problem and to
achieve efficient control, Fisher et al. [11] use discrete differential forms [17] to
represent the vector field. With this framework, vector field design is converted
to differential form design, which tends to produce highly smooth results. Fisher
et al. [11] apply their technique to interactive texture synthesis in which the user can
specify the location and type of singularities as well as certain streamlines. These
streamlines are then converted into directional constraints. Ray et al. [34] use a face-
based vector field representation. In this representation, singularities are defined in
terms of the turning angles of the vector field across the edges in the mesh, thus
enabling efficient control over the number and location of the singularities. This
work is further advanced so that the turning angles across edges can be automatically
computed based on user specifications [35]. Lai et al. [21] also address the problem
of singularity control with the concept of holonomy, which measures the total
turning angle excess for each vertex. By generating a flat metric, they allow the
generation of a vector field whose number of singularities reaches the theoretical
lower bound.

When streamline tracing is important for the application, such as pen-and-ink
sketching, additional steps are needed to reconstruct an everywhere continuous
tensor field based on the tensor values defined at the vertices or triangles. For
vertex-based vector field representations, Zhang et al. [50] introduce a non-
linear interpolation scheme that is based on the notion of parallel transport from
differential geometry (Fig. 16). This interpolation scheme enables the adaptation
of vector field design and editing from the plane onto surfaces (Figs. 5 and 8).
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Fig. 16 The non-linear
interpolation scheme of
Zhang et al. [50] ensures
vector field continuity on a
triangular mesh surface with
non-zero discrete Gaussian
curvatures. Notice that the
vector field is not linearly
interpolated inside each face
of the octahedron, as
evidenced by the tangent
directions along the
streamlines (red curves)

The interpolation scheme is later extended to second-order tensor fields [51] and
higher-order tensor fields [28]. When representing vector fields with differential
forms, Fisher et al. [11] explicitly construct a continuous vector field using edge-
based subdivision schemes [43].

7 Visualization

High-quality and interactive visualization of tensor fields is critical to the user
experiences during tensor field design. There have been abundant techniques
for the first-order case, i.e., vector field visualization. Texture-based vector field
visualization techniques [3,41,46] are most desirable due to the high frame rate and
high quality that they offer. Such techniques have been extended to vector fields on
surfaces [22, 42] and second-order tensor fields [51, 52].

For higher-order tensor fields, there are N directions at each point except the
singularities. While it is possible to show only one of the N directions, such
a visualization often contains visual artifacts due to the discontinuity introduced
when selecting one direction from N directions. Moreover, it can be difficult to
understand the structure of the tensor field, especially around singularities (Fig. 17,
left). Showing all directions at each point addresses these problems (Fig. 17, right).

One way to accomplish this is to draw streamlines following the N directions
in the field. However, due to the existence of singularities, an N -RoSy field
cannot always be converted into a vector field without visual artifacts. Palacios and
Zhang [29] develop a technique that addresses this difficulty. Basically, an N -RoSy
field is converted into M.N / vector fields where M.N / D 2N when N is odd
and M.N / D N when N is even. These fields are designed in a way that the
first M.N /

2
fields will capture all possible directions in the N -RoSy field at each

point. These vector fields, when visualized using vector field visualization methods,
will contain visual artifacts at exactly the same locations. The second M.N /

2
fields

are designed to also provide a full coverage of N -RoSy directions and have visual
artifacts in the same positions, which are complementary to those from the first half
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of the fields. Combining the visualization of these M.N / fields with an appropriate
confidence map as the weights leads to a high-quality visualization framework that
is also interactive when N is small enough, such as N D 4 and N D 6. Figure 18
illustrates this framework with an example N -RoSy field.

Averaging many images can lead to the loss of contrast. Palacios and Zhang
handle this by recognizing that LIC images follow Gauss distributions in terms of
color intensity. They then borrow results from probability theory to find the exact
amount of loss of intensity during image composition and compensate it by scaling
the original LIC images [29] (Fig. 19).

8 Conclusion

In this survey, we review applications, requirements, and existing approaches to
tensor field design. There are a number of future research directions.

First, while N -RoSy field design has been largely solved, other types of
symmetries exist, such as reflections and gliding reflections. These symmetries,
along with rotational symmetries, lead to the 17 members of the wallpaper groups.
It is not clear how or whether it is possible to represent these additional types of
symmetries using tensors. Without a proper mathematical representation, however,
it is challenging to study the algebraic, geometric, and topological properties of
these symmetry fields.

Second, past research has focused on perfect rotational symmetries, i.e., there
are a set of N angularly evenly-spaced directions everywhere in the domain. Real
world symmetries are often imperfect and/or inhomogeneous, leading to near-
regular symmetries as well as mixed symmetries. Properly modeling these types of
symmetries has practical applications in graphics and geometry processing. Given
the link between tensors and perfect rotational symmetries, we are hopeful that near-
regular and mixed symmetries can also be modeled by tensor fields.

Third, past work in tensor field design has focused on 2D, time-independent,
symmetric tensors with the exception of some work in shape deformation [12],
hair modeling [30], and painterly rendering of videos [18]. Extending this to 3D,
to asymmetric tensors, and to time-varying tensor fields pose new challenges as we
need the ability to perform topological analysis and visualization of these objects.

It is our belief that the graphics and geometry communities have just scratched
the surface of the problem, and as more research effort is invested tensor field design
can be established as a field of study just like shape modeling and flow visualization.
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Fig. 17 Visualizing only one of the directions of an N -RoSy field (left) not only results in a
visual discontinuity but also does not allow a user to see the distinct patterns of the field around
features like singularities. Rendering all N directions at each point resolves this issue (right)
(Image courtesy of [29], c�2011 IEEE)

(a)I0 (b)I1 (c)I2 (d)I= I0+I1+I2
3 (e)w

( f)I0 (g)I1 (h)I2 (i)I = I0+I1+I2
3 ( j)w× I+(1−w)× I

Fig. 18 A demonstration of the visualization technique of Palacios and Zhang [29]. In (a)–(c), the
LIC algorithm [3] is applied to V0, V1, and V2 (the guiding angle for each is shown in the upper right
corner) to obtain I0, I1 and I2, respectively. Notice that while (a)–(c) provide a complete coverage
of the streamlines passing through any regular point in the domain, they have the same regions of
discontinuity (left X-axis). By blending them uniformly, one obtains I (d), a visualization of S

with visual artifacts in the same place (a close-up of the artifact, highlighted in red, is seen inset
with the contrast enhanced; note the curving patterns in a region that should be regular). To remedy
the problem, one can apply the LIC algorithm to V 0

0 , V 0
1 , and V 0

2 , generating the images I 0
0 (f), I 0

1

(g), and I 0
2 (h), and blend them uniformly to obtain I 0 (i). The visual artifacts in I 0 appear on the

right side (again, a close-up is inset) of the X-axis. By blending I and I 0 using the weight map w
(e), one obtains the final image in (j) in which the artifacts due to field discontinuities are no longer
visible (Image courtesy of [29], c�2011 IEEE)
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Fig. 19 This figure illustrates the contrast correction and enhancement technique for a constant
6-RoSy field [29]. When combining three LIC images (only two shown in (a) and (b)) uniformly to
generate a visualization for the 6-RoSy field (c), the image appears to be washed out due to a lower
variance than the original images (a and b). With results from probability theory, the problem can
be corrected (d). The resulting image can be further enhanced (e) (Image courtesy of [29], c�2011
IEEE)
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Interactive Exploration of Stress Tensors Used
in Computational Turbulent Combustion

Adrian Maries, Md. Abedul Haque, S. Levent Yilmaz, Mehdi B. Nik,
and G. Elisabeta Marai

Abstract Simulation and modeling of turbulent flow, and of turbulent reacting flow
in particular, involves solving for and analyzing time-dependent and spatially dense
tensor quantities, such as turbulent stress tensors. The interactive visual exploration
of these tensor quantities can effectively steer the computational modeling of
combustion systems. In this chapter, we discuss the challenges in dense symmetric-
tensor visualization applied to turbulent combustion calculation, and analyze the
feasibility of using several established tensor visualization techniques in the context
of exploring space-time relationships in computationally-simulated combustion
tensor data. To tackle the pervasive problems of occlusion and clutter, we propose
a solution combining techniques from information and scientific visualization.
Specifically, the proposed solution combines a detailed 3D inspection view based
on volume rendering with glyph-based representations—used as 2D probes—while
leveraging interactive filtering and flow salience cues to clarify the structure of the
tensor datasets. Side-by-side views of multiple timesteps facilitate the analysis of
time-space relationships. The resulting prototype enables an analysis style based
on the overview first, zoom and filter, then details on demand paradigm originally
proposed in information visualization. The result is a visual analysis tool to be
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utilized in debugging, benchmarking, and verification of models and solutions
in turbulent combustion. We demonstrate this analysis tool on three example
configurations and report feedback from combustion researchers.

1 Introduction

Research into optimization of power generation systems for advanced energy and
emissions performance has become increasingly important in the last two decades
largely due to alarming environmental concerns and stringent regulations of NOx

and SOx emissions, and other greenhouse gases such as CO2 [8]. Microturbine
generation systems are on the forefront of this research due to the promise of
high-efficiency, ultra-clean systems that can be used to produce electrical energy as
well as thermal energy in co-generation applications. There is a continuing need to
develop and implement advanced computational tools for modeling and prediction
of turbulent combustion for a wide range of mixing, fuel compositions and
flow configurations [11, 28]. In fact, reliable and flexible computational modeling
is considered a key element in achieving the objectives of modern gas-turbine
design [22].

Tensor quantities are quite common in turbulence modeling, in particular in
the three principal approaches to computational turbulent combustion [9]: Direct
numerical simulation (DNS), Reynolds-averaged Navier-Stokes (RANS) and Large
eddy simulation (LES). For example, in LES a spatially filtered form of the Navier-
Stokes equations is considered, whereby only the flow features (eddies) that are
larger than a characteristic filter size are resolved without approximation. Certain
subfilter (or subgrid) quantities appear unclosed and need to be modeled. An
important agent of such quantities is the non-linear convection term, which is
defined as the subgrid scale (SGS) stress tensor [25] and the SGS scalar fluxes
(for flows involving scalar transport) [9]. In eddy-diffusivity type LES models, SGS
tensors are correlated to resolved quantities, such as the resolved strain tensor [5,21].

Visually identifying the characteristics of such tensor quantities in finer details
can bring significant insights into the computational modeling process. For example,
DNS solutions are commonly used in verification of LES and RANS models, where
the cases have typically been limited to simple canonical configurations [15]. In
recent years, however, progress in DNS modeling has lead to DNS being applied
to more realistic configurations with finer resolution [16, 29]. Visual exploration
of tensor quantities in such complex configurations would ultimately steer the
model verification and development process. Questions posed during analysis may
be of the form, what artifacts do LES introduce in the simulation of a complex
configuration, compared to the canonical DNS solution? How do these artifacts
evolve over time? What are the regions and magnitude of error? In the long run,
the visualization of tensor quantities could help turbulent combustion researchers
identify regions of interest in the flow in order to design simulation schemes which
are both computationally affordable and sufficiently accurate.
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In this chapter we investigate the challenges associated with the exploratory
visualization of tensor quantities in turbulent combustion simulations. We then
propose, implement and evaluate an interactive prototype for exploring turbulent
combustion tensor data that addresses some of these challenges. To the best of
our knowledge, this is the first successful interactive visualization of time-varying
stress tensors in the context of high-density turbulent combustion data. The result
is a visual analysis tool developed through tight collaboration with researchers
in computational combustion. We evaluate the tool on several computational-
combustion datasets of particular interest, and show the importance of the proposed
approach for debugging the numerical simulation of complex configurations. Last
but not least, we contribute a discussion of lessons learned, current limitations, and
future directions of research as motivated by the driving computational application.

2 Tensors in Turbulent Combustion

2.1 Turbulent Combustion Modeling

A tensor is an extension of the concept of a scalar and a vector to higher orders.
Scalars and vector are 0-th and 1-st order tensors, respectively. In general, a k-th
order tensor can be represented by a k-dimensional array, e.g. a second order
tensor is a 2D array (a matrix). A stress vector is the force acting on a given unit
surface, and a stress tensor is defined as the components of stress vectors acting
on each coordinate surface; thus it can be described by a symmetric 2-nd order
tensor. The diagonal components of the stress tensor represent normal forces, i.e.
compression and tension, and the non-diagonal components represent the shearing
forces. The eigenvalues of the stress tensor are its principal stresses and the
associated eigenvectors are the principal directions of the stress tensor. Since the
stress tensor is symmetric, its eigenvalues are real. Strain tensor is a related quantity,
the components of which are the components of the rate of deformation in each
coordinate direction (i.e. derivatives of velocity). For the fluid flow motion, there
are different so called constitutive models that relate strain to stress. In this work,
we examine a Newtonian fluid, where the stress-strain relationship is linear.

A sufficiently accurate, flexible and reliable model can be used for an in
silico combustor rig test as a much cheaper alternative to the real life rig tests
employed in combustor design and optimization. In order to achieve such a model,
the methodology should be well tested and proven with lab-scale configurations.
Figure 1 shows an example configuration for a lab Bunsen burner, and example
results from a corresponding computational model and simulation, showing the
gaseous distribution at a specific time-frame.

Multiple numerical approaches exist for generating such computational models
of combustion, most notably DNS, RANS and LES [9]. DNS consists of solving
the Navier-Stokes transport equations of fluid flow and resolving all of the scales of
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Fig. 1 The experimental setup which introduces the Bunsen burner experiment (left)[4], and
example results from a corresponding computational LES model and simulation, showing the
gaseous distribution at a specific time-frame (right) [39]

Fig. 2 DNS (left), LES (middle) and RANS (right) predictions of a turbulent jet. LES requires
less computational effort than DNS, while delivering more detail than the inexpensive RANS

motion. In RANS, the transport equations are time-averaged based on knowledge
of the properties of flow turbulence, and the mean transport equations are solved. In
LES, the spatially filtered equations of motion are considered, the solution of which
portrays the large scale motion.

DNS, RANS and LES have complementary strengths. Figure 2 demonstrates the
characteristically different results that can be obtained with these models. DNS
provides a very accurate, model-free representation of the unsteady evolution of
turbulent flows. However, applications are largely restricted by the computational
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power required by DNS and can be carried out only in limited and highly idealized
cases [12,29,32]. RANS is significantly less expensive than DNS, and, as such, it is
the more popular approach for engineering applications [24]. Finally, LES provides
a balance between computational cost and the level of fidelity in the results. The
LES methodology has been the subject of much modern research and is becoming
increasingly more popular in combustion research [10].

All models begin by describing the compressible reacting flow via a set of partial
differential equations (PDEs) that represent the conservation of mass, momentum,
and energy. These PDEs are a fully coupled set of multi-dimensional non-linear
equations and can be posed in a variety of forms depending on the flow conditions
(compressibility, scale, flow regime, etc.). Details are beyond the scope of this
chapter, and the reader is referred to many excellent books available on the
subject [20, 23, 33]. In this chapter, we exemplify the visualization of stress/strain
tensors, and therefore restrict the presentation to the pertinent subset of this PDEs,
namely the momentum transport equation.

The velocity stress/strain tensor fields are manifested in the transport of fluid
momentum, which is a vector quantity governed by the following conservation
equation:
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where the Cartesian index notation is employed in which the index i D 1; 2; 3 rep-
resents spatial directions along the x; y, and z Cartesian coordinates, respectively;
and the repeated index j implies summation over the coordinates. t is time, � is the
fluiddensity, u � Œu1; u2; u3� is the Eulerian fluid velocity, p is the pressure, and �
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where � is the dynamic viscosity coefficient (a fluid-dependent parameter) and S is
the velocity strain tensor defined as:
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From the computational modeling perspective, another tensor quantity of interest
is the so-called turbulent stress tensor. In DNS of turbulent flow the conservation
PDEs are solved in their exact form (as shown above for the momentum equation).
On the other hand, in LES an alternative form is derived via the following spatial
filtering operation:
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where Q .x; t/ is any turbulent quantity such as velocity or density. The filtering
operation applied to the momentum equation, Eq. (1), gives:
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where the notation h iL indicates the density weighted filter:

hQiL D
h�Qi
h�i ; (6)

Equation (5) greatly simplifies the filtered form of the PDEs and is commonly
employed in LES and RANS of turbulent flow, instead of solving Eq. (1) directly.
The important term in Eq. (5) is the turbulent stress tensor T which is defined as:
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In LES the combustion flow solution is sought for the filtered terms directly by
solving the simplified, filtered form of the equations (Eq. 5). However, a closure
problem originates from the non-linearity in the second term on the left-hand-side
of Eq. (1) and is manifested as the unknown term

˝
ui uj

˛
L

in Eq. (5). There is no
equation in the filtered set of PDEs that corresponds to this term! Indeed, the
whole literature on modeling of turbulent flow is providing closure models for
T in one way or another.1 The same is true in RANS where ensemble averaging
replaces filtering. For these reasons, the stress/strain tensors and the turbulent stress
tensor are of particular interest to computational modelers.

2.2 Challenges

While many tensor visualization techniques have been proposed and implemented
in various systems, in particular in medical imaging and civil engineering, the
visualization of turbulent combustion tensors presents several key challenges. First,
because combustion datasets are the result of computational simulations often
performed at high resolutions, they tend to be particularly dense. Such high densities
lead naturally to clutter and occlusion problems when visualizing the data, as well as
to slow interaction when visually exploring the data. Second, because researchers
are particularly interested in the 3D structure of the flow and the possible ways
to numerically decompose and simulate this flow, it is important to show the 3D
context of the data. At the same time, because the researchers are typically trained
to visualize their data using 2D exploration tools such as TecPlot or ParaView, it
is important to still give them access to similar 2D projection tools when exploring

1In reacting flow there are additional and generally more significant closure problems associated
with chemical source terms in the mass and energy conservations equations, however this is beyond
the scope of this text. The reader is referred to the literature [9, 12].
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the data. Furthermore, care should be exercised when applying tensor visualization
techniques from other fields (such as diffusion tensor imaging) to combustion
data; because of the high density of simulation data and the range of values these
data take, many existing tensor representations do not have an intuitive equivalent
in combustion flow. Finally, many exploratory tasks in this context are visual
comparison tasks, where the user aims to compare multiple steps of a specific
numerical simulation, or different numerical simulations. To this end, it is important
to provide a quick overall sense of the tensor field structure, while also allowing the
user to explore particular regions of interest in more detail.

3 Related Work

Several methods have been proposed for the visualization of tensor datasets. They
include eigenvector color maps, glyphs, streamlines, volume rendering and volume
deformation. Most of them are used to visually represent Diffusion Tensor Magnetic
Resonance Imaging (DT-MRI) data, while some have been used in mechanical
engineering to display different types of quantities, such as stress or fluid flow.

The most basic method uses eigenvector color mapping. It assigns an (R,G,B)
color according to the (X,Y,Z) components of the principal eigenvector and a
saturation level that depends on the magnitude of the anisotropy metric [41]. Col-
ormaps are commonly used by mechanical engineers for component-by-component
visualization of vector and tensor quantities. The limitation of colormaps is that they
cannot show directional information and can only display one type of information
at any one time, e.g., tensor component or eigenvalue.

Another approach utilizes glyphs, which are 3D icons whose shapes, colors,
textures and locations correspond in some way to the properties of the data. There
are many ways these mappings can be made. Generally, the shape indicates the
directions of the eigenvectors at particular voxels, while colors can point to the
value of the anisotropy at those voxels [41]. Two examples of glyphs are composite
glyphs [38] and superquadrics [16], both of them used in brain imaging. In the
engineering field, a type of glyphs called stress hedgehogs have been used to
visualize mechanical stress [13]. The disadvantage of glyphs is that, for dense
datasets such as the ones generated through simulation, they lead to clutter and
occlusions.

Streamlines (sometimes called hyper-streamlines) and streamtubes are often
used for tracing white-matter fibers in DTI-MRI datasets [40]. They follow the
direction of the main eigenvector through the volume and can be grouped using
clustering algorithms into clusters that have anatomical correspondents [30, 44]. In
addition to visualizing white matter fibers, streamtubes have been used to simulate
blood flow through an artery in order to detect the effect of the flow on the
walls of the artery [37]. In the mechanical engineering field, hyper-streamlines
have been used to visually represent mechanical stress [13]. Slavin et al. use
streamtubes to visualize topological defects in nematic liquid crystals, which are
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revealed by discontinuities in the orientation order of molecules in the liquid [31].
Unlike glyphs, which can show directional information only at certain points in the
volume, streamlines can display directional information continuously in the volume.
Nevertheless, streamlines are also prone to clutter and occlusions.

Volume rendering is a method of mapping points in the volume to the screen
using a transfer function which controls how transparent or opaque each point
is. Previously-used methods include barycentric opacity maps, hue-balls and lit-
tensors [19]. Bhalerao and Westin use a textured mapped approach called tensor
splatting [1]. Volume rendering of stress magnitudes, combined with tracing of
short line segments to show stress direction, can help with designing and posi-
tioning of implants in hip joint replacement planning [7]. The volume rendering
approach holds promise for dense datasets, although it can primarily show scalar
information.

The volume deformation method is generally used to visualize mechanical stress.
It allows the viewer to infer the characteristics of the tensor field by observing
the effect it has on an object. Zheng et al. present two techniques: normal vector
deformation and anisotropic deformation. The former is best used at indicating the
direction of the tensor field while the latter can show the compressing and shearing
properties of the tensor field [43]. Because of the fact that this method requires an
object onto which the deformation has to be applied, it is in general not applicable
to visualizing combustion flow.

Most of the work in the field tensor visualization of has been focused on
symmetric tensor fields. There has recently been some interest in visualizing
asymmetric tensor fields. One example is the use of tensor lines to analyze the
gradient of the velocity vector field, an asymmetric tensor field [42].

Because of the complexity of a 3D tensor field, each tensor potentially having six
components (three diagonal and three non-diagonal elements), three eigenvalues and
three eigenvectors to visualize, tensor visualization techniques often have occlusion
and cluttering problems. In order to fix these problems, researchers often reduce the
dimensionality and/or use interaction [3, 7, 14]. Both Jianu et al. and Chen et al.
provide linked views of 3D and 2D representations of brain imaging data as well
as several types of interaction with the 3D and 2D models, such as selection and
coloring of white-matter fiber clusters. Dick et al. adopt a focusCcontext technique,
where the user can move a circular region over the background visualization in
order to view it in more detail. Sherbondy et al. use interaction in an applica-
tion that uses dynamic queries to display neural pathways between volumes of
interest [26].

Interactive filtering has been used more extensively outside the tensor visual-
ization field, in particular in information visualization [6]. In general, the idea of
bridging information visualization and scientific visualization is gaining momen-
tum [26], and several examples have been published in recent years [7, 14].
Nevertheless, the challenges in this line of research relate to the specific forms
scientific data takes.
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4 Methods

To the best of our knowledge, this study is the first exploratory study of tensor
visualization techniques in the context of turbulent combustion flow. To address the
challenges outlined in Sect. 2.2, we propose a prototype for interactive visualization
of combustion tensor quantities. It combines glyph-based representations—used as
a 2D-projection exploratory tool—with real-time volume rendering—used as a 3D-
context visual anchor, and with velocity streamlines—serving as flow salience cues.
To further address the problem of clutter and occlusions we implement interactive
filtering techniques, allowing the user to focus on and compare specific regions of
interest of the tensor field. We begin by describing the data.

4.1 Datasets

We have employed results of three simulations in this study. The first dataset is
a laboratory-scale Bunsen burner flame. The second is a canonical test problem
employed in turbulent reacting flow research, namely the temporal mixing layer
configuration. The third and most intriguing dataset is the result of LES simulation
of a turbulent jet configuration known as the Sandia-D experiment.

The Bunsen burner is a centimeter-scale fuel jet surrounded coaxially by a hot
pilot stream of burnt gas and impinging onto quiescent air. It is a high Reynolds
number (24,000) configuration with a wide range of spatial scales, DNS of which is
computationally unreasonable. The state of the art in DNS is the two-dimensional
Bunsen burner configuration (slot-burner) with two-orders of magnitude lower
Reynolds number than what is considered here. Therefore, only LES of this flame
is available. The data employed in this work for the Bunsen burner are the filtered
turbulent velocity vector and the turbulent stress tensor fields taken at a snapshot in
time and discretized over a uniform Cartesian grid of size 101 in each direction (1M
grid points).

The temporal mixing layer, on the other hand, is a simple configuration where
two streams of fuel and oxidizer flow over and against each other. The flow speeds
are adjusted for a low Reynolds number yielding a narrow range of length scales,
and this configuration can be easily tackled with DNS and then used as a benchmark.
The data for the temporal mixing layer is similarly at a snapshot in time and at the
full DNS resolution over a grid of size 193 grid points in two Cartesian directions
and 194 in the other (approx. 8M grid points).

The Sandia-D dataset is very similar to the Bunsen burner, in that it is also
a centimeter-scale jet configuration with a fuel jet at the center (methane-air
mixture for this dataset) surrounded coaxially by a slower speed hot pilot flame
of burnt premixture of acetylene, hydrogen, and air. The difference is that the
pilot flame is further surrounded by a co-flowing hot air stream. It has a slightly
lower Reynolds number (22,400) than the Bunsen burner dataset, but the DNS is
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also computationally unreasonable. The LES simulation provides solutions of the
turbulent fields of species as well as the velocity field as a function of 3D space
and time. The temporal resolution is dependent on the numerical specifications and
is in the level of micro-seconds in the scales of this flame. The data used in this
experiment is comprised of the filtered turbulent velocity vector and the turbulent
stress tensor fields taken at a snapshot in time and discretized over a uniform
Cartesian grid of size 200 in streamwise direction and 160 in each of cross stream
directions (approx. 5M grid points).

4.2 Glyph Representation

Representations that combine the different tensor components into a single image
were of immediate interest to our collaborators in combustion research. In particular,
previous studies of the Bunsen burner dataset routinely used component-by-
component colormap representations (ParaView) to identify discontinuities in the
tensor field, and we speculated that a combined representation of the tensor
components would prove useful for this task.

As a first iteration, we pursued Westin’s model of displaying the tensor as
a composite glyph [38], which consists of a rod, a disc and a sphere. The
eigenvectors and eigenvalues of the velocity strain tensor are calculated for each
evenly spaced grid point, then mapped to the composite glyph. The direction of the
main eigenvalue is deemed more important than the direction of the second and third
eigenvalues, thus the rod component points in the direction of the main eigenvector.
All that can be said about the second eigenvector is that is in the plane of the disc,
while the third component, the sphere, does not retain the direction of the third
eigenvector at all. The eigenvalues are sorted in descending order and then assigned
to the rod, disc and sphere component of the glyph. Since, for many of the tensors in
the Bunsen burner dataset, the three eigenvalues are very close in value, the length
of the rod is set to three times the size of the main eigenvalue, while the radii of the
disc and sphere are equal to the second and, respectively, third eigenvalues. This is
done so that the direction of the main eigenvector can be distinguished more easily.
Color is used to distinguish the three components of the glyph: green for the rod,
magenta for the disc and red for the sphere. Figure 3 (left) shows a slice through
the tensor field, each tensor being represented as a composite glyph. As anticipated,
mapping the glyphs to the 3D flow lead to clutter and occlusions, even when the
glyph field was subsampled by a factor of 25.

Following feedback from our collaborator, we simplified the glyph by removing
the disc and sphere components of the composite glyph and only displaying the
direction of the main eigenvector as well as the value of the main eigenvalue. For
this purpose, the rod component was replaced with a line. Figure 3 (right) displays
the same part of the tensor field as Fig. 3 (left), except it uses the piecewise linear
representation of the tensors main eigenvector. While the simplified, linear result
was easier to interpret, in particular in 2D cross-sections of the field, 3D views of the
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Fig. 3 Glyph (left) and piecewise-linear (right) visualization of the tensor field. In the glyph-based
representation color identifies the various glyph components (green for the rod, magenta for the
disc and red for the sphere.) To reduce clutter, the number of glyphs was subsampled by displaying
only every fifth element along each direction, resulting in a dataset which was 1/25 of the original
size. The subsampling factor has been empirically determined

representation were still illegible due to clutter, and failed to deliver a sense of
the 3D flow. The line glyphs were still kept in the final version of the prototype,
the only difference being that an arrow was added to point in the direction of the
main eigenvector. In the degenerate case, when the difference between the first two
eigenvalues is less than 0.001 (heuristically determined) the corresponding glyph is
displayed as a gray sphere, shown in Figs. 5 and 7.

4.3 Volume Rendering and Streamlines

To provide 3D-context to tensor quantities while reducing clutter and occlusions,
we integrated volume rendering into the tensor field visualization. Volume rendering
can be a very effective way of visualizing 3D volumes, although it requires mapping
a color transfer function to a scalar value. The scalar quantity we turned to for the
volume rendering is divergence, which can be calculated as the trace of the strain
tensor in Eq. (3). Under conditions of no mass source, divergence represents the
change of density in time. The divergence reveals the 3D structure of the tensor field
and effectively shows how the density of the fluid changes in different regions. Fig-
ure 4 shows two example images of divergence for the temporal mixing layer flow.

Our custom implementation of volume rendering uses ray-casting. The opacity
transfer function for volume rendering was designed interactively so that high-
divergence regions had higher opacity and low-divergence regions had low opacity.
This mapping highlighted the most interesting regions of the flow. The color transfer
function was designed following the same principle; Fig. 4 shows the color transfer
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Fig. 4 Volume rendering of divergence of the temporal mixing layer dataset (left and middle),
and color transfer function (right) used for volume rendering. Regions with saturated blue or red
indicate higher magnitudes of divergence, either positive or negative. This rendering shows very
clearly the 3D nature of the flow which is difficult to extract through other visualization methods

Fig. 5 Streamline and glyph visualization for the Bunsen burner dataset. The velocity field is
unidirectional at the bottom of the volume (left). At the center of the volume, the velocity field
is more varied (right). The streamlines emphasize the flow features in the central part of the
simulation

function for the temporal mixing layer dataset. The user can customize transparency
and color to better explore the underlying 3D stress tensor field.

To further emphasize the flow-context of the tensor data, the volume render-
ing was augmented with velocity streamlines—a technique borrowed from flow
visualization. To create streamlines we calculated Runge-Kutta 4 integral paths
through the velocity field. The starting points for the streamlines are a “cube” of
evenly spaced grid points. Figure 5 shows a combined visualization of glyphs and
streamlines for the Bunsen burner dataset.
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The visualization tool was implemented in C/C++ with OpenGL for rendering.
Custom code was used for ray-casting.

4.4 Interactive Filtering

Early feedback from combustion researchers indicated that the glyphs, volume ren-
derings and streamlines complement each other nicely in terms of the information
displayed. However, the sheer volume of the combined information is overwhelm-
ing. To tackle this challenge, we followed a strategy based on Shneiderman’s
info-vis mantra [2] and Tufte’s principles [34–36]. Following Tufte’s principles,
the information content of the image is maximized by combining volume rendering,
streamlines and the glyph-based representations. To this combined representation
we add zooming and filtering via interaction. Following further Shneiderman’s
mantra, the volume rendering gives an overview of the flow and serves as a visual
anchor, while the streamlines enable filtering of interesting regions, and glyph
representations function as details on demand.

The visualization tool has two modes of operation, explore mode and filter
mode. In the explore mode, a user can manipulate the scene and zoom in and out
through mouse or keyboard interaction. Rendering the full resolution volume image
during rotation or zooming slows down significantly the interaction. Therefore,
during rotation or zooming, we use low-resolution volume rendering to maintain
interactivity of the program: fewer rays are used for ray-casting than in the full-
resolution rendering, and the remaining pixels are interpolated. We also reduce
the sampling rate along a ray through the volume. The low resolution rendering
produces an intensity image, while the full resolution rendering produces a color
image. These modifications make the volume rendering fast and help to maintain
interactive rates. The intensity volume-image during interaction helps to give an
idea of how the volume is changing so that the user does not lose context between
the start of the interactive step and its end.

In the filter mode, the user can focus on a sub-region of the flow by highlighting
and comparing streamlines of interest. The filtering operation follows Tufte’s princi-
ples and an approach originally used by the New York Times to explore stock market
trends [6]. By default, all streamlines are muted gray, while mouse interaction allows
the user to highlight and contrast two or more representative streamlines. Streamline
seed-points can also be interactively dragged to new locations in the volume. After
selecting a set of streamlines, the user can switch back to the explore mode and
rotate/zoom the scene to better gauge the characteristics of the streamlines.

Figure 6 shows how the filtering operation can help declutter the visualization.
In both modes, a user can control whether streamlines, volumes or the glyph-
representations will be rendered or not. To further reduce clutter, the glyph
representations are mapped to axis-oriented cutting planes, which are also controlled
by the user.
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Fig. 6 Streamlines through the velocity field of the temporal mixing layer dataset. Twenty seven
streamlines are shown (left); even such small numbers clutter the image. Filtering streamlines
interactively (right) helps reduce the clutter and enables the user to compare families of
streamlines.

Fig. 7 Exploratory visualization tool for analyzing stress tensors used in computational turbulent
combustion. The tool combines 3D inspection views based on volume renderings of divergence
(shown in purple) with glyph-based representations (light gray and pink cutting planes), while
leveraging interactive filtering of velocity streamlines (dark gray and color) and side-by-side
views (not shown here) to clarify the structure of the tensor datasets. These snapshots highlight
asymmetries in the combustion flow for a mixing layer configuration

Side-by-side views of multiple time-steps further facilitate the analysis of
time-space relationships. While animated 3D views have certain advantages over
side-by-side views (in particular with respect to display real-estate), the information
visualization literature [27] and our experience indicate that side-by-side views are
more effective at capturing time relationships.
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5 Results and Discussion

We evaluate our analysis tool on the three datasets described in Sect. 2.2: a
snapshot of the Bunsen burner simulation, a snapshot of the Temporal Mixing Layer
simulation, and a three-step time sequence of the Sandia-D experiment. Two of
the authors are computational combustion researchers who used the system and
provided the following feedback.

Using the integrated exploratory system on the Bunsen burner dataset, it was
noticed that the tensor field was remarkably smooth and homogeneous in the outer
co-flow and the inner pilot regions. The tool was proven useful even for this
elementary level of analysis, and will be further employed for more detailed LES
datasets. For the mixing layer configuration, similar observations were immediately
visible where the “mushroom” pattern around the shear layer at the mid-zone is
distinguished well from the zero-divergence outer zones (Fig. 7). Interestingly, the
analysis of the Sandia-D dataset provided a surprise—a rippling artifact surrounding
the central jet—which can be seen in Fig. 8 and which showcases the advantages
of the tool as a means of debugging numerical simulations. Shown in Fig. 8 are
snapshots of the trace of strain tensor field at two instances in time, at 0.7 and
1.8th of a residence time, respectively; one residence time is equal to the total
streamwise length divided by mean jet velocity, i.e., roughly the time it takes a
fluid particle to traverse the whole length of the domain. The field shown is for
the trace of the strain tensor. The regions at and near the jet core portray non-zero
trace, and are indicative of the high spatial and temporal gradient in the gas-mixture
density in these regions, in other words, of the active reaction zones with high
compressibility. The far field trace on the other hand is much closer to zero and
suggests (as expected from theory) close-to-zero compressibility of uniform and low
density flow in these regions. This is especially clear in rightmost snapshot where
the effects of high-frequency pressure waves are lesser compared to earlier in the
simulation. This non-physical ripple effect could be attributed to numerical artifacts
of the employed discretization scheme in the LES simulation, and is pronounced
only in the incompressible regions, as clearly shown in the volume rendered tensor
field. Overall, the researchers found the system as an exploratory tool “very good”
and “cool”, and also commented on the potential explanatory power of the system
to be utilized in comparisons of simulations against experimental data.

With respect to the various components of the visualization scheme, the glyph
representation for the Bunsen burner dataset was considered somewhat useful, and
only in 2D cross-sections. In 2D probes the flow patterns were “not sufficiently
expressed”, while in 3D the information was “hard to read” due to clutter and
occlusions, as the glyphs became “intermingled and cluttered”. Because the shown
turbulent stress tensor field was mostly uniform throughout the domain, ellipsoid
or line-style representations did not fare better; tensors did not “intuitively have
direction”. When exploring the more anisotropic mixing layer dataset, 2D planes
of glyphs were considered useful, although only when combined with either
streamlines or volume rendering to provide 3D context. Perhaps due to researchers’
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Fig. 8 Volume rendering of divergence of the third dataset (Sandia-D). Two timestamps of a
reactive flow simulation are shown here, increasing in time from left to right. The rippling effect
disappears as the simulation goes further in time. In this example, the user customized interactively
the transfer function (color and opacity) to emphasize the central flow

familiarity with 2D tools such as TecPlot, the 2D content as exposed by the glyphs
was still considered important for these datasets.

The volume rendering combined with the interactive streamlines generated the
most excitement. The researchers were particularly impressed by the ability to
interact with the streamlines, by selecting and comparing individual streamlines
and following their progress through the divergence volume. In particular, the
researchers noted with the mixing layer dataset that the tangled, asymmetric
streamlines in the mid-plane illustrate well the turbulent shear layer behavior where
opposing streams of fuel and oxidizer meet. Both researchers made remarks about
the tool’s ability to focus on the interesting region of the volume (e.g., “[compared
to this, in other tools] interactive selection is a beast”). The researchers also
commented on the resolution and interactivity of the volume rendering, which was
eight times more dense and, in their estimate, ten times faster than ParaView, the
visual tool they had often used for volume rendering.

Overall, the integrated prototype compared favorably against existing visualiza-
tion software that offers similar, though less interactive, visualization features, such
as ParaView, VisIt, Ensight and Tecplot. The essential advantages of using our utility
for turbulent tensor visualization were its performance and its being tailored to this
specific application. The interactive rendering rates, the real-time selection of seed
points for the streamline data, and the overall easy flow of interaction were major
points repeatedly emphasized by the combustion scientists.

It is important to emphasize that the crux of the study in this paper is not the
utility itself but rather the application of the aforementioned visualization algorithms
in the context of turbulent reacting flow. Currently, to the best of our collaborators’
knowledge, commonly employed visualization strategies for serious analysis in this
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field is limited to 2D cross sectional contours, or rather general 3D techniques which
do not necessarily highlight the significant features required, in particular in the
context of visual comparison tasks.

Much of the researcher feedback was directed towards potential extensions
of the tool, as well as future application to other datasets. In particular, interest
was expressed with respect to loading, exploring and comparing multiple datasets.
A suggestion for future work, which came from both evaluators, was the imple-
mentation of a “field calculator”—an interface to allow the on-the-fly calculation
of various scalar, vector and tensor quantities of interest. The “calculator” would
include operators to add scalar fields or find a derivative or gradient for a certain
field before displaying it.

In terms of limitations, all datasets we analyzed are canonical datasets of relative
modest size, by computational combustion standards. If the dimensions of the
volume were increased significantly, the current volume rendering visualization
would require sub-sampling to stay interactive; more performant volume renderers
would be necessary. Furthermore, in our approach we explored only two glyph
representations. Alternative representations [17] may help clarify whether glyph
size and shape have a significant influence on the visualization. Also, since the
glyphs are evenly spaced throughout the volume, there is no guarantee that they
capture the important features of the volume. One possible direction for future work
may be the use of glyph packing [18]. In terms of assisting combustion researchers
in designing simulation schemes which are both computationally affordable and
sufficiently accurate, techniques for segmentation of combustion tensor fields,
perhaps interactively, hold particular promise.

One step further in terms of future research, exploratory visualization of massive
combustion tensor datasets poses additional particularly significant challenges.
Combustion simulations use thousands of CPUs to generate snapshots with millions
of grid points; copying the data on a server for visualization is simply not feasible.
Novel, memory-efficient exploratory visualization techniques will be necessary for
such datasets.

6 Conclusion

In this chapter, we examined the challenges associated with tensor-field visu-
alization in the context of turbulent combustion calculations and we proposed
a prototype tool that can be used to visually explore combustion datasets. Our
approach leverages interactive filtering and flow salience cues to clarify the structure
of the tensor datasets, while effectively addressing the problems of occlusion and
clutter. Side-by-side views of multiple timesteps facilitate the analysis of time-
space relationships. The resulting framework enables an analysis style based on the
overview first, zoom and filter, then details on demand paradigm originally proposed
in information visualization. The result is a visual analysis tool to be utilized in
debugging, benchmarking, and verification of models and solutions in turbulent
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combustion. We evaluated the proposed tool on three examples of turbulent reacting
flow. Feedback from combustion researchers indicates that the tool is very useful
in the exploration of turbulent combustion simulations, and emphasizes the urgent
need of the field for visual analysis tools. However, significant research is still
required to arrive at standard visualization in this application domain.
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Shear Wave Diffusion Observed by Magnetic
Resonance Elastography

Sebastian Papazoglou, Jürgen Braun, Dieter Klatt, and Ingolf Sack

Abstract Dynamic elastography is a noninvasive imaging-based modality for the
measurement of viscoelastic constants of living soft tissue. The method employs
propagating shear waves to induce elastic deformations inside the target organ.
Using magnetic resonance elastography (MRE), components of harmonic shear
wave fields can be measured inside gel phantoms or in vivo soft tissues. Soft tissues
have heterogeneous elastic properties, giving rise to scattering of propagating shear
waves. However, to date little attention has been paid to an analysis of shear wave
scattering as a possible means to resolve local elastic heterogeneities in dynamic
elastography. In this article we present an analysis of shear wave scattering based
on a statistical analysis of shear wave intensity speckles. Experiments on soft gel
phantoms with cylindrical glass inclusions are presented where the polarization
of the shear wave field was adjusted relative to the orientation of the scatterers.
A quantitative analysis of the resulting fields of shear horizontal (SH) waves and
shear vertical (SV) waves demonstrates that the distribution of wave intensities in
both modes obeys restricted diffusion in a similar order. This observation sets the
background for quantification of shear wave scattering in MRE of body tissue where
SH and SV wave scattering occur simultaneously.

1 Introduction

Magnetic resonance elastography (MRE) has been developed for measuring vis-
coelastic constants in living soft tissue. The method employs propagating shear
waves to induce elastic deformations inside the target organ [1, 2]. Current research
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is focussed on human muscle [3,4], liver [5,6], breast [7], brain [8,9] and heart [10].
The acquired shear wave images allow the determination of the underlying shear
elasticity of the tissue by solving an appropriate inverse problem [11]. However,
the solution of the inverse problem is biased by unknown boundary conditions,
noise and wave image discretization [12, 13]. At its current state, MRE relies on
spatial averaging of modulus maps after wave inversion to achieve the accuracy and
reproducibility required for diagnostic applications. As a consequence, information
about elastic heterogeneities is lost and diagnostic conclusions are drawn based
on ‘global’ constitutive parameters. Waves propagating through heterogeneous
soft tissues are typically scattered by elastic discontinuities [14]. If shear wave
scattering is very pronounced, i.e. in case of strong heterogeneity, these variations
can appear as characteristic intensity speckle patterns. Up to now little attention has
been paid to an analysis of shear wave scattering in terms of intensity variations
[15]. Depending on the typical sample size L, shear wave lengths � and the
amount of heterogeneity, the propagation of shear waves has characteristic features
and may roughly be divided into two distinct regimes [16–19]. If there is little
heterogeneity and shear wave lengths are large compared with the scale of elasticity
variations, scattering is weak. In this so-called ballistic regime, the scattering
mean free path ls is large, i.e. the average distance an incident wave can travel
before being scattered exceeds sample extensions (� < L < ls). In case where
� < ls << L, an incident wave is scattered many times, which results in random
relationships between local phases of the wave; in other words, the typical property
of a wave, its phase coherence, becomes obscured by interference of multiply
scattered wave fields. In this setting the wave intensity satisfies a diffusion equation
and the regime is correspondingly called the diffusive regime. If the amount of
heterogeneity is such that � � ls , a wave cannot travel one wave length before
being scattered. As a result, the diffusive spreading of shear wave intensity is
increasingly slowed down and becomes confined to small areas within the region-
of-interest (ROI), from which it can hardly escape. The vector field character of
shear wave displacement imposes a challenge for in vivo elastography since the
polarization of incident wave fields is difficult to control inside the body. The
situation can be simplified in phantoms by observing plane wave scattering at
plane elastic interfaces. An incident shear wave scattered at such a plane elastic
discontinuity can be decomposed into two parts, which scatter independently [20].
The so-called shear horizontal (SH) wave features a polarization exclusively parallel
to the surface while the shear vertical (SV) wave has a polarization component
perpendicular to the plane of elastic discontinuity. In this article we present an
analysis of experimental shear wave scattering based on a statistical analysis of
shear wave intensity speckles observed in gel phantoms. We compare the speckle
statistics of multiply scattered SH and SV waves observed in soft gel phantoms with
cylindrical glass inclusions.
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2 Theory

To begin with, we consider a wave propagating in the xy plane of a perfectly elastic
material. A harmonic wave of this type can be described by a displacement vector
field

u.x; y; !/ D
2
4

ux.x; y; !/
uy.x; y; !/
uz.x; y; !/

3
5 ; (1)

where ! D 2�f is the angular drive frequency. Together with the condition

r � u D 0; (2)

it defines a pure shear wave (i.e. u is volume preserving). Consider now a cylindrical
rigid inclusion with principal axis parallel to the z direction (see Fig. 1). The
shear wave given in (1) can then be decomposed into two parts that propagate
independently, i.e. there is no exchange of energy between them. The part with
polarization parallel to z is called shear horizontal SH wave

SH wave W u.x; y; !/ D
2
4

0

0

uz.x; y; !/

3
5 : (3)

The second is made up by the two remaining components in Eq. (1) and is called the
shear-vertical SV wave

SV wave W u.x; y; !/ D
2
4

ux.x; y; !/
uy.x; y; !/

0

3
5 : (4)

For a rigid inclusion all shear wave components must satisfy the boundary condition
ux;y;z D 0 at the surface of the cylinder, while the traction (first derivative of u) is
indefinite. A difference between SH and SV waves is that the SV wave may change
its polarization due to scattering from the inclusion, whereas the polarization of the
SH wave never changes. For this reason both components of the SV wave have to be
considered, when SV wave scattering is studied. Moreover, the SV wave is subject
to mode conversion. Due to its component perpendicular to the cylinder surface it
may also produce a pressure field. In the following the quantity of interest will be
the intensity normalized to its mean value in the region of interest. For SH waves
this is

I D juz.x; y; !/j2
hjuz.x; y; !/j2iROI

; (5)
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Fig. 1 Polarization of an SH wave and an SV wave relative to the surface of elastic discontinuity
(boundary of the cylindrical scatterer)

and correspondingly for SV waves

I D jux.x; y; !/j2 C juy.x; y; !/j2
hjux.x; y; !/j2 C juy.x; y; !/j2iROI

: (6)

In case when no scattering occurs the intensity distribution of a plane wave reads
simply

P.I / D
�
1 for I D 1;
0 else:

(7)

Now consider an array of a large number of randomly distributed parallel rigid
cylinders in a purely elastic matrix. The mean distance the wave can travel before
it is scattered is called the scattering mean free path or elastic mean free path ls . If
ls is much smaller than the sample size L, then a wave is scattered many times
before leaving the random array behind. This results in a randomization of the
local phase of the wave, which is seen as the dispersion of the coherent wave front
yielding a speckled distribution of wave intensity. In this regime the intensity I
obeys a diffusion equation and the intensity distribution is then described by an
exponential [14]

P.I / / e�I : (8)

If scattering becomes even more pronounced, constructive interferences can eventu-
ally lead to a reduction in diffusion, confining diffusive intensity in decreasingly
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small regions, from which it cannot escape. In this regime the distribution of
intensity changes from a simple exponential to a stretched exponential given by

P.I / D
Z 1
0

dv

v

Z i1

�i1
ds

2�i
exp

�
�I

v
C svC �.s/

�
; (9)

where �.s/ D g ln2
�p

1C s=gCps=g
�

and g is the dimensionless conductance

[21]. The three distributions given by Eqs. (7)–(9) are shown in Fig. 2. The dimen-
sionless conductance g is related to a structure related quantity called the transport
mean free path lt r / ls [17]. It is known from diffusion theory as the length scale
entering the diffusion constant withD D 1=d vt lt , where d is the spatial dimension
and vt is the energy transport velocity [19]. For two dimensional systems lt is related
to g by [22]

g ' klt ; (10)

where k is the wave number in the corresponding host medium. In the following the
intensity distribution is analyzed in terms of g.

