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Preface

This book attempts to capture some of the excitement of an inspiring Dagstuhl
Seminar in January 2007. The authors report on recent research results as well
as opining on future directions for the analysis and visualization of tensor
fields. Topics range from applications of the analysis of tensor fields to purer
research into their mathematical and analytical properties. One of the goals of
this seminar was to bring together researchers from along that pure-to-applied
disciplinary axis with the hope of fostering new collaborations and research.
This book, we hope, will continue to further that goal in a broader context.

Providence, Rhode Island, USA David H. Laidlaw
Saarbrücken, Saarland, Germany Joachim Weickert
August 2008
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Modelling, Fitting and Sampling
in Diffusion MRI

Daniel C. Alexander

Centre for Medical Image Computing, Dept. Computer Science, UCL,
Gower Street, London, WC1E 6BT, UK
D.Alexander@cs.ucl.ac.uk

Summary. This chapter discusses issues of modelling the diffusion MRI signal from
brain tissue, fitting models of tissue microstructure to diffusion MRI measurements
and designing acquisition schemes that provide the best estimates of model param-
eters. We construct a simple geometric model of white-matter tissue and derive an
expression that relates the model parameters to the diffusion MRI signal. The axon
density and diameter are parameters of the model and we examine the accuracy and
precision with which we can estimate these potentially important biomarkers. Pre-
cision and accuracy depend on the set of measurements we acquire and the method
we use to fit the model parameters to the data. We investigate various strategies
to optimize the experiment design, as well as various objective functions for model
fitting. Experiments and results compare the different methods and provide insight
into the accuracy with which we can measure axon density and diameters.

1 Introduction

Diffusion MRI measures the displacement of particles, usually water molecules,
within a material over a time interval. The material microstructure controls
the scatter pattern of particles within and, conversely, measurements of the
particle displacement reveal information about the microstructure. The cur-
rent standard diffusion MRI technique is diffusion tensor (DT) MRI [1], which
provides two unique insights into material microstructure. First, DT-MRI pro-
vides quantitative measurements of the anisotropy of particle displacements
and, second, it provides an estimate of the dominant orientation of particle
displacements. In fibrous material, such as white matter in the brain, the
dominant orientations of particle displacements reflect the dominant fibre di-
rections. Diffusion MRI is particularly useful for brain imaging, because it
reveals the orientations of white-matter fibres in each voxel of an image vol-
ume. Tractography algorithms follow these fibre-orientation estimates from
point to point to determine the connectivity of the whole brain.

Diffusion tensor MRI assumes a Gaussian model of particle displace-
ments. This simple model limits the technique’s applicability. The most
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well-documented departure from the Gaussian model occurs at white-matter
fibre crossings in brain tissue [2–4]. This observation has motivated extensive
recent work on multiple-fibre reconstruction algorithms, such as multi-tensor
models [5, 6], Qball Imaging [7], PASMRI [8] and spherical deconvolution
[9–11]; see [12] for a review. These techniques replace the simple Gaussian
model and resolve the orientations of multiple fibre populations within sin-
gle voxels, which improves the precision and accuracy of tractography algo-
rithms [13].

Diffusion MRI reveals microstructure changes, which highlight diseased
tissue (e.g. [14, 15]) and allows monitoring of development [16] and ag-
ing [17]. Connectivity mapping has provided fundamental insights in basic
neuroscience [18, 19], reveals differences in disease [20] and assists prognoses
after brain injury, stroke [21] or surgery [22]. The past decade has seen ma-
jor research efforts develop sophisticated acquisition and processing methods
for diffusion MRI, but clinical application of the technique is still relatively
limited. Most clinical applications still use only simple biomarkers, such as
the mean diffusivity (MD) and fractional anisotropy (FA) of the diffusion
tensor. Applications of tractography and connectivity mapping are beginning
to appear, in particular within neurosurgery, but are far from widespread or
routine. Simple biomarkers such as MD and FA are useful as indicators of
major microstructural changes, such as brain damage through stroke [23], but
do not capture more subtle effects that might be earlier indicators of degen-
erative diseases, such as multiple sclerosis or dementia. Increases in available
MRI scanner power and improved acquisition sequences now potentially allow
new techniques to image more specific features of the microstructure, such as
axon density, size and permeability, which also affect the diffusion MRI signal.
These more direct features of the tissue microstructure are exciting prospects
as biomarkers of the future.

The next section gives some background on diffusion MRI and how we
use it to infer tissue microstructure. Section 3 introduces the simple model
of white matter tissue and derives the model for the diffusion MRI signal.
It then introduces various methods for model fitting and experiment design
with reference to that simple model. Section 4 tests and compares the various
techniques using the simple model and Sect. 5 concludes.

2 Background

This section covers some background on diffusion MRI. In particular, the
following subsections outline the basic pulse sequence for acquiring diffusion
MRI measurements and then discuss modelling techniques that relate the
diffusion MRI signal to features of material microstructure.

2.1 The Measurement

The standard pulse sequence for diffusion MRI is a pulsed-gradient spin-echo
(PGSE) sequence, which places equal diffusion gradient pulses on either side
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Fig. 1. The pulsed-gradient spin-echo sequence. P90 is the length of the 90◦ radio-
frequency pulse at the start of the sequence and P180 is the length of the 180◦

refocussing pulse at the centre. TE is the echo time

of a 180◦ radio-frequency pulse at the centre of the sequence. Figure 1 shows
a diagram of the pulse sequence. The length δ, strength and direction G and
separation Δ of the gradient pulses all control the sensitivity of the signal to
particle displacements. These are the three main tunable parameters of the
sequence. A variety of alternative pulse sequences provide similar measure-
ments, such as twice-refocused spin-echo [24], which reduces eddy-current dis-
tortions, STEAM [25] and steady-state [26], which allow long diffusion times
and imaging of short-T2 tissue; all have costs in signal-to-noise compared to
PGSE.

If δ � Δ, the normalized signal A(q) approximates the Fourier trans-
form of the distribution of particle displacements (i.e. the scatter pattern)
p at wavenumber q = γδG, where γ is the gyromagnetic ratio; see [12, 27]
for derivations. This Fourier relationship is the basis of many diffusion MRI
methods. For example, in DT-MRI, p is a zero-mean Gaussian with covariance
2Dt, where D is the 3× 3 symmetric DT and t = Δ is the diffusion time. The
Fourier transform gives A(q) = exp(−tqT Dq), which is the standard equation
for fitting the DT to measurements [1]. In practice, δ is rarely negligible. For
simple scattering, such as Gaussian displacements, we can correct for finite δ
by setting t = Δ− δ/3 [27]. However, p in tissue is not Gaussian and finite-δ
effects are difficult to model precisely [28].
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2.2 Modelling and Reconstruction

The shape of p and its evolution over time are sensitive to other parame-
ters of tissue microstructure such as axon density, diameter distribution and
membrane permeability, the density of other cells such as glial cells and the
diffusivity and relaxation times (T1 and T2) of water within different cellu-
lar compartments. Various researchers, for example [29, 30], estimate these
parameters using diffusion MRI, but their experiments require high gradient
strengths and signal-to-noise ratios to separate the effects. Measurements of
this type in live human subjects have broadly been considered impossible, at
least with current technology.

Departures of the diffusion MRI signal from the Gaussian model are well
documented in the literature, for example [30]; specifically, the signal does not
decay ‘mono-exponentially’ as |q| and/or t increase. The departure is no sur-
prise. In white matter, for example, water molecules within axon cells exhibit
restricted diffusion, since the axon’s myelin sheath is largely impermeable to
water over typical diffusion times. Other water molecules (around 20%) are in
the extracellular space and exhibit hindered diffusion. The extracellular space
is normally mostly connected so that water percolates and p is approximately
Gaussian [31]. Restricted intra-cellular diffusion, however, produces highly
non-Gaussian p, since cell dimensions limit the maximum possible displace-
ment. The literature contains analytic models for p within simple restricting
geometries, such as spheres, cylinders and parallel planes [32–34]. These mod-
els relate simply to the diffusion MRI signal via the Fourier transform, but,
as noted earlier, this fails to account for finite δ. Murday and Cotts [35]
(see also [32]) derive an approximate model for the diffusion MRI signal for
particles diffusing within spheres that accounts for finite pulse widths; their
derivation adapts very simply to cylindrical geometries [36].

Various researchers construct simple geometric models from these prim-
itives, so that p has analytic form, to try to match diffusion MRI signals
more closely. For example, Szafer et al. [37] construct a brain-tissue model
consisting of non-abutting semi-permeable square cylinders. Stanisz et al.’s
model [30] contains non-abutting spherical glial cells and ellipsoidal axons
with semi-permeable walls embedded in a homogeneous substrate. Assaf and
Basser’s model [29] contains cylindrical non-abutting axons with a gamma
distribution of radii. Sen and Basser [38] add thickness to cylinder walls (like
myelin sheaths) and show that different parameter settings reflect the obser-
vations from brain tissue with various pathological conditions. Other models,
for example [39], use similar primitives to construct models for p in red blood
cells.

3 Methods

This section first develops a simple model for diffusion in white matter, which
is a simplification of the CHARMED model in [29], then discusses how to fit
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models of this type to diffusion MRI data. Finally, it develops novel methods
for optimizing the experiment design for this kind of model.

3.1 Simple Model

We use a model for white matter with two compartments between which there
is no exchange of water molecules. The model assumes parallel cylindrical
axon cells with equal radii and impermeable walls embedded in a homogeneous
medium. Water in the intra-cellular compartment exhibits restricted diffusion,
but the intra-cellular medium is also homogeneous with the same diffusivity as
the extra-cellular medium. Water in the extra-cellular compartment exhibits
hindered diffusion. The normalized MRI signal is then

A(G,Δ, δ) = fAr(G,Δ, δ) + (1− f)Ah(G,Δ, δ), (1)

where f ∈ [0, 1] is the fraction of water molecules in the intra-cellular com-
partment, Ar is the signal from the intra-cellular compartment alone and Ah

is the signal from the extra-cellular compartment.
We model the hindered diffusion in the extra-cellular compartment as sim-

ple (Gaussian) anisotropic diffusion so that

Ah(G,Δ, δ) = exp(−tqT Dhq), (2)

where the diffusion time t = Δ − δ/3, q = γδG is the wavenumber, Dh =
(d‖ − d⊥)nnT + d⊥I is the diffusion tensor, which is cylindrically symmetric
with major eigenvector n in the fibre direction, with corresponding eigenvalue
d‖ (the diffusivity parallel to the fibre direction) and minor eigenvalues d⊥
(the apparent diffusivity perpendicular to the fibre direction), and I is the
identity tensor.

For the restricted component, we use Van Gelderen’s extension [36] of
Murday’s model [35] for the MR signal from water diffusing in cylinders. The
model approximates the MR signal from water molecules inside a cylinder of
radius R for a gradient perpendicular to the fibre:

log Ar⊥(G⊥,Δ, δ) = (3)

−2γ2G2
⊥
∑∞

m=1

(
2d‖α2

mδ−2+2Y (δ)+2Y (Δ)−Y (Δ−δ)−Y (Δ+δ)

d2
‖α6

m(R2α2
m−1)

)
,

where Y (x) = exp(−d‖α
2
mx), αm is the mth root of J ′

1(αR) = 0 and J ′
1 is the

derivative of the Bessel function of the first kind, order 1. The model assumes a
Gaussian distribution of spin phases at echo time, which is not true in general,
but provides a close approximation for most practical purposes [40].

In general, G is not perpendicular to n, but we can decompose G into
parallel G‖ = |G| cos θ and perpendicular G⊥ = |G| sin θ components.
The two components attenuate the signal independently. The perpendicular



8 D.C. Alexander

component attenuates according to (3) and, assuming simple diffusion along
the fibre, the parallel component according to

Ar‖(G‖,Δ, δ) = exp(−t(γδG‖)2d‖). (4)

Note that we assume that the diffusion coefficient is the same as that parallel
to the fibre direction in the extra-cellular compartment. The intra-cellular
signal accounting for both components of the gradient is

Ar(G,Δ, δ) = Ar⊥(|G| sin θ,Δ, δ)Ar‖(|G| cos θ,Δ, δ). (5)

The key differences between the simple model above and the CHARMED
model are the simple model has only a single axon radius rather than a Gamma
distribution; the simple model assumes cylindrical symmetry of the diffusion
tensor in the extra-cellular space; and the simple model assumes the same in-
trinsic diffusivity of the material inside and outside the cylinders. In summary,
the parameters of the model are the following:

• The volume fraction of the intra-cellular compartment, f , which relates
simply to the axon density

• The apparent diffusion coefficients, d‖ and d⊥
• The fibre direction, n
• The axon radius, R

This is an experimental model only and does not account for many of
the microstructural variables in real brain tissue. Some other variables are
straightforward to incorporate. We can include distributions of axon radii by
integrating (5) over a prior on R, as in [41], which assumes a gamma distri-
bution of radii. Axon wall permeability allows exchange of particles between
the two compartments, which we can model with a pair of coupled differential
equations [30]. White matter also contains glial cells, which we might model
as a third compartment with spherical restriction, as in [30]. We can allow
distributions of fibre directions by integrating over a prior on n. We may also
be able to reduce the number of parameters in the model by one, by using
models of tortuosity [31] to estimate d⊥ from d‖, f and R. Other effects, such
as abutting cells and loss of percolation of the extra-cellular space are difficult
to incorporate in analytic models.

3.2 Fitting

The model parameters do not relate linearly to the measurements, so we have
to fit them using iterative optimization. The most common objective function
for such optimizations is the sum of squared errors:

LG =
NM∑
k=1

σ−2
k (A(Gk,Δk, δk)− Ã(Gk,Δk, δk))2, (6)
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where Ã is the measurement, NM is the total number of measurements and
σk is the standard deviation of the kth measurement.

The sum-of-squares objective function is the log-likelihood of the data on
the assumption of Gaussian noise. However, the noise on MRI measurements
in not Gaussian, but Rician [42], so that

P (Ã) =
Ã

σ2
I0

(
AÃ

σ2

)
exp

(
−A2 + Ã2

2σ2

)
, (7)

where Ii, i = 0, 1, 2, · · · , are the modified Bessel functions of the first kind;
Ã and A are the measurement and signal (predicted by the model), respec-
tively, and we drop the dependence on the pulse-sequence parameters from
the notation for now. This model assumes that the signal is the modulus of
a complex measurement with zero-mean Gaussian noise, with variance σ2,
on each component. A feature of the Rician noise model is that, unlike the
Gaussian noise model, the expectation E(Ã) of the measurement is not A,
but rather E(Ã) =

√
A2 + σ2. The sum of squares objective function does not

account for this bias and therefore introduces systematic bias to the param-
eter estimates. One simple way to correct for the bias [43] is to include the
constant offset σ2 as an extra parameter in the model and fit by minimum
least squares. We shall refer to this fitting procedure as corrected least squares.

An alternative is to derive a similar objective function from the Rician
distribution [44]. The log-likelihood of a single measurement comes from tak-
ing the log of (7). Then we sum over all measurements, drop constant terms
and negate to obtain the objective function to minimize for fitting with the
Rician noise model:

LR =
NM∑
k=1

2 log σ − log I0

(
AkÃk

σ2

)
+

A2
k + Ã2

k

2σ2
. (8)

Here we also include the noise variance σ as a model parameter in this fitting
scheme, but it may be fixed if known.

The three objective functions listed earlier provide three fitting procedures.
The experiments in later sections minimize each using a Levenburg–Marquardt
procedure. The procedure requires the first derivatives of the objective func-
tion with respect to each model parameter, which are all simple to compute.

3.3 Sampling

This section addresses experiment design, that is, the choice of measurements
that give the most accurate and precise estimates of the fitted model parame-
ters. The tunable settings of the PGSE pulse sequence are G, Δ and δ. Each
measurement in the acquisition may use a different combination. We seek the
set of combinations that give the best parameter estimates.
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Assaf and Basser [41] acquire 1,024 measurements: 8 repeats of each com-
bination of Δ at 8 settings in the range [0.02, 0.15] s and |G| at 16 settings in
the range [0, 1.2]T m−1; δ = 0.0025 s throughout. They use ex vivo samples
with known fibre orientation n and set G perpendicular to the fibre direction
for all the measurements. Stanisz [30] uses a similar acquisition.

3.3.1 In Vivo Imaging Constraints

In vivo imaging places three key constraints on the acquisition sequence. First,
we must limit the number of measurements to ensure that the acquisition time
is tolerable for live subjects. Here we use a limit of NM = 120, which modern
scanners can acquire in around 30 min. Second, power and safety constraints
limit the maximum gradient strength we can use to about 0.04–0.08T m−1

for human subjects. Third, in general we have no a priori knowledge on the
orientation of axons, so we require an acquisition that allows estimation of
the model parameters for arbitrary n. To handle arbitrary fibre directions,
we must acquire measurements with various gradient directions. In a similar
way, DT-MRI commonly uses ‘high-angular resolution’ acquisition schemes in
which |G|, Δ and δ are the same for each measurement, but each has a unique
gradient direction, with the whole set distributed evenly on a hemisphere [45].

The first class of scheme we investigate acquires the same number M of
measurements in each of the N gradient directions. The M combinations of
|G|, δ and Δ are the same in each direction. We choose the N directions by
electrostatic minimization [8, 45], fix them and optimize the M combinations
of |G|, δ and Δ.

3.3.2 Objective Function

The Fisher information matrix and the Cramer–Rao lower bound (CRLB) are
useful tools in experiment design [46]. The CRLB provides a lower bound on
the variance of a fitted model parameter that often correlates closely with the
true variance.

To optimize the acquisition, we aim to minimize, with respect to the set
of |G|, δ and Δ combinations, the sum of the standard errors of each model
parameter

F̃ =
K∑

i=1

σ2
i /p2

i , (9)

where pi, i = 1, · · · ,K, are the model parameters and σi is the standard
deviation of pi. We do not know σ2

i , so we use the CRLBs in their place.
The general form of the Fisher information matrix J has (i, j)th element

Jij = E

(
∂2L

∂pi∂pj

)
, (10)



Modelling, Fitting and Sampling 11

where L is the log-likelihood given an appropriate noise model and E denotes
expectation given that noise model. For Gaussian noise,

Jij = σ−2
NM∑
k=1

∂A

∂pi
(p1, · · · , pK ;Gk,Δk, δk)

∂A

∂pj
(p1, · · · , pK ;Gk,Δk, δk), (11)

which is simple to derive from (6) [47]. The CRLB for pi is the ith diagonal
element of J−1, so we replace F̃ by

F =
K∑

i=1

(J−1)ii/p2
i . (12)

The function F provides the basis of an objective function that we can
minimize with respect to the M combinations of |G|, δ and Δ. However, F
depends on specific choices for the pi, which take a range of values. The full
objective function therefore integrates F over prior distributions on each pi.

Here, we assume δ-function priors on the model parameters f , d‖, d⊥
and R. In particular, throughout we set f = 0.7, d‖ = 1.7× 10−9 s m−2, d⊥ =
0.2×10−9 s m−2, R = 10 μm. We cannot use a δ-function prior for n, however,
as we require good parameter estimates for arbitrary fibre orientation. For
orientation independence, we sum F over a set of directions. To construct
the set, we choose the first element at random, minimize F and find the n
in a large set of sample directions that has the largest F with the optimized
acquisition. We add that n to the set and iterate until the n with the largest
F is already in the set. The process usually converges with the set containing
only three or four elements.

3.3.3 Rician CRLB

We can derive an alternative CRLB from the general expression for the Fisher
information matrix in (10) that uses a Rician noise model. We need to compute
the expectations of the second derivatives of LR with respect to pi and σ. For
example,

E

(
∂2LR

∂pj∂pk

)
=
∫ ∞

0

∂2LR

∂pj∂pk
P (Ã)dÃ. (13)

The following expectations are straightforward to compute, although the al-
gebra is somewhat lengthy and the details are omitted here:

E

(
∂2LR

∂pi∂pj

)
=

NM∑
k=1

σ−4 ∂Ak

∂pi

∂Ak

∂pj
(Z(σ,Ak)−A2

k) (14)

E

(
∂2LR

∂pi∂σ

)
=

NM∑
k=1

2σ−5Ak
∂Ak

∂pi
(Z(σ,Ak)− σ2 −A2

k)) (15)

E

(
∂2LR

∂σ2

)
=

NM∑
k=1

4σ−6(σ4 − σ2A2
k −A4

k + A2
kZ(σ,Ak)), (16)
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where

Z(σ,Ak) =
∫ ∞

0

Ã2I2
1

(
AkÃ

σ2

)
I−2
0

(
AkÃ

σ2

)
P (Ã)dÃ. (17)

The function Z does not have closed form and we have to compute it numeri-
cally. In practice, we compute a look-up table of sampled values and use linear
interpolation to estimate it during optimization.

3.3.4 Optimization

Optimizations of this type are complicated by many local minima in the
objective function. We use a stochastic optimization algorithm, SOMA (Self-
Organizing Migratory Algorithm) [48] with default settings, to perform the
minimization. In each experiment, we repeat the optimization five times and
pick the result with the smallest final value of the objective function.

During minimization, we enforce several constraints. First, Δi ≥ δi+P180,
where P180 is the length of the 180◦ pulse, which we set to 0.005 s. Second,
δi ≥ 0. Third, 0 ≤ |Gi| ≤ Gmax, where Gmax is the maximum available
gradient strength. We also need to account for changes to the echo time, TE,
required for the sequence, since T2 effects reduce the signal more for longer
TE, which increases the significance of the noise. To account for the effects
of varying TE, we set σ proportional to exp(maxi(Δi + δi)/T2) in the Fisher
information matrix in (10) and (14). We set T2 = 0.07 s.

3.3.5 Subsets Acquisition Scheme

We also consider a variation on the acquisition scheme above that may give
better rotational independence of the model parameter estimates. Generally,
it is easier to estimate the model parameters when the n is approximately
orthogonal to one of the N gradient directions. Distributions of N directions
can leave large areas of the sphere uncovered, particularly when M is large (see
Fig. 2). Improvements in orientational independence may come from spreading
each group of M measurements out in the vicinity of one gradient direction.

A neat implementation of this idea exploits recent work by Cook et al. [49],
who showed how to divide a set of NM evenly spaced directions into M subsets
of evenly spaced directions. We use this to devise a similar acquisition scheme
to that discussed earlier. The alternative divides a full set of NM gradient
directions into M subsets and assigns one combination of |G|, δ and Δ to
each subset. Figure 2 compares the two acquisition schemes. Optimization is
harder for these schemes as the number of sample n that we sum F over tends
to be larger.
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(a) (b)

Fig. 2. The two types of scheme. In each plot, points with the same colour are
measurements acquired with the same combination of |G|, δ and Δ. (a) The scheme
in which all M measurements have the same direction. (b) The subsets scheme. In
each case M = 4 and N = 30

4 Experiments and Results

This section contains some experiments and results that compare the ex-
periment design and model fitting procedures from the previous section. All
experiments use the simple model of Sect. 3.1 and we use only synthetic data
throughout. Initial experiments (not shown) to compare different combina-
tions of N and M suggest that the combinations N = 30, M = 4, N = 24,
M = 5 and N = 20, M = 6 all give similar worst case performance over a large
number of sample fibre directions. Other combinations give worse parameter
estimates. Here we use N = 30, M = 4 throughout.

First we compare some acquisition schemes that the optimization proce-
dure in Sect. 3.3 produces. For illustration, we set R = 10 μm and Gmax =
0.2 T m−1. Table 1 shows the optimized acquisition scheme for the objective
function based on the Gaussian CRLB. Table 2 shows the optimized scheme
for the Rician CRLB and Table 3 shows the optimized scheme for the Rician
CRLB using the subsets acquisition scheme that Sect. 3.3.5 describes.

Optimization of the Gaussian CRLB objective function suggests very high
b-values that result in measurements with very low signal-to-noise. Incorporat-
ing the Rician noise model penalizes high b-values more and suggests a more
intuitively reasonable set of measurements. The optimized combinations of
|G|, δ and Δ are similar for the schemes with measurements in the same
directions and subsets.

Next we use simulation experiments to check the accuracy with which we
can recover known parameter settings using the different optimized acquisition
schemes in Tables 1–3 and the different model fitting techniques in Sect. 3.2.
In all the simulation experiments, we choose settings for all the model param-
eters listed at the end of Sect. 3.1 and synthesize data from the model using
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Table 1. Optimized combinations of |G|, δ and Δ from the Gaussian CRLB objec-
tive function

|G| Δ (s) δ (s) |q| t (s) b
(T m−1) (105 m−1) (mm2 s−1)

0.200 0.022 0.017 9.085 0.017 13,775
0.193 0.012 0.007 3.473 0.010 1,145
0.192 0.032 0.007 3.665 0.030 4,009
0.183 0.021 0.014 6.598 0.016 7,137

The table includes the more familiar quantities
|q|, t = Δ − δ/3 and b = t|q|2

Table 2. Optimized combinations of |G|, δ and Δ from the Rician CRLB objective
function

|G| Δ (s) δ (s) |q| t (s) b
(T m−1) (105 m−1) (mm2 s−1)

0.200 0.010 0.005 2.832 0.009 684
0.180 0.031 0.005 2.591 0.029 1,956
0.166 0.024 0.013 5.609 0.019 6,111
0.160 0.023 0.013 5.753 0.018 6,085

Table 3. Optimized combinations of |G|, δ and Δ, using the subsets acquisition
scheme, from the Rician CRLB objective function

|G| Δ (s) δ(s) |q| t(s) b
(T m−1) (105 m−1) (mm2 s−1)

0.200 0.028 0.010 5.108 0.025 6,544
0.200 0.010 0.005 2.873 0.009 708
0.177 0.027 0.011 5.143 0.023 6,177
0.147 0.032 0.006 2.500 0.029 1,836

the acquisition scheme we are testing. Then we add synthetic Rician noise and
refit the model by minimizing one of the objective functions in Sect. 3.2. To
minimize the objective functions, we use a Levenburg–Marquart procedure.
The initial settings of the model parameters before optimization are perturba-
tions of the true values by 20% Gaussian noise. We repeat each optimization
ten times and pick the result with the lowest final value of the objective func-
tion. In these experiments, we do not fit for the fibre direction, but fix it to
the true value to focus on the ability to recover the scalar parameters.

Figure 3 shows scatter plots of the fitted model parameters d⊥, d‖, f and R,
over 100 trials with independent noise, for each fitting procedure using each of
the optimized schemes in Tables 1–3. The noise level in each trial is such that
the signal-to-noise ratio with no diffusion weighting is 20. The plots show very
clearly the advantage of the Rician CRLB optimization for experiment design,
as the recovered model parameters have much greater precision and accuracy
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Fig. 3. Scatter plots of the fitted model parameters for each optimized acquisition
scheme and objective function. The left column plots fitted d‖ against d⊥. The right
column plots the fitted f against R. The first row shows the scatter for the Gaussian
CRLB optimized scheme in Table 1; the second row for the Rician CRLB optimized
scheme in Table 2; the third row for the Rician CRLB optimized scheme with subsets
in Table 2. The blue cross hairs indicate the true parameter values. The blue markers
show average values over all trials
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than from the Gaussian-CRLB-optimized scheme. The subsets scheme does
not show any advantage over the scheme with measurements in the same di-
rections. In fact, in this particular experiment, it seems to give slightly worse
results. In general, the least-squares fitting routines appear to give greater pre-
cision in the recovered model parameters than the Rician objective function.
The results show the expected bias of the uncorrected least-squares procedure.
The corrected least-squares objective function appears to produce the highest
accuracy and precision overall. The fitting procedure we use occasionally pro-
duces wildly inaccurate results (off the graph), which skews the positions of
the mean fitted values in Fig. 3. We also observe systematic bias in the fitted
diffusivity parameters, which is a consequence of the Rician noise distribution
that arises even using the correct noise model during fitting.

5 Discussion

In summary, we have discussed models that relate the diffusion MRI signal
directly to parameters of the tissue microstructure that are potentially useful
biomarkers. We have developed a simple model, which we use to illustrate
various methods for fitting models to diffusion MRI data and designing op-
timal acquisition schemes. The fitting and experiment design techniques do
not depend on the specific model and will work with any similar model. In
particular, they may provide optimal acquisition schemes for DT-MRI, which
are not yet agreed.

Simulation results are promising and suggest that measuring axon radii
and density in vivo is feasible. Further work is required for practical applica-
tion, however. The model we test here is very simple and needs to incorporate
more effects to provide useful biomarkers. Further work will also improve the
optimization for experiment design and the procedures for minimizing the fit-
ting objective functions. For further work in this area, see [50, 51].
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Summary. In this chapter we describe tensorial tools for the study of directional

data. We first make explicit different tensor representations. We then use this to com-

pare models, as one of the tensor representations is polynomial. Thus a multivariate

Taylor expansion uses Higher Order Tensors, and models will use an expansion in

higher order polynomials. We show provide formulas for different model-to-model

conversions.

1 Introduction

We describe tensorial tools for the study of directional data. By this we mean
data sampled on spheres, or spheres with antipodal points identified (pro-
jective space). Tensors play a role because we use models, that is continuous
functions on the space of directions. Such functions are approximated by poly-
nomials of varying orders. This defines a natural decomposition in homoge-
neous terms, which leads to the connection between multivariate polynomials
and symmetric tensors.

The text is structured in opposite order: we first describe tensors (Sect. 2),
especially symmetric ones, and their connection with polynomials. This seemed
to be of interest to some of the audience in the Dagstuhl meeting, thus hopefully
the same is true for readers of this chapter. We then specialise to directional
signals, in a more specific section (Sect. 3).

2 Tensors, Symmetric Tensors and Multivariate
Polynomials

Several options are available to write tensors, for example as multi-dimensional
arrays of coefficients or in a coordinate free form. The essential characteristic
is, however, the same; tensors are multi-linear objects. This explains the coeffi-
cients, they are coefficients of linear combination in a specific basis, but it also
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explains how the tensors change under linear changes of coordinates. Let V
be a linear space. The dimension of V is denoted by d. Multi-linear functions
of p variables on V form a vector space of dimension dp. When p = 1, this
space is the dual space V ∗. Let A, B ∈ V ∗, thus A, B are linear maps on V .

Definition 1. The tensor product A⊗B of A with B is the multi-linear map
from V 2 → K (bilinear map) defined by

A⊗ B : V 2 → K; (A⊗ B)(v1,v2) = A(v1)B(v2) (1)

for any v1,v2 ∈ V . Here K is a number field, either R or C. The definition
can be extended to vector-valued tensor product and spaces, below we use an
inner product to perform such identifications. V is a vector space over K,
which means it is isomorphic to Rd or Cd.

The space of bilinear maps is then spanned by tensor products. The definition
extends to higher orders of p.

The dimension of the dual space is also d, thus V and V ∗ are isomorphic.
When an inner product 〈v,w〉 is defined on V , we have a canonical (coordinate
independent) isomorphism: any vector v ∈ V defines a linear form in V ∗ via
〈v, ·〉. For the standard space V = Rd, where we write vectors as column
arrays, this amounts to taking the transpose row vector. Furthermore, the
dual of the dual is V . Generally, we can define tensor products of p vectors
and q forms, which we can identify to tensors of order r = p + q by using the
canonical isomorphism. In summary, we can talk about the tensor space of
pth order tensors, and think of tensors as multi-linear maps over V of order p.

The inner product extends naturally to the tensor product (see also
M. Moakher’s text). In other words, we can talk about the norm of a ten-
sor, or the distance between two tensors. To avoid the cumbersome indicial
notations, we introduce multi-indices i = (i1, . . . , ip). Then the inner product
can be written as a normal dot product, or using the Einstein convention:
〈A, B〉 = ai · bi. Normal dot product refers to the sum over corresponding
components. The right hand-side here uses a vectorisation of A, B to a,b.

2.1 Tensor Functions

We can define different functions from T p(V ) to T q(V ), the space of tensors
of order p to the space of tensors of order q.

Definition 2. Define the contraction Cij : T p(V ) → T p−2(V ) and transposi-
tion, symmetry and antisymmetry operators τij , σij , αij : T p(V ) → T p(V )by

(CijA)[v1, . . . ,vp−2] :=
∑

k

A[v1, . . . , ek, . . . , ek, . . . ,vp] (2)

(τijA)[v1, . . . ,vi, . . . ,vj , . . . ,vp] := A[v1, . . . ,vj , . . . ,vi, . . . ,vp] (3)

(σijA) :=
1
2

(A + τijA) ; (αijA) :=
1
2

(A− τijA) ; (4)
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The image tensors from σij , αij are symmetric or antisymmetric in en-
tries ij and the following applies mostly to symmetric tensors. In the same
way, we can construct tensors with specific symmetries in indices by summing
over all corresponding permutations. The number of transpositions required
to express a permutation is unique modulo 2. A is fully symmetric if it is
invariant under any permutation of the p arguments. For symmetric tensors,
the standard component notation is not optimal in the sense that components
are redundant. For a multi-index i, we write î for the re-ordered multi-index
i1 ≤ . . . ≤ ip, and given a vector x, we write x̂i for the product xı1 · · ·xıp of
its components. Formally, we have a many-to-one map h such that h(i) = î.
The ordered multi-indices define a unique indexing of symmetric tensors, it is
an example of monomial ordering [7].

2.1.0.1 Notations

We try to use here notations as consistent as possible with the ones in the
chapter by M. Moakher. As the focus here is on tensors of any order, we
use A, B for abstract tensors, of any order. Vectors, which can be identified
with tensors of order 1, are lower case bold v,a,b. The number of components
should be clear from the context, thus v ∈ V would have d components, where
a,b, the vectors of tensor components would have dp components. Their exact
ordering would depend on the bijection ψ between the space of tensors and
Rdp

. See chapter by M. Moakher in this book for more details on the bijection
ψ. The letter x denotes an independent variable, here d-dimensional vector
in V .

For a symmetric tensor Cij(A) = Ci′j′(A) for all i �= j, i′ �= j′. In other
words we have a unique contraction:

Definition 3. The Trace is the contraction operator from Sp(V ) → Sp−2(V )
(e.g. last two indices in practice).

Note that this definition differs from the one by Moakher in this book and the
‘generalised trace’ defined by Özarslan [14]. Our definition produces tensors
of lower order and a scalar only for tensors of order 2, whereas theirs produces
scalars, but the definitions are consistent for order 2 tensors.

The inner product of the space of tensors induces an inner product
on the space of symmetric tensors. Using the multi-index notation aibi =√

n̂iâi

√
n̂ib̂i. Here n̂i is the number of equivalent multi-indices, that is

n̂i =card{h−1(̂i)}.
We can define a homogeneous function qA : V → K by qA(x) :=

A[x, . . . ,x]. Obviously, qA is blind to permutations of the arguments in A,
thus we can restrict to fully symmetric polynomials, and by multi-linearity
qA(x) = Ai1...ip

xi1 · · ·xip
= aixi, where the last tensor product in x has p

terms. This is a multivariate polynomial of order p, and equivalently a multi-
variate polynomial q of order p defines a unique fully symmetric tensor Aq. In
other words, the set of homogeneous polynomials of order p Pp is isomorphic



24 P.G. Batchelor

to the set of fully symmetric tensors of order p, Pp � Sp. As in ∈ {1, . . . , d},
some indices are repeated, and we can rewrite xi1 · · ·xip

= xp1
1 · · ·xpd

d , where
pi is the number of times that i appears in the multi-index i. Note that
pi ∈ {0, . . . p} is 0-based. This provides an alternative notation for symmetric
tensor components, where we would write A indexed by the multi-indices of
pi. For a vector x, we define the generalised power xp = xp1

1 · · ·xpd

d for such
partition p, p1 + · · ·+ pd = p.

Example 1. Let q(x) = x2y2 +x2z2 +y2z2. The standard component notation
for this tensor could be summarised here by A1122 = A1133 = A2233 = 1,
with all other components being 0, in general we would need to write a four-
dimensional array of components. To be explicit, the component A1122 mul-
tiplies the monomial xxyy, A1133 multiplies xxzz. We see that this notation
does not simplify monomials. Alternatively, we could write A2̃0̃2̃ = A0̃2̃2̃ =
A2̃2̃0̃ = 1, where the tilde means the components are in the form (p1, . . . , pd).
Specifically, A2̃0̃2̃ multiplies x2y0z2.

In summary, to represent a fully symmetric tensor of order p we have the
following options:

Polynomial Ordered multi-index of length p Partition of p

degree p length(̂i) sum(p)
dim(V ) max({̂i}) length(p)

Note that rank has another meaning related to linear independence, thus we
use the word ‘order’.

Given a vector v, we know it defines a tensor of order 1 by inner product
(v · x). Its tensor components are the vector components. Consider the pth
power (v · x)p. By the multinomial formula

(v · x)p =
∑

p1+···+pd=p

(
p

p1, . . . , pd

)
vp1
1 xp1

1 · · · vpd

d xpd

d =
∑
p

xpcp(v).

This defines a homogeneous polynomial of order p, and we have an explicit
formula for the corresponding symmetric tensor components.

This defines a function of x, and the counting terms np = np1,...pd
=(

p
p1,...,pd

)
=
(

p
p

)
were put together with the other vector components. These

counting terms come from the projection from the space of all tensors to the
space of symmetric tensors: A1212 and A1122 are different in the space of all
tensors, but identical in the space of symmetric tensors. If we replace v by x,
we get a homogeneous polynomial of degree 2p, and by the same formula

(x · x)p =
∑
p

√
npxp√npxp. (5)

We write √
np
√

np instead of np to underline the symmetry in the right
hand term. This is yet another explanation for the

√
2 required to define an

orthonormal basis on the space of symmetric tensors. This expression should
be compared with the ones in the chapter by M. Moakher.
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2.1.0.2 Differential Operators

The Laplace operator Δ := ∇2 reduces polynomial order by 2: Pp → Pp−2.
By multi-linearity qA(x + te) = qA(x) + t

∑
l A[x, . . . ,x, el] + O(t2). Thus,

∇qA(x) ·e = d
dt |t=0qA(x+ te) =

∑
l A[x, . . . ,x, el]. The divergence of a vector

field of the form (f(x))e is ∇f(x) · e, thus we can reuse the previous formula:

∇ · ∇qA(x) =
∑

n

∑
l

A(x, . . . ,x, el, en)el · en =
∑

l

A(x, . . . ,x,︸ ︷︷ ︸
p − 2 terms

el, el)

because the basis is orthonormal. The last term is a trace.

∇qA(x) =
∑

l

A[x, . . . ,x,︸ ︷︷ ︸
p − 1 terms

el]el; ΔqA(x) = tr(A) [x, . . .x]︸ ︷︷ ︸
p − 2 terms

. (6)

In other words, the algebra of homogeneous polynomials and the symmetric
tensors have a one-to-one correspondence, which preserves some important
operators.

Note that if A and B are the symmetric tensor products A = ei1 · · · eip

and B = ej1 · · · ejq
, qA(x)qB(x) = xi1 · · ·xip

xj1 · · ·xjq
= qei1 ···eip ·ej1 ···ejq

(x) =
qA·B(x) and qαA+βB(x) = αqA(x)+βqB(x); thus the symmetric tensor product
corresponds to the polynomial product.

2.1.0.3 Integral Operators

To extend further the table of equivalences, we would like to find a polynomial
expression for the tensor inner product. The restriction of the L2-inner product
on the sphere to homogeneous polynomials induces a bilinear form

∫
Sd−1 qAqB.

As qA(x)qB(x) = qAB(x), we need to be able to integrate a polynomial qC(x)
on the unit sphere. Note that we can write qC(x) = 〈C, X〉, where X is the
tensor whose components are monomials x̂i = xp. By integration over the
sphere, we get ∫

Sd−1
qC dS = A(d)〈C, M〉 (7)

〈qA, qB〉L2(Sd−1) = A(d)〈A, MB〉T , (8)

where A(d) is the surface area of the unit sphere in dimension d. In the second
row, the tensor of moments M is interpreted as a linear mapping on the set
of tensors (See M. Moakher’s chapter). Let p1 + · · · + pd = p be a partition
of p. If any pi is odd, the integral is zero by symmetry. Otherwise, we get the
(p1, . . . , pd) moment

Proposition 1. Mp1,...,pd
= Mp = Γ ((p1+2)/2)···Γ ((pd+2)/2)

Γ ((p1+···+pd+2)/2) =: Γ (p/2+1)
Γ (p/2+1) ,

where we have extended the Γ -function to partitions in the obvious way. This
can be computed by direct integration over a sphere (see [1, 3]). Alternatively,
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because moments for a uniform distribution on a sphere cannot depend on
the coordinate systems, the components must be invariant under the effect
of the group of rotations [5, 6]: MR

p1,...,p2
= Mp1,...,p2 , where the superscript

R describes the components in the coordinate system rotated by R ∈ SO(d).
This introduces the very important concepts of invariance and covariance
[8, 12].

Definition 4. The homogeneous polynomial q(x) is invariant under the op-
eration of the group G if q(gx) = q(x) for all g ∈ G.

Example 2. The elementary symmetric polynomials σk(x) are

σ0(x) = 1
σ1(x) = x1 + · · ·+ xd

σ2(x) = x1x2 + x2x3 · · ·+ xd−1xd

...
σd(x) = x1x2 · · ·xd

these are the coefficients in Πd
l=1(xl + t) =

∑d
k=0 σd−k(x)tk.

The previous example would be just that, were it not for the following funda-
mental theorem (e.g. [12], Theorem 4.23):

Theorem 1. For any symmetric polynomial qA(x) there is a polynomial P
such that

qA(x) = P (σ1(x), · · · , σd(x)). (9)

This theorem is interesting in that it tells us that any symmetric tensor can
be written as some simple function of fundamental ones.

Example 3. A simple illustration uses again the Euclidean norm: σ1(x)2 =∑d
i=1 x2

i +
∑

i�=j xixj = |x|2 + 2σ2(x); thus

|x|2 = σ1(x)2 − 2σ2(x).

In tensor component terms, Aσ1 = [1; . . . ; 1] =: 1t, thus Aσ1 ⊗ Aσ1 = 11t.
This relation expresses that the identity matrix is the matrix of ones minus
the matrix of ones in the diagonal, showing once again that the multiple points
of view can shed a different light on relationships.

2.2 Spherical Harmonics

The space of all polynomials splits into subspaces of homogeneous polyno-
mials of degree p: P = ⊕pPp. The Laplace operator in spherical coordinates
is ΔRd = 1

r2 ∂r(r2∂r) + 1
r2 ΔSd−1 . Thus, ΔRd |Pp

= 1
r2 (p(p + 1) + ΔSd−1). It

follows that homogeneous harmonic polynomials are eigenfunctions of the
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Laplace–Beltrami operator on the sphere. These functions are called spherical
harmonics, and this space is denotedHp. It is then natural to subdivide further
Pp: Pp = Hp ⊕ H⊥

p . Harmonic polynomials correspond to traceless tensors.
This is a simple form of the important Hodge-de Rahm decomposition.

Example 4. The second order homogeneous polynomial xtAx splits into

A0|x2|+ xt(A− A0I)x.

The second term is the spherical harmonic of order 2. Here A0 is the 0th order
term (trace(A)/d) corresponding to the constant function.

2.2.1 Anisotropies

In general, we know that the Trace is a symmetric tensor of order p− 2, thus
we can write any symmetric tensor as A = tr(()A)⊗S I + (A− tr(()A)⊗S I).
The second term is then defined as the pure order p traceless part, denoted
Ap. The process can be repeated, for example

A = A0 + A2 + · · ·Ap (10)

In this way we have defined a decomposition of the tensors without introducing
explicit spherical harmonic functions! By analogy with the example, we define
a lth order anisotropy FAl(A) := ‖Al‖/‖A‖.

2.2.2 Non-Standard Metrics

Polynomials are a compact way to represent fully symmetric tensors and thus
to manipulate them. As an example, in the previous Dagstuhl book, the
Kullback–Leibler divergence was introduced as a function on distributions.
This function can be generalised to the general case. Given a symmetric ten-
sor A, we have defined the associated polynomial qA(x). The concept of pos-
itive definite tensors is easily defined from the polynomial version: a second
order tensor D is positive-definite if and only if qD(x) > 0. We extend this
definition to tensors of any even order, and call such tensors for short positive.
We use the notation D for positive tensors because of the motivation from
Diffusion Tensor MRI.

Definition 5. Given a semi-positive-definite tensor D, we define the function
gD(x) = e−qD(x)/

∫
Rd e−qD(x) =: e−qD(x)/cD. This makes gD into a probability

distribution.

In [11] the Kullback–Leibler divergence and the symmetrised Kullback–Leibler
divergence are defined as

KL(D1, D2) =
∫

gD1 log(gD1/gD2)

KLs(D1, D2) =
1
2
(KL(D1, D2) + KL(D2, D1)).



28 P.G. Batchelor

We can extend these measures without modification to positive definite tensors
of any order.

3 Signals and Directional Signals

Directions are represented by lines in space, or pairs of antipodal points ±v
on a sphere. The space of directions is the real projective space PRd−1, a
d− 1-dimensional space.

Definition 6. A directional signal s(±u) is a function on PRd−1.

The interest of tensors is that the usual Taylor expansion provides an approx-
imation of signals in terms of homogeneous symmetric polynomials. We try
to keep the discussion general for other potential applications, but our main
motivation for directional signals was from diffusion tensor MRI (DT-MRI).
In this field, by varying magnetic field gradient directions, we acquire signals
depending on this direction. Assuming a specific model, it is then possible
to reconstruct parameters from the measurements. The standard model for
DT-MRI is based on the Stejskal–Tanner equation, where it is hypothesised
that the signal depends on direction e as s(e) = s0e

−betde, where b is a known
weighting factor dependent on diffusion times and gradient strength, and s0

a non-weighted image. The unknown is then the second order tensor D.
By restricting to directions, we ignore the norms of sampling positions.

We can re-introduce by working on spheres of different radii. In Diffusion
MRI, this amounts to varying the b-value. From this point of view, we are
working in spherical coordinates. Homogeneous polynomials are particularly
suited to this.

3.1 Directional Sampling

In a practical situation, we often have to assume an underlying model. To be
specific, let us define models:

Definition 7. A model is a parametrization of directional signals s(e; θ).

Here we used the standard notation for parameters in parameter estima-
tion theory. We restrict ourselves to parameters in a tensor space. We
could call such models generically tensorial models, in which case we write
s(e; A1, . . . , An), where Al is a tensor of any order. The class of models is
restricted even further by the condition that s(e; D1, ..., Dn) is a linear com-
bination of signals of the form gDl

. Thus we assume from now on that the
tensors are positive.

Definition 8. We define models of this form as HARDI models, in connection
with High Angular Resolution Diffusion Imaging. Thus a HARDI model takes
the form

s(e; D1, . . . , Dn) =
∑

flgDl
(e).
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The choice of model is the choice of function s, and by sampling in the space
of directions, we get a parameter estimation D̂, which ideally is as independent
as possible on the choice of sampling directions e1, . . . , eN , although for a
finite set of sampling directions it is unavoidable that it still does depend on
it: D̂ = D̂(e1, . . . , eN ).

It is common to expand (the log of) directional signals in terms of even
order spherical harmonics Yl

log s(e; D1, . . . , Dn) =
p∑

l=0

sl(D1, . . . , Dn)Yl(e).

Note that a Least-Squares fit assumes a normal distribution of errors. This is
not preserved by the logarithm, this is discussed in the DT-MRI literature,
and in a chapter of this book. Here, we are interested in the functional (model)
dependencies, thus from the point of view here, the logarithm is just a bijective
data transformation. We write s̃ for the array of logarithms of samples of the
data at e1, . . . , eN .

3.2 HARDI Methods

Among the multitude of methods in HARDI, we mention Spherical Deconvo-
lution [17], FORECAST [2], Q-Ball [9, 10, 18], and the Diffusion Orientation
Transform [13]. Most have in common a two-step approach based on spherical
harmonics:

• Step 1: Solve s̃ = Y c, to get the array [ck]k = [clk,mk
]k.

• Step 2: Apply some operation on c to extract the desired information.

They will be considered in more details in the following comparisons.

3.3 Linear to Linear Models

Some of the models are linear, in the sense that the relationship between the
measured data s̃ and the generic model parameters θ is given by a matrix
equation s̃ = Mθ. Suppose now that we have two potential linear models
described by matrices M1 and M2. Assuming that model 1 describes the
true underlying process but that we use model 2, we can directly get the
relationship between the estimated parameters, because they must explain
the same data:

M1θ1 = s = M2θ2

from which follows that θ2 = M+
2 M1θ1 =: M21θ1, where the last equality

is a definition. In the middle equality we used the pseudo-inverse M+
2 . This

means
M21 = (Mt

2M2)−1(Mt
2M1);

we call this matrix the model-to-model matrix. We assume that the number
of parameters in model 2 is larger or equal than in model 1.
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3.3.1 Polynomial to Polynomial, i.e. Tensor to Tensor

The standard diffusion model leads, after the logarithm operation, to a second
order polynomial model. The model matrix (‘direction encoding’) contains in
its rows all second order monomials sampled on the chosen gradient direc-
tions en. Generally, we write Ep for the matrix containing all monomials of
order p, in a specific lexicographic order. We note that Et

pEq contains sums
of monomials of order p + q, over the directions. We thus have by definition
Et

pEq/(p+ q) =: Mp+q, the matrix of order p+ q moments. It follows that the
model-to-model matrix of polynomial models of different orders is a ‘ratio’ of
matrices of moments. Its components are rational functions.

Let us compute the model-to-model matrix when we fit an order 2 poly-
nomial function to what is truly an order 4 data. To simplify, we work in
dimension d = 2, with conventions

E2 = [x2
i , y

2
i , 2xiyi]; E4 = [x4

i , y
4
i , 4x3

i yi, 4xiy
3
i , 6x2

i y
2
i ].

Note that these matrices, thus the model-to-model matrix, depend on the
direction encoding. We assume that directions are uniformly distributed, and
take the limit when the number of directions goes to infinity. This describes an
ideal sampling, and in this way we get a model-to-model description, which
is independent of the choice of directions. Let Dxx, Dyy, Dxy represent the
components of the order 2 tensor, and Dxxxx, Dyyyy, Dxxxy, Dyyyx, Dxxyy the
components of the order 4 tensor. We get

⎡
⎣Dxx

Dyy

Dxy

⎤
⎦ =

1
8

⎡
⎣ 7 −1 0 0 6
−1 7 0 0 6
0 0 1 1 0

⎤
⎦
⎡
⎢⎢⎢⎢⎣

Dxxxx

Dyyyy

Dxxxy

Dyyyx

Dxxyy

⎤
⎥⎥⎥⎥⎦ ,

thus Dii = 1
8 (7Diiii −Djjjj + 6Diijj) and Dij = 1

8 (Diiij + Djjji) for i �= j.
A similarly compact result can be obtained in three dimensions:

Dii =
3
35

(9Diiii −Djjjj −Dkkkk) +
3
35

(8Diijj + 8Diikk − 2Djjkk) (11)

Dij =
30
35

(Diiij + Djjji + Dijkk) , (12)

where i, j, k run through x, y, z and are all different. This tells us what sec-
ond order symmetric tensor is estimated if the true underlying process corre-
sponds to a fourth order symmetric tensor. These results are consistent with
Moakher’s results (see chapter by M. Moakher in this book, and Özarslan [14]).

The aim of HARDI methods is to resolve multiple principal directions in
a voxel. What the methods have in common is the input data, but may vary
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slightly on how they express their output. For a full comparison, a common
output is thus required. We have at least three possibilities:

• The output is the function p(r), the probability displacement function.
As it is a general function on 3D space, it would be expressed as linear
combination of basis functions.

• The output is the function odf(e), the orientation distribution function.
It is a function on the space of orientation, and would be expressed as a
linear combination of spherical harmonics.

• The output is a finite set of orientations ei.

As mentioned earlier, most methods contain two steps, the first one, to
express the data as a linear combination of spherical harmonics, is common
to Q-ball, FORECAST and Spherical Deconvolutions. The second step is to
compute the ODF from c. Here the methods differ, but again most of them
are linear, in that they express the ODF as a linear combination of spherical
harmonics.

3.4 Linear to Non-Linear Models

3.4.1 Specific HARDI Models

3.4.1.1 Spherical Deconvolution

Here the array c is used to extract the parameters of a response function.
The signal is then a linear superposition of these responses, thus the methods
are in theory related to multi-exponential fitting, although in practice they
are likely to be more robust than the notoriously unstable direct non-linear
fitting. In any case, the model describes the effect of the response function as
a spherical convolution, c = RoS , thus θS = OSc = (RtR)−1Rtc (Eq. (3)
in [17]).

3.4.1.2 FORECAST

Here again, the coefficients clm are just scaled, thus c = OF θF (Eq. (15)
in [2]). This time, though, the scaling factor depends on a specific assumption
about the shape of the underlying tensors. Thus strictly speaking, the method
is not linear, as OF depends on the ratio of longitudinal to perpendicular
diffusivity, thus on the anisotropy. Equations (21) and (27) in [2] give directly
the connection with the q-ball ODF.

3.4.1.3 Higher Order Tensors (HOT)

Özarslan et al. also point out the relationship between spherical harmonics
based methods and higher order tensors [13]. As they have introduced a more
recent method (see next paragraph), we will not dwell on this here.
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3.4.1.4 Diffusion Orientation Transform (DOT)

The diffusion orientation transform (DOT) assumes the same directional re-
sponse function, an exponential of a second order tensor. The Fourier trans-
form expressing the PDF as a function of the signal is computed in spherical
coordinates; once the radial part has been integrated, the resulting term is ex-
pressed in terms of spherical harmonics [15]. They do not compute the ODF,
but the PDF directly. Thus to express explicitly the connection, we have to
integrate Equations (14) or Equations (9) of [15] over r.

A generic function m(θ) of the parameters defines a non-linear model. The
estimate of parameters from a linear model would then be formally

θlinear = M+m(θnonlinear).

For a general non-linear to non-linear situation, we do not have access to
the pseudo-inverse. A direct linearisation of the left-hand side gives

m1(θ1) = m2(θ2) ⇒ θ1 = (Dm1)+(0)m2(θ2),

which could be applied in particular to the non-linear to linear situation. Here
we made the assumption that m1(0) = 0. This could be extended to better
non-linear least squares solution by using expansions to higher orders, but it
is only of formal interest for abstract non-linear functions. In HARDI, the
typical non-linear model is multi-exponential, and we are able to give a much
more precise characterization of the relationship between linear models, that
is tensors of any order, and the multi-exponential.

3.5 Non-Linear to Linear Models

A standard DT-MRI signal is described as a single exponential s(b) =
s0e

−betDe. Although this affects noise distribution, it is useful to work with
the logarithm of this signal, as this is then simply a quadratic form, and
linear methods can be used. The constant term s0 is irrelevant here, and
absorbed into s. In practice, however, the signal is often a mixture s(b) =
f1e

−betD1e + f2e
−betD2e, where f1 + f2 = 1. Here we give a description of the

logarithm of such a multi-exponential in terms of tensors. The parameter is
the value b, which controls the strength of the diffusion. The result in words
is, to first order, the logarithm of the signal is the same as what one would
get with a single exponential, but where the tensor is the weighted average
f1D1 + f2D2. Furthermore, all higher order tensorial terms are just the dif-
ference of the tensor to the corresponding tensorial power, with coefficients
that are explicitly simple polynomials in f1, f2. Note that in some sense, this
means that all the information is contained in the first and second order term.
Here we are trying to be more specific than [4, 16].
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Theorem 2. When f1e
−bξ1 �= f2e

−bξ2 ,

log(f1e
−bξ1 + f2e

−bξ2) = −b(f1ξ1 + f2ξ2) +
∑
k≥2

ck(f1, f2)bk(ξ1 − ξ2)k, (13)

where ck is an explicit polynomial in f1, f2.
The table of some of the first ck is

c2 = f1f2

c3 = f1f2(f1 − f2)

c4 = f1f2(f2
1 − 4f1f2 + f2

2 )

c5 = f1f2(f1 − f2)(f2
1 − 10f1f2 + f2

2 )

c6 = f1f2(f4
1 − 26f2f

3
1 + 66f2

1 f2
2 − 26f1f

3
2 + f4

2 )

c7 = f1f2(f1 − f2)(f4
1 − 56f1f

3
2 + 246f2

1 f2
2 − 56f2f

3
1 + f4

2 )
...

In other words, for a bi-exponential, the second order tensor estimated from
a multi-exponential is the weighted average of the tensors (Fig. 1):

2nd order ∼ f1D1 + f2D2 (14)
4th order ∼ f1f2(D1 −D2) · (D1 −D2), (15)

where the dot represents the symmetric tensor product.

(a) (b)

Fig. 1. (a) Multi-exponential ‘peanut’ contours with order 2 and order 4 term as in
Theorem 2; (b) A modified ‘peanut shape from a multi-exponential crossing of pure
directions (i.e. a bi-exponential where the second-order tensors have eigenvalues in
ratio [1:0:0]. Here, instead of representing s(e) as the radius in direction e, we use
1/
√

log(s(e)). The advantage of this representation is that the shape for a single
second-order tensor is an ellipsoid
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We can attempt to use a Taylor expansion. Then we need an explicit
expression of a logarithmic derivative. Another option is using formal power
series algebra. Suppose u(x) =

∑
k akxk is some real analytic function. In

the following, we use the convention that a sum symbol
∑

k =
∑∞

k=0. To
make the argument clearer, we use some lemmas. We want to expand the
logarithm of a sum of exponentials. The sum of exponentials can be written
as a power series, and the logarithm expanded will then be a sum of sums.
The first lemma essentially describes how we write such sums of sums. The
second lemma uses the first one to write the logarithm of a power series as
a power series. The third lemma gives a closed form formula for some of the
explicit components.

Lemma 1. The pth power of u is also real analytic, with same radius of con-
vergence, and

u(x)p = (
∑

k

akxk)p =
∑

l

a
(p)
l xl,

where a
(p)
l =

∑
{ki} ak1 · · · akp

.

Here the kis are taken over all partitions of l in p integers. The number of such
partitions is the multinomial coefficient

(
l

k1···kp

)
. This lemma follows directly

from applying the multinomial formula.
The next lemma is analytically a bit trickier. We know the power expansion

of log(1+x) for |x| < 1. We would like to generalise this by replacing x by an
analytic function:

Lemma 2. Suppose |u(x)| < 1 for all x inside the convergence radius, and
the series bl =

∑
p≥1

1
p (−1)p−1a

(p)
l are absolutely convergent.

Then log(1 + u(x)) =
∑

l blx
l.

Proof. Because |u(x)| < 1, we can write log(1+u(x)) =
∑

p
1
p (−1)p−1(u(x))p.

The previous lemma provides an expression for u(x)p. We need to reorder the
sums. This is possible thanks to the assumption of absolute convergence, thus∑

p
1
p

∑
l(−1)p−1a

(p)
l xl =

∑
l x

l
∑

p
1
p (−1)p−1a

(p)
l .

Lemma 3. For |r| < 1:
∑

p plrp = (r d
dr )(l) 1

1−r .

Proof. r d
dr

1
1−r =

∑
p prp thus r d

dr (r d
dr

1
1−r ) =

∑
p p2rp. Iterating the deriva-

tives l times gives the result.

Proof (Theorem). Assume that f1e
−bξ1 > f2e

−bξ2 . Then log(f1e
−bξ1 + f2

e−bξ2) = log(f1e
−bξ1) + log(1 + f2/f1e

−b(ξ2−ξ1)). Apply lemma 2 to u(b) =
f2/f1e

−b(ξ2−ξ1)), then
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bl = −
∑

p

∑
{ki}

1
p

(
−f2

f1

)p 1
k1! · · · kp!

= − 1
l!

∑
p

1
p

(
−f2

f1

)p∑
{ki}

(
l

k1 · · · kp

)

= − 1
l!

∑
p

(
−f2

f1

)p 1
p
(1 + · · ·+ 1)l = − 1

l!

∑
p

(−f2

f1
)ppl−1.

Thus

log(s(b)) = log f1 − bξ1 − log(1/(1 + f2/f1)) + b(ξ1 − ξ2)
f2/f1

1 + f2/f1
+ · · ·

4 Summary and Conclusions

We have summarised the connection between symmetrics tensors and polyno-
mials, and explicited the correspondence of different formulas. For example,
the trace of a tensor corresponds to integrals of polynomials over the sphere,
and the same holds for inner products of tensors. Furthermore, traceless poly-
nomials correspond to spherical harmonics, giving a third representation.

We then show how this correspondence can be used to compare different
models of directional signals. The example comes from DT-MRI, where we
can write conversion formula between polynomial models of different order.
We demonstrate this for tensors of order 4 represented as tensors of order 2.

Finally, we establish which tensors represent the log of a sum of exponen-
tials. Such models are also common in DT-MRI. Once again, the formulas turn
out to be fairly compact, and we can conclude that if we use a Stejskal–Tanner
model where the truth is a sum of exponential terms, we would measure the
weighted average of the individual tensors, weighted by volume fractions. If we
fit higher order terms, we would measure tensor products of the differences.

In conclusion, although many models are used to describe directional sig-
nals, it is possible to describe what we would measure assuming a specific
model.
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Summary. Diffusion-weighted magnetic resonance imaging (DW-MRI) is a non-
invasive imaging technique that allows neural tissue architecture to be probed at a
microscopic scale in vivo. By producing quantitative data on the motion of water
molecules that naturally occurs in brain tissues as part of the physical diffusion
process, DW-MRI can be used to map the fiber paths in the brain white matter. Es-
timating the local complex architecture in the presence of intra-voxel heterogeneity
caused by multiple fiber pathways is of great importance and requires sophisticated
modeling techniques.

In this chapter, we present a review of our recently introduced novel mathemat-
ical model [27] and an accompanying unified computational framework for spherical
deconvolution to perform multi-fiber reconstruction [28]. In our model, the diffusion-
weighted MR signal attenuation is characterized by the Laplace transform of a con-
tinuous mixture of diffusion tensors. When the mixing distribution is a Wishart
distribution, the Laplace transform yields a closed form expression. Additionally,
we show that the traditional diffusion tensor model is a limiting case of this contin-
uous mixture of tensors model. We then formulate the reconstruction problem in a
unified deconvolution framework that facilitates investigation of several deconvolu-
tion schemes and achieves stable, sparse and accurate solutions. Finally, we present
results of testing this theoretical model and the accompanying unified computational
framework, on synthetic data and real rat brain data. The comparisons with several
competing methods empirically suggest that the proposed model yields efficient and
accurate solutions in the presence of intra-voxel orientational heterogeneity.

1 Introduction

By providing quantitative measures that depict various characteristics of dif-
fusional motion of water molecules, diffusion-weighted magnetic resonance
imaging (DW-MRI) allows neural tissue architecture to be probed at a mi-
croscopic scale, noninvasively and in vivo. The information extracted from
DW-MRI data can be used to estimate the orientation of fibers in the central



40 B. Jian et al.

nervous system, which can be further exploited for neuronal connectivity infer-
ence. Since the neuronal connectivity and tissue microstructure may be altered
by various physiological and pathological processes, DW-MRI has also become
a valuable imaging tool in studies of brain development and diseases [1].

Diffusion tensor MRI (DT-MRI or DTI), introduced in [2], provides a rela-
tively simple way of quantifying diffusion anisotropy as well as extracting fiber
directions locally from multidirectional diffusion MRI data. For recent review
articles on DTI, see [3–5]. Although promising results have been achieved us-
ing DTI to study regions of the brain and spinal cord with significant white-
matter coherence and to map anatomical connections in the central nervous
system [6–9], this model has two significant weaknesses: it can reveal only one
fiber orientation in each voxel and it fails in regions containing intra-voxel
orientational heterogeneity (IVOH) [10–13].

This limitation of the diffusion tensor model has stimulated exploration
of both more demanding image acquisition strategies and more sophisticated
reconstruction methods. Methods of representing the apparent diffusivity pro-
files include spherical harmonics expansion [10] and the equivalent higher order
tensor model [14]. Based on the observation that the peaks of the diffusivity
profile do not necessarily yield the orientations of the distinct fiber popula-
tions, a number of model-independent approaches have been developed, which
attempt to transform the multidirectional diffusion-weighted MR signals into
a function that describes the probability of water molecule displacement. The
Q-ball imaging (QBI) method approximates the radial integral of the displace-
ment probability distribution function (PDF) by the spherical Funk–Radon
transform [15]. More recent studies have analyzed QBI’s Funk–Radon trans-
form using a spherical harmonic basis [16–18]. Diffusion spectrum imaging
(DSI) can be used to measure the microscopic diffusion function directly based
on the Fourier relation between the diffusion signal and the diffusion function,
but its time-intensive q-space sampling burden makes this use impractical [19].
The diffusion orientation transform (DOT) transforms the diffusivity profiles
into probability profiles by explicitly expressing the Fourier relation in spheri-
cal coordinates and evaluating the radial part of the integral analytically [20].

Aiming to describe the non-monoexponential MR signal decay, a variety
of multicompartmental models or multiple-fiber population models using a
finite mixture of Gaussians have been formulated [13, 21–23]. Assuming a dis-
tribution, rather than a discrete number, of fiber orientations, the spherical
deconvolution method [24] can be treated as a continuous extension of the
finite discrete mixture model. Compared to the multicompartmental models,
the spherical deconvolution framework offers two significant advantages. First,
it avoids specifying the number of underlying fiber populations, which is an in-
trinsic model selection problem in the multiple-compartment models. Second,
the spherical deconvolution can often be reformulated as a linear system and
then efficiently solved, whereas the multicompartment models usually involve
nonlinear optimization, which is more computationally expensive. Prompted
by these merits of the spherical deconvolution framework, recently a number
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of variants of spherical deconvolution approaches [16, 25, 26] have been re-
ported with different choices of basis functions, deconvolution kernels, and
regularization schemes.

In this chapter, we present a review of our recently introduced novel sta-
tistical model [27] and an accompanying unified computational framework for
spherical deconvolution to perform multifiber reconstruction [28]. The novel
statistical model is a generalization of the diffusion tensor model [2] and ad-
ditionally has the power to resolve multiple fiber orientations within a voxel.
First, it is postulated that each voxel is associated with an underlying prob-
ability distribution defined on the space of diffusion tensors (the manifold of
3 × 3 positive-definite matrices). Conceptually, one can view this as a natu-
ral extension of the multiple-compartment models [13, 23]. Additionally, this
continuous mixture model can express the MR signal attenuation as a Laplace
transform defined for matrix-variate functions. For a class of parameterized
distributions, namely, the Wishart distributions, the Laplace transform can
be evaluated in closed form, leading to a Rigaut-type function, which has
been used in previously published literature [29] to explain the MR signal
decay phenomenologically. A deconvolution framework for the multi-fiber re-
construction problem was seamlessly formulated from this continuous mix-
ture model, where the deconvolution kernel is the Laplace transform kernel
and the basis functions are the Wishart distributions [28]. This model was
then put into a unified deconvolution framework to further investigate sev-
eral deconvolution schemes designed to achieve stable, sparse, and accurate
solutions. Finally, we present results of testing this theoretical model and the
accompanying unified computational framework on synthetic data and real
rat brain data. The comparisons with several competing methods empirically
suggest that the proposed model combined with a nonnegative least squares
(NNLS) deconvolution method yields efficient and accurate solutions for the
multifiber reconstruction problem in the presence of intra-voxel orientational
heterogeneity.

2 A Mixture of Wisharts Statistical Model

The key assumption in our continuous mixture model is that at each voxel
there is an underlying probability measure defined on the manifold of n × n
symmetric positive-definite (SPD) matrices, denoted by Pn (by default n = 3).
Let f(D) be the density function of the assumed probability measure with
respect to some carrier measure dD on Pn, then the diffusion weighted MR
signal S(q) can be expressed as

S(q)/S0 =
∫
Pn

f(D) exp(−bgT Dg) dD, (1)

where S0 is the signal in the absence of a diffusion weighting gradient, q
encodes the magnitude (G) and direction (g) of the diffusion sensitizing
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gradients, and b is the diffusion weighting factor depending on the strength as
well as the effective time of diffusion. Note that (1) implies a continuous form
of mixture model, with f(D) being a mixing density over the components in
the mixture. Clearly, this model simplifies to the diffusion tensor model when
the underlying probability measure is the Dirac measure.

Because b gT Dg = trace(BD), where B = b ggT , (1) can be expressed as
the Laplace transform (in the matrix-valued variable case):

S(q)/S0 =
∫
Pn

exp(−trace(BD)) f(D)dD = (Lf )(B), (2)

where Lf denotes the Laplace transform of a function f , which takes its
argument as symmetric positive definite matrices from Pn. (For the formal
definition of the Laplace transform on Pn, see [30]).

Based on this model, an inverse problem naturally arises: recovering a dis-
tribution defined on Pn that best explains the observed diffusion signal S(q).
Unfortunately, this problem is ill-posed and, in general is intractable unless
some prior knowledge about the probability function is used. Note that in
DT-MRI, the diffusion tensor can be interpreted as the concentration matrix
(inverse of the covariance matrix) of the Gaussian distribution in q-space, and
is usually estimated by solving a least squares problem, which is equivalent to
maximum likelihood estimate when assuming the Gaussian noise-model on the
log-transformed signals. Instead, our approach views the diffusion tensor as a
random variable (matrix) belonging to some known distribution family, which
allows us to model the uncertainty in the diffusion tensor estimation. In multi-
variate statistics, it is common practice to impose a Wishart distribution (see
definition below) as a prior on the concentration matrix. As one of the most
important probability distribution families for nonnegative-definite matrix-
valued random variables (“random matrices”), the Wishart distribution [31]
is most typically used when describing the covariance matrix of multinormal
samples in multivariate statistics [32]. Moreover, in the case of a Wishart dis-
tribution, a closed form expression for the Laplace transform exists and leads
to a Rigaut-type asymptotic fractal law for the MR signal decay behavior,
which has been observed in the past (see explanation below). These factors
motivate us to use the Wishart distribution as the mixing distribution f(D).

In the following, we first briefly introduce the definition of a Wishart distri-
bution as well as its relevant properties, then we analytically derive that when
the mixing distribution in the proposed continuous mixture tensor model is a
Wishart distribution, the Laplace transform leads to a Rigaut-type asymptotic
fractal law for the MR signal decay.

Definition 1. [30] For Σ ∈ Pn and for p in
(

n−1
2 ,∞

)
, the Wishart distribu-

tion γp,Σ with scale parameter Σ and shape parameter p is defined as1

1 Note that the correspondence between this definition and the conventional
Wishart distribution Wn(p, Σ) is given simply by γp/2,2Σ = Wn(p, Σ).
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dγp,Σ(Y) = Γn(p)−1 |Y|p−(n+1)/2 |Σ|−p e−trace(Σ−1Y) dY, (3)

where Γn is the multivariate gamma function and |·| is the matrix determinant.

The Wishart distribution γp,Σ is known to have the closed-form Laplace trans-
form ∫

e−trace(ΘY) dγp,Σ(Y) = (1 + trace(ΘΣ))−p, (4)

where Θ + Σ−1 ∈ Pn. Consider the family of Wishart distributions γp,Σ with
a fixed expected value D̂ = pΣ. When f in (2) is taken as a density function
of this distribution family, the expression (2) takes the form

S(q) = S0 (1 + (b gT D̂g)/p)−p . (5)

This is a familiar Rigaut-type2 asymptotic fractal expression [33], imply-
ing a signal decay characterized by a power-law, which is the expected asymp-
totic behavior for the MR signal attenuation in porous media [34]. Note that,
although this form of a signal attenuation curve had been phenomenolog-
ically fitted to the diffusion-weighted MR data before [29], to the best of
our knowledge, the proposed Wishart distribution model is the first rigorous
derivation of the Rigaut-type expression that was used to explain the MR
signal behavior as a function of b-value. Therefore, this derivation could be
useful in understanding the apparent fractal-like behavior of the neural tissue
in diffusion-weighted MR experiments. Also note when p tends to infinity,
we have S(q) → S0 exp(−bgT D̂g), which implies that the mono-exponential
model can be viewed as a limiting case (p →∞) of our model.

The density of a simple Wishart distribution as a function of diffusion ten-
sor reaches one single diffusion maximum at its expected value; therefore, a
single Wishart model can not resolve the intra-voxel orientational heterogene-
ity. Just as a discrete mixture of tensors model can be adapted, so can a dis-
crete mixture of Wisharts model where the mixing distribution in (2) is given
as dF =

∑N
i=1 widγpi,Σi

. To make the problem tractable, the following simpli-
fying assumptions are made. First, in this model the set of (pi, Σi) is treated
as a discretization of a submanifold of Pn. Note that the number of compo-
nents in the mixture, N , only depends on the resolution of this discretization
and should not be interpreted as the expected number of fiber bundles. It is
further assumed that all the pi take the same value, pi = p = 2, which is a rea-
sonable assumption based on the analogy between (5) and the Debye–Porod
law of diffraction [34] in 3D space. Since the fibers have an approximate axial
symmetry, it also makes sense to assume that the two smaller eigenvalues of
diffusion tensors are equal. In practice, the eigenvalues of Di = pΣi are fixed to

2 The phrase “Rigaut-type” is used to distinguish this function from Rigaut’s own
formula [33] function. Although slightly different, the Rigaut-type function shares
many of the desirable properties of Rigaut’s own function such as concavity and
the asymptotic linearity in the log–log plots.
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specified values (λ1, λ2, λ3) = (1.5, 0.4, 0.4)μ2 m−1s−1 consistent with the val-
ues commonly observed in white-matter tracts [13]. Because of this rotational
symmetry, the discretization of Pn forming the mixture of Wisharts is reduced
to a spherical tessellation. Accordingly, the prominent eigenvector of each Σi

can be taken from the unit vectors uniformly distributed on the unit sphere.
Because of the antipodal symmetry, the sampling is actually performed on
the projective plane, that is, only half of a normal spherical tessellation is
used. All the above assumptions leave us with the weights w = (wi) as the
unknowns to be estimated. For K measurements with qj , the signal model
equation

S(q) = S0

N∑
i=1

wi(1 + trace(BΣi))−p (6)

leads to a linear system Aw = s, where s = (S(q)/S0) contains the nor-
malized measurements, A is the matrix with Aji = (1 + trace(BjΣi))−p, and
w = (wi) is the weight vector to be estimated.

