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Preface

Digital geometry deals with the geometric properties of subsets of digital pictures
and with the approximation of geometric properties of objects by making use of
the properties of the digital picture subsets that represent the objects. It emerged
in the second half of the 20th century with the initiation of research in the fields
of computer graphics and digital image analysis. It has its mathematical roots in
graph theory and discrete topology; it deals with sets of grid points which are also
studied in number theory (since C.F. Gauss) and the geometry of numbers, or with
cell complexes (which have been studied in topology since the middle of the 19th
century). Studies of gridding techniques, such as those by Gauss, Dirichlet, or Jordan
(for measuring the content of a set), also provide historic context for digital geometry.
Digitizations on regular grids are also frequently used in numeric computation in
science and engineering.

This book uses the term ‘‘picture’’ rather than ‘‘image,’’ because pictures can
be the result of drawing, painting, stitching, or other technologies that do not involve
imaging processes. The book deals with digital geometry in the context of picture
analysis. The medium on which digital pictures reside is called a grid which is a finite
set of grid points, grid cells, or other types of discrete elements; the book discusses
the geometric and topologic properties of subsets of grids.

Digital geometry can be viewed as a special branch of discrete geometry that
deals with graph-theoretical or combinatorial concepts. It can also be viewed as ap-
proximate Euclidean geometry on the basis of the fact that picture analysis generally
makes use of ideas about Euclidean space. However, digital geometry differs from
approximation theory in its use of digitized input data (grid points that are not nec-
essarily on the original curve) rather than sampled input data (sample points that
are on the curve but that are not necessarily grid points) and in its focus on under-
standing the data in digital terms rather than approximating the data with the use
of polynomials. Digital geometry also differs from computational geometry, which
deals with finite sets of geometric objects in Euclidean space.

The book is intended to be a text that can be used in advanced undergradu-
ate or graduate courses about image analysis in fields such as computer science or
engineering. Selections from the material in this book should be sufficient to fill

v



vi Preface

a one-semester course; see the course proposals in the section called ‘‘Structure of
this Book’’ for suggested selections. Prerequisites to the use of this book are a basic
knowledge of set theory and graph theory and programming experience for the sug-
gested experimental exercises (course assignments). It should be pointed out that
some of the exercises are quite difficult; see the references provided in the Com-
mented Bibliography sections at the ends of the chapters for additional information.

The book is also designed to be a comprehensive review of research in digital
geometry. The authors have chosen a mathematic viewpoint rather than a practi-
tioner’s viewpoint. However, the fundamentals of digital geometry are also of value
to those who work on applications of image analysis or computer graphics, especially
if they are concerned with theoretical foundations. Each chapter concludes with ex-
ercises and has references to related or more advanced work. When proofs are not
given, references to the relevant literature are provided.

This book provides discussions and citations of important mathematic ideas
and methodologies that are important to digital geometry and date back, in some
cases, to previous centuries or even to ancient times. This information should give
students and researchers a better understanding of where the subject fits into a long-
term historic process of knowledge acquisition, which began long before their own
work or that of their supervisors.

The authors acknowledge comments by (in alphabetical order) Valentin Brim-
kov, David Coeurjolly, Isabelle Debled-Rennesson, David Eberly, Atsushi Imiya,
Gisela Klette, T. Yung Kong, Longin Jan Latecki, Majed Marji, Lyle Noakes, Theo
Pavlidis, Christian Ronse, Garry Tee, Klaus Voss, and Jovisa Zunić. The help of
Janice Perrone and Cecilia Lourdes in preparing the manuscript and providing library
contacts was very important, and it is appreciated by the authors.

Reinhard Klette and Azriel Rosenfeld
Auckland, New Zealand and Baltimore,

Maryland, USA
October, 2003

I greatly regret that Professor Rosenfeld did not live to see our book published
in final form. I have lost not just a friend, but an outstanding teacher and scientist
colleague. I shall miss him.

Reinhard Klette
May, 2004



To Gisela, Kristian, and Alexander Klette, and to Abraham Rosenfeld and his family



Professor Azriel Rosenfeld
19 February 1931 - 22 February 2004



ix

Reinhard Klette is professor of information technology in the Department of Com-
puter Science at the University of Auckland (New Zealand). His research interests
are directed toward theoretical and applied subjects in image data computing, robot
vision, visualization, pattern recognition, image analysis, and image understanding.
He has published more than 200 journal and conference papers on topics in computer
science, and books about parallel processing, image processing, and shape recovery
based on visual information. He has been a plenary speaker at conferences in Eu-
rope, America and Australasia. He is an Associate Editor of IEEE Transactions on
Pattern Analysis and Machine Intelligence.

Azriel Rosenfeld was a tenured Research Professor, a Distinguished University Pro-
fessor, and the Director of the Center for Automation Research at the University of
Maryland in College Park, where he also held affiliate professorships in the Depart-
ments of Computer Science, Electrical Engineering, and Psychology.

Dr. Rosenfeld was widely regarded as the leading researcher in the world in
the field of computer image analysis. Over a period of nearly 40 years, he made
fundamental and pioneering contributions to nearly every area of that field. He
wrote the first textbook in the field (1969), was founding editor of its first journal
(1972), and was co-chairman of its first international conference (1987). He published
over 30 books and over 600 book chapters and journal articles, and directed nearly
60 Ph.D. dissertations.

Dr. Rosenfeld’s research on digital image analysis (specifically on digital ge-
ometry and topology and the accurate measurement of statistical features of digital
images) in the 1960s and 1970s formed the foundation for a generation of industrial
vision inspection systems that have found widespread applications from the automo-
tive to the electronics industry.

He was a Fellow of the Institute of Electrical and Electronics Engineers (1971),
won its Emanuel Piore Award in 1985, and received its Third Millennium Medal in
2000; he was a founding Fellow of both the American Association for Artificial
Intelligence (1990) and the Association for Computing Machinery (1993). He was
a Fellow of the Washington Academy of Sciences (1988) and won its Mathematics
and Computer Science Award in 1988. He was a founding Director of the Machine
Vision Association of the Society of Manufacturing Engineers (1985–1988), won its
President’s Award in 1987, and was a certified Manufacturing Engineer (1988). He
was a founding member of the IEEE Computer Society’s Technical Committee on
Pattern Analysis and Machine Intelligence (1965), served as its Chairman (1985–
7), and received the society’s Meritorious Service Award in 1986, its Harry Goode
Memorial Award in 1985, became a Golden Core member of the Society in 1996,
and received its Distinguished Service Award for Lifetime Achievement in Computer
Vision and Pattern Recognition in 2001. Dr. Rosenfeld received the IEEE Systems,
Man, and Cybernetics Society’s Norbert Wiener Award in 1995, and he received
an IEEE Standards Medallion in 1990 and the Electronic Imaging International
Imager of the Year Award in 1991. He was a founding member of the Governing
Board of the International Association for Pattern Recognition (1978–1985), served
as its President (1980–1982), won its first K.S. Fu Award in 1988, and became one of



x Preface

its founding Fellows in 1994. In 1998, he received the Information Science Award
from the Association for Intelligent Machinery. He was a Foreign Member of the
Academy of Sciences of the German Democratic Republic (1988–92) and was a
Corresponding Member of the National Academy of Engineering of Mexico (1982).



Structure of this Book

Chapters 2 through 8 provide foundations for digital geometry; they discuss grids,
metrics, graphs, topology, and geometry and introduce concepts and methods used
in digital geometry that are related to these subjects.

This book is organized as shown below.

Basics

Chapter 1: Introduction
Chapters 2–8: Grids, Metrics, Graphs, Topology, Geometry

Selected topics

Chapters 9–12: Straight Lines, Curves, Planes, Surfaces
Chapters 13–16: Hulls and Diagrams, Transformations

(Geometrical, Morphological, Deformations)
Chapter 17: Other Properties and Relations

Chapters 9 through 13 discuss topics in digital geometry: digital ‘‘straightness’’ in
Chapter 9; length and curvature of arcs and curves in Chapter 10; 3D straightness
and planarity in Chapter 11; area and curvature of surfaces in Chapter 12; and hulls
and diagrams in Chapter 13.

Chapter 14 discusses geometric operations on pictures; Chapter 15 discusses
the application of operations of mathematic morphology to pictures; Chapter 16
discusses deformations of pictures; and Chapter 17 discusses picture properties and
spatial relations.

Chapter 1 provides a general introduction and should be read first. Depending
on the background of the reader, the different chapters may allow more or less inde-
pendent reading. However, there are some obvious ‘‘clusters’’, such as Chapters 4
and Chapter 5 (graph-theoretical models of pictures), Chapters 6 and 7 (basics of
topology in the context of picture analysis), Chapters 8, 9, 11, 13, 14, and 17 (basics
of geometry in the context of picture analysis), and Chapter 10 and 12 (performance
evaluation of algorithms in digital geometry).

xi



xii Structuer of this Book

A third year undergraduate course about algorithms for digital pictures (in a
program in electrical engineering, computer science or mathematics involving picture
analysis or computer graphics) could focus on selected algorithms (see the List of
Algorithms at the end of the book) and on the fundamentals that underlie these
algorithms. The students would have the benefit of related mathematical topics and
material for additional reading being provided in the same textbook. For example,
the course could be structured as follows:

1. (1-2 lectures) Start with Section 1.1

2. (3-5 lectures) Follow this with Chapter 2, possibly shortening Section 2.3 and
adding the example from Section 1.2.7 to the presentation of Section 2.4.

3. (3 lectures) Follow this with metrics and distance transforms (Chapter 3).

4. (2-3 lectures) Continue with the border tracing algorithm of Chapter 4 (with
related property calculations; see, e.g., Section 8.1.6).

5. (2 lectures) Cover the frontier tracing algorithm of Chapter 5.

6. (2-3 lectures) Follow this with one or two DSS approximation algorithms
(K1990 in Chapter 9, related to frontier tracing, or DR1995, related to bor-
der tracing of planar regions).

7. (3-8 lectures) Facilitate an extensive discussion about methods, algorithms, and
performance evaluation for different arc length and curvature estimators (see
Chapter 10).

8. (3-8 lectures) If time allows, algorithms for 3D region analysis could be added.
This would include surface scanning from Section 8.4 (with related property
calculations; see, e.g., Section 8.3.7), DPS approximation from Chapter 11, and
surface area and curvature estimation with comparative performance evalua-
tion from Chapter 12.

9. (3-6 lectures) Algorithms from Chapter 13 (hulls and diagrams; see also Sec-
tion 1.2.9) or from Chapter 15 (morphologic operations) could also be added
to the course.

Note that the exercises in this book are of varying complexity and should be se-
lected carefully for such a course; however, all of the experimental exercises can be
recommended for course work (assignments). The course could also cover other
algorithms from the List of Algorithms (e.g., geometric transforms, which are not
difficult to implement, or simple deformations, which require a good understanding
of the ‘‘more challenging’’ concepts discussed in Chapter 16).

Graduate courses could focus on more specific topics clustered around selected
sections in the book, such as the following:

(i) Picture Analysis and Topology (Chapter 2 as an introduction, then Chapters 4
through 7 and Chapter 16).
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(ii) Multigrid Analysis of Property Estimators in Picture Analysis (basics from
Chapter 2 and Chapter 3, including the example from Section 1.2.7, followed
by multigrid subjects in Chapters 10, 12, and 17).

(iii) Combinatorial Picture Analysis (combinatorial subjects in Chapters 1 and 2 as
an introduction, then Chapters 4 and 5, combinatorial subjects in Chapters 9
and 11, digital tomography in Chapter 14, and digital moments in Chapter 17).

(iv) The axiomatic approaches to different subdisciplines, especially the axiomatic
theory of digital geometry in Chapter 14, could provide material for a graduate
research seminar about Mathematical Fundamentals of Picture Analysis (see
also the List of Axioms at the end of this book).

The extensive bibliography, with commented bibliography sections at the ends of
the chapter, should also provide support for designing graduate student research
seminars based on selected readings.
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C H A P T E R 1

Introduction

This book deals with the concepts, methods, and algorithms of digital geometry.
This introductory chapter provides a few basic definitions and a brief introduction
to the subject; it discusses how digital geometry relates to other mathematic
disciplines and indicates which related topics will and will not be covered in the
book.

1.1 Pictures

Scientists often deal with functions defined in a space (e.g., in three-dimensional [3D]
Euclidean space or in a lower-dimensional space such as a plane or a surface). Such
functions are often obtained by collecting sensory data; for example, two-dimensional
(2D) scanners collect data from a 2D surface; 3D sensors collect data from a volume
of 3D space; and optical sensors collect 2D images by projecting a 3D scene onto
a plane or surface. Because the functions are not always obtained using imaging
processes, we will call them pictures rather than images.

When computers are used to process or analyze a 2D or 3D picture, they deal
with a discrete form of the picture, obtained by a process of digitization, which in-
volves sampling the picture and quantizing the sampled values. The resulting set of
2D or 3D digital data is called a digital picture. Picture analysis (more commonly
called image analysis) derives multidimensional information about objects or scenes
from sensory data. Conversely, computer graphics synthesizes and generates digital
pictures from models for objects or scenes.

A 2D digital picture consists of a finite number of pixels, each of which is defined
by a location and a value at that location. The term pixel is short for “picture element”;
this acronym was introduced in the late 1960s by a group at Jet Propulsion Laboratory
in Pasadena, California, that was processing pictures taken by space vehicles [640].
The analogous 3D term is “voxel,” which is short for “volume element.” In this
book, we will use the terms pixel and voxel in a different sense; they will refer to
the elements of the medium on which pictures reside, which is defined by a regular

1
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orthogonal grid. A picture is then a function defined on the grid that assigns values to
the pixels or voxels. Thus, pixels and voxels are locations defined by grid coordinates,
and they have values defined by a picture.

In this section, we introduce the standard methods of representing 2D digital
pictures, in which a pixel is a grid point or a grid square. These representations, in
both 2D and 3D, will be discussed in greater detail in Section 2.1.

1.1.1 Pixels, voxels, and their values

A 2D digital picture captured or constructed on a surface (usually planar) is typically
defined using a finite data structure that models a regularly spaced planar orthogonal
grid.

Definition 1.1 A (2D) picture P is a function defined on a (finite) rectangular
subset G of a regular planar orthogonal array. G is called a (2D) grid, and an
element of G is called a pixel. P assigns a value P (p) to each pixel p ∈ G.

The values of pixels can be integers, floating point numbers, vectors, or even (finite)
sets. For example, the values of pixels in color pictures are usually represented by
triples of scalar values, such as red, green, and blue or hue, saturation, and intensity.
For the purpose of this book, it will usually be sufficient to restrict pixel values to
nonnegative integers.

Definition 1.2 A (3D) picture P is a function defined on a (finite) rectangular
parallelepiped (cuboid) in a regular spatial orthogonal array. G is called a (3D)
grid, and an element of G is called a voxel. P assigns a value P (p) to each voxel
p ∈ G.

A 3D picture is defined on a finite data structure that models a regular orthogonal
grid in 3D space. We will sometimes also use one-dimensional (1D) pictures as simple
examples. A 1D picture is defined on a (finite) set of regularly spaced points of a line.
2D or 3D pictures can also be defined on other grids; see Exercise 1 in Section 1.3
for the 2D case.

Pixels have grid-based coordinates; we assume integer coordinates as a default
so that the regular planar orthogonal array can be identified with Z

2 = Z×Z = {(i, j) :
i, j ∈ Z}, where Z is the set of all integers. Every grid point in Z

2 is the center point
of a grid square with sides (grid edges) of length 1, oriented parallel to the Cartesian
coordinate axes (see Figure 1.1). The corners of grid squares are called grid vertices.
The corresponding terminology in 3D will be introduced in Section 2.1. Note that the
assumption of a uniform orthogonal grid is a simplification. In practical applications
(e.g., medical imaging), the spacing between pixels or voxels may vary. For example,
a 3D magnetic resonance picture usually has larger spacing between slices (cross-
sections) than within a slice; the units of measurement cannot be ignored in such
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FIGURE 1.1 Grid point and grid square notations in the plane.

situations. However, in digital geometry, the spacing between pixels is often not
relevant.

A 2D grid of size m×n is a rectangular array of grid points

Gm,n = {(i, j) ∈ Z
2 : 1≤ i≤m∧1≤ j ≤ n} (1.1)

or a rectangular set of grid squares

Gm,n = {grid square c : (i, j) = center of c ∧ 1≤ i≤m∧1≤ j ≤ n} (1.2)

where m,n >> 1 (read: “is much larger than 1”).
Figure 1.2 (left) shows a magnified small rectangular portion (sometimes called

a “window”) of a picture. This illustrates the normal way pixels appear on a screen;
after zooming in on a picture, the pixels are visible as colored squares, where the
colors (or gray levels) represent the values of the pixels. In the common array data
structure used to represent a picture, each pixel is represented by a pair of integers
(i.e., by a grid point). Thus picture displays correspond to a grid composed of squares
and array data structures to a grid composed of points (both types of grids coexist in

FIGURE 1.2 Magnified picture: grid of squares (left) and of points (right).
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picture analysis and computer graphics). We use both representations in this book
as alternative ways of representing pictures.

Pictures are quantized as well as sampled; a pixel or voxel can have only a finite
number of possible values. The range of values in a (scalar) picture P will usually
be of the form {0, . . . ,Gmax}, when 0 ≤ P (p) ≤ Gmax where Gmax ≥ 0. Gmax = 0
is the trivial case of a constant (“blank”) picture. (As mentioned earlier, the val-
ues in a color picture are triples [u1,u2,u3], such as red, green, and blue color
components. These triples could also be mapped onto {0, . . . ,Gmax}, but color
is of no relevance in this book, so we can think of G as short for “gray level.”
Color is becoming increasingly important in modern treatments of picture analysis
and computer graphics, and it may also become more important in digital geom-
etry. However, for the present, this book deals only with scalar (integer valued)
pictures.

The range of values of the pixels or voxels in a binary picture1 is {0,1} (i.e.,
Gmax = 1). The pixels whose values are 1 (called 1s for short) define a subset 〈P 〉of the
grid. These pixels are often referred to as “object” or “black” pixels. (In multivalued
pictures, higher pixel values usually correspond to lighter gray levels, with gray level
0 being black; the opposite convention is often used for binary pictures: black = 1,
white = 0.) Nonobject pixels in 〈P 〉= Gm,n \ 〈P 〉 are called 0s for short.

1.1.2 Picture resolution and picture size

Picture resolution is a display parameter. It is defined in dots per inch (dpi) or
equivalent measures of spatial pixel density, and its standard value for recent screen
technologies is 72 dpi. Recent printers use resolutions such as 300 dpi or 600 dpi,
and such values can also be used for picture presentation on a screen.

Picture resolution is also a digitization parameter that is measured in samples
per inch or equivalent measures of spatial sampling density. The human eye itself
makes use of sampled pictures. The retina of the eye is an array of about 125 million
photoreceptor cells called rods and cones. A rod is about 0·002 mm in diameter, and
a cone is about 0·006 mm in diameter.

Pictures whose acquisition satisfies the traditional pinhole camera model are
captured on planar surfaces. The light-sensitive array of a typical digital camera,
which is a charge-coupled device (CCD) matrix, can be regarded as a rectangular
set of square cells in a plane. The elements of the matrix capture a discrete set of
pixel values. Other types of cameras may capture pictures on nonplanar surfaces.
For example, Figure 1.3 shows a super–high-resolution panoramic picture captured
with a rotating line camera. A geometric model of the panoramic picture acquisition
process assumes that the picture is captured on a cylindric surface.

Discrete methods of picture generation are frequently used in both art and
technology. The dots in a pointillistic painting can be as small as 1/16 of an inch in di-
ameter. Figure 1.4 illustrates two other technologies for discrete picture generation:

1. These are the most common types of two-valued pictures that are used in picture analysis, but using the values +1
and−1 may be convenient in some algorithms. If there are more than two values, we call the picture multivalued.
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panoramic picture of Auckland, New Zealand, captured from
the top of the harbor bridge. The full-resolution picture consists of about 10

4×5 ·10
4

pixels captured on a cylindric surface with a rotating line camera.

pebble mosaics or tiled floors are composed of pixels, and patterns on fabrics or rugs
can also be regarded as digital pictures. In 1725, B. Bouchon invented the idea of con-
trolling a loom by perforated tape. The pattern generated by the loom was broken
up into discrete areas with discrete color values. This idea was further developed by
Falcon, a master silk weaver in Lyons, France. In 1738, Falcon applied for an English
patent on his automatic card-controlled loom and provided a small working model
as was required by English patent law. That working model continues to operate in
the Science Museum in London, driven by an electric motor and weaving threads of
several colors into patterned ribbon with the pattern controlled by punched cards
laced together in a loop. When Falcon died in 1765, about 40 of his looms were
operating. J.-M. Jacquard greatly improved the design of card-controlled looms in
the early 19th century; thousands of Jacquard looms were soon in operation [835].
Thus pictures were generated by a programmed machine even before the first pro-
grammed machine (invented by C. Babbage) performed calculations on numbers!
A surviving example of a pattern woven by a Jacquard loom is a black-and-white silk
portrait of Jacquard himself, woven under the control of a “program” consisting of
about 24,000 cards.

Today we think of pixels as tiny cells on a screen or as atomic units of a digital
picture stored on a CD or DVD or in a computer. New media for representing
large quantities of pictorial information will become available in the future, and
contemporary screen technology may seem like pebbles only a few years from now.

Picture size is another important picture property. Pictures cannot be arbitrarily
large; picture capturing, display, and printing technologies will always impose finite
limits. The number of pixels in a typical picture has increased greatly since the early
days of picture analysis and computer graphics (the 1950s and 1960s). In those days,
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FIGURE 1.4 Lower left: a Greek pebble mosaic, detail from “The Lion Hunt” in
Pella, Macedonia, circa 300 BC. Right and top: a picture of J.-M. Jacquard woven on
silk on one of his “programmable” looms by digitizing a portrait of him, and one of
the 24,000 punched cards that controlled the loom [669].

a picture might contain only a few thousand pixels; today, a color picture may require
gigabytes of memory, as we saw in Figure 1.3.

1.1.3 Scan orders

Algorithms in picture analysis are often applied to the pixels of a picture in sequence,
where the sequence is obtained by scanning the grid. A scan of a grid Gm,n is a one-to-
one mapping φ of them×n pixels of the grid into a linear sequence φ(1), · · · ,φ(mn).
Scans are used in picture processing programs to control the order of pixel accesses.
A scan can also be viewed as an enumeration of the pixels; φ(k) is the k-th pixel
(1≤ k ≤mn).

G. Cantor (1845–1918) showed, using his famous enumeration principle, that
the set of all rational numbers has the same cardinality ℵ0 as the set of all natural
numbers (i.e., this set is infinite but still enumerable). The enumeration scheme
shown in Figure 1.5 defines a scan of the infinite set Z

2 of grid points.
The standard method of scanning a grid Gm,n is row by row, with the pixels

in each row accessed from left to right and the rows accessed from top to bottom;
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(0,1) (1,1) (2,1)(–1,1)(–2,1)

(0,2) (1,2) (2,2)(–1,2)(–2,2)

(0,–1) (1,–1) (2,–1)(–1,–1)(–2,–1)

(0,0) (1,0) (2,0)(–1,0)(–2,0)

(0,–2) (1,–2) (2,–2)(–1,–2)(–2,–2)

FIGURE 1.5 Enumeration principle defining a scan of the infinite grid, starting at
(0,0) and proceeding in outward spiral order.
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FIGURE 1.6 Scan orders: standard (upper left), inward spiral (upper middle), mean-
der (upper right), reverse standard (lower left), magic square (lower middle), and
selective, as used in interlaced scanning: standard, every second row (lower right).

this scan order is often called row-major order. It is a lexicographic order derived
from the grid coordinates: (1,1),(1,2), . . . ,(1,n),(2,1),(2,2), . . . in the 2D case, where
(1,1) is in the upper left-hand corner; (i1, j1) < (i1, j2) iff2 i1 < i2, or i1 = i2 and
j1 < j2. 3D scan order is defined analogously. This and five other common scan
orders are illustrated in Figure 1.6. Standard and reverse standard scans are used,
for example, for defining distance transforms in Section 3.4. Selective scans can be
applied, for example, to speed up the search for picture objects when an estimate of
the minimum size of the objects is available. In general, a scan can be split into scans

2. Read “if and only if”; acronym proposed by P.R. Halmos.
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FIGURE 1.7 Peano scan: The scan pattern on the left is repeatedly used (nine times)
to obtain the refined scan in the middle (with rotations at some places), and the same
pattern of repetition of the scan in the middle is used to obtain the scan on the right.

FIGURE 1.8 Hilbert scan: The scan pattern on the left is repeated only four times
(with rotations) to obtain the refined scan.

of even rows followed by scans of odd rows, and this splitting process can be repeated
recursively.

Scan orders play only minor roles in digital geometry, but they can be of interest
in discrete mathematics. For example, the magic-square scan is an enumeration of
pixels such that the sums of the pixel numbers in each row and column are equal.
This scan is easily constructible for small pictures, and its scan order may appear to be
“pseudorandom.” Random scans can be defined using a random number generator
to address one pixel at a time. (Efficiently keeping track of the set of remaining
pixels is an interesting algorithmic problem.)

Scans related to the mathematic history of defining curves have also found
their way into the picture-processing literature. This historic context may justify our
briefly discussing two examples of “space-filling” curves: the Peano curve and the
Hilbert curve.

The Peano curve was originally defined by G. Peano (1858–1932) in 1890, fol-
lowing a proposal by C. Jordan about a method of defining curves in parametric
form. Peano showed that a curve defined in that form can completely fill a square,
and Jordan therefore revised his original definition. Figure 1.7 illustrates a recur-
sive (nonparametric) way of constructing the Peano curve by infinite repetition of
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the construction. Of course, in practice, we use only finitely many repetitions of the
construction, in a grid of size 3

n×3
n

; the resulting curves are called Peano scans.
In 1891, D. Hilbert defined a similar curve. A finite number of repetitions of

this construction, as illustrated in Figure 1.8, leads to a Hilbert scan in a grid of size
2

n×2
n

.
Any scan of a binary picture defines runs of 0s and 1s: maximum-length se-

quences of 0s or 1s that are visited by the scan. Evidently, runs of 0s must alternate
with runs of 1s, and each run has a length of at least 1.

1.1.4 Adjacency and connectedness

Grid points are isolated points in the (real) plane, but, in the grid, adjacency relations
between grid points can be defined. For p= (x,y)∈ Z

2, we define the neighborhoods

N4(p) = {(x,y),(x+1,y),(x−1,y),(x,y+1),(x,y−1)}

and

N8(p) =N4(p)∪{(x+1,y+1),(x+1,y−1),(x−1,y+1),(x−1,y−1)} .

Two grid points p,q ∈ Z
2 are called 4-adjacent or proper 4-neighbors (8-adjacent or

proper 8-neighbors) iff p 
= q and p ∈ N4(q) (p ∈ N8(q)). We often use geographic
language to identify the proper neighbors of a pixel: (x,y+ 1) is called the north
neighbor, (x+1,y+1) is called the northeast neighbor, and so on.

Neighborhoods can also be defined for grid squares by applying 4- or 8-adjacency
to the center points (grid points) of the grid squares, and they can also be defined
for grids in 3D space. Adjacency relations in 2D and 3D grids will be discussed in
greater detail in Chapter 2.

The reflexive, transitive closure of an adjacency relation on a set M (e.g., of
grid points), which is the smallest reflexive, transitive relation onM that contains the
given adjacency relation, defines a connectedness relation. M is called connected if
for all p,q ∈M there exists a sequence p0, . . . ,pn of elements of M such that p0 = p,
pn = q, and pi is adjacent to pi−1(1 ≤ i ≤ n); such a sequence is called a path and is
said to join p and q in M . Maximal connected subsets of M are called (connected)
components of M . Evidently, components are nonempty and distinct components
are disjoint. The concepts of 4- and 8-adjacency, connectedness, and components
were introduced into picture analysis in 1966 [921], although the prefixes “4-” and
“8-” were not used until a few years later.

It was observed in [921] that difficulties arise when 4-adjacency or 8-adjacency
(and the corresponding type of connectedness) is used for both the 1s and 0s in a
binary picture. Figure 1.9.a (an object containing two pixels) is 8-connected, as is
its complementary set. Figure 1.9.b is both 4- and 8-connected, and its complement
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FIGURE 1.9 Examples of connected and nonconnected sets [921]. The xs stand for
1s; the 0s are not shown.

FIGURE 1.10 Left: a binary picture. Right: 4- and 8-adjacencies applied to white or
black pixels.

is neither 4- nor 8-connected. Figure 1.9.c is neither 4- nor 8-connected, but its
complement is both 4- and 8-connected.

“The ‘paradox’ of Figure 1.9.d can be (expressed) as follows: If the ‘curve’ is
connected (‘gapless’) it does not disconnect its interior from its exterior; if it is
totally disconnected it does disconnect them. This is of course not a mathemat-
ical paradox,3 but it is unsatisfying intuitively; nevertheless, connectivity is still
a useful concept. It should be noted that if a digitized picture is defined as an ar-
ray of hexagonal, rather than square, elements, the paradox disappears.” [921]

The first case assumes 8-connectedness for both “curve points” and “background
points,” and the second case assumes 4-connectedness for both.

Commenting on [921] (in an unpublished technical report in 1967), R.O. Duda,
P.E. Hart, and J.H. Munson proposed the dual use of 4- and 8-connectedness for 0s
and 1s in a binary picture [286]. Figure 1.10 illustrates the use of 4-adjacency for
white pixels and 8-adjacency for black pixels in a binary picture. The advantages
of using opposite types of adjacency for the 0s and the 1s in binary pictures will be
discussed in later chapters.

3. A mathematic paradox (antinomy) is characterized by the deduction of a contradiction within a theory. The ex-
istence of statements in digital topology that do not resemble statements in Euclidean topology is not a mathematic
paradox.
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1.2 Digital Geometry and Related Disciplines

Definition 1.3 Digital geometry is the study of geometric or topologic prop-
erties of sets of pixels or voxels. It often attempts to obtain quantitative infor-
mation about objects by analyzing digitized (2D or 3D) pictures in which the
objects are represented by such sets.

We usually assume that objects are represented by connected sets of pixels or vox-
els and that the quantitative information involves quantities studied in Euclidean
or similarity geometry (see Section 1.2.2); we can then attempt to ensure that the
properties computed in digital geometry adequately approximate these quantities.
In this sense, we can regard digital geometry as digitized similarity geometry. As we
will see in Section 1.2.2, Euclidean geometry is a special case of similarity geometry.

Digital geometry also often attempts to obtain topologic characterizations of
pictures or to transform pictures into “simpler” topologically equivalent pictures.
Due to the discrete nature of digital geometry, these topologic problems belong
to the field of combinatorial topology (the topology of cell complexes), which is
discussed in Chapter 6.

The remainder of this section briefly discusses topics and disciplines related
to digital geometry and indicates the extent to which these topics will be treated in
this book.

1.2.1 Coordinates and metric spaces

The concept of defining the locations of points in a plane by their distances from
two straight lines (“axes”) was used by Archimedes and Apollonius more than 2000
years ago. A Cartesian coordinate system makes use of a set of axes as introduced
by R. Descartes (in Latin: Cartesius, 1596–1650) in [264] to define nonnegative co-
ordinates in the plane. Descartes dealt with general oblique coordinates, addressing
rectangular coordinates as an important special case.4 Negative coordinates were
first proposed by I. Newton, and the first use of the term “coordinates” is ascribed
to G. Leibniz. When we use rectangular Cartesian coordinates, we define the (real)
plane as a “Cartesian product” of two (real) lines: R

2 = R×R, where R is the set
of reals. A Cartesian coordinate system in the plane, together with the Euclidean
metric (see p. 12), defines the Euclidean plane E

2. The n-dimensional real and Eu-
clidean spaces are defined analogously using n-fold Cartesian products. The point o
where the axes intersect is called the origin of the coordinate system; because o is at
distance 0 from all the axes, its coordinates are all 0s.

A right-handed coordinate system is a rectangular Cartesian coordinate system
in which the positive x-axis is identified with the thumb (pointing outward in the
plane of the palm), the positive y-axis with the forefinger (pointing outward in the

4. See pages 26–27 in the English translation of [264].
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plane of the palm), and, in 3D, the positive z-axis with the middle finger of the right
hand (pointing downward from the plane of the palm).

Coordinate systems can also be defined using distances to points. For example,
barycentric coordinates (homogeneous or triangular coordinates) in the plane were
introduced by Möbius in 1827 [807] as a way of representing points in the plane
relative to a given triple of noncollinear points. The prefix bary- refers to weight or
mass. For any point p inside the triangle, there exist masses a, b, and c such that, if they
are placed on the vertices of the triangle, their center of gravity (balancing point) will
be at p. The masses a, b, and c are uniquely determined if we require that a+b+c= 1.
The triple (a,b,c) defines the barycentric coordinates of p in the given triangle.

The measurements studied in picture analysis are always related to a regular
grid that defines the locations of pixels or voxels in a Cartesian coordinate system.
If we fix all but one of the coordinates, the locations become regularly spaced points
on a line. The distance between consecutive locations on such a line is called the grid
constant; it is the unit or scale of measurement in the grid coordinate system.

Let S be an arbitrary nonempty set. A function d : S×S �→ R is a distance
function or metric on S iff it has the following properties:

M1: For all p,q ∈ S, we have d(p,q) ≥ 0, and d(p,q) = 0 iff p = q (positive
definiteness).

M2: For all p,q ∈ S, we have d(p,q) = d(q,p) (symmetry).

M3: For all p,q,r ∈ S, we have d(p,r) ≤ d(p,q) + d(q,r) (triangularity: the
triangle inequality).

If d is a metric on S, the pair [S,d] defines a metric space. M. Fréchet (1878–1973)
introduced the concept of a metric space; the elements of S can be any mathematic
objects. The name “metric space” is due to F. Hausdorff (1868–1942). Quantitative
geometric measurements are often based on metrics.

It should be pointed out that property M1 can be simplified to the following:

M1: For all p,q ∈ S, we have d(p,q) = 0 iff p= q.

Indeed, from the simplified M1 together with M2 and M3, we have as follows:

0 = d(p,p)≤ d(p,q)+d(q,p) = 2d(p,q) for all p,q ∈ S

Let [S,d] be a metric space, p ∈ S, and ε > 0. The set of points q ∈ S such that
d(p,q)≤ ε is called a ball of radius εwith center p. A subsetM of S is called bounded
iff it is contained in a ball of some finite radius.

Euclidean space E
n is defined with an orthogonal coordinate system; it is used

to define a metric de called the Euclidean metric. If two points p,q have coordinates
(x1, . . . ,xn) and (y1, . . . ,yn), we define the following:

de(p,q) =
√

(x1−y1)2 + . . .+(xn−yn)2
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FIGURE 1.11 A simple planar polygon (left) and two nonsimple planar polygons
(right). The numbers specify a cyclic order of the vertices.

It will be proved in Chapter 3 that de is a metric. Two-dimensional Euclidean space
is called the Euclidean plane E

2. Digital space Z
n is a subspace of E

n, which is defined
by the subset of all points with integer coordinates and the Euclidean metric; Z

2 is
the digital plane.

Metrics defined on grids or on Euclidean spaces play central roles in digital
geometry. They will be frequently used in this book and will be discussed in detail in
Chapter 3.

1.2.2 Euclidean, similarity, and affine geometry

The history of geometry dates back about 4000 years to societies in Egypt, Mesopo-
tamia, and China. The word geometry, which means earth measurement, has been in
use for more than 2500 years. The measurement of distances and the calculation of
areas and volumes are among the earliest developments in mathematics. Of course,
only simple 2D or 3D objects such as polygons, prisms, cuboids, and cylinders were
studied in those days.

A (finite, connected) polygonal arc in Euclidean space E
n is a finite sequence of

points (p1,p2, . . . ,pn) where n≥ 3, which defines n−1 straight line segments pipi+1

(i = 1,2, . . . ,n−1). The pis are called the vertices of the arc, and the line segments
are called its edges. The polygonal arc forms a circuit 〈p1,p2, . . . ,pn〉 if we add the
nth edge pnp1.

A simple polygon Π = 〈p1, . . . ,pn〉 (an “n-gon”) is a polygonal circuit such that
no point belongs to more than two edges and the only points that belong to two edges
are the vertices; see Figure 1.11. If n= 3, the polygon is called a triangle.
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TABLE 1.1 Transformations allowed in different geometries.

Euclidean Similarity Affine Projective
Transformations geometry geometry geometry geometry

Rotations Yes Yes Yes Yes
Translations Yes Yes Yes Yes
Uniform scalings (all axes) No Yes Yes Yes
Nonuniform scalings No No Yes Yes
Shears No No Yes Yes
Central projections No No No Yes

TABLE 1.2 Examples of invariant quantities in these geometries.

Euclidean Similarity Affine Projective
Invariants geometry geometry geometry geometry

Lengths Yes No No No
Angles Yes Yes No No
Ratios of lengths Yes Yes No No
Parallelism Yes Yes Yes No
Incidence Yes Yes Yes Yes
Cross-ratios of lengths Yes Yes Yes Yes

The concept of an angle, the decomposition of a simple planar polygon into
triangles, and the calculation of simple areas and volumes (such as the volume of a
frustum of a pyramid) were known in ancient Egypt. The law of Pythagoras (about
right triangles) was known in ancient Mesopotamia, and the laws of similar triangles
were also widely used.

It is not certain whether Euclid of Alexandria (about 325–265 BC) was an
individual, the leader of a team of mathematicians, or the pseudonym of a group
of mathematicians. It is certain, however, that the book The Elements established
Euclidean geometry on the basis of just a few postulates (or “axioms”) about straight
lines, straight line segments, circles, and angles.

Similarity and affine geometry are “intermediate” between Euclidean and pro-
jective geometry (see Section 1.2.3) with respect to the transformations that are
allowed (see Table 1.1) and the quantities or relations that remain invariant under
these transformations (see Table 1.2).5 The use of invariants under groups of trans-
formations to characterize geometries will be discussed in Chapter 14.

In general, the transformations listed in Table 1.1 do not take grids into them-
selves. For example, a rotation takes an orthogonal grid into itself only if it is a

5. Two sets are called incident if one of them contains the other. In all of these geometries, incidences between
sets (e.g., between points and lines) are invariant.



1.2 Digital Geometry and Related Disciplines 15

FIGURE 1.12 Left: two lines that intersect in a segment. Right: two “arcs” (black
and dark gray) and an “ellipse” (white) that have no pixel in common.

rotation by a multiple of 90
◦
. The application of general transformations to a grid

requires approximation or interpolation, as discussed in Chapter 14. As a result, the
“invariants” listed in Table 1.2 are only approximately invariant when the transfor-
mations are applied to digital pictures.

Objects in digital geometry often do not behave like Euclidean objects. For ex-
ample, we can define adjacency relations between pixels (see Section 1.1.4), whereas
distinct points cannot be “adjacent” in Euclidean geometry. Digital lines are se-
quences of pixels and can intersect in segments (see Figure 1.12, left). Nonparallel
lines may have no pixel in common; if two lines are defined by sequences of 8-
adjacent pixels, they can cross without intersecting. The two digital “arcs” and the
digital “ellipse” on the right in Figure 1.12 have no pixel in common!

1.2.3 Projective geometry

In the fifteenth century, some Italian painters developed a system of perspective that
allowed them to paint the world as it is seen. This inspired new geometric ideas and
led G. Desargues (1596–1662) to invent projective geometry.

A picture acquisition process that maps (the visible portion of) a scene onto
a surface has an ideal description in terms of projective geometry (see Figure 1.13).
In actual digital pictures, the pixels vary from this ideal (e.g., in the case of a planar
picture because of the finite physical dimensions and small irregularities of the cells
of the CCD array; in the case of a cylindric picture [see Figure 1.3] because of rotation
errors of the line camera; and in both cases because of optical aberrations).

If we use the ideal description, the geometric resolution of a picture is speci-
fied by the geometric laws of projection that model the picture acquisition process.
Geometric resolution allows us to relate measurements in pictures (in terms of pixel
coordinates) to measurements in the real world. Picture resolution, which was dis-
cussed in Section 1.1.2, is a display parameter that need not correspond to geometric
resolution.

A CCD cell in a camera collects light from a scene or object surface patch (see
Figure 1.13). The size of this patch depends on the size of the cell, the camera op-
tics (e.g., focal length, aberrations), the distance and direction between the camera
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FIGURE 1.13 Central projection onto a pixel in a picture.
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349

FIGURE 1.14 Left: detail of the Gauss statue in Göttingen, Germany. Right: number
of pixels in the area of the head and in the entire picture, and height and width
measured in numbers of pixel units (grid edges).

and the surface of the object, and the 3D shape of the object. Thus geometric
resolution depends on many picture acquisition parameters. Camera calibration,
which is a subject in the computer vision literature, deals with the calculation of
these parameters.

If a picture shows only a flat surface (e.g., a document, a microscope slide),
specification of the picture size and the pixel size or spacing in terms of coordi-
nates on the surface is relatively simple. Similar remarks apply to aerial pictures
obtained by a camera flying at constant altitude over flat terrain. In such situations,
picture resolution has a simple relationship to geometric resolution, so measure-
ments made on the picture can be easily related to geometric measurements made on
the surface.

In a 3D scene such as the head of the Gauss statue in Figure 1.14, the prob-
lem of calculating geometric resolution is much more complicated. Different pixels
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in the picture may correspond to surface patches of different sizes in the scene.
Determining these sizes may require 3D shape recovery and the application of
projective geometry to map the pixels onto the recovered surface. This book will
not discuss camera calibration, 3D shape recovery, or projective geometry, and
it will not deal with modeling picture acquisition processes in a 3D environ-
ment. The reader is referred to books about computer vision that deal with these
subjects.

Both geometric and picture resolution have increased over the years because
of progress in picture acquisition and display technologies. In this book, we will
normally not be concerned with geometric picture size or resolution but only with
the sizes of pictures as measured in numbers m×n of pixels.

1.2.4 Vector and geometric algebra

A grid point p can be identified with a vector p = �op that starts at the origin o
and ends at p; we can also consider vectors �pq from one grid point to another.
In this book, we deal only with 2D and 3D pictures. (We do not consider time
sequences of 2D or 3D pictures as being 3D or 4D pictures in which the last coor-
dinate is time; the time coordinate is qualitatively different from the spatial coor-
dinates.) However, we will sometimes use n-dimensional spaces in this book (e.g.,
as a generalization of 2D and 3D spaces or when we deal with n-tuples of property
values).

The 2D vector space [R2,+, ·,R] over the real numbers is defined by an addition
operation (x1,x2)+(y1,y2) = (x1 +y1,x2 +y2) for all (x1,y1), (x2,y2) in R

2 and a scalar
multiplication operation a · (x,y) = (ax,ay) for all a ∈ R and all (x,y) ∈ R

2. Higher-
dimensional vector spaces are defined analogously using n-tuples rather than pairs.

A vector space [S,+, ·,R] over the real numbers R is defined by a nonempty set
S and two operations, + and ·, that have the following properties for all p,q,r ∈ S
and all a,b ∈ R:

V0: p+ q ∈ S and a · p ∈ S (closure under vector addition and under scalar
multiplication)

V1: p+ q = q+p (commutativity of vector addition)

V2: (p+ q)+ r = p+(q+ r) (associativity of vector addition)

V3: a · (b ·p) = (ab) ·p (associativity of scalar multiplication)

V4: (a+ b) · p = a · p+ b · p (distributivity of scalar multiplication over vector
addition)

V5: a · (p+ q) = a ·p+a · q (distributivity of vector addition over scalar multipli-
cation)

V6: There exists an o ∈ S such that o+p= p (identity for vector addition).
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V7: 1 ·p= p (identity for scalar multiplication)

V8: For any p ∈ S, there exists −p ∈ S such that p+(−p) = o (inverse for vector
addition).

A vector space is called finite-dimensional if there exists a finite subset B of S such
that every p ∈ S is a sum of scalar multiples of vectors in B. S is called n-dimensional
if the smallest suchB has cardinality n. The elements of S are called vectors, and the
elements of R are called scalars.

The norm ‖p‖ of a vector p= (x1, . . . ,xn) ∈ R
n is as follows:

‖p‖=
(
x2

1 + . . .+x2
n

)1/2

Note that ‖p‖= 0 iff x1 = · · ·= xn = 0; evidently this implies that p= o. If p 
= o,
the direction of p is defined by the unit vector p◦ = p/‖p‖.

The dot product of p= (x1, . . . ,xn) and q = (y1, . . . ,yn) is as follows:

p · q = x1y1 + . . .+xnyn (1.3)

It can be shown that
p · q = ‖p‖ · ‖q‖ · cosη

where η is the (smaller) angle between the unit vectors p◦ and q◦, 0≤ η < π.
p and q are called orthogonal iff p · q = 0, and they are called orthonormal iff

they are orthogonal and |p|= |q|= 1.
The cross product will be defined here only for n= 3:

p× q = (x1,x2,x3)× (y1,y2,y3) = (x2y3−x3y2,x3y1−x1y3,x1y2−x2y1) (1.4)

It can be shown that if p and q are linearly independent (i.e., there do not exist
a,b ∈ R,a 
= 0, and b 
= 0 such that ap+ bq = 0); then p× q is orthogonal to the plane
defined by p and q. We also have

‖p× q‖= ‖p‖ · ‖q‖ · sinη (1.5)

with η as defined above.
Vector algebra can be generalized to multidimensional oriented geometric en-

tities such as are studied in Clifford or geometric algebra; see [772] for a review of the
work by W.K. Clifford (1845–1879). This theory is based on definitions of “inner”
and “outer” products of “multivectors,” which are classified by their “grades.” (The
inner product generalizes the dot product. Multivectors of grade 0 are scalars in R; of
grade 1 are vectors in R

n [n≥ 2]; of grade 2 are bivectors that are oriented trapezoids
defined by the outer product of two vectors; of grade 3 are oriented volume elements;
and so forth.) Geometric algebra allows compact descriptions of distances and “an-
gles” between geometric entities, including “degrees of parallelism.” Related studies
in digital geometry might be of future interest, but the subject is not forth discussed
in the present edition. As a possible initial step, see Chapter 3 for digital versions of
the definitions of angles and seminorms.
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1.2.5 Graph theory

Euler’s analysis of the bridge situation in Königsberg, Germany (i.e., is it possible
to cross all of the bridges just once during a walk through the city?) initiated graph
theory. The Königsberg bridge situation is shown in Figure 1.15; for more about the
solution to the problem (i.e., the nonexistence of such a walk), see Section 4.1.1.

An adjacency relation, for example, on grid points (see Section 1.1.4), defines
an undirected graph whose nodes are the grid points and where there is an edge
between two nodes iff the corresponding grid points are adjacent. Graphs will be
discussed in Chapter 4.

A path of length n in a graph is a finite sequence of nodes p0, . . . ,pn such that
there is an edge between pi and pi−1(1≤ i≤ n). If such a path exists, we say that p0
and pn are connected. (Evidently connectedness is symmetric, because the reversal
of a path from p to q is a path from q to p; it is also transitive, because, if there are
paths from p to q and from q to r, we obtain a path from p to r by concatenating the
two paths.) We also say that each node is connected to itself by a path of length zero;
thus connectedness is reflexive as well as symmetric and transitive. A set of nodes of
a graph is connected iff every pair of its nodes is connected. For example, the graph
on the right in Figure 1.10 is not connected.

A maximal connected set of nodes of a graph is called a (connected) component.
For example, the graph on the right in Figure 1.10 has eight components. A connected
graph consists of a single component. Finite components (with respect to a given
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FIGURE 1.15 Three different representations of the Königsberg bridge situation.
Left: The city at the time of Euler. Right, top: Simplified map (not to scale) of
the islands, the left and right banks of the river, and the bridges. Right, bottom:
Schematic representation; the labeled circles represent the islands and banks, and
the arcs represent the bridges.
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FIGURE 1.16 Positions of possible cuts in a 3D solid [660].

adjacency relation) of the pixels of voxels of a picture are called regions. Digital
geometry is often concerned with geometric properties of regions.

Graph theory deals with many topics that are not directly relevant to digital
geometry. However, many topics in digital geometry can be discussed on a graph-
theoretic level, treating pixels or voxels as nodes of a graph rather than as elements of
a grid. In Chapter 4 we will emphasize graph-theoretic concepts that are applicable
to digital geometry.

1.2.6 Topology

The origin of topology is often identified with the Descartes-Euler Theoremα0−α1 +
α2 = 2, which was originally stated regarding the numbers α2, α1, and α0 of faces,
edges, and vertices of a convex polyhedron. (A convex polyhedron is a nonempty
bounded set that is an intersection of finitely many half-spaces.)

J.B. Listing (1802–1882) was the first to use the word “topology” in his cor-
respondence, beginning in 1837.6 The term, which replaced Leibniz’s “geometria
situs” or “analysis situs,” was introduced to distinguish “qualitative geometry” from
geometric topics that emphasized quantitative measurements and relations. Topol-
ogy can be informally viewed as “rubber-sheet geometry”: the study of properties
of objects that remain the same when the objects are (continuously) deformed. For
example, incidence relations between sets are topologically invariant.

As a more specialized example of a topologic property, the genus of a connected
set is the minimum number of “cuts” needed to transform the set into a simply
connected set.7 The 3D object shown in Figure 1.16 has genus 3 (the complexity of

6. In an 1861 publication, Listing writes that “topologische Eigenschaften (solche sind), die sich nicht auf die
Quantität und das Maass der Ausdehnung, sondern auf den Modus der Anordnung und Lage beziehen.” (Trans-
lation: Topologic properties are those that are related not to quantity or content but to spatial order and position.)
Because Listing was a student and then a close friend of C.F. Gauss, Listing’s interest in the subject may have
followed the advice or example of Gauss himself.

7. This will be defined later (see Chapter 6) as a connected set that has a trivial fundamental group. Informally, a
simply connected set in 3D space is connected and has no cavities or tunnels. In general, a “cut” creates a (doubly
oriented) simple arc, simple curve, or simply connected face. Removing a single point from a hollow sphere
transforms it into a simply connected object; this is the limiting case of a circular cut that has radius 0.
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108
FIGURE 1.17 Sets of genus 0, 1, and 2.

this example illustrates the advanced concepts that were being studied in topology
even at its birth in the mid-19th century); the three 2D objects shown in Figure 1.17
have genus 0, 1, and 2, respectively. Genus is a qualitative property that characterizes
the degree of connectedness of a set. Aspects of topology that are relevant to digital
geometry will be reviewed in Chapters 6 and 7.

Digital topology (see Chapters 6 and 7) provides topologic foundations for digi-
tal geometry. It extends the graph-theoretic concepts mentioned in Section 1.2.5 and
develops a topologic theory of subsets of pictures that provides a basis for designing
many algorithms for 2D and 3D picture analysis.

1.2.7 Approximation and estimation

The fundamental theorem of approximation theory is due to K.W.T. Weierstrass
(1815–1897). It states that, for any function f that has continuous derivatives on a
finite interval [a,b] and for any ε > 0, there exists a polynomial g such that |f(x)−
g(x)| < ε for all x ∈ [a,b]. This illustrates the orientation of approximation theory
toward continuous functions, polynomials, and arbitrarily small errors. Digital ge-
ometry differs from approximation theory in all of these respects: digital data need
not be obtained from continuous functions; approximations usually involve linear
functions such as straight line segments or planar surface patches; and the approxi-
mations may not be arbitrarily close.

Approximation is commonly used to estimate the values of geometric quanti-
ties. In ancient mathematics, Archimedes estimated π on the basis of inner and outer
regular n-gon approximations of a circle with n= 3,6,12,24,48,96; see the left side
of Figure 1.18. (An n-gon is called regular if its edges all have the same length.) For
n= 6, this approximation gives 3< π < 3·46; for n= 96, it gives the following:

223
71 < π < 220

70

(
i.e., π ≈ 3·14

)
(1.6)

In this method of approximation, the perimeters P of the inner and outer regular
n-gons converge toward the circle’s perimeter as n→∞. For example, let the radius
of the circle be r so that its perimeter is 2πr, and let the inner nm-gon Pnm have
nm = 3×2

m
edges of length em so thatP(Pnm) =nm ·em. From elementary geometry
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FIGURE 1.18 Inner and outer 6-gons approximating a circle, and percentage errors
between the perimeters of the inner n-gons and the perimeter of the circle.

we know that

em+1 =
√

2r2− r
√

4r2−e2
m (1.7)

where e0 = r

√
3 for a triangle, e1 = r for a hexagon, and so on. It follows that the

estimation error

κ(nm) = |P(Pnm)−2πr| ≈ 2πr
nm

(1.8)

converges to zero as nm→∞ (see the right side of Figure 1.18; e.g., κ(3)/P(P3) =
17·3028 . . . and κ(24)/P(P24) = 0·2853 . . .). The speed of convergence 1/κ(n) is thus
(asymptotically) a linear function of n.

An improved method of calculating π was given by the Chinese mathematician
Liu Hui in 263. He calculated the areas Sn of regular n-gons inscribed in a circle
and proved that, for all n > 2, the area S of the circle is bounded by S2n < S <
S2n +(S2n−Sn). Starting with n = 6, he doubled n five times to 192 and got close
bounds for the area S. From that area, he computed the circumference of the circle
and got an approximation to π of 3·1410 [1148].

These historic examples of length estimation by approximation do not fit into
the methodologic framework of digital geometry. The inner regular nm-gons are
defined by sample points on the circle, and the outer regular nm-gons are defined by
tangent lines to the circle. In digital geometry, we cannot use such samples, which
can be arbitrary points and lines in the Euclidean plane and have exact relationships
with the circle; we have to deal with sets of grid points, which are not arbitrary points
and need not exactly lie on the circle (“digitization error”).

A common task in 2D image analysis is to find a curve (e.g., an ellipse) that
best fits (with respect to some error criterion) a given set of pixels. Figure 1.19 shows
a best-fitting ellipse constructed using a numeric method described in [329]. Note
that this ellipse does not necessarily circumscribe the set of pixels. Numeric methods
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FIGURE 1.19 Left: a picture of a pupil. Middle: the set of pixels detected as the edge
of the pupil. Right: the ellipse fitted to these pixels.

are not discussed in this book, except for an iterative (3D) curve approximation
algorithm in Chapter 10.

The estimates of geometric quantities studied in this book will be based only
on digital approximations. A methodology for studying the convergence of digital
approximations to geometric quantities as the grid constant goes to zero will be
described in Section 2.4.

1.2.8 Combinatorial geometry

Generalizations of Archimedes’ and Liu Hui’s methods of estimating perimeter are
studied in combinatorial geometry, which is more than 100 years old; it started with
the geometry of numbers established by H. Minkowski (1864–1909). The geometry
of numbers does not have close links with digital geometry in spite of the use of grid
points in both fields. However, some results in combinatorial geometry are poten-
tially applicable to digital geometry, especially if they deal with sets of grid points.
Examples that we will discuss in this book are corner counts for isothetic polygons
or polyhedra8 and asymptotic bounds on the number of convex grid polygons in an
m×n grid. We also apply (in Chapter 9) the Transversal Theorem [957], which is a
direct consequence of Helly’s First Theorem [422]:

Let F be a finite family of parallel straight line segments in R
2. If every three

segments in F have a common transversal, then there is a transversal common
to all of the segments in F .

A transversal of a straight line segment σ in R
2 is a straight line that intersects σ but

does not contain it.
We give two recent examples [789] of results in combinatorial geometry. Let

A(S) denote the area of a bounded subset S of the plane. Let S be convex and have
nonzero area. (A set S is called convex if for any two points p,q of S the straight line

8. In a Cartesian coordinate system, a line is called isothetic iff it is parallel to a coordinate axis; a plane is called
isothetic iff it is parallel to a coordinate plane. An isothetic polygon has only isothetic edges, and an isothetic
polyhedron has only isothetic faces. A polygon is called a grid polygon and a polyhedron is called a grid polyhedron
if their vertices are grid points. In this book, we will often deal with isothetic grid polygons and polyhedra.
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segment pq is contained in S.) Let Πn (πn), where n ≥ 3, be an n-gon of minimum
area circumscribed around S (of maximum area inscribed in S). The sequence of
positive realsA(Πn) (A(πn)) decreases (increases) as n→∞. Furthermore, we have

A(Πn) ≤ A(Πn−1)+A(Πn+1)
2

and A(πn) ≥ A(πn−1)+A(πn+1)
2

for alln≥ 4; hence, ifA(Πm) =A(Πm+1) (A(πm) =A(πm+1)), thenA(Πn) =A(Πm)
(A(πn) =A(πm)) for all n≥m.

Similarly, let P(S) denote the perimeter of a bounded subset S of the plane.
(We assume that the frontier of S is rectifiable so that its perimeter is well defined.
Measurability and rectifiability will not be defined in this book; the frontier of a set
will be defined in later chapters.) Let S be convex and have nonzero area. Let Λn

(λn), where n ≥ 3, be an n-gon of minimum perimeter circumscribed around S (of
maximum perimeter inscribed in S). Then, for all n≥ 4, the following are given:

P(Λn) ≤ P(Λn−1)+P(Λn+1)
2

and P(λn) ≥ P(λn−1)+P(λn+1)
2

1.2.9 Computational geometry

Computational geometry deals with finite collections of simple geometric objects (e.g.,
points, lines, circles) in Euclidean space. It studies algorithms for solving problems
about such collections and the complexity of applying the algorithms as the number
of objects increases. The phrase “computational geometry” was first used in the
title of a 1969 book [733] about property computation, then in the early 1970s for
geometric modeling by means of spline curves and surfaces [378], and finally in the
mid-1970s [974] with the meaning that it has today.

Let f and g be functions from the set N of natural numbers (nonnegative inte-
gers) into the set ‖R+ of positive real numbers. Thus f is said to have the following
characteristics:

• it is upper-bounded by g [f ∈O(g(n))] iff there exist an n0 > 0 and an asymptotic
constant c > 0 such that f(n)≤ c ·g(n) for all n≥ n0;

• it is lower-bounded by g [f ∈Ω(g(n))] iff there exist an n0 > 0 and an asymptotic
constant d > 0 such that d ·g(n)≤ f(n) for all n≥ n0;

• it is asymptotically equivalent to g [f ∈ Θ(g(n))] iff there exist an n0 > 0 and
asymptotic constants c,d > 0 such that d ·g(n)≤ f(n)≤ c ·g(n) for all n≥ n0.
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The time complexity f(n) of an algorithm is measured by the number of elemen-
tary computational operations used by the algorithm when the input data have size n
(for example, the size can be characterized by the number of points). Reducing the
asymptotic time complexity of an algorithm is of practical interest if the asymptotic
constant remains reasonably small.

As an example of the types of problems studied in computational geometry,
we consider the problem of determining the convex hull of a simple planar n-gon.
Let S be a subset of a Euclidean space E

n. The convex hull C(S) is the intersection
of all of the halfspaces of E

n that contain S; it is the smallest convex set that contains
S. If S is a finite set of points or a simple polygon in the plane, C(S) is a simple
polygon with vertices that are a subset of the original set of points or of the vertices
of the original polygon. For example, the simple polygon Π = 〈p1, . . . ,p24〉 on the left
in Figure 1.11 has the convex hull C(Π) = 〈p3,p4,p9,p10,p17,p18,p19,p21,p22〉.

Determining the convex hull of a set of n points in the plane has an optimal
time complexity of Θ(n logn). Determining the convex hull of a simple planar n-gon
has an optimal time complexity of Θ(n).

Graham’s Scan, shown in Algorithm 1.1, calculates the convex hull of a set S of
n points in the plane in optimal timeO(n logn) ([379] discusses incorrect versions of
this algorithm in [375].) It uses one of the points p= (x0,y0) that is known to be on
C(S) as a “pivot”; for example, p can be the uppermost-rightmost point of S, which
can be identified in time O(n). Let p0 = (0,y0). For every other pi ∈ S, let ηi be the
angle between the vectors �pp0 and �ppi. The sorting in Step 2 requires timeO(n logn).
Backtracking means that we delete previously inserted points from C(S) until we
reach a point qi that results in a left turn. For each qi, the edge pqi can only be added
once. Thus Step 4 requires time O(n) so that the algorithm hasO(n logn) worstcase
time complexity. Figure 1.20 illustrates the algorithm for the vertex set of the simple
polygon shown in Figure 1.11.

1. Start at a point of S (called the pivot p) that is known to be on the convex
hull.

2. Sort the remaining points pi of S in order of increasing angles ηi; if the
angle is the same for more than one point, keep only the point furthest
from p. Let the resulting sorted sequence of points be q1, . . . , qm.

3. Initialize C(S) by the edge between p and q1.

4. Scan through the sorted sequence. At each left turn, add a new edge to
C(S); skip the point if there is no turn (a collinear situation); backtrack at
each right turn.

ALGORITHM 1.1 Graham’s Scan for computing the convex hull of a finite set of points
in the plane.

As discussed in Section 1.2.2, simple objects in digital geometry often do not
behave like Euclidean objects. Also, for practical purposes, picture size in
digital geometry is bounded so that the input data of geometric algorithms have
bounded complexity. However, digital geometry is concerned with designing efficient
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FIGURE 1.20 Left: angles ηi for the vectors defined by q1, q2, q3, q4. Right: a backtrack

situation at q6; the dashed edges are removed or not added in Step 4 of the algorithm.

Given set A

Convex hull
relative to
this set B

FIGURE 1.21 Relative convex hulls. Left: A,B are simple polygons. Right: A,B are
isothetic simple polygons.

algorithms and has therefore benefited from developments in computational geome-
try, as we will see in this book. It has also occasionally contributed to computational
geometry; here we give just one example.

Definition 1.4 [1001] Let S ⊆ B ⊂ R
2. S is called B-convex iff, for all p,q ∈ S,

if the straight line segment pq is in B, it is also in S. The B-convex hull of S is the
intersection of all B-convex sets that contain S.

Figure 1.21 shows two examples of B-convex hulls. If A,B are simple polygons and
A is contained in B, it can be shown that the frontier of the B-convex hull of A is
the (uniquely determined) minimum-perimeter polygon that is contained in B and
that circumscribes A. Such “relative convex hulls” are often used in robotics and
computational geometry; they are also useful in digital geometry, as we will see in
Chapters 10 and 11.
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1.2.10 Fuzzy geometry

When an object in a scene is represented by a set of pixels in a picture, it may not
always be obvious which pixels belong to the object. It was suggested in 1970 [825]
that “a pictorial object is a fuzzy set which is specified by some membership function
defined on all picture points.”

Definition 1.5 [1157] A function from a set S into [0,1] is called a fuzzy subset of
S. For any x ∈ S, µ(x) is called the degree of membership of x in µ.

If µ is into {0,1}, it defines an ordinary subset of S, namely
Sµ = {x ∈ S : µ(x) = 1}; µ is then called the characteristic function of Sµ. Thus
an ordinary subset can be regarded as a special type of fuzzy subset.

For any picture P with pixel values in the range {0, . . . ,Gmax}, if we divide
the pixel values by Gmax, we obtain a picture P ′ in which the pixel values are in the
range [0,1], so that they can be regarded as membership values of the pixels in a fuzzy
subset µ of P . For example, µ(p) might represent the degree to which p is associated
with some object in the scene. If P is a binary picture, its pixel values are in {0,1},
and the pixels whose values are 1 define an ordinary subset 〈P 〉 of P .

Figure 1.22 shows a rectangle (on the left) and two “fuzzy rectangles.” In the
middle, µ has nonzero membership values only at the pixels of the original rectangle;
on the right, some of the pixels outside of the original rectangle also have nonzero
membership values.

Let µ be a fuzzy subset of S, and let 0≤ λ≤ 1. The set µλ = {x ∈ S : µ(x)≥ λ}
is called the λ-level set of µ. Evidently µ0 is all of S, and if 0 ≤ λ′ ≤ λ ≤ 1, we
have µλ ⊆ µ′λ. In later chapters, we will see how geometric properties of subsets of
a picture p can be generalized to fuzzy subsets. We will sometimes define a fuzzy
subset as having a geometric property (e.g., connectedness, convexity) iff all its level
sets have that property.

0

1

0

1

0

1

FIGURE 1.22 Lower row: a square in a binary image (left) and two fuzzy squares
(middle and right). Upper row: simplified squares with levels in [0,1].
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1.2.11 Integral geometry, isoperimetry, stereology, and tomography

Integral geometry measures properties of a setS inn-dimensional Euclidean space —
for example, lengthL for n= 1; areaA, perimeterP , and curvature for n= 2; volume
V , surface area S, and (integral of) mean curvature M for n = 3 — by computing
integrals of the intersections of S with line segments or convex sets. The values of
these integrals are independent of the position and orientation of S; hence they are
invariant with respect to the transformations of Euclidean geometry (see Table 1.1
in Section 1.2.2).

The isoperimetric inequality in 2D, which has been known since ancient times,
states that, for any planar set that has a well-defined area A and perimeter P , we
have the following:

P2

4πA ≥ 1 (1.9)

It follows that, among all such sets that have the same perimeter, the disk has the
largest area. The expression on the left-hand side of Equation 1.9 is called the
shape factor or isoperimetric deficit of the set; it measures how much the set differs
from a disk [102]. The first proof of the isoperimetric property of the circle is due
to Zenodorus (about 200–140 BC), who is known through the fifth book of the
“Mathematic Collection” by Pappus of Alexandria [565].

The study of 3D isoperimetric problems (surface minimizations under volume
constraints, possibly with additional boundary or symmetry conditions) has an exten-
sive history involving such famous mathematicians as Euler, the Bernoullis, Gauss,
Steiner [1019], and Weierstrass. In 3D, we have the following [391, 746]:

S3

36πV2
≥ 1 (1.10)

This inequality says that, of all sets with a given surface area, the ball has the largest
volume; it has led to studies of the isoperimetric deficit for 3D objects [600]. For
bounded convex sets, we also have the following [391, 958]:

M3

48π2V ≥ 1 ,
M2

4πS ≥ 1, and
S2

3MV ≥ 1 (1.11)

For example, a sphere of radius r has mean curvatureM = 4πr. See Section 8.3.6
for further formulas involving convex sets.

Buffon’s needle problem is a classic example of a problem in geometric proba-
bility that was stated by G.-L. le Comte de Buffon (1707–1788) in 1777 [146]. Draw a
set of parallel lines distance d apart in a plane, and toss a needle of length l (0< l≤ d)
onto the plane. What is the probability that the needle will intersect one or more of
the lines? It turns out that this probability is 2l/πd; thus needle tossing can be used
to estimate the value of π. Stereology uses statistical methods to estimate geometric
properties of sets in n-dimensional Euclidean space by measuring intersections of
m-dimensional hyperplanes (0≤m<n) with the sets. This characterizes stereology
as a field that deals with inverse problems (i.e., determining higher-dimensional sets
or functions based on lower-dimensional “observations”).
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B

FIGURE 1.23 Examples of the Minkowski sum (left; the original dark-gray set A is
contained in the light-gray sum) and the Minkowski difference (right; the original
gray set A contains the light-gray difference). In these examples, the set B is the
black disk shown in the middle.

This book will not usually discuss methods based on integrals, probability, or
statistics, but it will be concerned with other methods of estimating properties such
as area, perimeter, and so forth, for subsets of a picture. It will also briefly discuss
digital tomography in Chapter 14; this is a subfield of discrete tomography,9 which is
another example of a field that deals with inverse problems. An early example of a
problem studied in discrete tomography is the following: when is a planar convex set
uniquely determined by its projections [406]? The case of projections along parallel
lines received special attention. We define digital tomography to be the subfield in
which the function to be determined or approximated has integer values only and is
defined on a finite subset of Z

n for some n≥ 2.

1.2.12 Mathematic morphology

Mathematic morphology (see Chapter 15) makes use of operations based on concepts
introduced by J. Steiner (1796–1863) and H. Minkowski (1864–1909) that can be
defined on arbitrary vector spaces. For any set A ⊆ R

n, A = R
n \A is called the

complementary set of A, and A = {−p : p ∈ A} is called the mirror set of A. A set
A⊆ R

n is symmetric (with respect to the origin) iff A=A.
The Minkowski sum of A,B ⊆ R

n (see Figure 1.23) is as follows:

A⊕B = {p+ q : p ∈A ∧ q ∈B}
The Minkowski difference (actually due to H. Hadwiger [390]; see also [392]) is
as follows:

A�B =A⊕B
For example, A⊕A defines a symmetric set with a convex hull that is equal to the
Minkowski sum of the convex hulls of A and A.

9. This was the name of the first meeting on the subject in 1994, which was organized by L. Shepp. Tomography is
concerned with determining or approximating a function defined on a discrete or continuous set given a collection
of weighted sums or weighted integrals of the function over subsets of its domain.
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In mathematic morphology, (A�B) is called the erosion ofA byB, and (A⊕B)
is called the dilation of A by B. The opening of A by B is as follows:

AB = (A�B)⊕B

The closing of A by B is as follows:

AB = (A⊕B)�B

(For the notation used here, see [969].) These operations have many uses in digital
geometry, as we will see in Chapter 15.

1.3 Exercises

1. In a regular grid, in the plane, the grid vertices are connected by grid edges
that form simple regular polygons; all of the polygons have the same number
m of edges, and every grid vertex is incident with the same number n of grid
edges. There are three regular grids in the plane: the orthogonal (square) grid
(used in Section 1.1), for which (m,n) = (4,4); the hexagonal grid, for which
(m,n) = (6,3); and the triangular grid, for which (m,n) = (3,6). Prove that
these are the only possible regular grids in the plane.

2. A center point of one of the regular m-gons that define a regular grid (see
Exercise 1) is called a grid point. We can define an xyz-coordinate system for
the hexagonal grid; any two of the three coordinates uniquely determine a grid
point. Define a test based on the signs of the three coordinates for determining
to which sextant (I, II, III, IV, V, VI; see figure) a grid point belongs.
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x

yz

I
II

III

IV
V

VI

3. Implement the Hilbert scan for pictures of size 2
n×2

n
(n= 2,3, . . . ,n0).

4. A set S in the Euclidean plane E
2 is called polygonally connected iff, for any

p,q ∈ S, there is a polygonal arc (p1,p2, . . . ,pn) where p= p1 and q = pn such that
the edges of the arc are all contained in S.

(i) Prove that any simple polygon is polygonally connected.

(ii) Consider the four quadrants of the square shown on the left. Specify
conditions under which the union of the gray squares or the union of the
white squares is polygonally connected. Can you specify conditions under
which the union of the gray squares in the upper n rows of the chessboard
(on the right) and the union of the white squares in the lower m rows are
polygonally connected when 4≤m and n≤ 8?

5. A set S in the Euclidean plane E
2 is called continuously connected iff, for any

p,q ∈ S, there is a continuous function f : [0,1]→ E
2 such that f(0) = p, f(1) =

q, and f(x) ∈ S for any real x in the closed interval [0,1]. Give an exam-
ple of a set S ⊆ E

2 that is continuously connected but not polygonally con-
nected.

6. Specify two metricsd1, d2 on a setS and a subsetM ⊆S such thatM is unbounded
in [S,d1] but bounded in [S,d2].

7. Prove that propertyV8 of a vector space follows from propertiesV0 through V7.

8. Which properties of V0 throughV8 of a vector space are satisfied by [Z2,+, ·,R]?
(Operations + and · are defined as for [R2,+, ·,R] in Section 1.2.4.)

9. Let Gn,n be the n×n grid (see Equation 1.1), where n≥ 2, and consider vectors
joining two nonidentical points of Gn,n. What is the smallest possible nonzero
value of the angle η between two such vectors expressed as a function of n?
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η

q

p
p

q

10. The two figures below appear to be congruent triangles composed of the same
four grid polygons. Explain the empty grid square in the figure on the right.

?

5

13

5

13

11. Implement the Graham Scan for finite sets of grid points. (Hint: Give arithmetic
definitions of “left turns” and “right turns.”)

12. Let S(Π) = P2/4πA (see Equation 1.9) be the shape factor of a simple poly-
gon Π with perimeter P and area A. What is S(Πn) if Πn is a regular n-
gon? If κ(n) = |S(Πn)− 1|, what is the speed of convergence 1/κ(n) of S to 0
as n→∞?

13. Prove that, among all simple polygons that have the same perimeter and the
same number of sides, the regular polygon has the greatest area.

14. In the figure in Exercise 4, let the (closed) gray squares have size 2
−n×2

−n
; let

the large square have size 1× 1; and let An be the union of the gray squares.
(An is illustrated in Exercise 4 for n= 1 and n= 3.) Let Bm = {(x,y) :−2

−m ≤
x,y ≤ 2

−m} where m≥ 1. What are A⊕B, A�B, AB , and AB where A can be
any An(n≥ 1) and B can be any Bm(m≥ 1)?

15. Prove that, if n grid points in Z
2 form a regular n-gon (n > 2), then n = 4. The

following figure shows an example on the left.

16. Prove that, if four grid points determine a nonsquare rhombus with angle η (see
the figure above on the right), then the quotient η/π is irrational. Also prove
that, if η is an acute angle of a right triangle with sides that have integer lengths,
(called a Pythagorean triangle) then η/π is irrational.

17. Prove that, if all the points in an infinite set are at integer distances from each
other, the points must all be collinear.
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η

1.4 Commented Bibliography

Digital geometry is a very lively research area in which many hundreds of journal
papers have been published. The study of pictures as mappings defined on rectan-
gular arrays of grid points was initiated in the 1960s and early 1970s in, for example,
[286, 342, 756, 881, 888, 921].

The book chapter [477], Chapter 3 in [992], the books [733, 802, 911], and the
digital geometry chapter in [891] (all published before 1980), as well as the books
[174, 430, 623, 702, 805, 860, 969, 1012, 1107], define digital geometry as a geometric
theory of n-dimensional digital spaces (grid point or grid cell spaces); see also the
article [1106].

Digital geometry has its mathematic roots in graph theory and discrete topol-
ogy; it deals with sets of grid points, which are also studied in the geometry of numbers
[732, 816], or with cell complexes [9, 10], which have also been studied in topology
since its beginning [9, 10, 659, 660, 820]. Studies of gridding techniques (e.g., by
Gauss, Dirichlet, or Jordan [484]) can also be cited as historic context. Digitizations
on regular grids are used in many types of numeric calculations.

For the mathematic theory of space-filling curves (also in 3D), see [935]. [996]
applies space-filling curves to picture printing. For the Peano curve, see [806]; for
the Hilbert curve, see [435].

For more about Euclid, see [564]. Coordinates in geometry are reviewed in
[335].10 For Apollonius of Perga, see [24]. For the ancient history of length estimation

10. Descartes’ friends pressured him into publishing some of his work. In 1637, his first scientific book was
published in Leyden [264]. Descartes’ method consisted of doubting all accepted knowledge (a mortal sin for
orthodox thinkers), basing all thinking on clear self-evident truths, and using logical reasoning (based on mathe-
matics) to build up a system of ideas. He explained the advantages of the top-down approach to large and difficult
problems, breaking them into smaller problems in such a way that the solutions to the smaller problems could be
combined to solve the large problem. The part of his book entitled La Géomètrie united algebra and geometry
and introduced algebraic notation that was so much better than anything previous that it has remained almost
unchanged since 1637. La Géomètrie is the earliest book that a modern mathematician can read without having
to learn obsolete notation and terminology; it is generally regarded as the foundation of modern mathematics.



34 Chapter 1 Introduction

in mathematics (e.g., the work of Archimedes and Liu Hui on the estimation of π),
see [1083]. The error measure in Equation 1.8 is discussed in [543].

For the history of graph theory, see [89]. [299, 394, 789, 1145] are monographs
about combinatorial geometry, and [97, 300, 823] are textbooks about computational
geometry. For Graham’s Scan, see [375].

For integral geometry and stereology, see [17, 858]. “Discrete integral ge-
ometry,” following [1107, 1108], will be treated in Chapters 4 and 5. For discrete
tomography, see [380, 431]. For the Minkowski sum, see [731]; for the Minkowski
difference, see [390].

For early work on fuzzy convexity, see [670, 1157], and for early work on fuzzy
topology, see [892]. “Fuzzy shape transforms” were introduced in [644]. The review
[900] discusses a variety of fuzzy geometric properties that had been studied by 1984.

A geometric model of the panoramic picture acquisition process (see Figure 1.3)
is discussed in [447]. There are many papers about hexagonal grids (Exercises 1 and
2); see, for example, [132] for properties and advantages of such grids, and see also
[68, 105, 1015]. For semiregular grids, see [106]. Exercise 13 is due to Zenodorus
[565]. For Exercise 14, see [961]. Exercise 15 follows from a general theorem in
[389]: if 0 < η < π/2 and the number cosη is rational, then either η = π/3 or η/π is
irrational. For Exercise 16, see [307].
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Grids and Digitization

This chapter begins by defining the 2D and 3D grid point and grid cell adja-
cency models as well as a more refined cell model called the grid (cell) incidence
model, which combines cells of different dimensionalities. It then discusses con-
nectedness (the reflexive and transitive closure of adjacency) and algorithms
for identifying (“labeling”) connected components. It also discusses digitization
models, including the classic Gauss, Jordan, and grid intersection models, and
defines a “domain” model that generalizes all of them.

Measurements made on digital pictures can only approximate the measure-
ments that might ideally have been made on real objects or real pictures. Digital
geometry deals with the computation of geometric measurements (or properties
or relations) from digital pictures and with the study of how well these measure-
ments approximate the corresponding ideal measurements on the real objects
or pictures. This chapter introduces a methodology called multigrid convergence
for comparing ideal and approximate measurements.

2.1 The Grid Point and Grid Cell Models

Figure 2.1 illustrates a portion of a 2D grid with grid constant θ (see Section 1.2.1).
We will first assume that θ= 1, and we will discuss θ as a variable later in this section.

2.1.1 Grid points and grid cells

In 2D, the grid point set is Z
2, and, in 3D, the grid point set is Z

3. A grid vertex is
shifted by (0·5,0·5) with respect to a grid point in 2D and by (0·5,0·5,0·5) in 3D.1

A pair of adjacent grid vertices (i.e., vertices at Euclidean distance 1 from each other)

1. Half-integers can be avoided in a computer program, for example, by identifying the corners of voxel (i,j,k)
with (i+ 1, j,k), (i,j + 1,k), (i+ 1, j + 1,k), and so on; however, we find it convenient to use half-integer grid
vertices in this book.

35
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Grid square

Grid vertex

Vertical grid edge

Grid point

q

FIGURE 2.1 A regular orthogonal grid in the plane.

defines a grid edge. A grid square is defined by four grid edges that form a square,
and a grid cube in 3D is defined by six grid squares that form a cube.

We specify grid points, vertices, edges, squares, and cubes in terms of Cartesian
coordinates. In 2D, the set of positions of the grid vertices is as follows:

(0·5,0·5)+Z
2 = {(i+0·5, j+0·5) : i, j ∈ Z}

A grid edge2 connects a pair of adjacent grid vertices:

(i+0·5, j+0·5)(i+0·5, j+1·5) or (i+0·5, j+0·5)(i+1·5, j+0·5) (2.1)

A grid square is defined by a quadruple of grid edges in which successive edges
(modulo 4) share a vertex.

(i+0·5, j+0·5)(i+0·5, j+1·5)(i+1·5, j+1·5)(i+1·5, j+0·5) (2.2)

In 3D, the positions of grid vertices, grid edges, grid squares, and grid cubes are
specified similarly.

In both 2D and 3D, the sets of grid vertices and grid points are congruent. This
supports the use in this book of the same planar or spatial grid for 2D or 3D pictures
when we use either the grid cell or grid point model.

The dimensionalities 3, 2, 1, and 0 of grid cubes, grid squares, grid edges, and
grid vertices suggest an alternative terminology:

Definition 2.1 A grid cube is also called a 3-cell; a grid square is a 2-cell; a
grid edge is a 1-cell; and a grid vertex is a 0-cell.

In this terminology, a 2D grid point is the center point of a 2-cell (see Figures 2.2
and 2.3), and a 3D grid point is the center point of a 3-cell. C

(i)

2
will denote the set

of all i-cells in the plane (i = 0,1,2), and C
(i)

3
will denote the set of all i-cells in 3D

space (i= 0,1,2,3). We also define the following:

C2 = C
(2)
2 ∪C

(1)
2 ∪C

(0)
2 and C3 = C

(3)
3 ∪C

(2)
3 ∪C

(1)
3 ∪C

(0)
3

2. pq is the line segment with endpoints p and q, pqr is the triangle with vertices p, q, and r, and so forth.
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FIGURE 2.2 Grid points in the plane (grid constant θ = 1).
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FIGURE 2.3 Left: graphic sketch of 0-, 1- and 2-cells. Right: the centers of these cells.

(The symbol C is often used in the mathematic literature for the set of complex
numbers, but this book will make no use of complex numbers, so there is no conflict
when using C to denote sets of cells.)

We now define the two basic grid models that will be used throughout this book:

• In the grid point model, a 2D grid G is either the infinite grid Z
2 or an m×n

rectangular subarray of Z
2; see Gm,n in Equation 1.1. Similarly, a 3D grid is

either Z
3 or an l×m×n cuboidal subarray of Z

3.

• In the grid cell model, a 2D grid G is either C2 or an m×n “block” of 2-cells
whose union

⋃
G is a rectangular region of the Euclidean plane E

2; see Gm,n

in Equation 1.2. Similarly, a 3D grid is either C3 or an l×m×n set of 3-cells
whose union is a cuboid in Euclidean space E

3.

These grids can also be defined for a grid constant θ different from 1, but θ = 1
is the default value throughout this book. Grid cells or grid points are the basic
elements used in digital geometry. A pixel is either a 2-cell (grid square) or a grid point
(the center of a 2-cell); see Figure 2.2. A voxel is either a 3-cell (grid cube) or a
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grid point (the center of a 3-cell). The formulation of a definition or algorithm may
sometimes be more convenient when one or the other model is used.

A grid line in 2D is incident with two different grid points whose x- or y-
coordinates are the same. The 2D grid Z

2 can be regarded as a subset of the 3D grid
Z

3 by adding a third coordinate z = 0 to every 2D grid point. In 3D, a grid plane is
incident with two orthogonal grid lines. It follows that all of the grid points of a grid
plane have the same x-, y-, or z-coordinate. A grid line in 3D is a set of points, two
with coordinates that are constant in Z, whereas the third is a variable in R. Grid
lines intersect at grid points in either 2D or 3D.

2.1.2 Variable grid resolution

The grid constant θ is the distance between neighboring grid lines. Grid resolution
is the inverse of the grid constant. It refers to the number of grid elements per unit
of distance without specifying the physical size of the unit. We will use an integer
parameter h > 0 to denote grid resolution. In a grid with resolution h = 1, we can
have either one grid point in a unit or two grid points as endpoints of a unit. In
general, the maximum number of grid points per unit is h+1.3

The parameters h and θ are useful when discussing the possible effects of im-
provements in geometric or picture resolution. They are especially relevant in the-
oretic studies of the convergence behavior of algorithms under refinement of grid
resolution (i.e., decrease of the grid constant).

Let Zh = {i/h : i ∈ Z}; then Z
2
h is the set of all 2D grid points in a grid of

resolution h > 0, and Z
3
h is the set of all such 3D grid points. We similarly use the

notation

C
(i)
2,h (i= 0,1,2), C

(i)
3,h (i= 0,1,2,3), C2,h, and C3,h

for grid cells in a 2D or 3D grid of resolution h.

2.1.3 Adjacencies in 2D grids

Definition 2.2 Two 2-cells, c1 and c2, are called 1-adjacent iff c1 �= c2 and c1∩c2
is a 1-cell. Two grid points p1 = (x1,y1) and p2 = (x2,y2) are called 4-adjacent
iff |x1−x2|+ |y1−y2|= 1.

In other words, two 2-cells c1 and c2 are 1-adjacent iff they are not identical but they
share a grid edge. Let pi be the center of ci (i = 1,2); then c1 and c2 are 1-adjacent
iff p1 and p2 are 4-adjacent.

3. In optics, resolution is defined as the minimal distance between two point light sources that allows them to
be distinguished by the optic system. In our terminology, resolution is the physical size of a pixel (i.e., the grid
constant θ).
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We have defined relations A1 of 1-adjacency andA4 of 4-adjacency for the grid
cell and grid point models. In general, we write pRq or (x,y)∈R iff p,q are in relation
R. In this notation, we have c1A1c2 iff {c1, c2} ∈ A1, iff c1 and c2 are 1-adjacent, and
p1A4p2 iff {p1,p2} ∈ A4 iff p1, p2 are 4-adjacent. The relation A1 (A4) is symmetric
and irreflexive.

Definition 2.3 Two 2-cells c1 and c2 are called 0-adjacent iff c1 �= c2 and c1∩c2
contains a 0-cell. Two grid points p1 = (x1,y1) and p2 = (x2,y2) are called 8-
adjacent iff max{|x1−x2|, |y1−y2|}= 1.

In other words, two 2-cells c1 and c2 are 0-adjacent iff they are not identical but share
(at least) a grid vertex. Again, let pi be the center of ci (i = 1,2); then c1 and c2
are 0-adjacent iff p1 and p2 are 8-adjacent. The relation A0 (A8) is symmetric and
irreflexive. Figure 2.4 illustrates relations A0, A1, A4, and A8 on a square grid.