3 Methods

The experimental setup was adopted from standard MRE using a 1.5 T MRI
scanner (Sonata, Siemens, Erlangen, Germany) and a modified echo planar imaging
(EPI) sequence [23]. Motion sensitization was achieved by oscillating gradients. A
phantom was made of a Wirogel (Bego Inc., Bremen, Germany) water solution with
a ratio of 1:4 mass partitions. One hundred parallel glass cylinders (L D 120mm,
R D 1:5mm) were embedded in the gel matrix at random transverse positions



162 S. Papazoglou et al.

SH
SV

phantom

vibration plate

image plane

Fig. 3 Relative orientations
of shear wave actuation,
image plane and cylinder
alignment for the SH and SV
wave scenarios. See the
methods section for further
details

fixed by parallel plates at the ends of the cylinders, which corresponded to fixed
boundary conditions at the top and bottom of the container. Random positions
were determined inside a 10 cm square region using a random numbers generator
(normally distributed) of Matlab (The MathWorks Inc Natick, MA) with a minimum
distance between neighboring cylinders of 0.1R. The resulting scatterer density was
7 %. A square vibrator plate was used for wave excitation driven by 25, 50, 75, 100,
125, 150, 175 Hz and 200 Hz time-harmonic oscillations. Two separate experiments
were performed for studying the scattering of SH and SV waves. The experimental
set up is shown schematically in Fig. 3. For studying the multiple scattering of
SH waves the gel phantom was oriented with the cylindrical inclusions aligned
parallel to the static field of the scanner. A transverse slice was chosen as image
plane defining the x and y coordinates. Motion encoding was in the slice select
direction, i.e. parallel to actuator motion and cylinder axes (z direction), measuring
the SH wave uz.x; y; !/. In a second experiment the phantom was oriented with
the glass cylinders perpendicular to the static field. As image plane a sagittal slice
was chosen again defining the xy plane. Now, motion was encoded into phase
encoding direction, corresponding to x, and read-out direction corresponding to y
yielding the two components of the SV wave ux.x; y; !/ and uy.x; y; !/. Sixteen
dynamics of a wave cycle were captured at each vibration frequency. After phase
unwrapping data were temporally Fourier transformed and bandpass filtered to
increase the signal to noise ratio and to suppress small wavenumbers not associated
with shear wave propagation. The complex wave image at vibration frequency was
then used for calculating intensity speckle patterns. For the analysis, a region of
interest corresponding to the location of the scatterers was chosen. The normalized
intensity was determined according to Eqs. (5) and (6). The normalized intensity
was then binned into 30 equally spaced bins between Œmax.I /=100;max.I /� and
fitted to Eq. (9). Multiple shear wave scattering was simulated employing a method
introduced in [24] for soft cylinders (radiusR D 1mm, 40 % filling fraction, 1.8 kPa
matrix and 0.18 kPa cylinders) and rigid cylinders (R D 1:5mm, 4 kPa matrix and
filling fraction 7 %) at an external vibration frequency of 100 Hz.
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4 Results

Figure 4 shows results from numerical simulations of SH wave scattering in a
medium with a high density of soft scatterers and a low density of rigid scatterers.
Both examples show a speckled intensity distribution. It is clearly seen that in case
of soft inclusions significant intensity variations occur throughout the image. In
contrast, in case of rigid inclusions intensity is accumulated in regions close to
the source, indicating strong suppression of shear wave propagation due to shear
wave scattering. This is also reflected by the distribution of intensity shown on the
right hand side of the same figure. The exponential decay towards large intensities
suggests diffusive wave transport in case of soft inclusions. Instead, a stretched
exponential distribution in case of rigid inclusions indicates that wave diffusion
has slowed down. The measured wave images for the SH wave are shown in
Fig. 5. It is seen that at low frequencies, where � is on the order of L, wave
intensity is confined near the source. In this regime, the glass cylinders resemble a
homogeneous block impenetrable for shear waves. In contrast, above 50 Hz clear
signatures of scattering are visible. Almost no ballistic wave front is observed
at any frequency indicating that the glass cylinders scatter the shear wave very
efficiently. The experiments on SV wave scattering (Fig. 6) show speckle patterns
in each in-plane component similar to the out-of-plane component, represented by
the SH wave scattering. The similarity between SV and SH wave scattering is
even better seen in case of the normalized intensity patterns as shown in Fig. 7.
Speckles seen in Fig. 7 are caused by multiple scattering since at each scattering
event part of the energy of the incident wave is distributed among scattered and
refracted waves which in turn interfere with the remainder of the incident wave
field. Both SH and SV waves show similar speckles with respect to size and average
penetration depth in the direction of shear wave propagation. Figure 8 shows the
binned intensities together with the fits according to Eq. (9). The conductance
was determined with g D 2; 2; 0:3; 0:45; 0:25; 0:45; 0:85; 0:55 for SH waves and
g D 2; 0:55; 0:3; 0:35; 0:55; 0:2; 0:25; 0:2 for SV waves from f D 25–200Hz,



164 S. Papazoglou et al.

-500

500

0

u z
(x
,y
,ω
)[

μm
]

25 Hz 50 Hz 75 Hz 100 Hz

125 Hz 150 Hz 175 Hz 200 Hz

x

y

Fig. 5 Transverse slice showing measured SH wave images (for information about the coordinate
axes consult Fig. 3 and the methods section)

x

y

-500

500

0

u y
(x

,y
,ω

)
[μ

m
]

25 Hz 50 Hz 75 Hz 100 Hz

125 Hz 150 Hz 175 Hz 200 Hz

25 Hz 50 Hz 75 Hz 100 Hz

125 Hz 150 Hz 175 Hz 200 Hz

-500

500

0
u x

(x
,y

,ω
)

[μ
m

]

Fig. 6 Sagittal slice showing measured wave images of the SV wave components (for information
about the coordinate axes consult Fig. 3 and the methods section)



Shear Wave Diffusion Observed by Magnetic Resonance Elastography 165

25 Hz 50 Hz 75 Hz

SH

SV

100 Hz

125 Hz 150 Hz 175 Hz 200 Hz

25 Hz 50 Hz 75 Hz 100 Hz

125 Hz 150 Hz 175 Hz 200 Hz

0

10

5 I

0

10

5 I

Fig. 7 Normalized intensities of the SH and SV waves according to Eqs. (5) and (6)

0 5 10 15 20 25 30 35
10-5

10-4

10-3

10-2

10-1

1

75 Hz

P
(I
)

I
0 5 10 15 20 25 30 35

10-5

10-4

10-3

10-2

10-1

1

100 Hz

I
0 5 10 15 20 25 30 35

10-5

10-4

10-3

10-2

10-1

1

125 Hz

I

0 5 10 15 20 25 30 35
10-5

10-4

10-3

10-2

10-1

1

150 Hz

P
(I
)

I

10-5

10-4

10-3

10-2

10-1

1

0 5 10 15 20 25 30 35

175 Hz

I

10-5

10-4

10-3

10-2

10-1

1

0 5 10 15 20 25 30 35

200 Hz

I

Fig. 8 Intensity distributions for the SH waves (open squares) and the SV waves (open circles).
The solid lines and dashed lines correspond to fits by Eq. (9) of SH wave intensity and SV wave
intensity, respectively



166 S. Papazoglou et al.

respectively. Considering the aforementioned prerequisite of � < ls < L for
observing wave diffusion, consistent g-values are only deducible for f > 50Hz. In
this frequency range both SH and SV wave conductance are insignificantly different
(p = 0.13). Moreover, there were no significant correlations with linear regression
functions yielding 3 ms slope and �1:3ms slope for SH and SV wave conductance,
respectively. Thus, all conductance values between 75 and 200 Hz could be averaged
to a mean g D 0:39˙ 0:19 (SD).

5 Discussion and Conclusions

In this study multiple scattering of shear waves in a disordered medium was
investigated experimentally using motion-sensitive MR imaging. For the first time
the scattering behavior of SH and SV waves was studied and compared. In a
preliminary work on scatter-based MRE, a pure SH wave scenario was analyzed
in phantoms and in vivo brain [15]. The assumption of minor differences between
SH and SV wave scattering made in that study is challenged here by phantom
experiments and an evaluation of wave intensity, which has not been done in MRE
before. The first principal result of these experiments is that the intensity distribution
clearly deviates from classical wave diffusion at the scatterer density investigated.
Instead, similar to recent investigations of elastic networks using ultrasound [25],
we found the intensities to fit well to a stretched exponential distribution given by
Eq. (9). The relatively low value of the mean conductance g D 0:4 at frequencies
above 50 Hz indicates the strong role of constructive interferences, which confine
wave intensity to small regions not more than a few wave lengths away from
the source. This means that multiple scattering from glass cylinders restricts the
transport of wave energy, which is different from soft inclusions, where the wave
energy freely diffuses through the entire sample (Fig. 2). An increasing g indicates
that wave energy propagates deeper into the sample and shear wave diffusion is less
restricted. As shown, e.g. in [14], the exponential distribution (8) originates in the
statistical independence of the intensity at different positions. This also applies to
pure Gaussian noise, for which reason the proposed analysis should be based on
sufficient wave intensity. Moreover, at low frequencies, the wave length of shear
waves may become comparable to the sample size, and the prerequisite for wave
diffusion, � < ls < L, no longer applies. Therefore, the comparison of g-values
between SH and SV waves was limited to frequencies above 50 Hz. Variations of
g observed in the experiments were not statistically significant, which does not
mean that a frequency dependence of g can be excluded. To further elaborate on
a g.f /-function, we would need to repeat the experiments for a large number
of different ensemble configurations (on the order of N > 60, [26]) which is
beyond the scope of this paper. Another confounding variable which is particularly
important in soft biological tissue is wave damping. Dissipation interferes with
scattering by decreasing the mean free path, similar to the effect of heterogeneity.
However, in gel phantoms, the typical decay length associated with dissipative loss
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is at least on the order of the sample size and thus of only minor importance in this
study. We therefore conclude that the deviation from an exponential distribution is
predominantly due to constructive interference of multiply scattered shear waves. It
remains to be determined by future investigations how far the proposed conductance
parameter g can be related to structure-inherent properties of living tissue. Given
the well-known inversion-related artifacts in dynamic elastography, the method of
intensity speckle MRE introduced here might improve the reproducibility of in vivo
mechanical parameter evaluation.

In conclusion, multiple scattering of SH and SV waves was studied for the first
time using motion-sensitive MRI. The results show that both shear wave modes
yield similar intensity speckle patterns with characteristic deviations from classical
wave diffusion. A model was employed relating the intensity distribution to a
length scale on the order of tissue heterogeneities. Therefore, our results provide
a perspective for applying intensity speckle MRE in vivo.
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Part IV
Diffusion Weighted MRI Visualization



A Comparative Analysis of Dimension
Reduction Techniques for Representing
DTI Fibers as 2D/3D Points

Xiaoyong Yang, Ruiyi Wu, Ziáng Ding, Wei Chen, and Song Zhang

Abstract Dimension Reduction is the process of transfering high-dimensional data
into lower dimensions while maintaining the original intrinsic structures. This
technique of finding low-dimensional embedding from high-dimensional data is
important for visualizing dense 3D DTI fibers because it is hard to visualize and
analyze the fiber tracts with high geometric, spatial, and anatomical complexity.
Color-mapping, selection, and abstraction are widely used in DTI fiber visualization
to depict the properties of fiber models. Nonetheless, visual clutters and occlusion
in 3D space make it hard to grasp even a few thousand fibers. In addition, real
time interaction (exploring and navigating) on such complex 3D models consumes
large amount of CPU/GPU power. Converting DTI fiber to 2D or 3D points
with dimension reduction techniques provides a complimentary visualization for
these fibers. This chapter analyzes and compares dimension reduction methods
for DTI fiber models. An interaction interface augments the 3D visualization
with a 2D representation that contains a low-dimensional embedding of the DTI
fibers. To achieve real-time interaction, the framework is implemented with GPU
programming.

1 Introduction

Diffusion tensor imaging (DTI) elucidates the microscopic anatomical properties
of biological tissues (e.g., heart or brain) in vivo by measuring the Brownian
motion of water molecules. The water diffusion can be mathematically summarized
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by a diffusion tensor field. By tracking the trajectories of the fastest diffusion
in a diffusion tensor field with tractography [3], diffusion tensor imaging can be
represented with a set of fiber tracts or three-dimensional pathways. Tractography
has been widely used in the visualization and analysis of DTI datasets [19, 22, 31].
Most methods in tractography use sample points on a DTI fiber and the line
segments between these sample points to represent a DTI fiber.

It is challenging to explore and analyze DTI fiber models in 3D space because
the complexity of the 3D geometry causes visual clutters. Interactively exploring
and selecting DTI fibers is helpful for visual inspection or statistical analysis.
However, it is difficult to interact with the complex DTI fiber models. Better
visual representations and more convenient user interfaces are needed to solve
this problem. Interactive selection schemes [1, 6], dynamic query [28], geometric
simplification [10, 14], color-mapping [12, 13], texture patterning of fiber dissimi-
larity [17], and uncertainty visualization [15] are some of the existing solutions that
attempt to solve the problem by employing new visual forms or novel interaction
methods. However, most of them operate in 3D space, where the geometry is often
occluded after being projected to a 2D viewport.

Dimension reduction can help alleviate this kind of problems. If we can find
a suitable transform which transfers the high-dimensional data into 2D or 3D
points and maintains the original intrinsic structures, the geometry occlusion of
the high-dimensional fibers can be reduced. Dimension Reduction is the process of
transfering high-dimensional data into low dimensions while maintaining the origi-
nal intrinsic structures. Generally speaking, the dimension reduction methods can be
categorized into linear and nonlinear embedding methods. Linear embedding meth-
ods are useful when the samples on the original high-dimensional manifolds have
linear relationships. With dimension reduction, we can linearly reconstruct the low-
dimensional embeddings from high-dimensional data. Multidimensional Scaling
(MDS) and Principal Component Analysis (PCA) are two of the linear embedding
methods. However, linear embedding methods do not consider the intrinsic nonlin-
earity within data. In this case, the relation among data points is best represented
using nonlinear embedding methods. Locally Linear Embedding (LLE) and Isomet-
ric Feature Mapping (IsoMAP) are two of the methods for nonlinear embedding.

This chapter will be organized as follows: Sect. 2 reviews the background
information about dimension reduction, DTI representing, exploration and inter-
action methods. Section 3 describes four embedding methods in detail. Section 4
discusses dimension reduction experiments on DTI models and the results. Section 5
demonstrates the interface for DTI fiber exploration and data analysis with projected
points. Section 6 concludes this chapter.

2 Background

Dimension reduction is widely used for revealing the latent low-dimensional
patterns from the high-dimensional data. Numerous studies in this field have been
reported, and dozens of algorithms and methods for dimensional reduction have



A Comparative Analysis of Dimension Reduction Techniques 173

been developed. Multidimensional Scaling(MDS) [5] takes the dissimilar matrix
among high-dimensional samples as input and attempts to preserve their dissim-
ilar information as much as possible. Principal Component Analysis(PCA) [26]
assumes that the dimensions are correlated variables and preserves the dimensions
representing the largest variabilities in the original data. Isometric Feature Map-
ping(IsoMAP) [29] uses geodesic distances as the dissimilarity information. It is
a generalization of the MDS. Locally Linear Embedding(LLE) [25] is a global
non-linear embedding method and it constructs local information linearly. Factor
analysis(FA) [21] assumes that the observed variables depend on the linear combi-
nations of some unknown factors. Factor analysis uncovers these interdependencies
to reduce the dimensions of the data. Inspired by the idea of Johnson-Lindenstrauss
lemma [2], random projection [23] uses a random matrix to project the high
dimensional data into low dimension.

DTI fibers are usually integrated in the direction of the longest eigenvectors
in a tensor field [3]. Streamlines [19] and streamtubes [31] are widely used to
represent and display DTI fiber models. Geometrically, the shape of a DTI model
composed of fiber tracts can be simplified in visual abstract forms, such as wrapped
streamlines [14], topological simplification [27], or by using hierarchical principal
curves [10]. A novel set of interaction techniques introduced in Sherbondy et al. [28]
allows for exploring brain connectivity and interpreting pathways. In [28], a simple
and flexible query language is used to enable the neuroscientists to perform the
key operations: the placement and manipulation of box-shaped or ellipsoid-shaped
regions. In Blaas et al. [6], a similar selection scheme is also presented. The
approach is proven to be highly reproducible for fractional anisotropy (FA) calcu-
lated over the fiber bundles in clinical studies. To differentiate pathways visually,
different pattern styles are defined to encode the local dissimilarity information
of DTI fibers, and an online navigation tool is implemented for fiber connectivity
study [17]. Coloring scheme could be used to illustrated the dissimilarities within a
group of fibers in cross sections [12, 13], which makes it easy to discern clusters by
colors. Other features of the fibers, such as the uncertainty arising from noise and
partial volume effects [15] could also be visualized. Most of these schemes focus
on limiting the amount of information in 3D models to be visualized and explored
before excessive visual clutter occurs. Dimension reduction has been applied to
data samples such as DTI fibers for clustering [4, 7, 8]. Only recently dimension
reduction methods have been applied to DTI fibers to embed them as points in 2D
for visualization and exploration [11, 18].

3 Dimension Reduction Methods

Today, the data for scientific research is usually high-dimensional and multivariate.
However, not all of the variables are equally important. In addition, with the increase
of the dimensions, there would be exponential growth in time complexity for
information fetching and analysis. Generally speaking, there are low-dimensional
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structures hidden behind the very high-dimensional data for many research prob-
lems. Even when the latent relations can be found from high-dimensional data,
there is still the problem of how to visualize the relations efficiently and accurately.
A great amount of research has been done concerning low-dimension embedding,
and dozens of embedding methods have been proposed.

Embedding techniques can be categorized into two groups: linear embed-
ding methods (e.g. MDS, PCA) and nonlinear embedding methods (e.g. LLE,
IsoMAP). Linear embedding means that each dimension from the embedding
result is generated by linear combination of the original dimensions; the nonlinear
embedding methods combine the original dimensions nonlinearly to generate new
dimensions. The linear embedding methods work well if the relation among the
high-dimensional data is linear. If the relation among original data is nonlinear,
nonlinear embedding methods are more capable of preserving the geometry of
nonlinear manifolds.

In this section, we briefly review MDS, LLE, PCA and IsoMAP for embedding
high-dimensional DTI fiber models into 2D/3D points.

3.1 Multidimensional Scaling (MDS)

Suppose that there is a set of points X D fX0;X1; : : : ; Xng in a high-dimensional
space, and the dissimilarity information (e.g. pair-wise distance) is known as ıij .1 �
i; j � n/. The dissimilarity information ıij means the distance between two DTI
fiber [31]. The high-dimensional relation is described with a dissimilarity matrixD:

D D

2
6664

ı11; ı12; : : : ; ı1n
ı21; ı22; : : : ; ı2n
:::

::: � � � :::

ın1; ın2; : : : ; ınn

3
7775

The goal of MDS is to reconstruct points Y D fY0; Y1; : : : ; Yng in a low-
dimension space to satisfy the goal function of MDS:

f
opt

MDS D min˙ij jıij � jjYi � Yj jjj for all i; j 2 Œ1; n� (1)

where jj:jj denotes the Euclidean norm. j:j denotes the absolute value. There are two
major steps for MDS:

1. Compute the pair-wise dissimilarities matrix. In the experiments of this chapter,
the dissimilarity information is the distance between two DTI fibers. Suppose
that there are two fiber tracts, and there are p and q points on the two fibers
respectively. It would takeO.pq/ steps to calculate the dissimilarity on each DTI
fiber. Moreover, the dissimilarity matrix is n by n. Therefore, the time complexity



A Comparative Analysis of Dimension Reduction Techniques 175

for this step is O.pqn2/. If the dissimilarity information is pre-calculated before
the experiment, the time complexity is O.n2/ for loading this matrix.

2. Compute the embedding results. This step needs an eigenvector analysis of the
n by n matrix, resulting in a time complexity of O.n3/. However, Chalmers
et al. [9] proposed an algorithm which reduced the time complexity into O.n2/.
Therefore, the time complexity for this step is O.n2/.

In summary, the time complexity for MDS is O.n2/ assuming pre-calculated
dissimilarity information.

3.2 Locally Linear Embedding (LLE)

LLE is a global non-linear embedding method that constructs local information
linearly. Suppose there is a set of points X D fX0;X1; : : : ; Xng in a high-
dimensional space, LLE preserves the local structure of the sampled points by
using linear correlation coefficients to reconstruct data points from their k nearest
neighbors. For reconstruction, the weight value Wij for the neighbors is computed
to satisfy the goal function of LLE:

f
opt

LLE D min˙i˙j .Xi �WijXj /
2 for all i 2 Œ1; n�; j 2 Œ1; k�I (2)

There are three major steps for LLE:

1. Find k nearest neighbors for each Xi . There are n points, and for each point, the
distance from Xi to every other point Xj needs to be computed. Therefore, the
time complexity for this step is O.n2/.

2. Solve for reconstruction weights W for Xi . A matrix of k by k consisting of
all neighbors of Xi is created and manipulated for the reconstruction weights
calculation. For this step, the cost would be k � k � n. If k � n, the time
complexity is O.n/; otherwise, the time complexity is O.n3/ .

3. Compute embedding coordinates using weightsW . Similar to step 2, a matrix of
l by l will be created and employed for the computation for each original point.
Thus, if l � n, the time complexity is O.n/, otherwise, the time complexity is
O.n3/:

In summary, the time complexity of LLE is mainly based on the selection of k
value. When k � n, the LLE reaches its best case run time ofO.n2/, and the worst
case for LLE is O.n3/.

3.3 Principal Component Analysis (PCA)

PCA is an eigenvector based linear embedding method designed with the assump-
tion that there are linear correlations among different dimensions. In PCA, the first
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step is to construct the covariance matrixW of different dimensions. Then, the linear
projections of greatest variance from the greater eigenvectors are computed. Smaller
eigenvectors are removed because greater eigenvectors of the data covariance matrix
contains more information than the smaller ones do.
The major steps for PCA are:

1. Calculate the covariance matrix W . This operation needs operations of O.n2/
2. Compute the embedding coordinate. This also needsO.n2/ operations.

The time complexity for PCA is O.n2/ [24].

3.4 IsoMap (Isometric Feature Mapping)

MDS performs low-dimensional embedding based on the distance between high-
dimensional points. As a generalization of MDS to non-linear manifolds, IsoMAP
uses geodesic distances. First, for any point in high dimension, its k closest
neighbors are found by the Dijkstra algorithm, and the distances are calculated.
Then, a weighted graph is constructed based on the neighboring and distance
information. Next, the geodesic distance is calculated. The geodesic distance is
defined as the sum of edge weights along the shortest path between two points (the
Dijkstra’s algorithm is used to find the shortest path). Finally, MDS is used for the
embedding.

There are three major steps for IsoMAP:

1. Find the k nearest neighbors for all points. For this step, the distance from each
point to the current is calculated, and the smallest k neighbors are found. The
time complexity for this step is O.n2/

2. Find the geodesic distances for all pairs of points in the graph. By taking
different algorithms and data structures to calculate the geodesic distance, the
time complexity is different. The Dijkstra algorithm is employed here for
discussion. The edge number in the map for our problem is E = n.n�1/

2
, and

the time complexity for Dijkstra algorithm implemented with binary heap is
O.jEj C jV jlogjV j/, where E is the edge number and V is the vertex number.
For step2 of IsoMAP, the time complexity is O.n.n�1/

2
C nlogn/ D O.n2/

3. Construct the embedding. The time complexity for this step is O.n2/.

In summary, the time complexity for IsoMAP is O.n2/.

4 Experiment

We have conducted experiments for embedding DTI fibers as 2D and 3D points with
the aforementioned methods. We will discuss the data, methods, and results of the
experiments followed by a discussion in this section.
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4.1 Data

Two normal human brain DTI models are used to generate four brain datasets (B1,
B2, B3, and B4) and one normal porcine heart model is used to generate two heart
datasets (H1 and H2) for the experiment. B2, B4, and H2 are generated from B1,
B3, and H1 by culling fiber tracts whose average curvature is smaller than 0.3. The
purpose is to explore the relation between fiber number and information loss during
embedding. The voxel size is 1:7mm� 1:7mm� 1:7mm for the brain datasets and
1:17mm�1:17mm�2:4mm for the porcine hearts datasets. The DTI models were
generated with a seeding density of 1 seed per 4 by 4 voxels in the data volume. The
fiber numbers are 1248; 192; 1622; 458 for B1, B2, B3, B4 and 1066; 347 for H1
and H2 respectively.

4.2 Method

Two individual experiments are carried out. The first experiment is to embed the
high-dimensional models into 2D points. The second experiment is to embed the
high-dimensional models into 3D points. In both experiments we compare
the embedding errors from high dimension into low dimension using different
embedding methods on the DTI datasets. To measure the embedding error, Kruskal
in [20] proposed a badness-of-fit standard called stress. The stress is defined as:

Stress D
vuut

P
i

P
j .Dij � VDij /2P P

D2
ij

; (3)

whereDij is the dissimilar value before embedding, and VDij is the dissimilar value
after embedding. Assume ıij is distance between the ith and jth points in high
dimension. In our experiment, it is the distance between two DTI fibers [31]. n is
the total number of points. xi , xj , yi , yj , zi , and zj indicate the x, y ,z values
of the points after embedding. Before dimension reduction, the sum distance is
sum1 DP

i;j ıi;j while after the dimension reduction, the sum distance between all

pair of point are sum2 =
jDnP
jD1

iDnP
iD1

p
.xi � xj /2 C .yi � yj /2 if the embedding results

are 2D points. Otherwise, sum2 =
jDnP
jD1

iDnP
iD1

p
.xi � xj /2 C .yi � yj /2 C .zi � zj /2

if the embedding results are 3D points; R D sum1=sum2. The usage of R is to
make sure that the change of scale in distance caused by the embedding method is
accounted for. We define the embedding error for our experiments as:
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Fig. 1 Stress values for B1 from LLE and IsoMAP embeddings with increasing k values. Red
points are results from LLE, blue points are results from IsoMAP
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Both LLE and IsoMAP need a neighborhood size as parameter k. Different k
values will lead to dramatically different embedding results and stress values. There
appears to be a limited amount of work that has been done before about the most
reasonable k value for a manifold. When k value is too small, large continuous
shapes in high dimension will become small discrete shapes; when k value is too
large, the local topology is not correctly reflected. Furthermore, for different DTI
models and different embedding methods (LLE/IsoMAP), the best suitable k values
are different. Figure 1 is the test result about the different stress values by LLE and
IsoMAP with increasing k on B1. From Fig. 1, we see that the stress values for LLE
fluctuate when the k values are increased. For IsoMAP, the stress values become
smaller when the k values are increased because of shorter geodesic distances
obtained from the Dijkstra algorithm.
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4.3 Results

Different k values (30, 70, 110, 150, and 190) are used to generate a group of testing
results for embedding DTI fibers to 2D points using LLE and IsoMap. The results
are shown in Fig. 2. We test different k values around 110, and select kD106, where
LLE method achieves the minimum stress value in Fig. 1, for the stress value
experiments below. In [30], Xie et al. use the LLE method for ear recognition. In
their paper, similar strategy about the k value selection is used for LLE.

Tables 1 and 2 show the stress values for MDS, LLE, PCA and IsoMAP
embedding in 2D and 3D. B1 and B2 are from brain model 1, while B3 and B4 are
from brain model 2. H1 and H2 are from the porcine heart model. The difference
between the related values is that the former one is from a dataset without culling
fiber tracts with similar curvature, while the latter one culls fiber tracts whose
average curvature is less than 0.3.

Tables 3 and 4 show the run time for completing the experiments on 2D and 3D
embeddings.

4.4 Discussion on Dimension Reduction

From the experiments above, some general trends are discovered for DTI models
embedding:

1. Embedding the high-dimensional manifolds into 3D space can lead to smaller
stress values than into 2D. Using one more dimension, more information will
be preserved. The navigation and rotation in the 3D space could also avoid the
problem of occlusion.

2. The k value selection (for LLE and IsoMAP) is still an open problem.The selec-
tion of k value should depend on the structure of a given manifold. However, the
topology of DTI fibers is not clear. For different models (brains/hearts), different
sample rates (dense/sparse), and different embedding methods (LLE/IsoMAP),
the best k value is different.

3. The 3D stress values for MDS and IsoMAP are similar.
4. The stress values for Brain 1 and Brain 2 are similar, while the stress values for

the heart DTI models are relatively larger. Anatomically, the structures of human
brains and porcine hearts are quite different. Connected by the corpus callosum,
the left and right cerebral hemispheres in the DTI models are symmetrical.
However, the hearts have layers of muscle structure, and most of the tracts in
DTI models have a helical style. The structural difference between them might
be the reason for lower stress values of brain models than the heart models.

5. We believe that the DTI fibers have a nonlinear structure, which means that they
can be best represented by some nonlinear embedding methods. However, from
the comparison of the stress values, no significant differences are found between
the linear and nonlinear methods. In [16], Goldberg et al. show that for some
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(a) LLE k = 30 (b) ISO k = 30

(c) LLE k = 70 (d) ISO k = 70

(e) LLE k = 110 (f) ISO k = 110

(g) LLE k = 150 (h) ISO k = 150

(i) LLE k = 190 (j) ISO k = 190

Fig. 2 First column: LLE 2D
embedding results. Second
column: IsoMAP 2D
embedding results
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Table 1 Stress values for 2D embeddings

Category Methods B1 B2 B3 B4 H1 H2

Linear MDS 0.06 0.07 0.10 0.04 0.13 0.09
Linear PCA 0.11 0.12 0.11 0.12 0.22 0.24
Nonlinear LLE 0.14 0.10 0.14 0.13 0.32 0.30
Nonlinear IsoMAP 0.11 0.10 0.10 0.05 0.36 0.22

Table 2 Stress values for 3D embeddings

Category Methods B1 B2 B3 B4 H1 H2

Linear MDS 0.02 0.03 0.03 0.02 0.04 0.03
Linear PCA 0.03 0.05 0.05 0.04 0.08 0.13
Nonlinear LLE 0.06 0.03 0.06 0.05 0.08 0.07
Nonlinear IsoMAP 0.03 0.03 0.02 0.02 0.09 0.06

Table 3 Run time for 2D embeddings (in seconds)

Category Methods B1 B2 B3 B4 H1 H2

Linear MDS 81.00 2.92 143.05 11.36 60.04 7.49
Linear PCA 54.67 1.11 105.38 5.83 37.97 3.12
Nonlinear LLE 227.24 3.11 729.57 31.54 145.25 9.76
Nonlinear IsoMAP 60.23 1.66 111.63 6.92 42.10 3.65

Table 4 Run time for 3D embeddings (in seconds)

Category Methods B1 B2 B3 B4 H1 H2

Linear MDS 86.70 3.81 155.29 13.08 61.64 8.15
Linear PCA 57.99 1.46 106.66 6.73 40.97 3.18
Nonlinear LLE 228.13 3.56 768.68 34.74 158.21 15.68
Nonlinear IsoMAP 61.86 1.69 114.12 7.43 42.28 3.68

very simple manifolds, if some conditions are violated, the embedding methods
(e.g., LLE) cannot recover the underlying manifolds. This is the same for the DTI
models. The DTI models are high-dimensional and their structures vary model
by model. It cannot be guaranteed that a specific embedding method can always
work on the different DTI models.

5 User Interface

We designed a user interface for the ease of exploring DTI fibers. The exact
geometry in a standard 3D view (DTI fiber models) and a simplified view of fibers
(2D/3D embedded points) are shown simultaneously, and the user interacts with the
simplified view to reduce the workload. Also, the interface program can be used in
other aspects of DTI fiber study such as interactive fiber tract selection. Our method
simplifies the high-dimensional DTI fibers and enhances interaction, visualization,
and exploration with these fibers.
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Fig. 3 The basic layout of the user interface

The layout shown in Fig. 3 enables efficient manipulation, navigation, and
quantitative analysis of DTI fiber tracts. Three major components are shown. On the
left side, the fiber tracts are shown and interactions such as rotation, lens viewing,
coloring, slicing, and selection are supported. At the right bottom of the left side is
the 2D embedding results; on the right side, a 3D embedding of the DTI fibers
is shown. There are several other views to enable interactive filtering the fiber
tracts and make numerical analysis.Free fiber selection and multiple-box ROIS are
supported. An advantage of our interface is its capability of describing the fiber
model in multiple aspects. To enable interactively exploring the properties of the
DTI models, additional histogram views are added. Properties of the DTI fibers,
such as the fiber length, the average linear anisotropy (LA), the average fractional
anisotropy (FA), and the average curvature along each fiber tract are shown in
separate views. The users can select groups of fibers based on their observations
and the histograms. In Figs. 3 and 4, the selected fiber tracts within a single group
share the same color.

Figure 4 includes examples of using the embedding methods to help with brain
DTI fiber model study. Visualization of the heart and brain models could be helpful
for research. However, these models consist of many spatially close fibers. As
shown in Fig. 4, the high-dimensional manifolds are embedded into 2D/3D space
as points. This low-dimension embedding maintains the original DTI models’
structural information with an uncluttered 2D/3D representation of the data, which
reduces the user time and mental workload in recognizing 3D DTI fibers. Although
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(a) MDS (b) MDS2D (c) MDS3D

(d) PCA (e) PCA2D (f) PCA3D

(g) ISOMAP (h) ISO2D (i) ISO3D

(j) LLE (k) LLE2D (l) LLE3D

Fig. 4 First column: human
brain DTI models with 458
fiber tracts; second column:
the 2D points representation
of the first column. Third
column: the 3D points
representation of the first
column. For each row from
top to down, the figures are
for MDS, PCA, IsoMAP and
LLE respectively

the 2D points reduce the user time and mental workload in recognizing 3D DTI
fibers, it will lose much information from the DTI fibers. A 3D points embedding is
shown in the last column. Although 3D points also creates clustering and occlusion,
we can use rotation to navigate in the 3D space for a better understanding. From
previous tables, 3D embedding preserves more proximity than the 2D embedding
does.

6 Conclusions

In this chapter, we review the functionalities and the time complexities of MDS,
LLE, PCA, IsoMAP and quantitatively compare different embedding methods’
stress values and run time on DTI datasets. Moreover, a novel interface is designed
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to achieve more effective representations and visual explorations of DTI fiber
models. Users can view the DTI fiber tracts and their 2D/3D embedding results
simultaneously for an efficient understanding of the DTI fibers.

7 Implementation

We implemented the calculation of MDS, LLE, PCA and IsoMAP with Matlab. The
PC is equipped with an Inter Core 2 Duo 2.4 GHz CPU, 4 G host memory. The user
interface was implemented with Microsoft Visual CCC 2008 and OpenCV.
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Exploring Brain Connectivity
with Two-Dimensional Maps

Çağatay Demiralp, Radu Jianu, and David H. Laidlaw

Abstract We present and compare two low-dimensional visual representations, 2D
point and 2D path, for studying tractography datasets. The goal is to facilitate
the exploration of dense tractograms by reducing visual complexity both in static
representations and during interaction. The proposed planar maps have several
desirable properties, including visual clarity, easy tract-of-interest selection, and
multiscale hierarchy. The 2D path representations convey the anatomical familiarity
of 3D brain models and cross-sectional views. We demonstrate the utility of both
types of representation in two interactive systems where the views and interactions
of the standard 3D streamtube representation are linked to those of the planar
representations. We also demonstrate a web interface that integrates precomputed
neural-path representations into a geographical digital-maps framework with asso-
ciated labels, metrics, statistics, and linkouts. We compare the two representations
both anecdotally and quantitatively via expert input. Results indicate that the planar
path representation is more intuitive and easier to use and learn. Similarly, users are
faster and more accurate in selecting bundles using the path representation than the
2D point representation. Finally, expert feedback on the web interface suggests that
it can be useful for collaboration as well as quick exploration of data.

1 Introduction

Diffusion-weighted MRI (DWI) enables neural pathways in the in vivo brain to
be estimated as a collection of space curves, called a tractogram. The study of
tractograms (i.e., tractography) has important applications in both clinical and
basic neuroscience research on the brain. Tractograms have visual complexity
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Fig. 1 2D point representation linked with a streamtube representation in an interactive tractogra-
phy visualization tool

proportional to the intricacy of the axonal brain connectivity and, with increasing
DWI resolutions, this complexity is becoming greater and greater. It is thus often
difficult for practitioners to see tract projections clearly or identify anatomical
and functional structures easily in these dense curve collections. This is important
because, for example, a clinical study of a neurodegenerative disease sometimes
involves selecting more than 30 tracts of interest (TOIs) manually across different
datasets. Therefore, it is necessary for tractography visualization tools to provide
means to reduce and help cope with visual complexity at both the interaction and
data representation levels.

We believe two concepts, abstraction and filtration, can be applied to represen-
tation of datasets to help users overcome the difficulties of visual complexity. While
abstraction involves simplification and generalization, filtration here entails cluster-
ing and hierarchization. With these ideas in mind, we proposed low-dimensional
point representations for better interaction with fiber tracts in [19], along with [7].
Driven by known embedding methods, embedding in two-dimensional space pro-
vides an interesting window into the manifold space of neural connectivity and
helps in fine selection of tracts. Figure 1 shows a snapshot from a tractography
visualization tool that uses the point representation. A drawback of point repre-
sentations is, however, that coordinate axes in the low-dimensional space lack an
anatomical interpretation. It is clear from evaluations in [7, 19] that having a frame
of reference, anatomical or otherwise, is important for users. Motivated by this
problem, we introduced in [20] two-dimensional neural paths that have the desirable
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Fig. 2 Schematic 2D path projections of tractograms as part of a standalone interactive system
(left) and as a web-accessible digital map (right). The digital map interface easily incorporates any
tract-associated information, including labels, links, metrics, and statistics. Shown in the pop-up
window on the right is the “brain view” of the selected tract

properties of low-dimensional representations while preserving meaningful and
familiar coordinates. Figure 2 shows screenshoots of a tool and its web interface
that uses the neural path representation.

Here, we provide a unified discussion of our earlier work on planar point and
path representations of tractograms [19, 20]. Since diffusion imaging is the source
of all the data used in our work, we give an elementary introduction to DWI in
the following section. We then discuss related work on tractography and web-based
visualizations.

2 DWI

Diffusion-weighted magnetic resonance imaging (DWI) measures the diffusion rate
of water molecules in biological tissues in vivo [25]. Since tissue characteristics,
geometric or otherwise, at a given point affect the diffusion rate, measured diffusion-
rate information is an indicator of the tissue characteristics at the point. In particular,
water in fibrous tissues such as brain white matter (a collection of myelinated
axons) diffuses faster along fibers than orthogonal to them. Therefore, it is possible
to estimate fiber trajectories computationally using diffusion models such as the
tensor model that quantify anisotropic diffusion. Diffusion imaging based on fitting
second-order tensors to DWI sequences is known as diffusion-tensor magnetic
resonance imaging (DTI) [4]. Fiber trajectories are computed from DTI data by
integrating bidirectionally along the principal eigenvector of the underlying tensor
field. This process, called fiber tracking, yields a dense collection of integral curves
(i.e., a tractogram). All the tractograms used in our work were obtained using a
deterministic fiber-tracking algorithm in DTI volumes.
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3 Related Work

Tractograms are often visualized with streamlines or variations of streamlines in
3D [23, 29]. Reflecting the intricacy of the connectivity in the brain, these 3D
models are generally visually dense. Consequently, typical interaction tasks over
tracts, such as fine bundle selection, are often difficult to perform and have been a
focus of recent research [1,2]. Concurrently with Chen et al. [7], we proposed planar
point representations to improve interaction with DTI fiber tracts [19]. There are,
however, differences between these our work and Chen’s. First, we use hierarchical
clustering to create multiscale representations, which makes the exploration of large
datasets easier, both visually and computationally. Second, while our work uses a
simple force-based embedding method, Chen et al. uses the SMACOF algorithm,
an iterative method that minimizes the metric stress of multidimensional scaling
(MDS) using majorization [9]. And third, we use the embedding procedure also
to create a “nice” coloring in which colors of data points perceptually reflect the
relationships among them.

To address concerns of experts about insufficient anatomical context in the 2D
point representation, we recently introduced 2D path representations [20], which are
also projections of fiber tracts into a plane, but as planar curves rather than points.
One of the advantages of 2D projections is that they can be naturally integrated into
a web-based digital geographic map framework. Basic data visualization has been
available on the web for many years but was usually limited to traditional techniques
such as bar graphs and charts. More recently, however, visualization research started
targeting this environment and advanced applications have emerged. ManyEyes [26]
paved the way for everyday data visualization, with subsequent studies such as [27]
and [8] proving the need for accessible web visualization. While web-development
toolkits such as [5] greatly aid web visualization development, large-scale web-
visualization is limited by inherent browser capabilities, as demonstrated in [21].
Alternatively, stand-alone systems have been made available as applets or can be run
as client applications directly from websites. However, users still must control the
parameters involved in producing visualizations, specify their data queries and learn
the system features. This often constitutes an undesirable overhead. Yet another
approach, most similar to our work from an implementation standpoint, is to use
Ajax (asynchronous JavaScript and XML) technology to perform the rendering on
the server side and serve images asynchronously to the client browser. The essential
difference between the present work and traditional offline visualization systems is
that we separate interaction and display from rendering and computation. Our brain
maps differ by eliminating user effort in creating visualizations, instead assigning
this task to experts, and by using the Google Maps API, which is an Ajax framework
for interactive display of pre-rendered images. Closest to our work in this latter
aspect are X:MAP [28] and Genome Projector [3], which present genome browser
tools implemented using the Google Maps API. We extend this idea to a new domain
and demonstrate its usefulness for tractography datasets.
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4 Methods

Both point and path representations are projections of fiber tracts onto the plane:
Each tract is represented with a 2D point in the former and a 2D curve in the latter.
Formally, given a polyline form of a fiber tractC 2 R

n�3 with n vertices in 3-space,
its point representation is obtained with a map �point W Rn�3 ! R

2 and its path
representation is obtained with another map �path W Rn�3 ! R

m�2 .
Generation of these two representations shares three common steps. First, we

obtain a whole-brain tractogram by fiber tracking in a diffusion-tensor volume fitted
to a given DWI brain sequence. Second, we compute similarities between all pairs
of tracts within the tractogram, obtaining a similarity (or affinity) matrix. Third,
using the similarity matrix from the previous step, we run a hierarchical clustering
algorithm on the tractogram, obtaining a clustering tree (dendrogram).

We create the 2D point representation of the tractogram by embedding the tracts
in the plane with respect to the similarity matrix, using a simple iterative force-
directed method. We use the hierarchical clustering tree to create multiscale point
representations. For the path representation, we first pick a cut on the clustering
tree and obtain a clustering. Then, by treating cluster centroids as pivots, we
create projections of tractograms onto the major orthogonal planes as curves. We
render these 2D curves stylistically using heuristics determined by the topology and
geometry of the corresponding tracts and tract clusters.

We give details of these steps in subsequent sections.

4.1 Image Acquisition and Fiber Tract Generation

DWI brain datasets used in this paper were acquired from healthy volunteers
on a 1.5T Siemens Symphony scanner with the following acquisition param-
eters in 12 bipolar diffusion-encoding gradient directions: thicknessD 1.7 mm,
FOVD 21.7 cm� 21.7 cm, TRD 7,200 ms, TED 156 ms, bD 1,000, and NEXD 3.
For each DWI sequence, the corresponding DTI volume was obtained by fitting
six independent parameters of a single second-order tensor at each voxel to the
12 measurements from the DWI sequence [4]. We generate fiber-tract models
of the whole brain by integrating the major eigenvector field of the diffusion
tensor field bidirectionally starting at seed points. We use the second-order Runge-
Kutta integration method. Since the tensor field is sampled on a volumetric grid,
we evaluate its value at non-grid positions using tricubic interpolation during
the integration. We use a constant integration step size of 0.5 mm and stop the
integration when we reach an area of gray matter, low linear anisotropy, or low
signal-to-noise (SNR) ratio.
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4.2 Measuring Similarities Between Fiber Tracts

We quantify the similarity between two tracts using the distance measure discussed
in [10]. This measure tries to capture how much any given two tracts follow a
similar path, while giving more weight to the points closer to tract ends. Given two
integral curves Ci D fC1

i ; : : : ; C
m
i g and Cj D fC1

j ; : : : ; C
n
j g that are represented as

polylines with m and n vertices respectively, we first find mean weighted distances
dij and dj i , and then determine the maximum of these two distances as the distance
Dij between the two curves:

dij D 1

m

mX
kD1

˛i
kdist.C k

i ; Cj / (1)

dj i D 1

n

nX
kD1

˛j
kdist.C k

j ; Ci/ (2)

Dij D Dji D max.dij ; dj i / (3)

The function dist.p; C / returns the shortest Euclidean distance between the point
p and curve C . Also, ˛k D 1

Z
ejk�.mC1/=2/j2=�2 , where the normalizing factor Z DPm

kD1 ejk�.mC1/=2j
2=�2 . We set the parameter � automatically, proportional to LC ,

the length of the fiber tract, such that � D �LC , where � 2 .0; 1�. We set � D 0:5

for the datasets used for this paper.
We compute the distance between each pair of integral curves as explained

and assemble the measures to create a distance matrix. Note that our measure
is symmetric and positive definite but does not necessarily satisfy the triangle
inequality and, therefore, is not a metric. While our approach is independent of
a particular similarity measure, good results in practice require a good similarity
measure—one that reflects users’ understanding of the similarity between data
points (i.e., tracts) and works well for the task at hand.

4.3 Clustering

For a given tractography dataset we compute a clustering tree using an average-
linkage hierarchical clustering algorithm on the tract distance matrix (e.g., [11]). We
choose the average-linkage criterion because it is less sensitive than the minimum-
linkage to broken tracts that might occur because of tracking errors. The output of
the clustering algorithm is a hierarchical tree called a dendrogram. The height of the
tree can be thought as the radius of the bounding ball of the dataset—in the units
of the similarity measure used. Any horizontal cut on this tree provides a clustering
of the dataset. Therefore, for example, the root node represents a clustering with a
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single cluster containing all the data points. Conversely, the leaf nodes correspond
to a clustering where every data point is a cluster.

We obtain a clustering of tracts by manually setting a cut threshold on the
dendrogram. This threshold can be also interactively changed by user to control the
coarseness of the clustering. A constant cut at 60 % of the clustering tree’s height
gave consistent results across the six datasets we experimented with.

4.4 Planar Projections of Fiber Tracts

4.4.1 Fiber Tracts as Embedded Points

We use a simple iterative force-directed method for embedding tracts in the
plane [12]. Embedding is a one-to-one smooth mapping from fiber tracts to points
in the plane that preserves the “structure” of the fiber tracts. In this context, the
distance matrix computed can be considered a manifestation of the structure in the
fiber tract space.

For a given dataset with M tracts, we start with M corresponding points, all
initially placed at the origin. We then iteratively adjust the positions of these
points by moving the pairs of points closer to or further from each other to match
with the corresponding Dij entries in the similarity matrix. To achieve interactive
performance, we use a stochastic sampling technique described in [6] for updating
the “forces” between data points. Briefly, instead of computing forces on a point
xi from every other point in the dataset, we limit the points acting on xi to
xj 2 F D fNi [ Sig, where Ni and Si are disjoint sets with a constant size.
We iterate over data points and resample Si each time by uniformly randomly
selecting points from the whole dataset. For a randomly selected point xk , if Dik

is smaller than maxxl2Ni Dil , the maximum distance from xi to any member of Ni ,
then xk is assigned to Ni , otherwise it is assigned to Si . Ni loosely represents the
neighborhood of the point iterated.