Interestingly but not surprisingly, our method can be cast into a unified
convolution framework that incorporates many existing reconstruction meth-
ods. Expressing the signal as the convolution of a probability density function
and a kernel function, this unified convolution framework can be stated as
follows:

S(q)/S0 =
∫
M

R(q, x)f(x)dx (7)

In (7), the integration is over a manifold M whose individual points x con-
tain the useful information like orientation and anisotropy. The convolution
kernel R(q, x) : R3 ×M �→ R models how the signal receives response from
a single fiber. To handle the intra-voxel orientational heterogeneity, the vol-
ume fractions represented by a continuous function f(x) : M �→ R models
the distribution of fiber bundles. Hence, the deconvolution problem is to es-
timate f(x), given the specified R(q, x) and measurements S(q)/S0. In prac-
tice, f(x) is usually expressed as a linear combination of N basis functions:
f(x) =

∑
wjfj(x). The choice of convolution kernels and basis functions often

depend on the underlying manifold M. A simple example is to let M be the
unit sphere (or more precisely, the projective plane due to the antipodal sym-
metry), which leads to the spherical deconvolution problem [24, 25]. Several
other approaches start from the manifold of diffusion tensors, but again re-
duce to the spherical deconvolution problem since only rotationally symmetric
tensors are considered. [16, 23, 24].

Following [16, 23, 24], we choose the standard diffusion tensor kernel in
our model. However, it is the Wishart basis function that distinguishes our
method from these related methods. It is worth noting that the Wishart basis
reduces to the Dirac function on Pn when p = ∞ and thus leads to the
tensor basis function method [23] as well as to the FORECAST method [16],
which both estimate fiber orientations using the continuous axially symmetric
tensors and hence resemble our method very closely.
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3 Stable, Sparse, and Positive Deconvolution

The general convolution problem (7) can be posed as the following linear
system:

Aw = s + η, (8)

where s contains K measurements S(q)/S0, the K ×N matrix A = {Aij} is
given by Aij =

∫
M R(qi, x)fj(x)dx, and η represents a certain noise model.

Note that the integral to compute the entries of A may have an analytical
solution as in our model and others that use the tensor kernel [16, 24, 35], or
may need to be numerically approximated as in [25]. In either case, once the
response kernel R(q, x) and the basis function are specified, the matrix A can
be fully computed (or approximated) and only w, a column vector containing
K unknown coefficients, remains to be estimated.

Under the assumption that the measurement errors η are independent and
follow an identical normal distribution, the maximum likelihood estimate of
w naturally leads to the L2 norm as a goodness measure and is equivalent to
the corresponding least squares (LSQ) problem that minimizes the residual
sum of squares

(P1) min ‖Aw − s‖2. (9)

The solution in the least squares sense is given by w = A+s, where A+ =
AT (AAT )−1 is the pseudoinverse of A. Direct methods are adequate here
since in our application the size of the linear system in (9) is not so large that
it requires iterative methods. Moreover, since the matrix A is independent of
the spatial location, the pseudoinverse is only computed once, and hence the
computational burden is light. Despite its simplicity and efficiency, a direct
solution to the linear system is highly susceptible to noise when the matrix A
is ill-conditioned, which is usually the case in our application as illustrated in
Fig. 1.

Many methods aiming at reliable multifiber reconstruction in the presence
of noise have been employed, including low-pass filtering [24], the maximum
entropy principle [25], and Tikhonov regularization [26]. In the Tikhonov reg-
ularization framework, the problem in (9) is reformulated as

(P2) min ‖Aw − s‖2 + α‖Tw‖2, (10)

where α is a regularization parameter and T is a regularization operator. To
penalize the magnitude of the estimates, (P2) in (10) with T being the iden-
tity operator, I, is often used and yields the solution: w = AT (AAT +αI)−1s.
Recently, a damped singular value decomposition was used to regularize the
fiber orientation distribution [36], where the damping factor α is determined
by minimizing the generalized cross validation (GCV) criterion, which pro-
vides a simple and objective method for choosing the regularization parame-
ter, though the real optimal solution is never guaranteed due to the theoretical
limits of the GCV method [37].
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Fig. 1. The linear system constructed in (8) is often extremely ill-conditioned
with very high condition number. The plot on the left shows the profile of condition
numbers when the A matrices are constructed from the radial basis function and the
tensor kernel model as in [25]. The plot on the right shows the case with a standard
diffusion tensor kernel weighted by a mixture of Wisharts. In both scenarios there are
K = 81 diffusion gradient directions. Two tessellation schemes of different resolution
levels (N = 81 and N = 321) are considered for each model

In the normal clinical setting, the number of diffusion MR image acqui-
sitions, K, is rarely greater than 100. On the other hand, a high resolution
tessellation with N > 100 is usually preferred for an accurate reconstruction.
This situation yields a “fat” rectangular system matrix A in (8) and leads
to an under-determined system of equations with infinitely many solutions in
the least squares sense. A direct solver may produce a solution with many
negative-valued components, which is not physically meaningful. Another is-
sue related to this configuration is the sparsity constraint. Since the number
of significant spikes in w is indicative of the number of maxima in the dis-
placement probability surfaces, w is expected to have a sparse support.

A recent strand of research has established a number of interesting results,
both theoretical and experimental, on stable recovery of sparse overcomplete
representations in the presence of noise (see [38] and references therein). The
concept of mutual coherence (defined in [39]) of the dictionary, A, plays an
important role in these results. It is shown in [39] that when the system A
has a property of mutual incoherence and that when the ideal noiseless sig-
nal s has a sufficiently sparse representation with respect to A, minimizing
the L1 norm of the solution (‖w‖1 =

∑
i |wi|) often recovers the sparsest so-

lution and is locally stable, that is, under the addition of small amounts of
noise, the result has an error that is at worst proportional to the input noise
level. Unfortunately, it turns out that our systems consistently have very high
mutual coherence values, in the range of 0.95–1, which makes these nice the-
oretical bounds inapplicable to our problem. To investigate the performance
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of L1 minimization-based methods in the context of our problem, we experi-
mentally tested the L1-MAGIC package,3 a collection of MATLAB routines
for solving the convex optimization problems central to sparse signal recovery
[40]. Among the several problems implemented in the L1-MAGIC package, we
were particularly interested in these two problems: (1) Min-L1 with equality
constraints:

(P3) min ‖w‖1 subject to Aw = s (11)

and (2) Min-L1 with quadratic constraints:

(P4) min ‖w‖1 subject to ‖Aw − s‖2 ≤ ε (12)

where ε is a user specified parameter. Both problems (P3) and (P4) find the
vector with the smallest L1 norm that best explains the observation s. (P3) can
be recast as a linear-programming (LP) problem, while (P4) can be recast as a
second-order cone programming (SOCP) problem (see [38, 41] and references
therein for details). We will report the results of implementation of these
methods for the sake of comparison in the next section.

However, the nonnegativity constraints are not explicitly enforced in the
above L1 minimization methods (P3) and (P4). To reduce the ambiguity of
the infinitely many solutions, we constrain the solution to the nonnegative
space while minimizing the least-squares criterion:

(P5) min ‖Aw − s‖22 subject to w ≥ 0. (13)

This nonnegative least squares (NNLS) minimization can be formulated as a
quadratic programming problem that finds the minimum point of a concave
quadratic function in a linearly bounded convex feasible hyperspace. Lawson
and Hanson’s algorithm [42, Chap. 23] is one of the most widely used algo-
rithms for NNLS. In this classic algorithm, the linear inequality constraints
are treated by an active set strategy, which tends to find the sparse solution
if there exists such a solution, even though the sparsity constraint is not ex-
plicitly imposed. The number of iterations to reach the full convergence, as
expected, depends on the amount of noise in the measurements. However,
a fairly satisfactory solution can often be achieved well before the full con-
vergence. Additionally, unlike other iterative methods mentioned earlier, this
algorithm requires no arbitrary cutoff parameter and the output is not sensi-
tive to the initial guess. There are two practical matters in solving the NNLS
problem. The first is the size of the system matrix and the second is the num-
ber of right-hand sides. In the context of our reconstruction problem, the size
of the matrix is relatively small, at most hundreds by hundreds, which makes
the active set method still a reasonable choice over some other algorithms for
large scale problems [43]. However, in real reconstruction of volume data, we
do have to solve the NNLS problem voxelwise. Unlike the unconstrained least
squares and regularized least squares where the pseudoinverse or the damped
3 http://www.l1-magic.org
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inverse can be computed only once and reused for multiple right-hand sides,
the active set method usually has to solve different sequences of subprob-
lems in its inner loop. To alleviate this problem, a recent variant of NNLS
algorithm [44] is able to avoid the many unnecessary recomputations by re-
arranging the calculations in the standard active set method on the basis of
combinatorial reasoning. This so-called fast combinatorial NNLS (FC-NNLS)
has been tested in our experiments and proved much faster than the standard
NNLS algorithm in the real MR volume data.

Once w is estimated using one of the deconvolution methods, the sig-
nal decay S(q)/S0 is expressed as the Laplace transform of the mixing
Wisharts distribution in the continuous diffusion tensor model(1), that is,
S(q)/S0) =

∫
Pn

e−qT DqtdF (D), where F (D) =
∑N

i=1 widγpi,Σi
. Then the

Fourier transform relation can be applied to compute the displacement prob-
abilities:

P (r) =
∫

(S(q)/S0) exp(−iq · r) dq

=
∫

R3

∫
Pn

e−qT DqtdF (D)e−iq·rdq ≈
N∑

i=1

wi√
(4πt)3|D̂i|

exp(
−rT D̂i

−1
r

4t
),

(14)

where r is the displacement vector and D̂i = pΣi are the expected values
of γp,Σi

. The P (r) function defined earlier describes the probability for water
molecules to move a fixed distance and has been employed in the DOT method
[20]. Note that the end result here is approximated as a mixture of oriented
Gaussians. Thanks to the nice analytic properties of Gaussian functions, many
of the quantities produced by other methods including the radial integral
of P (r) in QBI [15] and the integral of P (r)r2 in DSI [19] are analytically
computable using our technique. This fact provides an important opportunity
to understand these quantities and evaluate their performances in resolving
complicated structures.

4 Experimental Results

4.1 Numerical Simulations

Simulations were performed on the synthetic data generated from the cylindri-
cal boundary restricted diffusion model [45], which is a more realistic HARDI
simulation of the diffusion MR signals than the multiexponential model.
Figure 2 illustrates the three fiber geometries used in our simulations. The
same dataset was used in [20].

In our first experiment,the noiseless 1-fiber simulated HARDI data was
passed to the five deconvolution methods described in Sect. 3. Figure 3 shows
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Fig. 2. HARDI simulations of 1-, 2-, and 3-fibers (b = 1, 500 smm−2) visualized
in QBI ODF surfaces using [16, (21)]. Orientation configurations: azimuthal angles,
φ1 = 30◦, φ2 = {20◦, 100◦}, φ3 = {20◦, 75◦, 135◦}; polar angles are all 90◦

0 200100 300
−1

0

1

2
(P

1
) Pseudoinverse solution

0 300200100
−0.05

0

0.05

0.1

0.15

0.2
(P

2
) Tikhonov regularization

a = 0:1

0 300200100
−0.02

0

0.02

0.04

0.06

0.08
(P

2
) Tikhonov regularization

a = 1:0

3002001000
−4

−2

0

2

4

6
(P

3
) Min-L

1

with equality constraints

0 100 200 300
−0.5

0

0.5

1

1.5

(P4) with = 0.1

3002001000
−0.05

0

0.05

0.1

0.15
(P

4
) with   = 0:5

3002001000
0

0.1

0.2

0.3

0.4

(P
4
) with   = 1:0

3002001000
0

0.2

0.4

0.6

0.8

1

(P
5
)

Non-negative least squares

(31.7, 90.0)

(23.8, 90.0)

Fig. 3. Deconvolution-based computation of w in the 1-fiber HARDI simulation.
The matrix A is of size 81 × 321 and is constructed from the Wishart model with
p = 2. The Min-L1 algorithms are solved using the package developed in [41]. The
NNLS solver is the MATLAB built-in lsqnonneg function based on Lawson and
Hanson’s algorithm [42]

the results of w obtained from these methods and is able to give a qualita-
tive impression of these methods. It is clear that the least squares solution to
(P1) contains a large portion of negative weights and has a relatively large
magnitude. A zeroth-order Tikhonov regularization (P2) is able to reduce the
magnitude significantly but does not help achieve the sparsity and nonneg-
ativity. By minimizing the L1-norm with equality constraints, (P3) yields a
relatively sparse solution, but the magnitude and the negative values are not
well controlled. The result produced by (P4) has better sparsity and nonneg-
ativity. The best result, however, is obtained by solving (P5) using NNLS.
Among the 321 components, only two are significant spikes, both of which
lie in the neighborhood of the true fiber orientations (30◦, 90◦). It is impor-
tant to note that (1) the true fiber orientations do not necessarily occur at
the maxima of the discrete w vector, and (2) although all of these different
results for w actually lead to a very good approximation of the true displace-
ment probability function P (r) after taking the Fourier transforms, a sparse
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Fig. 4. Deconvolution-based computation of w using NNLS on simulated data
in the presence of noise. Gaussian noise with σ = 0.06 was added to the real and
imaginary parts of the signal, which is a common approximation to the Rician
noise model. The matrix A is constructed by using the Wishart model with p = 2
and a tessellation of size N = 321. From left to right are the 1-fiber, 2-fiber, and
3-fiber simulations, respectively. The spikes in each resulting w are marked with
the corresponding azimuthal and polar angles in degrees. In the ground truth ori-
entation configurations, azimuthal angles are φ1 = 30◦, φ2 = {20◦, 100◦}, and
φ3 = {20◦, 75◦, 135◦}; polar angles are all 90◦

positive representation of w obviously offers a great advantage in setting the
initial guess in the optimization procedure used to find the fiber orientations
by estimating the extrema of P (r). Considering the additional computational
overhead for solving (P3), (P4), and (P5) due to the iterative optimization, (P5)
is slightly slower than (P3) (LP), but significantly faster than (P4) (SOCP).
Figure 4 further shows the results of using NNLS on the noisy simulated data.
Clearly, NNLS is still able to produce quite accurate solutions, which also are
sparse representations.

In the second experiment on the simulated data, a quantitative compari-
son was performed among the proposed mixture of Wisharts (MOW) model
and the two model-free methods, namely, the Q-ball ODF[15] and the DOT
[20]. All the resulting P (r) surfaces were represented by spherical harmonic
coefficients up to order l = 6. The Q-ball ODF was computed using the for-
mula in [16, (21)]. First, to gain a global assessment of these methods in
terms of stability, we calculated the similarity between each noisy P (r) and
the corresponding noiseless P (r) using the angular correlation coefficient for-
mula given in [16, (71)]. The angular correlation ranges from 0 to 1, where
1 implies identical probability profiles. Then, we estimated the fiber orienta-
tions of each system by finding the maxima of the probability surfaces with
a Quasi-Newton numerical optimization algorithm and computed the devia-
tion angles between the estimated and the true fiber orientations. Figure 5
shows the mean and standard deviation of the angular correlation coefficients,
and error angles, respectively, for the 2-fiber simulation. Note that among the
three methods examined, only MOW results in small error angles and high
correlation coefficients in the presence of relatively large noise. This trend
also holds for the 1-fiber and the 3-fiber simulations. This can be explained
by noting that NNLS is able to locate the sparse spikes quite accurately even
in the presence of a lot of noise.
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Fig. 5. The plots on the left and on the right show the statistics of angular cor-
relation coefficients and error angles for the 2-fiber simulation, respectively. The
displayed values for error angles are averaged over the 2-fiber orientations

4.2 Real Data Experiments

One of the DW-MRI datasets was obtained from a perfusion-fixed excised
rat optic chiasm at 14.1 Telsa using a Bruker Avance imaging system (Bruker
NMR Instruments, Billerica, MA) with a diffusion-weighted spin echo pulse
sequence. Because the rat optic chiasm has a distinct myelinated structure
with both parallel and decussating (crossing) optic nerve fibers, it is well suited
for the validation of the fiber reconstruction results. In this dataset, there are
46 images acquired from 46 gradient directions at a b-value of 1,250 smm−2.
One additional single image was acquired at b ≈ 0 s mm−2. Echo time and
repetition time were 23 ms and 0.5 s respectively; Δ and δ values were set to
12.4 and 1.2 ms respectively; bandwidth was set to 35 kHz; signal average was
10; a matrix size of 128× 128× 5 was used with a resolution of 33.6× 33.6×
200 μm−3. The optic chiasm images were signal averaged to a 67.2 × 67.2 ×
200 μm−3 resolution before the subsequent processing.

The displacement probability functions for the optic chiasm image were
generated using four different methods, namely (a) QBI-ODF, (b) DOT, (c)
MOW+Tikhonov regularization, and (d) MOW+NNLS. The results on a re-
gion of interest are shown in Fig. 6. For each method, the corresponding S0

image is also shown in the upper left corner of each panel as a reference. The
fast combinatorial NNLS method [44] is used here as the NNLS solver. The
computation time for this region of interest containing 1,024 voxels is less
than 0.5 s for all four methods on an Intel Core Duo 2.16 GHz CPU, while the
standard NNLS takes about 8 s. As seen in the figure, the fiber-crossings in the
optic chiasm region cannot been identified by using the QBI-ODF method.
Note that both the DOT method and the MOW method with two different
schemes are able to demonstrate the distinct fiber orientations in the central
region of the optic chiasm, where ipsilateral myelinated axons from the two op-
tic nerves cross and form the contralateral optic tracts. However, it is evident
from the figure that compared to all other solutions, the MOW technique in
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Fig. 6. Probability surfaces computed from a rat optic chiasm image using (a) QBI-
ODF, (b) DOT, (c) MOW + Tikhonov regularization, and (d) MOW + NNLS. Note
the decussation of myelinated axons from the two optic nerves at the center of the
optic chiasm

conjunction with the NNLS scheme yields significantly sharper displacement
probability surfaces. This is particularly borne out in the optic chiasm, in the
center of each panel. The probability surfaces in the QBI and DOT models
are blurred, in part, because both yield a corrupted P (r) rather than the
actual displacement probability surfaces.The corrupting factor for the QBI is
a zeroth order Bessel function, for the DOT method it is a function that does
not have an analytic form. This corruption affects the accuracy of the recon-
structed fiber orientations as evidenced in the simulated data case where the
ground truth was known. Note that validating the precise angle of the fiber
crossing in this real data set is nontrivial as a histology stack must be created
and then fiber directions estimated from this stack must be validated against
those obtained from the DW-MRI data.
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5 Conclusions

A novel mathematical model for the reconstruction of the diffusion MR sig-
nals that we recently presented in literature was reviewed in detail along with
implementation results. In this model, the diffusion MR signal is related to
probability distribution for diffusion tensors through a Laplace transform. An
interesting discovery here is that the closed form expression for the Laplace
transform of Wishart distributions leads to a Rigaut-type asymptotic fractal
law for the MR signal decay behavior, which has been observed experimen-
tally in the past [29]. Moreover, the traditional diffusion tensor model can be
explained as a limiting case of our continuous mixture of Wisharts model. Fur-
ther, a spherical deconvolution method was developed for resolving multiple
fiber orientations using the mixture of Wisharts (MOW) model. Additionally,
some important computational issues in solving the deconvolution problem
that were not addressed adequately in previous studies are described in detail
here. Several deconvolution schemes for achieving stable, sparse, and accurate
solutions were investigated. Experimental results on both simulations and
real data were reported. The comparisons with two other competing meth-
ods empirically suggest that our model combined with a nonnegative least
squares deconvolution method yields efficient and accurate solutions for the
multifiber reconstruction problem in the presence of intra-voxel orientational
heterogeneity.
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[27] Jian, B., Vemuri, B.C., Özarslan, E., Carney, P.R., Mareci, T.H. A novel
tensor distribution model for the diffusion weighted MR signal. NeuroIm-
age 37(1) (2007) 164–176

[28] Jian, B., Vemuri, B.C. A unified computational framework for deconvo-
lution to reconstruct multiple fibers from diffusion weighted MRI. IEEE
Trans. Med. Imaging 26(11) (2007) 1464–1471
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Birkhäuser, Basel (1998) pp. 354–364

[30] Mathai, A.M. Jacobians of matrix transformations and functions of ma-
trix argument. World Scientific, Singapore (1997)

[31] Wishart, J. The generalized product moment distribution in samples
from a normal multivariate population. Biometrika 20 (1928) 32–52

[32] Murihead, R.J. Aspects of multivariate statistical theory. Wiley, New
York (1982)

[33] Rigaut, J.P. An empirical formulation relating boundary lengths to reso-
lution in specimens showing ‘non-ideally fractal’ dimensions. J. Microsc.
133 (1984) 41–54

[34] Sen, P.N., Hürlimann, M.D., de Swiet, T.M. Debye-Porod law of diffrac-
tion for diffusion in porous media. Phys. Rev. B 51(1) (1995) 601–604



56 B. Jian et al.

[35] Ramirez-Manzanares, A., Rivera, M., Vemuri, B.C., Mareci, T.H. Basis
functions for estimating intra-voxel structure in DW-MRI. In: Proc. IEEE
Medical Imaging Conference, Rome, Italy (2004) pp. 4207–4211

[36] Sakaie, K.E., Lowe, M.J. An objective method for regularization of fiber
orientation distribution derived from diffusion-weighed MRI. NeuroImage
34 (2007) 169–176

[37] Wahba, G. Spline models for observational data. SIAM, Philadelphia,
PA (1990)

[38] Candès, E.J., Romberg, J.K., Tao, T. Robust uncertainty principles: ex-
act signal reconstruction from highly incomplete frequency information.
IEEE Trans. Info. Theory 52(2) (2006) 489–509

[39] Donoho, D.L., Elad, M., Temlyakov, V.N. Stable recovery of sparse over-
complete representations in the presence of noise. IEEE Trans. Info.
Theory 52(1) (2006) 6–18

[40] Candes, E.J., Romberg, J., Tao, T. Stable signal recovery from incom-
plete and inaccurate measurements. Commun. Pure Appl. Math. 59(8)
(2006) 1207–1223

[41] Candés, E., Romberg, J. l1-MAGIC (http://www.l1-magic.org) (2006)
[42] Lawson, C., Hanson, R.J. Solving least squares problems. SIAM,

Philadelphia, PA (1995)
[43] Chen, D., Plemmons, R.J. Nonnegativity constraints in numerical anal-

ysis. In: Bultheel, A., Cools, R., eds. The Proceedings of the Symposium
on the Birth of Numerical Analysis, World Scientific Press, Singapore
(2007)

[44] Benthem, M.H.V., Keenan, M.R. Fast algorithm for the solution of large-
scale non-negativity-constrained least squares problems. J. Chemomet-
rics 18(10) (2004) 441–450

[45] Söderman, O., Jönsson, B. Restricted diffusion in cylindirical geometry.
J. Magn. Reson. B 117(1) (1995) 94–97



The Algebra of Fourth-Order Tensors
with Application to Diffusion MRI

Maher Moakher

Laboratory for Mathematical and Numerical Modeling in Engineering Science,
National Engineering School at Tunis, B.P. 37, 1002 Tunis-Belvédère, Tunisia
maher.moakher@gmail.com

Summary. In this chapter we give different descriptions of fourth-order tensors.
We show that under certain symmetries it is possible to describe a fourth-order
tensor in three-dimensional space by a second-order tensor in a six-dimensional
space. Such a representation makes the manipulation of fourth-order tensors similar
to that of the more familiar second-order tensors. We discuss the algebra of the
space of fourth-order symmetric tensors and describe different metrics on this space.
Special emphasis is placed on totally symmetric tensors and on orientation tensors.
Applications to high angular resolution diffusion imaging are discussed.

1 Introduction

The word “tensor” derives from the Latin word “tensus” the past participle
of “tendĕre,” that is, to stretch. It has been used in anatomy as early as
1704 to denote muscle that stretches. In mathematics, it was first introduced
in 1846 by William Rowan Hamilton in the context of quaternion algebra.
The tensor of a quaternion is the generalization of the modulus of a complex
number. However, the tensor in Hamilton sense did not survive. The cur-
rent meaning of a tensor is known to be due to Woldemar Voigt, who used
the term tensortripel in crystal elasticity (1899). Nevertheless, John Willard
Gibbs used, as early as 1884, the notion of right tensor as a generalized vec-
tor to describe strain in an elastic body. The foundations of tensor calculus,
then known as absolute differential calculus, have been developed much ear-
lier in the studies of Gregorio Ricci-Curbastro and Tullio Levi-Civita. Their
work is a continuation of the pioneering works of Karl Friedrich Gauß (1827),
Bernhard Riemann (1861), and Elwin B. Christoffel (1869). Further histori-
cal accounts can be found, for example, in [10, 12, 16]. Tensor calculus and
analysis are now used in many fields such as continuum mechanics, electricity,
magnetism, differential geometry, general relativity, multilinear algebra, and
recently diffusion tensor imaging [21].

There are several ways to describe tensors. In an abstract setting, tensors
can be defined as multilinear forms, or as multilinear maps. With respect to
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a chosen coordinate system,1 tensors can also be viewed as multidimensional
arrays. We emphasize that these arrays must transform according to specific
rules under a change of coordinates. Tensors are often considered as a gener-
alization of vectors, whereby scalars are zeroth-order tensors and vectors are
first-order tensors.

The algebra of second-order tensors is fairly standard and is used in vari-
ous branches of continuum physics such as continuum mechanics, electromag-
netism. In contrast, the use of fourth-order tensors has been mainly restricted
to elasticity tensors. Unsurprisingly, most of the notions and notations are
borrowed from elasticity literature. Recently, with the introduction of high an-
gular resolution diffusion imaging (HARDI), fourth-order tensors have gained
some interests within the diffusion imaging community [4, 7, 15]. The aim
of this chapter is twofolds. First it is intended to give the basic algebra of
fourth-order tensors. Second, we show that it is possible to express this alge-
bra in terms of the more familiar algebra of second-order tensors but in higher
spatial dimension.

Let V be a real vector space of dimension n. While in practice the underly-
ing vector space V has dimension n = 2 or n = 3, the results presented in this
chapter hold for arbitrary n. For elasticity and fourth-order diffusion tensors,
we give details for the case n = 3. Let B := {ei}i=1,...,n be an orthonormal
basis of V . Then any vector u ∈ V can be represented as u = uiei and the
scalars ui are called the components of u with respect to the basis B. On V
we define the inner product

u · v := uT v = uivi. (1)

Here and throughout, the Einstein convention on repeated indices is employed.
We shall use both direct (coordinate-free) and indicial notations [9].

Although we are concerned primarily with fourth-order tensors in the
n-dimensional space V , calculation and presentation are sometimes better
performed using second-order tensors in higher dimensions. We shall adopt
the following scheme of notation. Boldface lower case Latin (e.g., a), boldface
upper case Latin (e.g., A), and open face upper case Latin (e.g., A) indi-
cate n-dimensional tensors of order 1, 2, and 4, respectively. Boldface lower
case Latin with a superposed ˜ (e.g., ã) and boldface upper case Latin with
a superposed ˜ (e.g., Ã) indicate n2-dimensional vectors and second-order
tensors, respectively. Similarly, boldface lower case Latin with a superposed
ˆ (e.g., â) and boldface upper case Latin with a superposed ˆ (e.g., Â) indicate
1
2n(n + 1)-dimensional vectors and second-order tensors, respectively.

The remainder of this chapter is organized as follows. The algebra of
n-dimensional second-order tensors and their representations as vectors in
higher dimensions is reviewed in Sect. 2. In Sect. 3 we give the algebra of

1 In this chapter we shall consider Cartesian coordinate system and orthonormal
basis only. Accordingly, we consider only Cartesian tensors and we shall not dwell
into covariant and contravariant tensors, components, etc.
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fourth-order tensors. Section 4 is devoted to a presentation of the different
symmetries of fourth-order tensors. Section 5 gives the details of six-
dimensional second-order tensor representation of three-dimensional fourth-
order tensors. In Sect. 6 we discuss various types of material symmetries of
three-dimensional fourth-order tensors. Orientation tensors are presented in
Sect. 7. Finally, in Sect. 8 we discuss fourth-order diffusion tensors.

2 Second-Order Tensors

2.1 Second-Order Tensors as Linear Maps

A second-order tensor A is a linear map from V to V , which assigns to each
vector u ∈ V the vector Au (see, e.g., [9]):

A : V → V

u �→ Au.

Let ei ⊗ ej , i, j = 1, . . . , n, denote the second-order tensor such that for all
u ∈ V , we have (ei ⊗ ej)u = (u · ej)ei. Then any second-order tensor A has
the representation

A = Aijei ⊗ ej , (2)

where Aij = ei · Aej . The coefficients Aij are called the components of A
with respect to the basis B. It follows that the set of all second-order tensors,
that is, the set of all linear maps from V to V , is a linear space of dimension
n2 and is denoted by Lin(V ). The product AB of two second-order tensors
is defined by composition

(AB)u = A(Bu), ∀ u ∈ V.

In components we have (AB)ij = AikBkj .
The transpose of A ∈ Lin(V ) is the second-order tensor denoted AT and

defined by
u ·AT v = v ·Au ∀ u,v ∈ V. (3)

On Lin(V ) we define the inner product

〈A,B〉 := tr(AT B) = AijBij , (4)

and the induced metric

dE(A,B) := ‖A−B‖ = [tr((A−B)T (A−B))]1/2. (5)

With respect to the inner product (4), the set {ei ⊗ ej}1≤i,j≤n forms an
orthonormal basis of Lin(V ).
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2.2 Second-Order Tensors as Vectors

We consider an invertible map ψ that assigns to each pair of indices (i, j),
1 ≤ i, j ≤ n, a single index ψ(i, j) that ranges from 1 to n2:

ψ : �1 : n�× �1 : n� → �1 : n2�
(i, j) �→ ψ(i, j). (6)

There are of course n2! such maps. For n = 3, an example of such maps is

(i, j) (1, 1) (2, 2) (3, 3) (2, 3) (1, 3) (1, 2) (3, 2) (3, 1) (2, 1)
ψ(i, j) 1 2 3 4 5 6 7 8 9

. (7)

For 1 ≤ i, j ≤ n, we set ẽψ(i,j) = ei ⊗ ej . Then {ẽα}1≤α≤n2 is an orthonor-
mal basis of Ṽ ≡ Lin(V ). Therefore, any A ∈ Lin(V ) can be viewed as an
n-dimensional second-order tensor A = Aijei ⊗ ej , or, as an n2-dimensional
vector

A ↔ ã = ãαẽα, where ãψ(i,j) = Aij , 1 ≤ i, j ≤ n.

We have tr(AT B) = 〈A,B〉 = ã · b̃ and ‖A‖ = ‖ã‖. Therefore, the two-way
map A ↔ ã is an isometry between Lin(V ) and Ṽ .

2.3 Symmetric Second-Order Tensors

For A ∈ Lin(V ), we say that A is symmetric if A = AT (or in components,
Aij = Aji) and skew symmetric if A = −AT (or in components, Aij = −Aji).
Every second-order tensor A admits the unique decomposition

A = As + Aa,

where As = 1
2 (A + AT ) is the symmetric part of A and Aa = 1

2 (A−AT ) is
the skew-symmetric part of A.

The set of all symmetric tensors Sym(V ) := {A ∈ Lin(V ) | A = AT } is
a subspace of Lin(V ) of dimension n(n + 1)/2. The symmetric second-order
tensors {

1
2

1
2 (1+δij)

(ei ⊗ ej + ej ⊗ ei)
}

1≤i≤j≤n

,

where δij is the Kronecker delta, form an orthonormal basis of Sym(V ).
If A ∈ Sym(V ) then there exist {λi}i=1,...,n ∈ R and {ui}i=1,...,n an

orthonormal basis of V such that

A =
n∑

i=1

λiui ⊗ ui.

The real number λi is called the eigenvalue of A associated with the eigenvec-
tor ui. Such a representation is called the spectral decomposition of A. We
have tr(A) =

∑n
i=1 λi and det(A) =

∏n
i=1 λi.
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2.4 Symmetric Second-Order Tensors as Vectors

We consider an invertible map ϕ that assigns to each pair of indices (i, j) with
1 ≤ i ≤ j ≤ n, a single index ϕ(i, j) that ranges from 1 to 1

2n(n + 1):

ϕ : Tn → �1 : 1
2n(n + 1)�

(i, j) �→ ϕ(i, j), (8)

where Tn is the set of ordered pairs (i, j), 1 ≤ i ≤ j ≤ n. For n = 3, an
example of such maps is

(i, j) (1, 1) (2, 2) (3, 3) (2, 3) (1, 3) (1, 2)
ϕ(i, j) 1 2 3 4 5 6

. (9)

For 1 ≤ i ≤ j ≤ n, we set

êϕ(i,j) =
1

2
1
2 (1+δij)

(ei ⊗ ej + ej ⊗ ei). (10)

Then {êα}1≤α≤n(n+1)/2 is an orthonormal basis of V̂ ≡ Sym(V ).
Therefore, any A ∈ Sym(V ) can be viewed as an n-dimensional symmetric

second-order tensor A = Aijei ⊗ ej , or, as an 1
2n(n + 1)-dimensional vector

A ↔ â = âαêα, where âϕ(i,j) = Aij , 1 ≤ i ≤ j ≤ n.

We have tr(AT B) = 〈A,B〉 = 〈â, b̂〉 = â · b̂ and ‖A‖ = ‖â‖. Therefore, the
two-way map A ↔ â is an isometry between Sym(V ) and V̂ .

2.5 Symmetric Positive-Definite Second-Order Tensors

A symmetric second-order tensor A is said to be positive definite if

u ·Au > 0, ∀ u ∈ V, u �= 0.

The set of all symmetric positive-definite second-order tensors Sym++(V ) is
the interior of a convex cone.

On Sym++(V ), in addition to the Euclidean distance (5), we also have the
Riemannian distance

dR(A,B) := [tr(Log2(A−1B))]1/2. (11)

It is important to note that the space Sym++(V ) is not complete with respect
to the Euclidean metric (5), whereas Sym++(V ) is a complete metric space
with respect to the Riemannian metric (11).
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3 Fourth-Order Tensors

3.1 Fourth-Order Tensors as Linear Maps

A fourth-order tensor A is a linear map from Lin(V ) to Lin(V ), that is, it as-
signs to each second-order tensor A the second-order tensor AU (see, e.g., [9]):

A : Lin(V ) →Lin(V )
U �→ AU .

Any fourth-order tensor A has the representation A = Aijklei ⊗ ej ⊗ ek ⊗ el,
where Aijkl = 〈ei⊗ej , A(ek⊗el)〉. The set of all fourth-order tensors, that is,
the set of all linear maps from Lin(V ) to Lin(V ), is a linear space of dimension
n4 and is denoted by Lin(V ). The product AB of two fourth-order tensors is
defined by composition

(AB)U = A(BU), ∀ U ∈ Lin(V ).

In components we have (AB)ijkl = AijpqBpqkl.
The transpose of A ∈ Lin(V ) is the fourth-order tensor denoted AT and

defined by
〈U , AT V 〉 = 〈V , AU〉, ∀ U ,V ∈ Lin(V ).

On Lin(V ) we define the inner product

〈A, B〉 := tr(AT B) = AijklBijkl, (12)

the induced norm
‖A‖ = [tr(AT A)]1/2, (13)

and metric
dE(A, B) = ‖A− B‖. (14)

With respect to the inner product (12), the set {ei ⊗ ej ⊗ ek ⊗ el}1≤i,j,k,l≤n

forms an orthonormal basis of Lin(V ).

3.2 Fourth-Order Tensors as Second-Order Tensors

For 1 ≤ i, j ≤ n, we set ẽψ(i,j) = ei ⊗ ej . Then {ẽα ⊗ ẽβ}1≤α,β≤n2 is an
orthonormal basis of Lin(Ṽ ) ≡ Lin(V ).

Therefore, any A ∈ Lin(V ) can be viewed as an n-dimensional fourth-order
tensor

A = Aijklei ⊗ ej ⊗ ek ⊗ el,

or, as an n2-dimensional second-order tensor

A ↔ Ã = Ãαβ ẽα ⊗ ẽβ , where Ãψ(i,j)ψ(k,l) = Aijkl, 1 ≤ i, j, k, l ≤ n.

We have

tr(AT B) = 〈A, B〉 = tr(Ã
T
B̃) = 〈Ã, B̃〉, and ‖A‖ = ‖Ã‖,

and hence the two-way map A ↔ Ã is an isometry.
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4 Symmetries of Fourth-Order Tensors

For second-order tensors there is one notion of symmetry that represents in-
variance under changing the order of the two indices. For fourth-order tensors,
however, there are several notions of symmetry that represent invariance un-
der exchanging pairs of indices. For these tensors we distinguish three types of
symmetries: major, minor, and total symmetries. These notions of symmetries
are widely used in elasticity theory [10].

4.1 Major Symmetry

For A ∈ Lin(V ), we say that A is symmetric if A = AT , or in components,
Aijkl = Aklij ; and we say that A is skew symmetric if A = −AT , or in
components, Aijkl = −Aklij . We have the decomposition A = 1

2 (A + AT ) +
1
2 (A− AT ).

The set of all symmetric fourth-order tensors,

Sym(V ) := {A ∈ Lin(V ) | A = AT },

is a subspace of Lin(V ) of dimension n2(n2 + 1)/2. In elasticity theory,
this symmetry is often called major symmetry. In components, Aijkl =
Aklij , 1 ≤ i, j, k, l ≤ n, and therefore this symmetry represents invariance
under changing the pair of indices (i, j) and (k, l).

If A ∈ Sym(V ) then there exist {λi}i=1,...,n2 ∈ R and {U i}i=1,...,n2 an
orthonormal basis of Lin(V ) such that

A =
n2∑
i=1

λiU i ⊗U i.

The real number λi is called the eigenvalue of A associated with the eigenten-
sor U i. Such a representation is called the spectral decomposition of A. The
trace and determinant of the symmetric fourth-order tensor A are defined as

tr(A) =
n2∑
i=1

λi, and det(A) =
n2∏
i=1

λi. (15)

4.2 Minor Symmetry

The second type of symmetry is called minor symmetry and is defined by
〈U , AV 〉 = 〈UT , AV 〉 = 〈U , AV T 〉, ∀ U ,V ∈ Lin(V ). In components,
Aijkl = Ajikl = Aijlk, 1 ≤ i, j, k, l ≤ n. Invariance under exchange of the
first pair of indices is called the first minor symmetry and invariance under
exchange of the second pair of indices is called the second minor symmetry.
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The set of all fourth-order tensors that satisfy the minor symmetry will be
denoted

S
minor
ym (V ) := {A ∈ Lin(V ) | A satisfies minor symmetry}.

The set {êα⊗êβ}1≤α,β≤n(n+1)/2, where êα is defined in (10), is an orthonormal

basis of Lin(V̂ ) ≡ S
minor
ym (V ). Therefore, any A ∈ S

minor
ym (V ) can be viewed as

an n-dimensional symmetric fourth-order tensor A = Aijklei ⊗ ej ⊗ ek ⊗ el,
or, as an 1

2n(n + 1)-dimensional second-order tensor

A ↔ Â = Âαβ êα ⊗ êβ , where Âϕ(i,j)ϕ(k,l) = Aijkl, 1 ≤ i ≤ j ≤ n. (16)

Fourth-order tensors that satisfy both the major and minor symmetries
and in addition are positive definite will be denoted

Sym++(V )={A ∈ S
minor
ym (V)∩Sym(V ) | 〈U , AU〉> 0, ∀U ∈ Sym(V ), U �= O}.

On this set, which is the interior of a convex cone, besides the Euclidean
distance (14), we have the Riemannian distance [14]

dR(A, B) = [tr(Log2(A−1B))]1/2. (17)

It is worthy to note that this distance is invariant under inversion, and that
Sym++(V ) is a complete metric space with respect to (17) but not with respect
to (14).

Let A and B be two fourth-order tensors in S
minor
ym (V ), and Â and B̂

are the corresponding second-order tensors in Lin(V̂ ). Let U be a symmetric
second-order tensor and let û ∈ V̂ be its vector representation. Then by using
(16) and after straightforward algebra one can prove the following statements.

1. The fourth-order tensor AB corresponds to the second-order tensor ÂB̂.
2. The second-order tensor AU corresponds to the vector Âû.
3. If (U , λ) is an eigenpair of A then (û, λ) is an eigenpair of Â.
4. If A is symmetric then Â is symmetric.

Furthermore, one can also show that the following equalities hold:

〈A, B〉 = 〈Â, B̂〉, ‖A‖ = ‖Â‖,
det(A) = det(Â), tr(A) = tr(Â),

dE(A, B) = dE(Â, B̂), dR(A, B) = dR(Â, B̂).

The last equality holds whenever A and B are in Sym++(V ).

4.3 Total Symmetry

A fourth-order tensor A is said to satisfy the total symmetry if in addition to
satisfying the major and minor symmetries it satisfies
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Au⊗U ⊗ v = Au⊗UT ⊗ v, ∀ U ∈ Lin(V ),u,v ∈ V.

In components, Aijkl = Aσ(i)σ(j)σ(k)σ(l), for any permutation σ of �1 : n�. The
set of fourth-order totally symmetric tensors will be denoted

S
total
ym (V ) := {A ∈ Lin(V ) | A satisfies total symmetry}.

Any fourth-order tensor A satisfying the major and minor symmetries can
be decomposed, in a unique manner, into its totally symmetric part As and
its asymmetric part Aa:

A = As + Aa.

The components of the totally symmetric and asymmetric parts are [3]

As
ijkl = 1

3 (Aijkl + Aikjl + Ailkj), (18a)

Aa
ijkl = 1

3 (2Aijkl −Aikjl −Ailkj). (18b)

A fourth-order tensor A is totally symmetric if A = As, or equivalently if
Aa = O, where O denotes the fourth-order null tensor. Similarly, a fourth-
order tensor A is asymmetric if A = Aa, or equivalently if As = O.

Using (18) and the definition of the trace, it is straightforward to show
that if A is totally symmetric and B is asymmetric then

tr(AB) = 0.

Before we close this section we note that there is an isomorphism (one-
to-one linear correspondence) between totally symmetric fourth-order tensors
and homogeneous polynomials of degree 4 [3]. Batchelor’s chapter of this book
uses this isomorphism. If a totally symmetric fourth-order tensor A is traceless,
that is, tr(A) = 0, then it is isomorphic to a harmonic polynomial of degree 4.
For this reason, a totally symmetric and traceless tensor is called harmonic
tensor. We also note that there is an isomorphism between harmonic tensors
and spherical harmonics [2, 3].

5 Fourth-Order Tensors in 3D Space

From this section on we restrict attention to fourth-order tensors in three-
dimensional space that satisfy the minor symmetry. As it has been customary
in three-dimensional elasticity literature, we use a Voigt contracted notation
[18], which is described by the indicial map (9). Let A be a fourth-order tensor
satisfying the minor symmetry and let Â be the corresponding second-order
tensor. The matrix of components⎡

⎢⎢⎢⎢⎢⎢⎢⎣

Â11 Â12 Â13 Â14 Â15 Â16

Â21 Â22 Â23 Â24 Â25 Â26

Â31 Â32 Â33 Â34 Â35 Â36

Â41 Â42 Â43 Â44 Â45 Â46

Â51 Â52 Â53 Â54 Â55 Â56

Â61 Â62 Â63 Â64 Â65 Â66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(19)
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of Â with respect to the basis {êα}1≤α≤6 is given in terms of the components
Aijkl of A with respect to the basis {ei}1≤i≤3 as⎡

⎢⎢⎢⎢⎢⎢⎣

A1111 A1122 A1133

√
2A1123

√
2A1113

√
2A1112

A2211 A2222 A2233

√
2A2223

√
2A2213

√
2A2212

A3311 A3322 A3333

√
2A3323

√
2A3313

√
2A3312√

2A2311

√
2A2322

√
2A2333 2A2323 2A2313 2A2312√

2A1311

√
2A1322

√
2A1333 2A1323 2A1313 2A1312√

2A1211

√
2A1222

√
2A1233 2A1223 2A1213 2A1212

⎤
⎥⎥⎥⎥⎥⎥⎦ . (20)

If, in addition, A satisfies the major symmetry then Â is symmetric. Thus
a fourth-order tensor A that satisfies the major and minor symmetries re-
quires 21 independent constants (the 21 independent components of Â which
is symmetric).

As an example of such tensors we mention elasticity tensors, C or S, that
linearly relate stress T and infinitesimal strain E according to

T = CE, or E = ST .

The tensors C and S, which are inverses of one another, are called the stiffness
tensor and compliance tensors, respectively. In addition to satisfying the major
and minor symmetries, elasticity tensors must be positive-definite.

A fourth-order tensor A is totally symmetric if besides satisfying the minor
and major symmetries it further satisfies

A1122 = A1212, A1133 = A1313, A2233 = A2323, (21a)
A1123 = A1213, A2213 = A1223, A3312 = A1323. (21b)

In elasticity literature (see, e.g. [6, 10]), these conditions are known as Cauchy
relations, and the theory of elasticity based on totally symmetric tensors is
called “Cauchy’s elasticity theory” as opposed to the classical “Green’s elas-
ticity theory.” As other examples of totally symmetric fourth-order tensors,
we mention fourth-order orientation tensors and fourth-order diffusion tensors
to be discussed in Sects. 7 and 8.

Comparison of (19) and (20) yields that total symmetry requires that the
components of Â further satisfy the following six relations

Â44 = 2Â23, Â55 = 2Â13, Â66 = 2Â12, (22a)

Â45 =
√

2Â36, Â46 =
√

2Â25, Â56 =
√

2Â14, (22b)

and hence, a totally symmetric tensor requires at most 15 independent coef-
ficients.

Let Â, Â
s
, and Â

a
be the second-order representation of A, As, and Aa,

respectively. Then Â = Â
s
+ Â

a
, where
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Â =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Â11 Â12 Â13 Â14 Â15 Â16

Â22 Â23 Â24 Â25 Â26

Â33 Â34 Â35 Â36

sym Â44 Â45 Â46

Â55 Â56

Â66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

3Â
s
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3Â11 Â12 + Â66 Â13 + Â55 Â14 +
√

2Â56 3Â15 3Â16

3Â22 Â23 + Â44 3Â24 Â25 +
√

2Â46 3Â26

3Â33 3Â34 3Â35 Â36 +
√

2Â45

sym 2(Â44 + Â23) 2(Â45 + 1√
2
Â36) 2(Â46 + 1√

2
Â25)

2(Â55 + Â13) 2(Â56 + 1√
2
Â14)

2(Â66 + Â12)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

3Â
a
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 2Â12 − Â66 2Â13 − Â55 2Â14 −
√

2Â56 0 0

0 2Â23 − Â44 0 2Â25 −
√

2Â46 0

0 0 0 2Â36 −
√

2Â45

sym Â44 − 2Â23 Â45 −
√

2Â36 Â46 −
√

2Â25

Â55 − 2Â13 Â56 −
√

2Â14

Â66 − 2Â12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

It follows that the trace of the totally symmetric part of A is

tr(As)=A1111+A2222+A3333+ 2
3 (A2233+A1133+A1122)+ 1

3 (A2323+A1313+A1212)

and the trace of the asymmetric part of A is

tr(Aa) = 2
3 (A2233 −A2323 + A1133 −A1313 + A1122 −A1212).

6 Material Symmetries

So far we have discussed various notions of symmetries of fourth-order tensors.
These symmetries, which can be formulated as invariance of the components
of the tensor with respect to an interchange of indices, are independent of the
symmetry properties of the material which the tensor models. In this section
we discuss the restrictions placed by the material symmetries on fourth-order
tensors.

Given a fourth-order tensor A, let G (A) denote the set of all special or-
thogonal second-order tensors Q such that

A(QT UQ) = QT (AU)Q, ∀ U ∈ Sym(V ). (23)

It can be easily verified that G (A) is a subgroup of SO(3), the group of special
orthogonal transformations. The subgroup G (A) is called material symmetry
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group of A, which reflects the symmetries of a material property that is rep-
resented by the fourth-order tensor A.

For a given fourth-order tensor A, when (23) is satisfied for all Q ∈ SO(3),
that is, when the material symmetry group G (A) is SO(3), the tensor A is said
to be isotropic. On the other hand, when there is no special orthogonal tensor,
except the identity tensor, such that (23) is satisfied, that is, G (A) = {I},
the tensor A is said to be triclinic (absence of material symmetry). The other
classes of material symmetry are crystallographic symmetries (cubic, trigonal,
tetragonal, orthotropic, and monoclinic) reflected by discrete subgroups of
SO(3), and transversely isotropy reflected by a one-parameter subgroup of
SO(3) consisting of all rotations about a fixed axis [8].

Next, we discuss some of these classes when the underlying fourth-order
tensor satisfies the minor and major symmetries, and the total symmetry. For
completeness, we give in Fig. 1 a diagram showing a sequence of increasing
material symmetry classes from triclinic to isotropic.

6.1 Isotropy

The general form of an isotropic and symmetric fourth-order tensor is [14]

Aiso = aJ + bK, (24)

where a and b are real numbers, and J and K are the two linearly independent
symmetric fourth-order tensors defined by

J = 1
3I⊗ I, K = I− J, (25)

where I is the fourth-order identity tensor. The component forms of I and J

are Iijkl = 1
2 (δikδjl + δilδjk) and Jijkl = 1

3δijδkl.
The tensor Aiso is positive definite when a and b are positive. The totally

symmetric part and asymmetric part of Aiso are

(Aiso)s = 1
3 (a + 2b)Is and (Aiso)a = 1

3 (−2a + 5b)Ia,

where Is and Ia are the symmetric and asymmetric parts of the identity ten-
sor I.

In the second-order tensor representation, we have

Â
iso

= aĴ + bK̂,

where

Ĵ = 1
3

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ , K̂ = 1

3

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎦ .
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Triclinic 21 (15)

Monoclinic 13 (9)

Orthotropic 9 (6) Tetragonal 7 (4) Trigonal 7 (5)

Cubic 3 (2)
Transversely
isotropic 5 (3)

Isotropic 2 (1)

Fig. 1. Sequence of increasing material symmetry classes from triclinic to isotropic.
For each material symmetry class the number of independent coefficients is listed.
The numbers in parentheses represent the number of independent coefficients for
totally symmetric tensors. Dashed lines represent the intersections of the planes of
symmetry with the material element cube.

The totally symmetric part of Â
iso

is (Â
iso

)s = 1
3 (a + 2b)Î

s
, and the asym-

metric part is (Â
iso

)a = 1
3 (−2a + 5b)Î

a
, where Î

s
and Î

a
are the symmetric

and asymmetric parts of the identity tensor Î and are given by

Î
s

= 1
3

⎡
⎢⎢⎢⎢⎢⎢⎣

3 1 1 0 0 0
1 3 1 0 0 0
1 1 3 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦ , Î

a
= 1

3

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 −1 0 0 0
−1 0 −1 0 0 0
−1 −1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ . (26)
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Therefore, the set of isotropic fourth-order tensors is a two-dimensional linear
space spanned by a totally symmetric tensor and an asymmetric tensor.

A totally symmetric tensor A is isotropic if and only if A = λIs for some
real λ. In view of (26), the components of its second-order tensor representa-
tion Â must satisfy

1
3 Â11 = 1

3 Â22 = 1
3 Â33 = 1

2 Â44 = 1
2 Â55 = 1

2 Â66 = Â23 = Â13 = Â12,

and all other components (not deduced by symmetry) are 0. Which when
translated in terms of the components of A shows that a totally symmetric
tensor A is isotropic if and only if its components in any Cartesian coordinate
system satisfy

A1111 = A2222 = A3333 = 3A2223 = 3A1133 = 3A1122,

and all other components (not deduced by permutation of the indices) are 0.

6.2 Cubic Symmetry

A fourth-order tensor Acub is said to have the cubic symmetry if its symmetry
group G (Acub) is the (finite) subgroup of the rotation group SO(3), which
leaves a cube invariant. This subgroup contains 24 elements: (i) the identity,
(ii) eight rotations by 2π/3 about axes along the diagonals of the cube, (iii)
three rotations by π about axes perpendicular to face centers of the cube, (iv)
six rotations by π about axes that pass through midpoints of opposite edges
of the cube, (v) six rotations by π/4 about axes perpendicular to face centers
of the cube.

A general symmetric fourth-order tensor with a cubic symmetry is given
by [14, 19]

Acub = aJ + bL + cM. (27)

Here J, L, and M are three linearly independent elementary fourth-order ten-
sors. The fourth-order tensor Acub is positive definite when a > 0, b > 0, and
c > 0. The fourth-order tensor Acub is totally symmetric when b = 2

3 (a− c).
For this symmetry class, the number of independent constants for tensors

that satisfy the major and minor symmetries is 3, and the number of indepen-
dent constants for totally symmetric tensors is 2. In a Cartesian coordinate
system whose axes are perpendicular to face centers of the cube, the matrix
of components of Acub is

Âcub =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Â11 Â12 Â12 0 0 0
Â12 Â11 Â12 0 0 0
Â12 Â12 Â11 0 0 0
0 0 0 Â44 0 0
0 0 0 0 Â44 0
0 0 0 0 0 Â44

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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6.3 Transverse Isotropy

A fourth-order tensor Atis is said to be transversely isotropic if there is a pre-
ferred direction n such that G (Atis) is the one-parameter subgroup of SO(3)
of rotations about n. The plane normal to the preferred direction is called
plane of transverse isotropy. This transverse plane has infinite planes of sym-
metry and thus, within this plane, the material properties are the same in
all directions. Fibrous materials with fibers having circular cross sections are
examples of transversely isotropic materials.

A general transversely isotropic and symmetric fourth-order tensor is given
by [14, 19]

Atis = aE1 + bE2 + c(E3 + E4) + fF + gG, (28)

where E1, E2, E3, E4, G, and G are linearly independent elementary fourth-
order tensors. The fourth-order tensor Atis is positive definite when ab−c2 > 0,
f > 0, and g > 0. The fourth-order tensor Atis is totally symmetric when
f = 1

2b and g =
√

2c. Thus, for this type of material symmetry, the number
of independent constants for tensors that satisfy the major and minor sym-
metries reduces to 5, and the number of independent constants for totally
symmetric tensors reduces to 3. In a Cartesian coordinate system with n as
the x3-axis, the matrix of components of Atis is

Âtis =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Â11 Â12 Â13 0 0 0
Â12 Â11 Â13 0 0 0
Â13 Â13 Â33 0 0 0
0 0 0 Â44 0 0
0 0 0 0 Â44 0
0 0 0 0 0 Â11 − Â12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

6.4 Orthotropy

A fourth-order tensor Aort is said to be orthotropic if its symmetry group
G (Aort) is generated by the rotations through angle π about three mutually
orthogonal axes. The number of independent constants for an orthotropic
tensor satisfying the major and minor symmetries is 9 and the number of
independent constants for a totally symmetric and orthotropic tensor is 6. In
a Cartesian coordinate, whose axes coincide with the axes of rotations that
generate the symmetry group, the matrix of components of Aort is

Âort =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Â11 Â12 Â13 0 0 0
Â12 Â22 Â23 0 0 0
Â13 Â23 Â33 0 0 0
0 0 0 Â44 0 0
0 0 0 0 Â55 0
0 0 0 0 0 Â66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.



72 M. Moakher

7 Orientation Distributions and Orientation Tensors

The microscopic description of fiber orientation in fibrous materials, which
are made of a large collection of rod-like objects, is embodied in the orienta-
tion distribution function (ODF). The orientation distribution is a function
ρ defined on the unit sphere S2 of R3 and satisfies the antipodal-symmetry
property ρ(n) = ρ(−n). It is normalized so that

∫
S2 ρ(n) dσ = 1, where dσ is

area element in S2.
Since the work of Advani and Tucker [1], orientation tensors of even or-

ders have been used to describe the orientation of fibers at the macroscopic
scale. The second- and fourth-order orientation tensors are the averages, with
respect to the orientation distribution function ρ, over all orientations n ∈ S2:

〈N〉ρ :=
∫

S2
ρ(n)N dσ, 〈N〉ρ :=

∫
S2

ρ(n)N dσ,

where, for brevity N = n⊗n and N = N⊗N . For the definitions, the second-
order orientation tensor is symmetric, and the fourth-order orientation tensor
is totally symmetric. Both have trace one and all their components are less
than or equal to one in absolute value. Another important property is that the
contraction, with respect to any two indices, of the fourth-order orientation
tensor gives the second-order orientation tensor.

In what follows, we give the expressions of the orientation tensors 〈N〉ρ
and 〈N〉ρ for orientation distribution functions with some prescribed material
symmetry classes.

7.1 Isotropic Orientation Distribution

The isotropic orientation distribution function is given by

ρiso(θ, φ) =
1
4π

. (29)

This distribution corresponds to fibers that are randomly oriented. Let n =
(cos θ sin φ, sin θ sin φ, cos φ)T be a generic vector on the unit sphere S2 with
0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. The isotropic orientation averages of N and N

are given by

〈N〉iso :=
∫

S2
ρisoN dσ = 1

3I,

and
〈N〉iso :=

∫
S2

ρisoN dσ =
1
5

Is.

7.2 Transversely Isotropic Orientation Distributions

The widely used uni-modal orientation distribution is the Fischer distribution
with modal vector m ∈ S2 and concentration parameter κ > 0 that is given
by (see, e.g., [11, 20])
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ρκ,m(n) =
κ

4π sinhκ
exp(κmT n),

where n ∈ S2. However, this distribution is not invariant under the inversion
of directions (n �→ −n). It can be modified in such a way that it becomes
invariant under direction inversion. A plausible modification is given by

ρm
κ,m(n) =

1
a(κ)

exp(κ(mT n)2),

which is a special case of the well known Bingham (multimodal) distribution
for axial data

ρK(n) =
1

b(K)
exp(nT Kn),

where K is a symmetric matrix and b(K) is a normalization constant. The
distribution ρm

κ,m(n) is transversely isotropic and is parametrized by the con-
centration parameter κ. For the purpose of getting analytical expressions for
the second- and fourth-order orientation tensors, we shall, however, use an-
other family of transversely isotropic orientation distribution functions.

The family (indexed by a positive integer n) of orientation distribution
functions given by

ρtis
n,3(θ, φ) =

2n + 1
4π

cos2n φ (30)

is independent of the azimuthal angle θ, and hence is transversely isotropic
along the e3-axis (Fig. 2). The positive integer n acts as the concentration pa-
rameter of the modified Fisher distribution. The corresponding second-order
orientation tensor is

〈N〉tisn,3 :=
∫

S2
ρtis

n,3N dσ =
1

2n + 3

⎡
⎢⎣1 0 0

0 1 0
0 0 2n + 1

⎤
⎥⎦ .

The corresponding fourth-order orientation tensor,

〈N〉tisn,3 :=
∫

S2
ρtis

n,3N dσ,

Fig. 2. Plots of the transversely isotropic ODF (30) for n = 1, 2, 4, and 5.
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has the 6D second-order tensor representation

1
(2n + 3)(2n + 5)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 2n + 1 0 0 0
1 3 2n + 1 0 0 0

2n + 1 2n + 1 (2n + 1)(2n + 3) 0 0 0
0 0 0 2(2n + 1) 0 0
0 0 0 0 2(2n + 1) 0
0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using a change of variables we can deduce that the family of orientation
distribution functions

ρtis
n,1(θ, φ) =

2n + 1
4π

cos2n θ sin2n φ (31)

is transversely isotropic along the e1-axis. Similarly, the family of orientation
distribution functions

ρtis
n,2(θ, φ) =

2n + 1
4π

sin2n θ sin2n φ (32)

is transversely isotropic along the e2-axis.

7.3 Orthotropic Orientation Distributions

A family of orthotropic orientation distribution functions can be obtained by
combining, for example, the two transversely isotropic orientation distribution
functions (31) and (32) (Fig. 3):

ρort
n,3(θ, φ) =

2n + 1
8π

(cos2n θ + sin2n θ) sin2n φ. (33)

The corresponding second-order orientation tensor is

〈N〉ortn,3 :=
∫

S2
ρort

n,3N dσ =
1

2n + 3

⎡
⎢⎣n + 1 0 0

0 n + 1 0
0 0 1

⎤
⎥⎦ ,

Fig. 3. Plots of the orthotropic ODF (33) for n = 1, 2, 4, and 5.
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and the corresponding fourth-order orientation tensor

〈N〉ortn,3 :=
∫

S2
ρort

n,3N dσ,

has the 6D second-order tensor representation (modulo the multiplicative fac-

tor
1

(2n + 3)(2n + 5)
)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(n + 1)2 + 1 2n + 1 n + 1 0 0 0
2n + 1 2(n + 1)2 + 1 n + 1 0 0 0
n + 1 n + 1 3 0 0 0

0 0 0 2(n + 1) 0 0
0 0 0 0 2(n + 1) 0
0 0 0 0 0 2(2n + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We note that at the second-order level, there is no distinction between trans-
versely isotropic and orthotropic orientation tensors, whereas at the fourth-
order level the structures of these types of orientation tensors differ.

Another family of orthotropic orientation distribution functions can be
obtained by considering two transversely isotropic orientation distribution
functions crossing at an angle ψ, for example, the ODF (31) rotated by ±1

2ψ
about the e3-axis:

ρort
n,ψ(θ, φ) =

2n + 1
8π

(cos2n(θ + 1
2ψ) + cos2n(θ − 1

2ψ)) sin2n φ. (34)

The corresponding second-order orientation tensor is

〈N〉ortn,ψ :=
∫

S2
ρort

n,ψN dσ =
1

2n + 3

⎡
⎢⎣1 + n(1 + cos ψ) 0 0

0 1 + n(1− cos ψ) 0
0 0 1

⎤
⎥⎦ ,

and the corresponding fourth-order orientation tensor

〈N〉ortn,ψ :=
∫

S2
ρort

n,ψN dσ

has the 6D second-order tensor representation

1
(2n + 3)(2n + 5)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(n, ψ) f(n, ψ) e(n, ψ) 0 0 0
f(n, ψ) b(n, ψ) d(n, ψ) 0 0 0
e(n, ψ) d(n, ψ) c(n, ψ) 0 0 0

0 0 0 2d(n, ψ) 0 0
0 0 0 0 2e(n, ψ) 0
0 0 0 0 0 2f(n, ψ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where

a(n, ψ) = 1 + 2(n + 1)2 + 2n(n + 2) cos ψ − n(n− 1) sin2 ψ,

b(n, ψ) = 1 + 2(n + 1)2 − 2n(n + 2) cos ψ − n(n− 1) sin2 ψ,

c(n, ψ) = 3,
d(n, ψ) = 1 + n(1− cos ψ),
e(n, ψ) = 1 + n(1 + cos ψ),

d(n, ψ) = 1 + 2n + n(n− 1) sin2 ψ.

Note that, as the orientation tensor has a unit trace, a(n, ψ)+b(n, ψ)+c(n, ψ)
+ 2(d(n, ψ) + e(n, ψ) + f(n, ψ)) = (2n + 3)(2n + 5).

7.4 Cubic Orientation Distributions

A family of cubic orientation distribution functions can be obtained by com-
bining, for example, the three transversely isotropic orientation distribution
functions (30), (31), and (32) (Fig. 4):

ρcub
n (θ, φ) =

2n + 1
12π

(cos2n θ sin2n φ + sin2n θ sin2n φ + cos2n φ). (35)

Note that for n = 1, the ODF (35) degenerates to the isotropic ODF (29).
The corresponding second-order orientation tensor is

〈N〉cub
n :=

∫
S2

ρcub
n N dσ =

1
3
I,

and the corresponding fourth-order orientation tensor

〈N〉cub
n :=

∫
S2

ρcub
n N dσ,

has the 6D second-order tensor representation (modulo the multiplicative fac-

tor
1

(2n + 3)(2n + 5)
)

Fig. 4. Plots of the cubic ODF (35) for n = 1, 2, 4, and 5.
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⎢⎢⎢⎢⎢⎢⎢⎢⎣

4(n+1)2+5 4n+3 4n+3 0 0 0
4n+3 4(n+1)2+5 4n+3 0 0 0
4n+3 4n+3 4(n+1)2+5 0 0 0

0 0 0 2(4n+3) 0 0
0 0 0 0 2(4n+3) 0
0 0 0 0 0 2(4n+3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We remark that for the ODF of cubic symmetry, the second-order tensor is
isotropic and that one has to use the fourth-order orientation tensor to detect
this symmetry.

In a similar way, by combining three transversely isotropic distribution
functions, whose axes are not necessarily orthogonal, we can obtain orien-
tation distribution functions of trigonal, tetragonal, monoclinic, or triclinic
symmetries.

8 Fourth-Order Diffusion Tensors

8.1 Generalized Stejskal–Tanner Equation

In diffusion tensor imaging of biological tissues, the second-order diffusion
tensor D is estimated using the Stejskal–Tanner equation [5]

ln
sk

s0
= −bkgT

k Dgk,

where gk is the direction of the kth magnetic gradient, s0 is the original signal
intensity, sk is the attenuated signal intensity after gradient gk is applied, and
bk is a diffusion weighting factor. The second-order diffusion model has been
used with success in characterizing the anisotropy and fiber direction within
an imaging volume. However, this model has some limitations when several
fibers with different orientations occur within a single voxel. To surmount
these shortcomings, Tuch et al. [17] proposed the use of diffusion imaging
with very large diffusion gradient directions known as high angular resolu-
tion imaging (HARDI). In [15], a method of computing the components of a
high-order diffusion tensor from the diffusion profiles obtained from HARDI
measurements is given. Their method is based on the following generalization
of the Stejskal–Tanner equation:

ln
s(g)
s0

= −bDijklgigjgkgl, (36)

where Dijkl are the components of a fourth-order tensor D and gi are the
components of the gradient direction g. In direct notation, the above equation
writes
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ln
s(g)
s0

= −btr(DG), (37)

where G denotes the totally symmetric tensor G = g⊗g⊗g⊗g. The diffusion
in the direction of g is given by

D(g) = −1
b

ln
s(g)
s0

= tr(DG).

In terms of the second-order tensor representation of fourth-order tensors, the
generalized Stejskal–Tanner equation (37) takes the form

ln
s(g)
s0

= −btr(D̂Ĝ) = −bD̂αβĜαβ , (38)

where D̂ and Ĝ are the second-order tensors corresponding to D and G,
respectively. Therefore, with this formalism the methods that have been used
to estimate the second-order diffusion tensor can be adapted to devise rigorous
methods for estimating the fourth-order diffusion tensor.

8.2 Diffusion Tensor Order Reduction

The mean diffusivity D(2) of a second-order tensor D is given by the (isotropic)
average, over all orientations n ∈ S2, of the directional diffusivity n ·Dn =
tr(DN). Similarly, mean diffusivity D(4) of a fourth-order tensor D is given
by the (isotropic) average, over all orientations n ∈ S2, of the directional
diffusivity tr(DN). Using the results of the orientation tensors with respect to
the isotropic orientation distribution function, we can deduce that

D(2) = 〈Dijninj〉 = tr(D〈N〉) =
1
3
tr(DI) =

1
3
tr(D),

and
D(4) = 〈Dijklninknknl〉 = tr(D〈N〉) =

1
5
tr(DIs) =

1
5
tr(Ds).

Here 〈·〉 designates average of its argument with respect to the isotropic ODF.
Under the assumption that D is totally symmetric, the above becomes

D(4) =
1
5
tr(D).

We note that D(2) > 0 whenever n · Dn > 0 for all n ∈ S2, and D(4) > 0
whenever tr(DN) > 0 for all n ∈ S2.

It is sometimes desirable to fit a high-order tensor model with a tensor
model of lower order. To find the second-order tensor model that best fits a
given fourth-order tensor model, we seek the second-order tensor D such that
the difference between the signals given by the two models over all gradient
directions is minimized
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min
D

1
2

∫
S2
|tr(GD)− tr(GD)|2 dσ. (39)

The second-order tensor solution of the above minimization problem is given
by [13]

D =
3
35

(10DI − tr(D)I) . (40)

In components, this second-order tensor is given by

Dij =
3
35

(10Dijkk −Dkkllδij) . (41)

This agrees with the spherical harmonic computations of [15]. One can easily
verify that tr(D) = 3

5 tr(D), and therefore, the mean diffusivity of the second-
order tensor that best fits a fourth-order tensor is equal to the mean diffusivity
of that fourth-order tensor. This shows the consistency of the tensor-order
reduction method. Although in the minimization problem (39) the constraint
of positive definiteness of the second-order tensor D was not imposed, it was
proved in [13] that D is indeed positive definite.

In this chapter we presented the elements of tensor algebra that are re-
quired for dealing with fourth-order tensors. The applications to such an alge-
bra to high angular resolution diffusion tensor imaging have been discussed. In
particular, the question of fitting diffusion models with different tensor order
becomes straightforward by using results on orientation tensors. Furthermore,
by using the six-dimensional representation, the estimation of fourth-order
diffusion tensors can be done with the same methods that are used for the
second-order diffusion tensor. The only difference is that one has to ensure
that the tensor is totally symmetric by imposing the linear constrains given by
Cauchy’s relations. Another possible application of tensor algebra is the prob-
lem of resolving fiber crossings. This can be done by estimating fourth-order
orientation tensors and then use the well established methods of detecting
material symmetry axes to infer the structure of fibers.
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Summary. We present a new model-based framework for the statistical analysis of
diffusion imaging data associated with specific white matter tracts. The framework
takes advantage of the fact that several of the major white matter tracts are thin
sheet-like structures that can be effectively modeled by medial representations. The
approach involves segmenting major tracts and fitting them with deformable geo-
metric medial models. The medial representation makes it possible to average and
combine tensor-based features along directions locally perpendicular to the tracts,
thus reducing data dimensionality and accounting for errors in normalization. The
framework enables the analysis of individual white matter structures, and provides
a range of possibilities for computing statistics and visualizing differences between
cohorts. The framework is demonstrated in a study of white matter differences in
pediatric chromosome 22q11.2 deletion syndrome.

1 Introduction

In recent years there has been increased interest in neuroimaging statistical
mapping techniques that are structure-specific. The underlying belief is that
analysis that takes into account the unique properties of specific anatomical
structures and focuses its attention on these structures can be more sensitive
than analysis performed over the whole brain. Furthermore, analysis that
restricts its attention to structures of interest produces inferences that are also
structure-specific. Such inferences can be communicated and visualized more
effectively than whole-brain results, since they can be described and presented
in the context of well-known structures. Thus, for instance, a significant cluster
at the tail of the hippocampus is easier to describe and visualize than a cluster
at a certain position in Talairach space. Another key feature of structure-
specific analysis is the ability to combine or average data along anatomically
∗ Originally published in Neuroimage. 2008 Jun 1; 41(2):448–461.
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meaningful directions while respecting the boundaries between structures, as
opposed to uniform smoothing over the whole brain.

Structure-specific analysis requires a suitable representation for the ana-
tomical structures of interest, and the main aim of this chapter is to provide
a representation that is particularly well-suited for analyzing white matter
structures in diffusion MRI studies. White matter tracts (fasciculi) are thin,
sheet-like, or tube-like structures, and as such can be effectively described us-
ing skeletons. This fact is leveraged in the tract-based spatial statistics (TBSS)
approach [44] although, in that approach, skeletons are derived for the entire
white matter region and no distinction between white matter structures is
made. In this chapter we propose to use the continuous medial representation
(cm-rep) [56] to model individual white matter tracts. The advantage of using
cm-reps, as opposed to skeletonization, is that the skeleton of the structure of
interest is represented by a parametric surface. A parametric representation
of the skeleton allows us to perform manifold-based statistical analyses similar
to those used in cortical flat-mapping (e.g., [19, 48]).

One of the main motivations for representing white matter tracts using
parametric geometrical models is to offer an alternative to smoothing in sit-
uations where it is necessary to increase the sensitivity of statistical analysis
at the cost of specificity. While isotropic smoothing reduces the locality of
detectable statistical differences equally in all directions, geometrical models
provide a way to combine and collapse data in the context of the structure
of interest, making it possible to reduce the locality along “less interesting”
directions, while maintaining specificity along the directions that are more
meaningful. One way to apply such shape-based averaging is to reduce the di-
mensionality of a volumetric dataset to a two-manifold that is representative
of the overall shape of the dataset. For thin structures, the skeleton is an ideal
manifold onto which to project volumetric data because the skeleton captures
the overall shape of the structure.

In this chapter, the new structure-specific analysis framework is used to
model major fasciculi with sheet-like geometry: the corpus callosum (CC), cor-
ticospinal tract (CST), inferior longitudinal fasciculus (ILF), superior longitu-
dinal fasciculus (SLF), inferior fronto-occipital fasciculus (IFO), and uncinate
fasciculus (UNC). The framework is demonstrated by application to statisti-
cal mapping of white matter tracts in chromosome 22q11.2 deletion syndrome
(DS22q11.2), which encompasses most cases of DiGeorge and Velocardiofacial
syndromes amongst others. Cluster analysis performed on the medial surfaces
of white matter tracts yields a number of statistically significant findings, in-
dicating that DS22q11.2 is associated with bilateral differences in diffusivity
in three of the fasciculi [42].

The chapter is organized as follows. Section 2 reviews current approaches
to white matter analysis and motivates the medial-based structure-specific
mapping framework. The methods employed by the framework, including
atlas-building, model initialization, fitting and statistical analysis, are de-
scribed in Sect. 3. A demonstration of the method in the context of the
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DS22q11.2 study is presented in Sect. 4.2. The discussion in Sect. 5 focuses
on the next steps in the implementation of the structure-specific analysis
framework, such as direct automatic fitting of medial tract models to diffu-
sion tensor imaging (DTI) data.

2 Background

The traditional approach to structure-specific analysis of diffusion imaging
data has been to identify regions of interest and integrate diffusion-based
measurements over these regions, forming a small number of statistical fea-
tures [21]. The advent of fiber tracking algorithms [36] has made it possible
to map out DTI-based statistical features along the length of fiber bundles.
A number of authors [14, 23, 29, 31] identify bundles of fibers with similar
shape and make inferences on the basis of bundle centerlines; this approach is
well-suited for tubular structures, but larger sheet-like structures like the cor-
pus callosum have to be divided into several tubular bundles. Our approach
is designed to analyze sheet-like structures as a whole, and is highly comple-
mentary to bundle-based methods: one could use our models for sheet-like
fasciculi and bundle-based analysis for tube-like fasciculi.