Adjacent 2-cells are transformed into adjacent grid points by mapping the 2-
cells onto their center points, and adjacent grid points are transformed into adjacent
2-cells by mapping the grid points into the 2-cells that have them as center points.
The existence of this one-to-one mapping gives us the following:

Proposition 2.1 The grid defined bym×n 2-cells and adjacency relationA1 (A0)
is isomorphic to the grid defined by m×n grid points and adjacency relation
A4 (A8). Either of these grids will be denoted by Gm,n.

(In general, letR1 be a relation on a setS1 andR2 a relation on a setS2. The structures
[S1,R1] and [S2,R2] are called isomorphic iff there exists a one-to-one mapping f from
S1 onto S2 such that pR1q iff f(p)R2f(q) for all p,q ∈ S1. The mapping is called an
isomorphism.)

For the relations A1 and A4 on C2 (Z2), the number of pixels (grid points or
grid cells) adjacent to a pixel is always 4. For A0 and A8, it is always 8; however, for
adjacency relations defined on pictures, the number can vary.

Adjacencies between pixels in multilevel pictures are defined by locations and
pixel values. To start with, let us consider the values alone. Let P be a picture

FIGURE 2.4 Consecutive sequences of adjacent pixels for adjacency relationsA1 and
A4 (on the left), A0 and A8 (on the right).
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defined on the grid G in which pixel p has value P (p) in {0,1, . . . ,Gmax}. We say that
two pixels p and q are P -equivalent iff P (p) = P (q). Let Mu be the set of all q ∈ G

such that P (q) = u. If there exists p ∈ G such that u = P (p), Mu is an equivalence
class with respect to the relation of P -equivalence on G (in brief, a P -equivalence
class).

These P -equivalence classes are defined only by pixel values, not by locations.
Each P -equivalence class splits into components, depending on the adjacency rela-
tion used for the pixels. For example, we can define p and q to be P -adjacent if they
are 8-adjacent (or 0-adjacent) and P -equivalent. The number of pixels P -adjacent
to p can then vary between 0 and 8. Using 8-adjacency uniformly for all values u
may lead to situations such as the one illustrated in Figure 1.9.d. (If there are more
than two values, we cannot use 4-connectedness for one value and 8-connectedness
for the other as proposed in Section 1.1.4 for binary pictures.)

More generally, we can model “uncertainties” in picture values by assuming that
we are given a similarity relation σ (a reflexive and symmetric relation) on V ×V,
where V = {0,1, . . . ,Gmax}. (For example, σ2 is the similarity relation in which uσ2v

iff |u− v| ≤ 2.) Define two pixels p,q to be (σ,α)-adjacent iff pAαq and P (p)σP (q).
The relation of (σ,α)-adjacency is symmetric and irreflexive. Note that p may have
no (σ,α)-adjacent pixels if P (p) is not σ-similar to the value of any of the pixels that
are α-adjacent to p.

In the remainder of this section, we describe a method of defining adjacen-
cies in a 2D multivalued picture P , which we call switch adjacency (or s-adjacency)
and denote with As. Switch adjacency allows us to avoid topologic conflicts (see
Section 1.1.4 about binary pictures).

Pairs of 4-adjacent pixels are always regarded as s-adjacent; in other words,
As ⊇ A4. In addition, in each 2× 2 block of pixels, we call exactly one of the two
diagonally adjacent pairs s-adjacent. We can think of the 2×2 block as a switch that
can be in either of the two diagonal positions (see Figure 2.5); the position of the
switch determines which diagonally adjacent pair of pixels in the block is regarded
as s-adjacent. The states of the switches in P can be specified by a binary picture
S (a “switch state matrix”) that has pixels that correspond to the lower left-hand
corners of the 2× 2 blocks of pixels in P . A pixel of S has value 1 iff the switch in
the corresponding 2×2 block of P is to the left (in the main diagonal position) and
value 0 iff that switch is to the right (in the other diagonal position).

We can define specific s-adjacency relations in many ways. The switch position
in a block can depend on the position of the block (i.e., on the coordinates of its
lower left-hand corner) and not on the values of the pixels in the block. For example,
S can be the binary picture in which pixel (x,y) has value 1 if y is odd and 0 if y
is even. (In this case, two pixels are s-adjacent iff their hexagonal distance dh is 1;

Switch to the rightSwitch to the left

FIGURE 2.5 Using a “switch” to choose one pair of diagonal adjacencies.
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FIGURE 2.6 Only one of these three 2×2 blocks of pixels is a flip-flop case.

FIGURE 2.7 Two examples of (regular) s-adjacencies where switch positions depend
only on block positions (left and middle), and an irregular s-adjacency relation (right).

see the leftmost image of Figure 2.7, and see Section 3.2.3 about metric dh.) It is
more “natural” to let the diagonal s-adjacencies depend on the pixel values. Let the
difference between the values of one pair of diagonally adjacent pixels in a 2× 2
block be d1 and the difference between the values of the other pair be d2; if d1 < d2,
we call the first pair s-adjacent; if d2 < d1, we call the second pair s-adjacent. This
determines all of the s-adjacencies, except in flip-flop cases, where d1 = d2; in such a
case, the switch can be in either position. In real pictures, flip-flop cases are rare (see
Figure 2.6); there are typically less than 0·5% of such cases in a grayscale picture
and less than 0·2% in a color picture (see Figure 2.8 for four grayscale examples).

Evidently the s-adjacency relation is symmetric and irreflexive. The number of
pixels s-adjacent to p can be anywhere between 4 (the pixels 4-adjacent to p) and 8
(up to four additional diagonal adjacencies).

In general, we can use a Set Switches procedure to define a switch state matrix S.
The procedure can analyze larger neighborhoods of a pixel to determine the state of
its switch. This analysis can be based on templates such as those shown in Figure 2.9
in which the state of the switch in the lower 2×2 block is also used in the upper 2×2
block. S can even be generated randomly (using a random number generator) or us-
ing a function of the pixel coordinates (e.g., a pseudorandom function, to avoid bias).

2.1.4 Adjacencies in 3D grids

The definitions of 1-adjacency and 0-adjacency of 2-cells (Definitions 2.2 and 2.3) can
also be used in 3D, and we can also define the 0-adjacency of 1-cells. However, our
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FIGURE 2.8 These pictures are of size 2014× 1426 (so that they contain 2,872,964
pixels) and have Gmax = 255. The picture at the upper left position has only 14,359
flip-flop cases (i.e., 0.5% of the pixels). In the pictures in the upper right, lower left,
and lower right positions, the percentages of flip-flop cases are 0.38%, 0.38%, and
0.22%, respectively.

FIGURE 2.9 A set of simple templates for defining the states of flip-flop switches
(rule: “copy the state from the row below”).

main interest is in adjacencies between 3-cells or 3D grid points. Let de be the
Euclidean metric (see Section 1.2.1).

Definition 2.4 Two 3-cells c1 and c2 are called α-adjacent iff c1 �= c2 and the
intersection c1 ∩ c2 contains an α-cell (α ∈ {0,1,2}). Two 3D grid points p1 =
(x1,y1,z1) and p2 = (x2,y2,z2) are called 6-adjacent iff 0< de(p1,p2)≤ 1, 18-
adjacent iff 0< de(p1,p2)≤

√
2, and 26-adjacent iff 0< de(p1,p2)≤

√
3.
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FIGURE 2.10 Left: twoα-adjacent 3-cells (α= 0,1,2). Middle: twoα-adjacent 3-cells
(α= 0,1). Right: two 0-adjacent 3-cells.

Let c1 and c2 be 3-cells and let pi be the center of ci (i = 1,2). Then c1 and c2
are 0-adjacent iff p1 and p2 are 26-adjacent iff c1 and c2 are not identical but share
a grid vertex; c1 and c2 are 1-adjacent iff p1 and p2 are 18-adjacent iff c1 and c2 are
not identical but share a grid edge; and c1 and c2 are 2-adjacent iff p1 and p2 are
6-adjacent iff c1 and c2 are not identical but share a grid square (see Figure 2.10).

This defines symmetric and irreflexive relations Aα, where α = 0,1,2 for the
grid cell model and α= 6,18,26 for the grid point model. The parameter α denotes
the dimension of the intersection of the grid cells in the first case and the number of
adjacent grid points in the second case.

Proposition 2.2 The grid G l,m,n defined by l×m× n 3-cells and adjacency
relation A2, A1, or A0 is isomorphic to the grid defined by l×m×n 3D grid
points and adjacency relation A6, A18, or A26, respectively.

Data-dependent types of adjacencies (see Section 2.1.3) can also be generalized to
3D grids. We can now define the 2D and 3D grid point and grid cell adjacency models:

• A 2D (3D) grid point adjacency model combines the grid point model with an
adjacency relation defined between 2D (3D) grid points.

• A 2D (3D) grid cell adjacency model combines the grid cell model with an
adjacency relation defined between grid squares (grid cubes).

Both 2D and 3D grid point and grid cell adjacency models are called α-adjacency
grids; the value of α determines whether we use a grid point model (α≥ 4) or a grid
cell model (α ≤ 3). In Section 1.1.4, we briefly mentioned a dual use of adjacencies
for 2D binary pictures P : α1-adjacency for 〈P 〉 and α2-adjacency for 〈P 〉; in this case
we speak about (α1,α2)-adjacency grids.

Let A be a symmetric and irreflexive adjacency relation on a set S. A(p) = {q :
q ∈ S∧qAp} is called the adjacency set of p ∈ S. For example, for relationA4 on grid
points, we have the following,

A4(x,y) = {(x−1,y),(x+1,y),(x,y−1),(x,y+1)} (2.3)

provided all four of these grid points are also contained in the grid Gm,n.
N(p) = A(p)∪ {p} is called the (smallest nontrivial) neighborhood of p ∈ S

defined by adjacency relation A. N defines a symmetric and reflexive relation qNp



44 Chapter 2 Grids and Digitization

FIGURE 2.11 A1(c) andA4(p) (left) and the corresponding neighborhoodsN1(c) and

N4(p) (right).

Grid point model              Grid cell model

Elements
of
adjacency
structures

Elements
of
incidence
structures

FIGURE 2.12 Four ways of representing a 2D grid. Adjacency or incidence relations
can be defined on the grid points or grid cells.

on S. p ∈ S is never in A(p) but is always in N(p). Figure 2.11 shows A1 (A4) and
N1 (N4) for the 2D grid cell and grid point models. Analogous drawings for A0 (A8)
andN0(p) (N8(p)) would also contain the grid cells or grid points in the four corners.

2.1.5 Grid cell incidence

Two sets are called incident iff one of them contains the other (i.e., any set is incident
with itself). For example, a 3D grid vertex (0-cell) is incident with six grid edges
(1-cells); a grid square (2-cell) is incident with four grid edges; and a grid cube
(3-cell) is incident with 12 grid edges.

Figure 2.12 shows four ways of representing a 2D grid. In the grid cell model,
we can use only 2-cells (upper right), or we can also use 0- and 1-cells (lower right).
In the first case, we can use 0- or 1-adjacency to define a grid cell adjacency model,
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and, in the second case, we use the incidence relations between all of the cells to
define the 2D grid cell incidence model.

There exists a grid point adjacency (incidence) model that is isomorphic to any
of these grid cell adjacency (incidence) models. For grid points, we usually use only an
adjacency model; however, for completeness, we mention that a grid point incidence
model can be defined by adding isothetic edges between grid points—and “loops”
consisting of quadruples of such edges—to the set of grid points. This refined model
is isomorphic to the grid cell incidence model. In the correspondence between the
models, a grid point p is the center of a 2-cell, an isothetic edge connecting p with
another grid point intersects a 1-cell, and a loop of four such edges has a 0-cell as
its center. The dimensions of the elements in the grid point incidence model are
defined by the dimensions of the corresponding cells; for example, a loop is zero-
dimensional.

Analogously, there are four types of models for 3D grids: (1) grid point and (2)
grid cell adjacency models (see Section 2.1.4); (3) a grid cell incidence model that
includes 0-, 1-, and 2-cells in addition to 3-cells (and again, for completeness, (4) the
grid point model allows a structure that is isomorphic to the grid cell incidence model
in which a grid point corresponds to a 3-cell [in which it is the center]); an isothetic
edge between two grid points corresponds to a 2-cell (which it intersects at its center
point), a loop of four isothetic edges corresponds to a 1-cell (where the loop defines
a square having the 1-cell at its center), and 12 such edges forming a cube correspond
to a 0-cell (at the center of the cube).

The 2D and 3D grid cell incidence models are called (2D or 3D) incidence grids.

Definition 2.5 A subset M of an incidence grid is called complete iff, for any
cell c such that all cells incident with c and of larger dimension than c are inM ,
we also have c ∈M .

This definition leads to a recursive test for completeness: start with the 3-cells, then
check the 2-cells between them, then check the 1-cells that are incident only with 2-
or 3-cells already known to be in M , and so on.

The geometric representation of the 2D incidence grid used in this book is
illustrated in Figure 2.13: 0-cells are small squares (representing grid vertices);

FIGURE 2.13 Representation of a 2D incidence grid by rectangles: a 3×3 grid on the
left, a complete subset of it in the middle, and an incomplete subset on the right.
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FIGURE 2.14 Representation of a 3D incidence grid by cuboids: a complete set of
cells that contains three 3-cells and a few incident 0-, 1-, and 2-cells.

1-cells are thin rectangles (representing grid edges); and 2-cells are large squares.4

In 3D, we use a similar representation, with small cubes as 0-cells, large cubes as
3-cells, and elongated (flat) cuboids as 1-cells (2-cells); see Figure 2.14. Despite these
geometric representations, an i-cell is still considered to be of (abstract) dimension i.

2.2 Connected Components

The concept of connectedness defined in Section 1.1.4 applies to any of the adjacency
relations defined in Section 2.1 for 2D or 3D grids. We recall that the reflexive and
transitive closure of an adjacency relation is called a connectedness relation. In other
words, any element of the grid is connected to itself, and two elements p and q of the
grid are connected iff there exists a sequence of elements (p0, . . . ,pn) where n ≥ 0
such that p0 = p, pn = q, and pi+1 is adjacent to pi (0≤ i < n).

2.2.1 Connectedness and components

Let G be an adjacency grid. A sequence ρ = (p0, . . . ,pn) of pixels or voxels, where
p0 = p, pn = q, and pi+1 is adjacent to pi (0 ≤ i ≤ n−1), is called a path of length n
from p to q, and p and q are called the endpixels or endvoxels of ρ. The elements p
and q are called connected if there is a path from p to q. In particular, for α-adjacency
(α ∈ {0,1,2,3,4,6,8,18,26}), we use the terms “α-path” and “α-connected.”

Figure 2.15 shows a 1-path of 2-cells in the grid cell model and the corresponding
4-path in the grid point model. Figure 2.16 shows a 2-path of 3-cells in the grid cell
model and the corresponding 6-path in the grid point model.

4. Note that the large squares and thin rectangles are topologically closed sets; however, they represent grid squares
and grid edges that are open sets (i.e., the squares do not contain their edges, and the edges do not contain their
endpoints). This representation will be convenient when we define topologic equivalence in Chapter 6, because
the squares and rectangles used in the representation are all compact (closed and bounded) sets.



2.2 Connected Components 47

FIGURE 2.15 A 1-path in the grid cell model (left) that corresponds with a 4-path in
the grid point model (right).

FIGURE 2.16 A 2-path in the grid cell model (left) that corresponds with a 6-path in
the grid point model (right).

LetM be a finite subset of G. A maximal connected set of pixels or voxels ofM
is called a component of M . Evidently p,q ∈M are in the same component of M iff
there is a path completely contained in M that has p and q as endpixels (endvoxels).

Let Gm,n be anm×n grid. (Similar remarks apply to an l×m×n grid Gl,m,n.)
Gm,n can be extended into the infinite discrete plane (Z2 in the case of the grid point
model; C

(2)

2
in the case of the grid cell model). Let M be a subset of Gm,n; thus the

complementM ofM contains the complement Gm,n of G. The (infinite) set of pixels
ofM that are connected to pixels of Gm,n is called the background component ofM .
Any other pixel of M belongs to a finite component of M .

Let P be a picture defined on G. The P -equivalence classes define subsets of
G. Components of these classes are often of interest, as we will see in later chapters.
Figure 2.17 illustrates the components defined by these classes in a 5-valued picture
using 1-adjacency in the grid cell model. Class 5 consists of six 1-components (also
defining two complementary 1-components, one of which belongs to the background
1-component of class 5); class 4 consists of five 1-components (both complementary
1-components belong to the background 1-component of class 4); class 3 consists
of four 1-components (one complementary 1-component); class 2 consists of four
1-components (two complementary 1-components, both belonging to the background
1-component of class 2); and class 1 consists of three 1-components.
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1

2

3

4

5

FIGURE 2.17 A picture that has five P -equivalence classes; the numbers on the right
are used to refer to these classes in the text.

FIGURE 2.18 Top row: a 1-path of 2-cells (left) and a 0-path of 1-cells (right) in the
2D incidence grid. Bottom row: a 2-path of 3-cells (left), a 1-path of 2-cells (middle),
and a 0-path of 1-cells (right) in the 3D incidence grid.

In the 2D or 3D incidence grid, two cells c1 and c2 are called k-adjacent iff they
are not identical and there is a k-cell c (c �= c1 and c �= c2) that is incident with both
c1 and c2.

Definition 2.6 Two i-cells (i ≥ 1) are called adjacent iff they are k-adjacent
for some k < i.

Figure 2.18 shows examples of paths for these adjacency relations. This defini-
tion generalizes the concepts of 1-adjacency (see Definition 2.2) and 0-adjacency
(see Definition 2.3) between 2-cells or of α-adjacency (0 ≤ α ≤ 2) between 3-cells
(see Definition 2.4). Connectedness and components in 2D or 3D incidence grids
can be defined using these adjacency relations.

The following two propositions show that for pictures defined on an incidence
grid, cells can be assigned toP -equivalence classes in such a way that the components
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FIGURE 2.19 A picture on an incidence grid.

of the classes are complete. We give the proof for the 2D grid only; the 3D general-
ization is straightforward.

Proposition 2.3 Let P be a multilevel picture defined on the 2D incidence grid
G. Every 0- or 1-cell of G can be assigned to exactly one P -equivalence class
of an incident 2-cell in such a way that all of the components of P -equivalence
classes of 2-cells and their assigned 0- and 1-cells are complete subsets of G.

Proof Assign to each 0- or 1-cell the highest value among those of the 2-cells with
which it is incident. Evidently, if a 0- or 1-cell is incident only with 2-cells that
all have the same value u, it will be assigned to class Mu. Hence the resulting
components of P -equivalence classes of 2-cells and their assigned 0- and 1-cells
are all complete. �

Figure 2.19 shows an example of such an assignment for the picture P shown in
Figure 2.17. Note that we do not need an extended data structure to represent P on
an incidence grid; all of the assignments of 0- or 1-cells are determined by the order
of the picture values.

Proposition 2.4 Let P be a multilevel picture defined on the 3D incidence grid
G. Every 0-, 1-, or 2-cell can be assigned to exactly one P -equivalence class of
an incident 3-cell in such a way that all of the components of P -equivalence
classes of 3-cells and their assigned 0-, 1-, and 2-cells are complete subsets of G.
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FIGURE 2.20 The 12 free 5-ominoes.

2.2.2 Counting connected sets

A finite connected subset of the 1-adjacency grid [C(2)

2
,A1] is called a polyomino.

(Polyominoes illustrate the combinatorial complexity of finite sets of pixels; see
Chapters 13 and 14 about polyominoes in the context of digital convexity and digital
tomography.) If it consists of exactly n grid squares, it is called an n-omino.

Equivalence classes of polyominoes can be defined with respect to geometric
transformations that map the grid into itself. Such transformations include (see also
Section 14.4) translations by vectors (i, j), i, j ∈ Z; rotations around the origin by 90

◦
,

180
◦
, or 270

◦
; and reflections in the x- or y-axis.

Two polyominoes are called translation-equivalent if there is a translation that
maps one of them into the other. A translation-equivalence class of polyominoes
is called a fixed polyomino. An equivalence class of polyominoes with respect to
translations and rotations is called a chiral polyomino; an equivalence class of poly-
ominoes under translations, rotations, and reflections (a congruence class) is called a
free polyomino.5

Figure 2.20 shows the 12 free 5-ominoes. Figure 2.21 shows the 369 free
8-ominoes (the 8-ominoes that contain a hole are positioned in the center of the
figure; the filled dots indicate 8-ominoes that contain at least one 2×2 block).

The numbers of fixed n-ominoes, chiral n-ominoes, and free n-ominoes are
denoted by t(n), r(n), and s(n), respectively. It is not hard to show the following:

t(n)
8
≤ s(n)≤ r(n)≤ t(n) .

There are no simple formulas for these functions, but the following has been demon-
strated [371]:

lim
n→∞ t(n)1/n = a where 3·9< a < 4·65 (2.4)

Table 2.1 shows the values of t(n), r(n), and s(n) for 1≤ n≤ 24. The calculation of
these functions is a topic in the theory of polyominoes. Redelmeier’s algorithm [839]
for calculating them has exponential time complexity; no algorithm is yet known
that has subexponential time complexity. An algorithm for generating polyominoes
would also be of interest; it could be used to generate data sets for testing algorithms
in digital geometry.

5. For properties of a set that are invariant under specific types of geometric transformations, see Section 1.2.2
and Chapter 14.
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FIGURE 2.21 The 369 free 8-ominoes [368].

2.2.3 Component labeling

The following task arises frequently in picture analysis and computer graphics; it is
known as labeling, filling, or region detection. Let P be a 2D multivalued picture
defined on a finite adjacency or incidence grid G, and let the P -equivalence classes
have a total of k components. We regard the (infinite) complement of G as consisting
of pixels that all have the same value, so they belong to one of the components. The
task is to assign k labels (e.g., integers) to the pixels of P in such a way that all of
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TABLE 2.1 Values of t(n), r(n), and s(n) [839].

n t(n) r(n) s(n)
1 1 1 1
2 2 1 1
3 6 2 2
4 19 7 5
5 63 18 12
6 216 60 35
7 760 196 108
8 2,725 704 369
9 9,910 2,500 1,285
10 36,446 9,189 4,655
11 135,268 33,896 17,073
12 505,861 126,759 63,600
13 1,903,890 476,270 238,591
14 7,204,874 1,802,312 901,971
15 27,394,666 6,849,777 3,426,576
16 104,592,937 26,152,418 13,079,255
17 400,795,844 100,203,194 50,107,909
18 1,540,820,542 385,221,143 192,622,052
19 5,940,738,676 1,485,200,848 742,624,232
20 22,964,779,660 5,741,256,764 2,870,671,950
21 88,983,512,783 22,245,940,545 11,123,060,678
22 345,532,572,678 86,383,382,827 43,191,857,688
23 1,344,372,335,524 336,093,325,058 168,047,007,728
24 5,239,988,770,268 1,309,998,125,640 654,999,700,403

the pixels in each component have the same label and pixels in different components
have different labels. To keep P unaltered, we can put the labels into an array of the
same size as P .

A simple method of labeling components is as follows. Scan the picture until
a pixel p is found that has not yet been labeled. Suppose P (p) = u and that labels
L1, . . . ,Lk−1 have already been used. Choose a new label Lk, and call the procedure
FILL(p,u,Lk) (see Algorithm 2.1). (Note that the adjacency set A(r) may depend
on u [e.g., if we use 1-adjacency for 1s and 0-adjacency for 0s].) After labeling the
component that contains p, continue scanning the picture until all of the pixels have
been labeled.6 Figure 2.22 shows the order of the pixel visits (assuming the order

6. The FILL algorithm in Algorithm 2.1 uses a depth-first strategy to visit all of the pixels in a component.
The books [773] and [805] discuss variants of this strategy, such as recursive and nonrecursive (i.e., “filling by
connectivity”). The time complexity of this strategy can be improved by stacking horizontal runs of pixels [873].
In some versions of the FILL algorithm, the stack is replaced by a first-in-first-out queue. See Chapter 4 for a
generalization and modifications.
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FIGURE 2.22 The numbers show the order in which the pixels are labeled, assuming
a standard scan. The diagram on the right shows the order in which 1-adjacent pixels
are visited.

shown on the right is used for visiting 1-adjacent pixels) when this algorithm is used
to label the white pixels of the picture in Figure 2.23.

1. Label p with Lk.
2. Put p into a stack.
3. If the stack is empty, stop.
4. Pop r out of the stack.
5. Label with Lk all pixels q ∈ A(r) that have value u and have not yet been

labeled, and put these qs into the stack.
6. Go to Step 3.

ALGORITHM 2.1 Procedure FILL(p,u,Lk) for component labeling.

The Rosenfeld-Pfaltz labeling algorithm [921] labels all of the components ofP in
two scans of P (see Section 1.1.3); see Algorithm 2.2. In the first scan, we propagate
smallest labels, and, whenever labels merge, we note this fact in a table of equivalent
pairs of labels. In the second scan, we replace each label with a representative of its
equivalence class. This algorithm replaces the use of a stack (of sizemn) in procedure
FILL with the use of an equivalence table; its run time can be compared with that of
the simple depth-first search procedure for given classes of pictures. It also provides
an illustration of the cases that can occur during component labeling.

As an example of the operation of this algorithm, consider the binary pic-
ture shown in Figure 2.23. In the label propagation step of the algorithm, we use
1-adjacency for white pixels and 0-adjacency for black pixels. At the end of the first
scan (a standard scan), we have the equivalence table shown in Table 2.2. Label A
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1. In the first scan, propagate the labels until the end of the picture is reached:
1.1 If the current pixel p is adjacent to one or more previously visited pixels

that all have the same label, assign that label to p, and continue the scan.
1.2 If the current pixel p is adjacent to two or more previously visited pixels

that have different labels, assign the smallest of those labels (e.g., L) to p,
enter the other labels into the table as being equivalent to L, and continue
the scan.

1.3 Otherwise, assign to p a label that has not yet been used and continue the
scan.

2. Determine the equivalence classes of the labels by computing the transitive
closure of the equivalent pairs of labels detected in Step 1. Choose one label
from each equivalence class as its pivot.

3. Scan the picture a second time, and replace every label with the pivot of its
equivalence class.

ALGORITHM 2.2 The Rosenfeld-Pfaltz component labeling algorithm.
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FIGURE 2.23 Let P be the binary picture shown on the left. If we use (1,0)-adjacency
and the standard scan and assume that the infinite background component is black,
the algorithm produces the label assignments shown on the right and the equivalence
table shown in Table 2.2.

is also the label of all of the pixels of the background component. Note that some
equivalences are detected more than once.

The equivalences between pairs of the 20 labels A,. . . ,T are shown in
Figure 2.24. We will use the smallest label in each equivalence class as the pivot
of that class.
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TABLE 2.2 Equivalence table for the picture in Figure 2.23.
Label A B C D E F G H I J K L M N O P Q R S T
Equivalent B A C A B A A I G N B B M
labels B B A N

N

R

M

T

D

B

E I Q S

C J O

G

J N

P

A

F K LH

FIGURE 2.24 All equivalences between pairs of labels.

TABLE 2.3 Pivots for the example in Figure 2.23.
Label A B C D E F G H I J K L M N O P Q R S T
Pivot A B B D B A B A B B A A M B B B B R B M

To find the pivots, we scan the labels in order, smallest first. Any label that
is equivalent to A has pivot A and can be marked and replaced with A. We next
examine the smallest label that has not yet been marked; this label must be the pivot
of its equivalence class so that all of the labels equivalent to it can be marked and
replaced with it. This process is repeated until all of the labels have been marked.7

The pivots in our example are shown in Table 2.3.
A binary picture of size m×n in which 0s and 1s alternate (“a chessboard”)

requiresO(mn) labels. An a priori threshold on the number of labels can be used to
limit the size of the equivalence table. However, memory limitations are no longer
an issue, which they were in 1966, when the algorithm was first published.

The nontriviality of connected component labeling is illustrated in Figure 2.25.
In one of these binary pictures, the black pixels are connected, and in the other one,
there are two 4-components of black pixels; can you tell which is which?

2.3 Digitization Models

We use mathematically defined methods of digitization to create digital pictures
and to compare results obtained by analyzing these pictures with corresponding

7. Standard graph traversal algorithms (e.g., depth-first, breadth-first) can also be used to find the labels equivalent
to a given label. Graphs are the subject of Chapter 4.
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FIGURE 2.25 In which of these pictures are the black pixels connected? [631].

results in Euclidean or similarity geometry (see Section 1.2.2). In this section, we
describe three digitization methods: Gauss digitization and grid-intersection digiti-
zation, which were originally proposed for 2D, and Jordan digitization, which was
defined more than a century ago for 3D. We generalize these methods to allow vari-
able grid resolution, and we extend the Gauss and grid-intersection models to 3D
and the Jordan model to 2D. We define these digitization methods for the grid cell
model, but they can also be used with the grid point model by representing cells
with their centers. We briefly discuss relationships among these digitizations, and
we conclude by defining a general class of digitization methods that has all of these
methods as special cases.

2.3.1 Gauss digitization

C.F. Gauss (1777–1855) studied the measurement of the area of a planar set S ⊂ R
2

by counting the grid points (i, j) ∈ Z
2 contained in S. This approach suggests the

following:

Definition 2.7 Let S be a subset of the plane. The Gauss digitization G(S) is
the union of the grid squares with center points in S.

Figure 2.26 shows the Gauss digitizations G(D) of four disks D of different
diameters (measured in grid units). (The results would be the same if the disks all
had unit diameter and were digitized on grids of different resolutions. The Gauss
digitization of S on a grid of resolution h will be denoted by Gh(S).) G(D) is an
isothetic polygon that has 12 vertices for diameter 5, 20 vertices for diameter 10, and
36 vertices for diameter 17. Note that the number of vertices is always a multiple of
4, because a disk that is centered at a grid point has a symmetric Gauss digitization.

Proposition 2.5 The Gauss digitization G(S) of any nonempty bounded set
S ⊂ R

2 is the union of a finite number of simple isothetic polygons.
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FIGURE 2.26 Four disks (dashed) and their Gauss digitizations (shaded).

8 x 8 16 x 16 32 x 32

64 x 64 128 x 128

512 x 512

FIGURE 2.27 Gauss digitization of a simple polygon using grids of sizes from 8× 8
(upper left) to 128×128 (lower middle). The original polygon was drawn on a grid
of size 512×512 (lower right).

Proof A Gauss digitization G(S) is a union of grid squares, all of equal size. This
union contains only a finite number of grid squares, because S is bounded. Any
grid square is a simple isothetic polygon.8 �

Obviously, different sets can have identical Gauss digitizations. Figure 2.27
shows the Gauss digitization of a simple polygon Π with area 102,742·5 and perimeter
4,040·796,631 . . . drawn on a 512× 512 grid. On the upper left, each grid square

8. Partitions of a Gauss digitization into minimum numbers of simple isothetic polygons are considered in
Exercise 4 in Section 2.5.
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FIGURE 2.28 Relative deviations of area and perimeter for the digitized polygon in
Figure 2.27.

contains 64×64 squares of the original 512×512 grid; in the upper middle, 32×32;
and so on.

Figure 2.28 shows the relative deviations of the area and perimeter of Gh(Π)
from those of Π when Π is digitized on a 2

n× 2
n

grid (i.e., h = 2
n

). The relative
deviation is the absolute difference between the property values for Gh(Π) and Π
divided by the property value for Π. See Chapter 10 for an in-depth discussion
about perimeter estimation; the perimeter of Gh(Π) (i.e., the number of 1-cells on
its frontier) is not a good estimate of the perimeter of Π.

Gauss digitization is defined analogously in 3D. If S ⊂ R
3, the Gauss digitiza-

tion Gh(S) is the union of all of the 3-cells (in a grid of resolution h > 0) with center
points in S.

2.3.2 Jordan digitization

Let S ⊂ R
3 and h> 0. The magnification of S by factor h is denoted by h ·S. In terms

of multiplication of vectors by a scalar (see Section 1.2.12), we have the following:

h ·S = {(h ·x,h ·y,h ·z) : (x,y,z) ∈ S}

This magnification leaves the origin (0,0,0) fixed; other points of R
3 could also be

chosen as fixed points.
C. Jordan (1838–1922) [484] used grids to estimate the volumes of subsets of

R
3. Let S ⊂R

3 be contained in the union of finitely many 3-cells. Magnify S by factor
h with respect to an arbitrary fixed point p ∈ R

3; this transforms S into Sp
h. Let lph(S)

be the number of 3-cells completely contained in Sp
h and up

h(S) the number of 3-cells
that have nonempty intersections with Sp

h. Then h−3 · lph(S) and h−3 ·up
h(S) converge

to limits L(S) and U(S), respectively, as h goes to infinity; these limits are the same
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for any p [484]. Jordan called L(S) the inner volume and U(S) the outer volume of
S or the volume V(S) of S if L(S) = U(S).

We use Jordan’s digitization model for subsets of the plane as well as
of 3D space:

Definition 2.8 Let S be a nonempty subset of R
2. Let J−h (S) be the union of

all 2-cells (for grid resolution h> 0) that are completely contained in S, and let
J+

h (S) be the union of all such 2-cells that have nonempty intersections with S.
J−h (S) is called the inner Jordan digitization of S and J+

h (S) the outer Jordan
digitization of S. For S ⊆ R

3, we use 3-cells instead of 2-cells. For brevity, we
denote J−

1
and J+

1
with J− and J+, respectively.

Outer Jordan digitization is also called super-cover digitization [209]. (Inner
Jordan digitization will be further specified in Section 3.2.5 by one additional
[topologic] constraint that is still missing in the above definition.) Figure 2.29 shows
a 2D example in which S is a circle of radius n (in grid units) for n = 4 (left), n = 8
(middle), and n = 16 (right). If the frontier of a nonempty set S ⊂ R

2 does not
contain any grid edge segment of nonzero length, then the frontier of J−h (S) never
intersects the frontier of J+

h (S). For example, this is the case if S has a smooth
frontier that has continuous partial derivatives with respect to both coordinates and
has positive curvature everywhere. A straight line γ has an empty J−(γ) and a
connected J+(γ).

Proposition 2.6 The inner and outer Jordan digitizationsJ−h (S) andJ+
h (S) of any

nonempty bounded set S ⊂ R
2 are unions of finite numbers of simple isothetic

polygons.

Propositions 2.5 and 2.6 have straightforward 3D generalizations.

FIGURE 2.29 Inner and outer Jordan digitizations of a centered disk.
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FIGURE 2.30 Grid-intersection digitization of an arc.

2.3.3 Grid-intersection digitization

Gauss digitization and inner Jordan digitization are obviously not appropriate for
curves or arcs.9 Outer Jordan digitization is appropriate, but, in this section, we will
define grid-intersection digitization, which is commonly used for arcs and curves in
the plane.

Definition 2.9 The grid-intersection digitizationR(γ) of a planar curve or arc
γ is the set of all grid points (i, j) that are closest (in Euclidean distance) to the
intersection points of γ with the grid lines.

Figure 2.30 illustrates this definition. Note that an intersection point may have
the same minimum distance to two different grid points; such an intersection point
contributes two grid points to R(γ). (Alternatively, we could always choose, for
example, the right point or the upper point.)

A traversal of γ defines an ordered sequence (list) of grid points in R(γ).
We assume the following for simplicity: (i) if an intersection point is at the same
minimum distance from two grid points, we list only the grid point that has the larger
x-coordinate, or, if theirx-coordinates are equal, the one with the largery-coordinate;
and (ii) if consecutive intersection points have the same closest grid point, we list
that grid point only once.

The resulting ordered sequence of grid points is called the digitized grid-
intersection sequence ρ(γ) of γ (see Figure 2.31). It defines a polygonal arc (or
polygon) with vertices at grid points. The sequence represents R(γ) uniquely if an
intersection point is never at the same minimum distance from two grid points.

9. Precise definitions of curves and arcs will be given in Chapters 6, 7, and 8. For the moment, we say that a
simple arc or curve intersects the lines of a 2D grid (or the planes of a 3D grid) a finite number of times.
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FIGURE 2.31 Directional encoding of an arc. Starting at grid point p, the arc can be
represented by the sequence of codes 677767000001 . . .65.

A similar method can be used to digitize a 3D arc or curve γ: for each intersec-
tion point of γ with a grid plane, we add the grid point(s) closest to the intersection
point to the digitization.

Successive pairs of grid points in ρ(γ) define steps of length 1 along grid lines
and diagonal steps of length

√
2. The directions of the steps can be represented with

codes 0,1, . . . ,7 as shown at the lower left of Figure 2.31; code i represents a step
that makes angle (45 · i)◦ with the positive x-axis. Figure 2.31 shows an example of
the directional encoding of an arc. The directional codes are usually called chain
codes. A chain is an ordered finite sequence of code numbers. In Chapter 9, such
a sequence will be described as a word in an alphabet, which is the (finite) set of
code numbers. The length of a chain is the number of code numbers in it; note that
this length is not related to the geometric length of the arc or curve represented by
the chain.

The (geometric) length of ρ(γ) is the sum of the lengths of the steps. The
question arises whether this length can be used to estimate the length of γ. In what
follows, we denote the grid-intersection digitization of γ in a grid of resolution hwith
Rh(γ) and the corresponding digitized grid intersection sequence by ρh(γ). Note
that, for any γ, we have the following:

J−h (γ) = ∅ ⊆Rh(γ)⊆ J+
h (γ) (2.5)

Let γ be rectifiable; thus γ has a well-defined length L(γ). The length of ρ(γ)
is not a good estimate of L(γ); it does not necessarily converge to L(γ) as the grid
constant goes to zero.

As a simple example, consider the straight line segment pq in Figure 2.32 that
has a slope of 22.5

◦
and a length of 5

√
5/2. The length of ρ(pq) is 3 + 2

√
2 for grid

constant 1 and (5 + 5
√

2)/2 for all grid constants 1/2
n

(n ≥ 1). This shows that the
length of ρ(pq) does not converge to 5

√
5/4 as the grid constant goes to zero.
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FIGURE 2.32 A straight line segment of slope 22.5
◦

digitized using three grids of
decreasing grid constant. The differences in coordinates between p and q are 10 and
5 units.
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FIGURE 2.33 Differences in h1 and h2 from the correct y value.

As a more general example, consider a line segment γ with slope 1/(m+ 1).
Its chain code representation is (0

m
1)k, where k depends on the grid resolution. No

matter what k is, the length of ρ(γ) is k(m+
√

2) where L(γ) is k
√

1 +(m+ 1)2. The
ratio L(ρ(γ))/L(γ) is not 1 unless m= 0 or m→∞.

We conclude this section by discussing the grid-intersection digitization of a
straight line segment. Bresenham’s algorithm [122] is a standard routine in computer
graphics (Algorithm 2.3). We discuss the use of this algorithm to digitize a segment
of a line y = ax+b in the first octant (i.e., with slope a ∈ [0,1]). To draw the resulting
digital straight line segment, we increase the x-coordinate stepwise by +1; the y-
coordinate is “occasionally” increased by +1 and remains constant otherwise. (By
interchanging the startpoints and endpoints of the segment, we can handle octants
“to the left of the y-axis.” In the eighth octant, we use a y-increment of−1, and in the
second and seventh octants, we interchange the roles of the x- and y-coordinates.)

The digital straight line segment is a sequence of grid points (xi,yi), i≥ 1. The
point (x1,y1) is the grid point closest to the endpoint of the real segment. If we already
have point (xi,yi), the next point has x-coordinate xi+1, and, for its y-coordinate, we
must decide between yi and yi +1. Let y = a(xi +1)+ b, and define the differences
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1. Let dx= xq−xp, dy = yq−yp, x= xp, y = yq, b1 = 2 ·dy, error = b1−dx,

and b2 = error−dx.

2. Repeat Steps 3 through 6 until x > xq. Stop when x > xq.
3. Change the value of (x,y) to the value of a line pixel.
4. Increment x by 1.
5. If error < 0, let error= error+b1, or else increment y by 1 and let error=
error+ b2.

6. Go to Step 2.

ALGORITHM 2.3 Bresenham’s straight line segment algorithm (first octant only).

h1 and h2 (see Figure 2.33) with the following:

h1 = y−yi = a(xi +1)+ b−yi

h2 = (yi +1)−y = yi +1−a(xi +1)− b
To decide between yi and yi +1, we use the following difference:

h1−h2 = 2a(xi +1)−2yi +2b−1

We choose (xi +1,yi) ifh1 <h2 and (xi +1,yi +1) otherwise. For reasons of efficiency
(integer arithmetic only), we do not use h1−h2 for this decision. Rather, let p =
(x1,y1) and q= (xq,yq) be the grid points closest to the endpoints of the segment, and
let dx= xq−x1 and dy= yq−y1. Let ei = dx ·(h1−h2); thus ei = 2(dy ·xi−dx ·yi)+b′,
where b′ = 2dy+2dx · b−dx is independent of i. Thus ei can be updated iteratively
for successive decisions at xi +1 and xi +2:

ei = 2dy ·xi−2dx ·yi + b′

ei+1 = 2dy ·xi+1−2dx ·yi+1 + b′

Thus

ei+1−ei = 2dy(xi+1−xi)−2dx(yi+1−yi) = 2dy−2dx(yi+1−yi)

because xi+1 = xi + 1; this is sufficient for deciding about the y-increment. Let
x1 = xp = 0 and y1 = yp = 0 give the starting value:

e1 = 2dy ·x1−2dx ·y1 +2dy+dx(2b−1) = 2dy−dx
The resulting algorithm for the first octant is shown above. At Step 1, we have

error = e1 = 2dy− dx. The values b1 = 2 · dy and b2 = 2 · dy− 2 · dx are used to
efficiently update the variable error. The algorithm runs inO(xq−xp) time because,
for each i, it involves only a constant number of operations: setting one pixel value,
two simple logical tests, one addition, and one or two increments.
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FIGURE 2.34 Gauss digitizations of the same disk at different locations. (In the
example on the right, the disk is not shown: this is done to illustrate the difficulty of
recognizing digital disks.)

2.3.4 Types of digital sets

If γ is, for example, a straight line, straight line segment, circle, or parabola, we call
Rh(γ) a digital straight line, digital straight segment, digital circle, or digital parabola,
respectively.

If S is, for example, a disk, square, or convex set (and similarly in 3D), we call
J−h (S),Gh(S), orJ+

h (S) a digital disk, digital square, or digital convex set, respectively,
provided it is connected. We call a connected set of grid points a digital disk and so
forth (with respect to a given digitization model), if there exists a disk and so forth
that has that connected set as its digitization.

If Gauss or inner Jordan digitization is used, a connected set can have a dig-
itization that consists of several connected isothetic polygons (polyhedra). On the
other hand, the outer Jordan digitization of a connected set S is always a single
connected isothetic polygon or polyhedron. However, J+ does not preserve simple
connectedness; it can create holes.

Figure 2.34 shows how a disk in different positions can create different digital
disks by Gauss digitization. The left and center digital disks both consist of 24 grid
points, but the disk on the right consists of only 22 grid points. It can be shown
that the number of different digital disks (up to translation), with respect to Gauss
digitization, that consist of exactly n≥ 1 grid points is at most the following:

O(n2) (2.6)

Gauss and Jordan digitization allow us to study methods or algorithms of digital
geometry under slightly different assumptions about the relationships between setsS
in the Euclidean plane and their digitizations. Evidently, J−h (∅) =Gh(∅) = J+

h (∅) = ∅
andJ−h (R2) =Gh(R2) = J+

h (R2) = R
2 (and similarly for R

3). IfS is a nonempty proper
subset of R

2 or of R
3 with a smooth frontier, we have J−h (S)⊂ J+

h (S). Furthermore,
the following is true:

J−h (S)⊆Gh(S)⊆ J+
h (S) for any S ⊆ R

2 (S ⊆ R
3) (2.7)
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One or both relations ⊆ in the left part of Equation 2.7 can be replaced by =, but
both cannot be if S has a smooth frontier. Let S be a finite union of grid squares;
then we have J−(S) =G(S) = J+(S).

2.3.5 Domain digitizations

In this section, we define a framework for a general class of digitization models. To
simplify the discussion, we formulate this framework in n dimensions (n ≥ 1), but
our main interest is of course in n= 2 and n= 3.

Let the following be the n-cell centered at the origin o= (0, . . . ,0):

Πcube = {(x1, . . . ,xn) : max
1≤i≤n

|xi| ≤ 1
2}

Let ∅ �= Πσ ⊆Πcube, and consider translates Πσ(q) = {q+p : p ∈Πσ} of Πσ centered
at grid points q ∈ Z

n. (Note that Πσ(q) is the Minkowski sum of Πσ and {q}.) In
particular, Πcube(q) is the n-cell cq centered at q.

We will use the translates Πσ(q) of Πσ as the domains of influence for digiti-
zations that we call dig+

σ and dig−σ . For any set S ⊆ R
n, dig+

σ (q) is the union of all
cq such that Πσ(q) intersects S, and dig−σ (S) is the union of all cq such that Πσ(q) is
contained in S. Thus the following is true:

cq ⊆ dig+
σ (S) iff Πσ(q)∩S �= ∅ and cq ⊆ dig−σ (S) iff Πσ(q)⊆ S (2.8)

So dig+
σ (S) is called the outer σ-digitization of S and dig−σ (S) the inner σ-digitization

of S. Evidently, for any S ⊆ R
n, we have dig−σ (S)⊆ dig+

σ (S)⊆ C
(n)
n .

We now show that Jordan and Gauss digitizations are all σ-digitizations and
that grid-intersection digitization can also be regarded as a σ-digitization.

• If Πσ = Πcube for n = 2,3, we obtain the inner and outer Jordan digitizations
such that, for S ⊆ R

2 or S ⊆ R
3, we have the following:

J+(S) = dig+
cube(S) and J−(S) = dig−cube(S)

• If Πσ = {o}, we have Πσ(q) = {q} so that dig+
σ (S) = dig−σ (S) for all S ⊆ R

n.
For n= 2 or 3, this set is just the Gauss digitization G(S).

• If Πσ = {(x1, . . . ,xn) : ∃i(1 ≤ i ≤ n ∧ xi = 0) ∧ max1≤i≤n |xi| ≤ 1
2
}, dig+

σ

is essentially grid-intersection digitization. (It is a union of cross-shaped
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FIGURE 2.35 Inner and outer diamond and ball digitizations in the plane. The inner
digitization is the union of the grid squares centered at black grid points, and the
outer digitization (frontier shown as a bold black line) also contains the grid squares
centered at shaded grid points. Left: diamond digitization. Right: ball digitization.

neighborhoods of grid cells rather than a union of grid points.) If γ is a planar
arc or curve and n = 2, it is not hard to see that R(γ) = dig+

σ (γ), provided γ
does not intersect any grid line midway between two grid points.10

Thus the Jordan digitizations are σ-digitizations in which Πσ is a cube; Gauss digi-
tization is a σ-digitization in which Πσ is a point; and grid-intersection digitization
is essentially a σ-digitization in which Πσ is a cross. Other digitization models can
be defined by using other simple sets Πσ (e.g., “ball digitization” by using Πσ =
{(x1, . . . ,xn) :

∑n
i=1x

2
i ≤ 1

4
}, “diamond digitization” by using Πσ = {(x1, . . . ,xn) :

max{|x1|, . . . , |xn|,1/(n− 1)
∑n

i=1 |xi|} ≤ 1
2
}). These digitizations are illustrated in

Figure 2.35. The figure also illustrates a general property that follows directly from
the definitions of dig+

σ and dig−σ :

Πσ1 ⊆Πσ2 implies dig+
σ1

(S)⊆ dig+
σ2

(S) and dig−σ2
(S)⊆ dig−σ1

(S)

2.4 Property Estimation

In Section 2.3.3, we briefly discussed the estimation of arc length from a grid-
intersection digitization. In this section, we discuss area and perimeter estimation
from a Gauss digitization and introduce the general concept of multigrid convergence
of property estimates.

10. In this situation, two grid cells must be added to dig+
σ (γ), but only one to R(γ). However, this technical

difference could be removed by a simple modification of Πσ : we require that −1/2 ≤ xi < 1/2 (i.e., Πσ is a
product of n− 1 half-open segments).
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2.4.1 Content estimation

Any simple grid polygon P has a well-defined area and perimeter. The area A(P )
is defined by the number of grid squares contained in P multiplied by h−2, which is
the area of a single grid square. The perimeter P(P ) is defined by the number of grid
edges that form the frontier ofP multiplied by 1/h, which is the length of a single grid
edge. These measurements are invariant with respect to rotations and translations.

A grid polyhedron is simple iff it is topologically equivalent to a closed sphere.
(For topologic equivalence, see Chapter 6.) The surface area S(Π) and the volume
V(Π) of a simple grid polyhedron Π are defined by the number of 2-cells that form the
frontier of Π multiplied by h−2 and the number of 3-cells contained in Π multiplied
by h−3, respectively.

The question arises whether these properties of grid polygons or grid poly-
hedra can serve as estimates of the corresponding properties of real objects that
have the polygons or polyhedra as their digitizations. Such estimates can be evalu-
ated using criteria such as absolute error or bias (for a fixed h) or convergence (as
h→∞).

Let S ⊂ R
n (n≥ 1) be a closed bounded set that has measurable content C(S),

which is the length L(S) for n= 1, the areaA(S) for n= 2, and the volume V(S) for
n= 3. We consider a fixed grid constant 1 and magnifications of S by factors h > 1.
(Our preferred model of a fixed set S and increases in the grid constant will be used
in Section 2.4.2.) Let N (S) = C(G(S)) be the number of grid points in S; this is
defined by its Gauss digitization in the n-dimensional orthogonal grid.

Suppose Sh depends on only one parameter h > 0 (e.g., a disk or a sphere
depends on its radius h). Then the following is true as h→∞:

N (Sh) = C(S1) ·hn +O(hn−1) (2.9)

Magnification of S by the factor hwith respect to the origin o ∈ R
n transforms S into

Sh. (Magnification was defined in Section 2.3.2 only for n= 3, but its generalization
to any n≥ 2 is straightforward.) For n= 2, we have [616, 1023] the upper bound

|N (S)−C(S)| ≤ 4(P(S)+1) (2.10)

whereP(S)≥ 1 is the perimeter ofS, assuming thatS has a rectifiable frontier.11 The
following general upper bound (for n≥ 2) was claimed by R. Lipschitz (1832–1903)
in [658]:

|N (S)−C(S)| ≤ c ·Q (2.11)

11. H. Davenport reviews [1023] as follows in Mathematical Reviews, 9:335d: “The author gives a proof of the
following theorem, stated and proved by V. Jarník in a recent letter to him. Let J be a closed rectifiable Jordan
curve of length l, enclosing an area a. Then, provided l ≥ 1, the number w of points with integral coordinates
inside J satisfies |w−a|< l. The proof is elementary and depends on the following result: if a Jordan arc S joins

two points on the boundary of the square |x|< 1
2

, |y|< 1
2

, dividing the square into two regions, and if ∆ is the

region which does not contain the origin, then the area of ∆ is less than the length of S. This is proved by simple
considerations in each of four possible cases.”
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where Q is the greatest (n− 1)-dimensional content of any of the projections of S
into the (n−1)-dimensional subspaces of R

n defined by xi = 0 (i= 1, . . . ,n) and c is
a positive constant. Without discussing constraints on the set S, it was pointed out in
[248] that this upper bound cannot be correct; in fact, it fails for a long thin cylinder
around one of the coordinate axes, whereN (S) can be arbitrarily large and C(S) and
Q can be arbitrarily small.

Suppose the bounded closed set S ⊂ R
n is such that the following are true:

(i) any line parallel to one of the coordinate axes intersects S at a set of points that
(if it is not empty) consists of at most t intervals; and (ii) the same is true (with m
in place of n) for any of the m-dimensional sets (m= 1, . . . ,n−1) obtained by pro-
jecting S into a subspace defined by setting any n−m coordinates to zero. Then we
have the following:

Theorem 2.1 (H. Davenport, 1951) If a bounded closed set S satisfies (i) and
(ii), then

|N (S)−C(S)|<
n−1∑

m=0

tn−mQm

where Qm is the sum of the m-dimensional volumes of the projections of S
on the subspaces obtained by setting any n−m coordinates to zero; t is the
maximum number of intervals in (i) for all m = 0, . . . ,n− 1; and Q0 = 1 by
convention.

Note that t does not change when S is magnified by a factor h (e.g., with respect to
the origin).

The n-dimensional content of S ⊂R
n is the zero-order moment of S (see Chap-

ter 17). Error estimates for content and for digital moments are a general topic in
number theory. For information about error estimates for digital moments when
n= 2, see Theorems 17.2 and 17.3.

2.4.2 Convergent 2D area estimates

A (real) disk of unit diameter hasA(D) = π/4 andP(D) = π. The area of a digitized
disk converges toward the area of the real disk:

lim
h→∞

A(Gh(D)) =A(D) = π/4 (2.12)

On the other hand, the perimeter of the digitized disk is always equal to 4, because
the total length of the isothetic edges on its frontier remains constant as h increases;
thus it trivially converges, but not toward the correct value P(D) = π.

Digital geometry should provide accurate estimates of quantitative properties
of digitized sets if the grid resolution is sufficiently large. The study of the accuracy
of such estimates is one of the main topics in this book.
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Estimation of the area of a planar set by the number of grid points contained
in the set has an extensive history in number theory. C.F. Gauss and his colleague
P. Dirichlet (1805–1859) at Göttingen University already knew that the number of
grid points (i, j) ∈ Z

2 inside h ·S (the magnification of a given planar convex set S
by factor h) estimatesA(h ·S) within an asymptotic order ofO(P(h ·S)). Note that,
because S is convex, P(h ·S) is O(h).

Let S be a convex set contained in a unit square so that P(S)≤ 4 =O(1), and
consider increases in the grid resolution h instead of magnifications by an increasing
factor h. A(Gh(S)) is estimated by the number of grid points (i/h,j/h) inside S
times the scale factor h−2; note that h−2 is the size of a 2-cell in Gh(S). Then we can
rewrite the historic result as follows:

Theorem 2.2 (C.F. Gauss and P. Dirichlet) For any planar convex set S and any
grid resolution h > 0, |A(Gh(S))−A(S)|=O(h−1) .

This result can be extended to nonconvex planar sets that can be partitioned into
finite numbers of convex sets. Theorem 2.2 implies that counting grid points inside
such an S provides a convergent estimate of A(S) as the grid resolution h goes to
infinity.

The situation that arises when S =D is a disk has received the most attention
in number theory. A centered disk is a disk with its center at a grid point. A lower
bound on the estimation error in this case is given by the following:

Theorem 2.3 (G.M. Hardy, 1915) Let D be a centered disk. Then, for grid reso-
lution h > 0, we have |A(Gh(D))−A(D)|= Ω(h−1.5) .

A very accurate upper bound on the error, proved by M.N. Huxley in 1993, applies
not only to disks but also to planar convex sets with frontiers that are 3-smooth
curves12:

Theorem 2.4 Let S be a planar convex 3-smooth set. Then, for grid resolution

h > 0, we have |A(Gh(S))−A(S)|=O(h
− 100

73 · (logh)
315
146 ).

As we have seen, estimates of perimeter require more advanced methods than
simply taking the perimeters of isothetic polygons. Such methods will be discussed
in Chapter 10.

12. A 3-smooth curve has continuous partial derivatives with respect to both coordinates up to the third order and
has positive curvature everywhere; this definition follows [559].
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2.4.3 Multigrid convergence

A general scheme for comparing measurements made on a digital picture subset with
the true measurements for the preimage of the subset in Euclidean space has been
formalized by J. Serra [969]. (Limit properties with respect to digitizations were also
studied in [740] by U. Montanari.)

Let F be a family of sets S in R
n, and let digh(S) denote a digitization of S on a

grid of resolutionh. Assume that a propertyQ (e.g., area, perimeter) is defined for all
S ∈ F. The following definition specifies also a measure of the speed of convergence
of a digital quantity toward the true quantity:

Definition 2.10 An estimator EQ is multigrid convergent for F and for digh

iff, for any S ∈ F, there is a grid resolution hS > 0 such that the estimated value
EQ(digh(S)) is defined for any grid resolution h≥ hS , and

|EQ(digh(S)) − Q(S)| ≤ κ(h)

where κ is a function defined on the real numbers that takes on only positive
real values and converges to zero as h→∞. The function κ specifies the speed
of convergence.

In Theorems 2.2, 2.3, and 2.4, F is the set of planar convex 3-smooth sets, digh

is the Gauss digitization Gh, and Q is the area A. The estimate EA is obtained by
counting the number of grid points scaled by the area of the 2-cells. Theorems 2.2
and 2.4 demonstrate progress in obtaining upper bounds on the convergence speed,
and Theorem 2.3 provides a lower bound. The actual convergence speed is between
these bounds and is still unknown.

There are two ways to study convergence with respect to increased grid resolu-
tion: either consider sets h ·S digitized on a grid with unit grid constant, or consider
sets S digitized on grids with grid constant 1/h. In both cases, h→∞ corresponds
to an increase in grid resolution; we consider either a repeatedly magnified h ·S in
the grid with unit grid constant or a fixed S in a repeatedly refined grid. The repeat-
edly refined grid approach is commonly used in numeric mathematics and is also the
preferred approach in this book. This is motivated by the assumed scenario in which
the set to be analyzed remains physically the same while improvements in hardware
(e.g., scanners, computing power) allow refinements in grid resolution. However, in
experiments on multigrid convergence, it is often more appropriate to use repeatedly
magnified sets digitized into pictures of increasing size.

2.5 Exercises

1. A spider sitting on the surface of a cubic room wants to crawl over all six faces of
the cube and return to its starting point as quickly as possible. Does the starting
point affect the length of the shortest path?
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2. Prove that there is no equilateral triangle that has all three of its vertices in Z
2

(see also Exercise 15 in Section 1.3) but that there are equilateral grid triangles
in Z

3.

3. Use the 12 free 5-ominoes (see Figure 2.20) to cover a 6×10 rectangle without
overlap. (Hint: All congruence transformations are allowed.)

4. The following figure shows a convex polygon S and its digitization Gh(S). In
this example, Gh(S) consists of two rectangles. Give conditions on a bounded
convex polygon S and on the grid resolution h> 0 that imply thatGh(S) consists
of exactly one simple isothetic polygon. (For example, this is true if S is an
isothetic rectangle.)

5. Construct Gauss digitizations of a square (of constant size) in different orienta-
tions using grid resolution 6. Draw a diagram showing the relative deviations of
the area and perimeter of the digitized square as a function of its orientation.

6. Consider a polygonal arc with vertices that are grid points and with endpoints
that are on the border of Gm,n so that the arc cuts Gm,n into two parts. Write
a program to determine whether the parts can be moved apart (as in the three
cases on the left in the figure above) or not (as in the three cases on the right).
(Hint: If so, they can be moved apart by sliding them in the direction of one of
the arc segments.)

7. When we use the coding scheme of Figure 2.31, adding 2 modulo 8 to all of the
directional codes results in a 90

◦
rotation of the curve. Give an example of a

digital curve for which adding 1 modulo 8 to all of the codes results in a digital
arc that is not a closed digital curve. (It follows that the addition of 1 modulo 8
does not result in a 45

◦
rotation.)

8. Define a code for the frontier of a free polyomino consisting of the numbers
of 2-cells incident with the vertices of the polyomino when the vertices are vis-
ited by scanning the frontier of the polyomino in clockwise order. For example,
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113131121312 encodes the free 5-omino shown on the right in Figure 2.21 when
the scan starts at the upper left vertex. Any cyclic permutation of this code
represents the same free polyomino with respect to a different starting vertex.
Define the vertex chain code (VCC) of the free polyomino as the smallest in-
teger that can be generated in this way. (In our example, it is 112131211313.)
Prove that, for any free polyomino, the sum of the codes in a VCC of length
n is 2n−4.

9. Let n be the length of the VCC (see Exercise 2.8) of a given free m-omino
M , and let c be the number of 1-adjacent pairs of 2-cells in M . (For exam-
ple, c = 4 for the free 5-omino shown on the right in Figure 2.21.) Prove that
2c+n= 4m.

10. Let γ be the straight line y= x+ε. How does the value of ε affect the digitizations
J+(γ), R(γ), and ρ(γ)?

11. Show that the 2D cross digitization of any planar convex set is either empty or
a polygonally connected set (see Exercise 4 in Section 1.3).

12. How large should h be to achieve the same accuracy of π= 3.14 that Archimedes
obtained if the perimeter of the convex hull of Gh(D) is used for the perimeter
estimation of D where D is the unit disk? (Hint: The answer can be found by
implementing Graham Scan [see Section 1.2.9] using the leftmost and rightmost
vertices in all the rows of the grid that intersect D.)

13. Implement Bresenham’s algorithm (see Algorithm 2.3) and measure the length
of the digital segment by initializing a variable Lest as 0 and adding 1 for every
isothetic step and

√
2 for every diagonal step. Calculate the relative deviation

between Lest and de(p,q) (the length of the real segment pq) for different slopes
of pq. Which slopes produce maximum deviations?

14. The circle (x−xc)2 +(y− yc)2 = r2 can be digitized by using the formula y =
yc± (r2− (x−xc)2)1/2, which defines (in general) two y-values for every integer
x in [xc − r,xc + r]. Alternatively, each grid line that intersects the circle is
perpendicular to a diameter of the circle that divides the grid line into two rays.
Usually there exists a grid point on each of these rays that minimizes the residual
|(x2− xc)2 + (y− yc)2− r2|; these minimum-residual grid points also define a
digitization of the circle. Characterize positions of (xc,yc) and values of r for
which the minimum is not unique.

15. Prove that the residual |x2 + y2− r2| is never the same for adjacent grid points
on a grid line if r2 is an integer. It follows that the minimum is unique whenever
(xc,yc) ∈ Z

2 and r2 ∈ Z.

16. The digital circle produced by the minimum-residual method has a sharp corner
iff three of its consecutive grid points form a right angle; this can happen only
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at octant frontiers. The figure below illustrates a sharp corner when r = 4 and
shows that no sharp corner exists when r = 9. Prove that sharp corners occur iff
either there exists an integer x ≥ 0 such that r2 = x2 +x+ 1 or there exists an
integer y > 0 such that r2 = 2y2−y+1.

17. Let (xc,yc) = (0,0) and r ∈ Z, and suppose (xi,yi) (i ≥ 1) is a grid point on the
digital circle generated using the minimum-residual method, where (x1,y1) =
(0, r) and xi < r. Suppose the (upper) ray at x= xi intersects the circle at (xi,y),
where y ∈ R. Let d1,i = y

2
i − y2, d2,i = y2− (y2

i − 1)2, and ei = d1,i−d2,i. Prove
the following:

ei+1 = ei +4(xi +1)+2 for ei < 0
ei+1 = ei +4(xi +1)+2−4(yi−1) for ei ≥ 0

Show how these error calculations can be used to generate a digital disk using the
given formulas in the second octant and using reflection in the remaining octants.

18. Let S be a measurable set in R
2 with a frontier that is a rectifiable simple

closed curve. Let A(S) be the area of S and P(S) its perimeter. We recall
(see Section 1.2.11) that P2(S)/A(S) ≤ 4π and = 4π iff S is a disk. Let M be
a finite set of grid points; define A(M) as the number of grid points in M and
P(M) as the number of border grid points in M (i.e., grid points of M that are
adjacent to M). Show that P2(M)/A(M) does not take on its minimum value
when M is the set of grid points of a digitized disk.

2.6 Commented Bibliography

Both 2D and 3D regular orthogonal grids have a long history (see Figure 2.36).
Adjacency grids have been basic models in digital geometry since its beginnings
(see [881, 886] for the crisp case and [895] for the fuzzy case). Switch adjacency was
defined in [545]. Reference [721] also defines an adjacency relation that is interme-
diate between 4- and 8-adjacency.
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FIGURE 2.36 A figure from Euclid’s “Elements,” Book XI, Propositions 31 through
33 about the volumes of parallelepipeds (today we might call them “face-adjacent
3-cells”).

For incidence grids (also called the cuberille model) see, for example, [432].
Interestingly, 2D (regular orthogonal grid) incidence was briefly introduced in an
exercise in [13].

The theory of polyominoes (see [368, 563]) goes back about 100 years. For a
brief review of this theory, see Chapter 12 (by D.A. Klarner) in [371]. See [59, 262]
for reconstructions of convex polyominoes from orthogonal projections (which are
further discussed in Section 14.7), and see [61] for permutations and generation of
polyominoes.

[873] and [976] are reviews of component labeling and region adjacency graph
construction for 2D and 3D adjacency grids. The Rosenfeld-Pfaltz algorithm was
originally formulated for binary pictures only [921]; it is compared in [674] with two
other techniques. Linear-time component labeling algorithms that can handle a va-
riety of image representations are described in [269]; see also [1049]. For component
labeling in 3D, see [673, 1053]. The recursive fill algorithm is standard in the picture
analysis and computer graphics literature; see, for example, [802]. Component la-
beling for pictures of very large size can be based on the reuse of labels [506]. For
other references about component labeling see [161, 260, 321, 663, 981].

Parallel algorithms for component labeling are discussed in [645, 769, 898].
Connected components can also be determined by identifying borders and computing
their chain codes; see, for example, [169, 230, 602, 1034] for early work. (Border
tracing is discussed in Section 4.3.4.)

The Gauss digitization model is common in number theory [598]. The Jordan
digitization model [484] has been used in connection with volume estimation [732,
960]. Outer Jordan digitization is called super-cover digitization in [209].

Grid-intersection digitization is used in both computer graphics [121, 122] and
picture analysis [342, 343, 804, 883]. Bresenham’s algorithm [122] was published
in 1965 and is one of the most frequently applied algorithms worldwide. Two ver-
sions of grid-intersection digitization are discussed in [951]. For a fast algorithm for
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grid-intersection digitization of analytically defined curves, see [1032]. The accuracy
and time complexity of two line-digitization algorithms are discussed in [1084].

The directional encoding scheme illustrated in Figure 2.31 was proposed by
H. Freeman in [342]. Differential chain codes (differences between pairs of successive
codes) were proposed in [805]. [859] discusses measures for comparing chain codes.

The upper bound in Equation 2.6 is studied in [1167]. For determining whether
a given finite set of grid points is a digital disk or a digital square, see [512] and [765],
respectively. For characterizing digitizations of simple shapes such as disks, squares,
and triangles, see also [22, 277, 763, 764, 813, 896, 1132].

Digitization schemes based on intersections with domains (e.g., a closed convex
set; a square or cube, in Jordan digitization) are studied in [21, 480, 540, 739, 998, 1000].
Domain digitization is also called “digitization by dilation and by erosion” [875]. For
digitization by dilation, see [416, 417, 419]; here one usually makes the covering
assumption, namely that the union of all Πσ(p), for all p ∈ Z

2, covers the Euclidean
space. For 2D digitizations based on percentages (ratios of areas within a 2-cell), see
[398]. For digitizations of line drawings, see [345, 583]; the special case of convex
curves is studied in [1139]. [131] studies digitization schemes, for example, for straight
lines and planes from topologic points of view. For Hausdorff digitization, which uses
the Hausdorff distance (see Chapter 3), see [875, 876, 1043, 1044]. Digitization is
also discussed in [361] and [624] in the context of topology and shape preservation.

Theorem 2.3 is from [412], and Theorem 2.4 from [459]. Definition 2.10 follows
[498, 560]. Limit properties of digitization schemes are discussed in [740, 969]. The
estimation of radii of digital disks is studied in [1132], of areas of digital disks and
rectangles in [878], and of parameters of digital conics in [176]. [556] gives a set of
axioms for area measures. For areas and perimeters of digitized objects, see [607].

Exercise 6 is from the 2002 international programming contest of the Associ-
ation for Computing Machinery (ACM). Exercise 7 is from [1024]. For the vertex
chain code and Exercises 8 and 9, see [126]. A chain code for 6-curves (in 3D space)
based on a notation for turns is discussed in [127]. Methods of generating digital cir-
cles (see Exercises 14 and 16) are discussed in [712]. The result of Exercise 15 is from
[606]; see also [178, 276, 813] for digitizations of disks. Exercise 17 is a brief sketch
of the basic steps of Bresenham’s digital circle algorithm [123]. The minimum-residual
method coincides with grid-intersection digitization for circles that have integer radii
and are centered at grid points; see [712]. For the digital isoperimetric inequality
(Exercise 18), see [884].
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C H A P T E R 3

Metrics

This chapter discusses metric spaces [S,d], in which S is a subset of R
n or a subset

of a grid; it also addresses metric spaces, in which S is a family of such subsets. It
also discusses metrics on pictures in which distances depend on the pixel values.

3.1 Basics About Metrics

Measurement requires a metric space. In this section, we summarize facts about met-
ric spaces that are relevant to digital geometry. The definition of a metric (distance
function) based on properties M1 through M3 was given in Section 1.2.1.

3.1.1 The Euclidean metric

We first consider the metric that is used in Euclidean geometry: the distance between
two points is equal to the length of the straight line segment defined by the two points.
This metric will allow us to define arc lengths, angles, and areas. Digital geometry is
often concerned with estimates of such quantities.

We assume a Cartesian coordinate system on R
n. (We treat the n-dimensional

case, because this allows us to discuss the 2D and 3D cases at the same time.) Let
p= (x1,x2, . . . ,xn) and q = (y1,y2, . . . ,yn) ∈ R

n (n≥ 1); then the following is true:

de(p,q) =
√

(x1−y1)2 + . . .+(xn−yn)2

The function de is the Euclidean metric, and E
n = [Rn,de] is the n-dimensional Eu-

clidean space.
It is easily seen that de satisfies M1 and M2; we now prove that it satisfies M3.

Let r= (z1,z2, . . . ,zn) be a third point. For i= 1, . . . ,n, let ai = zi−xi and bi = yi−zi

so that ai + bi = yi−xi. From the Minkowski inequality
√√√
√

n∑

i=1

a2
i +

√√
√√

n∑

i=1

b2i ≥
√√
√√

n∑

i=1

(ai + bi)
2 (3.1)

77
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it follows that de(p,q) ≤ de(p,r)+ de(r,q). The Minkowski inequality follows from
the Schwarz inequality

√√√√
n∑

i=1

a2
i

√√√√
n∑

i=1

b2i ≥
∣∣∣∣∣

n∑

i=1

aibi

∣∣∣∣∣
(3.2)

where the ais and bis are reals and n≥ 1. A proof of Equation 3.2 is as follows:

0≤ f (t) =
n∑

i=1

(ai + t ·yi)
2 = t2 ·

(
n∑

i=1

b2i

)

+2 · t ·
(

n∑

i=1

ai · bi
)

+
n∑

i=1

a2
i

Because this inequality holds for any t, it follows that the discriminant of f(t) is not
strictly positive. This means that the following is true and is equivalent to Equa-
tion 3.2:

0≥
(

2 ·
(

n∑

i=1

ai · bi
))2

−4 ·
(

n∑

i=1

a2
i

)

·
(

n∑

i=1

b2i

)

3.1.2 Norms and Minkowski metrics

Euclidean spaces are often introduced as normed spaces rather than metric spaces.
A norm always defines a metric, and a metric defines (at least) a seminorm. Norms
can also be related to the metrics studied in digital geometry.

Let [S,+, ·,R] be an n-dimensional vector space over R (see Section 1.2.4).
A norm ‖·‖ assigns to any p ∈ S a nonnegative real number ‖p‖ that satisfies the
following properties for all p,q ∈ S and all a ∈ R:

N1: ‖p‖= 0 iff p= (0, . . . ,0) (identity).

N2: ‖a ·p‖= |a| · ‖p‖ (homogeneity).

N3: ‖p+ q‖ ≤ ‖p‖+‖q‖ (the triangle inequality: triangularity).

For example, let S = R
n, p= (x1, . . . ,xn) ∈ R

n, and let the following be true1:

‖p‖m = m

√
|x1|m + . . .+ |xn|m form= 1,2, . . .

‖p‖∞ = max{|x1|, . . . , |xn|}
These functions have properties N1 through N3 on the vector space [Rn,+, ·,R].

Let ‖·‖ be a norm on [S,+, ·,R]. It can be easily verified that

d(p,q) = ‖p− q‖ (p,q ∈ S) (3.3)

defines a metric on S. Evidently, the norm ‖p‖2 defines the Euclidean metric de on
[Rn,+, ·,R].

1. The norm ‖·‖m is defined not only for integer m but for any real number m≥ 1.
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A metric defined by a norm using Equation 3.3 also has the following properties:

M4: d(p+ r,q+ r) = d(p,q) for p,q,r ∈ S (translation-invariance).

M5: d(a ·p,a · q) = |a| ·d(p,q) for p,q ∈ S and a ∈ R (homogeneity).

The norms ‖p‖m (m ≥ 1 or m =∞) define the Minkowski metrics Lm on R
n;

‖ · ‖m is therefore called a Minkowski norm. Note that L2 = de. Evidently we have

Lm(p,q) = m
√
|x1−y1|m + . . .+ |xn−yn|m (m= 1,2, . . .)

L∞(p,q) = max{|x1−y1|, . . . , |xn−yn|}
where p = (x1,x2, . . . ,xn) and q = (y1,y2, . . . ,yn). All the Minkowski metrics Lm

have properties M1 through M5. The following can also be shown:

Lm1(p,q)≤ Lm2(p,q) for all 1≤m2 ≤m1 ≤∞ and all p,q ∈ R
n (3.4)

It is easily verified that two 2D grid points p1 and p2 are 4-adjacent iff L1(p1,p2)
=1 and 8-adjacent iff L∞(p1,p2) = 1. Similarly, two 3D grid points p1 and p2 are
6-adjacent iff L1(p1,p2) = 1 and 26-adjacent iff L∞(p1,p2) = 1.

Let [S,d] be a metric space, and assume that [S,+, ·,R] is an n-dimensional
vector space with additive identity o. Let the following be true:

‖p‖= d(p,o) for all p ∈ S (3.5)

If d also satisfies M4 and M5 on [S,+, ·,R], Equation 3.5 defines a norm on S. If d
does not satisfy M5, the function ‖·‖ derived from d by Equation 3.5 need not be a
norm, but it is a seminorm, which has properties N1, N3, and

N2�: ‖a ·p‖ ≤ |a| · ‖p‖ (upper boundedness).

3.1.3 Scalar products and angles

A norm often allows us to define a scalar product, which in turn allows us to define
angular values. A metric allows us to define a seminorm, a weak scalar product, and
angular values.

A scalar product 〈p,q〉 is a symmetric, positive definite, such that

〈p,p〉> 0 for all o �= p ∈ S
and linear, such that

〈ap+ bq,r〉= a〈p,r〉+ b〈q,r〉
mapping of S2 into R. Let ‖·‖ be a seminorm or norm on an n-dimensional vector
space [S,+, ·,R], and let the following be true:

〈p,q〉= 1
4

(‖p+ q‖2−‖p− q‖2) for all p,q ∈ S (3.6)
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A seminorm or norm always defines a weak scalar product in this way. It is positive
definite and symmetric, and it is a scalar product iff it is linear.

For example, the norm ‖·‖1 does not define a scalar product 〈·, ·〉1; this weak
scalar product is not linear. There are grid points p1 and q1 such that 〈2p1, q1〉1
< 2〈p1, q1〉1, and there are grid points p2 and q2 such that 〈2p2, q2〉1 > 2〈p2, q2〉1. In
general, the linearity of a scalar product implies the following:

‖p+ q‖2 = ‖p‖2 +‖p‖2 +2〈p,q〉

and

‖p+ q‖2 +‖p− q‖2 = 2‖p‖2 +2‖q‖2

These are not true for all norms.
Vectors p,q ∈ S are called orthogonal (notation: p⊥q) with respect to a weak

scalar product 〈·, ·〉 iff 〈p,q〉 = 0. For example, for the Euclidean space [R2,de], the
norm ‖p‖e, and the scalar product 〈p,q〉e, we have

〈p,q〉e = x1x2 +y1y2 = cosη · ‖p‖e · ‖q‖e

where p= (x1,y1), q = (x2,y2), p �= o,q �= o, and η is the (smaller) angle between the
vectors p= �op and q = �oq. It follows that p⊥q iff cosη = 0 iff η = 90

◦
.

We say that a weak scalar product satisfies the generalized Schwarz inequality on
S iff the following is true:

|〈p,q〉| ≤ ‖p‖ · ‖q‖ for all p,q ∈ S

For example, the weak scalar products defined by the metrics d4 and d8 on R
2 satisfy

the generalized Schwarz inequality on R
2.

Suppose the weak scalar product 〈·, ·〉 defined by a metric d satisfies the gener-
alized Schwarz inequality on S. Following [540], we can define an angular value

H(p,q,r) =
〈p− q,r− q〉
d(p,q) ·d(r,q) for all p,q,r ∈ S (3.7)

where p �= q,q �= r; see Figure 3.1. With the generalized Schwarz inequality, we have
the following:

Proposition 3.1 H(p,q,r) is always in the interval [−1,1].

In the Euclidean space [R2,de], we have H(p,q,r) = cosη, where η is the (smaller)
angle between the vectors p− q = �qp and r− q = �qr.
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q

r

p

H(p,q,r )

FIGURE 3.1 Illustration of angular value H(p,q,r). �qp and �qr illustrate ways of mea-
suring the (shortest) distances d(p,q) and d(r,q); the sketch in the figure resembles a
path in metric d4.

3.1.4 Integer-Valued metrics

The Minkowski metrics can obviously have noninteger values, even for pairs of grid

points; for example, in Figure 3.2, we have de(p,r) =
√

5. The measurements used
in digital geometry are often based on integer-valued metrics.

We recall the definitions of the floor, ceiling, and nearest integer functions for
all real a:

�a�, the largest integer less than or equal to a

a�, the smallest integer greater than or equal to a

a�, the nearest integer to a if it is unique,

and �a� otherwise

For any function d : S×S �→R, we can define �d� by �d�(p,q) = �d(p,q)� and similarly
for d� and [d]. However, even if d is a metric, these integer-valued functions may
not be metrics. For example, we have the following:

Proposition 3.2 �de� and [de] are not metrics on Z
2.

Proof Let p = (2,3), q = (−1,−1), and r = (0,0). Then �de�(p,q) = 5, but
�de�(p,r) = 3 and �de�(r,q) = 1, so property M3 is not satisfied. For [de], use,
for example, p= (1,1) and q and r as before. �
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FIGURE 3.2 p= (2,1), q = (6,3), and r = (3,3).

It follows that �de� and [de] are not metrics on R
n or Z

n for n≥ 2. Interestingly,
de� is a metric. In fact, we have the following:

Theorem 3.1 If d is a metric, d� is also a metric.

Proof Let p,q,r ∈ S, a= d(p,q), b= d(q,r), and c= d(p,r). We show that d� has
properties M1 through M3.

M1: For a ≥ 0, we have a� = 0 iff a = 0, such that d(p,q)� = 0 iff d(p,q) = 0
iff p= q. Furthermore, a≥ 0 implies a� ≥ 0.

M2: Because d(p,q) = d(q,p), we also have d(p,q)�= d(q,p)�.
M3: We have a+b≥ c, because d is a metric on S. First assume that a or b is an

integer, for example, a = n; then a+ b� = n+ b� = n+ b� = a�+ b�.
Now assume that both a and b are not integers, so that a�= �a�+1 and
b� = �b�+ 1. Because a+ b� ≤ �a+ b�+ 1, it follows that a�+ b� =
�a�+ �b�+2≥ �a+ b�+1≥ a+ b�. �

In the example in Figure 3.2, we have de�(p,r) = 3, de�(p,q) = 5, and de�(r,q) = 3.

Definition 3.1 An integer-valued metric d on a set S is called regular iff, for
all p,q ∈ S such that d(p,q) ≥ 2, there always exists an r ∈ S (r �= p and r �= q)
such that d(p,q) = d(p,r)+d(r,q).

It is not hard to show that d is regular iff, for all distinct p,q ∈ S, there exists an
r ∈ S such that d(p,r) = 1 and d(p,q) = 1 + d(r,q). de� is a regular integer-valued
metric on R

2 but not on Z
2. For example, letpand q be grid points that differ by 4 in one

coordinate and by 3 in another coordinate. The distance (both de and de�) between



3.1 Basics About Metrics 83

p and q is 5, but there is no r ∈ Z
2 at de� distance 1 from p and 4 from q; such a real

point would have to lie on the segment pq, but it cannot then have integer coordinates.
Integer-valued metrics are of special interest in picture analysis. It can be shown

that a finite metric space is isomorphic to the distance space on a graph (see Chapter 4)
iff the metric is regular; this implies that d4 and d8 are regular. Integer-valued metrics
will be discussed further in Sections 3.2 and 3.4.

3.1.5 Restricting and combining metrics

From Exercise 8 in Section 1.3, we know that [Zn,+, ·,R] is not a vector space,
because it is not closed under scalar multiplication a ·p (property V0). The algebraic
structure [Zn,+, ·,Z] is an example of a unitary module: it satisfies properties V0
trough V8 with respect to a ring of scalars that has an additive identity.

Proposition 3.3 If [S,d] is a metric space and A is a nonempty subset of S, then
[A,d] is also a metric space. If d is not a metric on A, d is also not a metric on
any set S containing A.

Proof If M1 through M3 hold for d on S, they also hold for d on any subset of S.
The definition of a metric space requires that A be nonempty. �

In particular, metrics on R
n define metrics on Z

n, because Z
n is a subset of R

n. For
example, the Minkowski metrics define metric spaces on the sets Z

2 and Z
3 of all 2D

or 3D grid points, and they define metric spaces on rectangular grids Gm,n for allm,n
(see Equation 1.1) or cuboidal grids G l,m,n for all l,m,n, because these grids (using
the grid point model) are finite subsets of Z

2 or Z
3.

There are ways of combining two metrics d′,d′′ on a set S so that the resulting
function d is a metric on S. For example:

(i) A linear combination of two metrics, d(p,q) = a · d′(p,q)+ b · d′′(p,q), where
0< a,b ∈ R is a metric.

(ii) The maximum of two metrics, d(p,q) = max{d′(p,q),d′′(p,q)}, is a metric.

On the other hand, the product or minimum of two metrics is not necessarily a metric.

3.1.6 Boundedness

The Minkowski metrics on R
n are examples of unbounded metric spaces [S,d], where

S = R
n is an infinite set, and the distances between points in S can exceed
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any finite bound. Any metric space [S,d] on a unitary module S satisfying the
homogeneity property M5 is necessarily unbounded. We now give some examples
of bounded metric spaces.

We first give a degenerate example. LetS be a nonempty set, and we define that

db (p,q) =
{

0 if p= q

1 otherwise

It can easily be verified that [S,db] is a metric space, and it is evidently bounded.
The function db is called the binary metric. The norm ‖p‖b = db(p,o), defined as in
Equation 3.5, satisfies N2� but not N2.

If [S,d] is an unbounded metric space,

d′(p,q) =
d(p,q)

1+d(p,q)

defines a metric d′ on S, and [S,d′] is a bounded metric space.
We now give a more detailed example using the mapping that takes p= (x,y),

∈ R
2 into p� = (x�,y�), where the following are true:

x� =
2x

1+
√
x2 +y2 +1

and y� =
2y

1+
√
x2 +y2 +1

(3.8)

For any p, p� is contained in a disk of radius 2. Indeed, for o = (0,0) we have the
following:

de(p�,o) = 2

√
x2 +y2

x2 +y2 +a
= 2c < 2

(Note: c is defined in this equation.) This is true because a= 2+2
√
x2 +y2 +1 > 0

and thus c < 1. Thus the mapping defined by Equation 3.8 is one-to-one from R
2

onto the open disk of radius 2. Any (x,y) on the circle with center o and radius 4/3
is mapped into (3x/4,3y/4), which is on the circle with center o and radius 1. Hence
any point p farther than 4/3 from o is mapped into a point p� in the open annulus
defined by the circles of radii 1 and 2. (The function (arctan(x), arctan(y)) is another
example of a continuous one-to-one mapping from R

2 into a bounded set—the open
square (−π/2,π/2)2 in this case.)

Bounded distances between points p,q ∈ R
2 can now be defined using the dis-

tances, for any metric d on R
2, between p� and q� in the disk of radius 2. In other

words, for any metric space [R2,d] we define the following:

d�(p,q) = d(p�, q�) for all p,q ∈ R
2

If d is a metric on R
2, so is d�, and d�(p,q)< 4 for all p,q ∈ R

2. For example, for the
integer-valued metric d�

e� (see Theorem 3.1), all distances between points p,q ∈ R
2

are integers in the set {0,1,2,3,4}. We sometimes have d�
e�(p,q) = d�

e�(q,r) =
d�

e�(p,r); note that this does not contradict the triangularity property. We can
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change the cardinality of the range of d� by increasing or decreasing the parame-
ter 2 in Equation 3.8. Such metrics might be of interest for classifying pixels (pairs
of integers) using finite numbers of distance values.

3.1.7 The topology induced by a metric

A metric induces a topology defined by a family of open or closed sets; this section
briefly addresses such issues. For a more extensive discussion of topologic subjects,
see Chapter 6.