4.4.2 Using Embedding to Color Fiber Tracts

Given a similarity measure, a good coloring of fiber tracts should reflect the
similarities between the tracts such that similar tracts are assigned to similar colors
and different tracts are assigned to different colors. Embedding fiber tracts in
perceptually uniform color spaces, which are subsets of R3 , provides a practical
way to approximately achieve this goal. A perceptually uniform color space is an
empirically constructed color space in which the Euclidean distances between color
triplets are approximately proportional to the perceptual differences between them.
L*a*b* and Luv are two common examples of such color spaces [13].

Embedding fiber tracts in the L*a*b* space is the general coloring scheme used
in the interactive tools presented here. For this, we compute an approximation of the
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L*a*b* color gamut, as visible on the right panels of Fig. 6, and use it as a container
for force-directed embedding. To avoid having to adjust a repulsive container
force, which would likely need a steep, hard-to-control gradient, we perform a
physically accurate simulation with container contact detection. The embedding
begins in the center of the gamut and is gradually expanded until most of the space
is filled. During implementation we observed that the largest distances are often
embedded along the luminance axis, the vertical (in paper coordinate frame) axis
of the color gamut. This is problematic because luminance offers little resolution
and can be interpreted as a lighting effect. We therefore apply a “flattening”
force at the beginning of a simulation cycle to force large distances to lie in the
horizontal plane (a*b*-plane). These force components, acting on the luminance
axis towards the center of the gamut, wear off as the embedding moves towards
a steady state. The force computation used is the same as for the 2D embedding,
with straightforward 3D modifications. In terms of interaction, the color embedder
supports only collapsing and color grabbing.

4.4.3 Fiber Tracts as Planar Curves

For a given tractography dataset, we create schematic views of fiber tracts projected
on the sagittal, coronal, and transverse planes.

We start by obtaining a clustering of the dataset by picking a cut on the already
computed hierarchical clustering tree. We then create simple orthogonal projections
of tracts on each plane. Suppose the sagittal plane is aligned with the xy-plane
and let v D .x; y; z/ 2 R

n�3 be a vertex of a tract. Then the projection onto the
sagittal plane is given by the simple equation �.v/ D .x; y/. We cull out tracts
that do not contribute significantly to the projection. If the ratio of projected tract
length to true tract length is under a threshold value, we remove the tract from the
corresponding cluster. We set the culling threshold to 0:65 for the projections used
in our experiments. Finally, we compute a centroid for each cluster by choosing the
tract with the smallest maximum distance to any other tract in the cluster. We found
that for illustration purposes it is desirable to avoid broken tracts. We therefore
weigh the centroid selection to favor longer tracts by dividing the maximum distance
from each tract to any other tract by the tract’s length.

We opted for a non-photorealistic rendering of brain projections to avoid their
interpretation as 3D views and to harness users’ intuitions about 2D maps. The
rendering assumes a given clustering with assigned centroid tracts, which can be
computed as described in the previous section. The centroid tracts will define a
schematic neural skeleton on top of which the non-centroid tracts are scaffolded.
Projections of centroid curves are smoothed prior to rendering to achieve a
schematic representation and to reduce clutter. This is done by sampling a number
of evenly distributed control points (five in our implementation) along the tract
projection and using them as control points for a piecewise cubic spline with 30
segments. The thickness of a centroid curve is proportional to the square root of
the number of tracts in the bundle. Once centroid tracts are represented as 2D
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a b

Fig. 3 (a) Schematic tract-cluster representation. (Top) 2D projections of a tract bundle, with an
associated centroid curve (yellow), are determined from a hierarchical clustering of initial 3D
tracts. (Middle) The centroid curve is smoothed by a spline and the endpoints of non-centroid
curves are clustered using their initial 3D coordinates (four clusters); for each cluster, three control
points linking the center of the cluster to the centroid spline are computed. (Bottom) Splines are
run from each curve endpoint through the control points of its corresponding cluster. (b) Depth
ordering of 2D paths. For each segment of a 2D spline, we locate a corresponding segment on the
3D curve from which the spline was derived by traveling the same fractional distance along both
curves. The depth of the 2D segment is the same as the depth of the middle of its corresponding
3D segment

splines, endpoints of non-centroid curves are linked to their cluster’s centroid spline
following the procedure illustrated in Fig. 3a. First, the endpoints of non-centroid
curves in a bundle are clustered based on the endpoints’ initial 3D coordinates. Two
endpoints are placed in the same cluster if the distance between them is less than
2 mm. Then, for each such endpoint cluster we compute three control points that
link the geometrical center of the endpoint cluster to the centroid spline: the first
point is the center itself, the second is a point on the centroid spline closest to
the center point, and the third is determined by traveling from the second point
down the centroid spline, towards each curve’s other endpoint, for a predefined
distance (e.g., half of the distance between the first two points). Ultimately, splines
are run from each tract endpoint through its cluster’s three control points, thus
linking each endpoint to the centroid path. The thickness of these endpoint linkage
splines gradually increases from unit thickness (i.e., single-tract thickness) at the
tract endpoint to a thickness proportional to the square root of the endpoint cluster
size, where it merges with the centroid spline.
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We depth-order spline segments so that 2D centroid splines crossings can
indicate the depth ordering of their corresponding 3D shapes. The depth ordering is
done differently for centroid splines and non-centroid splines, since while centroid
curves are close representations of actual 3D tracts, non-centroid curves are abstract
representations obtained through the process described above. Furthermore, the
depth ordering is approximate and may produce artifacts. For centroid splines, the
depth of a spline segment is computed by finding a matching segment on the 3D
tract from which the spline was derived and taking the depth of that segment’s center
(see Fig. 3b). The matching segment on the 3D tract has its endpoints at the same
fractional distance from the start of the 3D tract as the 2D segment’s distance from
the start of the 2D spline. The depth of any non-centroid spline is determined by
averaging the depth of the corresponding 3D tract.

In the following two sections, we give details on how we use 2D neural path
representations as part of an interactive application and as standalone digital maps.

4.5 Linked Multi-view Interaction

We expect a typical use of low-dimensional representations to be as part of inter-
active applications where views and interactions of conventional representations
are linked with those of low-dimensional representations. We have developed
two interactive visualization systems using the 2D point and path representations,
respectively, to demonstrate this mode of use (see Figs. 4 and 5).

Both applications have a view of tractography data visualized using 3D stream-
tubes. Coloring is generated through the embedding of tract similarity into the
L*a*b* color space. In addition to the standard 3D viewing interactions, we
have two basic 3D selection/deselection interactions on streamtube models: sphere
selection and brushing. Sphere selection, like box selection, enables the users to
select the intersecting tracts by moving a sphere of desired radius. Brushing lets
users draw 2D curves on the viewing plane and select the intersecting tracts.

Both sphere-selection and brushing can be used to further prune the current
selection but they cannot be used to grow it. For that purpose, we provide a selection-
growing interaction that gradually adds tracts closest to the current selection.
Proximity is again determined by the distance measure discussed above.

On the 2D point representation, we provide point selection and point collapsing.
Selection is performed by clicking and dragging; multiple selection can be per-
formed to select points from non-adjacent regions. Collapsing groups a set of points
into a single clustered representation. This can be used either for easier tract bundle
selection or as a mechanism for manually refining embeddings: points belonging
to the same tract bundle can be grouped together if the embedding algorithm places
them apart. The centroid of the grouping is used in subsequent embedding iterations.
The hierarchical clustering tree provides a filtration of the dataset via cuts. Figure 6
shows how a cut on the dendrogram, which results in a clustering, provides a coarser
representation.
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Fig. 4 Coordinated DTI tractogram model exploration in lower-dimensional visualizations: 2D
embedding (upper right), hierarchical clustering (lower left), and L*a*b* color embedder (lower
right). Selection of a fiber bundle (red) in the hierarchical clustering is mirrored in the other views

In the 2D path tool, we link projective views on the sagittal, coronal, and
transverse planes to a standard 3D streamtube model. The clustering cut threshold
that defines the specificity of the projected bundles can be altered interactively
during visualization. Tract clusters in the planar projections can be selected by
drawing line segments that select intersecting bundles. A selection in any of the
planar views is mirrored in the 3D model view as well as in all other 2D projections.

4.6 Digital Map Interface

Brain mapping is one of the quintessential problems in neurosciences. We believe
that a geographical map metaphor is well suited to the visualization and analysis of
results obtained in that area. Therefore, producing a representation of the brain that
is viewed, interacted, queried, and enriched like an online geographical map was
one of the motivations behind our creation of the 2D path representation.

For this, we use the Google Maps API, an Ajax framework used to render large
maps, to interactively display our tractogram maps on the web. The Google Maps
API receives input image data in the form of a set of small images, called tiles, that
when assembled together form the different zoom levels of the map. Each zoom
level z consists of a rectangular grid of tiles of size 2z�2z. The API decodes the zoom
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Fig. 5 An interactive analysis system using linked views and planar tract-bundle projections.
Three planar representations, along the coronal, transverse and sagittal planes (bottom panels),
are linked to a 3D streamtube model (upper left) and a 2D point embedding of tract similarities
(upper right). Selections in the projection views can be made by clicking or cutting across cluster
curves and are mirrored in the 3D view. Points corresponding to the selected tracts are interactively
embedded into the plane and used to refine selections at the tract level

level and coordinates of the currently viewed map region to retrieve and display the
visible tiles. The developer can load a custom set of tiles in the API by implementing
a callback function that translates numerical tile coordinates and zoom level into
unique paths to the custom tiles.

The API provides basic functionality such as zooming and panning and allows
programmatic extension or customization with markers and polyline overlays,
information pop-ups and event management. The API can easily be integrated into
any webpage supporting Javascripts.

Our visualization system can render our 2D projections into a set of image tiles
instead of the screen. For each cluster, including both tract-bundled and endpoint
clusters, we export information required for interaction and browsing. Selection
information consisting of evenly spaced points along splines and thickness radii for
splines contained in a cluster is exported. In line with the tile paradigm, instead
of exporting this information to a single large file, we divide it geometrically
across corresponding tiles and write it as multiple tile-content text files. Upon user
selection, the content file of a clicked tile is fetched from the server and its data
analyzed for an intersection. This approach avoids loading and searching through
large files. A valid cluster selection is marked on the map with polyline overlays
running over tract splines contained in the selected cluster (see Fig. 7). For this
purpose, spline coordinates for each cluster are exported to files indexed by a unique
cluster identifier.
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Fig. 6 A clustering cut in the dendrogram view (top row) is applied to the linked 2D embedding
and 3D colorer (middle row). Points belonging to the same cluster are collapsed to their centroids
(bottom row)

Fig. 7 DTI tractography data projected onto the sagittal, coronal and transverse planes. Major
tract bundles are represented schematically by their centroid tract; individual tracts in bundles are
linked from the centroid bundle to their projected endpoints. Zooming in allows access to smaller
clusters of tracts. Bundles can be selected and pre-computed statistical data along with 3D views
of the tract bundle (“brain view”) can be displayed
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Finally, for each tract cluster we export a variety of metadata accessible during
map browsing in information boxes, as shown in Fig. 7. A short description and
links to the most relevant publications or research can be added manually for major
tracts. A few 3D poses of each tract bundle are prerendered and exported as animated
GIF images, indexed by the cluster identifier. Statistical data, in both textual and
graphical form, are computed for each cluster and written as HTML content to
cluster-indexed files. This information is loaded and displayed in tabbed information
boxes at the user’s request.

4.7 Implementation

We implemented both interactive systems in C++ using G3D and Qt libraries [14,
24]. We created the web interface for the neural path representation using the Google
Maps API [15]; it can be accessed via the url link [17].

5 User Evaluation

We compared the two representations both anecdotally and quantitatively.

5.1 Anecdotal Study: Methods and Results

In the anecdotal study we showed a prototype that implements both 2D point and
neural path representations to three neuropsychologists, all of whom were interested
in the relationship between fiber tracts and cognitive and behavioral function in
the brain. Similarly, all have used computational tools for analyzing DTI data,
though only one of them had used fiber-tract visualization tools in his clinical
research. The participants had research interests in vascular cognitive impairment,
early Alzheimer’s disease, and HIV, focusing on specific tracts and regions such as
the corpus callosum (CC), frontal lobe, basal ganglia, cingulate bundle, superior
and inferior longitudinal fasciculi, anterior internal capsule, and the uncinate
fasciculus.

Our anecdotal evaluation protocol was straightforward: we demonstrated the
prototype while asking questions and collecting participants’ feedback. Two of
the experts also tried both interfaces themselves by selecting a set of major TOIs,
the CC, cingulate bundle, uncinate anterior internal capsule, and the corticospinal
tract. There was agreement that the 2D neural path representation was more intuitive
and easier to use and learn than the 2D point representation.
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Our experts also found the web interface with the digital map interaction useful.
Although they believed that the standalone application with linked representations
would remain necessary for quantitative analyses requiring interactive fine selection,
they thought the web accessibility opened up interesting possibilities. They were
particularly excited about browsing through datasets while commuting or at home,
of quickly inspecting unfamiliar datasets, and of sharing such visualizations with
collaborators.

5.2 Quantitative Study

In the quantitative evaluation, we compared the point and path representations by
measuring user performance on a bundle selection task.

5.2.1 Applications

We used our interactive path representation system (Sect. 4.5) and the 2D point
representation tool in [7] in running the comparative study. The reason that we
used this tool instead of ours is that it had already been compared to other known
tractography tools such as CINCH, MedINRIA, and BrainApp, and was reported to
be preferable to them. Using it would give us some idea about, the relative merits, if
any, of the 2D path representation tool over not only the 2D point representation
but also these other tractography applications already compared. Chen et al.’s
application offers a brush tool that works similarly to ours in 3D and as a lasso tool
on the 2D point representation. Users can select tracts or points and then remove
them or, conversely, remove everything else from a current selection.

5.2.2 Participant Pool

Our four subjects were all familiar with neuroanatomy and tractography. They
also had experience with one or more tractography visualization tools. Our first
subject was a neuroscience graduate student working on tracing white-matter tracts
from frontal subregions to basal ganglia and the medial temporal lobe. Our second
user was a neuropsychology postdoc with 5 years’ experience with DWI in clinical
research. This user, who participated in the anecdotal study as well, studied white-
matter variation in the neurodegenerative diseases specified above. Our third subject
was a biomedical engineering graduate student who had significant tract-selection
experience working as a rater for a neuroscientist. Our last subject was a computer-
science graduate student doing research on computational DWI algorithms. Two of
the users were male and two female.
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5.2.3 Task

We measured user performance on bundle selection, a typical real-world task
tractography tools. Users were asked to select three major bundles, the cingulate
bundle (cb), corticospinal tract (cst), and right superior longitudinal fasciculus (slf),
in two different brain datasets. We chose these bundles because they represent the
easy-to-hard selection-difficulty range well and were used for evaluation in [7].

For each system, we explained to users the underlying visualization concepts
and demonstrated the basic interactions, mainly involving brushing on 2D and
streamtube representations. After this introduction, users were asked to select the
bundles (cb, cst, and slf) on two different training datasets. Following training, the
users performed the task on two different test datasets while we collected their
task-completion times. After each selection they provided subjective confidence
estimates in the range 1–5 (1: not confident, 5: very confident) for their selection
(fractional estimates were allowed). After completing the task on both systems,
users were asked to fill out a post-questionnaire qualitative feedback on their
experience. Half the users performed the task first on the 2D point-representation
tool and the other half on the 2D path tool.

5.2.4 Factors and Measures

The sole factor considered in our quantitative experiment was the type of low-
dimensional representation: 2D point and 2D path. All subjects used both types
of representation. We recorded the users’ bundle-selection times and subjective
confidence values as measures of performance.

5.2.5 Results

In order to understand if the differences between user performances on the two tools
were significant, we ran the paired t-test on our measurements. Results show that
users were significantly faster on the 2D path tool than the 2D point tool (p D 0:02).
Users were also significantly more confident using the 2D path representation than
the 2D point representation (p D 0:01). Table 1 summarizes users’ overall and per-
bundle mean performances on each tool. Figure 8 shows the difference between
the means of performance measures per user (2D-path-performance values are
subtracted from 2D-point-performance values) and the mean over users. Error bars
indicate the standard error in per-user differences.

We observed some interaction patterns worth reporting. Two distinct selection
strategies were used with the 2D path tool. Two users consistently brushed over
large areas of the projection to ensure that the targeted bundle was selected and
then relied on the 3D view to clean up the selection. The other two users aimed for
fine selections in the 2D projections and then inspected the 3D view to determine
whether any fibers had been left out. They added the missing tracts using short,
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Table 1 User performance on bundle selection task

Time (s) Confidence

cb cst slf Mean cb cst slf Mean

2D point 227 361 234 274 4.1 3.3 3.1 3.5
2D path 136 165 215 172 4.1 3.8 3.7 3.9
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Fig. 8 Per-user differences between (a) time and (b) confidence measurements with the two
tools. Differences are obtained by subtracting 2D-point-tool performance values from 2D-path-
tool performance values. Red squares show the mean performance difference between the tools.
Error bars around the red squares indicate the standard error of per-user differences

targeted brush strokes and then removed tubes that had been added erroneously
during this operation. These latter users seemed to have a better understanding of
the mapping between the 3D view and the 2D projections, perhaps explaining the
difference in strategies.

All subjects used the 2D point representation relatively rarely. The most common
operation was to remove points they were completely confident were not part of the
selection (e.g., half of the brain, or peripheral U-shaped bundles). However, in the
absence of a clear contextual mapping between the 2D point and streamtube views,
subjects were hesitant to perform bold operations in 2D, at least in the short run.

6 Discussion

It is important to note that our representations rely on the anatomical fidelity
of the intermediate results at each step. For example, broken trajectories due to
fiber tracking errors can reduce the effectiveness of the representation. Similarly,
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our method expects the clustering algorithm and similarity measure to provide
anatomically plausible results. However, it is difficult for a single distance measure
to capture the anatomical similarity completely. Furthermore, on the same data,
a good similarity measure for one purpose can be entirely irrelevant for another.
While the choice of similarity measure makes clustering a subjective task, clustering
algorithms themselves also have intrinsic limitations [22].

One potential limitation of the planar path representation is that bundles sur-
rounded by the other bundles similar in orientation and shape may not be clearly
visible. While we have not found this to be an issue in practice, moving projection
planes along major axes while restricting the projecting tracts to a volumetric
window moving with the projection plane can help solve potential problems.

Also, although we believe the subjects participating in the quantitative evaluation
constituted a realistic sample of the potential users of the tools presented here,
their small number limits the power of the conclusions drawn from the evaluation.
And, in general, results of user studies should be taken with a grain of salt. It is
difficult to run experiments that vary one factor while keeping all the other factors
constant. For example, an earlier study [7] compared the 2D point representation
tool with other tractography applications and reported that users were faster with
the former. However, in our user evaluation, we observed that users rarely used the
2D point representation and the brush tool dominated their interaction, raising the
question whether the performance difference in the reported evaluation was due
mainly to the brush tool or to the 2D point representation. An experiment that
replaced the brush tool with a more standard box-selection tool, say, might resolve
this question. In either case, we believe that abstract representations, including
the 2D point representation, are useful in the long run, as users gain more experience
with the mapping between brain tractograms and low-dimensional representation
primitives. In general, however, it is not realistic to expect practitioners to learn the
correspondence between the new representation and the actual fiber-tract collection
quickly, unless the tools are easily interpretable using a conventional anatomical
framework. Furthermore, in order for any tool using a new representation of
tractograms to have clinical relevance, it should provide anatomical context and
intuitive functionality for region-of-interest analysis on both conventional and new
representations.

While we have focused on planar spatial representations here, it is possible
to create abstract representations of tractograms. For example, the hierarchical
clustering tree itself can be considered as a representation of the tractogram. Or
consider the circular map of connectivities (or dependencies) in Fig. 9. We obtain
this dependency graph representation by first clustering tract endpoints using hierar-
chical clustering and setting an implicit dependency between the endpoints of each
tract. We then visualize the resulting hierarchical tree with pairwise connectivities
using hierarchical edge bundling [16], which feedback from a neuropsychologist
suggest might be useful for understanding connectivity densities and profiles.

Although DWI is the only imaging protocol to estimate the brain neural archi-
tecture in vivo, there are in vitro imaging techniques, such as the three-dimensional
electron microscopy used particularly in the emerging field of connectomics, with
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Fig. 9 Low-dimensional representations can have varying degrees of abstraction. The internal
capsule is represented with (a) streamtubes, (b) a circular connectivity map, (c) a set of embedded
points in the plane, and (d) a hierarchical clustering tree

which neural structures can be imaged on much smaller scales (e.g., individual
axon bodies) [18]. We believe that the general ideas as well as the specific
techniques presented in this paper can extend to the visualization and analysis of
visually complex axonal structures originating from these high-throughput imaging
techniques.

7 Conclusions

Combining traditional 3D model viewing and intuitive low-dimensional represen-
tations with anatomical context can ease navigation through complex fiber tract
models, improving exploration of the connectivity in the brain. We presented
two planar maps, point and path representations of tractograms, that facilitate
exploration and analysis of brain connectivity. Essentially, both representations are
created by applying abstraction and filtration on tractograms. We achieve abstraction
by simplifying and generalizing fiber tracts with points and schematic curves in
the plane. We create filtrations of tractograms by computing hierarchical clustering
trees. These help create better abstractions and also provide multiscale views of
data, which is important in reducing visual complexity and noise.
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We compare the two representations both qualitatively and quantitatively with
help of experts. Results suggest that the 2D path representation is more intuitive
and easier to learn and use than the 2D point representation. We also introduced
a novel way of making tractography data accessible by publishing neural maps
online through a digital map framework. Our representation is conducive to such
a geographic map interface by construction. This interface leads to new possibilities
for enriching tractography datasets using the mass knowledge base available on
the web. User feedback indicates that our web interface can be particularly useful
for browsing unfamiliar datasets quickly, for analysis tasks that do not require fine
selection and for sharing data in collaborative settings.
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Uncertainty Propagation in DT-MRI
Anisotropy Isosurface Extraction

Kai Pöthkow and Hans-Christian Hege

Abstract Scalar anisotropy indices are important means for the analysis and
visualization of diffusion tensor fields. While the propagation of uncertainty and
errors has been studied for a variety measures, this chapter additionally considers
the extraction of isosurfaces from anisotropy fields. We use the numerical condition
to estimate the uncertainty propagation from the diffusion tensor eigenvalues via
fractional (FA) and relative anisotropy (RA) to the position and shape of isosurfaces.
Using level crossing probabilities we quantify and visualize the spatial distribution
of uncertain isosurfaces. The superiority of FA to RA in terms of uncertainty
propagation that was shown for anisotropy images in the literature does not hold
for isosurfaces extracted from these images. Instead, our results indicate that for the
purpose of isosurface extraction both measures perform approximately equally well.

1 Introduction

Diffusion Tensor MRI provides estimates for the major orientations of water
diffusion within tissue. From these, conclusions about the microstructure of the
tissue can be drawn. For example, the dominant direction of anisotropic diffusion
in white matter of the brain corresponds to the orientation of neural axons. Several
data acquisition and processing techniques for DTI have been established and used
to assess the development or pathology of white matter for a variety of diseases, see,
e.g., [8, 15] and, for a current overview, [2].

Diffusion tensor fields are computed from diffusion weighed MR images and
usually defined on some regular grid. In Euclidean space each tensor D.xj /
associated with a point xj 2 R

3 can be represented by a symmetric matrix. Note
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that we will drop the argument xj where applicable to simplify notation. In order to
extend the discretely sampled tensor field to a field in a continuous domain, various
reconstruction schemes have been proposed, see, e.g., reference [11]. Each tensor is
uniquely described by its eigenvalues �1; �2; �3 and its eigenvectors e1; e2; e3 that
satisfy Dei D �iei for i 2 f1; 2; 3g. Diffusion tensors are positive definite, i.e. all
eigenvalues are positive.

The large amount of information makes analysis and visualization of tensor fields
difficult. A simplified representation of a tensor field can be achieved by mapping
the tensor values to scalar quantities. There is a variety of such quantities that are all
based on the tensors’ eigenvalues, e.g., total and mean diffusivity, relative (RA) and
fractional anisotropy (FA) among others [7]. All these measures are invariant under
rotation and scaling of the coordinate system, as well as sorting of the eigenvalues.
This chapter focuses on anisotropy measures and their isosurfaces. The FA and RA
are given by

FA D
r
1

2

s
.�1 � �2/2 C .�1 � �3/2 C .�2 � �3/2

�21 C �22 C �23
(1)

and

RA D
r
1

2

p
.�1 � �2/2 C .�1 � �3/2 C .�2 � �3/2

�1 C �2 C �3 : (2)

We use the term anisotropy index (AI ) to denote both FA and RA. The level sets
of the AI with respect to a threshold � are the sets of all locations x where AI D � ,
also written as AI�1.�/. We assume that regularity conditions are fulfilled, which
guarantee that these level sets are surfaces. For display, such level sets are usually
approximated by triangulated isosurfaces and then displayed, or they are raycasted
directly. Surfaces of this kind have been used for the segmentation of important
anatomic structures of the human brain [22, 24].

DTI data, like all measured data, is affected by errors and uncertainty. This means
that the true values of measured and derived quantities are unknown and the data can
be safely interpreted only if the uncertainties are considered. The impact of noise
and uncertainty on the results of several data acquisition schemes and processing
methods in DT-MRI has been thoroughly studied (see Sect. 2). However, until now
authors have only investigated the uncertainty of the resulting values and have not
considered uncertainty propagation during thresholding and isosurface extraction.

In this chapter we study the propagation of errors and uncertainty from the initial
tensor field through the anisotropy measures to the isosurfaces of these measures.
For this we estimate the amplification or attenuation of uncertainty by the condition
numbers of the numerical problem (Sect. 3). We also address the question whether
one measure is more immune to uncertainty than the other. The spatial distribution
of uncertain isosurfaces is described by level crossing probabilities and visualized
using combined surface and volume rendering. We apply our methods to phantom
and brain DTI data (Sect. 5) and discuss the results (Sect. 5).
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2 Related Work

There are some general approaches to the analysis of uncertainties in DTI. Pajevic
and Basser introduced a non-parametric statistical method, the DT-MRI bootstrap,
and used it to confirm that the tensor components are usually normally distributed
due to thermal noise [17]. They also estimated probability distributions for various
other tensor-derived quantities. Koay et al. presented a framework to analyze error
propagation in DTI for different diffusion tensor representations [13]. Considering
objective functions for nonlinear least square optimizations they formulate error
propagation equations that relate tensor-derived quantities to the diffusion-weighted
MRI data. However, this method is restricted to the propagation of variances and
does not directly yield the resulting probability distributions.

Another area of research, indirectly related to our work, is the investigation
of uncertainty of fiber tracks in the brain computed from DTI data. Jones used
bootstrapping to determine confidence intervals for fiber orientations (cones of
uncertainty) [12]. Anderson investigated the effects of noise in DTI data of human
brains to fiber tracking [1], while Lazar et al. focused on tractography in synthetic
tensor fields [14]. The sensitivity of fiber tracking results to parameter changes was
investigated by Brecheisen et al. [4]. Friman et al. proposed a Bayesian approach to
generate distributions of fiber tracks [9]. The advantage of the latter approach is that
prior knowledge about the fiber tracks can be incorporated using a fully probabilistic
framework.

Several papers analyze the impact of noise and uncertainty on scalar DTI
indices. Pierpaoli and Basser statistically compared rotationally variant and invari-
ant anisotropy indices [20]. They show that for in vivo measurements the invariants
are, in general, superior to the rotationally variant indices. Papadakis et al. studied
the signal to noise ratios (SNR) of different anisotropy measures using data from
simulations and in vivo experiments [18]. Chang et al. used matrix perturbation
theory to estimate the uncertainty of several DTI-derived parameters including FA,
RA and the direction of the principal eigenvectors [5]. Compared to bootstrap
approaches this method requires significantly fewer diffusion weighted images. The
work of Hasan et al. focused on the question whether FA is more robust to noise
than RA [10]. For that they derived an analytical expression that directly relates
RA and FA and that can be evaluated using Monte Carlo simulation. References
[5, 10, 18] all state that, in general, FA is superior to RA regarding to noise
immunity and uncertainty propagation. One of the aims of our work is to consider
a further processing step and to assess the robustness of anisotropy isosurfaces, i.e.
thresholding, of FA and RA.

Isosurfaces in anisotropy scalar fields generated from DTI data have been used
to create segmentations of the ventricles, the corpus callosum, and the internal
capsule of the human brain [24]. Large connected components of isosurfaces of FA
have been used as segmentations of major brain structures by Schultz et al. [22];
they used additional information in the tensor field to automatically detect the
specific brain region being represented by the isosurface segment. In a clinical study
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Snook et al. used anisotropy isosurfaces for the comparison of different stages of
neurodevelopment [23]. Pöthkow and Hege proposed methods for modeling and
visualization of uncertain isocontours [21]; these methods are briefly recapitulated
in the next section.

3 Methods

The uncertainty of the input data is modeled as a random field. To assess the
propagation of uncertainty we compute condition numbers for both computation of
anisotropy measures and isosurface extraction. The spatial distribution of uncertain
isosurfaces is quantified using level crossing probabilities; these can be computed
in real time.

3.1 Uncertainty Model

We model the uncertainty of the tensor field’s eigenvalues using a discrete random
field f�i.xj /g, where xj runs through the vertices of the sampling grid. The values
are distorted by additive measurement errors, i.e. an observation �i is given by

�i D �0i C Q�i (3)

where �0i is the true but unknown quantity. We assume that each Q�i is a zero-
mean random variable. This means, we assume that the systematic errors have
been minimized and can be neglected. A measure for the uncertainty of �i is
the standard deviation ��i or its square, the variance �2�i of Q�i . The variance
can be estimated analytically from the variances of the diffusion weighted MR
images [13]. The specific probability distributions can be estimated using parametric
and non-parametric statistical methods. For example, it has been shown that the DT
eigenvalues are affected by additive Gaussian noise [17]. Assuming that noise is the
result of a combination of many sources of measurement errors, e.g. thermal noise,
vibrations and background radiation, the presence of Gaussian noise is explained by
the Central Limit Theorem which states that the distribution of a sum (or mean) of
n random variables converges to a normal distribution for sufficiently large n.

3.2 Signal to Noise Ratio

In previous work the signal to noise ratio (SNR) was used to compare the noise
immunity of RA and FA [10, 18]. For this chapter two different definitions of SNR
are relevant. Let y be the function of interest (e.g. an image or a signal). When
referring to complete datasets or images we use the average intensity �y and the
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standard deviation �y of the noise to define the global bSNRy D �y
�y

, assuming �y is
constant for the whole image.

A local SNR can be defined for all points x in a dataset as SNR.x/y D y.x/
�y.x/

,

where �y.x/ is the specific standard deviation at location x, see [16, pp. 299–300].

3.3 Condition Numbers

For a given function � that maps some input value ˛ to some output value �.˛/, the
absolute normwise condition �abs provides an upper bound for the amplification (or
attenuation) of perturbations " by the mapping �:

�abs � k�.˛/ � �.˛ C "/kk"k (4)

If � is differentiable, the condition can be computed by means of the gradient

�abs D kr�.˛/k: (5)

The relative condition �rel D jj˛jj
jj�.˛/jj�abs describes the propagation of relative errors.

A problem is said to be well-conditioned if the condition number is low and it is said
to be ill-conditioned if the condition number is high. The exact meaning of ‘low’
and ‘high’ depends on the problem at hand, see, e.g. [6] for more details.

3.3.1 Condition Numbers of AI Computation

The absolute normwise condition for FA is given by

�abs
FA D kr�FAk D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
�
@FA

@�1
;
@FA

@�2
;
@FA

@�3

�T ˇ̌
ˇ̌
ˇ̌
ˇ̌ D

r
1

2

j�1 C �2 C �3j�
�21 C �22 C �23

� (6)

and describes the propagation of absolute errors. The relative normwise condition
is given by �rel

FA D jj.�1;�2;�3/jj
FA �abs

FA and describes the propagation of relative errors.
Similiarly, the absolute normwise condition for RA is given by

�abs
RA D kr�RAk D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
�
@RA

@�1
;
@RA

@�2
;
@RA

@�3

�T ˇ̌
ˇ̌
ˇ̌
ˇ̌ D

3

q
�21 C �22 C �23p

2.�1 C �2 C �3/2
(7)

and the relative normwise condition is given by �rel
RA D jj.�1;�2;�3/jj

RA �abs
RA . Figure 1a–c

show the FA, RA and their condition numbers for a 1D tensor field varying between
isotropy and linear anisotropy, i.e. �1 increasing (linearly) in x direction while �2 D
�3 D 1 are kept constant.
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Fig. 1 In (a)–(c) the FA, RA
and their condition numbers
are shown for a 1D tensor
field varying between
isotropy and linear
anisotropy, i.e. �1 increases
linearly in x direction while
�2 D �3 D 1 are constant.
The condition numbers for
isosurface extraction are
shown in (d)
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3.3.2 Condition Numbers of the Isosurface Problem

To extract isocontours from a scalar field y we have to find the locations x where
level crossing occur by solving y.x/ D # . If the gradient ry.x/ is invertible, then,
according to the inverse function theorem, we can write y�1.#/ D x. The derivative
satisfies

k.y�1/0.#/k D kry.x/k�1: (8)

Thus, the absolute normwise condition of the problem .y�1; #/ is

�abs
y�1.#/

.x/ D kry.x/k�1: (9)

We denote the condition numbers for isosurface extraction from anisotropy fields
by �abs

FA�1.#/
and �abs

RA�1.#/
. They are shown in Fig. 1d for the 1D tensor field.

3.4 Uncertainty Propagation

Using the condition numbers we can estimate the propagation of uncertainty. Let
Q� D k. Q�1; Q�2; Q�3/k be a (random) perturbation of the eigenvalues. Then first order
estimations of the perturbation of the results for FA and RA are given by

fFA D �abs
FA
Q� and fRA D �abs

RA
Q�: (10)

Note that these are rough estimates because the Taylor series is truncated after
the first term, i.e., covariances between the eigenvalues and higher derivatives
are not considered. Analogously, the error propagation for isosurface extraction is
estimated by

CFA�1.#/ DfFA �abs
FA�1.#/

and CRA�1.#/ D fRA �abs
RA�1.#/

; (11)

where CFA�1.#/ and CRA�1.#/ are perturbations of the isosurface point positions.
Obviously these two steps can be integrated into one, resulting in a single

measure for error propagation that we refer to as the combined condition numbers

�abs
FA;FA�1.#/

D �abs
FA �

abs
FA�1.#/

and �abs
RA;RA�1.#/

D �abs
RA �

abs
RA�1.#/

; (12)

which relate the perturbations of the eigenvalues to the perturbations of the
isosurfaces, i.e.

CFA�1.#/ De��abs
FA;FA�1.#/

and CRA�1.#/ De��abs
RA;RA�1.#/

: (13)
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We also use the condition numbers to approximate the standard deviation
(or standard error) of the FA and RA:

�FA D ���abs
FA and �RA D ���abs

RA : (14)

3.5 Uncertain Isosurfaces

Now we are interested in the spatial distribution of uncertain isosurfaces that
results from the probability distributions of the input data. Pöthkow and Hege [21]
introduced the level crossing probability (LCP) for quantification and visualization
of uncertain isosurfaces.

Let fx.t/ be a probability density function (PDF) describing a probability
distribution of a random variable Y at position x 2 R

d , F.t/ the corresponding
cumulative distribution function, and # a threshold (isovalue). The PDF fx.t/ can
be generated for all points x in a continuous domain by interpolating the expected
values � and the m-th roots of the central moments �m D E..X � �/m/ 1m in
between the sample points and inserting these interpolated values in the PDFs. The
interpolation method is described in detail in [21]. The LCP, defined by

P# D 2 Fx.#/ .1 � Fx.#//; (15)

gives the probability that for two independent realizations ya and yb of Yx,
distributed according to fx.t/, one of them is greater or equal to # , while one is
less or equal to # . We use this probability as a spatially dependent measure for the
presence of a #-isosurface at some given point x. The field of such probabilities
indicates the spatial distribution of uncertain isosurfaces. See reference [21] for the
derivation and further discussion of this function.

3.6 Visualization

To display the quantities RA and FA, as well as the related condition numbers and
SNR, we show textured slices with color-mapped scalar values. See Fig. 3 for an
illustration. There the spatial distributions of uncertain isosurfaces are visualized
using GPU-based volume rendering of P# .

It has been shown in the literature, that under the influence of Gaussian noise the
squares of anisotropy measures are 	2 distributed [17]. This implies that RA and FA
conform to a 	 distribution which can be approximated by a (half-)Gaussian, see
[19]. Thus, as input for for the calculation of P# we consider normal distributions

Y � N .FA; �FA/ or Y �N .RA; �RA/ (16)
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that are restricted to the interval Œ0; 1
. Equation 15 is evaluated in real time and the
result is used for ray casting with a simple emission absorption model. The volume
rendering is combined with crisp isosurfaces FA�1.#/ or RA�1.#/, respectively.
These surfaces can be considered as the “mean” or “most probable” surfaces [21].

4 Results

We compute the condition numbers and estimate the propagation of uncertainty to
the anisotropy indices and the related isosurfaces for a synthetic spiral and a brain
DTI dataset.

4.1 Synthetic DTI Data

We employ a synthetic spiral DTI dataset generated as described in [3] that is
visualized using ellipsoid glyphs in Fig. 2 with FA mapped to glyph color. The FA,
RA, �abs

FA , �abs
RA and SNR are shown in Fig. 3. Note that the FA values are higher

than RA as well as the �abs
FA values are higher than �abs

RA , i.e. absolute errors are
amplified more for FA than for RA. Nevertheless the higher FA values lead to a
higher SNR relative to RA. We exemplarily assume a constant bSNR D 20 for all
eigenvalues.

In Fig. 4 the condition numbers �abs
FA�1.#/

, �abs
RA�1.#/

, �abs
FA;FA�1.#/

and the relative

differences between �abs
FA;FA�1.#/

and �abs
RA;RA�1.#/

are shown along with two corre-

sponding uncertain isosurfaces. The values of �abs
FA�1.#/

are lower than �abs
RA�1.#/

, while

the relative differences between �abs
FA;FA�1.#/

and �abs
RA;RA�1.#/

are smaller than 1 %.
The uncertain isosurfaces in Fig. 4c and f are depicted by volume renderings of P#
combined with crisp isosurfaces FA�1.#/ and RA�1.#/.

4.2 Brain DTI Data

To apply our methods to real world data we consider a brain dataset consisting of
148 � 190 � 160 DTs. The eigenvalue fields are smoothed using a 3D Gaussian
kernel with a standard deviation of 1.2 voxel widths to estimate the mean values
from the noisy data. The FA and RA as well as �abs

FA , �abs
FA�1.#/

, �abs
RA and �abs

RA�1.#/
are

shown in Fig. 5.
From the FA and RA fields and the corresponding uncertainty estimations for

bSNR� D 10 and bSNR� D 20 we generated the uncertain isosurfaces shown in
Fig. 6. We chose the threshold # D 0:5 for FA that was used previously for
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0 FA 0.6

Fig. 2 The synthetic spiral DT dataset is visualized by ellipsoid glyphs with FA mapped to glyph
color

the segmentation of brain structures using isosurfaces [22]. The threshold for the
corresponding RA isosurface is # � 0:32. Again, the spatial distributions of the
isosurfaces are indicated by volume renderings of P# that surround the mean (crisp)
surfaces.

5 Discussion and Conclusions

Our outcomes reproduce the previous result [5, 10, 18] that FA yields higher SNR
than RA, see Fig 3. This finding has led to the conclusion that FA is more immune
to noise and uncertainty. This statement is true, but applicable only if the intended
final result is an immediate depiction of diffusion anisotropy.

However, in some applications isosurface extraction or thresholding are subse-
quent steps in visual analysis of DTI anisotropy. If this step is included too, the
uncertainty propagation from the eigenvalues to the spatial position of the isosurface
has also to be considered. For sensitivity analysis of isosurface extraction not only
the scalar field but also the gradient magnitude has to be taken into account.

The graphs in Fig. 1a, computed for a simple 1D tensor field, show the nonlinear
nature of FA and RA. For small values of �1 the curves have a steep slope, while
for increasing values the slope gets more flat. This means that the sensitivity of the
functions depends on the actual values of all eigenvalues. On the left side of the plot
in Fig. 1a small changes of �1 lead to large changes of FA and RA, i.e. perturbations
are amplified. On the right side of the plot perturbations are attenuated. Both effects
are stronger for FA than for RA.
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FA

(a) FA (b) κabsFA (c) SNRFA

RA

(d)RA (e) κabsRA (f) SNRRA

Fig. 3 Textured slices in the spiral dataset showing from left to right: anisotropy measure, absolute
condition and SNR (assuming constant bSNR� D 20 for all eigenvalues). First row: FA, second
row RA

We can observe these properties in the plots of the condition numbers in Fig. 1b.
On the left side of the plot �abs

FA is larger than �abs
RA and vice versa on the right side.

On the other hand the condition numbers in Fig. 1b for isosurface extraction show a
different behavior. On the left side of the plot �abs

FA�1.#/
is smaller than �abs

FA�1.#/
and

vice versa on the right side. This corresponds to right side of the graph for FA in
Fig. 1a which is closer to a plateau than that of RA, i.e. the isosurface extraction is
more ill-conditioned.

If we compare Fig. 1b with Fig. 1d we see that where �abs
FA < �abs

RA holds also
�abs

FA�1.#/
> �abs

RA�1.#/
holds, and vice versa. Indeed the combined condition numbers

are equal:
�abs

FA;FA�1.#/
D �abs

RA;RA�1.#/
: (17)
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FA

(a) κ abs
FA−1 (ϑ )

(b) κ abs
FA;FA−1 (ϑ )

(c) Pϑ;FA

RA

(d) κ abs
RA−1 (ϑ )

(e) Relative differences
κ abs
FA;FA−1 (ϑ )

− κ abs
RA;RA−1 (ϑ )

κ abs
FA;FA−1 (ϑ )

(f) Pϑ;RA

Fig. 4 Textured slices in the spiral dataset: condition number for isosurface extraction for FA
(a) and RA (d), combined condition for FA (b) and relative differences between the combined
condition numbers (e). In the right column uncertain isosurfaces (assuming constant SNR D 20

for all eigenvalues) are depicted

This means that—in a first order approximation—the propagation of uncertainty for
isosurface extraction in FA and RA fields is equal.

This can also be verified visually by comparing Figs. 4c–f, 6a–c and 6b–d. So, in
this context there is no clear superiority of FA compared to RA. In the Appendix
we show the equality in Eq. (17) for the 2D case whose analytical treatment is
still readily comprehensible. For the 3D datasets the numerical gradient estimation
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FA

(a) FA (b) κ absFA (c) κ abs
FA−1(ϑ )

RA

(d) RA (e) κ absRA (f) κ abs
RA−1(ϑ)

Fig. 5 Textured slices in the brain dataset showing from left to right: anisotropy measures,
condition numbers for the anisotropy measures and condition numbers for isosurface extraction.
First row: FA, second row RA

introduces additional errors, but the differences between the combined condition
numbers for FA and RA are below 1 %.

Our results also have implications for fiber tracking. Many fiber tracking
algorithms use thresholds of FA to restrict the resulting tracks to anisotropic areas
of the brain. The uncertainty of the shape of these areas leads to uncertainties
in the resulting fiber tracks. This is related to the sensitivity of fiber tracking
results to variations of the anisotropy threshold that was investigated by Brecheisen
et al. [4]. An area for further research is the more refined investigation of the
spatial uncertainties of isosurfaces by means of higher order analytical expressions
or numerical evaluation.
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FA

a b

RA

c d

Fig. 6 Uncertain isosurfaces for bSNR� D 10 (left) and bSNR� D 20 (right) using FA (top) and RA
(bottom). The mean crisp isosurfaces are shown in white while the level crossing probabilities are
mapped to color for volume rendering. The threshold is # D 0:5 for FA and # D 0:32 for RA

Appendix

Let D.x; y/ be a diffusion tensor field in R
2 where each tensor is described by its

eigenvalues �i and eigenvectors ei . The fractional anisotropy is given by

FA D
r
1

2

s
.�1 � �2/2
�21 C �22

(18)
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and the relative anisotropy by

RA D
r
1

2

p
.�1 � �2/2
�1 C �2 : (19)

With the derivatives
@FA

@�1
D �2

�
�21 � �22

�

j�1 � �2j
�
�21 C �22

�3=2 (20)

and
@FA

@�2
D �1�

2
2 � �31

j�1 � �2j
�
�21 C �22

�3=2 (21)

we can determine the absolute normwise condition for FA computation

�abs
FA D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
�
@FA

@�1
;
@FA

@�2

�T ˇ̌
ˇ̌
ˇ̌
ˇ̌ D j�1 C �2j

�21 C �22
: (22)

Analogously, for RA we can write

@RA

@�1
D 2 .�1 � �2/ �2
j�1 � �2j .�1 C �2/2

(23)

@RA

@�2
D 2�1 .�2 � �1/
j�1 � �2j .�1 C �2/2

(24)

�abs
RA D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
�
@RA

@�1
;
@RA

@�2

�T ˇ̌
ˇ̌
ˇ̌
ˇ̌ D

2

q
�21 C �22

.�1 C �2/2
: (25)

For an explicit formulation of Eq. (9) we use the gradient

rFA D
�
@FA

@x
;
@FA

@y

�T
(26)

with

@FA

@x
D �

�
�21 � �22

� �
�1
@�2

@x
� �2 @�1

@x

�

j�1 � �2j
�
�21 C �22

�3=2 (27)

and

@FA

@y
D �

�
�21 � �22

� �
�1
@�2

@y
� �2 @�1

@y

�

j�1 � �2j
�
�21 C �22

�3=2 ; (28)
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leading to the condition number for isosurface extraction

�abs
FA�1.#/

D

vuuuuuuuut

0
BBB@

ˇ̌
ˇ̌
ˇ̌
ˇ̌

.�21��22/
0
@�1
@�2

@y
��2

@�1

@y

1
A

.�21C�22/2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

2

C

ˇ̌
ˇ̌
ˇ̌
ˇ̌

.�21��22/
0
@�1
@�2

@x
��2

@�1

@x

1
A

.�21C�22/2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

2
1
CCCA
�
�21 C �22

�

.�1 � �2/2
:

(29)

Similarly for RA

@RA

@x
D �

2 .�1 � �2/
�
�1
@�2

@x
� �2 @�1

@x

�

j�1 � �2j .�1 C �2/2
(30)

and

@RA

@y
D �

2 .�1 � �2/
�
�1
@�2

@y
� �2 @�1

@y

�

j�1 � �2j .�1 C �2/2
(31)

give the condition number

�abs
RA�1.#/

D
2

sˇ̌
ˇ̌�2 @�1

@y
� �1 @�2

@y

ˇ̌
ˇ̌
2

C
ˇ̌
ˇ̌�2 @�1

@x
� �1 @�2

@x

ˇ̌
ˇ̌
2

.�1 C �2/2
: (32)

By elementary algebra it can be shown that the relation

�abs
FA �

abs
FA�1.#/

D �abs
RA �

abs
RA�1.#/

(33)

holds. This means that in a first order approximation the propagation of uncertainties
from the eigenvalues to uncertainties of isocontour-positions is equal for FA and RA.
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Museth, K., Möller, T., Ynnerman, A. (eds.) EuroVis07: Joint Eurographics – IEEE VGTC
Symposium on Visualization 2007, pp. 187–194. Eurographics, Norrköping (2007)
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Classification Study of DTI and HARDI
Anisotropy Measures for HARDI Data
Simplification

Vesna Prčkovska, Maxime Descoteaux, Cyril Poupon,
Bart M. ter Haar Romeny, and Anna Vilanova

Abstract High angular resolution diffusion imaging (HARDI) captures the angular
diffusion pattern of water molecules more accurately than diffusion tensor imaging
(DTI). This is of importance mainly in areas of complex intra-voxel fiber configu-
rations. However, the extra complexity of HARDI models has many disadvantages
that make it unattractive for clinical applications. One of the main drawbacks is
the long post-processing time for calculating the diffusion models. Also intuitive
and fast visualization is not possible, and the memory requirements are far from
modest. Separating the data into anisotropic-Gaussian (i.e., modeled by DTI) and
non-Gaussian areas can alleviate some of the above mentioned issues, by using
complex HARDI models only when necessary. This work presents a study of DTI
and HARDI anisotropy measures applied as classification criteria for detecting non-
Gaussian diffusion profiles. We quantify the classification power of these measures
using a statistical test of receiver operation characteristic (ROC) curves applied
on ex-vivo ground truth crossing phantoms. We show that some of the existing
DTI and HARDI measures in the literature can be successfully applied for data
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classification to the diffusion tensor or different HARDI models respectively. The
chosen measures provide fast data classification that can enable data simplification.
We also show that increasing the b-value and number of diffusion measurements
above clinically accepted settings does not significantly improve the classification
power of the measures. Moreover, we show that a denoising pre-processing step
improves the classification. This denoising enables better quality classifications even
with low b-values and low sampling schemes. Finally, the findings of this study are
qualitatively illustrated on real diffusion data under different acquisition schemes.