Cascio et al. [12] and Sun et al. [46] collapse DTI-derived features onto
the midsagittal cross-section of the corpus callosum and perform analysis in
this two-dimensional space. Such structure-specific approaches are powerful
because they take advantage of the specific geometry of the corpus callosum.
However, the dimensionality reduction accomplished by these methods is very
distinct from our approach: in the former, DTI data are averaged or combined
along the length of fibers and projected onto a flat region on the midsagittal
plane, while in our approach this data is collapsed onto a manifold represen-
tative of the overall shape of a white matter tract.

Another approach to white matter analysis involves adapting voxel-based
and deformation-based morphometry [4] to diffusion data. Whole-brain mor-
phometry is tailored for exploratory analysis, and serves different needs than
structure-specific methods. A common approach is to normalize the subjects’
structural images (T1, T2, or in some cases, fractional anisotropy (FA) im-
ages derived from diffusion-weighted MRI) to a standard whole-brain template
(e.g., [18]). More recently, specialized deformable registration methods for dif-
fusion data have been developed [11, 60]. Voxel-based morphometry in DTI
has been applied in a large number of studies. One of the concerns raised
about the standard VBM approach in DTI data is that structure boundaries
and within-structure directional information are not taken into account during
smoothing and analysis [22]. The tract-based spatial statistics (TBSS) frame-
work for DTI morphometry addresses this limitation by incorporating the
geometric properties of white matter tracts in the analysis. This is achieved
by using registration to compute a “mean FA” image, thresholding this image,
computing the skeleton of the thresholded region, projecting the subjects’ FA
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values onto the skeleton, and performing statistical analysis on the skeleton.
TBSS leverages the fact that the skeleton is a natural representation for white
matter structures, which are thin sheet-like or tube-like objects. One of the
limitations, however, is that by operating on the mean FA image, TBSS ig-
nores orientation information, which can lead to fasciculi that have different
orientation but similar anisotropy being combined together into a single struc-
ture. Thus the skeleton computed by TBSS may not correspond to the skele-
tons of the individual fasciculi at such locations. Recent work by Kindlmann
et al. [27] overcomes this limitation to some extent by formulating a way to
automatically detect surfaces that separate adjacent fasciculi with differing
fiber orientations, and providing a way to estimate the skeletons of adjacent
fasciculi separately.

We also represent white matter structures medially. However, unlike TBSS,
we use medial models to represent specific white matter structures of interest,
rather than all of white matter. To distinguish between adjacent tracts, we
derive segmentations of individual fasciculi using fiber tractography. The use
of parametric medial models with predefined topology simplifies statistical
analysis and makes it possible for the rich collection of statistical tools and
visualization approaches developed in the cortical flat-mapping literature to
be applied to white matter studies. This is illustrated by the manifold-based
cluster analysis presented at the end of this chapter.

3 Methods and Materials

3.1 Analysis Framework Overview

The main aim of this chapter is to give a proof-of-concept demonstration of
a new model-based framework for representing major fasciculi and analyzing
associated DTI data. This framework, outlined in Fig. 1, includes four main
components: spatial normalization, tract segmentation, geometric tract mod-
eling, and statistical analysis. These components leverage prior work in DTI
registration, atlas-based segmentation, deformable medial modeling, and non-
parametric statistical analysis. Prior to describing these components in detail,
we note that alternative approaches to each of them are available and empha-
size that the focus of this chapter is on demonstrating the framework as a
whole rather than on the implementation of each of its components.

In the current implementation, segmentation, modeling, and analysis all
take place in atlas space. That is, all DTI images in a study are normalized to a
common atlas, which is derived from the images themselves. Working in atlas
space facilitates the segmentation and modeling of white matter structures.
An alternative, discussed in Sect. 5, is to perform segmentation, modeling,
and analysis in subject space. The main difference between these approaches
is in the way that inter-subject correspondences are computed: on the basis
of image-based normalization in the atlas-based approach or on the basis of
shape in subject-space analysis.
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Fig. 1. An outline of the tract-specific analysis framework

3.2 Normalization to a DTI Atlas

The DTI atlas is constructed by normalizing all DTI images in a study to a
common average image. A number of techniques for computing an unbiased
average image from a cohort of images have been proposed [5, 20, 24, 49]. We
use a similar approach [57] that leverages a new deformable DTI registration
algorithm [60], in which image similarity is computed on the basis of full ten-
sor images, rather than scalar features. When measuring similarity between
tensor images, it is essential to take into account the fact that when a trans-
formation is applied to a tensor field, the orientation of the tensors is changed
[1]. A unique property of our registration algorithm is the ability to model
the effect of deformation on tensor orientation as an analytic function of the
Jacobian matrix of the deformation field. By using full tensor information
in the similarity metric, the method aligns white matter regions better than
scalar-based registration methods, as demonstrated by Zhang et al. [58] in a
task-driven evaluation study.

When building the atlas, the initial average image is computed as a log-
Euclidean mean [3] of the input diffusion tensor images. The average is then
iteratively refined by repeating the following procedure: register the subject
images to the current average, then compute a refined average for the next
iteration as the Euclidean mean of the normalized images. This procedure is
repeated until the average image converges.

To allow asymmetry analysis and to simplify the modeling of bilateral
fasciculi, a symmetric average is constructed by simply applying the above
averaging procedure to the nonsymmetric population average and its mirror
image across the midsagittal plane (the midsagittal plane is estimated auto-
matically by solving a three-parameter rigid registration problem, similar to
[2]). The images of the subjects are then registered to the symmetric average.
The combination of the symmetric average image and the warps from the
average to each of the subject’s DTI images forms the symmetric DTI atlas.
This atlas captures the correspondences between the white matter regions of
different subjects as well as between left and right hemispheres of each subject.
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3.3 Tract Segmentation

Six major fasciculi (CC, CST, IFO, ILF, SLF, UNC) were segmented in the
white matter atlas using an established protocol by Wakana et al. [50, 51],
which is based on fiber tracking. The FACT fiber tracking algorithm [33] was
applied to the DTI white matter atlas with the FA threshold of 0.15 and an
inner product threshold of 0.7, which prevents angles larger than 45◦ during
tracking. A fiber was tracked from the center of any voxel with a FA > 0.2.
The threshold of 0.2 was chosen as suggested by Smith et al. [44], who point
out that this value is low enough to include all the major white matter struc-
tures (that are the focus of this chapter) but high enough to exclude the
majority of the voxels that are composed of primarily grey matter tissue or
CSF. A lower FA value can potentially include additional finer structures near
the cortex but also likely to include more voxels that are not white matter.
More sophisticated segmentation procedures than simple FA threshold are re-
quired to delineate such finer cortical connections. In addition, the accuracy of
the intersubject alignment for such connections requires further investigation.

Fibers of interest were extracted using a multiple region of interest (ROI)
based approach [13, 34]. Two types of ROIs were defined: those through which
all fibers in a tract must pass, and those through which none of the fibers
may pass. Since in this chapter a 2D manifold-based model of fasciculi is
employed, only those fasciculi that have a major portion that is sheet-like
were segmented. Fasciculi that are more appropriately represented by tubular
models, such as the tapetum of the CC, the cingulum, the fornix, and the optic
tract were not segmented. Fasciculi in the cerebellum and brain stem were not
considered either. Only the arcuate portion of the SLF, which can be tracked
consistently, was segmented. Binary 3D segmentations of individual fasciculi
were generated by labeling voxels in the white matter atlas through which
at least one fiber passed. The binary segmentations were further edited using
ITK-SNAP [55] by one of the authors (HZ) to remove extraneous connections:
the portion of the CST extending to the cerebellum was removed; regions
that can not be disambiguated between CC and CST were attributed to both
structures. The second column of Fig. 7 shows the binary segmentations for the
six selected fasciculi. The segmentation of all six fasciculi required less than
2 h of user time, and no slice-by-slice or voxel-by-voxel editing was performed.

3.4 Geometrical Modeling of Major Fasciculi

Geometrical modeling of the fasciculi involves fitting deformable medial mod-
els (cm-reps) to binary segmentations of the fasciculi in atlas space. These
models describe the skeleton3 and the boundary of a geometrical object as
parametric digital surfaces with predefined topology. Furthermore, the models
3 In this chapter, the term skeleton refers to the Blum skeleton [10, 15, 16]. The

Blum skeleton of a geometrical object in R3 is a surface or set of surfaces that re-
sult from thinning the object uniformly, that is, evolving the boundary at uniform
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describe the geometrical relationship between the skeleton and the boundary,
such that deformations applied to the model’s skeleton can be propagated to
the model’s boundary. The medial models used in this chapter have skele-
tons consisting of a single surface patch, that is, nonbranching skeletons. For
most fasciculi, a single-surface model appears sufficient, as our fitting results
in Sect. 4.2 demonstrate.

The deformable medial model is constructed as follows. We start with
an initial mesh representation of the skeleton, denoted S0. The mesh S0 is
triangular, which allows maximum flexibility for modeling complex skeleton
shapes. Each vertex i in the mesh S0 is a tuple {m0,i, R0,i}, where m0,i ∈ R3 is
the coordinate of the vertex and R0,i ∈ R+ is the radius value, which describes
the local thickness of the model. The initial mesh S0 is fairly sparse (see
Fig. 4d). Loop subdivision [30] is used to derive a sequence of successively finer
meshes S1,S2, . . ., which converge to a continuous limit surface as k →∞. In
practice, only two or three levels of subdivision are used when modeling the
skeleton surface. To deform a medial model to optimize some cost function, we
change the values of m0,i and R0,i in the sparse mesh S0. The corresponding
deformation of the finer-level meshes is simply a linear function of the update
to the sparse mesh.

Let Sk be the mesh representing the skeleton of a deformable medial model
at subdivision level k. The boundary of the medial model is derived analyti-
cally from the skeleton using inverse skeletonization, that is, finding a closed
surface mesh bk whose Blum skeleton is approximately Sk. The boundary sur-
face mesh consists of two halves, each a surface patch of disk topology. These
patches lie on the opposite sides of the skeleton. The boundary half-patches
are denoted b−

k and b+
k (see Fig. 2) and are given by the following inverse

skeletonization expression [15, 16, 56]:

b± = m + R U± , (1)

U± = −∇mR±
√

1− ||∇mR||2 Nm , (2)

where Nm denotes the unit normal to the skeleton and∇mR is the Riemannian
gradient of R on the manifold m. The normal and the Riemannian gradient
at node i are approximated from one-ring neighborhood of i (i.e., all nodes
connected to i by an edge) using the expression for the tangent vectors to the
limit surface of Loop subdivision, as given by Xu [53].

However, the inverse skeletonization expression (1) on its own does not
guarantee that the surface patches b−

k and b+
k together form the boundary

of an object in R3. For some m and R, these patches may intersect or self-
intersect; and the edges of the patches may be disjoint. In order for the patches
b−

k and b+
k to form the boundary of an object, m and R must satisfy a

set of sufficient conditions [15, 16, 56]. These conditions include inequality

speed along the inward normal until the object becomes infinitely thin. An ex-
ample of a skeleton is shown in Fig. 4a.
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b+

b–

mΔmR

Fig. 2. 2D medial geometry. Left : the skeleton of a 2D object. Right : local geometry.
The red curve represents the skeleton m. The radial scalar field R defines the radius
of the maximal inscribed disk. The boundary, in blue, consists of two parts, b+ and
b−, derived from m and R by inverse skeletonization in (1). The vector ∇mR lies
in the tangent plane of m and points in the direction of greatest change in R. The
arrows pointing from m to b+ and b− are called spokes

constraints that prevent intersection and self-intersection, as well as a single
equality constraint, that ensures that b−

k and b+
k share a common edge:

‖∇mR‖ = 1 on ∂Ω . (3)

In previous work, this constraint has been satisfied in different ways: by adapt-
ing the domain Ω such that (3) is satisfied along ∂Ω [54]; by defining R as a
solution of a Poisson partial differential equation with the boundary condition
identical to (3) [56] or by using specially designed subdivision rules for quadri-
lateral meshes to model the surface m [47]. In this chapter, we simply admit
skeleton meshes Sk that slightly violate the equality constraint (3) and correct
these solutions by local adjustment. During fitting, a penalty is imposed on
(‖∇mR‖ − 1)2 along edge nodes in the mesh Sk, which forces ‖∇mR‖ to be
very close to 1. The correction procedure consists of simply applying (1) as if
‖∇mR‖ were actually equal to 1 at edge nodes. While this approach may not
be as elegant as the previous ones, it behaves well in practice and leads to a
very efficient fitting algorithm. The remaining sufficient conditions of inverse
skeletonization are inequality constraints and are handled in this chapter the
same way as in [56], that is, by using additional penalty terms during model
fitting.

Now, as we apply deformations to the nodes of the sparse-level skeleton
S0, we can use inverse skeletonization to generate a boundary of the medial
model at subdivision level k. Furthermore, the correspondence between points
on the skeleton and boundary points established by (1) allows us to parame-
terize the region enclosed by the boundary, as discussed in Sect. 3.5. Overlap
between the medial model and a binary image can be computed efficiently.
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Fig. 3. Skeletonization vs. medial modeling. Left : A 3D object and the skeleton
derived by skeletonization. The color map on the skeleton is the “radius scalar field”
R or, equivalently, the distance to the closest boundary point. Right : medial model-
ing, which is, essentially, the opposite of skeletonization. A deformable parametric
medial model is defined as a surface or set of surfaces, and the boundary is derived
analytically using “inverse skeletonization,” (see (1)). The model is then deformed
to maximize fit between its boundary and the object of interest. Since the medial
model is parametric, it can be flattened, that is, mapped to a 2D domain; not so
for skeletonization. The key difference between skeletonization and medial model-
ing is that the former computes exact skeletons, but does not guarantee that the
branching topology of the skeletons is consistent across individuals; the latter com-
putes approximate skeletons, but guarantees the same topology for all individuals,
allowing effective statistical analysis

Thus, fitting a model to a binary segmentation of a fasciculus is an optimiza-
tion problem where overlap between the model’s interior and the segmentation
is maximized and the penalty terms required for inverse skeletonization to be
well-posed are minimized. Model fitting is discussed in greater detail in [56].
The overall concept of deformable medial modeling, as opposed to determin-
istic skeletonization, is illustrated in Fig. 3.

3.4.1 Automatic Model-Building for Initialization

Prior to fitting a deformable medial model to a target structure, an initial
model must be generated. While it is possible to begin with a simple stock
model, the freedom to choose an arbitrary domain Ω makes it possible to
build data-driven initial models. With the freedom to define cm-reps over
arbitrary domains comes the problem of finding the right domain and the
right mesh configuration for a particular anatomical structure. We accomplish
this by essentially flattening the skeleton of the structure, under constraints
that minimize local distortion.
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Automatic domain generation and model building employ the following
pipeline. Given a binary image of the structure of interest, we first compute
the Voronoi skeleton of the structure using the Quickhull algorithm [7] (as im-
plemented in qhull software, www.qhull.org) and use simple heuristics (similar
to [37]) to prune away the least salient branches. Unlike earlier work on auto-
matic medial model initialization [45], we do not require the Voronoi skeleton
to be pruned down until it becomes a manifold. Instead, we use the Maximum
Variance Unfolding (MVU) technique [52], which finds a two-dimensional em-
bedding of the skeletons’ vertices that minimally distorts the distances be-
tween neighboring vertices. The two-dimensional embedding assigns a pair of
coordinates (ui, vi) ∈ R2 to each of the vertices xi in the skeleton. A manifold
can then be fitted to the skeleton by fitting low-degree polynomial surfaces to
the data xi(ui, vi), yi(ui, vi), zi(ui, vi). The domain Ω is computed as a region
homeomorphic to a disc in R2 that encloses all of the points (ui, vi). This is
achieved by rasterizing the scatter plot of (ui, vi) and applying dilation and
erosion operations. To produce a quality triangulation of Ω, we sample a set of
20–40 points along its boundary and use the meshing program triangle to pro-
duce conforming constrained Delaunay triangulations [41]. The initialization
pipeline is illustrated in Fig. 4 using the CC as the example.

3.5 Shape-Based Coordinate System

A key property of cm-rep medial models is the ability to parameterize the
entire interior of the model using a shape-based coordinate system [56]. Let
us refer to the vectors RU± with tail on the medial surface m as spokes. If
m is a continuous surface and the constraints of inverse skeletonization are
met, the spokes span the interior of the model, that is, the region enclosed
by the surface b− ∪b+. Every point inside this region can belong to only one
spoke. Let us use coordinates (u, v) to describe where the tail of a spoke is on
the medial surface, and use the coordinate ξ ∈ [−1, 1] to describe a location
along a spoke (when ξ > 0, it references the spoke RU+, and when ξ < 0, it
references the spoke RU−). Then every point x on the model’s interior can
be assigned a set of coordinates (u, v, ξ), as follows:

x(u, v, ξ) =
{

m(u, v) + ξR(u, v)U+(u, v) if ξ ≥ 0
m(u, v)− ξR(u, v)U−(u, v) o/w. (4)

This assignment is unique, except when (u, v) ∈ ∂Ω, in which case the spokes
RU+ and RU− coincide. This 3D parametrization of the model is a powerful
tool, as it allows us to analyze data on the interior of structures in a shape-
based coordinate system.

3.6 Statistical Analysis on Medial Manifolds

This section describes one of the many possible ways to perform structure-
specific white matter analysis in cm-rep coordinate space. We assume a simple
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Fig. 4. Model building and fitting, illustrated for the CC. (a) The boundary and
the pruned skeleton of the binary segmentation of the CC (in atlas space). The color
map plots the distance from the skeleton to the boundary, that is, thickness. Red
indicates greatest thickness (at the genu and splenium); blue indicates places where
the CC is thinnest. Note that the skeleton is not a manifold since it may contain
any number of branches. (b) The two-dimensional embedding of the skeleton using
maximum variance unfolding [52]. The two plots use color to show the u and v
parameters assigned to each point on the skeleton. Blue represents low u, v values
and red represents higher u, v. (c) A scatter plot of the skeleton’s points in u, v space
and, underneath, the conforming constrained Delaunay triangulation of the region
containing the points. (d) The initial cm-rep model for the corpus callosum: on the
left is the skeleton surface with the control mesh displayed as a wireframe; on the
right is the boundary surface derived by inverse skeletonization. (e) The result of
fitting the cm-rep model to the binary segmentation (the skeleton and the boundary
of the model are shown). Again, thickness is plotted in color

scenario, where we are interested in analyzing differences between two groups
of subjects. To further simplify the analysis, we restrict our attention only to
the differences in the apparent diffusion coefficient (ADC). ADC is a scalar
measurement of overall diffusivity equal to the mean of the eigenvalues of a
diffusion tensor.

The key feature of our statistical analysis approach is the projection of
tensor-derived quantities lying on the interior of a fasciculus onto its medial
manifold. This projection results in a dimensionality reduction along the spoke
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direction, that is, the direction orthogonal to the boundary of the fasciculus.
Like smoothing, dimensionality reduction increases sensitivity at the cost of
decreased specificity. However, unlike isotropic Gaussian smoothing, data re-
duction along spoke directions respects the boundaries between structures.
Furthermore, isotropic Gaussian smoothing causes equal loss of specificity
in all directions, while, arguably, dimensionality reduction along spokes in
thin sheet-like fasciculi causes loss of specificity along the least interesting
direction.

We propose and compare two approaches to dimensionality reduction;
other approaches are also possible. In both approaches, we map the three-
dimensional field of diffusion tensors D(x) defined over the image domain to
two-dimensional tensor fields defined over the medial manifold of each fascicu-
lus. For each fasciculus, this mapping is achieved by sampling diffusion tensors
along spokes RU±(u, v) and deriving a single tensor D̃(u, v) for each point
on the medial manifold. Such a two-dimensional tensor field is computed for
each fasciculus in each subject.

The first strategy is an adaptation of the dimensionality reduction strategy
used in TBSS [44] and will be referred to as the “Max-FA” strategy. In this
strategy, we select the diffusion tensor that has the largest FA of all the tensors
sampled along the pair of spokes:

D̃(u, v) = D(x(u, v, ξ∗(u, v))) , where
ξ∗(u, v) = arg max

ξ∈[−1,1]
FA(D(x(u, v, ξ))) . (5)

In TBSS, this strategy is adopted to correct for registration errors in atlas
building. Since FA tends to be larger on the interior of fasciculi, by searching
for the position with the largest FA value along vectors, which extend from
the interior to the fasciculus boundary, one may recover intersubject corre-
spondences distorted by imperfect registration [44]. However, there is a slight
but important difference between our Max-FA approach and TBSS. The lat-
ter computes the skeleton of the entire white matter region (defined by an
FA threshold) and so the search for the maximum FA value may span multi-
ple fasciculi if they are not separated by voxels with low FA. Our approach
searches within the interior of each fasciculus, as defined by our tracking-based
segmentation protocol. The effects of this difference are examined in Sect. 4.2.

The second proposed strategy is to compute the average tensor along each
pair of spokes. Following Arsigny et al. [1], we compute the tensor average
using the log-Euclidean formulation:

D̃(u, v) = exp[
1
2

∫ 1

−1

log D(x(u, v, ξ)) dξ ] . (6)

This strategy assumes that the registration quality is sufficiently high and
uses averaging as the way to increase sensitivity of the analysis at the cost
of specificity in the spoke direction, which is assumed to be of least interest.
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A third strategy, which is not studied here, is not to perform dimensionality
reduction, but to generate statistical maps in the full u, v, ξ coordinate system.
This approach has the advantage of greatest specificity.

The analysis of statistical feature maps defined over manifolds has been
studied extensively in the neuroimaging literature and many of the techniques
previously proposed for cortical surface analysis can be directly applied to the
analysis of white matter differences on medial manifolds of fasciculi (e.g.,
[19, 48]). As an illustration, we analyze the ADC differences between two
groups using nonparametric cluster-based analysis with family-wise error rate
(FWER) correction [38]. First, we compute a two-sample t-test at each point
on the medial manifold of each fasciculus. Then, given an arbitrary threshold
t0, the set of clusters with t > t0 is extracted. In this context, a cluster C ∈ Ω
is a simply connected subset in the domain of the medial manifold that satisfies
t(u, v) ≥ t0 for all (u, v) ∈ C. We record the mass of each cluster C, defined as

mass(C) =
∫

C

t(u, v)dA .

We compare the mass of each cluster to the histogram of maximum cluster
masses generated from a large number of identical experiments in which the
labels of the subjects are randomly permuted. This histogram lookup yields a
corrected p-value for each cluster. The histogram of cluster masses is pooled
over all structures of interest, so that the FWER correction takes into account
the number of structures that we examine.

4 Experimental Evaluation

4.1 Evaluation Experiment: Subjects and Imaging Protocol

We demonstrate the proposed structure-specific white matter analysis para-
digm in an ongoing study of DS22q11.2 conducted at the Department of Psy-
chiatry and Behavioral Science, M.I.N.D. Institute of University of California,
Davis. DS22q11.2 is associated with reduced brain volume, and in particular,
has been linked to morphological changes in white matter [17, 26, 42]. We are
interested in testing the hypothesis that white matter structure is different
between children with DS22q11.2 and typically developing children (TD).

The participants in the study include 13 children with DS22q11.2 and 18
children with typical development. Diffusion-weighted and structural MRI
were acquired for each participant on a 3 Tesla Siemens Trio scanner. A
single-shot, spin-echo, diffusion-weighted echo-planar imaging (EPI) sequence
was used for the diffusion-weighted MRI. The diffusion scheme was as fol-
lows: one image with minimum possible diffusion gradient, referred to as
the b = 0 image, followed by twelve images measured with twelve non-
collinear and noncoplanar diffusion encoding directions isotropically dis-
tributed in space (b = 1,000 s mm−2). Additional imaging parameters for the
diffusion-weighted sequence are: TR = 6,500 ms, TE = 99 ms, 90◦ flip angle,
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number of averages = 6, matrix size = 128 × 128, slice thickness = 3.0 mm,
spacing between slices = 3.0 mm, 40 axial slices with in-plane resolution of
1.72× 1.72 mm2.

Diffusion-weighted images were corrected for motion and eddy-current ar-
tifacts using the method described in [32], prior to extracting brain paren-
chyma with the Brain Extraction Tool [43]. Diffusion tensor images were
then reconstructed from the diffusion-weighted images using the standard
linear regression approach [8]. Finally, the resulting tensor volumes were re-
sampled to a voxel space of 128 × 128 × 64 with voxel dimensions equal to
1.72 × 1.72 × 2.5mm3. The resampled volume, with axial dimension equal
to a power of 2, is better suited for registration algorithms that require the
construction of standard multiresolution image pyramids.

4.2 Results

The pipeline described in Sect. 3 was applied to all 31 images in the study.
First, a symmetric unbiased population atlas was constructed using image
registration; this atlas is illustrated in Fig. 5. A qualitative assessment of reg-
istration accuracy is presented in Fig. 6, which shows the DTI images from
eight subjects warped into the space of the atlas. No large-scale registration
errors are evident, although there are small-scale differences.

Fiber tracking and tract labeling were used to segment six fasciculi of in-
terest in atlas space. Fiber tracking results and the corresponding binary seg-
mentations are shown in the first two columns of Fig. 7, and the skeletons and
boundary surfaces of medial models fitted to each of the binary segmentations
are shown in last two columns. The model fitting accuracy for the six fasciculi
is listed in Table 1, in terms of Dice overlap between the binary segmenta-
tion of a fasciculus and the fitted cm-rep model, as well as root mean square
displacement from the boundary of the fitted cm-rep to the boundary of the

Fig. 5. Three orthogonal views through the right CST in the white matter atlas con-
structed from 31 subjects (13 children with DS22q11.2 and 18 typically developing
children). The standard color-coding scheme for visualizing the principal direction
of diffusion is used: red for left–right, green for anterior–posterior, and blue for
inferior–superior. The intensity is scaled by FA
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Fig. 6. Visual assessment of registration accuracy. Each plot above shows a coronal
slice through one of the subjects’ DTI images registered to the DTI atlas, except for
the last plot, which shows the atlas itself. The projection of the medial models of
the fasciculi into the cut plane are shown as white curves in each plot. These curves
are exactly the same across all nine plots and are provided as a reference

binary segmentation. The fitting accuracy is high (∼0.95 Dice overlap) for five
of the six fasciculi. For the ILF, fitting accuracy is lower (0.90 Dice overlap),
due to branching fibers in the posterior part of the fasciculus (see Fig. 7).
Fitting this structure more accurately would require extending our medial
modeling approach to allow multi-manifold skeletons, which is the subject of
ongoing research. A combined view of the six fasciculi and the medial models
fitted to them is shown in Fig. 8.

Figure 9 plots the distribution of thickness along the medial models fitted
to each of the fasciculi. Thickness is also shown as a color map in Fig. 7. The
CC and CST are the thickest fasciculi, with thickness reaching 16 mm. ILF is
the thinnest, with maximum thickness below 9 mm. The voxel size of our DTI
data is 1.72× 1.72× 3.0mm3. Hence, the dimensionality reduction strategies
proposed above do indeed combine data from multiple voxels.

For each fasciculus, we tested the hypothesis that ADC is greater in TD
than in DS22q11.2. This hypothesis was tested using both Max-FA and tensor
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Fig. 7. Model-fitting results for six white matter tracts. First column: fiber tracking
and fiber labeling result. Second column: binary segmentation derived by rasterizing
the fiber tracking result. Third column: the skeleton surface m of the cm-rep model
fitted to the binary segmentation. The color map along the skeleton surface plots
the local thickness of each model, equal to twice the value of the radius scalar field
R. Fourth column: the boundary surface b of the cm-rep model

Table 1. Accuracy of cm-rep model fitting to binary segmentations of the six se-
lected fasciculi, in terms of Dice overlap and root mean square boundary displace-
ment (RMSBD)

Fasciculus Dice Overlap RMSBD (mm)

CC 0.957 0.332
CST 0.954 0.285
ILF 0.902 0.320
SLF 0.944 0.246
IFO 0.950 0.226
UNC 0.951 0.219

averaging dimensionality reduction strategies. In each case, a t-map was gen-
erated over the medial manifold of each fasciculus. These t-maps are plotted
in three dimensions in Fig. 10 as color maps over the medial manifolds. An
alternative visualization in the top row of Fig. 11 displays the t-maps in the
two-dimensional u, v domain of each fasciculus, making it easy to display the
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Fig. 8. Left : fiber tracking results for the six selected fasciculi. Right : skeletons of
the cm-rep models fitted to the six fasciculi
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Fig. 9. Thickness profiles of the medial models fitted to the six fasciculi in atlas
space. The bars in the thickness profiles represent the surface area of the region on
the medial manifold where the thickness falls within the range [i − 0.5, i + 0.5] for
i = 0, 1, . . . , 18. Thickness is defined as the diameter of the maximal inscribed ball
centered at the given point on the medial axis (i.e., thickness is twice the radius
function R(u, v))

results of hypothesis testing on a single page. Note that the two-dimensional
projection of each fasciculus roughly resembles the shape of the fasciculus in
three dimensions, making it easier to interpret the two-dimensional t-maps.
The 2D visualization is also an effective tool for comparing the results of
different studies or different contrasts within a study.

To find the regions where ADC differences between TD and DS22q11.2
groups are statistically significant, we performed permutation-based cluster
analysis with 10,000 random permutations. The cluster threshold t0 was set
to 3.40, corresponding to an uncorrected p-value of 0.001. The sets of clusters
computed for each contrast and each dimensionality reduction strategy are
shown in a two-dimensional flattened view in the bottom row of Fig. 11. The
clusters detected using tensor averaging dimensionality reduction are listed
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Max-FA Strategy

Tensor Averaging Strategy

Fig. 10. Results of cluster analysis comparing ADC between DS22q11.2 and TD,
displayed in three dimensions. The medial models are colored by the t-score for
the hypothesis ADC(TD) > ADC(DS22q11.2). Statistically significant clusters are
marked by a black outline. Results for both dimensionality reduction strategies
(Max-FA and tensor averaging) are shown

in Table 2 and the clusters detected with Max-FA are listed in Table 3. The
results consistently point to ADC differences in CC, IFO, and UNC. However,
the study is ongoing and we intend to report the complete results, including
FA differences, in a separate clinically oriented chapter.
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Max-FA t-map Tensor Avg. t-map

Max-FA Clusters Tensor Avg. Clusters

Fig. 11. A statistical analysis of ADC differences between TD vs. DS22q11.2, com-
puted using two different dimensionality reduction strategies (Max-FA and tensor
averaging, see Sect. 3.6) and visualized in two dimensions. Top row : t-maps for the
TD vs. DS22q11.2 group comparison (t > 0 indicates greater ADC in TD, and vice
versa). The t-map in each plot is the same as in Fig. 10, but is projected onto a 2D
domain, allowing the t-maps associated with all 11 fasciculi to be viewed simultane-
ously. Bottom row : a similar visualization of the statistically significant clusters in
ADC comparison (clusters thresholded at t = ±3.40 with FWER-corrected p-value
below 0.05). The 2D domain for each fasciculus is displayed as a gray mesh (see
Fig. 4c), and the significant clusters are displayed in color. Red clusters correspond
to increased ADC in DS22q11.2 and blue clusters correspond to increased ADC
in TD

More clusters are obtained using the Max-FA strategy than using tensor
averaging. In particular, a large cluster is detected in the right genu of the CC,
for which there is no equivalent in the clusters generated by tensor averaging.
However, looking at the differences between lists of clusters can be deceptive
because a cluster’s presence or absence can be sensitive to small differences in
the topography of the t-map from which the cluster is generated. A more fair
assessment when comparing t-maps generated by two strategies is to examine
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Table 2. Statistically significant clusters for the ADC comparison between
DS22q11.2 and typical development (TD), using the tensor averaging dimension-
ality reduction strategy

Fasciculus Location Area (mm2) t̄ pcorr t̄maxfa

cc L. anterior 82.9 3.89 0.0096 3.42
Left ifo Anterior 88.8 4.49 0.0085 3.11
Left unc Anterior medial 54.7 4.23 0.0184 3.99
Left unc Medial 34.4 4.14 0.0346 4.13
Right ifo Mid-fasciculus 58.4 −4.44 0.0266 −1.26∗
Right ifo Anterior 26.0 3.60 0.0492 4.16
Right ifo Anterior 48.3 3.84 0.0213 2.98
Right unc Medial 103.7 4.19 0.0070 3.62

Clusters are defined as connected regions with |t| > 3.40 on the fascicular
medial manifold. For each cluster, four values are shown. The first value
is the surface area of the cluster on the medial manifold. Next, t̄ is the
average value of the t-statistic inside the cluster. Positive values of t indi-
cate greater ADC in TD than in DS22q11.2. Third, the family-wise error
rate (FWER) corrected p-value of the cluster is given (the correction treats
pointwise hypothesis testing across all 11 fasciculi as a single multiple com-
parison problem). Last, t̄maxfa gives the average over the cluster of the
t-map computed using the “Max-FA” dimensionality reduction strategy.
The difference between t̄ and t̄maxfa gives an indication of how sensitive the
cluster is to the choice of dimensionality reduction. Asterisk (∗) indicates
the clusters where this difference is most striking.

Table 3. Statistically significant clusters for the ADC comparison between
DS22q11.2 and TD, using the Max-FA dimensionality reduction strategy

Fasciculus Location Area (mm2) t̄ pcorr t̄tenav

cc L. anterior 50.7 3.75 0.0162 3.66
cc L. anterior 23.9 3.52 0.0427 2.38
cc L. anterior 34.0 3.79 0.0274 2.92
cc R. anterior 208.9 4.49 0.0015 1.71∗

Left ilf Posterior 40.4 3.80 0.0213 2.39
Left unc Anterior medial 53.2 4.07 0.0149 4.18
Left unc Medial 34.5 4.17 0.0268 4.08
Left slf Inferior 26.4 4.15 0.0372 3.06
Right ilf Posterior 49.9 4.10 0.0164 2.52
Right ifo Anterior 48.3 4.25 0.0169 3.32
Right unc Medial 74.4 3.99 0.0090 4.16

See footnote in Table 2 for details

the t-values from different strategies over the extent of the same cluster. This
comparison is made in Tables 2 and 3. For each cluster, the average t in the
“native” t-map is reported (i.e., the same t-map that was used to generate
the cluster), along with the average t in the “opposite” t-map. In all cases,
the native |t̄| > 3.40, since 3.40 is the clustering threshold. For almost all
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clusters, the opposite t̄ is also fairly large, indicating agreement between the
two strategies. The two exceptions are the cluster for the tensor averaging
strategy located in the right IFO (t̄tenav = −4.44, t̄maxfa = −1.26) and the
cluster for Max-FA strategy located in the right genu of the CC (t̄maxfa =
4.49, t̄tenav = 1.71).

Figure 12 helps explain why the two strategies can produce different
t-maps. It looks at the aforementioned cluster in the right IFO, and examines
where the tensors with maximal FA are in relation to the medial manifold of
the fasciculus. It turns out that over the region of the cluster, the tensors with
maximal FA are located not along the medial manifold but towards the end of
the spokes that point in the direction of the adjacent ILF, which passes very
close to the IFO. The tensors in the ILF have larger FA than tensors in the
IFO, and the Max-FA strategy chooses the former. Thus, although it seems
to produce larger and more numerous clusters, the Max-FA strategy can also
fail to detect statistically significant differences in places where one fasciculus
passes close to another.

Fig. 12. Closer examination of the cluster in the right IFO that appears under
the tensor averaging strategy but has no equivalent under the Max-FA strategy.
Top left : the t-map for the ADC(TD) vs. ADC(DS22q11.2) comparison produced
by the tensor averaging strategy (this is the same t-map as in Fig. 10). The cluster
of interest is the blue spot in the t-map (increased ADC in DS22q11.2). Top right :
the spokes along the medial manifold of the right IFO. Each spoke is a line segment
extending from the medial manifold to the corresponding (and also nearest) point
on the boundary (see Fig. 2). Spoke RU+ is shown in red and spoke RU− in blue.
Bottom left : a color map showing where the Max-FA strategy samples the DTI
image in relation to the medial manifold of the right IFO. Red indicates that the
tensor with maximal FA is located at the end of spoke RU+ (on average over all
31 subjects) and blue indicates that the tensor with maximal FA is at the end of
RU−. Green indicates that the tensor with Max-FA is, on average, located along the
medial manifold. Bottom right : the medial manifold of the right ILF is shown next
to the right IFO. The two fasciculi pass close to each other. The Max-FA strategy
appears to be sampling tensors from the right ILF, which has greater FA values,
and causes the statistically significant differences in the adjacent IFO to be missed
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Fig. 13. A closer examination of the cluster in the right anterior CC that appears
under the Max-FA strategy but has no equivalent under the tensor averaging strat-
egy. The location of the cluster in question is outlined on the medial surface of the
CC. The medial manifold is colored by the relative position along the spokes of
the tensor with maximal FA. Positive values (red) indicate that, on average, the
maximal FA tensor is located on the side of the medial manifold away from the mid-
sagittal plane; negative values indicate that maximal FA tensors tend to be located
on the side facing the midsagittal plane; and values close to zero indicate no bias in
the location of the maximal FA tensor. The lateral ventricle is in close proximity to
the cluster, which may help explain why tensor averaging, which is more prone to
partial volume errors, is less sensitive in this region

The other cluster that is inconsistent between the two strategies is located
in the right genu of the CC. As Fig. 13 shows, this cluster is located where the
CC is adjacent on one side to the lateral ventricles. Unlike in the case of the
right IFO, there is no systematic shift in the position of the diffusion tensor
with maximal FA along the spokes in that area of the CC; on average, the
position of the maximal FA tensor is right on the medial manifold. It is likely
that the low sensitivity of the tensor averaging strategy is due to the partial
volume effects between the CC and adjacent highly isotropic gray and CSF
structures.

5 Discussion and Conclusions

This work demonstrates the feasibility of using deformable medial models for
structure-specific statistical mapping of DTI data in major white matter fas-
ciculi. The cornerstone of this approach is the shape-based parametrization
of the fasciculi. Medial models are a natural representation for thin sheet-
like structures because the medial manifold effectively summarizes the overall
shape of structures and presents an ideal target for dimensionality reduction.
Collapsing tensors by taking the average along spokes is an attractive alter-
native to spatial smoothing of DTI data. Both approaches trade specificity
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for sensitivity by averaging data from multiple locations, but spoke-based av-
eraging also reduces data dimensionality and explicitly strives to ensure that
averaging is applied within the structure of interest, not across its boundaries.
However, since averaging takes place in atlas space and normalization is never
perfect, there is still a possibility for tensor data outside of the structure of
interest to be included in the analysis. The TBSS-inspired approach of sum-
marizing data along the spokes by selecting the tensor with maximal FA is
also feasible in our framework and, as shown earlier, can lead to increased
sensitivity, albeit at the cost of potentially missing significant differences in
areas of adjoining fasciculi.

The use of skeletons in DTI analysis was pioneered by Smith et al. [44]
in the TBSS approach. Our approach is distinct from TBSS in several im-
portant ways. First, our approach is directed at statistical mapping of indi-
vidual fasciculi, while TBSS aims to draw inferences about white matter as
a whole. In TBSS, deterministic skeletonization is applied to the set of all
voxels with above-threshold fractional anisotropy. This results in a skeleton
consisting of hundreds or thousands of branches, some of which may be spu-
rious and sensitive to noise. In contrast, the cm-rep approach yields a single
approximating medial surface for each of the six selected fasciculi. This sim-
ple parametric representation allows statistical mapping of individual fasciculi
and provides an easy and attractive way to visualize and interpret statistical
differences. It establishes a canonical two-dimensional coordinate space for the
fasciculi (Fig. 11), where the results from different white matter studies can
be compared.

There are a number of ways to improve the proposed analysis framework.
An obvious improvement is to expand the set of structures included in the
analysis. Wakana et al. [50] identify the set of fasciculi that can be reliably
segmented using the tractography-based protocol in high-quality DTI data.
In addition to the six cortical white matter structures modeled in this work,
they include the anterior thalamic radiation (ATR), tapetum of the corpus
callosum (TP), the projection of the cingulum to the cingulate gyrus (CgC),
the hippocampal projection of the cingulum (CgH), fornix (FX), and four fas-
ciculi in the cerebellum and brainstem: medial lemniscus (ML) and superior,
middle and inferior cerebellar peduncles (SCP, MCP, and ICP). Of these, four
(ATR, SCP, MCP, and ICP) have sheet-like geometry and may be modeled
using the current framework. One of these structures, ATR, is partially in-
cluded in our definition of the CST, which combines (see Fig. 14) projections
to Brodmann areas 1–3 (primary somatosensory cortex), 4 (primary motor
cortex), 5 (somatosensory association cortex), 6 (pre-motor and supplemen-
tary motor cortex), 8 and 9 (dorsolateral prefrontal cortex). The remaining
structures identified by Wakana et al. as reliable, such as the fornix and the
cingulum, have tube-like rather than sheet-like geometry. Established curve-
based geometrical tract models [14, 23, 29, 31] are particularly well-suited for
modeling these structures, and can be used in parallel with our approach.
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Fig. 14. Surface-based representations of the CC (top left) and the CST (top right)
labeled according to their cortical connections to Brodmann areas (bottom left).
The color encoding of the Brodmann areas is shown in the bottom right panel.
Tracking was performed directly on the medial manifolds, using a new algorithm [59]
that extends the concept of fiber tractography to 2D medial manifolds. Tracking on
medial manifolds is akin to geodesic shooting, except that path taken at each point
m(u, v) is parallel to the estimate of the principal direction of diffusion computed
from the mean diffusion tensor D(u, v) (which is derived by (6) above). Cortical
connectivity labels are approximated as follows: first, the ICBM-MNI template [35],
which includes Brodmann area labels, is coregistered to the DTI atlas described
in Sect. 3.2 using affine registration; second, each fiber is assigned the label of the
Brodmann area closest to its endpoint, in terms of Euclidean distance

In the current experiment, cm-rep models were fit to tract segmentations
in atlas space. The dimensionality reduction of tensor data along spokes also
occurs in atlas space, meaning that in subject space the averaging takes place
along curves that are not guaranteed to extend from the medial axis to the
boundary, since the deformations yielded by registration algorithms do not
preserve the geometrical relationship between the boundaries and skeletons
of structures. An alternative approach is to fit cm-rep models to tract seg-
mentations in subject space. This can be achieved by warping the binary
segmentations from the template to each of the subjects, and fitting a cm-rep
model to each of these warped segmentations. In this way, the registration
component would be leveraged to align the boundary a structure, while the
normalization of the structure’s interior would be based on the geometrical
correspondences generated by cm-rep fitting.
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Reliance on expert-driven segmentation of the fasciculi is another lim-
itation. Although the segmentation of the fasciculi in atlas space requires
less than 2 h of expert time, performing segmentation in subject space would
be prohibitively expensive for many studies. Furthermore, the simple six-
parameter tensor-based representation of diffusion in our dataset and simple
streamline-based fiber tracking employed by FACT limit the accuracy with
which white matter tracts can be segmented. For instance, the data near the
cortex is too noisy to accurately model the cortical projections of the fasciculi.
However, the limitations of segmentation method do not preclude us from per-
forming statistical analysis, as long as it is safe to assume that the segmenta-
tion error is independent of the differences between cohorts in a study. Recent
advances in DTI segmentation [6, 28, 39] and higher resolution imaging may
indeed make it possible to more accurately label fasciculi in atlas space, as
well as in individual subject images, and to do so automatically or with min-
imal user interaction. However, given the fact that deformable medial models
are themselves a very powerful segmentation tool [25, 40], a truly attractive
approach would be to fit the deformable medial models employed in this chap-
ter directly to DTI data, rather than to segmentations obtained with other
techniques. This would require incorporating tensor-based and connectivity-
based likelihood metrics into cm-rep fitting, as well as training shape priors
for each of the fasciculi. In addition to shape, priors may incorporate the
variation in the angle between spokes of the medial model and the principal
direction of diffusion in the underlying DTI data. Model-based segmentation
of the fasciculi is one of the key long-term aims of our research.

The statistical methods used in this chapter represent just one of the many
possible approaches to structure-specific inference. For example, instead of
permutation-based cluster analysis, one could use point-wise hypothesis test-
ing with false discovery rate correction [9]. It is also possible to subdivide
the fasciculi according to cortical regions to which individual fibers connect
(Fig. 14), and to compute region-wise statistics. Instead of using features de-
rived from diffusion tensors averaged along spokes, multivariate analysis may
be applied, where each point on the medial manifold is associated with a tu-
ple of diffusion tensors. Such a framework would be more sensitive to group
differences occurring on opposite sides of the medial manifold.

In conclusion, we have presented a novel structure-specific framework for
analyzing white matter differences between populations. The technique can be
seen both as a model-based structure-specific alternative to the TBSS method
[44] and as an extension of the cortical flat mapping paradigm to white matter
structures. The six sheet-like fasciculi in the human brain are modeled using
deformable medial models, which allows the diffusion tensor data associated
with these structures to be projected onto parametric manifolds or even flat-
tened to a two-dimensional domain. This approach simplifies white matter
analysis and provides a compelling way to present results of white matter
studies.
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Summary. Many different measures have been proposed to compute similarities
and distances between diffusion tensors. These measures are commonly used for
algorithms such as segmentation, registration, and quantitative analysis of Diffusion
Tensor Imaging data sets. The results obtained from these algorithms are extremely
dependent on the chosen measure. The measures presented in literature can be
of complete different nature, and it is often difficult to predict the behavior of a
given measure for a specific application. In this chapter, we classify and summarize
the different measures that have been presented in literature. We also present a
framework to analyze and compare the behavior of the measures according to several
selected properties. We expect that this framework will help in the initial selection
of a measure for a given application and to identify when the generation of a new
measure is needed. This framework will also allow the comparison of new measures
with existing ones.

1 Introduction

Diffusion tensor imaging (DTI) is a magnetic resonance technique that mea-
sures the diffusion of water in tissue. If the tissue is fibrous, the water molecules
diffuse more in directions along the fibers than perpendicular to them. To cap-
ture the anisotropic behavior, the diffusion is often represented by a symmetric
positive definite second-order tensor. Using tractography (e.g., see Vilanova
et al. [15]) it is possible to reconstruct connections in the brain or the fibrous
structure of muscle tissue such as the heart (e.g., see Zhukov et al. [19]). In
several applications, for example, comparison between subjects, it is interest-
ing to segment structures with a higher level of meaning, for example, white
matter bundles, that is [14, 16, 20], and also to register different DTI data
sets [1, 10, 18]. It is often also necessary to derive statistical properties of
diffusion tensors (DTs) to identify differences, for example, between healthy
and pathology areas [11].
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In all the previous methods, it is often needed to define the difference be-
tween diffusion tensors, that is, to compare diffusion tensors. In segmentation
and registration, similarity measures are applied to match DTs in voxels in a
certain region, and between regions of different data sets. In quantitative anal-
ysis or DT statistics, distance or similarity measures of DTs in neighboring
voxels can be used to classify the amount of variability in a selected voxel [13]
or volume of interest. The results of these applications are highly dependent
on the choice of measure.

Alexander et al. [1] listed several measures and analyzed their results for
segmentation. However, since then, various people have introduced new mea-
sures for comparing DTs. These measures are of different nature and it is very
difficult to predict which measure will give better or similar results. There ex-
ist numerous measures, but to our best knowledge, there is no overview that
compares and classifies them in a structured way. This comparison can help
to support researchers in choosing a measure, and being able to predict the
behavior of the measures for their concrete application.

In this chapter, we provide this analysis and improve the intuition in the
behavior of the measures. The intrinsic characteristics of a measure are ana-
lyzed without having a specific application in mind. This allows an evaluation
of the nature of the measure in itself. It is out of the scope of this chapter
to make an application-oriented analysis, (e.g., finding the best measure for
DTI adult brain registration). However, this chapter aims to help make a first
selection of the possible measures that could be used for such application by
looking at the characteristics of the problem and the characteristics of the
measures. We expect that it will also help to identify when a new measure is
necessary, and compare its behavior with existing ones.

First, we present the notations used in this paper. In Sect. 3, we describe
the properties that will be used for the analysis of the measures. In Sect. 4, we
give an overview of existing measures from literature. In Sect. 5, we explain
how we evaluate the properties of the measures and show some simple results
to illustrate our methods. Section 6 presents the results of the experiments.
Finally, in Sect. 7, conclusions and summarized results are described.

2 Notation

We represent symmetric positive definite second-order tensors, Sym+
3 , by cap-

ital bold letters, for example, D ∈ Sym+
3 . The scalar components of a tensor

D are denoted by Dij :

D =

⎛
⎝D11 D12 D13

D12 D22 D23

D13 D23 D33

⎞
⎠

Eigenvalues of tensor D are λD
1 ≥ λD

2 ≥ λD
3 ≥ 0 and the corresponding eigen-

vectors are eD
1 , eD

2 , and eD
3 . We denote the trace (

∑3
i=1 Dii) = (

∑3
i=1 λD

i ) of D

with tr(D). The determinant of D will be denoted by det(D).
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With measure we refer to a function m that has two tensors A, B as input,
and returns a nonnegative scalar value:

m : Sym+
3 × Sym+

3 �→ R+
0 . (1)

If a measure returns how similar A and B are, then we call the measure a
similarity measure. If it returns how different A and B are, we call it a distance
measure. We denote similarity measures with s and distance measures with d.

3 Properties

In this section, we present a list of properties that can be evaluated for the
different measures. Diffusion tensors can be classified by their size, orientation,
and shape. We evaluate the measures according to their sensitivity to changes
in these properties. These changes are illustrated in Fig. 1. We also include as
a property how robust the measures are to noise, and the fact that a measure
is a metric or not.

3.1 Size

We understand as the size of a DT the mean diffusivity MD = tr(D)/3. This
is illustrated in Fig. 1(a). We consider a measure to be size-invariant if it is
uniform scaling invariant, that is, if it fulfills

m(sA, tB) = m(A, B), (2)

where s and t are scalar values.

3.2 Orientation

A measure m is rotation invariant if the value of m does not change when the
input tensors are rotated:

m(RT AR,PT BP ) = m(A, B), (3)

where R and P are rotation matrices. The orientation invariance can be di-
vided into two. One is whether the measure is sensitive, in general, to the
difference in orientation between tensors. Orientation changes are illustrated
in Fig. 1(b, c).

The other invariance included in the previous is invariance to image rota-
tion. If we define a DTI image as f : R3 �→ Sym+

3 in most of the cases, we want
that our measure is invariant to rigid body transformations of f (i.e., rotation
and translation). In the case of DTI images, the image transformation also
has to be applied to the tensor. From these transformations the rotation is
the only one that affects the tensor. Being invariant to image rotation means
that we want to fulfill (3) when R = P . If the image f is transformed with
other transformation (e.g., nonuniform scaling, skewing), it is not clear how
this should affect the tensor and therefore we consider it out of the scope of
this chapter.
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3.3 Shape

The shape of a tensor can be defined as linear, planar, spherical, or as an
interpolation between these types. The shape is given by the ratio between
the different eigenvalues. A graphical representation of different tensor shapes
is shown in Fig. 1(d). A measure m is shape-invariant if the value of m(A, B)
does not change when changing the shape (i.e., the ratio between eigenvalues)
of A, B, or both.

3.4 Robustness

Measures are never completely invariant to noise. However, if small changes
in the input produce small changes in output, then we consider the measures
to be robust under noise. Therefore, we can define

|m(A + E1, B + E2)−m(A, B)| ≤ ε, (4)

where ε is a very small scalar value and the components E{1, 2}ij of E{1, 2} ∈
Sym3 are also very small values.

3.5 Metric

A distance measure d is a semi-metric if, for two tensors A and B, it satisfies
the following conditions:

A = B ⇔ d(A, B) = 0 (5)
d(A, B) = d(B, A). (6)

Condition (5) is important because it allow us to distinguish between equal
and nonequal tensors. Condition (6) is necessary if we do not want the results
to depend on the order in which we deal with the DTs in a volume. If the
measure has to be a Riemannian metric, it also has to fulfill, for infinitesimally
close A and B,

d(A, B) ≤ d(A, C) + d(C, B). (7)

Condition (7) is important in applications where you need to take the mean
or do interpolation between tensors [2, 12].

4 Measures

In this section, we present a classification of similarity and distance measures
for diffusion tensors (DTs) that have been used in literature. This classification
is based on the nature of the derivation of the measure: measures based on
scalar indices; measures that make use of the angles between eigenvectors;
measures based in linear algebra; measures based on imposing the preservation
of positive definiteness of the tensor, that is, Riemannian geometry; measures
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considering the DTs as a representation of a probability density function and,
finally, measures that combine different measures from the previous classes.

4.1 Scalar Indices

Given a scalar index g : Sym+
3 �→ R+

0 , the simplest way to obtain a difference
between two DTs A and B is by using the absolute difference |g(A)− g(B)| of
the scalar index of the two tensors. There exist numerous scalar indices that
can be chosen for g. Two well-known examples are fractional anisotropy (FA)
and linear anisotropy (Cl). For a selection of scalar indices, see Table 1 and
refer to Westin et al. [17] and Vilanova et al. [15]. These indices reduce the
6D information in a DT to a scalar value. In the computation of the scalar
value, only the rotationally invariant eigenvalues of the tensors are used, thus
they do not depict the directional variation of the diffusion anisotropy. The
measures created from scalar indices will be denoted by ds, with the short
name of the index as subscript, for example, dsFA, dsCl

, dsMD. Thus

dsFA(A, B) = |FA(A)− FA(B)|. (8)

When using ds, a lot of information is lost. Each DT is represented by one
scalar value, while six scalar values are needed to represent the full DT. Thus,
the measures based on scalar indices can be very limited.

More scalar indices can be derived from tensors. For example, several DTI
literature recognized the benefit of tensor invariants as measure of the dif-
fusion tensor shape that do not require diagonalization. Kindlmann [8] used
these invariants, like the mean, variance, and skewness, which are invariant to
rotation, to measure the shape gradients in tensor fields. However, using them
for constructing a distance measure will give similar results to ds and will not
solve the problem that just one aspect is being shown. Thus, we do not treat
them separately here.

Table 1. Scalar indices for diffusion tensors [15, 17]

Name Abbrev. Equation

Mean diffusivity MD = tr(D)/3 = (λ1 + λ2 + λ3)/3

Fractional anisotropy FA =

√
(λ1−λ2)2+(λ2−λ3)2+(λ1−λ3)2√

2(λ2
1+λ2

2+λ2
3)

Relative anisotropy RA =

√
(λ1−λ2)2+(λ2−λ3)2+(λ1−λ3)2√

2(λ1+λ2+λ3)

Linear anisotropy cl = (λ1 − λ2)/(λ1 + λ2 + λ3)

Planar anisotropy cp = 2(λ2 − λ3)/(λ1 + λ2 + λ3)

Isotropy cs = 3λ3/(λ1 + λ2 + λ3)

Volume Ratio VR = λ1λ2λ3/MD3
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4.2 Angular Difference

Angular difference dangi
of the main eigenvectors eD

i is often used as a distance
between tensors that measures change in orientation [21]:

dangi
(A, B) = arccos(eA

i · eB
i ). (9)

Using dang1 only makes sense for tensors where the diffusion is mainly linear.
If the tensors have planar shape then dang3 can be used. For tensors with
spherical shape, any dangi

can be considered random and should not be used.

4.3 Linear Algebra

A class of measures deal with the diffusion tensors components as vector
elements. A typical distance measure is the Ln-norm of the componentwise
difference of two vectors:

dLn(A, B) = n

√√√√ 3∑
i=1

3∑
j=1

(Aij − Bij)n. (10)

In DTI literature, the L2-norm, dL2, is most commonly used for computing a
distance measure (see Batchelor et al. [4]); therefore, we only treat dL2 in this
chapter. dL2 is the same as the Frobenius distance [21], which is computed
using dF (A, B) =

√
tr((A− B)2).

One can also compute the scalar product of two tensors by summing the
products of components of the tensors [1]. The result can be used as a simi-
larity measure ssp:

ssp(A, B) =
3∑

i=1

3∑
j=1

AijBij . (11)

Measures ssp and dLn treat the DTs as simple vectors and ignore the
matrix or tensor nature of them. Another class of measures use the fact that
we have matrices. Pierpaoli and Basser [13] propose to use the sum of the
squared vector dot products of the eigenvectors weighted by the product of
the eigenvalues as a tensor scalar product [7]: stsp includes the colinearity
of the orientation of the tensors weighted by its eigenvalues. The value is
maximized if the tensors are aligned.

stsp(A, B) =
3∑

i=1

3∑
j=1

λA
i λB

j (eA
i eB

j )2. (12)

This measure is also called tensor dot product [3]. It is used to construct the
lattice index, which we show in Sect. 4.6. Jonasson et al. [7] use the normalized
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tensor scalar product sntsp in order to make it invariant to scaling of the
tensors:

sntsp(A, B) =
stsp(A, B)
tr(A)tr(B)

. (13)

Instead of applying the aforementioned measures to the tensors directly,
they can also be applied to the deviatoric of the DTs (see, e.g., [1]). The devi-
atoric D̃ of tensor D represents the nonisotropic part of D. It expresses just the
shape and orientation of the DT, independent of the size. It can be computed
as follows:

D̃ = D− 1
3
tr(D)I, (14)

where I is the identity matrix. Note that D̃ is not a positive definite tensor
everywhere. This means that it can have negative eigenvalues, and some of
the measures will also give negative values.

4.4 Riemannian Geometry

If we constrain the matrices to positive definite matrices, we get another class
of measures based on Riemannian geometry. Batchelor et al. [4] introduced a
geometric-based distance dg that measures the distance between two tensors
in the space of positive definite tensors:

dg(A, B) = N(A− 1
2 BA− 1

2 ), (15)

where

N(D) =

√√√√ 3∑
i=1

(log(λD
i ))2. (16)

This measures the distances along geodesics in the manifold of symmetric
positive defined matrices. Additionally, it is invariant to any linear change of
coordinates. Pennec et al. [12] introduce a similar framework with the same
distance measure, and extend it with methods for filtering and regularization
of tensor fields.

Arsigny et al. [2] introduce a new Log-Euclidian framework. It has similar
theoretical properties as Pennec et al.’s framework, but with simpler and faster
calculations. They derive the following Log-Euclidian distance measure dLE :

dLE(A, B) =
√

tr((log(A)− log(B))2). (17)

This measure is equivalent to the dL2 of the logarithm of the matrices. The
details of its computation and derivation can be found in Arsigny et al. [2].

4.5 Statistics

A diffusion tensor can be interpreted as the covariance matrix of a Gaussian
distribution describing the local diffusion. Thus, a natural family of dis-
similarity measures between DTs would be the statistical divergence that
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measures the overlapping of probability density functions. Given a diffusion
tensor D, the displacement r of water molecules at time t is a random variable
with the following probability density function (pdf):

p(r|t, D) =
1√

(2π)ndet(2tD)
e−(rT D−1r)/(4t),

where n is the dimensionality of the square matrix D.
Wang and Vemuri [16] proposed to use the square-root of the J-divergence

(symmetrized Kullback–Leibler) as a new definition of DT distance dKL:

dKL(A, B) =
1
2

√
tr(A−1B + B−1A)− 2n, (18)

where the dimensionality n is 3 for DTs.
In probability theory, class separability can be measured by the overlap

between the corresponding pdfs. Therefore, the overlap of pdfs can also be used
as a similarity measure between tensors. The calculation of the overlap cannot
be done analytically and often approximations are being used. The Chernoff
bound [6] gives us the upper bound of the probability error, P (error), of a
Bayesian classifier for two classes, w1 and w2, given their pdfs P (w1) and
P (w2). For normal distributions we have

P (error) ≤ P β(w1)P 1−β(w2)e−kβ ,

where β is a parameter that needs to be optimized to find the Chernoff bound.
A special case is the Bhattacharyya bound where β = 1/2. This bound is never
looser than the optimal Chernoff bound and can be directly calculated. For
DTs, it becomes the following similarity measure:

sBhat(A, B) = e
− 1

2 ln

(
det( A+B

2 )√
det(A)det(B)

)
. (19)

4.6 Composed

As mentioned in Sect. 4.1, each scalar measure in itself can give very limited
information of the difference between DTs (e.g., FA just gives information
about the anisotropy). Usually, a measure that reflects the changes of a com-
bination of these properties is necessary. Therefore, several authors have tried
to combine simple measures to obtain a more complete measure. Often, the
measures that are combined have quite different natures and therefore ad hoc
normalizations and weighting factors are needed.

Pollari et al. [10] introduced shape-dependent similarity measures, which
are used depending on the DT shape:
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sl(A, B) = |eA
1 · eB

1 | = cos(dang1(A, B))
sp(A, B) = |eA

3 · eB
3 | = cos(dang3(A, B))

ss(A, B) = 1− |tr(A)−tr(B)|
max(tr(A),tr(B),1)

sT2(a, b) = 1− |ga−gb|
max(ga,gb,1)

,

where a and b are the voxels with tensors A and B. ga, gb are the grey-levels
in a, b in the T2 MRI data. Using sl,p,s,T2 , Pollari et al. introduce a DT dis-
tance measure for registration of DTI brain datasets that looks at the overlap
between diffusion shapes and weighs this with the most reliable information
for that shape:

I(a, b) = ĉA
l ĉB

l sl(A, B) + ĉA
p ĉB

psp(A, B)+
γ ∗ ĉA

s ĉB
s (ss(A, B) + sT2(a, b)) /2,

(20)

where γ is 1
2 in all of their experiments because they want to give less weight

to isotropic voxels. The anisotropy measures are defined as ĉl = λ1−λ2
λ1

, ĉp =
λ2−λ3

λ1
, ĉs = λ3

λ1
, which is a variation of the measures proposed by Westin [17]

listed in Table 1. Because we are analyzing measures for DTs only, in Sect. 6
we use a modified similarity measure spnl that disregards the sT2 term in (20):

spnl(A, B) = ĉA
l ĉB

l sl(A, B) + ĉA
p ĉB

psp(A, B)+
γ ∗ ĉA

s ĉB
sss(A, B). (21)

We also use γ = 1
2 , although a more precise analysis, of the robustness of this

measure to the changes of gamma, would be needed.
Pierpaoli and Basser [13] introduced the lattice index as an intervoxel

anisotropy measure that takes the DTs in neighboring voxels into account.
For the computation of the lattice index they defined a measure sLI that
gives a similarity between two tensors:

sLI(A, B) =
√

3√
8

√
stsp(Ã, B̃)√
stsp(A, B)

+
3
4

stsp(Ã, B̃)√
stsp(A, A)

√
stsp(B, B)

, (22)

with stsp as defined in (12) and Ã, B̃ as in (14). Because stsp(Ã, B̃) can be
negative, sLI can give negative or imaginary values, which do not fulfill the
basic description of a measure as we defined it. Therefore, we do not use sLI

in further analysis.

5 Methods

For analyzing the properties of the measures, we want to show the behavior
of each measure for the different properties in a global way. So, we show the
results of each measure for sets of pairs of DTs where one property is changed.
We change each property gradually and analyze the behavior of the measures.
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Fig. 2. Size comparison plot of dsMD for tensors with planar shape. On the axes
from left to right, and from bottom to top, the size of the tensors increase while the
shape and orientation are invariant. See Fig. 1(a). (a) A grey-value plot; (b) The
height field

To do this analysis, we use plots as shown in Fig. 2. The axes of the plots
have smoothly varying DTs and in the plot we show the similarity or difference
of corresponding DTs. In Fig. 2(a) the results of the measure are shown as a
grey-scale image. Figure 2(b) shows the same results as a height field, which
gives a more clear impression about the evolution of the measure.

Furthermore, we compared the different measures by means of the root
mean square difference (RMSD) of their normalized results. This allows us to
grasp the similarities between the measures.

5.1 Size

Size is simple to evaluate because it can be captured with only one scalar value
(mean diffusivity MD, see Table 1). Figure 2 shows a size comparison plot for
dsMD. From left to right and bottom to top, we increase the size of the tensor
by multiplying the eigenvalues of a base tensor with increasing values. This is
illustrated in Fig. 1(a). It can be seen from Fig. 2 that tensors with the same
size (on the diagonal of the plot) have zero distance, and tensors of which the
sizes differ have larger distances. Some measures (e.g., dsFA) are invariant to
scaling. So this plot will not be used for those measures.

5.2 Orientation

For orientation, we consider the sensitivity of the measure to rotation of the
tensors, that is, rotation around any axis. For tensors with linear shape, the
measure should be invariant to rotations around e1. For tensors with planar
shape, the measure should be invariant to rotations around e3. For tensors
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Fig. 3. (a) Comparison plot for tensor with linear shape rotated around e1, e2, and
e3 showing dang1 . See Fig. 1(c); (b) dsFA comparison plot for tensors with shape
changing from linear (L) to planar (P) to spherical (S) to linear (L). See Fig. 1(d)

with spherical shape, the measure should be invariant to any rotation. We cre-
ated plots for multiple types (linear, planar, spherical) of tensors, where on
both axes, we gradually rotate the tensor around e1 until π. Then, on the mid-
dle part of the horizontal and vertical axes of the plots, we rotate around e2

until π. Finally, in the top and right of the two axes we rotate around e3

until π. The tensors on the axes of the plots are illustrated in Figs. 1(b, c).
Figure 3(a) shows results for dang1 . The tensor used for this image was linear.
Thus, for rotation around e1, the distance does not change. This can be seen
in the image because in the lower-left part, the distances stay zero. When
rotating the tensor around e2 and e3, it can be seen that the distance between
measures gradually increases for a rotation up to π/2 and then decreases again
until it is zero at π.

Furthermore, we tested the rotation invariance of the measures to the sit-
uation when we rotate the volume. We did this by applying the same rotation
to every tensor in a set, and then computing the RMSD of these results to
the corresponding ones without rotation.

5.3 Shape

We consider that DTs can have linear, planar, or spherical shape or a shape
that is a combination of these shapes. To study the behavior of the measure
under changes in shape, we start with tensors that have linear shape, and
then gradually change the shape to respectively planar, spherical, and back to
linear. This is illustrated in Fig. 1(d). To make sure that we are only evaluating
shape, we do not change the size and orientation of the tensors in the same
plot. Results for dsFA are shown in Fig. 3(b). As can be seen from the black
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areas in the plot, which are not in the diagonal, tensors with different shapes
can have the same value for FA. This is a known property of FA.

5.4 Robustness

From the results of the previous methods, we can derive whether a measure is
sensitive to small changes in one of the properties. In addition, we introduce a
small variation to the set of tensors in our experiments. To each component of
the input tensors (on both axes) for making the size, shape, and orientation
plots, we add a uniformly distributed random value. Then we analyze this
robustness by computing the root mean square difference (RMSD) between
the plots with and without the added noise. We consider the measures robust
to noise if its plots do now show sharp changes or discontinuities, and the
computed RMSDs are relatively small.

5.5 Metric

The conditions that need to be fulfilled for a measure to be a Riemannian
metric can be derived from its definition. Thus, no experiments are needed
to evaluate this property. However, we summarize whether the properties in
(5)–(7) are fulfilled for each of the measures.

6 Experiments

In this section, we analyze and categorize behavior of the different measures
using the methods described in the previous section. The behavior of the
measures is summarized in Table 2.

6.1 Size

We can observe four different behaviors for the measures with respect to the
size difference of the tensors. All scalar measures listed in Table 1, except
MD, are invariant to scaling one or both input tensors with a scalar s. dangi

,
sntsp, and sLI are also invariant to scaling.

The measures dsMD and dL2 show a behavior as illustrated in Fig. 2. The
relation between the differences in size (MD) and the computed difference
behaves as follows

d(A, B) = s× |MD(A)−MD(B)|, (23)

where s is a scalar value. Scaling both A and B with a scalar value will change
the outcome of dsMD and dL2, and so (24) is not valid for those measures if
A �= B:

d(sA, sB) = d(A, B). (24)

This behavior is listed as add in Table 2.
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∗ĉ

A s
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Fig. 4. Comparison plots with tensors changing size

Measures ssp and stsp have behavior as shown in Fig. 4(a). They return
bigger values if the MD is larger. As a consequence, the result of comparing
two tensor that are exactly the same is not constant and depends on the size
of the tensor. There is no upper limit for the similarity measure that can be
given. We call the behavior of the measures increasing in Table 2.

The remaining measures are listed as mult. This means that they behave
as shown in Fig. 4(b). The relation between the output of the measure and the
ratio MD(A)/MD(B) of the size of the two tensors is linear, and (24) is valid.

6.2 Orientation

Measure dang1 only works well for tensors with linear shape. All scalar-index-
based measures (ds) are invariant to rotation. All measures except ds and
dangi

have similar behavior under rotation. For tensors with linear shape,
they have the same behavior as dang1 , which is shown in Fig. 3(a). Results
for sKL for tensors with planar shape is shown in Fig. 5. The other measures
show similar behavior. It is similar to that in Fig. 3(a). Except for dangi

, all
measures are invariant to rotations if at least one of the two tensors that are
being compared has spherical shape, that is,

m(S, A) = m(S, RT AR) (25)

for spherical tensor S, and A ∈ Sym+(3) and rotation R. For tensors whose
shape is not purely linear, planar, or spherical, the resulting plots are a
weighted average of the plots of the respective tensor types. This is shown
in Fig. 6 for dLE . All measures, except dangi

in the areas where its result is
random, are invariant to rotations of both tensors, thus, for any rotation R

m(A, B) = m(RT AR,RT BR) (26)
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Fig. 6. Comparison plot for tensors rotated around e1, e2, and e3 for dLE . The
tensors do not have pure linear, planar, or spherical shape, but eigenvalues λ1 =
1.0, λ2 = 0.5, and λ3 = 0.1

To refine the classification of these measures, we compared their results by
computing the RMSD between them. Measures dL2, dg, dLE , dKL, and sBhat

(since sBhat it is not a distance, we inverted the result, dBhat = 1 − sBhat,
before the comparison) are similar to each other (RMSD ≈ 0). We can define
another subgroup with the measures ssp, stsp, and sntsp. These measures give
the same result, RMSD = 0.
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6.3 Shape

Of the measures that we analyzed, only dsMD is invariant to shape changes.
The behavior for dsFA is shown in Fig. 3(b). The other ds measures show sim-
ilar behavior where tensors that differ can have a distance of zero depending
on which anisotropy measure is used. dangi

can give random values depending
on the shape of the diffusion. The behavior of dL2 is shown in Fig. 7, The di-
agonal is black, and the greatest distance occurs between linear and spherical
tensors.

Measures ssp, stsp, and sntsp all behave similar to what is shown in Fig. 8.
Tensors with linear shape are very similar to themselves. However, tensors
with planar or spherical shapes are less similar to themselves. Thus, the
similarity between a tensor and itself depends on its shape. Because of this
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Fig. 10. Comparison plot for shapes changing from linear (L) to planar (P) to
spherical (S) to linear (L). The plot shows dKL. λ1/λ3 = 100 for tensors with
“pure” linear and planar shape

behavior, we cannot convert these similarity measures to distance measures,
which fulfill metric condition (5). We list this in Table 2 as not self-similar (1).

The behavior under shape changes for spnl is shown in Fig. 9. The values
on the diagonal are brighter than the values next to it because tensors are
similar to themselves. However, the actual values on the diagonal are not all
the same. Thus, for spnl the similarity between a tensor D and itself also
depends on the shape of D. We list this in Table 2 as not self-similar (2).

The plots for measures based on Riemannian geometry and statistics (see
Sects. 4.4 and 4.5) show steep edges in areas where at least one of the eigen-
values is very small. This is shown for dKL in Fig. 10, where λ1/λ3 = 100 for



Analysis of Distance/Similarity Measures for Diffusion Tensor Imaging 131

tensors with “pure” linear and planar shape. This behavior is listed as sensi-
tive in Table 2. In medical data, the chance to be exactly on the very steep
part is small because the fractions between eigenvalues are not that large.
However, it is always possible that two similar tensors are on opposite sides
of this edge, which will result in a large difference. Also, noise in medical data
can change the fractions of the eigenvalues in such a way that the tensors
come closer to the steep edges, that is, small variations in the shape results
in large variation in the measures.

6.4 Robustness

We repeated the experiments of the previous sections after adding noise as
described in Sect. 5.4 to the input tensors. The noise consists of uniformly dis-
tributed random values ε ∈ [−0.01, 0.01], which are added to the components
of the tensors. We then compare the root mean square difference (RMSD) be-
tween the output of the normalized plots with and without noise. The results
are shown in Table 3. The more robust the measures are to noise, the lower
the values in the table.

The shape experiments were done with tensors that have varying eigen-
values but with constant mean diffusivity, λ1+λ2+λ3

3 = 1. The eigenvalues are
changed from linear (λ1 > λ2 = λ3) to planar shape (λ1 = λ2 > λ3), from
planar to spherical shape (λ1 = λ2 = λ3), and back to linear shape.

The orientation experiments were done with a linear tensor (λ1 = 1.0,
λ2 = λ3 = 0.1) that is rotated. The size experiments use the same linear
tensor, which is enlarged by multiplying all components of the tensor with
values from 0 to 60. The noise is added to the tensors after the changes in
shape, orientation, and size were done.

In Table 2 the robustness of the measures is summarized. Some measures
prove to be robust within only one or two of the invariant properties (shape,

Table 3. Root mean square difference (RMSD) between the sets of tensors with
and without small variations

Equation Shape Orientation Size

dsFA (8) 0.007 0.372 0.279
dsMD (8) 0.316 0.332 0.002
dang1 (9) 0.409 0.006 0.338
dL2 (10) 0.005 0.013 0.002
ssp (11) 0.009 0.024 0.002
stsp (12) 0.009 0.024 0.002
sntsp (13) 0.003 0.024 0.246
spnl (21) 0.008 0.018 0.237
dg (15) 0.012 0.044 0.007
dLE (17) 0.012 0.042 0.007
dKL (18) 0.013 0.056 0.007
sBhat (19) 0.014 0.048 0.006
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Fig. 11. Comparison plot showing the difference between the response of dKL to a
set with and without random noise. RMSD = 0.013

orientation, and size), that is, they have one or two relatively low values in
Table 3. We classify them as such. For example, measure dsFA is robust to
changes in shape only. If the plots do not have steep parts, that is, high
discontinuities, thus the values in Table 3 are small, we consider the noise
robustness of the measures to be good for all.