For any metric space [S,d], any p ∈ S, and any ε > 0, let the following be true:

Uε(p) = {q : d(p,q)< ε}

Uε(p) is called the (open) ε-neighborhood of p in S; evidently p ∈ Uε(p). The family
of all ε-neighborhoods defines a basis of a topology and allows us to generate open
sets by taking (finite or infinite) unions of ε-neighborhoods. The Euclidean metric de

on R
n defines the Euclidean topology. For the binary metric db, we have Uε(p) = {p}

for 0< ε≤ 1 and Uε(p) = S for ε > 1.

Definition 3.2 p∈S is a frontier point ofA⊆S iff, for any ε> 0,Uε(p) contains
points of A as well as points of A = S \A. The frontier ϑA of A consists of all
frontier points of A.

For example, the frontier of a disk is a circle. The interior A◦ of A is A \ϑA,
and the closure A• of A is A∪ϑA. A is closed iff A = A• and open iff A = A◦. The
empty set ∅ and the set S are both closed and open.

The interior of A is the largest open set contained in A, and the closure of A is
the smallest closed set that contains A. A set is closed iff its complement is open.

A ⊆ S is bounded iff A ⊆ Uε(p) for some p ∈ S and some ε > 0. (A bounded
set need not be of finite cardinality.) A is called compact iff, whenever it is contained
in the union of a set of open sets, it is contained in a finite union of these sets.
The Heine-Borel-Lebesgue theorem [112] says that a subset of R

n is compact in
the topology defined by any Minkowski metric on R iff it is bounded and closed. A
continuous real-valued function defined on a compact set always has a minimum and
a maximum on that compact set.

Two metrics d and d′ on S are called topologically equivalent iff a subset of S is
open with respect to d iff it is open with respect to d′. For example, the Minkowski
metrics on R

n are all topologically equivalent. A bounded metric on an infinite sub-
set of R

n (see the examples in Section 3.1.6) can be topologically equivalent to an
unbounded metric. For example, the bounded metric de(p,q)/[1 +de(p,q)] is topo-
logically equivalent to the unbounded metric de; the ball of radius r in the unbounded
metric corresponds to the ball of radius r/(1+r) in the bounded metric, and the ball
of radius s < 1 in the bounded metric corresponds to the ball of radius s/(1− s) in
the unbounded metric.
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3.1.8 Distances between sets

Any metric d on a set S can be extended to a Hausdorff metric on the family of all
nonempty compact subsets A,B of S by defining

d(A,B) = max
{

sup
p∈A

inf
q∈B

d(p,q) , sup
p∈B

inf
q∈A

d(p,q)
}

(3.9)

where sup and inf denote the least upper bound and greatest lower bound, respec-
tively. (For compact sets A and B we can replace inf and sup with min and max,
respectively.) Figure 3.3 shows an example of this metric in which d is the Euclidean
metric de.

The definition of the Hausdorff metric can be broken up into steps. We first
define the closest distance from p ∈ S to T ⊆ S using the following:

d(p,T ) = inf
q∈T

d(p,q) (3.10)

Let A,B ⊂ S; let hp(B) = d(p,B) for all p ∈A; let hp(A) = d(p,A) for all p ∈B; and
define the following:

hA(B) = sup
p∈A

hp(B); hB(A) = sup
p∈B

hp(A)

Then here we have the Hausdorff metric of Equation 3.9:

d(A,B) = max{hA(B),hB(A)}

In Figure 3.3, we have hA(B) = hp(B) =
√

34 and hB(A) = hq(A) =
√

26 so that
d(A,B) = hA(B).

An alternative way of defining the Hausdorff metric makes use of the definition
of an (open) ε-neighborhood of a set. We define that

Uε(A) = {q : q ∈ S ∧ hq(A)< ε}=A⊕Uε(o)

set  A

set  B

p

q

FIGURE 3.3 The Hausdorff distance between A and B.
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set  A

set  B

e2

e1

FIGURE 3.4 Left: B (a simple polygon) is completely contained in Uε1
(A). Right: A

is not completely contained in Uε2
(B), showing that d(A,B)> ε2.

Let hq be defined by a metric d on S; ε > 0;A⊂ S; and⊕ be the Minkowski sum (see
Section 1.2.12). Then, if A and B are nonempty compact subsets of S, we have the
following:

hA(B) = inf{ε : A⊆ Uε(B)}

Figure 3.4 illustrates this method of defining a Hausdorff distance. Uε(B) is
a dilation of B; dilations will be studied in Chapter 15. Note that, for D = Uε(o),
we have D = D where D is the mirror set used in the definition of dilation; see
Section 1.2.12. (If A and B are compact and we dilate by a closed ball of radius ε
instead of an open ball, hA(B) is defined by min instead of inf .)

The Hausdorff distance is not a metric in the family of all nonempty bounded
subsets of S. For example, consider the closed unit square [0,1]2 = [0,1]× [0,1] and
the open unit square (0,1)2 = (0,1)× (0,1) in the Euclidean topology of the plane.2

Then de([0,1]2,(0,1)2) = 0, but the sets are not identical, so property M1 of a metric
is violated.

A generalized metric satisfies the axioms of an ordinary metric but can also have
value∞. The Hausdorff distance is a generalized metric in the family of closed sets
(bounded or not). We can also include the empty set; in the definition of Hausdorff
distance, we replace an empty supremum with 0 and an empty infimum with∞ so that
the empty set is at distance 0 from itself but at distance∞ from any nonempty set.

The Hausdorff metrics are based on maximum distances between sets; a single
point (an “outlier”) in a set can strongly influence these distances. Distances be-
tween sets defined by set-theoretic differences are less sensitive to single points. The
symmetric difference between two subsets A,B of a set S is as follows:

A∆B = (A\B)∪ (B \A)

2. In the mathematics literature, a unit circle or unit sphere is traditionally defined as having radius 1 (i.e.,
diameter 2), whereas a unit square or unit cube is (inconsistently!) defined as having side 1.
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Let the following be true:

dsym(A,B) = card(A∆B) and d′sym(A,B) =
card(A∆B)

card(A∪B)+1

Let S be any nonempty set, and let ℘fin(S) be the family of all finite subsets of S.

Proposition 3.4 dsym and d′sym are metrics on ℘fin(S).

Proof Let A,B,C ∈ ℘fin(S), a = dsym(A,B), b = dsym(B,C), and c =
dsym(A,C). We show that dsym has properties M1 through M3.

M1: a= 0 iff A∆B = ∅ iff A=B .

M2: Because A∆B =B∆A, we have symmetry.

M3: Let A=A1∪D∪E∪F , B =B1∪D∪E∪G, and C =C1∪E∪F ∪G (see
Figure 3.5). Let a1 = card(A1), d= card(D), and so forth. It follows that
a= a1 + b1 +f +g, b= b1 + c1 +d+f , and c= a1 + c1 +d+g. This shows
that a+ b= a1 +2b1 + c1 +d+2f +g ≥ c.

For d′sym, M1 and M2 follow by arguments similar to those for dsym. Regarding
M3, let a = d′sym(A,B), b = d′sym(B,C), and c = d′sym(A,C), and consider the
intersections of A, B, and C as before. Let h = b1 + f + g, k = d+ e+ 1, and
i= a1 + c1− b1. Then the following are true:

a=
a1 +h

a1 +h+k
, b=

c1 +h

c1 +h+k
, and c=

i+h

i+h+k

D

C
1

E

F G

A
1

B
1

FIGURE 3.5 Intersections between three sets.
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Let a2 = a1 +h, b2 = c1 +h, and c2 = i+h. Because h ≥ 0 and 0 ≤ i ≤ a1 + c1,
we have 0 ≤ c2 ≤ a2 + b2. Together with k ≥ 1, this allows us to show that
a+ b− c≥ 0 so that a+ b≥ c. �

dsym is the L∞ distance of the characteristic functions of sets; this provides a
direct proof that it is a metric. For d′sym, we could also derive Proposition 3.4 from
the more general fact that, for any metric d, the function d′ defined by d′(p,q) =
d(p,q)/[1+d(p,q)] is a topologically equivalent bounded metric; note that our proof
covers the general case.

3.2 Grid Point Metrics

In this section, we discuss integer-valued metrics that are related to the grid point
adjacency models defined in Sections 2.1.3 and 2.1.4. We also discuss methods of
defining neighborhoods and closeness; grid point metrics that approximate the Eu-
clidean metric; paths, geodesics, and intrinsic distances; and distances between sets
of grid points.

3.2.1 Basic grid point metrics

Let p,q ∈ R
2, p= (x1,y1), q = (x2,y2), and define the following:

d4(p,q) = |x1−x2|+ |y1−y2|
Then [R2,d4] is a metric space; in fact, d4 is the Minkowski metric L1. We call d4 the

city-block metric or Manhattan metric because, when we restrict it to Z
2, d4(p,q) is

the minimal number of isothetic unit-length steps from p to q; it resembles a shortest
walk in a city with streets that are laid out in an orthogonal grid pattern. In the
example in Figure 3.2, we have d4(p,r) = 3, d4(p,q) = 6, and d4(r,q) = 3.

Let p,q ∈ R
2, p= (x1,y1), and q = (x2,y2), and define the following:

d8(p,q) = max{|x1−x2|, |y1−y2|}
Then [R2,d8] is a metric space; in fact, d8 is the Minkowski metric L∞. Thus d8 is

called the chessboard metric because, when we restrict it to Z
2, d8(p,q) is the minimal

number of moves from p to q by a king on a chessboard. In the example in Figure 3.2,
we have d8(p,r) = 2, d8(p,q) = 4, and d8(r,q) = 3.

Let S ⊆ R
2, let o = (0,0) ∈ S, and let d be a metric on S. The set {p : p ∈

S∧d(p,o)≤ 1} is called a unit disk in [S,d]. Figure 3.6 shows the unit disks in R
2 for

the metrics d4, de, and d8.
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FIGURE 3.6 The city block, Euclidean, and chessboard unit disks in the real plane.

For any grid point p, the smallest neighborhood of p in [Z2,dα] (α ∈ {4,8}) is
defined by the following:

Nα(p) = {q ∈ Z
2 : dα(p,q)≤ 1}

The notations d4 and d8 are suggested by the fact that N4(p)−{p} has cardinality 4
and N8(p)−{p} has cardinality 8. Using Equation 3.4, we have the following:

Theorem 3.2 d8(p,q)≤ de(p,q)≤ d4(p,q)≤ 2 ·d8(p,q) for all p,q ∈ R
2.

The last inequality is an easy consequence of the definitions of d8 and d4: without
loss of generality, let d8(p,q) = max{|x1−x2|, |y1− y2|} = |x1−x2|; then d4(p,q) ≤
2 · |x1−x2|= 2 ·d8(p,q).

Let p,q ∈ R
3,p= (x1,y1,z1), and q = (x2,y2,z2), and define the following:

d6(p,q) = L1(p,q) = |x1−x2|+ |y1−y2|+ |z1−z2|
d26(p,q) = L∞(p,q) = max{|x1−x2|, |y1−y2|, |z1−z2|}

We also define the following:

d18(p,q) = max{d26(p,q),d6(p,q)/2�}
(This definition is equivalent to the one based on 18-paths; see Theorem 3.6.) For
any grid point p, the smallest neighborhood of p in [Z3,dα] (α ∈ {6,18,26}) is defined
by the following:

Nα(p) = {q ∈ Z
3 : dα(p,q)≤ 1}

Note that Nα(p)−{p} has cardinality α for α = 6,18, and 26. Analogous to The-
orem 3.2 and using Equation 3.4, we have the following (see also Exercise 3 in
Section 3.5):

Theorem 3.3 d26(p,q) ≤ de(p,q) ≤ d6(p,q) ≤ 3 · d26(p,q) for all p,q ∈ R
3, and

d26(p,q)≤ d18(p,q)≤ de(p,q) for all p,q ∈ Z
3 such that de(p,q) �=

√
3.
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1
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FIGURE 3.7 The e-neighborhoods for e = 1,2,3,4, and 5 in the 2D grid cell model
defined by the city block (left), Euclidean (middle), and chessboard (right) metrics.

Proof d26(p,q)≤ d18(p,q) follows from the definition ofd18. Ford18(p,q)≤ de(p,q),
we need only to show that d6(p,q)/2� ≤ de(p,q), because L∞(p,q) = d26(p,q)
≤ de(p,q) = L2(p,q).

If 0< d6(p,q)< 1, then d6(p,q)/2�= 1 and d6(p,q)/2�> d6(p,q)≥ de(p,q). If

p,q ∈Z
3 andd6(p,q) = 0 ord6(p,q) = 1, we have d6(p,q)/2�= d6(p,q) = de(p,q).

If 1< d6(p,q), then d6(p,q)/2�< d6(p,q). If p,q ∈ Z
3 and d6(p,q) = 2, we have

de(p,q) = 2 or de(p,q) =
√

2, such that d6(p,q)/2� = 1 < de(p,q). If p,q ∈ Z
3

and d6(p,q) = 3, we have de(p,q) = 3, de(p,q) =
√

5, or de(p,q) =
√

3, such that

d6(p,q)/2�= 2> de(p,q) in the latter case. However, if p,q ∈ Z
3 and d6(p,q)≥

4, then d6(p,q)/2� ≤ de(p,q). �

3.2.2 Neighborhoods and degrees of closeness

The ε-neighborhood Uε(p) (see Section 3.1.7) is defined for any metric space [S,d],
any p ∈ S, and any ε > 0. In some cases we have Uε(p) = {p}; for example, this is
true for ε≤ 1 and any of the metrics de�,d4, and d8 on Z

2 or for the binary metric.
If the range of d is countable so that Uε is of interest only for discrete values of

ε (e.g., for metrics on a grid G that is a subset of Z
2, Z

3, C2, or C3), we use the notation
e-neighborhood instead of ε-neighborhood. The e-neighborhoods for three metrics
on C

(2)
2

are illustrated in Figure 3.7; see Figure 3.6 for the corresponding disks in the

real plane. The metrics d4, de, and d8 are translation-invariant; hence the sets Uε(p)
have identical “shapes” for all p.

For any metric d on a grid G, there is an interval of values e > 0 such that Ue(p)
contains as few grid points as possible in addition to p itself. This minimal set of grid
points is called the smallest (nontrivial) neighborhood N(p) of p with respect to d.
(In the grid cell model, we use the notation η(c), where c is a cell.) For example, for



92 Chapter 3 Metrics

dα (α ∈ {4,6,8,18,26}), the smallest neighborhoods Nα(p) defined in Section 3.2.1
are obtained for 1 < e≤ 2. For e= 1, we have U1(p) = {q ∈ Z

2 : dα(q,p)< 1}= {p}
for any of these dαs.

With fuzzy geometry (see Section 1.2.10), we can define the degree of closeness
of two points p and q of a metric space [S,d] as a monotonically nonincreasing function
of the distance between p and q. For example, we can define c(p,q) = 1/[1+d(p,q)].
It follows that 0< c(p,q)≤ 1 for all p,q; hence, for any p, c(p,q) defines a fuzzy subset
µp of S \{p} that we can think of as a fuzzy neighborhood of p.

Degrees of closeness between pixels or voxels p and q in a picture P can be
defined using monotonically nonincreasing functions of the absolute difference be-
tween P (p) and P (q). For example, we can define c′(p,q) = 1/(|P (p)−P (q)|+ 1).
Note that, for any p and q, we have 1/(Gmax +1)≤ c′(p,q)≤ 1 so that c′(p,q) defines
a fuzzy subset µ′p of the picture. We can also define degrees of closeness between
pixels or voxels that depend on both the distance between them and the absolute
difference between their values. In Section 3.4, we will define a metric on a picture
in which the distance from p to q depends on the sums of the pixel or voxel values
along paths from p to q.

3.2.3 Approximations to the Euclidean metric

We saw in Figure 3.6 that the set of points within a given d4 or d8 distance from a
given point is a square. These distances depend on direction; their “disks” are not
good approximations to Euclidean disks. If we restrict d4 and d8 to Z

2 the set of grid
points q such that d4(p,q)≤ k is a diagonally oriented square (a “diamond”) of odd
diagonal length 2k+1 centered at p, and the set of grid points q such that d8(p,q)≤ k
is an upright square of odd side length 2k+1 centered at p; see Figure 3.7.

Better approximations to Euclidean disks can be obtained by combining d4 and
d8, for example, by taking the following:

d(p,q) = max{d8(p,q), 2
3 ·d4(p,q)} (3.11)

It is not hard to see that the set of grid points such that d(p,q)≤ k is the intersection
of an upright square of side length k with a diamond of diagonal length 3k/2; this
intersection is an upright octagon. Varying the coefficient of d4 in Equation 3.11
causes the shape of the octagon to vary between a diamond and a square. The octagon
can be made arbitrarily close to regular by choosing the coefficient appropriately.

Metrics with disks that are “hexagons” can be defined by using a modification
of the standard orthogonal grid in which, for example, the odd-numbered rows are
shifted half a unit to the right; see Figure 3.8. This is equivalent to working with an
unshifted grid but treating a grid point (i, j) on an odd-numbered row as having the six
neighbors (i±1, j),(i, j±1), and (i+1, j±1) and a grid point on an even-numbered
row as having the six neighbors (i±1, j),(i, j±1), and (i−1, j±1).

In the hexagonal grid shown in Figure 3.8, we can introduce a coordinate system
by using any two of the three axes shown on the right, for example, x and y. We can
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FIGURE 3.8 Modification of the standard grid in which the odd-numbered rows are
shifted half a unit to the right.

TABLE 3.1 Signs of the coordinates in the six sextants of the hexagonal grid.

Sextant u v u + v

I ≥ 0 ≥ 0 ≥ 0
II ≤ 0 ≥ 0 ≥ 0
III ≤ 0 ≥ 0 ≤ 0
IV ≤ 0 ≤ 0 ≤ 0
V ≥ 0 ≤ 0 ≤ 0
VI ≥ 0 ≤ 0 ≥ 0

reach any grid point p from the origin by making an (positive, negative, or zero)
integer number u of moves in the +x direction and then an integer number v of
moves in the +y direction; the resulting (u,v) are the coordinates of p. We will use
these coordinates in the remainder of this discussion.

The x,y, and z axes divide the plane into six sextants that we number coun-
terclockwise beginning at the +x axis; see the figure in Exercise 2 in Section 1.3. It
is easily verified that the signs of the (u,v) coordinates of the points lying in these
sextants can be characterized as shown in Table 3.1. Note that the z-axis is the locus
of points such that u+v = 0.

The hexagonal distance between two points p and q of the hexagonal grid is the
minimum number of unit moves in the x and y directions needed to go from p to q.
If p= (i, j) and q = (h,k), it can be shown that this number is given as follows:

dh ((i, j) ,(h,k)) =
{ |i−h|+ |j−k| if sgn(i−h) = sgn(j−k)

max{|i−h| , |j−k|} otherwise

(The signum function sgn(a) is 1 if a≥ 0 and 0 otherwise.)
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Proposition 3.5 dh is a metric on Z
2.

Proof Positive definiteness and symmetry are easily verified. To prove triangular-
ity, assume without loss of generality that the three grid points are (0,0),(i, j),
and (h,k), and consider all possible values of the signs of i, j, h, k, (i− h),
and (j−k). �

It can be shown that dh((i, j),(h,k)) is also equal to the following:

max { |j−k|, 1
2
(|j−k|+ j−k)+

[
j+1

2

]
−
[
k+1

2

]
+h− i,

1
2
(|j−k|− j+k)−

[
j+1

2

]
+
[
k+1

2

]
−h+ i }

It can also be shown that hexagonal coordinates (u,v) are related to Cartesian coor-
dinates (i, j) by the following for j even:

u= i−
[
j

2

]
, v = j

and by the following for j odd:

u= i−
[
j+1

2

]
, v = j

Obviously, de� is the integer-valued metric that best approximates de. How-
ever, “incremental” algorithms for distance computation on a grid (see Section 3.4)
normally use local neighborhoods; this makes it easy to compute metrics such as
d4, dh, or d8 or octagonal metrics, but not de�. For a method of computing a good
approximation to de, see Section 3.4.3.

We conclude this section by describing a general method of defining approxima-
tions to Euclidean distance by counting moves in different directions (e.g., isothetic
moves, diagonal moves). Let p,q ∈ Z

2, and let ρ be a sequence of king’s moves from
p to q. Let la,b(ρ) = ma+nb where m is the number of isothetic moves and n the
number of diagonal moves, and let the following be true:

da,b(p,q) = minρ la,b(ρ) (3.12)

Thus da,b is called the (a,b) chamfer distance (or weighted distance) from p to q. Cham-
fer distances that closely approximate Euclidean distance can be defined by appro-
priately choosing a and b. If the following is true,

0< a≤ b≤ 2a (3.13)
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the (a,b) chamfer distance da,b is a metric [738], which also defines a norm ‖p‖a,b =
da,b(p,o) (the distance of p from the origin o = (0,0)). This metric is a nonnegative
linear combination of d4 and d8. Convex linear combinations of d4 and d8 also give
useful chamfer distances; for example, (d4 +2d8)/3 is the (3,4) chamfer distance (see
Exercise 12 in Section 3.5).

[761] formulated necessary and sufficient conditions for a 2D chamfer distance
d to define a norm ‖p‖= d(p,o) on Z

2.
We can similarly define 3D chamfer distances da,b,c where a, b, and c correspond

to moves in which only one coordinate changes (isothetic moves), two coordinates
change, and all three coordinates change, and we can obtain good approximations
to Euclidean distance by appropriately choosing a,b, and c.

Generalized chamfer distances can be defined using additional types of moves
that are not necessarily moves between 8-neighbors or 26-neighbors.

3.2.4 Paths, geodesics, and intrinsic distances

A sequence ρ of grid points (p0,p1, . . . ,pn) such that p0 = p, pn = q, and pi+1 is α-
adjacent to pi (0≤ i≤ n−1) is called an α-path of length n from p to q; p and q are
called the endpoints of ρ.

Proposition 3.6 If ρ is a shortest α-path from p to q, the pis must all be distinct,
and nonconsecutive pis cannot be α-adjacent.

Proof If we had ph = pk with h < k, (p0, . . . ,ph,pk+1, . . . ,pn) would be a shorter
α-path with the same endpoints. Similarly, if ph were α-adjacent to pk where
h < k and k−h > 1, (p0, . . . ,ph,pk, . . . ,pn) would be a shorter α-path. �

An α-path is called an α-geodesic if no shorter α-path with the same endpoints
exists.

Proposition 3.7 If (p0, . . . ,pn) is an α-geodesic, (ph, . . . ,pk) is an α-geodesic for
all 0≤ h≤ k ≤ n.

Proof If (q0, . . . , qm) were a shorter α-path from q0 = ph to qm = pk,
(p0, . . . ,ph−1, q0, . . . , qm,pk+1, . . . ,pn) would be a shorter α-path from
p0 to pn. �

Theorem 3.4 The length of a shortest α-path from p to q is dα(p,q).
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Proof We give the proof in 2D for α = 4; the proofs for other cases are similar.
If the length of the path is 1 (e.g., the path is (p,q)), p and q are 4-adjacent, so
d4(p,q) = 1. We proceed by induction on the shortest length. Let (p0,p1, . . . ,pn)
be a shortest 4-path; then, using Proposition 3.7, (p0,p1, . . . ,pn−1) is a shortest
path from p to pn−1, so d4(p,pn−1) = n−1 by the induction hypothesis. Because
q is 4-adjacent to pn−1, we have d4(pn−1, q) = 1 so that, by the triangle inequality,
d4(p,q)≤ (n−1)+1 = n. If d4(p,q) =m<n, we can easily construct a 4-path of
lengthm from p to q. For example, suppose p= (i, j) and q = (h,k) where i≤ h
and j ≤ k; the argument is similar if i≥ h and/or j ≥ k. Because d4(p,q) =m,
we have (h−1)+(h−j) =m, and we can construct a 4-path from (i, j) to (h,k)
by first increasing i by 1 until it reaches h and then increasing j by 1 until it
reaches k; this 4-path has length |i−h|+ |j−k| =m< n, which is contrary to
our assumption that a shortest 4-path from (i,h) to (j,k) has length n. �

It follows that an α-path ρ of length n is an α-geodesic iff the dα-distance between
the endpoints of ρ is n.

In Euclidean space, there is a unique shortest arc between any two points p and
q, which is namely the straight line segment pq. In a grid, there can be many shortest
α-paths between two grid points, and these paths need not be digital straight line
segments (see Section 2.3.4 and Chapter 9). In what follows, we consider only the
2D cases α= 4 and 8, and we assume that pi (0≤ i≤ n) has coordinates (xi,yi).

Proposition 3.8 The following properties of a 4-path ρ are equivalent:

(a) ρ is a 4-geodesic.

(b) ρ cannot turn right (or left) twice in succession; left and right turns must
alternate.

(c) x0 ≤ x1 ≤ ·· · ≤ xn (or all ≥), and y0 ≤ y1 ≤ ·· · ≤ yn (or all ≥).

(d) |x0−xn|+ |y0−yn|= n.

Proof To see that (a) implies (b), suppose that ρmade two successive turns in the
same direction:

pr+1 pr+2 · · ·ps−1

pr ps. .. .. .

(The argument in other cases is analogous.) Then the subpath of ρ from pr to ps

has length s−r, but there is a horizontal path from pr to ps of length s−r−2,
so Proposition 3.7 is violated, and ρ cannot be a 4-geodesic.
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We next show that (b) implies (c). Suppose the initial direction of ρ is hor-
izontal toward the right and its first turn (if any) is a left turn; the proofs in
other cases are analogous. Let the turns be at pn1

,pn2
, . . . where 0 < n1 <

n2 < · · · < n; then x0 < x1 < · · · < xn1
, and y0 = y1 = · · · = yn1

. After the
first turn, ρ is headed vertically upward; thus xn1

= xn1+1 = · · · = xn2
, and

yn1
< yn1+1 < · · ·< yn2

. By (b), the second turn must be a right turn, after
which ρ is again horizontal and headed rightward, so xn2+1 < · · ·<xn3

, yn2+1 =
· · · = yn3

, and so on, proving (c). Note that, by (c), if we take any pm on ρ as
origin, the subpaths (p0, . . . ,pm) and (pm, . . . ,pn) must lie in a pair of oppo-
site quadrants.

Next we prove that (c) implies (d). At each step along a 4-path, either x or y
(but not both) changes by 1. Hence, if (c) holds (e.g., x0 ≤ x1 ≤ ·· · ≤ xn and
y0 ≤ y1 ≤ ·· · ≤ yn and similarly in the other cases), the number of steps at which
the xs increase and the number at which the ys increase must add up to n, which
implies (d).

Finally we show that (d) implies (a). Any 4-path from (x0,y0) to (xn,yn) must
have length at least |x0−xn|+ |y0− yn|, because a coordinate can change by
only 1 at each step, and only one coordinate can change at a time. If (d) holds,
this length is n, and because ρ has length n, its length is the shortest possible,
thus proving (a). �

Proposition 3.9 The following properties of an 8-path ρ are equivalent:

(a) ρ is an 8-geodesic.
(b) x0 < x1 < · · ·< xn (or all >), or y0 < y1 < · · ·< yn (or all >).

(c) |x0−xn| = n or |y0− yn| = n; because each of them must be ≤ n, this is
equivalent to their max being n.

Proof The x and y coordinates can each change by at most 1 at each step along
an 8-path. Hence, to achieve |x0−xn| = n, successive xis must all differ by
1 in the same direction (i.e., x0 < x1 < · · · < xn [or all >]), which proves
that (c) implies (b). Conversely, x0 < x1 < · · · < xn means that the succes-
sive xis must differ by 1 in the same direction so that |x0−xn| = n; thus (b)
implies (c).

On the other hand, because ρ has length n, we must have |x0−xn| ≤ n and
|y0−yn| ≤ n; an 8-path of length n cannot involve coordinate changes of more
than n, because each coordinate changes by at most 1 at each step. Any 8-path
from p0 to pn must have length of at least max{|x0−xn|, |y0−yn|}. If (c) holds
(e.g., |x0−xn|= n), the max isn; thus ρ (which has lengthn) is a shortest 8-path,
proving (a).

Conversely, if (c) fails, and |y0−yn|<n. Supposex0≤xn, y0≤ yn, andxn−x0≤
yn−y0; the argument is analogous if any of these ≤s is ≥. Then ((x0,y0),(x0 +
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1,y0 + 1), . . . ,(xn,y0 +(xn−x0)), (xn,y0 +(xn−x0)+ 1), . . . ,(xn,yn)) is an 8-
path from (x0,y0) to (xn,yn) of length yn−y0 < n, so ρ is not a shortest 8-path,
thus completing the proof. �

These results imply that digital straight line segments (see Chapter 9) are
geodesics. It is not hard to show that the only possible turns in an 8-geodesic are 45

◦

right and left turns in alternation.
If S is an α-connected set of grid points (see Chapter 4), for any p,q ∈ S, there

exists an α-path ρ = (p0,p1, . . . ,pn) from p0 = p to pn = q such that the pis are all in
S. The length dS

α(p,q) of a shortest such path is called the intrinsic α-distance in S
from p to q. The ordinary α-distance from p to q will sometimes be called extrinsic
to contrast it with intrinsic α-distance.3

Proposition 3.10 dα(p,q)≤ dS
α(p,q) for all p,q ∈ S.

Proof The length of a shortest α-path that lies in S cannot be less than the length
of an unrestricted shortest α-path. �

We will see in Chapter 13 that a set S of grid points is digitally convex iff any
two points of S are the endpoints of a digital straight line segment that is contained in
S. Because a digital straight line segment is a geodesic, it follows that, if S is digitally
convex, dS

α(p,q) is equal to dα(p,q) for all p,q ∈ S.

3.2.5 Distances between sets

Integer-valued metrics d on a grid, such as de�,d4, and d8 in 2D, define Hausdorff
metrics in the family of all finite subsets of the grid; see Section 3.1.8. For any such
d, any grid point p, and any finite set of grid points S, the distance from p to S is
hp(S) = mind(p,q) where the min is taken over all q ∈ S. Evidently, hp(S) = 0
iff p ∈ S. For example, for the p, q, and r in Figure 3.2, let A = {p,q} and B =
{q,r}; thend4(A,B) = d4(p,r) = d4(r,q) = 3, d8(A,B) = d8(p,r) = 2, and de�(A,B) =
de�(p,r) = de�(r,q) = 3. Similarly, for the sets A and B in Figure 3.3, we have
d4(A,B) = hp(B) = 8 > hq(A) = 6 (hp and hq with respect to d4) and d8(A,B) =
hp(B) = hq(A) = 5 (hp and hq with respect to d8).

A Hausdorff metric can be used to measure the distance between the frontiers
of the inner and outer Jordan digitizations of a set; see Figure 2.29 for an example.
Section 3.1.7 allows us to complete Definition 2.8: the inner Jordan digitizationJ−h (S)

3. Intrinsic distance is sometimes called “geodesic distance,” but, to avoid confusion with the noun
“geodesic,” we will not use that term.
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1. Calculate a distance field F (A) in an array of size m×n.
2. Calculate a distance field F (B) in an array of size m×n.
3. Let a be the maximum value in F (A) at all positions belonging to B.
4. Let b be the maximum value in F (B) at all positions belonging to A.
5. H(A,B) = max{a,b}.

ALGORITHM 3.1 Algorithm for calculating the Hausdorff distance between two
subsets A and B of an m×n grid.

of a set S ⊆ R
n is actually the union of all n-cells (for grid resolution h > 0 and n= 2

or n= 3) that are contained in the interior of set S.

Theorem 3.5 For any compact set S ⊂ R
2 such that J−h (S) �= ∅, the d4 or d8

Hausdorff distance between the (polygonal) frontiers ∂J−h (S) and ∂J+
h (S) is

at least 1/h.

Proof Let p be an arbitrary grid vertex on ∂J−h (S). Thus p cannot be on ∂J+
h (S),

because the frontier of J−h (S) never intersects the frontier of J+
h (S) if S is a

nonempty compact subset of R
2. The d4 (or d8) distance from p to any point q

on ∂J+
h (S) is at most 1/h. It follows that

max
p∈∂J−

h
(S)

min
q∈∂J+

h
(S)

d4 (p,q)≥ 1/h

and thus d4(∂J
−
h (S),∂J+

h (S))≥ 1/h; this is analogous for d8. �

Finally, we discuss algorithms for calculating the Hausdorff distance between
two finite sets A,B ⊂ Gm,n of grid points (see Algorithm 3.1). We assume that m
and n are the dimensions of the smallest isothetic rectangle that contains A∪B.

We first describe a brute-force approach. For every point in A, calculate the
minimum distance to a point in B, and, for every point in B, calculate the minimum
distance to a point in A. Take the maxima of these two sets of distances; then the
maximum of the two maxima is the desired Hausdorff distance. The points of A and
B can be located by scans of Gm,n (see Section 1.1.3); on one scan, we find all of the
points p in A, and, for each p, we scan Gm,n again to find all of the points in B and
calculate the distances from p to these points. If card(A) and card(B) are O(mn),
this brute-force algorithm takes O(m2n2) computation steps.

A much more efficient algorithm is shown above. For any S ⊂ Gm,n, the
distance field F (S) is an array of size m × n such that F (S)(p) = hp(S); in
particular, F (S)(p) = 0 iff p ∈ S. It can be shown (see Section 3.4.2 for grid metrics
and Section 3.4.3 for the Euclidean metric) that F (S) can be calculated in O(mn)
computation steps for any Minkowski metric on Gm,n. This allows us to calculate the
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Hausdorff distance in O(mn) computation steps by computing distance fields for A
and B and scanning each of these fields.

3.3 Grid Cell Metrics

In Sections 3.1.2 and 3.1.3, we defined metric-related concepts such as norms, scalar
products, and angular values inn-dimensional vector spaces. In this section, we apply
these concepts to the n-dimensional unitary modules defined by the grid cell model.
Results involving grid cell adjacency models easily translate into results involving
the isomorphic grid point adjacency models.

3.3.1 Basic grid cell metrics

We first consider the 2D grid cell model. Let d be a metric defined on the set Z
2 of grid

points. For any two 2-cells c1, c2 ∈ C
(2)
2

, we define ∂(c1, c2) by the value of d for the
center points of c1 and c2; ∂ is thus a metric on C

(2)
2

. When d= d4, we call this metric ∂1,
and, when d= d8, we call it ∂0. Evidently, ∂1(c1, c2)≤ 1 iff c1∩ c2 contains (at least)
one 1-cell, and ∂0(c1, c2) ≤ 1 iff c1 ∩ c2 contains (at least) one 0-cell; the subscript
indicates the dimension of the cells that have to be contained in the intersection.
Smallest neighborhoods in the grid cell model are denoted by the following:

ηα(c) = {c′ ∈ C
(2)
2 : ∂α(c,c′)≤ 1} (α ∈ {0,1})

The 2D (grid cell) incidence model also includes 1-cells and 0-cells; it was
illustrated in Figure 2.3, and in a more abstract way in Figure 2.13. The set of centers
of the 2-, 1-, and 0-cells in C2 is the grid with grid constant θ = 0·5. For any metric d
on this grid and any b,c ∈ C2, ∂(b,c) is defined by the value of d for the center points
of b and c; thus ∂ is a metric on C2. For example (see Figure 2.3), the 2-cell with its
center at (1,2) and the 0-cell at (1·5,4·5) are at Euclidean distance

√
26/2, city block

distance 3, and chessboard distance 5/2.
Metrics on C

(3)
3

or C3 can be defined as they were in the 2D case by identifying
cells with their centers. For any two 3-cells c1, c2 ∈ C

(3)
3

, ∂(c1, c2) is defined by the
value of a grid point metric d for the center points of c1 and c2; thus ∂ is a metric
on C

(3)
3

. The metrics defined in this way by d6, d18, and d26 will be denoted by ∂2,
∂1, and ∂0, respectively. Evidently, ∂2(c1, c2) ≤ 1 iff c1 ∩ c2 contains (at least) one
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FIGURE 3.9 Balls of 3-cells of radius 1 with respect to d6 (left), d18 (middle), and d26

(right).

2-cell, ∂1(c1, c2)≤ 1 iff c1∩c2 contains (at least) one 1-cell, and ∂0(c1, c2)≤ 1 iff c1∩c2

contains (at least) one 0-cell. The smallest neighborhoods are as follows:

ηα(c) = {c′ ∈ C
(3)
3 : ∂α(c,c′)≤ 1} (α ∈ {0,1,2})

Figure 3.9 shows the (smallest) neighborhoods of 3-cells at d6-, d18-, and d26-distance
≤ 1 from a given 3-cell; they are “balls” of 3-cells of radius 1. A general definition of
such metrics will be given in Section 3.3.2 for the n-dimensional grid cell model C

(n)
n .

3.3.2 Seminorms

An n-cell (n ≥ 2) is an n-dimensional grid (hyper)cube with edges of length 1 with
its center at a grid point p ∈ Z

n. [C(n)
n ,+, ·,Z] is a unitary module. We identify cells

by their centers; hence, if p is the center of n-cell c ∈ C
(n)
n , k · c is the n-cell with its

center at k ·p, and −c is the n-cell with its center at −p.
Let the following be true (0≤ i < n):

Bi = {(x1, . . . ,xn) : ∀k(1≤ k ≤ n→ xk ∈ {−1,0,+1})∧ card{k : xk = 0}= i}
Bi is a subset of the frontier of the n-dimensional cube [−1,+1]n. For example,B0 =
{−1,+1}n is the set of all vertices of this cube. We always have o = (0, . . . ,0) /∈ Bi.
Because i < n, we have xk �= 0 for at least one coordinate k.

Let c ∈ C
(n)
n be an n-cell, let 0≤ α < n, and let

ηα(c) = {c} ∪ {c}⊕
n−1⋃

i=α

Bi (3.14)

where ⊕ is the Minkowski sum defined in Section 1.2.12. Then the following is true:

card(ηα(c)) = 1+
n−1∑

i=α

2n−i

(
n
i

)

For example, forn= 3, we have card(η0(c)) = 27. Twon-cells c1 and c2 are called
α-neighbors iff c1 ∈ ηα(c2). This defines the n-dimensional grid cell adjacency models.
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Let the following be true for 0≤ α < n and t≥ 0:

A(0)
α = {(0, . . . ,0)} and A(t+1)

α =A(t)
α ⊕

n−1⋃

i=α

Bi

Let ‖c‖α be the smallest t such that c ∈A(t)
α , where c ∈ C

(n)
n . Here, ‖c‖α is called the

α-value of c. For example, for n= 2, we have ‖c‖0 = max{|x|, |y|} and ‖c‖1 = |x|+ |y|
where x and y are the coordinates of the center of c.

Theorem 3.6 Let c ∈ C
(n)
n , c= (x1, . . . ,xn), and 0≤ α < n. Then the following is

true:

‖c‖α = max{|x1|, . . . , |xn|,

⎡

⎢
⎢⎢
⎢⎢

n∑

i=1

|xi|
n−α

⎤

⎥
⎥⎥
⎥⎥

}

Proof By induction on t, it can be shown that the following is true:

{‖c‖α ≤ t} iff

{
n∑

i=1

|xi| ≤ t(n−α)∧ max
1≤i≤n

|xi| ≤ t
}

Consequently, we have ‖c‖α = t iff the following is true:
n∑

i=1

|xi| ≤ t(n−α)∧ max
1≤i≤n

|xi| ≤ t

∧
{

(t−1)(n−α)<
n∑

i=1

|xi|∨ max
1≤i≤n

|xi|= t

}

�

For α= 0 and α= n−1, we obtain the following norms:

‖c‖0 = max
1≤i≤n

|xi|

This coincides with the Minkowski norm ‖·‖∞; see Section 3.1.2. We also obtain the
following:

‖c‖n−1 =
n∑

i=1

|xi|

This coincides with the Minkowski norm ‖·‖1. For 1 ≤ α ≤ n− 2, k = n−α, and
c = (k− 1,k, . . . ,k), we have ‖c‖α = n (recall that n ≥ 2), and thus we have the
following:

‖k · c‖α = nk−1< nk = k · ‖c‖α
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Thus, for 1 ≤ α ≤ n− 2, the α-value ‖·‖α is not a norm but rather a seminorm,
which also satisfies ‖−c‖α = ‖c‖α for all c∈C

(n)
n and all 0≤α<n. As in Equation 3.3,

we define the following for all c1, c2 ∈ C
(n)
n :

∂α(c1, c2) = ‖c1− c2‖α (3.15)

For example, for n = 3 and α = 1, ∂1 is identical to the metric d18 defined in
Section 3.2.1.

Theorem 3.7 ∂α (0≤ α < n) is a regular metric on C
(n)
n .

Proof An α-path of length m− 1 from c1 to cm �= c1 is a sequence of n-cells
(c1, c2, . . . , cm−1, cm) such that ci is an α-neighbor of ci+1 and ci �= ci+1 (1 ≤
i ≤ m− 1). First, we show that ‖c‖α is equal to the length of an α-geodesic
(c1, c2, . . . , cm) from the origin o to c= cm. Let bi+1 = ci+1− ci (1≤ i≤m−1).
Then we have that

bi+1 ∈
n−1⋃

i=α

Bi

and let c = b2 + b3 + . . .+ bm so that c ∈ A(m)
α and ‖c‖α ≤m−1. On the other

hand, for any c ∈ A(m)
α , there exists an α-path of length m− 1 from o to c so

that the length of an α-geodesic from o to c is at most ‖c‖α.

We have shown that, for any c1 �= c2, ∂α(c1, c2) =
∥
∥∥c2− c1

∥
∥∥

α
=m−1≥ 1 is the

length of an α-geodesic from c1 to c2. Let (b1, b2, . . . , bm) be an α-geodesic from
b1 = o to bm = c2−c1; then (b1 +c1, b2 +c1, . . . , bm +c1) is an α-geodesic from c1

to c2. Let c3 = b2 +c1; then ∂α(c1, c3) = 1 and ∂α(c1, c2) = 1+∂α(c3, c2), because
(b2 + c1, . . . , bm + c1) is an α-geodesic from c3 to c2. �

Theorem 3.6 shows that the metrics ∂α satisfy the following:

∂α1(b,c)≤ ∂α2(b,c) for any n≥ 2, α1 ≤ α2, and b,c ∈ C
(n)
n (3.16)

This complements Theorems 3.2 and 3.3.

3.3.3 Scalar products and angles

The seminorms ‖·‖α define weak scalar products 〈·, ·〉α (see Section 3.1.3), which
satisfy the generalized Schwarz inequality on Z

n. It follows that they define angular
values Hα(c1, c2, c3) (see Equation 3.7). Following Proposition 3.1, Hα(c1, c2, c3) is
always in the range of the arccos function.
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TABLE 3.2 Rounded angular values H0(o,b,c) at cell b. Positions with nonpositive

values are shaded.

.33 .25 .17 .13 .14 .15 .16 .18 .20 .23 .26 .30 .36 .45 .45 .45 .45 .41 .39 .50 .75 1
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1

1

1
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1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

c

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.36

.40

.44

.50

.57

.67

.80

.75

.27

.30

.33

.38

.43

.50

.60

.75

-1 -1

-1

-1 -1 -1

-1 -1 -1

-1

-1

-1

-1

-1

-1

.50 .39 .41 .45 .45 .45 .45 .36 .30 .26 .23 .20 .18 .16 .15 .14 .13 .17 .25 .33

-.80

.67

.57

.50

.44

.40

.36

-1 -1 -1

-1 -1

-1

-1 -1 -1

-1

-1

-1 -1 -1

-1 -1

-1

.18 .09 .05 .05 .06 .06 .07 .08 .09 .10 .12 .15 .20 .20 .19 .17 .33 .69

.20 .10

.22

.25

.29

.33

.40

.50

.67

.11

.13

.14

.17

.20

.25

.33

.50

.50

.33.67 .17 .19 .20 .20 .15 .12 .10 .09 .08 .07 .06 .06 .05 .05 .09 .18 .27

-.05 -.06 -.06 -.07 -.08 -.09 -.10 -.12 -.15 -.20 -.28 -.26 .50

-.11 -.17 -.19 -.21 -.24 -.27 -.32 -.38 -.48 -.58 -.78

-.13 -.25 -.33 -.36 -.41 -.47 -.55 -.66 -.73 -.88

-.14 -.29 -.43 -.53 -.59 -.68 -.79 -.83 -.92

-.17 -.33 -.50 -.67 -.80 -.91 -.91 -.96

-.20 -.40 -.60 -.80 -.98 -.98

-.25 -.50 -.75

-.33 -.67

-.50

-.26 -.28 -.20 -.15 -.12 -.10 -.09 -.08 -.07 -.06 -.06 -.05 .10 .30.20

-.50 .50

-.67 -.33 .33 .67

-.75 -.50 -.25 .25 .50 .75

-.98 -.98 -.80 -.60 -.40 -.20 .20 .60.40

-.96 -.91 -.80-.91 -.67 -.50 -.33 -.17 .17 .33 .50

-.92 -.83 -.79 -.68 -.59 -.53 -.43 -.29 -.14 .14 .29 .43

-.58

-.88 -.73 -.66 -.55 -.47 -.41 -.36 -.33 -.25 -.13 .13 .25 .38

-.78 -.48 -.38 -.32 -.27 -.24 -.21 -.19 -.17 -.11 .11 .22 .33

Angular values can be used to characterize 3-cell configurations. We say that
c2 is between c1 and c3 according to the α-metric (notation: (c1, c2, c3)α ) iff∥∥
∥c1− c3

∥
∥∥

α
=
∥
∥∥c1− c2

∥
∥∥

α
+
∥
∥∥c2− c3

∥
∥∥

α
. We call c1, c2, and c3 α-cogeodetic iff they are

contained in anα-geodesic; this is equivalent to (c1, c2, c3)α, (c1, c3, c2)α, or (c2, c1, c3)α.

Conjecture 3.1 If Hα(c1, c2, c3) = −1, then (c1, c2, c3)α; if Hα(c1, c2, c3) = 1,
then (c2, c1, c3)α.

Some values of H0 and H1 for n = 2 are given in Tables 3.2 and 3.3. In both tables,
o = (0,0) and c = (13,8) are fixed 2-cells, and the values H0(o,b,c) or H1(o,b,c) are
given by the positions of the variable 2-cell b. From these examples, it is clear that
(c1, c2, c3)α does not imply Hα(c1, c2, c3) = −1. H1(o,b,c) = 0 indicates a position
for which o − b = �bo and c − b = �bc are orthogonal with respect to
metric ∂α.

We saw in Section 3.3.2 that, if α = 0 or α = n− 1, ‖·‖α is a norm. Hence we
always have 〈c,c〉0 = ‖c‖2

0
and 〈c,c〉n−1 = ‖c‖2

n−1
, but, for 1 ≤ α ≤ n− 2, there exist

n-cells c such that 〈c,c〉α < ‖c‖2
α. Because 〈b,c〉α =−〈b,−c〉α and ‖−c‖α = ‖c‖α for
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TABLE 3.3 Rounded angular values H1(o,b,c) at cell b.

o

c

1 11 1 1

1 1 11 1

1 1 1 1 1

11 1 1 1

1 1 1 1

1 1 1 1

1

1

1 1 1 1

1 1 1 1

1 1 11 1

1 1 1 1 1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1

-1

-1

-1 -1 -1 -1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.69 .65 .61 .56 .49 .35 .22 .10 -.09 -.19 -.20 -.11 .14 .33 .60

.65 .61 .56 .49 .41 .26 .12

.61 .49.56 .41 .31 .14

.56 .49 .41 .31 .17

.49 .41 .31 .17

.36 .27 .15

.24 .14

.12

.14

.20.33

.60 .50 .33

.33

.50

.60

.20

.33 .14

.20 .50

.33

.33 .50 .60

.20 .33

.14

.12

.14 .24

.15 .27 .36

.17 .31 .41 .49

.17 .31 .49.41 .56

.14

.12

.10 .22 .35 .49 .56 .61 .65 .69

.26 .41 .49 .56 .61 .65

.31 .41 .49 .56 .61

-.11 -.22 -.32 -.33 -.25 -.14

-.13 -.25 -.36 -.47 -.50 -.33-.43 -.20

-.15 -.29 -.42 -.54 -.67 -.71 -.60-.67 -.50 -.33

-.19 -.35 -.49 -.77-.63 -.92

-.20 -.37 -.50 -.62 -.73 -.83 -.94

-.18 -.42 -.55 -.65 -.74 -.82 -.89 -.96

-.16 -.37 -.68 -.76 -.82 -.87 -.91 -.95 -.98

-.14

-.20

-.33 -.60

-.50

-.33

-.11-.22-.32-.33-.25-.14

-.13-.25-.36-.47-.50-.33 -.43-.20

-.15-.29-.42-.54-.67-.71-.60 -.67-.50-.33

-.19-.35-.49-.77 -.63-.92

-.20-.37-.50-.62-.73-.83-.94

-.18-.42-.55-.65-.74-.82-.89-.96

-.16-.37-.68-.76-.82-.87-.91-.95-.98

-.14

-.20

-.33-.60

-.50

-.33

-.11 -.20 -.19 -.09

all b,c ∈ C
(n)
n (0 ≤ α < n), the angular values are symmetric, as we see in Tables 3.2

and 3.3.
The weak scalar products 〈·, ·〉α are not homogeneous; for any α (0 ≤ α < n),

there exist pairs of cells b1 and b2 and c1 and c2 such that 2 · 〈b1, b2〉α < 〈2b1, b2〉α and
2 · 〈c1, c2〉α > 〈2c1, c2〉α. It follows that these products are not linear.

3.4 Metrics on Pictures

3.4.1 Value-weighted distance

Let P be a picture with pixel or voxel values that have been divided by Gmax so that
they are in the range [0,1]. Let p and q be pixels or voxels ofP , and let ρ= (p0, . . . ,pn)
be anα-path fromp= p0 to q= pn. We define the value-weighted length ofρas follows:

lP (ρ) =

⎧
⎨

⎩

0 if n= 0
1
2

n∑

i=1

(P (pi)+P (pi−1)) if n > 0
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We define the value-weighted distance dP (p,q) as minρlP (ρ) where the min is taken
over all α-paths ρ from p to q.

Because the reversal of a path from p to q is a path from q to p and the con-
catenation of a path from p to q with a path from q to r is a path from p to r, dP is
symmetric and satisfies the triangle inequality, and evidently it is nonnegative. How-
ever, dP is not positive definite (metric property M1); for example, if p and q are
α-adjacent and P (p) = P (q) = 0, we have dP (p,q) = 0 even though p �= q. On the
other hand, if P (p) �= 0, we have dp(p,q) �= 0 for any q �= p, because any α-path from p
to q must go from p to some p′ �= p, and the pair (p,p′) contributes a nonzero quantity
1
2
(P (p)+P (p′)) to the sum. Thus dP is a metric if we restrict it to the set of pixels or

voxels with values that are nonzero or even if we restrict it to pairs (p,q) with values
that are not both zero. (The latter is not a restriction of dP to a set of pixels or voxels,
but it justifies our studying the [value-weighted] distance from non-0s to 0s in the
next section.)

When we restrict dP to 〈P 〉 (the set of pixels or voxels with values that are 1),
we evidently have lP (ρ) = n and dP (p,q) = dα(p,q) for all p,q ∈ 〈P 〉. In the next
sections, we will study 4- and 8-distances from the pixels of 〈P 〉 to the subset 〈P 〉 in
a 2D binary picture.

3.4.2 Distance transforms

Let P be a binary picture in which 〈P 〉 and 〈P 〉 are proper subsets of the grid. For
any grid metric dα, the dα distance transform of P associates with every pixel p of 〈P 〉,
the dα distance from p to 〈P 〉.4 The dα distance transform of the set of gray pixels in
the picture shown on the left in Figure 3.10 is shown for α= 4 in the middle and for
α= 8 on the right.

We will assume in the rest of this section that the pixels outside of a rectangular
region G all have value 0. We will now show that the d4 or d8 distance transform of P
can be computed by performing a series of local operations while scanning G twice.
(A local operation gives each pixel p a new value that depends only on the old values
of the neighbors of p.)

For any p ∈ G, let B(p) (“before”) be the set of pixels (4- or 8-) adjacent to p
that precede p when G is scanned row by row from top to bottom when each row
is scanned from left to right (see Section 1.1.3); thus, if p has coordinates (x,y), B
contains (x,y+1) and (x−1,y), and if we use 8-adjacency, it also contains (x−1,y+1)
and (x+1,y+1). Let A(p) (“after”) be the remaining (4- or 8-) neighbors of p.

Let the following be true:

f1(p) =

{
0 if p ∈ 〈P 〉

min{f1 (q)+1 : q ∈B (p)} if p ∈ 〈P 〉

4. The distance transform is essentially the same as the distance field F (〈P 〉); see Section 3.2.5.
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FIGURE 3.10 Distance transforms: Left: Picture. Center: d4 transform. Right: d8

transform.
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FIGURE 3.11 The first stage in computing the distance transform of the binary picture
on the left in Figure 3.10. Left: d4 transform. Right: d8 transform.

We can compute f1(p) for every pixel in G in a single left-to-right, top-to-bottom scan
of G, because for each p, f1 has already been computed for all of the qs in B(p). (If
p is on the top row or in the left column of G, some of these qs are outside G, but we
know that f1 = 0 for these qs because they are in 〈P 〉.)

Now let the following be true:

f2(p) = min{f1(p),f2(q)+1 : q ∈A(p)}

We can compute f2(p) for every pixel in G in a single right-to-left, bottom-to-top scan
of G, because for each p,f2 has already been computed for all of the qs in A(p) or is
known because they are outside of G.

The f1s that use 4- and 8-adjacency are shown in Figure 3.11 for the pic-
ture on the left in Figure 3.10. The f2s are not shown in Figure 3.11, because
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they are the same as the d4s (d8s) shown in Figure 3.10, as we see from the
following:

Theorem 3.8 f2(p) = d(p,〈P 〉) for all p ∈ G where d = d4 for the 4-adjacency
version of the algorithm and d= d8 for the 8-adjacency version.

Proof Evidently, if f2(p) = 0, p must be in 〈P 〉. Suppose f2(p) = d(p,〈P 〉) for all
p such that f2(p) < n, and let f2(p) = n > 0. Then either some q ∈ A(p) has
f2(q) = n− 1 or else f1(p) = n, which implies that some q ∈ B(p) has f1(q) =
n− 1. In either case, using the induction hypothesis, d(q,〈P 〉) = n− 1 so that
d(p,〈P 〉)≤n. If d(p,〈P 〉)<n, we must have d(q,〈P 〉)<n−1 for some neighbor
of p. For this neighbor, we must have either f1(q) or f2(q)<n−1, which implies
that f2(p)< n, thereby contradicting our assumption that f2(p) = n. �

Note that a two-pass distance transform algorithm is valid for any chamfer
distance that satisfies Montanari’s inequalities 3.13, not just for d4 and d8.

Let P (1) = P , and, for k = 1,2, . . . , let P (k+1) be the integer-valued picture
in which P (k+1)(p) = 0 if P (p) = 0, and otherwise let P (k+1)(p) = minP (k)(q) + 1,
where the min is taken over the pixels q that are α-adjacent to p. It is not hard to see
that, for all k ≤ dα(p,〈P 〉), we have P (k)(p) = k and, for all k ≥ dα(p,〈P 〉), we have
P (k)(p) = dα(p,〈P 〉). Let Dα = maxp∈〈P 〉dα(p,〈P 〉); we call Dα the α-radius of 〈P 〉.
Then, for any k ≥Dα, we have P (k)(p) = dα(p,〈P 〉) for all p ∈ 〈P 〉 so that P (k) is the
dα distance transform of 〈P 〉. Note that computing the dα distance transform in this
way requires performing local operations at every pixel during Dα−1 scans of P to
successively compute P (2),P (3), . . . ,P (Dα), whereas the method used in Theorem 3.8
requires performing local operations during only two scans of P .

3.4.3 The Euclidean distance transform

The d4 and d8 distance transforms of Section 3.4.2 are easy to compute, but, as we
saw in Section 3.2.3, d4 and d8 are not good approximations to Euclidean distance.
We will now describe Danielsson’s algorithm [229] for computing a distance transform
in which the distances differ from Euclidean distance by at most a fraction of the grid
constant.

To each pixel p = (x,y) of P , we assign a pair of integers (f(x),f(y)) that is
initially (0,0) if p∈ 〈P 〉 and (D,D) if p∈ 〈P 〉, whereD is greater than the diameter of
P (the greatest distance between any two pixels of P ). We then scan P and update
the (f(x),f(y)) values as described in Algorithm 3.2. In the min computations, we
pick the pair (u,v) for which u2 + v2 is smaller; if they are equal, we pick the one
for which u is smaller. Note that, in both sets of scans, the values of (f(x),f(y)) are
first modified by a single comparison with a vertical neighbor and then by a set of
comparisons with left and right horizontal neighbors.
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1. For each row of P (from top to bottom), replace each (f(x),f(y)) (from
left to right) with

min((f(x),f(y)),((f(x),f(y−1))+(0,1)));

then replace each (f(x),f(y)) (from left to right) with

min((f(x),f(y)),((f(x−1),f(y))+(1,0)));

then replace each (f(x),f(y))—except the rightmost one (from right to
left)—with

min((f(x),f(y)),((f(x+1),f(y))+(1,0))).

2. For each row of P—except the bottom row (from bottom to top)—replace
each (f(x),f(y)) (from left to right) with

min((f(x),f(y)),((f(x),f(y+1))+(0,1)));

then replace each (f(x),f(y)) (from left to right) with

min((f(x),f(y)),((f(x−1),f(y))+(1,0)));

then replace each (f(x),f(y))—except the rightmost one (from right to
left)—with

min((f(x),f(y)),((f(x+1),f(y))+(1,0))).

ALGORITHM 3.2 Danielsson’s algorithm for calculating the Euclidean distance
transform.

When the scans are complete, the value of f(x) at p should be the difference
between the x coordinates of p and the nearest pixel q of 〈P 〉, and the value of
f(y) should be the difference between their y coordinates. The Euclidean distance

between p and q would then be
√
f 2(x)+f 2(y). In fact, we will see in the next

paragraph that the (f(x),f(y)) values are not always exactly equal to the nearest-
pixel coordinate differences. Figure 3.12 shows the (f(x),f(y)) values for the pixels
in the gray area in Figure 3.10; in this simple example, the values are all correct.

To see how the distances computed by Danielsson’s algorithm can be incorrect,
consider circles of radius a centered at (x−1,y) and (x,y−1) (see Figure 3.13). Let
q= (x−a−1,y) and s= (x,y−a−1), and let r be the point where the circles intersect.
If q, r, and s are in 〈P 〉, the algorithm gives value a+1 to the pixel p at (x,y), because
its neighbors (x− 1,y) and (x,y− 1) are at distance a from q and s, respectively;
however, p is actually at distance b < a+1 from r. Indeed, as we see from Figure 3.13,
the distance a from (x,y−1) to r is the hypotenuse of a right triangle with legs that are
b/
√

2and (b/
√

2)−1; thusa2 = b2/2+(b2/2)+1−b√2 = b2−b√2+1 = (b− 1√
2
)2 + 1

2
,

so that the following is true:
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FIGURE 3.12 Computation of the Euclidean distance transform. Left: the pair of
(final) values at a pixel of 〈P 〉 are its x and y coordinate differences from the nearest
pixel of 〈P 〉. Right: corresponding values of the Euclidean distance, rounded to two
decimal places.
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FIGURE 3.13 A worst case for the Euclidean distance transform.

b=
1√
2

+

√

a2− 1
2
≈ a+

1√
2
< a+1

It can be shown that this is a worst case; note that even in this case the error is only
a fraction of the grid constant.
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3.4.4 Medial axes

For any grid metric dα, any pixel p, and any k ≥ 0, let P (k)(p) = {q : dα(p,q) ≤ k};
thus P (0)(p) = {p} ⊂ P (1)(p) ⊂ P (2)(p) ⊂ ·· · . We recall that, for α = 4, P (k)(p) is
a diagonally oriented square centered at p, and, for α = 8, P (k)(p) is an upright
square centered at p. If p ∈ 〈P 〉 and k < dα(p,〈P 〉), evidently P (k)(p)⊆ 〈P 〉, and all
of the P (k)(p)s contain p, so 〈P 〉 is the union of all balls P (k)(p) with p ∈ 〈P 〉 and
k < dα(p,〈P 〉).

In the dα distance transform of P , each pixel p of 〈P 〉 has value dα(p,〈P 〉).
Evidently, P (dα(p,〈P 〉))(p) is not contained in P (dα(q,〈P 〉))(q) for any neighbor q of p iff
p ∈Mα(〈P 〉). Hence 〈P 〉 is the union of the balls P (dα(p,〈P 〉))(p) for all p ∈Mα(〈P 〉).
The picture in which the value of p is dα(p,〈P 〉) if p ∈Mα(〈P 〉) and 0 otherwise is
called the dα medial axis transform (MAT) of 〈P 〉.

Definition 3.3 We say that p belongs to the medial axis Mα(〈P 〉) of 〈P 〉 if
dα(p,〈P 〉) is a local maximum of thedα distance transform ofP (i.e., dα(q,〈P 〉)≤
dα(p,〈P 〉) for all α-neighbors q of p).

The medial axis transforms for the distance transforms of Figures 3.10 and 3.12
are shown in Figure 3.14. Note that the pixels of Mα(〈P 〉) are centrally located in
〈P 〉, so they constitute a kind of “skeleton” of 〈P 〉; however, this skeleton may not
be connected even if 〈P 〉 is simply connected, and it may be two pixels thick if 〈P 〉
has even width. Methods of constructing thin connected skeletons will be discussed
in Section 16.3.

For any p ∈ 〈P 〉 and any grid metric dα, let Dα(p) be the largest ball P (k)(p)
centered at p that is contained in 〈P 〉. If p ∈Mα(〈P 〉), Dα(p) can be α-adjacent to
〈P 〉 at only one pixel. For example, let 〈P 〉 be a “vertical strip” of even width; then
Mα is of width 2, and the largest balls “touch” the strip’s border on only one side, at a
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FIGURE 3.14 Medial axis transforms for the distance transforms of Figures 3.10 and
3.12. Left: d4. Center: d8. Right: approximate de (values shown to one decimal

place).
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single border pixel. Thus p ∈Mα(〈P 〉) implies only that there is at least one shortest
α-path from p to 〈P 〉. The original definition of M(〈P 〉) described the process of
constructing M(〈P 〉) in terms of a “grass fire” ignited along the border of 〈P 〉 and
defined M(〈P 〉) as the locus of points at which the grass fire meets itself. However,
as we have seen, a pixel on the medial axis is not necessarily characterized by two
shortest α-paths from p to 〈P 〉. (This is true also in the continuous case, for example,
for a parabolic set, where the endpoint of the medial axis is at distance 0 only from
itself.) On the other hand, if there are at least two shortest α-paths from p to 〈P 〉,
then p is on the medial axis.

Our definitions of the distance transform and the medial axis transform as-
sumed that P is a binary picture. We conclude this section by mentioning several
generalizations of the medial axis transform to multivalued pictures.

In the SPAN [7], P is approximated by a set of maximal “disks” (e.g., squares)
in which the pixel values are “homogeneous,” and the generalized medial axis is
the set of centers of the disks. If P is binary, the disks have constant value 1, the
approximation is exact, and the set of centers of the disks is M(P ). (A medial axis
based on fuzzy disks [fuzzy sets with membership, that depend only on distance from
an origin] is described in [792].)

In the GRAYMAT [644], the gray-weighted length of a path is defined as pro-
portional to the sum of the values of the pixels on the path (see Section 3.4.1), and
the generalized medial axis is the set of pixels p that do not lie on any minimal-length
path from any other pixel to the set of 0s.

The GRADMAT [1118] assigns a score to a pixel p by summing the gradient
magnitudes (the maximal rates of change) of the pixel values at pairs of pixels that
have p as their midpoint; the generalized medial axis consists of pixels that have high
scores. Note that, in a binary picture, the gradient of the pixel values is nonzero only
at the frontier of 〈P 〉.

A definition of the medial axis based on morphologic operations will be given
in Section 15.6.3; this definition too applies to multivalued pictures.

3.5 Exercises

1. Let p = (x1,y1,z1) and q = (x2,y2,z2) be points in R
3, and let the following be

true:

dt (p,q) =

{
de ((x1,y1) ,(x2,y2))+z1 +z2 if de ((x1,y1) ,(x2,y2))> 0

|z1−z2| otherwise

Prove that dt is not a metric on R
3 but rather that it is a metric on the subset

{p : p= (x,y,z) ∈ R
3∧z ≥ 0}. We call it the forest metric, because it corresponds

to the distance in which moves are of the form “climb down the first tree, walk
to the second tree, and climb up the second tree.”
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2. Prove that d has properties M1 through M3 on S iff it has the following two
properties:

(i) For all p,q ∈ S, d(p,q) = 0 iff p= q.

(ii) For all p,q,r ∈ S, d(p,r)≤ d(q,p)+d(q,r).

3. Let [S,d] be a metric space. A sequence {pi}i=0,1,2,... of points of S is called
convergent iff there is a p ∈ S such that, for any ε > 0, there is an i0 ∈ N such that
pi ∈Uε(p) for all i≥ i0. It is not hard to see that pmust be unique; it is called the

limit point of the sequence. Show that a sequence pi = (xi,yi)∈R
2 (i= 0,1,2, . . .)

is convergent in [R2,Lm] (1≤m≤∞) iff it is convergent in [R2,de].

4. Is the sequence 1,−2,3,−4, . . . ,(−1)i+1i, . . . convergent in [R,de]? Are the se-
quences

(
i

i+1
,
2− i
3+ i

), i≥ 0 and (
i2 +2
3i2 +3

,
3i+2
4i+3

), i≥ 0

convergent in [R2,de]? Are they convergent if we use the binary metric db? If
so, what are their limit points?

5. LetC be a disk of integer radius centered at a grid point, and letD be the frontier
of the union of the grid cells that are contained in C. Prove that the Hausdorff
distance between the frontiers of C and D is equal to the grid constant.

6. Prove that d4 and d8 are metrics on Z
2.

7. Prove that, on a (k+1)×(k+1) grid, de−d8 can be as great as (
√

2−1)k≈ 0·41k
and d4−de can be as great as (2−√2)k ≈ 0·59k. Prove that, for the “octagonal”
distance d (Equation 3.11), we have |de−d| ≤ ((

√
5/2)−1)k ≈ 0·12k.

8. Let ‖p‖m be the norms defined in Section 3.1.2. Prove that, for any p ∈ R
2, we

have ‖p‖2 ≤ ‖p‖1 ≤
√

2‖p‖2, ‖p‖∞ ≤ ‖p‖2 ≤
√

2‖p‖∞, and ‖p‖∞ ≤ ‖p‖1 ≤ 2‖p‖∞.

Express these inequalities in terms of the metrics d4, de and d8 on R
2. For R

3,
prove that d26(p,q)≤ de(p,q)≤

√
2 ·d26(p,q) and de(p,q)≤ d6(p,q)≤

√
2 ·de(p,q).

9. Define “hyperoctagonal” distances d by combining d6 with d18 or d26, and find
bounds on |de−d| on a (k+ 1)× (k+ 1) grid.

10. The 3D grid is composed of grid planes z = k, where k is an integer. Construct
a modified grid in which odd-numbered grid planes are shifted half a unit in
the +x and +y directions. Each point in this grid can be regarded as having
12 neighbors: four on its own plane and four on each of the planes above and
below it. Define a “d12” metric on this grid in analogy with the dh metric on the
hexagonal 2D grid defined in Section 3.2.3.
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11. Prove that d1,1 = d8 and d1,∞ = d4.

12. Prove that the following is true:
∣∣∣de−d1,

√
2

∣∣∣≤ (
√

2
√

2−2)k ≈ 0·9k

Prove that the chamfer distance d1,b that best approximates de has b= (1/
√

2)+√√
2−1≈ 1·351 and that, for this d1,b, we have the following:

|de−d1,b| ≤ ((1/
√

2)−
√√

2−1)k ≈ 0·06k

This optimal b is close to 4/3; we therefore get a good approximation to 3de by
using a = 3 and b = 4 (“(3,4) chamfer distance”). (Other simple combinations
of basic moves can be used to give even better approximations to Euclidean
distance.)

13. Find bounds for |de−da,b,c| on a (k+1)× (k+1)× (k+1) grid where da,b,c is a
3D chamfer distance, and find values for a, b, and c that minimize these bounds.

14. A knight in chess can move two steps in an isothetic direction and one step in a
perpendicular direction. For any p,q ∈ Z

2, let dk(p,q) be the minimum number
of knight’s moves required to go from p to q. Prove that dk is a metric on Z

2.

15. Define a concept of intrinsic distance for fuzzy subsets. (Hint: Define the length
of a path (p1, . . . ,pn) as the sum of f(µ(pi)) where f is a monotonic function that
maps 0 into∞ and 1 into 0.)

16. An integer-valued picture P is called α-smooth iff |P (p)−P (q)| ≤ 1 whenever p
and q are α-neighbors. Prove that the dα distance transform of a binary picture
P is the lowest-valued α-smooth picture that has value 0 at all pixels of 〈P 〉.

17. Give a “two-scan” algorithm for computing the value-weighted distance from
every non-0 to the set of 0s in a multivalued picture.

18. Give “two-scan” algorithms for computing 3D distance transforms for d6,d18,
and d26.

19. Give an algorithm for computing a 3D Euclidean distance transform.

20. Prove that p∈Mα(P ) iff p does not lie on a shortest α-path from any q �= p∈ 〈P 〉
to 〈P 〉.

21. Define algorithms analogous to those in Theorem 3.8 for constructing the binary
picture with a set of 1s that is 〈P 〉 given the medial axis transform of P .

22. An oval is a bounded closed convex subset of R
2; it is said to be proper if it has

interior points. Two sets do not overlap iff their interiors are disjoint. Let M be
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a proper oval, and let n(M) denote the maximum number of nonoverlapping
translates ofM that can be arranged so as not to be disjoint fromM . Prove that
7 ≤ n(M) ≤ 9, and show that n(M) = 7 if M is a disk and n(M) = 9 if M is a
square.

23. Design an efficient algorithm for calculating the intrinsic diameter of a simple
polygon or polyhedron and the intrinsic distances between pairs of its
vertices.

24. Prove that the intrinsic (4- or 8-)diameter of a connected set of pixels S (the
greatest intrinsic [4- or 8-]distance between any two pixels of S) is at most half
the total (4- or 8-)perimeter of S (the sum of the [4- or 8-]perimeters of all of
the frontiers of S).

3.6 Commented Bibliography

There are many textbooks about metric, normed, and Hilbert spaces; see, for exam-
ple, [144, 490, 1071]. For relationships between topologies and metrics, see [352].
For a survey of publications about digital metrics, see [720].

Metrics on Z
2 were studied in [922], which is the source of Proposition 3.2. The

integer-valued metrics d4 and d8, the “octagonal” metrics obtained by combining d4

and d8, and the “hexagonal” metric dh were all introduced in [922]; an improved
treatment of dh was given in [672]. For characterizations of d4 and d8, see [411, 718,
719, 723, 850] and [284]; for rounded Euclidean distance, see [851]; for additional
results about octagonal distances, see [243, 244, 752].

Metric d18 was defined and studied in [785]. [365] also calculates d18 and counts
the number of all minimum-length 18-paths between the origin and a grid point
(i, j,k) ∈ Z

3. For other references about numbers of paths, see [235, 241, 365, 922].
The n-dimensional case (see Section 3.3) was treated in [540]. The metrics ∂α

on C
(n)
n , 0 ≤ α < n (see Theorem 3.6 and Equation 3.15) define balls (all n-cells at

distances ≤ r ∈ N from the origin) and spheres (all n-cells at distance = r ∈ N from
the origin). [242] studied the volumes of these balls and the “surface areas” of these
spheres (the numbers of n-cells contained in the ball or sphere).

For metrics defined by arbitrary neighborhood sequences, see [233, 239, 1146,
1147]. Chamfer distances in arbitrary dimensions were popularized in [103]. See [104,
108, 182, 236, 237, 238, 239, 241, 245, 526, 701, 785, 852, 1037] for related work. For
criteria for optimizing chamfer distances, see [66, 67, 107, 156, 1093, 1114]. Distance
functions were used to define “continuous” functions on pictures in [767, 903]. For
linear metrics on discrete sets, see [247]. For metric-preserving transforms, see [233].

For geodesic distances, see [619]; for geodesic distances on fuzzy subsets, see
[91]. Much of the material in Section 3.2.4 is from [889]. Average distances in digital
sets are studied in [904], and metric bases in the grid are studied in [724]. [525] esti-
mates distances between borders of components of voxels by calculating geodesics
that contain only border voxels.
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See [63] for properties of the Hausdorff metric on compact sets. The algorithm
discussed in Section 3.2.5 was proposed in [989]. For a linear-time algorithm for
calculating the Hausdorff distance between convex polygons, see [52]. The maximum
Euclidean distance between two finite planar sets can be calculated in O(n logn)
time [1063]. Algorithms for calculating Hausdorff distances (defined by arbitrary
Minkowski metrics) between finite planar sets are discussed in [457]. Distances
between sets (as in Proposition 3.4) were studied in [556] under the name measures
of correspondence. Minimization of the Hausdorff distance between a bounded set
S ⊂ R

n and a set M ⊂ Z
n defines the Hausdorff digitization of S; see [131, 1116]. See

[458] for more about distances between pictures. Hausdorff distances between fuzzy
sets (or multilevel pictures) are studied in [179, 181, 901].

For a generalization of the concept of a distance transform, see [897]. The two-
scan algorithm for computing the d4 and d8 transforms was introduced in [921], which
also introduced the digital medial axis (under the name “distance skeleton”). This
was further explored in [933]. For fast computation of distance transforms, see [833].
Generalized distance transforms are discussed in [1119]. For computing distance and
distance-related transforms in nonrectangular domains, see [818]. For constrained
distances, see [1095]. For 3D distance transforms and their uses, see [1040]. For other
references about distance transforms, see [520, 929, 977]. [224] contains a detailed
review of distance transforms and also covers algorithmic and application aspects.

The generalization of distance transforms to multivalued pictures (using the
value-weighted distance to the set of pixels that have value 0) was studied in [644].
For the computation of such transforms, see [880]; for other weighted distances, see,
for example, [92, 829, 1011, 1054, 1057]. For fuzzy distance transforms, see [945].

Algorithms for computing Euclidean distance transforms are discussed in [103,
125, 225, 229, 304, 306, 647, 754, 982, 983, 987]. Figure 3.13 and the accompanying
discussion follows [229]. Other references for Euclidean distance transforms are
[115, 263, 608, 717, 745, 831, 832, 1010, 1097]. For the 3D case, see [834, 1056, 1068].

For the medial axis (also called the “symmetric axis”) and its mathematic theory,
see [93, 160, 707]. For other references about digital medial axes, see [2, 28, 34, 40, 85,
197, 199, 200, 213, 322, 349, 476, 521, 634, 686, 774, 777, 953, 972, 956, 975, 1038, 1142].
For medial axes for chamfer and Euclidean distances, see [39, 41, 42, 303, 359, 845,
846, 953, 984, 1094, 1133].

For the “knight’s distance” (Exercise 10), see [240, 244]. Exercise 22 is from
[394], and Exercise 24 is from [886].
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Adjacency Graphs

This chapter treats pictures as graph-theoretic objects and introduces graph-
theoretic concepts that will be used throughout the book. It defines 2D and 3D
adjacency graphs based on the grid point and grid cell models and on the assump-
tion that pixels and voxels are the smallest units (“atoms”) of a 2D or 3D grid. By
specifying local circular orders, these graphs become oriented adjacency graphs;
such graphs are related to 2D combinatorial maps, which provide descriptions
of spatial subdivisions.

4.1 Graphs, Adjacency Structures, and Adjacency Graphs

The study of geometric properties of regions in 2D or 3D pictures requires specifi-
cation of conditions under which pixels or voxels are considered to be adjacent or
connected so that they can be regarded as belonging to the same region. Adjacen-
cies are important in picture analysis at different levels of abstraction. Sections 1.1.4,
2.1.3, and 2.1.4 described adjacency grids of pixels or voxels. To unify the treatment
of adjacency concepts in digital geometry, we generalize from these basic examples.

4.1.1 Graphs and adjacency structures

Let S be a set andR a relation on S (i.e., a set of ordered pairs of elements of S).R is
called reflexive iff (p,p) ∈ R for all p ∈ S and irreflexive if (p,p) /∈ R for all p ∈ S. R
is called symmetric iff (p,q) ∈ R implies (q,p) ∈ R for all p,q ∈ S. If R is irreflexive
and symmetric, the elements ofR can be regarded as unordered pairs (i.e., as subsets
{p,q} ⊆ S where p �= q).

117
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FIGURE 4.1 Three examples of adjacency structures: (left) infinite; (middle) finite,
connected, and planar; and (right) finite, disconnected, and nonplanar.

We call [S,R] a graph (more fully, a simple undirected graph) if R is irreflexive
and symmetric. If R is not necessarily symmetric, we call [S,R] a directed graph
(digraph for short). If R is not necessarily irreflexive, we call [S,R] a pseudograph.

If G = [S,R] is a graph, S is called the set of nodes of G, and R is called the
set of edges of G.1 Edge {p,q} is said to join nodes p and q or to be between p and q.
We also say that {p,q} is incident with p and q and that p and q are incident with
{p,q}. Nodes p and q are called adjacent iff they are joined by an edge; we also say
that p is adjacent to q and vice versa.

In a digraph [S,R], an ordered pair (p,q) ∈R is called a directed edge from p to
q; p is called its initial node and q its terminal node. Ignoring the ordering maps the
digraph onto its underlying undirected graph. In a pseudograph, an edge that joins a
node to itself is called a loop.

We will frequently use graph-theoretic notation in this book. Graphs provide
representations of relations and tools for studying them. However, digital geometry
often does not follow traditional directions of study in the theory of graphs; it poses its
own problems in the context of picture analysis. For example, combinatorial problems
like the historic Königsberg bridge problem illustrated in Figure 1.15 are not typically
studied in digital geometry.2

A graph [S,R] is called an adjacency structure if S is countable. The relation
in an adjacency structure is denoted by A rather than R and is called an adjacency
relation. (From now on, we will use [S,A] rather than [S,R] to denote a graph.) If p
and q are adjacent, we call {p,q} an adjacency pair, and we use the notation pAq. For
any p ∈ S, the set {q : pAq} is called the adjacency set of p and is denoted with A(p).
The set {p}∪A(p) is called the neighborhood of p and is denoted with N(p).

Figure 4.1 shows three examples of adjacency structures. (For connectedness,
see Sections 1.1.4 and 1.2.5; “planarity” will be defined later in this chapter.) Figure 4.2
shows a geographic map and indicates how the regions of the map can be represented
by nodes in a graph. (The figure also illustrates the fact that four colors suffice

1. In graph theory, nodes are often called vertices, and edges are sometimes called arcs. To avoid confusion with
grid vertices, we will use the term “node.”

2. The abstract representation of the Königsberg bridges in Figure 1.15 is not a graph, because it has multiple
“edges” between some pairs of nodes. In such a multigraph, R is a “bag” (a “set” in which elements can be
repeated) of pairs of nodes.



4.1 Graphs, Adjacency Structures, and Adjacency Graphs 119

FIGURE 4.2 A map in which adjacent regions are differently colored (courtesy of
Robin Thomas, Georgia Institute of Technology). On the right: a (partial) graph
representation of the map.

for coloring a map in such a way that adjacent regions are colored differently;
see Section 4.2.2.) The physical realization of adjacency in Figure 1.15 is via a bridge;
in Figure 4.2, it is via a joint border of nonzero length.

4.1.2 Connectedness with respect to a subgraph

A subgraph of a graph G= [S,A] is a graph with nodes that are in S and with edges
that are inA. Two subgraphs are disjoint iff they have no nodes in common. It follows
that disjoint subgraphs also have no edges in common. In this section, we generalize
the definition of connectedness in Sections 1.2.5 and 2.1.1 to connectedness with
respect to a subgraph.

Let [S,A] be a graph and M ⊆ S. M defines a subgraph with node set M and
edge set AM consisting of the pairs {p,q} ∈A such that p,q ∈M . We will sometimes
use “M” as a shorthand for the subgraph [M,AM ]. (Such a subgraph is also called
induced by M .)

Definition 4.1 Two nodes p,q ∈S are connected with respect toM ⊆S iff there
is a path (p0,p1, . . . ,pn) in [S,A] where p0 = p, pn = q, and the pis are either all
in M or all in M = S \M .

A single node p ∈ S is also connected with respect to M , because a single node is
a path of length 0. Adjacency with respect to a subset M of an incidence grid was
defined in Definition 2.6. [S,A] is called connected iff every pair of nodes p,q ∈ S is
connected with respect to S.
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In Section 2.1.1, we defined adjacency relations Aα in 2D and 3D grids, where
α = {0,1,4,8} in 2D and α = {2,6,18,26} in 3D. If A is one of these relations Aα,
we use the terms α-path and α-connected. Other examples of adjacency relations
introduced in Section 2.1.1 are (α,σ)-adjacency, switch adjacency, and adjacencies
between cells in incidence grids.

Figure 2.4 shows a 4-path (1-path) and an 8-path (0-path) in the grid point (grid
cell) model. TheP -equivalence classes in Figure 2.19 consist of components of 2-cells
in the incidence grid. Figure 4.12 shows 10 4-components in the grid point model.

Nodes that are connected with respect to M ⊆ S are said to be in relation ΓM .
For any M ⊆ S, we have ΓM ⊆ S×S and ΓM = ΓM . ΓM is an equivalence relation
on S (i.e., it is reflexive, symmetric, and transitive). It therefore defines equivalence
classes ΓM (p) = {q : q ∈ S ∧ (p,q) ∈ ΓM}; here p is called a representative of ΓM (p).
It is easy to see that {p,q, . . .} is an equivalence class of ΓM iff ΓM (p) = ΓM (q) iff
(p,q) ∈ ΓM and that p ∈ ΓM (p) for any p ∈ S. It follows that any equivalence class
ΓM (p) is a connected subset of either M or M , and these equivalence classes define
a partition of S.

Definition 4.2 The equivalence classes ΓM (p) are called the components of
M if they are contained inM and the complementary components ofM if they
are contained in M . ΓM (p) is called the component of p with respect to M .

If we use one of the adjacency relations Aα to define ΓM , the components are called
α-components or complementary α-components of M .

In Section 2.2.3, we gave two algorithms for component labeling in pictures
represented on adjacency or incidence grids. These algorithms generalize straightfor-
wardly to component labeling in arbitrary adjacency graphs. In the Rosenfeld-Pfaltz
labeling algorithm (see Algorithm 2.2), we need only replace the scan of the picture
with a scan of all of the nodes of the adjacency graph; and in procedure FILL (see
Algorithm 2.2), we need only replace “pixel” with “node” and “value u” with “node
label u.”

Procedure FILL can be further generalized by replacing the stack with a list
data structure that may, for example, be a stack (“first-in-last-out”) or a queue
(“first-in-first-out”). Let p∈ S be a node of a (not necessarily connected) subgraph of

1. Label node p.
2. Put node p on a list.
3. If the list is empty, stop.
4. Take r off of the list.
5. Label all nodes q ∈ A(r) that have not yet been labeled, and put (only!)

them on the list.
6. Go to Step 3.

ALGORITHM 4.1 FILL algorithm.
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an adjacency graph G= [S,A]. The task is to label all of the nodes in the component
Γ(p) of this subgraph, which contains p (Algorithm 4.1). When a stack is used, the
nodes in the component are visited depth first; when a queue is used, they are visited
breadth first.

4.1.3 Adjacency graphs

An adjacency structure [S,A] is called an adjacency graph iff it has the following
properties:

A1: A(p) is finite for any p ∈ S.
A2: S is connected with respect to A.
A3: Any finite subsetM ⊆ S has at most one infinite complementary component.

These properties are independent of each other:

(1) Let S = Z
2, and let any p ∈ S except (0,0) be adjacent to (0,0). This relation

has properties A2 and A3 but not A1.

(2) Let S = {p,q} and A= ∅. This relation has properties A1 and A3 but not A2.

(3) Let S = {(x,0) : x ∈ Z}∪{(0,y) : y ∈ Z}, and let A be A4. (See the adjacency
structure shown on the left in Figure 4.1.) Properties A1 and A2 hold, but A3
does not hold for M = {(0,0)}.

Statements about adjacency graphs [S,A] will be based on the definition of an
adjacency structure given in Section 4.1.1 and properties A1 through A3; further
assumptions will be made only in special cases. For example, a finite M ⊂ S has a
finite number of complementary components, because (by A1) the set of points of
S \M adjacent to a point in M is finite. According to A2, every complementary
component contains a point (in S \M) adjacent to a point in M .

Definition 4.3 Any finite component of an adjacency graph is called a region.
S itself is a region if it is finite. Picture analysis often involves geometric or
topologic description of regions.

Adjacency grids (see Section 2.1.4) are examples of adjacency graphs. In these ex-
amples, S is either a finite m×n rectangular subset Gm,n of the discrete plane (Z2

or C
(2)
2

) or a finite l×m×n cuboidal subset Gl,m,n of 3D discrete space (Z3 or C
(3)
3

)

or the infinite discrete plane or 3D space; A can be one of the adjacency relations
Aα, (α,σ)-adjacency, or switch adjacency. A set of pixels or voxels in an incidence
grid is an adjacency graph iff it is nonempty, connected, and satisfies A3. Note that
the nodes in an adjacency or incidence grid have assigned locations in a Euclidean
space, but the nodes in an adjacency graph do not.