1 Introduction

Diffusion tensor imaging (DTI) is a recent magnetic resonance imaging (MRI)
technique that can map the orientation architecture of neural tissues in a completely
non-invasive way by measuring the directional specificity (anisotropy) of local water
diffusion [1]. The diffusion tensor model, however, has well known limitations in
areas of complex intra-voxel heterogeneity with crossing fibers, where the diffusion
process cannot be modeled as Gaussian. Nonetheless, DTI is still very popular
and has many advantages such as fast and clinically feasible acquisition schemes
(typically, number of gradients (NG) from 7 to 60, b-value of 1,000 s/mm2 and
total acquisition time of 3–5 min), fast post-processing of the data that allows
interactivity in the data exploration, simple visualization techniques and modeling
using well-developed tensor mathematics. To overcome the limitations of DTI,
more sophisticated models were introduced using high angular resolution diffusion
imaging (HARDI). For HARDI, significantly more diffusion gradients are acquired
(from sixty to a several hundred) in order to reconstruct a spherical probability
function (SPF) that either recovers the underlying fiber populations or depicts
certain diffusion properties. Popular HARDI reconstruction techniques include
apparent diffusion coefficient (ADC) modeling [2,3], Q-Ball imaging [4], diffusion
orientation transform (DOT) [5], spherical deconvolution (SD) [6, 7], and several
other model-based methods. The output produced by the above techniques is always
given in the form of a spherical function  .�; �/ that characterizes the local intra-
voxel fiber structure. This function can be represented using a truncated spherical
harmonics (SH) expansion

 .�; �/ D
lmaxX
lD0

lX
mD�l

almYlm.�; �/ ; (1)

where Y ml represent the spherical harmonics of order l and phasem, and lmax is the
truncation order of the SH series.

HARDI has obvious advantages over DTI in more composite fiber configura-
tions, but has several drawbacks that accompany this complex modeling: longer
processing time of the data (that can typically take a few hours up to a few
days), inability to interactively explore the data because of over-cluttered and
computationally heavy visualization as well as longer data acquisitions. Hence, one
wonders if a complex high-order modeling of the data is always needed (i.e., at every
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Fig. 1 Schematic diagram of the pipeline for DTI and HARDI combination. The blue stacked
rectangles represent data volumes. The pink round rectangles represent data transformations. The
main contribution of this chapter is focused in the classification part colored as green. The arrows
capture the flow of the process, whereas dashed arrows depict optional scenarios

voxel) or merits its drawbacks? In crossing areas, it is certainly justified, but for a
large part of the white matter, there is a significant number of single fiber voxels
where high-order modeling might be redundant. Thus, it is important to be able
to classify regions of single fiber (anisotropic-Gaussian) and crossing fibers (non-
Gaussian) in white matter in a fast and reliable way. This can lead to reducing the
modeling complexity in areas where it is not needed and enabling possibilities for
data simplification. The advantages would be significant for further post-processing
and visualization of the data, especially with respect to reducing computer memory
requirements. This will undoubtedly make HARDI data easier to manipulate and
interact with, making it more attractive for clinical applications.

One possibility for fast classification of the DW-MRI data is by identifying
the type of anisotropy in each voxel by some of the anisotropy measures for DTI
and HARDI. These measures are fast to calculate since they are scalar measures
calculated on the eigenvalues of the diffusion tensor, D, in the first case or the SH
coefficients in the latter.

Classification of the data by these measures in three compartments will allow
masking of the data in the isotropic areas where the gray matter and the ventricles
belong, using simple diffusion tensor model in the anisotropic-Gaussian regions and
applying more sophisticated high order modelings in the non-Gaussian regions in
a fast manner. There are two ways in which we can look at this problem for data
combination and thus, simplification (see Fig. 1).

In the first scenario, from the DW-MRI data (that can be additionally denoised)
we can calculate the DT model and apply scalar anisotropy measures that label
the data into three compartments. Afterwards, in the compartment labeled as
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Fig. 2 Example of hybrid visualization of CSD [6] and 2nd order ODFs

non-Gaussian, more complex HARDI modeling techniques that provide more
accurate local intra-voxel information can be applied. This allows reducing of the
postprocessing time in comparison with full data volume modeled by HARDI
techniques and better memory management: one value in the area labeled as
isotropic, a diffusion tensor for the anisotropic Gaussian areas and the rest modeled
with high-order SPFs. However, this would require reliable classification by the DTI
measures especially with respect to small number of false positives in the labeling,
since this would underestimate the data.

In the second scenario, we model the data by a HARDI modeling technique
(preferably by linear models like ADC or Q-Ball that are relatively fast to calculate)
and then apply HARDI anisotropy measures. These measures also label the data into
three compartments, and similarly the data can be modeled by DT or HARDI SPFs.
In this scenario, to get better angular resolution, we can additionally choose to apply
a non-linear (more time demanding) technique as constrained spherical deconvolu-
tion (CSD) [6, 7] for the non-Gaussian regions. Presenting the data by combining
both of the data representation models would benefit in faster visualizations with
better context especially since the data in the anisotropic Gaussian regions would be
significantly simplified.

As an example, in Fig. 2 we show a hybrid visualization of the simplified data
(labeling provided by generalized anisotropy (GA) classification) from an in-vivo
dataset represented by 8th order CSD [6] in the non-Gaussian classified regions,
and 2nd order ODFs in the anisotropic-Gaussian regions. The combining process
follows the second scenario described previously. The difference in running time
from the most naive implementation of CSD, is as follows. Computing CSD of order
8 for the whole brain in white matter mask: 540 min (36,601 voxels). Computing
CSD of order 8 in labeled crossing : 120 min (8,164 voxels). Computing 2nd order
ODFs in labeled linear : 19 s.1 With hybrid data modeling, there is a gain of almost

1These times were calculated on a 1.66 GHz processor dual core Intel machine with 2 GB of RAM.
CSD is a non-linear method that takes several iteration to perform the constrained regularization,
which goes back and forth between at least 300 points on the sphere and the order 8 SH
representation. This can be greedy and in our implementation takes approximately 0.5–1 s per
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factor 5 in time for computation compared to modeling full brain data with the same
high order model. Also interaction in the visualization pipeline becomes possible,
even for a full brain slice.

In this work we examine and compare the classification power of different DTI
and HARDI anisotropy measures. Additionally, we try to answer whether there is
a significant gain from the measures calculated from the more complex HARDI
models. We use pattern recognition schemes for investigating the classification
potentials of these measures on a ground truth ex-vivo phantom under different
b-values. Furthermore we show some qualitative real data results that corroborate
some of the conclusions from the phantom data. To improve the quality of the real
data scanned under clinically acceptable schemes, we use a denoising scheme [8]
that recommends improvement of the coherence of the classified regions. We thus
come to several conclusions suggesting that HARDI processing and data interaction
are possible in a clinical setting.

2 Related Work

The work of Alexander et al. [3], is among the first that classifies the data in
three compartments: isotropic, anisotropic-Gaussian, and non-Gaussian. This work
uses ANOVA F-test based on the SH representation of the apparent diffusion
coefficient (ADC) profile for several truncation orders lmax. Comparison of the
measured ADC with the estimated one is required in each step, and therefore this
process is slow and memory consuming. Furthermore it is necessary to calculate
a critical value for the F-test to achieve stopping criteria, and this threshold is
difficult to find given that the whole process is not interactive. Behrens et al. [9] use
automatic relevance determination integrated in a Bayesian modeling framework
to simplify the problem of tracking in a multi-orientation field. Hosey et al. [10]
use an extension of a Markov chain method that infers the probability density
function of up to two intra-voxel fiber orientations. However, both of the mentioned
techniques are computationally intensive to implement. This is mainly due to the
Bayesian estimation of the parameters making these methods iterative, with lack
of simple user interaction. Interactive data classification can be of great importance
for simplification of the HARDI data, especially in the case of clinical applications.
It is also valuable for immediate identification of uncertainty regions in the DTI-
based fiber tracking that has already been used widely. The speed in accurate
identification of anisotropic-Gaussian and non-Gaussian regions in the data can
accelerate the whole postprocessing pipeline for the complex HARDI data. Wide
range of anisotropy measures has been proposed in literature [2, 4, 11–15]. Several
authors [3, 12, 13] have attempted to use some of these measures to classify non-
Gaussian profiles, but all these attempts have been made on the apparent diffusion

voxel. This time can obviously be improved by parallelizing the code and changing the parameters
of CSD regularization (less iteration and faster stopping criteria).
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Fig. 3 (a) Fast spin-echo map and a region of interest for the crossing voxels of the 45ı ex-vivo
phantom and (b) Picture of the 90ı ex-vivo phantom

coefficient (ADC) profiles and without convincing real data results. In our previous
work [16], we applied these HARDI anisotropy measures not only to ADC profiles
but to different spherical probability functions like Q-Ball and the DOT. In this
chapter, however, we extend the previous ad-hoc analysis by thorough examination
of the classification power of the measures by ROC curves, histograms and scatter
plots. We additionally extend the analysis to DTI anisotropy measures and compare
their classification power with the measures derived from HARDI data.

3 Diffusion Data Acquisition

The details of the ex-vivo phantom data and in-vivo human data used in this study
are explained below.

Ex-vivo phantom: To test our classification measures, we use two ex-vivo
phantoms with fibre bundles crossing at 45ı and 90ı [17] (Fig. 3). These datasets
serve as ground truth, where the number of crossing voxels is known. The
phantom data was acquired on a 1.5T Signa MR system (GE Healthcare),
TE/TRD 130 ms/4.5 s,12.0 s (45ı and 90ı phantom, respectively), BWD
200 KHz. We analyze the data acquired at two b-values of b D 2; 000 and
b D 8; 000 s/mm2, along 200 uniform directions.

Human: Diffusion acquisitions were performed using a twice focused spin-echo
echo-planar imaging sequence on a Siemens Allegra 3T scanner, with FOV
208 � 208mm, isotropic voxels of 2 mm. Ten horizontal slices were positioned
through the body of the corpus callosum and centrum semiovale. Uniform
gradient direction schemes with 49 and 121 directions were generated with the
electrostatic repulsion algorithm [18] and the diffusion-weighted volumes were
interleaved with b0 volumes every 12th scanned gradient direction. Datasets
were acquired at b-values of 1,000, 1,500, 2,000, 3,000, 4,000 s/mm2 and in
the same session, two anatomical data sets (192 slices, isotropic 1 mm voxels)
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were acquired using the ADNI sequence for registration. Finally, before HARDI
reconstruction of the ADC, Q-Ball and DOT, we applied a denoising pre-
processing step [8], available online,2 to correct for the Rician noise bias in the
datasets.

4 Methods

4.1 HARDI Measures

We implemented several HARDI anisotropy measures from the literature: gen-
eralized anisotropy (GA) [14], generalized fractional anisotropy (GFA) [4], the
cumulative residual entropy (CRE) [11, 12], as well as fractional multifiber index
(FMI) [2], and R0, R2, Ri [13] (see Table 1). Most of the measures are calculated
directly from the SH coefficients of the corresponding spherical probability func-
tions and therefore are extremely fast to calculate.

These measures were applied on the ADC profiles [2, 3], analytical Q-ball [19]
and the DOT [5]. Since the DOT was originally proposed in complex SH basis, we
adapted it to real SH, and solve the spherical harmonic transform in the parametric
DOT by least-square fit. This way we obtain a probability density function (PDF)
represented in real spherical harmonic coefficients, and all the anisotropy measures
can be applied to it. The DOT generally produces much sharper glyph profiles for
high radiusRad0, at the cost of more noisy profiles with spurious peaks. Finding the
bestRad0 in real data is difficult and often done by visual observation [5]. Hence, to
avoid this Rad0 selection problem and inspired by definitions of the ODF from Q-
ball imaging [4] and the marginal ODF (mODF) from diffusion spectrum imaging
(DSI) [20], we propose similar ODFs computed from the DOT as:

 DOT-ODF.�; �/ D
Z Rad0max

0

P.r; �; �/dr;

 DOT-mODF.�; �/ D
Z Rad0max

0

P.r; �; �/r2dr;

(2)

where P.r; �; �/ is the PDF computed from DOT [5], and Rad0 is set to a
conservatively high value.

As a discrete binary measure for the classification, we propose the number of
maxima (NM). NM uses the number of local maxima of the min-max normalized
SPFs profiles, where the discrete spherical function surpasses a certain threshold
(here, we use 0.6) from points on a fine discrete mesh (5th order of tessellation
of icosahedron), using a finite difference search on the mesh points. Moreover, for

2http://www.irisa.fr/visages/benchmarks/
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Table 1 Scalar measures for HARDI. alm are spherical harmonics coefficients of order l and
phase m

Name Abbrev. equation

Generalized anisotropy [14] GA D 1� 1

1C .250V/e.V /

where e.V /D 1C 1

1C 5,000 V
;

V D 1

9a200

lmaxX
lD2

lX
mD�l

jalmj

Generalized fractional anisotropy [4] GFA D
vuuuut
1� a200

lmaxX
lD0

lX
mD�l

jalmj

Cumulative residual entropy [11, 12] CRE D �
MX

iD2

P. n > �i / logP. n > �i /��i ,

where �1 < : : : < �M ;  nD norm.�; �/

Fractional multi-fiber index [2] FMI D

lmaxX
lD4

lX
mD�l

jalmj2

X
lD2

lX
mD�l

jalmj2

Isotropic ratio [13] R0 D ja00j
lmaxX
lD0

lX
mD�l

jalmj

Linear ratio [13] R2 D

lmaxX
lD2

lX
mD�l

jalmj
lmaxX
lD0

lX
mD�l

jalmj

Multi-fiber ratio [13] Ri D

lmaxX
lD4

lX
mD�l

jalmj
lmaxX
lD0

lX
mD�l

jalmj

better visual perception, in our figures we generate min-max normalized RGB color
coded glyphs, although one must keep in mind that this normalization enhances
angular contrast of glyphs in the white matter but also deforms isotropic glyphs
considerably.
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Table 2 Scalar measures for DTI. �1 > �2 > �3 are the corresponding
eigenvalues of the diffusion tensor D

Name Abbrev. equation

Mean diffusivity [22] MD D tr.D/=3 D .�1 C �2 C �3/=3

Fractional anisotropy [22] FAD
p
.�1��2/2C.�2��3/2C.�1��3/2p

2.�21C�22C�23/

Relative anisotropy [22] RAD
p
.�1��2/2C.�2��3/2C.�1��3/2

p

2.�1C�2C�3/

Linear anisotropy [21] Cl D .�1 � �2/=.�1 C �2 C �3/

Planar anisotropy [21] Cp D 2.�2 � �3/=.�1 C �2 C �3/

Isotropy [21] Cs D 3�3=.�1 C �2 C �3/

4.2 DTI Measures

We implemented DTI anisotropy measures: linear anisotropy Cl , planar anisotropy
Cp and isotropy Cs [21] as well as the well-known fractional anisotropy (FA) and
mean diffusivity (MD) [22] (see Table 2).

These measures were applied on the diffusion tensors estimated from the same
DW-MRI data as used for the HARDI modeling.

4.3 Analysis of Measures

To quantify the classification power of the DTI and HARDI measures, we use
the statistical test of receiver operation characteristic (ROC) curves [23] for the
hardware phantom data. The ROC curves describe the classification power of each
of the measures for separation of the data into three distinct compartments: isotropic,
non-Gaussian and anisotropic-Gaussian by using two thresholds. We apply this
analysis only to the phantom data, since only there we know the ground truth
for crossing voxels. Furthermore, we explore the distributions of the values from
each measure in different phantom data configurations by histograms. At the end
we suggest some interesting combinations of different measures for improving
the classification power of the individual measures. In addition, we discuss the
differences between DTI and HARDI measures. We describe each of these analysis
in details below.
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Fig. 4 Classification results from the phantom data

4.3.1 Different Phantom Configurations

Before explaining the data analysis we would like to review the ex-vivo phantom
data and its configurations. We will derive our conclusions based on three different
phantom crossing datasets varying either in configuration or b-value (see Fig. 4).
We have the 45ı of crossing phantom data, with exactly 12 voxels of ground truth
crossings. The rest of the 16 � 16 D 256 voxels belong to single fiber voxels
(estimated to 64 voxels) and isotropic voxels considerably deformed by the MRI
noise. The 45ı angle of crossing is a challenging angle where most of the HARDI
techniques fail to recover multiple fiber populations, especially at low b-values.
Therefore we investigate this configuration under two different b-values of 2,000
and 8,000 s/mm2. In addition we analyze the phantom data of 90ı only at b-value of
2,000 s/mm2 (b-value of 8,000 s/mm2 is not interesting to analyze for this angular
configuration). Here, we have exactly nine voxels of ground truth crossings and the
rest belong to single fiber population and noise. There are a few points that we need
to keep in mind. Due to partial volume effect, some of the linear voxels might exhibit
non-Gaussian diffusion properties. Since this is to be expected in real data as well,
we simply need to keep it in mind when analyzing the data. Due to the high SNR
value of the ex-vivo phantom data, we do not need a denoising phase.

4.3.2 ROC and Histogram Analysis of the Phantom Data

For the DTI and HARDI anisotropy measures we can quantitatively describe their
classification power using binary classification statistical test. First, the measures
must be thresholded to obtain the classification, and this process is sensitive. Two
thresholds are needed to separate the interval of anisotropy values into three distinct
compartments: isotropic, non-Gaussian and anisotropic-Gaussian. Afterwards we
can calculate the ROC curves that graphically represent the relationship between
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Fig. 5 ROC curves for isotropic/crossing and crossing/linear scenario and histogram for FA
applied to the 45ı ex-vivo phantom data at b-value of 8,000 s/mm2. The color coding of the
histogram: blue—isotropic, green—crossings, red—linear voxels

specificity and sensitivity of the voxels classified as: isotropic (from the noise),
crossing (non-Gaussian) and linear (anisotropic-Gaussian) [23]. The sensitivity
measures the proportion of actual positives which are correctly identified as
such, and the specificity measures the proportion of negatives which are correctly
identified.

sensitivity D number of True Positives
number of True PositivesCnumber of False Negatives

specificity D number of True Negatives
number of True NegativesCnumber of False Positives

(3)

Since separation into three distinct compartments is desirable, we need to
calculate two ROC curves per measure, one of which represents the classification
power between isotropic and non-Gaussian profiles (Fig. 5a), and the other between
non-Gaussian and anisotropic Gaussian (Fig. 5b). Calculating two ROC curves is
possible due to the distribution of the anisotropy as low in the isotropic parts,
medium in the non-Gaussian regions and high for anisotropic Gaussian. To quantify
the accuracy of the measures we calculate and report the area under the ROC curves
(see appendix). The larger the area under the curve, the better the separation of the
profiles by the examined measure.

For illustrating the distribution of anisotropy values, we use histograms (Fig. 5c).
However, as expected many DTI measures do not have this smooth transition,
whereas most of the HARDI measures exhibit more desirable properties.

4.3.3 Scatter Plot Analysis for Combination of Measures

To investigate the possibilities of combining and thus increasing the classification
power of the measures we do some preliminary experiments with scatter plots,
where we combine different DTI and HARDI measures together and look at the
distribution of the combined measure values (see Fig. 8).
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4.4 Real Data Analysis

As we do not know the ground truth in real data, we cannot perform quantitative
analysis. Therefore we limit our analysis to qualitative observations on the results
from the classification of the data done by the same measures that were applied to
the phantom data. Since the SNR of our clinically obtained DW-MRI data is very
low (especially at high b-values), experiments were done by comparing the results
with pre-denoised data.

4.4.1 Denoising of the Real Data

We use a non-local mean filter with Rician noise correction to denoise the DW data
before HARDI reconstruction. This method was shown [8] to have the desired effect
of correcting for the noise bias without blurring-out figure crossing information.
Hence, it improves scalar measures extracted from DTI and HARDI and does not
reduce the angular profiles of HARDI glyphs. The computation time of this filter
depends on spatial resolution and the number of maxima. For example, on our real
dataset of 104 � 104 � 10 � 121, the denoising takes 16 min when computed over
four processors 3 GHz and 8 GB RAM.

5 Results

In this section, we present the quantitative analysis of the ex-vivo phantoms and
qualitative results from the real data.

5.1 Phantom Results

The 45ı is a challenging angle where most of the HARDI techniques struggle to
detect multiple maxima, especially at low b-values. We will first analyze the results
from the maxima detection. As pointed out in the work of PrMckovska et al. [24], DOT
has the potential of recovering small angles regardless of the b-value, which we
show in the table of Fig. 6. Only the DOT (and its derivations) manages to recover
two fiber populations in the crossing regions at low combination of crossing angle
and b-value (in this case 45ı and 2,000 s/mm2). In the table we report the success
at recovering two maxima in the crossing voxels by all of the examined SPFs for
SH orders 4, 6 and 8. We additionally report the first Rad0 for the DOT and its
derivations in which the success is greater than 50 %. Even more interesting, we
observe that the derivations of the DOT discussed in Sect. 4, with its ODFs (DOT-
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Fig. 6 Classification results from the 45ı phantom data. The noise voxels were masked out by
FA, since NM classification gives multiple maxima in these areas

ODF and DOT-mODF) manifest similar behavior to the DOT itself, which show a
better angular resolution than Q-Ball and suggest a better choice of reconstruction
algorithm for fiber tracking purpose. The results from the NM classification on the
90ı phantom are omitted, due to the 100 % success in the classification of the non-
Gaussian voxels demonstrated in all reconstruction methods. Increasing the b-value
to 8,000 s/mm2 improves the angular resolution of Q-Ball as expected, and crossings
are starting to be observed in the 45ı dataset. We presented the classification results
from the real data to an anatomist who evaluated the accuracy of the classification,
and suggested preferences over some of the results. In the following paragraphs, as
we discuss the real data results we include the feedback from the anatomist.

For the DTI and HARDI anisotropy measures, we can quantitatively describe
the classification power of the 45ı and 90ı phantoms by examining the shape of
the corresponding ROC curves, and calculating the area under the ROC curves.
Additionally we observe the distribution of the measure values in the histograms as
described in Sect. 4.3.2. In the appendix, the area under all of the examined DTI and
HARDI ROC curves is reported. From the observation of the ROC curves and the
values of the area under the ROC curves, we draw several conclusions. Increasing
the order of SH representation does not significantly improve the classification
power of the measures. Therefore, for simplicity, in our phantom data results we
report only an SH order of 4. For the DOT derivations (DOT-mODF and DOT
ODF) the results become worse at high SH order, due to the very high and densely
distributed anisotropy values. The DOT in every configuration and SH order gives
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Fig. 7 ROC and histogram examples from the phantom data. The coloring in the histograms
indicates: blue—isotropic, green—crossings, red—linear

bad results due to the reasons mentioned above, even though it produces sharper
angular profiles. Also the measures applied to DOT derivations in general produce
worse results than those applied to the rest of the HARDI models. This can be
observed in the appendix Fig. A.1a colored with red stating bad classifier. Most
of the measures (DTI and HARDI), are significantly better in separating the data
between isotropic and crossing voxels (see Fig. 7d, g; Fig. A.1a, b) . The DTI
measures even outperform the HARDI measures in many cases (see Fig. 7a, d);
however, note that the presented results are for different angular configurations).
For the separation of the crossing and linear areas, on the other hand, the situation
is more complex. In general, many HARDI measures like CRE , GA, GFA and
R2 on ADC and Q-Balls have medium classification power and are comparable to
the DTI measures like Cl , FA and MD. Notably bad in many scenarios appear
to be Cp . A measure that stands out for good classification, especially of the
challenging 45ı angle between crossing and linear combinations, is Ri applied on
Q-Balls. This is to be expected, given the definition of the measure (see Fig. 7b).

From our ex-vivo phantom study we can conclude that the classification power
between anisotropic Gaussian and non-Gaussian areas of the HARDI measures
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Fig. 8 Scatter plots from combination of different measures. Blue color stands for isotropic voxels,
green crossing voxels and red single fiber voxels

in general is slightly better than that of the DTI measures. This difference is
more prominent at smaller angles of crossings. For distinguishing isotropic from
non-Gaussian regions, the DTI measures outperform HARDI measures. The dis-
tribution of the anisotropy values from low to high following the isotropic/non-
Gaussian/anisotropic-Gaussian pattern, is more noticeable in the HARDI measures
likeGA, GFA and CRE (e.g., Fig. 7f, i).Ri on Q-Balls is a good classifier between
non-Gaussian and anisotropic-Gaussian regions.

There is potential in combining measures to increase the separation between
classes. Some measures show a better separation between isotropic and non-
Gaussian, and others between non-Gaussian and anisotropic Gaussian. Furthermore,
some measures perform better when applied to different SPFs. Preliminary results
suggest that combination of CRE and GFA on Fig. 8 left and Ri and R2 on Fig. 8
right can improve the classification power of the measures.

5.1.1 Human Data Results

The centrum semiovale was used to illustrate the qualitative analysis of the
classification results. It is an interesting region for analysis, since fibers of the corpus
callosum (CC), corticospinal tract (CST), and superior longitudinal fasciculus
(SLF) form different two-fiber and three-fiber crossing configurations in that area.
The region-of-interest (ROI) was defined on a coronal slice (see Fig. 9a). It is
important to mention that all the real data results are from similar regions, since they
are different DW-MRI scans from the same subject, and have not been registered.
We presented the classification results to an anatomist who evaluated the accuracy
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Fig. 9 The effect of denoising demonstrated on original versus denoised data in different
acquisition schemes

of the classification, and suggested preferences over some of the results. In the
following paragraphs, as we discuss the real data results we include the feedback
from the anatomist. We applied the same classification measures as for the phantom
study on the original and denoised data from our datasets. Denoising significantly
improves the glyph profiles and the coherence of the non-Gaussian regions, as seen
in Fig. 9. We also observe a decrease in the irregularities in the crossing profiles. Our
results suggest that even at low b-value, low NG and low estimation SH order, there
is success in recovering crossing diffusion patterns and identifying linear regions
(see Fig. 10). The feedback from the anatomist followed the same rule. In general
most of the classification done under b-value of 1,000 s/mm2 and low sample of the
gradients were found to be the best. For instance in Fig. 10 the classification from
CRE applied to DOT-mODF at bD 1,000 s/mm2 and NGD 49 was found to be the
best due to the well spread crossing region.
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Fig. 10 Some examples from different classifications applied to in-vivo human data from the
region of centrum semiovale

In contrast, going to very high b-values (i.e. �3,000 s/mm2) and modeling the
data with high SH order (�6) results in polluted glyphs regardless of whether
denoising is performed. Comparing the results of the classification from different
measures, we observe that increasing the b-value sharpens the HARDI profiles
and benefits only for maxima extraction purposes. However, there is no significant
gain in classification of non-Gaussian profiles, as observed in the phantom study.
This is seen in Fig. 10, where we see sharper glyphs for DOT-mODF but similar
classification power regardless of the measure or acquisition scheme. We also note
that increasing the model order (l > 4) does not increase the classification power,
which coincides with the conclusions from our phantom study. This leads to the
conclusion that 49 directions is sufficient for recovering most of the crossings and
non-Gaussian voxels, which means that the acquisition time can be significantly
reduced (compared to a 121 NG acquisition).

Figure 11 demonstrates a comparison between FA and Ri . We observe that FA
exhibits similar classification properties to the ones observed in 90ı phantom, thus
giving a nice contrast in the centrum semiovale. Ri on the other hand, has a bigger
problem separating isotropic areas from non-Gaussian ones, which reference the
poor performance in the isotropic/crossing ROC curve (Fig. 7a).
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Fig. 11 Comparison DTI versus HARDI classification

The anatomist similarly found the classification from FA at b D 1; 000 s/mm2

and NG D 49 to outperform the one from the higher b-value and denser gradient
sampling. The classifications from Ri were found to have over-classified crossing
area.

6 Discussion and Conclusions

Finding the correct threshold for classification in real data is important for accurate
classification, and often depends on the b-value from the acquisition protocol and
the angular configuration. In our study, the thresholds found in the 90ı phantom
configuration were very similar to the thresholds used to classify the real data at
the same b-value. The thresholding process for the in-vivo data can be significantly
improved by a semi-automatic algorithm for detection of the thresholds. The user
can additionally give feedback by identifying regions with positive and negative
examples.

There are a few important messages from this work. Denoising as a pre-
processing step improves the coherence of the classification areas and enhances the
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HARDI profiles, as reported by Descoteaux et al. [8]. ADC and Q-Ball demonstrate
significant classification information, even though they sometimes lack sufficient
angular resolution for small crossing-angle discrimination. The sharper and slightly
more noisy profiles produced by DOT and its derivation (and we believe this would
be the case for SD techniques [7] as well) find more accurate numbers of maxima
and are better suited for fiber tracking applications. Increasing the acquisition
parameters (b-value> 2,000 s/mm2 and NG> 80) as well as the model order do not
significantly improve the classification power. In contrary, high b-value acquisitions
produce low SNR datasets that are worse for classification, and result in polluted
HARDI profiles. This corroborates the observations from the anatomist, who found
the classifications applied on data with bD 1,000 s/mm2 and NGD 49 to be the
best. It is even doubtful if, in practice, these higher b-value datasets improve fiber
tracking. Further studies would be needed to be able to estimate the exact optimal
acquisition parameters for classification. For example, it would be interesting to
acquire ex-vivo ground truth crossing phantoms with a higher variety of acquisition
parameters. The results of the study presented in this chapter indicate that the
optimal acquisition will be possible in a clinical environment, since relatively low
acquisition time will be needed for the preferred acquisition parameter setting. DTI
anisotropy measures are comparable with the HARDI measures like GA, GFA and
CRE and in classifying isotropic from crossing regions often outperform.

In this work, we investigated a broad range of different DTI and HARDI
anisotropy measures proposed in the literature and applied them as classification
criteria for discriminating different fiber configurations within the white matter. All
the measures were applied on the HARDI reconstructions and all, except for CRE
and NM , are measures directly implemented on SH representation of the model or
DT that can be calculated and thresholded in real time. Some of the measures such
as GA, GFA and CRE applied on Q-balls and ADC behave in a similar fashion
and are relatively good classification criteria. However, their power is comparable
to DTI measures such as FA and MD. Ri exhibits strong classification power
for separating crossings from linear areas even at low angle. However, due to the
poor isotropic/crossing performance, it is recommended combining it with other
measures. The NM measure belongs to a different category of measures because it
does not need a thresholding process for classification. However, it is dependent
on the HARDI profiles and can produce many false positives in the presence
of noise.

A strong message that comes out of this work, is that the measures can be applied
on different SPFs and still have the same classification power (especially in the
case of ADC and Q-Ball). This means that the users can use any existing HARDI
modeling technique and apply classification measures to distinguish between
anisotropic-Gaussian and non-Gaussian profiles. If the non-Gaussian voxels are
correctly classified in a first step, one can ignore all the other single fiber voxels
and properly focus on the modeling and more accurate reconstruction of these
voxels. Hence, as a second step, one can use a complex modeling approach, such
as CSD and PAS-MRI [25] that take long computation time. In clinical setting,
the simplification of the data into anisotropic-Gaussian and non-Gaussian areas can
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be useful and presents a new contrast as such, even though complex structures are
oversimplified as non-Gaussian. It can lead to new ways to study the white matter,
especially by enabling the possibility for interactive visualization and inspection of
the data.

Future work will address combination of different measures for better reliability
of the classified regions. Comparison of our simple and fast classification with
some of the existing classification schemes (as in the work of Schnell et al. [26])
is addressed as future work. These methods use support vector machines or learning
approach such as boosting on the entire set of measures to statistically determine
the discriminative strength of each feature and therefore cannot be calculated at
interactive speed. Thus, the comparison should be done for validation purposes of
the methods only.

In this chapter, we are not dealing with the behavior of the classification in
partial volume effect regions. If there is partial volume effect between different
classes, it is expected that the selected model will correspond to the one that can
represent the most complex configuration. For example, in the case of partial volume
effect between isotropic and anisotropic-Gaussian, the voxel will be classified as
anisotropic-Gaussian. Further studies would be necessary to determine the validity
of this assumption.

Nonetheless, in this work we have shown that possible classification of
anisotropic-Gaussian and non-Gaussian profiles can be done with some of the
existing measures including scalar indices calculated from DTI data. For the DTI
indices, however, we need to be careful as the distribution of the anisotropy values
does not always follow the isotropic/non-Gaussian/anisotropic-Gaussian pattern.
The data can therefore be simplified into linear, crossing and isotropic voxels. This
means that more sophisticated hybrid methods, which are more time consuming
can be applied only in the non-Gaussian areas, whereas in the anisotropic-Gaussian
the profiles can be modeled with a simple 2nd order ODFs (see Fig. 2) and the
isotropic profiles masked out. This gives considerable potential for the employment
of the HARDI techniques in a clinical setting due to the moderate post-processing
time. Another application of the classification information can be in visualizing
uncertainties in fiber tracking algorithms by, for example, attributing transparency
to the unreliable fiber tracts.
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Appendix

a

b

Fig. A.1 Areas under the ROC curves for (a) HARDI and (b) DTI models. The higher the value
the better the measure is for classification of the data. The color stand for green—good classifier;
red—bad classifier
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Towards Resolving Fiber Crossings with Higher
Order Tensor Inpainting

Thomas Schultz

Abstract The use of second-order tensors for the modeling of data from Diffusion
Weighted Magnetic Resonance Imaging (DW-MRI) is limited by their inability to
represent more than one dominant direction in cases of crossing fiber bundles or
partial voluming. Higher-order tensors have been used in High Angular Resolution
Diffusion Imaging (HARDI) to overcome these problems, but their larger number
of parameters leads to longer measurement times for data acquisition. In this work,
we demonstrate that higher-order tensors that indicate likely fiber directions can be
estimated from a small number of diffusion-weighted measurements by taking into
account information from local neighborhoods. To this end, we generalize tensor
voting, a method from computer vision, to higher-order tensors. We demonstrate
that the resulting even-order tensor fields facilitate fiber reconstruction at crossings
both in synthetic and in real DW-MRI data, and that the odd-order fields differentiate
crossings from junctions.

1 Introduction

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) is a medical imaging
modality that allows for a non-invasive investigation of fibrous tissue, such as
the nerve fiber bundles in the human brain [1]. In cases where a clear principal
fiber direction exists, it is generally well-aligned with the main diffusion direction
captured by the second-order diffusion tensor (DT-MRI) model [2]. However, DT-
MRI provides insufficient information in cases of partial voluming and crossing or
spreading fiber bundles. High Angular Resolution Diffusion Imaging (HARDI) uses
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more complex models like higher-order tensors [3, 4], but requires a larger number
of measurements, which are usually too time-consuming in a clinical context.

Inpainting is a process by which a damaged image is restored, or an object
is removed from an image in an unobtrusive way. Different strategies have been
developed to fill in the missing information in such cases in an automated manner.
They can be classified roughly into structure-based methods, which try to continue
the surrounding image geometry into the missing region [5] and texture synthesis
approaches, that generate patches from statistical models [6] or by copying pixels
from example images [7].

Our work is motivated by the observation that the image inpainting problem
resembles the problem of complex fiber configurations in DT-MRI data: In both
cases, information is missing in certain regions of a dataset. Our goal is to use ideas
from inpainting in a preprocess that facilitates fiber tracking through such complex
regions. Our method belongs to the class of techniques that fill in small holes by
continuing existing structures in the neighborhood. It is based on tensor voting, an
approach from computer vision that can be used to infer likely continuations of
lines, and that we extend to higher-order tensors in order to preserve directional
information at crossings.

This chapter is structured as follows: After reviewing related work in Sect. 2, we
will introduce the concept of higher-order tensor voting in Sect. 3. In Sect. 4, we
explain the application of this method to the problem of estimating tensors that can
be used for fiber tracking. Finally, results are presented in Sect. 5 and the paper is
concluded in Sect. 6.

2 Related Work

Tensor voting [8] is a framework for perceptual organization. Based on principles of
human perception, it tries to group tokens (like points, lines, or surface segments)
into structures that appear natural to a human observer. The method was first
proposed for the automated detection of perceptual contours [9], but has been
extended to numerous other applications, including the inpainting problem [10].

Our work differs from this existing use of tensor voting for inpainting in that our
input is a three-dimensional second-order tensor field rather than a two-dimensional
color image. The formulation of texture synthesis as a tensor voting problem, which
is one of the main contributions of [10], does not apply to our problem. Instead,
we extend tensor voting by using higher-order tensors to represent directional
information at crossings.

Inpainting small image regions is closely related to image interpolation. Weickert
and Welk [11] have developed a PDE-based method for interpolation of second-
order tensor fields. As part of our experiments, we successfully applied their
approach to higher-order tensor fields. However, we found that tensor voting makes
it easier to re-orient the propagated tensors and, in our particular application,
allows for a simpler, non-iterative, and relatively fast implementation. A comparison
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between tensor voting and PDE-based methods in a different context is presented
by Moreno et al. in Chap. 9 of this book.

The higher-order tensors generated by our method are similar to the “tractose-
mas” proposed by Barmpoutis et al. [12] and the “extrapolated spherical diffusion
functions” by Prčkovska [13] in that they do not have an immediate physical
meaning, but are designed to indicate likely fiber directions. However, the main
purpose of [12] is to create distributions from HARDI data which are no longer
antipodally symmetric. Even though Sect. 5.3 will demonstrate that asymmetries can
also be detected by tensor voting, our focus is to infer information about crossings
from data with low angular resolution.

A study by Caan et al. [14] has pursued a similar goal, but under different
conditions: They acquire low angular resolution data from different subjects, and
estimate a high angular resolution atlas from the coregistered results. In contrast,
our method takes its information from spatial neighborhoods rather than a cohort of
subjects and thus works on individual datasets.

Previous work that integrates neighborhood information into the fiber tracking
process includes the tensorlines algorithm by Weinstein et al. [15]. However, it only
uses information from the previous tracking step, while our voting process takes the
full neighborhood into account.

The spin glass model by Mangin et al. [16] aims at balancing local diffusion
directions with global curvature constraints by simulating coupled compass needles
in a magnetic field which is defined from the diffusion tensors. Even though a simple
synthetic crossing has been resolved using a two-compass variant [17], it has not
been applied to curved tracts, and results on real data have only been presented
based on a single-compass model that does not support crossings [16].

An alternative voting-based approach to tractography, inspired by the Hough
transform, was recently presented by Aganj et al. [18]. They identify the most
plausible fiber trajectories by voting on a large number of possible curves, while our
method votes on local fiber directions and does a tractography only in a subsequent
step. Since [18] is only an extended abstract, it does not provide enough detail for a
reproduction and side-by-side comparison of results.

3 Higher-Order Tensor Voting

3.1 Basics of Tensor Voting

The input of the tensor voting algorithm is a set of tokens. Even though tensor voting
allows for different types of tokens, like unoriented points and curve or surface
elements, we are specifically interested in reconstructing the trajectories of major
nerve fiber bundles, so we only make use of the part of the framework that deals
with curves.

In tensor voting, each curve element generates hypotheses about likely contin-
uations and votes for them. Individual votes encode the direction of the proposed
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Fig. 1 Given two points O and P along with a tangent t at O, tensor voting considers the osculating
circle (gray) to be their most likely connection, leading to the inferred tangent v at P

curve, and a scalar saliency, indicating the confidence that the voter has in it. In a
subsequent step, the accumulated votes are analyzed to identify the curve for which
all input tokens together provide the strongest evidence. Accumulated votes reflect
the overall saliency, the average direction, weighted by individual saliencies, and
the spread around it.

For a curve element given by a point O and a tangent direction t, tensor voting
assumes that the most likely continuation that includes a second point P is an arc of
their osculating circle, i.e., the circle that passes through both O and P and shares the
tangent t at O (cf. Fig. 1). Consequently, the direction of the vote cast from O to P is
the tangent v of the osculating circle at that point. The saliency of the vote decreases
both with arc length s and with the curvature � of the circle. If the angle � between
t and the line OP exceeds 45ı, the saliency is set to zero. A detailed justification of
these choices is given in [19].

3.2 Introducing Higher-Order Tensors

In the original framework, votes are represented by second-order tensors with sorted
eigenvalues �1 � �2 � �3 � 0. The relative magnitudes of the eigenvalues reflect
the type of a structure, the eigenvector directions describe its orientation.

Our implementation deviates from the established tensor voting algorithm in two
ways: First, curve elements are traditionally encoded as planar tensors (�1 D �2 �
�3) whose larger eigenvector pair spans the normal plane. In contrast, we let the
major eigenvector represent the tangent direction. This agrees with the role of the
principal eigenvector in DT-MRI, which is assumed to be tangential to the fiber
trajectory, and it allows us to use simple stick votes for curves, which are the only
relevant elements in our application.

Second, traditional tensor voting represents crossings and junctions as isotropic
tensors (�1 D �2 D �3), which do not possess any directional information. Since it
is the main motivation of our work to overcome the inability of DT-MRI to resolve
the involved fiber directions at crossings, we replace the second-order tensors with a
higher-order tensor representation, which retains directional information even when
averaging differently oriented stick tensors. This is done in analogy to the higher-
order structure tensors in [20] and is illustrated in Fig. 2.
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Fig. 2 When adding orthogonal second-order tensors, the result has no directional information (a).
In the sixth-order case, the orientations of the individual terms is reflected in the sum (b). Therefore,
we use higher-order tensors in our voting

3.3 Formalizing the Voting Process

The votes in our algorithm are created in three steps: First, the correct direction
is determined and represented as a unit vector v. Then, the scalar saliency  is
computed. Finally, a higher-order tensor vote V is formed by a repeated outer
product of v with itself, scaled with saliency  .

The first two steps are analogous to the traditional creation of stick votes [19]:
Let � be the angle between the tangent t at O and the vector OP (Fig. 1). Then, v is
the tangent of the osculating circle at P, and is created by rotating t by the angle 2�
around the axis given by t �OP. Thus, t, v, and OP lie in a common plane.

Saliency decreases with arc length s and curvature �:

s D �kOPk
sin �

� D 2 sin �

kOPk (1)

The voting has two main parameters: � determines how rapidly saliency decays
with distance, � controls the decay with curvature. If � > 45ı, the saliency  is set
to zero. Otherwise, it is given as

 .s; �/ D e� s2

�2
� �2
�2 : (2)

In the original tensor voting approach, � is set as a function of � , based on the
assumption that it is equally plausible to join two orthogonal curve elements with a
smooth curve or a sharp corner [9]. In fiber tracking, it is commonly assumed that
fiber bundles do not bend sharply [21]. Therefore, we penalize curvature more than
regular tensor voting would. This is achieved by fixing � D 2 and � D 0:3.

With these ingredients, the final vote is computed as V D  .s; �/v˝l , where v˝l
denotes taking the outer product of v with itself l times. In component notation,

ŒV �i1i2:::il D  .s; �/vi1vi2 � � � vil : (3)

Since V is invariant under arbitrary index permutations, it is sufficient to store
a small number of non-redundant components (cf. [20]). All presented experiments
use tensor order l D 6, which has been found sufficient to resolve intersections of
three fiber bundles [22].
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3.4 Analyzing the Accumulated Votes

Individual votes are accumulated by simple component-wise addition of the respec-
tive tensors. In traditional tensor voting, the resulting tensor T is analyzed via its
spectral decomposition into eigenvalues �1 � �2 � �3 and eigenvectors e1, e2, e3:

T D
3X
iD1

�iei ˝ ei (4)

From this, a stick, plate, and a ball component are detected with saliencies

 s D �1 � �2;  p D �2 � �3;  b D �3 (5)

respectively. No exact equivalent of the spectral decomposition exists for the higher-
order case, but a previous work [22] proposed an algorithm to approximate a given
order-l tensor T with a sum of symmetric rank-1 terms:

T �
rX
iD1

�ie˝li (6)

Here, the vectors ei are still unit-length, but no longer pairwise orthogonal. The
rank-1 terms e˝li correspond to stick components, and represent curve elements in
our modified tensor voting framework. Since equally large �1��2 can now indicate
two salient stick components in different directions, we can no longer rely on the
difference �1 � �2 to define saliency, as in Eq. (5). Rather, we assign high saliency
to a direction if the tensor’s homogeneous form

T .v/ D T �l v D
X

i1;i2;:::;il

ŒT �i1i2:::il vi1vi2 � � � vil ; (7)

as it is plotted in Fig. 2b, has large convex curvature in that direction.
Restrict T .v/ to the unit sphere and let Hi be the symmetric 2�2 Hessian matrix

of second derivatives of T .v/ on the sphere, evaluated at the curve direction ei that
was estimated in Eq. (6). This Hessian can be obtained either numerically [23] or
analytically, by expressing T .v/ in spherical coordinates [24]. Let �1 � �2 be the
sorted eigenvalues of Hi . If ei is a salient stick component, we expect T .v/ to be
strongly convex (�1 � 0), so we measure saliency  as

 D ��1
l
: (8)

The normalization by tensor order l ensures that the maximum saliency of compo-
nent e˝li is given by  D �i . In case of the second-order tensors used in traditional
tensor voting,�1 D 2.�2��1/. Therefore, the definition of in Eq. (8) is equivalent
to  s in Eq. (5) in this case.
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Fig. 3 Accumulated higher-order votes are approximated with a sum of rank-1 terms that
represent stick components. In Subfigure (a), all three contributions have significant saliency,
as computed according to Eq. (8) from the convex shape in these directions. In (b), the planar
contribution orthogonal to the main direction is decomposed into three sticks with zero saliency

Figure 3a illustrates that a single accumulated higher-order tensor vote can
contain multiple stick components, with different angles and saliencies. The plate
component in Fig. 3b can be subdivided further into four rank-1 terms, but they have
zero saliency as stick components. This is completely analogous to second-order
plate tensors, which can be written as e1 ˝ e1 C e2 ˝ e2 for any two orthonormal
vectors e1 and e2 that span the plane.

4 Inpainting as a Preprocess for Tractography

Fiber tracking [25], also known as tractography [21], infers likely fiber trajectories
by computing integral curves which are everywhere tangential to the major eigen-
vector of the diffusion tensor field. Tracking is stopped when the difference �1 � �2
between the larger two eigenvalues becomes too small, since this typically indicates
that the diffusion tensor no longer represents a single homogeneous fiber bundle. A
common criterion is the linearity measure of Westin et al. [26],

cl D �1 � �2
�1

: (9)

In our experiments, we stop when cl < 0:4.
In order to use tensor voting as a preprocess for fiber tracking, we need to define a

set of tokens that generate the votes, and to mark the region in which the inpainting
should happen. Tokens are placed in all voxels where cl is large enough for fiber
tracking. Their direction is given by the principal eigenvector of the diffusion tensor.
In analogy to streamline tractography, which makes a hard binary decision about
whether or not to follow an eigenvector direction, our method assigns the same
saliency to all input tokens. The inpainting mask is given by the voxels in which cl
is too low for fiber tracking. Information from the neighborhood is propagated into
the inpainting region by the tensor voting process described in Sect. 3.
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Outside the mask, tokens are represented as rank-1 tensors, as given by Eq. (3).
To keep the norm of tensors within and outside the mask in a comparable range,
we scale all votes by 2=

”
 , where

”
 denotes the integral of  from Eq. (2)

over three-dimensional space. In practice, we evaluate the integral numerically over
a spatial neighborhood where  > 0:01.