Measure dL2 proves to be the most robust measure. Measure dang1 only
takes the main diffusion direction into account. If the shape of the tensor is
not linear, this direction can change randomly when small changes are made
to the tensors. Thus, dang1 does not behave well under noise.

From the other measures, only the shape plots for dg, dLE , dKL, and sBhat

show steep edges. These edges appear where the shapes of the tensors are very
linear or planar. Thus, in these areas the measures are very sensitive to noise.
Figure 11 shows this behavior for dKL.

6.5 Metric

All metrics are symmetric, this can be also seen in the plots, since they are
symmetric by the diagonal.

Similarity measures have to be transformed into distance measures be-
fore we can evaluate if they are metrics. Similarity measures with increases
as size change behavior or not self-similar as shape change behavior have a
similarity s(A, A) that depends on the size or shape of tensor A. Thus they
cannot directly be translated into a distance measure that always fulfills met-
ric condition (5). Measures ds, dangi

, and sntsp are invariant to one or more
of the properties of Sect. 3. Thus, there are many tensors A �= B for which
d(A, B) = 0, which invalidates metric condition (5).

It is clear that distance measures dL2, dg, dLE , dKL fulfill metric conditions
(5) and (6). They also fulfill the triangle inequality (7) if the tensors A and B
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are infinitesimally close [2, 12, 16]. Therefore, they are Riemannian metrics.
Because this is sufficient for the applications that need the distances to be
a metric, we list them as yes for the metric property in Table 2. sBhat is a
similarity measure, and so it cannot be a metric. However, it can be turned
into one as is shown in [5]. Thus, we list yes for the metric property in Table 2.

7 Conclusions

Depending on the application, different distance or similarity measures can be
used. Using the previous analysis of properties we can identify from a practical
point of view the differences and similarities between the different measures.

It turns out that the behavior of ssp and stsp is similar, even though ssp

deals with the tensor as if it is a vector. The L2 distance dL2 is relatively
simple, but shows good behavior. Also, all measures listed in Sects. 4.4 and
4.5 give practically the same results.

Except for sBhat, the similarity measures S cannot easily be converted into
metrics, thus if that is a requirement for the application (e.g., for calculating
geodesics), those measures are ruled out. This also rules out the ds measures
and dangi

. Measure dL2 can be a good measure in that case. When using
measures dg, dLE , dKL, and sBhat, one has to be careful with the sensitivity
to small shape changes close to the degenerate cases.

Throughout a complete brain, all diffusion properties vary. To take all
properties into account when registering brains, no measure should be chosen
that is invariant to any of them. Also, if the weighting for all DTs used in the
registration must be the same, the similarity measures that list increases for
size or not self-similar for shape should not be used because even for equal
DTs, the computed similarities can vary depending on size and shape.

For interpolation of DTs the triangle inequality condition must be satisfied;
therefore, only measures that are metrics can be used. Work has been done
in the comparison of the different interpolation methods as in Arsigny et al.
[2], Pennec et al. [12], and Kindlmann et al. [9].

We created an overview of existing distance and similarity measures for
matching diffusion tensors and classified the measures. Such an overview, in-
cluding recently introduced measures, was not previously available. We evalu-
ated the properties of these measures and summed them up in Table 2. When
researchers want to use a similarity or distance measure for their concrete
application, they can define which properties their measure should have to
and then study the measures that fulfill their requirements.

When new measures are introduced, it will be beneficial to classify them
and see for which properties they differ from already existing measures, and
how they differ. So in which sense they improve existing measures.

This chapter aims to help in the first selection of these measures, the next
step is to test what measure performs better in a concrete application, for
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example, white matter segmentation. If the goal is to segment the brain using
DTs, the choice of measure depends on which properties are of importance for
a given area. For example, segmenting the thalamic nuclei requires dependency
of orientation for the measure used [21], while white and grey matter can be
distinguished using the tensor shape.

For future work, it would be necessary to study the behavior of these
measures under a more realistic model of noise. Furthermore, it would be
useful to compare the measures in a concrete practical set up and see whether
they behave according to our expectations. Also for some applications, such
as segmentation and registration, it can prove useful to compare methods
that apply the measures to the DTs directly with methods that segment or
register derived data, such as fibers (the output of a fiber tracking algorithm).
We also plan to use the measures for quantitative analysis and visualization of
differences between tensors in small areas of the heart and brain DTI datasets.
We expect that the overview of properties, that we presented in this work,
will simplify the analysis of the results for these applications. It can also give
indications for which properties a new measure for DTs might be useful. For
example, having a measure of which the result for size changes is fractional
(listed as ratio in Table 2), where the shape-dependency is not sensitive, can
prove useful.
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Summary. The Riemannian exponential map, and its inverse the Riemannian log-
arithm map, can be used to visualize metric tensor fields. In this chapter we first
derive the well-known metric sphere glyph from the geodesic equation, where the
tensor field to be visualized is regarded as the metric of a manifold. These glyphs
capture the appearance of the tensors relative to the coordinate system of the human
observer. We then introduce two new concepts for metric tensor field visualization:
geodesic spheres and geodesically warped glyphs. These extensions make it possi-
ble not only to visualize tensor anisotropy, but also the curvature and change in
tensor-shape in a local neighborhood. The framework is based on the expp(vi) and
logp(q) maps, which can be computed by solving a second-order ordinary differential
equation (ODE) or by manipulating the geodesic distance function. The latter can
be found by solving the eikonal equation, a nonlinear partial differential equation
(PDE), or it can be derived analytically for some manifolds. To avoid heavy calcula-
tions, we also include first- and second-order Taylor approximations to exp and log.
In our experiments, these are shown to be sufficiently accurate to produce glyphs
that visually characterize anisotropy, curvature, and shape-derivatives in sufficiently
smooth tensor fields where most glyphs are relatively similar in size.

1 Introduction

The need for tensor visualization has grown over the past 20 years along with
the advancement of image analysis, computer graphics, and visualization tech-
niques. From being an abstract mathematical entity known mostly by experts
in continuum mechanics and general relativity, tensors are now widely used
and visualized in applied fields such as image analysis and geology. In partic-
ular, there has been an expansion over the years, from using tensors mostly in
mathematical theories of the world, toward estimating tensor quantities from
experimental data. See for instance [26] for a recent survey of both techniques
and applications.
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We propose a technique to paint tensor glyphs in a special “warped” or
deformed coordinate system to enhance the visualization of curvature and
partial derivatives of a metric tensor field. Glyphs are commonly used to rep-
resent the state of a tensor field pointwise and their collective behavior, when,
for example, arranged in a grid, help to perceptualize the change of shape
and orientation of the tensors. Inspired by others who have visualized tensor
fields by regarding the tensor field as the metric of a manifold, see for instance
[8, 11, 15, 16, 19, 25], we propose a method to warp the glyphs in accordance
with the metric.

One of the most exciting areas where tensor data is derived from experi-
ments is the medical imaging modality called diffusion tensor MRI (DT-MRI).
It is now becoming so central that clinical radiologists in general need to un-
derstand and visualize tensor fields representing in vivo water diffusion in the
human brain. Fortunately, the positive definite matrices found in DT-MRI
data can be visualized using ellipses (2D) or ellipsoids (3D), making the data
understandable without knowing the details of tensor algebra. In DT-MRI,
the ellipsoids are elongated along the directions of maximum water diffusion,
and it turns out that their shape is tightly connected to anatomical prop-
erties of the tissue being studied. In the human brain, for instance, they are
elongated in the directions of nerve fiber bundles in white matter, because wa-
ter diffusion is restricted in the directions perpendicular to the fibers. In the
ventricles on the other hand, where the water molecules in the cerebrospinal
fluid (CSF) diffuse freely in all three directions, the ellipsoids are large and
spherical. These properties of ellipsoid glyphs make DT-MRI datasets easier
to comprehend for a medical expert. Similar tensor fields are found in other
medical settings, for example, in elastography analysis that is reviewed later in
the chapter “A Tensor Approach to Elastography Analysis and Visualization.”

Tensors are mathematical objects with special geometrical properties.
Most of the research in tensor visualization has focused on the most com-
monly used low order tensors, in particular vectors (first order, 1D arrays)
and matrices (second order, 2D arrays). In this chapter, we study the visual-
ization of metric tensor fields in Rn, where each tensor is a second-order tensor.
These can be represented by n× n matrices, elements of Rn ⊗ Rn, which are
symmetric and positive definite, that is, they have positive eigenvalues. We
call these tensor fields “metric tensor fields,” since they may be interpreted
as the metric of a Riemannian manifold. In DT-MRI, the pointwise inverse of
the tensor field is the most natural metric to consider [19]. Structure tensor
fields in image analysis, see for instance [10], is another example of tensor
fields that can be interpreted as a metric.

2 Glyphs and Glyph Warping

A tensor glyph is a geometric object that graphically represents the local
characteristics of the tensor field in a point. If a prefiltering is applied to
the field, in which the field is averaged over a small neighborhood to avoid
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aliasing effects or noise, one can argue that the glyph, in many applications,
actually represents the average characteristics of the tensor field over a small
area. The topic of this chapter is “glyph warping,” which refers to a process
of deforming glyphs according to the local characteristics of a tensor field or
manifold. By construction, most kinds of tensor glyphs are scaled according to
the tensor in a point, regarding this tensor as the local metric. The eigenvalues
and eigenvectors of the tensor determine the stretching and rotation of the
different axes of a glyph template, or determine the shape of the glyph in other
ways. Ellipses (2D) and ellipsoids (3D) can be constructed from a circular or
spherical template. Other glyphs, such as “space-ship glyphs” found in [28]
or superquadric tensor glyphs [17], are not rotationally symmetric, but have
three or more symmetry axes.

The curvature and the partial derivatives of the metric tensor field are
usually not represented by individual glyphs. These pointwise properties can
instead be inferred from the collective appearance of the glyphs in a neighbor-
hood, that is, if the glyphs tend to rotate or change in size locally. However,
these properties could also be visualized by warping the glyphs, for example,
bending them like bananas to illustrate curvature. If we regard the tensor
field as the metric of a manifold, that is, a curved geometric space, one nat-
ural way to think of this deformation process is to imagine that the glyph
is placed inside this manifold. However, while the glyph template is defined
in a vector space, the manifold is curved and there is in general no way to
fit the flat template inside the manifold, while at the same time preserving
correct distances in the glyph, if we compare Euclidean distances in the glyph
template with geodesic distances in the manifold. The situation is similar to
map making, that is, there is no way to map the surface of the Earth to a flat
vector space, so that all geodesic distances are mapped to Euclidean distances
in the new space.

Using the exp and log maps to deform the glyph, a procedure described
in this chapter, is a compromise. These mappings will at least preserve radial
distances and radial angles from the center of the glyph template to all other
points.

3 Related Work

In 1881, the French cartographer Nicolas Auguste Tissot published ideas on
using circles and ellipses to visualize the deformation of map projections.
Mapping the Earth to a flat surface is not possible without introducing some
kind of angular or area distortion in the process. The Tissot indicatrix, see
Fig. 1, is a small circle or ellipse painted in a map projection. It represents
the deformation of an infinitely small circle on the Earth after being deformed
by the map projection. If the Tissot indicatrix is a perfect circle, and not an
ellipse, then the projection is angle preserving (conformal), and if the area
of Tissot indicatrices does not change across the map projection, the map
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Fig. 1. The area and angle distortion of map projections visualized using Tissot
indicatrices. Left : The Mercator projection, used in, for example, Google Maps. It
is conformal. Right : The equidistant azimuthal projection. It is neither conformal
nor authalic

projection is area preserving (authalic). A natural extension of the Tissot
indicatrix is to use geodesic distances on the Earth to define the circle, in
general resulting in a distorted ellipse. For this reason, the geodesic sphere
glyph we propose in this chapter, for the visualization of arbitrary metric
tensor fields, can be seen as a generalization of the original Tissot indicatrix.
In Fig. 2 we show how the geodesic variant of the Tissot indicatrix may be used
to visualize the deformation of the metric in a projection of two mathematical
surfaces, a half-sphere, and a cone.

Later work in computer graphics has also described methods to visualize
the distortion of a projected surface, or manifold in general, from the infor-
mation contained in a metric tensor field. In spot noise [25], a small image or
spot is pasted stochastically in multiple copies over a parametric surface to
create different textures. The original paper on spot noise also demonstrates
how anisotropic spot noise, in the 2D texture coordinate system of a curved
surface embedded in 3D, results in isotropic patterns in object space. This
is in fact a way to visualize the metric tensor of the surface. Textures have
also been used to visualize vector fields. In line integral convolution (LIC) [6],
vector fields are visualized by convolution (integration) of a random texture
with streamlines created from the vector field. This yields a low-frequency
response along the streamlines. In a method similar to spot noise and LIC,
noise is filtered by anisotropic filters steered by second order tensors to vi-
sualize the tensor field, see for instance [17] for an early example or [18, 23].
Another example of second order tensor field visualization include the Hyper-
LIC [30], an extension of the LIC method where the convolution proceeds not
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Fig. 2. Top left : A half sphere in R3 painted with geodesic spheres (i.e., circles
in 2D). Top right : A 2D chart describing the half-sphere, that is, the z-direction
has been removed. The same geodesic spheres efficiently visualize the space-variant
metric. Bottom left : A cone in R3 painted with geodesic spheres. Bottom right :
A 2D chart describing the cone, that is, the z-direction has been removed. Note
in particular the banana-shaped glyphs in the center and the more ellipse-shaped
glyphs close to the perimeter

only along a single streamline, but along a nonlinear patch that is aligned to
streamlines derived from both the first and second eigenvectors of the tensor
field. This method is somewhat similar to the approach taken in this chapter,
since a warped coordinate system is created, which can be used for glyph
warping. In [11] an approach is presented based on a physical interpretation
of the tensor field that is also able to, in contrast to many other methods,
visualize second order tensors with negative eigenvalues. Finally, a procedu-
ral generation of textures from tensor fields have been investigated in [15],
where reaction-diffusion patterns are steered by a metric tensor field. This
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yields a pattern that seems to be composed by separate glyphs, ellipses in 2D,
which are adaptively placed, scaled, and deformed by the tensor field. For a
successful implementation of this method, however, one has to overcome the
numerical problems of simulating a highly nonlinear PDE.

In the medical community, there has been a special need to extract infor-
mation from tensor fields that goes beyond the visualization of local proper-
ties of the field. In “tractography,” entire tracts are visualized by performing
streamline tracking along the main eigenvector field of a second order ten-
sor field. This procedure, called “fiber tracking,” helps radiologists to locate
fiber bundles in the human brain and find out about long range white mat-
ter fiber connectivity. Fiber tracking shares many similarities with the LIC,
Hyper-LIC, and Hyper-streamlines [7], but it is also a research topic in its own
right since it is heavily biased by clinical needs and the quest for anatomical
understanding of the human brain.

Two properties of spot noise and reaction-diffusion visualization seem to
be important for the quality and perception of the tensor visualization. First,
both of these methods spread the glyph-like spots in a uniform way according
to the tensor field regarded as a metric. The latter of these methods not only
scale but also bend the glyph-like structures according to the curvature of
the tensor field. In recent work on glyph packing [16] and anisotropic noise
sampling [8], also presented in the chapter “Dense Glyph Sampling for Vi-
sualization,” the first of these behaviors is mimicked and glyphs are placed
uniformly over the field. However, the glyphs themselves are still based on
the value of the tensor field in each point and do not consider curvature. In
this chapter, we present glyphs that do exactly that: they bend, expand, and
contract according to the derivative of the tensor field. In combination with
a glyph-packing procedure, this technique has the potential to mimic the two
most desirable properties of the reaction–diffusion method, in a framework
that is numerically stable and relatively fast to compute.

The work presented here is also related to work on texture mapping in
computer graphics, in particular the decal compositing with discrete expo-
nential maps [21]. Decal compositing refers to the mapping of small texture
maps, decals, onto surface models embedded in R3. It has been used mainly for
artistic purposes and it is defined only for 2D surfaces embedded in 3D. Other
methods for the calculation of exponential maps on general manifolds have
also been presented. In [22] fast marching is presented as a means to calculate
geodesics emanating from a point, that is, indirectly the calculation of expo-
nential maps. In [29] fast methods are presented to calculate all geodesics in a
manifold, starting from any point in any direction and traveling any distance.
In [5] and [4], the LogMap method is presented as a means of calculating
the inverse of the Riemannian exponential map. It is a method that may be
particularly well suited for glyph rendering using texture mapping and it is
reviewed later in this chapter.
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4 Tensors and Index Notation

Tensors generalize scalars, vectors, and matrices to higher dimensions. Some-
times the word “tensor” is used for any multidimensional array with more
indices than a matrix, that is, more than two. We use the term in a more
precise manner that is in agreement with the notation in physics and differ-
ential geometry. In these fields of research, tensors are geometric objects that
are invariant under coordinate changes. A vector is a tensor, that is, it is a
geometric object that remains the same regardless of the choice of basis or
coordinate system that is used to describe it. In physics, the word “tensor”
usually refers to what in mathematics would be called a “tensor field” but in
both domains it is meaningful to think of tensors as objects defined pointwise
in a vector space V .

Many spatial quantities in physics are tensors, for instance; velocity
(m s−1), diffusion (m2 s−1), and electric field strength (V m−1). In mathe-
matics and physics, contravariant vectors are those that transform like veloc-
ity and position vectors, while the covariant vectors transform like gradients
under a change of coordinate system. An example of a higher-order tensor in
physics is for instance the stiffness tensor, which is an object with four indices,
that is, a mathematical object represented by a 4D array of components. For
a general definition, a tensor F is a multilinear map,

F : V ∗ × . . .× V ∗︸ ︷︷ ︸
r

×V × . . .× V︸ ︷︷ ︸
s

→ R, (1)

that is, a map that is linear in each of its arguments. Its order is r+s and it has
type (r, s), meaning that it operates on r covariant vectors and s contravariant
vectors. In some contexts, order is called rank and type is called valence, which
can be confusing since rank is also used to describe the rank of matrices.
Similar to vectors and quadratic forms, the action of tensors can be defined
by components that are derived from the action on all combinations of basis
vectors {wi} in the dual space V ∗ and {bj} in V ,

F i1,i2,...,ir

j1,j2,...,js
= T (wi1 , . . . ,wir ,bj1 , . . . ,bjs). (2)

The number of components is nr+s. If the coordinates are changed, x̃i =
Tk

ixk, then each contravariant index is transformed as a vector and each
covariant index is transformed as a dual vector,

F̃ i1,i2,...,ir

j1,j2,...,js
=

n∑
a1...r,b1...s=1

F a1,a2,...,ar

b1,b2,...,bs
Ta1

i1Ta2
i2 . . .Tar

ir (T−1)b1
j1

(T−1)b2
j2

. . . (T−1)bs
js

(3)

In physics, this is sometimes how tensors are defined, that is, as objects that
transform according to certain transformation laws.
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In the above definition, we have used index notation, which is commonly
used in differential geometry to denote tensors and differentiate between co-
variant (lowered) and contravariant (raised) indices. For an introduction to
tensors and tensor notation, see for instance [12, 27]. To make the interpreta-
tion accessible to a broader audience, we will not use the customary Einstein
summation convention, meaning that all sums will instead be written out
explicitly. In index notation a (contravariant) vector is identified with its co-
ordinates, meaning that a vector v in Euclidean space Rn is written using its
coordinates vi in some basis,

v = vi =
n∑

i=1

vibi. (4)

Note in particular that the basis vectors have been dropped and are assumed
implicitly in the short form vi. The index variable i is an integer in the range
1 . . . n and it is typeset in superscript to indicate that this index, and this
vector, is contravariant. To further increase readability we also write equations
in ordinary linear algebra notation when possible, that is, bold face lower case
letters for both contravariant and covariant vectors (v,x, . . .) and upper case
bold letters for matrices (A,G, . . .). In some expressions, we use ẋi and ẍi to
denote first- and second-order time derivatives.

In addition to vectors, we consider higher-order tensors in this chapter,
in particular the metric tensor. The metric tensor is a mathematical object,
defining the scalar product between (contravariant) vectors, which in turn can
be used to measure important properties in space such as lengths, angles, and
area. In vector algebra the scalar product is often implicitly defined simply
by

〈v,u〉 = vT u =
n∑

i=1

viui, (5)

but in general any symmetric positive definite n×n-matrix G can be used to
define a metric,

〈v,u〉G = vT Gu =
n∑

i=1

n∑
j=1

vigiju
j . (6)

The latter also introduces the commonly used tensor notation for the met-
ric, that is, lowercase with indices written in subscript gij . In index notation,
upper- and lower case letters have less meaning and to comply with standard
notation in both linear algebra and differential geometry, we denote the met-
ric by either gij or G. Subscript indices indicate that the metric is a covariant
tensor. In tensor algebra it is natural to pair contravariant indices with co-
variant ditto, and so the previous expression in (5) for a scalar product is
somewhat odd. Instead, it is better to write out the metric explicitly,

〈v,u〉 = vT u =
n∑

i=1

viδiju
j , (7)
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where δij is the Kronecker delta symbol, defined as δij = 1 when i = j and 0
elsewhere. It can be regarded as the unit-metric. The number of contravariant
(upper) and covariant (lower) indices now match, meaning that the result of
the calculation is a scalar (no index).

In summary, the index notation is a handy way to denote vectors and ma-
trices, which easily extends to higher dimensions by adding more indices. At
a first glance, the common notation for vectors and matrices may seem more
intuitive and easy to use, but there are at least four reasons for sometimes us-
ing the index notation: First, index notation extends naturally to higher-order
tensors, that is, objects with three or more indices. Second, index notation
can differentiate between covariance and contravariance by the use of upper-
and lower indices. Third, index notation is particularly efficient when used
in combination with the Einstein summation convention, meaning that the
summation symbol

∑n
i=1 is omitted from all expressions and instead it is as-

sumed that indices i, j, etc. appearing more than one time in an expression is
summed over, from 1 . . . n. In this notation the above scalar product is simply

〈v,u〉g = vigiju
j = gijv

iuj = giju
jvi. (8)

Finally, an advantage with the index notation is that the ordering of the
tensors, as factors in a product, becomes irrelevant, in contrast to the usual
notation of matrices and vectors in linear algebra.

5 The Metric and Metric Spheres

We now take a closer look at the metric, or metric tensor, and see how it can
be visualized. We also introduce a particular orthonormal (ON) coordinate
system.

The metric encodes how to measure lengths, angles, and area in a partic-
ular point on the manifold by specifying the scalar product between tangent
vectors in this particular point. A natural way to visualize the metric is to
visualize a “unit sphere,” that is, a sphere with radius equal to 1. By “natu-
ral” we do not necessarily mean the most suitable way to visualize a metric
from a human perception point of view, but rather a straightforward way to
visualize the metric using simple mathematics. In Euclidean space the unit
sphere is the set of points, x ∈ Rn, satisfying ||x|| =

√
〈x,x〉 = 1. In tensor

notation and with an arbitrary metric gij this translates to
n∑

i=1

n∑
j=1

gijx
ixj = 1. (9)

While the metric gij = G may be interpreted as a symmetric positive definite
matrix, it can be spectrally decomposed,

G = UΛU∗, (10)
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Fig. 3. Coordinate basis vectors in R2 derived from some metric gij . This coordinate
basis is orthonormal in gij and orthogonal in the default metric δij of the chosen
coordinate system, that is, the coordinate system of the observer

where U is a unitary matrix, UU∗ = I, and Λ is a diagonal matrix with
the eigenvalues of G ordered in descending order, Λii = λi. The eigenvectors
to G, found in the columns of U, form an orthogonal basis in Rn for both
the unit metric δij and the arbitrary metric gij . For instance, in R2 the first
eigenvector, corresponding to the eigenvalue λ1, point along the major axis
and the last eigenvector, corresponding to λ2, point along the minor axis of
the ellipse-shaped metric sphere (Fig. 3). In the general case, Rn, the metric
sphere will be a hyper-ellipsoid. Using this knowledge we may design a special
coordinate system, which is aligned with the axes of the hyper-ellipsoid. If
U = (e1, e2, . . . , en) and coordinates are denoted by ci, a vector v ∈ Rn is
decomposed by

v = vi =
1√
λ1

e1c
1 +

1√
λ2

e2c
2 + . . . +

1√
λn

encn. (11)

This coordinate system has many advantages, in R2 for instance we may
now easily parameterize the surface of the metric sphere by painting an
isotropic sphere in the ci coordinates, c1 = cos(t) and c2 = sin(t), 0 ≤ t < 2π
(Fig. 3). An alternative approach to visualize the metric, and emphasize the
direction on the eigenvectors, is to paint a unit box, ci : max(c1, c2) = 1. In
fact, we may paint any tensor glyph in this coordinate system, for instance
superquadric tensor glyphs [17] or even the “space ship” glyph in [28].

We call the map from this coordinate system to the vector space E, E :
Rn → V . It is an isomorphism from the Euclidean space Rn (and the unit
metric) to a new vector space V equipped with the metric G = gij . Of many
such isomorphisms, it has the special property that it is aligned with the axes
of the hyper ellipsoid describing gij in V, in a particular basis.

6 The Geodesic Equation and Geodesic Spheres

In most applications where metric tensor fields are visualized, the metric is
not constant but changes from point to point. A natural theory for space-
variant metrics is the non-Euclidean geometry of Riemannian manifolds, a
fact that has been pointed out by several authors, see for instance [19]. In
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Riemannian geometry, the distance between two points in space is defined by
the length of the shortest curve between them, where the length of this curve
is obtained from the integral over the tangent vectors to a curve, measured
using a space-variant metric gij(x),

d(a, b) = min
γ:γ(0)=a,γ(1)=b

∫ 1

0

√
γ̇(t)igij(γ(t))γ̇(t)jdt. (12)

Similar to the case of a constant metric, we may now define geodesic spheres in
this Riemannian manifold. For a sphere centered in a point p in the manifold,
the following relation hold for points x on the geodesic sphere,

d(p, x) = 1. (13)

The problem with this metric, from an application point of view, is that the
space-variant metric makes it more difficult to evaluate the distance between
two points since the minimization is performed over an infinite set of curves γ.
One way to approach this problem is to derive a parametric function for points
on the sphere, without measuring distances explicitly. Using the geodesic equa-
tion, defined in (14) below, geodesics emanating from a point p starting off in
a specific direction and traveling a specific distance (in this case 1) may be
generated. These solutions correspond to paths of free particles moving in the
manifold, without any forces acting on them, and in this sense they generalize
the notion of straight lines in Euclidean geometry. Without going into details,
geodesics can be described and calculated using the geodesic equation. It is a
second order ODE, which expresses that the second derivative of the position,
the acceleration, is zero. Because of the space variant metric, a special term
involving the Christoffel symbol Γ i

jk needs to be included,

d2xi

dt2
+

n∑
j=1

n∑
k=1

Γ i
jk

dxj

dt

dxk

dt
= 0, (14)

where 1 ≤ i, j, k ≤ n. The Christoffel symbol is actually a function of the
coordinate system, that is, Γ i

jk(xi). It is not a tensor in a strict sense, it
does not transform as a tensor when the coordinate system is changed, but it
benefits greatly from the index notation since it has three indices. It is derived
from the metric tensor,

Γ i
jk =

1
2

n∑
m=1

gim

(
∂gmj

∂xk
+

∂gmk

∂xj
− ∂gjk

∂xm

)
, (15)

where gij is the inverse of the metric gij , that is, gij = G−1. A geodesic
starting at γ(0) = p, where p is a point on the manifold, with a velocity
γ̇(0) = vi will have a geodesic length ||vi|| =

√∑
i,j vigijvj at t = 1, and

thus d(p, γ(1)) = ||vi||. In this way, by following geodesics starting at p with
different unit speed tangent vectors, we obtain a polar representation of a
geodesic sphere. We return to how this is solved in practice in a later section
dealing specifically with the implementation of this.
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7 The Exponential Map and Riemannian Normal
Coordinates

With the introduction of geodesic distance and geodesics, we now have a way
to paint geodesic spheres to visualize some of the characteristics of a space-
variant metric tensor field. However, we have not yet introduced a coordinate
system similar to the coordinates ci introduced for a constant metric. A first
step toward the introduction of such a coordinate system is to define the
Riemannian exponential map, known from differential geometry. This map,
and its inverse the Riemannian logarithm, is depicted in Fig. 4.

Let TpM denote the tangent space to a manifold M at a point p ∈ M .
In our space-variant metric, this is simply the space of all tangent vectors of
curves through a point p, which is a vector space. In particular, this is the
space of all possible tangent vectors to geodesics emanating from p. The map
expp : TpM → M is defined by

expp(v
i) = γ(1), (16)

where γ is the geodesic for which γ(0) = p and γ̇(0) = vi. It is appropriate to
use a “shooting” analogy here, expp(vi) is where a particle ends up after one
time unit, if it is shot from a point p with velocity vi.

The introduction of the exponential map can be done without any reference
to coordinates in a specific basis, it is simply a map from vectors vi seen as
geometric objects in the tangent vector space of a point p, TpM , to other
points in the manifold. By choosing an ON coordinate system for TpM , we
obtain what is called Riemannian normal coordinates (RNC), Geodesic normal
coordinates, or normal coordinates for short. In cartography, where M is the
spherical surface of the Earth, this coordinate system is called equidistant
azimuthal projection, which is depicted in Fig. 1. In the general case, this ON
basis can be seen as an isomorphism E : Rn → TpM . Joining it with the
exponential map, we have a map from Rn → M , and the inverse of this map

TpM

M

p

0

x

x

logp (x) expp(x)

Fig. 4. A schematic view of the expp and logp maps, connecting vectors x (boldface)
in the tangent plane, TpM , with points x (italic) in the manifold M
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gives us the coordinate of a point q on the manifold by ϕ(q) = E−1 exp−1
p (q),

which is a well defined inverse in a neighborhood U around p.

8 Solving the Geodesic Equation

Before we actually use the geodesic equation to paint glyphs, we briefly touch
upon how to solve it, both accurately using ODE solvers and approximately
using a Taylor approximation. Like any second- or higher-order ODE, it can
be reformulated by a system of first order ODEs, ∂s

∂t = f(s, t), for a vector
valued state s. The two variables xi and ẋi evolve in time according to[

∂xi

∂t
∂ẋi

∂t

]
=
[

ẋi

−∑n
j=1

∑n
k=1 Γ i

jkẋj ẋk

]
, (17)

where Γ i
jk is spatially varying depending on xi. The right hand side is inde-

pendent of t, that is, it is an autonomous ODE. Given that initial conditions
are known, for example, x(0) = p and ẋ(0) = vi, this system of ODEs has
exactly one unique solution under very general conditions according to the
Picard–Lindelöf theorem. We identify a particular solution with a geodesic
curve xi(t) = γ(t). While the Christoffel symbol might be difficult to compre-
hend at first, it is worth noting that the contribution by Γ i

jk is symmetric
with respect to a flip of sign in ẋi.

Implementation of a numerical solution to this ODE in for example, Mat-

lab is straightforward using standard ODE solvers, such as ode45, based on
the Runge–Kutta (4,5) formula, which was used for the experiments in this
chapter. The only reservation is that even a third order tensor-like object,
like the Christoffel symbol, generates a notation that is quite involved when
implemented in a vector- and matrix-oriented language like Matlab.

It is important to use a proper interpolation scheme in the calculation of
the derivatives of gij , if the tensor field is known only in a discrete set of
samples as in DT-MRI. We found that bilinear or cubic interpolation gave
a tensor field that was smooth enough to use as input to the ODE and to
compute Taylor approximations to the geodesic equation. To ensure positive
definiteness we computed the interpolation in the Log-Euclidean domain [1],
which can be seen as an approximation to an affine invariant interpolation,
see, for example, [2] for a complete explanation. It is, however, important
to point out that the proper choice of interpolation method highly depends
on the application, and the glyph warping framework we present is applied
after the user has decided upon the right choice of interpolation. In some
applications a continuous tensor field will be known in every point. In other
applications, the user may choose a model where the tensor field is constant
inside each pixel or voxel. In the latter case, the solution to the geodesic
equation must be generalized to noncontinuous tensor fields, which analogous



152 A. Brun and H. Knutsson

to optics and acoustics corresponds to a generalized law of refraction on the
boundary between two anisotropic media on the edge of every pixel or voxel.

For many applications in computer graphics, speed and ease of implemen-
tation is an issue. For this reason, we also derive Taylor approximations of the
exponential map. Directly from the geodesic equation, we have the second-
order derivative of our geodesic curve. Given the initial value of the position
and derivative, x(0) and ẋ(0), we have everything needed to make a second-
order Taylor approximation of a geodesic, valid for small values of t:

x̃i(t) = xi(0) + ẋi(0)t− 1
2

n∑
j=1

n∑
k=1

Γ i
jkẋ(0)j ẋ(0)kt2 + O(||ẋ(0)it||3), (18)

which for t = 1, according to (16), yields for a coordinate system in which
pi = 0,

expp(v
i) = 0 + vi − 1

2

n∑
j=1

n∑
k=1

Γ i
jkvjvk + O(||vi||3). (19)

This approximation will only be valid around a small neighborhood to p.
As of today, it is not entirely clear how good this approximation is and more
research is needed to find bounds on the approximation error and perhaps also
derive higher-order Taylor approximations for geodesics. As will be shown in
the experimental section, this approximation is, however, good enough to be
useful for slowly varying tensor fields.

9 Geodesic Spheres and Warped Coordinate Systems

Using (16), (17) or the approximation (19), we are able to explicitly map
unit vectors in TpM to coordinates on the manifold and thereby paint unit
spheres. By choosing the special coordinate system derived in Sect. 5, ci, in
combination with these formulas, we may also navigate on the manifold using
a Riemannian normal coordinate system that is aligned with the major and
minor axes of the metric ellipse or ellipsoid. This allows us to map not only
spheres, but in fact any glyph that is naturally defined in the ellipse- or
ellipsoid aligned coordinate system. Later in this chapter, we demonstrate this
by mapping the aligned unit box by using RNC. This procedure will result in
a box glyph with approximately unit length sides, which has its major axis
along the main eigenvector of the local metric, but on a larger scale has its
shape deformed according to geodesics emanating from its center point. We
refer to this process as glyph warping.

10 The Logarithmic Map

The function logp(q) is a function that maps points q on the manifold to
the tangent space in p, TpM , and it is the inverse of expp(vi). While the
exponential function is fairly easy to calculate numerically by solving a second
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order ODE, the estimation of the logp(q) mapping has attracted less attention
in the literature, perhaps due to the lack of fast and accurate solutions. From
the Taylor approximation in (19), it is, however, straightforward to derive the
second-order Taylor approximation for this inverse,

logp(q
i) = 0 + qi +

1
2

n∑
j=1

n∑
k=1

Γ i
jkqjqk + O(||qi||3). (20)

In our experience this approximation is less stable than the Taylor approxima-
tion of expp(vi) in (19), that is, it is only valid in a very small neighborhood
around p, and for this reason, we have not used this second-order Taylor
approximation of this mapping in our experiments.

A recently proposed method to calculate the logp(q) map is the LogMap
method [4, 5]. One way to explain this method is to study how the intrinsic
mean is computed [9, 13]. Let {xi} be N data points in a manifold M and
seek the minimizer to the function

f(p) =
1

2N

N∑
i=1

d2(p, xi), (21)

where d2(p, xi) is the squared geodesic distance between points p and xi. Then,
the gradient of f is [13, 20]

∇f(p) = −gst
1
N

N∑
i=1

logp xi. (22)

Setting N = 1 and x1 = x gives the following formula for logp,

logp(x) = −gst 1
2
∇yd2(y, x)

∣∣∣∣
y=p

. (23)

The metric gst and the inverse metric gst = (g−1)st have been added
here to handle the general case, but choosing an ON-basis for TpM yield
gst = gst = δst and allow us to identify co- and contravariant vectors. With
the formula above, estimating logp(q) becomes a matter of estimating geodesic
distances on M . If distances d(x, y) are known for all x ∈ N(p), where N(p)
is some small neighborhood of p, and for all y ∈ M , then the gradient of
the squared distance function can be easily estimated numerically by fitting a
second-order polynomial, which is then differentiated analytically. (The rea-
son for using the squared distance function is simply that it is much easier to
approximate using a finite set of basis functions, compared to the plain dis-
tance function, which has a discontinuity in its origin.) Distance functions in
turn can be estimated numerically for manifolds by solving the eikonal equa-
tion, for example, by using level-set methods for front propagation [19, 22],
or ordered upwind methods such as fast marching [22, 24] and the Dijkstra
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algorithm [3]. In some special cases such as the sphere, the cone, and the
Poisson disk model of the hyperbolic plane, the distance function can also be
derived analytically.

In this chapter, we focus mainly on the expp(vi) map, since it is the most
convenient mapping to use if one has a glyph that is described by a set of
connected vertices. We note, however, that if the glyph is given by a tex-
ture, the LogMap method might be convenient since it yields a mapping from
points q on the manifold directly to texture coordinates vi. It also has the
computational advantage that it calculates the mapping for all points in the
glyph in one step, given only a few localized distance functions from points
around p.

11 Experiments

In this section, we first describe some experiments performed on a simulated
synthetic two-dimensional DT-MRI dataset, where Rician noise and partial
volume effects have been introduced using realistic parameter settings repre-
sentative for common clinical protocols. This dataset consists of a 2D tensor
field with 2 × 2 symmetric positive definite tensors. We have chosen a 2D
dataset because it demonstrates several features of glyph warping and yet it
is easy to visualize in print. Glyph warping using exponential maps is, how-
ever, not restricted to 2D, but works in any dimensions. In Fig. 5, we show
a close-up of the tensor field displayed using three variants of sphere-glyphs.
The first variant is the metric sphere, which may be seen as a first-order ap-
proximation to the geodesic equations. The second and third image shows
the second-order approximation and the Runge–Kutta (R-K) solution to the
geodesic ODE. In Fig. 6, we demonstrate the effect on a global scale, once
again we use the sphere-glyph. The difference is subtler now, but experts in
tensor image processing still agree that the two rightmost images have a softer
appearance. In a third experiment, see Fig. 7, we once again tried the three
variants of glyph warping, but this time we used the box glyph instead of an
ellipse. We note that both curvature and changes in tensor shape may be seen
in the two rightmost visualizations. Again there is little difference between
the second-order Taylor approximation and the R-K solution. Compared to
the sphere glyph, the box glyph contains straight lines and sharp corners,
which appears to be the main reason why it is easier to see the effect of the
nonlinear mapping. In a fourth experiment, see Fig. 8, we tried glyph warp-
ing on somewhat more exotic glyphs. In the image to the left, we have used
texture maps of soda cans as tensor glyphs. In the middle image, we used a
single template inspired by superquadric glyphs. In the right image we have
used glyph warping on anisotropy-adaptive superquadric glyphs as defined in
[17], where isotropic tensors have been assigned round glyphs and anisotropic
glyphs have a more box-shaped appearance
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Fig. 5. Left : In a first order approximation of the RNC, the unit sphere (circle) is
equivalent to the well-known metric ellipse. Middle: In a second order approximation
of RNC, similar to exact RNC, the unit sphere might be bent. Right : Solving the
geodesic ODE using R-K results in almost exact RNC. Despite the visible deforma-
tion of the Riemannian normal coordinate system attached to the center point, the
geodesic sphere glyph looks almost the same in all three examples. For this reason,
geodesic spheres may not always be the best choice from a human perceptual point
of view. The box glyph overcomes some of these limitations

Fig. 6. Left : Metric sphere glyphs painted in a first order approximation of the
Riemannian normal coordinate system, equivalent to metric ellipses. Middle: Metric
sphere glyphs painted in a second order approximation of RNC. Right : Metric sphere
glyphs painted in true RNC found by numerically solving the geodesic equation

Fig. 7. Left : Tensor box glyphs painted using a first order approximation of RNC.
Middle: Tensor box glyphs painted using a second order approximation of the box
glyph. Note that glyphs are not only bent, they also vary in thickness. Right : Box
glyphs painted in true RNC
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Fig. 8. Warping various glyph templates. Left : Glyphs based on a single soda
can template. Middle: Glyphs derived from a single superquadric-inspired template.
Right : Glyphs based on anisotropy-adaptive superquadric templates

Fig. 9. An axial slice of a human brain, giving an anatomical overview of the
experiment. The square marks the area studied in detail in Fig. 10

Glyph warping was also tested on real DT-MRI data, acquired at CMIV.
In Fig. 9, an anatomical overview is given of the experiment presented in detail
in Fig. 10. In this experiment first- and second-order Taylor approximations
are compared to the more exact R-K solution, and anisotropy-adaptive su-
perquadric glyphs were used as templates for the glyph warping. The results
are also presented numerically in Table 1. Apparently the most visible effect
of the new glyphs is obtained for large tensor glyphs in areas where the shape
or orientation change rapidly enough. Numerically, the second-order approxi-
mation is always better than the first-order approximation, but the conclusion
from a visual inspection is that for large glyphs (that cover several pixels) it
is better to solve the ODE using R-K to avoid inaccurate results.
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Fig. 10. Tensor glyphs of the planar components of the diffusion tensor field in a
human brain, shown in high-resolution (Top) and in down-sampled resolution (Bot-
tom). Left : First order glyph approximation. Middle: Second order glyph approxi-
mation. Right : RNC from solving geodesic ODEs with R-K. Apparently, even the
second order approximation introduces visible errors, compared to the true RNC, for
the largest glyphs. For small glyphs, the second order approximation is qualitatively
similar to the true RNC

Table 1. The standard deviation of the error for the Taylor approximated glyphs in
Fig. 10, when the R-K solution is regarded as ground truth. Apparently the second
order approximation has the smallest error

Taylor-1 vs. R-K Taylor-2 vs. R-K

High-resolution 0.0694 0.0475
Low-resolution 0.1988 0.1738

12 Conclusion

We have presented a framework for visualization of metric tensor fields based
on the Riemannian exponential map and its inverse the Riemannian loga-
rithm map. This framework extends some of the previous methods for painting
glyphs based on tensor eigen decomposition.

The glyph warping framework is different from other proposed visualiza-
tions of tensor fields using glyphs by the fact that a warped glyph is not a
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function of the tensor field in a single point, but rather the result from an
integration or averaging around this point. The proposed method for warping
glyphs works not only in R2, seen in the experiments, but can be easily gener-
alized to R3. By changing the glyph or modifying the tensor field, for example,
by exponentiation of the tensors, we may obtain visualizations emphasizing
different characteristics in the tensor field. Depending on the need for accu-
racy or speed, one may choose either numerically accurate geodesic warping
by solving the ODE using, for example, the Runge–Kutta (4, 5) formula or
alternatively, choose the faster version where the bending of the glyphs is
calculated using a second-order Taylor approximation of the geodesic.

In summary, the Riemannian exponential map, and its inverse the loga-
rithm map, provides a framework for warping glyphs and visualizing geodesics
on a manifold defined by a space-variant metric tensor field in Rn. In particu-
lar, it allows for visualization of curvature and derivatives of a tensor field, by
bending and deforming glyphs according to the local Riemannian geometry.
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Summary. As 3D volumetric images of the human body become an increasingly
crucial source of information for the diagnosis and treatment of a broad variety
of medical conditions, advanced techniques that allow clinicians to efficiently and
clearly visualize volumetric images become increasingly important. Interaction has
proven to be a key concept in analysis of medical images because static images of
3D data are prone to artifacts and misunderstanding of depth. Furthermore, fading
out clinically irrelevant aspects of the image while preserving contextual anatomical
landmarks helps medical doctors to focus on important parts of the images without
becoming disoriented. Therefore, we present techniques for multimodal volume ren-
dering of medical data sets with a focus on visualization of diffusion tensor images.
The techniques presented allow interactive filtering of information based of impor-
tance, directional information, and user-defined areas. By influencing the blending
between the data sets, contextual information around the selected structures is pre-
served.

1 Introduction

As 3D volumetric images of the human body become an increasingly crucial
source of information for the diagnosis and treatment of a broad variety of
medical conditions, advanced techniques that allow clinicians to efficiently
and clearly visualize volumetric images become increasingly important. Inter-
action has proven to be a key concept in analysis of medical images because
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static images of 3D data are prone to artifacts and misunderstanding of depth.
Furthermore, fading out clinically irrelevant aspects of the image while pre-
serving contextual anatomical landmarks helps medical doctors to focus on
important parts of the images without becoming disoriented. Our goal was to
develop a tool that unifies interactive manipulation and context preserving vi-
sualization of medical images with a special focus on diffusion tensor imaging
(DTI) data.

At each image voxel, DTI provides a 3× 3 tensor whose entries represent
the 3D statistical properties of water diffusion locally. Water motion that is
preferential to specific spatial directions suggests structural organization of the
underlying biological tissue; in particular, in the human brain, the naturally
occurring diffusion of water in the axon portion of neurons is predominantly
anisotropic along the longitudinal direction of the elongated, fiber-like axons
[MMM∗02]. This property has made DTI an emerging source of information
about the structural integrity of axons and axonal connectivity between brain
regions, both of which are thought to be disrupted in a broad range of medi-
cal disorders, including multiple sclerosis, cerebrovascular disease, and autism
[Mos02, FCI∗01, JLH∗99, BGKM∗04, BJB∗03].

To date, the predominant visualization techniques for tensor images are
based on precalculation of geometric primitives that represent tensor proper-
ties. Glyph rendering, for example, converts each tensor into an iconic shape
that is elongated to match the water diffusion properties implied by the ten-
sor entries, whereas line rendering reduces the tensor data to a discrete set of
contours that trace paths along the presumed locations of axon bundles, that
is, along directions of highly anisotropic water diffusion (see Delmarcelle et
al. [DH92, BL92].) However, computation of these geometric primitives can be
computationally expensive, renderings of them can be prone to visual clutter,
and they are difficult to interactively modify to accentuate varying aspects
of the data in a session-specific way to meet the goals of specific users. To
circumvent the cluttering problem, clustering of streamlines has been intro-
duced, for example, by Enders et al. [ESM∗05], but in the same year, a user
study by Moberts et al. [MVvW05] revealed that clustering neural pathways is
a highly user-dependent topic and the additional computation time cannot be
neglected. Others presented techniques to interactively select lines depending
on different features, for example, Blaas et al. [BBVP05], who try to main-
tain the context by using high quality shading of rendered of lines, still these
techniques used precomputed lines. Kondratieva et al. [KKW05] reduced the
computation time by integrating particle lines on the GPU where a simple
Euler approach of order one is used for particle integration. Even on current
GPUs the computational power is limited and therefore only a limited number
of lines can be rendered, which restricts the number of features that can be
visualized.

Volume rendering, in contrast, has the potential to present entire images
without reducing them to static, discrete sets of geometric primitives. Recent
volume rendering techniques utilizing commodity graphics hardware support
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interactive frame rates and provide a high degree of interactive manipulation.
However, the question of how to convert a volume of tensor-valued voxels into
color and opacity maps for volume rendering is not trivial. Previously, univari-
ate or tri-variate summary measures of the anisotropy of water diffusion at
each voxel were computed based on the tensor eigenvalues; the summary mea-
sures and direction of the major eigenvector were mapped to alpha channels
and color, respectively. Lit Tensors, introduced by Kindlmann [KW99], define
another approach that employs shading to emphasize anisotropy. Empirical
evidence suggests that physicians become disoriented by direction-encoding
schemes that deviate from the traditional approach of assigning red, green, and
blue to three cardinal directions (compare Pajevic et al. [PP99]). Therefore,
we focus on improving other visualization parameters while keeping this well
known color coding. This facilitates fast switching between pseudo-colored
section planes and our volume rendering approach. Previous approaches to
volume rendering as presented by Vilanova et al. [VZKL06] focus on set-
ting transparency depending on scalar values or modifying the shading using
directional information as presented by Kindlmann et al. in [KW99]. Both
approaches fail to fade out information that is currently not important to the
user; thus, we employ directional parameters in addition to those presented
previously to modify the opacity value of the transfer function.

Other approaches to the occlusion problem in volume rendering strive to
change the location or size of features in the volume to make them visible to
the user, see Correa et al. [CSC06] and Bruckner et al. [BG06]. While these
techniques are capable of effectively uncovering important aspects of the data
and provide good illustrations of the findings, they may be inappropriate in a
clinical setting because the location and size of features in brain images often
relate directly to the presence or severity of medical disorders (compare Simon
et al. [SDB∗05]) and, therefore, should be preserved. In contrast, our method is
inspired by Importance-Driven Volume Rendering by Viola et al. [VKG04] in
that we improve visibility of important sections of the image while fading out
irrelevant parts and preserving voxel location and size. Our approach differs,
however, in that it does not require presegmented models and therefore can
be applied to raw DTI and structural magnetic resonance (MR) data without
requiring a preprocessing step.

While previous visualization techniques for tensor data are based on ma-
nipulation of simple scalar value-based alpha functions either using fractional
anisotropy (FA) as single scalar value or Westin’s barycentric spherical, pla-
nar, and linear anisotropy measures as, ap, al [WPG∗97], we introduce transfer
functions that depend on more information of the tensor, especially its eigen-
vector directions. While local direction information does not have medical
importance as, for example, neural fibers are defined as integral curves in a
certain volume, in many areas of the brain, neighboring fiber bundles have
different directions but their anisotropy values only change marginally. Kindl-
mann et al. [KTW06] showed that FA ceases can be found after preprocessing
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the data set, but these methods cannot be easily transferred to volume ren-
dering. Nevertheless, these areas can be found easily by looking at the local
change of direction.

2 Volume Rendering

Simple volume rendering of DTI data is based on mapping the normalized ma-
jor eigenvector (x,y,z) to a color by setting RGB = (|x|, |y|, |z|) and using FA
or the barycentric system of linear, planar, and spherical anisotropy to define
1D or 2D opacity transfer functions [EHK∗06, VZKL06]. Kindlmann described
another approach for volume rendering of diffusion tensor data. He defined
transparency based on FA values and added color and shading depending on
other tensor properties such as direction and shape. Being inspired by these
basic approaches, our method emphasizes the directional features of the data
set by using the default color mapping as it is used in the simple approach
and provides additional tools for selecting important features.

The major task for our application is reducing the occlusion problem. We
do this by allowing the user to interactively manipulate the transfer function
depending on the full tensor information. Previous methods represent the
isosurfaces of anisotropy values and do not take into account that medical
doctors are mostly interested in fiber bundles. Therefore, it should be possible
to select distinct bundles and hide others that occlude important parts of
the data set. While anisotropy measures and other tensor invariants have
proven to provide a good estimate of white matter boundaries, they do not
provide information concerning fiber bundle boundaries. However, in most
cases, changes of the directional tensor information provide this information.
Therefore, we propose to make use of this directional information in direct
volume rendering.

2.1 The Occlusion Problem

Since visualization maps information into two spatial dimensions, occlusion
is one of the major problems when handling volumetric data sets. Making
surfaces more transparent is one of the basic methods that helps provide ad-
ditional information. The selection of good occlusion coefficients is a difficult
problem and painting too many semitransparent surfaces leads to visual clut-
ter produced by both mixture of color and additional geometry. We propose
an interactive selection of regions of interest by considering local fiber direc-
tion. In addition to the transfer function, one or more direction vectors are
used to select areas of interest – or areas that should not be shown at all.

Although the color value of the RGB color mapping scheme provides di-
rectional information, the map is not invertible, that is, even neglecting ori-
entation, directions cannot be recomputed from the color value. In addition
to that, interpolation of eigenvalues and eigenvectors directions is not the
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same as interpolating tensor values and recomputing eigenvalues and eigen-
vectors afterwards [ZB02, Kin04]. Therefore, we compute the eigenvalues and
the required major eigenvector on the GPU using the non-iterative approach
by Hasan et al. [HBPA01]. Different criteria are used to select transparency
values including the following:

• Anisotropy values such as fractional anisotropy (FA), relative anisotropy
(RA), linear, planar, and spherical anisotropy [WPG∗97],

• Local direction of major eigenvector, and
• A magic lens6 that modifies the local transfer function [BSP∗93].

We experimented with several functions for directional filtering and deter-
mined that the type of function itself is not critical. While hard drop-offs in
transparency should be avoided, it is possible to use linear step functions as
well as smooth step functions, either the one provided by GLSL defined as

f(x) =

⎧⎨
⎩

0 when x < 0
3x2 − 2x3 when 0 ≤ x ≤ 1
1 when x > 1

(1)

or higher-order ones like

f(x)

⎧⎪⎪⎨
⎪⎪⎩

0 when x < 0
(126 + (−420 + (540 + (−315 + 70x)

∗x) ∗ x) ∗ x) ∗ x5 when 0 ≤ x ≤ 1
1 when x > 1.

(2)

Filtering out single directions breaks the typical symmetry of DTI data
sets that is provided by the standard color coding, which produces unfamil-
iar looking images and interferes with the common way of comparing both
hemispheres of the brain. To maintain the same symmetric properties, as the
color coding does, one can compare all directions that have the same color
(which are up to eight vectors in general, four because of the independence
of eigenvector orientation.) To provide more information about the local di-
rection of fibers, the comparison has to be restricted to one direction on the
hemisphere. This can be done by defining the vector in one hemisphere and
mirroring it at a plane separating both hemispheres of the brain. Having com-
puted the normalized direction vector v and the normalized eigenvector e in
the hemisphere, the alpha value is modified by

α ∝ f(‖〈e, v〉‖). (3)

2.2 Preserving Context

It turns out that removing large parts of the image completely, that is, making
it completely transparent, may confuse the user. Therefore, our system allows
6 “Magic Lens” is a trademark of Xerox Cooperation
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one to select an opacity for “hidden” areas making them translucent, which
preserves the context by fading out uninteresting parts of the data only a bit
while still allowing the user to see more important parts that may lie behind
the uninteresting parts.

2.3 Combined Rendering of MRI and DT-MRI Data

The previous section focused on methods used for rendering DTI data. While
many neuroscientists are primarily interested in this type of data, scalar-
valued MRI images provide a higher resolution and make it easier to navigate
in the brain. In addition, Gyral structure of brain gray matter and thin, soft
structures like blood vessels can be seen in MRI scans while they do not show
up in most DTI data sets. Therefore, a combined visualization of DTI and
MRI data is useful, especially for surgical planning. We integrate visualization
of conventional MRI and DTI data in our volume rendering approach in two
different ways:

• We add it to a single-pass volume rendering and define more complex
transfer functions based on both local DTI and MRI data and

• Implement a two-pass volume rendering approach to enforce importance-
driven volume rendering.

As we aim to restrict the diffusion tensor color map to the RGB model and
mapping, introduction of additional colors would be misleading. Most of the
information present in MRI data can be seen in simple grayscale slices of
the brain, which is the most common way of displaying them. Therefore,
we use volume rendering of the MRI data only to highlight boundaries of
objects by using a standard 2D grayscale transfer function for MRI data.
Special material attributes and gradient-based shading as done in most volume
rendering applications, see Bruckner et al. [BVG05], are applied to improve
the 3D perception of the surfaces.

2.4 Implementation

Our implementation is based on a standard GPU-based ray-casting volume
renderer with 2D transfer functions and the 3D texture based approach as
described, for example, by Engel et al. [EHK∗06]. Gradient computation can
be done either on the GPU or on the CPU, depending on the available graphics
board or by the choice of the user. The transfer functions have been extended
to support either 2D transfer functions based on gradient magnitude and
value or 2D functions based on two scalar values, for example, MRI signal
and FA. To filter the data by direction, we need additional information for
the graphics board. Modern graphics cards provide several ways for sending
the data. For our approach, we use the light information present in OpenGL as
it is global information for the entire data set, which can be easily manipulated
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between frames. Furthermore, it provides additional parameters, like the cut-
off-angle, and exponent that can be used for parameterization of the smooth
step function. In medical imaging, usually, no more than two light sources
are used (e.g., one static light and one headlight); therefore, at least five
light sources are unused that are more than enough for definition of transfer
functions.

While the 2D transfer function is based on a lookup table, we evaluate the
tensor transfer function analytically on the GPU as it is not computationally
extensive and can be manipulated without the need to exchange textures.
The major three steps, computing the stencil, computing the tensor volume
rendering, and computing the conventional MRI overlay, are shown in Figs. 1
and 2.

The magic lens selection provides an interactive way to select the weight-
ing of MRI and DTI data in the final image. All computation is done on
the GPU. We use the lens to emphasize areas of interest in the DTI image
while providing the context of the Gyri using MRI. In contrast to Wang et
al. [WZMK05], we do not apply different transfer functions to one data set
but we select different transfer functions on different modalities to build a
combined image that provides all information needed by the user while the
geometry is not distorted. Application of this is shown in Figs. 7–9. By using
these simplifications, the lens and the volume rendering of both data sets can

Fig. 1. Three components of the compositing step – from right to left: importance
mask, directional-colored DTI data, final compositing with MRI data
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Fig. 2. Another view of Fig. 1

be painted in a single rendering pass, which provides interactive frame rates
on a full screen application. The speed of the algorithm is independent of the
size of the lens. Furthermore, we experienced no change in the frame rate for
different sizes of DTI and MRI data sets.

3 Application and Results

We have applied our method to multiple data sets. Our main focus was to
determine what users can learn from interactive volume rendering that cannot
be seen using pseudo-colored slices or fiber tracking algorithms.

3.1 Quality Analysis for Fiber Tracking in the Gyri

Analysis of connectivity in the human brain is one of the major fields of
research related to DTI, where the main interest is in understanding how
the brain works by analyzing the connectivity of different areas in the brain.
This abstract type of research finds its application in neurosurgery. In tu-
mor surgery, the basic understanding of where neural fibers are situated and
which of them are more important than others is one of the most important
fields of research having major impact on quality and safety of brain surgeries.
Most of the time, neural fibers are visualized by displaying precomputed line
structures that imply single lines with defined start and end points, which is
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misleading since lines are often started and stopped based on other parame-
ters, for example, by FA. By using volume rendering for DTI data combined
with displaying the cortex extracted from MRI data, we can show how far a
reasonable tensor line tracking algorithm can proceed into the outer gyri.

An example on this strategy can be seen in Figs. 3 and 4. It can be seen in
the transparent area between the outer shell and the visualized DTI data that

Fig. 3. Overview of gyri clipped by an almost axial clipping plane. (RGB color
coding of DTI and clipping of DTI data based on FA value of 0.3 as used in many
fiber-tracking algorithms.) A semi-transparent surface was extracted from the orig-
inal MRI data set visualizing the boundary of the brain

Fig. 4. Close-up view of Fig. 3. The white matter in the gyri can be clearly seen.
Fiber tracking without additional information stops at the colored surface. The
surface color encodes the direction of fibers directly below the surface
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there is an area of about 2–3 mm in size where no tracking can be performed
by streamline algorithms due to ambiguity of the tensor information at the
interface between gray and white matter. Different transfer functions can be
applied to determine which values of FA, apparent diffusion coefficient (ADC),
and other tensor parameters can be used as threshold for tractography. Even
though there is ambiguity of orientation, the color provides a hint of the
behavior of fibers in the gyri. In this case, most fibers would be oriented
outwards. The small fibers connecting to the side walls of the gyri cannot be
found in the data set using reasonable thresholds.

We believe that it is important to transport that information showing the
limits of tractography algorithms to the user, to make him understand the
images better. Displaying the limits of algorithms leads to increased under-
standing and, therefore, better confidence in the information that is actually
shown.

3.2 Quality Analysis in the Inner Brain

While simple volume rendering provides good hints on how far fiber tracking
can advance into the gyri, we can use our algorithm to filter out parts of the
data to see what phenomena are occurring inside the brain. It can be seen
in the images shown in Figs. 5 and 6 that the pyramidal tract is “broken.”
This is due to a resolution problem leading to a strong influence of the corpus
callosum and the superior longitudinal fasciculus connecting the frontal and
occipito-temporal part of the brain in these voxels.

Tracking fiber bundles in those areas of the data set leads to false results,
for example, they follow the wrong bundles in areas where too many fibers
pass closely to each other.

It is an open problem whether there is a way to apply volume rendering to
higher-order tensor approaches that are usually used to avoid some of these
problems. Additional information of the tensor can be used to produce a better
angular structure of the tensors that makes it possible to follow different fiber
tracts in these regions [TRWW03, HS05].

3.3 Detection and Analysis of Diseases

Many diseases of the human brain, among them Alzheimer’s disease and mul-
tiple sclerosis, are related to a change of connectivity in the brain. One special
disease is the Deletion 22q Syndrome, which is characterized by increased FA
and ADC in certain areas of the brain (cf. Simon et al. [SDB∗05] and chapter
by Cook et al.). These parameters can be easily displayed with our volume
rendering approach, providing a context-preserving visualization that helps to
easily locate the areas of change in the brain. Despite the fact that one can
obtain a good overview of this kind of data sets, 2D transfer functions that
base on ADC and FA and statistical values obtained from a larger pool of
subjects have to be implemented and will be subject to future research.
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Fig. 5. Original image and x-direction (left–right) removed from DTI data to allow
to produce a cleaner view of the singuli and the pyramidal tract. The lasting red
component is the corpus callosum as seen in the MRI data and is shown here to
provide context
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Fig. 6. Pyramidal tract (blue) highlighted – other directions are faded out. The
pyramidal tract is broken in this data set by the influence of the corpus callosum
(red) and the green bundle passing by

Fig. 7. Left : Top/frontal view on the prefrontal lobe of a healthy subject. The cin-
gulum (green) and the corpus callosum (red) are clearly visible. Right : Top left view
highlighting the pre- and postcentral sulcus. The underlaying superior longitudinal
fasciculus (green) is also visible
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Fig. 8. Left : Side view on the parietal and superior temporal lobe showing the
superior longitudinal fasciculus (green, middle of the loop) and the inferior fronto-
occipital fasciculus (green, lower left of the lens). Right : Dorsal view on medial brain
regions showing also the cingulum (green) and the corpus callosum with two different
shadings of the magic lens. Two different shading models of the lens are shown

4 Conclusions and Future Work

We have described a novel method that allows us to interactively explore
complex volumetric DTI data sets. The method has been applied to different
data sets, and two major applications have been highlighted where patterns
could be identified in less time than using conventional methods. We have
demonstrated that all proposed methods can be easily implemented in existing
medical visualization systems.
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Summary. We present a simple and efficient approach to generate a dense set of
anisotropic, spatially varying glyphs over a two-dimensional domain. Such glyph
samples are useful for many visualization and graphics applications. The glyphs are
embedded in a set of nonoverlapping ellipses whose size and density match a given
anisotropic metric. An additional parameter controls the arrangement of the ellipses
on lines, which can be favorable for some applications, for example, vector fields and
distracting for others. To generate samples with the desired properties, we combine
ideas from sampling theory and mesh generation. We start with constructing a first
set of nonoverlapping ellipses whose distribution closely matches the underlying
metric. This set of samples is used as input for a generalized anisotropic Lloyd
relaxation to distribute samples more evenly.

1 Introduction

Anisotropic spot samples with certain characteristics, such as spatially vary-
ing density and size, have many applications in visualization and computer
graphics ranging from glyph rendering and texture generation for visualiza-
tion purposes [3, 8, 11–14], digital halftoning [15, 19, 25] to mesh genera-
tion [2, 16, 22]. While some of the desirable properties of the samples are
similar across applications, the goals and appropriate sampling strategies are
problem-dependent. When using the samples as input for texture generation
as, for example, line integral convolution (LIC), it is important to avoid struc-
tural patterns. An ellipse alignment leads to distracting artifacts in the LIC
texture. But an alignment of glyphs is desirable for other applications, for
example, vector field visualization, where it supports the impression of flow.

To achieve the objectives listed earlier we have designed a method, which
generates an anisotropic sample distribution in two main steps. First, we con-
struct a set of nonoverlapping ellipses. This first sample set already exhibits
most of the desired properties. Next, we use a generalized anisotropic Lloyd
relaxation to distribute the spot samples more evenly. Our anisotropic Lloyd
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relaxation is a straight-forward generalization of the isotropic version and is
based on the work of Labelle and Shewchuk [16] and Du et al. [2]. A parameter
in the Voronoi cell definition controls the alignment of the ellipses. We have
applied our method to several test data sets and various vector and tensor
fields.

2 Related Work

The generation of point or spot distributions with certain properties is the
subject of research in different fields. Dependent on the specific needs many
algorithms have been developed.

Generating uniformly distributed points with constant or varying density
without large scale patterns has a long tradition in the area of noise genera-
tion, sampling, or halftoning. These fields are closely related, many sampling
algorithms are directly used to generate noise textures. Some techniques use
a form of stochastic sampling, where random points are added or rejected
according to certain criterions. Such methods often suffer from low conver-
gence rates. Other approaches use relaxation techniques, in particular Lloyd’s
relaxation [1, 18] and its variants resulting in high-quality blue-noise samples.
To improve efficiency of the sampling algorithm several approaches have been
suggested using tile sets, which then are repeatedly tiled across the plane. Us-
ing this strategy, for example, Ostromoukhov et al. introduced a very efficient
isotropic blue-noise sampling method based on Penrose tiling [20]. Most of
these methods assume that the samples are isotropic. For a survey on sam-
pling techniques, we refer the reader to [5, 24]. Anisotropic settings can be
found in the area of stippling or automatic mosaic generation, where objects of
different size and shape are distributed on a plane [4, 6, 7]. Different from our
definition, here the orientation of the distributed objects is not predefined by
the metric but can change during relaxation. Most of the proposed methods
use a Lloyd relaxation based on a generalized Voronoi cell definition, where
the Euclidean distance of the objects is approximated.

The goal of generating an anisotropic distribution following a given metric
also appears in the area of mesh generation. Shimada et al. [22] introduced
a mesh generation approach using a close packing of ellipsoidal bubbles. The
packing is performed using a particle system, where particles move accord-
ing to repulsive and attractive forces. The equations of motion are solved
numerically to yield a force-balancing configuration. A geometric approach
for anisotropic mesh generation was chosen by Du et al. [2] and Labelle
et al. [16]. Both methods define a generalized Voronoi tessellation based on a
non-Euclidean metric using different distance approximations as basis for the
final triangulation. Our work builds on the ideas introduced in these methods.

The use of glyphs for visualization of local field properties is common in vi-
sualization. The question of placing these glyphs has been subject of discussion
in several contexts. The most common strategies are regular sampling, ran-
dom sampling with or without Poisson property [13, 17], or procedural texture
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generation, for example, using reaction diffusion. In vector field visualization,
Turk and Banks proposed a method to place arrows along streamlines gener-
ated by streamline optimization [23]. Kindlmann introduced reaction-diffusion
into the visualization community applying it to diffusion tensor MRI data [11].
Sanderson et al. used a reaction-diffusion model to generate spot noise based
on the underlying vector field placing glyphs at the spot center [21]. Reaction
diffusion provides automatic control of density, size, and placement of patterns
but the specification of appropriate parameters is not trivial. Stable patterns
only form for a very narrow band of values for the parameters. In addition it
is computationally expensive. Recently, Kindelmann and Westin proposed a
glyph packing algorithm in the context of diffusion tensor visualization [12].
Their work is built on a particle approach simulating attractive and repulsive
forces. This work is an extension to our recent work for the generation of
anisotropic noise samples [3] by adding a control over the alignment of the
ellipses.

3 Assumptions and Goals

The starting point for the generation of the elliptic noise samples is a metric
g = (gij) given over a domain D ⊂ R2, which defines the sample properties.
The metric can be user-defined or derived from scalar fields, vector fields,
or tensor fields, see Sect. 6.4. The metric is given as a two-by-two symmetric,
positive definite matrix depending on the location P = (x, y) ∈ R2. We assume
that the metric is nondegenerate everywhere. In general, it is spatially varying
and anisotropic. Size and density of the ellipses are specified by the metric in
their center P0 = (x0, y0). Their shape is defined as unit circle with respect
to the metric g0 in P0, that is,

g011(x− x0)2 + 2g012(x− x0)(y − y0) + g022(y − y0)2 = 1. (1)

Their half-axes are aligned to the eigenvectors and their squared principal radii
a2(x0, y0) and b2(x0, y0) are scaled according to the reciprocal eigenvalues

a2(x0, y0) =
1

λ1(x0, y0)
and b2(x0, y0) =

1
λ2(x0, y0)

, (2)

where λ1(x0, y0) and λ2(x0, y0) are the eigenvalues of g(x0, y0). The sample
density is implicitly defined by the size of the ellipses. To make a glyph-
based visualization reasonable, we further assume that the frequency of the
generated spots is higher than the frequency of the change of the underlying
metric. This means that density and eigen-directions do not vary much from
one sample to its neighbors. In summary, we have designed our algorithm to
generate noise samples with the following properties:

• Size and shape of the spots are determined by the local metric. By choosing
the right scaling we can define the spots as unit circles, see (1).



180 L. Feng et al.

bi

a
i

Fig. 1. Generalized Poisson disk property. The minimum distance of two sample
points is defined by the local ellipses, which are not allowed to overlap

• The spots are closely packed without holes, resulting in an uniform density,
defined as covered pixels per unit area.

• The spots are nonintersecting having a minimum distance, defined by a
generalized Poisson disk property, see Fig. 1.

• The degree of alignment of the spots can be controlled by a parameter.

4 Algorithm

Texture generation can be divided into two independent steps:

1. Computation of a reasonable starting distribution of ellipses, where we
generate a set of spot candidate based on a dense set of uniformly sampled
jittered points, and then traverse the candidate set to select ellipses such
that the resulting distribution fulfills a generalized Poisson disk property.
This start distribution provides the basis for most of the properties of the
resulting sample set.

2. Optimization of the starting distribution using an anisotropic Lloyd relax-
ation. Dependent on a parameter controlling the anisotropy, the relaxation
more or less favors an alignment.

Both steps are important. The first step determines the number of samples, the
density and the Poisson disk property. The second step leads to a more uniform
sample distribution, approaching a stable configuration. In the following we
shortly explain each step. For more details we refer to [3].

4.1 Generating the Initial Sample Set

The generation of the initial sample set is done in two steps. In the first step,
a set of jittered grid points is generated as locations for the candidate spots.
The initial set must have higher density than the target density. Four times
the target density leads to good results. The candidate spots in each loca-
tion are defined by the local metric as “unit-circle.” For a general metric g,
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these are ellipses defined by (1). At this stage, the generated candidate spots
generally overlap. Once the initial set of points is generated, the algorithm
traverses the set of points. A candidate spot is accepted when its ellipse does
not overlap with the ellipses at any other already selected samples. The un-
derlying regular grid structure of random points has the nice property that
it supports efficient spatial search of neighboring points, therefore simplifying
the checking process.

4.2 Anisotropic Voronoi Relaxation

By eliminating overlapping samples, holes can result in certain areas. To re-
move these artifacts we use a method similar to Lloyd relaxation.

Lloyd relaxation (also known as Voronoi iteration) is a method to generate
evenly distributed samples. It is an iteration of constructing Voronoi tessella-
tion and its centroids. In each iteration the sample points are moved to the
cell centroid, which corresponds to the center of mass of the cell. The process
converges against a centroidal Voronoi diagram, where each sample point lies
in its cell centroid. This diagram minimizes the energy given as

E =
∑
i∈I

∫
Vori

ρ(x)||r − ri||2dr, (3)

where I is the index set for the samples, Vori the Voronoi cell of the ith
sample, ri its position, and ρ a local scalar density.

Because of the anisotropy of the metric, we use an anisotropic Voronoi
diagram and an anisotropic centroid computation for the relaxation step. For
the definition of the anisotropic Voronoi diagram and the centroid computa-
tion, we built on the works of Labelle and Shewchuk [16] and Du et al. [2].
Our method is a combination of these two methods, satisfying our demands.
Depending on the special choice of the metric used to define the Voronoi cells
the alignment of ellipses is more or less supported.

4.2.1 Definition of the Voronoi Regions

Let {Pi ∈ D, i ∈ I} be the set of sample points resulting from our previous
step, where I is an index set for the points. The most natural way of general-
izing the Voronoi tessellation to other more general metrics would be to define
a Voronoi cell Vor(Pi) of a point Pi as the set of all points P ∈ D that are at
least as close to Pi as to any other point Pj , j �= i, using the geodesic instead
of the Euclidean distance. However, since the computation of this shortest
path is difficult and computationally expensive, we use an approximate dis-
tance function for two points proposed by Labelle and Shewchuk, because it
matches our conditions well, that is,

d2(P,Q) = (P −Q)T g(P )(P −Q). (4)
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The distance measure is not symmetric d(P,Q) �= d(Q,P ). Also, the triangle
inequality is not necessarily satisfied. Based on this approximate distance, a
Voronoi cell of point Pi is defined as

Vor(Pi) = {P ∈ D|d(Pi, P ) ≤ d(Pj , P ) for all j ∈ I with i �= j. (5)

When using the metric defining the ellipses, this distance function guarantees
that ellipses of our start configuration lie entirely inside the Voronoi cells.
The resulting Voronoi cells are in general not convex and may not even be
connected. Therefore, we define a localized version of the Voronoi cells con-
sidering only the part containing the sample point. For more details we refer
to [3]. We define

Vorr(Pi) = {P ∈ D|i ∈ IP and d(Pi, P ) ≤ d(Pj , P ) for all j ∈ IP with i �= j,

with IP = {i ∈ I|(Pi − Pj) · (P − Pj) ≥ 0,∀j �= i}. (6)

4.2.2 Centroid Definition

For the definition of the centroid we follow the idea of Du et al. [2], which is
a straight-forward generalization of centroid definition as the center of mass
to an anisotropic setting. The center of mass ci of a Voronoi cell Vor(Pi) is
defined as

ci =

∫
Vor(Pi)

d(r)r dr∫
Vor(Pi)

d(r) dr
, (7)

where d is an isotropic scalar density and r = (x, y). By replacing the density
d by the metric tensor g the centroid ci is defined as

ci =

(∫
Vor(Pi)

g(r) dr

)−1

·
(∫

Vor(Pi)

g(r) · r dr

)
. (8)

As an integral over positive definite matrices, the left matrix is always invert-
ible. When using an isotropic metric, this definition reduces to the standard
weighted centroid definition. If the metric is uniform, that is, it does not de-
pend on r, the anisotropic centroid definition coincides with isotropic uniform
case.