We conclude this section by giving two other examples of adjacency graphs. In
the next section, we will discuss another class of examples: region adjacency graphs.
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FIGURE 4.3 Left: 4-adjacencies between regions of a picture. Right: Voronoi adja-
cencies between selected grid points.

It can be verified that, in all of these examples, the adjacency relations are irreflexive
and symmetric.

Given a set of points {p1, . . . ,pn} in a plane (e.g., grid points), we associate with
each pi a Voronoi cell

V (pi) = {q ∈ R
2 : de(pi, q)≤ de(pj , q) for 1≤ j ≤ n}

in which de is Euclidean distance. Points pi and pk are called Voronoi-adjacent iff
pi �= pk and V (pi)∩ V (pk) is a nontrivial straight line segment; the segment may
be finite or infinite, but it must consist of more than one point. Figure 4.3 (right)
shows Voronoi adjacencies between 10 grid points. Voronoi adjacencies in R

2 will be
discussed further in Chapter 13.

Polygonal tilings of the plane and partitions of 3D space into polyhedra also
define adjacency graphs. Such a partition is called regular iff the intersection of two
nondisjoint tiles or polyhedra is either a vertex, an edge, or a face.

Figure 4.3 (left) shows 4-adjacency between nine regions in a picture. An ad-
jacency between two pixels p and q in a picture P is called valid iff p and q are
P -equivalent (i.e., P (p) = P (q)); otherwise it is called invalid. The valid adjacencies
do not define an adjacency graph, because P is not generally connected with respect
to these adjacencies.

4.1.4 Types of nodes; region adjacencies

Nodes in a subset of an adjacency graph are classified as follows:

Definition 4.4 p ∈M ⊆ S is called an inner node iff A(p)⊆M ; otherwise it is
called a border node.3 The set of inner nodes ofM is called the inner setM∇ of

3. In graph theory [1073], it is called a node of attachment of M in S.
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M , and the set of border nodes of M is called the border δM of M . A border
node of S \M is sometimes called a coborder node of M .

Evidently,M∇ and δM are disjoint. These concepts resemble the topologic concepts
of the interior and frontier of a subset of a topologic space (see Section 3.1.7 and
further discussion in Chapter 6). In a topologic space, a closed subset contains its
frontier, but a proper open subset does not. A proper subsetM of an adjacency graph
has a nonempty border, but it may have an empty inner set. Class 5 in Figure 2.17
has five 1-components; only the 1-component M on the left has a nonempty inner
set M∇

1
, which consists of two nodes.

If the adjacency relation is one of the Aαs defined in Section 2.1, we use
the terms α-region, α-inner set, or α-border or the symbols M∇α and δαM with
α ∈ {0,1,2,4,8, . . .}.

The connectedness relation ΓM partitionsM∇ and δM into components called
inner and border components ofM . A componentM such thatM∇= ∅ consists of one
border component. Figures 4.4 and 4.5 show the 1-border and 1-inner components
of the setM defined by the union of the classes 2, 3, and 5 shown in Figure 2.17. Note
that, in these figures, we assume a finite rectangular grid; for an extended (infinite)
grid, we would have a few more 1-border components.

FIGURE 4.4 25 1-border components.

FIGURE 4.5 Six 1-inner components.
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In an adjacency graph S, the operation E of erosion (see Section 1.2.12 and
Chapter 15) transforms M ⊆ S into M∇, and the operation D of dilation transforms
M into M ∪A(M) (see below). For any L,M ⊆ S, we have the following:

DM =M∇∪D(δM) (4.1)

In addition, D(M ∪L) = DM ∪DL. For any M ⊆ S, we have the following:

EM ⊆DEM ⊆M ⊆ EDM ⊆DM (4.2)

In this case, DE means that we first apply E and then D. O = DE is called opening, and
C = ED is called closing. Figures 4.6 and 4.7 show examples of DM and CM = EDM
based on 1-adjacency of 2-cells. Figure 4.8 shows an example of DM , D

2
M , and D

3
M

based on 2-adjacency of 3-cells; here M contains only one 3-cell.

FIGURE 4.6 1-dilation of class 1 shown in Figure 2.17.

FIGURE 4.7 1-closing of class 1 shown in Figure 2.17.
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FIGURE 4.8 Repeated 2-dilation starting with one 3-cell: balls of 3-cells of radii 0, 1,
2, and 3 with respect to metric ∂2.

The setA(M) of all nodes adjacent toM ⊆ S (i.e., the set of all p ∈M such that
A(p)∩M �= ∅) is called the adjacency set of M . Evidently, if M is finite, so is A(M),
and A(S) = A(∅) = ∅. A(M) is the set of border nodes of M ; this set is sometimes
called the coborder of M . The number of complementary components of M is at
most equal to the number of components of A(M), because every complementary
component of M intersects A(M), and every component of A(M) is included in a
unique complementary component.

For any p ∈M∇, there is at least one q ∈ δM such that p and q are connected
with respect to M . If A(M) consists of only one component, the same is true for M .
We also have A(M) =M∇∩A(δM).

Definition 4.5 If [S,A] is an adjacency graph, two disjoint subsetsM1 andM2

of S are called adjacent (M1AM2 or (M1,M2) ∈ A) iff A(M1)∩M2 �= ∅.

Because A is symmetric, we have A(M1)∩M2 �= ∅ iff A(M2)∩M1 �= ∅ so that A is
symmetric. Because M1 and M2 are disjoint, A is irreflexive, so it is an adjacency
relation on any partition of S.

Let R be a partition of S into regions and (possibly) the infinite background
component. The undirected graph [R,A] is an adjacency graph; it is called the region
adjacency graph of R. Figure 4.9 shows an example of a region adjacency graph de-
fined by 1-adjacency of 2-cells. Figure 4.10 (left) shows the region adjacency graph
for the picture in Figure 4.3 (left), and Figure 4.10 (right) shows the region adjacency
graph for the picture in Figure 2.23, where nodeA represents the infinite background
component. Region adjacency graphs will be discussed further in Chapter 7; see also
Theorem 4.2.

4.2 Some Basics of Graph Theory

Before continuing our discussion of adjacency graphs, we review some basic graph-
theoretic concepts that are (potentially) relevant to digital geometry. In this section,
G= [S,A] is a graph.
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1

2

3

4

5

Background

FIGURE 4.9 The region adjacency graph for the 1-regions shown in Figure 2.17.

DB

A

M

R

FIGURE 4.10 Two region adjacency graphs. Left: for the picture on the left in Fig-
ure 4.3. Right: for the picture in Figure 2.23.

4.2.1 Nodes, paths, and distances

Let α0 = card(S) and α1 = card(A). G is finite iff α0 < ℵ0 = card(N). For any finite
graph, we have the following:

0≤ α1 ≤
α0−1∑

n=0

n=
α0 (α0−1)

2
=
(
α0

2

)
(4.3)

The degree ν(p) of node p is the number of edges that are incident with p; thus
ν(p) = cardA(p). For example, all nodes in the infinite graph on the left in Figure 4.1
have degree 2 except for one, which has degree 4. For any finite graph, we have the
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following:

∑

p∈S

ν (p) = 2α1 (4.4)

Nodes in a digraph have an in-degree and an out-degree, which are defined by the
numbers of edges for which the node is initial or terminal. The maximum and sum of
the in-degree and out-degree define a lower and an upper bound (respectively) for
the degree of the node in the underlying undirected graph.

A path ρ is a sequence (p0,p1, . . . ,pn) of nodes ofG in which consecutive nodes
are adjacent. The length λ(ρ) of ρ is the number n of consecutive pairs of nodes (i.e.,
the number of edges in the sequence).

A single node is a path ρ = (p) of length zero. A circuit is a path that begins
and ends at the same node (i.e., pn = p0) and in which no edge occurs twice. A circuit
of length n will be denoted with 〈p1,p2, . . . ,pn〉. A loop in a pseudograph will be
regarded as a circuit of length 1. There can be a circuit of length 2 in a multigraph but
not in a simple graph. A proper subpath of a circuit is called an arc. A single node of
a circuit is an arc of length 0. Two nodes p and q of G are called connected if there is
a path (p0, . . . ,pn) such that p0 = p and qn = q.G is called connected iff any two of its
nodes are connected. Maximal connected sets of nodes of G are called components
of G.

The distance dG(p,q) between two connected nodes p and q of G is the length
of a shortest path connecting p and q. (If p and q are not connected, the distance
between them is said to be infinite.) IfG is connected, this distance is a metric, which
is called the graph metric. Evidently, dG(p,q) = 0 iff q = p, and dG(p,q) = 1 iff pAq.
HenceA(p) = {q ∈ S : dG(p,q) = 1} andN(p) = {q ∈ S : dG(p,q)≤ 1}. Note that, ifG
is not connected, dG is a generalized metric in the sense that the axioms of a metric
are satisfied (except that a distance value can also be infinite).

A shortest path connecting two nodes of G is sometimes called a geodesic. It
can be found by simple breadth-first search [743]. Figure 2.4 illustrates two geodesics:
in [Z2,A4] on the left and in [Z2,A8] on the right.

In a weighted graph G= [S,A,w], a positive real weight w(p,q)> 0 is assigned
to every edge {p,q} ∈ A. Note that w(p,q) = w(q,p). If p and q are not adjacent, we
define w(p,q) to be infinite. A graph can be regarded as a weighted graph in which
w(p,q) = 1 for all edges {p,q} ∈A.

If we identify the nodes of a graph with points in Euclidean space, we can
assign to each edge {p,q} a weight equal to the Euclidean distance between p and

q. For example, in [Z2,A8], we have w(p,q) =
√

2 if p and q are 8-adjacent but not
4-adjacent, and w(p,q) = 1 if they are 4-adjacent. In a 3D picture with nonuniform
spacing between voxels (e.g., different spacing between slices and within a slice),
these spacings can be used to define weights.

The total weight of a path in a weighted graph is the sum of the weights of all
the edges on the path. A path between two nodes that has minimum total weight is
called a shortest path.
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The Shortest Path Problem is as follows: Given a connected weighted graph
G = [S,A,w] and a node p0 ∈ S, find a shortest path from p0 to each q ∈ S. This
is a special case of the distance field problem (see Section 3.1.8) in which we use
minimum distances to a set of nodes instead of distance to the single node p0.

Dijkstra’s algorithm [268] (see Algorithm 4.2) solves the shortest path problem
with a computational complexity ofO(α2

0
). This can be transformed intoO(α1logα0)

if a heap data structure is used for the set {q ∈ S \ Vi : D(q) < ∞} of remain-
ing nodes. Using the labels assigned in Step 2, we can construct a shortest path
from any node q ∈ S back to p0. These labels also give the remaining shortest path
lengths.

Figure 4.11 shows an application of Dijkstra’s algorithm to a simply
4-connected region (shown in the grid cell model; for an informal definition of “sim-
ply connected,” see Section 1.2.6). We choose a start node p on the border of the
component and find all shortest 4-paths from p to nodes in the component with

1. Let i = 0, V0 = {p0}, D(p0) = 0, and D(q) =∞ for q �= p0. If α0 = 1, then
stop; otherwise, go to Step 2.

2. For each q ∈ S \Vi, update D(q) by min{D(q),D(pi)+w(q,pi)}. If D(q) is
replaced, put a label [D(q),pi] on q. (This allows for the tracking of shortest
paths.) Overwrite the previous label, if there is one.

3. Let pi+1 be a node that minimizes {D(q) : q ∈ S \Vi}.
4. Let Vi+1 = Vi∪{pi+1}.
5. Replace i with i+1. If i= α0−1, then stop; otherwise, go to Step 2.

ALGORITHM 4.2 Dijkstra’s algorithm.
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FIGURE 4.11 A start node p; nodes (shaded) with distances to p that are local maxima;
and a shortest path to the shaded node farthest from p.
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lengths that are local maxima; this maps the component into a set of 4-arcs. The
figure shows a shortest path to a node farthest from p. (“Thinning” algorithms that
map components into sets of 4-arcs are discussed in Section 16.3.)

The eccentricity e(p) of a node p of a finite connected graph G = [S,A] is the
greatest distance max{dG(p,q) : q ∈ S} from p to any node of S. Dijkstra’s algorithm
can be used to calculate e(p). The radius r(G) and the diameterd(G) are (respectively)
the minimum and maximum eccentricities of all of the nodes of S. Thus p is called
a central node of G iff e(p) = r(G); the set of central nodes is called the center of G.
Figure 4.12 shows the centers of some 4-connected sets of grid points in the graph
defined by A4.

An Eulerian path in G is a path that contains all of the edges of G; see the
historic comments at the beginning of Section 1.2.5. A graph is called Eulerian iff it
has an Eulerian circuit.

A connected graph G is Eulerian iff every node of G has even degree, and G
has an Eulerian path iff it has at most two nodes of odd degree (see Figure 4.13); in
the latter case, the path starts at one of the nodes that has odd degree and ends at the
other. (Note that there cannot be exactly one node of odd degree.) It follows that the
existence of Eulerian paths or circuits can be determined, and Eulerian paths can be
found in computation time-linear in the number of nodes.

A path that visits each node of G exactly once is called Hamiltonian. (In 1857,
the London toymaker J. Jaques manufactured a puzzle called the “icosian game”
that involved finding such a path along the edges of a dodecahedron. The toymaker

FIGURE 4.12 Centers of 4-connected sets of grid points (shown as black dots).

FIGURE 4.13 A graph that has an Eulerian path but is not Eulerian.
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FIGURE 4.14 Five examples of Hamiltonian graphs: planar graphs representing the
five Platonic solids.

paid 25 pounds to Sir W.R. Hamilton for the rights to the puzzle. Hamilton proudly
told Jaques that his bankers considered him at this point to be a man of busi-
ness, because he had obtained cash for one of his inventions [408].) A graph that
has a Hamiltonian circuit is called a Hamiltonian graph. Figure 4.14 shows exam-
ples of Hamiltonian graphs; they are planar representations (see Figure 4.17) of
the vertices, edges, and faces of the five Platonic solids: convex polyhedra with
faces that are congruent convex regular polygons. There are exactly five such solids
(Euclid): the tetrahedron, the octahedron, the cube, the icosahedron, and the do-
decahedron, which have 4, 6, 8, 12, and 20 vertices, respectively. The 4-adjacency
grid Gm,n is a Hamiltonian graph if either m or n is even; to obtain a Hamil-
tonian circuit, start at the lower left corner, go all the way to the right, then zig-
zag up (“on the right”) and down (“on the left”) until the start node is reached
again. Note that, for m,n ≥ 4, such a Hamiltonian circuit is not uniquely
defined.

The problem of finding a Hamiltonian circuit in a graph or deciding whether
one exists is NP-complete.4 A connected graphGwithn≥ 3 nodes has a Hamiltonian
circuit if ν(p)+ν(q)≥ n for every pair of nonadjacent nodes p and q of G [272].

4.2.2 Special types of nodes, edges, and graphs

A node of degree 0 is called isolated and is a component of G. A node of degree 1 is
called an end node. The edge incident with an end node is called a pendant edge.

4. A computational problem is called NP-complete iff it is both NP (solvable in nondeterministic polynomial time)
and NP-hard (any other NP problem can be translated into it) [356]. Algorithms that solve NP-complete problems
have time complexities that may be between polynomial and exponential, exponential (e.g., using exhaustive
search), or even bigger than exponential (e.g., on the order of nn). “Approximate” solutions to NP-complete
problems can sometimes be found that have lower computational cost.
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A cut node is a node such that, if it is removed from S along with all of the
edges incident with it, the number of components of G increases. For example, the
graph in the middle in Figure 4.1 has two cut nodes.

If G is connected, its node connectivity is the smallest number of nodes for
which removal from S disconnects G or completely deletes it. G is called k-strong iff
its node connectivity is at least k. If G is connected, it is at least 1-strong; if G has no
cut nodes, it is at least 2-strong.

A bridge is an edge of G for which removal from A disconnects G. An edge of
a connected graph is a bridge iff it does not belong to any circuit.

A finite graph that has no circuits is called a forest, and, if it is also connected,
a tree. Any tree that has more than one node has at least one pendant edge.

Theorem 4.1 (C. Jordan, 1869) The center of a tree is either a single node or a
pair of adjacent nodes.

Theorem 4.2 LetP be a binary picture defined on a (4,8)- or (8,4)-adjacency grid
(see Section 2.1.3) that is extended into Z

2. Then the region adjacency graph
of P is a tree.

A proof will be given in Section 7.3.2.
A rooted tree is a tree with a distinguished node called the root. We recall

(Section 4.2.2) that a region adjacency graph has at most one node that represents
an infinite component. If the graph is a tree, it is usual to choose this node as the
root of the tree. Figure 4.15 shows the region adjacency trees defined by the (4,8)-
and (8,4)-adjacency structures of a binary picture P in which the pixels of 〈P 〉 are
represented by filled dots.

The distances of the nodes from the root of a rooted tree define layers or
levels in the tree. Layer −1 is the empty set, and Layer 0 contains only the root.
For n ≥ 0, Layer n+ 1 contains all nodes that are not in Layer n− 1 but that are
adjacent to a node in Layer n. Nonroot nodes of a rooted tree that have degree 1 are
called leaves.

A spanning tree of a graph G= [S,A] is a subgraph of G that is a tree and that
has vertex set S. A minimum-length spanning tree is a spanning tree with the fewest
possible edges. For example, the minimum-length spanning tree of a 4-adjacency grid
Gm,n is defined in terms of the Manhattan distance d4. Starting the construction of
a minimum-length spanning tree at the center of a graph minimizes the diameter of
the tree [997].

G = [S,A] is called bipartite iff S can be partitioned into two disjoint subsets
S1 and S2 such that each edge in A joins a node in S1 to a node in S2. For example,
one component of the graph on the right in Figure 4.1 is bipartite. The 4-adjacency
grid Gm,n is bipartite; the nodes can be partitioned like the squares on a chessboard.
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Background Background

FIGURE 4.15 (4,8)- (on the left) and (8,4)- (on the right) adjacency structures defined
by the set 〈P 〉 of 1s of a binary picture. Below: The rooted region adjacency trees for
the regions and complementary regions of 〈P 〉.

Gm,n is even complete bipartite (i.e., there exists a partition of its node set into two
subsets S1 and S2 such that every node in S1 is adjacent to every node in S2). If
S1 has n nodes and S2 has m nodes, the complete bipartite graph is denoted by
Kn,m. One component of the graph on the right in Figure 4.1 is K3,3. This graph
arises in the puzzle of “three houses, each connected to the electricity, water, and
gas companies.”

A graph is called complete if every pair of its nodes is adjacent. For a finite

complete graph, we have α1 =
α0(α0−1)

2
. The complete graph that has α0 = n nodes is

denoted by Kn. Evidently, Kn is n-strong. K1 consists of one isolated node, K2 con-
sists of one pair of adjacent nodes, andK3 consists of a circuit of length 3 (a triangle).

Renaming the nodes in a graph leads to an isomorphic graph. Formally, two
graphs [S1,A1] and [S2,A2] are isomorphic iff there is a one-to-one mapping f fromS1

onto S2 such that each edge {p,q} inA1 maps onto an edge {f(p),f(q)} inA2 and this
mapping ofA1 ontoA2 is one-to-one. We can now say more precisely that one of the
components of the graph on the right in Figure 4.1 is isomorphic to K3,3. Figure 4.16
illustrates graphs that are isomorphic toK3,3 andK5. The computational problem of
determining whether or not two finite graphs are isomorphic is NP-complete.
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FIGURE 4.16 Two isomorphic representations of K3,3 on the left and of K5 on the

right.

The nodes of a graph have no coordinates; there is no specific way to draw a
graph, for example, in the plane. A graph is called planar iff it allows a planar drawing5

(i.e., it can be drawn in a plane in such a way that its edges are drawn as simple arcs that
intersect only at nodes). For example, K1, K2, K3, and K4 are planar, but K5 is not;

the adjacency structure [Z2,A4] is planar, but [Z2,A8] is not. There are algorithms with
linear run times (in the number of nodes) for deciding whether or not a given finite
graph is planar; the first such algorithm was published in [443], and it is an iterative
version of a method proposed in [53] and correctly formulated in [367]. The crossing
number of a graph is the smallest possible number of intersections of edges (other
than at nodes) for any drawing of the graph in a plane. A graph with crossing number
0 is planar. Determining the crossing number of a graph is an NP-complete problem.

With any polyhedron Π, one can associate a graph G as follows: the vertices of
Π are represented by the nodes of G, and two nodes of G are joined by an edge iff
the corresponding vertices of Π are joined by an edge of Π. The following theorem
was proved by E. Steinitz (1871–1928):

Theorem 4.3 (Steinitz’s Theorem) The graph associated with any simple polyhe-
dron is a 3-strong planar graph. Conversely, every finite 3-strong planar graph
is the graph associated with some simple polyhedron.

Figure 4.17 shows a graph associated with a convex polyhedron.
A planar drawing of a finite planar graph partitions the plane into faces. The

frontier of each face defines a cycle of consecutive arcs that join pairs of points p and
q where {p,q} is an edge in the graph; this cycle corresponds to a circuit in the graph.
Let α2 be the number of faces in such a drawing. Using Euler’s formula,6

α2 = 2−α0 +α1 (4.5)

5. This is an informal definition; a formal definition will be given in Section 4.3.2.

6. This formula appeared in an earlier (unpublished) fragment by R. Descartes; it is sometimes called the Descartes-
Euler polyhedron theorem. It was discovered by L. Euler (1707–1783) around 1750 for convex polyhedra and was
first proved in 1794 by A.-M. Legendre (1752–1833).
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FIGURE 4.17 The planar graph (below) represents all the faces, edges and vertices of
the convex polyhedron (above).

we know that α2 is uniquely defined for any finite planar graph (i.e., it depends on
the graph but not on the drawing). For example, forK1 andK2, we have α2 = 1, and,
for K3, we have α2 = 2.

A planar drawing of a finite planar graph has α2−1 bounded faces (its internal
faces) and one infinite face (its external face). (Formula 4.5 also counts the external
face; otherwise, 2 needs to be replaced with 1. The formula is also correct for drawing
a planar graph on a sphere, which results in bounded faces only.) For example, any
planar drawing of K3 has one internal and one external face. For any finite planar
graph, we have the following: ∑

ρ

λ(ρ) = 2α1 (4.6)

where the sum is taken over all of the cycles ρ defined by all of the faces of a planar
representation of the graph. (We recall that λ(ρ) is the length of ρ.)

The merging of two adjacent nodes p and q in a graph [S,A] is defined by re-
placing p and q with a new node r that is adjacent to every node in S \{p,q} to which
p or q was originally adjacent. A finite sequence of merging operations is called a
contraction.

Theorem 4.4 (C. Kuratowski, 1930) A graph is planar iff it has no subgraph that
can be contracted into either K3,3 or K5.

Efficient planarity testing algorithms are not based on this theorem.
The chromatic number of a (finite) graph is the smallest number of colors

needed to color the nodes of the graph so that adjacent nodes have different col-
ors. For example, any bipartite graph has chromatic number 2, and the complete
graph Kn has chromatic number n− 1. The problem of calculating the chromatic
number of a finite graph is NP-complete.

A geographic map (see Figure 4.2) can be represented by a finite planar graph
in which each country is represented by a node, and there is an edge between two
nodes iff the intersection of the frontiers of any two countries consists of more
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FIGURE 4.18 Planar drawings of three planar graphs and their geometric duals.

than a set of isolated points. (The intersection may consist of several disjoint arcs.)
Any planar drawing of a finite planar graph is a planar drawing of such a “map
graph.”

Theorem 4.5 (The fourcolor theorem) The chromatic number of any finite planar
graph is at most 4.

This theorem has a long and interesting history of published “proofs” that were
later found to be incorrect [89, 410]. The problem was first stated in 1852, and many
mathematicians contributed to its eventual solution [25].

Given a planar drawing of a (finite or infinite) planar graph, the geometric
dual of the drawing is constructed by choosing a point in each face of the drawing
(including the external face), and, if the frontiers of two faces have a simple arc γ in
common, joining those faces’ points with a simple arc that crosses γ. The result of this
construction is a planar drawing of a multigraph. Figure 4.18 shows three examples.
The planar drawing on the left is self-dual, because the drawing and its geometric dual
are isomorphic. The planar drawing of [Z2,A4] is also self-dual. The other two planar
drawings in Figure 4.18 have duals that are multigraphs but not graphs. (Note that
multigraphs occur only if the original planar graph is not connected or because of
the external face.) Thus the dual of a planar drawing of a finite planar graph is more
general than a planar graph representation of a geographic map, where we excluded
multiple edges.

4.3 Oriented Adjacency Graphs

There are infinitely many ways to draw a finite planar graph. We call two drawings
equivalent iff the clockwise order of the edges around each node is the same in
both drawings. This defines equivalence classes of planar drawings, which are called
combinatorial embeddings.
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4.3.1 Local circular orders

In this section, we introduce the concept of a “local” circular order of the edges
incident with a node of a graph and generalize it so that it can be applied to any (not
necessarily finite or planar) adjacency graph.

The directional code shown in Figure 2.31 specifies a local circular order on the
grid points of [Z2,A8] (i.e., a cyclic ordering of the grid points that are 8-adjacent to
any given grid point). Such orders provide a basis for defining border tracing routines.

Let [S,A] be an adjacency graph. In a local circular order ξ(p) at node p∈ S, the
nodes 〈q1, . . . , qn〉 ofA(p) appear exactly once each. We can use these local orders to
trace (directed) edges in [S,A] as follows: if we arrive at p from qi ∈ A(p), we move
next to qk, where k = i+1 (modulo n).

Figure 4.19 shows all possible ways of defining a local circular order on [Z2,A4].
For example, in case (A), for any grid point p = (x,y) ∈ Z

2, we have ξ(p) = 〈(x−
1,y),(x,y + 1),(x+ 1,y),(x,y − 1)〉. Let us denote the directions from (x,y) to
these four neighbors with 1, 2, 3, and 4 (modulo 4). If we arrive at p from below
(direction 4), we proceed (modulo 4) in direction 1 to a new grid point. At the new
grid point, we arrive from direction 3 and proceed in direction 4. At the next grid
point, we arrive from direction 2 and proceed in direction 3, and, at the next grid
point, we arrive from direction 1 and proceed in direction 2; this closes a circuit of
length 4 in [Z2,A4]. Note that, in this example, we used the same local circular (A) at
every node; we will do this from now on.

Any move from a grid point p to one of its neighbors q initiates a (directed) path
defined by the local circular order. Figure 4.20 shows all possible initiated paths using
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FIGURE 4.19 All possible local circular orders for 4-adjacency.
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FIGURE 4.20 Initiated 4-paths in the infinite grid point plane.
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each of the local circular orders shown in Figure 4.19. The initiated paths are infinite
in cases (B) to (E); only cases (A) and (F) lead to finite paths (circuits), which are
always of length 4. We call these finite paths cycles.

Local circular orders (A) and (F) generalize the cycles used to trace borders in
planar drawings, where we use either the clockwise or counterclockwise order of the
edges incident with each node.

An oriented adjacency graph [S,A,ξ] is defined by an adjacency graph [S,A]
(having properties A1 through A3; see Section 4.1.3) and an orientation ξ, defined
by local circular orders of the adjacency sets, which satisfies the following:

A4: Any directed edge initiates a cycle (and not an infinite path).

Any finite adjacency graph obviously has this property (i.e., any finite [S,A] and any
ξ define an oriented adjacency graph).

For [Z,A4], circuits of length 4 are the only possible cycles, and only the orienta-
tions (A) and (F) of Figure 4.19 lead to oriented adjacency graphs. For any [Gm,n,A4],
in cases (A) and (F), we obtain cycles of length 4 plus one additional cycle, which we
say circumscribes Gm,n (and “defines” an external face).

4.3.2 The Euler characteristic and planarity

Let α2 be the number of cycles of a finite oriented adjacency graph [S,A,ξ]. (Note
that a cycle cannot be decomposed into two or more cycles.) If [S,A] is planar, it has
α2 faces.

We recall that α0 = card(S), α1 = card(A)/2, and ν(p) = card(A(p)). Equa-
tion 4.4 is true for any finite graph; hence, for any finite oriented adjacency graph,
the following is given:

∑

p∈S

ν(p) = 2α1

Equation 4.6 also generalizes to arbitrary finite oriented adjacency graphs,
∑

ρ

λ(ρ) = 2α1 (4.7)

where λ(ρ) is the length of cycle ρ and the sum is taken over all cycles in [S,A,ξ].
From property A2, it follows that there are at leastα0−1 edges (i.e.,α1≥α0−1).

Two nodes can be connected by at most one undirected edge so thatα1≤α0(α0−1)/2.
A single node (α0 = 1 and α1 = 0) defines a degenerate cycle (α2 = 1). A given
(nonplanar) finite adjacency graph [S,A] can have different numbers α2 of cycles
depending on its orientation ξ.

The Euler characteristicχ, which is also known as the Euler number, will be char-
acterized in Section 6.4.5 as a topologic invariant for finite Euclidean complexes that
consist of bounded sets. From Equation 4.5 (Euler’s formula), we know thatχ= 2 for
the surface of a simple polyhedron so that χ= 1 (not counting the unbounded exter-
nal face) for the finite planar graph that represents the surface of the polyhedron. In
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terms of the concepts in Chapter 6, a graph defines a finite one-dimensional complex
of nodes and arcs. A planar graph defines a finite number of bounded internal faces
and one unbounded external face. (If we project the planar graph onto a sphere, the
external face becomes a bounded face.) In this section, we deal with graphs that are
not necessarily planar. To simplify the notation, we regard all of the cycles of an ori-
ented adjacency graph as “faces,” including unbounded external faces, and indicate
this with the superscript +.

The Euler characteristic of a finite oriented adjacency graph [S,A,ξ] is defined
to beχ=α0−α1 +(α2−1). Letχ+ =χ+1 =α0−α1 +α2. Then we have the following:

Theorem 4.6 χ+ ≤ 2 for any finite oriented adjacency graph.

Proof The proof is by induction based on repeated addition of new edges to a finite
oriented adjacency graph. If α0 = 1, α1 = 0, and α2 = 1, we have χ+ = α0−α1+
α2 = 2. Suppose χ+ ≤ 2 for G = [S,A,ξ]. We can add an edge to G, thereby
producing a graph Gnew in two ways:

1. Add a new node q to S, and connect q with a new edge to an existing node
p of S.

2. Add a new edge toA by connecting two nodes p and q of S that were not
connected by an edge in A.

In the first case, we increase both α0 and α1 by 1. The local circular order
ξ(p) = 〈. . . ,pi,pj , . . .〉 becomes ξnew(p) = 〈. . . ,pi, q,pj , . . .〉. (pi,p) initiated a cy-
cle 〈. . .pi,p,pj , . . .〉 in G and initiates a cycle 〈. . .pi,p,q,p,pj , . . .〉 in Gnew. All
other cycles in G remain unchanged. Thus α2 does not change, so we have the
following:

χ+
new = (α0 +1)− (α1 +1)+α2 = χ+ ≤ 2

In the second case, suppose first that some cycle of G contains both p
and q. This cycle 〈. . . ,pi,p,pj , . . . , qk, q,ql, . . .〉 splits into two cycles,
〈. . . ,pi,p,q,ql, . . .〉 and 〈p,pj , . . . , qk, q〉, so that the following is true:

χ+
new = α0− (α1 +1)+(α2 +1) = χ+ ≤ 2

Finally, suppose p and q are in two different cycles of G, for example,
〈. . . ,pi,p,pj , . . .〉 and 〈. . . , qk, q,ql, . . .〉. The new edge links these two cycles,
thereby resulting in the cycle 〈. . . ,pi,p,q,ql, . . . , qk, q,p,pj , . . .〉, so that the fol-
lowing is given:

χ+
new = α0− (α1 +1)+(α2−1) = χ+−2≤ 0 �
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This proof also implies that the Euler characteristicχ+1 of a finite oriented adjacency
graph is always a multiple of 2 (. . . ,2,0,−2,−4, . . .).

Theorem 4.6 suggests the following generalization (and formalization) of the
concept of planarity, which was defined in Section 4.2.2 in a more informal way:

Definition 4.6 An oriented adjacency graph is called planar iff it either is finite
and has χ+ = 2 or is infinite and any of its nonempty finite connected oriented
subgraphs has χ+ = 2.

This definition is consistent with graph theory and combinatorial topology: χ= 1 for
any planar drawing of a planar graph, and each such drawing defines an orientation
for the graph.

If local circular orders are defined for all of the adjacency sets of K3,3 or K5, it
can be verified that the resulting finite oriented graph always has χ+ < 2. It follows
that any finite undirected graph that has a subgraph that can be contracted into either
K3,3 or K5 has χ+ < 2 for any orientation defined on it. By Kuratowski’s theorem,
it follows that a finite connected graph is planar iff it has at least one orientation for
which χ+ = 2.

The infinite 4-adjacency grid [Z2,A4], using either the clockwise (A) or counter-
clockwise (F) local circular order (see Figure 4.19), is planar. Any connected subset
of [Z2,A4] is also planar; thus the Euler characteristic remains χ+ = 2 for any con-

nected region of a grid under 4-adjacency. An infinite switch-adjacency grid [Z2,As]
(see Section 2.1.3) is also planar, and its connected regions too are planar.

The infinite 8-adjacency grid [Z2,A8] (e.g., with counterclockwise local circular
orders) is nonplanar. In fact, let Gm,n(m,n≥ 2) be a rectangular oriented subgraph
of [Z2,A8]. Then (see Figure 4.21) χ+ = −2(m− 2) for m ≥ 2 and n = 2 (α0 = 2m,
α1 = 5m− 4, and α2 = m); and χ+ = −2(3m− 4) for m ≥ 2 and n = 4 (α0 = 4m,
α1 = 13m−10, andα2 = 3m−2). For example, form= 6 andn= 4, we haveχ+ =−28.
In a picture defined on an 8-adjacency grid, the Euler characteristic of a connected
region (its “degree of planarity”) decreases with the size of the region.

–28–4 –10 –16

1

23

4
5

6
7

8

FIGURE 4.21 Unlimited decrease of the Euler characteristic χ+ in the infi-
nite 8-adjacency grid. The numbers below the rectangular oriented graphs are
values of χ+.
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Definition 4.7 An oriented adjacency graph is called regular if λ(ρ) and ν(p)
are constants for all cycles ρ and all nodes p.

The planar graphs representing the Platonic solids (see Figure 4.14) are examples of
finite regular planar adjacency graphs. Of course, their sets of nodes are far too small
to serve as 2D grids for digital pictures. For infinite sets of nodes, there are only three
regular planar adjacency graphs: the orthogonal grid on Z

2 with λ(g) = ν(p) = 4, the
triangular grid with λ(g) = 3 and ν(p) = 6, and the hexagonal grid with λ(g) = 6 and
ν(p) = 3. We also have their isomorphic structures such as the dual of the 4-adjacency
grid in the grid cell model with nodes in C

(2)
2

.

Rectangular subsets of planar or nonplanar infinite regular adjacency graphs
are “popular” 2D grids for digital pictures. However, note that nonplanarity allows
a finite simply 8-connected set to have (any of) infinitely many Euler characteristics,
as illustrated in Figure 4.21.

4.3.3 Atomic and border cycles

A subset M ⊆ S induces a substructure [M,AM , ξM ] of an oriented adjacency graph
[S,A,ξ] where AM contains only those adjacency pairs {p,q} such that p,q ∈M and
{p,q} ∈A, and where, for any p∈M , ξM (p) is the reduced local circular order defined
by deleting from ξ(p) all nodes that are not in M . Such a substructure is an oriented
adjacency graph iff M is connected with respect to AM .

Let αM
0

= card(M) be the number of nodes, αM
1

= card(AM ) the number
of edges or adjacency pairs, and αM

2
the number of cycles in [M,AM , ξM ]. Then

the Euler characteristic χ+
M = αM

0
−αM

1
+αM

2
of [M,AM ,χ+

M ] is at least equal to the
Euler characteristic χ+ of [S,A,ξ]. On the other hand, we have the following, where
βM

0
is the number of components of M in [S,A]:

χ+
M ≤ 2βM

0 (4.8)

The cycles of [M,AM , ξM ] may differ from the cycles of [S,A,ξ]. Let (p,q) be a
directed edge in [M,AM , ξM ], let ρ1 be the cycle generated by (p,q) in [M,AM , ξM ],
and let ρ2 be the cycle generated by (p,q) in [S,A,ξ].

Definition 4.8 ρ1 is an atomic cycle iff ρ1 = ρ2 and a border cycle otherwise.

For example, there are five border cycles in Figure 4.22, with α0 = 37, α1 = 46, and
α2 = 11 for the component on the left; α0 = 4, α1 = 3, and α2 = 1 for the com-
ponent in the middle; and α0 = 28, α1 = 28, and α2 = 2 for the component on
the right.

For any M ⊂ S, [M,AM , ξM ] has at least one border cycle. Each border cycle
of [M,AM , ξM ] contains at least one border node of M , and each border node is
incident with at least one border cycle.
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Atomic cycles

Border cycles

FIGURE 4.22 Nine atomic and five border cycles.
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FIGURE 4.23 The directed invalid edges (r,q), (s,q), and (t,q) all point to the border
cycle initiated by (q,p) in the substructure defined by the filled dots.

4.3.4 The separation theorem

Let (r,q) be a directed edge in [S,A], M ⊆ S, q ∈ δM , and r ∈ (S \M). We call (r,q)
a directed invalid edge from M = S \M to M . An undirected edge between M and
M is invalid iff one of its two directions is invalid.

A directed invalid edge (r,q) points to a cycle in [M,AM , ξM ] if (q,p) is the di-
rected edge such that p is the first node of M that follows r in the (original) local
circular order ξ(q). Figure 4.23 shows an example; for the directed invalid edges
(r,q), (s,q), and (t,q), p is the next (and in ξM (q) = 〈p〉, the only) node in M , and
ξ(q) = 〈p,t,r,s〉 initiates the border cycle. Every directed invalid edge points to ex-
actly one border cycle in [M,AM , ξM ]. This defines a partition of all (directed or
undirected) invalid edges into equivalence classes; each class is the set of all (di-
rected or undirected) invalid edges that are assigned to a given border cycle.
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Theorem 4.7 Let [S,A,ξ] be a (finite or infinite) planar oriented adjacency graph
andM a nonempty finite connected proper subset of S. Then [S,A,ξ] splits into
at least two nonconnected substructures when we delete all undirected invalid
edges that are assigned to border cycles of M .

This separation theorem can be compared with the Jordan-Veblen curve theorem
(see Chapter 7) in the Euclidean plane. Let M be connected, let (r,q) be a directed
invalid edge from M to M , and let ρ = 〈q1, . . . , qn〉 be the border cycle in [S,A,ξ]
to which (r,q) points. Then, for any p ∈ M and any path ρ = (p, . . . , r), we have
G(ρ)∩ {q1, . . . , qn} �= ∅ where G(ρ) is the set of all nodes of ρ. In other words, a
border cycle establishes separations in a planar oriented adjacency graph based on
“tracing” border cycles.

Let [S,A,ξ] be an oriented adjacency graph (not necessarily planar), and let
M ⊂ S be a finite proper subset of S. We consider the computational problem of
finding (“tracing”) all border cycles of M .

Note first that the border cycles of different components of M are disjoint, so
we can consider each component ofM independently. To determine the components
ofM we can use the recursive FILL procedure in Algorithm 4.1. We choose a node p
inM and find (“fill” or “label”) all of the nodes connected to p; this provides the first
component ofM . As long as unlabeled nodes still remain inM , we repeat this proce-
dure to obtain all of the components of M , one for each repetition of the procedure.

Every directed invalid edge points to exactly one border cycle. For each com-
ponent A of M , we generate a list L of all directed invalid edges. We choose any of
these edges and trace the border cycle to which it points (see the following discus-
sion). During tracing, we delete all of the assigned directed invalid edges from L.
If there is still an undeleted directed invalid edge on L, we repeat the process; this
generates all of the border cycles of A. L can be generated in a scan through A if all
of the detected border nodes p ∈ δA form directed invalid edges (q,p) with all nodes
q ∈A(p)∩A; these edges will be inserted into L.

1. Let (q0,p0) := (q,p), i := 0, and k := 0.

2. Let ξ(pi) = 〈. . . , qk, q, . . .〉 be the local circular order at pi. If q ∈ A, go to
Step 4.

3. Node q is another node on the border cycle. Let i := i+1 and pi := q. Let
ξ(pi) = 〈. . . ,pi−1, q, . . .〉 be the local circular order at pi. If q ∈A, go to Step

3; otherwise, let k := i−1, and go to Step 4.
4. If (q,pi) = (q0,p0), go to Step 5. Otherwise, let k := k+1 and qk := q, and

go to Step 2.
5. We are back at the original directed invalid edge (q,p). The border cycle

is 〈p0,p1, . . . ,pi〉.

ALGORITHM 4.3 The border tracing algorithm [1111].
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The algorithm for tracing the border cycle pointed to by a given directed in-
valid edge (q,p) is given in Algorithm 4.3. The algorithm terminates because of
property A4. The deletion of all directed invalid edges may lead to a separation
if [S,A,ξ] is nonplanar, but the border tracing procedure applies even to nonplanar
graphs.

4.3.5 Holes

Let G = [S,A,ξ] be an infinite oriented adjacency graph, and let M be a finite con-
nected subset of S. Using property A3 (see Section 4.1.3),M has exactly one infinite
complementary component. Any finite complementary component of M is called a
hole of M . If S = Z

n and the hole is α-connected, we call it an α-hole. For example,
finite connected subsets of [Z2,A4] can have 8-holes that consist of several 4-holes.

IfG is planar,M has exactly one border cycle, called its outer border cycle, which
separatesM (see Theorem 4.7) from its infinite complementary component. All other
border cycles of M are called inner border cycles. If complementary component A
of M is separated from M by border cycle ρ of M , we say that A is assigned to ρ.

Definition 4.9 Let M be a subset of an infinite planar oriented adjacency
graph. A complementary component of M that is assigned to one of the inner
border cycles of M is called a proper hole of M , and a finite complementary
component that is assigned to the outer border cycle ofM is called an improper
hole of M .

Figure 4.24 illustrates this definition. Two complementary 1-components belong
to the background 1-component of class 1; two complementary 1-components are
proper 1-holes (separated by a 1-component from the background 1-component);
and two complementary 1-components are improper 1-holes (not separated by a
1-component from the background 1-component).

Proper
hole

Proper
hole

Improper
hole

Background component

Improper
hole

FIGURE 4.24 Three 1-components and six complementary 1-components (of class 1
in Figure 2.17). 1-holes in the grid cell model are 4-holes in the grid point model.
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FIGURE 4.25 Left: a finite 8-component M in the infinite nonplanar oriented 8-
adjacency graph. Middle: all border cycles of M . Right: all border cycles of M .

The cover c(M) ofM is the union ofM with all of its proper holes. c(M) has no
inner border cycles, but it has an outer border cycle that may separate improper holes
from c(M). Finite complementary components of a finite or infinite connected subset
of an infinite planar oriented adjacency graph do not have proper or improper holes.

Planarity of the oriented adjacency graph is crucial for the definition of inner
and outer border cycles. A border cycle circumscribes the proper or improper holes
assigned to it. The set M in Figure 4.25 has 14 border cycles: 10 “triangles” (small
artifacts of atomic cycles); three border cycles that circumscribe one proper 4-hole
and two improper 4-holes; and one border cycle ρ that circumscribes the union of
M with its proper and improper 4-holes. M has eight border cycles: six “triangular
artifacts”; one border cycle for the proper 4-hole in M ; and one border cycle that
“penetrates” ρ (i.e., ρ does not separate M from its background).

4.3.6 Boundaries

The following definition applies to planar and nonplanar oriented adjacency graphs.
In Figure 4.25 (left), all undirected invalid edges assigned to any border cycle of M
have been removed.

Definition 4.10 Let G = [S,A,ξ] be an oriented adjacency graph, and let M
be a nonempty finite connected proper subset of G. The boundary of M is the
set of undirected invalid edges that are assigned to border cycles of M .

This definition resembles the discussion in [202] about the “boundary between layers
of white and black marbles.” (We use light gray in Figure 4.26 instead of black.) Such
a boundary is neither a set of white nor of black marbles and is better described as
the “space between the white and black layers” (see the left of Figure 4.26) or as
neighboring pairs of white and black marbles (see the right of Figure 4.26).
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FIGURE 4.26 Example of layers of white and light-gray marbles as discussed in [202].
Left: the space between the layers is dark gray. Right: marbles that have neighboring
marbles of the other color are dark gray.

FIGURE 4.27 Left: the border (black vertices) and boundary (bold edges) ofG(D) in
the grid point model, where D is a disk. Right: the border and boundary of G(D) in
the grid cell model.

FIGURE 4.28 Left: no problem occurs in the case of the disk. The other three pictures
show midpoint sequences that “prefer” connections between background points or
between object points and a doubly oriented midpoint sequence that treats back-
ground and object points equally.

When we use Gauss digitization (see Section 2.3.1), the boundary of G(S) (in
the grid point model) consists of edges that cross the frontier ofG(S); see Figure 4.27.
Such a boundary can be represented by an ordered sequence of midpoints of those
edges. Figure 4.28 shows examples of such polygonal representations of boundaries.
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FIGURE 4.29 Left: look-up table with a preference for connections between back-
ground points. Middle: preference for connections between object points. Right:
doubly oriented edges.

The edges can be found by comparing every 2×2 block of pixels with a set of templates
(see Figure 4.29), and, for each match, copying (generating) the “detected” edge(s).

If we use the left or middle look-up table in Figure 4.29, the plane is segmented
into polygons. The object polygons can be regarded as closed sets in the Euclidean
topology, and the background polygons as open (or vice versa). This defines a par-
tition of the plane into pairwise disjoint sets with frontiers that are the polygonal
boundaries. We can assume that each doubly oriented edge shown on the right in
Figure 4.29 is actually two directed edges with a small space between them. This leads
to a segmentation of the plane into pairwise disjoint (even “nontouching”) polygons.
The space between the polygons is a representation of the boundary; this is similar to
a situation where a wall is built out of stones and the boundary is the mortar between
the stones.

4.3.7 Some combinatorial results

This section gives formulas for some topologic invariants (see Definition 6.9) of
isothetic polygons using the more abstract language of infinite planar regular oriented
adjacency graphs. We use the hexagonal and trigonal grids (see Definition 4.7) as well
as the orthogonal grid.

We begin by recalling Equations 4.4 and 4.7. LetG= [S,A,ξ] be a finite oriented
adjacency graph with α0 = card(S) and α1 = card(A)/2 . Let the following

ν =
1
α0

∑

p∈S

ν(p) and λ=
1
α1

∑

ρ

λ(ρ)

be the mean outdegree of a node and the mean length of a cycle where the second
sum is over all cycles of G. Then the following is true,

α0/α1 = 2/ν and α2/α1 = 2/λ

which implies the following:

2/ν + 2/λ= 1 + 2/α1 (4.9)
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This equation also applies to infinite oriented adjacency graphs if both means are
well defined, because 2/α1 goes to zero for infinite graphs.

A regular oriented adjacency graphGν,λ represents a regular tiling (of some sur-
face) and vice versa. For examples of finite regular tilings, see Section 7.6—Exercises 7
and 8 (for the surface of a sphere), 9 and 10 (for the plane), 11 (for the surface of a
torus), and 12 (for a closed surface). For infinite graphs (e.g., on a plane), Equation 4.9
has only three integer-valued solutions: ν = λ = 4; ν = 3 and λ = 6; and ν = 6 and
λ= 3. We will assume that S = Z

2 in these three infinite planarGν,λs (see Exercise 10
in Section 7.6).

Consider a finite subgraph of one of these threeGν,λs defined by a finite subset
M ⊆ Z

2. We first consider the case in whichM has only one border cycle, for example,
of length l. Following Definition 6.13, we call such an M simply connected. Let k be
the number of invalid undirected edges between M and M ; see Figure 4.30 for an
example. Because Gν,λ is planar, Equations 4.4 and 4.7 give us the following:

α0−α1 +α2 = 2 (4.10)

να0−k = 2α1 (4.11)

λ(α2−1)+ l = 2α1 (4.12)

so that the following is true:

νl−λk+νλ= (2ν+2λ−νλ)α1 (4.13)

If we regard ν and λ as parameters ofGν,λ, the relationship between l and k is defined
by the number α1 of undirected edges in the subgraph defined by M . For the Gν,λs,
we have 2ν+2λ−νλ= 0.

Theorem 4.8 For any simply connected set M in any of the Gν,λs, we have
k = ν+νl/λ.

FIGURE 4.30 ν = 3, λ = 6, α0 = 49, α1 = 59, α2 = 12, l = 52, k = 29, f = 11 (left);
ν = 4, λ= 4, α0 = 23, α1 = 30, α2 = 9, l= 28, k = 32, f = 8 (middle); and ν = 6, λ= 3,
α0 = 18, α1 = 32, α2 = 16, l = 19, k = 44, f = 15 (right).
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In other words, the relationship between the number of invalid edges and the length
of the border cycle depends only on the parameters ν and λ.

Now suppose M has r ≥ 1 border cycles. Instead of Equations 4.10, 4.11, and
4.12, we have the following:

α0−α1 +α2 = 2 (4.14)

να0−
r∑

i=1

ki = να0−K = 2α1 (4.15)

λ(α2− r)+
r∑

i=1

li = λ(α2− r)+L = 2α1 (4.16)

In these, li is the length of border cycle i (1≤ i≤ r) and ki is the number of invalid
edges that connectM with nodes on border cycle i. For theGν,λs, we have 2ν+2λ−
νλ= 0, so that the following is true:

ν
r∑

i=1

li−λ
r∑

i=1

ki− (r−2)νλ = νL−λK− (r−2)νλ = 0 (4.17)

The outer border cycle of M is the same as the outer border cycle of its cover
c(M) (the union of M with all its proper holes), so Theorem 4.8 is valid for c(M).
It follows that we always have νlr−λkr + νλ = 0 where r is the index of the outer
border cycle ofM . Subtracting this equation from Equation 4.17 gives the following:

ν
r−1∑

i=1

li−λ
r−1∑

i=1

ki− (r−1)νλ = ν(L− lr)−λ(K−kr)− (r−1)νλ = 0 (4.18)

The r− 1 inner border cycles of M can be regarded as independent events, and
Equation 4.18 splits into r−1 equations νli−λki +νλ= 0, 1≤ i≤ r−1.

Theorem 4.9 For any connected set M in one of the Gν,λs and any of its border
cycles, we have k = ±ν+ νl/λ, where the outer border cycle has the positive
sign and any inner border cycle has the negative sign, k is the number of invalid
edges assigned to the border cycle, and l is the length of the border cycle.

This theorem provides a simple algorithm for deciding whether a traced border cycle
(see Algorithm 4.3) is inner or outer by keeping track of k and l during border cycle
tracing.

From Equation 4.17, it follows that r = 2 + L/λ − K/ν .The total lengthL of
all border cycles and the total numberK of all invalid edges allow us to calculate the
number r of border cycles, which is a topologic invariant of M . Note that L and K
can be accumulated by examining all 4-neighborhoods of points in M ; border cycle
tracing is not necessary.
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Let f be the number of atomic cycles of M . Combining Theorem 4.8 and
Equations 4.10, 4.11, and 4.12 gives the following:

α0 =
λ

ν
f +

(
1
λ

+
1
ν

)
l + 1

For any of the Gν,λs, we have 1/λ + 1/ν = 1/2 . This proves the following:

Theorem 4.10 For a connected subset M of an infinite planar Gν,λ that has no
proper holes, we have α0 = λf/ν + l/2 +1 , where α0 = card(M), there are
f atomic cycles in M , and l is the length of the outer border cycle of M .

This theorem is a graph-theoretic generalization of a result proved by G. Pick (1899)7

for the regular orthogonal grid (ν = λ = 4): the area f of a simple grid polygon (a
simple polygon that has grid points as vertices) satisfies f = α0− l/2−1, where α0 is
the number of grid points in the polygon and l is the number of grid points on the
frontier of the polygon. For example, for a grid square, we have α0 = l= 4 and f = 1.

Theorem 4.10 applies to outer border cycles. For an inner border cycle ρ, let α0

be the number of nodes of Gν,λ \M surrounded by ρ (“in the interior of ρ”), and let
f be the number of atomic cycles ofGν,λ defined by these α0 nodes and the nodes of
ρ. Then we have the following:

Theorem 4.11 For an inner border cycle ρ of a connected subsetM of any of the
Gν,λs, we have α0 = λf/ν − l/2 +1 where l is the length of ρ.

Note that an inner border cycle can separate several proper holes from M ;
Theorem 4.11 applies to the union of these holes.

Figure 4.31 shows examples; k is the number of invalid edges assigned to the
inner border cycle, and we have shaded the atomic cycles of the proper holes assigned
to the inner border cycle. On the left, we have three proper holes and one atomic
cycle in one of them; in the middle, we have one proper hole and one atomic cycle; on
the right, we have one proper hole and two atomic cycles. Letm be the total number
of atomic cycles of all the proper holes assigned to the given inner border cycle. The
remaining f−m atomic cycles, defined by nodes in the complementary setM and on
the inner border cycle, are boundary cycles, where the boundary specifies the “space
between.” The λm edges of the boundary cycles include k invalid edges, the length l
of the inner border cycle, and the sum of the lengths li of the outer border cycles of

7. Georg Pick was a professor of mathematics in Prague. He was in close contact with A. Einstein when Einstein
worked at Prague University in 1911 and 1912. They played music together, discussed philosophy, and estab-
lished the mathematic basis of general relativity theory. Pick was murdered by the Nazis in the Theresienstadt
concentration camp.
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FIGURE 4.31 Inner border cycles with ν = 3, λ = 6, α0 = 8, l = 30, k = 12, f = 11

(left); ν = 4, λ= 4, α0 = 11, l= 26, k = 22, f = 23 (middle); and ν = 6, λ= 3, α0 = 10,

l = 22, k = 38, f = 40 (right).

the n > 0 proper holes assigned to the inner border cycle:

λm = 2k + l +
∑

i=1

nli

Together with Theorems 4.10 and 4.11, this implies the following:

n = 1 + k − m

This is another example of how a topologic invariant (the number n of proper holes)
can be calculated by accumulating local counts (of invalid edges and boundary cycles).

For G6,3, which has ν = 6 and λ= 3, exactly one complementary component is
assigned to any (inner or outer) border cycle of a finite connected set M . It follows
that such an M has no improper holes; the region adjacency graph generated by M
is a tree; and, for any inner border cycle of M , any directed invalid edge generates
exactly one border cycle.

4.4 Combinatorial Maps

Finite oriented adjacency graphs are known in graph theory as (2D) combinatorial
maps. Finite spatial subdivisions, such as a subdivision of a cuboidal subset of R

3

into grid cubes, can be represented by 3D combinatorial maps, and such maps also
generalize to n dimensions.

4.4.1 2D maps

A finite graph is planar iff it can be drawn in the plane or on a sphere so that edges
intersect only at nodes. Such a drawing is called an embedding. In general, an embed-
ding of a graph is a representation of the graph on a closed compact surface (e.g., the



4.4 Combinatorial Maps 151

1

–1

2

–2
3

–34

–45

–5

6

–6
7

–7
8

–8

1

–1

2

–2 3

–3

4

–4
5–5

6

–6

7

–7

8

–8

9

–9
10 –10

9

–9

FIGURE 4.32 Combinatorial maps for the undirected graphs K3,3 and K5; only two

darts are shown (for edge 1) in K3,3.

surface of a sphere or torus) such that no two edges intersect except at their endpoints.
An embedding is characterized by the local circular orders ξ(p) of the edges around
the nodes p. A 2D combinatorial map is a finite graph together with a set of local
circular orders (i.e., it is what we have called an oriented adjacency graph [S,A,ξ]).

A combinatorial map can be defined by a graph and two permutations σ and θ.
Let the edges of the graph be numbered 1,2, ...,m. Split each undirected edge i into
two directed edges +i and−i; these directed edges are sometimes called darts. Then
σ is the mapping of +i into−i and−i into +i (i.e., σ is a product of cycles of length 2):

σ =

(
1 2 . . . m −1 −2 . . . −m
−1 −2 . . . −m 1 2 . . . m

)

= (1,−1)(2,−2) · · ·(m,−m)

Let S = {p1,p2, · · · ,pn}; then

θ = ξ(pi1)ξ(pi2) · · ·ξ(pin)

for any of the n! possible permutations of the n nodes:
(

1 2 . . . n
ii i2 . . . in

)

Figure 4.32 shows two examples of graphs in dart representation. For the graph
K3,3 on the left, assume anticlockwise local circular orders ξ(p); then the following
are true:8

σ = (1,−1)(2,−2)(3,−3)(4,−4)(5,−5)(6,−6)(7,−7)(8,−8)(9,−9)
θ = (5,3,1)(−4,6,−9)(−7,8,−2)(−1,2,4)(−6,−5,7)(−8,9,−3)
ϕ = θ ◦σ = (1,2,−7,−6,−9,−3)(−1,5,7,8,9,−4)(−2,4,6,−5,3,−8)

8. In this example, 1 goes into −1 in σ, −1 goes into 2 in θ (1 goes into 2 in θ ◦σ), 2 goes into −2 in σ, −2 goes
into −7 in θ (2 goes into −7 in θ ◦σ), and so on.
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Note that the cycles in ϕ= θ◦σ are the same as the cycles in the graph. For the graph
K5 on the right, assume clockwise local circular orders ξ(p); then the following are
true:

σ = (1,−1)(2,−2)(3,−3)(4,−4)(5,−5)(6,−6)(7,−7)(8,−8)(9,−9)(10,−10)
θ = (2,10,−7,1)(−2,3,−9,−8)(−3,4,−6,−10)(9,−4,5,7)(8,6,−5,1)
ϕ = θ ◦σ = (−2,10,−3,−9,−4,−6,−5,7,−1,8)(1,2,3,4,5)(6,−10,−7,9,−8)

Permutation ϕ lists the three circuits of the graph. Based on the definitions of σ and
θ, this is valid for any productϕ= θ◦σ for both counterclockwise and clockwise local
circular orders, as long as we start with a finite connected [S,A], split its undirected
edges into directed edges via σ, and define local circular orders via θ. Of course,
handling permutations of edges or adjacency sets is impractical when we deal with
high-resolution pictures.

4.4.2 3D maps

In our 2D examples of combinatorial maps, we split each undirected edge into two
darts and used the permutation σ to identify pairs of darts that represent the two
orientations of the same edge (see also edge 10 in Figure 4.33). The local circular
orders of the darts, defined by the cycles of the permutation θ, then allow any dart
to be used to initiate a cycle in φ= θ ◦σ. The permutation σ is an involution on the
set S of all darts (i.e., a one-to-one mapping such that σ = σ−1). An involution σ is
either the identity σ(a) = a for all a ∈ S or the product of a finite sequence of cycles
(b,c) of length 2.

[S,σ1, . . . ,σn](n ≥ 2) is an n-dimensional combinatorial map iff S is a finite
set; σ1 is a permutation of S; and σ2, . . . ,σn are involutions on S such that σi ◦
σj is an involution on S for 1 ≤ i ≤ n− 2 and i+ 2 ≤ j ≤ n . For example, in 3D,
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FIGURE 4.33 A spatial subdivision (left) combining a tetrahedron with a wedge, and
a sketch (right) of its combinatorial map; only edge 10 is represented by two darts.
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σ1 ◦σ3 is an involution onS. In 2D, we had σ1 = θ and σ2 = σ; the additional condition
is vacuous.

Figure 4.33 shows a spatial subdivision. Let the following be given:

σ1 = ( −1,2,4)(−2,6,5)(1,3,−6)(−5,−3,−4)
( 7,8,11)(−11,−10,−13)(−7,12,9)(−8,−9,15)(14,10,−15)(−14,−12,13)

σ2 = ( 1,−1)(2,−2)(3,−3)(4,−4)(5,−5) . . .(13,−13)(14,−14)(15,−15)
σ3 = ( 2,−1)(4,2)(−1,4)(6,−2)(5,6) . . .(−12,−14)(13,−12)(−14,13)

These permutations define a 3D combinatorial map on a set S of 30 darts.
In general, let {θ1, . . . ,θm} be a set of permutations defined on a set S. A dart

e ∈ S and a permutation θ of S define a cycle θ(e) of darts that are “reachable” by
starting at e and using only transitions contained in θ. For example, for the σ1, σ2, and
σ3 defined above, we have σ1 ◦σ2(12) = (12,13,−11,7) and σ3 ◦σ1 ◦σ2(−6) = (−6,6).
The orbit of a dart e is the set of all darts contained in cycles θ(e), where θ is any finite
sequence of permutations θi or θ−1

i . For example, the orbit of a dart with respect to
σ1, σ2, and σ3 is either the set of all darts of the tetrahedron or the set of all darts of
the wedge.

3D combinatorial maps can be used to represent spatial subdivisions. For ex-
ample, merging the tetrahedron and wedge shown in Figure 4.33 means deleting
the doubly represented face between them; similarly, splitting can be done by cre-
ating new separating faces. Spatial segmentation can be based on repeated merging
operations that reduce the total number of darts.

4.5 Exercises

1. Show that EM ⊆OM ⊆M ⊆ CM ⊆DM for any M ⊆ S.

2. Show that E and D are dual operations (i.e., that DM = EM and EM = DM for
any M ⊆ S) where L= S \L.

3. Show that O and C are idempotent operations (i.e., that O
2
M = OM and C

2
M =

CM for any M ⊆ S).

4. Prove that the center of a simply 4-connected set of grid points, using the graph
distance defined by A4, is either a 2× 2 square, a diagonal line segment, or
a diagonal staircase; note that, in the latter two cases, the center can contain
arbitrarily many grid points (see Figure 4.12). What happens if we use A8?

5. Eulerian paths can be defined for an infinite graph provided it is connected and
its set of edges is countably infinite. P. Erdös, T. Grünwald, and E. Vàzsonyi [308]
showed in 1938 that an infinite Eulerian path can be either of the following:

(i) one-way (i.e., with one terminal node) if at most one node of the graph has
odd degree; if no node has odd degree, there must be at least one node of



154 Chapter 4 Adjacency Graphs

infinite degree, and the complement of any finite subgraph must have only
one infinite component; or

(ii) two-way (i.e., with no terminal node) if no node has odd degree; the com-
plement of any finite subgraph has at most two infinite components; and any
finite subgraph that contains only nodes of even degree has only one infinite
component.

Consider the three infinite graphs in Exercise 1 in Section 1.3. Do they have
Eulerian paths? If so, are they one-way or two-way?

6. Do the 4-adjacency grids Gn,n (n≥ 2) have Hamiltonian circuits? Do they have
Hamiltonian paths?

7. Find a Hamiltonian path for the infinite 4-adjacency grid [Z2,A4].

8. Show that the following two graphs are isomorphic:

9. Is this graph planar? Verify your answer.

10. Let P be a picture with values in {0, . . . ,Gmax}. Define a relation AP on the set
of pixels of P using the following:

p ∈AP (q) iff de((p,P (p)),(q,P (q)) = min
r∈A4(q)

{de((r,P (r)),(q,P (q))}

Is the graph [S,AP ] connected? complete? planar? Eulerian?

11. Show that any local circular order on K3,3 or K5 (see Figure 4.32) results in an
oriented graph that has the Euler characteristic χ+ < 2.

12. The solid dots in the following figure are the grid points in a subset M of the
infinite 4-adjacency graph [Z2,A4]. Draw the region adjacency graph ofM . Calcu-
late the Euler characteristics of the components of this graph assuming clockwise
orientation ((A) in Figure 4.19).



4.5 Exercises 155

13. Can a finite oriented adjacency graph have α0 = α1 = α2?

14. A complete graphG with α0 nodes has α1 = α0(α0−1)/2 edges. If α0 ≥ 3, prove
that, for any local circular order on G, we have χ+ ≤ −α0(α0−7)/6.

15. Specify permutations of 2D combinatorial maps that represent the following
8-adjacency graphs:

16. Let L,M ⊆ S be subgraphs of the graph [S,A]. Show that p ∈ δ(L∪M) or p ∈
δ(L∩M) implies that p∈ δ(L) or p∈ δ(M). Furthermore, if p∈ δ(L) andM ⊆ S,
then either p ∈ δ(L∪M) or p ∈ δ(L∩M).

17. Let L,M be subgraphs of a finite graph [S,A]. Define Q(L,M) as the set of all
nodes p ∈ δ(L)∩ δ(M) that are not in δ(L∪M). Prove the following:

cardδ(L∪M)+cardδ(L∩M) = cardδ(L)+cardδ(M)− cardQ(L,M)

18. Let L be a subgraph of a subgraph M of a graph [S,A], and let δS(M) denote
the border of M . Prove the following:

δM (L)⊆ δS(L)

Also, prove the following for all p ∈ S:

if p ∈ δS(L) then p ∈ δM (L) or p ∈ δS(M)

19. A subsetM of a graphG= [S,A] is called aD-cluster (D≥ 1) iff, for all p,q ∈M ,
there exists a sequence p= p0,p1, . . . ,pn = q of nodes inS such that dG(pi−1,pi)≤
D (i= 1, . . . ,n). (Here dG is the graph metric, in which each edge has unit length;
it follows thatM is a 1-cluster iff it is connected.) TheD-hullHD(M) ofM is the
set of nodes of G within distance D/2 of M . The geodesic D-hull GD(M) of M
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is the set of nodes of G that lie on shortest paths of length≤D between pairs of
nodes of M . Prove that M is a D-cluster iff HD(M) is connected iff GD(M) is
connected.

4.6 Commented Bibliography

Region adjacency graphs on regular grids were introduced in [151, 881]. The notions
of connectedness and components as used in graph theory had to be adapted to the
special needs of picture analysis by defining connectedness with respect to a subgraph.
For information about using “local properties” to compute topologic properties of
pictures, see [377, 733]. Exercise 19 is from [889], which also defines “D-holes” and
“D-borders” for sparse sets of 1s in binary pictures. [574, 1109] initiated studies of
general adjacency models in picture analysis.

The history of graph theory is reviewed in [862]. There are many textbooks
about graph theory; see, for example, [786], which is the source of Exercise 3, and
[1073], which is the source of Exercises 16, 17, and 18. Periodic subgraphs of the
infinite 8-adjacency graph on Z

2 are studied in [1070]. For graph algorithms, see
[997]. For Steinitz’s theorem, see [1026]; for Kuratowski’s theorem, see [611].

I. Lakatos’s book of dialogues [614] (published after he died in 1974) discusses
the very diverse opinions about polyhedra that do not obey the Descartes-Euler poly-
hedron theorem that were expressed by many mathematicians, including Legendre,
Gergonne, Cauchy, Lhuilier, Crelle, Hessel, Becker, Listing, Möbius, Schläfli,Grunert,
Becker, Poinsot, Steiner, Hoppe, de Jonquières, Matthiessen, Poincaré, Hilbert,
Steinhaus, Pólya, and Forder. For example, in 1852, L. Schläfli [962] declared about
Kepler’s urchin9 that “this is not a genuine polyhedron, for it does not satisfy the
condition V −E+F = 2”!

Theorem 4.2 is from [886]. In general, let P be an n-dimensional binary picture
defined on a finite hypercuboidal (2n,3

n− 1)- or (3
n− 1,2n)-adjacency grid that is

extended into Z
n; then the region adjacency graph of P is a tree [502].

Dijkstra’s algorithm was independently discovered in [1124]. The application
of shortest path algorithms to picture analysis is discussed in [452, 1095]. Exercise 7
is from [507]. For the complexity of algorithms and computational problems (e.g.,
NP-completeness), see [356]. For efficient planarity tests, see [443]. [687] discusses
components in 2D and 3D adjacency grids that have uniquely defined Hamiltonian
circuits. For centers of graphs defined by 4- or 8-regions, see [247] and [507].

The directional code introduced by H. Freeman [342] can be regarded as an
example of an orientation on an adjacency graph. Oriented adjacency graphs were
studied in a series of publications in the 1980s (e.g., [553, 1104, 1111]). Theorems 4.6
and 4.7 are from [1111]. Border tracing can also be defined in picture data structures

9. Also “echinus,” which is Kepler’s original name for the small stellated dodecahedron that has 12 faces, each a
regular star pentagon. It is one of the Kepler-Poinsot solids with the dual polyhedron (see the end of Section 4.2.2)
that is the great dodecahedron [220, 614]; for both, we have α0−α1 +α2 =−6.
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such as quadtrees [290]. The book [65] provides an overview of curve tracing methods
in picture analysis. The formula in Exercise 14 is proved in [1104]. Many of the
combinatorial results about the Gν,λs in Section 4.3.7 are from [1103].

The theory of combinatorial maps was initiated by L. Heffter at the end of the
19th century [415]. He introduced maps and proved a dual characterization theorem
for them. Maps were used, for example, by G. Ringel starting in the 1950s, were
reinvented in [301, 1153], and finally became popular in discrete mathematics [383].
Their relevance for modeling 2D or 3D (segmented) pictures is discussed in [82, 117,
287, 326, 651, 959].
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C H A P T E R 5

Incidence Pseudographs

This chapter treats pictures as graph-theoretic objects; it represents spatial sub-
divisions with incidence pseudographs. We recall that, in 2D or 3D incidence
grids (see Section 2.1.5), pixels or voxels are further refined (e.g., a 2-cell [grid
square] has grid edges and grid vertices as additional structural components).
We define open and closed subsets of incidence pseudographs and their fron-
tiers in preparation for discussing topologies in the following chapters. We give
combinatorial formulas for such subsets in regular incidence grids and give a
graph-theoretic treatment of frontier tracing.

5.1 Incidence Structures

In this chapter, we discuss a graph-theoretic generalization of the grid cell incidence
model (see Section 2.1.5). Because self-incidence is allowed, the graphs can have
loops (i.e., they are pseudographs).

Let I be a reflexive and symmetric relation on a set S. We say that c and c′ are
incident (notation: cIc′) iff {c,c′} ∈ I .

Definition 5.1 An incidence structure [S,I,dim] is defined by a countable set
S of nodes, an incidence relation I on S that is reflexive and symmetric, and a
function dim defined on S and into a finite set {0,1, ...,m} of natural numbers.

The function dim partitions S into pairwise disjoint classes. Its definition de-
pends on the context. For example, the elements of S can be cells of a discrete spatial
subdivision (e.g., convex bounded polyhedra or polygons, line segments, vertices);
Figure 5.1 shows a 2D example. A cell c that has dim(c) = i is called an i-cell. Such
spatial subdivisions are studied in combinatorial topology. In 1813, A. Cauchy gen-
eralized the Descartes-Euler polyhedron theorem by studying intercellular faces in
simple polyhedra. Finite or infinite 2D or 3D incidence grids (see Section 2.1.5)—or
subsets of such grids that form 2D or 3D regions—are other examples of discrete
spatial subdivisions.

159
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FIGURE 5.1 Left: geometric representation of the incidence structure of the Voronoi
diagram shown in Figure 4.3. Middle: a substructure. Right: its graph; loops are
omitted, and labels give the dimensions of the Voronoi cells, edges, and vertices.

Incidence pseudographs provide a method of describing discrete spatial sub-
divisions by local relations. In this section, we formulate the general n-dimensional
case to illustrate potential generalizations, but our main focus continues to be on 2D
and 3D grids.

5.1.1 Adjacency and completeness; incidence pseudographs

Let G= [S,I,dim] be an incidence structure. c ∈ S is called an i-node if dim(c) = i.
The maximum value of dim(c) for any c ∈ S is called the index dimension ind(G)
of G.1 If ind(G) = n, G is called an n-incidence structure. Any node of G that has
dimension ind(G) is called a principal node, and any node that has smaller dimension
is called a marginal node.

For example, 2D and 3D incidence grids define incidence structures [C2, I,dim]
and [C3, I,dim] of index dimensions 2 and 3, respectively, in which pixels and voxels
are the principal nodes. We generalize the adjacency definitions given for incidence
grids in Section 2.2.1. Let I(c) = {c′ : c′ ∈ S ∧ c′Ic}.

Definition 5.2 Two nodes c1 and c2 of an incidence structure [S,I,dim] are
called i-adjacent (notation: c1Aic2 or {c1, c2} ∈ Ai or c1 ∈ Ai(c2)), where 0 ≤
i≤ ind(S), iff c1 �= c2 and there is an i-node c ∈ S (c �= c1 and c �= c2) such that
c1 ∈ I(c) and c ∈ I(c2).

A relation Ai of i-adjacency between nodes of an incidence structure defines an
adjacency structureGi = [S,Ai], which is an adjacency graph if properties A1 through
A3 are satisfied. All of the definitions and results regarding adjacency graphs in
Chapter 4 apply to these Gis. For example (see Definition 4.1), two nodes c,c′ ∈ S
are i-connected with respect toM ⊆ S iff there is an i-path (c1, c2, . . . , ck) in [S,I,dim]

1. This value is often called “the dimension” of G. Later we will use nodes of G to form one-dimensional, 2D,
or multidimensional subsets; the dimensions of these subsets will be defined in Definition 6.7.
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where c= c1, c′ = ck, and the nodes of the path are either all inM or all inM = S \M .
This allows us to define i-components of M .

Figure 5.1 (middle or right) shows (on the upper left) that, unlike the situation
for adjacency grids, i-adjacency of two nodes does not necessarily imply h-adjacency
for h < i.

Definition 5.3 Two j-nodes (j > 0) are called adjacent iff there exists an i < j
such that the nodes are i-adjacent.

This (symmetric and irreflexive) adjacency relation defines paths of nodes of equal
dimension j > 0, and the reflexive and transitive closure of this relation defines con-
nectedness and components for such nodes. Components of an incidence structure
will be defined in the next section; these components need not contain only nodes of
a single dimension.

Our main interest is in principal nodes. Let G = [S,I,dim] be an n-incidence
structure. The set of n-nodes of G is called the core of G. G is called an incidence
pseudograph iff it has the following properties:

I1: For any node c of G, I(c) is finite.

I2: The core of G is connected.

I3: Any finite set of principal nodes of G has at most one infinite complementary
component of principal nodes.

I4: If c′ ∈ I(c) and c′ �= c, then dim(c′) �= dim(c).

I5: Any marginal node of G is incident with at least one principal node of G.

Properties I1 through I5 are independent of one another. This is easy to verify; see
Section 4.1.3. Figure 5.2 shows a finite incidence pseudograph with core {a,e,f}.

An incidence pseudograph is called monotonic (short for “in transitive corre-
spondence with a monotonic chain of dimensions”) iff the following is true:

I6: If c′ ∈ I(c) and c′′ ∈ I(c′), where dim(c)≤ dim(c′)≤ dim(c′′), then c′′ ∈ I(c).

12

01

2

b c

e

a d f

FIGURE 5.2 An incidence pseudograph with nodes a, . . . ,f . The dimensions of the
nodes are indicated by the labels.
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FIGURE 5.3 Left: a setM that has four 1-components of 2-nodes. Right: its comple-
tion M+, which has two 1-components of 2-nodes (loops omitted).

For example, the pseudograph in Figure 5.2 is not monotonic because, for example,
c ∈ I(b) and b ∈ I(a) but c /∈ I(a). Properties I4 and I6 indicate that the incidence
corresponds to a partial order relation on S: c < c′ iff c and c′ are incident and
dim(c)< dim(c′). This allows us to define a poset topology; see Section 6.1.2.

Finally, we generalize Definition 2.5 (completeness) from incidence grids to
arbitrary incidence pseudographs. Let G= [S,I,dim] be an incidence pseudograph,
and letM ⊆ S. We define the completionM+ ofM with respect toG as the smallest
subset of S that has the following properties:

(i) M ⊆M+.

(ii) If c′ ∈M+ for all c′ ∈ I(c) such that dim(c′)> dim(c), then c ∈M+.

Property (ii) leads to a recursive procedure for adding nodes: first (ind(G)−1)-
nodes, then (ind(G)−2)-nodes, and so forth. Figure 5.3 shows a rectangular subset
of the 2D incidence grid2 that is completed by adding six 1-nodes and then adding
three 0-nodes.

2. By contrast with Figure 2.3, there are now edges between 2-nodes and 0-nodes.
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Definition 5.4 A subset M of an incidence pseudograph G is called complete
(with respect to G) iff M =M+.

Figure 5.1 (middle) is an example of a complete subset.
The core of the subset M on the left in Figure 5.3 is connected; it consists of

four 1-components of 2-nodes. M is a proper subset of M+, so M is not complete;
the core of M+ contains two 1-components of 2-nodes.

5.1.2 Incidence grids

[S,I,dim] is called a 2D or 3D incidence grid iff one of the following is true: (i) it
is [C2, I,dim] or [C3, I,dim]; (ii) it is a finite complete subpseudograph of [C2, I,dim]
defined by a core that is an m×n rectangular subset of C

(2)
2

; or (iii) it is a finite

complete subpseudograph of [C3, I,dim] defined by a core that is an l×m×n cuboidal
subset of C

(3)
3

.

Any incidence grid has properties I1 through I6, as well as two other properties:

I7: If c ∈ S and dim(c) > 0, there is a c′ ∈ S such that dim(c′) < dim(c) and
{c,c′} ∈ I .

I8: If cIc′ and dim(c)−dim(c′)> 1, there is a c′′ ∈ S such that dim(c′)< dim(c′′)<
dim(c), cIc′′, and c′Ic′′.

In addition, the nodes of an incidence grid have locations in Euclidean space. In-
cidence grids are the “default examples” of incidence pseudographs, just as α- or
(α1,α2)-adjacency grids are the “default examples” of adjacency graphs.

The cores of incidence grids are sets of pixels (2-cells) or voxels (3-cells). Defi-
nition 5.2 allows two 1-cells of [C3, I,dim] to be 0-, 2-, or 3-adjacent, but, in accordance
with property I4, they cannot be 1-adjacent. A 1-path in [C3, I,dim] can contain 0-,
2-, or 3-cells but not 1-cells. An i-path or i-component can be restricted to contain
only cells of a given dimension; see Figure 2.18. A path of cells of dimension i is
defined by 0-, 1-, . . . , or (i−1)-adjacency.

Example 5.1 Any adjacency graph G = [S,A] can be represented by a one-
dimensional incidence pseudograph GI with a set of nodes that is S ∪A. El-
ements of S have dimension 0, and elements of A have dimension 1. Every
c ∈A is incident with its two endnodes in S, and every c ∈ S is incident with all
of the edges {c,c′} in A. Every node of GI is also self-incident. �

Figure 5.4 shows the one-dimensional incidence pseudograph of [Z2,A4]. Repeated
merging operations (contraction; see Section 4.2.2), as shown in the middle of
Figure 5.4 (including the deletion of all loops), can be used to transform this graph
into a graph isomorphic to [Z2,A4].

LetG= [S,I,dim] be ann-incidence grid (n≥ 1), and let 0≤n0 <n. By deleting
all i-nodes from S (n0 < i ≤ n) and all edges that have these i-nodes as endnodes,
we obtain an n0-incidence pseudograph that is a subpseudograph of [S,I,dim]. Such
a subpseudograph is called a downward restriction of G. For example, let G be the
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FIGURE 5.4 The one-dimensional incidence pseudograph of the 1-adjacency grid
(left; all loops are omitted). Two merging operations are illustrated: a 1-node merges
with a 0-node (middle); a 0-node merges with a 1-node (right).
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FIGURE 5.5 A 2D incidence grid, its downward restriction (both without loops),
and a contraction of the downward restriction.

3D incidence grid [C3, I,dim], and let n0 = 2. We can delete all 3-cubes from C3

to obtain a subpseudograph that consists of only grid squares, grid edges, and grid
vertices. Figure 5.5 shows a 2D example: a one-dimensional downward restriction
of a rectangular subgraph of [C2, I,dim], which can be transformed into [Z2,A4] by
repeated merging operations.

A finite nonempty complete subsetM ⊆S of an incidence grid [S,I,dim]defines
an incidence structure [M,I ′,dim′], where I ′ and dim′ are the restrictions of I and
dim to M . Such a structure satisfies properties I1 through I3 but need not satisfy
properties I4 through I8.

5.1.3 Components and regions; borders

In this section, M is a complete subset of an n-incidence structure G= [S,I,dim].

Definition 5.5 Let C ⊆M ⊆ S. C is called a component of M iff the core of
C is a nonempty maximal connected subset of the principal nodes ofM , C also
contains all nodes of M that are incident with principal nodes of M , and C is
complete (with respect to G).
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For example, M+ on the right in Figure 5.3 is a component. A nonempty M may
have no components, and the union of all of the components of M may not be all of
M . Even a complete M is not always a union of components; there may be i-nodes
in M (i < n) that are not incident with any n-node of M . Our main interest is in
finite Ms that are unions of components.

Proposition 5.1 A node cannot be in more than one component of M .

Proof The cores of components of M are maximal connected sets of n-nodes;
hence they are pairwise disjoint. If an i-node (i < n) were in two components,
it would be incident with at least one n-node in each component; hence the
n-nodes of the two components would be connected, thereby contradicting
Definition 5.5. �

The following definitions are analogous to the definitions for adjacency graphs
in Section 4.1.3:

Definition 5.6 A region is a finite component.

For example, the incidence pseudograph shown in Figure 5.2 is a region. The com-
pletion of its core {a,e,f} is {a,d,e,f}. {a,b,d,e,f} and {a,c,d,e,f} are regions.
M+ on the right in Figure 5.3 is a region, but M on the left is not a region, because
it is not complete.

Definition 5.7 A node c (of any dimension) of a region M is called an inner
node iff I(c)⊆M ; otherwise, it is called a border node. The set of inner nodes
ofM is called the inner setM∇ ofM , and the set of border nodes ofM is called
the border δM of M .

1 0 1 0 1 0 1 0 1 0 1 0 1

2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 1 0 1 0 1 0 1 0 1 0 1

2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 1 0 1 0 1 0 1 0 1 0 1

2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 1 0 1 0 1 0 1 0 1 0 1

2 1 2 1 2 1 2 1 2 1 2 1 2

a

0 1 0 1 0 1 0 1 0 1 0

1 2 1 2 1 2 1 2 1 2 1

0 1 0 1 0 1 0 1 0 1 0

1 2 1 2 1 2 1 2 1 2 1

0 1 0 1 0 1 0 1 0 1 0

1 2 1 2 1 2 1 2 1 2 1

0 1 0 1 0 1 0 1 0 1 0

1 2 1 2 1 2 1 2 1 2 1

FIGURE 5.6 Inner sets (bold unfilled circles) and borders (bold filled circles) of a
closed (left) and an open (right) region. The left region remains closed after deleting
2-node a; this deletion creates an open hole.
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a

FIGURE 5.7 Geometric representations of the regions shown in Figure 5.6. Label a
identifies the same 2-node as in Figure 5.6.

If M = S, it has only inner nodes. Figure 5.6 shows two examples of inner sets and
borders. (Closed and open regions will be defined in the next section.) The same
sets are shown in Figure 5.7 using the geometric representation of 2D incidence grids
that was defined in Section 2.1.5.

5.1.4 Closed and open regions

The following definitions do not have analogs for adjacency graphs:

Definition 5.8 A subset M ⊆ S of an incidence structure G = [S,I,dim] is
called closed inG iff, for any c∈M and any c′ ∈ I(c) such that dim(c′)< dim(c),
we have c′ ∈M . M is called open in G iff M = S \M is closed in G.

Figure 5.6 shows examples of a closed and an open region. In Figure 5.2, {a,d,e,f}
is an open region, because {b,c} is a closed set (but not a region); {a,b,d,e,f} is
open; and {a,c,d,e,f} is neither closed nor open. In Figure 5.3, M+ on the right is
neither closed nor open. Evidently, S and ∅ are both closed and open. Any closed
or open M is complete. Closed and open sets are not necessarily components; they
may contain only nodes of dimensions <n, or they may be disconnected.

The proof of Proposition 2.3 gave a procedure for assigning every 0- or 1-cell
of the 2D incidence grid to exactly one incident 2-cell in a 2D picture P , and Propo-
sition 2.4 generalized this procedure to the 3D incidence grid. The procedure was
based on a decomposition of the grid into P -equivalence classes, which define inci-
dence substructures that are unions of components (and hence are complete). These
substructures, except for the one that contains the infinite background component,
are all finite. Figure 5.8 shows an example in which the 2D procedure produces either
“black closed components” and “white open components” or vice versa.
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FIGURE 5.8 The black pixels (left), shown as a closed (middle) and an open (right)
region of the 2D incidence grid.

As a direct consequence of the definition of closedness, we have the following:

Theorem 5.2 A finite subset M ⊆ S of an n-incidence pseudograph G = [S,I,
dim] is a closed region in G iff the core of M is nonempty and connected; any
marginal node in M is incident with a principal node in M ; and (A) for any
c ∈M and any c′ ∈ I(c) such that dim(c′)< dim(c), we have c′ ∈M .

Any cell that is “enclosed” by higher-dimensional cells that belong to an open
region is also in the region:

Theorem 5.3 A finite subset M ⊆ S of an n-incidence pseudograph G = [S,I,
dim] is an open region in G iff the core of M is nonempty and connected, and
(B) an i-cell c ∈ Cn (i < n) is in M iff every j-cell c′ such that cIc′ and i < j ≤ n
is in M . If G is monotonic, M is an open region in G iff its core is nonempty
and connected, and (C) an i-cell c ∈ Cn is in M iff all of the n-cells in I(c) are
also in M .