Fiber tracking is performed on the resulting higher-order tensor field using the
algorithm from [22]. Voxels outside the brain are marked a priori based on their low
MR signal, and are not taken into account at any point. Setting up the inpainting
does not involve any new parameters, since the threshold on cl is taken from the
algorithm for DT-MRI tractography. However, the higher-order tracking process
needs a termination criterion; in our examples, we stop when no rank-1 contribution
with  > 0:01 is found within 20ı of the current tracking direction.

5 Results

In order to validate our method, we have applied it to three synthetic datasets. They
were created by modeling fiber crossings as a mixture of second-order diffusion
tensors with fractional anisotropy FA D 0:87 [27], by simulating diffusion-weighted
images (DWIs) from them, and estimating a DT-MRI model through a linearized
least squares fit [2]. DWIs were simulated in 12 evenly distributed directions, with
a b-value of b D 1;000 s/mm2.

We also used our method for the reconstruction of a major fiber bundle in a real
dataset of a healthy human brain. Like the synthetic data, it consisted of 12 diffusion-
weighted images at b = 1,000 s/mm2, plus one non-weighted image, and the same
fitting procedure was used.

5.1 Results on Synthetic Data

Our first example is a crossing of two orthogonal fiber bundles. Figure 4 shows
a superquadric glyph visualization [28] of the synthetic DT-MRI data (a), the
inpainted higher-order tensor field (b), and a tractography based on the higher-order
tensors (c). Our inpainting reconstructs this simple configuration perfectly.

As a more challenging test case, we created a second dataset in which a straight
fiber bundle is intersected by a parabolic one. In Fig. 5a, a ground truth tractography
is presented. It is based on a spherical deconvolution model [29] that has been
computed from simulated HARDI measurements (60 directions, b = 1,000 s/mm2).
In all examples, the tracking is seeded at the top and at the left side of the image.

Since the parabolic shape violates the constant curvature assumption made by the
tensor voting approach, the curved bundle is not reconstructed perfectly in this case;
however, the correct connectivity is still inferred in a large part of the bundle (b).
For comparison, Subfigure (c) demonstrates that the tensorlines algorithm [15], a
previous approach that integrates neighborhood information in the fiber tracking
process, fails completely to reconstruct the crossing.
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Fig. 4 At a 90ı crossing, second-order tensors become planar, preventing fiber tracking (a). Our
inpainting process infers higher-order tensors (b) that allow for a reconstruction of the crossing (c)

Fig. 5 Since the parabolic (green) fibers in (a) violate the constant curvature assumption of tensor
voting, which was illustrated in Fig. 1, our inpainting produces imperfect results, but is still able to
infer the correct connectivity (b). The tensorlines algorithm is unable to resolve the crossing (c)

5.2 Result on Real Data

In the real dataset, we aimed at tracking the left pyramidal tract by seeding in the
internal capsule. Due to its high importance to motor function, reconstructions of
this tract have been used repeatedly for surgical planning [30–32].

With second-order diffusion tensors alone, it is difficult to capture the bundle in
its entirety, since cl drops when the tract crosses the transcallosal fibers that run
through the corpus callosum (Fig. 6a, red ellipse). As shown in Fig. 6b, higher-
order tensor inpainting successfully bridges this gap, and allowed us to continue
the tracking towards the cortical surface.

5.3 Distinguishing Crossings from Junctions

Recently, Barmpoutis et al. [12] have employed a diffusion process to create a field
of asymmetric spherical functions that differentiate between X-shaped crossings and
Y-shaped junctions. To illustrate that the same distinction can also be made via a
tensor voting, we have created a synthetic junction, shown in Fig. 7a.
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Fig. 6 Due to crossing transcallosal fibers, tracking of the pyramidal tract in this DT-MRI dataset
ended prematurely (a). Higher-order tensor inpainting allowed the tracking to continue towards the
cortex (b)

Fig. 7 The direction and polarity of fibers meeting in a 120ı junction (a) is clearly shown by
third-order tensor votes (b, closeup), whose homogeneous forms are antisymmetric (blue indicates
negative values, red positive). At the center of crossings, odd-order tensor votes cancel out
(c), effectively distinguishing crossings from junctions

In order to find the location and polarity of boundaries, Tong et al. [33] extend
the traditional second-order tensor voting framework towards vectors (“first-order
tensors”): Regions in the center of a structure will receive vector votes from both
sides, which cancel out due to their opposite orientation. At structure boundaries,
however, vector votes accumulate.

This approach does not carry over to our problem directly, since vectors cancel
out both at crossings and at regular (e.g., 120ı triple) junctions. However, we
observe that tensors of odd order l�3 still cancel out at crossings, while they have
non-zero norm and indicate the directions of the involved bundles at junctions.

This is because the homogeneous form T .v/ that characterizes a symmetric
tensor (Eq. 7) is antipodally antisymmetric T .�v/ D �T .v/ for odd l , but can
become multimodal for l � 3. Odd-order votes are generated in complete analogy
to even-order ones (cf. Sect. 3.3).

Figure 7b, c plot the homogeneous forms of accumulated third-order tensor
votes; blue indicates positive values, red negative ones. The glyph at the center of
the junction (b) clearly indicates the directions and polarities of the three joining
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bundles. At the center of crossings (c), odd-order votes cancel out; the directions of
the involved bundles is instead given by the even-order votes (Fig. 4b).

Taken together, even-order (antipodally symmetric) and odd-order (antipodally
antisymmetric) tensors hold all the information that is present in general asymmetric
functions on the sphere, as they are used in [12].

6 Conclusion and Future Work

In this chapter, we have made two contributions. First, we have introduced higher-
order tensor voting, an extension of the standard tensor voting method that allows
one to preserve directional information at crossings and junctions. We expect that
higher-order tensor voting will also prove useful in other applications. However, to
leverage the full framework, rather than being restricted to inferring curves, more
research is required on decompositions of totally symmetric higher-order tensors.

Second, we have approached the problem of missing information in DT-MRI
due to partial voluming from a new perspective, by treating it in analogy to
image inpainting. For this, we have relied on generic rules of what constitutes a
good continuation of a curve. They are encoded in the tensor voting algorithm
and include proximity, similarity, and simplicity [19]. In the future, one might
consider exploiting more specific prior knowledge about likely continuations of
fiber bundles, which could be given in the form of a HARDI brain atlas. While we
have concentrated on structure-inferring inpainting in this work, such an approach
could take inspiration from example-based texture synthesis [7].

It is not the goal of our research to establish inpainting as an alternative to
HARDI. However, our results indicate that in cases where the acquisition of high
angular resolution data cannot be afforded, inpainting can help with the extraction
of clinically relevant fiber tracts.

As part of our future work, we would like to employ tensor voting techniques
similar to the one described in this chapter to stabilize the tracking process in cases
where HARDI data is available, and exploit the antisymmetric information provided
by odd-order tensor votes.
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13. Prčkovska, V.: High angular resolution diffusion imaging – processing & visualization. Ph.D.
thesis, Technische Universiteit Eindhoven (2010)

14. Caan, M., Sage, C., van der Graaf, M., Grimbergen, C., Sunaert, S., van Vliet, L., Vos, F.: Dual
tensor atlas generation based on a cohort of coregistered non-HARDI datasets. In: Yang, G.Z.
et al. (eds.) Proceedings of Medical Image Computing and Computer-Assisted Intervention
(MICCAI), London. Lecture Notes in Computer Science, vol. 5761, pp. 869–876. Springer,
Berlin/Heidelberg (2009)

15. Weinstein, D., Kindlmann, G., Lundberg, E.: Tensorlines: advection-diffusion based propaga-
tion through diffusion tensor fields. In: Proceedings of IEEE Visualization, IEEE Computer
Society Press, San Francisco, pp. 249–253 (1999)

16. Mangin, J.F., Poupon, C., Cointepas, Y., Rivière, D., Papadopoulos-Orfanos, D., Clark, C.A.,
Régis, J., Le Bihan, D.: A framework based on spin glass models for the inference of
anatomical connectivity from diffusion-weighted MR data – a technical review. NMR Biomed.
15, 481–492 (2002)

17. Cointepas, Y., Poupon, C., Le Bihan, D., Mangin, J.F.: A spin glass based framework to untan-
gle fiber crossing in MR diffusion based tracking. In: Dohi, T., Kikinis, R. (eds.) Proceedings
of Medical Image Computing and Computer-Assisted Intervention (MICCAI), Tokyo. Lecture
Notes in Computer Science, vol. 2488, pp. 475–482. Springer, Berlin/Heidelberg (2002)

18. Aganj, I., Lenglet, C., Keriven, R., Sapiro, G., Harel, N., Thompson, P.: A Hough transform
global approach to diffusion MRI tractography. In: Proceedings of International Society of
Magnetic Resonance in Medicine (ISMRM), Honolulu, vol. 17, p. 854. The Society, Berkeley
(2009)

19. Mordohai, P., Medioni, G.: Tensor voting: a perceptual organization approach to computer
vision and machine learning. Morgan & Claypool, San Rafael (2007)

20. Schultz, T., Weickert, J., Seidel, H.P.: A higher-order structure tensor. In: Laidlaw, D.H.,
Weickert, J. (eds.) Visualization and Processing of Tensor Fields – Advances and Perspectives,
pp. 263–280. Springer, Berlin/Heidelberg (2009)



Towards Resolving Fiber Crossings with Higher Order Tensor Inpainting 265

21. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using
DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000)

22. Schultz, T., Seidel, H.P.: Estimating crossing fibers: a tensor decomposition approach. IEEE
Trans. Vis. Comput. Graph. (Proc. IEEE Visualization) 14, 1635–1642 (2008)

23. Seunarine, K.K., Cook, P.A., Hall, M.G., Embleton, K.V., Parker, G.J.M., Alexander, D.C.:
Exploiting peak anisotropy for tracking through complex structures. In: Proceedings of IEEE
Workshop Mathematical Methods in Biomedical Image Analysis (MMBIA), IEEE, Rio de
Janeiro, Brazil, pp. 1–8 (2007)

24. Schultz, T., Kindlmann, G.: A maximum enhancing higher-order tensor glyph. Comput. Graph.
Forum (Proc. EuroVis) 29, 1143–1152 (2010)

25. Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.M.: Three-dimensional tracking of axonal
projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999)

26. Westin, C.F., Maier, S., Khidhir, B., Everett, P., Jolesz, F., Kikinis, R.: Image processing for
diffusion tensor magnetic resonance imaging. In: Proceedings of Medical Image Computing
and Computer-Assisted Intervention (MICCAI), Cambridge. Lecture Notes in Computer
Science, vol. 1679, pp. 441–452. Springer, Berlin/New York (1999)

27. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by
quantitative-diffusion-tensor MRI. J. Magn. Reson. B 111, 209–219 (1996)

28. Kindlmann, G.: Superquadric tensor glyphs. In: EG/IEEE Symposium on Visualization
(SymVis), Eurographics Association, Konstanz, Germany, pp. 147–154 (2004)

29. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber
orientation density function from diffusion-weighted MRI data using spherical deconvolution.
NeuroImage 23, 1176–1185 (2004)

30. Niizuma, K., Fujimura, M., Kumabe, T., Higano, S., Tominaga, T.: Surgical treatment of
paraventricular cavernous angioma: fibre tracking for visualizing the corticospinal tract and
determining surgical approach. J. Clin. Neurosci. 13, 1028–1032 (2006)

31. Nimsky, C., Ganslandt, O., Enders, F., Merhof, D., Hammen, T., Buchfelder, M.: Visualization
strategies for major white matter tracts for intraoperative use. Int. J. Comput. Assist. Radiol.
Surg. 1, 13–22 (2006)

32. Qazi, A.A., Radmanesh, A., O’Donnell, L., Kindlmann, G., Peled, S., Westin, C.F., Golby, A.J.:
Resolving crossings in the corticospinal tract by two-tensor streamline tractography: method
and clinical assessment using fMRI. NeuroImage 47, T98–T106 (2009)

33. Tong, W.S., Tang, C.K., Mordohai, P., Medioni, G.: First order augmentation to tensor voting
for boundary inference and multiscale analysis in 3D. IEEE Trans. Pattern Anal. Mach. Intell.
26, 594–611 (2004)



•



Representation and Estimation of Tensor-Pairs
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Abstract Over the years, several powerful models have been developed to repre-
sent specific elementary signal patterns, e.g. locally linear and planar structures.
However, in real world problems there is often a need for handling more than one
elementary pattern simultaneously. The straightforward approach of adaptive model
selection has proven to be difficult and fragile. At the core of this problem is the
vicious intractable search space created by having to simultaneously select models
and corresponding samples. This calls for higher order models where multiple
patterns are represented as one more complex pattern. In this work, we illustrate the
advantages of this approach on data that has bi-modal tensor-valued distributions.

The method uses first and second order invariants as a representation, and an
eigenvector based solution for recovering the elementary tensor components. We
show that this method allows estimation of the two tensors that best represent a
given tensor distribution. This distribution can for example be samples from a local
neighborhood. A bi-modal distribution will produce the two tensors corresponding
to the peaks of the distribution. In addition, numbers indicating the amount of
samples belonging to each sub distribution are produced. We demonstrate the
potential of the approach by processing a number of simple tensor image examples.
The results clearly show that new valuable information regarding the local tensor
structure is revealed.
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1 Introduction

This chapter discusses how un-ordered pairs of tensors can be represented to enable
operations such as consistent averaging of two distinct, simultaneously present,
unimodal tensor fields. For a single tensor field, spatial averaging is straightforward,
but for a field consisting of un-ordered pairs of tensors, standard averaging cannot be
applied. The reason is that since the pairs can not be ordered a priori, the two-tensor
field cannot easily be processed separately as two consistent single tensor fields.

For readability we use standard algebraic notation to describe the theory in
this chapter. We perform “vectorization” of the tensors so that the standard vector
outer product can express outer products of tensors. The vectorization implies a
lineup operation which arranges the elements of a multi dimensional array into a
lexicographic ordered column vector (where the order is according to the tensor
indices). For example, the outer product of two second order tensors is a fourth order
tensor. This operation can be performed using the standard vector outer product if
the components of the tensors are first rearranged into a vector array. If needed, the
resulting outer product matrix can be rearranged to a fourth order tensor.

We propose a new continuous representation of vector- or tensor-pairs using
two quantities s and P. This representation has the important property of enabling
consistent definitions of statistical operations. In this chapter we describe the theory
of the representation and present results from some examples of how tensor-pair
mean-values can be estimated from distributions of pairs. We continue to show how
the theory can be extended to handles bi-modal single-tensor distributions.

2 Tensor-Pair Representation

Below, we derive the results using vectors, with the implicit notion that these vectors
may represent tensors that have been “vectorized”. This implies no loss of generality
since the vectors contain all the components of the corresponding tensor and can
thus can easily be reinterpreted as a tensor.

2.1 Representing an Un-Ordered Pair of Vectors

To represent un-ordered pairs, we need to find a representation that is invariant to
the order of them. The only first order invariant is

s D uC v (1)

and the possible second order invariants are represented by

P D uvT C vuT (2)

Q D uuT C vvT (3)
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If we have s, the second order invariants can be related to each other since

ssT D .uC v/.uC v/T (4)

D �
uuT C vvT

�C �uvT C vuT
�

(5)

D QC P (6)

Thus we only need two of the three invariants for our representation. To retain the
sign of u and v, we need the first order invariant s, and we choose to use P as
the second order invariant. In related work, Herberthson et al. presented a solution
to this problem for representation of two vectors in 2D [1]. His method is based on
symmetrized outer products, which relates to P in our representation. We will extend
this work to tensors and present a solution that is valid for arbitrary dimensions of
the field.

2.2 Reconstruction of the Two Vectors from the Representation

It turns out that two vectors u and v can be reconstructed using a closed-form
expression of their first and second order invariants. Figure 1 shows that the vectors
u and v can be expressed by two orthogonal vectors a and b that are appropriately
scaled by a value ˛:

u D ˛ .aC b/ (7)

v D 1=˛ .a � b/ (8)

Inserting this into the expression of P gives

P D uvT C vuT (9)

D .aC b/.a � b/T C .a � b/.aC b/T

D 2
�
aaT � bbT

�
(10)

Recalling that a and b are orthogonal, we can identify that P here is expressed in its
eigenvector system (and ignoring the unimportant scaling factor of 2 in Eq. 10),

P D �1e1eT
1 C �2e2eT

2 (11)

Note that �2 is here negative to match the structure of Eq. 10. Note also that
regardless of the dimensionality of P there will only be two non-zero eigenvalues.
We can then identify the expressions for the eigenvectors and eigenvalues as
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v

u

a

bb

v
u/

Fig. 1 The direction of the
vectors u and v (left) can be
described by the sum and
difference of two orthogonal
vectors a and b (right)

e1 D Oa and �1 D kak2 (12)

e2 D Ob and �2 D �kbk2 (13)

which gives

a D
p

�1 e1 (14)

b D
p
��2 e2 (15)

Via Eqs. 7–8 we then get explicit expressions for u and v:

u D ˛
�p

�1 e1 C
p
��2 e2

�
(16)

v D 1=˛
�p

�1 e1 �
p
��2 e2

�
(17)

The scaling ˛ factor cannot be determined from P since it only contains products of
u and v. We will need the first order term for this (s D uC v). Since we have found
the directions of u and v we know that, regardless of the value of ˛, it is true that

s D uC v (18)

D �1 OuC �2 Ov (19)

D . Ou Ov/

�
�1

�2

�
(20)

D U�: (21)

where Ou and Ov are the normalized u and v vectors, U is a matrix holding the
components of Ou and Ov as two rows and � is a two component vector containing
the scaling factors �1 and �2. The scaling factors can then be calculated using the
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Moore-Penrose inverse,

� D U
C

s (22)

D �
UT U

��1
UT s (23)

and finally we have

u D �1 Ou (24)

v D �2 Ov (25)

For completeness we may note that by inserting Eqs. 24 and 25 into Eqs. 16 and 17
gives the relation to ˛: �1

�2
D ˛2.

3 Mean Vector-Pair Estimation from Distributions

So far we have discussed how one set of vectors u and v can be recovered from the
vector pairs’ first and second order invariants s and P. In this section we will extend
this notion to recovery of a single mean vector-pair from a distribution of vectors.

Two different distribution scenarios are discussed in this section. In the first case
we have a set of un-ordered pairs of vectors. In the second case, the vectors do not
come as pairs, but as one set containing all vectors.

3.1 Mean Vector-Pair Estimation from a Distribution
of Vector-Pairs

In the first case of vector-pairs as data, the set of unordered pairs can expressed as:

Suv D ffu1; v1g; fu2; v2g; : : : fun; vngg (26)

where fu; vg denotes an unordered pair.
The estimation of the mean u and v pair is calculated from sums of the first and

second order invariants introduced in Eqs. 1–3. The expression for s and P from
these sums of invariants is given by:

s D 1

n

nX
iD1

ui C vi (27)

P D 1

n

nX
iD1

ui vT
i C viuT

i (28)



272 C.-F. Westin and Hans Knutsson

In contrast to the previous case with only one vector-pair (in Sect. 2.2), all
eigenvalues of P will here in general be non-zero. In a least square sense P is
best represented by the eigenvectors associated with eigenvalues with the largest
magnitudes. To find representatives Ou and Ov we pick the eigenvectors, e1 and e2,
corresponding to the two largest eigenvalue magnitudes. For distributions that can
be reasonably represented by a mean vector-pair there will be only two eigenvalues
with large magnitudes, �1 > 0, and �2 < 0. Thus, in order to estimate Ou and Ov from s
and P, we insert the two eigenvalues and eigenvectors in Eqs. 16–17 and normalize.

Ou D
�p

�1 e1 C
p��2 e2

�
p

�1 � �2

(29)

Ov D
�p

�1 e1 �
p��2 e2

�
p

�1 � �2

(30)

Next, by minimizing the difference between s and a linear combination of the
representative vectors Ou and Ov we can find u and v:

min
�1;�2

jjs � .�1 OuC �2 Ov/ jj2 (31)

D min
�1;�2

jjs � . Ou Ov/

�
�1

�2

�
jj2 (32)

D min
�
jjs �U�jj2 (33)

giving the solution

� D �
UTU

��1
UTs (34)

and

u D �1 Ou (35)

v D �2 Ov (36)

3.2 Mean Vector-Pair Estimation from a Distribution
of Vectors

In the second case, we pick pairs from one mixed set that contains data from two
distributions.

Sx D fx1; x2; : : : ; xng (37)
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In practice we only need to pick the n.n�1/=2 distinct pairs, however to to simplify
the formulas below we pick all n2 possible pairs:

Sxx D ffx1; x1g; fx1; x2g; : : : fx2; x1g; fx2; x2g; : : : fxn; xngg (38)

Some of the pairs will be chosen from the same distribution and we would like to
minimize the influence of such pairs, since they will introduce errors in our model
assuming there are two different distributions. It is likely that pairs from the same
distribution are more similar than pairs from different distributions. For this reason,
we introduce similarity-dependent weights in the sums defining s and P, where the
weight wij is based on the sine of the angle between the vectors:

wij D
q

1 � .OxT
i Oxj /2 D j sin.'ij /j (39)

The expressions for our invariants as weighted sums are now given by:

s D
nX

iD1

nX
jD1

wij

w
.xi C xj / (40)

P D
nX

iD1

nX
jD1

wij

w

�
xi xT

j C xj xT
i

�
(41)

w D
nX

iD1

nX
jDi

wij (42)

Note that if all vectors are equal, all wij will be 0, however the weights based on the
normalized sum wij

w in Eq. 40 will, using limit calculus, equal 1=n2. In practice wij

is computed adding a small number � in Eq. 39. There are other ways to define the
dissimilarity weights, and the best way will likely be application dependent. On a
side note, the expression in Eq. 41 is related to variance calculation with weights
which has found applications in statistical classification. Potential connections
between our current work and statistical classification are left for interesting future
research.

To estimate the mean vector-pair u and v, from s and P, we follow the recipe
above. Again, in a least square sense, P is best represented by the eigenvectors
associated with eigenvalues with the largest magnitudes. We insert the eigenvectors,
e1 and e2, and their corresponding eigenvalues in Eqs. 29–30, solve the least squares
problem in Eqs. 31–33, and recover the scaling .�1; �2/ from Eqs. 34 to 36:

u D �1

�p
�1 e1 C

p��2 e2

�
p

�1 � �2

(43)

v D �2

�p
�1 e1 �

p��2 e2

�
p

�1 � �2

(44)
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3.3 Estimating the Amount of Samples from u and v

It is often important to estimate the number of samples that were taken from each
distribution. Weights representing these amounts can be estimated in the following
way. We start with the first order invariance sum,

s0 D 1

n2

nX
iD1

nX
jD1

xi C xj (45)

D 2

n

nX
iD1

xi (46)

where the subscript of s0 denotes unweighted summation to distinguish it from the
the weighted sum s. Next, by minimizing the difference between s0 and a linear
combination of the representative vectors we get an expression for the amount of
samples m1 and m2 from the two classes u and v respectively.

min
m1;m2

jjs0 � .uC v/jj2 (47)

D min
m1;m2

jjs0 � .m1 OuCm2 Ov/ jj2 (48)

D min
m1;m2

jjs0 � . Ou Ov/

�
m1

m2

�
jj2 (49)

D min
m
jjs0 �Umjj2 (50)

giving the solution

m D �
UTU

��1
UTs0 (51)

In summary, we have now shown how to (1) estimate the mean vector pair, and
(2) the amounts of the samples. The amounts of the samples is important for further
processing as well as for visualizing the result.

4 Tensor Neighborhoods

As described above in Sect. 2, the theory that we have derived regarding vector pairs
can be directly applied to tensors that have been “vectorized”. This implies no loss of
generality since the vectors contain all the components of the corresponding tensor
and can thus can easily be reinterpreted as a tensor.

We will apply this theory to two distinct types of tensor fields, corresponding
to the two types of vector distributions discussed above in Sect. 3. The first type of
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Two-tensor field Single-tensor field

Fig. 2 Example of a two-tensor field (left) and a single-tensor field (right)

tensor field has two tensors (a tensor-pair) defined at each spatial location (Fig. 2,
left). The second type of tensor field has one tensor defined in each location (Fig. 2,
right), and tensor-pairs can be created by picking tensors from multiple locations.

Analogous to our estimation goal of finding the mean vector from a distribution,
here we propose to do a local analysis to define the tensor distribution under a spatial
lowpass kernel or mask a.

Estimation of the mean tensor is not straightforward in the two-tensor field case
because there is no order defined, meaning that the field cannot easily be divided
into two consistent single-tensor fields. In the experiments below, pairs of tensors
are selected from a 3 � 3 spatial neighborhood defined by the lowpass mask a. The
weights of the pairs are then calculated from the mask values:

wi D ai (52)

For the single-tensor field case, all possible pairs of tensors are created from
the set of tensors under the mask. Here the weights will be a combination of the
dissimilarity-weight, and the weights from the mask a:

wij D
r

ai aj

�
1 � �OxT

i Oxj

�2� D pai aj j sin.'ij /j (53)

where xi and xj are a pair of vectorized tensors under the mask.

5 Neighborhood Averaging

It is often desirable to estimate properties representing a larger neighborhood.
Unfortunately the number of possible pairs increases quickly with the size of the
neighborhood. Instead of working with large neighborhoods directly, we can take
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advantage of the fact that the proposed representation allows s and P to be averaged.
For example in a 3D n � n � n neighborhood we have n3.n3 C 1/=2 pairs, e.g.
for n D 7 we have approximately 60,000 pairs. We can cover the same region by
constructing the representation P from a 3�3�3 neighborhood (378 pairs), followed
by spatial averaging of P with a 5�5�5 lowpass filter. Using such a 2-stage approach
the computational burden can be reduced by orders of magnitude. Of course the two
different operations are not equivalent, but in practice they often give comparable
results.

5.1 Normalized Convolution

The first stage of the proposed 2-stage estimation scheme will, in general, produce
estimates that should be given different weights in the second stage. The appropriate
weight to use is the sum of the local neighborhood weights (wij , Eq. 53), i.e. the
weight of an estimate in the first stage is at each position given by

w D
X

ij

wij (54)

When performing the neighborhood averaging operations, special care has to
be taken in incorporating the effect of the weights. We have earlier designed a
technique to handle this, normalized convolution [2,3]. A special case of normalized
convolution is normalized averaging. When averaging the representation s, s0, and P
using normalized averaging with a lowpass filter a, we also need to apply the filter
to the weights of the estimates w. The result is then obtained by then normalized by
the filtered weights:

sa D a � s
a � w

(55)

s0a D a � s0

a � w
(56)

Pa D a � P (57)

where � denotes convolution. As above, there is no need to normalize P.

6 Experiments and Results

In this section we apply the presented theory to some examples to illuminate
the strength of the approach. Examples are intended to display the potential
performance in a few distinct situations.
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Original field Noisy field Estimated u and v

Fig. 3 Example with un-ordered two-tensor field (left) with added noise (middle). Result from
estimating the two tensor representatives from the representation sa and Pa (right)

6.1 Two-Tensor Field Neighborhoods

In the first example, the two-tensor field consists of tensor pairs that have one of the
tensors isotropic, see Fig. 3 (left). A high level of noise was then added to produce
the test data (middle). Then the representation (sa and Pa) was calculated using a
3� 3 mask for defining the pairs, and a 3� 3 mask for further spatial regularization.
The reconstructed u and v field (right) is close to the original noise free field (left),
clearly showing the robustness of the algorithm.

In the second example, three fields are presented with varying angles between the
tensor pairs. Figure 4 shows the three fields where the tensor pairs have an average
angle of 60ı (top), 30ı (middle), and 15ı (lower). Again in this example a 3�3 mask
was used for defining pairs, and a 3 � 3 mask was used for subsequent averaging of
the invariants and the corresponding weight field. A slight reduction in anisotropy
can be noticed after averaging, but as in the previous example, the results are very
good.

6.2 Single-Tensor Field Neighborhoods

As mentioned above, for single-tensor field neighborhoods, the pairs of tensors
are constructed by creating all possible pairs from the tensors under the spatial
mask. When calculating the weights for this case, the weights are based on both
the dissimilarity-weights and the spatial mask as described by Eq. 53.

In the third example, the tensor field consists of two distinct areas are shown
Fig. 5 (top left), and with added noise (top right). The representation sa, s0a, and
Pa were calculated using a 3 � 3 mask for defining the pairs, and a 3 � 3 mask for
further spatial regularization.

The field s0a (lower left), shows a low-pass version of the original tensor field.
The result illustrates how standard spatial averaging would blur the edge of the data.
This results is also used to estimate the weights of u and v as described by Eq. 51.
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Original field Noisy field Estimated u and v

Fig. 4 Three examples with un-ordered two-tensor fields with different angles between the pairs
(left) with added noise (middle). Results from estimating the two tensor representatives from the
representation sa and Pa (right)

By instead using our new representation, the averaging operation will not mix the
two tensor classes. Instead two different averages are found, and relative weight of
the two classes can be calculated. Equation 51 shows that these weights are in fact
calculated from the standard tensor average field, s0a (lower left). The strength of
these weights are shown as the gray-level (darker corresponds to a higher weight)
of the ellipses representing u and v (lower right).

7 Discussion and Conclusion

In this chapter we have discussed how un-ordered pairs of tensors can be repre-
sented. The representation is based on first and second order tensor-pair invari-
ants. An eigenvector-based inverse transform is presented enabling an analytic
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Original field Noisy field

Average field s0a Estimated u and v

Fig. 5 Example with un-ordered two-tensor fields (top-left) with added noise (top-right). Result
from estimating the two tensor representatives from the representation sa , s0a and Pa (lower-right).
The relative weights from Sect. 3.3 are mapped to the grayscale of the ellipses showing u and v.
Faint ellipses correspond to low relative weight

description of the result. We have shown how the representation can be used to
estimate an average tensor-pair from a distribution of tensors, both in the case of
tensor-pair distributions and in the case of un-paired tensor distributions. Finally,
we demonstrated the potential of the approach by processing a number of simple
tensor image examples. The results show how the tensor-pair representation gives
additional valuable information about the neighborhood and consistently promotes
high robustness in the presence of noise.

Applications of the presented theory are likely to be found in areas where tensor
fields are used to describe signals and features. One such area is in diffusion MRI
(dMRI). In dMRI reconstruction of the white matter fiber architecture is complicated
by the fact that fiber bundles are not spatially separated but often are crossing or
interleaved. In the same measurement, there are then two classes of tensors, where
the average tensor has no anatomical meaning. This implies that the standard tensor
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model used in dMRI is not adequate for disentangling multiple fiber orientation, but
is designed for single orientation fiber bundles. Our proposed framework has the
potential to handle two crossing fiber directions in a new and compact manner.
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On the Choice of a Tensor Distance for DTI
White Matter Segmentation

Rodrigo de Luis-Garcı́a, Carlos Alberola-López, and Carl-Fredrik Westin

Abstract The segmentation of anatomical structures within the white matter of the
brain from DTI is an important task for white matter analysis, and has therefore
received considerable attention in the literature during the last few years. Any
segmentation method relies on the choice of a tensor dissimilarity measure, which
should be small between tensors belonging to the same region and large between
tensors belonging to different structures. Many different tensor distances have been
proposed in the literature (Frobenius, Kullback-Leibler, Geodesic, Log-Euclidean,
Hybrid: : :) for segmentation or other purposes, and there exist reasons (either
theoretical or empirical) to justify the choice of any of them. Thus, determining
which is the most appropriate tensor distance for a specific segmentation problem
has become an extremely difficult decision. In this chapter we present a study on
different tensor dissimilarity measures and their performance for white matter seg-
mentation. The study is based on the use of two different DTI atlases of human brain,
which provide a ground truth upon which the distances can be fairly compared. In
order for the comparison to be independent of the segmentation method employed,
it has been performed in terms of the separability of the different clases. Results
show the Hybrid distance to perform better than other traditional tensor dissimilarity
measures in terms of separability between classes, while the Frobenius, Kullback-
Leibler, Geodesic and Log-Euclidean distances perform similarly.
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1 Introduction

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI, also known as DTI,
Diffusion Tensor Imaging) is a medical imaging modality based on Magnetic
Resonance Imaging (MRI) which is able to quantify the anisotropic diffusion of
water mollecules in highly structured biological tissues [6, 7]. The probability
density function of the three-dimensional molecular motion is modeled, at each
voxel, by a normal distribution of 0-mean and whose covariance matrix is given
by the diffusion tensor. Currently, brain imaging is the most common application
of diffusion MRI, as the brain has a complex structure of grey matter areas
connected by white matter fibres. Diffusion MRI can be therefore employed for
the visualization of the fibre tracts in the white matter of the brain.

DTI analysis of brain structures has shown to be relevant in a number of
neurological pathologies, such as brain ischemia, multiple sclerosis or epilepsy,
among others [18, 42, 45, 46]. In schizophrenia, alterations in the diffusion in
several areas within the white matter have been found through a number of
group studies [25]. The automatic segmentation of these structures from DTI has
spurred significant research effort recently, due to its importance for these studies.
Consequently, several authors have addressed this issue in the last years, as we
briefly review in the next paragraphs.

Whatever the segmentation method employed may be, tensor field segmentation
requires the use of a certain tensor distance. In [52], Zhukov et al. define an invariant
anisotropy measure in order to drive the evolution of a level set and isolate strongly
anisotropic regions of the brain. Rousson et al. [8, 39, 40] proposed to employ a
Euclidean distance on the components of the diffusion tensor, which are arranged
as a vector. The tensor components were also considered in the same way in [14].
In [16], the local structure tensor of the tensor data was employed for segmentation.

More recent approaches to tensor field segmentation employ intrinsic tensor
dissimilarity measures in their approaches. Wiegell et al. proposed to use the
Frobenius distance, combined with the Mahalanobis tensor distance with a K-means
algorithm [51]. The Frobenius distance was also employed in [48, 53]. In [20],
Jonasson et al. defined the Normalized Tensor Scalar Product (NTSP) to quantify
tensor similarity with a great sensitivity to changes in orientation. The use of
the symmetrized Kullback-Leibler distance for tensor fields was first proposed in
[48], and later further explored in [12, 27–31, 50, 53]. Lenglet et al. introduced the
Geodesic distance in [27–29], which was also employed in [12,12,29–31]. In [1,2],
Arsigny et al. proposed the Log-Euclidean framework for tensor computations,
which was applied for DT-MRI segmentation in [5, 50]. Finally, an hybrid distance
was proposed in [13] that considers the shape and the orientation of the tensor inde-
pendently, and thus can adapt the relative importance of these two tensor properties.
In Table 1, the most relevant tensor segmentation techniques in the literature are
summarized, with special attention to the tensor distances that were employed.

The proposal of all these different tensor dissimilarity measures was motivated
by both theoretical and empirical reasons that showed limitations in the different
tensor distances. However, the proliferation of metrics and the increasing number
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Table 1 Summary of tensor segmentation methods
Technique Application Tensor distance Segmentation type

Peled et al. [37] DTI Linear, planar Quantitative analysis
(corpus callosum, and spherical (not really segmentation)
internal capsule) components

Zhukov et al. [52] DTI Diffusivity measure I1 GAC (level sets)
(regions with high Anisotrpy measure Ca
diffusivity/
anisotropy)

Rousson et al. LST Euclidean distance GAR (level sets)
[8, 39–41] (unsupervised tensor components

segmentation) as vector
Feddern et al. [16] DTI LST of the tensor data GAC

Wiegell et al. [51] DTI Combination of K-means
(talamic nuclei) tensor distance Frob-

enius and Mahalanobis
voxel distance

Jonasson et al. [20–22] DTI Normalized tensor Level set, curve
(corpus callosum, scalar product propagation based
corticospinal tract) (NTSP) on tensor distance

Wang and Vemuri [49] LST Frobenius Mumford-Shah functional
(level sets)

Wang and Vemuri [48] DTI K-L distance Chan and Vese model
LST (level sets)

Lenglet et al. [26, 28] DTI K-L distance GAR on the distance
Geodesic distance to the mean tensor

Lenglet et al. [29–31] DTI Euclidean distance GAR with Gaussian
K-L distance distribution over tensor
Geodesic distance fields

Ziyan et al. [53] DTI Frobenius distance Spectral clustering with
(thalamus nuclei) K-L distance Markovian relaxation

Eigenvectors
angular diff.

de Luis-Garcia DTI K-L distance GAR with mixtures of
and Alberola [12] (corpus callosum) Geodesic distance Gaussians on tensors

Weldeselasie and DTI Log-Euclidean Graph-cuts
Hamarneh [50] (corpus callosum K-L distance

and cardiac)
Awate et al. [4, 5] DTI Log-Euclidean Fuzzy C-means with

(cingulum, nonparametric statistical
corticospinal tract) models

de Luis-Garcia et al. DTI Hybrid distance GAR with Gaussian
[13] (corpus callosum, distributions over

corona radiata, tensor fields
cingulum: : :)

GAC geodesic active contours [9,23], GAR geodesic active regions [33], LST local structure tensor
[19, 24]

of works that claim the superiority of their respective choices make it very difficult
to assess the relative performance of all these tensor distances and, consequently,
make an appropriate decision for a specific segmentation task.
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The study of the properties of different tensor metrics has been addressed in
several works in the literature. In [35], the different measures proposed for DT-
MRI analysis were reviewed and classified according to several important properties
such as their sensitivities to changes in orientation or size, or the fulfillment of the
conditions to be a Riemannian metric. From this classification, a tensor distance
can be selected considering the requirements that may be relevant for a specific
application. A review of tensor field segmentation techniques was presented in [13]
with an important focus in the choice of the tensor distances. Rodrigues et al.
devised a semiautomatic method to define a combination of tensor distances that
better suits a given dataset. Finally, in [34] the authors investigate the properties of
two tensor distances that define a Riemann manifold from a physical point of view.

In this chapter, we investigate the behaviour of the most important tensor dis-
tances that have been employed in the literature for DT-MRI segmentation, in terms
of their ability to separate tensors belonging to different anatomical regions of inter-
est in the white matter. To that end, we employ two different DT-MRI atlases of the
human brain, as they provide a ground truth on which fair comparisons can be made.

No specific segmentation method has been employed in this chapter, as it is
the aim of this work to compare different tensor distances independently of the
chosen segmentation technique. However, the comparisons presented here are better
suited towards region-based segmentation methods, whose success depends on the
relative coherence among the tensors inside a region of interest with respect to those
in the background. Many of the segmentation DT-MRI segmentation techniques
described before are region oriented, although they have intrinsic limitations when
dealing with curved structures where tensors slowly change their orientation to
finally present a wide range of tensor values. Edge-based segmentation techniques,
on the other hand, would act locally by looking for abrupt changes in the tensor
values, independently of their homogeneity inside the region of interest. Distance
comparisons adapted for this segmentation paradigm should incorporate the desired
properties of a tensor dissimilarity measure in that context.

The remaining of the chapter is organized as follows: in the next section, we
present and provide some background on the different tensor distances that will be
studied in this work. Section 3 focuses on the techniques that will be employed
to perform the comparisons between the different dissimilarity measures. These
comparison results are provided in Section 4 together with a thorough discussion
of their implications. Finally, some conclusions are drawn in Section 5.

2 Tensor Similarity Measures

2.1 Frobenius Distance

The Frobenius distance is the most natural metric for matrices, and is defined as the
Frobenius norm of the difference of two matrices (diffusion tensors, in our case):
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d.T1;T2/ Dk T1 � T2 kFD
�
Trace

�
.T1 � T2/

T .T1 � T2/
��1=2

(1)

Wang and Vemuri employed the Frobenius norm of the difference of tensors as a
tensor distance in their segmentation approach [49]. Indeed, this is equivalent to
the consideration of the tensor as a vector with a Euclidean distance. Although the
experimental results were good, the Frobenius norm of the difference of tensors has
been considered not to be completely appropriate, as it uses the same weights for
different components of the tensor and ignores the fact that tensors are symmetric
positive-definite matrices.

2.2 Kullback-Leibler Distance

Wang and Vemuri introduced in [48] a new tensor dissimilarity measure that takes
into account the positive-definiteness of tensors and is also affine invariant. Recall-
ing that, in the context of DT-MRI, the displacement of water molecules over a time
t follows a Gaussian distribution whose covariance matrix is the diffusion tensor, it
is naturally justified to use the distance between Gaussian distributions to induce
a distance between the tensors. The most frequently used information theoretic
dissimilarity measure is the Kullback-Leibler (KL) divergence, which is defined as:

KL.p k q/ D
Z
p.x/ log

�
p.x/
q.x/

�
dx (2)

As the KL divergence is not symmetric, it is commonly symmetrized as:

J.p; q/ D 1

2
.KL.p k q/CKL.q k p// (3)

This symmetrized KL divergence is also called J-divergence. Based on it, Wang
and Vemuri proposed in [48] a dissimilarity measure for SPD tensors, given by the
square root of the J-divergence between two Gaussian distributions with zero mean
and covariances T1 and T2:

d.T1;T2/ D
p
J.p.xjT1; t/; p.xjT2; t// (4)

Taking the square root in Eq. 4 is justified because the KL divergence, and thus
twice the J-divergence, is the square distance of two infinitesimally nearby points
on a Riemannian manifold of parametrized distributions. It turns out that the J-
divergence has a simple form for the Gaussian distribution considered [48]:

d.T1;T2/ D 1

2

q
trace.T�1

1 T2 C T�1
2 T1/� 2n (5)

where n is the size of the tensors.
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2.3 Information Geodesic Distance

In order to define a new tensor dissimilarity measure, Lenglet et al. considered in
[27, 28] the statistical manifold M representing the family of three-dimensional,
zero-mean Gaussian PDFs described through the six free parameters of their
covariance matrix.1 A Riemannian metric can then be introduced in terms of the
Fisher information matrix [38] that allows for the definition of geodesic distances
on this manifold.

The geodesic distance induced by the Riemannian metric derived from the Fisher
information matrix has been investigated for several parametric distributions. If
we concentrate on the family of multivariate normal distributions with common
mean vector � but different covariance matrices T or, equivalently, on the manifold
SC.n;R/, i.e., the set of n � n real SPD (symmetric positive definite) matrices,
the information geodesic distance between any two elements T1 and T2 is given by
(theorem by S. T. Jensen, 1976, originally proved in [3]):

d.T1;T2/ D
r
1

2
trace

�
log2

�
T1
�1=2T2T1

�1=2�� D
vuut1

2

mX
iD1

log2.�i / (6)

where the �i are the m eigenvalues of the determinantal equation j�T2 � T1j D 0.
The information geodesic distance has been used for segmentation in a number

of works in the literature [12, 26, 28]. For this purpose, the mean value of the tensor
field over each region with respect to this new geodesic distance is needed, which is
also known as the Riemannian barycenter (see [27] for details).

2.4 Log-Euclidean Metrics

Even though the information geodesic distance has shown very good results for
tensor estimation and segmentation purposes, they yield in practice slow algorithms
because of their complexity. In order to overcome this limitation, the Log-Euclidean
metrics were proposed [1,2] that produce similar results but using simpler and faster
computations.

Euclidean distances (also referred to as Frobenius distances) are well adapted
to general square matrices, but they are not designed for the tensor specific case.
If Euclidean operations are performed on tensors, null or negative eigenvalues
can appear, as these Euclidean operations are not convex [2]. Besides, Euclidean
averaging of tensors produces what is called tensor swelling effect [10], meaning

1Throughout the theoretical derivation of the geodesic distance, 3 � 3 diffusion tensors are
considered.
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that the determinant of the Euclidean mean of several tensors can be larger than the
determinants of the original tensors.2

With respect to information geodesic metrics, the computational burden is related
to the intensive use of matrix inverses, square roots, logarithms and exponentials.
Besides, there is not a closed form for the tensor mean, and the computation needs
to be done in an iterative manner.

In order to define the Log-Euclidean metrics, the notions of matrix logarithm and
exponential are first needed. For any matrix M, its exponential is given by:

exp .M/ D
1X
kD0

Mk

kŠ
(7)

The matrix logarithm is defined as the inverse of the exponential. The existence and
uniqueness of the logarithm is not guaranteed for a general invertible matrix, but it is
well defined for a positive definite tensor, yielding a symmetric matrix. Conversely,
the exponential of any symmetric matrix is a positive definite tensor.

The introduction of Log-Euclidean metrics is based on the idea of defining a
novel vector space structure on tensors. It corresponds to Euclidean metrics in the
domain of logarithms. Using the Euclidean norm jj � jj on symmetric matrices, the
distance between two tensors can be written as:

d.T1;T2/ D jj log .T1/ � log .T2/jj (8)

Log-Euclidean metrics do not satisfy full affine-invariance as the Riemannian metric
introduced in the previous section. However, a number of them are invariant by
similarity, that is, orthogonal transformation and scaling. The simplest similarity-
invariant Log-Euclidean metric is given by:

d.T1;T2/ D
�
Trace

�
.log .T1/� log .T2//

2
��1=2

(9)

Log-Euclidean metrics have been mainly employed for interpolation and regulariza-
tion of tensor fields [2], but some authors have also used for segmentation purposes,
as in [4, 5, 50].

2.5 Hybrid Distance

Although the different tensor distances introduced before are mathematically well
founded, they present a major drawback. These distances cannot control the relative

2It has recently been shown that the swelling effect can actually be a desirable property. We refer
the reader to the chapter of this book devoted to this issue: O. Pasternak, N. Sochen and P.J. Basser,
Metric Selection and Diffusion Tensor Swelling.
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importance of different tensor properties such as the shape and the orientation. To
address this issue, in [13] it was proposed to treat the shape and the orientation of
the tensor independently. In order to do so, let us first consider the feature vector
K.x/ composed of the three tensor invariants proposed in [15], K D ŒK1 K2 K3�

T ,
where

K1 D trace.T/ K2 D jdev.T/j K3 D 3
p
6 det

�
dev.T/
jdev.T/j

�
(10)

where dev.T/ is the deviatoric part of tensor T:

dev.T/ D T � NT D T� 1
3

tr.T/I (11)

where NT is the isotropic part of tensor T. The three invariants, which are orthogonal,
completely describe the tensor shape. K1 represents the tensor size, while K2 and
K3 describe the amount of anisotropy and the tensor mode, respectively (fractional
anisotropy is not employed as K2 because this measure is not orthogonal to trace).
In order to describe differences between the invariants corresponding to two tensors,
Euclidean distance can be easily employed.

To unambiguously represent the orientation of the main eigenvector e1 of the
diffusion tensor, the outer product U D e1eT1 can be computed. This new tensor
indeed describes the main orientation of the diffusion tensor, and differences can be
computed using a Frobenius distance.3

Putting together the invariants and the orientation, the Hybrid distance between
two diffusion tensors is:

d.T1;T2/ D ˛jjK.T1/�K.T2/jj C .1� ˛/jjU.T1/� U.T2/jjF (12)

As can be seen in the equation, the relative importance of the invariants and the
orientation can be controlled by means of parameter ˛.

3 Tensor Distances Evaluation

3.1 DT-MRI White Matter Atlases

Two different DT-MRI atlases of the white matter of human brain were employed
in this study:

3By definition, the outer product U has null eigenvalues, and therefore Kullback-Leibler or
geodesic distances cannot be applied. Frobenius distance is thus chosen.
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• JHU MNI SS: This is a single-subject atlas (a.k.a. New Eve) with a comprehen-
sive white matter parcelation developed at Johns Hopkins University [32,47]. The
subject is a 32 years old female, and the volume size is 181� 217�181with 1 mm
resolution. This atlas is B0-distortion corrected by non-linearly warping DTI data
to a co-registered T2-weighted anatomical image. The atlas was linearly normal-
ized to ICBM-152 template (MNI space). The white matter parcellation map was
manually segmented based on FA and color (fiber orientation) information.