4.3 Implementation

4.3.1 Intersection Test

The initial sampling requires intersection tests between neighboring samples.
In the isotropic case, this intersection test is simply the circle to circle intersec-
tion test and can be done efficiently. In the more general case, the samples are
represented by ellipses. The algebraic method of ellipse to ellipse intersection
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test involve solving a quartic polynomial, which is computationally expensive
and numerically unstable. We use polylines to approximate the ellipses dur-
ing intersection test to reduce complexity. This approximation produces good
results without the issues involved in the algebraic method.

4.3.2 Relaxation

For the computation of the Voronoi cells and the centroid, we use a discrete
approach. Considering the domain as a set of uniform cells represented by
their center R, the discretized (8) results in

ci − Pi︸ ︷︷ ︸
≡Ti

=

⎛
⎝ ∑

R∈Vor(Pi)

g(R)

⎞
⎠

︸ ︷︷ ︸
≡Mi

−1 ·
∑

R∈Vor(Pi)

g(R) · (R− Pi)

︸ ︷︷ ︸
≡ti

. (9)

Instead of computing the Voronoi cell explicitly and using these cells for
the centroid computation, we perform both computations in one step. We
initialize all sample positions Pi, i ∈ I, with a zero vector ti and zero matrix
Mi. Next, we march through the discretized domain performing the following
steps for each cell represented by the point R:

• Find the Voronoi Cell Vorr(Pi) containing point R to specify i, by com-
paring the distances to sample points lying inside a local bin.

• Update the matrix Mi and the vector ti in the following way:

Mi → Mi + g(R)
ti → ti + g(R) · (R− Pi).

(10)

After traversing the entire domain, the new position of the sample points Pi,
given by (9), is determined by the translation vector Ti, that is,

Ti = M−1 · ti and Pi → P ′
i = Pi + Ti. (11)

5 Structural Behavior

The distance approximation makes general statements about the convergence
behavior of the point set difficult. For the quality of the results the effect
of a couple of relaxation steps is more important than convergence. We can
identify fix-points of the relaxation process for the uniform case, as, for ex-
ample, hexagonal structures or any other point symmetric configurations. In
our examples we observe that after several iterations, regions with hexagonal
patterns are forming, see Fig. 2. Inside these regions the patterns become rela-
tively stable quickly. Between these regions the structure still changes slightly
even after many iterations.



184 L. Feng et al.

(a) (b) (c)

Fig. 2. After many iterations, the sample positions converge and lead to stable
patterns. This is especially visible for uniform data sets. After 50 iterations (b) we
can already see the formation of basically two different structures (highlighted by
the red box). These regions hardly change over the next 75 iterations (c). Looking
at difference images between the single iterations we can see that there is still a
fluctuation in the regions between the stable patterns. (a) The start configuration
before relaxation

(a) (b) (c)

Fig. 3. Example of the Voronoi diagram of six points using three different uniform
metrics. (a) Isotropic metric, (b) metric given by the ellipses, (c) metric with higher
anisotropy

Dependent on the orientation of the ellipses in relation to the orientation
of the hexagonal structure, these configurations may result in an alignment.
A similar behavior can be observed for slowly varying fields. Whether an
alignment is desirable depends on the specific application. While it generates
artifacts when the samples are used as input for texture generation or in non-
photorelalistic rendering applications, it enhances perception of flow field data
sets.

This behavior can be controlled by the anisotropy of the metric used for
the Voronoi cells in the relaxation. Figure 3 shows Voronoi cells for different
types of anisotropies: isotropic, given by the ellipse and with an exaggerated
anisotropy. The shape of the Voronoi cell determines the movement of the
sample point in the next iteration. Especially if the start configuration is not
very dense, the anisotropy given by the ellipses is not sufficient to prevent the
samples from aligning.
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In our implementation we have adjusted the anisotropy by multiplying the
larger eigenvalue λ2 with a positive parameter p. Since only the ratio of the
eigenvalues is important it is enough to manipulate one eigenvalue. A value
of λ2/λ1 results in an isotropic metric. A value larger than one leads to a
higher degree of anisotropy. Since alignment often goes hand in hand with
overlapping of the ellipses, we also implemented a relaxation with intersection
test. In case of an intersection with neighboring ellipses the translation vector
is shortened. While this prevents the ellipses from overlapping and reduces the
alignment, it results in a less uniform distribution, see Fig. 4a. It is important

(a) (b)

(c) (d)

Fig. 4. Relaxation of uniform anisotropic samples. (a) The samples after ten re-
laxations with intersection test. The other images show results after ten iterations
without intersection test using three different metrics for the relaxation: (b) original
metric, (c) scaling of the of the larger eigenvalue with two, (d) scaling of the larger
eigenvalues with three
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to note that only the anisotropy of the relaxation process is influenced by the
alignment parameter. Size and shape of the represented glyph are not changed
and thus still represent the local field properties. It also does not change the
general convergence properties but the characteristics of the resulting texture
see Fig. 4b–d.

6 Results

The evaluation of our algorithm is guided by the goals described in Sect. 3.
We first discuss examples for a simple isotropic and anisotropic metric defini-
tion, which already exhibit most characteristic behaviors of our method. Then
we show some results for applications in different contexts. Our main appli-
cations are related to visualization, but we also considered “artistic” image
rendering applications. The use of glyph sampling with varying density and
size is appropriate for any glyph-based visualization, using glyphs that can be
embedded into an elliptical shape. For visualization purposes the main step is
the definition of the metric, ensuring that it incorporates the most important
features of the data. A further analysis of the results in frequency space can
be found in [3].

6.1 Representation of the Metric by Sampling Shape and Density

Size and shape of the spots are determined by the local metric. Thus, each
spot reflects the metric values at the sample point exactly. The scalar density
d, which is defined as covered pixels per unit area, can be measured by using
a Gaussian filter. The local density is then given as gray value. Because of
the discrete structure of the samples we cannot expect a constant, but almost
uniform density. An example for an anisotropic data set is shown in Fig. 5.
The size of the Gaussian filter used for these examples is the same for both
examples. It can be observed that the density is fast approaching a uniform
distribution. After six relaxation steps there are no holes visible anymore. In
particular, there is no dependence of the coverage on the size and shape of
the samples. Close to the boundary a slightly higher density can be seen for
both data sets. This is due to fixed boundary conditions.

6.2 Control of Alignment

To evaluate the influence of the shape of the Voronoi cells on the relaxation, we
started with a uniform anisotropic data set. We used the same data set as for
Fig. 2, where the initial sample set can be seen in (a). Figure 4 shows results
using different relaxation methods after ten iterations. For the generation of
Fig. 4a, b, the Voronoi cells are computed using the original metric as given by
the ellipses. In Fig. 4a we performed an intersection test after each iteration.
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(a) (b) (c)

Fig. 5. Relaxation of nonuniform anisotropic samples. The definition of the Voronoi
cells uses the original metric. Top row shows the sample set. (a) first sample set, (b)
after one iteration, (c) after ten iterations. The bottom row shows the images after
applying a Gaussian blur

This enforces the Poisson disk property but also hinders the relaxation process.
There are holes in the dataset even after ten iterations. Figure 4b shows the
result without intersection test. We can observe hexagonal structures with and
without alignment of the ellipses. There are almost no holes left, but in a few
regions the ellipses start overlapping. For Fig. 4c, d we used an exaggerated
anisotropy for the Voronoi cell computation. Especially Fig. 4d shows a very
uniform structure with almost no overlapping and alignment along the major
eigenvector.

6.3 Vector Field Visualization

One of the most direct vector field visualization methods is the use of arrows
or other icons. We applied our glyph sampling method to provide a dense
placement of glyphs without clustering based on a synthetic vector field. The
major eigen-direction of the metric is determined by the direction of the vector
field. The major eigenvalue is specified by vector magnitude λ1 = |v| and the
minor eigenvalue λ2 is defined as a constant. The metric is given as

g = λ1ev · eT
v + λ2e

⊥
v · e⊥T

v . (12)

Figure 6 shows the results for two different degrees of anisotropy in the relax-
ation after five iterations. The left image uses the original metric g, and in the
right image the larger eigenvalue is scaled by a factor of three. Both images



188 L. Feng et al.

(a) (b)

(c) (d)

Fig. 6. Effect of manipulating the anisotropy value during the relaxation process:
First row shows the tenth relaxation step of a uniform data set starting from the same
sample configuration. Second row shows our method for vector field visualization.
The left images (a,c) use the original metric for relaxation, for (b,d) the larger
eigenvalue has been multiplied by three. It can be seen that the original metric
favors an alignment along the field lines whereas the exaggerated anisotropy favors
an alignment orthogonal to the field lines

show a uniform sampling of the ellipses, but the perception of flow is much
better in (a). To achieve similar results, Turk and Banks proposed a method to
place arrows along streamlines generated using streamline optimization [23].
Sanderson et al. [21] used a reaction-diffusion model to generate spot noise
based on the underlying vector field and places glyphs at spot centers.

6.4 Tensor Field Visualization

To be able to use anisotropic noise for the visualization of tensor data, we
must define a metric based on the given tensors. Some of the tensor fields we
are interested in are already positive definite, for example, diffusion tensor
fields. But other tensor fields, like stress or strain fields, also have negative
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eigenvalues. To be able to treat such tensor fields we interpret them as distor-
tion of a flat metric [9]. Assume that we have a positive definite tensor field T
defined over a domain D. Let λ1 and λ2 be its eigenvalues and v1 and v2 the
respective eigenvectors. We define the metric for the sample generation as

g =
1√
λ1

v1 · vT
1 +

1√
λ2

v2 · vT
2 (13)

the resulting samples are ellipses aligned to v1 and v2 and scaled according
to the eigenvalues. Depending on the application it may be necessary to nor-
malize the eigenvalues.

Our first example is a stress field of a solid block with two applied loads
with opposite sign, resulting from a three-dimensional numerical finite element
simulation. Figure 7a shows a slice of this data set orthogonal to the applied
forces. The displayed ellipses represent the shape of a unit sphere deformed
according to the local stress field. Small ellipse half-axes indicate compression,
large half-axis indicate expansion in the respective direction. Ellipses with high
eccentricity mean strong shear forces.

We also applied our method to a slice of a diffusion tensor MRI dataset
of a brain. The use of glyphs, ranging from simple ellipses to more advanced
glyphs as superquadrics [10], is commonly done for visualizing such data sets.
The glyphs are mostly placed in grid points or are randomly spread [17].
Figure 7b shows a result using our sample generation. We used a mask im-
age representing the confidence values of the tensors as provided by Gordon

(a) (b)

Fig. 7. (a) Slice of a numerical simulation of a solid block with two forces acting
on the block, one pushing and one pulling force. The image shows the tensor data
as ellipses. The ellipses give an idea of directions of contraction or deletion inside
the material. (b) A close-up view obtained after three relaxation steps of a diffusion
MRI slice. The color code is the standard color map of encoding the major eigen-
direction. The projected tensors are represented by ellipses. Each ellipse is defined
by the tensor value given at its center
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Fig. 8. Mosaic-like images generated by our technique. The metric used for ellipse
generation results from the gradient field of the blurred original image. The top
image shows the result before relaxation and the bottom image after three relaxation
steps

Kindlmann together with the data set. The color is used to represent the prin-
cipal diffusion direction. The result is a uniform and dense representation of
the data independent from the grid points. Similar results were obtained by
Kindlmann et al. [12] using a particle simulating approach with repulsive and
attractive forces.

6.5 Nonphotorealistic Rendering

Non-photorealistic rendering is often used to simulate painting or drawing
styles an artist would use. There are many techniques to simulate these styles.
Anisotropic noise samples can be used for generating “artistic images” where
elements of the image have directional properties, such as paint brush di-
rection or rectangular mosaic tiles. Our example images were generated by
constructing a gradient vector field based on the intensity values of the im-
ages. To reduce noise in the vector field, the original images were blurred by
applying a Gaussian filter. We defined a tensor metric over the image using
the gradient vector field and its orthogonal vector field. The orthogonal vec-
tor field essentially points in the direction tangent to the boundary features
in the images. One example can be seen in Fig. 8, the left image shows the
ellipses before relaxation and the right image after three relaxations, using
the original metric.

7 Conclusion

We have introduced a method to generate a dense set of uniformly spread
glyphs. Besides the local control of size and density, the methods provides a
parameter to control the alignment of the glyphs. This is a desirable property
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not only in tensor field visualization. As for all glyph-based methods, the
resolution of the representation is limited by the size of the glyphs that are
used. The method as described is applicable for two-dimensional fields. A
generalization to the three-dimensional case is possible, but computational
efficiency and perceptual rendering issues will need to be addressed.

Our method is a purely geometric process. The centroid can be computed
explicitly without involving numerics. In contrast to models using repulsive
forces, the Voronoi cell based relaxation is very stable. Using a good start
configuration of the samples only a few relaxation steps are needed to achieve
a uniform distribution. Thus the method is reasonably fast.

Because of the lack of repulsive forces, the Voronoi relaxation does not
necessarily preserve the Poisson disk property. We have shown that we can
reduce the violation of the Poisson disk property by manipulating the shape
of the Voronoi cell appropriately. The key entity thereby is the anisotropy
of the metric used for the Voronoi cell definition. In contrast to expensive
intersection tests, this approach does not hinder the relaxation process and
does not introduce any additional computational costs.
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Summary. Satellite gravity gradiometry is a recent method for a detailed deter-
mination of the gravitational potential of the earth. The measurements provided by
a gradiometer are – for a so-called full gradiometer – all second-order derivatives of
the potential, that is, the Hessian tensor. This leads to a nonstandard problem in
potential theory.

After a short description of satellite gradiometry, we focus on uniqueness and
existence problems. For this, a certain decomposition of the Hessian tensor is of im-
portance. The decomposition allows in addition to transfer modern solution meth-
ods for scalar functions on the sphere to the tensorial case, by generalizing zonal
functions to zonal tensor kernels.

1 Satellite Gravity Gradiometry

There is a growing public concern about the future of our planet, its climate,
its environment, and expected shortage of natural resources. Any consistent
and efficient strategy of protection against these threats depends on a pro-
found understanding of the Earth system. In particular, the knowledge of the
Earth mass distribution is of crucial importance for the exploration of pro-
cesses driving deformation of the Earth surface and influencing ocean surface
topography. Closely interrelated with mass transport and mass anomalies is
the Earth’s gravity field and its constituting ingredients.

If the Earth had a perfectly spherical shape and if the mass inside the Earth
were distributed homogeneously or rotationally symmetric, then the line along
which a test mass fell would be a straight line, directed radially and going
exactly through the Earth’s center of mass. The gravitational field obtained
in this way would be spherically symmetric. In reality, however, the situation
is more complex. The topographic features, mountains and valleys, are very
irregular. The actual gravitational field is influenced by strong irregularities
in density within the Earth. As a result, the gravitational force deviates from
one place to the other from that of a homogeneous sphere.
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Fig. 1. Geoidal surface (GFZ-EIGEN-CG01C geoid [GFZ])

The knowledge of the gravitational field of the global Earth is of great
importance for many applications from which we only mention a few signifi-
cant examples, for example, geodesy, civil engineering, solid Earth physics,
oceanography. A particular role is played for aspects of global “climate
change” in the Earth system: Indeed, there is a growing awareness of global
environmental problems (e.g., the CO2-question, the rapid decrease of rain
forests, global sea level changes, etc). What is the role of the future airborne
methods and satellite missions in this context? They do not tell us the rea-
sons for physical processes, but it is essential to bring the phenomena into one
system (e.g., to make sea level records comparable in different parts of the
world). In other words, equipotential surfaces such as the geoid (see Fig. 1)
are viewed as an almost static reference for many rapidly changing processes
and at the same time as a “frozen picture” of tectonic processes that evolved
over geological time spans.

Indeed, the gravity field plays a peculiar dual role in Earth sciences. On the
one hand, by comparing the actual field with that of an idealized Earth body
(e.g., an idealized Earth in hydrostatic equilibrium) their deviations, called
gravity anomalies, are derivable. The gravity anomalies indicate the state of
mass imbalance in the Earth’s interior. On the other hand, the geoid, that is,
the equipotential surface at (mean) sea-level of a hypothetical ocean at rest,
serves as the reference surface for all topographical features (for more details
see, e.g., [ESA99]).

Internal density signatures of the Earth are reflected by gravitational field
signatures, and gravitational field signatures smooth out exponentially with
increasing distance from the Earth’s body. As a consequence, positioning sys-
tems are ideally located as far as possible from the Earth, whereas gravity field
sensors are ideally located as close as possible to the Earth. Following these
basic principles, various positioning and gravity field determination techniques
have been designed. Sensors may be sensitive to local or global features of the
gravity field. Considering the spatial location of the data, we may differentiate
between terrestrial (surface), airborne, and spaceborne methods. Regarding
the data type we have various measurement principles of the gravity field
leading to different types of data.
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To be more precise, the force of gravity provides a directional structure to
the space above the Earth’s surface. It is tangential to the vertical plumb lines
and perpendicular to all (level) equipotential surfaces. Any water surface at
rest is part of a level surface. Level (equipotential) surfaces are ideal reference
surfaces, for example, for heights. As already mentioned, the geoid is defined
as that level surface of the gravity field which best fits the mean sea level.
Gravity can be measured by absolute or relative gravimeters. The highest
accuracy relative gravity measurements are conducted at the Earth’s surface.
Measurements on ships and in aircraft deliver reasonably good data only after
the removal of inertial noise.

It should be pointed out that the terrestrial distribution of Earth’s gravity
data on a global scale is far from being homogeneous with large gaps, in par-
ticular over oceans and also over land. In addition, the quality of the data is
very distinct. Thus, terrestrial gravity data coverage now and in the foresee-
able future is far from being satisfactory. This is the reason why spaceborne
measurements have to come into play.

The three satellite concepts under present operation are satellite-to-
satellite tracking in the high–low mode (SST hi–lo), satellite-to-satellite track-
ing in the low–low mode (SST lo–lo), and satellite gravity gradiometry (SGG).
Representatives of these three concepts are CHAMP (SST hi–lo), GRACE
(SST lo–lo combined with SST hi–lo), GOCE (SGG combined with SST hi–
lo). Common to all three concepts is that the determination of the Earth’s
gravity field is based on the measurement of the relative motion (in the Earth’s
gravity field) of test masses.

The concept of satellite-to-satellite tracking (SST) goes back to almost
three decades. The original idea was to fly two satellites in an identical low
orbit with a separation of a few hundred kilometers between the spacecraft
(low–low SST). Between the satellites the distance and the Doppler frequency
shift can be measured.

Satellite–gravity–gradiometry (SGG) is a technique of measuring the rel-
ative acceleration, not between free falling test masses like satellites, but of
measuring test masses at different locations inside one satellite (see Fig. 2).
Each test mass is enclosed in a housing and kept levitated (floating, without
ever touching the walls) by a capacitive or inductive feedback mechanism.
The difference in feedback signals between two test masses is proportional to
their relative acceleration and exerted purely by the differential gravitational
field. Non-gravitational acceleration of the spacecraft affects all accelerome-
ters inside the satellite in the same manner and so ideally drops out during
differencing. The rotational motion of the satellite affects the measured dif-
ferences. However, the rotational signal (angular velocities and accelerations)
can be separated from the gravitational signal if acceleration differences are
taken in all possible (spatial) combinations (=full tensor gradiometer). Again
low orbit means high sensitivity. The GOCE mission opens a completely new
range of spatial scales to research.
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Fig. 2. The principle of satellite gravity gradiometry (from [ESA98])

t0

t1

Fig. 3. The principle of a gradiometer

A simplified model of a gradiometer is sketched in Fig. 3. An array of test
masses is connected with springs. Measured are differences between the dis-
placements of opposite test masses. This yields information on the differences
of the forces. They, however, are due to local differences of ∇V . Since the gra-
diometer itself is small, these differences can be identified with differentials,
so that a so-called full gradiometer gives information on the whole tensor con-
sisting of all second-order partial derivatives of V , that is, the Hessian matrix
of V . V is the gravitational potential, which is – by Newton’s law – given by

V (x) =
∫
earth

ρ(y)
1

|x− y|dV (y), x ∈ R3, (1)

with the unknown density ρ inside the earth. V satisfies the Laplace equation
outside of the earth, so that we are finally confronted with the following
problem arising from satellite gradiometry:

ΔV (x) = 0, x ∈ R3\earth
V (x) = O(1/|x|), as |x| → ∞ (2)

∇⊗∇V (x) or components are given for |x| = H.
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This problem is nonstandard because of the following reasons:

• The problem is ill-posed since the data is not given at the boundary of
the domain, but at a surface in the interior of the domain, that is, at a
certain height. But the gravitational potential decreases with increasing
height, and therefore the process of transforming the data down to the
earth surface (often called downward continuation) is unstable.

• The measured data is not the usual data (as, e.g., Dirchlet or Neumann
data), but components of the Hessian tensor ∇⊗∇V of the gravitational
potential. Thus, it is – at first sight – not clear which data ensures unique-
ness of the problem.

2 Nonuniqueness Results

From potential theory one might expect that the solution of problem (2) is
unique, when one scalar component of the Hessian tensor is prescribed for
every point x at the sphere ΩH = {x ∈ R3 | |x| = H}. This is, however, not
true in general. To see this, we construct a counterexample: If v ∈ R3 with
|v| = 1 is given, the second-order directional derivative of V at the point x is

vT∇⊗∇V (x)v. (3)

Given a potential V , we construct a vector field v(x) on ΩH , such that the
second-order directional derivative (3) is zero. Assume that V is a solution
of (2). For each x ∈ ΩH , we know that the Hessian tensor ∇ ⊗ ∇V (x) is
symmetric. Thus, there exists an orthogonal matrix A(x) so that

A(x)T (∇⊗∇V (x))A(x) = diag(λ1(x), λ2(x), λ3(x)), (4)

where λ1(x), λ2(x), λ3(x) are the eigenvalues of ∇ ⊗ ∇V (x). From the har-
monicity of V it is clear that

0 = ΔV (x) = λ1(x) + λ2(x) + λ3(x). (5)

Let μ0 = 3−1/2(1, 1, 1)T . We define the vector field μ : ΩH → R3 by

μ(x) = A(x)μ0, x ∈ ΩH . (6)

Then it holds

μT (x)(∇⊗∇V (x))μ(x) = μT
0 A(x)T (∇⊗∇V (x))A(x)μ0

=
1
3
(1 1 1)

⎛
⎝λ1(x) 0 0

0 λ2(x) 0
0 0 λ3(x)

⎞
⎠
⎛
⎝1

1
1

⎞
⎠

=
1
3
(λ1(x) + λ2(x) + λ3(x))

= 0.
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Hence, we have constructed a vector field μ such that the second order direc-
tional derivative of V in the direction of μ(x) is zero for every point x ∈ ΩH .
It can be easily seen that for a given V there exist many vector fields leading
to the same uniqueness problems as the vector field μ. Observing these argu-
ments we are led to the conclusion that the function V is undetectable from
the directional derivatives corresponding to μ, see also [Schr94b].

As a matter of fact there do exist conditions under which only one quantity
of the Hessian tensor yields a unique solution (at least up to low order spherical
harmonics). To formulate these results, a certain decomposition of the Hessian
tensor is necessary, which strongly depends on the separability of the Laplace
operator with respect to polar coordinates.

3 Spherical Approach for SGG

In this section, we will reformulate the SGG problem in a spherical setting.
For this we start with some basic facts concerning special functions on the
sphere.

Any x ∈ R3 can be decomposed as x = rξ, where the directional part is an
element of the unit sphere: ξ ∈ Ω, Ω = {x ∈ R3 | |x| = 1}. Let Yn,m : Ω → R3,
n = 0, 1, . . ., m = 1, . . . , 2n+ 1 be an orthonormal set of spherical harmonics
(see, e.g., [Mue66, Hob55, FGS98]). They are complete in L2(Ω), that is, if
F ∈ L2(Ω), it holds with

F∧(n,m) = (F, Yn,m) =
∫

Ω

F (ξ)Yn,m(ξ) dω(ξ) (7)

that

F (ξ) =
∞∑

n=0

2n+1∑
m=1

F∧(n,m)Yn,m(ξ), ξ ∈ Ω (8)

(dω is the usual surface measure on Ω).
The outer harmonics Hn,m : R3\{0} → R are defined by

Hn,m(x) =
1

|x|n+1
Yn,m(x/|x|). (9)

They are harmonic functions and their restrictions coincide on Ω with the
corresponding spherical harmonics. Any F ∈ L2(Ω) can thus be identified
with a harmonic potential via

∞∑
n=0

2n+1∑
m=1

F∧(n,m)Hn,m. (10)

This motivates the following reformulation of the SGG problem (see
Fig. 4). Instead of looking for a harmonic function outside the earth, we search
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Fig. 4. The Runge–Walsh approach yields a problem in a spherical setting

for a harmonic function outside the unit sphere (assuming the units are chosen
in such a way that the sphere with radius 1 is inside the earth and not too
far away from the earth’s boundary). The justification of this simplification
is called Runge–Walsh approach (see [FM04]): To any harmonic function V0

outside the earth and any given ε > 0, there exists a harmonic function V1

outside the unit sphere such that

|V1(x)− V0(x)| < ε (11)

for all x outside the earth. Thus, we finally arrive at the following problem:

ΔV (x) = 0, x ∈ R3, |x| > 1
V (x) = O(1/|x|), as |x| → ∞ (12)

∇⊗∇V (x) or components are given for |x| = H.

Using the outer harmonics, we can then represent the potential V by a series

∞∑
n=0

2n+1∑
m=1

F∧(n,m)Hn,m. (13)

4 Decomposition of Spherical Tensor Fields

We may represent the points ξ ∈ Ω in polar coordinates as follows

ξ = tε3 +
√

1− t2(cosϕε1 + sinϕε2),
−1 ≤ t ≤ 1 , 0 ≤ ϕ < 2π , t = cosϑ ,

(14)

(ϑ ∈ [0, π]: (co-)latitude, ϕ: longitude, t: polar distance), that is,

ξ = (sinϑ cosϕ, sinϑ sinϕ, cosϑ)T . (15)

Any element ξ ∈ Ω may be represented using its coordinates (ϕ, t) in accor-
dance with (14). For the representation of vector and tensor fields on the unit
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sphere, we use a local set of orthonormal unit vectors in the directions r, ϕ,
and t. They are given by

εr(ϕ, t) =

⎛
⎝
√

1− t2 cosϕ√
1− t2 sinϕ

t

⎞
⎠ , (16)

εϕ(ϕ, t) =

⎛
⎝− sinϕ

cosϕ
0

⎞
⎠ , (17)

εt(ϕ, t) =

⎛
⎝−t cosϕ
−t sinϕ√

1− t2

⎞
⎠ . (18)

Obviously,
εt(ϕ, t) = εr(ϕ, t) ∧ εϕ(ϕ, t) . (19)

The vectors εϕ and εt mark the tangential directions. Since we associate ξ
with its representations using the local coordinates ϕ and t, we identify εr(ξ)
with εr(ϕ, t) etc. (cf. Fig. 5).

From (16)–(18) we immediately obtain a representation of the cartesian
unit vectors in terms of the spherical ones:

ε1 =
√

1− t2 cosϕεr(ϕ, t)− sinϕεϕ(ϕ, t)− t cosϕεt(ϕ, t), (20)

ε2 =
√

1− t2 sinϕεr(ϕ, t) + cosϕεϕ(ϕ, t)− t sinϕεt(ϕ, t), (21)

ε3 = tεr(ϕ, t) +
√

1− t2εt(ϕ, t). (22)

Gradient fields ∇F can be decomposed into a radial and a tangential
component. More explicitly, the surface gradient ∇∗ contains the tangential
derivatives of the gradient ∇ as follows:

"r(»)

"ϕ(»)

"ψ(»)

"t(´)

"r(´)
"ϕ(´)

Fig. 5. The local triad εr, εϕ, and εt with respect to two different points ξ and η
on the unit sphere
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∇ = εr ∂

∂r
+

1
r
∇∗. (23)

The surface curl gradient L∗ is defined by

L∗
ξF (ξ) = ξ ∧∇∗

ξF (ξ), ξ ∈ Ω, (24)

F ∈ C(1)(Ω). According to its definition (24), L∗F is a tangential vector field
perpendicular to ∇∗F , that is,

∇∗
ξF (ξ) · L∗

ξF (ξ) = 0, ξ ∈ Ω. (25)

∇∗· = div∗ and L∗· = curl∗, respectively, denote the surface divergence
and the surface curl given by

∇∗
ξ · f(ξ) =

3∑
i=1

∇∗
ξFi(ξ) · εi (26)

and

L∗
ξ · f(ξ) =

3∑
i=1

L∗
ξFi(ξ) · εi. (27)

Note that the surface curl as defined by (27), that is,

ξ �→ L∗
ξ · f(ξ) = curl∗ξf(ξ) = div∗

ξ(f(ξ) ∧ ξ) = ∇∗
ξ · (f(ξ) ∧ ξ), ξ ∈ Ω, (28)

represents a scalar-valued function on the unit sphere Ω in R3.
The aforementioned relations can be understood from the well-known role

of the Beltrami operator Δ∗ in the representation of the Laplace operator Δ:

Δx =
(
∂

∂r

)2

+
2
r

∂

∂r
+

1
r2
Δ∗

ξ . (29)

For a more detailed introduction to this operators, see [FGS98].
Next we come to second order tensor fields on the unit sphere, that is,

f : Ω → R ⊗ R. Tensor fields can be separated into their tangential and
normal parts. We set

p∗,norf = (fξ)⊗ ξ, (30)
pnor,∗f = ξ ⊗ (ξT f), (31)
p∗,tanf = f − p∗,norf = f − (fξ)⊗ ξ, (32)
ptan,∗f = f − pnor,∗f = f − ξ ⊗ (ξT f), (33)

pnor,tanf = pnor,∗(p∗,tanf) = p∗,tan(pnor,∗f) (34)
= ξ ⊗ (ξT f)− (ξT fξ)ξ ⊗ ξ.

The operators pnor,nor, ptan,nor, and ptan,tan are defined analogously. A vector
field f : Ω → R ⊗ R is called normal if f = pnor,norf and tangential if f =
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ptan,tanf . It is called left normal if f = pnor,∗f , left normal/right tangential if
f = pnor,tanf , and so on.

The constant tensor fields itan and jtan can be defined using the local
triads by

itan = εϕ ⊗ εϕ + εt ⊗ εt, jtan = ξ ∧ itan = εt ⊗ εϕ − εϕ ⊗ εt. (35)

Spherical tensor fields can be discussed in an elegant manner by the use
of certain differential processes. Let u ∈ c(1)(Ω) be a vector field given in its
coordinate form by

u(ξ) =
3∑

i=1

Ui(ξ)εi, ξ ∈ Ω, Ui ∈ C(Ω)(1). (36)

Then we define the operators ∇∗⊗ and L∗⊗ by

∇∗
ξ ⊗ u(ξ) =

3∑
i=1

(∇∗
ξUi(ξ))⊗ εi, ξ ∈ Ω, (37)

L∗
ξ ⊗ u(ξ) =

3∑
i=1

(L∗
ξUi(ξ))⊗ εi, ξ ∈ Ω. (38)

Clearly, ∇∗ ⊗ u and L∗ ⊗ u are left tangential. But it is an important fact
that even if u is tangential, the tensor fields ∇∗ ⊗ u and L∗ ⊗ u are generally
not tangential. It is obvious that the product rule is valid. To be specific, let
F ∈ C(1)(Ω) and u ∈ c(1)(Ω), then

∇∗
ξ ⊗ (F (ξ)u(ξ)) = ∇∗

ξF (ξ)⊗ u(ξ) + F (ξ)∇∗
ξ ⊗ u(ξ), ξ ∈ Ω. (39)

In view of the above equations and definitions, we finally introduce oper-
ators o(i,j) : C(2)(Ω) → c(0)(Ω) by

o(1,1)
ξ F (ξ) = ξ ⊗ ξF (ξ), (40)

o(1,2)
ξ F (ξ) = ξ ⊗∇∗

ξF (ξ), (41)

o(1,3)
ξ F (ξ) = ξ ⊗ L∗

ξF (ξ), (42)

o(2,1)
ξ F (ξ) = ∇∗

ξF (ξ)⊗ ξ, (43)

o(3,1)
ξ F (ξ) = L∗

ξF (ξ)⊗ ξ, (44)

o(2,2)
ξ F (ξ) = itan(ξ)F (ξ), (45)

o(2,3)
ξ F (ξ) =

(
∇∗

ξ ⊗∇∗
ξ − L∗

ξ ⊗ L∗
ξ

)
F (ξ) + 2∇∗

ξF (ξ)⊗ ξ, (46)

o(3,2)
ξ F (ξ) =

(
∇∗

ξ ⊗ L∗
ξ + L∗

ξ ⊗∇∗
ξ

)
F (ξ) + 2L∗

ξF (ξ)⊗ ξ, (47)

o(3,3)
ξ F (ξ) = jtan(ξ)F (ξ), (48)

ξ ∈ Ω.
After our above considerations it is not difficult to prove the following

lemma.
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Lemma 1. Let F : Ω → R be sufficiently smooth. Then the following state-
ments are valid:

1. o(1,1)F is a normal tensor field.
2. o(1,2)F and o(1,3)F are left normal/right tangential.
3. o(1,1)F and o(3,1)F are left tangential/right normal.
4. o(2,2)F , o(2,3)F , o(3,2)F and o(3,3)F are tangential.
5. o(1,1)F , o(2,2)F , o(2,3)F and o(3,2)F are symmetric.
6. o(3,3)F is skew-symmetric.
7.
(
o(1,2)F

)T
= o(2,1)F and

(
o(1,3)F

)T
= o(3,1)F .

8. For ξ ∈ Ω,

trace o(i,k)
ξ F (ξ) =

⎧⎨
⎩
F (ξ) for (i, k) = (1, 1)
2F (ξ) for (i, k) = (2, 2)
0 for (i, k) �= (1, 1), (2, 2)

.

The tangent representation theorem (cf. [Bac66, Bac67]) asserts that if
ptan,tanf is the tangential part of a tensor field f ∈ c(2)(Ω), as defined al-
ready, then there exist unique scalar fields F2,2, F3,3, F2,3, F3,2 such that∫

Ω

F2,2(ξ) dω(ξ) =
∫

Ω

F3,3(ξ) dω(ξ) = 0, (49)

∫
Ω

F3,2(ξ)(εi · ξ) dω(ξ) =
∫

Ω

F2,3(ξ)(εi · ξ) dω(ξ) = 0, i = 1, 2, 3, (50)

and

ptan,tanf = o(2,2)F2,2 + o(2,3)F2,3 + o(3,2)F3,2 + o(3,3)F3,3. (51)

Furthermore, the following orthogonality relations may be formulated: Let
F,G : Ω → R be sufficiently smooth. Then for all ξ ∈ Ω, it holds o(i,k)

ξ F (ξ) ·
o(i′,k′)

ξ F (ξ) = 0 whenever (i, k) �= (i′, k′).
The adjoint operators O(i,k) satisfying∫

Ω

o(i,k)F (ξ) · f(ξ) dω(ξ) =
∫

Ω

F (ξ) O(i,k)f(ξ) dω(ξ), (52)

that is, in shorthand notation

(o(i,j)F, f) = (F,O(i,k)f) (53)

for all sufficiently smooth functions F : Ω → R and tensor fields f : Ω → R⊗R

can be deduced by elementary calculations. We omit the details here (see,
e.g., [FGS98]) and immediately formulate a generalization of the Helmholtz
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decomposition theorem. As it is well-known, the classical version guarantees
that every tangential vector field can be written as a sum of an irrotational
and a solenoidal field. For tensor fields we have

Theorem 1. (Helmholtz decomposition theorem) Let f be of class c(2)(Ω).
Then there exist uniquely defined functions Fi,k ∈ C(2)(Ω), (i, k) ∈ {(1, 1),
(1, 2),. . . , (3, 3)} with (Fi,k, Y0)L2Ω = 0 for all spherical harmonic Y0 of degree
0, if (i, k) ∈ {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)} and (Fi,k, Y1)L2Ω = 0 for
all spherical harmonics Y1 of degree 1 if (i, k) ∈ {(2, 3), (3, 2)}, in such a way
that

f =
3∑

i,k=1

o(i,j)Fi,k, (54)

where the functions ξ �→ Fi,k(ξ), ξ ∈ Ω, are explicitly given using the operators
O(i,k) and the Green’s function to the spherical Beltrami operators, see [Fre79]
or [FGS98].

This decomposition will be of crucial importance to get uniqueness results for
the satellite gravity gradiometry problem.

5 Existence and Uniqueness of the SGG Problem

Suppose that the function H : R3 \ {0} → R is twice continuously differen-
tiable. We want to show how the Hessian matrix restricted to the unit sphere
Ω, that is,

h(ξ) = ∇x ⊗∇xH(x)||x|=1, ξ ∈ Ω, (55)

can be decomposed according to the rules of Theorem 1. To evaluate

∇x ⊗∇xH(x) =
(
ξ
∂

∂r
+

1
r
∇∗

ξ

)
⊗
(
ξ
∂

∂r
+

1
r
∇∗

ξ

)
H(rξ), (56)

we first see that

ξ
∂

∂r
⊗ ξ ∂

∂r
H(rξ) = ξ ⊗ ξ

(
∂

∂r

)2

H(rξ), (57)

ξ
∂

∂r
⊗ 1
r
∇∗

ξH(rξ) = − 1
r2
ξ ⊗∇∗

ξH(rξ) +
1
r
ξ ⊗∇∗

ξ

∂

∂r
H(rξ), (58)

1
r
∇∗

ξ ⊗ ξ
∂

∂r
H(rξ) =

1
r
itan(ξ)

∂

∂r
H(rξ) +

1
r
∇∗

ξ

(
∂

∂r
H(rξ)

)
⊗ ξ,

(59)
1
r
∇∗

ξ ⊗
1
r
∇∗

ξH(rξ) =
1
r2
∇∗

ξ ⊗∇∗
ξH(rξ). (60)
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Summing up these terms we obtain

∇x ⊗∇xH(x)||x|=1 = ξ ⊗ ξ
(
∂

∂r

)2

H(rξ)|r=1 (61)

+ ξ ⊗∇∗
ξ

(
∂

∂r
H(rξ)|r=1 −H(ξ)

)

+
(
∇∗ ∂

∂r
H(rξ)|r=1

)
⊗ ξ

+ ∇∗
ξ ⊗∇∗

ξH(ξ)

+ itan(ξ)
∂

∂r
H(rξ)|r=1.

Using (57)–(60) and the definition of the o(i,k)-operators we finally arrive at

∇x ⊗∇xH(x)||x|=1 = o(1,1)
ξ

((
∂

∂r

)2

H(rξ)|r=1

)
(62)

+o(1,2)
ξ

(
∂

∂r
H(rξ)|r=1 −H(ξ)

)

+o(2,1)
ξ

(
∂

∂r
H(rξ)|r=1 −H(ξ)

)

+o(2,2)
ξ

(
1
2
Δ∗

ξH(ξ) +
∂

∂r
H(rξ)|r=1

)
+o(2,3)

ξ

1
2
H(ξ).

In particular, if we consider an outer (solid spherical) harmonic Hn,m :
x �→ Hn,m(x), Hn,m(rξ) = r−(n+1)Yn,m(ξ), r > 0, ξ ∈ Ω, we obtain the
following decomposition of the Hessian matrix at height H:

∇⊗∇Hn,m(hξ) = (n+ 1)(n+ 2)
1

Hn+3
o(1,1)

ξ Yn,m(ξ)

−(n+ 2)
1

Hn+3

(
o(1,2)

ξ Yn,m(ξ) + o(2,1)
ξ Yn,m(ξ)

)
(63)

− (n+ 1)(n+ 2)
2

1
Hn+3

o(2,2)
ξ Yn,m(ξ) +

1
2

1
Hn+3

o(2,3)
ξ Yn,m(ξ).

Keeping in mind that any solution of (12) can be expressed as a series of
outer harmonics and using the completeness of the spherical harmonics in the
space of square-integrable functions on the unit sphere, it follows that the SGG
problem is uniquely solvable (up to some low order spherical harmonics) by
the O(1,1), O(1,2), O(2,1), O(2,2), and O(2,3) components. To be more specific,
we formulate the following theorem:

Theorem 2. Let V be a solution of (12). Then the following statements are
valid:
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1. O(i,k)∇⊗∇V (Hξ) = 0 if (i, k) ∈ {(1, 3), (3, 1), (3, 2), (3, 3)}.
2. O(i,k)∇⊗∇V (Hξ) = 0 for (i, k) ∈ {(1, 1), (2, 2)} if and only if V = 0.
3. O(i,k)∇ ⊗ ∇V (Hξ) = 0 for (i, k) ∈ {(1, 2), (2, 1)} if and only if V |Ω is

constant.
4. O(2,3)∇⊗∇V (Hξ) = 0 if and only if V |Ω is linear combination of spherical

harmonics of degree 0 and 1.

This theorem gives a detailed information of which tensor components of
the Hessian tensor ensure the uniqueness of the problem, see also [Schr94,
FGS98, FMN02].

6 Tensorial Zonal Kernels

In the previous sections, we have seen which tensor components of the Hes-
sian matrix ensure unique solutions of the SGG problem. An essential tool for
these results is Fourier series with respect to spherical harmonics and outer
harmonics, respectively. The extension to the tensor case was done with cer-
tain differential operators. The definition of these operators is made without
an explicit use of a coordinate system on the sphere. Therefore, we have no
problems with singularities, which are an intrinsic feature of every global co-
ordinate system on the sphere.

In this chapter, we shortly discuss – or better motivate – how the described
separation of tensor fields in their O(i,k)-components can be used for solution
schemes. Using spherical harmonics for the solution of such inverse problems is
frequency oriented, that is, the functions are globally supported and show no
space localization. Therefore, they are not the best choice for the solution of
problems where the data density is varying or when there are regions without
data, as it is the case for many satellite problems (polar gaps). Alternative
methods (we describe them first in the scalar case) are based on zonal kernels
on the sphere.

A zonal kernel K is defined by a function K : [−1, 1] → R, which is used
as a spherical functions in the following way:

ξ �→ K(ξ · η), ξ ∈ Ω, (64)

where η is a fixed point on the unit sphere. In other words, we get the kernel
by a rotation of a scalar function around the axis η. Figure 6 gives an im-
pression of the so-called Abel–Poisson kernels (see, e.g., [FGS98]). Using the
addition theorem of spherical harmonics and the Funk–Hecke formula (see,
e.g., [Mue66, FGS98]), we obtain the Legendre transform of these kernels:

K(ξ · η) =
∞∑

n=0

2n+1∑
m=1

∫
Ω

K(ζ · η)Yn,m(ζ)dω(ζ)Yn,m(ξ)

=
∞∑

n=0

2n+ 1
4π

2π
∫ 1

−1

K(t)Pn(t)dt Pn(ξ · η)
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Fig. 6. Two examples of zonal functions on the unit sphere

(Pn is the Legendre polynomial). From this we can see that the harmonic
extension of K, that is,

x �→
∞∑

n=0

2n+ 1
4π

1
|x|n+1

2π
∫ 1

−1

K(t)Pn(t)dt Pn(
x

|x| · η) (65)

is also a zonal function. Thus, the isotropic kernels are well-suited for the
representation of harmonic functions.

Furthermore, this approach can be easily generalized to the tensorial case:
Using (17), we see that the components of the Hessian tensor of (65) at the
height H can be easily obtained. As an example, we give the formula for the
o(1,2)-component of (65):

−
∞∑

n=0

2n+ 1
4π

−(n+ 2)
|x|n+3

2π
∫ 1

−1

K(t)Pn(t)dt o(1,2)
x/|x|Pn(

x

|x| · η). (66)

Thus, we can easily transfer modern methods for the solution and regular-
ization with zonal kernels (such as splines, wavelets, etc.) to the tensorial
situation. For a more detailed description of these methods, the reader is
referred to [Bay00, FGS98, FMN02, Glo02, Hess03, FGlS98, Schr04, FS04].
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Summary. Two alternate sets of tensor shape characteristics are introduced for
the study of nematic liquid crystals, a little studied problem in tensor visualization.
One set of characteristics are based on the physics of the liquid crystal system (a
real, symmetric, traceless tensor); the other set is an application of the well known
Westin DT-MRI shape characteristics. These shape metrics are used both for direct
tensor visualization and for detection of defects within the liquid crystal matrix.

1 Introduction

Liquid crystals are substances that exhibit properties between those of a
conventional liquid and those of a solid crystal. Liquid crystals are important
for technological applications such as display devices and are also relevant to
biological research. Physicists use numerical simulations to understand how
molecular structures influence observed macroscopic behavior.

Since liquid crystals have very rich topological structures, point- and
vector-visualization do not fully convey the structural information. As physi-
cists use tensors to describe the molecular structures, visualization methods
are needed to reconstruct the liquid crystal structures from the tensor data.

This chapter presents an overview of tensor visualization methods for
nematic liquid crystals (NLCs). Section 2 introduces the behavior of liquid
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crystals and the mathematical formulations that describe them. This formal-
ism is extended in Sect. 3 to introduce shape characteristics that describe the
tensors in a manner more amenable for visualization. The unique traceless
form of this tensor poses new challenges in tensor depiction methods. The
two different shape characteristics introduced are mapped on superellipsoids
in Sect. 4 to visually distinguish between different types of NLC tensors, while
the other set of characteristics are applied in defect detection in Sect. 5. Taken
together, these our contributions provide powerful tools for the interrogation
and understanding of liquid crystal simulations.

2 Background

Liquid crystals are an intermediate state of matter between the liquid and
solid phases [1]. In this middle-state, the material exhibits both liquid-like and
solid-like properties. In NLCs, the liquid crystalline phase that we focus on
here, molecules do not occupy regular set of positions within a crystal matrix
but do tend to favor certain orientations of the molecular axis. Over a small
volume of space, the molecules exhibit a random distribution in space but
possess an overall average orientation. This orientation – called the director
n – and the strength of the molecular distribution’s alignment with it are
the fundamental properties that describe the liquid crystal. Since the director
specifies an axis but not a direction, it is headless – the sign of the vector does
not matter.

NLCs are usually composed of elongated molecules (calamitic or rod-like),
though disc-like molecules (discotic or disc-like) and molecules of intermediary
shapes are also possible [2]. There are four possible types of configurations for
a macromolecular collection of NLC molecules (Fig. 1):

Isotropic The molecules have no overall alignment. There is no
preferred director and no appreciable strength of align-
ment in any direction. Optically, the crystal has the
same index of refraction regardless of orientation or po-
larization. This state is equivalent to an ordinary liquid.

n

n

n

m

Fig. 1. The four major configuration of a nematic liquid crystal system. From left
to right : positive uniaxial, isotropic, biaxial, negative uniaxial. Both calamitic (rod-
like) and discotic (disc-like) molecules are illustrated
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Positive Uniaxial The molecules are on average parallel to the director.
There is one optical axis (the director) and light trav-
eling along this axis refracts isotropically. Calamitic
molecules dominate in a positive uniaxial state and have
their main axis of orientation aligned with the direc-
tor. Any discotic molecules orient their long axis along
the director. The overall configuration is optically pos-
itive [2]. Most studied NLC configurations tend toward
positive uniaxial configurations under temperatures of
interest [1].

Negative Uniaxial Molecules are on average perpendicular to the direc-
tor. The configuration still has one optical axis, though
it is optically negative [2]. Negative uniaxial configura-
tions are usually composed of discotic molecules as the
discs are orthogonal to the director; however, calamitic
molecules can form negative uniaxial configurations if
confined to a plane perpendicular to the director [2].

Biaxial The crystal posses two axes of alignment. The strongest
alignment is along the director; however, there is sig-
nificant, anisotropic alignment along a secondary axis.
Because of this anisotropy, biaxial nematics have two
optical axes [3]. Biaxiality may be due to mixed concen-
trations of calamitic and discotic molecules, naturally
biaxial molecules, or intermediate states within a posi-
tive to negative uniaxial transition [2]. As in the uniaxial
cases, biaxial arrangements may be positive or negative
depending on the type of alignment with the director.
In addition, neutral biaxial nematics occur when there
is equal positive and negative uniaxial alignment along
the primary axes – neither dominates.

Because of the alignment of the NLC molecules, different forms of symmetries
are exhibited by the four configurations. The isotropic state has spherical
symmetry as there is no preferred orientation. Both unaxial configurations
are rotationally symmetric about the director – the configuration is indistin-
guishable from any rotation of that configuration about the director. Finally,
biaxial systems have reflection symmetry – reflections about either the direc-
tor or the secondary axis preserve the configuration. These symmetries will
be exploited when discussing the NLC glyphs in Sect. 4.

Each individual NLC molecule has a primary axis – along the rod for
calamitic molecules or along the major axis for ellipsoidal discotics. Though
the director is determined by the statistical average of these axes over a vol-
ume, the strength of the alignment with the director can vary – two configura-
tions with the same director may be weakly or strongly aligned. The strength
of alignment can be thought of as the overall fidelity of the director as a
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representation for the collection of molecules; alternatively, it represents the
overall order within the system. This scalar order parameter S is derived from
the statistical average of the angle each molecule makes with the director [4]:

S =
1
2
〈
3 cos2 θ − 1

〉
, (1)

where 〈x〉 represents the statistical average and θ is the angle between the
primary axis of the NLC molecule and the director. S is one when all
the molecules align with the director (i.e., are positive uniaxial) and − 1

2 if
the molecules are aligned primarily in the plane orthogonal to the director
(i.e., are negative uniaxial). In the isotropic state, the molecules are randomly
oriented, 〈cos2 θ〉 = 1

3 in the sampled region, and S is zero [4]. Biaxiality is
not directly measured by the scalar order parameter; increases in the amount
of biaxiality decrease the order parameter towards zero. Like the director, the
change of the scalar order parameter is an important feature in NLC systems.

The alignment of an NLC system is a macromolecular, volumetric value. As
such, it is represented by a second-order tensor. The NLC alignment tensor –
alternatively known as the order parameter tensor or the Q tensor – encap-
sulates both the director and the average alignment [4, 5].

Without biaxiality, the alignment tensor for a collection of molecules is

Q = S (n⊗ n)− 1
3
SI, (2)

where n⊗ n is the outer product of the director and I is the identity tensor,
noting that Q, S, and n vary in time and space. For a biaxial system, two
scalar order parameters may be used, one each for the major and medium
axes [4]; alternatively, a single biaxial parameter b can be used – this is the
approach used here. Regardless of the presence or absence of biaxaility, the
alignment tensor is always symmetric and traceless.

The evolution of an NLC system depends on the Q tensor directly; thus,
modeling the tensor is sufficient to describe the system [5]. Though an in-
duced director and scalar order parameter are sufficient to describe the initial
configuration of an NLC system, the dynamics of the system evolve these
parameters. Thus, new n, S, and b must be extracted from the updated Q

tensor. These parameters are found via eigenanalysis: Assuming the eigen-
values λ1, λ2, λ3 of Q are sorted such that |λ1| ≥ |λ2| ≥ |λ3|, then, in the
eigenvector frame, Q is represented as [6]

[Q]ε =

⎡
⎣ 2

3S
− 1

3S − bs
− 1

3S + bs

⎤
⎦ =

⎡
⎣λ1

λ2

λ3

⎤
⎦ . (3)

In addition, the eigenvector v1 corresponding to λ1 (the major eigenvector)
is the overall director n represented in the lab frame (the frame of the simu-
lation), while v2 is the axis of biaxiality. Here, biaxiality represents the diver-
gence of the NLC from a pure uniaxial configuration. Since uniaxial systems
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are rotationally symmetric, a difference in the second and third eigenvalues
indicates a loss of this symmetry – an effective decrease in the order along the
director. The biaxiality parameter b represents this loss of rotational symme-
try: It corresponds to the magnitude of the biaxial terms from the spherical
decomposition of the NLC probability density function [6, 7].

Given the eigenanalysis of a Q tensor, or equivalently its diagonalization,
many physical characteristics may be inferred. As mentioned, the eigenvalue
with the largest absolute magnitude determines the effective scalar order pa-
rameter and the director. If this value is positive, then the configuration is
either positive uniaxial or positive biaxial; if negative, the inverse is true. The
medium eigenvalue (the second largest in absolute magnitude) determines if
biaxiality is present: If it is not equal to the minor (smallest in absolute mag-
nitude) eigenvalue, then the system is biaxial. Otherwise, it is uniaxial or
isotropic. All three eigenvalues will be equal only when the system is isotropic
and thus Q = �; the alignment tensor was designed to be zero only in cases
of isotropy [5]. Finally, when λ1 = −λ2 �= 0, the system is neutral biaxial.
In this case, the sign of the scalar order parameter is ambiguous – either v1

or v2 could be the dominant director. This neutral biaxial line between the
isotropic and maximally biaxial configurations will play an important role in
the formulation of our tensor shape metrics in the next section.

3 Tensor Shape Characteristics for NLC Alignment

Second order tensors are represented by 3 × 3 matrices in a given frame of
reference. Algebraically, these matrices belong to different groups depending
on their degrees of freedom. By exploiting these degrees of freedom, we can
derive shape characteristics – metrics over the possible configurations of the
tensor that describe the “shape” or form of the tensor. This shape determines
the visual geometry of the tensor (Sect. 4) and where rapid shape changes
cause topological defects (Sect. 5).

Shape characteristics have been widely used in diffusion tensor imaging
(DT-MRI). Westin et al. [8] specified a set of three characteristics describing
the geometric behavior of water diffusion based upon the tensor signal: Diffu-
sion is either predominantly linear, planar, or spherical. Because the DT-MRI
tensor is a second order real symmetric positive definite tensor, these three
shape metrics fully specify the geometry; excluding orientation, second-order
real symmetric tensors have only three degrees of freedom [9].

Though the NLC alignment tensor is real and symmetric, it is not positive
definite – it is traceless. Thus, one of the two approaches can be taken to
specify shape characteristics for NLC systems: Either a set of characteristics
based upon real symmetric traceless tensors must be used, or the alignment
tensor must be modified to become positive definite. Both approaches are
taken in this section.
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3.1 Shape Characteristics for Real Symmetric Traceless Tensors

The Q tensor is a special case of a second-order real symmetric traceless
tensor; its eigenvalues are limited to the range λ ∈

[
−1

3 ,
2
3

]
. In general, the

eigenvalues of a second-order real symmetric are only restricted to sum to zero
and to be real:

[T]ε =

⎡
⎣λ1

λ2

λ3

⎤
⎦ =

⎡
⎣λ1

− 1
2λ1 − δs

− 1
2λ1 + δs

⎤
⎦ , (4)

where δ represents the divergence from “uniaxiality”: δs = sgn (λ1) δ, δ ∈[
0, 1

2λ1

]
. The T tensor exhibits the major properties of an NLC system: It

varies between (1) a positive uniaxial representation, (2) a maximally biaxial
state, finally arriving at (3) a negative uniaxial arrangement [10] (Fig. 2).
Correspondingly, these states have (1) λ1 > 0 and λ2 = λ3 < 0, (2) |λ1| = |λ2|,
and (3) λ1 < 0 and λ2 = λ3 > 0, respectively. This variation is characterized
by three shape metrics:

μsf
+ =
{
−2λ3

λ1
λ1 ≥ 0

0 otherwise

μsf
δ =

2δ
|λ1|

μsf
− =
{

0 λ1 ≥ 0
2λ3
λ1

otherwise

Note that the isotropic case when the tensor is � corresponds to a maximally
biaxial tensor with 0 eigenvalues.

The above shape characteristics are scale-free – they are independent of
the magnitude of the eigensystem. NLC alignment tensors, however, are scale-
dependent as the range of allowed eigenvalues is constrained. Given a max-
imum eigenvalue λmax > 0, this constraint facilitates the definition of four
shape characteristics:

μsd
+ =

{
− 2λ3

λmax
λ1 ≥ 0

0 otherwise
(5)

Positive
Uniaxial

Maximally
   Biaxial

Negative
Uniaxial

mδ− = 1sfmδ   = 1sfm+  = 1sf

Fig. 2. Characteristic scale-free tensor geometry for second-order real symmetric
traceless tensors
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μsd
δ =

2δ
λmax

=
|λ1 + 2λ3|
λmax

(6)

μsd
i = 1− sgn (λ1)

λ1

λmax
(7)

μsd
− =

{
0 λ1 ≥ 0
2λ3

λmax
otherwise (8)

With the additional degree of freedom (the scale), the shape metrics distin-
guish between the isotroptic and neutral/maximally biaxial cases – the scale
essentially separates the two shapes along the neutral biaxial line (Fig. 3).

The scale-dependent shape metrics form a barycentric space over all possi-
ble second-order real symmetric traceless tensors: μsd

+ +μsd
δ +μsd

i +μsd
− = 1 and

all are nonnegative for any given tensor. Thus, they determine the “type” of
such tensors: The metric with the largest value identifies the tensor geometry
to which it is most similar. For example, an NLC collection is “predominantly
positive uniaxial” if μsd

+ �
[
musd

i , μ
sd
δ , μ

sd
−
]
.

Equations (5)–(8) are mostly suitable for NLC systems; however, they
induce a symmetry about the neutral biaxial line. In contrast, the Q tensor
space is not symmetric about this line – λmax = 2

3 when S > 0 but λmax = − 1
3

otherwise. Thus, there are combinations of the scale-dependent metrics that
are not physically valid (e.g., when μsd

− > 0.5). To avoid invalid combinations,
two different λmax’s corresponding to the positive and negative spaces can be
used as long as they are made continuous at the neutral biaxial line [10]:

μu+ =
{
−3λ3 λ1 ≥ 0
0 λ1 < 0 (9)

μb = |3λ1 + 6λ3| (10)

μi =
{

1− 3
2λ1 λ1 ≥ 0

1 + 3λ1 λ1 < 0 (11)

μu− =
{

0 λ1 ≥ 0
6λ3 λ1 < 0. (12)

m+
sd = 1

misd = 1

misd = 0misd = 0
m_sd = 1

m
d sd

= 0 m d
sd

= 
0

m ± 
 sd

=
 0

md
sd = 1

Positive
Uniaxial

Maximally
   Biaxial Negative

Uniaxial

Isotropic

Fig. 3. Characteristic scale-dependent geometry for second-order real symmetric
traceless tensors
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These metrics split possible Q tensors into a positive barycentric space
described by

(
μu+ , 1

2μb, μi

)
and a negative barycentric space consisting of

(μu− , μb, μi); the difference in μb terms is due to the antisymmetry in maxi-
mum eigenvalue used. Like before, the largest appropriate metric describes the
system – large values of μb indicate a biaxial shape that is positive, negative,
or neutral depending on the sign of S.

These NLC shape metrics can also be expressed in terms of the primary
quantities of the NLC system, S and b:

μu+ =
{
S − 3b S ≥ 0
0 S < 0

μb = 6b

μi =
{

1− S S ≥ 0
1 + 2S S < 0

μu− =
{

0 S ≥ 0
−2 (S + 3b) S < 0.

The characteristics are the basis of the tensor glyphs described in Sect. 4.

3.2 Using DT-MRI Characteristics for NLC Alignment

Shape metrics for DT-MRI have been well studied; thus, it behooves us to
explore their suitability for NLC studies. However, as previously mentioned,
the Q tensor is traceless, not positive definite. If a positive definite form of
the tensor could be found, then the Westin shape metrics [8] could be used
directly. We explore such a formulation in this section.

The definition of the NLC alignment tensor is based upon the outer prod-
uct of the director (2). In order for the tensor to be zero everywhere when
isotropic, it was made traceless. If we can derive a positive definite form of
the alignment tensor, then existing methods for visualizing such tensors can
be utilized. To accomplish this, the alignment tensor can be offset [11]

Dε = Qε +
1
3

I. (13)

This modifies the system as follows:

[D]ε =

⎡
⎣ λ1 + 1

3

λ3 + 1
3

λ2 + 1
3

⎤
⎦ =

⎡
⎣ 2

3
S′

− 1
3
S′ + b′

− 1
3
S′ − b′

⎤
⎦ =

⎡
⎣ λ′

1

λ′
2

λ′
3

⎤
⎦ ,

(14)

assuming S > 0 and sorting such that λ′1 ≥ λ′2 ≥ λ′3 ≥ 0. Note that the
new effective scalar order and biaxiality parameters S′ and b′ may be differ-
ent from those based upon the Q approach; in this approach, S′ is always
nonnegative (see Sect. 3.3). By performing this offset, the medium eigenvalue
of Q has become the minor eigenvalue of D; when S < 0, λ1 and λ2 switch
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cl = 1
cs = 0

cs = 1

cp = 0

c p
 =

 2
c ι

cp = 1

c i =
 0

Positive
Uniaxial

Maximally
   Biaxial

Neutral
Biaxial

Isotropic

Fig. 4. Characteristic geometry for NLC systems using the Westin metrics. Neutral
biaxiality (where the alignment with two major eigenvector is equal) occurs where
2cl = cp (dashed line)

roles and positions in the matrix. The offsetting could cause ambiguity in
glyph representations, as discussed in Sect. 4; defect detection is not affected
as demonstrated in Sect. 5. Since the smallest possible eigenvalue of Q is −1

3 ,
all eigenvalues of D are nonnegative. Thus, D is a positive definite real sym-
metric tensor.

For DT-MRI, the Westin shape metrics indicate the amount of linear,
spherical, or planar anisotropy within the tensor; these correspond to the
metrics cl, cp, and cs respectively. Linear anisotropy constrains water diffusion
to a line, planar anisotropy possesses movement only in a plane, and so on.
Adapting these metrics to D, they describe the amount of positive uniaxiality,
isotropy, and biaxiality, respectively [12] (Fig. 4):

cl = λ′1 − λ′2 (15)
cs = 3λ′3 (16)
cp = 2 (λ′2 − λ′3) . (17)

As before, these characteristics form a barycentric space over all possible D.
Expressed in terms of the NLC system parameters, these characteristics are

cl = S′ − b′

cs = 1− S′ − 3b′

cp = 4b′.

Streamtubes and isosurfaces of these metrics will be used in Sect. 5 to depict
defects in crystal cores.

3.3 Reconciling the Two Approaches

While they use different characterizations, the Q shape characteristics de-
scribed by (9)–(12) and the Westin-based characteristics for D in (15)–(17)
are reconcilable. The two systems are piecewise linear functions of the other;
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Fig. 5. Consequences of choosing a different reference frame when finding the direc-
tor. The effective director is always depicted vertically, causing the rotation. Color
indicates the same base eigenvector of Q (thus m = n′). In the figure, m′ = v3 is
parallel to the plane of the disc

however, the choice of system effects the interpretation of the physics from
each. The key observation is that while the Q formulation uses the dominant
eigenvalue to determine its effective director, D uses the most positive eigen-
value to determine its effective director. This change in effective director (the
vector chosen to measure S/S′ along) affects the calculations of NLC param-
eters and the orientation of the eigensystem: When S is negative, S′ will be
positive due to the change of effective director. The Westin-metric approach
always chooses a reference frame that is positive (Fig. 5).

In regions where λ1 > 0, there is no difference between the values of S/S′

and b/b′ using the two approaches as the system is positive uniaxial. When
λ1 < 0, however, the Westin-metric approach uses the scalar order parameter
associated with the largest positive eigenvalue, not the one associated with
the largest in absolute magnitude, creating a difference. In this case, the mag-
nitude of S′ will be smaller than |S|, and b′ will exceed 1

6 , the maximum value
for the Q approach [10]. Physically, the effective biaxiality b′ increases due to
the lack of rotational symmetry about v2 – the chosen director in the Westin-
based approach. As Q approaches a pure negative uniaxial arrangement, v2

aligns in the plane of the disc-like configuration and λ′1 tends towards λ′2.
While there is rotational symmetry about v1, the director used by Q, there is
only reflective symmetry about v2 – the hallmark of biaxial nematics (Fig. 5).
In this configuration, D is maximally biaxial with cp = 1.

Given a set of shape characteristics for Q or D, the equivalent characteris-
tics in the alternate formulation can be derived. When λ1 ≥ 0 or equivalently
λ′1 ≥ 1

3

μu+ = cl − 1
2cp cl= μu+ + 1

3μb

μb = 3
2cp cp= 2

3μb

μi = cs + 3
4cp cs= μi − 1

2μb.

Similarly, when λ1 < 0 and λ′1 <
1
3 :

μu− = cp − 2cl cp= μu− + 2
3μb

μb = 3cl cl= 1
3μb

μi = cs cs= μi.
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4 Shape-Based Tensor Glyphs for NLC Visualization

The alignment tensor encapsulates four major parameters of the local vol-
umetric alignment: The director n, the direction of maximum biaxiality m,
the uniaxial scalar order parameter S, and the biaxial divergence b. A visual
depiction of these four quantities needs to incorporate the two orientations
and the different types of symmetry – axial and reflective – possessed by the
different NLC alignments. This section discusses a glyph-based approach to
visually encapsulate these characteristics.

A tensor glyph uses the eigen-decomposition of the tensor’s representation
in order to depict the tensor’s geometry; this approach has been used in DT-
MRI to show the local water’s Brownian motion in conjunction with other
visualizations (see Zhang et al. [13] for a survey). Three major approaches
have been used to depict NLC tensor geometry: Cylindrical [14], box [15], and
ellipsoidal [16] glyphs. Each of these approaches captures portions of the NLC
behavior, but fail to depict the full range:

• Cylindrical glyphs are ideal for positive uniaxial arrangements; their
azimuthal axial symmetry is the same as that for calamitic nematic
molecules. However, since the non-azimuthal axes have equal magnitude,
they are inappropriate for biaxial or discotic arrangements.

• Box glyphs are suited for biaxial alignments. They possess reflective sym-
metry without rotational symmetry, and each axis may take on a separate
length. However, the lack of rotational symmetry makes them inappropri-
ate for uniaxial regions.

• Ellipsoidal glyphs address both these issues; they exhibit axial rotational
symmetry at one extreme and reflective symmetry at another. But, as pre-
viously shown [17], they are ambiguous with respect to viewing – different
view projections of the same ellipsoid produce glyphs that are indistin-
guishable from glyphs of a different tensor.

To address these limitations, we use a system of superquadric tensor glyphs
[10]. Superquadrics are a higher order parameterization of quadric surfaces;
their shape deformation allow a wide range of symmetry and geometry [18].
For this work, we use superellipsoids:

e (θ, φ, α, β) =

⎡
⎣ cosα

s θ cosβ
s φ

sinα
s θ cosβ

s φ

sinβ
s φ

⎤
⎦ −π ≤ θ ≤ π
−π

2 ≤ φ ≤ π
2 ,

(18)

where α, β control the shape parametrization and xy
s = sgn(x)|x|y. One ad-

vantage of superellipsoids is their comprehensibility under rotation and defor-
mation; unlike ellipsoids, superellipsoids are perceptually distinct under rota-
tions and shape parameter change [19, 20]. Superellipsoids have been used in
DT-MRI visualization utilizing the Westin shape metrics successfully [17]; our
work is inspired by these glyphs but uses a parameterization more appropriate
to NLC physics.
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4.1 NLC Tensor Glyph Generation

Given a Q tensor sampled at a position x, an NLC tensor glyph is created in six
steps. First, we perform an eigenanalysis of Q to extract the major, medium,
and minor eigenvalues λ1, λ2, λ3 (sorted by absolute magnitude) and their
corresponding eigenvectors v1,v2,v3. From the eigenanalysis, the important
parameters of the NLC configuration are derived: n = v1, m = v2, S = 3

2λ1,
and b =

∣∣ 1
2λ1 + λ3

∣∣1 (from (3)). The glyph generation then proceeds over the
following five steps: We first determine the tensor’s shape characteristics, then
calculate the superellipsoid parameters, scale by the glyph scaling factors, and
finally align the glyph based upon the eigenframe. This section explains these
steps.

The shape of the tensor glyph is ultimately based upon the geometry of the
NLC alignment tensor itself. The NLC shape metrics of (9)–(12) are used to
determine the type of shape present within the tensor. After these shape char-
acteristics are known, these must be mapped unto the space of superellipsoids
to emulate the types of symmetry the configuration possess. In addition, the
transition between the different symmetry types must be continuous – a NLC
system halfway between pure positive uniaxial and maximally biaxial should
be partially axially symmetric and partially reflective symmetric. Continuity
is granted by the nature of superellipsoids – they are designed to perform
smooth transitions based upon the shape parameter. Matching the symmetry
types requires finding four appropriate shapes and then interpolating between
their corresponding shape parameters smoothly. Fortunately, superellipsoids
possess the shapes we need – cylinders for positive uniaxial tensors, spheres
for isotropic configurations, a top-like shape whose disc is reminiscent of nega-
tive uniaxial alignments with an axis for the director, and a box-like shape for
biaxial configurations (corners of Fig. 6). By interpolating between the shape
parameters α and β for the canonical shapes, we generate a spectrum of tensor
shapes:

μu+ ≥ 0, μu− = 0 ⇒
{
α = (1− μb)

γb

β = (1− μu+)γu

μu+ = 0, μu− > 0 ⇒
{
α = (1− μb)

γb

β = 1 + 3μγu

u− ,

(19)

where the γi are sharpness control parameters after the work of Kindl-
mann [17]. Using this parameterization, α is related to the uniaxial strength
while β corresponds to biaxiality.

After the glyph template is determined, the next step is to determine
its scale. We cannot use the eigenvalues directly since the tensor is traceless
– some of the eigenvalues may be negative or zero. Instead, we encode the

1 Finding b via the sum of the major and minor eigenvalues is more numerically
stable than the traditional difference of the medium and minor eigenvalues due to
the potential small difference in the latter values (which causes loss of significant
digits [21]).
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mu+ =1

mi =1
mb =1

mu− =1

Fig. 6. Nematic liquid crystal tensor glyphs. The uniaxial order parameter increases
vertically; biaxiality increases left-to-right. The center horizontal line includes the
isotropic and neutral biaxial cases; positive and negative alignments are above and
below this line, respectively. The director is vertical in all cases

biaxiality via the difference in the off-director axes scales and the strength of
uniaxial alignment as the scale along the director:

μu+ ≥ μu− ⇒

⎧⎨
⎩
sx = smin + (smax − smin)μi

sy = smin + (smax − smin) (1− μu+)
sz = smax

(20)

μu+ < μu− ⇒

⎧⎨
⎩
sx = smin + (smax − smin)

(
1− 1

2μb

)
sy = smax

sz = smax.
(21)

Typical values of the minimum and maximum scaling factors smin, smax are
0.1 and 0.5, respectively; these produce shapes that fit inside a unit cube.
Changing the scale factors allows the glyphs to fit in different volume regions.
These scales are continuous along the neutral biaxial line; there, μi = 1− 1

2μb.
The last step in generating the glyph is to orient it correctly in space.

The director n and the direction of biaxiality m provide the frame for the
glyph, the third axis of the frame is chosen to ensure that glyph possesses a
right-handed coordinate system:

V (Q) = [sgn (v2 · v1)v3 v2 v1]
= [l m n] . (22)
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This construction aligns the major axis of the superellipsoid ẑ with n and
the medium axis ŷ with m. The minor axis of the superellipsoid encodes the
smallest scaling factor from above (21).

Taken together, (9)–(12) and (18)–(22) specify the following glyph param-
eterization:

e′ (Q,x, θ, φ) = V (Q) S (Q) e (θ, φ, α (Q) , β (Q)) + x

=
[
l m n

] ⎡⎣ sx

sy

sz

⎤
⎦
⎡
⎢⎣ cosα

s θ cosβ
s φ

sinα
s θ cosβ

s φ

sinβ
s φ

⎤
⎥⎦ + x.

(23)

Figure 6 depicts the space of glyphs. There is a smooth transition between
purely aligned arrangements (left of the figure) towards biaxial arrangements
(right of the figure); as biaxiality increases, the minor and medium scaling
factors diverge as well. The direction of the director is clearly encoded. Finally,
positive and negative alignment is distinguished by the “pinching” in the
plane orthogonal to the director – negative alignments have a sharp crease
orthogonal to n. The effectiveness of these glyphs will be demonstrated next.

4.2 Application and Discussion

To motivate the effectiveness of the glyphs, we utilize an unstructured grid
simulation of a biomolecule in a nematic medium [22] as an example. The
embedded biomolecule induces discontinuities in the director alignment – what
starts out in a uniaxial alignment will diverge into both positive and negative
biaxial cases. The example (Fig. 7) depicts context and close-ups using two
approaches: An ellipsoid-based approach [23] and our approach.

Both methods present an effective high-level overview of the tensor field.
It is in the detail window that the differences between the techniques become
apparent. In the ellipsoid view, differences in the ellipsoids indicate a possible
change in director orientation or scalar order strength; however, it is unclear
which possibility dominates. In addition, the director in the central region is
ambiguous as it cannot be read directly from the ellipsoid. The ambiguity
is caused both by the glyph shape and the offset of the eigenvectors used
to create the glyph – the eigenvectors are all offset by 2

3 . In our approach,
the behavior is clear – the director changes along with the sign of the order
parameter. The strong difference in shape preattentively communicates the
presence of the large region of negative biaxial alignment in the center of
the zoomed region. These negative alignments cannot be gleaned from the
ellipsoidal approach.