Proof The complement of an open set is closed; (B) is the complementary formu-
lation of (A) in Theorem 5.2. (C) uses only the n-cells in I(c), but (B) uses all
of the j-cells in I(c) such that i < j ≤ n so that (B) implies (C). Let M satisfy
(C), let the i-cell c be in M , and suppose there exists a j-cell c′ ∈ I(c), i < j ≤ n
such that c′ /∈M . Then at least one n-cell in I(c′) is not in M and hence is not
in I(c), which is impossible if G is monotonic. �

The incidence pseudographs in Figures 5.3 and 5.6 are monotonic.
The closure M• of a finite subset M of an n-incidence pseudograph is the

smallest closed region that containsM . We can construct the closure ofM by adding
all cells c′ such that c′ ∈ I(c) and dim(c′)< dim(c) for some c ∈M .
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5.2 Boundaries, Frontiers, and the Euler Characteristic

5.2.1 Boundaries, chains, and frontiers

Let G = [S,I,dim] be an n-incidence pseudograph. A node c ∈ S is invalid with
respect to M ⊆ S iff c /∈M , but there is an n-node c′ ∈M such that c′ ∈ I(c). This
definition generalizes the concepts of invalid edges and boundaries in adjacency
grids. We recall that any adjacency graph can be transformed into a one-dimensional
incidence pseudograph; see Example 5.1.

Definition 5.9 The set of all nodes that are invalid with respect to M ⊆ S is
called the boundary of M .

Figure 5.9 shows two examples of boundaries for n= 2. The boundary of S is empty,
and the boundary of a region contains no principal nodes.

Let M ⊂ S be finite. A cell c of M will be denoted by c(i) if dim(c) = i. An
i-chain is an expression of the form C(i) =

∑
bkc

(i)
k where each bk = 0 or 1 and the

sum is taken over all of the i-dimensional cells of M . We say that c(i)k is in C(i) iff
bk = 1; we can identify C(i) with the set of i-nodes that are in C(i). We define the
addition of i-chains modulo 2:

∑
bkc

(i)
k +

∑
b′kc

(i)
k =

∑
(bk + b′k)c(i)k where the bs are

added modulo 2. Thus c(i)k is in the sum of two i-chains iff it is in exactly one of the
chains. We write C(i) = 0 if all of its bs are 0 so that it corresponds to an empty set of
i-nodes.

Let C(i) be an i-chain (i > 0). The chain frontier ϑC(i) is the (i− 1)-chain
∑
akc

(i−1)
k where ak is the number (modulo 2) of i-cells in C(i) that are incident with

2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 1 0 1 0 1 0 1 0 1 0 1

2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 1 0 1 0 1 0 1 0 1 0 1

2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 1 0 1 0 1 0 1 0 1 0 1

2 1 2 1 2 1 2 1 2 1 2 1 2

2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 1 0 1 0 1 0 1 0 1 0 1

1 2 1 2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 2 1

0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0

1 2 1 2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 2 1

0 1 0 1 0 1 0 1 0 1 0

FIGURE 5.9 Two regions (bold, unfilled circles) and their boundaries (bold, shaded
circles). Left: closed region. Right: open region.
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FIGURE 5.10 Example of a 2D Euclidean complex.

C
(i−1)
k . For i= 0, we define ϑC(0) = 0. It is not hard to show that ϑ is a linear operator

(i.e., ϑ(C(i) +C′(i)) = ϑC(i) +ϑC′(i) [modulo 2]).
C(i) is called an i-cycle if ϑC(i) = 0. Evidently, a 0-chain is a cycle; a sum of

i-cycles is an i-cycle; and the frontier of any chain is a cycle (i.e., for any i-chain, we
have ϑϑC(i) = 0).

Figure 5.10 shows a subset M of the 2D incidence grid, with 2-cells abhg, bcih,
and so on; 1-cells ag, ab, and so on; and 0-cells a, b, and so on. Using the above
definitions, we have ϑa = 0; ϑab = a+ b; ϑabgh = ab+ bh+ gh+ ag; ϑ(ij+ jn+
no+ko+ jk) = i+3j+2n+2o+2k = i+ j; and jk+ko+no+ jn is a 1-cycle.

Definition 5.10 An open (closed) regionA⊆ S is circumscribed by its bound-
ary (border) M iff the set of all (n−1)-nodes in M is an (n−1)-cycle.

For example, the open region A consisting of the single 2-node jkno in Figure 5.10
has boundary M = {j,k,n,o,jk,ko,no,jn}. The set of 1-nodes in M has an empty
frontier, so it is a 1-cycle.

Let M be a closed region in an infinite incidence pseudograph. M = S \M is
the union of a finite number of pairwise disjoint open regions and one infinite open
subset of S. A (finite) open region is either an open hole (if it is circumscribed by
its boundary) or an open finite background region; the infinite open subset is the
open background. The border nodes of the closed region in Figure 5.11 are shown in
Figure 5.12. If we assume that the incidence pseudograph in Figure 5.11 is a subset
of the 2D incidence grid and use nodes of the incidence grid not shown in the figures,
the border also contains the two 1-nodes in the top row and three more 1-nodes and
five more 0-nodes that “close” the border on the right and at the bottom.

Similarly, if M is an open region, we obtain closed holes (circumscribed by
their borders), closed finite background regions, and a closed background. Figure 5.6
(or Figure 5.7) shows an open hole (after removing node a), and Figure 5.13 shows
an open region for which the infinite background is a closed component (but not a
region because it is infinite). The boundary nodes in Figure 5.14 coincide with the
boundary nodes of the open region in Figure 5.13.
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FIGURE 5.11 A closed region in an infinite incidence pseudograph (a “stripe”
bounded on the right and unbounded on the left) that has three open holes (in the
1-adjacency graph of 2-nodes, two of these would be improper holes and one a proper
hole), three open finite background regions, and an (infinite) open background.

FIGURE 5.12 Boundary nodes of the closed region shown in Figure 5.11.

Theorem 5.2 If the closed component M1 is the closure of the open component
M2, the border of M1 coincides with the boundary of M2.

Proof The border δM1 of a closed componentM1 consists of all nodes c for which
c ∈M1 and I(c) �⊆M1. c cannot be a principal node, because M1 is closed so
that I(c′) ⊂M1 for any principal node c′; however, c is incident with at least
one principal node in M1 because of Definition 5.5. It follows that the nodes
of δM1 constitute the boundary of the open set M1 \ δM1.

Node c is in the boundary of an open componentM2 iff c �∈M2, but there exists
a principal node c′ ∈M2 such that c′ ∈ I(c). It follows that all boundary nodes of
M2 are in the closure M•

2
of M2, hence in the border of this closed component.
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FIGURE 5.13 An open region that has one closed hole (in the 1-adjacency graph
of 2-nodes this would be a proper hole), three closed finite background regions,
and an (infinite) closed background component with a core that consists of three
1-components.

FIGURE 5.14 Boundary nodes of the complementary open regions of the closed re-
gion shown in Figure 5.11.

Conversely, let c be in the border of M•
2

; because M2 is a component, c is

incident with a principal node of M2, so c is in the boundary of M2. �

We recall Definition 3.2 for a subset A of a Euclidean space: the frontier ϑA is
the set-theoretic difference between the closureA• and the interiorA◦. The frontier
of A◦, of A•, or of any set containing A◦ and contained in A• is also ϑA.

Definition 5.11 LetM ⊆S be a subset of an incidence structureG= [S,I,dim].
The frontier ϑM of M is the border of M•.

In analogy with the Euclidean topology, we call M◦ = M• \ϑM the interior of M .
Note that, if M is a component, M◦ is an open component.
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TABLE 5.1 Incidence counts for the pseudograph in Figure 5.2.

node a b c d e f

i 2 1 0 1 2 2
ai2 1 1 1 3 1 1
ai1 2 1 2 1 1 1
ai0 0 1 1 1 0 1

Section 4.3.6 discussed borders and boundaries in adjacency grids at the abstract
level of adjacency graphs. There we were able to state alternatives, but were unable
to unify “border” and “boundary” as in Theorem 5.2, which led to Definition 5.11.

5.2.2 The matching theorem

The matching theorem in this section is a basic combinatorial formula for finite inci-
dence pseudographs of index dimension n≥ 0.

Definition 5.12 LetG= [S,I,dim] be an incidence pseudograph, and let c∈S.
The number shown here is called the incidence count of c:

aij(c) =
{

card{c′ ∈ S : dim(c′) = j ∧ {c,c′} ∈ I } if i= dim(c)
0 otherwise

Because of self-incidence and property I4 (see Section 5.1.1), if dim(c) = i, we have
aii(c) = 1. Table 5.1 gives examples of incidence counts.

Theorem 5.2 (the matching theorem):
∑

c∈S

aij (c) =
∑

c∈S

aji (c) for 0≤ i, j ≤ n.

Proof If i �= j, all of the edges between i-nodes and j-nodes (and only those
edges) are counted in the sum; see Figure 5.15. All edges are undirected, and
the number of endpoints in both sums is the same. If i= j, the sum is equal to
the number of i-nodes. �

Equation 4.4 follows from the matching theorem, because ν(p) = a01(p) for
any node p of an adjacency graph [S,A]. Equation 4.4 can also be derived using the
incidence counts a10(e) for the edges e:

∑

p∈S

ν (p) =
∑

p∈S

a01 (p) =
∑

e∈S

a10 (e) = 2α1
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j j j j j

•  •  •

•  •  •

i i i i i i i

FIGURE 5.15 The undirected edges that connect i-nodes to j-nodes in an incidence
pseudograph.

Definition 5.13 If G is regular, aij(c) = aij is constant for all c ∈ S where
dim(c) = i and j ≥ 0.

This definition generalizes Definition 4.7. The complete graphs Kn are examples
of finite regular one-dimensional incidence pseudographs. The nodes of Kn have
dimension 0, the edges ofKn have dimension 1, and every node is self-incident. The
infinite incidence grids [C2, I,dim] and [C3, I,dim] are also regular.

IfG has index dimensionn≥ 1 andM is a finite subset ofG, the numbers shown
here are called the class cardinalities of M :

αM
i = card{c : c ∈M ∧ dim(c) = i }, 0≤ i≤ n (5.1)

We usually omit the superscript M .
From the Matching Theorem, we know that, for finite regular incidence pseu-

dographs, we have αiaij = αjaji for 0 ≤ i, j ≤ n. It follows that this equation
holds true

αiaik−αkaki = 0 for 0≤ i≤ n (5.2)

for any (e.g., fixed) index k (0≤ k≤ n). Hence the possible integer values of the class
cardinalities αk and αi define constraints (Diophantine equations) on the incidence
counts aki and aik (and vice versa).

5.2.3 The Euler characteristic

In this section, we generalize the definition given in Section 4.3.2 for finite oriented
adjacency graphs in 2D. Note that an edge is incident with a cycle iff it is listed in the
cycle, and a node is incident with an edge iff it is one of the edge’s endnodes.

Definition 5.14 LetG= [S,I,dim]be a finiten-incidence pseudograph (n≥ 1).
The Euler characteristic of G is as follows, where the αis are the class cardinal-
ities of S:

χ(G) =
n∑

i=0

(−1)iαi
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1 0 1 0 1 0 1 0 1 0 1 0 1

2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 1 0 1 0 1 0 1 0 1 0 1

2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 1 0 1 0 1 0 1 0 1 0 1

2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 1 0 1 0 1 0 1 0 1 0 1

2 1 2 1 2 1 2 1 2 1 2 1 2

0 1 0

1 2 1

0 1 0

1 2 1

0 1 0

1 2 1

0 1 0

1 2 1

FIGURE 5.16 Four components that define subpseudographs: two closed regions on
the left and two open regions on the right. The Euler characteristic is 1 in all four
cases.

For example, for the G shown in Figure 5.2, we have χ(G) = 1−2 + 3 = 2. Adding
an edge (e.g., between nodes b and e) does not change the Euler characteristic.
However, deleting a node (e.g., 2-node e) results in an incidence pseudographG′ for
which χ(G′) = 1−2+2 = 1.

If G is regular, the Matching Theorem gives us the following:

χ(G)
αk

=
n∑

i=0

(−1)i aki

aik

These n+1 equations (k = 0,1, . . . ,n) are rational multiples of one another.
Figure 5.16 shows regions in the infinite regular incidence grid [C2, I,dim] that

define subpseudographs (loops omitted). For the upper left region, we have χ =
3− 10 + 8 = 1; for the lower left region, we have χ = 1− 4 + 4 = 1; for the region
on their right, we have χ = 5− 5 + 1 = 1; and, for the remaining 1-path, we have
χ = 7− 6 + 0 = 1. For the region M+ shown on the right in Figure 5.3, we have
χ= 15−28+14 = 1; note that removing marginal border nodes changes this value.
In Figure 5.6, for the closed region on the left, we have χ= 12−33+22 = 1, and, for
the open region on the right, we have χ = 12−15 + 4 = 1. Removing the “central”
2-node a from the closed region creates an “open hole” and givesχ= 11−33+22 = 0.
These examples illustrate the topologic invariance of the Euler characteristic; see
Section 6.4.5.
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5.3 The Regular Case

An incidence pseudograph provides a more “refined” representation of a grid than
does an adjacency graph representation. We begin by discussing regular infinite
incidence pseudographs defined in R

n, but as usual, the cases of interest involve
incidence relations on finite or countable sets of 0-, 1-, 2-, or 3-cells.

5.3.1 Regular infinite incidence pseudographs

The incidence grids [C2, I,dim] and [C3, I,dim], when regarded as pseudographs [S,I,
dim], are monotonic (property I6) and also have properties I7 and I8.

Definition 5.15 The set of all 0-cells is the set (0·5, . . . ,0·5)+ Z
n. Let c be a

k-cell in a k-dimensional subspace of R
n (0≤ k < n). Let ej be the straight line

segment with endpoints that are the origin o and the point (0, . . . ,0,1,0, . . . ,0)
where the 1 is in position j (1≤ j ≤ n). Let ej be in an n−k dimensional sub-
space of R

n. The Minkowski sum c⊕ej in R
n defines a (k+1)-cell. The set of all

i-cells is denoted by C
(i)
n (0≤ i≤ n), and the union of the C

(i)
n is denoted by Cn.

This generalizes Definition 2.1. An informal description is as follows: A 1-cell
is “created” by translating a 0-cell along any of the segments ej . A 2-cell is the
area occupied by a 1-cell while it shifts along an orthogonal segment ej , and a 3-cell
is the volume occupied by a 2-cell while it shifts along an orthogonal segment ej .
Figure 5.17 illustrates these processes up to the creation of a 4-cell.

FIGURE 5.17 Examples of how a Minkowski sum (“union during translation along
an orthogonal line segment ej”) of an i-cell creates an (i+1)-cell.

[Cn, I,dim] (n≥ 1) is called the regular n-incidence grid. It can be verified that
it has properties I6 and I8. Its incidence counts are as follows:

aij

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2j−i

(
n− i
n− j

)
if i < j

1 if i= j

2i−j

(
i
j

)
if i > j

(5.3)
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For example, an i-cell c ∈ Cn is incident with 2
n−1

n-cells. Equation 5.3 implies the
following for 0≤ i, j ≤ n:

aij

aji
=

(
n
j

)

(
n
i

) (5.4)

Equation 5.4 in turn implies the following for 0≤ i≤ n:

n∑

j=0

(−1)j aij

aij
=

1
(
n
i

)
n∑

j=0

(−1)j

(
n
j

)
=

1
(
n
i

) .0 = 0 (5.5)

Both of these equations will later prove to be very useful.

5.3.2 The region matching theorem

In this section, αM
i are class cardinalities, and aij are incidence counts in the regular

incidence grid [Cn, I,dim]. Note that the aij are constants. For n = 2, they are as
follows:

a00 = 1, a01 = 4, a02 = 4,
a10 = 2, a11 = 1, a12 = 2,
a20 = 4, a21 = 4, a22 = 1

For n= 3, they are as follows:

a00 = 1, a01 = 6, a02 = 12, a03 = 8,
a10 = 2, a11 = 1, a12 = 4, a13 = 4,
a20 = 4, a21 = 4, a22 = 1, a23 = 2,
a30 = 8, a31 = 12, a32 = 6, a33 = 1

The numbers shown here are called boundary counts for the cells in M :

bMij (c) =

⎧
⎨

⎩

card{c′ ∈ I(c) : dim (c′) = j∧ c′is invalid}
if c ∈M and i= dim(c)
0 otherwise

The numbers shown here are called total boundary counts for M :

bMij =
∑

c∈S

bMij (c) for 0≤ i, j ≤ ind(G)

From now on, we omit the superscript M .
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Theorem 5.2 (the Region Matching Theorem): Let M be an open or closed re-
gion in the regular incidence grid [Cn, I,dim]. For 0 ≤ i, j ≤ n, we have the
following:

αiaij− bij = αjaji for i < j if M is closed or for i > j if M is open

αiaij = αjaji for i= j

αiaij + bji = αjaji for i > j if M is closed or for i < j if M is open.

Proof Let M be closed. In the equations for i < j, the right sides are the number
of j-cells in M times the number of i-cells that are incident with any of these
j-cells (i.e., the number T of incidences between j-cells inM and i-cells). All of
these i-cells are also elements ofM ; see (A) in Theorem 5.2. The total number
of incidences between i-cells in M and j-cells in M is evidently T . However,
the i-cells in M are also incident with bij j-cells, which are not in M ; hence the
count αiaij on the left side of the equation must be reduced by bij .

The second equation is trivial and is given only for completeness.

The equations for j < i are proved for a closed region M by simply swapping
i and j in the discussion of the i < j case. For an open region M , we use (B)
from Theorem 5.3. �

Note that the proof of this theorem makes no use of the connectedness of a region,
but only of its being either closed or open. Figure 5.18 shows an open and a closed
region. For the open region, we have α0 = 0, α1 = 1, α2 = 2, b10 = 2, b20 = 8, and
b21 = 6; for example, 1 ·2+6 = 2 ·4 if i= 1 and j = 2. For the closed region, we have
α0 = 7, α1 = 8, α2 = 2, b01 = 12, b02 = 20, and b12 = 8; for example, 7 ·4−20 = 2 ·4 if
i= 0 and j = 2.

The formulas of the Region Matching Theorem hold for any finite union of
pairwise disjoint closed (or open) regions.

FIGURE 5.18 Left: open region. Right: closed region.
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For a closed region M or a finite union of pairwise disjoint closed regions, the
Region Matching Theorem implies the following:

αi = αj
aji

aij
+
bij
aij

if i < j

αi = αj
aji

aij
if i= j

αi = αj
aji

aij
− bji

aij
if i > j

For example, αn specifies the contents of an isothetic polyhedron in Cn (n ≥ 2).
These formulas allow us to calculate αn based on counts of, for example, vertices;
see Section 8.1.6 for n= 2 and Section 8.3.7 for n= 3. Using Equation 5.5, it follows
that the Euler characteristic, as follows,

χ (M) =
n∑

i=1

(−1)iαi

= αj

⎡

⎣
j−1∑

i=0

(−1)i aji

aij
+(−1)j +

n∑

i=j+1

(−1)i aji

aij

⎤

⎦ +
j−1∑

i=1

(−1)i bij
aij
−

n∑

i=j+1

(−1)i bji

aij

=
j−1∑

i=1

(−1)i bij
aij
−

n∑

i=j+1

(−1)i bji

aij

can be calculated for any j (0 ≤ j ≤ n) by counting only invalid cells (cells on the
boundary of the region). Similarly, for an open regionM or a finite union of pairwise
disjoint open regions, we have the following for any 0≤ j ≤ n:

χ(M) =−
j−1∑

i=1

(−1)i bji

aij
+

n∑

i=j+1

(−1)i bij
aij

Indices j = 0 and j = n give the simplest expressions. In the next section, we will
show that these expressions can be further simplified.

5.3.3 Euler characteristics

We apply the Region Matching Theorem and Conclusion 5.3.2:

Lemma 5.1 Let M be a finite union of pairwise disjoint closed regions in the
n-incidence grid. For 0≤ i, j ≤ n, we have the following:

αi = αn
ani

ain
+

n−1∑

j=i

bj,j+1

aj+1,j
· aj+1,i

ai,j+1
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Proof The proof is by downward induction starting at i= n:

αn = αn
ann

ann
+0

Assuming that the equation is correct for i≥ 1, we show that it is also correct
for i−1. From the Region Matching Theorem, for a closed region we have the
following, where Equation 5.4 can be used to simplify products of b-values:

αi−1 = αi
ai,i−1

ai−1,i
+
bi−1,i

ai−1,i

= αn
aniai,i−1

ainai−1,i
+

n−1∑

j=i

bj,j+1aj+1,iai,i−1

aj+1,jai,j+1ai−1,i
+
bi−1,i

ai−1,i

= αn
an,i−1

ai−1,n
+

n−1∑

j=i−1

bj,j+1aj+1,i−1

aj+1,jai−1,j+1

�

Analogously, for open regions, we have the following:

Lemma 5.2 Let M be a finite union of pairwise disjoint open regions in the
n-incidence grid. For 0≤ i, j ≤ n, we have the following:

αi = α0
a0i

ai0
−

i∑

j=1

bj,j−1

aj−1,j
· aj−1,i

ai,j−1

The following theorem was proved by K. Voss in 1993 for open regions:

Theorem 5.2 LetM be a finite union of pairwise disjoint closed (or open) regions
in [Cn, I,dim]. Then the Euler characteristic of M is as follows:

χ(M) =
1
2n

n∑

i=1

(−1)i+1bi,i−1 for open regions

and

χ(M) =
1
2n

n−1∑

i=0

(−1)i+1bi,i+1 for closed regions
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Proof We prove the theorem for open regions; closed regions can be treated
analogously. Lemma 5.2 and the equation

∑
(−1)ia0i/ai0 = 0 show that the

following is true:

χ(M) =
n∑

i=0

(−1)i

⎛

⎝−
i∑

j=1

bj,j−1aj−1,i

aj−1,jai,j−1

⎞

⎠

The double sum can be rearranged: first take the sum for all j-values and then
for all i-values. It follows that what is shown here is true:

χ(M) =
n∑

j=1

bj,j−1

aj−1,j

n∑

i=j

(−1)i+1 aj−1,i

ai,j−1

The formula for closed regions then follows from Equation 5.4 and for 0≤m< n:

−
n∑

i=m+1

(−1)i

(
n
i

)
=

m∑

i=0

(−1)i

(
n
i

)
= (−1)m

(
n−1
m

)
(5.6)

�

The bi−1,is and bi+1,is in Theorem 5.2 can be replaced with class cardinalities
and (globally known) incidence counts because the following are given:

bi,i−1 = αi−1ai−1,i−αiai,i−1 for open regions

bi,i+1 = αiai,i+1−αi+1ai+1,i for closed regions

Let n = 3. For a closed region, b01 is the number of invalid grid edges incident
with grid vertices in the region, b12 is the number of invalid grid squares inci-
dent with grid edges in the region, and b23 is the number of invalid grid cubes
incident with grid squares in the region. For open regions, we use b10, which is
the number of invalid grid vertices incident with grid edges in the region; b21, the
number of invalid grid edges incident with grid squares in the region; and b32,
the number of invalid grid squares incident with grid cubes in the region. Note
that the total boundary counts are sums over all cells in M so that invalid cells may
be counted repeatedly if they are incident with several cells in M .

Figure 5.19 shows a 2D example. For the left closed region, we have b12 = 16
and b01 = 16, and, for the right closed region, we have b12 = 4 and b01 = 8. For the left
open region, we have b21 = 16 and b10 = 16, and, for the right open region (a single
node), we have b21 = 4 and b10 = 0.
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1 0 1 0 1 0 1 0 1 0 1 0 1

2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 1 0 1 0 1 0 1 0 1 0 1

2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 1 0 1 0 1 0 1 0 1 0 1

2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 1 0 1 0 1 0 1 0 1 0 1

2 1 2 1 2 1 2 1 2 1 2 1 2

0 1 0 1 0 1 0 1 0 1 0

1 2 1 2 1 2 1 2 1 2 1

0 1 0 1 0 1 0 1 0 1 0

1 2 1 2 1 2 1 2 1 2 1

0 1 0 1 0 1 0 1 0 1 0

1 2 1 2 1 2 1 2 1 2 1

0 1 0 1 0 1 0 1 0 1 0

1 2 1 2 1 2 1 2 1 2 1

FIGURE 5.19 Nodes in regions are represented by bold filled circles. Left: two closed
regions with Euler characteristics 0 and 1. Right: two open regions, also with Euler
characteristics 0 and 1.

5.4 Pictures on Incidence Grids

5.4.1 Ordered labeling

In a labeled incidence pseudograph G = [S,I,dim], each node in G has a label, and
the labels belong to a finite set {L0, . . . ,Lmax}.

A picture assigns labels (values of pixels or voxels) to all of the principal nodes
of S. We assume that the set of these labels is totally ordered by “significance,”
so nodes labeled Lmax are the “most significant” (e.g., “object pixels”) and nodes
labeled L0 are the “least significant” (e.g., “background pixels”). For example, a 2D
picture assigns labels (pixel values) to all 2-cells in Gm,n and label L0 to all 2-cells in
the infinite background component.

An ordered labeling of the nodes of an incidence pseudograph is defined by
assigning labels to the principal nodes and extending this labeling to the other nodes
by applying the following maximum-label rule:

Give every marginal node the largest label of any of its incident principal
nodes.

According to I5, any marginal node has candidate labels, and, according to I1, the
set of candidates is finite, which allows us to choose the largest of them. The rule
ensures that regions labeled with Lmax are closed and regions labeled with L0 are
open.

In picture processing or analysis, we do not need to perform actual labeling
but only to detect adjacencies between labeled principal nodes, assuming that all
marginal nodes have been labeled. During a scan through the set of principal nodes,
we have to decide whether two nodes c1 and c2 such that I(c1)∩ I(c2) �= ∅ are still
adjacent after ordered labeling. An algorithm for this is given in Algorithm 5.1.
An order by decreasing node dimension (Step 2) has been assumed for efficiency
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reasons; the scan through the marginal nodes in I(c1)∩I(c2) should visit nodes with
I(c)s that have increasing cardinalities, and the ordering by node dimension may
ensure this.

If G is a binary picture and we assume that black (or white) is the most sig-
nificant label, the resulting adjacency is just the (4,8)- or (8,4)-adjacency defined in
Section 2.1.4. These two adjacencies are illustrated in Figure 5.20, together with the
corresponding representations of the components in the incidence grid.

The situation is more complicated ifG is a multilevel picture, because there are
many possible total orderings of the labels. Figure 5.21 illustrates three such orderings
for a three-valued picture; each ordering yields a different adjacency structure.

In the next section, we will describe a general method of defining adjacencies for
a given ordered labeling. In a 2D picture, this method yields adjacencies in which di-
agonal adjacencies never “cross,” as illustrated in Figure 5.22. These adjacencies can
be defined using the 2×2 masks shown in Figure 5.23. Note that these masks accept
all 4-adjacencies between pixels that have the same label and that they also
accept diagonal adjacencies between two pixels that have the same label as a third
pixel that is adjacent to both of them. Only in case (g) is it necessary to choose be-

1. If c1 and c2 have different labels, stop (FALSE). Otherwise, let L be the

label of c1 and c2.

2. Scan through all of the marginal nodes in I(c1)∩ I(c2); assume that this
set is ordered by decreasing dimension, and start with a node c of maximal
dimension.
(a) If I(c) does not contain a principal node with a larger label than L,

stop (TRUE).
(b) Let c be the next marginal node in I(c1)∩ I(c2). If it does not exist,

stop (FALSE); otherwise, go to Step 2.a.

ALGORITHM 5.1 Local adjacency decision procedure, assuming an ordered labeling.

FIGURE 5.20 (4,8)- and (8,4)-adjacencies and the corresponding representations of
the components in the incidence grid.
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FIGURE 5.21 A three-valued input picture (from left to right): all of the 4-components
in the grid point model; closed (open) regions are black (gray); closed (open) regions
are gray (white); closed (open) regions are gray (black).

FIGURE 5.22 Left: the binary picture from Figure 1.10. Right: adjacencies resulting
from ordered labeling, assuming “white is less significant than black” and dropping
crossing pairs of diagonals.

tween the (black, black) and (white, white) diagonal adjacencies. When this method
of defining adjacencies is used, the adjacencies define a planar graph, and, as we will
see in Chapter 7, the resulting region adjacency graph is a tree.

5.4.2 The ordered adjacency procedure

We now describe a general procedure for the ordered labeling of incidence grids
that applies in particular to 2D or 3D multilevel pictures. Let G = [S,I,dim] be a
labeledn-incidence grid, and assume a total ordering of the set of labels. Our ordered
adjacency procedure defines adjacencies between principal nodes of G that depend
on this total order.

Let S be finite, let c0 be a 0-cell, and let I(n)(c0) be the set of all principal
nodes in I(c0). We begin with any 0-cell c0 in S and any pair c1 and c2 of nodes in
I(n)(c0), and we proceed as described in Algorithm 5.2. We then continue for all of
the remaining 0-cells in S.

This procedure guarantees that components are defined by (n− 1)-adjacency
between principal nodes if they have the same label or by i-adjacency (i < n) if their
label “wins” over at least one “competing” label. It simplifies the switch approach
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dcba

hgfe

FIGURE 5.23 In case (g), decide whether “white is less significant than black” or vice
versa.

described in Section 2.1.3 by eliminating redundant adjacencies and generalizes it to
incidence grids of arbitrary dimension.

The result of applying the procedure to the multilevel picture shown in Fig-
ure 2.19 is shown in Figure 5.24. The scan of I(n)(c0) to list all pairs (c1, c2) in it can
be based on a uniform local cyclic order, but the result is independent of the order
in which the pairs are chosen.

The adjacency defined by applying the procedure to a picture depends only
on the total order of the labels 0, . . . ,Gmax. As a default, we assume the order
0< 1< .. . < Gmax, for which we have the following:

Proposition 5.2 For a binary picture, ordered adjacency and (8,4)-adjacency gen-
erate the same sets of object and nonobject components.

1. If c1 and c2 are already adjacent, go to the next pair. Otherwise:

2. If they have the same label L, and they are
(a) (n−1)-adjacent; or
(b) there is a marginal node c′ ∈ I(c1)∩ I(c2) with dim(c′) ≤ n− 2 such

that I(c′) is not contained in the union of all the incidence sets I(c),
c ∈ I(n)(c0), and L is the maximal label of all the principal nodes in

I(c′),
then accept adjacency between c1 and c2.

ALGORITHM 5.2 Ordered Adjacency Procedure: local test for a pair of 0-adjacent
principal nodes.
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FIGURE 5.24 Ordered adjacencies for the picture shown in Figure 2.19, assuming the
same order of the picture values as in Figure 2.19.

5.4.3 Frontiers in 2D incidence grids

In a 2D incidence grid, the boundary of a closed region consists of one or more
1-components of 2-cells (grid squares), and the boundary of an open region consists
of one or more 0-components of 1-cells (grid edges). The union of the 1-cells in
the boundary of an open region is the same as the boundary of the region in the
1-adjacency grid. Figure 4.27 (right) shows an example.

The set of 1-cells that are incident with exactly one 2-cell of a region defines
the frontier of the region. Every 0-component of these 1-cells has a Hamiltonian
circuit that visits each 1-cell in the 0-component exactly once.3 The border tracing
algorithm (see Chapter 4) can be used to trace the border cycles in the 0-adjacency
graph of these 1-cells.

We now describe a method of representing these sets of 0- and 1-cells. Let P be
a picture on anm×n grid G, which we call the picture grid. We extend this grid to an
(m+ 1)× (n+ 1) frontier grid F, where each grid point in F represents a grid vertex
(0-cell) in G; specifically, grid vertex (x−0·5,y−0·5) in G represents grid point (x,y)
in F.4 Figure 5.25 shows the picture grid and the frontier grid for the picture shown
in Figures 1.10 and 5.22.

The geometric representation of the frontiers in G is the union of the small
squares and thin rectangles that represent 0-cells and 1-cells, respectively. Figure 5.25
shows counterclockwise frontier traversals for the interior regions and clockwise
traversals for the exterior regions and the (infinite) background component. This

3. We assume an infinite incidence grid or a finite grid “expanded” into the infinite background component so that
“missing” border cells (see Figure 5.12) can be excluded (i.e., a region’s frontier always circumscribes it).

4. Interpixel frontiers (in the grid cell model) were first used by R. Brice and C.L. Fennema [128] for picture
segmentation. The frontier grid is also known as a “half-integer grid” and has been popularized in digital topology;
see, for example, [326, 505, 591].
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FIGURE 5.25 Left: picture grid showing the ordered adjacencies and frontiers for
all components. Right: frontier grid showing the Hamiltonian circuits for all 0-
components of 1-cells of all frontiers.

reflects the use of local circular order (A) in Figure 4.19. We use the following
notation when q2 is the direct successor of q1 in the local circular order at pi:

q1→
i
q2

To traverse all of the frontiers, we scan the picture (e.g., using a standard scan
[see Section 1.1.3]) until we arrive at a pixel (x0,y0) in G that has an 0-cell on a “new”
frontier component of a region or of the background. We then generate a 4-path in
G that traverses this frontier. To do this, we start at the upper left 0-cell of (x0,y0)
(i.e., at grid point (x0,y0 +1) in F). Each step from a grid point to a 4-adjacent grid
point on the frontier goes around a pixel, keeping the pixel on the right as shown in
Figure 5.26. A step σ ∈ {UP,RIGHT,DOWN,LEFT} specifies how the coordinates
of this pixel τσ are chosen.

We assume the default order for the pixel values u and v. In the flip-flop case
(g) (see Figure 5.23), adjacency between pixels that have value v is preferred over
adjacency between pixels that have value u if u< v. The frontier tracing algorithm is
given in Algorithm 5.3. It is a special case of the general border tracing algorithm of
Figure 4.26. The important difference is that here we test whether the step sequences
σ,σ′ are possible at a grid point. If a step sequence is not a left turn, it is possible iff
the pixel τσ′(q) has value u = P (x0,y0); if it is a left turn, it is impossible iff the two
diagonal pixels other than τσ(pi) and τσ′(q) have the same valuew>u. The algorithm
could be further optimized by removing redundant tests, but its time complexity is
linear in the number of 1-cells on the 0-component of the frontier that is being traced.

5.4.4 Frontiers in 3D incidence grids

In a 3D incidence grid, the boundary of a closed region consists of one or more
2-components of 3-nodes (grid cubes), and the boundary of an open region consists
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(x,y )
(x,y )(x,y )

(x – 1,y)(x – 1,y – 1)(x,y – 1)

(x,y )

(x,y )

FIGURE 5.26 A step in the frontier grid (hollow dots) is shown by an arrow pointing
to grid point (x,y); the corresponding pixel in the picture grid (filled dot) is on the
right of this arrow.

1. Let q0 := (x0−1,y0 +1), p0 := (x0,y0 +1), σ0 := RIGHT, i := 0, and k := 0.

2. Let qk→
i
q describe a step σ. If the step sequence σi,σ is not possible at pi,

go to Step 4.
3. q is the next grid point on the frontier circuit. Let i := i+ 1, pi := q, and
σi := σ. Let pi−1→i q describe a step σ. If the step sequence σi,σ is possible

at pi, go to Step 3; otherwise, let k := i−1, and go to Step 4.
4. If (q,pi) = (q0,p0), go to Step 5. Otherwise, let k =: k+ 1, qk := q, and go

to Step 2.
5. We are back at the original directed invalid edge (q0,p0). The frontier

circuit is 〈p0,p1, . . . ,pi〉.

ALGORITHM 5.3 Frontier tracing algorithm in the frontier grid.

of one or more 1-components of 2-nodes (grid faces). In the latter case, the boundary
defines a 1-adjacency graph of grid faces, all incident with grid cubes in the open
region and with grid cubes in the complementary set. Figure 5.27 shows the simplest
example; the open region consists of a single grid cube, and the 1-adjacency graph of
its frontier has a Hamiltonian circuit.5 If we add one cube at a time that is incident
with exactly one face of the union of the existing cubes (note that we also have to add
that face itself to ensure that the region remains complete), we obtain a 2-connected
set of grid cubes that forms a simple 2-tree that contains no circuits (and therefore is
a tree) and no 2×2 cube configurations (and therefore is simple).

Proposition 5.3 The 1-adjacency graph of the frontier faces of a simple 2-tree of
grid cubes is a Hamiltonian graph (i.e., it has a Hamiltonian circuit).

5. The vertices and edges of a k-cell (k ≥ 0) form a graph that defines a k-dimensional hypercube [997]. All
hypercubes are Hamiltonian bipartite graphs.
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FIGURE 5.27 Left: cube. Middle: map of the cube’s faces (grid squares) in the plane
and 1-adjacency graph of these faces, with a Hamiltonian circuit corresponding to
the straight path. Right: isothetic polygonal circuit (on the cube’s frontier) that
represents the Hamiltonian circuit.

1

2

3

2

14

5

5
4

3

FIGURE 5.28 Left: entry and exit points on opposite edges. Right: entry and exit
points on 0-adjacent edges.

Proof A Hamiltonian circuit for the simplest case of a single grid cube is shown
in Figure 5.27. Suppose we have a tree of n cubes and a Hamiltonian circuit (an
isothetic polygonal circuit) on the frontier of the tree, and we attach an (n+1)st
cube to one of the existing cube faces, for example, face c0. There are only two
possibilities for the entry and exit points of the isothetic polygonal circuit on c0

(see Figure 5.28): they are either on opposite edges or on 0-adjacent edges. In
both cases, we can replace the isothetic segment in c0 with an isothetic polygonal
path (see Figure 5.28) to obtain a Hamiltonian circuit for the tree of n+ 1
cubes. �

Arbitrary regions in a 3D incidence grid may not have Hamiltonian circuits or
paths through the 1-components of 2-nodes on their frontiers. A complete traversal
of the faces on the frontier requires in general that some faces be visited repeatedly.

Let F = [S,I,dim] be a downward restriction of the 3D incidence grid that
contains all of the cells in the frontier of a region. The FILL procedure (see Algo-
rithm 4.1) provides a way of visiting all of the faces in F .

Let L be a 3D array of the same size as the array that represents the voxels. We
assign labels to L that correspond to voxel positions. We use six bit-positions in each
label, which correspond to the six faces of a voxel. A 1 in the ith position indicates
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that the face has already been visited. The tracing algorithm starts at some face in
S and applies FILL based on the adjacency defined for the faces in F by available
0- and 1-cells. We can use a stack or queue in Figure 4.3 to implement a depth-first
or breadth-first traversal of all of the faces on the frontier.

This frontier tracing algorithm is easy to implement, but the faces are visited in
an “unordered” sequence. The purpose of the tracing (e.g., coloring all of the fron-
tier faces, approximating the frontier by segments of digital planes) may determine
whether the algorithm is of interest. Note that the algorithm is based on graph-
theoretic concepts only; it makes no use of an embedding of the 3D incidence grid
into a Euclidean or metric space.

5.5 Exercises

1. Which of the following relational properties are true in general for adjacency,
(smallest nontrivial) neighborhood, and incidence: reflexivity, irreflexivity, sym-
metry, and transitivity?

2. A simple polygon has vertices (cells of dimension 0), edges (cells of dimension
1), and one face (a cell of dimension 2). Suppose we tile the plane with simple
polygons in an arbitrary, irregular way, adding one simple polygon at a time
that is disjoint from all previous polygons except for sharing an edge with one
of them. This defines an incidence pseudograph with respect to set-theoretic
incidence. What is the Euler characteristic of this pseudograph, assuming that
the union of all of the polygons is a simple polygon (i.e., it has no holes)?

3. A Gray code [376] for a sequence of consecutive integers has the property that the
codes for successive integers differ by only one bit. For example, 0→ 00, 1→ 01,
2→ 11, and 3→ 10 is a Gray code for the integers 0, 1, 2, and 3 (in that order).
In analogy to Definition 5.15, we can construct hypercubes as follows: We label
the vertices of a 1-cell 0 and 1. Given a labeled k-dimensional hypercube, we
make two copies of it, append 0 and 1 to the node labels of the first and second
copy, respectively, and connect corresponding nodes in the two copies with new
edges. Prove that the sequence of node labels on any Hamiltonian circuit of
the resulting (k+1)-dimensional hypercube defines a Gray code for the integers

0,1, . . . ,2
k+1−1.

4. Prove that the family of open (closed) regions in [C2, I,dim] is closed under finite
unions and intersections.

5. Let the unions of the following sets of cells be either open or closed regions
in [C3, I,dim]. Calculate the Euler characteristics of these regions using the
equation in Definition 5.14 or using Theorem 5.2.
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6. Prove Equation 5.6 by induction on m.

7. Suppose the ordered adjacency procedure is applied to the two multilevel pic-
tures shown below. Identify the components of the P -equivalence classes, trace
their frontiers, and calculate their Euler characteristics.

7 6 7 6 7 7 7 7 7 7

6 7 6 7 4 4 4 7 8 7

7 6 4 4 4 2 4 4 7 8

6 4 3 4 2 2 4 5 4 7

7 6 4 4 2 2 4 4 2 2

6 7 4 2 4 4 4 2 2 2

7 6 2 2 6 6 4 2 6 2

6 2 6 6 2 2 2 2 2 2

1 2 1 2 1 1 1 1 1 1

2 1 2 1 4 4 4 1 0 1

1 2 4 4 4 6 4 4 1 0

2 4 5 4 6 6 4 3 4 1

1 2 4 4 6 6 4 4 6 6

2 1 4 6 4 4 4 6 6 6

1 2 6 6 2 2 4 6 2 6

2 6 2 2 6 6 6 6 6 6

8. Implement the frontier tracing algorithm for 2D multilevel pictures, assuming
the default total order of the picture values.

9. Extend the frontier tracing program of Exercise 8 by counting local properties
during frontier tracing and combining the counts to determine the Euler char-
acteristic. The program should have runtime complexity linear in the number of
1-cells visited during frontier tracing.

5.6 Commented Bibliography

Incidence pseudographs have been studied from the viewpoints of graph theory,
geometry, and combinatorial topology; see [1107] by K. Voss, parts of which are
summarized in Sections 5.1 and 5.3. For independent publications of Equation 5.3,
see [220, 532, 927], all three of which were published between 1971 and 1973. Inter-
estingly, the book [1107] discussed incidence pseudographs in the situation shown in
the lower left of Figure 2.12 (e.g., pixels or voxels as grid points in 2D or 3D incidence
structures)—which are not studied in this book—without referring to the regions as
being “open.” The discussion of combinatorial formulas for closed regions in this
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chapter is new. Open and closed regions will also be studied in the following chapters
about topology.

For an early discussion of components of incidence grids see, for example,
[432, 536]. In [591] V.A. Kovalevsky proposed the “maximum-label rule” for ordered
labeling and a local adjacency decision rule for 2D pictures; see the local adjacency
decision procedure (Algorithm 5.1) for the n-dimensional case. The frontier tracing
algorithm (Algorithm 5.3) has its roots in [424, 591].

Edge adjacencies between frontier faces of a 2-component define a surface
graph in which all nodes have constant degree 4. This allows frontier tracing using
the simple FILL approach; see [1107], Section 3.1. [550] uses a breadth-first search
strategy in the FILL procedure to grow “disk-like” faces on the frontier of a region in
the 3D incidence grid. The “classic” algorithm [48] for traversing all frontier faces of a
6-connected region is explained in detail in [430] and will be described in Section 8.4.1.
The geometric locations of the faces (2-cells) are used in this algorithm to identify
two “in-faces” and two “out-faces.” In comparison with the simple FILL procedure,
this makes it possible to reduce the numbers of visits to faces to a maximum of 2.
Unlike the rest of the material in this chapter, this is not a purely graph-theoretic
approach, because it makes use of coordinates. The FILL procedure can also be
applied to 18- or 26-connected regions.

Gray codes (see Exercise 3) are discussed in [997].
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C H A P T E R 6

Topology

Digital geometry is often concerned with analyzing topologic properties of sets
of pixels or voxels. The topology of Euclidean space was briefly discussed in
Section 3.1.7. The definitions of open and closed regions in Section 5.1.4 indi-
cated that these topologic concepts are applicable to discrete structures. This
chapter summarizes basic topologic concepts and properties that are relevant
to adjacency and incidence grids, defines digital topologies, and provides a brief
introduction to combinatorial topology.

6.1 Topologic Spaces

In the last third of the 19th century, H. Poincaré and others established topology as
a branch of modern mathematics. Point-set topology studies topologic spaces. In
early publications about topology, the underlying set S of a topologic space was a
Euclidean space, but, in modern topology, it can be an abstract set.

6.1.1 General definitions

[S,G] is called a topologic space iff G is a family of subsets of S that has the following
three properties:

T1: {∅,S} ⊆ G
T2: LetM1,M2, . . . be a finite or infinite family of sets in G; then the union of these

sets is also in G.

T3: Let M1,M2, . . . ,Mn be a finite family of sets in G; then the intersection of
these sets is also in G.

G is called a topology on S, and its elements are called open sets. M ⊆ S is called
closed iff its complement M = S \M is open. It follows from T2 and T3 that the
family of closed subsets of S is closed under finite unions and arbitrary intersections.

193
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The interiorM◦ ofM ⊆ S is the union of all open subsets ofM . The closureM•
ofM is the intersection of all closed subsets of S that containM . SetM is open iff it
coincides with its interior and closed iff it coincides with its closure. ∂M =M•∩(M)•
is called the frontier of M .

The degenerate topology [S,℘(S)], in which every subset of S is open as well as
closed, is a topologic space. In this topology, we have M• = M◦ = M and ∂M = ∅
for everyM ⊆ S. (The degenerate topology is called the “discrete topology” in most
books about topology, but this would not be appropriate in a book about digital
geometry.)

Any metric space [S,d] induces a topology on S; see Section 3.1.7. In this
topology, the closure M∗ is the set of all p ∈ S such that d(p,M) = 0.

The Euclidean metric de induces the Euclidean topology E
n on R

n (n≥ 1). For
example, for n = 1, an open interval (x,y) = {z ∈ R : x < z < y} (x,y ∈ R; x < y) is
an open set, and a closed interval [x,y] = {z ∈ R : x≤ z ≤ y} is a closed set.

The binary metric db induces the degenerate topology on any setS. The metrics
dα, α ∈ {4,6,8,18,26} (see Section 3.2.2) and ∂α, α ∈ {0,1,2} (see Section 3.3.1) also
induce the degenerate topology on Z

2 or Z
3 (the grid point model) and on C

(2)
2

or

C
(3)
3

(the grid cell model).

Nondegenerate topologies can be defined on discrete sets. In particular, the
open sets of Section 5.1.4 define a topology on any incidence pseudograph. We will
discuss these topologies in detail later in this chapter.

Let [S,G] be a topologic space andM ⊆S; then [M,GM ] is also a topologic space,
where GM = {A∩M : A ∈ Z}. GM is called the inherited topology on M , and M is
called a topologic subspace of S. Note that M itself is both open and closed in GM .
(The inherited topology is also called “relative topology” in topology textbooks.)

Definition 6.1 M is called (topologically) connected iff it is not the union of
two disjoint nonempty open subsets (or, equivalently, closed subsets) of M .

Maximum connected subsets of M are called components of M .
[S,G] is called an Aleksandrov1 space or Aleksandrov topology iff any intersec-

tion of open sets is open. If S is finite, any [S,G] is Aleksandrov.

Definition 6.2 Let [S,G] be a topologic space and p ∈ S; then any subset of S
that contains an open superset of p is called a (topologic) neighborhood of p.

For example, in the Euclidean topology E
1 on R, an open interval (x,y) is a neigh-

borhood of any z ∈ (x,y), and a closed interval [x,y] is a neighborhood of z ∈ [x,y]
iff z 	= x and z 	= y.

In an Aleksandrov space, the intersection U(p) of all neighborhoods of p ∈ S
is the smallest neighborhood of p, which is also called the star of p. Evidently, U(p)
must be an open set. U may not define a symmetric relation on S; we can have
q ∈ U(p) but p /∈ U(q).

1. Also spelled Alexandroff.



6.1 Topologic Spaces 195

[S,G] is called a Kolmogorov space or T0-space iff, for any two distinct points
of S, at least one of them has a neighborhood that does not contain the other.2 The
degenerate topology is a T0-space. An Aleksandrov topology is T0 iff, for every two
distinct points p and q, U(p) and U(q) are distinct.

Definition 6.3 G′ ⊆ G is called a basis of [S,G] iff any nonempty set in G is a
union of (possibly infinitely many) sets in G′.

For example, in the topology induced by a metric space, the set of all ε-neighborhoods
is a basis. The set of all open intervals of R is a basis of the Euclidean topology E

1.
In an Aleksandrov topology, the set of all smallest neighborhoods is a basis.

Example 6.1 (N. Bourbaki, 1961) The family {[x,+∞) : x ∈ R} is a basis of
a topology on R called the right topology on R. It follows, for example, that
any (−∞,x) is closed. Analogously, the family {(−∞,x] : x ∈ R} is a basis of
a topology on R called the left topology on R. Note that the sets [x,+∞) and
(−∞,x] are not open in the Euclidean topology on R.

A topologic space has a countable basis iff it has a basis of cardinality of at most
ℵ0, where ℵ0 is the cardinality of the set N of natural numbers. For example, the set
of all open intervals with rational endpoints is a countable basis of E

1.

6.1.2 Poset topologies

A reflexive, antisymmetric (for all pairs p and q such that p 	= q), transitive binary
relation on a set S is called a partial order and is denoted by �. [S,�] is called a
partially ordered set (poset, for short).

Definition 6.4 In the poset topology on [S,�], M ⊆ S is open iff p ∈M and
p�q implies q ∈M for all p,q ∈ S.

Any poset topology is Aleksandrov. Following [9], we know that there is a one-
to-one correspondence between Aleksandrov topologies on a set S and quasiorders
(reflexive and transitive relations) on S, and a quasiorder is a partial order iff the
corresponding Aleksandrov topology is T0. An open set defines an “upper set” of
the quasiorder (in the sense of Definition 6.4), and the order “less than or equal to”
corresponds to “is in the closure of.”

The incidence grid topology (see Section 6.2.3) is an example of a poset topol-
ogy. Another example is the following:

Za = [{{i} : i ∈ Z}∪{{i, i+1} : i ∈ Z},⊆] (6.1)

2. For completeness, we mention that S is called a T1-space iff, for any two distinct points of S, each of the points

has a neighborhood that does not contain the other. S is called a T2-space or Hausdorff space iff any two distinct

points of S have disjoint neighborhoods. For example, Euclidean space is a Hausdorff space.
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In this example, {i} ⊆ {i}, {i, i+1} ⊆ {i, i+1}, {i} ⊆ {i, i+1}, and {i+1} ⊆ {i, i+1}
are the only instances of the partial order �. This Za is a T0-space. In this topol-
ogy, {{i, i+ 1}} and {{i},{i, i+ 1},{i, i− 1}} are open. The union of the open sets
{{2,3},{3},{3,4}} and {{4,5}, {5}, {5,6}} is the open set {{2,3},{3},{3,4},{4,5},
{5},{5,6}}. The union of the open sets {{i},{i, i+ 1},{i, i− 1}} such that i ≤ 2 or
i ≥ 6 is the open set Za \ {{4}}. The complement of this open set is the closed set
{{4}}. Let us consider the following sets (i ∈ Z, k ≥ 1):

Cik = {{i},{i, i+1},{i+1}, . . . ,{i+k−1},{i+k−1, i+k},{i+k}}
It is easy to see that C◦ik = Cik \{{i},{i+k}}, C•ik = Cik, and ∂Cik = {{i},{i+k}}.

The sets {{i},{i, i+1},{i, i−1}}, and {{i, i+1}} (i ∈ Z) are a countable basis
of Za. M = {{i},{i+ 1},{i, i+ 1}}, which is neither open nor closed in Za, has the
following inherited topology,

GM = {∅,{{i, i+1}},{{i},{i, i+1}},{{i+1},{i, i+1}},M}
in which the closed sets are as follows:

{∅,{{i}},{{i+1}},{{i},{i+1}},M}
Thus M is connected, because it is not a union of two disjoint nonempty closed sets.

6.1.3 Topologies on incidence pseudographs

Let [S,I,dim] be an n-incidence pseudograph. The set of all open subsets of S
(consisting of nodes of any dimension) defines a topology on S. Our particular
interest is in components that consist of principal nodes. A complete subset M ⊆ S
is not always a union of components, because there may be i-nodes inM that are not
incident with any n-node in M . M is called purely n-dimensional iff it is a union of
components.

Theorem 6.1 The family of purely n-dimensional complete open subsets of S
defines a topology G on S. The family of open regions is a basis of this topology.

Proof S and ∅ are complete, purely n-dimensional, and open (and closed). By
deMorgan’s rules we have the following, where the index set is finite or count-
ably infinite:

L=
⋃

i

Mi⇔ L=
⋂

i

M i and L=
⋂

i

Mi⇔ L=
⋃

i

M i (6.2)

Let Mi be closed, purely n-dimensional, and complete. Then c ∈Mi, c
′ ∈ I(c),

and, let dim(c′)< dim(c) imply c′ ∈Mi. If c is in all of theMis, c′ is also in all of
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the Mis; hence the family of purely n-dimensional complete closed subsets of
S is closed under arbitrary intersections. The family of purely n-dimensional
complete open sets, which are the complements of purely n-dimensional com-
plete closed sets, is therefore closed under arbitrary unions. LetM1, . . . ,Mm be
purely n-dimensional complete closed sets. For any c in any Mi, any c′ ∈ I(c)
with dim(c′)< dim(c) is also inMi, and hence is in their union; hence the family
of purely n-dimensional complete closed sets is closed under finite unions.

Because S is an incidence structure, it is countable; hence any purely n-dimen-
sional complete open setM ⊂S is the union of countably many pairwise disjoint
components, each of which can be finite or countably infinite. Let C be one of
the components, let c∈C be an i-node (0≤ i < n), and let the following be true:

U(c) = {c′ : c′ ∈ I(c)∧dim(c′)≥ dim(c)}

U(c) is a subset of C by the definition of a closed set. By property I5, there is
at least one n-node in each U(c). It follows that every U(c) is an open region
and that C is the (finite or countable) union of these regions. �

Let M be a purely n-dimensional complete subset of S. Then the following
is true where the frontier ∂M and interior M◦ are defined by the topology G of
Theorem 6.1:

δM = ∂M and M∇ =M◦ if M is closed

M = δM ∪M∇ =M◦ if M is open

If M is closed, we also have M =M•.

6.2 Digital Topologies

In this section, we define digital topologies on sets of grid points or grid cells. We
will see in Section 6.2.4 that there exist very few digital topologies on grid point or
grid cell spaces of dimension ≤3.

6.2.1 General definition

[S,G] is called a digital topology in the grid cell model iff S = C
(n)
n (n≥ 1) and G is a

family of open sets that satisfies T1 through T3, as well as the following:

D1: All connected sets are 0-connected.

D2: All disconnected sets are (n−1)-disconnected.

D3: The closure of any singleton is (n−1)-connected.
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(A singleton is a set of cardinality 1.) These properties exclude, for example, the
degenerate topology [C(n)

n ,℘(Zn)], in which every set that contains at least two pixels
is disconnected.

In the grid point model, let d be a metric on Z
n (n≥ 1), and letAd(p) = {q : q ∈

Z
n ∧ d(p,q) = 1}. A subset of Z

n is called connected with respect to d iff it is connected
with respect to the adjacency relation Ad. [Zn,G] is called a digital topology in the
grid point model if S = Z

n (n ≥ 1), and G is a family of open sets that satisfies T1
through T3, as well as the following:

D1: All connected sets are connected with respect to L∞.

D2: All disconnected sets are disconnected with respect to L1.

D3: The closure of any singleton is connected with respect to L1.

It can be shown that, in the 2D grid point space, D1 and D2 imply D3.

6.2.2 The grid point topology

Let p = (x1, . . . ,xn) ∈ Z
n (n ≥ 1), and let η1(p) be the smallest nontrivial neighbor-

hood of p with respect to the Minkowski metric L1 on Z
n (see Section 3.2.2). Define

the following:

UGP(p) =

{
{p} if x1 + . . .+xn is odd

η1(p) if x1 + . . .+xn is even

We call p an odd (even) grid point if x1 + · · ·+xn is odd (even). Note that the relation
UGP is asymmetric on Z

n.
{UGP(p) : p ∈ Z

n} is a countable basis of a topology that we call the grid point
topology [Zn,UGP]. For example, for n= 1, this basis consists of the sets {2i+1} and
{2i− 1,2i,2i+ 1}(i ≥ 1). This topology is called the alternating topology on Z. It is
sketched in Figure 6.1.

UGP defines an adjacency relationAGP on Z
n : p,q ∈AGP iffp /∈ q andp∈UGP(q)

or q ∈ UGP(p). It is not hard to see that AGP = A4 if n = 2 (see Figure 6.2) and
AGP =A6 if n= 3. This topology is an Aleksandrov space and a T0-space.

Theorem 6.2 The grid point topology on Z
n(n≥ 1) is a digital topology.

......

–6  –5   –4  –3  –2  –1 0 1 2 3  4 5 6 7

FIGURE 6.1 A sketch of the grid point topology for n= 1.



6.2 Digital Topologies 199

0

1

2

3

4

0 1 2 3 4 5 6 7 8

FIGURE 6.2 A directed graph showing the asymmetric neighborhood relation UGP

for n= 2. Loops (corresponding to the reflexivity of UGP) are omitted.

Proof M ⊂ Z
n is connected iff it is not the union of two disjoint nonempty closed

sets in the induced topology onM . It is not hard to see thatM is (topologically)
connected iff it is connected with respect to L1. It follows that the grid point
topology has properties D1 through D3. �

Open and closed sets, the interior and closure of a set, and the frontier of a set
(the difference between its closure and its interior) can all be defined in the grid point
topology. For example, any set that contains an even grid point and at most three
of its 4-neighbors (which are odd grid points) is not open, and any set that contains
only even grid points is closed.

Figure 6.3 shows two embeddings of the 2D grid point topology into the plane
for which the odd grid points map onto the pixel positions in a regular orthogonal
grid. Figure 6.4 is based on the embedding shown on the left in Figure 6.3. It shows on
the left the two possible configurations of the smallest neighborhood of an even grid
point and on the right an example of a closed set. In accordance with the definition
of complete subsets of incidence pseudographs (see Section 5.1.1), we can define
complete subsets of Z

n in the grid point topology; an even grid point must be in such
a subset if its smallest neighborhood is in the subset.

Let ds be the graph metric defined by a switch state matrix S on Z
2 (see

Section 2.1.3). The relation of s-adjacency defines setsAs(p) = {q ∈ Z
2 : ds(p,q) = 1}.

Let the following be true:

Us(p) =

{
{p} if p is odd

{p}∪As(p) if p is even
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FIGURE 6.3 Two embeddings of the grid point topology into the plane such that the
odd grid points (shown as squares) are in pixel positions.

FIGURE 6.4 Left: the smallest neighborhoods of even grid points. Right: an example
of a closed set. Both are for the embedding shown in Figure 6.3 on the left.

The family of sets Us(p), p ∈ Z
2, is not the basis of a topology on Z

2. To see this,
consider h-adjacency, which is an example of an s-adjacency, and consider two “di-
agonally adjacent” even grid points p and q. Us(p)∩Us(q) contains exactly four grid
points and so is not one of the sets Us(p). If r is another even grid point “diagonally
adjacent” to p, we have Us(p)∩Us(q)∩Us(r) = {p}. It follows that all subsets of Z

2

are open, so the family of sets Us(p) is a basis for the degenerate topology in which
only singletons are connected.

6.2.3 The grid cell topology

The incidence grid [Cn, I,dim](n≥ 1) defines a poset [Cn,≤] such that the following
is true for all c1, c2 ∈ C

n:

c1 ≤ c2 iff c1 ∈ I(c2) ∧ dim(c1)≤ dim(c2)
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FIGURE 6.5 Stars in the 2D grid cell topology.

The poset topology on [Cn,≤] is called the grid cell topology. This topology is a
T0-space, because it is defined by a partial order. A complete purely n-dimensional
subset of C

n is topologically connected in this topology iff it is connected for the
adjacency relation in Definition 5.3. We will see at the end of this section that [Cn,≤]
is a digital topology.

The star of a cell c is the set of all cells c′ ≥ c; it is the smallest neighborhood
of c in the grid cell topology. Figure 6.5 shows examples of stars. The stars are a
countable basis of the grid cell topology.

The 2D grid cell topology [C2,≤] defines a partition of the plane into grid
cells, grid edges, and grid vertices. Figure 2.3 (left) shows a graphic sketch and
Figure 2.13 the geometric realization of the 2D incidence grid used throughout this
book. P.S. Aleksandrov and H. Hopf used this 2D example in 1935 to illustrate the
poset topology.

The following is another way of defining a topology on Z. We begin by partition-
ing R into a countable number of pairwise disjoint intervals. This partition defines a
one-to-one mapping f : R→ Z such that, for each i ∈ Z, f−1(i) is a connected subset
of R with respect to the Euclidean topology. We then use the Euclidean topology on
R to induce a topology on Z based on these intervals. A subsetM of Z is open in this
topology iff f−1(M) is open in the Euclidean topology on R.

The topology induced on Z in this way may not be of interest. For example,
let f(x) be the integer nearest to x; if x is a half-integer i+ 1

2
, let f(x) = i. Then

f−1(i) = (i− 1
2
, i+ 1

2
) for all i ∈ Z (i.e., f−1(i) is neither open nor closed in R), and

the same is true if we take f(i+ 1
2
) = i+1. As a result, no proper subset of Z can be

open or closed (i.e., the induced topology on Z is the trivial topology that has only the
empty set ∅ and Z itself as open and closed sets). However, we have the following:

Example 6.2 Modify f by defining f(i+ 1
2
) as the nearest even integer [503].

This f induces the alternating topology on Z (see Figure 6.1). f−1(2i) is a closed
subset of R in the Euclidean topology and f−1(2i+1) is an open subset, so {2i}
is a closed subset of Z and {2i+1} is an open subset.

Definition 6.5 The product S1×S2 of two topologic spaces S1 and S2 is the set
of ordered pairs (p1,p2) where p1 ∈ S1 and p2 ∈ S2, endowed with the product
topology: M ⊆ S1×S2 is open iff, for each (p1,p2) ∈M , there are open setsM1

in S1 and M2 in S2 such that (p1,p2) ∈M1×M2 ⊆M .
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FIGURE 6.6 The asymmetric neighborhood relation UGC. The hollow dots represent
closed sets {(2i,2j)}, the squares represent open sets {(2i+1,2j+1)}, and the solid
dots represent sets {(2i,2j+1)} or {(2i+1,2j)}, which are neither open nor closed.
Loops (corresponding to the reflexivity of UGC) are not shown.

For example, the 2D Euclidean topology is the product of two one-dimensional Eu-
clidean topologies. The topologies on Z defined previously can be used to define
product topologies on Z

n (n≥ 2). A product of two Aleksandrov topologies is Alek-
sandrov, and the corresponding partial order is the product of the two partial orders.

The alternating topology is an Aleksandrov space, and so are finite products of
alternating topologies. Let UGC(p) be the smallest neighborhood of p ∈ Z

n in such a
product topology. (We use the subscript “GC,” because this discussion will lead us
back to the grid cell topology.)

Figure 6.6 shows the asymmetric neighborhood relation UGC in the product of
two alternating topologies on Z.

Theorem 6.3 Finite products of n ≥ 2 alternating topologies are digital topolo-
gies on Z

n.

Proof We will see in Definition 6.6 how a symmetric adjacency relationAGC can be
defined on Z

n by the neighborhood relation UGC. AGC(p) is always contained
in A∞(p) = {q : L∞(p,q) = 1} and always contains A1(p) = {q : L1(p,q) = 1}.
This implies that D1 through D3 are valid for these product topologies. �

M ⊆ Z
2 is open in the product of two alternating topologies iff the following is

open in R, where f is as it is in Example 6.2:

SM =
⋃

(i,j)∈M

f−1(i)×f−1(j) (6.3)
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FIGURE 6.7 An embedding of the product of two alternating topologies into the
plane such that the open singletons are in pixel positions.

FIGURE 6.8 Left: smallest (topologic) neighborhoods of grid points. Right: an ex-
ample of a closed set. These figures use the embedding shown in Figure 6.7.

Figure 6.7 shows an embedding of this 2D product topology into the plane such that
all grid points {(2i+1,2j+1)} (shown as squares) are in pixel positions. Figure 6.8
shows on the left the smallest neighborhoods of grid points (compare Figure 6.5) and
on the right an example of a closed set. The smallest neighborhood of a grid point
(2i+ 1,2j+ 1) contains only that point; the smallest neighborhood of a grid point
(2i,2j) is its 8-neighborhood; and all other grid points have smallest neighborhoods
of cardinality 3, arranged either horizontally or vertically.

Products of alternating topologies are T0-spaces. For example, the neighbor-
hood of a grid point p = (2i+ 1,2j+ 1) does not contain any of the grid points that
are 8-adjacent to p.

Proposition 6.1 Any product of n ≥ 2 alternating topologies is homeomorphic
(see Definition 6.8) to the n-dimensional grid cell topology [Cn,≤].
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Proof The base set Z of the alternating topology consists of an alternating sequence
of open integers 2i+1 and closed integers 2i. The coordinates of a grid point p in
the base set Z

n of the product topology consist of ap open and bp closed integers
such that ap + bp = n. Consider the one-to-one mapping Φ, which maps p ∈ Z

n

into an ap-cell in C
n such that p ∈ UC(q) iff [Φ(p),Φ(q)] ∈ I and dim(Φ(p)) ≤

dim(Φ(q)). (It is not hard to show that UC and I allow such a one-to-one map-
ping.) Φ maps open subsets of the product topology into open subsets of the in-
cidence grid, and Φ−1 maps open subsets of the incidence grid into open subsets
of the product topology. (In 2D, this follows, for example, from Equation 6.3.)
Thus Φ is a homeomorphism between the two topologic spaces. �

From this and Theorem 6.3, it follows that [Cn,≤] (n≥ 1) is a digital topology.

6.2.4 The number of digital topologies

There is only one digital topology for n= 1: the alternating topology on Z.

Theorem 6.4 Let S be a subset of Z
2 that contains a translate of the setG0 shown

in Figure 6.9. Then there is no topology on S in which connectivity is the same
as 8-connectivity.

Let [Z2,G] be a digital topology, and let U(p) be the intersection of all of the open
sets of G that contain p. Then, for all p ∈ Z

2, we must have U(p) ⊆ N8(p). If not,

the 8-disconnected set Z
2 \A8(p) would be connected in [Z2,G], because any open set

containing p would also contain a point in Z
2 \N8(p).

This result limits the possible topologic neighborhoods U(p) that can be used
to define a basis for a digital topology:

Theorem 6.5 Up to homeomorphism (see Definition 6.8), there are only two
digital topologies on Z

2.

FIGURE 6.9 The set G0 used in Theorem 6.4.
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FIGURE 6.10 Left: geometric representation of the smallest neighborhoods of even
grid points. Right: the closed set of Figure 6.4, which is now shown as a union of
convex polygons.

It follows that the 2D grid point and grid cell topologies are the only two possible
2D digital topologies.

Theorem 6.6 Up to homeomorphism, there are only five digital topologies on Z
3.

In addition to the 3D grid point and grid cell topologies, we also have the product
of two one-dimensional grid cell topologies and one one-dimensional grid point
topology; a topology [Z2,G] in which alternate grid planes have the grid point and
grid cell topologies; and a topology with open sets that are the closed sets of [Z2,G].

Theorem 6.7 Up to homeomorphism, there are only 24 digital topologies on Z
4.

The grid point and grid cell topologies exist on Z
n for all n; they are the “most

regular” digital topologies.
Geometric realizations such as those shown in Figures 2.13 and 2.14 are mod-

els for the 2D and 3D grid cell topologies; these models can be generalized to n
dimensions.3 The grid point topology can also be geometrically represented by a
tessellation of the Euclidean plane or space into convex polygons or polyhedra. For
example, in Figure 6.10, the squares represent odd grid points (2-cells), and the trape-
zoids represent even grid points (1-cells); there are no 0-cells in this digital topology.

3. Following [577], these geometric realizations could also be called continuous analogs. We prefer to avoid the
term “continuous” for geometric realizations that are defined by discrete sets.
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The algorithms described in Section 5.4.1 can be used to assign 1-cells to their adja-
cent 2-cells that have the largest pixel values.

The values of topologic properties of a set M of pixels or voxels depend in
general on which digital topology is being used. These values remain the same if the
topologic spaces are homeomorphic (see Definition 6.8) and M is interpreted in the
same way (e.g., as an open set).

6.2.5 Topologic adjacency and dimension

The concept of a smallest neighborhood U(p) in an Aleksandrov space allows us to
define a symmetric adjacency relation on the space (see Section 2.1.4):

Definition 6.6 Two distinct points p and q of an Aleksandrov space S are
called topologically adjacent (notation: {p,q} ∈A) iff p ∈ U(q) or q ∈ U(p).

This relation defines an adjacency structure [S,A] that does not necessarily satisfy
properties A1 through A3 of an adjacency graph. For example, if S is not topo-
logically connected, then [S,A] does not satisfy A2. The degenerate topology is an
Aleksandrov space with U(p) = {p} for all p ∈ S; it generates the degenerate adja-
cency relationA= ∅. Obviously, the adjacency relationsAα defined by the metrics dα

(α∈ {4,6,8,18,26}) are not the same as the adjacency relationA= ∅ in the degenerate
topology induced by the metric spaces [Zn,dα] (n= 2 or 3). Definition 6.6 relates to
Definition 5.2 as follows: let two i-adjacent nodes c1 and c2 both be incident with the
i-node c, which differs from both c1 and c2. In the Aleksandrov space [S,≤], we have
two adjacency pairs {c,c1} and {c,c2}, and c1 and c2 are connected via c.

The smallest neighborhoods UGP and UGC of grid points p ∈ Z
n (n≥ 2) define

adjacency relations AGP and AGC as in Definition 6.6. AGP =A4 in 2D and =A6 in
3D. AGC(p) = A4(p) in 2D iff p has one odd and one even coordinate, and it equals
A8(p) otherwise.

Any adjacency relation on a set S defines paths, connectedness, components,
and so forth, as discussed in Sections 1.1.4 and 1.2.5. Let A�(p) be the union of A(p)
with all points r ∈S for which there exist q1, q2 ∈A(p) such that a shortestA-path from
q1 to q2 not passing through p passes through r. For example, A�

4
(p) =A�

8
(p) =A8(p)

for p ∈ Z
2, and A�

6
(q) = A�

18
(q) = A18(q) and A�

26
(q) = A26(q) for q ∈ Z

3. We have

A(c) =A�(c) for any cell c in the grid cell topology.
A setM is called totally disconnected with respect to adjacencyA iff there is no

pair of distinct points p,q ∈M such that {p,q} is A-connected.

Definition 6.7 LetM be a subset of an adjacency structure [S,A] that satisfies
property A1. The dimension dimA(M) of M is defined as follows:

(i) dimA(M) =−1 if M = ∅;
(ii) dimA(M) = 0 if M is a totally disconnected nonempty set;
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(iii) dimA(M) = 1 if card(A(p)∩M)≤ 2 for all p∈M and card(A(p)∩M)> 0
for at least one p ∈M ; and

(iv) dimA(M) = max
p∈M

dimA(A�(p)∩M)+1 otherwise.

Figure 6.11 shows examples of one- and two-dimensional sets in the 4- and 8-adjacency
grids and in the 2D incidence grid.

FIGURE 6.11 Upper row: zero-dimensional subgraphs in the (left) 4-adjacency grid,
(middle) 8-adjacency grid, and (right) 2D incidence grid (for topologic adjacency).
Middle row: one-dimensional subgraphs. Bottom row: two-dimensional subgraphs.
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Proposition 6.2 A 4-connected set M ⊆ Z
2 is 2D iff it has a 2×2 square of grid

points as a proper subset.

Proof LetM be a set of four grid points that form a “T”. There exists a grid point
p0 such that card(A(p0)∩M) = 3 so that case (iii) does not apply. However,
from case (iv), we have dimA(A8(p0)∩M) = 0, because case (ii) applies; thus
dimA(M) = 1. Similarly we can show that dimA(M) ≤ 1 for any set M that
does not contain a 2×2 square of grid points by considering all possible such
Ms in a 3×3 square of grid points.

If M is a 2× 2 square of grid points, for any of its four points, we have card
(A4(p)∩M) = 2; thus case (iii) applies, so dimA(M) = 1.

Finally, suppose M properly contains a 2× 2 square of grid points. If, for at
least one of these points p0 we have card(A4(p0)∩M) = 3, we can apply case
(iv) to obtain dimA(A8(p0)∩M) = 1. Hence, in accordance with case (iv), we
have dimA(M) = 2. �

Figure 2.20 shows all 4-connected sets of grid points of cardinality 8; the two-
dimensional sets (with respect to 4-adjacency) are shown with filled dots.

An elementary grid triangle is a set T = {(i, j),(i+1, j),(i, j+1)} or a 90
◦
, 180

◦
,

or 270
◦

rotation of it. Such aT is one-dimensional forA4 in accordance with case (iii).

Proposition 6.3 An 8-connected set M ⊆ Z
2 is 2D iff it has an elementary grid

triangle as a proper subset.

This proposition can be proved using a case discussion similar to that used in
the proof of Proposition 6.2.

In 3D, consider adjacency relationA6, and letM =N26(o) =A26(o)∪{o}where
o= (0,0,0). Without using the extended set A� in case (iv), we obtain the following:

dimA(M) = max
p∈M

dimA(A6(p)∩M)+1

For any p ∈M and L = A6(p)∩M , L is a totally disconnected nonempty set with
respect to A6 so that dimA(L) = 0 and dimA(M) = 1.

Using the extended set A� in Definition 6.7 makes M 3D for A6, A18, and A26.
For example, for o ∈M and L = A18(o)∩M , we have card(A18(q)∩L) ≥ 4 for any
q ∈ L; for example, card(A18(q)∩L) = 4 for q = (0,0,1), and card(A18(q)∩L) = 6 for
q = (1,0,1). By repeated application of case (iv), we obtain the following:

dimA(A18(q)∩L) = max
p∈A18(q)∩L

dimA(A18(p)∩ (A18(q)∩L))+1

For any p∈A18(q)∩L, we have dimA(A18(p)∩(A18(q)∩L)) = 0 using case (ii); hence
dimA(A18(q)∩L) = 1, dimA(L) = 2, and dimA(M) = 3.
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Note that the dimensions of cells in incidence grids [Cn, I,dim] are the dimen-
sions of subsets of R

n and that the Euclidean topology is not an Aleksandrov space.
For example, the countably infinite intersection of the open intervals (−ε,+ε), for
all rational ε such that 1≥ ε > 0, is the closed singleton {0}.

6.3 Topologic Concepts

6.3.1 Homeomorphy

Let Φ be a mapping of a topologic space S1 into a topologic space S2. Φ is called

continuous iff, for any open subset M of S2, the set Φ−1(M) = {p ∈ S1 : Φ(p) ∈M}
is open in S1.

Definition 6.8 (H. Poincaré, 1895) A mapping Φ of a topologic space S1 into
a topologic space S2 is called a homeomorphism iff it is one-to-one, onto S2,

continuous, and Φ−1 is also continuous.

Two topologic spaces are called homeomorphic or topologically equivalent iff each
of them can be mapped by a homeomorphism onto the other.

Two spaces can be homeomorphic only if they have the same cardinality, be-
cause a homeomorphism is one-to-one.

The Euclidean plane R
2 is homeomorphic to an open halfsphere. In fact, the

gnomonic azimuthal projection (perspective projection from the center of the half-
sphere onto a plane tangent to the halfsphere) defines a homeomorphism between
the halfsphere and the plane; see the left of Figure 6.12. A triangle is homeomor-
phic to a circle; see the right of Figure 6.12. The surfaces of a sphere, a cube, and a
cylinder are pairwise homeomorphic, but they are not homeomorphic to the surface
of a torus.

A circle with one point removed is homeomorphic to R
1; the surface of a sphere

with one point removed is homeomorphic to R
2; and the (hyper)surface of a 4D

p

q

p

q

FIGURE 6.12 Left: gnomonic azimuthal projection of an open halfsphere (point p)
onto the Euclidean plane (point q). Right: projection of a triangle onto a circle.
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hypersphere x2
1
+x

2
2
+x

2
3
+x

2
4 = 1 with one point removed is homeomorphic to R

3.
A disk with one point on its frontier removed is homeomorphic to a closed halfplane.
A sphere (or cube) with one point on its surface removed is homeomorphic to a closed
halfspace of R

3. A disk with two points on its frontier removed is homeomorphic to
a closed strip between two parallel straight lines in R

2. A compact subset of R
n can

be homeomorphic only to a compact subset of R
n; this suggests that we should use

compact subsets as geometric representations of discrete spaces.
Figure 6.13 (left) illustrates in gray two open squares in the Euclidean plane

(each of these squares is homeomorphic to the infinite plane) and, in black, the
union of two closed squares that have exactly one point in common (this union is
homeomorphic to the union of two disks that “touch” each other at exactly one point,
but it is not homeomorphic to the unit disk). Figure 6.13 (right) shows only closed
subsets of the Euclidean plane: in gray, two large squares (each homeomorphic to
the unit disk) and, in black, the union of two large squares, eight elongated rectangles
(representing edges of grid squares), and seven small squares (representing vertices
of grid squares); this union is also homeomorphic to the unit disk. Evidently, on the
right, we have a geometric representation of two open regions and one closed region
of the 2D incidence grid.

FIGURE 6.13 Left: a disjoint partition of the real plane into open squares (represented
by large squares not containing their frontiers), open line segments (not containing
their endpoints), and the remaining points (small squares). Right: the geometric
representation of subsets of the 2D incidence grid as introduced in Section 2.1.5: a
regular tessellation of the plane into (nondisjoint) large closed squares, elongated
closed rectangles, and small closed squares, where nondisjoint polygons share an
edge or a vertex.
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Definition 6.9 (H. Poincaré, 1895) A property of a subset M of a topologic space
S is called a topologic invariant iff, for any homeomorphism Φ, the property is also
valid for Φ(M).

For example, the property of being the empty set is a topologic invariant, and so is
the property of being a nonempty set. Dimension (see Definition 6.7) is a nontrivial
example of a topologic invariant. Finding topologic invariants is a central problem
in topology. Similarly, calculating topologic invariants is a central problem in digital
topology. For example, the number of components is a topologic invariant. Poincaré
has shown that the Euler characteristic of a regular tessellation of an n-dimensional
space is a topologic invariant; we will discuss this result in Section 6.4.5.

Nonhomeomorphy can be proved by comparing topologic invariants; if two
sets have different values of a topologic invariant (e.g., different dimensions), they
cannot be homeomorphic.

In Figure 6.13 (left), the two gray squares, which are open in E
2, are nonhomeo-

morphic to the union of the two (closed) black squares. In Figure 6.13 (right), each
of the two (closed) gray squares is homeomorphic to the union of the black (closed)
squares and rectangles.

Definition 6.10 Two regions in a 2D (3D) picture are topologically equivalent
(homeomorphic) iff their geometric representations in the incidence grid are
homeomorphic in E

2 (E3).

Note that topologic equivalence between picture regions depends on how marginal
cells are assigned to principal cells. For example, the two regions of solid dots shown
on the left in Figure 6.14 are homeomorphic in the (4,8)-adjacency grid, and their
geometric representations in E

2 are homeomorphic to the connected set shown on
the right. (As we saw in Section 5.4.1, assuming (4,8)-adjacency is equivalent to
assuming ordered adjacency with black > white.) For all of these regions, we have
χ= 1. Even if we considered the two regions on the left (incorrectly) as graphs (with
v = 48, e = 78, and f = 31 on the left and v = 35, e = 37, and f = 3 on the right,

FIGURE 6.14 Left: two homeomorphic regions of 0s in the (4,8)-adjacency grid. Right:
a set in the plane homeomorphic to the geometric realization of the regions shown
on the left.



212 Chapter 6 Topology

counting all faces equally whether they are holes or atomic cycles), we would obtain
χ= +1 in both cases, because these graphs are planar.

6.3.2 Isotopy

Two subsets L and M of a topologic space S are called isotopic iff there exists a
homeomorphism Φ from S onto itself such that Φ(L) =M .

Isotopy is a stronger concept than homeomorphy. For example, suppose S
contains a circleC and a rectangleR (see Figure 6.15). In the picture on the left, (A)
R is surrounded byC, and, in the picture on the right, (B)R is outside ofC. The two
pictures are not isotopic in S; there exists no homeomorphism of S onto itself that
maps (A) into (B).4

It can be shown that (A) and (B) are isotopic in E
3. The two bands on the left

in Figure 6.16 are homeomorphic subsets of E
3, but they are not isotopic in E

3. The
two curves γ1 (a meridian) and γ2 (a parallel of latitude) on the surface of the torus
shown on the right in Figure 6.16 are isotopic. The curves γ1 and γ3 are isotopic in

E
3 but not on the surface of the torus.

We can think of regions as being characterized by homeomorphy and pictures as
being characterized by isotopy. The following definition makes use of the geometric
representations defined in Section 2.1.5.

Definition 6.11 Two 2D (3D) binary pictures are topologically equivalent
(isotopic) iff their geometric representations in the incidence grid are isotopic
in E

2 (E3).

As seen in Section 6.3.1, topologic equivalence between pictures depends on how
marginal cells are assigned to principal cells. The two binary pictures in the

4. A formal proof of this can be given on the basis of the local dimensionalities of points in S; for the necessary
concepts, see Section 7.1.2.

A B

FIGURE 6.15 A rectangle inside of (A) and outside of (B) a circle.
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g2

g1
g3

FIGURE 6.16 Left: two homeomorphic bands; the one below is twisted twice. Right:
three curves on a torus.

FIGURE 6.17 Two nonisotopic binary pictures in the (4,8)-adjacency grid; their rooted
region adjacency trees are shown below.

(4,8)-adjacency grid shown in Figure 6.17 can be made isotopic by changing a few
pixel values.

We saw in Theorem 4.2 that a 2D binary picture in the (4,8)- or (8,4)-adjacency
grid has a rooted region adjacency tree in which the root represents the infinite
background component.

Proposition 6.4 Two 2D binary pictures in the (4,8)- or (8,4)-adjacency grid are
isotopic iff they have isomorphic rooted region adjacency trees.

This result generalizes to multivalued 2D pictures. A picture defines a partition
of the plane into sets Mu (0 ≤ u ≤ Gmax) in which Mu is the P -equivalence class
defined by value u. Two pictures P and P ′ (having equivalence classes Mu and
M ′u) are isotopic iff there exists a homeomorphism Φ from E

2 into E
2 such that

Mu = Φ(M ′u) for each u.
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6.3.3 Homotopy

Homotopy allows us to give a precise definition of the topologic structure of a region.
In particular, it allows us to define “simply connected.”

To define the notion of homotopy, we must first define the fundamental group of
a subsetM of a topologic space [S,G]. A continuous functionφ : [0,1]→M withφ(0) =
p and φ(1) = q defines a parameterized path γ from p to q in M . Two parameterized
paths γ1 and γ2 in M that have the same endpoints are called homotopic iff γ1 can
be continuously transformed into γ2 in M . More precisely, let the paths γ1 and
γ2 be defined by the functions φ1 : [0,1]→ M and φ2 : [0,1]→ M . A continuous
transformation of γ1 into γ2 is a continuous function ψ : [0,1]× [0,1]→M such that
ψ(x,0) = φ1(x) and ψ(x,1) = φ2(x) for any real x in [0,1]. If γ2 is a single point, ψ
defines a contraction of γ1 in M into a single point.

Homotopy defines an equivalence relation on the class of all parameterized
paths in M . For example, Figure 6.18 shows three paths from p to q in M ; γ1 and γ2

are homotopic, but γ3 is not homotopic to γ1 or γ2.
Let p0 ∈M be the endpoint of γ1 and the starting point of γ2. The product

γ1⊗γ2 is defined by concatenation: ϕ1 : [0,1]→M and ϕ2 : [0,1]→M are combined
into a single function

ϕ(x) =
{
ϕ1(2x) if 0≤ x < 0.5
ϕ2(2x−1) if 0.5≤ x≤ 1

This product is compatible with homotopy; if γ1 is homotopic with γ3 and γ2 is
homotopic with γ4, then γ1⊗γ2 with γ3⊗γ4.

Let [γ] be the class of all paths homotopic in M to γ with respect to a given
point p0 of γ. The set π(M) of all of these classes is a group under ⊗ called the
fundamental group of M with respect to p0. A path that is contractible in M into
the single point p0 is called zero-homotopic. The set of zero-homotopic paths is the
identity ε of the group π(M) (i.e., for any ξ ∈ π(M), we have ξ⊗ ε = ε⊗ ξ = ξ). If
the path γ is defined by φ and the path [γ−1] is defined by ψ(x) = φ(1−x), then [γ−1]
is the inverse of [γ] (i.e., [γ]⊗ [γ−1] = [γ−1]⊗ [γ] = ε). Although ⊗ is associative, in
general it is not commutative (Abelian).