• UCLA 81: This second atlas, created at the University of California at Los
Angeles, is a stereotaxic probabilistic white matter atlas that fuses DTI-based
white matter information with an anatomical template (ICBM-152). The atlas is
based on probabilistic tensor maps obtained from 81 normal subjects acquired
under an initiative of the International Consortium of Brain Mapping (ICBM).
The subjects were normal right-handed adults ranging from 18 to 59 years of
age. A hand-segmented white matter parcellation map was created from this
averaged map, where deep white matter regions were manually segmented into
various anatomic structures based on fiber orientation information. All studies
were obtained on 1.5T MR units (Siemens). DT imaging data were acquired by
using a single-shot, echo-planar imaging sequence with sensitivity encoding and
a parallel imaging factor of 2.0.

3.2 Tensor Distances Evaluation

In order to study the behaviour of the different tensor dissimilarity measures, we
intend to asses how the different white matter structures are separated from their
background when choosing different tensor distances. By employing the DTI white
matter atlases described before as a ground truth, we are able to assess the suitability
of each tensor distance to separate a region of interest from the background. We
considered three regions of interest for this study: the corpus callosum, the corona
radiata and the cingulum. The suitability of each tensor distance was studied using
several analysis strategies, which we present next.

3.2.1 Kernel Target Alignment

Kernel matrices are symmetric distance matrices constructed by computing the
distance between all pairs of objects in a set [43, 44]. For a tensor volume, let us
define a labeled set S D .Ti; li / of diffusion tensors Ti with a label li . If the tensor
belongs to a region of interest, li D 1, whereas li D �1 for the background.

The kernel matrix K can be regarded as a matrix of pairwise similarity. For the
set S on N tensors, we can define the feature vector

fi D Œd.Ti;T1/; d.Ti;T2/; : : : ; d.Ti;TN/� (13)



292 R. de Luis-Garcı́a et al.

It is important to note that each feature vector represents a single tensor Ti by means
of the distances to all the tensors in the set S. Now, as shown in [36], a kernel K can
be defined as the inner-product between the feature vectors:

Kij D< fi; fj >D
X
k

d.Ti;Tk/d.Tj;Tk/ (14)

where Kij is the element in row i and column j of the kernel matrix K. In order
to perform a comparison between different tensor distances, a normalization step is
performed in the feature space, as proposed in [17]:

QKij D Kijp
KiiKjj

(15)

A method to assess the quality of a binary clustering was proposed in [11], where
Cristianini et al. defined the Kernel Target Alignment (KTA), a measure that
describes how good a kernel is with respect of a set of labeled objects. The alignment
between two arbitrary kernel matrices K1 and K2 is

KTA.K1;K2/ D < K1;K2 >Fp
< K1;K1 >F< K2K2 >F

(16)

where < A;B >FD P
ij aij bij is the Frobenius product between two matrices. In

order to measure the quality of the clustering defined by the labeled set S, we first
define a target matrix P. From the vector of labels l, the target is obtained using the
matrix product P D lT l. Now, the alignment between the kernel matrix QK and the
target matrix P describes the quality of the clustering:

KTA. QK;P/ D < QK;P >Fp
< QK; QK >F< P;P >F

(17)

For our comparison purposes, a higher KTA value for a certain tensor distance with
respect to others represents a better clustering of the tensors inside and outside the
region of interest, indicating a better separability between both regions.

3.2.2 Intra/Inter Class Distances

The KTA described before describes the quality of the clustering of tensors into
region of interest and background. In order to complement this measure, we next
define an alternative descriptor of the goodness of such a clustering. To that end, let
us consider again a set of tensors S. From that, we can compute the distance matrix
D, where Dij is the distance between two tensors,Dij D d.Ti;Tj/.

We can now describe the goodness of the binary clustering in terms of the relation
between the mean intraclass distance and the interclass distance. From the distance
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matrix D, the mean distance between tensors that belong to the region of interest
(intraclass distance) can be computed as

NdAA D
P

i

P
j Dij ��ij �LijP
i

P
j �ij � Lij (18)

where �ij D 1 if i > j and Lij D 1 if both Ti and Tj belong to the region of
interest, and 0 otherwise.

Similarly, the mean interclass distance can be computed as

NdAB D
P

i

P
j Dij ��ij � L0ijP
i

P
j �ij � L0ij

(19)

where L0ij D 1 if Ti and Tj belong to different classes, and 0 otherwise.
From the mean intraclass and the interclass distances, a descriptor of the

goodness of a clustering result depending of the distance employed can be defined,
for instance, as the ratio between these two quantities:

ˇ D
NdAA
NdAB

(20)

A clustering showing a low mean intraclass distance when compared to its mean
interclass distance is considered to represent better the uniqueness of a region of
interest than a cluster showing a higher ratio. Therefore, for a given region of
interest, the lower this ratio, the better performance of a certain tensor distance to
extract that particular region of interest.

4 Results and Discussion

In this section we provide results on the analysis of the behaviour of the different
tensor distances on the two atlases that were employed for this study. Results will
be shown, for each analysis, for both atlases, so as to increase the consistency of the
study.

First, we show in Fig. 1 the Kernel Target Aligment values for the different tensor
distances, considering the corpus callosum, corona radiata and cingulum as regions
of interest. As obtaining the KTA is computationally very expensive, 100 random
samples were drawn for both inside the regions of interest and the background,
which is the remaining of the white matter of the brain. Five repetitions were made,
and results are given as boxplots. For the hybrid distances, the number inside the
parenthesis indicates the parameter ˛ in Eq. 12.

There is a number of important findings that can be extracted from the KTA
values. First, results from the JHU and UCLA atlases are fairly coherent, which
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a b

c d

e f

Fig. 1 KTA values for the different tensor distances for the corpus callosum (top row), corona
radiata (medium row) and cingulum (bottom row), for the JHU MNI SS atlas (left) and UCLA 81
atlas (right). The background is defined as all the white matter outside the region of interest

supports the conclusions that can be derived from the study. Second, the hybrid
distance shows a better performance than the other, more traditional, tensor dis-
tances. There is an important exception, which is the performance of the Frobenius
distance for the corpus callosum. In this case, the Frobenius distance outperforms
all the other dissimilarity measures. Finally, the behaviour of the KL, Information
Geodesic and Log-Euclidean distances is very similar in this comparison.

The results shown in Fig. 1 consider as a background the whole white matter
of the brain. However, many segmentation algorithms that have been used for
anatomical structures in DT-MRI work, or could work, locally. This means that the
propagation of an evolving level set, for instance, can depend on the comparison
between the features inside the region of interest and the surrounding region,
instead of considering the whole white matter or the whole brain. A region growing
algorithm would also work this way. Then, it is interesting to find out what happens
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a b

c d

e f

Fig. 2 KTA values for the different tensor distances for the corpus callosum (top row), corona
radiata (medium row) and cingulum (bottom row), for the JHU MNI SS atlas (left) and UCLA 81
atlas (right). The background is defined as the area surrounding the region of interest, with a width
14 voxels

if the KTA is computed considering only a surrounding region as a background
instead of the whole white matter. This comparison can be seen in Fig. 2.

Interestingly, results do not differ much, in general, with respect to those in Fig. 1.
However, for the corpus callosum, the Frobenius distance decreases its performance
in a significant manner. As will be seen later, this fact is related to the distribution of
similar regions than the corpus callosum, in terms of the Frobenius distance, within
the white matter. With respect to the hybrid distance, a higher weighting in the
invariants component seems to work better for the corpus callosum, whereas almost
no difference can be found for the corona radiata or the cingulum.

Next, we show in Figs. 3 and 4 the results for the intraclass/interclass ratio
described in Sect. 3.2.2. In this case, the lower the ratio, the better the separation
between clases. It should be expected that these results confirmed previous findings,
and they partially do, while arising new questions.
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a b

c d
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Fig. 3 Intraclass/interclass distance ratios for the different tensor distances for the corpus callosum
(top row), corona radiata (medium row) and cingulum (bottom row), for the JHU MNI SS atlas (left)
and UCLA 81 atlas (right). The background is defined as all the white matter outside the region of
interest

For the corpus callosum, results show an important superiority of the hybrid dis-
tances with respect to the rest of dissimilarity measures, both for the consideration
of the whole white matter or only a surrounding region as background. Furthermore,
a higher relative weight of the invariant term improves separability, as also found in
Figs. 1 and 2. Unlike the KTA values, the intraclass/interclass ratio does not show a
good performance of the Frobenius distance for the corpus/white matter case. It is
interesting to note that in Fig. 3a and b, the ratios have, for some distances, values
above the unity, meaning that the mean intraclass is higher than the mean interclass
distance. This implies that, with these distances, there is a really bad separation
between the corpus and the background, which would make the segmentation very
complicated. However, when only a surrounding region is considered as background
(Fig. 4a, b), the values fall below 1. The reason is that in the white matter there are,
for some tensor distances, regions where the tensors are very similar to those in
the corpus, and these regions happen to be quite distant from the corpus. This is
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Fig. 4 Intraclass/interclass distance ratios for the different tensor distances for the corpus callosum
(top row), corona radiata (medium row) and cingulum (bottom row), for the JHU MNI SS atlas
(left) and UCLA 81 atlas (right). The background is defined as the area surrounding the region of
interest, with a width 14 voxels

why the ratios decrease in Fig. 4 when compared to Fig. 3, not only for the corpus
callosum but also for the other structures. Indeed, this constitutes a very important
finding, meaning that segmentation algorithms will benefit from considering only
surrounding areas instead of the whole white matter.

With regard to the relative behaviour of the different hybrid distances, the
intraclass/interclass ratio also shows a better performance of an increased weighting
for the invariants component in the corpus callosum. As for the corona radiata and
the cingulum, there appears to be a slight improvement for a lower factor, meaning
a higher relative weight of the orientation component.

A relevant point of disagreement between the KTA and the intraclass/interclass
ratio arises for the corona radiata and, especially, for the cingulum. Although there
is some discrepancy between the JHU and the UCLA atlases, there are clues that
indicate that the Frobenius, KL, Information Geodesic and Log-Euclidean distances
perform in some cases better than the hybrid distances. This effect is especially
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a

b

Fig. 5 Histograms of the tensor distances from the voxels inside an area surrounding the region
of interest (with a width of 14 voxels) and the mean tensor inside the corpus callosum, for the
different tensor distances. (a) JHU MNI SS atlas; (b) UCLA 81 atlas

important for the Frobenius distance in the cingulum where, particularly for the
region of interest/surrounding region scenario, this metric performs better than any
other distance. However, as there are important differences between both atlases
and depending on the chosen background, no clear interpretation can be made at
this point.

In order to gain a deeper insight on the behaviour of the different distances, we
next show in Figs. 5–7 the histograms of the tensor distances between the mean
tensor inside the region of interest4 and all the tensors in the region surrounding it.
This information can be useful in order to better understand the performance of the
distances for the cases where no clear statements could be made based on the results
shown before. For a certain region of interest, if most of the voxels surrounding this
region have tensor values very similar to the values inside the region of interest, then

4The mean tensor is computed according to the employed distance.
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a

b

Fig. 6 Histograms of the tensor distances from the voxels inside an area surrounding the region of
interest (with a width of 14 voxels) and the mean tensor inside the corona radiata, for the different
tensor distances. (a) JHU MNI SS atlas; (b) UCLA 81 atlas

the separation between these two classes becomes a complicated problem. A narrow
histogram, concentrated towards lower distances, will reflect this situation. On the
other hand, if for the same region of interest a more suitable tensor distance is chosen
and, consequently, the distances between the tensor values inside and outside the
region of interest spread far away from the lower end, the segmentation problem
will be easier to solve.

The histograms corresponding to the corpus callosum, in Fig. 5, reflect well
the situation described before. Whereas the distributions for the Frobenius, KL,
Information Geodesic and Log-Euclidean distances show a high number of tensors
very similar to the mean tensor, much wider distributions can be observed for the
hybrid distances, where the peaks are located at higher distances.

A similar situation is depicted in Figs. 6 and 7. Even though the results corre-
sponding to the intraclass/interclass distances for the corona radiata and cingulum
were hard to interpret and could arise doubts on the initial findings, the histograms
clearly support the statement that the use of the hybrid distances yields wider and
more favorable distributions of the distances, which should in turn improve the
segmentation.
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a

b

Fig. 7 Histograms of the tensor distances from the voxels inside an area surrounding the region
of interest (with a width of 14 voxels) and the mean tensor inside the cingulum, for the different
tensor distances. (a) JHU MNI SS atlas; (b) UCLA 81 atlas

As stated before, most of the segmentation methods designed for anatomical
structures in DT-MRI make use of spatial information. Therefore, the distribution
through the white matter of tensors that are similar or dissimilar to the tensors
in the region of interest is a key issue for the segmentation to be successful. We
investigate this aspect in Figs. 8 and 9, where axial, coronal and sagittal slices
are shown depicting the distances from each voxel to the mean tensor inside the
corpus callosum. As can be seen, when Frobenius distance is employed, the tensors
closely surrounding the corpus are very similar to the tensors inside the corpus,
except from a region just below the corpus where the red color indicates a higher
distance. In Figs. 8b–d it can be seen that the KL, Information Geodesic and Log-
Euclidean distances perform in an almost indistinguishable manner. The areas
around the corpus show tensors slightly more distant from the mean tensor than
using the Frobenius distance, but the tensors above the corpus are still very similar
to those in the corpus.
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Fig. 8 From left to right, axial, coronal and saggital slices showing the tensor distances from each
voxel to the mean tensor inside the corpus callosum (delineated in black). (a) Frobenius distance;
(b) KL distance; (c) Geodesic distance; (d) Log-Euclidean distance

Finally, as shown in Fig. 9, this behaviour changes substantially when the hybrid
distance is employed. When ˛ D 0:2 (Fig. 9a), all regions surrounding the corpus
have very distant tensors from the mean tensor inside. However, even inside the
corpus the tensors show a significant distance from the mean tensor, meaning that
this hybrid distance is extremely sensitive to small changes in the orientation of the
tensors that occur inside the corpus.

If ˛ D 0:5 (Fig. 9b), this behaviour is slightly alleviated, with tensors inside
the corpus being more similar and tensors outside the corpus being marginally less
distant from the mean tensor. Finally, when ˛ D 0:8 (Fig. 9c), the same tendency
holds. Now, the tensors inside the corpus are extremely similar, while tensors
outside are less dissimilar than before, although considerably more than when using
Frobenius, KL, Information Geodesic and Log-Euclidean distances.
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a

b

c

Fig. 9 From left to right, axial, coronal and saggital slices showing the tensor distances from each
voxel to the mean tensor inside the corpus callosum (delineated in black). (a) Hybrid distance
(˛ D 0:2); (b) Hybrid distance (˛ D 0:5); (c) Hybrid distance (˛ DD 0:8)

Altogether, the results of the different analysis performed in this section allow
the extraction of some important conclusions:

• Results from both atlases are considerably coherent, which supports the validity
of the conclusions that can be made from the analysis.

• The KL, Information Geodesic and Log-Euclidean distances show an extremely
similar behaviour. Whereas some works in the literature suggest the superiority
of some of them, our findings indicate that their performance with regard to the
separability of the different classes is almost equivalent.

• The hybrid distances show a good performance, yielding the best results with the
exception, for some cases, of the Frobenius distance. With respect of the relative
importance of the invariants and orientation components, results seem to indicate
that a higher weight of the invariants performs better for the corpus callosum,5

while no clear interpretations can be made for the corona radiata and cingulum.

5While increasing the importance of the invariants produces better results in terms of KTA and
intraclass/interclass distances, increasing the weight of the orientation increases the tensor distance
of surrounding tensors with respect to the mean tensor inside. However, as the inside variability
also increases due to the higher sensitivity of the distance to changes in orientation, this effect is
probably atenuated.
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• The interpretation of the Frobenius distance’s behaviour is more complicated.
On the one hand, it performs similarly than the KL, Information Geodesic and
Log-Euclidean distances for most of the depicted results. On the other hand, it
shows a better performance in terms of the KTA using the whole white matter as
background, and results for the intraclass/interclass distances are not consistant.
All in all, given the histograms of the distances and the views of the tensor
distance to the mean tensor inside the corpus in different slices, it appears that,
although possibly better than the KL, Information Geodesic and Log-Euclidean
distances, the Frobenius distance does not separate the different classes as nicely
as the hybrid distances do.

5 Summary

In this chapter, a comparative study between different tensor distances for DT-MRI
segmentation has been carried out. Two tensor atlases of human white matter of
the brain were employed for the study as they provide a valuable ground truth for
the comparisons. Frobenius, KL, Information Geodesic, Log-Euclidean and Hybrid
distances were compared in terms of the separability between the corpus callosum,
corona radiata and cingulum and the background.

Results, which are supported by the strong coherence between the outcome
of comparisons using both atlases, indicate that the Frobenius, KL, Information
Geodesic and Log-Euclidean distances perform in a very similar manner. These
findings are controversial to several works in the literature claiming the superiority
of some tensor dissimilarity measures. With regard to the Hybrid distance, the dif-
ferent analyses performed suggest a superior behaviour compared to the traditional
metrics.

Although the results in this study are consistent, more research needs to be done
in order to undoubtedly assess the superiority of a certain tensor distance among the
others. Future work will focus on the validation of the conclusions of this chapter
by means of a thorough comparison between tensor distances in terms of DT-MRI
segmentation results.
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Divergence Measures and Means of Symmetric
Positive-Definite Matrices

Maher Moakher

Abstract The importance of symmetric positive-definite matrices can hardly be
exaggerated as they play fundamental roles in many disciplines such as mathe-
matics, numerical analysis, probability and statistics, engineering, and biological
and social sciences. On the other hand, in the last few years there has been a
renewed interest in developing the theory of means of symmetric positive-definite
matrices. In this work we present several divergence functions for measuring close-
ness between symmetric positive-definite matrices. We then study the invariance
properties of these divergence functions as well as the matrix means based on
them. We show that the means based on the various divergence functions of a
finite collection of symmetric positive-definite matrices are bounded below by their
harmonic mean and above by their arithmetic mean. Furthermore, the means based
on the studied divergence functions of two symmetric positive-definite matrices
are given in closed forms. In particular, we show that the mean based on the
Bhattacharyya divergence function of a pair of symmetric positive-definite matrices
coincides with their geometric mean.

1 Introduction

Driven by many applications dealing with the processing of symmetric positive-
definite matrices, in the last few years, there has been a renewed interest in
developing the theory of means of symmetric positive-definite matrices, see e.g.,
[2, 4, 6, 15, 19]. We mention in particular the notion of metric-based means
which has been successfully used in many applications that require the averaging,
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interpolation, regularization, segmentation, classification and clustering of datasets
consisting of positive-definite matrices. Such is the case for the processing of
diffusion-tensor magnetic resonance imaging (DT-MRI) [3, 11, 17]. In the mean
time, some divergence measures of symmetric positive-definite matrices have been
successfully used, and have become more and more popular, in measuring the
similarities between such matrices [17, 18, 21, 22]. These divergence functions, as
we shall see, can be used instead of distance functions as they share with them many
nice properties and in some cases can be easily computed.

The notion of “divergence function” was introduced in 1930 by Mahalanobis to
measure the discrimination between two correlated multivariate distributions [13].
Since then, closeness between two probability distributions p and q on an event
space ˝ is usually measured by a divergence function (also called dissimilarity
measure). To cite but a few, we mention here the Kullback-Leibler divergence [10]

KL.p; q/ D
Z

˝

p.x/ ln
p.x/

q.x/
dx; (1)

and the Bhattacharyya divergence [5]

B.p; q/ D � ln
Z

˝

p
p.x/q.x/dx: (2)

Now, when the distributions p and q are n-dimensional multivariate normal
distributions with means a and b, and (symmetric positive-definite) covariance
matrices A and B , the Kullback-Leibler divergence (1) becomes [9]

KL.p; q/ D 1

2

�
.a � b/TB�1.a � b/� nC tr.B�1A/ � ln det.B�1A/

�
; (3)

and the Bhattacharyya divergence (2) becomes [9]

B.p; q/ D 1

4
.a � b/T .AC B/�1.a � b/C 1

2
ln

det 1
2
.AC B/p

detA detB
; (4)

where the superscript T indicates the transpose and tr denotes the trace. Furthermore,
if the normal distributions p and q have zero means, i.e., when a D b D 0, the
Kullback-Leibler divergence reduces to

KL.p; q/ D 1

2

�
tr.B�1A/ � n � ln det.B�1A/

�
; (5)

and the Bhattacharyya divergence reduces to

B.p; q/ D 1

2
ln

det
1

2
.AC B/

p
detA detB

: (6)
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In what follows, we shall use the expressions given in the right hand sides of (5)
and (6) as definitions of two divergence functions between A and B in the space
of symmetric positive-definite matrices. We will introduce in Sect. 3 another diver-
gence function on this space. We then study invariance properties of these diver-
gence functions as well as means based on them. But before we proceed, we fix some
notations and give some background materials on divergence functions and means.

Let M .n/ be the linear space of n � n real matrices, and let GL.n/ denote
the group of invertible matrices in M .n/. The space M .n/ is endowed with the
Frobenius inner product defined by hA;Bi D tr.ATB/. The associated norm is
kAk D .tr.ATA//1=2.

A matrix A 2 M .n/ is symmetric if AT D A. A symmetric matrix A 2 M .n/

is said to be positive semidefinite if xT Ax � 0 for all x 2 R
n and positive definite

if in addition it is invertible. Let S .n/ be the space of symmetric matrices in M .n/

and P.n/ denote the set of symmetric positive-definite matrices in M .n/. It is well
known that P.n/ is an open convex cone. By a cone we mean a set K satisfying
K CK � K and tK � K for all t > 0. Finally, on S .n/ there is a natural partial
order, called the Löwner partial order, which is defined by A � B if B � A is
positive semidefinite and A < B if B �A is positive definite.

Definition 1. A divergence function on P.n/ is a non-negative functionD.�; �/ on
P.n/�P.n/ which vanishes only on the diagonal. That is for all A andB in P.n/

we have D.A;B/ � 0 andD.A;B/ D 0 if and only if A D B .

Remark 1. The divergence is almost a distance function except that it needs not to
be symmetric with respect to its arguments nor to satisfy the triangle inequality. In
some sense, a divergence function is a generalization of squared distances.

Following Bregman [7], given a convex and differentiable function one can
construct a divergence function called Bregman divergence.

Proposition 1. Let f WP.n/! R be a differentiable and strictly convex function.
Then

Bf .A;B/ D f .A/� f .B/ � hrf .B/; .A � B/i; (7)

is a divergence function on P.n/.

The non negativity of the Bf .�; �/ is a consequence of the convexity of f , see e.g.
[20, Theorem 25.1]. Furthermore, by the strict convexity of f we conclude that
Bf .A;B/ vanishes only when A D B .

We recall that the mean relative to a distance function d.�; �/ on P.n/ is defined

as the minimizer of the sum of the squared distances
NX
iD1

d.Pi ; P /
2, over all P

in P.n/. When instead of a distance function we use a divergence function for
measuring closeness between two symmetric positive-definite matrices we can
introduce the notion of divergence-based means. But because a divergence function
is in some sense a generalization of a squared distance and the lack of symmetry,
we propose the following definitions of divergence-based means.
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Definition 2. We define the right mean of a finite set of symmetric positive-
definite matrices P1; � � � ; PN , relative to a divergence function D.�; �/, to be the

symmetric positive-definite matrix that minimizes F r.P / D
NX
iD1

D.Pi ; P /, over all

P in P.n/.
Similarly, we define the left mean of P1; � � � ; PN , relative to D.�; �/, to be the

symmetric positive-definite matrix that minimizes F l.P / D
NX
iD1

D.P;Pi /, over all

P in P.n/.

Of course, when the divergence functionD.�; �/ is symmetric the right and left means
coincide and in this case we simply use the term mean. We note that when the
divergence function is not symmetric one can define a mean, relative to D.�; �/,
by the symmetric positive-definite matrix that minimizes over all P in P.n/ the
function F l.P /C F r.P /. This is exactly the mean relative to the symmetrized
version of the divergence function D.A;B/ defined by .D.A;B/ C D.A;B//=2.
Other (non trivial) symmetrization procedures, such as the one discussed in Sect. 4,
can also be used.

In the sequel we present several divergence functions for measuring closeness
between symmetric positive-definite matrices. We then study the invariance proper-
ties of these divergence functions as well as the matrix means based on them.

2 Bhattacharyya Divergence

The Bhattacharyya divergence of two symmetric positive-definite matrices is
defined as

DB.A;B/ D ln
det.ACB/

2n
p

detA detB
: (8)

It is convenient to write the above as

DB.A;B/ D ln
det.A4B/
det.A#B/

; (9)

where A4B D 1
2
.A C B/ is the arithmetic mean of A and B , and A#B is their

geometric mean given by one of the following equivalent expressions (see e.g., [1,
4, 15])

A#B D A1
2 .A�

1
2 BA�

1
2 /

1
2 A

1
2 D A.A�1B/ 12 D .BA�1/ 12 A (10)

D B 1
2 .B� 12 AB� 12 / 12 B 1

2 D B.B�1A/ 12 D .AB�1/ 12 B: (11)

Proposition 2. The function defined by (8) is a symmetric divergence function on
the space of symmetric positive-definite matrices.
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Proof. The matrix geometric�arithmetic mean inequality states that for all matrices
A and B in P.n/ we have [1]

A#B � A4B; (12)

with equality holds if and only if A D B . Therefore, we deduce that1 det.A#B/ �
det.A4B/, and since the logarithm is a monotone increasing function we obtain

ln
det.A4B/
det.A#B/

� 0:

Alternatively, using (10)2 we rewrite (9) as

DB.A;B/ D ln
det

�
1

2
.I C A�1B/

�

detŒ.A�1B/ 12 �

D ln
nY
iD1

�
1C �i
2
p
�i

�
D ln

nY
iD1

1

2

�p
�i C 1p

�i

�
;

where �i , i D 1; : : : ; n are the (positive) eigenvalues of A�1B . Since all factors in
the product are bigger than 1, it follows that DB.A;B/ � 0 and that equality to 0
holds if and only if all factors are equal to 1, or equivalently A D B . ut

We note that the Bhattacharyya divergence satisfies the following desirable
properties that one would expect from a divergence function on P.n/.

Proposition 3. The Bhattacharyya divergence function (8) satisfies:

1. Invariance under inversion

DB.A
�1; B�1/ D DB.A;B/; 8A;B 2P.n/:

2. Invariance under congruence transformations

DB.CAC
T ; CBCT / D DB.A;B/; 8A;B 2P.n/;8C 2 GL.n/:

These properties follow from the fact that the arithmetic and geometric means of
matrices in P.n/ satisfy the stated invariances [15]. In some applications it is
important to have the divergence (or the distance) between two symmetric positive-
definite matrices equal to that between their inverses [16]. Also, invariant under

1We use the fact that if P;Q 2 P.n/ are such that P � Q, then I � P�

1
2 QP�

1
2 . Form which

it follows that all eigenvalues of P�

1
2 QP�

1
2 are bigger than one and hence detP � detQ.
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congruent transformation is desirable as it expresses invariance under change of
coordinate system.

Remark 2. The Bhattacharyya divergence function is not a distance as the triangle
inequality may not be satisfied even in the scalar case. For two positive numbers a
and b we have DB.a; b/ D ln aCb

2
p
ab

whereas DB.a; 1/CDB.1; b/ D ln .aC1/.bC1/
4
p
ab

.

If we choose a and b such that a < 1 < b, then the triangle inequality does not
hold.

The Bhattacharyya divergence is closely related to the Riemannian metric on
P.n/ given by gP .X; Y / D tr.P�1XP�1Y /, which is defined for all X and Y on
the tangent space to P.n/ at the base point P . In fact, the following Proposition
shows that the Bhattacharyya divergence behaves as the Riemannian distance for
sufficiently close matrices.

Proposition 4. For all X , Y in S .n/ and any P in P.n/ we have

@2

@s@t
DB.P; P C tX C sY /

ˇ̌
ˇ̌
tDsD0

D 1

4
tr.P�1XP�1Y /:

Proof. We note that the derivative ofDB.P; P C tX C sY / with respect to t writes

@

@t
DB.P; PCtXCsY / D

@

@t
det

�
P C 1

2
tX C 1

2
sY

�

det

�
P C 1

2
tX C 1

2
sY

� �1
2

@

@t
det.P C tX C sY /

det.P C tX C sY / :

By recalling that

@

@t
det.P C tC / D detP

@

@t
det.In C tCP�1/ D detP tr.CP�1/;

we obtain

@

@t
det

�
P C 1

2
tX C 1

2
sY

�

det

�
P C 1

2
tX C 1

2
sY

�

ˇ̌
ˇ̌
ˇ̌
ˇ̌
tD0

D 1

2
tr

 
X

�
P C 1

2
sY

��1!
;

and similarly

@

@t
det.P C tX C sY /

det.P C tX C sY /

ˇ̌
ˇ̌
ˇ̌
ˇ
tD0

D tr.X.P C sY /�1/:
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Finally, by noting that @
@s
.C.s//�1 D �.C.s//�1 @

@s
C.s/.C.s//�1, it follows that

@2

@s@t
DB.P; P C tX C sY /

ˇ̌
ˇ̌
tDsD0

D 1

4
tr.P�1XP�1Y /: ut

2.1 Bhattacharyya Divergence-Based Mean

Proposition 5. The mean relative to the Bhattacharyya divergence of a finite set
of matrices P1; : : : ; PN in P.n/ is given by P in P.n/ that solves the nonlinear
matrix equation

1

N

NX
iD1
.P C Pi/�1 D 1

2
P�1: (13)

Proof. We start by recalling that the condition of optimality of a real-valued
function g defined on the nonlinear space P.n/ is given by the vanishing of its
gradient. The gradient of g.P / is the unique element rg.P / of S .n/ (the tangent
space to P.n/ at P ) such that

d

dt
g.P C tX/

ˇ̌
ˇ̌
tD0
D hrg.P /;Xi; 8X 2 S .n/:

The derivative of DB.Pi ; P / in the direction X in S .n/ is

d

dt
DB.Pi ; P C tX/

ˇ̌
ˇ̌
tD0

D d

dt

�
ln

�
det

1

2
.Pi C P C tX/

�
� 1
2

ln.det.Pi / det.P C tX//
	 ˇ̌
ˇ̌
tD0

D tr

�
X

�
.Pi C P/�1 � 1

2
P�1

��
:

Therefore, the gradient of
NX
iD1

DB.Pi ; P / is
NX
iD1
.P C Pi/�1 � 1

2
NP�1, and hence

the mean relative to the Bhattacharyya divergence satisfies the nonlinear matrix
equation (13). ut
Corollary 1. The Bhattacharyya divergence-based mean of two matrices A and B
in P.n/ is given by their geometric mean A#B .

Proof. To prove this we need to show that A#B satisfies the nonlinear equation

.P C A/�1 C .P C B/�1 D P�1:
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Fig. 1 Plots of the functions 1=.x C xi /, i D 1; : : : ; 5 (dashed lines), 1
5

P5
iD1 1=.x C xi / (blue

line) and 1
2x

(red line), where x1 D 5, x2 D 10, x3 D 13, x4 D 18 and x5 D 20. The
Bhattacharyya mean of the xi ’s is the intersection of the blue and red lines

Left multiplication of the above by .P C A/ followed by right multiplication by
.P C B/ and after simplification yields the equation P D AP�1B , whose unique
solution in P.n/ is of course A#B . ut

In general, the Bhattacharyya divergence-based mean of more than two symmet-
ric positive-definite matrices cannot be obtained in closed form. In the scalar case,
the Bhattacharyya divergence-based mean satisfies the equation

1

N

NX
iD1

1

x C xi D
1

2x
; (14)

which can be written as a polynomial equation of degreeN . The mean which is the
positive root of this polynomial equation cannot be given in closed form for N > 4.
For a graphical illustration of the solution of (14) see Fig. 1.

Proposition 6. The mean MB.P1; : : : ; PN / relative to the Bhattacharyya diver-
gence of a finite set of matrices P1; : : : ; PN in P.n/ satisfies

H .P1; : : : ; PN / �MB.P1; : : : ; PN / � A .P1; : : : ; PN /; (15)

where

H .P1; : : : ; PN / D N
"

NX
iD1

P�1i

#�1
; A .P1; : : : ; PN / D 1

N

NX
iD1

Pi ;

are the harmonic and arithmetic means of P1; : : : ; PN .
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Proof. Form (13) and the harmonic�arithmetic mean inequality

H .P1; : : : ; PN / � A .P1; : : : ; PN /;

we obtain

1

2
P�1 D 1

N

NX
iD1
.P C Pi/�1 � N

"
NX
iD1
.P C Pi/

#�1
;

which after inversion and simplification yields the second inequality in (15). Now
again from the harmonic�arithmetic mean inequality we have 4.P C Pi /

�1 �
P�1 C P�1i . Then using (13) we obtain

2P�1 D 4

N

NX
iD1
.P C Pi/�1 � P�1 C 1

N

NX
iD1

P�1i :

After simplification and inversion of this inequality we get the first inequality
in (15). ut

To solve the nonlinear (13) we used the two fixed-point iterations

(
P .0/ DH .P1; : : : ; PN /;

P .kC1/ D F.P .k//; k D 0; 1; : : :

(
Q.0/ DH .P1; : : : ; PN /

�1;
Q.kC1/ D G.Q.k//; k D 0; 1; : : :

where

F.P / WD N

2

"
NX
iD1
.P C Pi/�1

#�1
; G.Q/ WD 2

N

NX
iD1
.Q�1 C Pi/�1:

The first fixed-point algorithm converges to the Bhattacharyya mean and the second
one converges to the inverse of the Bhattacharyya mean. Extensive numerical
experiments showed that both algorithms converge rapidly to their fixed point.

3 Modified Bhattacharyya Divergence

Motivated by the nice expression (9) that we gave for the Bhattacharyya divergence,
we were interested to see whether the function

.A;B/ 7! tr.A4B/� tr.A#B/
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defines a divergence function on P.n/. Indeed, by using the geometric�arithmetic
mean inequality for matrices we can show that this function is positive. Furthermore,
this function vanishes if and only if A D B . For simplicity, in the following, we
introduce the slightly modified version

DM.A;B/ D tr.A4B/� tr.A
1
2 B

1
2 /; (16)

which coincides with the aforementioned divergence function when the matrices A
and B commute.

Proposition 7. The function defined by (16) is a symmetric divergence function on
the space of symmetric positive-definite matrices.

Proof. The divergence function (16) can be written as

DM.A;B/ D 1

2
tr..A

1
2 � B 1

2 /2/ D 1

2
kA1

2 � B 1
2 k2; (17)

which shows that it is always positive and equal to zero if and only if A and
B are equal. Because of (17) we shall call this divergence function the modified
Bhattacharyya divergence. ut
Proposition 8. The modified Bhattacharyya divergence satisfies the relaxed trian-
gle inequality

DM.A;B/ � 2.DM.A; C /CDM.C;B//; 8A;B;C 2P.n/:

Proof. As DM.A;B/ D 1
2
kA1

2 � B 1
2 k2, it follows from the triangle inequality for

the Frobenius norm that

p
DM.A;B/ �

p
DM.A; C /C

p
DM.C;B/

which when squared yields

DM.A;B/ � DM.A; C /CDM.C;B/C 2
p
DM.A; C /DM.C;B/:

The results follows by use of the geometric�arithmetic mean inequality

p
DM.A; C /DM.C;B/ � 1

2
.DM.A; C /CDM.C;B//: ut

We note that the modified Bhattacharyya divergence function is not invariant
under inversion, i.e., DM.A

�1; B�1/ need not to be equal to DB.A;B/ in general.
It is not difficult to show that the modified Bhattacharyya divergence function is
indeed invariant under congruence transformations.
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Proposition 9. The modified Bhattacharyya divergence function (16) is invariant
under congruence transformations:

DM.CAC
T ; CBCT / D DM.A;B/; 8A;B 2P.n/;8C 2 GL.n/:

3.1 Mean Based on the Modified Bhattacharyya Divergence

Proposition 10. The mean relative to the modified Bhattacharyya divergence, of a
finite set of matrices P1; : : : ; PN in P.n/ is given by

 
1

N

NX
iD1

P
1
2

i

!2
: (18)

This proposition follows directly from the fact that the square root of the
mean relative to the modified Bhattacharyya divergence is the arithmetic mean
of the square root of the Pi ’s. Furthermore, it is straightforward to show that the
mean relative to the modified Bhattacharyya divergence, of a finite set of matrices
P1; : : : ; PN in P.n/ is bounded from below by their harmonic mean and from
above by their arithmetic mean.

4 Kullback-Leibler Divergence

The Kullback-Leibler divergence of two symmetric positive-definite matrices is
defined as

DKL.A;B/ D tr.B�1A � In/� ln det.B�1A/: (19)

Proposition 11. The divergence function defined by (19) is the Bregman divergence
associated with the log-barrier function f .A/ D � ln detA.

Proof. The Bregman divergence associated with the above function is

f .A/ � f .B/ � hrf .B/; A � Bi D � ln detAC ln detB C tr.B�1.A � B//
D � ln det.B�1A/C tr.B�1A� In/: ut

This divergence function (19) is not symmetric. It can be symmetrized in many
different ways. For instance, one can symmetrize it by simply adding DKL.A;B/

andDKL.B;A/ to obtain the divergence function

Ds
KL.A;B/ D tr.B�1AC A�1B � 2In/ D trŒ.A � B/.B�1 �A�1/�; (20)
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which, following the literature on divergence of probability distributions, we call it
the Jeffreys divergence [8]. Cauchy’s inequality implies that

Ds
KL.A;B/ � kA � Bk � kB�1 �A�1k �

1

2
.kA � Bk2 C kB�1 �A�1k2/:

Another way to symmetrize (19) is to consider the function

DJS.A;B/ D 1

2
.DKL.A;A4B/CDKL.B;A4B//: (21)

which, by analogy to the probability distribution case, we call the Jensen-Shannon
divergence [12, 14]. A simple calculation shows that DJS.A;B/ D DB.A;B/. It
is worthy to note that this is not true for the probability distribution setting, i.e.,
1
2
.KL.p; 1

2
.p C q//CKL.q; 1

2
.p C q/// is in general different from B.p; q/.

Proposition 12. The function defined by (20) is a symmetric divergence function
on the space of symmetric positive-definite matrices.

Proof. As A and B are symmetric matrices there exists an invertible matrix C that
simultaneously diagonalizes A and B

A D Cdiag.�1; : : : �n/C T ; B D Cdiag.�1; : : : ; �n/C T ;

where�i and�i i D 1; : : : ; n are the (positive) eigenvalues ofA andB , respectively.
Then

.A� B/.B�1 �A�1/ D Cdiag

�
.�1 � �1/2
�1�1

; : : : ;
.�n � �n/2
�n�n

�
CT ;

and hence it follows that (20) is non negative and equal to zero if and only if A and
B are equal. ut
Proposition 13. The symmetrized Kullback-Leibler divergence (20) satisfies the
following invariance properties:

1. Invariance under inversion

Ds
KL.A

�1; B�1/ D Ds
KL.A;B/; 8A;B 2P.n/:

2. Invariance under congruence transformations

Ds
KL.CAC

T ; CBCT / D Ds
KL.A;B/; 8A;B 2P.n/;8C 2 GL.n/:



Divergence Measures and Means of Symmetric Positive-Definite Matrices 319

4.1 Kullback-Leibler Divergence-Based Mean

Proposition 14. The right mean relative to the Kullback-Leibler divergence (19),
of a finite set of matrices P1; : : : ; PN in P.n/ is given by their arithmetic mean.

Proof. The derivative of DKL.Pi ; P / in the direction X in S .n/ is

d

dt
DKL.Pi ; P C tX/

ˇ̌
ˇ̌
tD0
D � tr.XP�1.PiP�1 � In//:

Therefore, the gradient of
NX
iD1

DKL.Pi ; P / is �P�1
 

NX
iD1

PiP
�1 �NIn

!
, which

vanishes when P is the arithmetic mean of P1; : : : ; PN . ut
Proposition 15. The left mean relative to the Kullback-Leibler divergence (19), of
a finite set of matrices P1; : : : ; PN in P.n/ is given by their harmonic mean.

Proof. The derivative of DKL.P; Pi / in the direction X in S .n/ is

d

dt
DKL.P C tX; Pi /

ˇ̌
ˇ̌
tD0
D tr.X.P�1i � P�1//:

Therefore, the gradient of
NX
iD1

DKL.P; Pi / is
NX
iD1

P�1i �NP�1, which vanishes

when P is the harmonic mean of P1; : : : ; PN . ut
Proposition 16. The mean relative to the symmetrized Kullback-Leibler divergence
(20), of a finite set of matrices P1; : : : ; PN in P.n/ is given by the geometric mean
of the arithmetic and harmonic means of P1; : : : ; PN .

Proof. The derivative of Ds
KL.P; Pi / in the direction X in S .n/ is

d

dt
Ds

KL.P C tX; Pi /
ˇ̌
ˇ̌
tD0
D tr.X.P�1i � P�1PiP�1//:

Therefore, the gradient of
NX
iD1

Ds
KL.P; Pi / is

NX
iD1
.P�1i � P�1PiP�1/, which van-

ishes when
PN

iD1 P�1i D P�1
PN

iD1 PiP�1, i.e., when P is the geometric mean of
the arithmetic and harmonic means of P1; : : : ; PN . ut

This is just another proof that the geometric mean of two symmetric
positive-definite matrices is also the geometric mean of their arithmetic and
harmonic means [17]. Therefore, the mean M s

KL.P1; : : : ; PN / relative to the
symmetrized Kullback-Leibler divergence (20) of P1; : : : ; PN is bounded from
below by 2.A .P1; : : : ; PN /

�1 C H .P1; : : : ; PN /
�1/�1 and from above by

1
2
.A .P1; : : : ; PN /CH .P1; : : : ; PN //.
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5 Conclusion

In this chapter we used some divergence functions for measuring the similarities
between probability distributions to define divergence functions on the space of
symmetric positive-definite matrices. We showed that some of these divergence
functions are invariant under inversion and under congruent transformations which
is an important property to have in certain applications. We then used these
divergence functions to define means of symmetric positive-definite matrices. We
presented numerical algorithms for computing a divergence-based mean when a
closed-form expression cannot be obtained. We showed that all these divergence-
based means of a finite number of symmetric positive-definite matrices is always
bounded below and above by their harmonic and arithmetic means, respectively.
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Metric Selection and Diffusion Tensor Swelling

Ofer Pasternak, Nir Sochen, and Peter J. Basser

Abstract The measurement of the distance between diffusion tensors is the
foundation on which any subsequent analysis or processing of these quantities,
such as registration, regularization, interpolation, or statistical inference is based.
Euclidean metrics were first used in the context of diffusion tensors; then geometric
metrics, having the practical advantage of reducing the “swelling effect,” were
proposed instead. In this chapter we explore the physical roots of the swelling effect
and relate it to acquisition noise. We find that Johnson noise causes shrinking of
tensors, and suggest that in order to account for this shrinking, a metric should
support swelling of tensors while averaging or interpolating. This interpretation
of the swelling effect leads us to favor the Euclidean metric for diffusion tensor
analysis. This is a surprising result considering the recent increase of interest in the
geometric metrics.

1 Introduction

Metric selection defines how we compare entities and is the basic step for most,
if not all, data processing methods. In diffusion tensor imaging (DTI), the entity
of interest is the diffusion tensor [7], and a metric for diffusion tensors has to be
explicitly provided or implicitly assumed for all related image processing, including
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averaging, interpolation, registration, clustering and any statistical inference per-
formed on the tensor quantities. DTI was introduced almost 20 years ago, and in
that time the method has successfully delineated white matter structures in the brain,
recognized many types of brain disorders, and established connectivity measures
to help us better understand brain function [3]. As the uses of DTI increase, the
accuracy of the measurements becomes more important; researchers would now like
to distinguish subtle differences reflected in DTI-derived quantities, or that require
the grouping of a large cohort of subjects to increase the significance of the observed
results [18]. Making an appropriate metric selection therefore becomes more critical
in order to address a wide variety of clinical, biological and neuroscience questions.

A rotation-invariant Euclidean metric for diffusion tensors was initially proposed
as part of the tensor-variate statistical analysis framework [6]. It was followed by
the introduction of affine-invariant geometric metrics for diffusion tensors that were
designed to account for tensors having only positive eigenvalues, and which had the
practical advantage of reducing the “swelling effect” [8, 13, 19, 22, 25]. Swelling is
described as an increase in the determinant of a tensor, obtained by interpolating or
averaging tensors with a lower determinant.

In our previous work we were able to link a Euclidean metric with diffusion
tensors through the expected distribution caused by thermal acquisition noise [24].
At the same time our theoretical framework predicted that geometric metrics, such
as the Affine-invariant metric and the Log-Euclidean metric, would cause bias in
diffusion tensor estimations and processing. Nevertheless, there is one aspect—
swelling—in which the geometric metric has consistently been shown to provide
superior results compared with the Euclidean metric [2]. In this chapter we extend
our previous work to find why swelling occurs in the Euclidean analysis; how is
it circumvented using the geometric metrics; and which of these two approaches is
more appropriate for the analysis of diffusion tensors. The chapter briefly introduces
diffusion tensor metrics, the problem of metric selection, and tensor swelling. In
Sect. 3 we discuss the determinant and trace as invariants of the different metrics,
and provide physical considerations for their preservation. In Sect. 4 we relate
the invariants to the swelling problem through the effect of acquisition noise,
and demonstrate that trace preservation through the Euclidean metric reduces
statistical biases which are encountered when preserving the determinant using the
geometric metrics. We conclude in Sect. 5, and provide insights into possible future
improvements to diffusion metrics.

2 Riemannian Metrics for Diffusion Tensors

A Riemannian metric, G.x/ D fgij .x/g, defines the infinitesimal distance over a
Riemannian manifold [11] as:

ds2 D dxT G.x/dx;
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where x is the coordinate of a point on the manifold for a chosen coordinate system
or the units in which the tensor is measured. Any positive-definite and symmetric
metric is admissible. The distance function is defined as the geodesic, i.e., the
shortest path on the manifold. To define the geometric distance between tensors,
a metric and a local coordinate system for tensor representation are chosen.

2.1 The Euclidean and Geometric Metrics

Two main families of Riemannian metrics are commonly used with diffusion
tensors: the Euclidean metric family and the geometric metric family. The Euclidean
family places the diffusion tensors on a Euclidean manifold and its most common
member defines the metric to be a constant G.x/ D I, resulting in

ds2 D t r..dD/T dD/;

where D is the tensor coordinates in the canonical tensor coordinate system, and t r
denotes the matrix trace, which is equivalent to summing the eigenvalues:

t r.D/ D
X
i

�i :

The geodesic between any two tensors, D1 and D2, with this metric, is simply a
straight line, or the Euclidean distance

DistEuc.D1;D2/ D jjD1 �D2jj ; (1)

where jj � jj denotes the Frobenius norm. The Euclidean metric is defined over
the entire space of symmetric matrices and is rotation-invariant, which makes it
invariant for the selection of orthogonal coordinates, but not for the selection of
non-orthogonal tensor coordinate systems.

The geometric metric restricts the distance function to be affine-invariant (which
includes rotation, scale, shear, and inversion invariance), and operates only on
tensors belonging to the space of positive definite symmetric matrices, SC [8, 13,
14, 19, 22, 25]. The Affine-invariant metric [25], a Riemannian metric that satisfies
these requirements, has an infinitesimal distance [21]

ds2 D t r..D�1dD/2:

Since this distance is affine-invariant it does not depend on the choice of tensor
coordinate system. The corresponding geodesic is found by integration [21]:

DistAff.D1;D2/ D
q
t r
�
log2.D�11 D2/

�
: (2)
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The notation log.D/ stands for the matrix logarithm. The Log-Euclidean metric
with its corresponding geodesic [2],

DistLogEuc D jjlog.D1/� log.D2/jj ; (3)

was proposed as an efficient approximation for the computationally demanding
Affine-invariant metric.