Figure 8 further illustrates the issues with offset-based approaches for
traceless tensor visualization. After applying an offset δ, it may no longer be
the case that |λ1+δ| > |λ2+δ|; if the major eigenvalue was originally negative,
it becomes the smallest of the new values when positive. If one naively ex-
tracts the director from this new system, an incorrect choice is made – the
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Fig. 7. Comparison of an ellipsoid, eigenvalue-offset approach (top) to our approach
(bottom). The highlighted region contains a defect, indicated by the change in ori-
entation and glyph shape in the bottom image. This change is more difficult to
perceive using previous approaches

largest modified eigenvalue is not the largest in absolute magnitude within the
original system (Fig. 8b). Even if the correct orientation is extracted (Fig. 8c),
the inappropriateness (for cylindrical) or rotational ambiguity (for box and
ellipsoid) of the glyph is still present. This ambiguity has been noticed in liq-
uid crystal physics [15] and in general tensor visualization [17]. Our approach
avoids these issues by using a distinguishable glyph based upon the system’s
physics.
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(a) Positive biaxial NLC

(b) Negative biaxial NLC with incorrect director

(c) Negative biaxial NLC with correct director

(d) Rotated positive biaxial NLC

Fig. 8. NLC Glyphs using a cylinder, box, ellipsoid, and our method. In the second
row (b), the wrong director was chosen after the offset was applied due to the major
eigenvalue sign flip. Even with the correct director (c), there is visual ambiguity for
the first three glyphs, especially under rotation (d)

5 Detecting Topological Defects with Shape
Characteristics

Topological defects play an important role in the structures of NLC. The NLC
phase is characterized by long-range orientational order. Under some condi-
tions, such as a quench from a disordered to an ordered phase, confinement
of the material, or the synthesis of inverted nematic emulsions, the molecules
exhibit discontinuities in this order – these discontinuities are known as topo-
logical defects. In NLCs, the main types of defects are monopoles and discli-
nation lines. Figure 9 shows a cutting plane through these defects, illustrating
two types of director field patterns, wedge and twist, which can in principle be
present. The wedge pattern corresponds to a rotation of the director about an
axis parallel to the local direction of the disclination line, while the twist case
corresponds to a rotation axis perpendicular to the disclination line direction.
All three defects shown are topologically equivalent and can be transformed
into each other via suitable continuous rotations of the director field. Finding
the three-dimensional structure of these defects is of significant interest to
NLC scientists.

Several approaches have been taken to track defects in fluid liquid crystal
simulations. Billeter et al. [24] explored a thermal quench of a Gay–Berne
nematic [25] consisting of 65,536 molecules in a box with periodic boundary
conditions. To track the disclination loops that coarsen and annihilate (cancel
each other) after the quench, a cubic lattice of molecules bins was created
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Fig. 9. 2D schematic drawing of ±1/2 disclination line segments. The disclination
cores are indicated by a “⊗”, and the disclination line is locally perpendicular to
the plane of the page. (a) +1/2 wedge defect; (b) −1/2 wedge defect; and (c) +1/2
twist defect. The rotation of the director in (c) is about an axis lying in the plane
of the page perpendicular to the disclination line and the nail head representation
indicates a projection of the director from below the plane of the page

with the bin size chosen to be approximately equal to the defect core size.
Once an average director for each bin was computed, point defects in two
dimensions and line defects in three dimensions can be located by travers-
ing a loop around faces of the lattice and checking whether the last director
traversed is closer to the first director (no half-integer defect) or its antipode
(in which case there will be a defect) [26]. This method was found to be reli-
able in locating disclination lines: The lines always formed closed loops and a
physically reasonable coarsening sequence emerged after the quench. Müller
matrices have also been used to simulate Schlieren textures in order to detect
defects [27]. The aforementioned approaches work on structured data; for 3D
unstructured data, a defect detection has been reported that is based upon a
measure of total angular change in molecular orientation over a node neigh-
borhood via the use of a nearest neighbor path [28]. This method replicates
the 2D structured grid results where appropriate.

All of the methods discussed above do not show any information about
the nature of the director pattern around the defect, namely, the topological
charge of the defect and its 3D wedge-like or twist-like nature. To address
this problem, in this section we introduce a visualization framework for defect
detection [11, 12]. Visualization of these defects help physicists identify the
defect cores as well as the molecular structures around them. The interactivity
in the framework helped the physicists better understand defect behavior.

5.1 Defect Visualization Method

To visualize defects, we apply second order positive definite tensor visualiza-
tion methods to NLC data using the offset approach described by (13)–(14).
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This visualization technique treats D as a tensor that describes water self-
diffusion as measured via diffusion tensor magnetic resonance imaging [29].

For the visualization, we sampled the NLC data onto a regular grid using
an approximating cubic B-spline as the sampling kernel (24):

h (x) =

⎧⎪⎨
⎪⎩

1
6

(
3r3 − 6r2 + 4

)
0 ≤ r ≤ 1

1
6 (2− r)3 1 < r ≤ 2
0 r > 2,

(24)

where r =
2‖x−x′‖

ρ is the sample radius, calculated from the sample point x,
the kernel’s center x′, and the kernel width ρ. The width of the kernel function
was designed so that it would include about 30 molecules (about ρ = 7.3);
this was empirically determined to be the size of important features in the
simulation results. In doing so we converted the discrete molecular simulation
data into a regularly sampled, continuous second-order diffusion tensor field.
Samples were taken sufficiently closely that we could evaluate a continuous
version at any spatial location within the regular grid without introducing
aliasing artifacts via interpolation [11]. The sampling was repeated for each
time step as needed.

Additional processing of the data was necessary. We introduced padding
to preserve the features on the boundary in the resampled field. The original
NLC sample is topologically equivalent to a hypertorus because of periodic
boundary conditions. We extended the original spatial dimensions of the field
by reproducing a portion of the data in every direction. This way the fea-
tures that wrapped from one side of the data to the next appeared to be
continuously repeating thus allowing for better visual coherence.

We calculated integral paths through the principal eigenvector field to
create streamtubes in regions with sufficient linear anisotropy [29]. These
streamtubes represent the average molecular orientation in regions outside
topological defects. Redder color corresponding to larger cl. Because the de-
fects occur where the relative ordering of molecules is very small, we expected
small linear anisotropy values there and no streamtubes.

Regions of low linear anisotropy can represent defects and can be visualized
by plotting isosurfaces of linear anisotropy values. Defects form closed linear
structures and so these isosurfaces are tori (Fig. 10). The anisotropy value
chosen was varied to produce the desired visualization effect. As the linear
anisotropy value changed, the diameter of the tube comprising the surface
changed as well.

NLC physicists are particularly interested in the structure of the core of the
defect, that is, the spatial region within the blue defect tubes. Therefore, we
introduced more tools to allow for more detailed exploration. We augmented
the visualization of the tensor field features with color-coded cutting planes
that display the values of the Westin metrics at various locations in the system.
We also mapped the values of the Westin metrics onto the isosurfaces forming
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Fig. 10. Visualization of the disclinations in the simulation data using (a) iso-
surfaces for cl = 0.12, colormap on cp from blue (cp ≈ 0) to red (cp ≈ 0.7), and
isosurfaces for maximal biaxiality (λ′

2 = 1/3); (b) the method of Billeter et al. which
was based on standard lattice techniques

the tubes. We enhanced this feature by introducing a tool to probe the values
of the field, which allowed for quantitative analysis of the Westin metrics at
areas of interest.

Such exploratory and interactive framework for tensor data analysis allows
the researchers to map a variety of different data parameters onto the visual
representation of their data. This effectively increases the dimensionality of
the visualization. Many more data dimensions can be visualized in context
with each other than previously was possible. The researchers can pick and
choose which features of the defect data they want to explore.

The above tools were built to analyze only one time step. By stitching
together the visualization environments as frames of a movie we were able to
build an animation of the evolution of the system.

5.2 Case Study: Quenched Gay–Berne Nematic

We applied the visualization methods in the previous section to the simulated
data of a quenched Gay–Berne nematic. We analyze the results of the visu-
alization in three aspects: the locations, the surrounding director structures,
and the core structures of the disclination lines.

5.2.1 Location of Disclination Lines

Disclination lines are the focus of the NLC defect visualization. Figure 10
shows a visualization of the disclination lines in the Gay–Berne nematic [24]
33,000 timesteps after a thermal quench from the isotropic to the nematic
phase. The disclination lines are identified based on the criterion that the
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core of a line must be characterized by a very small value of the uniaxial
nematic order parameter S or equivalently the Westin metric cl even if the
core is biaxial. The left figure shows isosurfaces of the Westin metric cl and
the intermediate eigenvalue λ′2 of D (13) using the Advanced Visualization
System (AVS) software package [30]. The green–yellow–blue surfaces in the
main figure are cl = 0.12 isosurfaces; the color variation on these isosurfaces
from blue to green to red indicates increasing value of cp, a measure of the
planar order in the defect core. Within these isosurfaces cl < 0.12 and thus
the isosurfaces identify the disclination lines. The gray isosurfaces surrounding
the predominantly green ones correspond to λ′2 = 1/3, demonstrating that the
disclination cores include a tube of maximal biaxiality, in agreement with the
Landau–Ginzburg theory results [31]. The right figure shows for comparison
of the same data visualized using standard methods [24] where a cubic lattice
of bins was created and disclinations were found using standard lattice tech-
niques [26]. The general locations of the disclination lines in the two figures
are the same aside from the data padding added in the left figure.

5.2.2 Director Structure Around Disclinations

Figure 11 demonstrates how streamtubes can help determine the local topo-
logical charge and the rotation axis of the director. The timestep shown is
148,000 after the thermal quench. The streamtubes wrapping through the
loop and around the top of the loop indicate that the top is wedge-like with
charge +1/2 (recall Fig. 9a), whereas the streamtubes near the bottom of the
loop indicate that this portion is wedge-like of charge −1/2 (recall Fig. 9b).

(a) (b) x-y plane (c) y-z plane

Fig. 11. Director structure around disclinations. (a) A wedge-twist loop. The red
streamtubes (the thin lines) are along the director field. Redder color corresponding
to larger cl (streamtubes were selected so that cl ≥ 0.2). (b) The two lines that
are roughly parallel to the z axis are viewed from above and appear to be purely
wedge-like, with charge +1/2 on top and −1/2 on the bottom. However, the red
streamtubes and blue streamsurfaces in (c) (where the lines are viewed along the x
axis) indicate that the lines have a twist-like character as well
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It is also clear that the disclination loop is twist-like on the left side, as the
streamtubes have a component parallel to the disclination loop.

Figure 11 also indicates how using streamtubes as well as streamsurfaces
provides various clues in determining the topological charge and director ro-
tation axis Ω̂ of a disclination that would otherwise be very difficult to do.
From Fig. 11b which shows a top view of two relatively straight disclination
line segments, it might be tempting to conclude that the two disclinations are
simply +1/2 and −1/2 wedge lines. However, examination of the red stream-
tubes and blue streamsurfaces in a side view of these defects (Fig. 11c) shows
a more complicated picture. While the disclinations are on average parallel to
the z-axis, the director field outside the core regions and the planar ordering
of the director indicated by the streamsurfaces is considerably tilted out of
the x-y plane. Further 3D observation confirms that this line has twist as
well as wedge character. This does not come as a surprise as the twist Frank
elastic constant is less than the splay and bend constants in the Gay–Berne
nematic [32].

5.2.3 Core Structure

Using the new visual representation, physicists were able to study the behav-
ior of the tensor field in the core of the defect line and answer a longstanding
question in liquid crystal physics: are defect cores characterized by maximum
biaxiality or total degeneracy of the eigenvalues (i.e., all three eigenvalues
equal to 1/3)? The term maximum biaxiality refers to a case where the three
eigenvalues are as different from one another as possible. Degeneracy corre-
sponds to total disorder of the molecular alignment, whereas biaxiality implies
some degree of order. It is a subtle question of energetics as to which possibil-
ity will be found. The visualization methods presented here offer an immediate
answer to this important question, namely that the defect cores are in fact
biaxial. This answer is immediately apparent in Fig. 10a, in which the gray
isosurfaces correspond to the condition of maximal biaxiality, and does not
require a detailed numerical analysis. Thus, the question can be readily an-
swered at any time step of the simulation or for any new simulation done
under different initial conditions (including, e.g., varying the molecular pa-
rameters). The detailed structure of the core can be explored quantitatively
by measuring the Westin metrics on a plane orthogonal to the defect line
(Fig. 12).

6 Combining the Two Methods

It is possible to combine the two methods discussed in order to depict the
tensor behavior near regions of defect. Though the examples of the defect
detection methods were structured data, the metrics can be adapted to un-
structured data. Figure 13 shows the detected defect structure using the met-
rics from Sect. 5 (left) and a method specifically designed for unstructured
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Fig. 12. The Westin metrics cl (red), cp (green), and cs (blue) as functions of
the coordinate y for the disclination shown in Fig. 11b; the two disclination lines
are roughly parallel to the z axis. The value of the x coordinate is chosen to coincide
with the center of each disclination; z is roughly a third of the distance along the
depth of the simulation box

Fig. 13. Selected tensors for the defect region for the human Ig antibody dataset
using a method adapted from Sect. 5 (left). The highlighted region has strong cor-
respondence to the defect nodes detected via changes in director [28] (right)
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Fig. 14. Tensor visualization using the NLC glyphs from Sect. 4 depicting the struc-
ture near the defects discovered in Sect. 5. See Fig. 10a for comparison

NLC simulations [28] (right). The defect structures are very similar, with the
glyphs indicating low-biaxiality tensors via their lack of reflection symmetry.
Here, low cl corresponds to regions of low biaxiality (low μb) below the neutral
biaxial line (thus μ+ = 0).

Similar visualizations can be performed for the regular grid data set from
Sect. 5 (Fig. 14). Note how the planar isotropy indicated by the Westin metrics
translates to pinched, negative uniaxial glyphs (the more green glyphs). This
corresponds to the change of reference between the Westin-based and traceless
tensor-based approaches discussed in Sect. 3.3. The isotropic glyphs near the
defect (high cs) remain spheroid (high μi, more brownish).

7 Summary and Conclusions

Shape characteristics are powerful tools that facilitate the visualization and
understanding of tensor fields. In this chapter, we have demonstrated how
two characterizations of NLC alignment tensors are used to visualize the spa-
tial distribution of alignments and to depict defect structures within the liquid
crystal. The two characteristics, one based upon a general, traceless tensor and
the other on positive definite tensors, capture the transition between the dif-
ferent canonical NLC alignments, and we have provided a conversion process
between the two methods. We also explored how the different mathematical
formulations result in different interpretations of the physics via changes in
frames of reference.

The shape characteristics-based visualization methods described here
provide several benefits to NLC scientists. The glyph-based visualization un-
ambiguously depicts the different classes of NLC alignments without the
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orientation uncertainty of ellipsoids while preserving the symmetry proper-
ties of the given alignment. The director field stream visualizations can not
only be used to determine the location of the defects (as earlier visualization
methods could also do), but also to assess the core structure of the defect
and director field structure outside the core. Both methods have been used
by NLC scientists to positive effect – the former method to understand the
behavior of novel NLC media, the latter to answer outstanding questions in
NLC physics. Together, our shape characteristic-based visualization methods
are effective tools for NLC exploration.
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Summary. Elastography measures the elastic properties of soft tissues using prin-
cipally ultrasound (US) or magnetic resonance (MR) signals. The elastic behavior
of tissues can be analyzed with tensor signal processing. In this work, we propose
an analysis of elastography through the deformation tensor and its decomposition
into both strain and vorticity tensors. The vorticity gives information about the
rotation of the inclusions (simulated tumors) that might be helpful in the discrimi-
nation between malign and benign tumors without using biopsy. The tensor strain
field visualizes in one image the standard scalar parameters that are usually rep-
resented separately in elastography. By using this technique physicians would have
complementary information. In addition, it offers them the possibility of extracting
new discriminant and useful parameters related to the elastic behavior of tissues.
Although clinical validation is needed, synthetic experiments from finite element
and ultrasound simulations present reliable results.

1 Introduction

Changes in tissue stiffness are correlated with pathological phenomena, a fact
that can help the diagnosis of several diseases such as breast and prostate can-
cer [7, 8] or cardiovascular dysfunctions [14, 23]. There are mechanical ways
to estimate the biomechanical properties of the tissue such as indentation,
which is mostly used for thin layers of ex vivo tissue [11, 28]. Many differ-
ent approaches estimate and image the elastic properties of tissues adapting
conventional ultrasound, MR, TC, or nuclear imaging protocols and studying
the tissue’s response to some stimulus. There are also some investigations ap-
plying optical methods [6], These techniques may be referred to as elasticity
imaging. A review is found in [17].

Elastography [15], that is, the imaging of the elastic properties of soft
tissues, is well established in the literature. In quasi-static USE (ultrasound
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elastography), the standard mechanical set-up to produce a controlled com-
pression on the tissue consists of a mechanical arm that holds the ultrasonic
probe together with a plate. The use of the plate generates a more homoge-
neous stress field. However, in the last years, many researchers have focused
on simplifying the elastographic set-up. There are comparatives studies [4]
that show the capability of freehand elastography (technique that makes the
compression with the probe and without the plate) to detect lessons such as
breast carcinomas [16], although it has a lower SNR. Different ways of gener-
ating the stimulus give different names to the elastographic modalities, as it is
the case of sonoelasticity [12], which uses external applied vibrations instead
of quasi-static compressions.

The displacement field from which researchers normally obtain the strain
is estimated with different techniques. We refer to papers such as [27], which
uses a time-domain cross-correlation technique, or [18], which uses an iterative
phase-zero estimation, among others. Some researchers visualize the estimated
displacement and strain fields following the path in [15]; they focus on the
forward problem. Some others solve the so-called inverse problem [2]; based
on the displacement and strain fields, they calculate mechanical properties
of the tissue such as Young’s modulus, by using the constitutive elasticity
equations. In the former, either axial strain or lateral strain [15], Poisson’s
ratio [20], or shear strain [9] elastograms are visualized. The inverse problem
approach deals with Young’s modulus visualization, the shear modulus [5], or
other related parameters. A comparative study between this two approaches
can be found in [5].

Although elastography has been shown to be capable of detecting breast
tumors in vivo [7], biopsies are still needed to assess their malignancy. Ma-
lignant tumors are known to form ramified boundaries that become firmly
bound to the surrounding tissue, as opposed to the benign ones, which have
smooth borders and are loosely attached to its surrounding. Garra et al. [7]
and Konofagou et al. [9] have made efforts trying to reduce the use of biopsies,
with USE.

In this chapter, we present the theory and procedure to assess the rota-
tion of the tumor by visualizing the vorticity image aided with the strain
tensor field as an effort to better determine the tumor infiltration, supported
with a phantom study. Preliminary promising results show the potential of
the technique in the diagnosis and prognosis of tumors, by detecting their
infiltrating nature in a noninvasive way. This tensorial approach as well as its
visualization can be extended to other elasticity imaging techniques.

This work is organized as follows. In Sect. 2, we present the mathematical
basis from where we obtain the parameters that we use for visualization. In
Sect. 3, we expose the motivation and preliminary investigations that made
us deepen in this research. Section 4 presents the set up of the synthetic
experiments and their results, and discusses different visualization methods.
Finally, Sect. 5 contains the conclusions and an outline of the future work.
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2 Background: The Theory of Elasticity

The theory of elasticity is the branch of the physics, specifically of the contin-
uum mechanics, that studies the stresses in solids and the deformation or flow
of materials. The branch concerned with the study of liquids and gases is the
so-called fluid dynamics. The continuum makes reference to the hypothetical
continuous material since the molecular structure of matter and empty spaces
or gaps are disregarded. It is also supposed that the functions entering the the-
ory are continuous functions except at surfaces that separate different regions
of continuity. The theory of elasticity provides a consistent set of equations,
which may be solved to obtain a unique point-wise description of the distribu-
tion of the forces experienced at each point (stresses), and the displacements
caused (strains), for a particular loading and geometry. We explain in the fol-
lowing sections the main participants in this theory, deepening on the strain
that we use for the visualizations. With the strain, we have a relative measure
of the elasticity of different tissues that can be used for the diagnosis of several
pathologies. Thus, it is not necessary to make any assumption about isotropy
nor problem configurations to shorten the independent constitutive equations
(1). Neither is it necessary to add computational cost to the procedure. The
visualization scheme applied here to the strain tensor can equally be applied
to the stress tensor.

2.1 Tensors

Tensors and tensor fields are basic tools in differential geometry and physics
to describe geometric and physical quantities that remain invariant under
coordinate transformations, as the ones we face in the theory of elasticity.

In this work, a tensor of order (or rank)n living in a d-dimensional space
is a mathematical object with n indices and dn components, which obeys
certain transformation rules. In a three-dimensional Euclidean space, such as
ordinary physical space, the number of components of a tensor is 3n. Scalars
and vectors are particular cases of tensors of order zero and one, respectively.
The strain and stress tensors are both second order tensors, therefore defined
by 32 = 9 components.

Some applications include diffusion-tensor magnetic-resonance imaging
(DT-MRI) (see first seven chapters), fluid dynamics, electromagnetism, dif-
ferential geometry, satellite gravity gradiometry (see previous chapter by
Schreiner), and nematic liquid crystals visualizations (chapter by Kelly et al.)
among others.

2.2 Constitutive Equations

The classical elastic constitutive equations, also called the generalized
Hooke’s law, are nine equations expressing the stress components as linear
homogeneous functions of the nine strain components:
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Tij = cijrsErs. (1)

These nine equations contain 81 constants, but since both Tij and Ers are
symmetric there are only six independent equations, each containing six terms,
giving 36 elastic constants or moduli. For the case of an isotropic material, all
the elastic constants can be expressed in terms of two independent ones.

2.3 Stress

In general, two types of external forces can be applied to a solid body: surface
forces applied to its boundary (arising from contact with another solid or
fluid pressure) and body forces that are distributed throughout the volumetric
elements inside the body (gravitational, magnetic, and inertial forces).

Given a point within a body and a plane that passes through that point,
the stress vector or surface traction t on that plane at that point is the force
per unit area required to keep that body in place, if the material on one side
of the plane were instantly removed (Fig. 1), and is defined as

lim
ΔS→0

Δf

ΔS
, (2)

where ΔS is an element of area in the interior of the volume V, with normal
n̂ and Δf is the surface force acting on ΔS.

The traction vectors on planes perpendicular to the coordinate axes
(Fig. 1) are especially useful because, when the vectors acting at a point on
three such mutually perpendicular planes are given, the stress vector at that
point on any other plane inclined arbitrarily can be expressed on terms of
these three given special vectors. The Cauchy tetrahedron analysis results in
the stress boundary equations:
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Fig. 1. Left: Stress definition; right: stress components
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T
(n)
i = Tjinj . (3)

The components of these traction vectors form the Cauchy stress tensor
in a given basis and are usually displayed in one matrix T (4) in which each
row contains the components of each traction vector corresponding to each
plane. The first subscript identifies the plane while the second the component.
This tensor is symmetric for most of the materials, being an exception polar
medium that have magnetic properties [19].

T =

⎡
⎣σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤
⎦ (4)

2.4 Strain and Deformation

The simplest case for the understanding of strain is the uniaxial tension test
of metal or concrete test tubes. Strain is defined as the change in length per
unit of initial length. Thus if a 100 cm test tube is stretched to 100.1 cm, the
strain is 0.001% or 0.1%. With this we can characterize the tensional state.
However, if the test tube is stretched first to 150 cm and then compressed back
to 100.1 cm, the same statement about the strain would not describe what had
happened. When plastic deformation occurs, history of straining needs to be
monitored. With noninfinitesimal displacements for some materials, fracture
may also happen, making invalid the formulation of small-strain theory. In-
finitesimal strain theory gives good results for the practical purposes under
study for strains around 1% and below.

Three simple 2D cases are presented in Fig. 2. The dotted lines show the
initial positions of the element. The unit extensions εx and εy are defined as
a change in length per unit initial length, and the shear strain is defined as
half the decrease in the right angle initially formed by the lines parallel to the
X and Y axes (γxy = π/2 − ψ = θ2 + θ1). In the limit, when ΔX and ΔY
tend to zero

Fig. 2. Elementary cases of strain: (Left) uniaxial extension in x direction; (center)
uniaxial extension in y direction; (right) pure shear without rotation. θ1 = θ2
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∂ux

∂X
, εy =

∂uy

∂Y
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1
2
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∂ux

∂Y
+
∂uy
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where (ux, uy) are the particle displacement components in the X and Y direc-
tions. The angles θ1 and θ2 have been approximated by their tangents, as we
are restricting this theory for small displacements and small angles compared
to one radian. The 1

2 factor appears when extracting the definitions from the
displacement gradient matrix, which will be seen below.

The complexity of this problem is given by the fact that all three kinds
of simple strain occur simultaneously and in three dimensions while there
are some relative displacement that do not produce strain and stresses, for
example, a rigid body transformation with rotation. The general problem is
to express the strain in terms of the displacements by separating off that part
of the displacement distribution which does not contribute to the strain. The
results for the relative displacements analysis of a general three-dimensional
case are presented here while a detailed study can be found in [13].

Let u = (ux, uy, uz) be a 3D displacement vector field. In mechanical en-
gineering it is well-known that the displacement gradient matrix, also known
as Jacobian matrix or the unit relative displacement matrix (6), can be de-
composed into the strain tensor (the symmetric part) with the elongational
strains on the diagonal and the shearing strains on the off-diagonal, and the
vorticity tensor (the antisymmetric part) that contains only the vorticity com-
ponents [13],
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(6)

For abbreviation we will represent this decomposition as ∇u = E + Ω.
The tensor E measures the changes of shape locally (stretching or shortening),
while Ω informs about modifications related to rotations, and are defined by

E =

⎡
⎣εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎦ , and Ω =

⎡
⎣ 0 ωxy ωxz

ωyx 0 ωyz

ωzx ωzy 0

⎤
⎦ . (7)

The columns in the strain matrix individually represent the unit relative
displacement vectors, the first in the x -direction, the second in the y-direction,
and the third in the z -direction of three infinitesimal elements, each of one
initially parallel to x -direction, to y-direction, or to z -direction. From this,
we can illustrate a physical interpretation of the shear components εxy = εyx

, εxz = εzx and εyz = εzx. When there is no rotation, εxy is equal to the
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displacement in the y-direction of the two extremes of the infinitesimal element
initially parallel to the x -direction divided by the length of that element. When
there are both rotation and shear, the shear represents only part of the unit
lateral relative displacement. Poisson’s ratio is the ratio of lateral to axial
strains: ν = −εyy

εxx
, or in a general way νij = −εii

εjj
, as it can be different for

each direction. Its maximum value is 0.5, which denotes no volume change
during the deformation.

When the strain matrix components are zero, the local motion of the ma-
terial in the neighborhood of a point is an infinitesimal rigid-body motion,
through a small angle (compared to one radian). Vorticity can be extracted
from this rotation tensor and is related to the amount of circulation or rota-
tion. More strictly, the local angular rate of rotation.

3 Methods

As it was mentioned in Sect. 1, most representations for elasticity imaging
are scalar parameters, components of the strain tensor. Besides, tumor
characterization have not been solved. With the same goals but different
means than other investigations such as [7], which utilizes the discrepancy in
sonograms and elastograms, and [9] through the shear strain visualization,
we propose the study and analysis of the deformation tensor, and therefore,
the strain tensor and the vorticity to asses tumor infiltration.

Tensor formulations are not widely extended in signal processing and re-
lated fields, but there are some cases in the biomedical field such as diffusion
tensor imaging (DTI) and cardiac strain-rate imaging (SRI) that uses ten-
sor visualizations. DTI visualization techniques are quite well developed as
it can be inferred from first four chapters, where different models for DT-
MRI are presented, and from next three chapters, where higher-level analysis
of diffusion images are discussed. The application of these techniques to the
visualization of the strain tensor fields is not obvious. The strain tensor is
symmetric but does not satisfy the positive semidefinite condition. Hence, it
is not possible to draw an ellipse with a negative value for one of its axis.
However, in our case that condition is not a barrier, because clinically the
sign of the strain tensor eigenvalues does not corrupt the information given
with this representation regarding the different elastic properties of tissues
(positive and negative represents, respectively, material stretching or short-
ening, in the direction of the corresponding eigenvector). If we represent the
axes of the ellipse with the absolute values of the eigenvalues, we have the
information of the rate of the deformation; it can be appreciated how much
deformation from the total has been absorbed by the different tissues. Further
explanation solving the representation of the eigenvalues’ sign is found in the
Sect. 4.3. Different tensor visualization methods can be found in this book in
chapters by Hlawitschka et al., Feng et al., and Schreiner.
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Two different cases of boundary condition between the inclusion (the simu-
lated tumor) and its surrounding (the background) were studied: one of them
with the inclusion loosely bounded to the background and the other fully
connected, simulating, respectively, the benign and malign tumors. Different
cases describing several possibilities at the boundaries of the region of inter-
est (the homogeneous background and the inclusion, here and after the ROI)
have been studied too, and we will mainly refer to two of them: symmetric
and nonsymmetric boundary conditions. In both of them the movement at
the lower horizontal boundary of the ROI is restricted in both directions x
and y (2D case) and at the upper horizontal boundary perfect slip conditions
are considered. In the symmetric case, the two vertical boundaries have no
restrictions for x and y displacement. In the nonsymmetric case, one of these
lateral boundaries has a restriction for the displacement on the x direction.

Experiments done through simulations made us observe what intuitively
could be expected from an unbounded inclusion inside an homogeneous back-
ground axially compressed with nonsymmetric boundary conditions. As it
can be seen in Fig. 3 the inclusion rotates, and this does not happen with
perfectly symmetric boundary conditions. This simulation solves the problem
with finite element analysis (FEA), but the algorithms currently used in elas-
tography cannot appreciate that rotation in a displacement image is due to
their limitation to detect small displacements. However, parameters such as
vorticity can give information about the differential rotation in the areas or
volumes of study.

−. 773151
−. 641963 −. 379589

−. 248402 .013973
.14516

.276348
.407535−. 117214

−. 510776

Fig. 3. Left: axial displacement image corresponding to an unbounded inclusion
three times stiffer than the background with nonsymmetric boundary conditions.
Right: a malign tumor (source [1]). It can be seen how much it is ramified while a
benign one would be smooth allowing its rotation
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A main contribution of this work is the hypothesis of infiltrating tumors
being less prone to rotate than noninfiltrating ones when the surrounding tis-
sue is pressed, since the former are more tightly attached to the normal tissue
than the latter. Hence, we expect the vorticity to be zero at the background
and nonzero values for the infiltrating tumors, not as with noninfiltrating ones,
which should have also values around zero. We also expect the strain tensor
to behave differently for this two cases, especially at the boundaries of the
tumor. This difference can be assessed in the visualizations as we show next.

4 Experimental Set-up and Results

We have developed an experimental setting that has proved to be very useful
to obtain preliminary results, prior to a clinical experimentation. The setting
consists of a synthesis stage, where a digital phantom of the tumor anatomy
with surrounding tissue, the effect of the compression applied with the ul-
trasonic probe, and the US images are simulated. This setting allows us to
easily experiment under different conditions and mechanical characteristics
that we expect to correlate with real clinical data. The analysis stage esti-
mates the deformation and elastic properties from the US data and provides
useful visualizations.

4.1 Synthesis

Tumors can be simulated digitally [25] by an homogeneous background (the
surrounding normal tissue) and a centered circular inclusion (the tumor) using
FEA software. Mechanical properties are endowed to both the background and
the inclusion. The level of infiltration is simulated by defining contact points
and assigning to them a friction coefficient. For the specific setting reported in
this work the mechanical properties are as follows: for both inclusion and back-
ground, the Poisson’s ratio used was ν = 0.495, [11] thus assuming conditions
of virtual incompressibility. The background has a modulus of 21 kPa [11],
and the inclusion was three times stiffer.

The FE models were generated with applications to elastography in mind
with an area of 40 × 40mm2 for the background, and 5 mm radius for the
circular inclusion. The phantom was meshed using eight noded quadrilateral
elements. Two different cases of boundary condition between the inclusion and
the surrounding were studied (simulating the benign and malign tumors), and
two cases studying the external interactions of the ROI as described in Sect. 3.
We have been carrying out extensive experiments, with different mechanical
properties, geometries, and boundary conditions in order to simulate many
real situations, which we cannot report in this work due to space limitations.

A compression was applied to the entire top side of the digital phantom,
being 1% of its height. The top surface allow perfect slip conditions, but the
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bottom surface has movement restriction in both directions (axial and lateral).
The sides of the target are free to move.

The coordinates of the nodes corresponding to the meshes of the test object
before and after the compression are the outputs from the FEA program, and
are considered as ground-truth data. These two sets of (x, y) coordinates were
then computed with ultrasound simulation codes obtaining 15 frames of each,
containing the A-lines (amplitude echoes of the acoustic waves) for the ROI.
Comparing each pair of frames (pre and post) we estimated 15 displacement
fields for our phantom. Averaging them all we produce elastograms as in the
usual scalar way of visualization (top of Fig. 5) where the white areas represent
less strain and hence, a stiffer region.

4.2 Analysis

Several techniques have been proposed to estimate the tensor strain compo-
nents (Sect. 1). All of them estimate a displacement vector field due to an ap-
plied deformation load. In this work, we are not discussing which one is better,
but how we can obtain more useful information from the displacement vector
field. We computed the cross-correlation of the pre and post-compression A-
lines in order to obtain that displacement field. Further information on this
technique can be found in [10, 27]. From the estimated displacement field (the
vector field), the gradient is calculated (6), after which we decompose it in the
strain and the vorticity tensor fields. In Fig. 4, the vector field at each point
is overlaid on the strain tensor with different boundary conditions to show
the potentiality of this visualization and the information behind it. Below we
have plotted the strain tensor field for a 3D case. This case is not the same
as the 2D one and different solutions might be adopted. As there are three
eigenvectors and eigenvalues for each voxel instead of two, it becomes more
complex and the sign of the eigenvalues must be considered in a different way.
More information on this issue can be found in [24].

The strain tensor field is noisy and susceptible to be filtered. [21] proposed
a noniterative anisotropic method to regularize vector and higher order tensor
fields having in mind DT-MRI applications. We extended its use to the strain
tensor field, obtaining a more aligned and anisotropically averaged tensor field,
while the edges are preserved. Results are shown in Fig. 8.

4.3 Visualization

Although elastography is based on the estimation of tensor data (the strain
tensor), its visualization has been traditionally based on scalar representa-
tions. Some researchers represent the axial strain or other related parameters
in gray scale, the darker areas representing stiffer regions (less strain) and
some others in color images. The gray scale has been the standard for ultra-
sound imaging in general and also for elastography. However, the color images
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Fig. 4. Displacement vector field overlaid on the strain tensor field for a virtual
phantom, ideal case. Above: unbounded case (benign) with nonsymmetric boundary
conditions. Below : a 3D case with symmetric boundary conditions
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for the elastograms are becoming widely used. This is due to the fact that elas-
tograms are usually represented beside the B-mode image or overimposed to
it. Therefore, it is easy to appreciate the colored image in contrast to the gray
scale one. In this chapter both of them are used for the reader to have the
reference and the possibility to choose. In any case the clinician should decide
which image he or she prefers, being our mission to give them different tools
and possibilities.

It is important to know that the visualization of tensor fields improve the
understanding and interpretation of tensor data. In the last years, tensor fields
visualization has achieved great interest thanks to improvement of graphics
hardware, and the advances in nervous fiber visualization given by DT-MRI
dataset.

It is proposed here a technique similar to that in [22], used for the visual-
ization of myocardial strain-rate tensors, that is, visualize tensors as ellipsoids
colored according to the sign of the largest eigenvalue representing stretch or
compression in the principle direction. We have colored blue for shortening
and red for stretching, when displaying the tensorial image alone or overlaid
on a gray scale image. For the cases where the tensorial image is displayed
over a color image, the ellipses are drawn in black for shortening, in order
to distinguish from the background colors. Obviously, this is just a conven-
tion that may be adapted to the different circumstances to achieve a better
visualization.

In our case, as it can be seen in Figs. 5–8, all the ellipses appear in blue.
As we are applying a compression in the axial direction to a incompressible
target, the Poisson’s effect distribute that deformation expanding the target
in both lateral directions. Therefore, the axes of the ellipses aligned with the
axial direction, where the compression is applied, have higher values. This
representation visualizes the complete tensor in one plot giving information
about magnitude, direction, and the ratio between the strain principle val-
ues. This representation can detect possible abnormalities and regions with
different local behavior than the surrounding. Different in vivo experiments
are planned to validate the results.

When visualizing the vorticity, we have represented the scalar value of

ωz ≡ 2 · ωxy = −2 · ωyx, (8)

which represent the infinitesimal angle of the pure rotation experimented lo-
cally (considering the movement a compound of elongational terms and rota-
tional ones, as seen in Sect. 2, (7)) [26].

Another experiment was carried out imaging a commercial breast elastog-
raphy phantom (Model 059, CIRS Inc., Virginia, USA) to a depth of 4 cm
with a linear array of 128 elements with a 12-MHz centroid frequency, 80%
fractional bandwidth transducer, of a PC-based Ultrasonix 500RP ultrasound
machine (Ultrasonix Medical Corporation, Burnaby, BC, Canada). The exper-
iment was realized applying a 2% freehand compression to the breast phantom
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Fig. 5. Scalar and tensorial images comparison for a virtual phantom, ideal case.
Top: axial elastograms; bottom: tensor elastograms. Left : bounded case (malign);
right : unbounded case (benign)

with the linear probe. The phantom contained lesions three times stiffer than
the background. By so they can be detected on elastograms. The result is
shown in Fig. 7

5 Discussion

The decomposition of the displacement gradient matrix in the strain tensor
and the vorticity yields the tensor visualization of the first and the scalar rep-
resentation of the second. The color-coded ellipses representation of the strain
tensor has a big potential in studying the elastic behavior of tissues. The ex-
periments presented in this work show a homogeneous axially compressed
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Fig. 6. Tensorial images overlaid on the axial strain. Comparison of the virtual
phantom between the ideal case and the US simulation. Top: Ideal case; bottom:
US simulation; Left : bounded case (malign); right : unbounded case (benign). Note
that the tensor field dimensions are different between the ideal case and the US
simulated phantoms because several ultrasonic beams cover the areas corresponding
to the nodes of the FE, resulting in the elliptical shape of the inclusions

target with symmetrical boundary conditions, where the color coding of the
ellipses seems to be trivial, but other settings such as antisymmetric boundary
conditions may show its potential utility. Beside the color-coded information
about the stretching or shortening of the tissue locally, the ellipses present the
principal directions of deformation, their magnitude, and the ratio between
these magnitudes. While the scalar representations show the deformation in
axial or lateral directions, the ellipses show the magnitude and also the direc-
tion in which the tissue is deformed the most at that point. Many applications
in different elastographic modalities such as intravascular elastography may
be favored by the tensorial representation, for example, detecting calcification
in the arteries [14]. Further investigation has to be done to find other ways
to visualize the strain tensor in elastography suitable to handle both the in-
formation and the utility for the physicians, extracting information clinically
useful for the diagnosis and prognosis of diseases such as breast and prostate
cancer.
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Fig. 7. Tensorial image overlaid on the axial strain mapped to colors for commercial
CIRS phantom (tissue-mimicking commercial breast). The inclusion appears in blue,
less axial strain meaning a harder tissue. In this area the ellipses (painted in black
for compression) are smaller than at the surrounding material

Fig. 8. Tensorial images filtering. Top: bounded case (malign); bottom: unbounded
case (benign). Left : noisy data (US simulation); right : anisotropically filtered data
after regularization

Although there are studies [7, 9] showing differences between malignant
and benign tumors appreciated in axial strain and shear strain elastograms,
the vorticity isolates the information about rotation in the deformation tensor
and might contribute in the diagnosis and prognosis of in vivo cancers (e.g.,
breast and prostate), what have not been assessed, as far as we know, in other
studies in elastography.
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5.1 Real and Estimated Vorticity

In Fig. 9, we have included a representation of the ideal vorticity, meaning
that we have computed the output of the FEA software without simulating
the ultrasound. This image shows a ring similar to those found in shear elas-
tograms [9, 29], presenting diagonal symmetry too. In our case, black or white
represent clockwise or anti-clockwise rotation. This effect is due to the behav-
ior of the material around the inclusion. As the background absorbs more
relative displacement when compressed (softer material), it seems intuitive to
consider that it will slip around the inclusion; clockwise at the right and anti-
clockwise at the left, as if the inclusion stayed at the same position. However,
at the lower part of the inclusion the rotation is opposed to the former. The
Poisson’s effect describes the lateral displacements due to the axial deforma-
tion. For this case of symmetric boundary conditions, the lateral stretching of
the background to both sides of the target makes it easy to understand the
direction of the rotations as they appear in the Fig. 10.

The vorticity image of the US simulated response of the phantom yields a
similar result, this time with the inherent noise of the US. Diagonal symmetry
can also be appreciated; the direction of the rotation can be assessed with
predominant positive or negative values in each quadrant of the ring at the
boundary of the inclusion.

5.2 Effect of Boundary Conditions

As related in Sect. 3, part of this research was motivated by the results in the
displacement images such as Fig. 3, with nonsymmetric boundary conditions
that make the inclusion rotate when it is not bounded to the background.
When these boundary conditions are symmetric, in theory, the inclusion would

Fig. 9. Vorticity images for the unbounded case (benign) with symmetric boundary
conditions. Left : ideal image. right : and the same image for the ultrasound simula-
tion. One may observe the ring that also appears for the axial or the shear strain
images, but this time isolated from the rest of the parameters
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Fig. 10. Rotation scheme. The circle represents the inclusion, and the lines are
analogous to a flow, in our case the stretching of the background due to Poisson’s
effect. The arrows inside the circle show the directions of the background’s rotation
with respect to the inclusion

Fig. 11. Vorticity images. Left : bounded case; right : unbounded case with nonsym-
metric boundary conditions. For the bounded case the vorticity is homogeneous (for
both the inclusion and the background). For the unbounded case with nonsymmetric
boundary conditions, it only appears as ring at the side where the target is free to
move

not rotate due to the lateral equilibrium of the force system. However, vorticity
keeps showing information, due to its infinitesimal considerations exposed in
Sect. 2.

Comparing the Figs. 9 (right) and 11 (right), we can explain how the
boundary conditions affect the vorticity images and other elastographic rep-
resentations. The former figure has symmetric boundary conditions, being the
target free to move in both laterals. On the contrary, at the latter image, at
the left side of the target we have imposed lateral movement equal to zero. The
applied compression is pure axial and symmetric, but this time, as the target
cannot stretch to the left, the whole lateral deformation occurs towards the
right. This yields, as it can be seen in Fig. 11 (right), higher values of vorticity
on the right of the inclusion, whereas the diagonal symmetry encountered in
the former image has disappeared.
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5.3 Effect of Noise

We have introduced in the phantom study the effect of the noise produced
by the acquisition equipment. The figures presented are the output of the
simulated US response of the target after being processed with the elastog-
raphy algorithm. We added to the US simulations random noise. Results are
accurate enough to detect variations in the tensor representation as well as
in vorticity, when the contrast ratio (9) between the inclusion and the back-
ground is 3 or higher. The effect of the contrast ratio is discussed in the next
point. Regarding noise, in vivo elastograms are expected to behave similar to
those presented here. Studies about the influence of noise in the detection of
lesions using elastography can be found in [3].

Contrast Ratio =
Elastic Modulus of the Inclusion

Elastic Modulus of the Background
. (9)

5.4 Effect of Contrast Ratio

We have executed the experiment for three different contrast ratios: 1.25, 2,
and 3 (Fig. 12). The bounded case shows no differences for the three cases,
and the visualization result is that shown in Fig. 9 (top left); an homogeneous
image. In Fig. 13, it can be noticed that vorticity images with a contrast
ratio lower than 3 are much noisier, making it difficult to distinguish between
different rotational behaviors. However, as we present in Fig. 14, vorticity
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Fig. 12. Vorticity against depth (in pixels) for the same representative column
(passing through the inclusion at its right) for the three different contrast ratios
between the inclusion and the background. Blue: contrast ratio of 1.25; red : contrast
ratio of 2; green: contrast ratio of 3
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Fig. 13. Vorticity images for different contrast ratios between the inclusion and the
background. Left : contrast ratio of 1.25; center : contrast ratio of 2; right : contrast
ratio of 3. Note the different scales of the images in order to visualize each case
better

Fig. 14. Vorticity’s median with its standard deviation and maximum value for the
three different contrast ratios between the inclusion and the background along one
representative column of the target

Table 1. One-column vorticity statistics

Contrast Ratio 1.25x 2x 3x

Mean −0,0002 −0,0003 0,0002
Median 0,0009 0,0000 −0,0009
Deviation from Median 0,0144 0,0091 0,1348
Maximum Value 0,0153 0,0091 0,1339

has higher values at the boundary of the unbounded inclusion for the three
contrast ratios. This figure shows the statistical values of the vorticity in one
representative column of the image matrix, the same column for the three cases
(Summarized in Table 1). The column passes through the inclusion where
vorticity holds higher values at the boundary with the background. In the case
where the inclusion is three times stiffer than the background, the deviation
from the median, and therefore the difference from the background, is one
order higher than in the other two cases. Appropriate processing of the image
might yield results where this parameter can assess rotations at the target.
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6 Conclusion and Ongoing Research

Other works visualize scalar values such as axial strain, shear strain, and
Poisson’s ratio, and have shown the usefulness of the information contained
in them to assess the mobility of the tumor and therefore its malignancy [7,
9]. As the strain tensor integrates these parameters, its representation may
provide new criterions and additional information that complements the scalar
images. There might be some cases where the scalar images do not give enough
information for the characterization of the tumor due to the complexity of this
issue, which motivates our research. Vorticity isolates the information about
rotation in the deformation tensor and may also contribute to the diagnosis
and prognosis of in vivo cancers (e.g. breast and prostate), what have not
been assessed, as far as we know, in other elastography studies.

Our on-going research deals with the use of new algorithms to estimate
accurate strain and vorticity tensor fields and their filtering. Commercial and
gelatin phantoms and clinical validation are under study, as well as other
tensorial data representations that can be extracted from the mathematical
approach presented here.
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Summary. Structure tensors are a common tool for orientation estimation in im-
age processing and computer vision. We present a generalization of the traditional
second-order model to a higher-order structure tensor (HOST), which is able to
model more than one significant orientation, as found in corners, junctions, and
multichannel images. We provide a theoretical analysis and a number of mathemat-
ical tools that facilitate practical use of the HOST, visualize it using a novel glyph
for higher-order tensors, and demonstrate how it can be applied in an improved
integrated edge, corner, and junction detector.

1 Introduction

The second-order structure tensor, formed as the outer product of the image
gradient with itself, is a common tool for local orientation estimation. Since it
was first introduced for edge and corner detection [1], it has been applied to a
wide variety of problems in image processing and computer vision, including
optic flow estimation [2], image diffusion [3], texture segmentation [4], image
inpainting [5], and image compression [6].

Previous extensions include a generalization to vector- and tensor-valued
images, which goes back to an idea of Di Zenzo [7], a modification to detect
spiraling, cross-like, and parabolic shapes [8], and the introduction of nonlinear
local averaging [9], which led to nonlinear structure tensors [10].

It is a known limitation of the traditional structure tensor that it can only
represent a single dominant orientation. Recently, there have been attempts
to overcome this: Arseneau and Cooperstock [11] have placed second-order
structure tensors in discrete directional bins and derived parameters of multi-
modal directional distribution functions from them. Their work concentrates
on lifting the constraint of antipodal symmetry (i.e., they treat direction v
differently than direction −v), a property that our approach preserves. More-
over, they use the structure tensors only as an intermediate representation,
finally reducing them to two scalar parameters for each direction.
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Herberthson et al. [12] have used outer products to handle pairs of orien-
tations. However, their approach is specific to the case of two orientations: It
neither generalizes to more than two directions, nor does it indicate cases in
which representing a single orientation is sufficient.

In our present work, we present a generalization of the second-order struc-
ture tensor to a higher-order tensor model, which is able to capture the orien-
tations of more complex neighborhoods, for example, corners, junctions, and
multivalued images. The tensor order allows to specify the maximum com-
plexity the structure tensor can represent and can be chosen based on the
requirements of a given application.

This chapter is structured as follows: Section 2 introduces our new higher-
order structure tensor (HOST). In Sect. 3, we present a novel glyph for higher-
order tensors and use it to visualize first experimental results. A theoretical
analysis and a number of mathematical tools that help to use the HOST in
practice are presented in Sect. 4. They include an efficient representation of the
structure tensor, an alternative representation as a truncated Fourier Series,
a generalization of the matrix trace and the eigenvector decomposition, and
an algorithm to extract contrast extrema from a higher-order tensor represen-
tation. Section 5 shows a proof-of-concept application, in which the HOST is
used for an improved integrated edge and junction detection. Finally, Sect. 6
concludes this chapter and points out directions of future research.

2 A Higher-Order Structure Tensor

The standard second-order structure tensor J is given by the outer product
of the image gradient ∇f with itself [1]:

J := ∇f∇fT . (1)

The structure tensor representation is independent of the sign of ∇f . Thus, it
can be averaged over a neighborhood σ without canceling gradients that have
the same direction, but opposite orientation. This spatially averaged matrix
Jσ describes local image structure. Its principal eigenvector indicates the di-
rection of largest contrast. However, the matrix representation is insufficient if
there is more than one dominant direction in a neighborhood. For example, a
structure tensor Jσ which describes two orthogonal, equally strong directions
will have two equal eigenvalues and no longer indicate a principal direction.

This effect is avoided by a higher-order structure tensor J , formed by re-
peating the outer product. Taking the outer product of a vector v with itself l
times will be written v⊗l. It yields an order-l tensor, indexed by {i1, i2, . . . , il}:(

v⊗l
)
i1i2...il

:= vi1 · vi2 · · · vil
. (2)

To ensure antipodal symmetry of the resulting tensor, l is chosen to be even.
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As an alternative to analyzing its eigenvectors, a structure tensor J can
be interpreted through its induced homogeneous form J(u), which specifies
the local contrast in a given direction u and will thus be referred to as a
contrast function. When u is a unit vector, J(u) is defined by repeating the
inner tensor–vector product of J and u until a scalar is left, that is, l times.
In n dimensions, this can be written as

J(u) :=
n∑

i1=1

n∑
i2=1

· · ·
n∑

il=1

(J )i1i2...il
ui1ui2 · · ·uil

. (3)

For a second-order structure tensor, J is unimodal, which reflects the fact
that it is suitable to model only one dominant direction. For higher orders, J
can become multimodal, which allows for a more accurate representation of
corners, junctions, and multivalued images.

We consider it a sensible requirement that the values of the contrast func-
tion should remain comparable, independent of the tensor order that we use.
When evaluated in direction of the gradient, the contrast function yields the
squared gradient magnitude in the second-order case. However, taking the
outer product l times would raise the gradient magnitude to the lth power.
We compensate this by scaling the gradient vector beforehand. An order-l
structure tensor J that reduces to the well-known second-order tensor J for
l = 2 is then given by

J :=

(
∇f

|∇f | l−2
l

)⊗l

. (4)

In some applications, it is beneficial to have a contrast function that gives the
nonsquared gradient magnitude [13]. This can be achieved by replacing the
exponent l−2

l by l−1
l in (4).

3 Glyphs for Higher-Order Tensors

The visualization of higher-order tensors has previously been addressed in the
context of generalized diffusion tensor magnetic resonance imaging (DT-MRI)
[14], where the induced homogeneous form describes a directionally dependent
diffusivity coefficient. In this context, generalized Reynolds glyphs are so far
the only glyph-based visualization technique [14, 15]. Let S be the unit sphere
and J the homogeneous form as defined in (3). Then, these glyphs are formed
by the set of points {J(u)u |u ∈ S}, which directly depicts the contrast profile
of the tensor. However, these glyphs have a round shape around their maxima,
which makes their exact direction difficult to see. To compensate this problem,
Hlawitschka and Scheuermann [15] suggest to add arrows that point to the
maxima.
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3.1 Higher-Order Tensor Glyphs with Maximum Enhancement

The diffusion ellipsoid is accepted as the standard glyph for second-order
diffusion tensors, but the Reynolds glyph does not reduce to it for l = 2.
Since the tensor ellipsoid can be constructed by transforming the unit sphere
under the linear mapping induced by the tensor, it is natural to generalize it
by taking the inner tensor–vector product l − 1 times, until a vector is left.
We denote the inner product J • u, where

(J • u)i1i2...il−1
:=

n∑
il=1

(J )i1i2...il
uil

(5)

and use the shortcut notation J l−1• u to indicate that we repeat it l−1 times.

Then, the surface of our glyph is given by the points {J l−1• u |u ∈ S}.
As the 2D examples in Fig. 1 illustrate, the extrema of these new glyphs

coincide with the extrema of the Reynolds glyphs. However, they develop
sharp features around the maxima, at the cost of a smoother shape around
the minima. Consequently, we name them higher-order maximum enhanced
(HOME) glyphs. In examples two and three, the HOME glyphs immediately
make clear that the respective tensors are not axially symmetric, a fact which
the Reynolds glyph may not reveal at first glance. Since we are generally more
interested in the maxima than in the minima of the contrast function, we use
the HOME glyphs in the remainder of this chapter.

3.2 Experimental Results

We now present some experiments to confirm that higher-order structure ten-
sors indeed give a more accurate representation of junctions and multivalued
images. Our first experiment uses simple junctions in synthetic grayscale im-
ages. Derivatives are calculated by convolution with a derivative-of-Gaussian
filter (σ = 0.7). After HOSTs of different order l have been computed, their
information is propagated to a local neighborhood by convolution with a
Gaussian kernel (ρ = 1.4).

Figure 2 shows the test images, with the position of the displayed structure
tensor marked by a cross. The results show that a HOST of order l = 4 is

Fig. 1. Three tensors of order six, visualized with Reynolds glyphs (a) and our new
HOME glyphs (b). In (b), maxima of the contrast function appear more localized



A Higher-Order Structure Tensor 267

(a) Orthogonal edges are clearly distinguished with order l = 4.

(b) For non-orthogonal edges, higher orders result in more accurate
representations.

Fig. 2. Two junctions in grayscale images and the corresponding structure tensors.
For orders l > 2, the directions of the meeting edges can be represented

Fig. 3. In a color image, the channel-wise gradients may point into different direc-
tions. Higher-order structure tensors can be used to model this situation accurately

sufficient to represent two edges that cross orthogonally, while the traditional
structure tensor (l = 2) does not distinguish any particular direction. In the
nonorthogonal case, the traditional model indicates a principal direction, but
it does not correspond to any gradient found in the image. In contrast, the
HOME glyph of order four gives an impression of the involved directions
and Sect. 4.4 will show that the generalized eigenvectors of the HOST give a
good approximation of the gradient directions in this case. However, a clear
separation of the maxima in the contrast profile requires higher orders.

The second experiment is based on a natural color image. Derivatives are
now calculated channel-wise and according to the conventional generalization
to multi-channel images, the HOSTs of the red, green, and blue color channels
are added. In this case, we do not propagate the structure information (ρ = 0).

For comparison, Fig. 3 also shows the gradients of the individual color
channels. Again, the structure tensor of order four gives a much better impres-
sion of the dominant directions than the traditional model. To demonstrate
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the feasibility of going to very high tensor orders, we also present the repre-
sentation with l = 50.

4 A Mathematical Toolbox

4.1 Efficient Representation

An order-l tensor in n dimensions has nl tensor channels, which becomes
impractical already for moderate l. However, higher-order structure tensors
are totally symmetric, that is, invariant under permutation of their indices.
This reduces the number of independent channels to N =

(
n+l−1

l

)
, which

means merely linear growth for n = 2 (N = l + 1) and quadratic growth for
n = 3.

With some additional notation, it is possible to evaluate J(u) directly
from this nonredundant representation: Call the ith nonredundant element
[J ]i, stored in a zero-based linear array [J ]. Let νi,k ∈ {0, 1, . . . , l} denote
the number of times k ∈ {1, 2, . . . , n} appears as an index of the ith element.
The multiplicity of element i, denoted μi, is the number of times it appears
as a channel of the original tensor. For n = 2, μi =

(
l

νi,1

)
, for n = 3, μi =(

l
νi,1

)(
l−νi,1
νi,2

)
. Then, (3) can be rewritten as

J(u) =
N−1∑
i=0

μi[J ]iu
νi,1
1 u

νi,2
2 · · ·uνi,n

n . (6)

For n = 2, we chose indices such that νi,1 = l − i (e.g., [J1111,J1112, . . .]).

4.2 Relation to Truncated Fourier Series

From generalized DT-MRI, it is known that using a higher-order tensor model
in 3D is equivalent to approximating the diffusivity profile with a truncated
Laplace series [14]. We now show that the corresponding result in 2D is a
relation of higher-order tensors to truncated Fourier Series. This fact will
serve as the basis of the methods in Sects. 4.3 and 4.5.

Consider a Fourier Series, truncated after order l:

f(φ) =
1
2
a0 +

l∑
k=1

ak cos(kφ) +
l∑

k=1

bk sin(kφ). (7)

Setting ak := bk := 0 for odd k leaves a l + 1-dimensional vector space of
functions. For n = 2, (6) can be rewritten in polar coordinates:

J(φ) =
l∑

i=0

[J ]i

(
l

i

)
cosl−i φ sini φ. (8)
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Let us regard [J ]i as coefficients and
(

l
i

)
cosl−i φ sini φ as basis functions. We

now show that these basis functions span the same space as the truncated
Fourier Series.

Proof by induction on order l. Let {fk} denote the basis functions of a
truncated Fourier Series in which only even multiples of φ are allowed:

fk :=

⎧⎪⎨
⎪⎩

0.5 if k = 0
cos((k + 1)φ) if k odd
sin(kφ) if k even (k �= 0).

Likewise, tl
k is the kth basis function of an order-l tensor:

tl
k :=
(
l

k

)
cosl−k φ sink φ.

For l = 0, both the Fourier Series and the tensor basis represent constant
functions and f0 = 0.5t0

0. Assume that the functions that can be represented
using {fk} with k ≤ l are equivalent to the functions represented by {tl

k}.
Further, assume that we know how to express the Fourier basis in terms of
the tensor basis. Then, we can show that the same assumption also holds for
l + 2: Observe that

cosl−i φ sini φ =
(
cos2 φ+ sin2 φ

)
cosl−i φ sini φ

= cosl+2−i φ sini φ+ cosl−i φ sini+2 φ

and that the latter functions are proportional to functions in {tl+2
k }. Thus,

we can express the first l + 1 Fourier basis functions in terms of {tl+2
k } by

replacing each occurrence of tl
k in their known representation by

tl
k =

(l + 2− k)(l + 1− k)
(l + 2)(l + 1)

tl+2
k +

(k + 2)(k + 1)
(l + 2)(l + 1)

tl+2
k+2.

It remains to be shown how to express fl+1 and fl+2 in terms of {tl+2
k }.

For this, we use trigonometric identities for multiple angles:

fl+1 = cos((l + 2)φ) =

l/2+1∑
i=0

(−1)i
(

l + 2

2i

)
cosl+2−2i φ sin2i φ =

l/2+1∑
i=0

(−1)itl+2
2i

fl+2 = sin((l + 2)φ) =

l/2∑
i=0

(−1)i
(

l + 2

2i + 1

)
cosl+1−2i φ sin2i+1 φ =

l/2∑
i=0

(−1)itl+2
2i+1.

 !
Our proof is constructive in the sense that it implies a recursive method

to construct a change-of-basis matrix. For reference, Table 1 presents the
relations for l = 2 and l = 4.
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Table 1. Relation of Fourier coefficients and tensor components for orders l = 2
and l = 4

l = 2 a0 = [J ]0 + [J ]2 a2 = 1
2
[J ]0 − 1

2
[J ]2 b2 = [J ]1

l = 4 a0 = 3
4
[J ]0 + 3

2
[J ]2 + 3

4
[J ]4 a2 = 1

2
[J ]0 − 1

2
[J ]4 b2 = [J ]1 + [J ]3

a4 = 1
8
[J ]0 − 3

4
[J ]2 + 1

8
[J ]4 b4 = 1

2
[J ]1− 1

2
[J ]3

A method to compute these relations for general l is given in the text

4.3 Generalized Tensor Trace

The second-order tensor trace has been used as a substitute of the squared
gradient magnitude [16]. For the higher-order case, Özarslan et al. [17] have
proposed a generalized trace operation “gentr” in 3D, which is based on in-
tegrating J over the unit hemisphere Ω and reduces to the standard matrix
trace for l = 2:

gentr(J ) :=
3
2π

∫
Ω

J(u) du. (9)

In the 2D case, Ω is one half of the unit circle and the normalization factor
3
2π is to be replaced with 2

π . Since the generalized trace of an order-l 2D
tensor equals its Fourier coefficient al

0, we can use the results from Sect. 4.2
to verify that

gentr(J ) = al
0 = 2

l/2∑
i=0

[J ]2i
(l − 1)!!

(l − 2i)!! · (2i)!! , (10)

where l!! is the double factorial, that is, the product of integers in steps of
two.

In the definition of J , we scaled the gradient magnitude such that the
maximum value of J is invariant to the tensor order. However, maxima become
narrower with increasing l, so the generalized trace decreases. It follows from
(10) that the generalized trace of an order-l structure tensor equals

gentr(J ) = 2
(l − 1)!!
l!!

|∇f |2. (11)

4.4 Generalized Eigenvector Decomposition

Many applications of the second-order structure tensor depend on its spectral
decomposition into eigenvectors and eigenvalues (e.g., [3, 5, 6, 16, 18]). In
this section, we introduce the Cand (Canonical Decomposition), which can
be regarded as a generalized eigen decomposition for higher-order tensors and
has first been studied by Hitchcock [19, 20]. A review in the context of higher-
order statistics and some new results are given by Comon et al. [21, 22].
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We concentrate on the symmetric Cand (sCand), which decomposes a
symmetric order-l tensor J into a sum of r outer powers v⊗l

i of unit vectors
vi, i ∈ {1, 2, . . . r}, scaled with λi:

J =
r∑

i=1

λiv⊗l
i . (12)

For l = 2, (12) reduces to the spectral decomposition, where λi are the eigen-
values and vi the eigenvectors. It can be shown that any symmetric higher-
order tensor J has a sCand [22]. In analogy to the matrix rank, the symmetric
rank RS of J is defined as the smallest number r for which a sCand exists.
In dimension n = 2, it holds that RS ≤ l [21].

The Cand is a current research topic and some theoretical results have
been obtained. However, practical algorithms for efficient computation are
rare. Fortunately, Comon et al. [21] present an algorithm that works for n = 2
and thus can be applied to our HOSTs. It is outside the scope of this chapter
to review the full theory required to derive the algorithm. For our experiments,
we have reimplemented the Matlab code given in [21] in C, using routines
from Lapack

3 and the numerical recipes [23].
The algorithm returns pairs of λi and vi, where the vi are not normalized.

While it appears trivial to convert this result to the canonical form, the al-
gorithm proves numerically unstable for vectors vi, which are nearly aligned
with the y-axis: In such cases, λi tends to zero, while the magnitude of vi

tends to infinity. We work around this problem by reconstructing a tensor J ′

only from those vi which have a reasonable magnitude. Then, the residual
J̃ := J − J ′ can be rotated by 90◦ to obtain the remaining vi. Note that
the tensor rotation only requires a simple permutation of its elements and
some sign changes: In the array representation from Sect. 4.1, it is sufficient
to reverse the array and to multiply all entries [J ]i with an odd index i by −1.

Figure 4 visually represents (12) for a particular HOST. Even though the
gradient directions in the neighborhood of the considered pixel are too close
to be resolved in the contrast profile of an order-four tensor, they are well
approximated by the two largest generalized eigenvectors.

Fig. 4. Generalized eigenvectors can be used to recover individual directions from
a higher-order structure tensor

3 http://www.netlib.org/lapack/
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Our prototype implementation found the sCand of 160, 000 order six
structure tensors from a natural color image in around 2.5 s on a 2 GHz
Athlon 64.

4.5 Extrema of the Contrast Function

A frequent problem when dealing with higher-order structure tensors will be
to find the angles at which the contrast function J attains an extremum.
In the second-order case, maxima and minima are given by the directions
of the major and minor eigenvectors, respectively. However, the generalized
eigenvectors do not in general coincide with maxima in the contrast function.

To find the extrema of the contrast function, we use the Fourier Series
representation from Sect. 4.2. This makes it easy to take derivatives of J ,
since they are again Fourier Series of the same order, whose coefficients are
straightforward to compute.

4.5.1 Accelerating the Brute Force Method

Extracting extrema requires to find angles φ at which J ′(φ) = 0. The obvious
method to find such points for an arbitrary differentiable function J is to
sample its derivative with some resolution r to identify intervals in which it
changes sign and to refine the result to a desired accuracy a by a binary search
for the sign change on these intervals.

This method may miss pairs of extrema whose distance is less than the
sampling resolution r. Fortunately, such pairs are usually only minor local vari-
ations in the contrast function, which are of no practical interest (cf. Fig. 5),
so we found r = 2◦ sufficient for structure tensors of order six. For higher
orders, denser sampling will be necessary, as peaks in the contrast function
become sharper.

The computational cost of this method is dominated by the cost of evalu-
ating the derivative J ′. Evaluating (7) directly involves l sines and l cosines.
A recursive formulation exists, which is known alternatively as Clenshaw’s
algorithm or as the Goertzel–Watt algorithm and requires only a single sine
and cosine. It is given by the recursion rule

ul+1 = ul+2 = 0 (13a)
ur = fr + 2ur+1 cosφ− ur+2 with r = l, l − 1, . . . , 1, (13b)

where fr := ar if the sum of cosines is to be computed, fr := br for the sum
of sines. From u1 and u2, the final result is determined as

l∑
k=1

ak cos(kφ) = u1 cosφ− u2 and
l∑

k=1

bk sin(kφ) = u1 sinφ. (14)

Gentleman [24] has shown that this method magnifies roundoff errors when
evaluated near φ = kπ (k ∈ Z) and can produce unusable results for large
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Fig. 5. In a Fourier Series, a small ε (here, ε = 10−10) can make the difference
between a pair of extrema, a saddle, and no stationary point. The top row shows
one full period, while the bottom row gives a close-up of the affected extrema

orders l. Newbery [25] suggests to adaptively perform a phase shift of π/2 to
avoid such cases. However, an experimental comparison of direct evaluation,
the original and the modified version of Clenshaw’s algorithm indicates that
the error is tolerable for the moderate values of l that occur in our context: For
160, 000 structure tensors of order six from a natural color image, all methods
produced identical results (with r = 2◦ and a = (2−7)◦, at single precision).
Even with l = 50, all methods gave the same extrema, with identical results
in more than 99% of the cases and a maximum angular deviation of (2−7)◦ in
the rest of them. Thus, we chose the unmodified Clenshaw algorithm, which
gave a speedup factor of 2.2 for l = 6.

4.5.2 A Faster Method

We now present a more efficient algorithm which exploits the fact that even
higher derivatives of J are easy to evaluate. The basic idea of the method is
to expand J ′ into a Taylor series J̃ ′, which is terminated after degree three
to obtain a polynomial that can be solved analytically in a numerically stable
manner [23]. Then, the error bounds of the expansion define a corridor around
the x-axis. For intervals in which J̃ ′(φ) is outside this corridor, we can be sure
that J ′(φ) �= 0, that is, they do not contain an extremum.

It is possible to recurse on the (now shorter) intervals in which J̃ ′(φ) lies
within the corridor; this allows one to identify extrema which are so close
that finding them with the brute force approach would be computationally
infeasible. For example, finding the pair of extrema that is shown in Fig. 5(a)
would require sampling at r ≈ (2−10)◦. In contrast, our algorithm needs only
10 Taylor expansions to identify all four extrema.

While it is nice to be able to find such small extrema, they are not impor-
tant in our context, so we would prefer to find the major ones more efficiently.
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As intervals get down to a certain width, the computational effort of reduc-
ing them further via the Taylor expansion exceeds the cost of the brute force
method. A simple way to combine both methods is to use the Taylor expan-
sion once to cut down search space, and to run the brute force method on the
remaining intervals. In the above experiment with order six tensors (r = 2◦,
a = (2−7)◦), this gave a speedup of factor two, reducing the total time for
processing all 160, 000 tensors on a 2 GHz Athlon 64 processor to 2.2 s, which
is about as fast as a sCand on the same data. The speedup is a function of
desired angular resolution and higher for smaller r (factor 7.5 for r = 0.1◦).

4.5.3 Implementation of the Faster Method

Since we cannot expect a polynomial of degree three to reasonably approxi-
mate a sine of frequency l in an interval larger than π/l, we initially partition
[0, 2π) into 2l equal intervals for a Fourier series of order l. For each of these
intervals, the Taylor expansion is performed by evaluating the higher deriva-
tives at its center φ0. The required Fourier coefficients are precomputed once.
For a third-order approximation, the error bound Δ is

Δ =
J (5)(φ)

4!
(φ− φ0)4 (15)

for some φ within the interval. Taking the order-five derivative in this expres-
sion is appropriate, since we approximate J ′. To obtain a simple, safe estimate
of Δ, the Fourier coefficients ak and bk of J (5)(φ) are used to state that

J (5)(φ) ≤
l∑

k=1

√
a2

k + b2k (16)

and half the interval length is taken for (φ− φ0).
Now, the roots of J̃ ′−Δ and J̃ ′ +Δ give the intersections with the upper

and lower error bound, respectively. Starting from the value of J̃ ′ at the left
interval boundary, we can go through the sorted error bound intersections to
determine the intervals in which J̃ ′ is within the error corridor. Within some
intervals, J̃ ′ may lie fully inside or outside the corridor.

5 Integrated Edge and Junction Detection

Given a grayscale image, edges can be seen as lines across which local contrast
is high. Then, corners are points in which edges bend sharply, and junctions
are points in which two or more edges meet. Corner detection has been one of
the first applications of the structure tensor [1]. More recently, Köthe [18] has
presented an algorithm that uses the structure tensor for “integrated” edge
and junction detection.
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(a) (b) (c) (d)

Fig. 6. Subfigure (b) shows edges and junctions extracted from (a) using second-
order structure tensors. (c) and (d) illustrate that edges break down as the tensor
becomes isotropic near junctions (marked with circles)

Fig. 7. Scheme of the tracking process that extracts edges and junctions simulta-
neously

While this method is a considerable improvement over previous ap-
proaches, it finally decomposes the structure tensor field into an “edge” and
a “junction” part, which are processed by separate algorithms to produce the
respective edge and junction maps. Because of this, edges break down near
junctions, it is not always clear which edges are connected by a junction, and
isolated or duplicate junctions can occur (cf. Fig. 6).

Unlike the second-order structure tensor, the HOST at a junction holds
enough information to find the adjacent edges. This allows one to extract
edges, corners, and junctions in a single, fully integrated process. The funda-
mental idea is similar to tracking lines in higher-order tensor fields [15], except
that we assume that edges are orthogonal to contrast maxima.

Figure 7 illustrates the process of tracking edges in a HOST field: Start-
ing from a seed with locally maximal generalized trace, we integrate edges
orthogonal to the major contrast indicated by the tensor (red arrow). When
a secondary peak in the contrast function attains a local maximum, we insert
a junction and start new edges from it (yellow arrows).

While standard hyperstreamline integration techniques can be applied by
interpolating the higher-order tensors channel-wise, we are typically not in-
terested in edge maps that have a greater resolution than the structure tensor
grid (note, however, that it is advisable to sample the structure tensors at
twice the image resolution [18]).

Thus, we implemented a simple tracking algorithm that works on the given
grid. For each edge, it outputs a list of sub-pixels that belong to it, and each
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(a) (b) (c)

Fig. 8. With higher-order tensors, edges can be traced through and assigned to
junctions, which allows easy classification of corners (green) and junctions (red)

junction holds references to the edges it connects. This information allows for
an easy classification of corners and junctions, which are shown in different
colors in Fig. 8, based on the number of incident edges.

Integration over a Gaussian neighborhood propagates the contrast from
edges beyond corner points, which leads to short “phantom” edges that make
corners appear as junctions. To avoid such artifacts, we reject edges along
which the HOST indicates multiple directions in all sub-pixels. Also, edges
may reach existing junctions through a cycle (like in Fig. 8(c)), and we need
to connect them explicitly to such junctions.

Figure 8 presents a result of our method with HOSTs of order l = 6. The
present algorithm gives superior results on synthetic images and demonstrates
the applicability of the methods introduced in Sect. 4. However, a version
that is robust enough for natural images has to be left for future research. In
particular, we plan to explore the potential of using generalized eigenvectors
instead of contrast maxima to steer the tracking.

Our implementation of Köthe’s algorithm took 0.3 s for the shown example
image (including his anisotropic averaging), while our method needed 0.9 s,
again including computation and integration of the tensors. The original image
size was 300× 300 pixels, giving a 599× 599 sub-pixel structure tensor field.

6 Conclusions and Future Work

In the present work, we have shown how higher-order tensors can be used to
represent the average of orientations in greater detail than it is possible using
traditional second-order structure tensors. We have introduced the notions,
definitions, and mathematical tools required to work with such higher-order
structure tensors efficiently and to visualize them appropriately.

While Sect. 5 demonstrates the advantages of the HOST for integrated
edge and junction detection, it is intended as a proof of concept for the in-
troduced methods, not as the ultimate goal of our research. Consequently,
our next step will be to explore the potential of the HOST in several im-
age processing and computer vision applications. We have already conducted
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some promising experiments on using HOSTs for texture segmentation and
for steering image diffusion.

All results in this chapter are in 2D. Some of the theory (Sect. 2) and
practical methods (Sects. 3 and 4.1) easily carry over to three dimensions, or
equivalents can be taken from the literature (Sects. 4.2 and 4.3). However,
efficient methods for the sCand with n = 3 and for finding the maxima of 3D
contrast functions are still missing and probably require substantial research.
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Summary. In this chapter, a new rotation-invariant generalization of the analytic
signal will be presented to analyze intrinsic 1D and 2D local image structures. By
combining differential geometry and Clifford analysis, the monogenic curvature ten-
sor can be derived to perform a split of identity and to enable simultaneous esti-
mation of local amplitude, phase, main orientation, and angle of intersection in a
monogenic scale-space framework.