If p0 and p1 can be connected by a path in M , the fundamental groups of M
with respect to p0 and p1 are isomorphic. It follows that, if M is connected, its

g1

p

q

M

g2
g3

FIGURE 6.18 Three paths in a planar set M .
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fundamental group does not depend on p0. The fundamental group is a topologic
invariant in homotopy theory.

Definition 6.12 (M. Dehn and P. Heegard, 1907) Two topologically connected
closed sets in a Euclidean space are called homotopic iff they have isomorphic fun-
damental groups.

This definition is based on work by C. Jordan (1866, on the topologic equivalence of
curves) and H. Poincaré (1892, on the fundamental group).

Definition 6.13 A subset M of a topologic space is called simply connected
iff π(M) = {ε}.

In other words, M is simply connected iff any parameterized path in M that starts
and ends at the same point is contractible in M into a single point. For example, a
disk and a ball are both simply connected.

Example 6.3 The fundamental group of a circle is the free cyclic group. A
path that goes around the circle clockwise n≥ 0 times defines a homotopy class
αn; a path that goes around the circle counterclockwise m ≥ 0 times defines
a homotopy class α−m; the class α0 is the identity ε. The free cyclic group is
isomorphic to the additive group [Z,+,0] of the integers and is commutative. A
solid torus, an annulus, and the setM shown in Figure 6.18 also have fundamen-
tal groups isomorphic to [Z,+,0]. Thus a circle and an annulus are homotopic,
but they are not homeomorphic.

The surface of a torus (i.e., a hollow torus) has a fundamental group
that contains the identity, the classes of (repeated) “meridians” and (repeated)
“parallels” (see Figure 6.16), and the classes defined by products of these classes.
This group is commutative, because the product of a meridian cycle followed
by a parallel cycle can be homotopically deformed into the product of a parallel
cycle followed by a meridian cycle.

As another example, consider two circles that touch at a point p0 and
“form figure eight.” The fundamental group of this set is not commutative.
The product of a cycle in the upper part followed by a cycle in the lower part
cannot be homotopically deformed into the product of a cycle in the lower part
followed by a cycle in the upper part.

The linear skeleton of a set M ⊆ E
n (see Figure 6.19) is defined by continuous

contractions; hence a set is homotopic to its linear skeleton.5 For example, the linear
skeleton of a simply connected set is a point and that of a torus is a simple closed
curve.

5. In 1861, J.B. Listing introduced the linear skeleton under the name cyclomatic diagram. Because the term
“skeleton” has become popular in picture analysis in the context of distance transforms, thinning operations, and
so forth (see Sections 3.4.2 and 16.3), it may be preferable to use Listing’s original term “cyclomatic diagram”
instead of “linear skeleton.”
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FIGURE 6.19 (J.B. Listing, 1861) A 3D object (left) and its linear skeleton. These two
sets are homotopic but not homeomorphic.

6.4 Combinatorial Topology

Combinatorial topology studies partitions of objects into “complexes.” A polyhedron
is a finite union of simplexes (in E

3: points, edges, triangles, or tetrahedra). A digitized
subset of R

2 or R
3 can be regarded as a partition into convex subsets. A partition into

simplexes or convex sets defines a geometric complex. The study of such partitions
is of central interest in combinatorial topology.

6.4.1 Geometric complexes and the Euler characteristic

An elementary curve γ (to be defined in Chapter 7) can be partitioned into one-
dimensional geometric complexes S that consist of arcs (also called 1-cells) and their
endpoints (also called isolated points or 0-cells). Let α0 be the number of 0-cells in
S and α1 the number of 1-cells in S that contain at least one 0-cell. The difference
χ = α0−α1 is called the Euler characteristic of S. We will see in Section 6.4.5 that
any partition of the same elementary curve has the same value of χ.

For example, a circle is partitioned by n ≥ 1 vertices into n arcs; hence χ = 0.
For a simple arc with two endpoints, we have χ = 1. Figure 6.20 shows the linear
skeleton of a tetrahedron, which hasα0 = 4 vertices, α1 = 6 arcs, and χ=−2. Adding
a vertex on any of the arcs increases α0 and α1 by 1 and thus leaves χ unchanged.

The connectivity β1 of a one-dimensional geometric complex S is as follows,
where β0 is the number of components of S:

β1 = β0−α0 +α1

β1 is equal to the number of atomic cycles (sets of components with a union that is a
simple curve) of S. β0 and β1 are called the first two Betti numbers6 of S. (A general

6. The Italian mathematician E. Betti (1823–1892) published, in 1871, a memoir that defined Betti numbers.
Betti’s work inspired H. Poincaré to study topology; Poincaré introduced the term “Betti numbers.”
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a
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b

c

d
b

c

d

a

FIGURE 6.20 (J.B. Listing, 1861) The elementary curve in 3D space (left) is topolog-
ically equivalent to both graph representations of a tetrahedron (middle and right).

FIGURE 6.21 Example of a one-dimensional geometric complex with four atomic
cycles.

definition of Betti numbers will be given in Section 6.4.5.) Figure 6.21 shows an
example with four 0-cells, six 1-cells, two components, and four atomic cycles.

A planar drawing of a one-dimensional geometric complex (see Figure 6.20
[right] and Figure 6.21) can be regarded as a planar-oriented adjacency graph in
which we assume clockwise local circular orders at the nodes. This graph has Euler
characteristic χ= β0 = α0−α1 +α2. It follows that β1 = α2 (the number of faces of
the graph) is equal to the total number of cycles minus the number of outer cycles,
each of which defines the border of a component.

A 2D geometric complex, as introduced by J.B. Listing in 1861, contains a finite
number of bounded closed subsets of E

2, which may be faces, curves, arcs, or isolated
points (e.g., endpoints of arcs). The complement of the union of all of these compact
sets is an open set called the unbounded exterior.

For example, the frontier (surface) of a simple polyhedron in E
3 can be par-

titioned into elements of a 2D geometric complex called a surface complex of the
polyhedron. A single face can be represented by a simple polygon, its edges, and
its vertices (the endpoints of the edges). The surface of a simple polyhedron is
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topologically equivalent to the surface of a sphere. The unbounded exterior of this
2D complex splits into two disjoint open sets (see the separation theorems in Sec-
tion 7.4), one bounded (the interior of the polyhedron), and the other unbounded.
Let α0, α1, and α2 be the number of vertices, edges, and faces of a simple polyhe-
dron. The Descartes-Euler polyhedron theorem (see Equation 4.5) α0−α1 +α2 = 2
was originally established (by Descartes and Euler) only for convex polyhedra in 3D
space, but it is correct for any simple polyhedron.

Example 6.4 (M.H.A. Newman, 1939) A rectangular grating (see Figure 6.22)
defines a 2D geometric complex. In the grating shown in Figure 6.22, we have
α0 = 49 vertices, α1 = 84 edges, and α2 = 36 bounded faces, resulting in χ= 1.
The grating is a tessellation of a rectangle into vertices, edges, and rectangles.
The sizes and shapes of the cells are unimportant for topologic purposes. Such
complexes are of interest for modeling partitions of 2D pictures or of surfaces
of 3D objects (see Chapter 11).

In 1813, A. Cauchy generalized the Descartes-Euler polyhedron theorem (see
Equation 4.5) by introducing intercellular faces into the polyhedron. This results in
the following,

α0−α1 +α2 = α3 +1 (6.4)

where α3 is the number of polyhedral cells; see Figure 6.23 (left). Cauchy considered
only convex polyhedra.

In 1812, A.-J. Lhuilier suggested a generalization that also allowed “tunnels”
and “bubbles.” He claimed that the following was true,

α0−α1 +α2 = 2(b− t+1)+p (6.5)

where b is the number of bubbles, t the number of tunnels, and p the number of
polygons (“exits of tunnels”) on faces of the polyhedron. His discussion of the num-
ber of tunnels did not cover the full range of possibilities. For example, Figure 6.19

FIGURE 6.22 Two topologically equivalent rectangular gratings formed by subdivid-
ing a rectangle using finite numbers of line segments parallel to its sides.
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FIGURE 6.23 Left: a cube partitioned into eight subcubes hasα0 = 27 vertices,α1 = 54
edges, α2 = 36 faces, and α3 = 8 subpolyhedra. Right: a parallelepiped with b = 3
cube-shaped bubbles, t = 2 tunnels, and p = 4 polygons on its faces; here α0 = 48,
α1 = 72, and α2 = 32.

illustrates the difficulty of defining a tunnel; in fact, an object such as a sponge can
have a “network” of tunnels. Numbers of cavities (bubbles) and tunnels will be
discussed further in Section 6.4.5.

3D geometric complexes are used to model partitions of 3D sets into convex
polyhedra or simplexes. A partition must be “complete” (e.g., if a polyhedron is
in the complex, its surface complex must also be in the complex). The object in
Figure 6.19 is a 3D geometric complex that has α0 = 88 vertices, α1 = 132 edges,
α2 = 36 faces (assuming a straightforward partition of the surface into a surface
complex), and one solid cell (α3 = 1). The Euler characteristic of the 2D surface
complex is χ= α0−α1 +α2 =−8 (regarding the object as a hollow surface), and that
of the 3D object is χ= α0−α1 +α2−α3 =−9.

6.4.2 Euclidean complexes

The geometric complexes discussed so far are Euclidean complexes, which are par-
titions into compact convex sets. As a default, we assume that these sets are convex
polyhedra. Surface complexes will be defined in Chapter 7.

The notion of dimension plays an important role in the definition of complexes.
Dimension allows us to distinguish isolated points from line (or arc) segments and
edges from faces. (In a vector space, the dimension of a set is the greatest number of
linearly independent vectors in the set, but this is not a topologic characterization.)

Let C ⊂ E
n be a convex polyhedron and let P be an m-dimensional subspace

(m<n) of E
n. P ∩C is called an (n−1)-side ofC if dim(P ∩C) = n−1. A nonempty

intersection of finitely many (n−1)-sides is called a proper side; if it has dimension
k, it is called a k-side. Every (n− 2)-side is a side of exactly two (n− 1)-sides. The
0-sides ofC are its vertices. C is an improper side of itself. IfC is bounded, it is called
a convex cell.
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Let M ⊆ E
n be the union of a finite number of convex cells. A Euclidean

complex is a partition S of M into a nonempty finite set of convex cells that has the
following properties:

E1: If p is a cell of S and q is a side of p, then q is a cell of S.

E2: The intersection of two cells of S is either empty or a side of both cells.

The union of the cells of S need not be connected, and a subset of the cells of S need
not define a Euclidean complex.

Figure 6.24 shows four partitions of a (nonsimply connected) polygon. For
the partition into squares on the left, we have α0 = 106, α1 = 165, and α2 = 59 (not
counting the hole); for the partition into triangles on the right, we have α0 = 106,
α1 = 224, and α2 = 118. Both counts result in χ = 0. Grid cell complexes formed
by cells in C

n are examples of Euclidean complexes. The partition on the left in
Figure 6.24 is a 2D grid cell complex, and the partition on the right is a triangulation
(see Section 6.4.3). For the partitions in the middle (where we also count the hole as
a face), we have α0 = 59, α1 = 76, and α2 = 18 and α0 = 61, α1 = 79, and α2 = 19 so
that χ= 1.

Figure 6.25 shows the 1-component illustrated in Figure 6.24 (in the grid point
model), as well as another 1-component. The 1-component on the left has 12 atomic

FIGURE 6.24 Four partitions of a polygon. The two in the middle require vertices at
the branching points to become Euclidean complexes that satisfy E2.

FIGURE 6.25 From left to right: the 1-component (shown in Figure 6.24) in the grid
point model; a sketch of the contributing grid points, with edges representing adja-
cencies, and atomic cycles; another 1-component; its grid point representation.
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cycles, one inner border cycle, and one outer border cycle (i.e., α2 = 14, α1 = 71, and
α0 = 59) so that χ = α0−α1 + (α2− 1) = 1. The single inner border cycle defines
a hole; it is not counted in the Euler characteristic of the Euclidean complex, so
χ= 0 for the complex. The second 1-component has the same values of χ (0 for the
Euclidean complex and 1 for the oriented adjacency graph); the two 1-components
are homeomorphic (see Definition 6.10). Note that the adjacency graphs of the
components are different; the graph of the component on the left is not 2-strong, but
the graph of the other component is 2-strong.

6.4.3 Simplicial complexes; triangulations

A Euclidean complex is called simplicial iff all of its cells are simplexes. An n-
dimensional simplex (n-simplex) is the convex hull of n+ 1 vertices p0,p1, . . . ,pn,
where the vectors �p0p1, . . . , �p0pn are linearly independent. For example, a 3-simplex
is a solid tetrahedron. Complexes with cells that are tetrahedra are of special interest
for modeling the boundaries of 3D isothetic grid polyhedra [496].

Definition 6.14 A polyhedron is the union of the cells of a finite simplicial
complex.

A finite Euclidean complex that contains only triangles, line segments, and
points is called a triangulation; evidently, such a complex is simplicial. The frontier
of any polyhedron can be triangulated.

Figure 6.26 shows three examples of triangulations. We will now illustrate how
polyhedral surfaces can be constructed by identifying vertices in the triangulation on
the right. If we identify P5, P8, P11, and P14 (the four corners of the large square),
the (directed) line segment P5P14 becomes identified with (“glued to”) the directed

P5 P6 P7 P8

P16

P15

P14

P9

P10
P4P3

P18

P11

P13 P12

P1 P2

P17

P19

FIGURE 6.26 (P.S. Aleksandrov, 1956) A planar triangulation (left), a polyhedral
surface homeomorphic to the surface of a torus (middle), and a triangulated rectangle
(right; see text for details).
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line segment P8P11, as does P5P8 with P14P11. If we then identify P6 with P13, P7 with
P12, P9 with P16, and P10 with P15, it can be shown that the resulting triangulation is
homeomorphic to the surface of a torus. If instead we identify P6 with P12, P7 with
P13, P9 with P16, and P10 with P15, the resulting triangulation is homeomorphic to a
Klein bottle.

If we identify vertices P1,P2,P3,P4,P17,P18, and P19; P5 and P11; P6 and P12; P7

and P13; P8 and P14; P9 and P15; and P10 and P16, we have a triangulation of the pro-
jective plane (P.S. Aleksandrov, 1956). These examples can serve as a warning not to
underestimate the complexity of triangulations, even if they have small cardinalities.
A triangulation used in a surface analysis algorithm (in 3D picture analysis) should
certainly not contain a Klein bottle or a projective plane!

Any polyhedral surface is compact. The frontier of a simple polygon (as defined
in Section 1.2.2) is an example of the union of a one-dimensional triangulation; it too
can be regarded as a polyhedral surface.

The dimension of a triangulation is the maximum dimension of its elements. A
2D triangulation T is called pure iff every point or line segment in T precedes some
triangle in T with respect to the side-of relation. The surface of a simple polyhedron
is the union of a pure 2D triangulation.

A path of sets (M1,M2, . . . ,Mn) is a finite sequence of sets such thatMi∩M
i+1
	=

∅ (i = 1, . . . ,n− 1). Such a path connects M1 with Mn. A polygonal path is a path
of line segments. A pure 2D triangulation T is called strongly connected iff every
two triangles T1 and T2 in T are connected by a path of triangles, all of which are
in T . The surface of a simple polyhedron is a strongly connected triangulation.
The analysis of simple polygons and simple polyhedra is often done with the aid of
triangulations.

6.4.4 Abstract complexes

The theory of finite abstract complexes is based on a partial ordering that generalizes
a reflexive, transitive, antisymmetric “bounded-by” relation rather than the reflexive,
symmetric, and in general nontransitive incidence relation.

LetS be a finite or countably infinite set of points. Assign a nonnegative integer
dim(c), which is called the dimension of c, to each c ∈ S. The following definition
goes back to the axiomatic definition of geometric complexes by E. Steinitz in 1908
and to the topologic study of abstract complexes by A.W. Tucker in 1933. An abstract
complex [S,≤, dim] has two properties:

C1: ≤ is a partial order on S.

C2: If c1 ≤ c2 and c1 	= c2, then dim(c1)< dim(c2).

An abstract complex is an example of a poset topology. The elements of S are
called the cells of the complex. The study of abstract complexes does not depend
on interpreting cells as vertices, edges, faces, and so forth. Any subset of an abstract
complex is also an abstract complex and defines a topologic subspace of the complex.
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If dim(c) = i, we call c an i-cell. The index dimension of an abstract complex is
n iff dim(c)≤ n for all c ∈ S and dim(c) = n for at least one c ∈ S.

The “side-of” relation in a Euclidean complex is an example of the relation ≤
and has property C2. If c1 ≤ c2 and c1 	= c2, we say that c1 is a proper side of c2. Two
cells are incident iff c1 ≤ c2 or c2 ≤ c1.

Let [S,I,dim] be an incidence pseudograph. We say that c < c′ if c′ ∈ I(c),
c 	= c′, and dim(c) < dim(c′). If we define c ≤ c′ iff c < c′ or c = c′, [S,≤,dim] is an
abstract complex. Thus our discussion about incidence pseudographs in Chapter 5
can be translated into a language of abstract complexes.

6.4.5 The Poincaré formula

We conclude this chapter with a brief treatment of homology theory. Polyhedra
are characterized in combinatorial topology by homology (which is easier to define
than homotopy), homology groups, and Betti numbers. The Poincaré formula7 de-
scribes the Euler characteristic of a partition of a polyhedron (a complex) by its Betti
numbers. This provides a general proof that Euler characteristics are topologic in-
variants. A precise statement of the Poincaré formula requires a brief introduction
to homology theory.

Let [S,≤,dim] be a Euclidean complex. We write c ∈ S as c(i) if dim(c) = i. In
Section 5.2.1, we defined i-chains inS as expressions of the formC(i) =

∑
bkc

(i)
k where

bk = 0 or 1, and the sum is over all i-dimensional cells inS. We recall that i-chains can
be added modulo 2. We say that c(i)k is inC(i) iff bk = 1, and we writeC(i) = 0 if every
bk is 0. Let

⋃
C(i) be the union of the cells in C(i). Evidently, C(i) = 0 iff

⋃
C(0) = φ.

In Section 5.2.1, we defined the frontier ϑC(i) of an i-chain C(i): ϑC(0) = 0,
and, if i > 0, ϑC(i) is the (i−1)-chain

∑
akc

(i−1)
k where ak is the number of i-cells in

C(i) that are incident with c(i−1)
k . C(i) is called an i-cycle if ϑC(i) = 0. Any 0-chain is

a 0-cycle, and the frontier of any chain is a cycle, because ϑϑC(i) = 0.
We write the following if there is an i-chain C(i) such that C(i−1) = ϑC(i):

C(i−1) ∼ 0

We write C(i) ∼ C ′(i) iff C(i) + C ′(i) ∼ 0. Evidently, ∼ is an equivalence relation; it
is called a homology.

Let K = [S,≤,dim] be a Euclidean complex with index dimension n. A set
B of i-cycles of k is called a basis for the i-cycles of K with respect to homology if
every i-cycle C(i) of K is homologous to a sum of i-cycles of B; in essence, there are
coefficients ak such that the following imply bk = 0 (modulo 2) for all k:

C(i) ∼
∑

akC
(i)
k (modulo 2)

and ∑
akC

(i)
k ∼ 0 (modulo 2)

7. This is often called the “Euler-Poincaré formula” but in fact is entirely due to H. Poincaré; it is inspired by the
Euler-Descartes theorem about polyhedra.
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The cardinality βi of a basis for the cycles of K is called the ith Betti
number of K.

Theorem 6.8 (J.W. Alexander, 1915) Let K1 and K2 be two Euclidean complexes
defined by partitions of the polyhedra

⋃
K1 and

⋃
K2. If

⋃
K1 and

⋃
K2 are

homeomorphic, K1 and K2 have the same Betti numbers.

Hence the Betti numbers are topologic invariants; see Definition 6.9. We also have
the following:

Theorem 6.9 (the Poincaré formula):

χ(K) =
n∑

i=0

(−1)i ·βi (6.6)

This theorem was originally proved by H. Poincaré only for n= 2 (i.e., for 2D mani-
folds [surfaces] in 3D Euclidean space).

The Euler characteristic is defined by the following where αi is the number of
i-cells in K:

χ(K) =
n∑

i=0

(−1)i ·αi

Theorems 6.8 through 6.9 imply the following:

Proposition 6.5 The Euler characteristic of a Euclidean complex is a topologic
invariant.

Example 6.5 IfK is the surface of a sphere, we have β0 = 1, β1 = 0, and β2 = 1
so that χ = 2. For the surface of a torus, we have β0 = 1, β1 = 2, and β2 = 1
so that χ = 0. If K is a sphere with n ≥ 1 handles (informally, tori) attached
to it, we have β0 = 1, β1 = 2n, and β2 = 1 so that χ = 2− 2n. These three
examples are illustrated in Figure 6.27 on the right. For any closed surface, we
have β0 = 1 and β2 = 1; hence closed surfaces differ only in β1, which is even
for orientable surfaces and odd for nonorientable surfaces. For a solid sphere,
we have β0 = 1, β1 = 0, and β2 = 0 so that χ= 1. If the solid sphere has n≥ 1
(pairwise nonconnected) cavities so that it has n+1 closed orientable surfaces,
we have β0 = 1, β1 = 0, and β2 = n so that χ = hbox1−n. Three solids are
illustrated in Figure 6.27 on the left.

LetK be a bounded 3D set that consists of several connected components and
with a surface that consists of several orientable closed surfaces. For thisK, β0 is the
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FIGURE 6.27 A sphere, a torus, and a sphere with two handles. On the left, we assume
solids; on the right, we assume surfaces only (“hollow sets”).

number of connected components, β1/2 is the number of tunnels, and β0 +β2 is the
number of closed surfaces (so that there are β2 cavities).

Let K be the edge skeleton (a one-dimensional complex) of a tetrahedron; it
has v = 4 vertices, e= 6 edges, and f = 0s faces. Here we have β0 = 1, β1 = 3 (note
that the 1-cycle around each triangle is the sum of the three 1-cycles around the other
three triangles), and β2 = 0 so that χ=−2. Note that we do not have “1·5 tunnels”
in this case; the edge skeleton is not a surface. For one-dimensional complexes in
3D space, β0 is the number of components, and β1 is the number of tunnels. A one-
dimensional complex in the plane has β1 holes (the 2D analog of tunnels). Note that
a Euclidean one-dimensional complex is always a planar graph (i.e., faces are not
counted in its Euler characteristic, because it is only one-dimensional), and β1 is its
number of internal faces, excluding the unbounded external face; see Figure 6.28.
Oriented adjacency graphs allow us to generalize the Euler characteristic and not be
limited to planar graphs. See Section 17.5 about tunnel-free subsets of Gm,n,l.

6.4.6 Homology groups

Betti numbers can also be defined using homology groups. Let [G,+,0] be an addi-
tive abelian group with identity 0. [H,+,0] is called a subgroup of [G,+,0] iff H ⊆G
and f,g ∈H imply f − g ∈H . A homomorphism φ from [G,+,0] onto [H,+,0] is a
function fromG ontoH such thatφ(f)−φ(g) = φ(f−g) for all f,g ∈G. Ifφ is one-to-
one, it is called an isomorphism. If φ is a homomorphism, H = φ−1(0) is a subgroup
of G called the kernel of φ. The kernel of an isomorphism is the singleton {0}.

LetH be a subgroup ofG and f ∈G. fH = {f+g : g ∈H} is called a coset ofG
relative to H . Note that two cosets are either disjoint or identical. The set of cosets
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FIGURE 6.28 Left: a 2D incidence grid representation of a closed region in a 2D
picture with α0 = 106, α1 = 165, α2 = 59, β0 = 1, β1 = 1, and β2 = 0 so that χ = 0.
Middle: the same region in the oriented 4-adjacency graph with α0 = 59, α1 = 71,
α2 = 14, β0 = 1, β1 = hbox1, and β2 = 0 so that χ+ = χ+ 1 = 1. Right: a planar
one-dimensional complex (note: no faces) with α0 = 59, α1 = 71, β0 = 1, and β1 = 13
so that χ=−12.

of G relative to H is an additive group called the factor group G/H of G modulo H ;
we define fH +gH = (f+g)H . φ :G→G/H is a homomorphism andH is its kernel.

The set C(i) of i-chains of a Euclidean complex K is an abelian group under
addition modulo 2. Let G(i) be the subgroup of C(i) that consists of all i-cycles, and let
F (i) be the subgroup of G(i) that consists of all frontiers ϑC(i+1) of (i+1)-chains. The
factor group H(i) = G(i)/F (i) is called the i-th homology group (Betti group) of K.
The homology ∼ partitions the cycles G(i) into equivalence classes called homology
classes. It can be shown that the dimension ofH(i) is the i-th Betti number.

Example 6.3 showed that the surface of a torus and a planar drawing of an 8 have
different fundamental groups (i.e., they are not identical with respect to homotopy).
On the other hand, the homology groups of both of these sets are isomorphic to the
direct sum [Z,+,0]⊕ [Z,+,0]. Thus isomorphism of homology groups does not imply
homotopy (isomorphism of fundamental groups).

6.5 Exercises

1. Does the adjacency grid [C(2)
2
,η1] have a topology in which 1-connectedness is

the same as topologic connectedness?

2. Describe the Aleksandrov topology of the poset [R,≤].

3. Explain why the product of one one-dimensional grid cell topology and two one-
dimensional grid point topologies is already contained in the set of 3D digital
topologies listed after Theorem 6.6.
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4. Show that the Euler characteristic χ(Π) of a polyhedron Π ⊂ R
3 can also be

defined by the following axioms:

1. χ(∅) = 0.

2. χ(Π) = 1 if Π is nonempty and convex.

3. If Π1 and Π2 are polyhedra, χ(Π1∪Π2) = χ(Π1)+χ(Π2)−χ(Π1∩Π2).

(Hint: Prove that χ(Π) is equal to the alternating sum α0−α1 +α2 where α0 is
the number of vertices, α1 the number of edges, and α2 the number of triangles
in any triangulation of Π’s frontier.)

5. Prove that, for any (planar) polyhedron Π ⊂ R
2, χ(Π) is equal to the num-

ber of components of Π (in the Euclidean topology) minus the number of
holes in Π.

6. Let ni be the number of 2×2 patterns of pixels in a binary picture P that contain
exactly i 1s (i= 0,1,2,3,4), and let nD be the number of such patterns that contain
two diagonally adjacent 1s. Let the following be true:

E8,4(P ) = (n1−n3−2nD)/4 and E4,8(P ) = (n1−n3 +2nD)/4

The geometric realization of the 2D grid cell topology based on the label order
“0< 1” or “1 < 0” maps the union of the 1s in P into a (planar) polyhedron Π.
Prove that χ(Π) = E8,4(P ) for label order “0 < 1” and that χ(Π) = E4,8(P ) for
label order “1< 0” (see Figure 17.2 for an example).

7. Prove that any convex set in E
n (e.g., a single point, a straight line segment, a

sphere, a convex polyhedron) is simply connected (i.e., its fundamental group
is {ε}).

8. Prove that the free cyclic group is the fundamental group of the annulus and also
of R

2 \{p}, where p is any point in R
2.

9. Prove that α0 −α1 = 1 for any tree (i.e., that the Euler characteristic of any
tree is 1).

10. We have given finite and countable examples of abstract complexes. The follow-
ing is a noncountable example: Let S = {sa : a ∈ [0,1]} be a noncountable set of
abstract cells defined on the real index interval [0,1], where sa 	= sb iff a 	= b. For
a ∈ [0,1], let a= 0 and a1a2a3 . . . where ai ∈ {0,1, . . . ,9}. Let sa ≤ sb iff a= b or
a1 < b1 and ai = bi for all i ≥ 11. Let dim(sa) = a1. Show that [S,≤,dim] is an
abstract complex.
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11. Calculate the Betti numbers of the following three tilings (2D complexes):

12. Suppose deletion of all of the invalid edges in a picture leads to the nonconnected
undirected graph shown below. Regard each pixel as the centroid of an isothetic
unit square, and take the union of all of the squares that correspond to pixels in
the same 4-component. The frontiers of the resulting sets are isothetic simple
curves. Find the Betti numbers βi of these sets (i= 0,1,2).

13. Calculate the number of tunnels in the one-dimensional complex that consists
of the vertices and edges of a tetrahedron.

14. Consider three “systems of pathways” in a solid sphere: (1) n≥ 3 straight path-
ways that start at the surface of the sphere and meet at its center; (2) four
pathways that form a hollow tetrahedron inside the sphere, with an exit to the
surface of the sphere, at each vertex of the tetrahedron; and (3) a pathway that
forms a hollow torus inside the sphere, with n ≥ 1 exits to the surface of the
sphere. What are the numbers of tunnels in these three cases?

15. The Arens-Fort space is defined on the (countable) set S = N
2 by a set G that

is the union of N
2 \ {(0,0)} and the family of all sets U ⊂ N

2 with projections
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{n : (m,n) ∈ U} that are finite for all but finitely many m ∈ N. Show that [S,G]
is a topologic space and does not have a countable basis.

16. Let M ⊆ N be closed iff either 1 ∈ M or
∑

n∈M 1/n is finite (note that this
excludes 0 ∈M). Show that this defines a topologic space on N that does not
have a countable basis for the neighborhoods of 1.

6.6 Commented Bibliography

There are many textbooks about topology and, in particular, combinatorial topology;
see, for example, [9, 10, 13, 100, 112, 639, 771, 844, 857]. [580] is an edited book about
digital topology.

Research regarding topologic approaches to picture analysis began before 1970.
In 1966 and 1970, A. Rosenfeld initiated the study of connected subsets of the grid
[881, 921]. The relevance of Definition 6.7 to picture analysis was discussed in 1971 by
J. Mylopoulos and T. Pavlidis [756]. Figure 7.4 is from [100]. The grid point topology
(Section 6.2.2) was described in [1140].

Axiomatic digital topology (axioms for connectedness) was studied in [970];
[872] extended this work. Properties D1 and D2 are due to U. Eckhardt and L. Late-
cki [297]. Property D3 was added by Y. Kong (private communication, March
2003); see also his discussion of digital topologies in [570]. Digital topology on
graphs is studied in [124, 158, 780]; see also [6] and [925]. Theorem 6.4 is proved in
[172]; see also [620]. Introductory and review papers about digital topology include
[571, 572, 576, 577, 579, 581, 891, 893]; see also [136]. For the relationship between
continuous and digital topology, see [95]. For “well-composed” pictures for which 4-
and 8-connectedness are equivalent, see [621, 622, 625].

The two-volume book by P.S. Aleksandrov [9, 10] provides a broad coverage of
Euclidean and abstract complexes. For more about abstract complexes, see also
[1025] and [1069]. For topologies on such complexes, see for example, [9, 844,
1069]. Geometric complexes were introduced into the mathematical literature by
J.B. Listing in 1861; see also Section 1.2.6. For Theorem 6.8, see [12]. [999] intro-
duced cellular complexes into the picture analysis literature. See [116] about oriented
simplicial complexes and about the encoding of finite subsets of such complexes.

For the topology of polyhedra, see the monographs [709, 844, 1026]. Exer-
cises 4 and 5 are discussed in [577]. See [631] about counting tunnels by counting
nonseparating cuts, which gives β1. For the difficulty of defining tunnels for poly-

hedra in R
3, see [575]. A polygonal loop in R

3 that is not contractible to a point in
the complement of a polyhedron Π obviously defines one tunnel in Π. However, as
indicated in Section 6.4.5, there exist dependencies between such loops, and we can
only define numbers of tunnels (see also Exercise 14).

Exercise 6 follows [377]. Calculations of Euler characteristics based on local
pattern counts in 2D or 3D pictures are reviewed in [577]. For other references about
the calculation of the Euler characteristic, see [88, 186, 266, 646, 938]. Local patterns
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in binary pictures can also be used to provide more detailed topologic classifications
of components [14].

Fundamental groups of digital pictures are discussed in [567, 692]. Effective
methods of computing presentations of fundamental groups of arbitrary polyhedra
are described in [709]. The problem of determining whether two polyhedra have
isomorphic fundamental groups is undecidable. (For any finite group G, one can
construct a polyhedron with a fundamental group that is isomorphic to G [see The-
orem 3.3.20 in [709]], and isomorphism of finite groups is undecidable.) However,
the restriction of polyhedra to subsets of R

3 may define a “simpler” subproblem,
and a decision algorithm for this subproblem could be used to determine whether
a polygonal loop in R

3 is knotted by determining whether the complement of the
loop has the trivial fundamental group. An algorithm for the homotopy classifica-
tion of binary pictures is given in [158]. Homotopy in digital spaces is studied in
[54]. Topologic equivalence, which is called “component equivalence” and defined
as a counterpart of homeomorphism for quantized spaces, was discussed in [757].
Topologic equivalence between preimages and “continuous analogs” of digitized
sets—and its dependency on the grid constant—is studied in [624].

For Exercise 15, see [1016].



C H A P T E R 7

Curves and Surfaces: Topology

On the basis of the concepts introduced in Chapter 6, this chapter discusses
curves and surfaces in topologic spaces, with emphasis on the digital case.

7.1 Curves in the Euclidean Topology

The definition of a curve has an interesting history in mathematics. Jordan curves are
defined by parameterization; see the “parameterized paths” in Section 6.3.3. Ury-
sohn-Menger curves are defined using a topologic approach. The two definitions are
equivalent, and they both define separations of the plane.

7.1.1 Jordan curves

Let φ be a parameterized continuous path φ : [a,b]→ R
2 such that a �= b, φ(a) = φ(b),

and let φ(s) �= φ(t) for all s, t (a ≤ s < t < b). The following set was defined by
C. Jordan in 1893 to be a Jordan curve in the plane1:

γ = {(x,y) : φ(t) = (x,y) ∧ a≤ t≤ b} (7.1)

Similarly, a Jordan arc γ in the plane is defined by a subinterval [c,d] where a≤ c <
d≤ b. A Jordan curve is topologically equivalent (homeomorphic) to a unit circle; it
does not have “crossings” or “touchings.” A rectifiable Jordan arc γ has a bounded
arc length as follows, where de is the Euclidean metric:

L(γ) = sup
n≥1∧c=t0<···<tn=d

n∑

i=1

de (φ(ti) ,φ(ti−1)) <∞ (7.2)

1. For the first appearance of the term “Jordan curve,” see [787]: “By a Jordan curve is meant a curve of the
general class of continuous curves without multiple points, considered by Jordan, Cours d’Analyse, vol. I, 2d
edition, 1893, p. 90 ...”

231
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C. Jordan proposed, in 1883, a definition of a parameterized curve in the fol-
lowing form:

γ = {(x,y) : x= α(t) ∧ y = β(t) ∧ a≤ t≤ b} (7.3)

Using a parameterization that satisfied Equation 7.3, G. Peano defined, in 1890, a
curve known as the Peano curve that fills the whole unit square. (One iteration of
the construction of the Peano curve is shown in Figure 1.7.) Note that Equation 7.1
excludes the Peano curve. However, Equation 7.3 is still in common use for arc
length calculation. (Evidently, Equation 7.3 follows from Equation 7.1; α and β can
be defined by projecting φ on the x- and y-axis, respectively. However, Equation 7.3
allows for (x,y) ∈ γ such that x = α(t1) and y = β(ttesub2), with t1 �= t2.) If α and
β are differentiable functions, the arc is called differentiable, and its arc length is
as follows:

L(γ) =
∫ b

a

√(
dα(t)
dt

)2

+
(
dβ(t)
dt

)2

dt (7.4)

The Jordan definition applies to curves that have parametric forms. Not all
curves have such forms, and, even if they do, the forms may be difficult to find. (See
Chapter 8 about the geometry of Jordan curves.) In picture analysis, we have to deal
with curves that are given in digitized pictorial form and for which a parametric de-
scription is often not of interest. Topologic methods of defining curves are therefore
more relevant for our purposes.

7.1.2 Urysohn-Menger curves

The local (adjacency-based) approaches used for curve tracing in picture analysis are
related to nonparametric curve characterizations based on topologic connectedness.

Let [S,d] be a metric space. p ∈ S is called a point of accumulation of M ⊆ S
iff, for any ε > 0, the ε-neighborhood Uε(p) of p contains a point q �= p of M . It can
be shown that M is topologically connected in S iff, for any partition of M into two
disjoint subsets, some point in one of the subsets is a point of accumulation of the
other subset.

Definition 7.1 A continuum is a nonempty subset of a topologic space S that
is compact (closed and bounded) and topologically connected.

G. Cantor was the first to suggest a topologic definition of a curve, but his
definition had to be revised. P. Urysohn provided a correct definition in 1923, and
K. Menger did so independently in 1932. Let M ⊆ L ⊆ R

n. p ∈ R
n is called an L-

frontier point of M iff, for any ε > 0, the ε-neighborhood Uε(p) of p contains points
of M as well as points of L \M . The set of L-frontier points of M is called the L-
frontier of M . A continuum M ⊆ R

n is called one-dimensional at p ∈M iff, for some
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p

q

FIGURE 7.1 A sufficiently small ε > 0 allows us to analyze the situation at
point p.

ε > 0, any continuum C contained in the M -frontier of Uε(p)∩M is a singleton {q};
see Figure 7.1. M is called one-dimensional iff it is one-dimensional at every p ∈M .
Note that this allows “one-dimensional” to be defined in a non-Aleksandrov space.
(In an Aleksandrov space, we can use Definition 6.7.)

Definition 7.2 P. Urysohn, 1923; K. Menger, 1932) A curve γ ⊆ R
n is a one-

dimensional continuum.

This definition was originally given only for the Euclidean topology. Note that
an isolated point in R

n satisfies this definition.
A Urysohn-Menger curve is more general than a Jordan curve; it may be a

simple curve (see Definition 7.3) that forms a loop without any self-intersections, but
it may also be a union of finitely many bounded arcs.

Dimension theory, as established by P. Urysohn and K. Menger, is based on
a generalization of the definition of one-dimensionality at p given above. A metric
space (or manifold) S has dimension n at p∈ S if S can be disconnected by removing
an arbitrarily small set of dimension n−1 that contains p but not by removing a set
of smaller dimension. We will return to this approach when we discuss surfaces (2D
manifolds).

Let γ ⊂ E
2 be a Jordan curve, and let ε > 0. The ε-tube of γ is the set of all

points p such that de({p},γ)≤ ε, where de is Hausdorff distance. The frontier of any
ε-tube of a Jordan curve that is topologically equivalent to an annulus (see Figure 7.2)
consists of two disjoint Jordan curves, and the de Hausdorff distance between these
curves is 2ε.

P.S. Aleksandrov proved that Urysohn-Menger curves can be approximated by
polygonal chains:

Theorem 7.1 (P.S. Aleksandrov) A compact set γ⊆R
n is a Urysohn-Menger curve

iff, for arbitrarily small ε > 0, there is a mapping Φ of γ onto a polygonal chain
such that de(p,Φ(p))< ε for all p ∈ γ.
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ε
ε

FIGURE 7.2 An ε-tube of a Jordan curve that is homeomorphic to an annulus.

Thus a Urysohn-Menger curve γ is in the ε-tube of a polygonal chain for arbi-
trarily small ε > 0.

7.1.3 Simple curves and arcs

A curve γ has branching index m ≥ 0 at p ∈ γ iff, for any r > 0, there is a positive
real ε < r such that the cardinality of the γ-frontier of Uε(p)∩γ is at most m. For a
sufficiently small real r > 0, it follows that, for any positive real ε < r, the cardinality
of the γ-frontier of Uε(p)∩γ is at least m. Note that the definition of a curve allows
m to be countably infinite.

Definition 7.3 (P. Urysohn, 1923; K. Menger, 1932) A simple curve is a curve in
which every point p has branching index 2. A simple arc is either a curve in which
every point p has branching index 2 except for two endpoints, which have branching
index 1, or a simple curve with one of its points labeled as an endpoint.

A basic theorem in the mathematic theory of curves is as follows:

Theorem 7.2 In R
2, Jordan curves and simple Urysohn-Menger curves are the

same.

This theorem shows that Theorem 7.1 also applies to Jordan curves.
A regular point of a curve has branching index 2 and is not an endpoint. A

branch point has branching index 3 or greater. A singular point is either an endpoint
or a branch point. The topologic concept of branching index is relevant to the study
of skeletons (see Chapter 16).

7.1.4 Elementary curves and the Euler characteristic

An elementary curve is the union of a finite number of simple arcs, each pair of which
have at most a finite number of points in common. It consists of a finite number
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FIGURE 7.3 Left: an elementary curve with Euler characteristic 9− 10 = −1; it
has nine singular points and 10 regular components. Right: two partitions of the
curve into one-dimensional geometric complexes, both with Euler characteristic
12−13 =−1.

of singular points and a finite number of regular components; the latter are either
simple curves or simple arcs. Every regular point p ∈ γ is on a uniquely determined
subcurve γp ⊆ γ that is either a simple curve (the component of p in γ), a simple arc
that has only one endpoint, or a simple arc that has two endpoints.

If we partition a simple curve γ (e.g., by choosing two points of γ [αtesub0 = 2]
that divide γ into two simple arcs [α1 = 2]), we find that the Euler characteristic χ(γ)
is α0−α1 = 0. An elementary curve with at least one singular point on each of its
simple curves is a one-dimensional Euclidean complex. The Euler characteristic of
such a complex is equal to the number of singular points minus the number of regular
components. For example, a simple arc that has only one endpoint, which is also a
complex of a simple curve, has Euler characteristic 0.

Figure 7.3 (left) shows an elementary curve that is a union of simple arcs. Fig-
ure 7.4 shows the capital letters of the German alphabet; the letters are assumed
to be elementary curves. (Note that a rectangle of nonzero width [e.g., a thick line
segment] is not homeomorphic to a line segment.) The three (pairwise nonhome-
omorphic) letters Ä, Ö, and Ü have three components each as compared with only
one component for each of the remaining letters; hence these three letters cannot be
homeomorphic to any of the other letters.

The homeomorphy of the letters in Figure 7.4 depends on whether we consider a
letter to be a set that is not one-dimensional at any of its points or to be an elementary
curve. Figure 7.5 shows both alternatives for two letters. The elementary curve

A B C D E F G H I J K L

M N O P Q R S T U V W

X Y Z  A O U

FIGURE 7.4 Capital letters of the German alphabet. We assume that the letters are
elementary curves that may have endpoints or branch points, as indicated on the
right for the letters A and B.
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FIGURE 7.5 The two sets on the left are homeomorphic, but the two elementary
curves on the right (which are not linear skeletons of the sets on the left, although
they may be regarded as “skeletons” in a picture-analysis context) are not.

version of the letter E has a decomposition vertex (i.e., deletion of this point partitions
the set into more than two connected parts), but the elementary curve version of the
letter M has no decomposition vertex. The number of decomposition vertices is a
topologic invariant (i.e., it is preserved by homeomorphism).

As an illustration of isotopy, consider the sets of curves 05 and 20. These sets
are isotopic to each other but not to the set 97, because 9 is not homeomorphic to 0.

7.1.5 Separation theorems

The Jordan-Veblen curve theorem of Euclidean topology says that any set that is
topologically equivalent to a unit circle decomposes the Euclidean plane into two
disjoint sets.

Theorem 7.3 (C. Jordan, 1887; O. Veblen, 1905) Let γ be a Jordan curve in the
Euclidean plane E

2. The open set R
2 \γ consists of two disjoint topologically

connected open sets with the common frontier γ.

This theorem was first stated by C. Jordan in 1887. His proof (which was incor-
rect) attempted to use a sequence of polygons that converged to the curve.2 The first
correct proof was given by O. Veblen in 1905 using the parametric characterization
of the curve. This proof left open the question of whether the inside and outside of
the curve are always topologically equivalent to the inside and outside of a circle.
The stronger Schönflies-Brouwer curve theorem is as follows:

Theorem 7.4 (A. Schönflies, 1906; L.E.J. Brouwer, 1910) For any planar Jordan
curve γ, there is a one-to-one mapping Φ of the Euclidean plane into itself such
that Φ and Φ−1 are continuous and Φ(γ) is the unit circle.

2. For a first use of the term “Jordan curve theorem,” see [1129]; D.W. Woodard was the second African American
who received a PhD in mathematics.
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The proof by A. Schönflies in 1906 contained some errors, which were fixed by
L.E.J. Brouwer in 1910. Both theorems also apply to simple Urysohn-Menger curves
(see Theorem 7.2). By the Schönflies-Brouwer theorem, any two simple curves in E

2

are isotopic; this is a stronger result than the Jordan-Veblen theorem.
Finally, we have a general result for continua in R

2:

Theorem 7.5 (S. Straszewicz, 1923) Let G1,G2 ⊂ R
2 be two continua, each of

which does not divide R
2 into two connected regions, and let G1 ∩G2 consist

of two connected components. Then G1 ∪G2 divides R
2 into two connected

regions.

7.2 Curves in Incidence Grids

The Urysohn-Menger method of defining curves (see Definition 7.2) can be adapted
to the grid cell topologies [Cn,≤]. We make use of the dimension dimA defined by
adjacency relation A; see Definition 6.7. This definition applies to arbitrary subsets
of incidence grids (e.g., subsets that define frontiers and do not contain principal
nodes).

7.2.1 Frontier grids; curves of marginal nodes

Section 5.4.3 defined a frontier grid for a 2D picture. Such grids can also be defined for
3D (or even nD) pictures; they were proposed and used (with different terminology
and notation) for 2D and 3D picture analysis by V. Kovalevsky [594].

Definition 7.4 An m1×m2× . . .×mn incidence grid (picture grid) uniquely
defines an isomorphic (m1 +1)× (m2 +1)× . . .× (mn +1) frontier grid. i-cells
of the picture grid are mapped isomorphically (with respect to cell incidence)
into (n− i) cells of the frontier grid (i= 0, . . . ,n).

Equation 5.3 guarantees the existence of such an isomorphism.
Figure 7.6 illustrates frontiers in a 2D incidence grid (left) and their representa-

tions in the 2D frontier grid using a 2D incidence grid model representation (middle)
and a (simpler) 4-adjacency grid model representation (right).

Proposition 7.1 Every frontier of a nonempty region in a 2D incidence grid is
one-dimensional, closed, and bounded.
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FIGURE 7.6 Left: two frontiers in the 2D incidence grid. Middle: representations of
these frontiers in an incidence grid model of the frontier grid. Right: their represen-
tations in a 4-adjacency grid model of the frontier grid.

Proof The frontier contains only 0- and 1-cells. A 0-cell is incident with up to four
1-cells, and each 1-cell is incident with two 0-cells. These are one-dimensional
configurations; see Definition 6.7. The frontier is closed, because it always
contains the two 0-cells that are incident with each of its 1-cells, and it is bounded
because the region is finite. �

This proposition shows that the frontiers of regions in the 2D incidence grid are
curves in the sense of Definition 7.2. The definition of branching points also applies,
so that simple curves, simple arcs, and elementary curves can be defined. The curves
are 4-curves in the 4-adjacency representation of the frontier grid. The 4-curves that
represent the frontiers of two regions in the picture can be 4-adjacent in the frontier
grid; see Figure 7.6.

7.2.2 Curves of principal nodes

We are particularly interested in one-dimensional connected sets of pixels or voxels
in the picture grid; see the middle of Figure 6.11. In this section, we describe a way
of defining curves in an incidence grid without making use of the frontier grid.

We recall that a region M is a complete finite component of Cn and that its
core is a nonempty maximal connected set of principal nodes; see Section 5.1.3. A
closed region in C2 is 2D when we use the definition of dimension based on adjacency
(Definition 5.3); hence we cannot use closed regions to model curves. Rather, we
define a curve ρ of principal nodes as a one-dimensional region in [Cn,≤] (n ≥ 2).
It follows that any curve has finite cardinality, so the union

⋃
ρ of the cells of ρ is

bounded.
⋃
ρ is an isothetic polygon if ρ is a curve in C2 and an isothetic polyhedron

if ρ is a curve in C3.
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Figure 7.7 illustrates this definition. The upper row shows curves in which
the connectedness between principal cells is based on 1-connectedness; they are
therefore called 1-curves. Note that the example in the upper left corner also contains
0-cells, but it is still one-dimensional, and these 0-cells add no further connectivities
to the curve. From now on, we exclude 0-cells from 1-curves; see the definition of
minimal curves below. Pixels (2-cells) in a 1-curve can “touch” (i.e., they can be
0-adjacent); see the examples in the middle and on the right in the upper row of
Figure 7.7.

FIGURE 7.7 Upper row: 1-curves; the curve on the left is a 1-curve after removing
three 0-cells. Middle row: 0-curves. Bottom row, upper part: sets that are not curves;
lower part: see text.
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The middle row of Figure 7.7 shows curves in which connectedness between
principal nodes is based on either 1-adjacency or 0-adjacency (in the sense of Defini-
tion 5.2). Such curves are called 0-curves. The example in the middle forms an “8”.

Definition 7.5 A region in Cn is called anα-curve iff it is one-dimensional and
contains only i-cells (α≤ i≤ n).

The upper examples in the bottom row of Figure 7.7 are not curves. The examples
on the left and in the middle are not regions, because they are not complete, and
the example on the right is not one-dimensional. (The three examples in the lower
positions will be explained later in this section.)

An α-curve ρ is called minimal iff it contains only marginal cells that are re-
quired for its connectivity. For example, in the upper left of Figure 7.7, we obtain a
minimal 1-curve after removing three 0-cells and one “terminal” 1-cell. (Note that
removal of a 1-cell instead of a 0-cell may preserve connectivity between principal
cells but will result in a noncomplete set.) It follows that an α-curve ρ is minimal
iff it contain only i-cells (α ≤ i ≤ n− 1) that are i-adjacent to two principal nodes
in the core of ρ. For example, in the upper right of Figure 7.7, we obtain a minimal
1-curve after removing two “terminal” 1-cells. It follows that a minimal (n−1)-curve
in Cn is always an open region. (Note that a 0-curve cannot be closed, because it is
one-dimensional.)

A vertex of a 0-cell in a 0-curve ρ is called a decomposition vertex if its deletion
partitions

⋃
ρ into more than two connected components in the Euclidean topology.

Minimal 1-curves do not have decomposition vertices.
An α-curve ρ is called confirmative iff, for any two principal nodes in ρ that are

adjacent via some i-cell (α≤ i≤ n), there is also a marginal cell in ρ that ensures this
adjacency, and adding this cell does not contradict one-dimensionality. For example,
the 0-curve on the lower left in Figure 7.7 is not confirmative, but adding one 0-cell
makes it confirmative, and it remains one-dimensional. Note that completeness of
curves does not imply confirmativeness. The 1-curves in the middle and right of the
upper row in Figure 7.7 are confirmative, because 0 < α = 1. The 0-curve at the
center of Figure 7.7 is confirmative, but adding the related 0-cell would destroy its
one-dimensionality. From now on, we will assume that α-curves in the incidence grid
are minimal and confirmative.

A curve ρ has branching indexm≥ 0 at a principal node p iff exactlym principal
nodes q ∈ ρ are adjacent to p. For n= 2 (0- or 1-curves), possible branching indices
are 1 (an endnode), 2 (a regular node), and 3 or 4 (a branch node). For n= 3 (0-, 1-
or 2-curves), a branch node can have branching indices 3, 4, 5, or 6. A node is called
singular if it is either an endnode or a branch node.

Definition 7.6 A curve ρ in [Cn,≤] (n ≥ 3) is called simple iff every n-cell
in ρ is regular (i.e., has branching index 2). ρ is a simple arc iff either (1)
every n-cell in ρ has branching index 2 except for two endnodes that have
branching index 1 or (2) ρ is a simple curve and one of its n-cells is labeled as an
endnode. A one-dimensional union of a finite number of simple arcs is called an
elementary curve.
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Elementary curves differ from curves, because some of their principal nodes
can be explicitly labeled as being endnodes of arcs. A simple curve (arc) has a
circuit (sequence) of principal nodes. The number of principal nodes in the circuit
(sequence) defines the length of the curve (arc). The bottom row of Figure 7.7 shows
that the shortest simple 1-curve in C2 has length 8 and that the shortest simple 0-curve
in C2 has length 4.

Proposition 7.2 A curve ρ in [C2,≤] is a simple 1-curve iff
⋃
ρ is homeomorphic

to an annulus; it is a simple 0-curve iff
⋃
ρ is homotopic to a circle.

The union of the cells in an elementary plane curve ρ is a (not necessarily
connected) isothetic polygon

⋃
ρ that has a frontier γ = ϑ(

⋃
ρ) that is an elementary

isothetic curve. If ρ is a simple 1-curve, this frontier splits into two nonempty simple
curves γ1 and γ2. We recall that ◦ denotes the topologic interior (see Section 3.1.7).
Let θ0 be the side length of the large squares in the geometric representation of C2

(θ0 is “slightly smaller” than the grid constant θ in our topologic representation and
is equal to θ in the original grid cell representation).

Proposition 7.3 Let ρ be a simple 1-curve in [C2,≤]. The frontier ϑ(
⋃
ρ) is the

union of two nonempty simple curves γ1 and γ2 that are the frontiers of simple
isothetic polygons P1 and P2 such that P1 ⊂ P ◦

2
. Moreover, the Hausdorff

distance L∞(γ1,γ2) is θ0.

7.3 Curves in Adjacency Grids

A curve can be regarded as a sequence of pixels or voxels in an adjacency grid
(in either the grid point or grid cell model). Figure 7.8 shows examples of simple
(n−1)-curves and (n−hbox1)-arcs in 2D and 3D. Note that this simple representation
does not uniquely characterize the curve. For example, the 2D object on the left in
Figure 7.9 may be either a simple 8-curve or a nonsimple 0-curve, and this is the
same for the 3D object on the right. Note that, in the incidence grid, the ambiguities
in these figures can be removed by deleting a marginal cell (the 0-cell at which the
object “touches itself”).

7.3.1 Euler characteristics of curves

The Euler characteristic of a simple curve in the Euclidean plane is 0; see Section 7.1.4.
The Euler characteristic of a simple 0- or 1-curve can be calculated by considering
the curve in the incidence grid (see Definition 5.14) as a 2D Euclidean complex. In
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FIGURE 7.8 Simple (n− 1)-curves (left) and simple (n− 1)-arcs (right) for n = 2 in
the upper row and n= 3 in the lower row.

general, the Euler characteristic of a region M is calculated by decomposing
⋃
M

into a Euclidean complex and applying Definition 5.14. For example, the simple
1-curve ρ shown on the upper left in Figure 7.8 has α0 = 64 grid vertices, α1 = 96 grid
edges, andα2 = 32 grid squares so that its Euler characteristic isχ=α0−α1 +α2 = 0.

The dual interpretation of a set of 2-cells in the grid point model leads in general
to a 2D Euclidean complex. In our 1-curve example, however, we obtain only a one-
dimensional Euclidean complex that has α0 = 32 0-cells (centers of grid squares)
connected by α1 = 32 1-cells, so we get the following:

χ(ρ) = α0−α1 = 32−32 = 0

FIGURE 7.9 Left: the 2D object is either a simple 1-curve or a nonsimple 0-curve.
Right: a similar case in 3D.
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The interpretation of ρ in the grid point model can also be regarded as a planar-
oriented adjacency subgraph G of Z

2. G has α0 = 32, α1 = 32, and α2 = 2; there are
no atomic cycles in this example, but we must count one inner and one outer border
cycle. However, the Euler characteristic of G is not the quantity we are interested in
for characterizing ρ. For our 1-curve example, we have the following:

χ+(G) = α0−α1 +α2 = 32−32+2 = 2

The Euler characteristic χ+ of a planar-oriented adjacency graph is always 2 (see
Theorem 4.6). The curve ρ can also be interpreted as a 2-strong planar-oriented
adjacency subgraph in the frontier grid (see Section 5.4.3) of grid vertices, with 32
atomic cycles and two border cycles (i.e., α2 = 34) and with α0 = 64 and α1 = 96,
which also leads to χ+ = 2. This is a graph-theoretic characterization only; it does
not make distinctions between faces.

7.3.2 Simple 2D curves

Definition 7.7 An α-path is a simple α-curve iff (C1) its length n is greater
than a threshold tα; (C2) it consists of n+ 1 distinct pixels p0,p1, . . . ,pn; and
(C3) pi is α-adjacent to pk iff i = k± 1 (modulo n+ 1). A simple α-arc is an
α-connected proper subset of a simple α-curve.

In 2D, we have t4 = 4 and t8 = 3. In fact, a simple 4-curve must have a length of at
least 8.

A pixel p= (i, j) is inside a simple 4-curve ρ iff p is not on ρ and the grid lines
i and j cross ρ an odd number of times on each side of p. For an illustration of this
property in the grid point model, see Figure 7.10 (left). Evidently, the grid line crosses
the curve to the left of p. On the right of p, the grid line only “touches” the curve,
because it “comes in from” and “goes out to” the same halfplane; however, further to
the right, it crosses the curve, because it “comes in from” and “goes out to” different
halfplanes. (We will not give a formal definition.) p is outside ρ if it is neither on nor
insideρ. The inside and outside of a simple 8-curve are defined analogously. Note that
the set of pixels inside a simple 4-curve may not be 4-connected; see Figure 7.10 (left).

Let G(ρ) be the set of all pixels on a path ρ.3 Two 4- or 8-paths ρ1 and ρ2

intersect iffG(ρ1)∩G(ρ2) �= ∅. Figure 7.11 shows that two 8-paths can “cross” without
intersecting. Let p and q be the pixels that are not in the set S. We say that S 8-
separates (4-separates) p and q iff any 8-path (4-path) from p to q intersects S. In
particular, this definition can be applied to the set S =G(ρ) of pixels on a path ρ.

Theorem 7.6 A simple 4-curve (8-curve) ρ 8-separates (4-separates) all pixels
inside ρ from all pixels outside ρ.

3. This notation is consistent with that for Gauss digitization.
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p
q

FIGURE 7.10 Left: a pixel p inside a simple 4-curve. Right: a simple 4-curve for which
decisions about inside and outside are more difficult (e.g., is q inside or outside?).

FIGURE 7.11 Two nonintersecting 8-paths.

Proof We prove the theorem for simple 4-curves and 8-separation; the case of
simple 8-curves and 4-separation can be treated analogously. For simplicity, in
this proof we identify an (ordered) path ρ with its (unordered) pixel set G(ρ),
and we denote the complement of G(ρ) with ρ.

We first prove that, for any simple 4-curve ρ, there is at least one pixel inside and
at least one pixel outside ρ. Because ρ is finite, there are infinitely many pixels
outside ρ. To see that the inside of 8 is nonempty, let pm = (x,y) be the upper-
most of the rightmost pixels on ρ; then (x−1,y) and (x,y−1) must both be on
ρ, because they are the only possibilities for pm−1 and pm+1. If (x− 1,y− 1)
were on ρ, according to (C3) in Definition 7.7, it would have to be both pm−2

and pm+2 so that by (C2) we would havem−2 =m+2 (modulo n+1), which is
impossible, because n≥ 4; hence (x−1,y−1) is in ρ. It follows that (x,y−2) is
on ρ. Indeed, if (x−1,y) is pm−1, it is the only possibility for pm−2, whereas, if
(x−1,y) is pm+1, it must be pm+2. LetHp = {(x+ i,y) : i∈N} be the horizontal
digital ray that emanates from pixel p= (x,y) to the right. We have just proved
that H(x−1,y−1) crosses ρ exactly once, namely at (x,y−1); hence (x−1,y−1)
is inside ρ.
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Let p0 be inside ρ and pm outside ρ. Let ϕ= (p0,p1, . . . ,pm) be an 8-path, and
suppose that every pj is in ρ. Because p0 is inside ρ and pm is outside ρ, there
must exist some i (0 < i≤m) such that pi−1 is inside and pi is outside. If pi−1
and pi are horizontally adjacent, this is impossible by definition of “inside” and
“outside”. On the other hand, if they are vertically or diagonally adjacent,Hi−1
and Hi (where we have omitted the ps for brevity) are vertically adjacent rays.
Let R= {qk+1, . . . , qk+r} be a run (maximal consecutive sequence) of pixels in
which ρ intersectsHi−1∪Hi; thus each of qk and qk+r+1 is either above or below
bothHs. (Because pi−1 and pi are 8-adjacent, a run of 4-neighbors cannot leave
Hi−1 ∪Hi but rather remain on the union of the rows that contain them; the
run can leave only by passing to the row above or below.) Suppose they are
both above; if they are both below, we can use exactly analogous arguments.
We can assume, without loss of generality, thatHi−1 is the upper of the twoHs.
If all of qk+1, . . . , qk+r are onHi−1, then ρ touchesHi−1 inR and does not even
touch Hi in R, so it crosses neither of the Hs in any subset of R. On the other
hand, if some of these qs are on Hi, let qs be the first one and qt the last one.
ThenHi−1 crosses ρ in {qk+1, . . . , qs−1} andHi crosses it in {qv+1, . . . , qk+1}, but
neither of them can cross it anywhere between qu and qv by the same argument
as given in the preceding paragraph. Thus, in this case, both Hi−1 and Hi cross
ρ just once in subsets of R.

We have thus shown that, in any case, the difference between the number of
times that Hi−1 and Hi cross ρ in subsets of R is even. Because this is true for
every R, it follows that the difference between the total number of times that
Hi−1 and Hi cross ρ is even; in other words, pi−1 and pi are either both inside
or both outside of ρ, which is a contradiction. �

Theorem 7.6 is a separation theorem for (4,8)- or (8,4)-adjacency grids that resembles
the Jordan-Veblen curve theorem of Euclidean topology. It can also be applied to
simple 0- or 1-curves in the 2D incidence grid; see Figure 7.12. (The 1-curve is open
and separates two closed regions; the 0-curve is neither open nor closed, and its
closure separates two open regions.)

Let M ⊆ Gm,n. The background component of M is unbounded; it consists
of Z

2 \Gm,n and all complementary 4-components of M (i.e., 4-components of M)
in Gm,n that are 4-adjacent to Z

2 \Gm,n. Any remaining finite 4-components of
M are (proper or improper) 4-holes in M and are separated from the background
component by the outer or (one or more) inner border cycles.

Definition 7.8 An α-region M in the 2D (3D) incidence grid is simply
α-connected iff the geometric representation ofM in the incidence grid is simply
connected in E

2 (E3).

A more informal definition was given in Section 1.2.6. See Section 6.3 for ex-
amples of geometric representations in incidence grids. We also apply this definition
in the grid point model. For example, a finite 4-connected set M without proper
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FIGURE 7.12 Left: a simple 1-curve that separates two closed regions. Right: a simple
0-curve with a closure that separates two open regions.

4-holes is simply 4-connected. An 8-hole ofM is a finite 8-component ofM and may
consist of several proper 4-holes of M . An 8-hole of M cannot contain an improper
4-hole of M . (This discussion can be generalized to α-components and α-holes for
any adjacency relation α.)

Proposition 7.4 A simple 4-curve has exactly one 8-hole and a simple 8-curve
has exactly one 4-hole. A simple 4-curve 8-separates its 8-hole from the back-
ground, and a simple 8-curve 4-separates its 4-hole from the background.

7.3.3 Good pairs for 2D binary pictures

Theorem 7.6 can be generalized from (4,8)- and (8,4)-adjacency to “good pairs” of
adjacencies:

Definition 7.9 (β1,β2) is called a good pair 4 in the 2D grid iff (for (i,k) in
{(1,2),(2,1)}) any simple βi-curve βk-separates its (at least one) βk-holes from
the background and any totally βi-disconnected set cannot βk-separate any
βk-hole from the background.

As Figure 1.9 shows, (4,4) and (8,8) are not good pairs. It is not hard to see that (6,6)
is a good pair. (See the discussion of the metric dh in Section 3.2.3; two pixels are
called 6-adjacent if they are at dh-distance 1 from each other.)

For any adjacency relationA on Z
2, a subsetM ⊆Gm,n defines a partitionR of

Z
2 into one infinite background component, finite components, and complementary

components (holes), which are all regions. Let these components beM1,M2, . . . , and
define MiAMj iff A(Mi)∩Mj �= ∅; this adjacency relation on R defines the region
adjacency graph [R,A] of M . (Note that, if MiAMj and Mi is a component, Mj

4. T.Y. Kong proposed this term in a talk in 2001 [569]. It is used in another sense in topology.
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must be a complementary component.) This graph need not be a tree; see Figure 4.9.
However, we have the following:

Theorem 7.7 If A is generated by a good pair (α,β), the region adjacency graph
[R,A] of any M is a tree.

Proof We must show that [R,A] does not contain a cycle. LetW be a component
of M and U and V be two components of M that are A-adjacent to W . We
must show that any β-path from U to V must meet W ; otherwise the regions
encountered by the path, together with W, would constitute a cycle. (Simi-
larly, if W is a component of M and U and V are components of M that are
A-adjacent to W , we must show that any α-path from U to V must meet W ;
the proof in this case is analogous.)

Suppose there is a β-path in Z
2 fromU toV that does not meetW ; thenU andV

are in the same β-componentD ofW , and an inner border cycle ofD separates
W fromW . Because U and V areA-adjacent toW , there are undirected edges
assigned to this border cycle that are incident with pixels inU and in V . The set
of pixels in D, incident with these undirected edges, is β-connected. It follows
that U and V must be in two different β-components of M . �

A good pair (α,β) and a subset M of Gm,n define (via deletion of all invalid
grid edges) an adjacency structure GM

α,β = [S,A] such that the following are true:

1. S = Z
2 is the set of all nodes in GM

α,β .

2. For all nodes p in Z
2 \Gm,n and all β-components of M = Gm,n \M , we have

q ∈A(p) iff q ∈Aβ(p) and q /∈M or q ∈Aβ(p), p ∈Aα(q), and q ∈M .

3. For all nodes p ∈M , we have q ∈ A(p) iff q ∈ Aα(p) and q ∈M or q ∈ Aα(p),
p ∈Aβ(q), and q /∈M .

Figure 4.15 shows examples of a good pair (4,8) on the left and a good pair (8,4)
on the right. The figure shows on the left all border cycles of M in GM

4,8
and on the

right all border cycles of M in GM
8,4

. The undirected edges assigned to any border
cycle of M are the same for (4,8) and (8,4); they are the invalid edges defined by M .

Using the good pair (4,8) or (8,4) is equivalent to regarding 4-components of
white pixels as open regions and 8-components of black pixels as closed regions in
the incidence grid (or vice versa); see Figure 5.20.

Let P be a binary picture defined on a grid Gm,n. Because (4,8) and (8,4) are
good pairs, this suggests using 4-connectedness for 〈P 〉=P−1(1)and 8-connectedness
for 〈P 〉=P−1(0), or vice versa. IfC is a 4-component of 〈P 〉 andD is an 8-component
of 〈P 〉 (or vice versa), it can be shown that C and D are 4-adjacent iff they are 8-
adjacent (see Exercise 8 in Section 7.6). The set of pixels of C that are adjacent
to pixels of D is called the D-border of C; the C-border of D is defined analo-
gously. The analysis of binary pictures can be based on a good-pairs approach if the
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FIGURE 7.13 Left: good pair (8,4). Right: good pair (4,8). This example is discussed
in [591]. In both cases, the 8-adjacencies result in “cuts” in the “V” shape.

FIGURE 7.14 Pair (4,4) and good pair (6,6); there are “cuts” (as in Figure 7.13), even
for (6,6).

assumption of different adjacencies for white and black pixels is acceptable. For
example,M in Figure 4.15 has either six or three components, depending on whether
we use good pair (4,8) or (8,4). However, there may be situations in which it is ques-
tionable to make the commitment that “black is object” and “white is background
or hole” (or vice versa). For example, consider Figure 7.13, which does not show
invalid adjacencies between pixels in different P -equivalence classes. The left half
of Figure 7.13 shows a “hole V,” and the right half shows an “object V.” Because of the
symmetry of this example, we can only guess which is the “object” and which is the
“background or hole.” There is only one connected “V” whether we use good pair
(8,4) or good pair (4,8). Note that the second “V” is “cut” by 8-adjacent pixels. As
Figure 7.14 shows, disconnection can occur even if we use 6-adjacency. (6-adjacency
also introduces a systematic directional bias.)

7.3.4 s-Adjacencies in 2D multivalued pictures

The concepts of good pairs or of open and closed sets cannot be extended to mul-
tivalued pictures P ; there is no “consistent” way to define adjacencies for P−1(u)
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(0 ≤ u ≤ Gmax) if Gmax > 1. Figure 5.21 shows how different total orders of the
pixel values influence the topology of a picture. The picture analysis context may
have an impact on which order to use. However, in any case, we need “topologically
sound” adjacencies in which connectedness and separation are incompatible. This
is especially important at higher levels of picture analysis, where we often deal with
inhomogeneous grids (e.g., picture subsets, object surfaces, objects); see Figure 4.3
for examples.

Switch-adjacency As (s-adjacency for short; see Section 2.1.3) is a general
method of defining planar adjacency graphs for multilevel 2D pictures. It was gen-
eralized in Section 5.4.2 to ordered adjacency, which also applies to 3D pictures.
The graph [Z2,As] is in general an irregular planar graph. If we assume clock-
wise local circular orders at all grid points, it is an oriented adjacency graph. The
s-adjacency graph is always planar because, in each 2× 2 block of pixels, there is
only one diagonal adjacency. The same is true for the adjacencies defined by the
good pair (6,6) and for the adjacency in the product of two alternating topologies
(see Figure 6.6).

A flip-flop case in s-adjacency is analogous to a situation in which two
planar curves intersect at a point and the assignment of the intersection point to
one of the curves determines how the curves subdivide the plane. Fortunately, such
cases are unlikely; see Figures 2.8 and 7.15.

Figure 7.15 shows that it is possible to define s-adjacencies so that both “V”
shapes remain connected. Figure 7.16 shows the graph of s-adjacencies for the switch
state matrix shown on the right in Figure 7.15.

A switch state matrix S must be available when an operation such as border
tracing (see Algorithm 4.3) or thinning (see Section 16.3) is performed to ensure
that the adjacency graph of the picture is planar. It is important that once a switch
state has been set it not be changed during a topologic operation on the picture. On
the other hand, any picture processing operation that changes the pixel values may
create a need to change S.

-
1
0
1
1
0
0
0
0
1
0
0

-
0
1
1
0
1
0
0
1
1
0
0

-
1
0
1
0
0
0
0
0
1
1
1

-
1
1
0
0
1
0
0
0
0
0
0

-
0
1
1
0
1
0
1
0
0
0
1

-
0
0
0
0
0
1
1
1
1
1
1

-
1
1
0
1
1
1
1
1
0
0
0

-
0
1
1
1
1
1
0
0
0
1
1

-
1
0
0
1
0
0
1
1
1
0
0

-
0
0
1
0
0
0
1
0
0
1
1

-
0
1
0
0
1
1
0
1
0
0
0

-
1
1
1
0
1
0
0
0
1
1
1

-
0
0
0
0
0
0
1
1
0
0
1

-
0
1
1
0
0
0
0
0
0
1
0

-
0
1
1
1
0
0
0
0
0
0
1

-
1
0
0
1
0
1
0
1
1
1
0

-
0
0
1
1
1
1
1
1
1
0
0

-
1
1
0
1
1
1
1
1
0
1
0

-
0
0
1
1
1
0
1
1
1
1
0

-
0
0
0
1
0
1
0
1
1
0
0

-
-
-
-
-
-
-
-
-
-
-
-

FIGURE 7.15 The states of switches are uniquely defined or can be chosen arbitrarily
in most cases. Only in a few flip-flop cases (12 in this example) are the switches set
using the templates shown in Figure 7.16. The binary matrix S on the right represents
the states of all of the switches.
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FIGURE 7.16 s-Adjacencies for the switch state matrix shown on the right in Fig-
ure 7.15.

In terms of s-adjacency, we can define s-curves, s-separation (using s-paths), and
region (s)-adjacency graphs. Because an s-adjacency graph is planar, Theorems 7.6
and 7.7 are valid when we use s-adjacency:

Theorem 7.8 Any simple s-curve ρ has exactly one s-hole and s-separates this
hole (the set of pixels inside ρ) from the background (the set of pixels outside ρ).

Theorem 7.9 The region adjacency graph [R,A] defined by a nonempty subset
M of an oriented s-adjacency graph is always a tree.

FIGURE 7.17 A simple s-curve (left). An s-adjacency graph (right) is partitioned into
regions by the deletion of all undirected edges assigned to border cycles (filled nodes
and bold adjacency edges); the resulting region adjacency graph is a tree.
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The proofs of these theorems are the same as the proofs of the corresponding theo-
rems for the good pair (6,6), which defines a special case of s-adjacency. Figure 7.17
shows (on the left) a simple s-curve and (on the right) a partition into regions defined
by a subset M .

7.4 Surfaces in the Euclidean Topology

7.4.1 Manifolds

A topologic space S is called locally compact iff every p ∈ S has a topologic neigh-
borhood with a closure that is compact.

Definition 7.10 A topologic space S is called an n-manifold iff it is locally
compact, has a countable basis, and every p ∈ S has a topologic neighborhood
(in S) that is homeomorphic to an open n-sphere.

Evidently, E
n is an n-manifold and so is an open n-sphere in E

n; thus an
n-manifold can be bounded or unbounded. A bounded 1-manifold is either a simple
(Urysohn-Menger) curve or a simple arc without its endpoints and is homeomorphic
to an open line segment. In general, a bounded manifold has an “open frontier.”
(We recall that the empty set is also an open set.) If M ⊆ E

3 and Uε(p)∩M is home-
omorphic to three open semicircular areas (see Figure 7.18), p is called a bifurcation
point of M . A 2- or 3-manifold cannot have a bifurcation point.

An n-manifold is called hole-free iff it is compact (i.e., bounded and closed).5

For example, the surface of a sphere is a hole-free 2-manifold, and so is the surface
of a torus.

5. We use the term “hole-free manifold” instead of “closed manifold” to avoid confusion when we discuss closed
complexes defined by tilings of manifolds.

p

FIGURE 7.18 A bifurcation point.



252 Chapter 7 Curves and Surfaces: Topology

Theorem 7.10 (I. Gawehn, 1927) Any hole-free 2-manifold is homeomorphic to
a polyhedral surface.

This allows us to study triangulations of hole-free 2-manifolds. Let Φ be a
homeomorphism of such a 2-manifold M onto a polyhedral surface. Let Z be a
triangulation of Φ(M) so that Φ(M) is the union of all of the triangles T ∈ Z. The
sets Φ−1(T ) define a triangulation of the 2-manifold M that consists of curvilinear
triangles, their sides (which are simple arcs), and their vertices (points). This allows
us to discuss geometric (particularly simplicial) complexes on curved surfaces.

7.4.2 Surfaces

A Jordan surface (C. Jordan, 1887) is defined by a parameterization that establishes a
homeomorphism with the surface of a unit sphere. In picture analysis, we are usually
not interested in parameterizations of surfaces. (See Chapter 8 about the geometry of
Jordan surfaces.) Instead, we use a topologic definition of a surface that can be com-
pared with the topologic definition of a Urysohn-Menger curve (see Section 7.1.2):

Definition 7.11 A hole-free 2-manifold is called a hole-free surface. Let S
be homeomorphic to a polyhedral surface, and let S be partitioned into two
nonempty subsets S◦ and ϑS in which every P ∈ S◦ has a topologic neigh-
borhood in S that is homeomorphic to an open disc and every p in ϑS has a
topologic neighborhood in S that is homeomorphic to the union of the interior
of a triangle and one of its sides (without endpoints) such that p is mapped onto
the side. Then S is called a surface with frontiers. The points of S◦ are called
interior points of S, and the points of ϑS are called frontier points of S.

Evidently, S = S• = S◦ ∪ϑS, where S• denotes the closure of S. If ϑS = ∅, S
is called a hole-free surface. A surface is either a hole-free surface or a surface with
frontiers. A simple hole-free surface is a hole-free surface that is homeomorphic to
the surface of a sphere (i.e., it is a Jordan surface).

The frontier ϑS of a surface S with frontiers is an elementary curve that is
a union of pairwise disjoint simple curves. Figure 7.19 shows two examples: the
surface of a sphere with a few circular areas removed and the surface of a torus with
one circular area removed (a handle). A simple surface with r contours is a surface
with frontiers and is homeomorphic to the surface of a sphere with r holes that has
frontiers that are pairwise disjoint.

In what follows, we assume that any surface with frontiers can be defined by
a triangulation (i.e., it is a union of finitely many points, simple arcs, and curvilinear
triangles). More generally, we say that a finite or infinite connected graph drawn on
a surface S with frontiers defines a tiling of S iff every edge of the graph is on a cir-
cuit (encircling a face), there is a vertex at any point at which edges intersect, and
ϑS is contained in the union of all of the edges and vertices. (A planar graph was



7.4 Surfaces in the Euclidean Topology 253

FIGURE 7.19 The surface of a sphere without a few circular areas (left). The surface
of a torus without one circular area (right); this surface is called a handle.

defined based on a drawing on a planar surface. Similarly, a toroidal graph could be
defined based on a drawing on a toroidal surface, and so on.) We identify a tiling
with its set of faces (2-cells), edges (1-cells), and vertices (0-cells). The side-of relation
defines a partial ordering on the set of 0-, 1-, and 2-cells of a tiling. Thus, it follows:

Corollary 7.1 A tiling of a surface and the side-of relation between its cells define
a Euclidean complex and its poset topology.

Triangulations are examples of tilings. A tiling is called regular iff every face
of the tiling is an n-gon (a simple polygon that has n≥ 1 vertices on its frontier) and
every vertex is incident with exactly k ≥ 1 faces.

Example 7.1 In accordance with Theorem 7.10, a Jordan surface is homeo-
morphic to a polyhedron. Suppose the faces and vertices of this polyhedron
define a finite regular tiling. By the Descartes-Euler polyhedron theorem, we
have α0−α1 +α2 = 2. For a regular tiling, we have 2α1 = kα0 (because each
vertex is incident with k edges and an edge is defined by two vertices) and
2α1 = nα2 (because each edge is incident with two faces and each face has n
edges). Hence we have the following:

1
k

+
1
n

=
2+α1

2α1
=

1
2

+
1
α1

The only solutions to this Diophantine equation are given by the five regular
polyhedra. In particular, there are no solutions forα1 > 30; thus no regular finite
tiling on a Jordan surface can be of interest for defining a picture grid. There are
triangulations (n= 3) of a Jordan surface that have α1 > 30, but the degrees of
the vertices of these triangulations cannot have a constant value. Interestingly,
there are finite regular tilings on the surface of a torus (which is a hole-free
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FIGURE 7.20 Left: a cyclic vertex. Middle and right: acyclic vertices.

2-manifold) in which the size of α1 is not limited. Thus nontrivial picture grids
can be defined on the surface of a torus but not on the surface of a sphere.

LetZ be a triangulation of a hole-free surface or of a surface with frontiers. The
relation≤ defined by the side-of relationship defines a poset that has an Aleksandrov
topology. Let UZ(t) denote the smallest neighborhood of t in Z. For example, the
smallest neighborhood UZ(p) of a vertex p in Z contains p and may also contain
curvilinear triangles pr1r2 and simple arcs pq. The set of vertices q of these arcs and
the set of arcs r1r2 of these triangles define a subcomplex ϑZ(p) called the frontier of
UZ(p). UZ(p) is called cyclic iff the union of the simple arcs on its frontier ϑZ(p) is a
simple curve; otherwise it is called acyclic. Figure 7.20 shows examples. If UZ(p) is
cyclic, it is homeomorphic to a closed disk.

P. S. Aleksandrov (1956) proved several theorems about surface triangulations.
We cite three of them:

(i) Z is a triangulation of a hole-free surface iffZ is connected andUZ(p) is cyclic
for all vertices p of Z.

(ii) Every simple arc in a triangulation Z of a hole-free surface is a side of exactly
two triangles in Z.

(iii) Any triangulation of a surface is strongly connected.

(For more about the term “strongly connected,” see the end of Section 6.4.3.) Note
that (i) gives a local criterion for testing a global property of a triangulation. It can
be used, for example, in a marching cubes algorithm to test whether the isosurface
generated by the algorithm is without frontiers (hole-free). According to (ii), “mod-
ulo 2” homology theory (see the definition of a chain frontier in Section 6.4.5) can
be applied to triangulations of surfaces.

7.4.3 Orientable surfaces

A simple arc with endpoints p and q will be denoted by [p,q] and the corresponding
open arc by (p,q). [p,q] is homeomorphic to the closed interval [0,1]. The direction of
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[p,q] is defined by a homeomorphism Φ : [0,1]→ [p,q] such that Φ(0) = p and Φ(1) = q.
Let the following be true where r1, r2 ∈ [p,q]:

r1 �r2 iff r1 = Φ(x1) ∧ r2 = Φ(x2) ∧ x1 < x2

The relation � defines an order on [p,q]; it can be shown that this order is independent
of the homeomorphism Φ. Analogously, we can define a direction on a simple curve
such as the frontier of a triangle. A direction on a simple curve induces a direction
on the simple arcs contained in the curve.

An oriented triangle is a triangle with a direction on its frontier (e.g., clockwise,
counterclockwise), that is called the orientation of the triangle. The orientation of a
triangle induces orientations of its sides. Two triangles in a triangulation that have
a common side are coherently oriented if they induce opposite orientations on their
common side. These standard definitions in combinatorial topology are consistent
with our definitions of oriented adjacency graphs in Section 4.3.

Definition 7.12 (P.S. Aleksandrov, 1956) A triangulation of a surface is orientable
iff it is possible to orient all of the triangles in such a way that every two triangles that
have a common side are coherently oriented; otherwise it is called nonorientable.

If Z is a strongly connected orientable triangulation, the orientation of any
triangle of Z determines the orientation of all of Z; hence any such triangulation has
exactly two orientations. (We had an analogous result for orientations on the regular
2D grid [see Figure 4.19]: Only options (A) and (F) could be used.)

Theorem 7.11 (P.S. Aleksandrov, 1956) IfZ1 andZ2 are triangulations of the same
surface, Z1 is orientable iff Z2 is orientable.

The fact that orientability does not depend on the triangulation allows us to define a
surface as orientable iff it has an orientable triangulation. Theorem 7.11 implies that
orientability of a surface is a topologic invariant.

Example 7.2 (J.B. Listing, 1861; A.F. Möbius, 1865) A famous example of a
nonorientable surface is the Listing band originally described by J.B. Listing
in 1861; see Figure 7.21. (This band is usually called the “Möbius band” after
A.F. Möbius, who discovered it independently in 1865. An example of an
isothetic Listing band is shown in Figure 7.22.) The frontier of the Listing band
is a simple curve that is homeomorphic to a circle. We can obtain a hole-free
surface that is not a Jordan surface by starting with the surface of a sphere from
which some circular areas have been removed (Figure 7.19) and identifying the
frontier of each circular area with the frontier of a Listing band.
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FIGURE 7.21 A Listing band as drawn by O. Veblen in 1922. The rectangle (left) is
transformed into the Listing band (right) if a corresponds to c and b to d.

FIGURE 7.22 An isothetic Listing band [632].

This example illustrates the possible topologic complexity of surfaces.6 We can also
cover any of the holes with copies of a handle (a torus with a hole). This process of
gluing a frontier of one surface to a frontier of another requires the two frontiers to be
homeomorphic, and the result may also depend on the orientations of the frontiers.
For example, we can glue the frontiers of two handles together and obtain a hole-free
surface that is homeomorphic to the result of gluing two handles to the frontiers of
a sphere with two holes.

7.4.4 The connectivity and genus of a surface

Let α0, α1, and α2 be the numbers of points, simple arcs, and curvilinear triangles in
a triangulation Z of a surface. The Euler characteristic of Z is χ(Z) = α0−α1 +α2.

6. Surfaces will be further discussed in Chapters 8 (surface geometry), 11 (planarity), and 12 (estimation of surface
area and curvature).
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Theorem 7.12 (P.S. Aleksandrov, 1956) Two triangulations of the same surface or
of two homeomorphic surfaces have the same Euler characteristic.

This theorem allows us to speak about “the” Euler characteristic of a surface,
which is a topologic invariant. It also follows that the Euler characteristic of any
finite tiling of a surface (e.g., a regular tiling), where α0, α1, and α2 are the numbers
of vertices, edges and faces of the tiling, is equal to χ(S).

For example, each face of a cube can be triangulated into two triangles. This
results in 8 vertices, 18 edges, and 12 triangles so that the Euler characteristic of the
triangulation is 2. The surface of a sphere can be, for example, subdivided into four
curvilinear triangles; this results in 4 vertices and 6 simple arcs so that the Euler
characteristic is again 2. This also follows from Theorem 7.12, because the surfaces
of the cube and the sphere are homeomorphic.

We say that a one-dimensional closed subcomplex M of a triangulation Z of a
surface does not separateZ iff the open subcomplexZ \M is strongly connected. The
connectivity q(Z) of Z is the n for which Z has a closed one-dimensional subcomplex
of connectivity n that does not separate Z.