2.2 Metric Selection

In our previous work we showed that the Euclidean metrics are related to a
normal distribution and that the geometric metrics are related to a log-normal
distribution [24]. We further showed that many of the relevant sources of variability
in the acquisition lead to a normal distribution of the diffusion coefficients or any
linear combination of them. We concluded that an unbiased estimator for diffusion
quantities should be based on the Euclidean metric, and demonstrated this point with
synthetic and real datasets where diffusivity and variability estimations were shown
to be biased when using a geometric metric, and less so when using the Euclidean
metric. This lead to the conclusion that the Euclidean metric is a more appropriate
choice for diffusion tensor analysis.

But in practice, previous studies pointed out that the main effect of selecting a
geometric metric rather than a Euclidean metric is encountered when interpolating
or averaging between two anisotropic tensors [8]. The Euclidean metric does not
preserve the determinant (which is proportional to the volume of the diffusion
ellipsoid) and, as a result, the interpolated tensor may have a determinant larger
than the initial tensors, i.e., it may be “swollen.” With the introduction of the
Affine-invariant and Log-Euclidean metrics it was shown that the swelling effect
is reduced [2]. In practice, the swelling effect is usually obviated by applying piece-
wise smoothed operators, or pre-segmentation that will avoid interpolating initially
distant tensors [14]. In theory, however, it is still interesting to understand why the
swelling effect occurs.

3 Determinant Versus Trace

The determinant of the diffusion tensor is proportional to the volume of the diffusion
ellipsoid. It is a rotation-invariant measure, and is equivalent to the product of the
eigenvalues:

det.D/ D
Y
i

�i :
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Fig. 1 Determinant Versus Trace. All blue tensors have the same trace while all red tensors have
the same determinant as the tensor on the left. Tensors with a preserved trace have a higher volume
(swollen) than those with a preserved determinant

It was noticed early on that the geometric metrics preserve the determinant of
interpolated tensors, while a Euclidean metric preserves the trace of the tensors [8].
Figure 1 demonstrates the difference between preserving the trace and preserving
the determinant. All blue ellipsoids have the same trace (tr D 0:8 � 10�3 mm2/s),
while all red ellipsoids have the same determinant (det D 0:24 � 10�3 .mm2/s)3).
Clearly both trace and determinant do not preserve the fractional anisotropy (FA),
as the ellipsoids vary from elongated to isotropic. When preserving the trace,
the tensors are indeed more “swollen,” i.e., their volume, or determinant grows.
Deciding between the geometric metric and the Euclidean metric therefore first
requires preference for trace over determinant preservation.

3.1 Physical Considerations

The Einstein equation for free diffusion caused by Brownian motion establishes the
fundamental defining relationship between the diffusion coefficient and the mean-
squared displacement along an axis [10]:

�2.t/ D EŒ.xt � x0/2� D 2dt ; (4)

where E is the expectation operator. The position along the axis at time t is xt ;
x0 is the position at the origin. This relationship defines the diffusion coefficient,
d , as proportional to the variance of particle displacements, �2.t/, at time t , and
arises from the normal distribution of particles expected for Brownian motion,
xt � N.x0; �2.t//. The diffusion tensor is a 3D generalization of the diffusion
coefficient [9]: it compactly quantifies the variance and covariance of particle dis-
placements along any axis, with eigenvalues that are the diffusion coefficients along
a set of three orthogonal principal axes, described by the eigenvectors and aligned
with the maximal variance (or maximal diffusivity) orientations [5]. Therefore the
diffusion coefficient, any element of the diffusion tensor, the eigenvalue of the
diffusion tensor, and the trace of the tensor are all measures of diffusion with units
of .distance2=time/. The determinant of a matrix is a coefficient that describes
a scale factor. In the case where the matrix describes distances, the determinant
describes a volume, but in the diffusion tensor case, the determinant—with units
of .distance2=time/3—describes the volume of the ellipsoid that represents the
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Fig. 2 Interpolations. The graph shows the first (�1) over the second (�2) eigenvalues of a 2D
tensor interpolated while preserving trace, and while preserving determinant. The two original
tensors are diag[1.5 0.4] and diag[0.4 1.5] and are shown along with the isotropic tensors that the
interpolation goes through. When further extrapolating while preserving the trace, a degenerate
tensor (line) with a single finite eigenvalue is found. When extrapolating while preserving the
determinant, a tensor with an infinitely large principal-eigenvalue and infinitely small minor-
eigenvalue is predicted; this kind of tensor is experimentally not feasible

diffusion tensor, not the volume of diffusion itself. Thus there is a clear physical
distinction between the trace and the determinant of a diffusion tensor, which should
be accounted for when deciding which of these two to preserve.

When introducing the Log-Euclidean metric for diffusion tensors, Arsigny et al.
[2] identified the determinant of the diffusion tensor as a “direct measure of the
dispersion of the local diffusion process,” the preservation of which is critical
since “introducing more dispersion in computations amounts to introducing more
diffusion, which is physically unrealistic.” We agree that a computation should
preserve the amount of dispersion of the local diffusion process, however, we
believe that in the context of diffusion tensors, the determinant is not directly
measuring dispersion. Moreover, the Einstein equation above (Eq. 4) shows that
the direct measure of dispersion (variance) is the diffusivity itself captured by the
diffusion tensor, its eigenvalues, or their sum, i.e., the trace. Indeed the trace—not
the determinant—quantifies particle dispersion, and introducing more diffusion by
computations is physically unrealistic, encouraging the preservation of trace over
the preservation of determinant.

Figure 2 further illustrates that preserving the determinant may lead to physically
unrealistic results, unlike preserving the trace. The figure shows trace-preserving
and determinant-preserving interpolations between two 2D tensors, diag[1.5 0.4]
and diag[0.4 1.5]. Extrapolating beyond these tensors, the trace-preserving extrap-
olation predicts a degenerate tensor (line) restricted to a single orientation having
a single, finite eigenvalue; physically it predicts that when restricting diffusion to
a single orientation, the average displacement will be larger than any other non-
restricted orientation, yet finite. On the other hand, the determinant-preserving
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extrapolation predicts that one of the eigenvalues diminishes to an infinitesimally
small value while the other eigenvalue grows to an infinitesimally large value—
physically this means that it is predicted that when restricting diffusion to a
single orientation the diffusion coefficient grows to infinity, meaning that particles
will on average diffuse infinitely fast. This is clearly physically infeasible. In
water for instance at body temperature, the diffusivity cannot be more than about
3 � 10�3 mm2/s.

4 Tensor Swelling

In the previous section we concluded that preserving the trace of a diffusion tensor
has a better physical justification than preserving the determinant of a diffusion
tensor. In this section we further explore the practical implications of using the
trace preserving Euclidean metric versus the determinant-preserving Log-Euclidean
metric, concentrating on the main effect of the Log-Euclidean metric [2], namely
reducing tensor swelling.

4.1 Variability Caused by Johnson Noise

In order to test how acquisition noise affects the determinant and trace we ran Monte
Carlo simulations that create multiple noisy realizations of a given tensor. The
methods follow the synthetic experiments reported in [23, 24]: noisy replications
of tensor images were generated by selecting a reference tensor and introducing
Johnson noise (Rician distributed) using Monte Carlo simulations to reproduce
noisy diffusion weighted images. Tensors were fitted to each replicate using a
conventional tensor estimation [4] and using a fitting procedure in [12] that ensures
positive definite tensors. We note that when the conventional fitting procedure
yielded a positive tensor, this tensor was identical to the one obtained by the
positive restricting fitting, hence the difference between the two fitting procedures
is restricted only to tensors having one or more negative eigenvalues. Trace and
determinant were then calculated for each noisy replicate and the collection of all
values was plotted as a probability distribution function.

Figure 3 shows the distribution of determinants and traces for 100 K noisy
replicates of an anisotropic tensor representing white matter that has eigenvalues
1:5, 0:4, and 0:4�10�3 mm2/s, i.e., with a determinant of 0:24�10�3 .mm2/s)3 and
a trace of 2:3�10�3 mm2/s and of an isotropic tensor, representing gray matter, that
has eigenvalues of 0:8 � 10�3 mm2/s, i.e., a determinant of 0:512 � 10�3 .mm2/s)3

and a trace of 2:4 � 10�3 .mm2/s). As expected noise can increase or decrease
both trace and determinant. However, while the trace shows equal probability to be
either higher or lower than the initial trace value, the determinant shows a tendency
to shrink following the introduction of Johnson noise. For the anisotropic tensor,
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Fig. 3 Distributions. Monte Carlo simulations were used to generate empirical trace and
determinant probability density functions in the presence of noise for a given anisotropic tensor,
and a given isotropic tensor. Trace tends to have equal probability to have higher or lower values
than the initial value. The determinant is more likely to have a lower value compared to the initial
value, i.e., the tensors are expected to shrink

51.22% of the trace values are below the initial trace value, while 70.62% of the
tensors shrink with determinant values that are below the initial determinant value;
for the isotropic tensor, 49.999% of the trace values are below the initial trace
value and 70.5% of the tensors shrink. When restricting the fitting of the noisy
tensors to be positive, the determinant distribution for the anisotropic tensor changes
considerably, compared with the non-restricting fitting, yet the tendency to have a
lower determinant than the initial value remains, as 69.23% of the tensors shrink.
For the isotropic tensor, representing gray matter, the number of negative eigenvalue
occurrences decreases, and the two fits are very much aligned with each other
both for the trace distribution and for the determinant distribution. Similar to the
anisotropic case, the determinant in the isotropic case is more likely to have a lower
value than the initial value following the introduction of Johnson noise.

The conclusion of this finding is that for these two types of tensors—representing
white and gray matter—the introduction of noise causes shrinking, i.e., a decrease
in the determinant. This finding is not dependent on the type of tensor fitting used.
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Fig. 4 Ground truth. A slice of diffusion data was taken and fitted to positive tensors, then
masked to obtain only gray and white matter. The determinant (left) and trace (right) maps have
similar contrast that does not distinguish gray matter from white matter. The slice contains tensors
ranging around a trace value of 2:4�10�3 mm2/s and a determinant value of 0:4�10�3 .mm2/s)3

4.2 The Extent of Tensor Shrinking in the Brain

The finding in the previous section suggests that tensors have the tendency to shrink
as a result of thermal acquisition noise, yet in order to get a better notion of the
extent of the shrinking in a more realistic setting we will next look at the effect
of noise over an entire brain slice. We took a diffusion imaging dataset, and fitted
it with the positive restricting method to yield a positive tensor field. We treated
this field as a given “ground truth” for a Monte Carlo simulation, where 100 noisy
replicates for each voxel were generated.

Figure 4 shows the determinant and trace maps for the ground truth tensors (maps
are masked to include only gray and white matter). The contrast of both maps is very
similar, not distinguishing between gray (isotropic) and white (anisotropic) matter.
The trace is distributed around the value of 2:4 � 10�3 mm2/s, and the determinant
around the value 0:4 � 10�3 .mm2/s)3. The original values were compared with the



332 O. Pasternak et al.

Fig. 5 Extent of Shrinking. The maps show the percent of noisy replicates that had a lower
determinant (left) and trace value (right) than the ground truth values. The value for the determinant
map for most voxels is larger than 50% indicating that the noisy replicates there tend to shrink. The
values for the trace map are closer to 50%, indicating almost equal probability to find an increased
or decreased trace in the noisy replicates

trace and determinant values of all noisy replicates to yield the maps in Fig. 5. In
these maps the value of each voxel is weighted by the percentage of noisy replicates
that had a value lower than the ground truth value for the same voxel. For example,
for the determinant map (left), a voxel with a value higher than 50% (yellow to red)
means that most of the noisy replicates in this voxel were shrinking since they had
a lower determinant value than the ground truth. For the determinant map it is clear
that almost all tensors in this slice tend to shrink. The trace map shows a slight
tendency to a decrease in value, yet most tensors are around the 50% mark (green),
meaning that the noisy replicates had equal probability to either increase or decrease
trace.

The conclusion of these findings is that following the type of noise expected
in diffusion MRI acquisition, tensors are expected on average to decrease their
determinants while preserving their trace. This conclusion provides an additional
support for favoring a trace-preserving metric over a determinant-preserving metric.
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4.3 Why Do Tensors Swell?

Having seen that tensors are expected to shrink when noise is introduced we can now
better understand why tensors swell during averaging and interpolations. Averaging
is usually performed when a single tensor is not considered informative enough
to provide an accurate estimate of local properties. When noise is considerable,
averaging is used to increase SNR, which ideally would provide a better and
an unbiased estimate of the true value. In the estimation of diffusion tensors
from noisy replicates, our simulations predict that the noisy replicates will have
a lower determinant than the original determinant. Therefore, in order to obtain an
unbiased estimate of the tensor and its trace, the estimation method should cause the
determinant to increase, i.e., an unbiased estimate for a diffusion tensor is one that
causes noisy replicates of the tensor to swell. Indeed we have previously shown that
the main ill-effect accompanied with using the determinant-preserving geometric
metric is a consistent bias to the estimation [24]. We can now understand that the
bias is there since the method preserves the determinant, while the noise properties
dictate preservation of the trace. One way of interpreting our results would be saying
that both the Euclidean and the geometric metrics introduce biases, but as it happens
the Euclidean metric bias compensates for noise-related-bias. This is a valid claim
that could be further explored.

Another way of interpreting the results would consider the acquisition step itself
as an averaging mechanism. When measuring diffusion images, the signal is affected
by many different tissue compartments and by various noise sources, each of these
components may be modeled as a tensor, and the final signal averages all of the
components into a single tensor [15]. We hypothesize that the Euclidean metric
might be the native metric of this kind of averaging mechanism, yet testing this
hypothesis requires further experimental results. At this time we can only point at
the way diffusion itself is defined via Fick’s Law

J D �Dr�.x/;

where J is the diffusion flux and � is the concentration, or the displacement
probability function. In Fick’s law the gradient is measuring variations of the
probability function using a Euclidean norm. Analogous equations are believed to
govern many other physical phenomena, such as electrical flux (Ohm’s law) and
heat flux (the heat equation). Taking the geometric approach further step ahead
would claim that these laws themselves should be defined using geometric metrics
to become

J D �Dr�.log.x//:
This claim was made, for example, in [29]. It is our belief that this form of Fick’s
Law is highly problematic, and not generally supported by experimental data, yet it
is consistent with the use of the geometric metric.
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5 Beyond Riemannian Metrics

We have shown that Johnson noise that is expected in the acquisition of diffusion
images is more likely to cause a decrease in the determinant of the noisy tensors.
Johnson noise is expected to be encountered in all voxels and under all scanning
conditions [1, 17], but there are many other sources of variability besides thermal
noise. To name a few, there are eddy currents, which depend on the gradient
magnitude and direction and specific acquisition sequence used [27]; reconstruction
artifacts originating from the use of multiple surface coils [17]; and motion artifacts,
due to rigid head motion or stationary cardiac pulsation effects [26,28]. Other types
of smaller scale motion are ubiquitous in MRI acquisitions. In addition, there is
biological variability, for example, tensors that are part of the same white matter
tract are expected to have similar diffusivity values and similar shapes, but to express
higher variability in the orientation of the tensors as they follow the trajectory
of the tract. In this example, preserving the determinant of the tensors when
interpolating or averaging among them is required. But not only the determinant
must be preserved: Since the variability source dictates rotation of the reference
frame, all rotation-invariant tensor properties must be preserved [8]. For this all
eigenvalues, and their related quantities (such as trace, determinant, and FA) must
be maintained. As we show above in Fig. 1, preserving trace alone or determinant
alone does not guarantee preservation of FA.

The Riemannian metrics such as those we have analyzed here have the property
of being global, meaning the distance between two given tensors remains the same
no matter where these tensors are located within the image volume or within the
tissue. With the absence of any prior geometric information (such as the expected
anisotropy or orientation), the swelling effect is predicted by the MR measurement,
and there is no physical reason to preserve the determinant. But when additional
geometric information is available, local metrics, especially designed for the type
of variability expected within that tissue are needed. These tissue-specific metrics
have yet to be developed, but we note that the family of metrics proposed in [16,20]
might be of interest, as they are able to separate the information encoded in the
tensor to orthogonal features embedded in a Euclidean space, allowing weighting
of the influence of each feature on the final distance measure. Some more relevant
information can be found in chapter “On the choice of a tensor distance for DTI
white matter segmentation”.

The diffusion tensor is proportional to the variance of normally distributed
particle displacements (4). But as experiments dictate, when a voxel contains
multiple components, each normally distributed on its own, the composition may
deviate from the gaussian distribution and the tensor model. This brings up an
interesting question of whether the result of averaging diffusion tensors, which
actually means mixing two separate diffusivity components, should yield a tensor,
or a different statistical representation. Some interesting ideas as to what this type
of representation can be are found in chapter “Representation and Estimation of
Tensor-Pairs”.
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The choice of metrics remains an interesting, important and controversial area
of research. Although Johnson or Rician Noise is a dominant contributor to the
measured MRI signal, other sources of noise and variability have illuded a similarly
compact description. For the time being, we are left with having to use metrics that
are the simplest and does the least harm to the data. Using these criteria as well, also
leads us to the use of the Euclidean metric in analyzing DTI data.

6 Summary

We have tested how the determinant and trace of a diffusion tensor change when
Johnson noise is introduced. We have found that the determinant is likely to
be reduced in all types of tensors, and that the trace is equally likely to either
reduce or increase following the introduction of Johnson noise. This lead us to
the conclusion that in order to provide an unbiased estimate of the trace, an
average or interpolation tensor operator should result in an increased determinant
compared with the determinant of the initial noisy replicates. This provides a
physical explanation for the swelling effect, and implies that in the most general
case, where no additional geometric information is provided, there is no physical
justification for a determinant-preserving metric, but there is a justification for
a trace-preserving metric. This explanation provides a practical reason to prefer
the Euclidean metric over the geometric metrics, in addition to previous theoretic
considerations [24] that are also in favor of the Euclidean choice.

Acknowledgements We thank Liz Salak for reviewing the manuscript. OP wishes to acknowledge
with thanks that part of the research on which this publication is based was supported by a Fulbright
Post-doctoral Scholar Fellowship, awarded by the Fulbright commission for Israel, the United
States-Israel Educational Foundation. PJB was supported by the Intramural Research Program of
the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

References

1. Andersson, J.L.: Maximum a posteriori estimation of diffusion tensor parameters using a
Rician noise model: why, how and but. NeuroImage 42(4), 1340–1356 (2008)

2. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and
simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006).
doi:10.1002/mrm.20965

3. Assaf, Y., Pasternak, O.: Diffusion tensor imaging (DTI)-based white matter mapping in brain
research: a review. J. Mol. Neurosci. 34(1), 51–61 (2008)

4. Basser, P.J., Pierpaoli, C.: A simplified method to measure the diffusion tensor from seven MR
images. Magn. Reson. Med. 39, 928–934 (1998)

5. Basser, P.J., Jones, D.K.: Diffusion-tensor MRI: theory, experimental design and data
analysis—a technical review. NMR Biom. 15, 456–467 (2002)



336 O. Pasternak et al.

6. Basser, P.J., Pajevic, S.: A normal distribution for tensor-valued random variables to analyze
diffusion tensor MRI data. IEEE TMI 22, 785–794 (2003)

7. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging.
Biophys. J. 66, 259–267 (1994)

8. Batchelor, P.G., Moakher, M., Atkinson, D., Calamante, F., Connelly, A.: A rigorous frame-
work for diffusion tensor calculus. Magn. Reson. Med. 53, 221–225 (2005)

9. Crank, J.: The Mathematics of Diffusion. Oxford University Press, New York, USA (1975)
10. Einstein, A.: Investigations on the Theory of the Brownian Movement. Dover, New York (1926)
11. Eisenhart, L.: Differential Geometry. Princeton University Press, Princeton (1940)
12. Fillard, P., Arsigny, V., Pennec, X., Ayache, N.: Clinical DT-MRI estimation, smoothing and

fiber tracking with log-Euclidean metrics. IEEE Trans. Med. Imaging 26(11), 1472–1482
(2007). doi:10.1109/TMI.2007.899173. PMID: 18041263

13. Fletcher, P.T., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor
data. Signal Process. 87(2), 250–262 (2007)

14. Gur, Y., Pasternak, O., Sochen, N.: Fast gl(n)-invariant framework for tensors regularization.
Int. J. Comput. Vis. 85(3) (2009)

15. Jian, B., Vemuri, B.C., Ozarslan, E., Carney, P.R., Mareci, T.H.: A novel tensor distribution
model for the diffusion-weighted MR signal. NeuroImage 37(1), 164–176 (2007)

16. Kindlmann, G., Ennis, D.B., Whitaker, R.T., Westin, C.F.: Diffusion tensor analysis with
invariant gradients and rotation tangents. IEEE Trans. Med. Imaging 26(11), 1483–1499
(2007). doi:10.1109/TMI.2007.907277

17. Koay, C.G., Basser, P.J.: Analytically exact correction scheme for signal extraction from noisy
magnitude MR signals. J. Magn. Reson. 179(2), 317–322 (2006)

18. Kubicki, M., McCarley, R., Westin, C.F., Park, H.J., Maier, S., Kikinis, R., Jolesz, F.A.,
Shenton, M.E.: A review of diffusion tensor imaging studies in schizophrenia. J. Psychiatr.
Res. 41, 15–30 (2007)

19. Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: Statistics on the manifold of multivariate
normal distributions: theory and application to diffusion tensor MRI processing. J. Math.
Imaging Vis. 25(3), 423–444 (2006)

20. de Luis-Garcia, R., Alberola-Lopez, C., Kindlmann, G., Westin, C.F.: Automatic segmentation
of white matter structures from DTI using tensor invariants and tensor orientation. In: Proc
17th Annual Meeting ISMRM. International Society for Magnetic Resonance in Medicine,
Honolulu, USA (2009)

21. Maaß, H.: Siegel’s Modular Forms and Dirichlet Series. Springer, Berlin (1971)
22. Moakher, M.: On the averaging of symmetric positive-definite tensors. J. Elast. 82, 273–296

(2006)
23. Pajevic, S., Basser, P.J.: Parametric and non-parametric statistical analysis of DT-MRI data.

J. Magn. Reson. 161(1), 1–14 (2003)
24. Pasternak, O., Sochen, N., Basser, P.: The effect of metric selection on the analysis of diffusion

tensor MRI data. Neuroimage 49, 2190–2204 (2010)
25. Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geometric measure-

ments. J. Math. Imaging Vis. 25(1), 127–154 (2006). doi:10.1007/s10851-006-6228-4
26. Pierpaoli, C., Marenco, S., Rohde, G., Jones, D., Barnett, A.: Analyzing the contribution of

cardiac pulsation to the variability of quantities derived from the diffusion tensor. In: Proc 11th
Annual Meeting ISMRM, p. 70. International Society for Magnetic Resonance in Medicine,
Toronto, Canada (2003)

27. Rohde, G.K., Barnett, A.S., Basser, P.J., Marenco, S., Pierpaoli, C.: Comprehensive approach
for correction of motion and distortion in diffusion-weighted MRI. Magn. Reson. Med. 51(1),
103–114 (2004)

28. Skare, S., Anderson, J.: On the effects of gating in diffusion imaging of the brain using single
shot EPI. Magn. Reson. Imaging 19, 1125–1128 (2001)

29. Tarantola, A.: Elements for Physics: Quantities, Qualities, and Intrinsic Theories. Springer,
Berlin (2006)



•



Part VII
Tensor Analysis



H 2-Matrix Compression

Steffen Börm

Abstract Representing a matrix in a hierarchical data structure instead of the
standard two-dimensional array can offer significant advantages: submatrices can
be compressed efficiently, different resolutions of a matrix can be handled easily,
and even matrix operations like multiplication, factorization or inversion can be
performed in the compressed representation, thus saving computation time and
storage. H 2-matrices use a subdivision of the matrix into a hierarchy of submatrices
in combination with a hierarchical basis, similar to a wavelet basis, to handle
n � n matrices in O.nk/ units of storage, where k is a parameter controlling the
compression error. This chapters gives a short introduction into the basic concepts
of the H 2-matrix method, particularly concerning the compression of arbitrary
matrices.

1 Overview

The H 2-matrix technique can be considered a refinement of well-known techniques
for dealing with non-local interactions relevant, e.g., when dealing with gravitational
or electromagnetic forces connecting a large number of points in space.

One of the basic ideas is already present in the Ewald summation technique
[18] for crystallographic research: since long-range electrostatic interactions are
“smooth”, it is possible to approximate them by polynomials in order to separate
variables and therefore reduce the computational complexity. Short-range interac-
tions have to be treated separately.

The panel-clustering technique [31, 35] and the well-known multipole approach
[27, 28, 34] not only distinguish between long-range and short-range interactions,
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but introduce a hierarchy of pairs of subdomains based on their relative distance.
Using this approach, it is possible to approximate the interactions of n points in
space using O.nk log n/ or even only O.nk/ operations, where k is a parameter
controlling the accuracy of the approximation.

Panel-clustering and multipole techniques are typically constructed for a par-
ticular problem, e.g., by expanding the underlying forces into a rapidly converging
series or applying interpolation. The hierarchical matrix technique [16,19,22,29,30,
32] uses an algebraic approach: instead of approximating the interaction of two sub-
domains by a degenerate function, a block of a matrix is approximated by a low-rank
matrix. Since low-rank matrices can be constructed efficiently by the singular value
decomposition or rank-revealing factorizations, hierarchical matrices can be applied
to problems ranging from elliptic partial differential equations [3, 11], boundary
integral equations [1, 4, 14, 15], preconditioning techniques [2, 19, 22, 23, 25, 26] to
fast solvers for control problems [21, 24].

Hierarchical matrices treat each block of a matrix as independent, i.e., not
connected to the other blocks. In many practical applications, e.g., when treating
boundary integral formulations of electrostatic or acoustic problems, the blocks are
related, and the same basis of the expansion can be used for multiple blocks. H 2-
matrices [12, 13, 33] can use these connections between blocks in order to reduce
storage requirements even further and improve the efficiency of matrix operations.
While hierarchical matrices typically require O.nk log n/ units of storage, O.nk/

units are sufficient for H 2-matrix techniques, leading to significant improvements
for large matrices.

The improved efficiency of H 2-matrices compared to hierarchical matrices
comes at a price: a compression algorithm has to be aware of the connections
between blocks, and handling these connections properly can become a challenging
task. Fortunately, it is possible to use a recursive approach [8, 9, 12, 13] to detect
connections between blocks during the compression process, and the resulting
family of algorithms is very efficient. Using a refined approach [10, 12], even the
block structure can be chosen automatically by the compression algorithm.

H 2-matrices can be compared to wavelet techniques [6, 17, 36]: the wavelet
basis is also organized in a hierarchy, and a wavelet transformation combined with
a truncation also leads to a data-sparse representation of blocks of a matrix, but
while the wavelet basis has to be given before the compression algorithm can
start, the H 2-matrix technique can find a nearly optimal basis adaptively. This
property offers advantages when approximating solution operators of equations
with non-smooth coefficients, e.g., of electrostatic or groundwater flow problems
in inhomogeneous media [11].

The following section introduces the data structures like cluster and block trees,
cluster bases and H 2-matrices using a simple model problem. The third section
describes a compression algorithm that can approximate arbitrary matrices by nearly
optimal H 2-matrices and includes a simple error control strategy and a new refined
variant of the algorithm that can reduce the computation time for the second
phase of the algorithm significantly. The fourth section outlines improvements
of the general algorithm: if the input matrix is already partially compressed, the
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complexity can be reduced substantially. Weighting strategies can be used to control
the blockwise approximation error, e.g., to ensure that block-wise relative error
bounds are satisfied. The algorithm can be extended to vector- and matrix-valued
matrices and three-dimensional tensors. The fifth section gives a brief summary and
considers possible future refinements of the technique.

2 H 2-Matrix Representation

We consider a matrix G 2 IRI�J . If we store the matrix in the usual way,
i.e., as a two-dimensional array containing the coefficients .gij /i2I ;j2J , at least
.#I /.#J / units of storage are required. For large matrices, these storage require-
ments are too high, therefore we need a more efficient representation.

H 2-matrices are motivated by numerical methods for treating integral operators:
if the matrix entries have the form

gij D f .xi ; yj /

for a function f W IR3 � IR3 ! IR and families .xi /i2I and .yj /j2J of points in
three-dimensional space, an efficient representation of f will obviously lead to an
efficient representation of G. In the case of integral operators, it is usually possible to
find subsets �; � � IR3 such that f j��� is smooth and can therefore be approximated
by an m-th order Taylor expansion

f .x; y/ �
X

j�C�j�m

@�C�f

@�x@�y
.x� ; y� /

.x � x� /�

�Š

.y � y� /�

�Š
for all x 2 �; y 2 �:

For the matrix G, this property means that for

O� WD fi 2 I W xi 2 �g; O� WD fj 2J W yj 2 �g;

we have

gij �
X

j�C�j�m

@�C�f

@�x@�y
.x� ; y� /

.xi � x�/�

�Š

.yj � y� /�

�Š
for all i 2 O�; j 2 O�:

Introducing the multiindex set M WD f� 2 IN3
0 W j�j � mg and the auxiliary matrices

V� 2 IRO��M , W� 2 IR O��M and S�� 2 IRM�M by

.V� /i� WD .xi � x�/�

�Š
; .W� /j� WD .yj � y� /�

�Š
;



342 S. Börm

.S�� /�� WD

8
<̂
:̂

@�C�f

@x�@y�
.x� ; y� / if j� C �j � m;

0 otherwise

we can write this equation in the short form

GjO��O� � V�S�� W �� : (1)

The matrix S�� has only

k WD #M D
 

mC 3

3

!
D .mC 3/.mC 2/.mC 1/

6

entries, and the approximation requires k.# O� C # O� C k/ units of storage. If
k � # O�; # O� , the approximation of the submatrix GjO��O� is far more efficient than the
standard representation by a two-dimensional array using .# O�/.# O�/ units of storage.

The matrices S�� can be considered “sufficiently small”, since there size depends
only on k, i.e., the order m. The size of the matrices V� and W� , on the other hand,
depend on the sets O� and O� and can therefore still require a large amount of storage.
Fortunately, we can take advantage of their structure to improve the situation: if � 0
is a subdomain of � , we can choose another center x� 0 of expansion and get

.x � x�/�

�Š
D .x � x� 0 C x� 0 � x� /�

�Š
D
X
�0��

.x � x� 0/�0

�0Š
.x� 0 � x� /���0

.� � � 0/Š

by the binomial equation. We introduce the auxiliary matrix E� 0 by

.E� 0/�0� WD

8
<̂
:̂

.x� 0 � x�/���0

.� � � 0/Š
if �0 � �;

0 otherwise

and have proven
V� jO� 0�M D V� 0E� 0 ; (2)

i.e., if we already have the matrix V� 0 , we only have to store the transfer matrix
E� 0 2 IRM�M instead of the entire matrix V� .

In the H 2-matrix method, a hierarchy of subdomains is used, and the Eq. (2) is
applied recursively to all but the smallest subdomains. The hierarchy is represented
by a tree:

Definition 1 (Cluster tree). Let T be a labeled tree with root r , and denote the
label of t 2 T by Ot . T is called a cluster tree for the index set I , if the following
conditions hold:
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• Or D I , i.e., the root is labeled by I ,
• If sons.t/ ¤ ; for a t 2 T , we have

Ot D
[

t 02sons.t/

Ot 0; for all t 2 T

i.e., the union of the labels of sons equals the label of the father, and
• We have

t1 ¤ t2 ) Ot1 \ Ot2 D ; for all t 2 T ; t1; t2 2 sons.t/;

i.e., the labels of sons are pairwise disjoint.

A cluster tree for an index set I is denoted by TI . The set of leaves of TI is
denoted by

LI WD ft 2 TI W sons.t/ D ;g:
The elements t 2 TI of a cluster tree are called clusters.

The change in notation from O� to Ot corresponds to the fact that clusters are
not necessarily connected to subdomains, and this generalization allows us to
use sophisticated methods [22, 25, 26] for constructing efficient cluster trees in
quite general situations. An example is the simple algorithm described in [22]
that assumes that each degree of freedom i 2 I corresponds to a location in
d -dimensional space and tries to form clusters of small diameter.

We introduce the set of descendants

sons�.t/ WD
(
ftg if sons.t/ D ;;
ftg [St 02sons.t/ sons�.t 0/ otherwise

for all t 2 TI

and note that a simple induction can be used to prove that for arbitrary t; s 2 TI

we have that Ot \ Os ¤ ; implies t 2 sons�.s/ or s 2 sons�.t/, i.e., if the labels of
two clusters are not disjoint, one of them is a descendant of the other. Among other
useful consequences, this result implies that the labels of all leaf clusters have to be
disjoint and therefore form a partition of the index set I .

In order to approximate a matrix G 2 IRI�J , we require cluster trees TI and
TJ for the row indices I and the column indices J , respectively, and we have to
split the index set I �J into suitable subblocks Ot � Os with t 2 TI and s 2 TJ .
Since TI and TJ are trees, the blocks are usually also organized in a tree:

Definition 2 (Block tree). Let TI be a cluster tree for I with root rI , and let
TJ be a cluster tree for J with root rJ . Let T be a labeled tree with root r . T
is called a block tree for TI and TJ , if the following conditions hold:

• For each b 2 T , there are t 2 TI and s 2 TJ with b D .t; s/, i.e., each
element of the tree is a pair of two clusters,

• r D .rI ; rJ /, i.e., the root is the pair of the roots of TI and TJ ,
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• For each bD.t; s/ 2 T , we have ObD Ot � Os, i.e., the label is the Cartesian product
of the label of t and the label of s,

• If sons.b/ ¤ ; for a b D .t; s/ 2 T , we have

sons.b/ D

8
ˆ̂<
ˆ̂:

sons.t/ � sons.s/ if sons.t/ ¤ ;; sons.s/ ¤ ;;
ftg � sons.s/ if sons.t/ D ;; sons.s/ ¤ ;;
sons.t/ � fsg if sons.t/ ¤ ;; sons.s/ D ;;

i.e., the sons of b are pairs of sons of t and s, and if one of the clusters has no
sons, the father takes their place.

A block tree for TI and TJ is denoted by TI�J , and its elements b D .t; s/ 2
TI�J are called blocks. The set of leaves of TI�J is denoted by

LI�J WD fb 2 TI�J W sons.b/ D ;g:

Given a block b D .t; s/ 2 TI�J , t is called the row cluster of b, while s is called
the column cluster.

A closer look at the definition reveals that the block tree TI�J is in fact a
special cluster tree for the index set I �J , and we have already mentioned that
the labels of the leaves of a cluster tree are a disjoint partition of the corresponding
index set. Therefore we have

I �J D
[

bD.t;s/2LI �J

Ot � Os;

i.e., the leaves of the block tree describe a partition of the matrix G into non-
overlapping submatrices GjOt�Os . Our goal is to approximate these submatrices
efficiently.

Since we cannot hope to be able to represent all submatrices in the form (1),
we introduce the concept of admissible and inadmissible blocks: the set LI�J of
leaves of TI�J is split into two disjoint subsets LCI�J and L �I�J such that

L CI�J [L �I�J D LI�J ; L CI�J \L �I�J D ;:

The blocks in L CI�J correspond to “smooth” parts of the function f , i.e., we
can apply (1). These blocks are called admissible. The blocks in L �I�J cannot be
approximated, so we represent them by storing the corresponding matrix coefficients
directly. In order to reach an acceptable complexity, these inadmissible blocks
should not be too large. We ensure this by requiring

b D .t; s/ 2 L �I�J ) t 2 LI ; s 2 LJ ; (3)

i.e., a block can only be inadmissible if both row and column cluster are leaves. For
typical applications like elliptic partial differential equations or integral equations,
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good block trees can be constructed by fairly simple and yet very efficient
algorithms [22]. In general cases, more sophisticated methods [20] can be employed
to find a block tree that is perfectly adapted to the structure of the matrix coefficients.

The cluster trees TI , TJ and the block tree TI�J with admissible and
inadmissible leaves LCI�J , L �I�J describe the structure of the matrix. Now we
consider the contents of the matrix.

Due to (2), we consider the V - and W -matrices of (1) not individually, but as
hierarchical families.

Definition 3 (Cluster basis). Let .Kt /t2TI be a family of finite index sets, and
let .Vt /t2TI be a family of matrices Vt 2 IROt�Kt. If there is a family .Et/t2TI of
matrices satisfying

Et 0 2 IRKt0�Kt; Vt jOt 0�Kt
D Vt 0Et 0 for all t 2 TI ; t 0 2 sons.t/;

we call .Vt /t2TI a cluster basis with rank distribution .Kt/t2TI and transfer
matrices .Et/t2TI.

We represent a cluster basis by storing Vt only for leaf clusters t 2 LI , while
Et is stored for all t 2 TI . Using (2), we can reconstruct Vt for non-leaf clusters
t 2 TI nLI by using the transfer matrices. In practice, all important operations
can be arranged in such a way that this is not necessary.

The important advantage of representing the cluster basis using transfer matrices
is the reduction of storage requirements: the size of the transfer matrices is governed
by the index sets Kt , and these index sets Kt depend only on the accuracy of the
approximation, but not on the matrix dimension. In our example, Kt D M depends
only on the order of the Taylor expansion. In practice, #Kt can usually be chosen to
be less than 100, even if matrices with millions of rows and columns are treated, so
the transfer matrices are very small compared to the matrices Vt .

Definition 4 (H 2-matrix). Let .Vt /t2TI and .Ws/s2TJ be cluster bases with rank
distributions .Kt /t2TI and .Ls/s2TJ , respectively. Let TI�J be a block tree with
admissible leaves L CI�J and inadmissible leaves L �I�J . A matrix G 2 IRI�J

is an H 2-matrix, if there is a family .Sb/
b2L C

I�J
of matrices satisfying

Sb 2 IRKt�Ls ; GjOt�Os D Vt SbW �s for all b D .t; s/ 2 L CI�J : (4)

In this case, the matrices Sb are called coupling matrices for the H 2-matrix
representation of G.

If we let

n WD maxf#I ; #J g;
k WD maxf#Kt; #Ls W t 2 TI ; s 2 TJ g;
r WD maxf#Ot; #Os W t 2 LI ; s 2 LJ g;
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it is possible to prove [13, 22] that the storage requirements for an H 2-matrix
representation are in O.n.k C r//. In particular, the storage grows linearly with
n, while it would grow quadratically if the standard representation by a two-
dimensional array had been used. The parameter k controls the accuracy: in the
model case, it is asymptotically proportional to m3, where m is the order of the
Taylor expansion. The parameter r depends on the choice of the cluster tree, and it
is easy to ensure that r � k holds by using a suitable stopping criterion during the
construction of the cluster tree.

3 Compression

We have seen that an H 2-matrix representation of a matrix requires only O.nk/

units of storage with k � n, while the standard representation by a two-dimensional
array typically requires O.n2/ units. Our goal is now to approximate a given matrix
G 2 IRI�J by an H 2-matrix. We assume that cluster trees TI and TJ and
the block tree TI�J with admissible leaves LCI�J satisfying (3) are given. In
practice, the cluster trees can be constructed based on simple geometric algorithms
[22], while we can find a good block tree adaptively by starting with a very fine
initial guess and coarsening blocks where the error is too low. More sophisticated
techniques [10,20] are also available for this latter step. For now, we focus on finding
good cluster bases .Vt /t2TI and .Ws/s2TJ and coupling matrices .Sb/

b2L C

I �J
.

In order to keep the presentation simple and to allow fine-grained control of the
approximation error, we make use of orthogonal cluster bases:

Definition 5 (Orthogonal cluster basis). A cluster basis .Vt /t2TI is called
orthogonal if

V �t Vt D I holds for all t 2 TI :

For an orthogonal cluster basis, we have

.VtV
�

t /2 D Vt V
�

t VtV
�

t D Vt V
�

t ;

so VtV
�

t is an orthogonal projection. If we are measuring the error in the Frobenius
norm

kXkF WD
0
@X

i

X
j

jxij j2
1
A

1=2

;

the orthogonality implies

V �t .X � Vt V
�

t X/ D 0;



H 2-Matrix Compression 347

i.e., the projection error X�Vt V
�

t X is perpendicular to the range of Vt , and therefore
we have

kX � Vt V
�

t X C Vt Y k2F
D kX � Vt V

�
t Xk2F C kVt Y k2F for all X 2 IRKt�L; Y 2 IRKt�M ; (5)

where L and M are arbitrary index sets. This equation is very useful when
computing the approximation error.

We are interested in finding orthogonal matrices Vt and Ws such that the
approximation error is sufficiently small. Since the orthogonal projection maps any
matrix onto its best approximation in the range of the projection,

Vt V
�

t GjOt�OsWsW
�

s D Vt SbW �s ; Sb WD V �t GjOt�OsWs

is the best approximation of GjOt�Os in the required form (4). By using (5) and the fact
that the Frobenius norm of a matrix is equal to that of its adjoint, we obtain

kGjOt�Os � VtSbW �s k2F D kGjOt�Os � VtV
�

t GjOt�OsWsW
�

s k2F
D kGjOt�Os�Vt V

�
t GjOt�OsCVt V

�
t .GjOt�Os�GjOt�OsWsW

�
s /k2F

D kGjOt�Os�Vt V
�

t GjOt�Osk2FCkVt V
�

t .GjOt�Os�GjOt�OsWsW
�

s /k2F
(6)

D kGjOt�Os�Vt V
�

t GjOt�Osk2FCk.Gj�Ot�Os�WsW
�

s Gj�Ot�Os/VtV
�

t k2F
D kGjOt�Os � VtV

�
t GjOt�Osk2F C kGj�Ot�OsVt �WsW

�
s Gj�Ot�OsVtk2F ;

(7)

i.e., we can split the error into the error introduced by applying the projection Vt V
�

t

to GjOt�Os and the error introduced by applying WsW
�

s to Gj�Ot�OsVt .
This equation can be interpreted in two ways: since Vt V

�
t is an orthogonal

projection, (6) leads to the upper bound

kGjOt�Os � Vt SbW �s k2F � kGjOt�Os � Vt V
�

t GjOt�Osk2F C kGj�Ot�Os �WsW
�

s Gj�Ot�Osk2F ;

i.e., if we have an algorithm for computing a suitable cluster basis .Vt /t2TI , we
can apply it to the adjoint matrix G� to compute .Ws/s2TJ . This is currently the
standard approach [13], since it is “nicely symmetric” and offers the advantages that
essentially only one algorithm has to be considered and that rows and columns can
be treated in parallel, but it has the disadvantages that computing both cluster bases
takes roughly the same amount of time and has to be followed by the computation
of Sb D V �t GjOt�OsWs for all admissible blocks.

In this paper, we are interested in a second approach: we work directly with (7).
First the cluster basis .Vt /t2TI is computed. It turns out that we can arrange the
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algorithm in such a way that the matrices Gj�Ot�OsVt appearing in the second term of
(7) are prepared without additional cost. Using these matrices, we can then compute
.Ws/s2TJ and the coupling matrices .Sb/

b2L C

I �J
simultaneously. Since Gj�Ot�OsVt

has only #Kt � #Ot columns, the second phase of the algorithm can be expected to
require only a fraction of the time of the first phase, and there is no need for a third
phase, since the coupling matrices are already available.

Let us consider the first phase: we have to find orthogonal matrices Vt 2 IROt�Kt

such that the rank #Kt is as small as possible and

kGjOt�Os � Vt V
�

t GjOt�OskF � "t : (8)

holds for a suitable accuracy "t 2 IR>0. We call "t a local accuracy, since it depends
only on the cluster t and the matrix. Since Vt depends only on t , but not on s, we
have to find one matrix Vt that works well for all s 2 TJ with b D .t; s/ 2 L CI�J

simultaneously.
Due to the cluster basis property (2), anything that cannot be represented by Vt

also cannot be represented by the matrix VtC
corresponding to the father tC of t ,

and by induction by the matrices corresponding to all predecessors of t in the tree.
This means that we also have to take all blocks b D .tC; s/ 2 L CI�J into account

that are connected to a predecessor tC of t . Fortunately we can construct the set of
relevant clusters s 2 TJ by a simple top-down procedure using the equation

rt WD
(
fs 2 TJ W .t; s/ 2 LCI�J g [ rtC

if t has a father tC;

fs 2 TJ W .t; s/ 2 LCI�J g otherwise, i.e., if t is the root:

The task of ensuring (8) for all s 2 rt can be simplified significantly if we use

Nt WD
[
s2rt

Os

and look for an orthogonal matrix Vt satisfying

kGjOt�Nt
� VtV

�
t GjOt�Nt

kF � "t : (9)

Due to the definition of the Frobenius norm and since Os � Nt holds for all s 2 rt ,
this inequality implies (9) for all s 2 rt .

Our goal is now to find an orthogonal matrix Vt satisfying (9) with the lowest
possible number of columns, since the number of columns determines the efficiency
of the compression. This problem is equivalent to finding a low-rank approximation
of GjOt�Nt

, and several algorithms have been proposed to perform this task,
e.g., the singular value decomposition, rank-revealing LR- or QR-decompositions
and cross approximation techniques. Among these techniques, the singular value
decomposition yields the lowest possible rank and is also numerically stable. The
approach is simple: the singular value decomposition
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GjOt�Nt
D P˙Q�; ˙ D diag.�1; : : : ; �`/

with orthogonal matrices P and Q and singular values �1 � �2 � : : : � �` is
computed. Since the singular values are in decreasing order, we can easily find the
smallest kt 2 f0; : : : ; `g such that

X̀
mDktC1

�2
m � "2

t

holds. We drop the small singular values by replacing ˙ with

ė WD diag.�1; : : : ; �kt ; 0; : : : ; 0/

in order to get

kGjOt�Nt
�P ėQ�kF D kP.˙� ė/Q�kF D k˙� ėkF D

0
@ X̀

mDktC1

�2
m

1
A

1=2

� "t :

(10)

In order to translate this estimate into the required form (9), we let Vt be the matrix
consisting of the first kt columns of P and obtain

Vt V
�

t GjOt�Nt
D Vt V

�
t P˙Q� D P ėQ�;

so we have indeed found an orthogonal matrix Vt satisfying (9). A closer look at
the singular value decomposition reveals that no other orthogonal matrix satisfying
this bound can have a lower number of columns, so Vt can be considered an optimal
solution.

The technique outlined so far can be used if t is a leaf cluster. If t is not a leaf
cluster, we have to take the cluster basis property (2) into account. To keep the
presentation simple, we assume that a non-leaf cluster t has exactly two sons t1
and t2. We arrange our algorithm as a bottom-up recursion so that Vt1 and Vt2 have
already been computed when we start looking for Vt , so according to (2) only the
transfer matrices Et1 and Et2 have to be constructed. We introduce

bV t WD
�

Et1

Et2

�
2 IRMt�Kt ; Ut WD

�
Vt1

Vt2

�
2 IROt�Mt ; Mt WD Kt1

P[Kt2 (11)

and observe that (2) takes the form Vt D Ut
bV t and

U �t Ut D
�

V �t1 Vt1

V �t2 Vt2

�
D
�

I

I

�
D I; bV �t bV t D bV �t U �t Ut

bV t D V �t Vt D I
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hold, so both Ut and bV t are orthogonal matrices. In particular, Ut U
�
t is an

orthogonal projection, and we can use (5) to derive the error equation

kGjOt�Nt
� Vt V

�
t GjOt�Nt

k2F D kGjOt�Nt
� Ut

bV t
bV �t U �t GjOt�Nt

k2F
D kGjOt�Nt

� Ut U
�
t GjOt�Nt

C Ut.U
�
t GjOt�Nt

� bV t
bV �t U �t GjOt�Nt

/k2F
D kGjOt�Nt

� Ut U
�
t GjOt�Nt

k2F C kU �t GjOt�Nt
� bV t

bV �t U �t GjOt�Nt
k2F

D
����
�

GjOt1�Nt

GjOt2�Nt

�
�
�

Vt1V
�

t1
GjOt1�Nt

Vt2V
�

t2
GjOt2�Nt

�����
2

F

C kU �t GjOt�Nt
� bV t

bV �t U �t GjOt�Nt
k2F

D kGjOt1�Nt
� Vt1V

�
t1

GjOt1�Nt
k2F C kGjOt2�Nt

� Vt2V
�

t2
GjOt2�Nt

k2F
C kU �t GjOt�Nt

� bV t
bV �t U �t GjOt�Nt

k2F :

The first two terms correspond to the errors introduced by the compression for
the son clusters t1 and t2, and these terms we cannot change at this point of the
algorithm. The third term, on the other hand, looks familiar: if we let

bGt WD U �t GjOt�Nt
D
�

V �t1 GjOt1�Nt

V �t2 GjOt2�Nt

�
;

we can see that it takes the form kbGt�bV t
bV �t bGtk2F , and we can construct the transfer

matrices by looking for an orthogonal matrix bV t satisfying

kbGt � bV t
bV �t bGtkF � "t : (12)

This problem is very similar to (9), and we already know how to solve it: by
computing the singular value decomposition of bGt and using the most important
left singular vectors to construct bV t , and thereby the transfer matrices.