1 Introduction

The processing and analysis of images and image sequences is a well estab-
lished technology, although not fully satisfactory in some respect. Contem-
porary stated limitations have its reasons in the lack of a well founded and
powerful theory of multidimensional signals. Because of the different topology
of multidimensional signals in comparison to one-dimensional ones, serious
consequences result with respect to formulation of a multidimensional signal
theory. A signal theory should support the modeling of signal structures we
are interested in and the operations we are applying to cope with certain
tasks at hand. For both that signal theory should deliver useful represen-
tations. For instance, it is well known that the complex-valued 1D Fourier
transform enables a global view on the parity symmetry decomposition of a
1D function. Less known is the fact that this fails in case of the 2D Fourier
transform because the possible symmetries are partially covered in the real
and imaginary parts of the spectrum [42]. The central problem of modeling is
the so-called representation problem. That is the problem of giving a certain
concept a useful representation form. To cope with that problem in science
and engineering, algebra as a mathematical language often delivers the right
structure of representations. Also analysis and geometry as other resources
of modeling are tightly related to algebra. Let us give two examples: First,
∗ This work was supported by DFG grant So 320/4-2 (GS,LW) and DFG

Graduiertenkolleg No. 357 (DZ)
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the holomorphic extension of a real-valued 1D function to a complex one
is a well-known method of complex analysis. But doing the same for a nD
function requires another algebraic framework for analysis. The coupling of
analysis with Clifford algebra establishes the Clifford analysis [7] as a useful
approach to multidimensional functions. Second, the tight coupling of geom-
etry with algebra is well-known since Felix Klein. Clifford algebra delivers
algebraic structures for modeling any type of geometry, which is particularly
interesting in the case of multiple dimensions. Hence, we have to take advan-
tage of the achievements in math for handling multidimensional functions.
There are different interesting mathematical sources available, which extend
the representation of real-valued multidimensional signals with the result that
their structure becomes accessible. A well established concept is tensor algebra
as generalization of vector algebra or matrix algebra [10]. Tensors are well-
known as useful representations of geometry [11]. Clifford algebra or geometric
algebra [22] is another concept, which only recently has been considered in
engineering [40]. These algebras constitute other generalizations of the vector
algebra, namely with respect to the representation of higher-order directed
numbers, called multivectors. Both tensor algebras and geometric algebras
deliver rich subspace structures in comparison to vector algebra. An advan-
tage of geometric algebra over tensor algebra is its easier interpretation with
respect to geometric concepts. Some entities contributing to the formulation
of a problem can immediately represent geometry while possessing algebraic
properties. Vice versa, the advantage of tensor algebra over geometric algebra
is its easier numerical realization. Therefore, in practice it may be advanta-
geous to transform expressions from geometric algebra to tensor algebra, see,
for example, [41].

Very important in signal theory is the use of complex numbers. But ac-
cording to our experience, complex numbers are only adequate to model one-
dimensional signals. As already mentioned earlier, in the case of multidimen-
sional signals, the algebraic framework has to be extended accordingly, see, for
example, [42]. While Clifford algebra or geometric algebra supports a global
view onto signal structures, Clifford analysis is useful for a local approach to
signal analysis. The Hilbert transform takes over the role of the Fourier trans-
form in the case of locally expanding a real-valued one-dimensional function
to a complex one. This corresponds to the holomorphic extension in complex
analysis. In Clifford analysis we instead meet the Riesz transform, which de-
livers a Clifford valued expansion of a real-valued multidimensional function.
The resulting representation is called a monogenic function. In both cases
a real-valued function will be completed by a harmonic conjugate which is
in quadrature phase relation to the original real function. This most useful
property will play a leading role throughout this chapter.

In this contribution, we are fusing the concepts of differential geometry
for local image modeling in a tensor representation with the Clifford analysis
concept of monogenic functions. This delivers a representation, called mono-
genic curvature tensor, which will enable local image analysis from one single
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coherent mathematical point of view. The evaluation of the monogenic cur-
vature tensor [48] delivers two curvature related signal representations, which
are specific for either intrinsically 1D or 2D structures. These signal represen-
tations are both generalizations of the well-known analytic signal [20]. From
these Clifford valued signal representations local amplitude and local phase
as local spectral representations as well as some geometric features can be
computed. Because the monogenic curvature tensor is embedded in a mono-
genic scale-space [16], all features derived from it possess their own scale-space
representation. Furthermore, the monogenic scale-space is the unifying frame-
work for the scale related properties of all derived features.

In Sect. 2, we describe the required properties of the wanted signal model
and the difficulties occurring in related work. In particular, we give a short
view on tensor based image analysis. In Sect. 3, we derive the monogenic cur-
vature tensor and will present its evaluation. Finally, we give a short summary
and conclusion in Sect. 4. Note that we will not give an introduction to ge-
ometric algebra or Clifford analysis. Instead, the reader is advised to have a
look at [42] for a short introduction that is specific to the topic of that chapter.
Other necessary hints are given at several places of this chapter.

2 Related Work

2.1 Key Point Detectors and Local Image Features

There are two basic tasks in low-level vision, which are building a bottleneck in
practice of image analysis, although plenty of work has been done over decades
to overcome this situation. These tasks are the detection of points of interest
and the analysis of their structure with respect to the neighborhood by a set
of meaningful features. A detector is a local operator that has to fulfil two
contradictory requirements: good recognition of the structure of interest and
good localization accuracy. While the first one is located in a feature domain,
the second one is located in spatial domain. In the case of LSI-operators and
the frequency space as feature domain, the associated uncertainty principle is
well-known [19]. Other problems with detectors are to model the structures
of interest and to gain some invariance. While in 1D the number of different
structures is quite limited, in 2D it is infinite. With respect to feature descrip-
tors the problem is again to define a meaningful set of features and to gain
certain invariance. Low-level image analysis is always model based. Because
there is no satisfactory theory of multidimensional signal structures, the only
chance is a comparison of different approaches out of a plenty of proposals, see,
for example, [38] and [35]. The most prominent feature detector is SIFT [32].
Its model is very simple and the main bulk of work is shifted to classifica-
tion in a high dimensional feature space. Other types of detectors are based
on second order tensors (or matrices), for example, the structure tensor [17].
This detector in essence represents Gaussian smoothed partial derivatives of
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first order. Another kind of detector is based on the Hessian matrix, which is
related to the curvature tensor of differential geometry [2], see, for example,
[1]. These tensors are using derivatives of first and second order as elements.
Therefore, they either represent gradient or curvature information. Because
they are real-valued, we propose in Sect. 3 to unify the differential geometric
point of view with the representation power of Clifford analysis.

2.2 Required Invariance

The image model we want to formulate should have some invariance prop-
erties. In general, image signals have no invariants in the strong sense of a
quantity that does not change under a specified group of transformations.
But there are some features that only slightly change by moderate changes of
the conditions an image was recorded at. This is called weak invariance. We
use the term invariance instead in such a way that the image representation
we are looking for can cope with all variations of the features of interest and
thus is complete with respect to that concepts of structure descriptions. This
includes another type of invariance, called relative invariance or equivariance.
In the case of equivariance, a systematic change of input data will cause an-
other systematic change of output data. For instance, it is known in signal
processing that a shift of a function in input space will result in an equivalent
phase change in Fourier domain.

2.2.1 Invariance with Respect to Intrinsic Dimension

An image is locally composed of structures of different intrinsic dimension
[50]. If the signal embedding dimension is two (a normal image signal), then a
locally constant signal has intrinsic dimension zero (i0D), a nonbent edge or
line has intrinsic dimension one (i1D), and all other bent structures including
corners, junctions, and end stopping points are of intrinsic dimension two
(i2D). In Fig. 1 these types of intrinsic dimensions are demonstrated for some
simple cases. From left to right follow a constant signal (i0D), an i1D signal
which is always a rotated 1D signal and three different examples of i2D signals.
The intrinsic dimension obviously corresponds to the number of degrees of
freedom necessary to model a function. Responding to either edges/lines or
corners/junctions makes a difference between detectors, which are specific
to intrinsic dimension. The eigenvalue analysis of the structure tensor is a
well-known example. A special nonlinear detector based on a Volterra series
approach which is specific to i2D has been proposed in [29]. On the other
hand, the monogenic signal [14], see also Sect. 2.2, is specific to i1D structures.
There is no detector available that responds to either i1D or i2D structure
with a meaningful and rich set of features. It is well-known that the feature
space spanned by mean and Gaussian curvature enables the classification with
respect to intrinsic dimension [2], see also Sect. 2.4. We use that fact because
we require completeness with respect to that concept.
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Fig. 1. Example functions of different intrinsic dimension

2.2.2 Invariance with Respect to Parity Symmetry

Parity symmetry locally indicates either symmetry or antisymmetry, respec-
tively, even or odd symmetry, of a structure in the case of reflection at a certain
location. This enables, for example, classification as edge-like or line-like struc-
ture in i1D case and similarly in i2D case. Detectors should respond to both
types of symmetry in the same manner but distinguishing. A counterexample
is the structure tensor, which is sensible to edge-like structures because it is
gradient based. Because the first-order derivatives operator represents an odd
function, it can only respond to odd structures in the sense of a matching oper-
ator. Because a second order derivative operator represents an even function,
it responds to even structures. Hence, the combinations of both should deliver
the required invariance. But this method has some drawbacks. Instead, most
easily, parity symmetry can be decided from computing the local phase [42].
This can be achieved by so-called quadrature filters. These detectors consist
of two components which respond to either even or odd symmetry and which
are in quadrature phase relation. That means, their components differ only
by a phase shift of π

2 . While this is an easy task for 1D signals, in 2D case this
is not true. Nevertheless, the Gabor filter [19] is a popular candidate. Only in
the framework of Clifford analysis certain concepts of multidimensional local
phase can be reasonably formulated, because the topological situation can be
modeled with sufficient degrees of freedom and with respect to the relations
existing between these.

2.2.3 Invariance with Respect to Scale

Local image structure is restricted to a certain range of scale, called the intrin-
sic scale. Changing the scale will possibly change all other features. That is,
intrinsic scale is a feature too [30] and a scale-adaptive scheme is advantageous
in some cases. Traditionally, the Gaussian scale-space embedding of feature
detection is used. Regrettably, the only feature that is intrinsic to a Gaussian
scale-space is signal intensity. Only recently the monogenic scale-space has
been proposed [16] as an alternative scale-space concept where local spectral
representations, local orientation, and other geometric features as angle of in-
tersection become features of one single scale-space theory. This result from
Clifford analysis will be adopted here.
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2.2.4 Invariance with Respect to Rotation

Rotation invariance of detectors is an important requirement. Regrettably, the
design of rotation invariant detectors is a nontrivial task. While the structure
tensor and the Laplacian are rotation invariant, all detectors in the past based
on quadrature filters in multiple dimensions were not [28]. The problem was
that in the complex domain there could not be designed an isotropic odd filter,
which is in quadrature phase relation to its even counterpart. Only the Riesz
transform as generalized Hilbert transform turned out to solve that problem in
a Clifford valued domain [14]. This approach will also be used to formulate the
harmonic conjugate part of the monogenic curvature tensor. Orientation is an
important local feature of a structure, which should be estimated in a rotation
invariant way. In case of an i1D structure there are different methods available
for orientation estimation, for example, from the eigenvector analysis of the
structure tensor, respectively, orientation tensor [3] or by using steerable filters
[18]. These approaches do not give access to the other features mentioned in
this section. Therefore, the monogenic signal is the method of choice because
it delivers besides local energy and local phase also local orientation in a
rotationally invariant manner. More complicated is the situation in the case
of i2D structures, which are related to multiple orientations meeting in a
keypoint. Steerable filters can cope with that situation as well [34], while the
structure tensor analysis delivers main and minor orientations, which must
not coincide with actual orientations of involved i1D structures. The same
problems occur with the analysis of the monogenic curvature tensor. In [37],
[21], and [36] different approaches for parametric modeling of corners have
been proposed to cope with multiple orientations. Most interesting is the
generalization of the structure tensor with respect to a multiple orientation
model in [43].

2.2.5 Invariance with Respect to Angle of Intersection

Certain models of i2D structures as corners or junctions are described by
superposition of i1D structures, which meet in a keypoint. Hence, there are
several geometric features describing such model. The most intuitive one be-
sides orientation is the angle of intersection or apex angle. The detector of
i2D structures should respond independent of the angle of intersection. The
proposals in [36] and [43] are invariant with respect to the angle of intersection
and rotationally invariant. In the framework of the monogenic signal a gen-
eralization has been proposed, which is called structure multivector [15]. The
involved model is two perpendicularly superimposed i1D structures. This rigid
model has been generalized by the operator, which delivers the monogenic cur-
vature tensor. Another problem is estimating the angles of intersection in the
case of multiple superimposed i1D structures. All mentioned methods need
to know the number of superimposed patterns. For the assumption of two
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lines/edges with arbitrary but same phase and amplitude, we present a phase-
based method in Sect. 3, which results from the evaluation of the monogenic
curvature tensor.

2.3 Monogenic Signal

In this section, we give a short overview on the basic ideas of the monogenic
signal as generalization of the analytic signal. More details can be found in
the thesis [12] and in the papers [14, 42]. In the case of a real valued 1D signal
f : R → R, the extension to a complex valued signal fA : R → C, called
analytic signal [19], is written in spatial domain as

fA(x) = f(x) + jfH(x) . (1)

The components f and fH are in quadrature phase relation, that is they are
phase shifted by

∣∣π
2

∣∣. The imaginary completion fH is computed from the real
signal f by convolution with the Hilbert transform kernel

h(x) =
1
πx

. (2)

Because the Hilbert transform is an all-pass operator, the use of quadrature
filters hq in practice is preferred,

hq(x) = he(x) + jho(x) . (3)

This pair of even (he) and odd (ho) operators is in quadrature phase relation
within a chosen passband. The best known quadrature filter is the Gabor
filter [19], which is also widely used in image processing, that is in case of
2D signals, as oriented quadrature filter [20]. Convolution of f(x), x ∈ Rn,
with hq(x) results in a separation of the output function, g(x), with respect
to symmetry,

g(x) = ge(x) + jgo(x), (4)

from which the local energy, e(x), and the local phase, ϕ(x), can be computed,

e(x) = g2
e(x) + g2

o(x) (5)

ϕ(x) = arg g(x) . (6)

But the lack of rotation invariance of the Gabor filter results in wrong esti-
mates of e and ϕ in most cases. The need of a rotation invariant generalization
of the Hilbert transform in multiple dimensions can be established within Clif-
ford analysis [7]. We assume that an n-dimensional function f(x) is embedded
into an (n+ 1)-dimensional space as vector field f(x, xn+1) = f(x)en+1 with
ei, i = 1, . . . , n + 1 being unit vectors. Besides, we assume a geometric al-
gebra Rn+1 over the vector space Rn+1. Such geometric algebra is a linear
space with a total number of 2n+1 well distinguishable subspaces of different
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grade. The unit subspace of highest grade is the so-called unit pseudoscalar
In+1 = e1e2 · · · en+1. Then the Riesz transform kernel in either spatial or
Fourier domain

rn(x) =
anxen+1

|x|n+1
and Rn(u) =

u

|u|I
−1
n+1 (7)

results as solution of the Dirac equation for xn+1 = 0. It is an isotropic all-
pass operator in any signal dimension n. Note that the geometric product of
a geometric algebra is written by juxtaposition of the factors. Hence, in (7)
the product xen+1 between the two vectors results in a bivector, belonging
to another subspace as the original vectors. In addition, an = π−

n+1
2 Γ (n+1

2 )
is a constant. If we restrict to the case n = 2, then the monogenic signal [14]
as generalized analytic signal is represented by the vector field

fM (x) = f(x) + fr(x) = f(x) + (r2 ∗ f)(x), (8)

with f(x) = f(x)e3 and

fr(x) = fr
(1)(x)e1 + fr

(2)(x)e2 . (9)

As we see in (9), the convolution of the original vector field with the operator
r2 results in additional components which are laying in the image plane. A
comparison with the analytic signal supports the interpretation that by the
monogenic signal three orthogonal components are represented and that the
complex domain is generalized in a certain way. In fact, it is useful to imagine a
complex plane, the phase plane, oriented by the angle θ in R3 and spanned by
the original signal f and the monogenic signal fM . According to (6), any phase
angle indicates a certain local symmetry. The Riesz transform is a rotationally
invariant and spinor valued operator, which is identical with the first order
circular harmonic. This operator rotates the original signal f(x) = f(x)e3

to fM (x) by introducing the additional components fr
(1) and fr

(2). All three
components constitute a Riesz triple, that is they are in quadrature phase.
Figure 2 visualizes the effect of the Riesz transform.

It delivers not only the right local spectral representations (in contrast
to the Gabor filter) but in addition the orientation angle of the local struc-
ture. This is only half of the story, because the complete solution of the Dirac
equation for the open half space xn+1 > 0 gives rise to two additional trans-
formations, represented by the scalar valued Poisson kernel

p(x;σ) =
anσ

|x + σen+1|n+1
and P (u;σ) = exp(−2π|u|σ) (10)

and by the bivector valued conjugate Poisson kernel,

q(x;σ) =
anxen+1

|x + σen+1|n+1
and Q(u;σ) = Rn(u)P (u, σ), (11)

with |u| being the absolute frequency value and σ ≡ xn+1 being a scale param-
eter from which both kernels are parametrically depending on, as indicated
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Fig. 2. The embedding of the monogenic signal in R3

by the semicolon in (10) and (11). Hence, (x, σen+1) is spanning a linear and
isotropic scale-space. The representation

fM (x, σ) = fp(x, σ) + fq(x, σ), (12)

with
fp(x, σ) = (p(σ) ∗ f)(x) (13)

and
fq(x, σ) = (q(σ) ∗ f)(x) (14)

is the monogenic scale-space representation [16] of the original real-valued
signal f(x) = f(x)en+1. As a consequence, the local spectral representations
as well as the local orientation are getting scale-space representations too.
Regrettably, the monogenic signal and the monogenic scale-space are only ad-
equate multidimensional generalizations of the analytic signal with respect to
i1D structures. Obviously, an enrichment of the used Clifford analysis frame-
work with additional geometric modeling resources is needed. Therefore, we
are adopting ideas from differential geometry and its tensor representations
in a Clifford analysis framework as outlined in Sect. 3.

2.4 Basics of Differential Geometry

Differential geometry is applied in image modeling since 1980, pioneered by
Koenderink and van Doorn [24, 25], and Besl and Jain [2]. An image is assumed
to be a smooth surface S embedded in R3 in an explicit parametric form with
respect to a known coordinate system,

S(f) = {(x, y, z) : x = d(u, v), y = e(u, v), z = f(u, v); (u, v) ∈ R2}. (15)
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Besides the parametric representation this is similar to the vector field embed-
ding used in Clifford analysis. Also smoothness is required in both approaches.
For the sake of simplicity often a Monge patch representation [6] is used. This
considerably simplifies the metric tensor M(x) of the first fundamental form
and the curvature tensor T (x) of the second fundamental form [2] for the
scalar valued image function f(x),

M(x) =
(

1 + f2
x fxfy

fxfy 1 + f2
y

)
(x), T (x) = (1 + f2

x + f2
y )−

1
2B(x), (16)

with the Hessian matrix

B(x) =
(
fxx fxy

fxy fyy

)
(x). (17)

Although only up to second order derivatives are used, the associated ten-
sor structure delivers rich insight with respect to local geometry. There
are two curvature measures, the Gaussian curvature κ(x) and the mean
curvature μ(x), which are derived from the Weingarten mapping matrix
W (x) = (M−1)T (x) according to

κ(x) = det(W )(x) = det(M−1) det(T )(x) (18)

μ(x) =
1
2
trace(W )(x) =

1
2
trace(M−1T )(x). (19)

The determinant operator and the trace operator deliver the algebraic main
invariants of second order tensors. In the Monge patch representation these
curvature measures are written as

κ(x) =
fxxfyy − f2

xy

(1 + f2
x + f2

y )2
(20)

μ(x) =
1
2
fxx(1 + f2

y ) + fyy(1 + f2
x)− 2fxyfxfy

(1 + f2
x + f2

y )
3
2

. (21)

2.5 Alternative Recent Tensor Representations

In recent years tensor representations became an attractive tool for different
purposes of image analysis, for instance for the analysis of range images in
a differential geometric framework [2] or for the representation of 3D surface
orientations in the framework of quadrature filters [23]. In [44] the orienta-
tions of flow fields in image sequences are estimated. An overview on the use
of tensors for analyzing orientated patterns is given in [3]. Finally, [33] present
a linear tensor voting technique for salient feature inference. Regrettably, all
these proposals are lacking the advantages resulting from a monogenic signal
representation. In the following, we summarize some key features of recent
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tensor proposals with respect to the invariances mentioned in Sect. 2.2. As we
show in Sect. 3, all these invariances are fulfilled in the case of the monogenic
curvature tensor. The structure tensor [17] delivers energy and orientation in
a rotation invariant manner. But it responds only reasonably to odd symmet-
ric patterns. Thus, phase invariance is missed and no phase information is
contained. The orientation tensor [4] can be also interpreted as a structure
tensor, although a set of directed quadrature filters constitutes its elements.
Nevertheless, it delivers no phase information. It is restricted to i1D struc-
tures but is phase invariant. The energy tensor [13] represents products of
first- and second-order derivatives of a bandpass filtered image representa-
tion. Although it is invariant with respect to intrinsic dimension its phase
invariance is restricted [27]. It represents no phase information. The gradient
energy tensor [27] is composed by an even and an odd part. It delivers an
energy measure that is invariant with respect to the intrinsic dimension but is
not phase invariant. Most interestingly in our context is the boundary tensor
[26]. As has been shown in [27], this tensor has the interesting property that
its odd part is the Riesz transform of the even part. Nevertheless, although
from that construction several invariances result (intrinsic dimension, phase,
rotation), it represents an energy measure and thus fails to represent phase.

3 Monogenic Curvature Tensor and its Evaluation

In this section, we derive the monogenic curvature tensor by merging the
concept of the monogenic signal with the Hessian matrix from differential
geometry. We evaluate the monogenic curvature tensor with respect to its de-
terminant and trace. While the trace results in a representation of i1D signals,
which is identical to the monogenic signal, the determinant delivers a novel
signal representation for i2D signals. We evaluate that signal representation
with respect to local spectral representations and geometric features. This
set of features will posses all invariance requirements formulated in Sect. 2.2.
Because the monogenic curvature tensor will be embedded in a monogenic
scale-space, all derived features will get the same scale-space embedding.

3.1 Monogenic Curvature Tensor

Our approach of deriving the monogenic curvature tensor [48, 49] is based
on lifting up a monogenic signal fM ∈ R3 into a tensor representation asso-
ciated to the curvature tensor of differential geometry. Instead of taking the
complete curvature tensor we restrict ourselves to the Hessian matrix, (17).
We call the resulting tensor, T (x) : R2 →M(2,R3), the monogenic curvature
tensor although it is different from the curvature tensor in (16). The matrix
geometric algebraM(2,R3), see [39], is a much more powerful algebraic frame-
work than the Euclidean geometric algebra R3, which is used in Sect. 2.3. This
can be concluded from the isomorphism M(2,Rp,q) ∼= Rp+1,q+1 [31]; hence,
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M(2,R3) ∼= R4,1. The Hessian matrix with elements in R3, B(x) ∈M(2,R3),
applied to the original signal f(x) reads

B(x) =
(
fxxe3 −fxyI3
fxyI3 fyye3

)
, (22)

with I3 = e1e2e3 being the unit pseudoscalar of R3. This results from a
tensorial convolution, ∗τ , of the signal f(x) = f(x)e3 with an even symmetric
Hessian operator He ∈M(2,R+

3 ), written as

he(x) =
(

∂xx −∂xye12

∂xye12 ∂yy

)
(x), (23)

and the definition of the first order derivative of the vector field f , ∂f(x) =
e1∂xf(x, y)e3+e2∂yf(x, y)e3 = fxe13+fye23. The minus sign in this equation
results from the noncommutativity of the geometric product, hence, e21 =
−e12. Obviously, the elements of the Hessian operator are either scalars or
bivectors. Both multivector types belong to the so-called even subalgebra of
R3, which possesses only even-grade elements, as is indicated by R+

3 . The term
even symmetric as characterization of the Hessian operator follows from the
fact that second order derivative operators are of even symmetry (in contrast
to first order derivative operators which are of odd symmetry) and thus are
responding to even-symmetric structures as lines. In case of odd symmetric
structures their response would be zero. But we want to apply that operator on
the monogenic signal fM instead, and the result will be called the monogenic
curvature tensor, TM . Then it follows

TM = HefM = He(f + fr) = He(I +R)f (24)

with the identity operator I and the operator of the Riesz transform R. Ac-
cording to (9), the function fr indicates the monogenic completion of the
function f resulting from the convolution of f with the Riesz kernel r2, see (7).
Because fM ∈ C∞(Ω) with Ω as an open region in R2, the partial derivatives
of He will be applied without problems. In addition, suppose f ∈ L2(R2,R3),
then the commutativity HeR = RHe will follow, see [9] for more details. So
we can also formulate an odd Hessian operator Ho = RHe and the monogenic
curvature tensor will be composed by an even and an odd part,

TM = (He +Ho)f = Te + To = Te +RTe. (25)

To get these relations more explicitly, we are going to the Fourier domain
and express the operator He by polar coordinates u = (�, α). Then the even
Hessian operator is separable,

He(�, α) = −4π2�2

2

(
1 + cos(2α) − sin(2α)e12

sin(2α)e12 1− cos(2α)

)
. (26)

While the radial part He(�) expresses the well known highpass characteris-
tics according to the derivative theorem of Fourier theory, the angular part
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He(α) enables the investigation of local geometry. The angular part is writ-
ten in terms of trigonometric functions according to the angular components
of derivatives written in polar coordinates in spectral domain. These matrix
entries can be related to the Fourier representation of circular harmonics of
order m ≥ 0,

Cm(α) = exp(mαe12) = cos(mα) + sin(mα)e12. (27)

Their radial part is constant, Cm(�) = const. We want to express the Hes-
sian operator in terms of regularized derivatives. This means to convert the
highpass characteristic of He(�) to a bandpass characteristic. Because we are
operating our signal analysis in a monogenic scale-space, the Poisson kernel,
(10), can be used to define a difference of Poisson (DOP) kernel [16]

HDOP (�;σBP ) = P (�;σf )− P (�;σc), (28)

with σf being a fine scale and σc being a coarse scale so that HDOP will have
its maximum at �BP = 1

σBP
. As a consequence, we are considering damped

circular harmonic functions of order m according to

CP
m(�, α;σ) = HDOP (�;σ)Cm(α) . (29)

From this follows for the even Hessian operator He(�, α;σ) = He(�;σ)He(α),
represented in terms of circular harmonics as

He(�, α;σ) =
1
2

(
CP

0 + 〈CP
2 〉0 −〈CP

2 〉2
〈CP

2 〉2 CP
0 − 〈CP

2 〉0

)
(�, α;σ). (30)

Here 〈 〉0 means the scalar part and 〈 〉2 means the bivector part of CP
2 .

The odd Hessian operator follows simply as the Riesz kernel transformed even
one and by remembering that the Riesz transform corresponds to a circular
harmonic of first order. Hence,

Ho(�, α;σ) = (CP
1 ×τ He)(�, α;σ), (31)

with Xτ indicating the pointwise product of the tensor elements.
We are calling the operator HM = He +Ho the monogenic Hessian opera-

tor, which applied to the original signal f results in the monogenic curvature
tensor. What remains open is the discussion of its angular part HM (α). As
discussed in detail in [48, 49], it can be interpreted as a rotation invariant
detector of i1D structures superimposed with arbitrary angles of intersection.
This can be seen from rewriting the angular part of He as

He(α) =
(

cos2(α) −1
2 sin(2α)e12

1
2 sin(2α)e12 sin2(α)

)
. (32)

The two functions on the diagonal and that one on the anti-diagonal, sin(2α) =
cos2(α− π

4 )− sin2(α− π
4 ), constitute four basis functions to steer a detector



294 G. Sommer et al.

e2

e1

Fig. 3. Action of the even angular windowing functions on the left most test image

for even symmetric i1D structures. In Fig. 3 their effect on the pattern to the
left is shown. The same arguments lead to the interpretation of the entries of
Ho(α) as rotationally invariant detector of odd symmetric i1D structures.

From this interpretation of the monogenic Hessian operator follows that
it analyzes i2D structures as superposition of i1D structures.

3.2 Evaluation of the Monogenic Curvature Tensor

In this section, we give a short sketch on the ways the structural information
of the monogenic curvature tensor can be evaluated. More details can be found
in [48]. As a result of the preceding section, we can state the invariance of this
representation with respect to scale, parity symmetry, and rotation. Here we
show the invariance with respect to intrinsic dimension and the derivation of
local spectral features as well as geometric features. An alternative analysis
of the monogenic curvature tensor is given in the report [51].

3.2.1 Local Representations for i1D and i2D Structures

As is known from real valued differential geometry [2], structures of different
intrinsic dimension can be classified in a space spanned by Gaussian curvature,
κ, and mean curvature, μ. Both are computed from the curvature tensor
by applying either the determinant or the trace operator. If we are doing
the same in our algebraic framework M(2,R3), we get two different signal
representations, which are specific to the intrinsic dimension. The first one is
a vector field specific to i1D structures,

f i1D(x) = te(x) + to(x) = trace(Te)(x) + trace(To)e2(x) (33)

= f(x) + (c1 ∗ f)(x) ≡ fM (x). (34)

That is, the trace operation reconstructs the monogenic signal from the mono-
genic curvature tensor. Here c1 is the first-order circular harmonic, which is
identical to the Riesz transform. By computing the determinant of T (x) an-
other vector field specific to i2D structures will result.

f i2D(x) = de(x) + do(x) = det(Te)e3(x) + e1det(To)(x) (35)

= de(x) + (e1c2e3 ∗ de)(x) ≡ fMC(x). (36)
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Note that the computation of the determinant in the algebraic framework
M(2,R3) is in general rather expensive, see [39]. But a thorough analysis
of our case [48] did yield the same computation as in M(2,R). This signal
representation is called “generalized monogenic” curvature signal because its
conjugate harmonic part results from the real part by applying a second-
order circular harmonic as another generalized Hilbert transform [8]. While
the structure of both signal representations is the same, they are coding quite
different properties of a local signal structure. They enable classification with
respect to the intrinsic dimension.

3.2.2 Local Spectral Representations

Both signal representations can be interpreted as the result of a spinor valued
operator, S, which rotates and scales the original vector field f(x) = f(x, y)e3

so that it will be supplemented by a conjugate harmonic component, which
projects to the plane e1 ∧ e2 and fulfills the conditions t2e = t2o and d2

e = d2
o.

The scaling-rotation is performed in the “phase plane” expressed by the outer
product fs(x) ∧ e3 = 〈e3fs(x)〉2, with s(x) = e3fs(x) being the respective
spinor and fs ≡ f i1D or fs ≡ f i2D. That is, for both f i1D and f i2D a similar
model for the monogenic extension of the real valued function f is assumed.
Only the involved generalized Hilbert transform differs. Therefore, also the
computation of the local features in both cases is the same. By evaluating the
exponential representation of s with respect to the R+

3 -logarithm, see [12] and
[42] for more details, the local features can be computed. These are the “local
amplitude”

a(x) = |fs(x)| = exp(〈log(e3fs(x))〉0) (37)

and the (generalized) monogenic “local phase” bivector

Φ(x) = arg(fs(x)) = 〈log(e3fs(x))〉2. (38)

From Φ(x) follow the “local phase” ϕ(x) as rotation angle within the phase
plane,

ϕ(x) = |(Φ(x))�| = arctan
( |〈e3fs(x)〉2|
|〈e3fs(x)〉0|

)
, (39)

and the orientation angle of the phase plane

θ(x) =
〈e3fs(x)〉2
|〈e3fs(x)〉2|

. (40)

In fact, the terms in quote marks corresponds to the local spectral repre-
sentation only in case of fi1D. For fi2D this is not the case because of a missing
signal model. Nevertheless, the features obey the interesting invariance prop-
erties.

Here the star in (39) indicates the duality operation, which converts the
local phase bivector Φ(x) into the local rotation vector (Φ(x))�, the magni-
tude of which is the local phase ϕ(x). The interpretation of the local spectral
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representations and of the local orientation derived from the monogenic sig-
nal is well known for i1D structures. I2D structures will be also seen from the
monogenic signal as i1D structures. Hence, it delivers mean orientation for any
phases of the contributing i1D structures and mean phase only in case of equal
phases of the contributing i1D structures. But this is no serious restriction in
reality. The interpretation of the features derived from the generalized mono-
genic curvature signal is not so obvious. As has been discussed in Sect. 3.1, a
first hint results from the interpretation of the monogenic Hessian operator in
Fourier domain. That is, i2D patterns are seen by the operator as superposi-
tion of i1D patterns and each of them contributes to the monogenic curvature
tensor representation. Hence, the i1D-view on the structure as known from
the monogenic signal is not left in case of the monogenic curvature tensor
representation. But a more detailed analysis of this fact in Fourier domain
has not been done. Instead, a careful analysis of the monogenic curvature ten-
sor in the Radon domain [47] has been performed. The results confirm that
the monogenic curvature tensor in the case of superimposed i1D structures
delivers mean phase and mean orientation, just as the monogenic signal it-
self. Therefore, the proposed signal representation seems to be not a sufficient
extension for the extraction of local spectral features of i2D structures. In-
deed, the alternative method of analyzing the monogenic curvature tensor,
reported in [51], overcomes the interpretation problem. Nevertheless, several
applications confirm the usefulness of the proposed signal representation, for
example, as corner detector or as phase-based constraint in image sequence
analysis. It can be shown that the determinant of the even part of the mono-
genic curvature tensor equals zero iff the underlying signal structure is of
intrinsic dimension one. These results are illustrated in Fig. 4 and can be used
as a rotational invariant corner detector.

For further results the reader is advised to [51] and to have a look on our
website http://www.ks.informatik.uni-kiel.de/.

Fig. 4. Original image and local information by the determinant of the even part
of the monogenic curvature tensor. One representative i2D corner is marked by the
small rectangle
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3.2.3 The Angle of Intersection

The monogenic curvature tensor enables to compute the angle of intersection
or apex angle of two superimposed i1D signals. To calculate the angle of in-
tersection or apex angle α ∈

[
0, π

2

]
of two superimposed i1D signals where

each one of them can have arbitrary phase in terms of the monogenic signal,
the following trick is to consider the resulting image structure as one locally
intrinsic i2D hyperbolic saddle point model with absolute main curvature val-
ues. This model is completely described by its two main curvatures κ1 and κ2,
which are related to the Gaussian curvature κ = κ1κ2 and the mean curvature
μ = 1

2 (κ1 + κ2). The two main curvatures lie on the two orthogonal bisectors
of the superimposed i1D signals. Only in direction of the two i1D signals the
curvature κ

(
α
2

)
of the normal cut is zero. Now the surface theoretical results

of Euler’s and Meusnier’s theorems [5]

κ
(α

2

)
= lim

ν→0
κ1 cos2

α

2
+ 2ν sin

α

2
cos

α

2
+ κ2 sin2 α

2
(41)

can be used to determine the apex angle of our assumed model

κ
(α

2

)
= 0 ⇒ α = 2 tan−1

√
|κ1|
|κ2|

, (42)

where α
2 is the angle relatively to the orientation with main curvature κ1.

Merging i1D signal theory and differential geometry delivers the exact apex
angle

α = 2 tan−1 |ϕ′
1|

|ϕ′
2|
. (43)

Here ϕ′
i is the i1D phase change at the point of interest in the direction of

the main curvatures κi ∀i ∈ {1, 2}, which have the same orientation as the

Fig. 5. Original image and local angle of intersection information. The monogenic
curvature tensor is able to differ between inner and outer corners. Both the black
corner with intersection angle of 270◦ as well as the white corner with intersection
angle of 90◦ are marked by a rectangle
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two orthogonal main orientations of the i2D image structure. Applying this
result to the monogenic curvature tensor in scale-space, the apex angle can
be computed by

α(x) = 2 tan−1

√√√√∣∣∣∣∣te(x)−
√

t2e(x)− de(x)

te(x) +
√

t2e(x)− de(x)

∣∣∣∣∣. (44)

Each i2D corner can be locally modeled by two superimposed i1D structures in
scale space. The computation of the angle of intersection is illustrated in Fig. 5
for each test point within the image. At points of intrinsic dimension one the
angle of intersection modulo 180◦ is zero. Therefore, the intrinsic dimension
can be naturally determined by the angle of intersection. Note that in Fig. 5,
inner and outer corners can also be separated and detected by our approach
in a rotational invariant way.

4 Conclusions

This chapter presents a novel approach for local analysis of images. The pro-
posed monogenic curvature tensor results from combining differential geom-
etry and Clifford analysis in the setting of image analysis. The monogenic
extension of a two-dimensional signal is lifted up to a new generalization of
the analytic signal in a nonlinear way. The generalized monogenic curvature
signal can be evaluated just in the same way as the monogenic signal. But as
has been shown in other work, the extracted features do no leave the i1D view
on the signal. Therefore, future studies are required to cope with i2D struc-
tures and to derive meaningful local features. One way could be to include
the Weingarten mapping in the signal representation. Another way could be
the extension of the Radon transform for curved lines and to generalize the
monogenic signal in that way. We followed that way and recently we proposed
a conformal monogenic signal [46], [45], in which lines as i1D structures and
circles as i2D structures are handled in the same framework.
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Summary. Coherence-enhancing diffusion filtering is a striking application of the
structure tensor concept in image processing. The technique deals with the problem
of completion of interrupted lines and enhancement of flow-like features in images.
The completion of line-like structures is also a major concern in diffusion tensor
magnetic resonance imaging (DT-MRI). This medical image acquisition technique
outputs a 3D matrix field of symmetric 3× 3-matrices, and it helps to visualize, for
example, the nerve fibers in brain tissue. As any physical measurement, DT-MRI is
subjected to errors causing faulty representations of the tissue corrupted by noise
and with visually interrupted lines or fibers.

In this chapter, we address that problem by proposing a coherence-enhancing
diffusion filtering methodology for matrix fields. The approach is based on a generic
structure tensor concept for matrix fields that relies on the operator-algebraic prop-
erties of symmetric matrices, rather than their channel-wise treatment of earlier
proposals.

Numerical experiments with artificial and real DT-MRI data confirm the gap-
closing and flow-enhancing qualities of the technique presented.

1 Introduction

Coherence-enhancing diffusion (CED) filtering has been introduced in [25, 26]
as an image restoration technique that enhances flow-like structures in scalar
and vector-valued images. It regularizes images polluted by noise, and it is
capable of closing gaps in line-like structures. CED-filtering of a scalar image
f defined on the image domain Ω ⊂ IRd produces simplified versions u(·, t) of
f as solutions of the partial differential equation (PDE)

∂tu− div (D · ∇u) = 0 in Ω × I,
∂nu = 0 on ∂Ω × I, (1)

u(x, 0) = f(x) in Ω,
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where I = [0, T ] is a potentially unbounded time interval, and ∂nu denotes
the outer normal derivative of u at the boundary ∂Ω × I.

In view of the qualities mentioned, it would be desirable to have this
method at our disposal for matrix-valued images, or matrix fields in short.
For example, such a filter could serve as a pre-processing step for the so-called
fiber tracking in diffusion tensor magnetic resonance imaging (DT-MRI) (see
[28], Chapters by Cook et al. and Yushkevich et al. as well as the literature
cited therein). In parts of the brain, e.g. the corpus callosum, nerve fibers form
bundles with a coherent structure. In principle, the matrix field produced by
DT-MRI allows for the application of fiber tracking techniques and hence
for the accurate visualization of the nerve fibers. However, ubiquitous mea-
surement errors during acquisition cause gaps and interruptions in the fibers’
visualization. Therefore, a fiber tracking technique would benefit from a prior
filtering by a matrix-valued counterpart of CED. It is the goal of this chapter
to extend CED and the underlying structure tensor concept to matrix-valued
images.

Promising proposals to generalize nonlinear regularization methods and
related diffusion filters for scalar images to matrix fields have been made in
[7, 8]. These approaches are based on a basic differential calculus for matrix
fields. These concepts had direct implications for the chapters by Steidl et al.
and Lie et al., and they will be useful in the context of this chapter as well.
Edge-enhancing diffusion, EED, a concept related to CED has been extended
to the setting of matrix fields in [5]. Other PDE-based methods for the reg-
ularization of matrix fields have been proposed in [10, 11, 13, 19, 22, 23, 27].
Approaches to tensor field regularization with a more differential geometric
background are explored in [2, 18, 20], where the set of positive definite matri-
ces is endowed with a Riemannian metric stemming from the DT-MRI field.
Diffusion over tensor fields based on Lie groups is considered in [15] and also
in the chapter by Gur and Sochen.

The essential ingredient in (1) underlying CED is the diffusion tensor D
of the scalar image u, which steers the diffusion process: It amplifies diffusion
along flow-like structures, and hinders diffusion perpendicular to those pat-
terns. By postponing the detailed construction of D to the subsequent Sect. 2,
for now we only remark that it is a function of the structure tensor [14], which
is given by

Sρ(u(x)) := Gρ ∗
(
∇u(x) · (∇u(x))�

)
=
(
Gρ ∗

(
∂xi
u(x) · ∂xj

u(x)
))

i,j=1,...,d
.

Here Gρ∗ indicates a convolution with a Gaussian of standard deviation ρ,
however, more general averaging procedures can be used. If ∇u(x) �= 0 the
matrix (

∇u(x) · (∇u(x))�
)

has rank one, the eigenvector ∇u(x) belongs to the only non-zero eigen-
value |∇u(x)|2. The eigenvalues represent the contrast in the directions of
the eigenspaces. The averaging process then creates a matrix with full rank,



A Structure Tensor and Coherence-Enhancing Diffusion for Matrix Fields 307

which contains valuable directional information. Note that the averaging of the
structure tensor avoids cancellation of directional information. If one would
average the gradients instead, neutralization of vectors with opposite sign
would occur. In many applications, it is advantageous to use a pre-smoothed
image uσ := Gσ ∗ u instead of u to reduce the influence of noise for better
numerical results. The structure tensor is a classical tool in image processing
to extract directional information from an image, going back to [17], for more
details the reader is referred to [3] and the literature cited there.

It is not straightforward to generalize both the structure and the diffusion
tensor concept to the setting of matrix-valued images.

To fix notation in this work, matrix-valued images or matrix fields M(x)
are considered as mappings from IRd into the set Symn(IR) of symmetric
n× n-matrices

M : x �→M =
(
mi,j(x)

)
i,j=1,...,n

∈ Symn(IR) .

and denoted by capital letters, while indexed lower case letters indicate their
components.

Di Zenzo‘s approach [12] to build a structure tensor for multi-channel
images has been generalized in a straightforward manner as follows: each
channel considered as independent scalar image gives rise to a structure tensor,
and then these structure tensors are summed up to give a standard structure
tensor [5, 27]:

Jρ(U(x)) :=
n∑

i,j=1

Sρ(ui,j(x)) .

This construction has been refined to a customizable structure tensor in [21].
There the resulting structure tensor is a weighted sum of tensors of scalar
quantities that are now not just the channels, but other meaningful scalar
quantities derived from the matrix field. The weights are provided by the user,
and depending on the choice of weights the emerging structure tensor has a
sensitivity for certain features of the matrix field. A special constellation of the
weights turns the customizable structure tensor into the standard structure
tensor from [5, 27]. It is important to mention that in case of a 3D matrix
field of 3× 3 symmetric matrices, these concepts yield also a 3 × 3 structure
tensor, the very same order as a 3D scalar image.

Here we opt for a different approach: We assume an operator-algebraic view
on symmetric matrices as finite dimensional instances of selfadjoint Hilbert
space operators. The exploitation of the algebraic properties of matrices, en-
sures proper interaction between the different matrix channels. This is a deci-
sive advantage over the standard component-wise treatment of vector-valued
images.

In this chapter, we will present a general concept for a large size, second
order structure tensor, a nd× nd-matrix that carries all the directional infor-
mation of the matrix field. We will show how this information can be deduced
from this full tensor by a reduction process. This reduction process illuminates
also its connection to the structure tensors mentioned above.
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The chapter is structured as follows: Sect. 2 is devoted to a brief review of
coherence enhancing diffusion filtering of scalar images. Notions necessary to
construct the diffusion tensor and a basic differential calculus for matrix fields
necessary to construct the diffusion tensor are provided in Sect. 3. In Sect. 4
we propose a novel structure tensor concept for matrix fields, study some of
its properties by investigating the connection to already known structure ten-
sors for matrix-valued data. We then feature the potential of this concept by
proposing a coherence enhancing diffusion for matrix fields in Sect. 5. We re-
port on the results of our experiments with matrix-valued coherence enhancing
diffusion applied to synthetic data and real DT-MRI images in Sect. 6. Sect. 7
is made up by concluding remarks.

2 Synopsis of Coherence Enhancing Diffusion

The rationale behind the construction of the diffusion tensor D for grey value
images as proposed in [25] is as follows: The matrix Sρ(u) as the positive av-
erage of different symmetric positive semidefinite matrices has the very same
property. Hence Sρ(u) has an orthonormal system {w1, . . . , wd} of eigenvectors
corresponding to the non-negative eigenvalues μ1 ≥ μ2 ≥ . . . ≥ μd ≥ 0 indi-
cating the contrast in each direction. In the line defined by wd, the coherence
direction, the contrast is the least compared to other orientations, since wd

belongs to the smallest eigenvalue μd. The coherence or anisotropy of an image
structure essentially is captured in the eigenvalue distribution of the structure
tensor Sρ. In 1999 [25], the quantity

κ :=
d−1∑
i=1

d∑
j=i+1

(μi − μj)2

is proposed to measure coherence. Strongly differing eigenvalues result in a
large value of κ, while similar values produce a small κ-value indicating a
structure with isotropic character. The matrix D has the same eigenvectors
as Sρ, however, its eigenvectors λi are altered via the tensor transfer map H
according to

λi := H(μi) := α for i = 1, . . . , d− 1

and

λd := H(μd) :=
{
α if κ = 0,
α+ (1− α) exp

(
− C

κ

)
else.

with a threshold C > 0. With this choice of D, the CED-filter (1) smoothes
mainly along the coherence direction wd with a diffusivity λd that increases
with κ. Note that min{λi, i = 1, . . . , d} = α > 0, which causes D to be
uniformly positive definite and enforces a diffusion no matter how isotropic
(κ ↓0) the image structure becomes.
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It is our task in this chapter to extend the notion of structure and diffusion
tensor from scalar images to matrix fields. Ultimately we aim at coherence
enhancing diffusion filtering of matrix fields. To do so, we have to clarify what
is meant by the partial derivative, the gradient and, most of all, the suitable
structure tensor of a matrix field. This is done in the next section.

3 Basic Differential Calculus for Matrix Fields

In this section, we provide briefly the basic definitions for the formulation of
a differential calculus for matrix fields. This material is instigated in [6] but
for a more detailed exposition the reader is referred to [7].

1. Functions of matrices. The standard definition of a function h on
Symn(IR) is given in [16]:

h(U) = V �diag(h(λ1), . . . , h(λn))V ∈ Symn(IR),

if U = V �diag(λ1, . . . , λn)V is the spectral-/eigendecomposition of the
symmetric matrix U , and if λ1, . . . , λn lie in the domain of definition of h.
We encountered already an example of a function of a symmetric matrix;
the diffusion tensor as a function of the structure tensor Sρ with coherence
κ under the tensor transfer map H, D = H(Sρ).

2. Partial derivatives. Let ω ∈ {x1, . . . , xd, t} denote a spatial or tem-
poral variable, and set (x, t) = (x1, . . . , xd, t). The partial derivative for
matrix fields is naturally defined component-wise as the limit of a differ-
ence quotient:

∂ωU(x, t) = lim
h→0

U((x, t) + h · ek)− U(x, t)
h

=
(

lim
h→0

uij((x, t) + h · ek)− uij(x, t)
h

)
i,j

= (∂ωuij(x, t))i,j ,

where ek := (0, . . . , 0, 1, 0, . . . , 0) ∈ IRd+1 denotes the kth unit vector of
space-time IRd+1. The generalization to directional derivatives is straight-
forward. In this case, ω would denote an appropriate unit vector. Higher
order partial differential operators, such as the Laplacian or other more so-
phisticated operators, find their natural counterparts in the matrix-valued
framework in this way. It is worth mentioning that for the operators ∂ω a
product rule holds:

∂ω(A(x) ·B(x)) = (∂ωA(x)) ·B(x)) +A(x) · (∂ωB(x)) .

3. Generalized gradient of a matrix field. The gradient of a matrix field
with sufficiently smooth component functions is defined via
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∇U(x) := (∂x1 U(x), . . . , ∂xd
U(x))� ∈ (Symn(IR))d.

Hence, the generalized gradient ∇U(x) at a voxel x is regarded as an
element of the module (Symn(IR))d over Symn(IR) in close analogy to the
scalar setting, where ∇u(x) ∈ IRd. Hence, in the sequel we will call a
mapping from Rd into the module (Symn(IR))d a module field rather than
a vector field, the later one being a mapping from Rd into a vector space.
Note that this definition of a generalized gradient is different from one that
might be expected when viewing a matrix as a tensor (of second order).
According to differential geometry concepts, their derivatives are tensors
of third order. However, we adopt an operator-algebraic point of view: The
matrices are self-adjoint operators that can be added, multiplied with a
scalar, and concatenated. Thus, they form an algebra, and we aim at
consequently replacing the field IR by the algebra Symn(IR) in the scalar,
that is, IR-based formulation of differential calculus.

4. For the sake of completeness, we include the formal definition of the
generalized structure tensor of a matrix field here. We will discuss its
derivation, properties and application in the next section. The novel struc-
ture tensor for a matrix field is given by

SL (U(x)) := Gρ ∗
(
∇U(x) · (∇U(x))�

)
=
(
Gρ ∗

(
∂xi

U(x) · ∂xj
U(x)

))
i,j=1,...,d

. (2)

5. Symmetrized product of symmetric matrices. The product of two
symmetric matrices A,B ∈ Symn(IR) is not symmetric unless the matrices
commute. However, it is vital to our interests to have a symmetrized
matrix product at our disposal. There are numerous options to define a
symmetrized matrix product, however, we concentrate on a specific one
known from algebra and called Jordan product:

A •J B =
1
2
(AB +BA) for A,B ∈ Symn(IR) . (3)

For commuting A and B, we have A •J B = A · B. This product is
commutative and distributive but not associative. It is one half of the
anti-commutator of A and B, but due to its additive structure no de-
terminant product rule holds. Most important, it does not preserve the
positive semidefinitness of its arguments as the following simple example
shows:(

2 0
0 0

)
•J

(
1 1
1 1

)
=

1
2

((
2 2
0 0

)
+
(

2 0
2 0

))
=
(

2 1
1 0

)
with det

(
2 1
1 0

)
= −1 .

Hence, simply multiplying each matrix in a DT-MRI-field by a positive defi-
nite matrix employing the Jordan product might produce a matrix field that
cannot be interpreted anymore as DT-MRI data, which is not desirable.
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Remarks:
(1) It should be mentioned that the logarithmic multiplication introduced in
[1] and given by A •L B := exp(log(A) + log(B)) is defined only for positive
definite matrices. However, the matrix-valued diffusion proposed here requires
the multiplication to be able to cope with the factor matrices being indefi-
nite. Furthermore, matrix fields that are not necessarily positive semidefinite
should also be within the reach of our PDE-based filtering. Hence, the loga-
rithmic multiplication is not suitable for our purpose.

(2) The proposed notions for a calculus on symmetric matrix fields are ex-
tensions of the calculus of scalar multivariate functions. As such, it must be
possible to regain the scalar calculus from the newly introduced matrix-valued
framework by specification. There are two ways to view scalar calculus as a
special case of the matrix calculus: Clearly, setting n = 1 turns the matrix
field into a scalar function. However, one can also embed the set of real num-
bers IR into the set of symmetric matrices Symn(IR) by the identification
IR # r ←→ r · In with the n× n identity matrix In. Hence, aside from having
a certain simplicity, it is mandatory that the proposed extensions collapse to
the scalar calculus when making the transition from scalar functions to matrix
fields in one way or the other.

We summarized the definitions from above and juxtapose them with their
scalar counterparts in the subsequent Table 1. The matrix field U(x) is as-
sumed to be diagonizable with U = (uij)ij = V �diag(λ1, . . . , λn)V , where
V ∈ O(n), the set of all orthogonal n× n-matrices, and λ1, . . . , λn ∈ IR .

Table 1. Extensions of elements of scalar valued calculus to the matrix-valued
setting

Setting Scalar valued Matrix-valued

function h :

{
IR −→ IR
x �→ h(x)

h :

{
Symn(IR) −→ Symn(IR)

U �→ V �diag(h(λ1), . . . , h(λn))V

partial ∂ωu, ∂ωU := (∂ωuij)ij ,

derivatives ω ∈ {t, x1, . . . , xd} ω ∈ {t, x1, . . . , xd}

∇u(x) := (∂x1 u(x), . . . , ∂xd
u(x))�, ∇U(x) := (∂x1 U(x), . . . , ∂xd

U(x))�,

gradient

∇u(x) ∈ IRd ∇U(x) ∈ (Symn(IR))d

structure

tensor Gρ ∗
(
∇u(x) · (∇u(x))�

)
SL (U(x)) := Gρ∗

(
∇U(x) · (∇U(x))�

)
product a · b A •J B := 1

2 (AB + BA)
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4 The Full Structure Tensor SL for Matrix Fields

4.1 Derivation of SL

With the terminology introduced earlier, we infer for the directional derivative
of x �→ U(x) in direction v ∈ Sd−1:

∂vU(x) :=
d

dh
U(x+ h · v) |h=0 =

d∑
k=1

(∂xk
uij(x)) vk

= (∇U(x))�

⎛
⎜⎝ v1 In...
vd In

⎞
⎟⎠

= v1 ∂x1U(x) + · · ·+ vd ∂xd
U(x) ∈ Symn(IR)

This expression is a symmetric matrix but aside from that in complete analogy
to the corresponding real-valued term in the scalar case. In the scalar setting,
the direction of steepest descent/ascent would be given by the direction that
optimizes the directional derivative. However, in the matrix-valued setting, the
entries of the generalized gradient are matrices, and finding an optimal unit
vector v that optimizes the matrix-valued directional derivative is hindered
by practical as well as theoretical obstacles: An optimization relies on the
presence of a total ordering, but on Symn(IR) only partial ordering relations
do exist and even after choosing a partial ordering, e.g. the Loewner ordering
[9], it is not clear how to obtain the optimal v in a reasonable computational
effort. A remedy for this difficulty is the projection of the set of symmetric
matrices Symn(IR) onto the real numbers by a so-called linear form. Each
linear form on Symn(IR) is of the form of a scalar product,

M �−→ 〈A,M〉 := trA(M) := tr(A ·M)

with a matrix A ∈ Symn(IR), see [16]. Then one simply has

argmax{trA(∂vU(x)) | ‖v‖ = 1} =
1√∑d

1(trA(∂xi
U(x)))2

(
trA(∂x1U(x)), . . . , trA(∂xd

U(x))
)
.

We write tr = trI . Depending on the choice of A, we obtain the direction of
strongest change at one point x in the matrix field, or which boils down to
the same thing: the strongest change in the scalar image x �−→ trA(U(x)).
Apparently this approach suffers from the same weakness as the direct direc-
tion estimation in scalar images, the danger of cancellation through averaging.
This reveals the need for a structure tensor for matrix fields and also its ba-
sic construction principle. It is close at hand to define a structure tensor for
matrix fields as follows:
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SL (U(x)) := Gρ∗
(
∇U(x)·(∇U(x))�

)
=
(
Gρ∗
(
∂xi

U(x) · ∂xj
U(x)

))
i,j=1,...,d

Here Gρ∗ indicate a convolution with a Gaussian of standard deviation ρ or,
more general, another appropriate averaging procedure. We list some imme-
diate properties of this construct:

1. SL (U(x)) is a symmetric nd×nd-block matrix with d2 blocks of size n×n,
SL (U(x)) ∈ Symd(Symn(IR)) = Symnd(IR). Typically for the 3D medical
DT-MRI data one has d = 3 and n = 3, yielding a 9× 9-matrix SL . The
symmetry follows from the fact that for all i, j = 1, . . . , d

(∂xi
U(x) · ∂xj

U(x))� = (∂xj
U(x))� · (∂xi

U(x))�

= ∂xj
U(x) · ∂xi

U(x) .

2. The structure tensor SL can be diagonalized as

SL (U) =
nd∑

k=1

ρkwkw
�
k

with real eigenvalues λk (w.l.o.g. arranged in decreasing order) and an
orthonormal basis {wk}i=1,...,nd of IRnd.

The usefulness of this construction will rise and fall with a positive answer to
the following question:

How can we extract useful d-dimensional directional information from this full
structure tensor SL ?

In the case of a structure tensor S ∈ Sym+
d (IR) for a scalar image, its eigenvec-

tors provide all the important directional information of the image. However,
in the matrix-valued setting the eigenvectors wi of SL (U) are nd-dimensional
vectors and they lack immediate physical interpretation. Hence, as such they
do not provide really useful d-dimensional directional information. Instead,
let us find an analog to the Rayleigh quotient of S

argmax {v�
(
G ∗ ∇u ∇u�

)
v
∣∣ v ∈ IRd, ‖v‖ = 1}

in the matrix field framework. We consider

(v1 In · · · vd In)SL (U(x))

⎛
⎜⎝ v1 In...
vd In

⎞
⎟⎠

=

⎛
⎜⎝ v2

1 Gρ ∗ (∂x1U)2 · · · v1vd Gρ ∗ (∂x1U · ∂xd
U)

...
. . .

...
v1vd Gρ ∗ (∂xd

U · ∂x1U) · · · v2
d Gρ ∗ (∂xd

U)2

⎞
⎟⎠ .
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Now we have to choose the real numbers v1, . . . , vd in an optimal way. Again we
are facing difficulties caused by the absence of total ordering for matrices. In
the case of a scalar image u (a matrix field with 1×1-matrices), the optimal v
is the unit eigenvector corresponding to the largest eigenvalue of the structure
tensor S. It will turn out to be convenient to utilize the notion of operator
matrix.

The idea is to reduce SL (U) ∈ Symnd(IR) to a structure tensor S(U) ∈
Symd(IR) in a generalized projection step employing the block operator matrix

TrA :=

⎛
⎝ trA · · · 0

...
. . .

...
0 · · · trA

⎞
⎠ (4)

containing the trace operation. Again we set Tr := TrI . This operator matrix
acts on elements of the space (Symn(IR))d as well as on block matrices via
formal block-wise matrix multiplication,⎛

⎝ trA · · · 0
...

. . .
...

0 · · · trA

⎞
⎠
⎛
⎝M11 · · · M1d...

. . .
...

Md1 · · · Mdd

⎞
⎠ =

⎛
⎝ trA(M11) · · · trA(M1d)...

. . .
...

trA(Md1) · · · trA(Mdd)

⎞
⎠ ,

provided that the square blocksMij are compatible with trA, that means here,
have the same size as A. The reason for choosing trA as reduction operators
is their homogeneity:

trA(t M) = t trA(M) for all t ∈ IR.

Note that A = I provides the leading example since⎛
⎝ trA · · · 0

...
. . .

...
0 · · · trA

⎞
⎠
⎛
⎝M11 · · · M1d...

. . .
...

Md1 · · · Mdd

⎞
⎠ =

⎛
⎝ tr · · · 0

...
. . .

...
0 · · · tr

⎞
⎠
⎛
⎝A · · · 0

...
. . .

...
0 · · · A

⎞
⎠
⎛
⎝M11 · · · M1d...

. . .
...

Md1 · · · Mdd

⎞
⎠ .

The subsequent result gives a first insight into the role of this reduction op-
eration and its connection to other structure tensors:

Proposition: (The standard tensor as an elementary reduction of SL )
Let U(x) ∈ Symn(IR) be a d-dimensional matrix-field. Then the standard
tensor Jρ is a reduced version of the full tensor SL ,

Tr SL(U) = Jρ(U) ∈ Symd(IR).

Proof: First we realize that we can disregard the convolution with a Gaussian
Gρ with integration scale ρ or any other linear averaging process since the
trace operation commutes with such linear mappings. Therefore, we can deal
with the partial derivatives ∂xi

ui,j of the matrix components directly.
Fix p, q ∈ {1, . . . , d}. Then the (p, q)-th component of the standard struc-

ture tensor is given by
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Jρ(U) =
d∑

i,j

∂xp
ui,j · ∂xq

ui,j .

However, we obtain for the (p, q)-th component of the reduced version of the
full structure tensor SL(U)

tr(∂xp
U∂xq

U) =
d∑

i=1

(
∂xp

U∂xq
U
)
i,i

=
d∑

i=1

d∑
j=1

(∂xp
ui,j · ∂xq

uj,i)

=
d∑

i=1

d∑
j=1

(∂xp
ui,j · ∂xq

ui,j),

where the symmetry of the matrix U accounts for the last equality. This proves
the assertion.

The reduction operation is accompanied by an extension operation defined
via the Kronecker product:

Definition: (Extension via Kronecker product)
The In-extension operation is the mapping from Symd(IR) to Symnd(IR) given
by the Kronecker product ⊗:⎛
⎜⎝ v11 · · · v1d

...
. . .

...
vd1 · vdd

⎞
⎟⎠ �−→

⎛
⎜⎝ v11 · · · v1d

...
. . .

...
vd1 · · · vdd

⎞
⎟⎠⊗

⎛
⎜⎝ In · · · In...

. . .
...

In · · · In

⎞
⎟⎠ :=

⎛
⎜⎝ v11In · · · v1dIn

...
. . .

...
vd1In · · · vddIn

⎞
⎟⎠ .

If the d× d-matrix (vij)ij is Kronecker-multiplied with⎛
⎜⎝C · · · 0

...
. . .

...
0 · · · C

⎞
⎟⎠
⎛
⎜⎝ In · · · In...

. . .
...

In · · · In

⎞
⎟⎠ =

⎛
⎜⎝C · · · C

...
. . .

...
C · · · C

⎞
⎟⎠

we speak of a C-extension.

4.2 A Novel Diffusion Tensor D for Matrix Fields

It is now possible to give an analog D to the diffusion tensor D in the frame-
work of matrix fields. We proceed in four steps:

1. The matrix field IRd # x �→ U(x) provides us with a module field of gener-
alized gradients ∇U(x) from which we construct the generalized structure
tensor SL U(x) possibly with a certain integration scale ρ. This step cor-
responds exactly to the scalar case.

2. We infer d-dimensional directional information by reducing SL U(x) with
trA with the help of the block operator matrix given in (4) leading to a
symmetric d× d-matrix S, for example S = Jρ if A = In,
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S :=

⎛
⎝ trA · · · 0

...
. . .

...
0 · · · trA

⎞
⎠SL U(x) .

3. The symmetric d × d-matrix S is spectrally decomposed, and the tensor
transfer map H is applied to S yielding the diffusion tensor D,

D := H(S) .

4. Finally, we enlarge the d × d-matrix D to a nd × nd-matrix D by the
extension operation:

D = D ⊗

⎛
⎜⎝
⎛
⎜⎝C · · · 0

...
. . .

...
0 · · · C

⎞
⎟⎠
⎛
⎜⎝ In · · · In...

. . .
...

In · · · In

⎞
⎟⎠
⎞
⎟⎠ .

This last step gives another possibility to steer the filter process by the choice
of the matrix C. However, this is the subject of current research. For this
work, we restricted ourselves to C = In.

5 Coherence-Enhancing Diffusion Filtering
for Matrix Fields

Now we have gathered the necessary ingredients to formulate the matrix-
valued equivalent to the scalar coherence enhancing diffusion as expressed in
equation (1):

∂tU −
d∑

i=1

∂xi

(
D • ∇U

)
= 0 in Ω × I,

∂nU = 0 in ∂Ω × I, (5)

U(x, 0) = F (x) in Ω .

Note that the Jordan-multiplication in D • ∇U is understood in the block-
wise sense of partitioned matrices. Moreover, we translated the divergence
differential operator div u =

∑d
i=1 ∂xi

ui acting on a vector-valued function
u = (u1, . . . , ud) into its matrix-valued counterpart acting on a module field
W ∈ Symn(IR)d by

div W =
d∑

i=1

∂xi
Wi .

The numerical algorithm is inspired by the explicit scheme in [24]. We used
a matrix-valued version employing the calculus framework for matrix fields
as presented before. With a typical time step size of τ = 1

10 , we observed
numerical stability throughout our experiments.
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6 Experiments

We use two data sets in our numerical experiments: The artificial matrix
fields of 3× 3-symmetric matrices exhibit various coherent structures ranging
from simple line-like to curved features, see Figs. 1–4. We will use these data
to demonstrate the gap-closing, denoising, and enhancing properties of our
technique. The other matrix fields stems from a 2D slice extracted from a 3D
DT-MRI data set of size of a 128× 128× 30 of a human head, see Fig. 5.

The data are represented as ellipsoids via the level sets of the quadratic
form {x�A−2x = const. : x ∈ IR3} associated with a matrix A ∈ Sym+(3). By

Fig. 1. (a) Top left: Artificial data set of ellipsoids indicating a crossing. (b) Top
right: Effect of coherence-enhancing filtering if preference is given to the direction
(1,−1) (c) Bottom left: Effect of coherence-enhancing filtering if preference is
given to the direction (1, 1). (d) Bottom right: Effect of coherence-enhancing
filtering if no directional priority is established.
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Fig. 2. (a) Top left: Original matrix field with grid-like structure. (b) Top right:
(a) polluted with truncated Gaussian noise in the eigenvalues while the orthogonal
matrices result from three Euler matrices with uniformly distributed angles.
(c) Bottom left: Result of CED-filtering with preference on the horizontal
x-direction. (d) Bottom right: The same but with preference on the vertical
y-direction.

using A−2, the length of the semi-axes of the ellipsoid correspond directly with
the three eigenvalues of the matrix. We have added random positive definite
matrices to the data to demonstrate the denoising capabilities of our CED-
filtering concept. The eigenvectors of this noise were obtained by choosing
Gaussian-distributed numbers with standard deviation σ = 1, 000 and taking
the absolute value for positive semidefiniteness. The high standard deviation
can be explained by the fact that in real-world data the typical eigenvalues
are in the order of magnitude of 1, 000. The eigenvectors of the artificial noise
result in choosing three uniformly distributed angles and rotating the matrix
by these angles around the coordinate axes. The resulting data is shown in
Fig. 2.
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a b c

Fig. 3. (a) Left: Original image with coherent structure in y-direction and ellipsoids
pointing in x-direction. (b) Middle: Result of CED-filtering with preference on the
horizontal x-direction. (c) Right: Result of CED-filtering with preference on the
horizontal y-direction.

Fig. 4. (a) Left: Artificial incomplete coherent structure. (b) Middle: After CED-
filtering with stopping time t = 0.3. (c) Right: After CED-filtering with stopping
time t = 3

The artificial data set displayed in Fig. 1 imitates a crossing of nerve fibers.
Depending on the choice of the reduction matrix A in trA either the diagonal
directed downward, A =

(
1 −1

−1 1

)
, or the one directed upward, A =

(
1 1
1 1

)
,

is given preference in the CED-filtering results. If no priority is set, A = I2,
a homogeneous structure is developing in the center, as it is expected due to
the high symmetry of the image, see Fig. 1d.

An impression of the denoising and gap-closing capabilities can be obtained
from the results in Fig. 2. The noisy version of an artificial data set with
a grid-like structure is CED-filtered. As before, the directional preferences
are conveyed by the reduction matrices A =

(
1 0
0 0

)
for the x-direction and

A =
(

0 0
0 1

)
for the y-direction. The noise is removed and the lines in the

selected direction are getting completed.
Fig. 3 shows the results of directionally selective CED-filtering if the direc-

tion of the coherent structure (here the y-direction) does not coincide with the
direction of the ellipsoids (here the x-direction). By selecting the x-direction
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(a) (b)

(c) (d)

Fig. 5. (a) Top left: Original DT-MRI data: lower part of the Corpus Callo-
sum fiber area. (b) Top right: After CED-filtering with stopping time t = 1.
(c) Bottom left: CED-filtering with t = 3. (d) Bottom right: CED-filtering
with t = 5.

with a proper choice of A, we allow for the enhancement of coherent struc-
tures, that is, the closing of lines if there is a change in this x-direction. In
Fig. 3b we have such a change, hence the present lines in y-direction are com-
pleted. We do not have a change in y-direction (the balls and ellipsoids have
the same y-extension), hence the selection of the y-direction via A =

(
0 0
0 1

)
triggers no enhancement at all. Therefore this directional CED-filtering has
no effect, see Fig. 3c.

The experiment depicted in Fig. 4 demonstrates that even areas with
no information may constitute a coherent structure that is preserved by
CED-filtering without directional preferences. The (almost) empty lines in x-
direction are getting filled, while the two lines in y-direction remain untouched
by the filtering. The explanation is that in x-direction we have changes in the
shape and orientation of the ellipsoids in the vicinity of the empty lines, hence,
the gap-closing quality of CED-filtering comes into effect. However, proceeding
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in y direction no changes in the surrounding ellipsoids is discernible, rendering
the CED-filtering idle in this direction.

We applied CED-filtering without directional preference to real DT-MRI
data, to investigate its usefulness as a pre-processing step, e.g. for fiber track-
ing. The results are displayed in Fig. 5 confirming the regularizing effect and
the enhancement of coherent structures, such as the fiber bundles below the
Corpus Callosum.

7 Summary and Future Work

In this chapter, we have developed a novel structure tensor concept for matrix
fields. This approach is based on an operator-algebraic view on matrices and
their rich algebraic properties. We have shown how to infer directional infor-
mation from this high dimensional data by specifying directional preferences,
and clarified the standard structure tensor for matrix fields as a special case
of our extended concept. An application of the new tensor concept enabled us
to develop a directionally selective coherence-enhancing diffusion filtering of
matrix fields by employing a generic differential calculus framework for matri-
ces. The matrix-valued CED-filtering exhibits similar behaviour as its scalar
counterpart.

Current work encompasses the investigation of further opportunities to
steer the filtering process, e.g. in the extension step, and its relation to other
customizable tensor concepts for matrix fields. Future research will focus on
further applications of the extended structure tensor concepts in image pro-
cessing for matrix fields.
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Summary. In some recent applications, the objects of interest are matrices. Diffu-
sion Tensor MRI or in short DTI is an example of such an application. In this case,
the image is divided into voxels where each voxel is described by a 3 × 3 symmetric
positive-definite (SPD) matrix. In this chapter, we present an intrinsic approach for
diffusion over the space of n × n symmetric positive-definite matrices, denoted by
Pn. The basis of this framework is the description of Pn as a Riemannian manifold
by means of the local coordinates and a natural Riemannian metric. One may choose
various coordinate systems to cover the Pn manifold. We show that the analytical
calculations, as well as the numerical implementation, become simple by choosing
Iwasawa coordinates. Then, we define a GL(n)-invariant metric over Pn with respect
to these coordinates. The metric is defined by means of the scalar product on Symn,
the space of n×n symmetric matrices. The “image” is described here as a section of
a fiber bundle. Then, the metric over Pn is combined with the metric over the two-
or three-dimensional image domain in order to form the metric over the section. By
means of the Beltrami framework, we define a functional over the space of sections.
Variation of this functional leads to a set of 1

2
n(n + 1) coupled equations of motion

with respect to the local coordinates on Pn. The solution of these equations defines a
structure-preserving flow on this manifold. Finally, we demonstrate this framework
on the case of P3 by smoothing of real DTI datasets.

1 Introduction

Regularization of Diffusion Tensor Magnetic Resonance Imaging, DT-MRI (or
in short DTI) data has been attracted much attention over the past few years
(e.g., [1–3, 15, 25–27]). The need for regularization of DTI data motivated the
development of new techniques to deal with tensors. However, complications
arise when one wishes to regularize a tensor field. Tensors have properties that
we would like to preserve during the regularization process. In DTI, for ex-
ample, the tensors are symmetric and positive-definite. These properties have
to be preserved to maintain the physical information encoded in these ten-
sors. As a result, special analytical, as well as numerical, structure preserving
schemes had to be developed.
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In 2002 [24], it was proposed to regularize DTI datasets via the polar
decomposition. In this method, the eigenvalues (diffusivities) and the eigen-
vectors (orientations) are regularized independently. However, the polar de-
composition is not unique and therefore a realignment step for the eigenvectors
in every iteration is needed. Also, treating the eigenvalues and the eigenvec-
tors separately may result in eigenvector permutations that will lead to wrong
results.

Some of the structure preserving flows are based on the coordinate-free
methods for ODEs evolving on Lie-group manifolds [7, 8]. These methods
rely strongly on the interplay between the Lie-group and the Lie-algebra via
smooth mappings. In [2, 5], the exponential mapping was used to construct
structure preserving flows for DTI orientations. Similarly, the exponential
mapping may be used to map the linear space of n × n symmetric matrices
of order n, Symn onto Pn, the space of SPD matrices. This fact, combined
with the definition of a global Riemannian distance between two tensors, is the
basis for various frameworks for DTI regularization [4, 13, 16]. However, the
implementation of the global distance between two tensors involves operations
on tensors and therefore it is time consuming. The Log-Euclidean distance,
proposed in [4] is cost-effective but is not GL(n)-invariant.

In this chapter, we propose a novel framework for smoothing of DTI
datasets. The basis of this framework is the description of Pn as a Rieman-
nian manifold. The manifold is parameterized via the local coordinates, and
the infinitesimal distance between two tensors is measured in terms of a nat-
ural GL(n)-invariant Riemannian metric.

This framework arises from a pure geometric point of view. By using the
mathematical notion of fiber-bundles, we define a product space of two spaces:
the image domain (the base manifold) and the feature space of n × n SPD
matrices, Pn (the fiber). In this mathematical framework, a specific DT image
is described as a section in the fiber bundle where the feature space is P3. These
issues are discussed in Sect. 2.

In Sect. 2.1, we discuss the basics of the Riemannian geometry of Pn. The
space Pn is identified with the coset space GL(n)/O(n) and the underlying
algebraic structure is employed to define a GL(n)-invariant Riemannian met-
ric. Then, the metric over the sections in the fiber bundle is defined in terms
of this metric.

In Sect. 3, we introduce a functional over sections by means of the Beltrami
framework. Using the calculus of variations, we derive the equations of motion
with respect to the coordinates on the section. The coordinates evolve with
respect to the geometry of the section via the induced metric.