We recall that the Poincaré formula (Equation 6.6) for S is as follows:

χ(S) = β0(S)−β1(S)+β2(S)

For a hole-free surface S, we have β0(S) = 1 (because S is connected) and β2(S) = 1
(because there exists a triangulation of S that forms a cycle; see (i) at the end of
Section 7.4.2), and S is not contractible into a single point. Hence we have the
following, where Z is any triangulation of S:

χ(S) = 2−β1(S) = 2−β1(Z)

Z defines a graph G (a one-dimensional Euclidean complex), and we have χ(Z) =
1 +χ(G) = 2− β1(G). β1(S) is called the connectivity of S. Finite triangulations
or square tilings of homeomorphic surfaces have the same connectivities. We can
therefore speak about “the” connectivity of a surface; it is a topologic invariant.

For example, the Euler characteristic of a sphere with r holes is 2− r. Indeed,
we saw above that the sphere has Euler characteristic 2. Every deletion of a triangle
from the triangulation such that its vertices and edges remain in the triangulation
decreases the Euler characteristic by 1.

From the topology of complexes (see [639]), we know that the Betti number
β1(S) of a hole-free orientable surface is even and is equal to twice the genus of the
surface (see Section 1.2.6), and that, for a hole-free nonorientable surface, it is odd
and equal to the genus plus 1. For example, if we start with a sphere with r = 0 holes
and identify the frontier of each hole with the frontier of a Listing band, we obtain a
hole-free nonorientable surface Lr of genus r; if we identify the frontier of each hole
with the frontier of a handle, we obtain a hole-free orientable surface Sr of genus r.
Any hole-free surface S has the same Euler characteristic (or genus) as one of the
surfaces Sr (if S is orientable) or Lr (if it is nonorientable).
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7.4.5 Separation theorems

The separation theorems for planar simple curves discussed in Section 7.1.5 were
generalized around 1900, first to 3D space and then to n dimensions.

A Jordan curve is the homeomorphic image of a circle, and a Jordan surface
is the homeomorphic image of the surface of a sphere. This was generalized by
L.E.J. Brouwer in 1912 to the n-dimensional case. He defined a Jordan manifold in
R

n (n ≥ 2) as the homeomorphic image of a closed (n−1)-dimensional sphere and
proved the following:

Theorem 7.13 (L.E.J. Brouwer, 1911) A Jordan manifold separates R
n into two

connected subsets and coincides with the frontier of each of these subsets.7

In a paper published that same year, O. Veblen showed (without using a
parameterization) that the surface of a simple bounded n-dimensional polyhedron
decomposes the n-dimensional space (defined by axioms) into two connected sub-
sets, that it is the frontier of each of the subsets, and that any polygonal arc that joins
a point of one subset to a point of the other contains a point of the polyhedron.

7.5 Surfaces and Separations in 3D Grids

Surfaces in picture analysis are defined by sets of voxels. Surfaces in the grid can
be characterized as 2D sets of voxels in a 3D adjacency grid or as 2D Euclidean
complexes of marginal cells (2-, 1-, and 0-cells given by the frontier of a region). In
the first case, we assume the grid point model.

7.5.1 Surfaces in the grid point model

p is called an (α,α′) surface voxel of S ⊆ Z
3, where (α,α′) = (26,6) (the (6,26) case

can be treated analogously), iff the following are true:

a) A26(p)∩S has exactly one α-component that is α-adjacent to p.

b) A26(p)∩S has exactly two α′-components Cp,Dp that are α′-adjacent to p.

c) For all q ∈Nα(p)∩S,N ′α(q) intersects both Cp and Dp.

An α-connected set S ⊆ Z
3 is called an α-surface iff every p ∈ S is an (α,α′) surface

voxel. LetN(p) be a 5× 5× 5 block of voxels centered at p. In [747], a surface voxel
p is called orientable if N(p)∩S has exactly two α′-components that are α′-adjacent

7. Interestingly, he proved the case n = 3 in a footnote and the general case in the remaining four pages of the
article.
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to p, and anα-connected setS is called anα-surface if it consists entirely of orientable
(α,α′) surface voxels; however, it was shown in [841] and [840] that the assumption
of orientability was unnecessary.

For (α,α′) = (26,6), we have the following:

Proposition 7.5 A 26-connected setS ⊆Z
3 is a digital surface iff each p= (i, j,k)∈

S has at most two 8-adjacent grid points in at least two of the sets {(y,z) :
(x,y,z) ∈ S∧x= i}, {(x,z) : (x,y,z) ∈ S∧y = j}, or {(x,y) : (x,y,z) ∈ S∧z =
k}; if it has two, they are not mutually 8-adjacent; and if, in one of the sets (e.g.,
{(x,y) : (x,y,z) ∈ S ∧ z = k}), p has more than two 8-adjacent grid points or
two 8-adjacent grid points that are mutually 8-adjacent, then (i, j,k− 1) and
(i, j,k+1) are not in S.

p= (i, j,k)∈S is called a border point ofS iff it has only one 26-neighbor in {(x,y,z)∈
S : x = i}, {(x,y,z) ∈ S : y = j}, or {(x,y,z) ∈ S : z = k}; it is called an inner point
of S iff it is not a border point. A 26-surface is called simple iff it has no border
points. A simple 26-surface can be unbounded, or it can be bounded and hole-free.
A bounded digital surface with border points that are 26-connected is called a digital
surface patch.

Theorem 7.14 If S is an α-surface, S has exactly two α′-components. If S is
bounded, exactly one of these components is bounded.

If S is an α-surface, every voxel of S is adjacent to both components of S. For α-
curves in Z

2((α,α′) = (4,8) or (8,4)), the converse is also true: if S is α-connected, S
has two α′-components, and every pixel of S is adjacent to both of these components,
thenS is anα-curve (see Exercise 5 in Section 7.6); however, the analogous statement
about α-surfaces is not true, because a surface can touch itself without affecting the
connectedness of its complement.

In the example in Table 7.1, the 1s are 6-connected, the (nonbackground) 0s
are 26-connected, and every 1 is adjacent to both 26-components of 0s (the central
1s in the third and fifth planes are adjacent to background 0s in the fourth plane),
but the central 1 in the fourth plane is adjacent to four components of 0s in its
27-neighborhood.

7.5.2 Surfaces in the grid cell topology

We recall that a connected set in [Cn,≤] is 2D if it contains at least one 2 × 2 block
of cells (e.g., one 2-cell with two incident 1-cells and one 0-cell; see Proposition 6.2).
In a discrete grid, we cannot ask for a one-dimensional separation of each point
of a set from the rest of the set. A hole-free surface (e.g., the frontier of a simply
connected 6-region) can be transformed into a region of a 2D incidence pseudograph
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TABLE 7.1 Example of a set of 1s that is not a 6-surface (see text); the blanks are
background 0s.

1st Plane 2nd Plane 3rd Plane 4th Plane 5th Plane 6th Plane 7th Plane

1 1 1
1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1

1 1 1
1 0 1 1
1 1 0 1 1

1 1 0 1
1 1 1

1 1 1
1 0 1 1
1 1 1 1 1

1 1 0 1
1 1 1

1 1 1
1 0 1
1 1 1 1 1

1 0 1
1 1 1

1 1 1
1 0 1 1
1 1 1 1 1

1 1 0 1
1 1 1

1 1 1
1 0 1 1
1 1 0 1 1

1 1 0 1
1 1 1

1 1 1
1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1

by removing a few of its cells. Note that we are using “6-simply connected region”
and “simply connected 6-region” as equivalent. Cells in the frontier of this 2D region
cannot be separated from the rest of the region by one-dimensional circuits of cells.
An important feature of Definition 6.7 is that it allows a definition of “2D at cell c”
without requiring the existence of such one-dimensional separations.

Any 6-region of voxels in the grid cell model is a finite union of simply connected
6-regions. Due to 18- or 26-adjacencies, there may be “touchings” between voxels
of a 6-region. A 6-connected region corresponds with an open 2-region in the grid
cell topology [C3, I,dim]. A simply 6-connected region M is defined by a simply
connected geometric representationMg in the incidence grid; see Definition 7.8. We
characterize the surface ϑ(M) of a simply connected 6-region by the frontier ∂Mg of
the geometric representation Mg of the corresponding open 2-region.

Proposition 7.6 The frontier ∂Mg of the geometric representation of a simply
connected 6-region is homeomorphic to the surface of the unit sphere (and is
therefore orientable).

Proof The geometric representation of a single 3-cell is a cube; the surface of
a cube is homeomorphic to the unit sphere. Any simply connected 6-region
can be obtained by adding one 3-cell at a time in such a way that each added
cell is 2-adjacent to (i) exactly one 3-cell, (ii) exactly two 1-adjacent 3-cells,
(iii) exactly three pairwise 0-adjacent 3-cells, (iv) exactly four 3-cells, or (v) ex-
actly five 3-cells of the previous (already 2-connected) 3-cells. Homeomorphy
of the frontier ∂Mg of the updated geometric representation Mg of the open
2-region to the unit sphere is invariant with respect to these five operations.
Note that in case (iii), all three 2-adjacent 3-cells are incident with exactly
one 0-cell. Further options for 2-adjacencies with exactly two or three 3-cells
would allow us to construct nonsimply connected sets and, for that reason, can
be excluded from the list of possible merging operations. (Here we only need
one method of merging; of course, [random] removals of simple voxels can
produce final sets that consist of more than one nonsimple voxel. Operations
(i) through (iii) may actually be sufficient to construct any 6-connected set.) �
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FIGURE 7.23 Propagation of orientations in an oriented planar 2-strong graph.

This proposition guarantees the existence of an orientation on ∂Mg that can
be “copied” (from each face of a cube in ∂Mg to the corresponding face of the cube
in ϑM) onto the surface ϑ(M). Moreover, an orientation on such a surface ∂Mg is
easy to construct. Assume that the simple surface is mapped into a finite 3-strong
planar graph G (see Steinitz’s Theorem in Section 4.2.2). An orientation of all faces
of G (including the unbounded face) can be defined by choosing an orientation for
any edge in any face; this defines a cyclic orientation in the face. Any edge in any
face that is edge-adjacent to an already oriented face is then oriented in the opposite
direction, thereby defining an orientation in this new face (see Figure 7.23). There
are only two possible orientations for the first edge; hence there are only two possible
orientations for G. (For the construction of the orientation, it is actually sufficient
that G be a planar 2-strong graph.)

Now consider the preimage of G on the surface ∂Mg , which defines a tiling
of ∂Mg . We map the constructed orientation of G onto this tiling and obtain an
orientable Euclidean complex; its faces are polygons, and their proper sides are their
edges and vertices. There are only two possible orientations for this surface complex.

Now consider a purely n-dimensional simplicial complex that is (n − 1)-
connected (i.e., between any two n-simplexes c1 and c2 and there is a path of
n-simplexes from c1 to c2 such that any two consecutiven-simplexes on the path share
an (n−1)-simplex). We can define one of the two possible orientations for this sim-
plicial complex by propagating orientations as in the planar case: choose an initial
n-simplex c0 and an initial edge p0p1 in one of the 2-simplexes (triangles) that bound
c0, and choose one of the two possible orientations of this edge. This defines ori-
ented triangles p0p1p2, p1p3p2, p2p3p0, and p3p1p0, which are the four 2-sides of a
(now oriented) tetrahedron p0p1p2p3. For n > 3, we would continue by orienting
another 3-side of c0 that is 2-adjacent to p0p1p2p3 and that inherits its orientation
by inverting the orientation on the joint 2-side. For n = 3, we have c0 = p0p1p2p3,
and we propagate orientations to all of the 2-adjacent tetrahedra. For example, if
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p0p1p2 is shared with the 2-adjacent tetrahedron c1, we have the orientation p2p1p0
for this face on c1, so c1 = p2p1p0p4 where p4 is the fourth vertex of c1.

If we have a purely n-dimensional (n−1)-connected grid cell complex, we can
propagate orientations in the same way. We start with an edge e0 = p0p1; this de-
fines an orientation for a face f0 = e0e1e2e3. Let f1 be an edge-adjacent face, for
example, f0∩f1 = e0. Then f1 = e

−1
0
e4e5e6 where e−1

0
= p1p0. We continue orienting

all of the 2-faces of a grid cube c0, for example, in the order f0f1f2f3f4f5, which
defines a Hamilton cycle through the faces (see Figure 5.27). (Note that we cannot
represent grid cells solely by sequences of vertices as we did in case of simplicial
cells, because the order of the vertices is now relevant.) We continue with a cube
c1 that is face-adjacent to c0, for example c1 = f

−1
0
f6f7f8f9f10 with f−1

0
= e3e2e1e0.

The process continues until all of the edges, faces, cubes, and so forth of the complex
have been oriented. In fact, we can define an orientation on all of Cn in this way, and
any orientedn-dimensional grid cell complex is then just a subcomplex of Cn equipped
with the chosen default orientation.

For both simplicial and grid cell complexes, there are only two possible orien-
tations for any (n−1)-connected purely n-dimensional complex. In the case of the
simplicial complex K, we choose an orientation for the triangulated surface ϑ(K).
In the case of the grid cell complex G, it defines an orientation for the square tiling
of the surface ϑ(G).

From Proposition 7.6, we know that the frontier ∂Gg of the geometric repre-
sentation of an open 2-region G ⊆ C

(3)
3

(a union of finitely many simply connected
6-regions) is always hole-free and orientable. This frontier is bounded, because a
region is finite, and it is closed because, for every 2-cell c in the frontier ϑG, all of
the 1-cells and 0-cells incident with c are in the frontier, and, for every 1-cell c′ in the
frontier, all of the 0-cells incident with c′ are in the frontier.

The frontier ϑ(G) of a region G⊆ C
(3)
3

can be represented in the frontier grid;
see Definition 7.4 for n = 3. This defines an isothetic polyhedron (see Chapter 8).
The separation theorems of Euclidean topology apply to these polyhedra.

7.5.3 Separations in adjacency grids

M ⊆ Z
3 is called an (α,β)-separator iff M is α-connected, M divides Z

3 \M into
(exactly) two β-components, and there exists a p ∈M such that Z

3 \ (M \ {p}) =
(Z3 \M)∪{p} is β-connected.

In Figure 7.24, the set M1 on the left is a (2,2)-, (2,1)-, and (2,0)-separator. If
any voxel is removed from M1, its complementary set becomes 0-connected. There
also exist voxels in M1 such that removal of one of them makes the complementary
set 1- or 2-connected. The set M2 in the middle is a (1,2)- and (1,1)-separator, and
the set M2 on the right is a (0,2)-separator.

(α,β)-and (β,α)-separators exist for (α,β) = (0,2), (2,0), (1,2), (2,1), and (1,1).
However, there are some difficulties with (α,β) = (1,1). For a 3D connected set M ,
we expect that χ(M) = 1− t+ c, where t is the number of tunnels and c the number
of cavities. For the set M in Figure 7.25, there is no cavity and one tunnel, so we
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FIGURE 7.24 Left: M1. Middle: M2. Right: M3.

10–1
x

FIGURE 7.25 A set M of voxels with one “diagonal tunnel.”

expect that χ(M) = 1− 1 + 0 = 0. However, the set M0 of voxels of M that have
x-coordinate 0 is simply 1-connected, so χ(M0) = 1. Let M+ (M−) be the set of
voxels of M that have nonnegative (nonpositive) x-coordinates. By symmetry, we
have χ(M+) = χ(M−) = a. However, becauseM0 =M+∩M− andM =M+∪M−,
we must have χ(M) = χ(M+)+χ(M−)−χ(M0) = 2a−1 �= 0. (Here we have used a
sum formula for the Euler characteristics of unions of Euclidean complexes; it is true
for arbitrary unions of finite complexes.) Note that we would encounter the same
difficulty for (α,β) = (0,0), but this case is not on our list of separators. (0,2), (2,0),
(1,2), and (2,1) are considered to be “good pairs of separators” in the grid cell model;
they correspond with (6,26), (26,6), (6,18), and (18,6) in the grid point model.

Definition 7.13 LetM ⊆ S ⊆ Z
n (n= 2,3). M is calledα-separating in S iff S \

M is notα-connected (α= 4,6,8,18,26). LetM beα-separating in some superset
of S but not β-separating in S, where β = 4,6,8,18,26 and α< β. ThenM is said
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FIGURE 7.26 From left to right: for n= 2, a 0-gap and a 1-gap; for n= 3, two 0-gaps,
a 1-gap, and two 2-gaps [130].

to have β-gaps. A set M that has no β-gaps is called β-gapfree, and a set that
has no β-gaps for any β is called gapfree.

The empty set is α-connected; it follows that M is not α-separating in itself. If
S =M ∪{p}, thenM can also not be α-separating in S. Let p and q be any two points
in Z

n \M that are not α-connected; then M is α-separating in M ∪{p,q}.
In the grid cell model, we have α,β ∈ {0,1,2}, and M has β-gaps iff it is

α-separating in some superset of S but not β-separating in S for α > β.
Figure 7.26 illustrates gaps. An (α,β)-separator M does not have β-gaps. See

Exercise 12 for more about gaps in digital lines and Section 11.2.4 for more about
gaps in digital planes.

7.6 Exercises

1. Prove that the property of being a (Urysohn-Menger) curve is a topologic in-
variant in the Euclidean plane.

2. Let γ be a simple (Urysohn-Menger) curve on the surface S of a sphere. Prove
that the complementary set S \ γ consists of two open subsets of S with the
common frontier γ.

3. Classify all of the elementary curves (“letters”) in Figure 7.4 with respect to
topologic equivalence.

4. Suppose n > 0 finite connected polygonal chains in E
2 start at p, end at q �= p,

and intersect only at p and q. Prove that the chains partition E
2 into n disjoint

sets.

5. Prove that a set of grid points C is a simple 4- (8-)curve iff C is 4- (8-)connected
and every pixel of C is 4- (8-)adjacent to exactly two other pixels of C.

6. Prove that a subset of Z
2 cannot be both a 4-curve and an 8-curve and that a

subset of Z
3 cannot be both a 6-surface and a 26-surface.
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7. If the paths shown in Figure 7.11 are regarded as simple curves in the poset
topology of [C2,≤], is it possible that they do not intersect?

8. Prove that, if a 4-component C of 1s and an 8-component D of 0s (or vice
versa) in a binary picture are 8-adjacent, they are also 4-adjacent, and either D
4-surrounds C (i.e., D 4-separates C from the infinite background component
B) or C 8-surrounds D (i.e., C 8-separates D from B).

9. Suppose the chessboard pattern in Exercise 4 (ii) in Section 1.3 is digitized into
an 8×8 binary picture. What are its components if we use good pairs (4,8), (8,4),
and (6,6)? How do these results compare with your discussion of Exercise 4 (ii)
in Section 1.3? Can you specify a switch state matrix S such that all of the “black
pixels” in the upper four rows and all of the “white pixels” in the lower four rows
are s-connected?

10. Prove that (6,6) is a good pair for Z
2.

11. Define a set of 4×4 templates for choosing the values of flip-flop switches so as
to give preference to line-like patterns, whether the lines are black or white.

12. Let S be a set of voxels in the grid cell model. A 2-cell that is a common face
of a voxel of S and a voxel of S is called a surface pixel of S. Two surface pixels
are called edge-adjacent if they share a 1-cell, and they are called vertex-adjacent
if they share a 0-cell but not a 1-cell. Prove that any surface pixel of S must be
edge-adjacent to an even number of surface pixels of S, that this number must
be between 4 and 12, and that a surface pixel of S can be vertex-adjacent to at
most 20 surface pixels of S.

13. Two surface pixels (see Exercise 12 above) are called strongly edge-adjacent
if they are edge-adjacent and are surface pixels of voxels of S with intrinsic
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6-distances apart that are at most 3. Prove that a surface pixel of S is strongly
edge-adjacent to exactly four surface pixels of S. Prove that, if T is a maximal
strongly edge-connected set of surface pixels ofS, then there exist a 6-component
U of S and an 18-component V of S such that T is the set of surface pixels that
are common faces of voxels in U with voxels in V .

14. What are the Euler characteristic and genus of the surface of a sphere, a torus,
a handle, and a Listing band?

15. Let S1 and S2 be two surfaces with frontiers. Glue S1 and S2 together by identi-
fying a simple curve in ϑS1 with a simple curve in ϑS2. Prove that the resulting
surface has Euler characteristic χ(S1)+χ(S2).

16. Show that a handle has a tiling defined by one vertex, three edges, and one face.

17. Prove that any regular tiling of the Euclidean plane is topologically equivalent
to a regular tiling of the plane in which the set of vertices coincides with Z

2.

18. Prove that the Euclidean plane allows regular tilings (with α1 = ℵ0) only for
n= k = 4, n= 3, and k = 6, or n= 6 and k = 3.

19. Prove that the graph of a regular tiling of the surface of a sphere is homeomorphic
to one of the five Platonic graphs (tetrahedron, octahedron, icosahedron, hexa-
hedron, or dodecahedron) or to a graph defined either by n= 2 and α1 = k ≥ 2
or by n= α1 ≥ 2 and k = 2.

20. Prove that the surface of a torus has regular tilings (with α1 < ℵ0) for only
n= k = 4, n= 3, and k = 6, and n= 6, and k = 3.

21. Suppose there exists a regular tiling on a hole-free surface with n= 5 and k = 4.
Prove that, if the number of faces of the tiling is not a multiple of 8, the surface
is not orientable.

22. Prove that a surface with frontiers is not simply connected if its frontiers consist
of more than one simple curve.
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Curves and Surfaces: Geometry

This chapter discusses geometric properties of curves and surfaces such as length,
area, volume, and curvature. It reviews analytic representations, the construc-
tion of digital representations, and the estimation of geometric properties from
digitized data, with emphasis on area estimation in 2D and volume estimation
in 3D. Digital estimation of other curve and surface properties will be treated in
later chapters.

8.1 Planar Curves and Arcs

Section 7.1.2 gave topologic definitions of curves and arcs. This section reviews
analytic representations and properties of planar curves, including arc length, slope,
curvature, and area, as well as geometric properties of isothetic grid polygons.

8.1.1 Analytic representations

A planar curve can be defined by an equation based on a Cartesian coordinate
system or by a parameterization such as Equation 7.3. (This was Jordan’s original
definition, which turned out to allow space-filling curves, such as the Peano curve.)
For example, a circle can be defined by the equation x2 + y2 = r2 or by the param-
eterization x= x(t) = r cos t, y = y(t) = r sin t, where t ∈ [0,2π). In vector notation,
we can write γ(t) = (x(t),y(t)) = x(t)e1 +y(t)e2, where e1 = (1,0) and e2 = (0,1) are
the basis vectors of the Cartesian coordinate system.

An equation of a curve determines the geometric locations of all of the points
on the curve (i.e., the shape of the curve). A parameterization provides additional
information: an orientation of the curve (a direction along the curve) and a speed
(or rate of evolution) v(t) as t increases.

269
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Section 3.1.2 introduced the (Euclidean) norm ‖p‖2 as the distance between
the origin o = (0,0) and the point p = (x,y). This distance is equal to the length of
the straight line segment op. In norm notation, we can formally define the speed of
a parameterization as follows,

v(t) = ‖γ̇(t)‖2 = ‖(ẋ, ẏ)‖2 = ‖(ẋ(t), ẏ(t))‖2
where the following is true:

ẋ(t) =
dx(t)

dt
and ẏ(t) =

dy(t)
dt

For example, the speed of the circle parameterization given above is as follows:

v(t) = ‖(−r sin t,r cos t)‖2 = r
√

sin2 t+cos2 t = r

A curve γ can have more than one parameterization. A parameterization of γ
is called regular iff v(t) �= 0 for a≤ t≤ b. We are often not interested in the speed of
a parameterization; the parameterization that has unit speed v(t) = 1 can be used as
the default. In a nonregular parameterization, points of the curve at which v(t) = 0
are called singular.

Section 7.1.1 defined a parametrizable Jordan curve or arc γ and defined its
length L= ‖γ‖2 as follows, where a≤ t≤ b:

L(t) =
∫ t

a

√
ẋ2 + ẏ2 ds=

∫ t

a

v(s) ds (8.1)

For example, for the circle, we have the following:

L=
∫ 2π

0

(
r2 sin2 t+ r2 cos2 t

)1/2
dt= 2πr

This also provides a method of estimating the length of a digital curve by summing
estimates of ‖(ẋ, ẏ)‖2.

Equation 8.1 also says that the speed of the parameterization is the rate of
change of the length of the arc from t= a to a general point on the curve:

v(t) =
dL(t)

dt
(8.2)

The arc length between γ(a) and p= γ(t) is fixed, but p can have different t values in
different parameterizations. We obtain unit speed if the curve is parameterized by
arc length l (0≤ l ≤ L= ‖γ‖):

v(l) =
∥∥
∥∥

dx(l)
dl

e1 +
dy(l)
dl

e2

∥
∥∥∥

2

= 1
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8.1.2 Arc length

In digital geometry, curves are not given by analytic representations but rather in
digitized form. The pixels (grid points or centers of 2-cells) of a digital curve cannot
be assumed to be exactly on the (unknown) “real” curve. Section 1.2.11 briefly
discussed the problem of estimating geometric quantities such as the length of a
curve from digital data.

H. Steinhaus (1930) suggested an integral geometry-based method of estimat-
ing the length of a curve, which is still popular in stereology. Let γ be a plane Jordan
curve that is rectifiable so that it has finite length L= ‖γ‖2. Let g(ψ) be the straight
line through the origin that makes angle ψ with, for example, the positive x-axis.
The orthogonal projection of γ onto this line can be regarded as a superposition of
intervals, each of which is a projection of an arc of γ; see Figure 8.1 for an example.
Let L(ψ) be the sum of the lengths of these intervals, and let L be the mean of L(ψ)
taken over all directions. From integral geometry, the following is known:

L=
1
2
πL=

1
4

∫ 2π

0

L(ψ) dψ (8.3)

Here γ(t) = (x(t),y(t)) is assumed to be C(2)-regular: x(t) and y(t) have bounded
second derivatives in a finite number of open intervals, so γ(t) is the union of a finite
number of arcs with continuously turning tangents. On the basis of Equation 8.3,
H. Steinhaus suggested measuring L(ψ) for n > 0 values of ψ equally spaced in the
interval (0,2π) and taking the mean L̂ of these values. He showed that the following
is true if n is even and that these bounds are the best possible:

π

n
cos(

π

n
)[sin(

π

n
)]−1 ≤ L̂L−1 ≤ π

n
[sin(

π

n
)]−1 (8.4)

g

g

FIGURE 8.1 Left: projection of a simple curve onto a line. Right: estimation of
lengths of arcs by numbers of intersection points.
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This equation gives a comparison of the mean L̂ on sampled angles and the mean L
on continuous angles.

In numeric analysis, we usually estimate geometric properties of a curve in
R

n from finitely many samples of the curve by fitting curves of known types to the
samples and calculating the lengths of these approximating curves. Let γ : [0,1]→R

n

be a C(k)-regular parametric curve; our task is to estimate L(γ) from m+ 1 points
qi = γ(ti) on γ. This estimation is easiest when the tis are uniformly spaced (i.e.,
ti = i

m [see Figure 8.2]). We will approximate γ with a curve γ̃ that is piecewise
polynomial of some degree a≥ 1.

FIGURE 8.2 Left: uniform samples on a circle. Right: nonuniform samples.

Theorem 8.1 Let γ be C(a+2) and ti = i/m. Then the tis determine a function γ̃,
which is a piecewise degree-a polynomial such that the following is true, where
a0 = 1 or 2 according to whether a is odd or even:

L(γ̃) = L(γ)+O(
1

m
a+a0

)

L(γ̃) is called a Lagrange estimate ofL(γ). We say that the tis are (ε,k)-uniformly
sampled (ε≥ 0 and k ≥ 1) iff there is a C(k) reparameterization φ : [0,1]→ [0,1] such
that the following is true:

ti = φ(
i

m
)+O(

1
m1+ε

)

L(γ̃) can behave badly for (0,k)-uniform samplings, but for 0 < ε ≤ 1, we have
the following:
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Theorem 8.2 Let the tis be (ε,k)-uniformly sampled, where 0< ε≤ 1 and k ≥ 4.
Then, for a= 2, we have the following:

L(γ̃) = L(γ)+O(
1
m4ε

)

In digital geometry, we must deal with digitization rather than sampling; pixel
coordinates are known only to the accuracy imposed by the grid resolution. Piece-
wise linear curve approximation (a= 1) is usually preferred because of the simplicity
of adding the lengths of line segments (see Chapter 10). However, Theorem 8.1 indi-
cates that higher-order approximation may (!) have the potential for more accurate
estimation.

8.1.3 Curvature

A Jordan curve is called smooth if it is continuously differentiable. Evidently, a
polygon is not smooth, and a nonregular parameterization of a curve is not smooth
at singular points. Curvature can be defined only at nonsingular points of a curve; in
this section, we therefore assume a regular parameterization.

To define curvature, it is convenient to use the Frenet frame,1 which is a pair of
orthogonal coordinate axes (see Figure 8.3) with the origin at a point p= γ(t) on the
curve. One axis is defined by the unit tangent vector,

t(t) = γ̇(t)/|γ̇(t)|= (cosψ(t),sinψ(t)) = cosψ(t)e1 +sinψ(t)e2

where ψ is the slope angle between the tangent and the positive x-axis. The other
axis is defined by the unit normal vector:

n(t) = (−sinψ(t),cosψ(t)) =−sinψ(t)e1 +cosψ(t)e2

Evidently, 〈t(t),n(t)〉e = 0. It is assumed that t(t) and n(t) define a right-handed
coordinate system.

Figure 8.3 also illustrates the fact that l = L(t) is the arc length between the
starting point γ(a) and the general point p= γ(t). As t increases, the changes in the
tangent and normal are as follows:

˙t = (−sinψ
dψ
dt
,cosψ

dψ
dt

) =
dψ
dL

dL
dt

(−sinψ,cosψ) (8.5)

ṅ = (−cosψ
dψ
dt
,−sinψ

dψ
dt

) =
dψ
dL

dL
dt

(−cosψ,−sinψ) (8.6)

The curvature of γ is its “rate of turn” (i.e., the rate of change ofψ as pmoves along γ).

1. Named after the French mathematician J.F. Frenet (1816–1900).
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x

y

p

y

t=a

t

n

�(t )

FIGURE 8.3 The Frenet frame at p= γ(t).

FIGURE 8.4 Three tangents to a curve. The curvature is positive on the left, has a
zero crossing in the middle, and is negative on the right.

p is called a convex point of γ if the curvature of γ at p is positive and a concave
point if it is negative. Figure 8.4 shows on the left a positive point, on the right a
negative point, and in the middle a point of inflection where the curvature changes
sign. As Figure 8.4 shows, the situation at p can be approximated by measuring
the distances between γ and the tangent to γ at p along equidistant lines that are
perpendicular to the tangent. In Figure 8.4, positive distances are represented by bold
line segments and negative distances by “hollow” line segments. The area between
the curve and the tangent line can be approximated by summing these distances; it is
positive on the left, negative on the right, and zero in the middle, where the positive
and negative distances cancel.

Definition 8.1 The curvature of a smooth Jordan curve γ at γ(t) = (x(t),y(t))
is as follows:

κ(t) =
dψ(t)
dL(t)

=
dψ(t)

dl
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If an arc of γ is given explicitly as y = f(x), this definition evaluates to the following:

κ(x) =
d2f (x)

dx2
·
(

1+
(

df (x)
dx

)2
)−1·5

(8.7)

If γ is given explicitly in polar coordinates as r = f(η), we have the following:

κ(η) =

(

r2 +2
(

df (η)
dη

)2

− rd2f (η)
dη2

)

·
(

r2 +
(

df (η)
dη

)2
)−1·5

(8.8)

Finally, in the general case of a parametric representation γ(t) = (x(t),y(t)), we have
the following,

κ(t) = (ẋ(t)ÿ(t) − ẏ(t)ẍ(t)) · (ẋ(t)2 + ẏ(t)2
)−1·5

(8.9)

where the following are true:

ẍ(t) =
d2x(t)

dt2
and ÿ(t) =

d2y(t)
dt2

If we use the arc length parameterization, we have κ(t) = ẋ(t)ÿ(t) − ẏ(t)ẍ(t).
From Definition 8.1 and Equations 8.2 and 8.6, we have the following:

˙t(t) = κ(t) ·v(t) ·n(t) and ṅ(t) =−κ(t) ·v(t) · t(t) (8.10)

These two equations are called the Frenet formulae. If we use the arc length para-
meterization with unit speed v(l) = 1, the formulae simplify to the following:

˙t(l) = κ(l) ·n(l) and ˙t(l) =−κ(l) · t(l)
For example, for a circle, we have γ(t) = (r cos t,r sin t), v(t) = r, and n = ˙t so that
κ(t) = 1/r by the first Frenet formula.

g (t1)

g (t2)
r2

r1

FIGURE 8.5 The osculating circles at pi = γ(ti), where i = 1,2; the circle at pi has
radius r(ti).
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The absolute value of the curvature at p = γ(t) is equal to the inverse of the
radius r(t) of the osculating circle at p, which is the largest circle tangent to γ on the
concave side of p; see Figure 8.5. Note that we cannot have r(t) = 0, but r is infinite
when p is on a straight line segment. In general, we have the following:

|κ(t)|= 1
r(t)

, if r(t)<∞ (8.11)

The sign of κ depends on whether γ is locally convex or concave at γ(t).
The curvature of a digital curve can be estimated using approximations to

the tangent vector, estimated derivatives along the curve, or approximations to the
osculating circle; see Chapter 10.

8.1.4 Angle

We saw in Section 3.1.3 that the angle η between two vectors can be expressed in
terms of the scalar product of the vectors. In n-dimensional Euclidean space (n≥ 2),
we have the following:

cosη =
〈p,q〉e
‖p‖2 · ‖q‖2

Let two smooth curves γ1 = (x1,y1) and γ2 = (x2,y2) intersect at p= γ1(t1) = γ2(t2).
Let the unit tangent vectors of γ1 at t= t1 and of γ2 at t= t2 be t1 and t2. The angle η

between p1 and p2 at p satisfies the following, because
∥∥
∥t1

∥∥
∥

2
=
∥∥
∥t2

∥∥
∥

2
= 1:

cosη = 〈t1, t2〉e (8.12)

Equation 3.7 shows that angular values can also be defined by weak scalar
products; this generalizes the Euclidean space approach. See Section 3.3.3 for a
discussion of angular values for grid-based metrics. Weak scalar products can also
be defined for graph metrics on adjacency graphs.

Angles between digital curves can be estimated using approximations to their
tangent vectors; see Chapter 10.

8.1.5 Area

A planar region R is a compact set in R
2. Every compact is closed (and hence

measurable, which means that it has a well-defined content) and bounded (so that its
measure is finite); thus it is integrable. The area of R is given by the following:

A(R) =
∫

R

dxdy (8.13)
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Area is additive2; if R1 and R2 are planar regions that have disjoint interiors, we
have A(R1 ∪R2) = A(R1)+A(R2). This allows us to measure the area of a set by
partitioning the set into (e.g., convex) subsets and adding the areas of these subsets.

Let T be a triangle pqr where p= (x1,y1), q = (x2,y2), and r = (x3,y3). Then
we have the following:

A(T ) =
1
2
· |D(p,q,r)| (8.14)

where D(p,q,r) is the determinant:
∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
= x1y2 +x3y1 +x2y3−x3y2−x2y1−x1y3

Note that D(p,q,r) can be positive or negative; this can be used to define the orien-
tation of the ordered triple (p,q,r). More generally, let P =< p1,p2, . . . ,pn > be a
simple polygon, n≥ 3, and pi = (xi,yi). Then the following is true,

A(P ) =
1
2
·
∣
∣∣
∣∣

n∑

i=1

xi(yi+1−yi−1)

∣
∣∣
∣∣

(8.15)

where p0 = pn and pn+1 = p1. Let the coordinate transformation u = u(x,y),
v = v(x,y) map an integrable set R in the xy coordinate system into S in the
uv-coordinate system, and let ux,uy,vx,vy be the partial derivatives of u and v
with respect to x and y. Then the following is called the Jacobian matrix of the
transformation:

A(R) =
∫

S

|J | dudv where J =
(
ux(x,y) vx(x,y)
uy(x,y) vy(x,y)

)
(8.16)

Note that |J |= |uxvy−uyvx|. For example, for u= 5x2 +3y and v = 6x2y+2y2, we
have ux(x,y) = 10x, uy(x,y) = 3, vx(x,y) = 12xy, and vy(x,y) = 6x2 +4y.

The inner and outer Jordan digitizations can be used to estimate the area of
a planar region. If S is a compact subset of R

2, the areas A(J−h (S)) and A(J+
h (S))

converge to the area A(S) as the grid resolution h→∞.
In Figure 8.6, S (upper left) is an unknown set; G (upper middle) is its Gauss

digitization; and the upper right shows its inner and outer Jordan digitizations. The
area of the relative convex hull (lower right) of the inner digitization with respect
to the outer digitization (see Section 1.2.9) can also be used as an estimate of A(S).
The lower row of the figure shows three other polygons with areas that could be
used to estimate A(S). Theorems 2.2, 2.3, and 2.4 provide theoretic justifications of
the multigrid convergence of these area estimators; their measurement bias is also

2. Area, as a measure, is even countably additive.
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S G

FIGURE 8.6 Upper row: unknown set S; Gauss digitization of S; and inner and
outer approximations to S, which also show the convex hull of the inner approxima-
tion relative to the outer approximation. Lower row: 8-curve passing through the
4-border pixels; union of the 2-cells; and curve passing through the midpoints of the
invalid edges.

FIGURE 8.7 Visual comparison of an unknown setS with polygons that could be used
to estimate its area, starting with inner and outer Jordan digitizations in the upper
row and then following Figure 8.6.

important. Figure 8.7 shows how they differ from S for a fixed grid resolution. It
can be shown experimentally that the inner Jordan digitization (lower left) leads to
underestimation of the area, but the estimates based on the relative convex hull,
the cardinality of the set of grid points, and the polygonal frontier defined by the
midpoints of the invalid edges are “less biased.”
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8.1.6 Isothetic grid polygons

In this section, we discuss geometric properties of simple isothetic polygons Π with
vertices that are grid points. Let f be the number of grid squares contained in Π, α0

the number of grid points in Π, and l the number of grid points on the frontier δΠ. By
Pick’s formula (see the comments following Theorem 4.10), we have the following:

f = α0 − l

2
− 1 (8.17)

When we trace the frontier (see Chapter 5) of a region in the frontier grid, the result-
ing polygonal chain does not necessarily circumscribe a single simple grid polygon.
For example, in Figure 8.8 (right), the frontier of an 8-connected region in the picture
grid circumscribes three simple polygons. In general, it circumscribes a sequence of
simple isothetic grid polygons Π1, . . . ,Πn (n≥ 1). Because the area is additive, from
Pick’s formula (Equation 8.17) we have the following,

f = A(
n⋃

k=1

Πk)

= (α(1)
0 −

l1−1
2
−1) +

n−1∑

k=1

(
α

(k)
0 − lk−2

2
− 1

)
+ (α(n)

0 −
ln−1

2
−1)

= α0− L2 −1

where L is the total length of the frontier (i.e., L =
∑n

k=1 lk − 2(n− 1)) and α0 =
∑n

k=1α
(k)

0
− (n− 1) is the number of grid points in

⋃n
i=1 Πk. To count α0, we can

use discrete column-wise integration: start with α0 := 0; α0 := α0 +y for all p= (x,y)
at the upper end of a run of object pixels in the y direction; and α0 := α0−y+1 for
all p = (x,y) at the bottom of such a run. Figure 8.8 shows all of the local patterns
that can occur in the frontier tracing, each with its corresponding increment, and
also illustrates how the α0 values change during frontier tracing when we start at

+y 0 000 –y+1

+y 0 +y 0 –y+1 –y+1

y

x0
1
2
3
4
5
6
7
8

5 10 15

65 66

20

68

67

25 30 30

25 25 72

68 70 72

36 36 50

43 50

56 62

80 62 67 72 77

77 81 85

85 88

8787

8787

878685

83

838080

787674

64

64

64

FIGURE 8.8 Left: local patterns used in discrete column-wise integration; right: an
example of counting α0.
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the uppermost-leftmost vertex and trace the frontier clockwise. In this example, we
have α0 = 64 and L= 54 so that f = 36.

Finally, we prove a proposition (compare with Theorem 4.9) about the numbers
of convex and concave vertex angles of a frontier of a simple isothetic grid polygon
Π. We will use the same method in Section 8.3.7 to prove a theorem about the angles
of isothetic simple grid polyhedra.

In the following discussion, we consider only the outer frontier of Π, which we
assume is traversed clockwise. Inner frontiers (see Figure 8.9), which we assume are
traversed counterclockwise, can be treated similarly. If three consecutive vertices
pqr on the frontier are not collinear, we call the vertex at q convex if its vertex angle
is π/2 and concave if it is 3π/2.

Proposition 8.1 Let ΠA and ΠC be the numbers of convex and concave angles
of Π; then we have the following:

ΠA−ΠC = 4

Proof For a single rectangle, we have ΠA = 4 and ΠC = 0. Any Π can be parti-
tioned into a finite number of isothetic rectangles. Hence Π can be constructed
by starting with a single isothetic rectangle and joining isothetic rectangles one
at a time to an isothetic simple polygon. The four ways of performing the joins
are shown in Figure 8.10.

In case (1), ΠA and ΠC remain unchanged; in case (2), both ΠA and ΠC increase
by 1; and in cases (3) and (4), both ΠA and ΠC increase by 2. Hence ΠA through
ΠC remain 4 throughout the process. �

For an inner frontier, we similarly have ΠA−ΠC =−4 .

FIGURE 8.9 Three examples of isothetic polygonal circuits.
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1 2
3

4
1 2

3

4

FIGURE 8.10 Four possible joins.

8.2 Space Curves and Arcs

A curve in R
n is a one-dimensional continuum; see Definition 7.2. For n= 3, we can

use either of two analytic representations for a curve: two equations define a curve
as the intersection of two surfaces, or a parameterization γ(t) = (x(t),y(t),z(t)),
which also provides a direction and speed v(t). For example, the curve γ(t) =
(acos t,asin t,bt), which is a circular helix that “winds around” a cylindric surface,
is characterized by a diameter 2a and a vertical distance 2πb; here a second surface
that defines such a helix—together with the cylindric surface—is not uniquely de-
fined. Changing b to −b changes the helix from “right-handed” to “left-handed” or
vice versa.

When we use a parametric representation, we must also specify the domain of
t, for example a≤ t≤ b. γ is smooth iff x(t), y(t), and z(t) are continuously differen-
tiable. Analogously with Equation 8.1, the arc length of γ between the starting point
γ(a) and the general point γ(t) is as follows:

L(t) =
∫ t

a

√
ẋ2 + ẏ2 + ż2 ds=

∫ t

a

v(s) ds (8.18)

If v(t) = 0, γ(t) is called a singular point. A point can be singular with respect to
one parameterization but not with respect to another. A parameterization is called
regular if it has no singular points. Unit speed v(t) = 1 can be achieved by using the
arc length parameterization, which is regular.

For any regular parameterization of γ, we can define a unit tangent vector t at
each point of γ. The curvature of γ is the absolute rate of change of direction of its
tangent vector, where l = L(t) is arc length:

κ(t) =

∥∥∥∥∥
dt(t)
dl

∥∥∥∥∥
2

=

∥∥∥∥∥
dt(t)
dt

dt
dL(t)

∥∥∥∥∥
2

=

∥∥∥˙t(t)
∥∥∥

2

v(t)
(8.19)

For the arc length parameterization γ(l), it follows that κ(l) = ‖˙t(l)‖2. 1/κ(t) is the
radius of (the circle of) curvature. As in the planar case, this is also called the radius
of the osculating circle. On a straight segment of γ, we have κ= 0, and the radius of
curvature becomes undefined (or infinite).

Any direction in the plane perpendicular to the tangent vector at a point p of
γ is a normal direction to γ at p. A natural choice is ˙t, because ˙t · t = 0, so ˙t is in this
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plane. The unit vector n = ˙t/‖ ˙t‖2 is called the principal normal. In accordance with
Equation 8.19, we have the following:

˙t(t) = κ(t)v(t)n (8.20)

The cross product (vector product) b = t×n defines a third vector b called the
binormal, which is orthogonal to both t and n. Let t = (t1, t2, t3) and n = (n1,n2,n3),
and let the unit vectors in the coordinate directions be e1 = (1,0,0), e2 = (0,1,0), and
e3 = (0,0,1); then the following is given:

b = (t2n3− t3n2)e1 +(t3n1− t1n3)e2 +(t1n2− t2n1)e3

t(t), n(t), and b(t) define an orthogonal coordinate system at γ(t) called the 3D Frenet
frame.

The torsion of γ is defined by the following, where l = L(t) is arc length:

τ(t) =

∥
∥∥
∥∥

db(t)
dl

∥∥
∥∥
∥

2

(8.21)

1/τ(t) is the radius of (the circle of) torsion. A curve is planar iff its torsion is
identically zero; hence the torsion of γ can be thought of as measuring the departure
of γ from planarity.

Estimation of arc length, curvature, and angle for 3D digital curves will be
discussed in Chapter 10.

8.3 Surfaces and Solids

In Section 7.4, we gave a topologic definition and classification of surfaces. In this
section, we discuss geometric properties of surfaces and of “solid” objects.

8.3.1 Analytic representations

A surface can be represented analytically either by an equation f(x,y,z) = 0 or in
parametric form. In this section, we will use a parametric representation: Γ(u,v) =
(x(u,v),y(u,v),z(u,v)). We will assume that the functions x, y, and z have partial
derivatives as follows and similarly for y and z:

xu(u,v) =
∂x(u,v)
∂u

, xv(u,v) =
∂x(u,v)
∂v

Definition 8.2 A smooth surface patch Γ is defined by a simply connected com-
pact set B ⊆ R

2 and three functions x(u,v), y(u,v), and z(u,v), each of which
is continuously differentiable for all (u,v) ∈B, such that the following is true:

Γ = {(x,y,z) : x= x(u,v)∧y = y(u,v)∧z = z(u,v)∧ (u,v) ∈B}
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We assume that two points (u,v) ∈B never define the same point (x,y,z) of Γ
(injectivity condition) and that the matrix of first derivatives has rank 2 for all
(u,v) ∈B :

(
xu yu zu

xv yv zv

)

If the other conditions are satisfied but the rank of the matrix is less than 2 at some
points (u,v) ∈B, we say that γ has singularities at those points.

A smooth surface patch Γ cannot be a Jordan surface, which must be homeo-
morphic to the surface of a sphere. TheC(1) property of the functions x(u,v), y(u,v),
and z(u,v) also allows no discontinuities in the derivatives; a polyhedral surface patch
is not smooth.

As an example, consider the surface Γ of the sphere x2 + y2 + z2− r2 = 0. A
possible parameterization for this surface is as follows:

Γ(u,v) = (r cosucosv,r cosusinv,r sinu) where 0< u < π and 0< v < 2π

Here u is called the latitude angle and v is called the longitude angle. The sin and
cos functions are continuously differentiable for all (u,v), and the matrix of first
derivatives has rank 2. Note that this parameterization does not represent the entire
surface; one semicircle joining the poles is not included. Definition 8.2 requiresB to
be compact; this can be achieved by usingB = {(u,v) : ε≤ u≤ π−ε ∧ ε≤ v≤ 2π−ε}
for some small ε > 0. In accordance with the wording latitude and longitude for u
and v, the bounds on u,v mean that the Greenwich meridian (including the north
and south poles) is removed. This is necessary in order to guarantee the injectivity
condition of Definition 8.2.

As a second example, letB be a simply connected compact region in a plane Π.
We can define a smooth surface patch Γ parallel to Π by taking x(u,v) = constant,
y(u,v) = u, and z(u,v) = v. The matrix of partial derivatives has rank 2:

(
0 1 0
0 0 1

)

Such a Γ is called planar.
As a third example, let Γ be defined by the equation z = f(x,y) for (x,y)∈B ⊆

R
2. Then Γ has the parameterization {(x,y,f(x,y)) : (x,y) ∈ B}. Such a Γ is called

a Monge patch; it is smooth iff f is continuously differentiable for all (x,y) ∈B.

8.3.2 Surface area

Let Γ have no singularities so that at least one of the subdeterminants given here is
nonzero at each point of B:

D1 =
∣∣∣
∣
yu zu

yv zv

∣∣
∣∣ ,D2 =

∣∣∣
∣
zu xu

zv xv

∣∣
∣∣ ,D3 =

∣∣∣
∣
xu yu

xv yv

∣∣
∣∣ (8.22)
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The area of Γ is then defined as follows,

A(Γ) =
∫

B

√
D2

1 +D2
2 +D2

3 dudv (8.23)

provided Γ is measurable (see Definition 8.4 and Theorem 8.3 on p. 286).
If Γ is a planar surface patch, we have the following,

A(Γ) =
∫

B

d(u,v) =A(B)

so that the surface area measurement problem is reduced to a planar area measure-
ment problem.

The definition of measurability of Γ is based on the triangulation of a bounded
setB1 such thatB⊆B◦

1
and such that the first derivatives ofx(u,v), y(u,v), and z(u,v)

exist and are continuous in B◦
1

(formally, x(u,v), y(u,v), and z(u,v) are functions in
C(1)(B◦

1
)).

In No. 108 of [696], it is shown that the angles η of the triangles in such a
triangulation must satisfy η < 2π/3. This was proved independently by O. Hölder (p.
29 of [441]) in 1882, by G. Peano [806] in 1890, and by H.A. Schwarz [968] in 1890.
We will now review the example given by H.A. Schwarz.

In 3D picture analysis, objects are often acquired slice by slice. The question
arises whether surface area estimates can be based on triangulations that involve
different slices (e.g., calculated by a marching cubes algorithm; see Section 8.4.2). It
is also important that refining the acquisition process should result in more accurate
estimates of surface area; see the concept of multigrid convergence in Section 2.4.3.

Example 8.1 Let a right circular cylinder of radius r and height h be cut by
k− 1 planes (k ≥ 2) parallel to the bases of the cylinder, which segment the
cylinder into k congruent parts. Construct a regular n-gon (n ≥ 3) in each of
the k+ 1 cross-sections (including the bases); see Figure 8.11, where n = 6.
Rotate the n-gon by π/n between successive slices. Connect each edge of each
n-gon to the vertex of each neighboring n-gon that is closest to the edge. This
results in a triangulation Zk,n of the surface of the cylinder into 2kn congruent
triangles that have the following total area:

A(Zk,n) = 2πr · sin(π/n)
π/n

√
1
4π

4r2
(

sin(π/2n)
π/2n

)4 (
k

n2

)2 +h2

As k and n go to infinity, the lengths of the edges of the triangles go to zero.
However, the area of Zk,n does not converge to the surface areaA(L) = 2πrh
of the cylinder unless k/n2 goes to zero. If k/n2 converges to g > 0, A(Zk,n)
converges to the following

2πr · sin(π/n)
π/n

√
1
4π

4r2g2 +h2
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n -gons in
k slices

r

h

FIGURE 8.11 Triangulation of the lateral surface of a right circular cylinder.

k/n2 can even go to infinity (e.g., when k = n3); in that case, A(Zk,n) goes to
infinity as well.

Note that this example uses sample points on the surface; such points are usually
not available in digital geometry, so surface area estimates in digital geometry may
be even less accurate. The example also shows that a method (approximation by
n-gons) can work in one case (see Section 1.2.7 about the estimation of π) but not in
another.

We now define a class of triangulations that satisfy the constraint η < 2π/3:

Definition 8.3 Let B1 ⊆ R
2 be a simply connected compact set such that B ⊆

B◦
1
, and let 0< ω < π/3. A network Z of triangles that completely covers B1 is

called a triangular subdivision of B1 with respect to B if it satisfies the following
conditions:

(i) The angles of the triangles in Z do not exceed π−ω.

(ii) If a triangle in Z has a nonempty intersection with B, its vertices are all
in B1.

A triangular subdivision Z of B1 with respect to B defines a polyhedral ap-
proximation Γ(Z) of Γ by orthogonal projection of the vertices ofZ onto3 Γ, and the
adjacency relation between the vertices of Z defines an adjacency relation between
these vertices on Γ. The surface area A(Γ(Z)) is defined to be the sum of the areas
of the triangular faces of Γ(Z).

3. Note that the vertices of Γ(Z) are on Γ and not merely “close to” Γ, as they are in a digitization. Also, in
picture analysis, Γ is “unknown,” so we have no way of constructing Γ(Z).
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Definition 8.4 Suppose there exists a sequence Z1, Z2, Z3, . . . of triangular
subdivisions ofB1 with respect toB such that at→ 0, where at is the maximum
length of any side of any triangle in Zt. This sequence defines a sequence of
polyhedral approximations Γ(Z1), Γ(Z2), Γ(Z3), . . . of Γ that have well-defined
surface areas AΓ(Z1)), A(Γ(Z2)), A(Γ(Z3)), .... We say that Γ is measurable if
the following is bounded:

A(Γ) = sup
t
A(Γ(Zt))

Theorem 8.3 If Γ is a measurable smooth surface patch, we have the following,

A(Γ) =
∫

B

√
D2

1 +D2
2 +D2

3 d(u,v)

which is independent of the parameterization of Γ, where D1,D2, and D3 are
the subdeterminants defined in Equation 8.22.

Let Γ be a Monge surface patch defined by z = f(x,y) for (x,y) in a closed
bounded measurable set B ⊂ R

2, where the first-order partial derivatives of f exist
and are continuous on a set B1 such that B ⊆ B◦

1
. By Theorem 8.3, the area of

Γ = {(x,y,f(x,y)) : (x,y) ∈B} is as follows:

A(Γ) =
∫

B

√
1+(fx (x,y))2 +(fy (x,y))2 d(x,y) (8.24)

The vector (fx(x,y),fy(x,y)) is called the gradient of Γ at (x,y) ∈B. Let np(x,y) =
(−fx(x,y),−fy(x,y),1) and nn(x,y) = (fx(x,y),fy(x,y),−1); these vectors are the
normals to Γ at (x,y). Then we have the following:

A(Γ) =
∫

B

∥∥
∥np(x,y)

∥
∥∥

2
d(x,y) =

∫

B

∥∥
∥nn(x,y)

∥
∥∥

2
d(x,y) (8.25)

This formula can be used to design surface area estimators for digital sets using
estimated surface normals.

The formula in Theorem 8.3 can be rewritten in terms of the following expres-
sions, which define the first fundamental form (E,F,G) of Γ:

E = x2
u +y2

u +z2
u , F = xuxv +yuyv +zuzv , G = x2

v +y2
v +z2

v

This form satisfies both of the following conditions:

D2
1 + D2

2 + D2
3 = EG − F 2

and

A(Γ) =
∫

B

√
EG−F 2 d(u,v) (8.26)
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Chapter 11 will discuss the estimation of the surface area of a 3D digital object
based on approximating its surface by, for example, planar surface patches. A 3D
picture can be regarded as a sequence of 2D pictures, each of which is a digitization
of a 2D cross-section of the scene. The inference of 3D properties from 2D cross-
sections is studied in stereology using probability-theoretic models for the sampling
processes involved; see Section 1.2.11. A general formula of stereology in traditional
“stereologic notation” is as follows,

VV =AA = LL = PP (8.27)

where VV is the volume of a solid K (in unit test volumes), AA is the area of K in
test planes per unit test area, LL is the length of line intercepts with K in test lines
per unit test line length, and PP is the ratio between the number of points in K and
the total number of test points. Equation 8.27 assumes that these measurements are
statistically uniform. To estimate surface area, we can use the following identities,

SV =
4
π
LA = 2PL = 2

PV

LV
= 4
PAPL

LV
=
PV

PA
(8.28)

where SV is surface area per unit test volume, LA is the length of line elements per
unit test area, PL is the number of points per unit test line length, PV is the number
of points per unit test volume, LV is the length of line segments per unit test volume,
and PA is the number of points per unit test area.

8.3.3 Example: an ellipsoid

To illustrate the difficulty of calculating surface area, we consider the example of an
ellipsoid. Gauss, or outer and inner Jordan, digitizations (see Figure 8.12) of ellipsoids
or combinations of ellipsoids (e.g., subtracting smaller ellipsoids from larger ones,

FIGURE 8.12 Left: a digitized ellipsoid. Right: a slice through a digitized ellipsoid
from which a smaller ellipsoid that touches the larger ellipsoid at one surface point
has been subtracted.
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thereby defining holes or cavities within the larger ellipsoids) provide useful data
sets for testing 3D algorithms (e.g., for estimating surface area and comparing it with
the correct value).

An ellipsoid is certainly an “elementary” solid. Its surface area can be expressed
by elementary analytic functions if two of its radii are equal (i.e., if it is an ellipsoid of
revolution [216]). It was asserted in 1979 [494] that, “Except for the special cases of
the sphere, the prolate spheroid, and the oblate spheroid, no closed form expression
exists for the surface area of the ellipsoid. This situation arises because of the fact that
it is impossible to carry out the integration in the expression for the surface area in
closed form for the most general case of three unequal axes. In spite of the widespread
use of the ellipsoid as a mathematical model and the extensive knowledge about the
theory of curved surfaces and numeric integration, the problem of approximating
the surface area of a triaxial ellipsoid does not appear to have been addressed.”

In fact, in 1825, A.M. Legendre (p. 352–359 in [640]) expressed the surface
area of a general ellipsoid in terms of incomplete elliptical integrals (for an accessible
reference, see [628]). If the ellipsoid is nearly spherical, Legendre’s explicit formula
is unsuitable for numerical computation, but a rapidly convergent series can be used.4

A simpler computation of the surface area of a general ellipsoid is due to G. Tee [498];
it is not limited to be an ellipsoid of revolution. This computation is given here next;
it allows accurate area estimation independent of the parameters of the ellipsoid.

An ellipsoidEa,b,c with semiaxes a, b, and c centered at the origin and with axes
of symmetry along the coordinate axes has the following equation:

x2

a2
+
y2

b2
+
z2

c2
= 1

If two semiaxes are equal (e.g., b = c), Ea,b,c is generated by rotation around the
x-axis of the halfellipse, with y ≥ 0:

x2

a2
+
y2

b2
= 1

The surface area A(Ea,b,b) is as follows, where u= x/a and q = 1− b2/a2:

4πab
∫ 1

0

√
1− qu2 du

Therefore, we have the following:

A(Ea,b,b) =

⎧
⎪⎪⎨

⎪⎪⎩

2πb
(
a× arcsin

√
q√

q + b
)

if q > 0

2πb(a+ b) if q = 0

2πb
(
a× arcsinh

√−q√−q
+ b

)
if q < 0

4. The website http://documents.wolfram.com/v4/MainBook/G.1.7.html gives an obscure statement, without proof
or references, of an incorrect version of Legendre’s formula for the surface area of a general ellipsoid; see
also [1130] (p. 976). Corrections have been reported to the administrator of that website, but without effect.
A corrected version of that formula (also without proof or references) is given at http://home.att.net/numeri
cana/answer/ellipsoid.htm in lieu of a correction, which should have appeared on the first website.
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The truncated power series shown here can be used if |q| � 1:

A(Ea,b,b) = 2πb
(
a
[
1+ 1

6q+ 3
40q

2 + 5
112q

3
]
+ b

)

A(Ea,b,c) can be calculated using Equation 8.24. Without loss of generality, the
coordinate axes can be chosen so that a ≥ b ≥ c. The surface z = f(x,y) of Ea,b,c

satisfies the following conditions:

∂f

∂x
=
−c2x
a2z

,
∂f

∂y
=
−c2y
b2z

In the octant in which x, y, and z are all nonnegative, the surface area is as follows:

∫ a

0

∫ b
√

1−x2/a2

0

√

1+
c4x2

a4z2
+
c4y2

b4z2
dy dx

=
∫ a

0

∫ b
√

1−x2/a2

0

√√
√√1− x2

a2 − y2

b2
+ c2

a2
x2

a2 + c2

b2
y2

b2

1− x2

a2 − y2

b2

dy dx

The integral with respect to y is as follows,

∫ b
√

1−x2/a2

0

√√
√√
√

1−
(
1− c2

a2

)
x2

a2 −
(
1− c2

b2

)
y2

b2

1− x2

a2 − y2

b2

dy = b

√

1−
(

1− c2

a2

)
x2

a2
h(m)

where s= x/a, t = y
/[

b

√
1−s2

]
,

m =

(
1− c2

b2

)(
1−s2)

1−
(
1− c2

a2

)
s2

, (8.29)

and

h(m) =
∫ 1

0

√
1−mt2
1− t2 dt

is Legendre’s complete elliptical integral of the second kind.5 Hence, we have the
following:

A(Ea,b,c) = 8b
∫ a

0

√

1−
(

1− c2

a2

)
x2

a2
h(m) dx

= 8ab
∫ 1

0

√

1−
(

1− c2

a2

)
s2 h(m) ds

5. E(m) in Milne-Thomson’s notation in Chapter 17 of [3].
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This expression can be evaluated numerically. Archimedes showed that, fora= b= c,
the integrand is constant at π/2; see [1083]. As c/a↘ 0 , the integrand converges to√

1−s2 =
√

(1−s)(1+s), which has a singular derivative at s= 1. To get a smoother
integrand, let u2 = 1−s; then the following is true,

A(Ea,b,c) = 16ab
∫ 1

0

√

1−
(

1− c2

a2

)
s2 h(m) u du (8.30)

where s = 1− u2 and m (0 ≤ m ≤ 1) is as defined in Equation 8.29. The integral
h(m) decreases from π/2 to 1 as m increases. The Arithmetic-Geometric Mean of
C.F. Gauss is a very efficient tool for evaluating both h(m) and Legendre’s complete
elliptical integral k(m) of the first kind (see Milne-Thomson’s Section 17.6 in [3]):

k(m) =
∫ 1

0

dt
√

(1− t2)(1−mt2)
However, ifm is very close to 1, the power series inm1 = 1−m (p. 54 in [168])

should be used to evaluate k(m) for m< 1 and to evaluate h(m) for m≤ 1.
The integrand with respect to u in Equation 8.30 is smooth enough for the

integral to be evaluated by Romberg integration for c > 0. As c/a↘ 0 , the ellipsoid
converges to a two-sided elliptical lamina with surface area 2πab. Hence, for c/a� 1,
the area should be 2πab plus some terms in c/a.

8.3.4 Gauss’ definition of surface curvature

Let Γ be a smooth surface patch such that Γ(u,v) = (x(u,v),y(u,v),z(u,v)) and
(u,v) ∈ B is not a singular point. Then Γu(u,v) = (xu(u,v),yu(u,v),zu(u,v)) and
Γv(u,v) = (xv(u,v),yv(u,v),zv(u,v)) are tangent vectors to Γ at Γ(u,v). These vectors
are not parallel; they therefore define a plane called the tangent plane to Γ at Γ(u,v)
that contains all of the tangent vectors to Γ at Γ(u,v).

The cross product Γu(u,v)×Γv(u,v) defines a normal direction perpendicular
to the tangent plane. The unit surface normal at Γ(u,v) is as follows:

n(u,v) =
Γu(u,v)×Γv(u,v)
‖Γu(u,v)×Γv(u,v)‖2

The normal points inward or outward, depending on whether its sign is positive or
negative.

The vector emanating from the origin in direction n(u,v) intersects the surface
of the unit sphere at a point. This defines a mapping of Γ onto the unit sphere called
the Gauss map of Γ. C.F. Gauss defined surface curvature based on this mapping;
the unit sphere is therefore sometimes called the Gaussian sphere.

Let Uε(p) be a small neighborhood of a point p ∈ Γ defined by intersecting Γ
with a sphere of radius ε > 0 centered at p. Then the following is a smooth surface
patch on the unit sphere:

n(Uε(p)) = {n(u,v) : Γ(u,v) ∈ Uε(p)}
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Gauss originally defined the curvature of Γ at p as the ratio between the area of this
patch and the area of Uε(p) as ε→ 0:

Definition 8.5 (C.F. Gauss, 1828) The (historic) Gaussian curvature of a smooth
surface patch Γ at p= Γ(u,v) is as follows:

κG(u,v) = lim
ε→0

A
(

n(Uε(p))
)

A(Uε(p))

For numeric calculations, it is usually easier to replace the circularU -neighbor-
hoods with rectangular neighborhoods. A point on the Gaussian sphere is specified
by its longitude ξ and latitude η. Let δR be the (“rectangular”) surface patch on
the Gaussian sphere between ξ and ξ+ δξ and between η and η+ δη; thus A(δR) =
δξ δη cosη. Let δΓ(u,v) be the patch of Γ around Γ(u,v) that defines δR. Then we
have the following:

κG(u,v) = lim
δη→0 δξ→0

δξ δη cosη
A(δΓ(u,v))

For example, a sphere of radius r > 0 has constant Gaussian curvature 1/r2.
In computer vision, G(ξ,η) = 1/κG(u,v) is called the Gaussian image of Γ; it

is a “labeled” Gauss map. If κG(u,v) = 0 (e.g., if Γ is locally planar at Γ(u,v)), G
has a point impulse at (ξ,η) (defined by the surface normal at Γ(u,v)); the impulse
is “labeled” by the surface area that contributes to the impulse.

A finite convex polyhedron that has n > 0 faces has a Gaussian image that
consists of n point impulses, each labeled by the area of the corresponding face.
H. Minkowski has shown that convex polyhedra are determined up to translation by
their face areas and normals; hence the labeled Gaussian image determines a convex
polyhedron up to translation.

As an example of the calculation of Gaussian curvature, consider again the
ellipsoid Ea,b,c defined by the following:

Γ(φ,ψ) = (acosψ cosφ,bsinψ cosφ,csinφ)

(see Figure 8.13 for the definitions of the angles φ and ψ). Here the Gaussian curva-
ture is as follows,

κG(u,v) =
(

abc

(bccosψ cosφ)2 +(acsinψ cosφ)2 +(absinφ)2

)2

and the Gaussian image is as follows, where ξ and η are longitude and latitude on
the Gaussian sphere:

G(ξ,η) =
(

abc

(acosξ cosη)2 +(bsinξ cosη)2 +(csinη)2

)2

Two smooth surface patches Γ1 and Γ2 are called isometric iff there is a one-to-
one mapping ϕ from Γ1 onto Γ2 such that ϕ and ϕ−1 are both differentiable and ϕ
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FIGURE 8.13 The angles φ and ψ in a general ellipsoid.

maps any smooth arc in Γ1 onto a smooth arc in Γ2 of the same length. It is proved
in differential geometry that two smooth surface patches are isometric iff they have
identical first fundamental forms (E,F,G).

A local isometry ϕ from Γ1 onto Γ2 is a one-to-one differentiable function such
that, for all p ∈ Γ1, there exist neighborhoods U(p) in Γ1 and U(ϕ(p)) in Γ2 such that
ϕ is an isometry between the neighborhoods. For example, the surface of an infinite
cylinder is locally isometric to a plane.

Theorem 8.4 (Teorema Egregium C.F. Gauss, 1828) If a smooth surface patch can
be mapped locally isometrically onto another such patch, the values of their
(historic) Gaussian curvatures are the same at corresponding points.

This theorem points out a limitation of the historic Gaussian curvature. We are
usually interested in distinguishing between the local curvature of a plane (a planar
point) and that of a cylinder (a parabolic point), but they are not distinguishable
when the historic definition is used. Also, the historic Gaussian curvature is always
nonnegative; it does not allow us to distinguish between the local curvature of an
elliptical surface patch (an elliptic point) and that of a hyperbolic surface patch (a
hyperbolic point). To overcome these limitations, differential geometry has intro-
duced other measures of surface curvature (e.g., based on pairs of curves lying on the
surface patch and intersecting at the given point). (The curvature of a space curve
was defined in Section 8.2.) These measures will be defined in the next section.

8.3.5 Principal, Gaussian, and mean surface curvature

Let Γ be a Monge patch defined by z = f(x1,x2) on a planar region B, where f

is in C(2)(B), so that it is twice continuously differentiable for all (x1,x2) ∈ B and
therefore satisfies the integrability condition:

fx1x2 =
∂2f(x1,x2)
∂x1∂x2

=
∂2f(x1,x2)
∂x2∂x1

= fx2x1
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We calculate the surface curvature at p ∈ Γ using arcs Γ1 and Γ2 that are contained
in Γ, pass through p, and are not parallel in a neighborhood of p. Let t1 and t2 be the
tangent vectors to Γ1 and Γ2 at p. These vectors span the tangent plane Πp to Γ at p.
We assume angular orientations 0≤ η < π in Πp (a halfcircle centered at p).

The surface normal np at p is orthogonal to Πp and collinear with the cross
product t1× t2. Let Πη be a plane that contains np and has orientation η; see Fig-
ure 8.14. Πη makes a dihedral angle η with Π0 and cuts Γ in an arc γη. (Πη may
cut Γ in several arcs or curves, but we consider only the one that contains p.) Let
tη, nη, and κη be the tangent, normal, and curvature of γη at p. κη is the normal
curvature of any arc γ ⊂ Γ∩Πη at p that is incident with p. For example, take f to be
the constant function with a value of 0 everywhere. Then the Monge patch is part
of the horizontal plane through o= (0,0,0) in R

3. Any γη is a straight line segment
in the plane that is incident with o; we have κη = 0 and tη = γη. If we take f to be a
“cap” of a sphere centered at its north pole p, γη is a segment of a great circle on the
sphere, nη is incident with the straight line passing through p and the center of the
sphere, and κη = 1/r where r is the radius of the sphere.

The characteristic polynomial pof ann×nmatrix A is defined as p(λ) = det(A−
λI) = (−λ)n + · · ·+det(A), where I is the n×n identity matrix. According to the
Cayley–Hamilton Theorem [311], p(A) = 0. The eigenvalues λi of an n×n matrix A
are the n roots of its characteristic equation det

(
A−λI

)
= 0.

Let v be a unit vector in Πp. The negative derivative −Dvn of the unit normal
vector field n of a surface, which is regarded as a linear map from Πp to itself, is
called the shape operator (or Weingarten map or second fundamental tensor) of the
surface. Let Mp be the Weingarten map in matrix representation at p (with respect
to any orthonormal basis in Πp), and let λ1 and λ2 be the eigenvalues of the 2× 2
matrix Mp. Note that these eigenvalues do not depend on the choice of orthonormal
basis in Πp.

Definition 8.6 λ1 and λ2 are called the principal curvatures or main curva-
tures of Γ at p. The product λ1λ2 is called the Gaussian curvature, and the mean
(λ1 +λ2)/2 is called the mean curvature.

p

Πp

np

v0

Γ

Πh

gh

nh

vh

h

FIGURE 8.14 A surface Γ cut by a plane Πη.
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It is proved in differential geometry [1014] that the absolute value of the Gaus-
sian curvature is equal to the historic Gaussian curvature of Definition 8.5. The mean
curvature is equal to (κη(p)+κη+π/2(p))/2 for any η ∈ [0,π).

In the case of a Monge patch, it is natural to choose b1 = (1,0,fx1
) and b2 =

(0,1,fx2
) as basis elements for Πp; they are the images of the usual basis e1 = (1,0)

and e2 = (0,1) of R
2 under differentiation of the Monge patch. We then calculate the

following matrix of inner products,

Pp =

⎛

⎜⎜
⎝

〈
−D

b1

np,b1

〉 〈
−D

b1

np,b2

〉

〈
−D

b2

np,b1

〉 〈
−D

b2

np,b2

〉

⎞

⎟⎟
⎠

which unfortunately is not the matrix Mp of the Weingarten map with respect to the
basis {b1,b2}, because the latter is not necessarily orthonormal. The relationship
between Pp and Mp is explained in [1014] (at the end of p. 50 of Volume 3),

Mp = G
−1

p Pp

where Gp is the metric tensor of Γ at p and we use the fact that Gp and Pp are
symmetric matrices:

Gp =

⎛

⎝

〈
b1,b1

〉
= 1+f2

x1

〈
b1,b2

〉
= fx1fx2〈

b2,b1

〉
= fx2fx1

〈
b2,b2

〉
= 1+f2

x2

⎞

⎠

The following 2×2 matrix is called the Hessian matrix of Γ6:

H(x1,x2) = ((aij))1≤i,j≤2 where aij =
∂2f(x1,x2)
∂xi∂xj

The Monge patch satisfies the integrability condition a12 = a21 (i.e., its Hessian matrix
is also symmetric).

Theorem 8.5 The Gaussian curvature of the surface defined by z = f(x1,x2) is
as follows:

fx1x1fx2x2 −f2
x1x2(

1+f2
x1

+f2
x2

)2 =
detH

(
1+f2

x1
+f2

x2

)2

Mp has a quadratic characteristic equation with two eigenvalues λ1 and λ2 at
any surface point p. These eigenvalues define a pair of orthogonal eigenvectors v1
and v2 that satisfy the equations Mpv1 = λ1v1 and Mpv2 = λ2v2. By the symmetry of

6. Named after the German mathematician L.O. Hesse (1811–1874).
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Mp (i.e., Mp = M
T

p ), we have the following:

λ1〈v1,v2〉 = 〈λ1v1,v2〉 = 〈Mpv1,v2〉
= 〈v1,M

T

p v2〉= 〈v1,Mpv2〉= 〈v1,λ2v2〉
= λ2〈v1,v2〉

It follows that λ1 �= λ2 implies 〈v1,v2〉= 0, so v1 and v2 are orthogonal. (Sometimes,
λ1 = λ2 [e.g., for a planar patch or a patch on a sphere]. In such cases, v1 and v2 are
chosen as an arbitrary orthonormal pair of basis elements of Πp.) Let η = 0 be the
direction of v1 or v2 in Πp (i.e., either λ1 or λ2 is κ0(p)).

Now let w1 and w2 be any two orthogonal vectors that span the tangent plane
Πp to Γ at p (i.e., they are tangent vectors that define normal curvatures in directions
η and η+π/2). Then the Euler formula

κη(p) = λ1 · cos(η)2 +λ2 · sin(η)2 (8.31)

allows us to calculate the normal curvature κη(p) in any direction η at p from the
principal curvatures λ1 and λ2 and the angle η.

Chapter 11 will discuss the estimation of mean surface curvature based on
digital approximations to the surface. We can locally estimate the tangent plane Πp

and thus the normal np at any point p on Γ (see Figure 8.14). We can also cut Γ at
p by a plane Πc in some direction (e.g., parallel to the xz-plane at the y-coordinate
of p). The intersection of Πc with Γ defines an arc γc in the neighborhood of p, and
we can estimate the curvature κc of γc at p. However, we cannot assume that Πc is
incident with the surface normal np at p. Let nc be the principal normal of γc at p. A
theorem of Meusnier7 [727] tells us that the normal curvature κη in any direction η
is related to the curvature κc and the normals np and nc by the following:

κη = κc · cos(np,nc)

By estimating two normal curvatures κη and κη+π/2, we can estimate the mean cur-
vature.

8.3.6 Volume

Let K ⊂ R
3 be a compact set and f(x,y,z) a function such that 0≤ f(x,y,z)≤ 1 for

all (x,y,z) ∈K. f(x,y,z) can be regarded as the “density” of K at p= (x,y,z) ∈K.
The following integral defines the volume of f on K:

I =
∫ ∫ ∫

K

f (x,y,z) dxdydz

7. French aeronautic theorist and military general J.B.M. Meusnier (1754–1793).
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If f(x,y,z) = 1 iff (x,y,z) ∈ K, I is the volume V(K). K is integrable iff it has a
well-defined and finite volume. Every compact set is integrable.

Section 2.3.2 described Jordan’s method of estimating the volume of a set using
its inner and outer digitizations. It estimates the (Jordan) volume V(S) of S by its
inner or outer volume, provided that these volumes converge to the same limit as
the grid constant goes to zero.

Grid-based studies by Jordan and Peano initiated the field of combinatorial
geometry (the geometry of numbers; see Section 1.2.8). A fundamental theorem of
H. Minkowski says that a convex subset of R

n that is symmetric about o= (0, . . . ,0)
(i.e., if p is in the set so is −p) and that has a volume of at least 2

n
contains at least

two grid points in addition to o.
Cavalieri’s Principle8 [1031] is often used for area or volume estimation. Let

R1 and R2 be two 2D regions that lie between two parallel lines Γ1 and Γ2. Suppose
any line between Γ1 and Γ2 and parallel to them cuts R1 and R2 into straight line
segments of equal (total) length; then R1 and R2 have equal area. Similarly, let R1

and R2 be two solids that lie between two parallel planes. If any plane between the
two planes and parallel to them cuts the solids in regions of equal (total) area, then
the solids have equal volume.

Estimating the volume of a digital set by counting voxels is justified by Cava-
lieri’s Principle and by Jordan’s method of volume measurement. Volume estimation
can also be based on polyhedral approximation (as in the use of polygonal approx-
imation for area estimation that was discussed at the end of Section 8.1.5) or on
integral-geometry–based methods. For the latter approach, we briefly state a few
basic equations.

Let Br = {p ∈ R
n : ‖p‖e ≤ r} be the n-dimensional ball of radius r > 0 around

the origin, letM ⊂R
n, and letMρ =M⊕Br be the Minkowski sum ofM andBr. An

oval is a bounded closed convex subset of R
n. For example, if n= 1, M is a straight

segment, and L(Mr) = L(M)+2r. Let M ⊂ R
2 be an oval with A(M)> 0; then we

have the following:

A(Mr) =A(M)+P(M)r+π2 (8.32)

If M ⊂ R
3 is an oval with V(M) > 0, then the following is true, whereW(M) is the

mean width of the oval M :

V(Mr) = V(M)+A(M)r+2πW(M)r2 + 4
3πr

3 (8.33)

Both equations follow from Steiner’s formula; see page 220 in [958]. The volume
determines the surface area:

A(M) = lim
r→0

V(Mr)−V(M)
r

8. Named after the Italian mathematician B. Cavalieri (1598–1647), a pupil of G. Galilei.
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The mean width of a simple convex polyhedron M that has α1 edges is given
by the following,

W(M) =
1
4π

α1∑

i=1

liηi (8.34)

where li is the length of the ith edge ei and αi is the angle between the normals of
the faces that intersect in ei. For the general case (i.e., the mean width of an arbitrary
oval), see [958].

2πW(M) is also called the mean curvature M(M) of the oval M . The total
curvature C(M) is 4π for all ovals of nonzero volume. In general, these properties
are defined by the following:

M(M) = 1
2 lim

r→0

A(Mr)−A(M)
r

and C(M) = lim
r→0

M(Mr)−M(M)
r

Equation 8.33 becomes the following:

V(Mr) = V(M)+A(M)r+M(M)r2 + 1
3C(M)r3

Steiner’s formula also allows us to conclude the following (for an oval M ⊂ R
3):

A(Mr) = A(M)+2M(M)r+C(M)r2

M(Mr) = M(M)+C(M)r
C(Mr) = C(M)

Equations 1.10 and 1.11 also deal with ovals in R
3.

8.3.7 Isothetic polyhedra

Sections 5.2.2 and 5.2.3 discussed combinatorial topology for incidence pseudo-
graphs, and Section 5.3 discussed it in detail for regular infinite incidence
pseudographs. The results can be interpreted as counting formulas for properties
of isothetic grid polygons or polyhedra.

Let Π be the simply connected union of a finite set of 6-connected simple poly-
hedra. The volume α3 of Π can be calculated using formulas given in Section 5.3.2
(e.g., on the values α0 and b03 and the constants a03 = a30 = 8). b03 can be calculated
during frontier tracing, and α0 can be calculated using discrete column-wise integra-
tion as in Section 8.1.6. Section 5.3.2 also provides ways of calculating α3 based on
the values α1 and b13 and the constants a13 = 4 and a31 = 12 or on the values α2 and
b23 and the constants a23 = 2 and a32 = 6.

We now derive a result about the angles of isothetic simple grid polyhedra.
The counting formulas in Section 5.3 are formulas for isothetic simple grid poly-
hedra defined by unions of cells. The angle formula given in this section is based
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FIGURE 8.15 The six kinds of angles in an isothetic simple polyhedron.

on a geometric construction, unlike the purely combinatorial approach used in Sec-
tion 5.3. It also provides a method of defining topologic invariants that distinguish
inner surfaces from outer surfaces.

There are six kinds of angles in an isothetic simple polyhedron; see Figure 8.15.
These angles will be referred to as being of typesA,C,D1,D2,E, andG, respectively.

Theorem 8.6 Let Π be an isothetic simple polyhedron, and let ΠA, ΠC , ΠD1
,

ΠD2
, ΠE , and ΠG be the numbers of angles of Π of types A, C, D1, D2, E, and

G. Then we have the following:

T = (ΠA +ΠG)− (ΠC +ΠE)−2(ΠD1 +ΠD2) = 8

Proof Π can be obtained by a finite sequence of joins of a simple isothetic polyhe-
dron Π1 to a simple isothetic polyhedron Π2 in which a face P2 of Π2 is brought
into coincidence with a subset of a face P1 of Π1. We can start the process with
two isothetic rectangular parallelepipeds for which ΠA = 8 and all the other
Πs are zero; thus these parallelepipeds satisfy the formula. At each step of
the joining process Π1 and Π2 can have only A and C angles on their merging
faces P1 and P2. By Proposition 8.1, the number of A-angles on P2 is always
four greater than the number of C-angles. (P2 is a subset of P1; this excludes
joining a C-angle on P2 with an A-angle on P1 or joining a C-angle on P2 with
a point on an edge of P1.) Hence there are only six types of joinings, as shown
in Figure 8.16:

i. an A-angle on P2 is joined with an A-angle on P1;

ii. an A-angle on P2 is joined with a C-angle on P1;

iii. an A-angle on P2 is joined with a point on an edge of P1;

iv. an A-angle on P2 is joined with an interior point of P1;
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i ii iii

iv v vi

FIGURE 8.16 The six possible joining operations.

v. a C-angle on P2 is joined with a C-angle on P1; and

vi. a C-angle on P2 is joined with an interior point on P1.

We can assume that Theorem 8.6 is valid for Π1 and Π2. Thus, before the joining
operation, the total count for the two polyhedra is T = 16. We will now prove
that T = 8 after the joining operation.

In case (i), an A-angle of Π1 and an A-angle of Π2 are lost; this decreases T by
2. In case (ii), a C-angle of Π1 and an A-angle of Π2 are lost, but the union
gains a D1- or D2-angle, so T decreases by 2. In case (iii) an A-angle of Π2 is
lost, but the union gains aC-angle, so T decreases by 2. In case (iv), anA-angle
of Π2 is lost, but the union gains an E-angle, so T decreases by 2. In case (v), a
C-angle of Π1 and a C-angle of Π2 are lost; this increases T by 2. In case (vi),
a C-angle of Π2 is lost, but the union gains a G-angle so T increases by 2.

In summary, the four joinings ofA-angles decrease T by 2, and the two joinings
ofC-angles increase T by 2. The number ofA-angles on P2 is always four more
than the number of C-angles; hence, after we perform the joining operations
that involve all of the A- and C-angles of P2, we have T = 8. �

The formulas in Proposition 8.1 and Theorem 7.13 are both useful for analyzing
isothetic frontiers. In a 2D binary picture, an isothetic frontier is inner (the frontier
of a union of proper holes) or outer, depending on whether ΠV −ΠC < 0 or > 0. In
a 3D binary picture, there are dualities between angles of types A and G, C and E,
D1 and D1, and D2 and D2. Thus T = 8 whether we consider the surface as being
the outer frontier of a simple polyhedron or an inner frontier of a proper polyhedral
hole. However, we can use other quantities to distinguish between inner and outer
frontiers; for example, ΠA−ΠG is negative for an inner frontier and positive for an
outer frontier. The quantity T is also of practical interest; for example, it provides a
test for whether the entire surface of an isothetic polyhedron has been traced. The
six angle counts can also be used as shape descriptors.
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FIGURE 8.17 Three circuits in the graph that represents the faces of a 3-cell.

8.4 Surface Tracing and Approximation

In Section 5.4.4, we briefly discussed the use of the FILL procedure to trace the
3D frontier of a simply connected region. In Section 8.4.1, we will describe a more
efficient frontier tracing algorithm. In Section 8.4.2, we will describe a “marching
cubes” algorithm that approximates the frontier of a region by constructing a trian-
gulation “between” the border and coborder of the region.

8.4.1 The Artzy-Herman algorithm

The frontier of a 1- or 0-region of voxels splits in general into frontiers of a finite
number of 2-regions; we will consider only 2-regions here. The FILL procedure
discussed in Section 5.4.4 does not attempt to minimize the number of accesses to
frontier faces to determine whether they have already been labeled; it is therefore
also applicable to 0- or 1-regions. In a 2-region, any frontier face is edge-adjacent to
exactly four9 other frontier faces; hence FILL makes at most four visits to each fron-
tier face, including the first visit, when the face is labeled. The algorithm described
in this section requires at most two visits to each face, including the first visit.

Let [F,A] be the undirected graph in which each node represents a frontier face
of a closed 2-region M of voxels in the 3D incidence grid C3. We call two nodes f1

and f2 adjacent (f1Af2) iff they are 1-adjacent in C3. Each f ∈M is incident with one
3-cell I(f) in M and with one 3-cell O(f) in M . Evidently, f1Af2 iff O(f1) = O(f2)
(so that I(f1) and I(f2) are 1-adjacent) or O(f1) and O(f2) are 2-adjacent (so that
I(f1) and I(f2) are also 2-adjacent) or O(f1) and O(f2) are both 2-adjacent to the
same 3-cell inM (i.e., I(f1) = I(f2)). It follows that each node in [F,A] has degree 4.