Since computing bGt D U �t GjOt�Nt
directly would be inefficient, we are looking

for a more elegant way of constructing this matrix. The basic idea is to take
advantage of the relationships between the individual blocks of G and bGt : we
introduce

NGt;s WD V �t GjOt�Os ; bGt;s WD

8
ˆ̂<
ˆ̂:

GjOt�s if sons.t/ D ;; NGt1;s

NGt2;s

!
otherwise

for all t 2 TI ; s 2 rt :

Obviously, we have

bGt jMt�Os D bGt;s for all t 2 TI ; s 2 rt ;
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procedure adaptive row(t , rtC , G, var NG, V );
rt  rtC [ fs 2 TJ W .t; s/ 2 L C

I �J g;
if sons.t/ D ; then

Mt  Ot ;
for s 2 rt dobGt;s  Gj

Ot�Os

else begin
Mt  ;;
for t 0 2 sons.t/ do begin

adaptive row(t 0, rt , G, NG, V );
Mt  Mt [Kt 0

end;
for t 0 2 sons.t/, s 2 rt dobGt;s jKt0 �Os  NGt 0 ;s

end;
for s 2 rt dobGjMt �Os  bGt;s ;
FindbV t and Kt �Mt satisfying (12);
for s 2 rt do NGt;s  bV �

t
bGt;s ;

if sons.t/ D ; then Vt  bV t

else
for t 0 2 sons.t/ do Et 0  bV t jKt0 �Kt

Fig. 1 Adaptive compression algorithm for the row basis .Vt /t2TI

so we can construct the required matrix bGt from the blocks bGt;s . On the other hand,
we have

NGt;s D V �t GjOt�Os D bV �t U �t GjOt�Os D bV �t
�

V �t1 GjOt1�Os
V �t2 GjOt2�Os

�

D bV �t
� NGt1;s

NGt2;s

�
D bV �t bGt;s for all t 2 TI nLI ; s 2 rt ;

so we can compute NGt;s for non-leaf blocks using only 2.#Kt/.#Mt/.#Os/ operations
instead of the 2.#Kt/.#Ot/.#Os/ operations needed for the direct approach.

In order to simplify the notation, we extend bV t and Mt also to the case of leaf
clusters by setting

bV t WD Vt ; bGt WD GjOt�Nt
; Mt WD Ot for all t 2 LI (13)

in addition to (11), since then the inequality (9) is equivalent to (12) and we can
treat both cases alike. The resulting algorithm is given in Fig. 1, the pattern of data
reduction is illustrated in Fig. 2.

Since Nt � J holds for all t 2 TI , it is possible to prove that the number
of operations performed for one cluster t 2 TI , without taking the recursions into
account, is in O..#Mt/

2#J / � O.k2n/ [12, Chap. 6]. Under mild assumptions,
this implies that O.n2k/ operations are sufficient to compute the entire cluster basis
.Vt /t2TI and all matrices NGt;s .
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Fig. 2 Data reduction during the first phase of the compression: first the leaf clusters are
compressed, followed by the higher-level clusters

We have already seen a glimpse of the structure of error estimates for the
H 2-matrix compression algorithm: the error for a cluster t is determined by the
projection error introduced by bV t

bV �t and the errors incurred in the sons of t . More
precisely, we have

kGjOt�Os � Vt V
�

t GjOt�Osk2F D kGjOt�Os � Ut U
�
t GjOt�Os C Ut.U

�
t GjOt�Os � bV t V

�
t GjOt�Osk2F

D
����
�

GjOt1�Os � Vt1V
�

t1
GjOt1�Os

GjOt2�Os � Vt2V
�

t2
GjOt2�Os

�����
2

F

C kbGt;s � bV t
bV t
bGt;sk2F

D kGjOt1�Os � Vt1V
�

t1
GjOt1�Osk2F C kGjOt2�Os � Vt2V

�
t2

GjOt2�Osk2F
C kbGt;s � bV t

bV t
bGt;sk2F ;

and since the first two terms share the structure of the left-hand side, we can apply
induction to prove

kGjOt�Os � Vt V
�

t GjOt�Osk2F D
X

u2sons�.t/

kbGu;s � bV ubV �ubGu;sk2F : (14)

Applying this equation to all t 2 TI and s 2 rt yields the following explicit
representation of the error:
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Theorem 1 (Approximation error). We have

X

.t;s/2L C

I�J

kGjOt�Os � Vt V
�

t GjOt�Osk2F D
X

t2TI

kbGt � bV t
bV �t bGtk2F :

Proof. Using (14) gives us

X

.t;s/2L C

I�J

kGjOt�Os � Vt V
�

t GjOt�Osk2F D
X

.t;s/2L C

I �J

X
u2sons�.t/

kbGu;s � bV ubV �ubGu;sk2F

D
X

t2TI

X
u2sons�.t/

X
s2TJ

.t;s/2L C

I �J

kbGu;s � bV ubV �ubGu;sk2F

D
X

u2TI

X
t2TI

u2sons�.t/

X
s2TJ

.t;s/2L C

I�J

kbGu;s � bV ubV �ubGu;sk2F

D
X

u2TI

X
s2ru

kbGu;s � bV ubV �ubGu;sk2F

D
X

u2TI

kbGu � bV ubV �ubGuk2F ;

where we have used the definition of Nt and the simple structure of the Frobenius
norm in the last step. ut

This means that we can not only bound the error, but we can compute it explicitly
using quantities available during the course of the compression algorithm. This is
particularly simple if we solve (12) by the singular value decomposition, since (10)
allows us to compute the error explicitly using the singular values.

Computing .Vt /t2TI is only the first step towards finding an H 2-matrix
approximation of the given matrix G. We also have to find .Ws/s2TJ and the
coupling matrices .Sb/

b2L C

I �J
. We denote the transfer matrices for the second

cluster basis by .Fs/s2TJ and the rank distribution by .Ls/s2TJ .
Fortunately, the first step provides us with all required information for the second

step: we have to control the total error (7), and we already have found a way to
control the first term of the error equation. For the second term we observe that

Gj�Ot�OsVt D .V �t GjOt�Os/� D NG�t;s
holds, so we only have to find .Ws/s2TJ with

k NG�t;s �WsW
�

s
NG�t;skF � "s (15)
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for a suitable accuracy "s 2 IR>0. This inequality is very similar to (8), so we can
treat it by a very similar algorithm. The set rt � TJ of clusters connected to a
cluster t 2 TI is replaced by the set

cs WD
(
ft 2 TI W .t; s/ 2 LCI�J g [ csC

if s has a father sC 2 TJ ;

ft 2 TI W .t; s/ 2 LCI�J g otherwise, i.e., if s is the root:

We have to ensure (15) for all t 2 cs , so we again collect all submatrices in a large
matrix. Since the matrices NG�t;s have already been partially compressed, the correct
index set is

Ns WD
[
t2cs

Kt ;

and we can proceed as in the first phase: we let

bW s WD

8̂
<̂
ˆ̂:

Ws if sons.s/ D ;; 
Ws1

Ws2

!
otherwise;

NHs;t WD
( NG�t;s if sons.s/ D ;;

W �s NG�t;s otherwise;

bH s;t WD

8
ˆ̂<
ˆ̂:

NHs;t if sons.s/ D ;; NHs1;t

NHs2;t

!
otherwise;

Ms WD
(
Os if sons.s/ D ;;
Ls1
P[Ls2 otherwise

for all s 2 TJ ; t 2 cs

and introduce the matrix bH s 2 IRMs�Ns by

bH sjMs�Kt D bH s;t for all s 2 TJ ; t 2 cs:

If s 2TJ is a leaf, bH s is the row block matrix formed by combining all matrices
NG�t;s for t 2 cs . Otherwise, the submatrices are multiplied by W �s1

and W �s2
,

respectively, to take the projections corresponding to the son clusters into account.
The condition (12) is replaced by

kbH s � bW s
bW �s bH skF � "s; (16)

and we arrive at the algorithm given in Fig. 3 (cf. Fig. 4 for the pattern of data
reduction). It is very similar to the one used for .Vt /t2TI and differs only in one
important point: it uses the “half-compressed” matrices NGt;s provided by the first
phase instead of GjOt�Os .
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procedure adaptive col(s, csC , NG, var NH , W );
cs  csC [ ft 2 TI W .t; s/ 2 L C

I �J g;
if sons.s/ D ; then

Ms  Os;
for t 2 cs do bH s;t  NG�

t;s

else begin
Ms  ;;
for s0 2 sons.s/ do begin

adaptive col(s0, cs , NG, NH , W );
Ms  Ms [Ls0

end;
for s0 2 sons.s/, t 2 cs do bH s;t jLs0 �Kt  NHs0 ;t

end;
for t 2 cs do bH sjMs�Kt  bH s;t ;
Find bW s and Ls �Ms satisfying (16);
for t 2 cs do NHs;t  bW �

s
bHs;t ;

if sons.s/ D ; then Ws  bW s

else
for s0 2 sons.s/ do Fs0  bW sjLs0 �Ls

Fig. 3 Adaptive compression algorithm for the column basis .Ws/s2TJ

Since Vt is an orthogonal matrix with #Ot rows, it cannot have more than #Ot
columns, and we conclude that #Kt�#Ot holds. This implies #Ns�#I , and we can
proceed as for the first phase to show that O..#Ms/

2#I / operations are sufficient
for each s 2 TJ and therefore O.n2k/ operations are sufficient for the entire
construction of .Ws/s2TJ .

A closer look reveals that the second phase will in practice require far less
operations than the first: under standard assumptions, cs only contains O.log n/

clusters, and therefore #Ns is in O.k log n/. This means that O..#Ms/
2k log n/

operations are sufficient for each s 2 TJ , leading to an improved estimate of
O.nk2 log n/ for the complete algorithm.

By definition, we have

Hs;t D W �s NG�t;s D W �s Gj�Ot�OsVt D S�b ;

so the second phase provides us with the coupling matrices and the H 2-matrix
representation is complete.

Proceeding as in the proof of Theorem 1, we obtain

X

.t;s/2L C

I �J

k NG�t;s �WsW
�

s
NG�t;sk2F D

X
s2TJ

kbH s � bW s
bW �s bH sk2F ;

and combining (7) with (12) and (16) yields

kG � eGk2F D
X

t2TI

"2
t C

X
s2TJ

"2
s (17)
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Fig. 4 Data reduction during the second phase of the compression: the rows have already been
compressed, now the columns are treated starting with the finest level and working towards the
root of the cluster tree

for the H 2-matrix approximation of G defined by

eGjOt�Os D
(

Vt SbW �s if b 2 LCI�J ;

GjOt�Os otherwise
for all b D .t; s/ 2 LI�J :

To summarize: combining the algorithms given in Fig. 1 and 3, we can compute
an H 2-matrix approximation eG for any given matrix G 2 IRI�J . The compu-
tation requires O.n2k/ operations, and the error can be controlled using (17) to
indicate which singular values can be dropped during the compression process. High
accuracy requirements lead to large ranks and therefore higher runtime and higher
storage requirements for the compressed representation. Compared to the previous
algorithm based on [13], we can expect the new algorithm to be approximately twice
as fast, since the second phase of the new algorithm requires only O.nk2 log n/

operations compared to O.n2k/ in the previous algorithm.

4 Improvements

The compression algorithm can be improved in several ways: the computational
complexity can be reduced if the original matrix G is given in a data-sparse
representation, the compression rate can be improved by using refined error control
strategies, and the algorithm can be extended to cover vector- and tensor-valued
coefficients.
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4.1 Data-Sparse Input Matrices

We first consider the efficient treatment of data-sparse input matrices. A relatively
simple example is a hierarchical matrix [22, 29, 30, 32]: each admissible block
b D .t; s/ 2 L CI�J is of low rank and represented in the form

GjOt�Os D AbB�b ; Ab 2 IROt�Kb ; Bb 2 IROs�Kb ;

where Kb is an index set of low cardinality. Since the first phase of the compression
algorithm uses only the left singular vectors of the matrix bGt , we can apply arbitrary
orthogonal transformations to the columns without changing the result.

Let b D .t; s/ 2 LCI�J . Using Householder transformations again, we find an

orthogonal matrix Pb 2 IROs�Kb and a matrix Zb 2 IRKb�Kb satisfying

Bb D PbZb

and obtain the more efficient condensed representation

GjOt�Os D AbZ�b P �b :

Since Pb is orthogonal, the third factor can be ignored when computing the singular
value decomposition, and an improved algorithm can work with the matrices

bAb WD AbZ�b 2 IROt�Kb

instead of GjOt�Os . In typical situations we have #Kb � #Os, so the new algorithm
requires a significantly lower number of operations. There is one disadvantage:
using the condensed representation means that the matrices NGt;s D V �t GjOt�Os are
no longer computed during the course of the new algorithm, so we have to prepare
them using

NGt;s D V �t GjOt�Os D V �t AbB�b :

Computing the left product first requires O..#Kt/.#Ot/.#Kb// operations, and the
second product takes O..#Kt/.#Kb/.#Os//. We conclude that setting up the matrices
NGt;s for the second phase of the algorithm can be expected to be efficient if #Kb �

minf#Ot ; #Osg holds. Using standard assumptions, the condensed representation allows
us to reduce the complexity from O.n2k/ to O.nk2 log n/, and this “almost linear”
complexity makes it possible to handle matrices with several million degrees of
freedom within a few hours [12, Sects. 4.9 and 6.9].

A special case of this approach is the unification approach that takes a block
matrix consisting of several H 2-submatrices with different cluster bases and
constructs cluster bases that can be used to turn the block matrix into a uniform
H 2-matrix. If we apply this technique recursively, the H 2-matrix can be con-
structed by merging small submatrices, and it even becomes possible to determine
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the structure of the block tree TI�J during the course of the algorithm [10]. This
method could be of interest for image compression applications where the optimal
block tree depends on the structure of the image under consideration, although the
improved flexibility comes at the price of a higher algorithmic complexity.

4.2 Refined Error Control

The efficiency of the compressed representation can be improved by taking into
account that different parts of the matrix may require different accuracies. E.g., it
may be attractive to use a relative error tolerance

kGjOt�Os � Vt SbW �s kF � "relkGjOt�OskF : (18)

In the most general case, we would like to be able to prescribe tolerances for each
submatrix GjOt�Os appearing in the algorithm: for the first phase, we would like to
ensure

kbGt;s � bV t
bV �t bGt;skF � "t;s for all t 2 TI ; s 2 rt : (19)

In order to turn this requirement into a formulation that can be handled by the
singular value decomposition, we rewrite it in the form

k"�1
t;s
bGt;s � bV t

bV �t "�1
t;s
bGt;skF � 1 for all t 2 TI ; s 2 rt ;

i.e., we include the accuracy as a scaling factor applied to the matrices bGt;s .
Replacing the matrix bGt by bGt;" 2 IRMt�Nt given by

bGt;"jMt�Os D "�1
t;s
bGt;s for all s 2 rt ;

we can use the singular value decomposition to find an orthogonal matrix bV t

satisfying

kbGt;" � bV t
bV �t bGt;"kF � 1;

and this implies (19) for all s 2 rt . Incorporating the scaling factors "t;s into the first
and second phase of the algorithm is straightforward, and the error estimate (14)
takes the form

kGjOt�Os � Vt V
�

t GjOt�Osk2F �
X

u2sons�.t/

"2
u;s :

In order to ensure a blockwise relative error estimate like (18), we can let
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"u;s WD "relkGjOt�OskFp
# sons�.t/

for all u 2 sons�.t/

and thus obtain

kGjOt�Os � Vt V
�

t GjOt�Osk2F �
X

u2sons�.t/

"2
u;s D "2

relkGjOt�Osk2F
# sons�.t/
# sons�.t/

D "2
relkGjOt�Osk2F ;

i.e., the desired estimate. It is also possible to refine this approach by assigning a
more relaxed error tolerance to smaller clusters while demanding a higher accuracy
for larger clusters: since the number of smaller clusters typically far outweighs the
number of large clusters, the total storage complexity can be expected to improve
significantly [8, 35].

4.3 Vector- or Matrix-Valued Matrices

We can extend the theory presented so far to vector- or matrix-valued matrices. We
assume

gij 2 IRp�q for all i 2 I ; j 2J ;

where p; q 2 IN. Depending on the nature of the matrices gij , different ways of
turning G into a standard matrix H that can be treated by the presented algorithm
have to be considered.

A very simple approach would be to introduce

Ip;q WD I � f1; : : : ; pg � f1; : : : ; qg

and let H 2 IRIp;q�J be defined by

h.i;˛;ˇ/;j D .gij /˛ˇ for all .i; ˛; ˇ/ 2 Ip;q; j 2J :

We can extend the labels of a given cluster tree TI for I to the index set Ip;q by
using

Otp;q WD Ot � f1; : : : ; pg � f1; : : : ; qg for all t 2 TI ;

and this construction ensures that indices of Ip;q corresponding to the same row
i 2 I appear always together in a cluster.

If the matrices gij for indices i 2 Ot , j 2 Os in an admissible block
b D .t; s/ 2 L CI�J can be approximated by a low-dimensional subspace of IRp�q ,
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the compression algorithm applied to H is able to take advantage of this property
to reduce the storage requirements and improve the efficiency of the compression.

4.4 Three-Dimensional Data

The compression algorithm can be easily generalized to treat three-dimensional
arrays G 2 IRI�J�K instead of matrices: we use an additional cluster tree TK for
the third dimension and construct a block tree TI�J�K using triples b D .t; s; r/

of clusters t 2 TI , s 2 TJ and r 2 TK instead of the pairs used before. The
factorization (4) is replaced by the Tucker representation

GjOt�Os�Or D .Vt ˝Ws ˝Xr/Sb; Sb 2 IRKt�Ls�Mr ;

and the first phase of the compression algorithm looks for a cluster basis .Vt /t2TI

that works uniformly well for all s 2 TJ , r 2 TK with .t; s; r/ 2 LCI�J�K : we
require

kGjOt�.Os�Or/ � Vt V
�

t GjOt�.Os�Or/kF � "t for all s 2 TJ ; r 2 TK

with .t; s; r/ 2 LCI�J�K :

Here GjOt�.Os�Or/ denotes the matrix with row index set Ot and column index set Os � Or ,
so that the multiplication by the projection matrix Vt V

�
t can be performed as usual.

As before, the cluster basis .Ws/s2TJ can be computed using the results of the
first phase. A third phase is required to construct a cluster basis .Xr/r2TK for the
third coordinate axis, but as before the number of operations required by the second
and third phase can be expected to be significantly lower than for the first phase
since the algorithm can take advantage of intermediate results of the compression.
According to the error analysis in [12, Sect. 6.1], the order of the coordinate axes
can, in the worst case, change the total error by a negligible factor of 3.

5 Summary

H 2-matrices [12, 13] can be used to approximate dense n � n matrices in O.nk/

units of storage, where k is a parameter controlling the accuracy. Compared to other
approximation techniques, e.g., wavelet methods, the H 2-matrix technique offers
the advantage of using general bases that can be chosen adaptively by a relatively
simple algorithm. Using intermediate results of this algorithm, an efficient error
control strategy can be applied that can guarantee any desired accuracy.

The approach can be extended in several directions: three-dimensional tensors
instead of matrix can be treated, tensor fields can also be covered.
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In order to handle very large data sets, the algorithm would have to be extended
to work on distributed memory computers. First promising results in this direction
already exist [5].

An important focus of current research is the development of efficient matrix
arithmetic operations like matrix multiplication, inversion or factorization. If the
cluster bases are given, the best approximation of the product of two H 2-matrices
can be computed in O.nk2/ operations [7]. There are preliminary results indicating
that the same order of complexity can also be reached for the inversion and
factorization of matrices. The cluster bases can also be chosen adaptively during
the course of the matrix multiplication in order to guarantee a given accuracy in
O.nk2 log n/ operations [12]. We are currently working on two approaches that may
help to extend this result to the more challenging task of solving linear equations
involving a system matrix in H 2-representation.
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Harmonic Field Analysis

Christian Wagner, Christoph Garth, and Hans Hagen

Abstract Harmonic analysis techniques are established and successful tools in a
variety of application areas, with the Fourier decomposition as one well-known
example. In this chapter, we describe recent work on possible approaches to use
Harmonic Analysis on fields of arbitrary type to facilitate global feature extraction
and visualization. We find that a global approach is hampered by significant
computational costs, and thus describe a local framework for harmonic vector field
analysis to address this concern. In addition to a description of our approach,
we provide a high-level overview of mathematical concepts underlying it and
address practical modeling and calculation issues. As a potential application, we
demonstrate the definition of empirical features based on local harmonic analysis
of vector fields that reduce field data to low dimensional feature sets and offers
possibilities for visualization and analysis.

1 Introduction

Among a multitude of techniques for the visualization of scalar, vector, and tensor
fields, feature analysis methods play a crucial role in enabling the visualization of
large datasets. Here, application-oriented feature definitions are matched against
a dataset to highlight interesting regions. Especially for highly complex fields
arising from modern computer simulations, visualization efforts can be reduced or
made feasible by depicting significant structural components and their interactions,
allowing for an abstracted view. Existing methods are typically based on topological
structures or application specific feature definitions. While the former leverage a
deep mathematical framework to generate a topological skeleton of a field and are
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uniformly applicable to general fields, the latter requires intimate knowledge of the
application domain. Here, we apply concepts of harmonic analysis towards this goal.
In general, applications of harmonic analysis (often also called signal processing)
can be manifold. Ranging from simple and generic processing such as smoothing
over a variety of computer vision algorithms, it can also be applied to the extraction,
detection and classification of features.

In this chapter, we provide an introduction to harmonic analysis of vector
fields and describe an application to feature-based visualization, with a focus
on practical aspects. As is required for a basic understanding of the concepts
we discuss, we attempt to summarize harmonic analysis techniques for discrete
field representation. Harmonic analysis as a general concept is neither specific to
application domains, nor is it restricted to specific field types (scalar, vector, tensor)
or domain geometry. We illustrate a global analysis approach for generic fields and
discuss its computational implications, which leads to define local approaches that
are much more feasible computationally.

To achieve the goal of feature-based visualization, we define a feature space over
small neighborhoods of a given discretized field’s domain that transforms it—using
harmonic analysis—into a low dimensional feature vector. This transformation
is achieved by formulating a discrete Laplacian over the discretization of the
neighborhood and computing eigenvalue decomposition. This yields a basis of
eigenfunctions over the neighborhood. The coefficients of the field representation
in this basis form the feature vector. The latter then provides a means to define,
locate and compare features in an empirical fashion. Our method is closely related
to Fourier analysis that is used extensively e.g. in image processing and computer
vision applications.

2 Related Work

Harmonic analysis is a concept with a rich and well-developed mathematical
background, and has many applications. For example, in disciplines related to
visualization, applications to geometry processing and mesh filtering have been
discussed in depth, such as surface smoothing [25], matching [22], quadrangula-
tion [4, 26] or the design of tangent vector fields over surfaces [11]. Vallet and
Lévy [27] provide an overview of recent results. In the following, we concentrate
on previous work that is immediately relevant to the practical presentation in this
paper.

Eigenanalysis techniques are often applied in the context of Fourier transforma-
tions, convolution or pattern matching. Since classical Fourier techniques are not
applicable to vector or tensor fields in a direct and meaningful manner, [6, 7, 23]
employ complex invariant moments or Clifford algebra in order to define a suitable
setting. A different approach is based on a discrete formulation of the Laplacian
operator, which is the central concept behind harmonic analysis, such that its
eigenfunctions can be directly formulated for vector fields.
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However, discrete Laplacian formulations, such as the Discrete Exterior Calculus
(DEC) approach introduced by Hirani [16], are not yet well understood regarding
their application to vector-valued eigenvalue problems. Therefore, we compare
numerical results with a classical Finite Element formulation of the Laplacian,
for which many good textbooks are available like [17] as well as for eigenvalue
problems itself [15] and the underlying functional calculus [19].

The implementations underlying our experiments (cf. Sect. 5) are based on
the use of the ARPACK [20, 24] and SUPERLU [2] packages that facilitate
eigenanalysis and decomposition of large matrices [21].

3 Harmonic Analysis

To provide a base understanding of our methods to readers not familiar with
harmonic analysis, we will briefly touch on and illustrate a number of fundamental
concepts. Beginning with the Fourier decomposition as a direct example, we
will discuss the spectral theorem known from functional calculus. Then, a short
discussion about arbitrary domains and field types is followed by describing low
pass filtering as a global approach. Due to the limited space, we will necessarily
limit ourselves to a high-level, phenomenological overview and refer the interested
reader to [5, 10, 18] for an in-depth treatment of the topic.

3.1 Fourier Decomposition

The well-known technique of Fourier analysis is an example of harmonic analysis
techniques, and we will discuss it here briefly to motivate the use of harmonic
analysis on generic field types and geometries as a tool with manifold capabilities.

A periodic signal can be decomposed into a combination of sinusoidal functions
with varying frequency and amplitude. Mathematically, sine and cosine functions
are used as basis for the space of periodic functions, and the original signal is
transformed to this basis. Specifically, a periodic function f with periodic length
T > 0 can be described as a sum of sine and cosine functions

f .t/ D a0

2
C
1X
kD1
.ak � cos.k!t/C bk � sin.k!t//;

where the coefficients ak and bk are given by the projection of the function f onto
the Fourier basis functions as

ak D 2

T

Z cCT

c

f .t/ � cos.k!t/ dt
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and

bk D 2

T

Z cCT

c

f .t/ � sin.k!t/ dt:

Furthermore, these sinusoidal functions can also be interpreted as the real and
imaginary parts of the complex valued functions e�ikt . These are specifically the
eigenfunctions to the second derivative operator, i.e.

�@
2e�ikt

@2t
D �i 2k2e�ikt D �e�ikt :

In this simple case, the second derivative operator is the specific form of the
Laplacian operator on the one-dimensional periodic domain Œ0; T �.

In summary, the Fourier decomposition is a Laplacian eigenvalue decomposition,
where a periodic function is represented as a linear combination in a basis of
eigenfunctions of the Laplacian operator.

3.2 Spectral Theorem

The mathematical background we are using has its origins in the spectral theorem of
functional calculus. The theorem provides a strong and useful relationship between
an operator T W V ! V , e.g. V D R

n, and its eigenfunctions with

V D ker T ˚ linfe1; e2; : : :g:

In a nutshell, for a compact operator T on a function space (such as the Laplacian),
the spectral theorem states that the function space can be decomposed into a direct
sum of the operator’s kernel (which maps functions to zero) and the linear space
spanned by its eigenfunctions. The non-zero functions ei and non-zero values �i
which fulfill

T ei D �iei
are called the eigenfunctions ei to the corresponding eigenvalues �i of the operator
T . The set of �i is called the spectrum �.T / of the operator.

In the following, the Laplacian � will be the central operator we are concerned
with. Since the Laplacian is a symmetric operator, its eigenfunctions are orthogonal,
and the projection of a function onto the Laplacian’s eigenfunctions is the simple
inner product (typically in a L2-sense) of two continuous functions f and g,

< f; g >WD
Z
f .x/ � g.x/ dx:
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Consequently, the projection of the function f on the eigenfunctions ei results in
the basis coefficient ai and has the continuous version

ai D< f; ei >WD
Z
f .x/ � ei .x/ dx:

3.3 Discrete Setting

In practical applications, one has to consider a discrete setting, where a field under
consideration is described over a computational grid. Here, the Laplacian � is
represented by a matrix A that describes its action on a discrete representation of
a given field. Its eigenfunctions are the eigenvectors e of A and the spectrum is
given by

�.A/ D f� 2 C j 9e ¤ 0 W Ae D �eg:
The projection in the discrete case simplifies to the sum

ai D xT � w � ei D
nX

jD1
xj wj .ei /j ;

where xT is the function vector to be projected, ei the i-th eigenvector of A and w
is an area weighting function given by the size of the area around each vertex j .

3.4 Arbitrary Domain and Field Type

As motivated in Sect. 3.1, one aspect of harmonic analysis is the study of Lapla-
cian eigenfunctions and eigenvalues. For the classical Fourier decomposition the
functions are scalar-valued and periodic. Thus, they can be interpreted as scalar
functions on a simple manifold: the unit circle S1. However, the definition of the
Laplacian is more general and can be stated in other circumstances. Especially, it can
be defined for scalar, vector or tensor fields, and over different domain geometries
including arbitrarily-shaped manifolds. Figure 1 shows an example of formulating
the Laplacian for vector fields on an irregular shaped region, and the corresponding
first eigenfunctions (in this case a vector field) are shown.

3.5 Global Harmonic Analysis

In similarity to the Fourier decomposition, harmonic analysis can be applied to an
input field’s global domain. We term this a global approach in the following.
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Fig. 1 Example of vector-valued Laplacian eigenfunctions, which are vector fields themselves,
illustrated by line integral convolution. Eigenfunctions of the vector-valued Laplacian are shown
on an irregular-shaped region with cells on an unstructured grid. The eigenvalue multiplicity for
the shown eigenvalues is two, therefore two corresponding eigenvector fields (top row vs. bottom
row) are orthogonal

As an application example, we consider a turbulent vector field dataset arising
from a CFD simulation and described on an unstructured mesh with about 50,000
vertices. The resolution of the mesh is slightly adaptive with vertex distance
decreasing in the middle of the domain. As in this example, vector fields arising
from e.g. computational fluid dynamics solvers, are often given on arbitrary shaped
geometries discretized on unstructured grids. As outlined above, this yields the
necessity of discretizing the Laplacian on the underlying discrete function space
and solving for eigenvalues and eigenfunctions of the resulting matrix representation
explicitly. We discuss details of the discretization process in Sects. 5.1 and 5.2, and
the eigenvalue computation is discussed in Sect. 5.4.

After the eigenvalues of the matrix resulting from the discretization of the Lapla-
cian over the domain of consideration are computed, any spectral method operating
on the eigenfunctions can be applied and typically modifies the representation of
the field in this basis. The resulting linear combination of eigenfunctions can then
be evaluated on the original basis (e.g. per vertex) to allow interpretation of the
result in the original context. Using this approach, Fig. 2 illustrates the effect of
applying a low pass filter to the vector field that dampens the high frequency vector
field oscillations by reducing the coefficients of eigenfunctions proportional to the
corresponding eigenvalue magnitude.

Similarly, high-pass or band-bass filters can be applied to enhance different
components of the vector fields. For example, increasing higher frequencies can
amplify the vorticity to allow easier exploration of small scale structures.
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Fig. 2 The spectrum of the left vector field is dampened by removing high eigenvalue terms
resulting in the right vector field. Some streamlines are drawn in the vector field to illustrate small
turbulent structures

4 Local Harmonic Analysis

The dominating problem of global approaches is the large and significant computa-
tional cost arising from the computation of the Laplacian eigenvector basis. Since
the storage space and calculation complexity grows quadratically in the number of
vertices, global approaches are quickly limited in the feasible field size to be treated.
In addition, many interesting features are local in nature and can be distributed
spatially unequally, and are well represented only using a very large number of
Laplacian eigenfunctions. For this reason, we introduce a local approach by defining
small regions around each point in the domain and describe how to define, visualize,
and analyze features in such a local neighborhood.

4.1 Locality and Local Feature Definition

We introduce a region �.vi / around each vertex vi in the domain of interest. We then
determine a local eigenbasis for this region and project only the local field inside
the region on this local basis. From this, we obtain a local feature vector for every
point in space consisting of the basis coefficients of the local field around each point,
namely each vertex for a discretized field.

By using the same local region discretization for every point in space, only a
single (small) eigenbasis must be computed and can be reused for every region. As
long as the region’s spatial resolution is high enough, scaling the region around each
vertex can be done without recomputing the eigenvalue system.
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Fig. 3 Local feature
definition using local
eigenvector basis. For the
region �.vi / around vi the
Laplacian eigenfunctions are
determined. By projecting the
original field onto these
eigenfunctions the vector of
basis coefficients is composed

Figure 3 illustrates these relationships. For a region of interest in a vector
field, a local vector field basis is determined by the Laplacian eigenbasis fields
corresponding to the region. Successively, the vector field is projected onto the
elements of the eigenbasis, resulting in basis coefficients. These are then interpreted
as a local feature descriptor or feature vector to define features and corresponding
features strengths in the vector field as follows.

A feature f is defined by a feature strength function �f , which is a mapping
from the Laplacian eigenbasis coefficients ai to the interval Œ0; 1�:

�f W Rn ! R (1)

.a1; a2; : : : ; an/ 7! Œ0; 1� (2)

Here, resulting feature strength of 0 implies a vanishing response to the feature type
f in the selected region while a resulting value of 1 implies the definition matches
exactly.

Consider the following example. The first eigenfield in the local eigenbasis
for the example vector field introduced above is shown in Fig. 3. Together with
an orthogonal eigenfield of the same eigenvalue, they form the first eigenspace.
As depicted in the figure, the first eigenspace field contains exactly the linear
component of the vector field. Therefore, we define the local vector field linearity
�L as a feature strength function by the ratio of the first two basis coefficients to the
remainder of the basis coefficients on the spectrum as

�L.a1; : : : ; an/ WD
P2

iD1 jai jPn
iD1 jai j

:

The purpose of this definition of �L is to capture the relative importance of the
basis functions that encode linear flow—as given by their coefficients a1 and a2—
normalized by the overall size of the coefficients (

Pn
iD1 jai j). As �L approaches

1, the contribution of non-linear eigenbasis elements represented by a3; : : : ; an
necessarily tends to zero, signifying diminishing non-linear behavior.
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Fig. 4 Application of local feature definitions with local vector field linearity on the left and its
segmentation on the right

In this case depicted in Fig. 3, only the first two basis coefficients of the local
field basis are non-zero, and the other coefficients vanish, thus the field is perfectly
linear in the considered neighborhood.

In other words, the feature strength functions measures the similarity of the
feature vector to a desired feature type, where both are expressed in the Laplacian
eigenbasis.

Naturally, local feature strength criteria can be applied globally for each point
in the domain of the considered field. For example, Fig. 4 (left) illustrates the local
linearity feature strength for the inflow dataset. High local linearity is colored in
green while low local linearity is shown in red. The turbulent regions, where linear
flow is not prevalent, are clearly distinguishable from the remainder of the field. In
the right image, a simple threshold on �L is used to perform a binary segmentation
and separate mostly local linear regions from the turbulent parts of the vector field.

5 Discretizations and Computational Issues

The harmonic analysis technique can be used on arbitrary field and domain types.
However, the choice of Laplacian discretization is crucial to guarantee good results.
In the following, we summarize the most important smooth Laplacian versions,
followed by a brief introduction to a finite element and a discrete exterior calculus
discretization and their comparison. Finally, we will discuss computational costs.

5.1 Finite Element Discretization

To translate the concepts described above into practice, a discretization of the
Laplacian operator acting over an unstructured mesh must be chosen. The simplest
choice for this problem is finite element (FEM) formulation to discretize the
Laplacian on the global domain or the local region. In this setting, the action of
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the Laplacian on a vector field is approximated by its action on interpolatory basis
functions that form a basis of the vector field function space over the discrete
domain. For example, for linear finite elements over triangles covering a two-
dimensional domain, the interpolation functions are simple hat functions defined
over the one-ring neighborhood of a vertex. For vector fields, there is one basis
function per vertex and per vector component.

For a given domain˝ and the Laplace eigenvalue problem

�u � �u D 0 in ˝ (3)

u D 0 on @˝ (4)

an approximation Qu for the function u is sought according to Galerkin’s method
(cf. [13, 14]) by linearly independent functions N1; : : : ; Nm satisfying the homoge-
neous boundary condition

Qu D
mX
kD1

ukNk: (5)

In this formulation, the residual jju� Qujj, weighted with certain weight functions, is
required to vanish. In Galerkin’s method the basis functions N1; : : : ; Nm are reused
as weight functions, and one obtains

Z

˝

.�QuC �Qu/Njd˝ D 0 8j D 1; : : : ; m: (6)

Applying Green’s formula and inserting (5) the Laplace eigenvalue problem is stated
as the eigenvalue problem

mX
iD1

ui

Z

˝

rNi � rNjd˝ D �
mX
iD1

ui

Z

˝

NiNjd˝ 8j D 1; : : : ; m; (7)

that is equivalent to the matrix eigenvalue problem

Au D �Mu (8)

with the matrix coefficients

aij D
Z

˝

rNi � rNjd˝ and mij D
Z

˝

NiNjd˝:

5.2 Discrete Exterior Calculus (DEC) Discretization

A general framework for exterior calculus on discrete manifolds is the Discrete
Exterior Calculus (DEC) framework introduced in [16]. It has been used for a variety
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of tasks in a variety of settings such as mesh processing [27], fluid simulation [9],
and others, and is conceptually straightforward. Since it is less well known than
the FEM approach, we provide a brief overview of the fundamental concepts in the
following.

In the DEC framework, the geometry of discrete manifolds is described using
simplicial complexes, which are constructed from simplices. k-simplices have kC1
vertices, that is 0-simplices are vertices, 1-simplices represent edges, 2-simplices
are triangles, and 3-simplices are tetrahedra of a mesh. We make use of this
framework to investigate a discrete version of the smooth Laplace-de Rham operator
� D dı C ıd.

A central concept in exterior calculus is the concept of differentiable k-forms,
differentiable forms that capture the notion of integrability over (sub-)manifolds of
corresponding dimension (cf. [1, 12]). For example, a 1-form—which can be used
to describe a vector field—can be integrated over a 1-dimensional submanifold or
curve, thus describing a line integral.

The DEC framework is intimately tied to this notion and directly represents the
integrals of k-forms for each k-simplex of the discrete manifold, i.e. one scalar value
is assigned to each vertex, edge, triangle, and tetrahedron of a discretized manifold
in 3-space. Therefore, scalar functions can be mapped to scalar values on vertices,
vector valued functions as 1-forms are mapped to scalar values on edges and so on.

The implementation of the exterior derivative d uses Stokes’ theorem, giving a
unique relationship between the exterior derivative d and the boundary @ of a k-form
! on a region � with Z

�

d! D
Z

@�

!:

In other words, the evaluation of the exterior derivative d can be interpreted as the
evaluation on the boundary of the same simplex.

Thus, the exterior derivative d on k-forms can be computed as a KkC1 � Kk-
matrix Dk , where Ki is the number of i -simplices in the simplicial complex. This
matrixDk is the transposed incidence matrix of k C 1-simplices and k-simplices.

The implementation of the DEC framework requires a second entity from exterior
calculus, the Hodge star ?. In a simplicial complex, each cell has a dual cell.
For example, in a tetrahedral mesh contained in a 3-dimensional embedding, each
tetrahedron has a dual vertex. The Hodge star maps a k-form to the complementary
(n�k)-form on the corresponding dual cell. Since it is natural to require an integral
to be proportional to the volume of its domain of integration, we can define the
Hodge star with the relation of dual and primal volumes,

? D vol.dual/

vol.primal/
:

In matrix representation, this gives a diagonalKk�Kk-matrixHk with the fractions
of dual and primal volumes as matrix entries.
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The application of all possible exterior derivatives and Hodge stars to each
k-form results in a discrete version of the de Rham complex:

0 �! ˝0M
d�! ˝1M

d�! ˝2M
d�! : : :

d�! ˝nM �! 0

# ? # ? # ? # ?
0 � ˝nM

d � ˝n�1M d � ˝n�2M d � : : : d � ˝0M  � 0:

This finally allows the definition of the co-derivative ı for every .kC1/-form as the
inverse mapping to the exterior derivative d with

ı D .�1/n�kC1 ? d ? :

Finally, the discrete Laplace-de Rham operator L, approximating the smooth
Laplace-de Rham operator� D dıCıd, can be implemented by a concatenation of
matricesD andH on the primal and dual simplicial complex. Extended descriptions
about DEC and its implementations can be found in [3, 8].

5.3 Comparison of FEM and DEC Discretizations

It is not a priori obvious which discretization—FEM or DEC—approach gives the
best results for harmonic analysis of vector fields as described above. Furthermore,
it can be shown that there is no discretized version of the Laplacian operator that
captures all the properties of the corresponding continuous one [28]. Hence, we
evaluate different discretization with respect to their suitability towards harmonic
analysis in a discrete setting.

To obtain a qualitative understanding of the approximation qualities of FEM
and DEC that can inform the choice of discretization method used in local feature
analysis, we define a simple test problem. We consider a rectangular region in the
plane ˝ D Œ0; a� � Œ0; b� with edge lengths a; b > 0 and the scalar eigenvalue
problem

�u � �u D 0 in ˝ (9)

u D 0 on @˝ (10)

as a test case for which an analytic solution is known. This problem can be
understood as a tensor product of the Fourier decomposition described in Sect. 3.1.
Here, the eigenfunctions eij are products of sinusoidal functions and the eigenvalues
�ij are sums of the corresponding one-dimensional eigenvalues, namely

eij .x; y/ D sin

�
i�x

a

�
sin

�
j�y

b

�
;
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Table 1 The eigenvalues of the finite element and the discrete exterior calculus discretizations
on increasing grid resolutions are compared to the ones known from calculus. The finite element
method is found to deliver more accurate results

Analytic FEM DEC

11� 11 25 � 25 51� 51 101 � 101 11� 11 25 � 25 51� 51 101 � 101
2 20,441 20,076 20,017 20,004 21,234 21,514 21,560 21,570
5 52,408 50,412 50,095 50,023 51,808 53,559 53,847 53,912
8 87,147 81,223 80,281 80,070 81,002 85,349 86,076 86,240
10 108,610 101,456 100,334 100,083 99,416 106,356 107,518 107,781

�i;j D �2
"�

i

a

�2
C
�
j

b

�2#
;

i; j D 1; 2; : : : :

In the following, we compare the numerically approximated eigenvalues and
eigenfunctions obtained by the FEM and DEC approaches to these analytical
solutions.

Table 1 gives the eigenvalues of Eq. 9, as numerically determined from the
FEM and DEC discretizations of a square region (a; b D �), with increasing grid
resolution. We observe that the convergence to the correct eigenvalue known from
the analytic solution is better for the finite element method. Furthermore, even
for relatively higher grid resolution the DEC approach seems to diverge to a
slightly different value. This is an important observation for the situation in which
eigenvalues are used for harmonic analysis (cf. Sect. 4.1).

Figure 5 illustrates the eigenfunctions of Eq. 9. The first eigenfunction as well
as one of the two fourth eigenfunctions are shown using a color map on the left.
The middle and right columns illustrate the pointwise error of the FEM and DEC
approximations, respectively, using a greyscale mapping.

The error distribution over the squares is very similar for both approximation
methods, and they appear qualitatively equivalent for the given test case. In general,
we do not observe much difference between the FEM and DEC solution. However,
for the first eigenfunction, the FEM solution is consistently better due to the property
that FEM minimizes the integral error over the domain.

In summary, eigenfunctions computed by each of the two discretizations are quite
similar. Therefore, the FEM approach as well as the DEC approach can be used in
cases focusing on the usage of eigenfunctions. As an example, this is true for the
local vector field linearity feature strength function rhoL we define in Sect. 4.1.

However, our comparison shows a clear advantage of the FEM discretization in
approximating eigenvalues. For this reason, in cases relying on accurate eigenvalues
the FEM approach should be preferred.

In a general setting, there are also other factors to consider when choosing a
discretization for the Laplacian. While applying different boundary conditions is
often possible in a finite element approach, the adaptation to arbitrary embeddings
is not trivial. Conversely, this embedding is trivial in the discrete exterior calculus
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Fig. 5 The point-wise error of the finite element field solutions (middle) and the exterior calculus
field solutions (right) compared to the analytic solution (left) on a 11 � 11-grid

setup, since its formulation only depends on simplex incidences and automatically
handles cases like a two-dimensional surface in an arbitrary three-dimensional
embedding.

5.4 Computation of Large Eigenvalue Sets

Solving a matrix eigenvalue system for its eigenvalues and eigenvectors is typically
a time-consuming task. In addition, the amount of memory required to represent
the corresponding matrices grows quadratic with the number of grid points or
variables. This makes harmonic field analysis computationally expensive and
must be considered a bottleneck—especially for global approaches where many
eigenvectors must be computed.

Vallet and Lévy [27] combine the shift-and-invert method with band-by-band
computation for manifold harmonics. This method can also be used for harmonic
field analysis since it is a general method applicable to any matrix.

In a nutshell, the shift-and-invert method is a common spectral transformation.
Instead of computing the eigenvalues and eigenvectors around an eigenvalue � , the
spectrum can be shifted such that only computing the eigenvalues around zero is
needed by the examination of A � �Ix instead of the initial matrix A. Since most
algorithms for eigenvalue computation perform best for large eigenvalues modulus,
the spectrum can additionally be inverted by inverting the matrix. Finally, not the
eigenvalue � is computed but the modified eigenvalue	 with

A�1� x D .A � �I /�1x D 	x; 	 D 1

� � � :
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To solve this system, the shift-and-invert method, e.g. as implemented in ARPACK,
is used. This interface is accelerated using SUPERLU for matrix vector operations
and LU matrix decomposition. There is no actual need to compute and store the
inverted matrix, because the computation only requires the evaluation of x D A�1� z
for an arbitrary vector z. This can be computed very efficiently with the LU
decomposition of A� by performing a back-substitution.

The entire spectrum corresponding to the Laplacian discretization matrix can
then be computed in multiple parts. A small band of eigenvalues is computed at
once; successively, this band is shifted with a small overlap until the entire spectrum
is completed. With this technique, the sub-linear behavior of eigenvalue solvers can
also be compensated.

In our experiments, the global eigenvalue problem for the inflow dataset with
36,000 edge values was solved in about 2 h on a commodity PC (Intel Q6600 quad-
core machine at 2.4 GHz). Also applying classical eigenvalue solvers, we were only
able to determine the first 3,000 eigenvectors in about 3 days of computation time.
In comparison, for the two-dimensional local field analyses examples in Sect. 4.1 all
the six to ten vector field basis functions were determined in less than 100 ms on the
same hardware.

6 Conclusion

Harmonic analysis techniques are a fundamental tool in scalar field processing and
analysis. Well-known applications are techniques based on the Fourier decomposi-
tion. In this chapter, we provide a number of ideas on applying harmonic analysis on
scalar, vector and tensor fields over general domains, with a focus on visualization
and analysis applications.

The typical global approach to harmonic analysis was illustrated on a small
vector field example given an unstructured grid, and the problems for global
approaches were identified and discussed. These issues led us to the introduction
of a local approach using local regions for every point in space. We used this local
approach to define a local feature strength measure, based on properties described
in Laplacian eigenbases.

Since two direct possibilities for the choice of the discretization are apparent,
we gave an overview of both methods and compared their behavior numerically.
In addition, we discussed numerical aspects of the eigenvalue computation that has
proven difficult to master in our experiments.

For the future, there are still many open avenues of investigation. Besides improv-
ing the computational system in accuracy, convergence and computational costs,
for special cases there might be explicit algorithms not depending on a numerical
eigensolver. Furthermore, other possibilities for feature measures going beyond the
local vector field linearity criterion should be explored, and it is conceivable to apply
the described technique to achieve pattern matching of empirically defined features.
Finally, the adaptation of existing signal and image processing algorithms should
also be considered.
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