The proper choice of coordinate system to parameterize Pn is important
both analytically and numerically. In Sect. 4, we discuss the partial and the
full Iwasawa coordinates. We show that the Iwasawa decomposition that nat-
urally respects the coset algebraic structure, yields a natural coordinate sys-
tem. This choice of coordinates to parameterize Pn simplifies the analytical
calculations as well as the numerical implementation. Then, the flow on P3 is
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defined by a set of six coupled Beltrami equations with respect to the Iwa-
sawa coordinates. The numerical implementation of these equations is almost
straightforward and no time consuming operations are needed. Therefore,
compared to previous works (e.g., [16]), running times are improved, while
the GL(n)-invariance property of the metric is maintained. We demonstrate
this framework on a real DTI dataset at the end of the section.

2 Images and Fiber Bundles

Generally, an image may be described locally as a product of two spaces: the
image domain (two- and three-dimensional usually) and the feature space,
which is composed of objects such as intensity, RGB values, orientation fields,
etc. A product of two-spaces may be described mathematically via the concept
of a fiber bundle. A fiber bundle is characterized by the total space E, a
structural group G (a group of homeomorphism of the fiber F onto itself)
together with a continuous surjective map π : E → B. Locally, the total space
E is described as product of the base manifold and the fiber B×F . Globally,
this may not be the case, since global features of the total space are not
observed locally (e.g., the Mobius band where the twist cannot be observed
locally). When the identification of the total space with the direct product
of the base space and the fiber is possible, this is known as a trivial bundle.
In image processing language, the total space is the spatial-feature manifold.
For example, using this concept, a gray-value image is described locally by
the product IR2 × IR+.

A section of the bundle is a mapping f : B → E such that π ◦ f = I. In
our language, a given image is a section in a fiber bundle. For each pixel in
the image domain, we have a unique assignment of a feature space object (see
Fig. 1).

In DTI we have a tensor-valued image, where for each pixel there is unique
assignment of a three-dimensional SPD matrix. Thus, a DT image is a section
in the fiber bundle with the map f : IRm → IRm×P3 where IRm is in practice
two- or three-dimensional Euclidean image domain. Thus, the spatial-feature
manifold is described by the product IRm × P3. The structural group in this
case is simply GL(3), which is the generalized linear group of 3× 3 real and
nonsingular matrices. The action of GL(3) on P3 is given by Y [g] = gTY g for
Y ∈ P3 and g ∈ GL(3). This description is extendable to any n with the fiber
bundle IRm × Pn. In this case, the structural group is GL(n).

2.1 The Riemannian Geometry of Pn

One of the key points in the proposed framework is the definition of a mean-
ingful metric and a coordinate system on the spatial-feature manifold. In this
section, we will discuss the metric issue while the coordinate choice is discussed
in Sect. 4.
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Ω

y0 � Pn

Fiber
Section

Image domain

(feature space)

y1 � Pn

Fig. 1. Description of an image as a section of a fiber bundle. The base manifold
B is the image domain Ω, the fiber is the feature space F (e.g., intensity values,
color DT, etc.). Here the image domain is Euclidean Ω ⊂ IRn. Locally the bundle is
described as a direct product E = B ×F where E is the total space. In DTI images
the fiber is taken to be the space of SPD matrices Pn. A DT image is composed of a
particular selection of the SPD matrix to each point of the base manifold. Therefore,
a DT image is a section in the fiber bundle. This section is referred to here as the
image manifold.

The metric over the Euclidean image domain with Cartesian coordinate
system is simply ds2

IR2 = dx2 + dy2. In order to write the metric over the
feature manifold, we have to discuss the Riemannian structure of Pn, thus,
to equip Pn with a Riemannian metric. Let us briefly review the important
facts about Pn. Detailed discussions on the Riemannian geometry of Pn can
be found in [9, 12].

The space of SPD matrices may be identified with an open cone in Rm

where m = n(n + 1)/2, i.e., for any V,W ∈ Pn and for any positive scalar
c > 0, we have V +W ∈ Pn and cV, cW ∈ Pn.

Without going into detail, the tangent space at every point Y ∈ Pn may
be identified with the vector space of n × n symmetric matrices, Symn. The
inner product at any point Y ∈ Pn is defined by

〈v, w〉Y = tr(Y −1vY −1w), ∀ v, w ∈ TY Pn, (1)

thus, ‖v‖2Y = tr((Y −1v)2).
Let Y (t) be a curve in Pn. Since Y ′(t) ∈ TY (t)Pn, the length of the curve

is given by

s = L(t) =
∫ t

a

{
tr
[
(Y (τ)−1Y ′(τ))2

]}1/2
dτ. (2)

Then, the square of the differential of s is given by(
ds

dt

)2

= tr(Y (t)−1Y ′(t))2. (3)
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Finally, the Riemannian metric over Pn is given by the abbreviation

ds2Pn
= tr((Y −1dY )2), (4)

where Y −1 = (yij)−1
1≤i,j≤n and dY = (dyij)1≤i,j≤n.

The Riemannian metric is, by definition, positive-definite [12, 23]. Also, it
can be easily shown that this metric is invariant under the action of GL(n).
Let W = Y [g], where the differential is given by dW = dY [g]. Then, upon
plugging everything in ds2Pn

, it follows that

ds2Pn
= tr((Y −1dY )2) (5)

= tr((gW−1gT g−T dWg−1)2) = tr((W−1dW )2).

With respect to the Riemannian metric, the notion of geodesics is defined.
Since Pn is a geodesically complete Riemannian space, according to the Hopf–
Rinow theorem, any two points in this space may be joined by a minimizing
geodesic [12]. Its length is the geodesic distance between the two points. More-
over, it has been shown in [10] that there is precisely one geodesic connecting
any two points on Pn. The geodesic distance between any two points A,B ∈ Pn

is given by [12]

d(A,B) =

(
n∑

i=1

log2λi

)1/2

, (6)

where λi denotes the i’th eigenvalue of the matrix A−1B. This geodesic dis-
tance is the so-called Riemannian distance, which was used in [16] as a distance
measure between SPD matrices. It can be easily shown that the geodesic dis-
tance is invariant under the inversion A→ A−1. This inversion is an involutive
isometry on Pn. Hence, Pn is a Riemannian symmetric space.

After the metric over Pn was introduced, the metric over the spatial-feature
manifold M = IR2 × Pn, for example, is simply given by ds2M = dx2 + dy2 +
tr((Y −1dY )2). Finally, we would like to mention that in [6] we used a similar
geometric construction in order to define flows on compact Lie-groups, which
are another example of Riemannian symmetric spaces.

3 Calculus of Variations in Fiber Bundles

Using functional analysis on sections in the fiber bundle, we are able to derive a
flow on the section. This will be done via the Beltrami framework [20], where
the functional is the Polyakov action [18]. This approach is intrinsic, where
the explicit parameterization on the section is used. The Beltrami framework
has been intensively discussed in the literature (e.g., [11, 19–21]) and therefore
we only briefly review its main ideas.
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3.1 The Polyakov Action

Denote by (Σ, γ) the image manifold and its metric and by (M,h) the spatial-
feature manifold (the fiber bundle) and its metric, then, the section of interest
is expressed locally by the map X : Σ → M . A functional over the space of
sections is given in local coordinates by the following expression:

S =
∫

Σ

dnx
√
|γ|γμν∂μX

i∂νX
jhij(X), (7)

which is known as the Polyakov action [18]. The integration is taken over two-
or three-dimensional image manifold (n = 2 or n = 3), |γ| is the determinant
of the image metric, γμν denotes the components of the inverse of the metric
tensor, and hij are the components of the embedding space metric (the spatial-
feature fiber bundle manifold). The coordinates in the spatial-feature space
are denoted by Xi. The values of μ and ν range from 1 to the dimension of Σ
(the dimension of the image manifold) and the values of the i and j indices
range from 1 to the dimension of the embedding space.

Using calculus of variations with respect to the embedding coordinates Xi,
we obtain the Euler–Lagrange equations for this action:

− 1
2
√
|γ|
hil δS

δX l
=

1√
|γ|
∂μ

(√
|γ|γμν∂νX

i
)

+ Γ i
jkγ

μν∂μX
j∂νX

k. (8)

By the gradient descent method, we obtain a set of PDEs (i.e., Beltrami
equations) with respect to the embedding coordinates. However, since the
coordinates of the image domain are fixed, the interesting equations are for
the coordinates of the fiber (Pn in our case). Hence,

Xi
t =

1√
|γ|
∂μ

(√
|γ|γμν∂νX

i
)

+ Γ i
jkγ

μν∂μX
j∂νX

k, (9)

where i = 1, ...dim(M)− dim(Σ) and where Γ i
jk are the Christoffel symbols.

When the embedding space is Euclidean with Cartesian coordinates, all the
Christoffel symbols vanish. The Christoffel symbols are calculated using the
metric of the embedding space

Γ i
jk =

1
2
hil (∂jhlk + ∂khjl − ∂lhjk) . (10)

3.1.1 The Two-Dimensional Induced Metric

The induced metric minimizes the Polyakov functional. Therefore, the image
manifold (or section) metric is induced from the fiber bundle’s metric. In this
way, the flow depends not only on the geometry of the image domain but also
on the geometry of the data. Moreover, the induced metric is a dynamical
variable, which changes along the flow.
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Although the object of interest is the spatial-feature manifold, distances
are measured on the image manifold. We assume an isometric embedding, i.e.,
infinitesimal distances on the spatial-feature manifold are equal to infinitesi-
mal distances on the image manifold. As a consequence, we may use the chain
rule such that dY = Yxdx + Yydy. Then, we plug this expression into the
metric over the section to get the components of the induced metric

γμν = δμν + tr(Y −1∂μY Y
−1∂νY ), (11)

where μ, ν = 1, 2 are the indices of the local coordinates on the image manifold.
In matrix form and in terms of the spatial coordinates, it may be written as

(γμν) =
(

1 + tr((Y −1Yx)2) tr((Y −1Yx)(Y −1Yy))
tr((Y −1Yy)(Y −1Yx)) 1 + tr((Y −1Yy)2)

)
. (12)

4 Diffusion on the Space of SPD Matrices

In this section, we obtain the main result of this chapter. The framework and
the mathematical tools that we have introduced in the previous sections are
used here to define flows on Pn. The results are general, however, we put an
emphasis on P3 for the DTI application. At the end of this section, we present
a full numerical example of DTI smoothing using this framework.

In Sect. 3.1.1, we defined the induced metric from the spatial-feature man-
ifold IR2 × Pn to the image manifold. For an Euclidean image domain, this
metric has the form ds2 =

(
δμν + tr(Y −1∂μY Y

−1∂νY )
)
dxμdxν . We would

like to write the metric in terms of the coordinates on the Pn manifold explic-
itly.

The Pn space is identified with an open cone in IRm with m = 1
2n(n+ 1).

The m different entries of the symmetric matrix may be identified with the
Cartesian coordinates of IRm. Therefore, it is straightforward to parameterize
Pn using these coordinates. Regularization of DTI datasets using this coordi-
nate system has been proposed in [14]. Let

Y =

⎛
⎝ y1 y2 y3y2 y4 y5
y3 y5 y6

⎞
⎠ , (13)

where the differential matrix is given by

dY =

⎛
⎝dy1 dy2 dy3dy2 dy4 dy5
dy3 dy5 dy6

⎞
⎠ . (14)

Taking the trace of (Y −1dY )2 one gets a long and cumbersome expression
with complicated expressions involving the yi’s in the denominator. The met-
ric tensor is even more cumbersome, and there are 78 Christoffel symbols
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associated with it. Moreover, the induced metric that has to be calculated in
every iteration is also complicated. As a result, the numerical implementation
is problematic.

An important issue in analysis on manifolds is the right choice of coor-
dinate system for the problem. Therefore, we may try to choose a different
coordinate system to simplify the analytical calculations as well as the nu-
merics.

The polar coordinates that correspond to the polar decomposition of SPD
matrices are often used to parameterize Pn (e.g., pages 23–24 in [23]). Al-
though there is a nice and elegant metric associated with this coordinate
system, it suffers from two main problems:

1. The polar decomposition is not unique. There are two possible different
decompositions for Pn. The eigenvectors of Y ∈ Pn in these two decompo-
sitions are in opposite directions. Therefore, artificial discontinuities may
be created. As a result, one has to apply a heuristic realignment step in
every iteration of the numerical solution (e.g., [24]).

2. Using the polar decomposition, one has to deal with diffusion on ori-
entations field (the directions of the eigenvectors). The manifold of the
orientation space is compact, i.e., the spheres Sn. Generally, diffusion on
orientation fields leads to numerical problems (e.g., [11, 17, 22]) due to
the impossibility of covering a compact manifold with only one coordinate
chart.

Luckily, there is a third set of coordinates called Iwasawa coordinates, which
correspond to the Iwasawa decomposition of symmetric matrices. We discuss
the partial and the full Iwasawa decomposition in next section. Surprisingly,
they turn out to be the natural parameterization on Pn for analytical as well
as for numerical considerations.

Let us first review the partial Iwasawa decomposition. Then, we will show
that the full Iwasawa decomposition is obtained by repeatedly applying the
partial Iwasawa decomposition to the matrices Y ∈ Pn.

4.1 Partial Iwasawa Coordinates

It has been shown (see [23] and references therein) that in the partial Iwasawa
coordinates a n× n SPD matrix may be decomposed as follows:

Y =
(
V 0
0 W

)[
Ip X
0 Iq

]
, (15)

where V ∈ Pp, W ∈ Pq, X ∈ IRq×p, n = p + q. The notation A[B] is for
BTAB. This decomposition is unique for a given p, q and Y ∈ Pn.

A direct calculation of the metric ds2 = tr((Y −1dY )2) shows that the
metric on Pn with respect to the partial Iwasawa coordinates is given by

ds2Y = tr(V −1dV )2 + tr(W−1dW )2 + tr(2dXW−1(dX)TV ), (16)

where dX is the differential of X.
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In the special case where V ∈ Pn−1, we have

Y =
(
V 0
0 w

)[
Ip x
0 1

]
, (17)

where w > 0 and x ∈ IRn−1. In this case, the metric takes the form

ds2Y = tr(V −1dV )2 + (w−1dw)2 + 2w−1V [dx]. (18)

To perform smoothing of DTI datasets, we would like to calculate the metric
tensor and the induced metric on P3.

According to (17), the partial Iwasawa decomposition for an arbitrary SPD
matrix is given by

Y =

⎛
⎝ c d 0
d e 0
0 0 f

⎞
⎠
⎡
⎣ 1 0 a

0 1 b
0 0 1

⎤
⎦ . (19)

This decomposition is unique and may be calculated easily for a given matrix.
From (18), we get the metric tensor for this coordinate system:

(hij) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2c
f

2d
f 0 0 0 0

2d
f

2e
f 0 0 0 0

0 0 e2

s
−2de

s
d2

s 0
0 0 −2de

s
2(d2+ce)

s
−2cd

s 0
0 0 d2

s
−2cd

s
c2

s 0
0 0 0 0 0 1

f2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (20)

where s = (ce− d2)2. Note that since we are dealing with SPD matrices, V is
also symmetric and positive-definite, i.e., ce−d2 > 0. Also f > 0 and therefore,
the components of the metric tensor cannot be singular at any point.

The next task is to calculate the Christoffel symbols, which are given by
the formula

Γ i
jk =

1
2
hil (∂jhlk + ∂khjl − ∂lhjk) , (21)

where hil are the entries of the inverse of h. From straightforward, but cumber-
some calculation, which we performed with symbolic manipulation software,
one obtains 33 nonvanishing Christoffel symbols. We do not list the Christoffel
components here. However, we note that they have a compact form. As for
the components of the metric tensor, the positive-definiteness of Y implies
that the Christoffel components cannot be singular at any point on the Pn

manifold.
Finally, we would like to calculate the induced metric

ds2 =
(
δμν + βtr(Y −1∂μY Y

−1∂νY )
)
dxμdxν , (22)
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where β > 0 is a scaling parameter that takes into account the differences in
dimension between the spatial coordinates and the coordinates of the feature
space.

After plugging everything into the Beltrami equation, we get six coupled
equations for the coordinates of the partial Iwasawa decomposition:

Xi
t =

1√
|γ|
∂μ

(√
|γ|γμν∂νX

i
)

+ Γ i
jkγ

μν∂μX
j∂νX

k, (23)

where i = 1, . . . , 6.
These equations are solved together in each iteration using standard

finite differences schemes. The components of the induced metric and
the Christoffel symbols are evaluated in each iteration. An important re-
sult of this framework is that no constraint on the positive-definiteness
of the matrices is needed. Indeed the ellipticity of the Laplace–Beltrami
operator that generates the flow implies the validity of the extremum
principle. This, in turn, means that the positive-definiteness of the ini-
tial condition is a necessary and sufficient condition for the flow to stay
on Pn.

4.2 Full Iwasawa Decomposition

This coordinate system is obtained by applying the partial Iwasawa decom-
position to the matrix V ∈ Pn−1 in the previous subsection. This procedure
can continue until complete diagonalization of V. In the case of interest here,
V ∈ P2. Thus, applying the partial Iwasawa decomposition to V , we have

V =
(
a 0
0 b

)[
1 d
0 1

]
. (24)

The result of this operation for Y ∈ P3 is

Y =

⎛
⎝a 0 0

0 b 0
0 0 c

⎞
⎠
⎡
⎣ 1 d e

0 1 f
0 0 1

⎤
⎦ = A[N ], (25)

where A is a positive diagonal matrix and N is an element of the nilpotent
group. Note that the Iwasawa decomposition for Lie-groups is given by G =
KAN , where K is a compact subgroup, A is an Abelian subgroup, and N
is a nilpotent subgroup. Taking G as GL(n), we choose K as O(n). Since
Pn ∼ GL(n)/O(n), it may be parameterized with AN . However, the product
AN is not symmetric. Therefore the symmetric product is defined by A[N ] =
NTAN where, since Y ∈ Pn, the matrix A has to be positive-definite. This
explains intuitively the form of the Iwasawa coordinate system for Pn.

Calculating ds2Y for the full Iwasawa decomposition in terms of A and N ,
we get



Coordinates-Based Diffusion Over Pn 335

ds2Y = tr((A−1dA)2) + 2tr(A−1[N−T ]A[dN ]). (26)

We would expect a term of the form tr((N−1dN)2) in the metric, but for a
matrix N , which is an upper diagonal matrix with ones on its diagonal, this
term vanishes.

Finally, the metric tensor for the full Iwasawa decomposition is given by

(hij) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1
a2 0 0 0 0 0
0 1

b2 0 0 0 0
0 0 1

c2 0 0 0
0 0 0 2a(c+bf2)

bc − 2af
c 0

0 0 0 − 2af
c

2a
c 0

0 0 0 0 0 2b
c

⎞
⎟⎟⎟⎟⎟⎟⎠ . (27)

Note that the Iwasawa decomposition of a SPD matrix implies that a, b, c > 0.
Therefore, the components of the metric tensor are not singular.

There are only 26 Christoffel symbols associated with this metric tensor.
Using the new metric tensor, the induced metric is calculated easily and the
set of the Beltrami equations is constructed. The results in the case of the full
Iwasawa coordinates are similar to those obtained with the partial Iwasawa
coordinates.

In Fig. 2, we demonstrate smoothing of a real noisy DTI dataset using
the full Iwasawa coordinates. In this DTI dataset, the brain ventricles are
presented as well as the corpus callosum and the cingulum fibers.

Using the Iwasawa decomposition, the corresponding coordinates are ex-
tracted easily from the original data. Then, we diffused over the noisy field
using the Beltrami equations with respect to the Iwasawa coordinates. The
size of the DTI slice was 128 × 128, where running time is approximately 5 s
for 50 iterations on MatLab platform (on a laptop with Pentium 1.73 GHz and
1 Gb of RAM). It can be seen that smoothing occurs in homogenous regions
like the ventricles, while important features are preserved. For example, in the
detail in the second row, it can be seen that the directions of the fibers in the
corpus callosum are preserved. Moreover, the directions of the fibers in the
regularized image are more continuous than in the noisy image.

The results are presented using three different DTI data representations.
The first (Fig. 2) is a representation of a SPD matrix as an ellipsoid, where the
length of its axes is determined by the diffusivities (the eigenvalues of the SPD
matrix). The orientations of the ellipsoids in the 3D space are determined by
the eigenvectors of the SPD matrix. Each ellipsoid is color-coded according
to the components of the principal eigenvector (the eigenvector of the largest
eigenvalue).

In Fig. 3 (top row), the same results are presented using the frac-
tional anisotropy (FA) representation, a scalar image that shows the level
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Fig. 2. Top: The regularized DTI slice. The marked regions of interest are zoomed
below. Middle: Zoom on the brain ventricles area (the black ROI). On the left side
is the original DTI data. On the right side is the regularized data using the full
Iwasawa decomposition. Bottom: Enlargement of the corpus callosum fibers area
(the green ROI) of the original and the regularized image. The ellipsoids are color
coded according to the directions of the principal eigenvectors. These results are
obtained after 50 iterations with β = 1.
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Fig. 3. Top row: The FA images of original data (left) and the regularized data
(right). Bottom: FA weighted color coded image before the regularization (left) and
after the regularization (right). These results are obtained after 50 iterations with
β = 1.

of anisotropy as intensity1. The FA image of the smoothed tensor field shows
that the noise is removed and important features (e.g., fibers) are extracted.

Finally, the third representation (Fig. 3, bottom row) is a FA weighted
color-coded image of the principal eigenvectors. Thus, the FA image and the
color-coded FA image illustrate separately that diffusivities as well as orien-
tations are smoothed, while important features are preserved.

1 The values of the FA image are calculated as follows:

FA =
√

3
2

√
(λ1−<D>)2+(λ2−〈D〉)2+(λ3−<D>)2√

λ2
1+λ2

2+λ2
3

where < D >= 1
3
(λ1 + λ2 + λ3) is

the total diffusivity i.e. the mean of the three diffusivities.
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5 Summary

In this chapter, we presented a geometric framework for regularization of data
that is given in Pn, the space of SPD matrices. In particular, we discussed
regularization of DTI data that belong to P3. We described the DT image as a
section of a fiber bundle where the metric over the section is given by means of
the natural GL(n)-invariant metric on Pn. The manifold Pn is described thus
as a Riemannian manifold. Using calculus of variations on Pn via the Polyakov
action, a set of coupled Beltrami equations for the local coordinates on Pn was
derived. For P3, we obtained a set of six coupled Beltrami equations for the six
Iwasawa coordinates. We have shown that there are several parameterizations
on Pn. However, parameterization of the Pn manifold via Iwasawa coordinates
simplifies the analytical as well as the numerical calculations. As a result, the
proposed algorithm converges very fast and the results are satisfying. This
was demonstrated via regularization of real noisy DTI dataset.
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Summary. The restoration of scalar-valued images via minimization of an energy
functional is a well-established technique in image processing. Recently, higher-order
methods have proved their advantages in edge preserving image denoising. In this
chapter, we transfer successful techniques like the minimization of the Rudin–Osher–
Fatemi functional and the infimal convolution to matrix fields, where our functionals
couple with different matrix channels. For the numerical computation, we use second-
order cone programming. Moreover, taking the operator structure of matrices into
account, we consider a new operator-based regularization term. This is the first vari-
ational approach for denoising tensor-valued data that takes the operator structure
of matrices, in particular the operation of matrix multiplication into account. Using
matrix differential calculus, we deduce the corresponding Euler–Lagrange equation
and apply it for the numerical solution by a steepest descent method.

1 Introduction

Matrix-valued data have gained significant importance in recent years, e.g. in
diffusion tensor magnetic resonance imaging (DT-MRI) and technical sciences
(inertia, diffusion, stress, and permittivity tensors). Like most measured data,
these matrix-valued data are also polluted by noise and require restoration.
Regularization methods have been applied very successfully for denoising of
scalar-valued images, where recently higher-order methods, e.g. in connec-
tion with the infimal convolution [9] have provided impressive results. In this
chapter, we want to transfer these techniques to matrix fields. However, unlike
vectors, matrices can be multiplied providing matrix-valued polynomials and
also functions of matrices. These useful notions rely decisively on the strong
interplay between the different matrix entries. Thus the corresponding regu-
larization terms should take the relation between the different matrix channels
into account.
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Filtering methods for matrix fields based on matrix-valued nonlinear par-
tial differential equations (PDEs) have been proposed in [6] for singular and
in [7] for Perona–Malik-type diffusivity functions. These approaches rely on
an operator-algebraic point of view on symmetric matrices as instances of self-
adjoint Hilbert space operators, and are based on a basic differential calculus
for matrix fields. This chapter continues our work in [22] and contains the
first variational approach for denoising tensor fields that takes the operator
structure of matrices into account. Since the proposed techniques exploit the
greater algebraic potential of matrices, when compared to vectors, they ensure
appropriate matrix channel coupling, and more important, are also applicable
to indefinite matrix fields.

Approaches to positive definite matrix field filtering with a differential
geometric background have been suggested previously [9, 14, 19, 23, 29]. In
their setting, the set of positive definite matrices is endowed with a structure
of a manifold, and the methodology is geared towards application to DT-MRI
data. For other smoothing techniques for DT-MRI data, we refer to [24, 28].
Comprehensive survey articles on the analysis of matrix fields utilizing a wide
range of different techniques can be found in [27] and the literature cited
therein.

This chapter is organized as follows: In Sect. 2, we start by considering var-
ious variational methods for denoising scalar-valued images, in particular we
adapt the infimal convolution technique to our discrete setting and introduce
a corresponding simplified version. In Sect. 3, we turn to the matrix-valued
setting. After briefing the necessary preliminaries in Sect. 3.1, we consider
component-based regularization terms related to the Rudin–Osher–Fatemi ap-
proach and to infimal convolution in Sect. 3.2. These functionals couple the
different matrix channels as originally proposed by Tschumperlé and Deriche
in 2001 [23]. In Sect. 3.3, we introduce a new operator-based functional and
derive the corresponding Euler–Lagrange equation, which contains the Jordan
product of matrices. In contrast to the ordinary matrix product, the Jordan
product of two symmetric matrices is again a symmetric matrix. Finally, in
Sect. 4, we present numerical examples comparing the component-based and
the operator-based approach as well as the first-order and infimal convolution
methods.

2 Variational Methods for Scalar-Valued Images

2.1 First-Order Methods

A well-established method for restoring a scalar-valued image u from a given
degraded image f consists in calculating

arg min
u

∫
Ω

(f − u)2 + αΦ(|∇u|2) dxdy (1)
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with a regularization parameter α > 0 and an increasing function Φ : [0,∞] →
R in the penalizing term. The first summand encourages similarity between the
restored image and the original one, while the second term rewards smooth-
ness. The appropriate choice of the function Φ ensures that important image
structures such as edges are preserved while areas with small gradients are
smoothed.

The Euler–Lagrange equation of (1) is given by

0 = f − u+ α div(Φ′(|∇u|2)∇u). (2)

Thus, the minimizer u can be considered as the steady state (t → ∞) of the
reaction–diffusion equation

∂tu = f − u+ α div(Φ′(|∇u|2)∇u) (3)

with initial image u(·, 0) = f and homogeneous Neumann boundary condi-
tions. For an interpretation of (2) as a fully implicit time discretization of a
diffusion equation see [21, 25].

In this chapter, we mainly focus on the frequently applied ROF-model
introduced by Rudin, Osher, and Fatemi [20], which uses the function

Φ(s2) :=
√
s2 = |s|. (4)

For this function, the functional (1) is strictly convex and the penalizing
functional J(u) =

∫
Ω

√
u2

x + u2
y dxdy is positively homogeneous, i.e. J(αu) =

αJ(u) for α > 0. Since Φ in (4) is not differentiable at zero, we have to use
its modified version

Φ(s2) =
√
s2 + ε2, (5)

with a small additional parameter ε, if we want to apply (3).
For digital image processing, we consider a discrete version of (1). Let

us introduce this discrete version in matrix–vector notation. For the sake
of simplicity, we restrict our attention to quadratic images f ∈ Rn,n. We
transform f into a vector f ∈ RN with N = n2 in the following way

vec f :=

⎛
⎜⎝ f0

...
fn−1

⎞
⎟⎠ ,

where fj denotes the j-th column f . The partial derivatives in (1) are dis-
cretized by forward differences. More precisely, we introduce the difference

matrix D1 :=
(
Dx

Dy

)
with Dx := In ⊗D, Dy := D ⊗ In and

D :=

⎛
⎜⎝

−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0

. . .
. . .

. . .
0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1
0 0 0 . . . 0 0 0

⎞
⎟⎠ . (6)
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Here A ⊗ B is the Kronecker product (tensor product) of A and B. Now our
discrete version of (1) reads

arg min
u∈RN

1
2
||f − u‖2�2 + α|| |D1u| ‖�1 , (7)

where |D1u| ∈ RN is defined componentwise by |D1u| =
(
(Dxu)2 + (Dyu)2

) 1
2 .

For computations, it is useful to consider the dual formulation of (7). Since
we will need the dual form of various similar functionals later, let us consider
more generally

arg min
u∈RN

1
2
||f − u‖2�2 + α || |Lu| ‖�1 , (8)

with L ∈ RpN,N and |w|(j) =
(∑p−1

k=0 w(j + kN)2
)1/2

, j = 1, . . . , N . For
L := D1, the functional (8) coincides with (7). Since the penalizing functional
J(u) = || |Lu| ‖�1 is positively homogeneous, its Legendre–Fenchel dual J∗ is
the indicator function of the convex set

C := {v : 〈v, w〉 ≤ J(w), ∀w ∈ RN}

and the minimizer û of (8) is given by û = f −ΠαCf , where ΠC denotes the
orthogonal projection of f onto C. It can be proved, see, e.g. [12], that

C := {LTV : ‖ |V | ‖∞ ≤ 1} (9)

and consequently û = f − LTV , where V is a solution of

‖f − LTV ‖2�2 → min s.t. ‖ |V | ‖�∞ ≤ α. (10)

This minimization problem can be solved by second-order cone programming
(SOCP) [13], or by Chambolle’s descent algorithm [8, 12].

2.2 Higher-Order Methods

For various denoising problems, higher-order methods with functionals in-
cluding higher-order derivatives have been proved useful. In particular, the
drawback of so-called staircasing effect known from the ROF-model can be
avoided in this way. An example is shown in Fig. 1.

Here we focus only on the infimal convolution method introduced by
Chambolle and Lions [9]. We consider

arg min
u∈RN

1
2
||f − u‖2�2 + (J1�J2)(u), (11)

where,

(J1�J2)(u) := inf
u1,u2∈RN

{J1(u1) + J2(u2) : u1 + u2 = u}



Variational Methods for Denoising Matrix Fields 345

Fig. 1. Top: Original image (left), noisy image (right). Bottom: Denoised image by
the ROF method (7) with α = 50 and by the modified infimal convolution approach
(15) with α1 = 50, α2 = 180 (right). The ROF based image shows the typical
staircasing effect. The performance of the inf-conv method is remarkable

denotes the so-called infimal convolution of J1 and J2. Note that the infimal
convolution is closely related to the dilation operation in morphological image
processing. In this chapter, we will only deal with

J1(u) := α1 ‖ |D1u| ‖�1 , and J2(u) := α2 ‖ |D2u| ‖�1 , (12)

where D2 :=
(
Dxx

Dyy

)
=
(
In ⊗DTD
DTD ⊗ In

)
is a discrete second-order derivative

operator. Alternatively, we can also use |(DT
xx, D

T
yy, D

T
xy, D

T
yx)T u|, which is

related to the Frobenius norm of the Hessian of u. It is easy to check that for
(12), the infimum in (11) is attained, so that (11) can be rewritten as

arg min
u1,u2∈RN

1
2
||f − u1 − u2‖2�2 + α1‖ |D1u1| ‖�1 + α2‖ |D2u2| ‖�1 . (13)
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Using that (J1�J2)∗(u) = J∗
1 (u) + J∗

2 (u) for proper convex functionals, the
minimizer û of (11) is given by û = f−Πα1C1∩α2C2 f , where J∗

i are the indica-
tor functions of the convex sets Ci associated with Ji, i = 1, 2. Consequently,
by (9), we obtain that û = f − v, where v is the solution of

‖f − v‖22 → min s.t. v = DT
1V1 = DT

2V2, (14)
‖ |V1| ‖∞ ≤ α1, ‖ |V2| ‖∞ ≤ α2.

Now we have that

DT
2 = DT

1

(
Dx 0
0 Dy

)
.

Consequently, assuming that V1 =
(
Dx 0
0 Dy

)
V2, we may rewrite (14) as

‖f −DT
2V ‖22 → min s.t. ‖ |

(
DxV

1

DyV
2

)
| ‖∞ ≤ α1, (15)

‖ |V | ‖∞ ≤ α2.

Note that this minimization problem is similar but not equivalent to (14).
The solution of (14), (15) or of the primal problem (13) can be computed by
SOCP.

3 Variational Methods for Matrix-Valued Images

In this section, we want to transfer the regularization methods for scalar-
valued images reviewed in the previous section to matrix-valued images. While
it seems to be straightforward to replace the square of scalar values in the
data fitting term by the squared Frobenius norm, the penalizing term may
be established in different ways as we will explain in Sects. 3.2 and 3.3. First
we need is some notation.

3.1 Preliminaries

Let Symm(R) be the vector space of symmetric m ×m matrices. This space
can be treated as a Euclidean vector space with respect to the trace inner
product

〈A,B〉 := trAB = (vecA, vecB),

where (·, ·) on the right-hand side denotes the Euclidean inner vector product.
Then

〈A,A〉 = trA2 = ‖A‖2F = ‖vecA‖2�2
is the squared Frobenius norm of A. In addition to this, vector structure
matrices are (realizations of) linear operators and carry the corresponding
features. In particular they can be applied successively. Unfortunately, the



Variational Methods for Denoising Matrix Fields 347

original matrix multiplication does not preserve the symmetry of the matrices.
The Jordan-product of matrices A,B ∈ Symm(R) defined by

A •B :=
1
2
(AB +BA)

preserves the symmetry of the matrices but not the positive semi-definiteness.
In Symm(R), the positive semi-definite matrices Sym+

m(R) form a closed
convex set whose interior consists of the positive definite matrices. More pre-
cisely, Sym+

m(R) is a cone with base [1, 4, 5]. In our numerical examples, we
will consider only the cases m = 2 and m = 3, where the positive definite
matrices can be visualized as ellipses, resp. ellipsoids, i.e. A ∈ Sym+

3 (R) can
be visualized as the ellipsoid

{x ∈ R3 : xTA−2x = 1}

whose axis lengths are given by the eigenvalues of A.

3.2 Component-Based Regularization

In the following, let F : R2 ⊃ Ω → Symm(R) be a matrix field. In this
subsection, we transfer (1) to matrix-valued images in a way that emphasizes
the individual matrix components. We will see that for this approach, the
denoising methods from the previous section can be translated in a direct
way. However, the specific question arises whether these methods preserve
positive definiteness.

Instead of (1), we are dealing with

arg min
U

∫
Ω

‖F − U‖2F + αΦ
(
tr (U2

x + U2
y )
)
dxdy, (16)

where the partial derivatives are taken componentwise. The penalizing term
J(U) in (16) was first mentioned by Deriche and Tschumperlé [23]. Rewriting
this term as

J(U) =
∫

Ω

Φ
(
‖Ux‖2F + ‖Uy‖2F

)
dxdy =

∫
Ω

Φ
( n∑

j,k=1

∇uT
jk∇ujk

)
dxdy (17)

we see its component-based structure implied by the Frobenius norm. How-
ever, due to the sum on the right-hand side, Φ is applied to coupled matrix
coefficients. By [3], the Euler–Lagrange equation of (17) is given by

0 = F − U + α
(
∂x(Φ′(tr(U2

x + U2
y ))Ux + ∂y(Φ′(tr(U2

x + U2
y ))Uy

)
. (18)

Again, we are only interested in the function Φ given by (4).



348 S. Setzer et al.

For computations, we consider the discrete counterpart of (16), where we
again replace the derivative operators by simple forward difference operators

arg min
U

N−1∑
i,j=0

1
2
‖F (i, j)− U(i, j)‖2F + αJ(U), (19)

J(U) :=
N−1∑
i,j=0

(
‖U(i, j)− U(i− 1, j)‖2F + ‖U(i, j)− U(i, j − 1)‖2F

)1/2

with U(−1, j) = U(i,−1) = 0. The functional in (19) is strictly convex and
thus has a unique minimizer.

We say that the discrete matrix field F : Z2
n → Sym+

m(R) has all eigenval-
ues in an interval I if all the eigenvalues of every matrix F (i, j) of the field
lie in I. By the following proposition, the minimizer of (19) preserves positive
definiteness.

Proposition 1. Let all eigenvalues of F : Z2
n → Sym+

m(R) be contained in
the interval [λmin, λmax]. Then the minimizer Û of (19) has all eigenvalues in
[λmin, λmax].

The proof in the appendix is based on Courant’s Min–Max principle and
the projection theorem for convex sets.

To see how the methods from Sect. 2 carry over to matrix fields, we rewrite
(19) in matrix–vector form. To this end, let N = n2 and M := m(m + 1)/2.
We change F : Z2

n → Symm(R) into the vector

f :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1,1 vec (F1,1)
...
ε1,m vec (F1,m)
ε2,2 vec (F2,2)
...
ε2,m vec (F2,m)
...
εm,m vec (Fm,m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ RMN ,

where Fk,l := (Fk,l(i, j))
n−1
i,j=0 and εk,l :=

{√
2 for k �= l

1 otherwise
.

Then (19) becomes

arg min
u∈RMN

1
2
‖f − u‖2�2 + α‖ | (IM ⊗D1)u| ‖�1 . (20)

This problem has just the structure of (8) with L := IM⊗D1 ∈ R2MN,MN and
p = 2M . Thus it can be solved by applying SOCP to its dual given by (10).
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Similarly, we can transfer the infimal convolution approach to the matrix-
valued setting. Obviously, we have to find

arg min
u1,u2∈RMN

1
2
‖f−u1−u2‖2�2 +α1‖ |(IM ⊗D1)u1| ‖�1 +α2‖ |(IM ⊗D2)u1| ‖�1 .

In our numerical examples, we solve the corresponding modified dual problem

‖f − (IM ⊗DT
2 )V ‖22 → min s.t. ‖ |

(
IM ⊗

(
Dx 0
0 Dy

))
V | ‖∞ ≤ α1,

‖ |V | ‖∞ ≤ α2, (21)

by SOCP.

3.3 Operator-Based Regularization

In this subsection, we introduce a regularization term that emphasizes the
operator structure of matrices. For A ∈ Symm(R) with eigenvalue decom-
position A = QΛQT, let Φ(A) = QΦ(Λ)QT, where Λ := diag (λ1, . . . , λn)
and Φ(Λ) := diag (Φ(λ1), . . . , Φ(λn)). We consider the following minimization
problem

arg min
U

∫
Ω

‖F − U‖2F + α tr
(
Φ(U2

x + U2
y )
)
dxdy. (22)

In contrast to (16), the trace is taken after applying Φ to the matrix U2
x +U2

y .
By the next proposition, we have that the functional in (22) with Φ defined
by (4) is strictly convex.

Proposition 2. For given F : R2 ⊃ Ω → Symm(R) and Φ(s2) =
√
s2, the

functional in (22) is strictly convex.

The proof is given in the appendix.

Remark. The solution of (22) in general does not preserve positive definite-
ness. For an example see [22].

The next proposition shows that the functional (22) has an interesting
Gâteaux derivative.

Proposition 3. Let Φ be a differentiable function. Then the Euler–Lagrange
equations for minimizing the functional in (22) are given by

0 = F − U + α
(
∂x

(
Φ′(U2

x + U2
y ) • Ux

)
+ ∂y

(
Φ′(U2

x + U2
y ) • Uy

))
. (23)

The proof of the proposition is provided in the appendix and makes use of
matrix differential calculus. In contrast to (18), the Jordan product of matrices
appears in (23) and the function Φ′ is applied to matrices.
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We apply Proposition 3 to compute a minimizer of (22) by using a differ-
ence method to solve the corresponding reaction–diffusion equation for t→∞

Ut = F − U + α
(
∂x

(
Φ′(U2

x + U2
y ) • Ux

)
+ ∂y

(
Φ′(U2

x + U2
y ) • Uy

))
(24)

with Φ as in (5), homogeneous Neumann boundary conditions and initial value
F . More precisely, we use the iterative scheme

U (k+1) = (1− τ)U (k) + τF + τα
(
∂x

(
G(k) • U (k)

x

)
+ ∂y

(
G(k) • U (k)

y

))
(25)

with sufficiently small time step size τ and G(k) := Φ′((U (k)
x )2 +(U (k)

y )2). The
inner derivatives including those in G are approximated by forward differences
and the outer derivatives by backward differences, so that the penalizing term
becomes

1
h1

(
G(i, j) • U(i+ 1, j)− U(i, j)

h1
−G(i− 1, j) • U(i, j)− U(i− 1, j)

h1

)

+
1
h2

(
G(i, j) • U(i, j + 1)− U(i, j)

h2
−G(i, j − 1) • U(i, j)− U(i, j − 1)

h2

)
,

where hi, i = 1, 2 denote the pixel distances in x- and y-direction. Al-
ternatively, we have also worked with symmetric differences for the deriva-
tives. In this case, we have to replace, e.g. G(i, j) in the first summand by
G̃(i+ 1, j) + G̃(i, j))/2 and G̃ is now computed with symmetric differences.

Finally, we mention that a diffusion equation related to (24) was examined
in [6]. Moreover, in [30] an anisotropic diffusion concept for matrix fields was
presented where the function Φ was also applied to a matrix.

4 Numerical Results

Finally, we present numerical results demonstrating the performance of the
different methods. All algorithms were implemented in MATLAB. Moreover,
we have used the software package MOSEK for SOCP.

SOCP [16] amounts to minimize a linear objective function subject to
the constraints that several affine functions of the variables have to lie in a
second-order cone Cn+1 ⊂ Rn+1 defined by the convex set

Cn+1 =
{(

x
x̄n+1

)
= (x1, . . . , xn, x̄n+1)T : ‖x‖2 ≤ x̄n+1

}
.

With this notation, the general form of a SOCP is given by

inf
x∈Rn

fTx s.t.
(
Aix+ bi
cTi x+ di

)
∈ Cn+1 , i = 1, . . . , r. (26)
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Alternatively, one can also use the rotated version of the standard cone:

Kn+2 :=
{(
x, x̄n+1, x̄n+2

)T ∈ Rn+2 : ‖x‖22 ≤ 2 x̄n+1x̄n+2

}
.

This allows us to incorporate quadratic constraints. Problem (26) is a convex
program for which efficient, large scale solvers are available [18]. For rewriting
our minimization problems as a SOCP, see [22].

We start by comparing the component-based regularization with the
operator-based regularization. First we focus on the 1D matrix-valued func-
tion F : Z16 → Sym+

2 (R) in Fig. 2. We added white Gaussian noise with
standard deviation 0.1 to all components of the original data in [0, 1]. Then
we computed the minimizer of the component-based functional (19) (left) and
of the operator-based functional (22) (right) both by SOCP. The latter was
computed using the fact that the operator-based functional can be rewritten
for tensor-valued 1D signals as

arg min
U

∫
Ω

‖F − U‖2F + α tr|Ux| dx

with
tr |U | = max{

(
4u2

12 + (u11 − u22)2
)1/2

, |u11 + u22|}

for U ∈ Sym+
2 (R), cf. [22]. The middle of the figure shows the Frobenius norm

of the difference between the original and the denoised signal (
∑N

i=1 ‖F (i)−
Û(i)‖2F )1/2 in dependence on the regularization parameter α. We remark that
the shape of the curve and its minimal point do not change if we use the
error measure

∑N
i=1 ‖F (i)− Û(i)‖F instead. The actual minima with respect

to the Frobenius norm are given by min = 0.2665 at α = 0.8 for (19) and
by min = 0.2276 at α = 0.8 for (22). The denoised signals corresponding to
the smallest error in the Frobenius-norm are shown at the bottom of Fig. 2. It
appears that the operator-based method performs slightly better with respect
to these error norms. The visual results confirm this impression. The larger
ellipses obtained by the first method (19) slightly overlap while there are gaps
between the smaller ones. We do not have this effect for the minimizer of (22)
on the right-hand side.

Next we consider the 2D matrix–valued function F : Z2
32 → Sym+

2 (R)
in Fig. 3. To all components of the original data in [0,2] we added white
Gaussian noise with standard deviation 0.6. As in the previous example, we
compare the minimizer of the component-based approach (16) resp. (19) with
those of the operator-based approach (22). For computing the minimizer of
the first functional we applied SOCP, while the second one was computed
via the reaction–diffusion equation (25) with time step size τ = 0.00025. The
iterations were stopped when the relative error in the !2-norm between two
consecutive iterations became smaller than 10−8 (approximately 20,000 iter-
ations) although the result becomes visually static much earlier. The middle
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Fig. 2. Denoising of a matrix-valued signal. Top: Original signal (left), noisy signal
(right). M iddle: Error of the Frobenius norm in dependence on the regularization
parameter α for the minimizers of the component-based functional (19) (left) and the
operator-based functional (22) (right). Bottom: Denoised image for α corresponding
to the smallest error in the Frobenius norm for the component-based functional (left)
and the operator-based functional (right)
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Fig. 3. Denoising of a Sym2(R)-valued image. Top: Original image (left), noisy
image (right). Middle: Error of the Frobenius norm in dependence on the regulariza-
tion parameter α for the minimizers of the component-based functional (19) (left)
and the operator-based functional (22) (right). Bottom: Denoised image for α cor-
responding to the smallest error in the Frobenius norm for the component-based
functional (left) and the operator-based functional (right)
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row of the figure contains the error plots for both methods. The actual minima
with respect to. the Frobenius norm are given by min = 12.19 at α = 1.75 for
(19) and by min = 10.79 at α = 1.2 for (22). Hence, with respect to the com-
puted errors the operator-based method outperforms the component-based
one. The corresponding denoised images are shown in the bottom row of the
figure.

In the following two examples, we consider bivariate matrix-valued func-
tions which map to Sym3(R). We use ellipsoids to visualize this kind of data as
described in Sect. 3.1. Furthermore, the colour of the ellipsoid associated with
a matrix A is chosen with respect to the normalized eigenvector corresponding
to the largest eigenvalue of A. Figure 4 shows a function F : Z2

12 → Sym3(R).
As in the previous case, we added white Gaussian noise to all components.
The matrix components of the original data lie in the interval [−0.5, 0.5] and
the standard deviation of the Gaussian noise is 0.06. The denoising results
are displayed in the last two rows of Fig. 4. We computed the minimizers of
the component-based method (19) (top) by SOCP. The smallest error, mea-
sured in the Frobenius-norm, is 1.102 and was obtained for the regularization
parameter α = 0.11. In addition, we considered the minimizer of the infimal
convolution approach (21) (bottom). Again, we applied SOCP and found the
optimal regularization parameters to be α1 = 0.14 and α2 = 0.08 for this
method. The corresponding Frobenius-norm error is 0.918. We see that the
infimal convolution approach is also suited for matrix-valued data.

In our final experiment, we applied the two component-based methods
(19) and (21) to a larger data set. Figure 5 shows the original data and
the minimizers of (19) and (21). The components of the original data lie
in [−4000, 7000] and we used the regularization parameters α = 600 for (19)
and α1 = 500, α2 = 600 for (21), respectively.

A Proofs

Proof of Proposition 1. Using that the minimal and maximal eigenvalues
λmin(A), λmax(A) of a symmetric matrix A fulfill

λmin(A) = min
‖v‖=1

vTAv, λmax(A) = max
‖v‖=1

vTAv,

it is easy to check that the set C of matrices having all eigenvalues in
[λmin, λmax] is convex and closed. Let J be the functional in (19). Assume
that some matrices Û(i, j) are not contained in C. Let PÛ(i, j) denote the
orthogonal projection (with respect to the Frobenius norm) of Û(i, j) onto C.
Then we obtain by the projection theorem [11, p. 269] that

‖F (i, j)− PÛ(i, j)‖F ≤ ‖F (i, j)− Û(i, j)‖F ,

‖PÛ(i, j)− PÛ(k, l)‖F ≤ ‖Û(i, j)− Û(k, l)‖F .
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Fig. 4. Denoising of a Sym3(R)-valued image. Top to Bottom: Original image,
noisy image, minimizer of the component-based method (19) for α = 0.11, minimizer
of the component-based infimal convolution approach (21) with parameters α1 =
0.14, α2 = 0.08. Visualization: ellipsoids (left), components of the matrix-valued
data (right)
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Fig. 5. Denoising of a real-world DT-MRI matrix field with values in Sym3(R).
Top: Original image. M iddle: Minimizer of the component-based method (19) for
α = 600. Bottom: Minimizer of the infimal convolution approach (21) for α1 =
500, α2 = 600
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Consequently, J (PÛ) ≤ J (Û), which contradicts our assumption since the
minimizer is unique. This completes the proof. �

Proof of Proposition 2. Since ‖F −U‖2F is strictly convex, it remains to show
that the functional

J(U) := tr
(√

U2
x + U2

y

)
is convex. Moreover, since J is positively homogeneous, we only have to prove
that J is subadditive, cf. [2, p. 34], i.e.

J(Ũ + U) ≤ J(Ũ) + J(U).

This can be rewritten as

tr
(√

(Ũx + Ux)2 + (Ũy + Uy)2
)
≤ tr
(√

Ũ2
x + Ũ2

y

)
+ tr
(√

U2
x + U2

y

)
.

To prove this relation, we recall the definition of the trace norm, cf. [16, p. 197],
which is defined as the sum of the singular values of a matrix A ∈ Rs,t:

‖A‖tr = tr(
√
A∗A).

Then we have for the symmetric matrices Ũx, Ũy, Ux, Uy that

‖
(
Ũx + Ux

Ũy + Uy

)
‖tr = tr

(√
(Ũx + Ux)2 + (Ũy + Uy)2

)
.

Since ‖ · ‖tr is a norm it follows that

‖
(
Ũx + Ux

Ũy + Uy

)
‖tr ≤ ‖

(
Ũx

Ũy

)
‖tr + ‖

(
Ux

Uy

)
‖tr

= tr(
√
Ũ2

x + Ũ2
y ) + tr(

√
U2

x + U2
y )

and we are done. �

Proof of Proposition 3. Let ϕ(Ux, Uy) := tr
(
Φ(U2

x + U2
y )
)
. The Euler–

Lagrange equations of (22) are given, for i, j = 1, ..., n and i ≥ j, by

0 =
∂

∂uij
‖F − U‖2F − α

(
∂

∂x

(
∂ϕ

∂uijx

)
+
∂

∂y

(
∂ϕ

∂uijy

))
.

For a scalar-valued function f and an n × n matrix X, we set ∂f(X)
∂X :=(

∂f(X)
∂xij

)n

i,j=1
. Then, by symmetry of F and U , the Euler–Lagrange equations

can be rewritten in matrix–vector form as
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Wn ◦
U − F
α

=
1
2

(
∂

∂x

(
∂ϕ

∂Ux

)
+
∂

∂y

(
∂ϕ

∂Uy

))
, (27)

where Wn denotes the n× n matrix with diagonal entries 1 and other coeffi-
cients 2, and A◦B stands for the Hadamard product (componentwise product)
of A and B.
We consider f(X) := trΦ(X2). Then we obtain by [17, p. 178] and tr (ATB) =
(vecA)TvecB that

vec
∂f(X)
∂X

= vec
(

tr (Φ′(X2)
∂(X2)
∂xij

)
)n

i,j=1

= vec
(

(vecΨ)Tvec
∂(X2)
∂xij

)n

i,j=1

where Ψ := Φ′(X2). By [17, p. 182] and since Ψ is symmetric this can be
rewritten as

vec
∂f(X)
∂X

= vec Wn ◦ ((In ⊗X) + (X ⊗ In)) vec Ψ.

Using that vec (ABC) = (CT ⊗A)vecB we infer that

vec
∂f(X)
∂X

= vecWn ◦ vec (XΨ + ΨX).

This implies that
∂f(X)
∂X

= 2Wn ◦ (Ψ •X). (28)

Applying (28) with f(Ux) := ϕ(Ux, Uy) and f(Uy) := ϕ(Ux, Uy), respectively,
in (27) we obtain the assertion. �
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Summary. During the last few years, a considerable amount of research has been
conducted to study multiscale properties of images via partial differential equations.
In this context, we can roughly divide the methodology into three different for-
mulations, namely the scale space formulation, the regularization formulation, and
the inverse scale space formulation. In this chapter, we propose an inverse scale
space formulation for matrix valued images using the operator-algebraic approach
recently introduced by Burgeth et al. in 2007 (B. Burgeth, S. Didas, L. Florack,
and J. Weickert. A generic approach to diffusion filtering of matrix-fields. Comput-
ing, 81(2–3):179–197, 2007; B. Burgeth, S. Didas, L. Florack, and J. Weickert. A
Generic Approach to the Filtering of Matrix Fields with Singular PDEs. In Scale
Space and Variational Methods in Computer Vision. Volume 4485 of Lecture Notes
in Computer Science, pages 556–567. Springer, Heidelberg, 2007). We perform nu-
merical experiments on synthetic tensor fields and on real diffusion tensor data from
DT-MRI of a human brain.

1 Introduction

In many applications there is a need for a multiscale representation of images.
Partial differential equations (PDEs) provide a flexible framework for this
purpose [8, 20, 31]. Traditionally, PDEs have been used via two intrinsically
related approaches, namely parabolic equations of diffusive nature and elliptic
equations corresponding to the minimum of energy functionals. In between
these two approaches we find the inverse scale space approach, which we will
address in this chapter. Inverse scale space methods have earlier been studied
to some details in the context of scalar valued images [4, 17, 21, 24]. In this
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chapter we extend the so-called relaxed inverse scale space flow to matrix
valued images via the operator algebraic framework recently introduced [5, 6].
Inverse scale space methods as a concept is related to regularization methods
for ill-posed inverse problems, i.e. Tikhonov regularization [14, 15, 27].

In this chapter, we consider a matrix field as a mapping F : Ω ⊂ IRd −→
Mn(IR), from a d-dimensional image domain into the set of n × n-matrices
with real entries, F (x) = (fp,q(x))p,q=1,...,n. Essential for us is the subset of
symmetric matrices Symn(IR). The set of positive (semi-) definite matrices,
denoted by Sym++

n (IR) (resp., Sym+
n (IR)), consists of all symmetric matrices

A with 〈v,Av〉 := v�Av > 0 (resp., ≥ 0) for v ∈ IRn \ {0} .
Matrix fields play a vital role in many applications: In image processing

as a form of the structure–tensor [12], in continuum mechanics where ten-
sors are widely used to describe anisotropic behaviour, such as strain–stress
or permittivity tensors. But most importantly in this setting medical imag-
ing. Diffusion tensor magnetic resonance imaging (DT-MRI) [1] constitutes a
modern and widely used image acquisition technique that measures a 3 × 3
matrix field with positive definite matrices. To each voxel, a so-called diffu-
sion tensor is assigned describing diffusive properties of water molecules; thus
it is intimately related to the geometry and organization of the tissue under
examination. Hence the matrix field obtained is a valuable source of in vivo
information about the underlying tissue structure, e.g. in the human brain
[2, 22]. This information can, for example, be used for the construction of
maps of the tissue-connectivity [19, 33, 34], or for construction of anisotropy
measures like the fractional anisotropy (FA), the relative anisotropy (RA)
and the barycentric index [32]. The fractional anisotropy is a measure which
is routinely used by the medical practitioners.

The indicated variety of applications require the development of appropri-
ate tools for the processing and analysis of matrix-valued data. Comprehensive
survey articles on the analysis of DT-MRI matrix fields using various tech-
niques can be found in [31]. The work here concentrates on the multistage
representation of matrix fields via the inverse scale space methodology.

In the context of scalar images, we can write a standard parabolic flow as

ut = −p(u),
u(x, 0) = f,

(1)

and the corresponding elliptic flow as

ut = −p(u) + λ(f − u),
u(x, 0) = f,

(2)

with appropriate boundary conditions and f is the initial data. The symbol
p(u) denotes a differential operator involving u, usually stemming from a
regularization functional. In the literature

p(u) = −Δu
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and
p(u) = −div

( ∇u
|∇u|

)
are used as canonical linear and nonlinear operators respectively. In applica-
tions, often the nonlinear operators are preferable, since linear operators tend
to over-smooth the edges in the images [8, 20, 23].

As indicated by the names of the two flows, the parabolic PDE (1) develops
the initial condition towards the mean value of u as time increases, while the
elliptic PDE (2) governs an evolution from the initial condition towards a non-
trivial steady-state. In order to make the two flows meaningful, a parameter
estimation must be done. In the context of the parabolic flow, a stopping
condition must be imposed and in the context of the elliptic flow, the weighting
factor λ must be chosen. Finding the optimal parameter λ∗ or t∗ is in general
difficult. However, approximations are usually easier to obtain.

By a modification of the flow (2), we get the relaxed inverse scale space flow

ut = −p(u) + λ(f − u+ v),
vt = α(f − u),

u(x, 0) = mean(f),
v(x, 0) = 0,

(3)

with α ≤ λ
5 as a relaxation parameter. This relaxed inverse scale space flow

was first introduced by Gilboa et al., and has been studied by several authors
[4, 17]. In contrast to the standard scale space formulation, here interpreted
as the flow (1) with the righthand side p(u) = −Δu, the relaxed inverse flow
produces a group of images evolving from a very smooth initial condition
mean(f) towards the data f . By the introduction of the inverse scale space,
it is possible to traverse the scale space in both directions. It is even possible
to iterate back and forth in the scale space. This could possibly be used to
make more robust and effective scale spaces. For a more detailed explanation
of the inverse scale space methods, see eg. [4, 17].

Attempts to extend the PDE methodology used for scalar images to the
setting of matrix fields with positive (semi-) definite matrices have been made
[7, 10, 11, 25, 28–30]. Matrix field regularization as suggested in [9, 13] is
based on differential geometric considerations. Recently, Christiansen et al.
generalized the vector TV model of Blomgren and Chan in a straightforward
manner to yield a regularization method for matrix valued images [3, 10].
This approach is interesting in the sense that during the flow, the diffusion
tensor is by construction positive definite, which is usually required in DT-
MRI applications.

A different and more general approach was presented by Burgeth et al. in
2007 [5, 6]. There they introduced an operator-algebraic approach for the con-
struction of matrix-valued PDEs for matrix fields. They show that it is possible
to transfer the characteristic behaviour of scalar operators to matrix operators
as well. Important scalar models like motion by mean curvature, self-snakes,
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the Perona–Malik model and the ROF model are generalized to matrix valued
models. By different choices of matrix products, they preserve intrinsic matrix
properties like, for example, positive definiteness. In [5, 6] various instances of
the parabolic equation (1) are studied within this context. The setup provides
a coupling of the different matrix channels, treating diagonal and off-diagonal
elements in a proper manner. This appropriate channel interaction is a key
issue in the processing of matrix fields. As a proof-of-concept, we demonstrate
in this chapter that the same operator-algebraic framework can be successfully
used to obtain a relaxed inverse scale space flow (3) for matrix fields.

This chapter is organized as follows: The next section is devoted to the
basic operations of the operator algebraic framework and we show how it can
be used for the purpose of generalizing the inverse scale space methods to a
matrix-valued setting. We discuss numerical implementation issues in Sect. 4.
Section 4 also contains a validation of our matrix-valued inverse scale space
methodology by a few numerical computations on synthetic diffusion tensor
fields and real DT-MRI fields. Summarizing remarks in Sect. 5 concludes the
chapter.

2 Inverse Methods for Matrix Valued Images

In this section, we give a sufficiently detailed description of how we general-
ize the relaxed inverse scale space method from a scalar setting to a matrix
setting. Although the operator-algebraic framework has been described by
Burgeth et al. [5, 6] we repeat its necessary parts here for the sake of com-
pleteness.

The definition of a function of a symmetric matrix is well established in
linear algebra [16]:

g(U) := V �diag(g(λ1), . . . , g(λn))V,

where U := V �diag(λ1, . . . , λn)V is the spectral decomposition of U and g is a
real function applicable to the set of real eigenvalues of U . The usual product
of two symmetric matrices is in general no longer symmetric unless they com-
mute. Hence a suitable ‘symmetric’ multiplication has to be found. Among the
numerous possibilities, we mention two choices. The so-called Jordan product
is given by

A •J B :=
1
2
(AB +BA).

The preconditioner product, named after its usage in numerical linear algebra,
as a way to precondition symmetric linear systems, is defined as

A •P B :=
√
AB

√
A .

with a positive semidefinite A.
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In the numerical experiments in this chapter we use the Jordan product,
from now on simply denoted by “•”.

The rather obvious matrix-valued version of a difference quotient for a ma-
trix field U gives rise to a component-wise definition of spatial or temporal
partial derivatives [5, 6]

∂ωU(ω0) = lim
h→0

U(ω0 + h)− U(ω0)
h

= (∂ωuij(ω0))ij . (4)

It is close at hand that other linear operators like the arithmetic mean or
convolution with a kernel are also interpreted component-wise in the matrix
setting.

The set of spatial partial derivatives forms the spatial gradient for matrix
fields ∇U ∈ (Symn(IR))d

∇U(x) =
[
∂x1U(x), ∂x2U(x), · · · , ∂xd

U(x)
]T
. (5)

Note that this gradient is an element of the module (Symn(IR))d rather than
a higher order tensor as one might expect from a differential geometric point
of view. We refer to a function with values in (Symn(IR))d as a module field.
Similarly, the generalized divergence defined by

div (A(x))� :=
d∑

i=1

∂xi
Ai(x)

for a module field A(x) :=
(
A1(x), . . . , Ad(x)

)
is again not a higher order

tensor but simply a symmetric matrix. The definition of a Laplacian for a
matrix field U is straightforward:

ΔU :=
d∑

i=1

∂
2

xi
U

Finally, there is a notion of p-length in the module (Symn(IR))d realized for
a ‘fat vector’ W = (W1, . . . ,Wd) ∈ (Symn(IR))d by

|W |p := p
√
|W1|p + · · ·+ |Wd|p ∈ Sym+

n (IR).

The most essential term in equations (1), (2), and (3) is p(u). In its most
basic (linear) form, we have

p(u) = −
d∑

i=1

∂xi
∂xi
u = −Δu . (6)

Using the operator-algebraic framework, p(u) can be readily generalized to an
operator acting on a matrix by
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PΔ(U) = −ΔU. (7)

However, the linear model is not very interesting for most practical purposes.
The canonical nonlinear model where the Laplacian is replaced with the non-
linear term

p(u) = −div
( ∇u
|∇u|

)
(8)

can similarly be generalized to a matrix valued setting by

PTV (U) = −div
(

1
|∇U |

• ∇U
)
, (9)

where |∇U | stands for the 2-length of ∇U , that is, |∇U | := |∇U |2 =√∑d
i=1 |Ui|2 and “•” denotes either the Jordan or the preconditioning prod-

uct. The diffusivity can be interpreted as the inverse of |∇U |:

G =
1

|∇U |
= |∇U |−1

(10)

since we have

|∇U |−1 •J |∇U | = |∇U |−1 •P |∇U | = |∇U |−1 · |∇U | = I . (11)

Having defined the regularization operator P (U) (where P equals, e.g. PΔ or
PTV ) for a matrix valued image U , we rewrite the relaxed inverse scale space
flow to matrix valued images by

Ut = −P (U) + λ(F − U + V ),
Vt = α(F − U),

U(x, 0) = simp(F )
V (x, 0) = 0,

(12)

with α ≤ λ/5 and U,F and V being matrix fields mapping R to Symn(IR).
Temporal derivatives are denoted for brevity as Ut and Vt. The expression
simp(F ) stands for a simplified version of F . In the simplest case, simp(F )
might be the arithmetic mean of the matrix field F ,

simp(F ) =
∫
Ω

F (x) d x

or alternatively the solution (x, t) �→ W (x, t) of another evolution process
such as linear, Perona–Malik- or TV- diffusion. The initialization flow can, for
example, start with initial value F and stop at a certain time τ :

simp(F ) = W (·, τ) .
From the scalar system (3), we know that with increasing time u flows

from simp(f) towards f . Analogously, in the matrix valued setting, the flow
(12) evolves from the simplified field simp(F ) towards the matrix field F .
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3 Numerical Implementation

In this section we include details on the numerical implementation of the
method. We discretize the equation system (12) by standard finite differences.
We employ the same numerical scheme as in [5]. Super- and sub-indexes denote
temporal and spatial discretization respectively. For the temporal derivative
we use an Euler explicit scheme, i.e.

∂U

∂t
≈
Un+1

i,j,k − Un
i,j,k

Δt
. (13)

To simplify the notation, we sometimes omit one of the indexes. Thus we
denote Un

i,j,k as Ui,j,k, or Un
i,j,k as Un. The arithmetic mean of the diffusivity

in the direction determined by the index is defined as

Gi± 1
2 ,j,k =

Gi±1,j,k +Gi,j,k

2
. (14)

As a numerical approximation to P , we employ P̃ given by

P̃ (U) =
1
Δx

(
Gi+ 1

2 ,j,k •
Ui+1,j,k − Ui,j,k

Δx
−Gi− 1

2 ,j,k •
Ui,j,k − Ui−1,j,k

Δx

)
,

+
1
Δy

(
Gi,j+ 1

2 ,k •
Ui,j+1,k − Ui,j,k

Δy
−Gi,j− 1

2 ,k •
Ui,j,k − Ui,j−1,k

Δy

)
,

+
1
Δz

(
Gi,j,k+ 1

2
• Ui,j,k+1 − Ui,j,k

Δz
−Gi,j,k− 1

2
• Ui,j,k − Ui,j,k−1

Δz

)
.

This leads to the following numerical schemes for the equation system (12)

Un+1 = Un −Δt
(
P̃ (Un) + λ(F − Un + V n)

)
,

V n+1 = V n − αΔt(F − Un),
U0 = simp(F ),
V 0 = 0. (15)

We will use the numerical schemes introduced above to perform numerical
experiments on matrix fields in the next section.

4 Numerical Experiments

Numerical experiments on artificial and real DT-MRI data will confirm that
the inverse scale space concept can be transferred to the matrix fields via
the operator-algebraic framework. For all the numerical experiments we ini-
tialize the algorithm with an over-smoothed version of the noisy matrix field
F , U(x, 0) = simp(F ) , as described in Sect. 2. From the simplified matrix



368 J. Lie et al.

field U(x, 0), the matrix field U(x, t) evolves towards the noisy matrix field
F . All the processed matrix fields are 3D matrix fields. We display only one
2D-slice of the data set. All experiments are carried out with the parameters
λ = 2 and α = λ/5. This means that we only have one active parameter
in the methodology, namely the stopping time t. This is similar to the scale
space approach where the stopping time is a free parameter, and the regular-
ization approach where the regularization parameter is a free parameter. In
this chapter, we study the behaviour of the relaxed inverse scale space flow,
but we do not search for a good stopping criteria. This is common practice
for this kind of methods.

All computations are done on a computer with a 2 Opteron 270 Dual-core
processor and 8 GB of memory. The implementation is done in MatLab R© with
some parts implemented in C using mex files [26].

4.1 A Simple Synthetic Field

In the first numerical experiment, we apply the proposed methodology on a
simple three-dimensional tensor field with spatial dimensions 16× 16× 5. All
five layers in this data set are equal, and Fig. 1(a) shows one slice of the tensor
field. The tensor field consists of two regions, one with principal diffusion
direction along the east–west and one along the north–south direction. Each
matrix in the regions have one single large eigenvalue of 1, and two small
eigenvalues of 0.25. Thus the regions are anisotropic.

The clean tensor field has matrix elements in the range from 0 to 1, and
we add normal distributed noise with zero mean and variance of 0.2, see
Fig. 1(b). This tensor field is then evolved, using a simple forward model, into
an over-smoothed tensor field, see Fig. 1(c). The noisy tensor field and the
over-smoothed tensor field is then respectively used as the input parameters
F and simp(F ) in (12).

(a) (b) (c)

Fig. 1. (a) A simple synthetic field with two regions. (b) Normal distributed noise
with zero mean and variance of 0.2 is added to the clean tensor field. (c). The noisy
tensor field is evolved, using a simple forward model, into an over-smoothed tensor
field
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(a) (b)

(c) (d)

Fig. 2. The relaxed inverse scale space flow in a matrix setting. (a) After 300
iterations the over-smoothed tensor field has started to align along the directions
in the true solution. (b) After 1,950 iterations we are close to the true solution.
(c) After 5,000 iterations noise is beginning to appear in the matrix field. (d) After
20,000 iterations U is close to the noisy data F

In Fig. 2, we observe that more and more information is added to U as
time progresses. After a while, the field is almost identical to the noise-free
field and as anticipated, a while after this, the noise reappears in the field U .
Eventually, U → F as t→∞, which also is to be expected.

4.2 A More Complex Synthetic Example

In the next example, we have a more complex synthetic three-dimensional
tensor field with spatial dimensions 32× 32× 5. As in the previous example,
all five layers are equal, and Fig. 3(a) shows one slice of the tensor field. The
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(a) (b) (c)

Fig. 3. (a) A more complex synthetic field with four regions. (b) Normal distributed
noise with zero mean and variance of 0.2 is added to the clean tensor field. (c). The
noisy tensor field is evolved, using a simple forward model, into an over-smoothed
tensor field

tensor field consists of four regions, the outermost region is empty with each
matrix equal to the null matrix. The second outermost region is circle shaped.
Each matrix in this region has two large eigenvalues of 1 and a single small one
of 0.25. The two innermost regions are more anisotropic. Each matrix in these
regions have one single large eigenvalue of 1 and two smaller ones of 0.25.

The clean tensor field has matrix elements in the range from 0 to 1, and we
add normal distributed noise with zero mean and variance of 0.2, see Fig. 3(b).
This tensor field is then evolved, using a simple forward model (ROF model
with λ = 0), into an over-smoothed tensor field, see Fig. 3(c). The noisy tensor
field and the over-smoothed tensor field are then used as the input parameters
F and simp(F ) respectively in (12).

As in the previous example, we observe that more and more information
is added to U as time increases, see Fig. 4. As anticipated the evolution from
a degraded image over a somewhat denoised version to a variant close to the
polluted version is observed.

By these experiments, we have demonstrated that, at least qualitatively,
the relaxed inverse scale space flow in the matrix setting indeed behaves as
expected from the scalar setting. The diffusion tensors field evolves from an
essentially isotropic tensor field at t = 0, through a state of a structured
anisotropic tensor field, and finally towards a noisy unstructured anisotropic
tensor field.

4.3 Real Brain DTI

In the last numerical experiment, we apply the proposed methodology on a real
diffusion tensor MRI tensor field. To be able to display a slice of the complex
human brain tensor field as a whole, we use a colour-coded FA plot instead
of the ellipsoid representation used in the previous experiments, see Fig. 5(a).
However, the calculations are performed, as before, on the underlying matrix
field.
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(a) (b)

(c) (d)

Fig. 4. The relaxed inverse scale space flow in a matrix setting. (a) After 500
iterations the over-smoothed tensor field has started to align along the directions
in the true solution. (b) After 2,430 iterations we are close to the true solution.
(c) After 5,000 iterations noise is beginning to appear in the matrix field. (d) After
20,000 iterations U is close to the noisy data F

The data used is a full 3D matrix valued data set with spatial dimensions
110 × 126 × 65. The human subject data were acquired using a 3.0 T scan-
ner (Magnetom Trio, Siemens Medical Solutions, Erlangen, Germany) with a
8-element head coil array and a gradient subsystem with the maximum gra-
dient strength of 40 mT m−1 and maximum slew rate of 200 mT m−1 ms−1.
The DTI data were based on spin-echo single shot EPI acquired utilizing gen-
eralized auto calibrating partially parallel acquisitions (GRAPPA) technique
with acceleration factor of 2, and 64 reference lines. The DTI acquisition con-
sisted of one baseline EPI, S0, and six diffusion weighted images S1, . . . , S6
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(a) (b) (c)

Fig. 5. Colour coded FA plots of one slice of real DTI (a) The noisy input image. (b)
High quality reference solution where 18 measurements are registered and averaged.
(c) The noisy tensor field evolved into an over-smoothed tensor field

(b-factor of 1,000 smm−2) along the same gradient directions as in the pre-
vious example. Each acquisition had the following parameters: TE / TR /
averages was 91 ms/10,000 ms/2, FOV was 256×256 mm2, slice thickness/gap
was 2 mm/0 mm, acquisition matrix was 192× 192 pixels and partial Fourier
encoding was 75%.

Since we are working with real data, we do not have access to an exact
“true” solution. Instead we used a high quality reference dataset for compar-
ison, see Fig. 5(b). This dataset was obtained by registering and averaging 18
acquisitions. The noisy dataset used as F in (12) is a four averaged acquisitions
consuming about 20% of the acquisition time, compared to the higher-quality
one. This dataset is then evolved into an over-smoothed dataset and used as
the initial parameter simp(F ), see Fig. 5(c).

From the experiment, see Fig. 6, we clearly infer that the inverse scale space
methodology is well suited for the construction of multiscale representations
of DTMRI fields of the human brain. The visualizations are made by the
software DTIStudio, which is developed by Mori et al. [18].

5 Conclusions

In this chapter, we have employed the operator-algebraic framework of
Burgeth et al. to make a straightforward generalization of the so-called re-
laxed inverse scale space flow to matrix images. We have performed numerical
experiments, which indicate that the matrix flow qualitatively resembles the
scalar flow. Further research must be performed to justify the usefullness of
the methodology. Also, further work must be done to construct good stopping
criteria for the inverse scale space flow.
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(a) (b)

(c) (d)

Fig. 6. One slice of a real diffusion tensor field of a human brain, colour-coded
FA plot. (a) After 50 iterations we are approaching a good result. (b) After 110
iterations we are close to the optimal matrix field. (c) After 250 iterations noise is
beginning to appear in the matrix field. (d) After 1,000 iterations U is close to the
noisy data F
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