Let I(f) be the 3-cell shown in Figure 8.17. In the graph representing the faces
of I(f), there are three circuits, each of which is parallel to one of the coordinate
planes. Each face has two outgoing and two incoming edges; each of these edges
goes from one face to another by “crossing” a 1-cell (grid edge). Each grid edge in
the frontier of M is incident with exactly two frontier faces of M . If we start at any
face f in the frontier ofM , the two outgoing edges of f on I(f) point to two frontier

9. See Section 3.1.3 in [1107] for a proof, based on invalid edges in the 6-adjacency grid, that ν(p) = 4 for any
frontier face p in this adjacency graph.
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1. Create a list F of faces and push f0 into F ; create a queue Q of faces, and

push f0 into Q; create a list L of labeled faces, and push f0 twice into L.

2. While the queue Q is not empty:
a) pop face f out of Q (and delete it from Q),
b) for both out-faces g of f , do the following:

i. if g is on L, delete it from L,
ii. otherwise, push g into F , push g into Q, and push g into L.

ALGORITHM 8.1 The Artzy-Herman algorithm for tracing all faces of a 3D frontier.

faces called the out-faces of f , and the two incoming edges are outgoing edges of
two in-faces of f . The frontier tracing algorithm makes use of this directed graph
structure (Algorithm 8.1). We accumulate all of the frontier faces of M in the list
F . The queue Q implies a breadth-first access order; using a stack instead implies a
depth-first access order. We can return to a face at most twice; the second copy of f0

on L is removed when we enter Step 2.a.i. for the first time.

8.4.2 Marching cubes

A set of voxels in a 3D pictureP is supposed to be a representation (e.g., a Gauss digi-
tization) of an unknown 3D object with an unknown surface. We choose a thresholdT
(0< T ≤Gmax) to define object voxels (P (p)≥ T ) and nonobject voxels (P (p)< T ).
The voxels of P at each z-coordinate define a 2D picture called a layer. We scan
each layer of P to detect border voxels, which can be combined in successive layers
to define triangular faces of the border [1141]. A marching cubes algorithm [667]
uses eight voxels (a 2×2×2 block) on two successive layers of P to define triangles
that approximate the unknown surface. These triangles are chosen by analyzing how
the unknown surface could intersect the 2×2×2 block. The surface is assumed to
intersect each grid edge (between two neighboring voxels) at most once. It follows

that it can intersect a 2× 2× 2 block in 2
8
= 256 ways. The differences between T

and the voxel values can be used to estimate the intersection points with grid edges.
As a default, we assume that all edges are intersected at their midpoints.

Figure 8.18 illustrates situations that do not lead to unique triangulations.
A marching cubes algorithm assumes that the 2 × 2 × 2 voxel configurations are
mapped into possible triangulations by a look-up table. The 256 eight-voxel con-
figurations can be reduced modulo rotations and symmetries. This leads to one
homogeneous configuration (all eight voxels are inside or outside the object), which
produces no triangle, and 14 other cases. Figure 8.19 shows a look-up table that
specifies one triangulation for each of the 14 configurations. The union of the trian-
gulations defines an isosurface forP that depends on the threshold T and the look-up
table.

Look-up tables occasionally produce isosurfaces that have holes. This hap-
pens if adjacent eight-voxel configurations produce “nonmatching” triangles. The
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FIGURE 8.18 Local eight-voxel configurations do not lead to a unique triangulation.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

FIGURE 8.19 The 15 marching cubes configurations of [667].

resulting isosurface has an acyclic vertex with a star (the set of triangles incident
with it) that is not a cycle of triangles. Figure 8.20 shows an example that gives rise
to about 1% acyclic vertices, depending on the threshold used. In this example, a
23-case look-up table was used; there were two choices for 8 of the 14 nontrivial
cases.

In Figure 8.20, a large number of triangles were generated. Reduction algo-
rithms10 have been designed to decrease the number of triangles (e.g., by merging
triangles that have almost identical normals).

8.4.3 Local and global polyhedrization

A solid Θ is a set in E
3 with a frontier that is a closed, bounded, measurable, hole-free

surface (see Chapter 7). A digitization of Θ in a grid with resolution h is a finite union

10. These are called “decimation algorithms” in the literature; in ancient Roman armies, decimation was a severe
punishment in which every tenth person was killed.
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FIGURE 8.20 Left: isosurface generated by a marching cubes algorithm (astrocytes
in brain tissue). A 3D picture (256×256×51 voxels) was mapped into an isosurface
defined by 407,216 vertices of generated triangles. Right: the isosurface after vertex
reduction; it has only about 40% as many vertices as the isosurface shown on the
left.
digh(Θ) of 3-cells. A digital surface S is the frontier ϑ(digh(Θ)) of such a set; it can
be regarded as a 2D complex of 0-, 1-, and 2-cells or as a set of frontier faces. Note
that S is an isothetic polyhedral surface.

Θ can be magnified by a factor h > 0 (see Section 2.3.2) and digitization can be
limited to a grid that has grid constant 1. Alternatively, Θ can be kept at its original
size, but digitization can be done on a grid of resolution h> 0 (grid constant θ= 1/h).
The first approach was preferred by Jordan and Minkowski; it has the advantage
that the calculation of surface area involves only integer arithmetic and is therefore
preferable in implementations. The second approach is common in numeric analysis;
we will use it in multigrid convergence studies (following Definition 2.10).

Polyhedrization maps a digital surface S into a finite set of polygonal faces in
E

3 but does not always provide a simple polyhedral approximation of the (unknown)
surfaceϑh(Θ). For example, a triangulation produced by a marching cubes algorithm
may not be hole-free and so may not be the surface of a simple polyhedron.

For each polygon Π of a polyhedrization of S, there exists a subset Ah(Π) of S
such that Π depends only onAh(Π); if S \Ah(Π) is modified in any way into another
digital surface, its polyhedrization still contains Π. Ah(Π) is called the ball of influence
of Π. Because a polyhedrization of S contains only finitely many Πs, the set of radii
of these balls of influence has a maximum value R(h,S).

Definition 8.7 A polyhedrization method is called local iff there exists a
constantR0 > 0 such thatR(h,S)≤R0/h for any digital surface S and any grid
resolution h. A polyhedrization method that is not local is called global.

The frontier faces of a simply 2-connected region (e.g., visited by the Artzy-
Herman traversal algorithm) define a polyhedrization with constantR0 =

√
3/2. The

marching cubes algorithm is a polyhedrization method with constant R0 =
√

3.
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Definition 8.7 can be applied to other methods or properties that involve mea-
surements in a metric space. Digital straight line segment (DSS) methods (as dis-
cussed in Chapters 9 and 10) are global methods. All of the methods of digitization
defined in Chapter 2 are local methods.

8.5 Exercises

1. Give a parametric representation x= x(t), y = y(t) for the parabola defined by
the equation y2 = 4ax. What is the domain of the parameter t? Do the same for
the ellipse x2/a2 +y2/b2 = 1.

2. Calculate the curvature κ(t) of the parabola and ellipse defined in Exercise 8.1.
(Hint: Apply one of the Frenet formulae.)

3. Let < p1, . . . ,pn > be a simple polygon, and let ni be the unit normal of the
side pipi+1 (1 ≤ i ≤ n). Let vi = ‖pipi+1‖2ni (where pn+1 = p1) be the normal
weighted by the length of the side. Prove that v1 + . . .+ vn is the zero vector
(0,0).

4. Prove that, if the vectors defined in Exercise 3 are the same for two convex
simple polygons, they must differ by a translation.

5. Show that the determinant D(p,q,r) in Equation 8.14 can be calculated using
only two multiplications (and several additions/subtractions).

6. The following figure shows a unit square S0 in the upper left corner. Delete
an “open cross” from S0 as shown in the upper right corner; this results in a
disconnected setS1 of four squares. Repeat this process for each resulting square
to obtain a setS2 composed of 16 squares, a setS3 composed of 64 squares, and so
on. Note that each Sn is a closed set and consists of a finite number of squares.
Continue the process to infinity; recall that the family of closed sets is closed
under arbitrary intersections. What is the area of the limiting set S0∩S1∩S2 . . . ?
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7. Prove the area formula in Equation 8.15 for simple polygons.

8. Let D be a planar disk of radius a > 0 centered at the origin. What is the
equation of D in polar coordinates x = r cosφ and y = r sinφ? What are the
Jacobian matrix and Jacobians of this coordinate transformation?

9. Prove that a sphere of radius r > 0 has constant Gaussian curvature 1/r2.

10. The vector representation in Exercises 3 and 4 can be generalized to simple
polyhedra: vi =A(Fi)ni where the Fis are the faces of the polyhedron and ni is
the unit normal to Fi. Prove that v1 + . . .+vn is the zero vector (0,0,0).

11. Define cylindric coordinates x= r cosφ, y = r sinφ, and z = z and spheric coor-
dinates x= r sinψ cosφ, y = r sinψ sinφ, and z = r cosψ. What are the Jacobian
matrices and Jacobians of these coordinate transformations?

12. The characteristic polynomial of a general 2×2 matrix A is p(λ) = det(A−λI)
= λ2− (a11 + a22)λ+(a11a22− a12a21). Prove that p(A) = A

2− (a11 + a22)A +
(a11a22− a12a21)I = 0, where I and 0 are the 2× 2 identity and null matrices.
(This proves the case n= 2 of the Cayley-Hamilton Theorem.)

13. Let S be a connected polygonal region that has b grid points on its n borders and
i grid points in its interior. Prove that the area of S is b

2
+ i−n−1.
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C H A P T E R 9

2D Straightness

This chapter discusses digital straightness in the grid point and grid cell models.
We consider its relationships with other disciplines such as number theory and the
theory of words as well as its role in picture analysis. We also discuss algorithms
for recognizing digital straight line segments (DSSs) and partitioning digital arcs
into such segments.

9.1 Basics

We consider the grid-intersection digitization (see Section 2.3.3) or outer Jordan
digitization (see Section 2.3.2) of a ray

γα,β = {(x,αx+β) : 0≤ x <+∞}

in the set N
2 = {(i, j) : i, j ∈ N} of grid points with nonnegative integer coordinates

or in the set of 2-cells that have centers in N
2. Because of the symmetry of the grid,

we can assume that 0≤ α≤ 1.
γα,β has a sequence of intersection points p0,p1,p2, . . . with the vertical grid

lines at n ≥ 0. Let (n,In) ∈ Z
2 be the grid point closest to pn, and let the following

be true:
Iα,β = {(n,In) : n≥ 0 ∧ In = �αn+β+0·5�}

If there are two closest grid points, we choose the upper one; see Section 2.3.3. Iα,β is
the set of centers of a set of grid squaresR(γα,β). The differences between successive
Ins define the following chain codes:

iα,β(n) = In+1− In =

⎧
⎨

⎩

0 if In = In+1

1 if In = In+1−1
for n≥ 0

309
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In accordance with our assumption that 0 ≤ α ≤ 1, we need to use only the codes
0 and 1. We recall that code 0 is a horizontal increment and code 1 is a diagonal
increment; see Figure 9.1.

Definition 9.1 iα,β = iα,β(0)iα,β(1)iα,β(2) . . . is a digital ray (in the grid point
model) with slope α and intercept β.

This definition can easily be adapted to handle straight lines instead of rays. The
code sequence of a digital straight line (DSL) is infinite in both directions.

If we use the grid cell model, we can use sequences of grid squares to define
digital rays or straight lines:

Definition 9.2 A cellular straight line is a set M of 2-cells such that each cell
in M has a nonempty intersection with a straight line γ, and γ is contained in
the union of the cells.

This definition uses the outer Jordan digitization of γ. A cellular straight line segment
is defined by a straight line segment γ in the same way. An example is shown in
Figure 9.2.

0

123

4

5 6 7

FIGURE 9.1 Segment of a digital ray defined by grid-intersection digitization.

FIGURE 9.2 A cellular straight line segment.
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If we translate a cellular straight line by (0·5,0·5) so that its 2-cells are in grid
point positions, its frontier consists of two infinite 4-arcs. These 4-arcs can be used
to define “upper” and “lower” digital straight lines.

In this introductory section, we present three basic theorems. Theorem 9.1 is
about connectivity, which will be treated in Section 9.2; Theorem 9.2 is about self-
similarity, which will be treated in Section 9.3; and Theorem 9.3 is about periodicity,
which will be treated in Section 9.4.

A finite or infinite 8-arc is called irreducible iff its set of grid points does not
remain 8-connected if a nonendpoint is removed from it.

Theorem 9.1 A digital ray is an irreducible 8-arc.

Proof A ray γα,β (0 ≤ α ≤ 1) intersects the grid lines x = n once each. Its
intercepts with any two successive grid lines x = n and x = n+ 1 differ ver-
tically by α; hence the digitizations of these intersections differ vertically by
≤ 1. Thus successive grid points of the digital ray are 8-neighbors. Removing
the grid point at any x= nwould leave the grid points at x= n−1 and x= n+1
8-disconnected. �

The ray γα,β generates the digital ray iα,β . If β − β′ is an integer, we have
iα,β = iα,β′ . Thus we can assume without loss of generality that the βs are limited to
0≤ β ≤ 1. Evidently, i0,β = 000 . . . and i1,β = 111 . . . .

Theorem 9.2 If α is irrational, Iα,β uniquely determines both α and β. If α is
rational, Iα,β uniquely determines α and determines β up to an interval.

Proof Iα,β = Iα′,β′ implies α = α′, because otherwise the vertical distances be-
tween αx+β and α′x+β′ would not be bounded as x goes to infinity, so the In
values would differ beyond some large enough n.

If α is irrational, the values of αx+β modulo 1 for all x≥ 0 are dense in [0,1].
Hence, for every ε > 0, there exist n0 and m0 such that the following are true,
and changing β by ε would result in a change in Iα,β :

αn0 +β−�αn0 +β�< ε

and
αm0 +β−�αm0 +β�> 1−ε

Thus Iα,β uniquely determines β when α is irrational.

If α is rational, the set of values of αx+β modulo 1 is finite for x≥ 0. Hence
β is determined only up to an interval with a length that depends on α. �
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According to Theorem 9.2, iα,β always determines α uniquely. A digital ray is
called rational if its slope is rational and irrational if its slope is irrational. For more
about the intercepts β, see Section 9.5.

Digital rays are (right) infinite words over {0,1}. We recall a few basic defini-
tions from the theory of words. A (finite) word defined on (or “over”) an alphabet
A is a finite sequence of elements of A. The length |u| of the word u = a1a2 . . .an

(where each ai ∈ A) is the number n of letters ai in u. The empty word ε has length
zero. The set of all words defined on A is denoted by A�.1 A word v is a factor of
a word u iff there exist words v1 and v2 such that u = v1vv2. v is a subword of u iff
v = a1a2 . . .an and there exist words v0,v1, . . . ,vn such that u= v0a1v1a2 . . .anvn.

Let X ⊂ A�. The set of all infinite words w = u0u1u2 . . . (where each ui ∈
X −{ε}) is denoted by Xω. If all of the uis are equal, for example to v, we write
w= vω. For all v ∈A� andw ∈Aω, v is a prefix andw a suffix of the concatenation vw.

An integerk≥ 1 is a period of a wordu= a1a2 . . .an ifai = ai+k (i= 1, . . . ,n−k).
The smallest period of u is called the period of u. An infinite word w ∈ Aω is called
periodic if it is of the form w = vω for some nonempty word v ∈A�. A word w ∈Aω

is eventually periodic if it is of the formw= uvω for some u∈A� and some nonempty
v ∈A�. A word w ∈Aω is called aperiodic if it is not eventually periodic.

The digitization of a ray γα,β in the grid point model is periodic if α is rational
and aperiodic if it is irrational:

Theorem 9.3 Rational digital rays are periodic, and irrational digital rays are
aperiodic.

A shortest word v such thatw= vω is called a basic segment ofw, and |v| is the period
of w. If α is an irreducible rational fraction, the length of the basic segment is the
denominator of α. For example, if α = 3/7, the basic segment may be 1010100 or
any of its cyclic permutations. A rational slope does not uniquely specify a basic
segment, but a rational slope α together with an intercept β uniquely specify it.

All rational DSLs that have the same slope α can be transformed into one
another by translation in the x-direction (i.e., they are all equivalent up to translation
[675]). This implies that the intercepts β do not influence the translation-invariant
properties of rational DSLs.

9.2 Supporting Lines

An alternative way of defining a digital ray is as the 4-border of the upper or lower
dichotomy of N

2 defined by a (real) ray. Let the following be true,

Uα,β = {(n,Un) : n≥ 0 ∧ Un = 
αn+β�}
Lα,β = {(n,Ln) : n≥ 0 ∧ Ln = �αn+β�}

1. A� was also used in the definition of dimension, but the context will always clarify the meaning.
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and let uα,β(n) = Un+1−Un and lα,β(n) = Ln+1−Ln. The chain codes uα,β and
lα,β are the upper digital ray and lower digital ray generated by γα,β . These upper
and lower digital rays are not the same as the grid-intersection digitization of lα,β ,
but they are also irreducible 8-arcs.

BecauseLα,β = Iα,β−0·5, any lower digital ray is also a digital ray and vice versa.
Ifαn+β is not an integer, thenUn =Ln +1. Otherwise,Un =Ln; the digital raysuα,β

and lα,β differ in this case, and γα,β has an integral point at n. If γα,β has no integral
points, then uα,β = iα,β−0·5 = lα,β . If γα,β has integral points and α is rational, there
exists β′ such that Uα,β = Iα,β′ . If γα,β has integral points and α is irrational, Uα,β

and Lα,β differ by subsequences of length 2 only.
The grid points of a rational ray are the integer solutions of a finite set of linear

equations with rational coefficients. Arithmetic geometry2 specifies n-dimensional
digital hyperplanes by pairs of linear Diophantine inequalities. In the 2D case, let a
and bbe relatively prime integers, letµ andω be integers, and let the following be true:

Da,b,µ,ω = {(i, j) ∈ Z
2 : µ≤ ai+ bj < µ+ω}

Da,b,µ,ω is called an arithmetic line with slope a/b, approximate intercept µ, and arith-
metic width ω [848].

Theorem 9.4 Any set of grid points Da,b,µ,max{|a|,|b|} is the set of grid points of a
DSL. Conversely, for any rational DSL, there exist a, b, and µ such that the set
of grid points of the given DSL is Da,b,µ,max{|a|,|b|}.

This theorem also implies that ω = max{|a|, |b|} defines an irreducible 8-arc.
DSLs are called naive lines in arithmetic geometry, and ω = |a|+ |b| defines a stan-
dard line. See Exercise 9.12 for characterizations of gaps in arithmetic lines. (See
Definition 7.13 for definitions of gaps, separation, and gap-freeness.) An arithmetic
line is gap-free (8-gap-free) iff it is 4-connected and 4-gap-free iff it is 8-connected.
A naive line is 8-connected and 4-separating in Z

2, and a standard line is 4-connected
and 8-separating in Z

2.
Because we are considering only lines with slope 0 ≤ a/(−b) ≤ 1, we have

0≤ a≤−b. For a naive line, we have ω=−b, and all the grid points inDa,b,µ,ω lie be-
tween or on two lines ax+by= µ and ax+by= µ−b−1 (i.e., y=αx+β and y=αx+
β− (1− 1

−b ) where α= a/− b and β = µ/b). (This proves Corollary 9.1; see p. 314.)
These lines are called supporting lines Da,b,µ,ω . (As we will see, supporting lines are
used in definitions of DSLs; they are called leaning lines in arithmetic geometry.)

Digital 4-rays are 4-arcs, where code 2 is a vertical increment:

i◦α,β(n) =
{

0 if In = In+1

02 if In = In+1−1

2. See also Chapter 11.
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FIGURE 9.3 Segments of lower and upper digital 4-rays that follow the boundaries
of the upper and lower dichotomies, which are linearly separated by a ray.

We can also define upper digital 4-rays u◦α,β(n) and lower digital 4-rays l◦α,β(n);
examples are shown in Figure 9.3. We still have i◦0,β = 000 . . . , but we now have
i◦1,β = 020202 . . . .

We can define a morphism that maps digital rays into digital 4-rays. A mor-
phism or substitution ϕ : A� → B� is a function such that ϕ(xy) = ϕ(x)ϕ(y) for all
x,y ∈ A�. ϕ is uniquely determined by its values for all of the letters in A. ϕ is
called nonerasing if it never maps a letter into the empty word. A nonerasing mor-
phism ϕ : A� → B� defines a function (also called a morphism) from Aω to Bω by
ϕ(a(0)a(1) . . .a(n) . . .) = ϕ(a(0))ϕ(a(1)) . . .ϕ(a(n)) . . . . Digital 4-rays can be defined
by the following morphism, which maps digital rays into digital 4-rays:

ϕ : 0 �→ 0
1 �→ 02

The theory of words studies morphisms on infinite words.
A chain code is a word over the alphabet {0, . . . ,7} (in our case, {0,1} or {0,2}).

Hence, digital rays and DSSs can be regarded as words. In terms of this interpretation,
we have the following:

Definition 9.3 A digital straight line segment (DSS for short) is a nonempty
factor of a digital ray. A digital 4-straight line segment (4-DSS for short) is a
nonempty factor of a digital 4-ray.

A DSS u connects two points p = (mp,np) and q = (mq,nq) of N 2 (mp < mq)
iff the geometric interpretation of u= u(1) · · ·u(mq−mp +1) defines a sequence of
horizontal and diagonal steps from p to q. Let u = u(1)u(2) · · ·u(n) be an 8-arc of
length n, and let G(u) = {p0,p1, . . . ,pn−1} be the assigned set of grid points such that
p0 = (0,0) and u connects p0 with pn−1 via a sequence of horizontal and diagonal
steps through p1, . . . ,pn−2. Theorem 9.4 implies the following:

Corollary 9.1 A word u∈ {0,1}� is a DSS iffG(u) lies between or on two parallel
lines with a distance apart (in the y direction) that is less than 1.
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There are four possible oriented diagonals in a grid square. The (oriented)
main diagonal for a pair of parallel lines is the one that maximizes the dot product
with the normal to the lines.3

Theorem 9.5 A finite 4-arc u ∈ {0,2}� is a 4-DSS iff G(u) lies on or between a
pair of parallel lines with a distance apart in the main diagonal direction that

is less than
√

2.

Proof Let µ be the mapping from {0,1,2}� into {0,1,2}� that is defined by re-
placing any factor 02 by 1. u ∈ {0,1,2}� is a 4-DSS iff µ(u) is a DSS.

Let γ1 and γ2 be parallel lines with a main diagonal distance that is less than√
2. Consider a finite 4-arc u ∈ {0,2}� such that G(u) lies between or on this

pair of parallel lines. If the slope α of these lines is either 0 or 1, u is either
0

n
or (02)n so that it is a 4-DSS. If 0 < α < 1, we shift the lower line (e.g., γ2)

parallel to itself so it moves closer to γ1 and becomes the line ζ. Then G(µ(u))
lies between or on γ1 and ζ, and the distance between them in the y-direction
is less than 1, so µ(u) is a DSS and u is a 4-DSS.

On the other hand, suppose u∈ {0,2}� is such that the minimum main diagonal
distance between a pair of parallel lines that have G(u) between or on them is

at least
√

2. Then u must contain at least one subword 22, so µ(u) is not a DSS
and u is not a 4-DSS. �

Two parallel lines at minimum diagonal distance that haveG(u) between or on
them are called a pair of supporting lines of u. A finite 4-arc is also a finite 8-arc, but
lying between or on a pair of parallel lines with a main diagonal distance that is less

than
√

2 does not imply that the 4-arc is a DSS because it may not be an irreducible
8-arc. A pair of supporting lines with respect to a set Da,b,c,b of grid points has
intercepts that differ by 0 < 1− 1

b < 1 so that it has a main diagonal distance of less

than
√

2.
The distance between a pair of parallel lines is measured in the direction of

the normal to the lines. Let M be a bounded set in the plane and θ a direction
(0 ≤ θ < 2π). The width wθ(M) is the minimum distance between a pair of parallel
lines such that θ is the direction of the normal to the lines, and M lies between or on
them. Let R2×2 be a square formed by four 2-cells.

Theorem 9.6 An edge-connected set M of 2-cells is cellularly straight iff there
exists a direction θ such that wθ(

⋃
M)≤ wθ(R2×2).

3. The main diagonal direction makes angle 135◦ with the positive x-axis if the digitized line has a slope in [0,1).
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9.3 Self-Similarity

Self-similarity properties of digital rays and DSSs have been studied in picture anal-
ysis. An initial formulation of necessary conditions for self-similarity of DSLs was
given by H. Freeman in [344]:

“To summarize, we thus have the following three specific properties which all
chains of straight lines must possess [342]:

(F1) at most two types of elements can be present, and these can differ only
by unity, modulo eight;

(F2) one of the two element values always occurs singly;

(F3) successive occurrences of the element occurring singly are as uniformly
spaced as possible.”

These properties (listed as (1), (2), and (3) in the historic source) were based on
heuristic insights and illustrated by examples. Note that property (F3) is not precisely
formulated.

9.3.1 The chord property

A. Rosenfeld in [883] gave a first formal characterization of DSLs, which led to a
better specification of property (F3).

Definition 9.4 A set M of grid points satisfies the chord property iff, for any
two distinct p and q in M and any point r on the (real) line segment pq, there
exists a grid point t ∈M such that L∞(r, t)≡max(|xr−xt|, |yr−yt|)< 1.

Theorem 9.7 A finite irreducible 8-arc u ∈ {0,1}� is a DSS iff G(u) satisfies the
chord property.

Proof First, we show that G(u) satisfies the chord property if u is a DSS (Theo-
rem 1 in [883]). Let p and q be points of G(u). The line segment pq intersects
the grid lines x = n that lie between p and q. Thus, for any point r = (x,y) of
pq, we have |n−x| ≤ 1

2
for some point (n,m) ∈G(u). It suffices to show that,

whenever pq crosses a line x= n, the point t= (n,m) of G(u) on that line lies
at vertical distance |y−m|< 1 above or below the crossing point r = (n,y).

Let u be a nonempty factor of a digitization of γα,β ; then neither p nor q
can be more than 1

2
vertically above γα,β or 1

2
or more vertically below γα,β .

Let r = (n,y) be ar ≥ 0 vertically above γα,β or br ≥ 0 vertically below γα,β . It
follows that 0 ≤ ar ≤ 1

2
or 0 ≤ br < 1

2
. If r is above t, γα,β intersects x = n at

vertical distance 0≤ at <
1
2

above (or at) t, and we have y−m≤ ar +at < 1. If
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r is below t, γα,β intersects x= n at vertical distance 0≤ bt ≤ 1
2

below (or at) t,

and we have m−y ≤ br + bt < 1.

Now we prove that u is a DSS if G(u) satisfies the chord property. To do this,
we will use the Transversal Theorem of L.A. Santaló (see Section 1.2.8).

Let the 8-arc u join the grid points (n,y0) and (n+m,ym) where m > 0 and
ym−y0 ≤m. If ym−y0 =m, the 8-arc is a diagonal line segment, and the chord
property implies that G(u) consists of grid points along this diagonal so that it
is a DSS.

Suppose without loss of generality that ym−y0 ≤m−1. Let Ti(0≤ i≤m) be
the set of grid points of G(u) on grid line x = i. The chord property implies
that Ti �= ∅ and that there are two integers li and ui such that Ti is the set of
all grid points (n+ i,y) where li ≤ y ≤ ui. Assign a (real) straight line segment
L(p) to any grid point p= (x,y), where the following is true:

L(p) = {(x,v) : y−0·5< v ≤ y+0·5}
Let Li be the union of the L(p)s assigned to the grid points of Ti:

Li = {(n+ i,v) : li−0·5< v ≤ ui +0·5}
Let F = {L0, . . . ,Lm}.
Clearly, L0, . . . ,Lm are parallel. Choose anyLi, Lj , andLk (0≤ i < j < k≤m),
and consider two grid points p ∈ Li and q ∈ Lk. The line segment pq intersects
the grid line x = j at a point r = (j,yr). By the chord property, there is a grid
point t = (xt,yt) ∈ G(u) such that L∞(r, t) < 1. Thus, t is also on x = j (i.e.,
xt = j). Let s be the midpoint of rt, and let ε = |yt − yr|/2. Let γ be the
straight line through s parallel to pq; then γ intersects x= i at xp±ε and x= k
at xq± ε. Because ε < 0·5, it follows that γ intersects L(p), L(t), and L(q), so
it intersects Li, Lj , and Lk. By the Transversal Theorem, it follows that there
exists a straight line γ that intersects all of the Li. It remains only to show that
γ generates all of the grid points in G(u) by grid-intersection digitization.

Each Ti contains a grid point pi such that γ intersects L(pi). We have p0 =
(n,y0) and pm = (n+m,ym). Let q0 and qm be the intersection points of γ
with L(p0) and L(pm) so that q0 = (n,y0 +λ) and qm = (n+m,ym +µ) where
−0·5 < λ,µ ≤ 0·5. The horizontal distance between q0 and qm is m, and the
vertical distance is |y0 +λ−ym−µ| ≤ |y0−ym|+ |λ−µ| ≤m−1+ |λ−µ|<m.
The line segment q0qm makes an angle smaller than 45

◦
with the horizontal

direction, so its grid-intersection digitization is specified by intersections with
the vertical grid lines x = n+ i, 0 ≤ i ≤m. The grid points produced by these
intersections are in G(u), because γ is a transversal of all of the Lis, and G(u)
contains only these grid points, because u is an irreducible 8-arc. �
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Note that infinitely many irreducible two-sided infinite 8-arcs satisfy the chord
property but are not digital straight lines (e.g., arcs defined by “sparse” occurrences
of 1s in 0

ω
).

Theorem 9.7 was used in [883] to derive the following necessary conditions on
the chain codes of DSSs. These conditions are stated in terms of the runs4 in the
chain code.

(R1) “The runs have at most two directions, differing by 45
◦
, and for one of these

directions the run length must be 1.

(R2) The runs can have only two lengths, which are consecutive integers.

(R3) One of the runs can occur only once at a time.

(R4) . . . , for the run length that occurs in runs, these runs can themselves have
only two lengths, which are consecutive integers; and so on.”

These properties, which were listed as 1), 2), 3) and 4) in the historic source, do not
provide sufficient conditions, but they provide a recursive formulation of (F3).

The chord property is equivalent to a compact chord property that uses the real
polygonal arc joining the points of the DSS rather than the real line segment joining
its endpoints and the metric L1 rather than L∞.

The property of evenness (“the slope must be the same everywhere”) of a DSS
is equivalent to the chord property. “Balance” of words (see Section 9.4) is related
to evenness.

9.3.2 Syntactic characterization

Let s = (s(i))i∈I (I ⊆ Z) be a finite or infinite word over N. A letter (in our case, a
digit) k is called singular in s iff the following are true:

• it appears in s; and

• for all i ∈ I such that i− 1 and i+ 1 are in I , if s(i) = k, then s(i− 1) �= k and
s(i+1) �= k.

k is nonsingular in s iff it appears in s and is not singular in s. Word s is reducible iff
s contains no singular letter or any factor of s that contains only nonsingular letters
is of finite length.

Let s be reducible, and let R(s) be the following:

(1) the length of s if s is finite and contains no singular letter;

(2) the word that results from s by replacing by their run lengths all factors
of nonsingular letters in s that are between two singular letters in s and
deleting all other letters in s; or

(3) the letter a if s= aω.

4. A run is a maximum-length factor an of a word.
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Recursive application of this reduction operation R produces a sequence of words
s0,s1, . . . where s0 = s and sn+1 =R(sn). The sequence u0,u1,u2 in Algorithm 9.1 is
an example.

Definition 9.5 The chain code u of a two-sided infinite 8-arc has the DSL
property iff u0,u1, . . . (where un+1 =R(un)) are reducible words and satisfy the
following two conditions:

(L1) There are at most two different letters a and b in un, and, if there are
two, then |a− b|= 1 (modulo 8 in the case of u0).

(L2) If there are two different letters in un, at least one of them is singular.

Using the DSL property, it is possible to define necessary and sufficient conditions
for chain codes of DSSs. Words of nonsingular letters at the ends of the code require
special attention. Let s be a finite word, and let l(s) and r(s) be the run lengths of
nonsingular letters to the left of the first singular letter and to the right of the last
singular letter in s.

Definition 9.6 A finite chain code u has the DSS property iff u= u0 satisfies
(L1) and (L2), and any sequence un = R(un−1) satisfies (L1) and (L2) as well
as the following two conditions:

(S1) If un contains only one letter a or two different letters a and a+1, then
l(un−1)≤ a+1 and r(un−1)≤ a+1.

(S2) Ifun contains two different letters a and a+1 and a is nonsingular inun,
thenun starts with a if l(un−1) = a+1 and ends with a if r(un−1) = a+1.

L.D. Wu [1137] proved that a chain code has the DSS property iff the corresponding
arc is irreducible and has the chord property. This concluded, in 1982, the process of
formalizing Freeman’s constraints (F1-F3) and provided a set of constraints on the
design of DSS recognition procedures:

Theorem 9.8 A finite 8-arc is a DSS iff its chain code satisfies the DSS property.

(We give no proof here; see the discussion of continued fractions in Section 9.3.3.)
A finite factor of a two-sided infinite chain code u satisfies the DSS property iff

exactly one straight line defines u by grid-intersection digitization. This implies the
following:

Theorem 9.9 A two-sided infinite 8-arc is a digital straight line iff its chain code
satisfies the DSL property.
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Wu’s proof of Theorem 9.8 is based on number theory and consists of many
case discussions. Researchers therefore tried to find shorter, “more elegant” proofs
of Wu’s theorem (e.g., proofs based on continued fractions).

9.3.3 Continued fractions

A rational number a1/a0 (a0 > a1 > 0) can be represented by a finite continued
fraction with integer coefficients qi > 0 (1≤ i < n) and qn > 1:

a1

a0
= [q1, q2, . . . , qn] =

1
q1 + 1

q2+ 1

. . .
1

qn−1+ 1
qn

The Euclidean algorithm can be used to derive such continued fractions:

a0

a1
= q1 +

a2

a1
with 0<

a2

a1
< 1

a1

a2
= q2 +

a3

a2
with 0<

a3

a2
< 1

..................

an−2

an−1
= qn−1 +

an

an−1
with 0<

an

an−1
< 1

an−1

an
= qn with an+1 = 0

Irrational numbers can be represented by infinite continued fractions.
The value of a continued fraction can be expressed in the following form, where

αn,βn,γn, δn depend on the qis:

a1

a0
= [q1, q2, . . . , qn] =

αnqn +βn

γnqn + δn

For n≥ 1, we have αnδn−βnγn = (−1)n and the following:

[q1, q2, . . . , qn, qn+1] =
αn+1qn+1 +βn+1

γn+1qn+1 + δn+1

=
[
q1, q2, . . . , qn−1, qn +

1
qn+1

]
=
αn

(
qn + 1

qn+1

)
+βn

γn

(
qn + 1

qn+1

)
+ δn

=
αn (qnqn+1 +1)+βnqn+1

γn (qnqn+1 +1)+ δnqn+1
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so that the following is true:

αn+1qn+1 +βn+1

γn+1qn+1 + δn+1
=

(αnqn +βn)qn+1 +αn

(γnqn + δn)qn+1 +γn
(9.1)

Continued fractions can be manipulated using a “concatenation” operator ⊗;
for simple fractions, this operator is defined by (a/b)⊗ (c/d) = (a+ b)/(c+ d). In
terms of ⊗, we have the following:

[q1, q2, . . . , qn] =
{

[q1, q2, . . . , qn−1 +1]⊗ (qn−1) [q1, q2, . . . , qn−1] if n is even
(qn−1) [q1, q2, . . . , qn−1]⊗ [q1, q2, . . . , qn−1 +1] if n is odd

This expression is called the splitting formula in [1107]. The splitting process can
continue until only atomic slopes [q] = 1/q remain.

An atomic slope [q] can be encoded by q− 1 0s and one 1. Alternating the
splitting formulas for odd and even values of n yields a balanced code sequence. For
example, 46/87 = [1,1,8,5] gives the following:

[1,1,8,5] = [1,1,9]⊗4 · [1,1,8]
= (8 · [1,1]⊗ [1,2])⊗4 · (7 · [1,1]⊗ [1,2])
= (8 · [2]⊗ ([2]⊗ [1]))⊗4 · (7 · [2]⊗ ([2]⊗ [1]))

This yields the following code sequence, which has length 87 and contains 46 1s:

(0101010101010101)(011)
((01010101010101)(011))
((01010101010101)(011))
((01010101010101)(011))
((01010101010101)(011))

The splitting formula allows us to express Freeman’s conjecture and Rosenfeld’s
recursive process in a very concise way by applying the splitting formula twice, first
for n and then for n−1:

[q1, q2, ..., qn] = (qn−1 · [q1, q2, ..., qn−2]⊗ [q1, q2, ..., qn−2 +1])
⊗(qn−1) · ((qn−1−1) · [q1, q2, ..., qn−2]⊗ [q1, q2, ..., qn−2 +1])

(This example assumes that n is even.) This approach handles only DSSs that are
factors of rational rays, but we will see in Corollary 9.2 that all DSSs have this property.

9.4 Periodicity

Self-similarity studies have a long history in number theory. The theory of words is a
relatively recent discipline that contains many interesting results about self-similarity,
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often with a focus on irrational straight rays. Rational digital rays are periodic infinite
words (Theorem 9.3), and irrational digital rays are aperiodic infinite words that are
studied under the name of Sturmian words.5 This section gives some basic definitions
and results as well as a few proofs.

Let w be a finite or infinite word over A = {0,1}. Let F (w) be the set of all
factors ofw andFn(w) the set of factors ofw of lengthn≥ 0. The complexity function
of w is as follows:

P (w,n) = card(Fn(w))

P (w,0) = 1 (the empty word is always a factor), and P (w,1) is the number of distinct
letters in w. For an infinite word w, we have P (w,n) ≤ P (w,n+ 1), because every
factor of length n can be extended to the right by at least one letter. Furthermore,
Fm+n(w)⊆ Fm(w)Fn(w), so P (w,m+n)≤ P (w,m)P (w,n).

Let w be an infinite periodic word with period k. Then P (w,n) ≤ k for all
n≥ 0 (i.e., the complexity of a periodic word is limited by its period). The following
theorem shows that the converse is also true and generalizes these statements to
eventually periodic words. (For example, 10

ω
is not periodic, but it is eventually

periodic, and it is not a rational digital ray.)

Theorem 9.10 The following statements about an infinite wordw are equivalent:

(i) w is eventually periodic;

(ii) P (w,n) = P (w,n+1) for some n≥ 0;

(iii) P (w,n)<n+k−1 for somen≥ 1, where k is the number of distinct letters
in w; and

(iv) P (w,n) is bounded.

Proof
(i)⇒ (iv): Let w = uvω. Then P (w,n)≤ |uv| for all n≥ 0.

(iv)⇒ (iii): Let P (w,n)< p for all n≥ 0. If k is the number of distinct letters
in w, we have P (w,1) = k < p, so p≥ k+1. Hence P (w,p−k+1)< p.

(iii)⇒ (ii): Suppose (ii) is not true, so P (w,m− 1) < P (w,m) for all m ≥ 0.
Then n+k−1 > P (w,n) ≥ P (w,1)+n−1 = k+n−1 for some n ≥ 1, which
is impossible.

(ii)⇒ (i): Consider the factor graphGn(w), which has node setFn(w) and edge
set E = {(bu,a,ua) : a,b ∈ A∧ bua ∈ Fn+1(w)}. At least one edge is incident
with each node, because every factor of length n is a prefix of a factor of length
n+ 1. Because P (w,n) = P (w,n+ 1), exactly one edge is incident with each

5. [748] introduced the term Sturmian trajectories after the mathematician C.F. Sturm (1803–1855), who is famous
for his rule for computing the roots of an algebraic equation. [748] defined Sturmian words as zeros of solutions
of linear homogeneous second-order differential equations.
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node; thus any strongly connected component of Gn(w) is a simple circuit.
Hence w defines an infinite path in Gn(w). Because Fn(w) is finite, the path
must eventually repeat and become a fixed circuit after some initial prefix; thus
w is eventually periodic. �

A sequence (vn)n≥0 of finite words over an alphabet A converges to an infinite
word w if every prefix of w is a prefix of all but a finite number of vns. For example,
the sequence 0

n
1

n
converges to 0ω.

Let f1 = 1, f2 = 0, and fn+1 = fnfn−1 for n ≥ 2. The sequence of lengths |fn|
is the Fibonacci sequence6 F1 = 1,F2 = 1,F3 = 2,F4 = 3,F5 = 5, . . . . The sequence
(fn)n≥0 converges to the Fibonacci word:

f = 0100101001001010010100100101001001 . . .

The Fibonacci word can also be defined by a morphism:

ϕ :
0 �→ 01

1 �→ 0

Indeed, f = ϕω(0).

Definition 9.7 A Sturmian word is an infinite word w = a1a2a3 . . . over {0,1}
that has exactly n+1 factors of length n for every n≥ 0.

Any suffix of a Sturmian word is Sturmian. The Fibonacci word is Sturmian; so is the
Thue-Morse word t= µω(0) = 0110100110010110 . . . , where the following are true:

µ : 0 �→ 01
1 �→ 10

According to Theorem 9.10, any aperiodic infinite word has complexityP (w,n)≥
n+1 for n≥ 0; hence Sturmian words have the least possible complexity. Because a
Sturmian word has P (w,1) = 2, it must be defined on a binary alphabet.

A right special factor of an infinite word w is a finite word u such that u0 and
u1 are factors of w. A word w is Sturmian iff it has exactly one right special factor of
each length n ≥ 0. (The empty word is the right special factor of length 0.) For the
Fibonacci word, 11 is not a factor, so 0 is the only right special factor of length 1; 000
and 011 are not factors, so 10 is the only factor of length 2; and so on.

The height h(w) of a word over {0,1} is the number of 1s in w. If v and w have
the same length, δ(v,w) = |h(v)−h(w)| is called their balance. A set X of words is
balanced iff |v| = |w| implies δ(v,w) ≤ 1 for all pairs of words v,w ∈X . An infinite
word w is balanced if its set of factors is balanced.

The slope of a nonempty word w is π(w) = h(w)/|w|. We have the following:

π(uv) =
|u|
|uv|π(u)+

|v|
|uv|π(v)

6. Standard notation as used in The Fibonacci Quarterly.
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It can be shown that an infinite wordw is balanced iff, for all nonempty factors u and
v of w, we have the following:

|π(u)−π(v)|< 1
|u| +

1
|v| (9.2)

This shows that the sequence of slopes of w is a Cauchy sequence. Thus a balanced
infinite word has a uniquely defined slope that is the limit of the slopes of its finite
prefixes. Let w be an infinite balanced word and let wn be the prefix of w of length
n ≥ 1. Then the sequence (π(wn))n≥1 converges as n→∞ . For example, for the
Fibonacci word f , we have h(fn) = Fn−2 and |fn| = Fn, and Fn−2/Fn converges to

π(f) = 1/τ 2 where τ = (1+
√

5)/2 is the golden ratio.
A digital ray is an infinite word that is periodic (aperiodic) iff it is the digitization

of a ray of rational (irrational) slope. In the theory of words, digital rays are called
mechanical words.

Theorem 9.11 (M. Morse and G.A. Hedlund, 1940) The digitization of a ray of
slope α is a balanced word of slope α.

Proof Let w be a lower digital ray. The height of a factor u = w(n) . . .w(n+
p− 1) is h(u) = �α(n+p)+β�−�αn+β�. Hence α · |u|− 1 < h(u) < α · |u|+
1 so that �α · |u|� ≤ h(u) ≤ 1 + �α · |u|�. Thus h(u) takes on only two consecu-
tive values when u ranges over factors of w of fixed length, so w is balanced.
Moreover, the following is true,

∣∣
∣∣
h(u)
|u| −α

∣∣
∣∣= |π(u)−α|< 1

|u|

so that π(u)→ α for |u| →∞. �

The inequality |π(u)−α|< 1/|u|provides a criterion for evaluating the accuracy
of a slope estimated from a finite DSS. Another method of evaluating the accuracy
of an estimated slope will be discussed at the end of Section 9.5.

Corollary 9.2 Any DSS is a factor of a rational digital ray.

Proof An interval in [0,1) of width 1/|u| that contains an irrational numberα also
contains rational numbers α′ that satisfy |π(u)−α′|< 1/|u|. �
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Finally, we state the following:

Theorem 9.12 (M. Morse and G.A. Hedlund, 1940) The following statements about
an infinite word w are equivalent:

(i) w is Sturmian;

(ii) w is balanced and aperiodic; and

(iii) w is an irrational digital ray.

Note that a balanced infinite word is not always a digital ray if its slope is rational. For
example, 01

ω
has slope 1, but it is not a digital ray. Only periodic infinite balanced

words are rational digital rays.

9.5 Number-Theoretic Properties

9.5.1 Counting segments and partitions

The following theorem is from the theory of words:

Theorem 9.13 The number of balanced words of length n is as follows,

1+
n∑

i=1

(n+1− i)φ(i)

where φ is Euler’s totient function.

It can be shown that a finite word u is balanced iff it is a factor of an irrational
digital ray. In accordance with Corollary 9.2, any finite balanced word is also a factor
of a rational digital ray (i.e., Theorem 9.13 gives the number of DSSs of length n
starting at the origin (0,0)). It is the set of segments u of lower digital rays defined
by 0≤ x≤ n, 0≤ α≤ 1, and 0≤ β < 1; the first grid point in G(u) is (0,0), and G(u)
contains n+1 grid points. The number of such DSSs that pass through the origin is
given as follows:

1
π2
·n3 + O (n2 · logn

)
(9.3)

The Euler function, φ, satisfies the following:

n∑

i=1

φ(i)≈ 3
π2
·n2 and

n∑

i=1

i ·φ(i)≈ 2
π2
·n3
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Hence the formula in Theorem 9.13 implies Equation 9.3.
The Farey series F (n) of order n ≥ 1 is the increasing sequence of irreducible

fractions between 0 and 1 with denominators that do not exceed n. For example,
F (5) is given as follows:

0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
1
1

The DSSs of length n that pass through the origin are in one-to-one correspondence
with F (n).

There is an obvious one-to-one correspondence between the set of DSSs that
start at (0,0) and the set of linear partitions of an n×n grid. (A linear partition of a
set S divides it into two parts that are contained in the two halfplanes bounded by
a line.) Evidently, any DSS that has n+1 points and begins at (0,0) defines a linear
partition of then×n grid, but there also exist linear partitions that do not correspond
to such DSSs.

The number of linear partitions of an m×n grid (m≤ n) is given as follows:

3
π2
·m2 ·n2 + O(m2 ·n · logn + m ·n2 · log logn) (9.4)

This shows how many different digital rays exist on an m×n grid. The asymptotic
formulas for the numbers of DSSs and linear partitions can be derived from formulas
for average values of number-theoretic functions.

9.5.2 Spirographs

L. Dorst and R. P. W. Duin developed in [278] a theory of spirographs that establishes
additional links between digital rays and number theory. Figure 9.4 (left) shows some
parallel shifts of a ray with slope α (0< α < 1) that have y-intercepts in the interval
[0,1). For any grid line x = n, there is exactly one grid point (n,yn) such that the
ray y = αx+βn passes through (n,yn) and intersects the y-axis in the interval [0,1).
Spirographs7 are diagrams that exhibit the distribution of these y-intercepts. As
shown in Figure 9.4 (right), the y-intercepts corresponding to rays that pass through
grid points (n,yn), n = 0,1,2, . . . , are represented by successive vertices of a (non-
simple) polygon inscribed in a circle of perimeter 1:

Definition 9.8 A spirograph S(α,n) is a set of n points marked on a circle
of unit perimeter. The points are the y-intercepts of rays with slope α that
intersect the grid lines x= 0,x= 1, . . . ,x= n−1 at grid point positions.

If α is rational, there are only finitely many such rays, thereby resulting in a
finite set of y-intercepts in [0,1) that repeat periodically. The signature of S(α,n) is
the order modulo n of the marked points on the circle. (If α is rational, y = αx+β
generates the same lower digital ray for all β in an interval; see Theorem 9.2.)

7. This was named after a children’s toy that is used for drawing curves.
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FIGURE 9.4 Left: grid points on grid lines x = 0,1, . . . ,4. Right: y-intercepts of the
rays through these grid points, mapped into a spirograph.

The distance Dα(i, j) between two points i, j ∈ S(α,n), where 0 ≤ i, j < n, is
the length of the anticlockwise arc from i to j:

Dα(i, j) = (i− j)α − �(i− j)α�
The smallest clockwise distance from 0 ∈ S(α,n) isDright = min{Dα(i,0) : i �= 0∧ i ∈
S(α,n)}. Let the following be the point at this minimum distance:

iright = min{k �= 0 : k ∈ S(α,n)∧Dα(k,0) =Dright}
Similarly, letDleft = min{Dα(0, i) : i �= 0∧i∈S(α,n)∧Dα(0, i) �= 0} and the following
be true:

ileft = max{k �= 0 : k ∈ S(α,n)∧Dα(0,k) =Dleft}
By definition, Dright = αiright−�αiright� and Dleft = αileft−�αileft�. Therefore, the
bounds on α that preserve the signature of the spirograph are as follows:

�αiright�
iright

≤ α < �αileft�
ileft

These bounds are the best rational approximations to α using fractions with denomi-
nators that do not exceed n−1. This can be proved from the fact that �αiright�/iright

and �αileft�/ileft are two successive fractions in the Farey series F (n−1).
For everyα (0≤α< 1) andn (n≥ 1), there is an interval of possible interceptsβ

(0≤ β < 1) such that the given lower straight line segment of length n is a digitization
of the ray αx+ β. The width of this interval defines the maximal possible error
Emax(α,n); see Figure 9.5. Emax(α,n) is the maximum arc length in the spirograph
S(α,n):

Theorem 9.14 Emax(α,n) =Dright +Dleft in the spirograph S(α,n+1).
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FIGURE 9.5 Left: the maximum error in β as a function of the estimated α value for
n= 6 [278]. Right: the maximum error in β is 1 for α= 0 and 0·5 for α= 0·5.

The formulaDright +Dleft = 
αileft�−�αiright�+α(iright−ileft) using the values from
S(α,n+1) provides a simple method of calculating the errors Emax(α,n). If α is a
fraction a/b in the Farey series F (n), then Emax(a/b,n) = 1/b.

9.6 Algorithms

Many efficient DSS recognition algorithms have been published. The computational
problem is as follows: the input is a sequence of chain codes i(0), i(1), . . . where i(k)∈
{0,1} and k ≥ 0. An offline DSS recognition algorithm decides whether a finite word
u ∈ {0,1}� is a DSS. An online DSS recognition algorithm reads the successive chain
codes i(0), i(1), . . . and determines the maximum k ≥ 0 such that i(0), i(1), . . . , i(k)
is a DSS but i(0), i(1), . . . , i(k), i(k+ 1) is not. A recognition algorithm has linear
run time behavior (is a linear algorithm) if it runs in O(n) time (i.e., it performs at
most O(|u|) computation steps for any finite input word u ∈ {0,1}�). Analogous
definitions can be given for 4-DSS recognition algorithms. An online algorithm is
linear if it uses on the average a constant number of operations for each input chain
code symbol.

9.6.1 Design paradigms

The decomposition of a 4- or 8-arc into a sequence of DSSs or 4-DSSs is a more gen-
eral computational problem that includes DSS or 4-DSS recognition as a subproblem.
Obviously a linear online DSS recognition algorithm supports a linear decomposition
algorithm, but linear offline algorithms allow only quadratic runtime behavior.

The design of a DSS recognition algorithm may be based on a particular char-
acterization of DSSs, such as the following:

(C1) the original definition of a DSS based on grid-intersection digitization;
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(C2) a characterization by pairs of supporting lines (e.g., (C2.1a) Theorem 9.4,
(C2.1b) Corollary 9.1, (C2.2) Theorem 9.5, (C2.3) Theorem 9.6);

(C3) the equivalence with the chord property (see Theorem 9.7); and

(C4) the DSS property (see Theorem 9.8).

Algorithms that use (C4) are often called linguistic techniques.

9.6.2 A linear online DSS recognition algorithm

We review in detail one of the first linear online DSS recognition algorithms, pub-
lished in 1982 in [223], which uses (C4).

Algorithm CHW1982a

The input sequence is u= i(0)i(1)i(2) . . . i(n), i(k) ∈A= {0,1, . . . ,7}, 0≤ k ≤ n. Let
u0 = u, and, if uk−1 �= ε (the empty word), let uk =R(uk−1) whereR is the reduction
operation used in Section 9.3 to define the DSL and DSS properties. Let l(k) and
r(k) be the run lengths of nonsingular letters to the left of the first singular letter in
uk or to the right of the last singular letter; see Definition 9.6. Let s(k) be the singular
letter in uk if there is one or−1 otherwise. Let n(k) be the second letter in uk if there
is one or−1 otherwise. Algorithm 9.1 shows an example. The input chain code u0 is
now represented by a syntactic code, which is as follows for the given example:

s n l r

0
1
2

∣∣
∣∣
∣∣

0 1 2 3
4 3 3 0
3 2 2 1

In general, the code consists of integers in four columns s, n, l, and r. The DSS
property (see Definition 9.6) imposes constraints on these integers so that the given

u0 = 11011101110111011110111011101111011101110
11110111011101110111101110111011110111

s(0) = 0, n(0) = 1, l(0) = 2, r(0) = 3
u1 = 33343343343334334

s(1) = 4, n(1) = 3, l(1) = 3, r(1) = 0
u2 = 2232

s(2) = 3, n(2) = 2, l(2) = 2, r(2) = 1
u3 = ε

ALGORITHM 9.1 Input example for algorithm CHW1982a [223].
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word u= i(0)i(1)i(2) . . . i(n) can be classified as being a DSS or not. Before starting
to read a word, initialize the values in columns s andn to−1 and the values in columns
l and r to 0. Suppose the syntactic code has been calculated for an input sequence
of length ≥ 0 and the next input chain code is d. Let N(k,a,b) be true iff |a− b|= 1
for k ≥ 1 and |a− b| (modulo 8) = 1 for k = 0. The algorithm uses tests that follow
straightforwardly from the DSS property:

T1(k,d) : n(k) =−1 ∧ s(k) =−1 ∧
[k > 0 → l(k−1)≤ d+1 ∧ r(k−1)≤ d+1]

T2(k,d) : n(k) �=−1 ∧ s(k) =−1 ∧ T2.1(k,d) ∧ T2.2(k,d)

T2.1(k,d) : d= n(k)

T2.2(k,d) : N(k,d,n(k)) ∧ [k > 0 →
{l(k−1)≤ n(k) ∨ l(k−1) = d ∧ l(k) �= 0} ∧
{r(k−1)≤ n(k) ∨ r(k−1) = d ∧ r(k) �= 0}]

T3(k,d) : d= s(k) ∧ r(k) = 0 ∧
l(k) = 1 ∧ s(k+1) =−1 ∧ n(k+1)≤ 1 ∧ [k > 0 →
l(k−1)≤ s(k) ∧ {r(k−1)≤ s(k) ∨ r(k−1) = n(k)}]

T4(k,d) : d= n(k) ∧ [s(k+1) =−1 → r(k)≤ n(k+1)] ∧
[s(k+1) �=−1 → r(k)+1≤ n(k+1) ∨

{r(k)+1 = s(k+1) ∧ r(k+1) �= 0}]
T5(k,d) : d= s(k) ∧ r(k) �= 0

The algorithm inserts new elements d into the code of Algorithm 9.1 as long as the
incoming chain code satisfies the DSS property.

Algorithm CHW1982a runs in linear time: |uk+1| ≤ 1/2 · |uk| for all k ≥ 0 and
any input DSS chain code. There is only one loop in the algorithm in the case in
which a new element needs to be added to one of the uks. Therefore its run time
t(n) for inputs of length n= |u0| is on the order of the following:

O (|u0|+ |u1|+ . . .+ |ulog n|) =O
(

log2 n∑

k=0

n

2k

)

=O (n)

It also follows that the number of relevant integers in the syntactic code is at most
O (logn), because the index m of the last nonempty word um satisfies m≤ log2n. A
stronger inequality is as follows:

n≥ (
1
2

+
1
4

√
2)(1+

√
2)m−2

For example,n= 2377 . . .5739 requires only reduced chain code wordsuk for k≤m=
9. Of course, representing a DSS by the endpoints of one of its possible preimages
is an even shorter representation.
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k = 0
1 if T1(k,d) go to 10

if T2(k,d) go to 20
if T3(k,d) go to 30
if T4(k,d) go to 40
if T5(k,d) go to 50
go to 100

10 n(k) = d, l(k) = 1, return “yes”
20 if T2.1(k,d) go to 21

if T2.2(k,d) go to 22
go to 100

21 l(k) = l(k)+1, return “yes”
22 s(k) = d, return “yes”
30 s(k) = n(k), n(k) = d, l(k) = 0, r(k) = 2,

return “yes”
40 r(k) = r(k)+1, return “yes”
50 d= r(k), r(k) = 0, k = k+1, go to 1

100 form= 0 until k−2 do r(m) = s(m+1)
if k �= 0 then r(k−1) = d,
return “no”

ALGORITHM 9.2 DSS recognition algorithm CHW1982a using syntactic codes.

9.6.3 Review of other algorithms

This section briefly reviews some other DSS recognition algorithms and details an
algorithm that segments an 8-arc into maximum-length DSSs.

Algorithm CHW1982b

Our second linear online algorithm, published in [223], uses the set of possible preim-
ages (see approach (C1)); as long as this set is nonempty, we can continue to read
chain code symbols.

Let the DSS u ∈ {0,1}� of length n connect grid point p0 = (0,0) with grid
point pn through grid points p1, . . . ,pn−1. Let −0·5≤ lx ≤ ux < n+0·5 be segments
of the grid lines x = 0,x = 1, . . . ,x = n, which are the unions of all intersections of
these grid lines, with possible straight line segment preimages of u with respect to
grid-intersection digitization, so that x−0·5≤ lx ≤ ux < x+0·5. Note that segment
(x, lx)(x,ux) may degenerate into a single point (i.e., lx = ux). Segment (x, lx)(x,ux)
must not contain the grid point px (0≤ x≤ n); see Figure 9.6. The sequence of points
(0,u0),(1,u1), . . . ,(n,un),(n, ln),(n−1, ln−1), . . . ,(0, l0) is called the digitization poly-
gon of u. Because (x, lx)(x,ux) may degenerate into a single point, the digitization
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FIGURE 9.6 Digitization polygon for u= 0100100.

polygon need not be simple. Note that the segments (0,u0)(n, ln) and (0, l0)(n,un)
are contained in the digitization polygon.

Letube extended by adding another chain codea∈{0,1}. The 8-arcua is a DSS
iff it has a digitization polygon. The linear online algorithm CHW1982b, described
in detail in [223] and also published in [222], uses the digitization polygon of u to
construct the polygon for ua if possible or returns “no” if there is no polygon for ua.

The digitization polygon of a DSS is the union of all of the line segments with
digitization that is the given DSS. Digitization polygons were also studied in [279].
Any DSS is uniquely characterized by a quadruple of integers: its length, its shortest
period, its lowest-terms slope, and its phase. From this quadruple, we can calculate
the digitization polygon.

Algorithm S1983

[988] gives a linguistic technique (see (C4)) for segmenting an 8-arc into DSSs. As in
CHW1982a, this algorithm involves only integer operations using the syntactic rules
specified in the DSS property. A parser checks the rules related to each layer k and
(eventually) activates a parser for the next layer k+ 1. Several parsers at different
layers may be active simultaneously. The maximum number of layers is bounded by
4·785 · log10n+1·672 and is taken on for digital rays of slopes a/b where a and b are
consecutive Fibonacci numbers [566]. The average number of layers is less than half
of this value [566].

[988] reports on experiments that compared polygons with vertices that are
the break points of segmented 8-arcs with the polygonal preimages of these 8-arcs
with respect to grid-intersection digitization. It describes an ambiguity in defining
maximum-length DSSs defined by these break points.

Algorithm AK1985

[20] has already been cited in connection with pairs of supporting lines for 8-arcs; it
gives a DSS recognition algorithm that follows approach (C2.1b). Let u ∈ {0,1}� be
an 8-arc of length n connecting grid point p0 = (0,0) with grid point pn through grid
points p1, . . . ,pn−1. Critical points are a minimal subset ofG(u) = {p0,p1, . . . ,pn} that
defines a pair of supporting lines that have a minimum distance in the y direction
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and that have G(u) between or on them. An 8-arc u is a DSS iff this distance is < 1;
see Corollary 9.1.

Without loss of generality, let u have four critical points q1, q2, r1, r2 ∈ G(u)
where q1q2 specify a nearest support below u and r1r2 a nearest support above u. Then
u is uniquely specified either by n and q1, q2 or by n and r1, r2. [20] describes a linear
offline algorithm for calculating the nearest support below and/or above u. A final
test (Corollary 9.1) decides whether or not u is a DSS. This algorithm has also been
used to define a linear offline algorithm for calculating the digitization polygon (see
algorithm CHW1982b). [20] also discusses the calculation of digitization polyhedra
for DSSs in 3D space.

Algorithm CHS1988a

[222] gives three linear online DSS recognition algorithms. The first is a slightly
improved version of algorithm CHW1982b. The second also uses approach (C1);
however, this time the definition of grid-intersection digitization is used to perform
DSS recognition by solving a separability problem for a monotonic polygon.

Let u∈ {0,1}� be an 8-arc of length n connecting grid point p0 = (0,0) with grid
point pn through grid points p1, . . . ,pn−1. Let pk = (k,Ik), k = 0,1, . . . ,n. The weak
digitization polygon of u is defined by vertices (0, I0 + 0·5),(1, I1 + 0·5), . . . ,(n,In
+0·5),(n,In − 0·5),(n− 1, In−1 − 0·5), . . . ,(0, I0 − 0·5). This polygon is monotonic
in the x direction. The separability problem is as follows: u is a DSS iff the up-
per polygonal chain (0, I0 +0·5),(1, I1 +0·5), . . . ,(n,In +0·5) of its weak digitization
polygon can be separated from its lower polygonal chain (n,In−0·5),(n−1, In−1−
0·5), . . . ,(0, I0−0·5) by a straight line that does not intersect either polygonal chain.
[222] gives a linear online algorithm for solving this separability problem forua based
on a solution for u. The separability problem can also be stated as the problem of
determining the visibility of (0, I0−0·5)(0, I0 +0·5) from (n,In−0·5)(n,In +0·5) or
vice versa.

Algorithm CHS1988b

The third linear online DSS recognition algorithm in [222] uses (C2.1b). It is similar
to (but independent of) the linear offline algorithm AK1985. It uses the critical
points calculated for u to calculate critical points for ua if possible and returns “no”
otherwise. The algorithm is quite short and allows a quick implementation. [222] also
contains a geometric analysis of possible and impossible locations of critical points.
If a critical point of u is cancelled in an extended uv, it cannot become a critical point
in extensions of uv.

Algorithm SD1991

[1007] discusses a linear offline DSS recognition algorithm that uses the linguistic
approach (C4). It begins with Wu’s linear offline algorithm [1137] and corrects the
flaw described in [454].
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Algorithm DR1995

[256] describes a linear online DSS recognition algorithm that uses the (C2.1a) ap-
proach; the naive line in [256] is the same as a DSL (see the comment following
Theorem 9.4). The algorithm is based on updating two linear Diophantine inequal-
ities, which amount to a test of whether G(u) is in a strip (see algorithm K1990) of
width max{|a|, |b|}. For details of this algorithm, see Chapter 11, where it is used for
3D DSS recognition.

9.6.4 A linear online 4-DSS algorithm

[592] discusses the recognition of 4-DSSs on the frontier of a region in a 2D incidence
grid using approach (C2.3). Because this algorithm is one of the simplest and most
efficient linear online 4-DSS recognition algorithms, we will give it in full detail. It
is based on the calculation of a narrowest strip defined by the nearest support below
and above (see Theorem 9.5). It resembles the linear offline algorithm AK1985 and
the linear online algorithm CHS1988b for 8-arcs. For the notation, see Figure 9.7;
for examples, see Figure 9.6.4.

Algorithm K1990

This algorithm follows a digital 4-curve and extends a 4-DSS as long as it has at most
two directions and all of its grid points lie between or on a pair of parallel lines that
have a main diagonal distance of less than

√
2. On the parallel line to the left of

the digital curve, we define a negative base between the grid points pN =StartN and
qN =EndN, and, on the parallel line to the right of the digital curve, we define a positive
base between the grid points pP =StartP and qP =EndP.

x

y
StartP StartN EndN

EndP

 4-curve

Negative base

Positive base

4-DSS

Current grid point

FIGURE 9.7 [592] Notation for algorithm K1990.
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A sequence of grid points (x,y) on the digital 4-curve is a 4-DSS iff the following
is true,

0≤ bx−ay+ c≤ |a|+ |b|−1

where (a,b)T is a vector v parallel to the negative (or positive) base of the 4-DSS
that has relatively prime integer coordinates and c is an integer (constant for the
4-DSS) such that c = ay− bx for any grid point (x,y) on the negative base. Let
h(x,y) = bx− ay+ c, and suppose the inequalities are true for n− 1 accepted grid
points of the 4-DSS. When a new 4-DSS is initialized, let the first step be from
p= (x1,y1) to the 4-adjacent q= (x2,y2); let pN := qP := p, qN := pP := q, a := x2−x1,
b := y2− y1, and note the direction of the step from p to q. Whenever a new step is
not in one of the (at most two) directions in the current 4-DSS, we start a new DSS.
When there has been only one direction so far, we continue the current DSS. If there
have been two directions, we consider the cases shown in Algorithm 9.3.

Note that in case (iii), we have a new vector v that defines new values a, b,
and c. In cases (i) and (ii), we have to move either qN or qP forward into position
rn. Figure 9.8 illustrates a clockwise and an anticlockwise traversal of the frontier of
a digital region that produce different segmentations into maximum-length 4-DSSs.

(i) h(xn,yn) = 0: (xn,yn) is on the negative base, and the n vertices form a
4-DSS;

(ii) h(xn,yn) = |a|+ |b|−1: (xn,yn) is on the positive base, and the n vertices
form a 4-DSS;

(iii) h(xn,yn) =−1 orh(xn,yn) = |a|+ |b|: then vertices form a 4-DSS, because
the new grid point rn is still within the distance limits from the points
between the two supporting lines but the values a, b, and c need to be
updated:

if h(xn,yn) =−1 then

begin

qN := rn; pP := qP ; v := rn−pN ;
end

if h(xn,yn) = |a|+ |b| then

begin

qP := rn; pN := qN ; v := rn−pP ;
end

(iv) otherwise, the n vertices do not form a 4-DSS; stop at the previous vertex
rn−1, and initialize a new 4-DSS.

ALGORITHM 9.3 Cases in algorithm K1990.
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End vertex of a 4-DSS

FIGURE 9.8 Examples of algorithm K1990.

9.7 Exercises

1. Segment the infinite word w = 0
1
10

2
10

3
. . .0

n
10

n+1
. . . into a sequence of con-

secutive DSSs of maximum lengths.

2. Consider the “spiral” in Z
2 that starts at the origin o= (0,0) and is represented

by the infinite chain code w = 0
1
1

2
3

4
. . .nn+1 . . . = 0112223333 . . . . Let un =

0
1
1

2
3

4
. . .nn+1 be a prefix of w that defines a path from o to pn. Characterize

the asymptotic growth of the Euclidean distance de(o,pn). Is this growth linear,
quadratic, polynomial of order m, or exponential?

3. Prove Equation 9.2 for infinite words w.

4. Let F (iα,β) be the set of all factors of the DSL iα,β . Prove that F (iα,β) = F (iα,0)
for any irrational α.

5. Let iα,β1
and iα,β2

be DSLs with the same rational slope α. Prove that there
exists an m ∈ N such that iα,β1

(n) = iα,β2
(n+m) for all n ∈ Z.

6. Let G be the set of grid points of a DSS, and let C(G) be the Euclidean convex
hull ofG (see Chapter 13). Prove that the points ofG are the only grid points in
C(G).

7. Two DSSs are called parallel (perpendicular) iff they are grid-intersection digiti-
zations of parallel (perpendicular) straight line segments. Show that there exists
a simply connected 4-region G that is not the set of grid points contained in a
rectangle but with a 4-border that consists of two mutually perpendicular pairs
of parallel DSSs.
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8. Let Um(p) = {q ∈ Z
2 : d8(q,p)≤m} wherem≥ 0. We say that an 8-arc ρ has the

skeleton property iff, for any distinct p and q in G(ρ) and any point r on the (real)
line segment pq, there exists a grid point t ∈ G(ρ) such that max{d8 (r,s) : s ∈
Um(t)}<m+1 . Prove that an 8-arc has the chord property iff it has the skeleton
property.

9. LetGp,q be the set of all grid points that are on DSSs that connect pwith q. Show
that Gp,q is an 8-region and that the 4-border of Gp,q can be segmented into at
most two DSSs.

10. Algorithms CHW1982a and K1990 both have O(n) run time complexity (say
f(n) = an+ b with a,b > 0) on DSSs of length n (nL ≤ n≤ nU ). Estimate a and
b for each algorithm.

11. Give an example of a simple 8-curve and an initial point such that the numbers
of DSSs in a segmentation of the curve into maximum-length DSSs are different
for a clockwise and a counterclockwise traversal of the curve.

12. Let Da,b,µ,ω = {(i, j) ∈ Z
2 : µ ≤ ai+ bj < µ+ω} be an arithmetic line, where a

and b are relatively prime integers such that 0≤ a≤ b and µ and ω are integers.
Prove the following:

(i) D is 8-disconnected (i.e., D has 4-gaps; see Definition 7.13 if ω < b).

(ii) D is 8-connected and has 8-gaps if b≤ ω < a+ b.

(iii) D is 4-connected and gap-free if a+ b≤ ω.

9.8 Commented Bibliography

The computer representation of lines and curves has been an active subject of re-
search for nearly half a century [121, 342, 664, 883]. Related work even earlier on the
theory of words [748] (specifically on mechanical or Sturmian words) remained un-
noticed in the pattern recognition community. The material on the theory of words
cited in this chapter follows [667, 668].

Theorem 9.1 is from [883]. For Theorem 9.2, see [140]. It has been known since
[137] that grid-intersection digitization of rays γα,β produces periodic digital rays ifα
is rational and aperiodic digital rays if it is irrational (Theorem 9.3). An algorithm for
“symmetric grid-intersection digitization” that does not depend on the clockwise or
counterclockwise orientation of the curve is given in [1052]. [137] gives an algorithm
for calculating the basic segment of a rational digital ray for β = 0. [1137] gives an
algorithm for calculating the basic segment of such a ray using α and β as inputs.

The grid points of a rational ray are the integer solutions of a finite set of linear
equations with rational coefficients [101]. This property was of basic importance for
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the establishment of arithmetic geometry [332, 848]. Theorem 9.4 and Exercise 12
are from [848].

Corollary 9.1 was proved in [30] using the chord property of Theorem 9.7; see
also [20, 222].

[140, 312, 592] used digital 4-rays instead of 8-rays. [312] introduced digital rays
in the grid cell model; sequences of bordering 1-cells define 4-rays. Digital 4-rays
can also be generated by global mappings defined on digital 8-rays. The geometric
characterization of 4-DSSs is discussed in [592] based on results in [20] about the
“nearest support below or above” of a DSS.

Theorem 9.5 is an unproved statement in [592]. For Theorem 9.6, see [312].
An early algorithm for generating a DSS that connects two arbitrary grid points

p and q was published in [843]. [137] proposed grammars for chain code generation
of rational digital rays based on Freeman’s criteria (F1), (F2), and (F3).

Theorem 9.7 was proved in [883]. The proof given in Section 9.3.1 that u is a
DSS ifG(u) satisfies the chord property is from [864]. Alternative proofs of some of
the results in [883] (at most two run lengths that are successive integers and one of
which occurs only as singletons) are given in [348]. The compact chord property is
discussed in [978]. A variant of the chord property for the outer Jordan digitization of
a straight line segment was given in [867]. The chord property and its generalization
to a chordal triangle property for Z

3 are discussed in [866]. The property of evenness
is studied in [454]. In [456], it is proved that the absence of runs that differ by more
than 1 is equivalent to the chord property. [454] calls nonbalanced words uneven and
proves that an infinite 8-arc has the chord property iff it has no uneven finite factors.

[528] gives three necessary and sufficient conditions (detailed definitions omit-
ted here) for a digital arc to be a DSS: (i) its total absolute curvature is 0; (ii) its
width in some direction is 0; and (iii) its length in some direction is less than half of
the perimeter of its convex hull.

It has also been proved that point sequences generated by (a version of) Brons’
parallel algorithm have the chord property [30, 31]. The formal language L of DSSs
is context-sensitive; see [316] and later publications [802, 931, 1138]. This implies
that linear-bounded or cellular automata can recognize DSSs using “string rewriting
rules.” A result in the theory of words [288] says that the complement {0,1}� \L of
the set of all DSSs is a context-free language.

Definition 9.5 is a precise formulation of criteria (F1–F3); it is used in [451]
to define a DSS algorithm. The given formulation follows [449]. Definition 9.6 and
Theorem 9.9 are also from [449].

[1136] does not contain the important algorithm published in [1137]. Regard-
ing Theorem 9.8, [1137] does not contain a theorem but only statements about an
algorithm specified by a flow chart. However, it is easily seen that this algorithm is
actually an implementation of the DSS property as described above, so [1137] actu-
ally contains a proof of Theorem 9.8, including the generation of straight lines that
have rational or irrational slopes. [1137] also considers the case of an infinite code
sequence and shows that any finite factor of a two-sided infinite chain code c has the
DSS property iff exactly one straight line with slope α and intercept β defines c by
grid-intersection digitization.
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Material for a concise proof of Wu’s theorem based on properties of Farey
series was published in [278] in the form of an algorithm.8 Proofs of Wu’s theorem
based on continued fractions (see Section 9.3.3) were published in 1991 in [140, 1105];
see also [1107]. The use of continued fractions to model digital rays was discussed
in [137]. Related results in number theory [464] have been useful in these studies.
We reviewed related definitions from number theory and reported results given by
K. Voss in [1107].

For the theory of words, see [667, 668]. The definition of “Sturmian words”
follows [668]. Some authors use the name “Sturmian words” for lower DSLs; see,
for example, [74]. The proof of Theorem 9.10 (from [219]) is a citation of the proof
of Theorem 1.3.13 in [668] as given by J. Berstel and P. Séébold. Theorems 9.11 and
9.12 are from [748]. The proof of Theorem 9.11 is a citation of the proof of Lemma
2.1.14 in [668] as given by J. Berstel and P. Séébold. Periodicity studies of digital rays
can also be based on signal-theoretic (Fourier transform) methods (see [635]); this
allows characterization of approximate periodicity.

Theorem 9.13 is from [728]. Asymptotic estimates of the number of DSSs of
length n are given in [73]. [74] gives another proof of Theorem 9.13 and also an
algorithm for random generation of lower DSSs of length n. Equation 3 is from
[585]. [656] contains earlier related work. [653] uses the author’s results on the
number of DSSs in an n×n grid to show that piecewise DSS coding of digital curves
requires O(n4) table entries.

Suggestions about using Farey series to model digitized lines were made in
[137, 274, 332, 738, 931]. In [931], it is shown that DSSs of length n through the
origin are in one-to-one correspondence with the nth Farey series. The number
of linear partitions of an m×n orthogonal grid is considered in [4] (Equation 4).
Theorem 9.14 is from [279]. See [1099] for a more recent discussion about Farey
numbers for characterizing DSLs.

Linear offline algorithms for DSS recognition based on the DSS property (see
Definition 9.6) were published in 1981 in [451] and in 1982 in [1137].9 A linear offline
algorithm for cellular straight segment recognition based on convex hull construction
is briefly sketched in [517, 509]. In [516], it is shown that a digital set is digitally convex
iff the border digital arcs between the vertices of its convex hull are DSSs. A finite set
of lattice points that lie between two lines at unit min (horizontal, vertical) distance is
a DSS. A digital arc is a DSS iff it is convex. Convexity will be treated in Chapter 13.

The extended abstract [515] discusses digital arcs and digital convexity: a digital
arc is a DSS iff it has the chord property; a digital set is digitally convex iff the convex
hull of its set of corner points contains no corner point of its complement; and a
digital arc is a DSS iff it is digitally convex (this is proved for several definitions of
digitization in [516]). These conditions can be checked in linear offline time using run
length coding. Algorithms in [516] deal with determining whether a digital region is
a digital convex polygon.

8. The DSL property is called “linearity conditions” in [278]. See also our discussion of [278] in Section 9.5.

9. [454] discusses a flaw in Wu’s algorithm.



340 Chapter 9 2D Straightness

Two linear online algorithms for DSS recognition were published in 1982 by
E. Creutzburg, A. Hübler, and V. Wedler [223]; one of them is an online version
of the offline algorithm published in [451]. For an early version of a linguistic DSS
recognition algorithm, see [931]. (It was not based on the correct DSS property,
which became known later.)

The general problem of decomposing a 4- or 8-arc into a sequence of 4-DSSs
or DSSs, which includes 4-DSS or DSS recognition as a subproblem, is discussed in,
among others, [256, 542, 592, 1007].

Many DSS recognition algorithms have not been reviewed here due to space
limitations (e.g., [175, 341, 601, 650, 654, 655, 912, 990, 1155]). The original source
of algorithm K1990 is [592]; see also [542, 593] for discussions of this algorithm. A
method of segmentation into a minimum number of DSSs in linear time based on
calculating a tangential representation is given in [324]. Segmentation into “fuzzy
DSSs” (defined using arithmetic geometry) is discussed in [254]. Scattering of points
away from a “true” DSS is considered in [159].

Section 10.3 will describe performance evaluations of a few DSS recognition
algorithms. Still lacking is a comprehensive and comparative evaluation of such
algorithms. A statistic analysis of empiric time complexities would also be of interest.
The random DSS generation algorithm of [74] could be used to create input data.

The segmentation of an 8-curve into maximum-length DSSs (see [223]) depends
on the starting point and orientation of the traversal of the curve. It would be of
interest to analyze the possible variation in such segmentations.

Different adjacency definitions may be worth studying in greater detail in con-
nection with DSS algorithms; see, for example, [699] about digitizations in a 16-
neighborhood. Straightness in 3D or higher-dimensional digital spaces would also
be worth studying. (See, for example, [1028]: a set of grid points is an n-dimensional
DSS iff n− 1 of its projections onto the coordinate planes are 2D DSSs.) Finally,
straightness can be discussed in multivalued digital pictures. (In [529], positional er-
rors are estimated for straight edges between regions that have given constant values
as a function of the size of the picture and its number of values.)

Exercises 4 and 5 are from [675]. For Exercise 6, see [516]. Exercise 7 is from
[599]. Parallel DSSs are studied in [812]. Exercise 8 is from [979], and Exercise 9 from
[811]. For other references about digitized straight lines, see [174, 280, 382, 722].



C H A P T E R 10

2D Arc Length; Curvature
and Corners

This chapter discusses ways of estimating the length or curvature of a 2D digital
arc or curve using geometric constructions such as local or global polygonal
approximations. We evaluate these methods in terms of theoretic criteria such
as multigrid convergence as well as by experimental comparisons. Digitization
and arc length are also defined for 3D curves in the first section of this chapter;
for further discussion of 3D curves, see Chapter 11.

10.1 The Length of a Digital Curve

This section discusses methods of estimating the length of a 2D digital arc or curve.
These methods can also be used to measure the perimeter of a simply connected
region.

We first define curve digitization and the length of a digital curve for both 2D
and 3D curves.

In this section, Z
2
h and Z

3
h are grids (in the grid point model), with grid constant

0 < θ ≤ 1 and grid resolution h = 1/θ (see Section 2.1.2). Z
2
h consists of grid points

with coordinates that are (θ · i,θ · j) where i, j ∈ Z, and Z
3
h consists of grid points with

coordinates that are (θ · i,θ · j,θ ·k) where i, j,k ∈ Z.

10.1.1 Curve digitizations

The topologic frontier of a simply connected compact set S in the Euclidean plane
is a simple curve γ : [0,1]→ R

2. We assume that γ is rectifiable. In a grid, γ and S
are represented in digitized form. We are interested in estimating the length and

341
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curvature of γ from its digital representation. In accordance with Definition 2.10, let
digh(γ) be a digitization of γ in Z

2
h. Three possible digitizations of γ are as follows:

(i) a cyclic 4-path ρh,4(γ) or 8-path ρh,8(γ) of grid points derived from grid-
intersection digitization of γ in Z

2
h;

(ii) a cyclic 4- or 8-path of vertices of 2-cells on the frontier of the Gauss digiti-
zation Gh(S) of S; and

(iii) the closed difference set (in E
2) between the outer and inner Jordan digitiza-

tions A= J+
h (S) and B = J−h (S) (i.e., A\B◦ = (A\B)•).

These digitizations define 2D digital curves in either the grid point or grid cell model.
Option (iii) is, in general, the same as the outer Jordan digitization of γ (e.g., if γ
does not follow any grid edge).

The h-frontier ϑh(S) = ϑ(Gh(S)) of S may consist of several nonconnected
curves, even if S is convex; see Figure 10.1. Figure 10.1 also shows how this situation
can be resolved; if h is sufficiently large, the dark shaded rectangle in Figure 10.1
provides a connection between the components. However, situations in which com-
ponents cannot be connected for any grid resolution can arise at a vertex of a polygon
that has a small interior angle 0 < η << π/2 (see Figure 10.2). The vertex of the

FIGURE 10.1 A simple polygon S for which Gh(S) splits into two components. The
dark shaded rectangle shows how the components can be reconnected if a higher
grid resolution is used.

FIGURE 10.2 A DSS segment that does not continue to the vertex of an angle. The
angular sector contains a ray with slope 1/5 [560].
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angular sector (assumed here to be a grid point in Z
2) cannot be connected with the

other points in Gh(S) (shown as filled dots) by any 8-path. In this example, there
is a ray with rational slope 1/5 “inside” the sector. Any grid resolution 5nh (n≥ 1)
leads to the same situation.

S is calledh-compact iff there is anh0 > 0 such thatϑh(S) is a single (connected)
curve for any h≥ h0. When we deal with Gauss digitizations, we may sometimes have
to require h-compactness.

In 3D, we will consider two possible digitizations of an arc or curveγ : [0,1]→R
3:

(i) a (cyclic) α-path ρh,α(γ) of grid points (α ∈ {6,18,26}) derived from
grid-intersection digitization of γ in Z

3
h; and

(ii) the outer Jordan digitization of γ.

If γ does not pass through any 1-cells, its outer Jordan digitization is a 2-connected
sequence of voxels.

In either 2D or 3D, the input can be given as a sequence of pixels or voxels in
an adjacency grid and can be encoded by a chain code i(0), i(1), . . . , where i(k)∈A=
{0, . . . ,7} in 2D and i(k) ∈A= {0, . . . ,26} in 3D (k ≥ 0).

10.1.2 Local and global estimation

Arc length estimates can be based on local metrics such as weighted or chamfer
distances; see the end of Section 3.2.3. For example, isothetic steps in the 2D grid
can be weighted by θ and diagonal steps by

√
2 · θ, or we can use weights θ,

√
2 · θ,

and
√

3 · θ in the 3D grid. An advantage of such estimates is that they have linear
online algorithms. The same is true for local curvature estimates, which take only
fixed numbers of neighboring pixels or voxels into account.

A local estimator makes use of a polygonization of the digital arc or curve
obtained by connecting successive grid points or grid vertices in a neighborhood of
constant size. Global estimators, on the other hand, do not use fixed neighborhoods.
(“Local” and “global” are formally defined in Section 8.4.3.) They may be based
on maximum-length digital straight segments (DSSs), on minimum-length polygons
(MLPs), or on approximations of normals or tangents.

10.1.3 DSS-based estimation

A DSS segmentation of an α-path ρ consists of DSSs of maximum length that define
a polygonization of ρ; see Figure 10.3 (left) for a 2D example. The DSSs of the
polygon are of potentially unlimited length. The sum of the lengths of the DSSs
defines a DSS-based length estimator. (No weights are needed; the lengths of the
DSSs are the Euclidean lengths of the corresponding line segments.) This length may
depend on the starting point and on whether ρ consists of grid points or of vertices of
grid cells.
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Simple curve (frontier of S )

4-DSS MLP

Vertex of 2-cell
(also 4-DSS endpoint)

Gh(S ) J h(S ) + J h(S ) –

FIGURE 10.3 Left: segmentation of a 4-path into a sequence of maximum-length
4-DSSs. Right: MLP between two polygonal frontiers [555].

A DSS centered at a pixel or voxel p of ρ is also a global approximation of a tan-
gential line segment1 to ρ and can be used in the estimation of the curvature of ρ at p.

10.1.4 MLP-based estimation

A second class of global arc length estimators are MLP-based; see Figure 10.3 (right)
for a 2D example. In 2D, an MLP is a minimum-length polygon that circumscribes
the inner frontier of S and is in the interior of its outer frontier. As we saw in
Section 1.2.9, the 2D MLP is the convex hull of the inner frontier relative to the
outer frontier and is uniquely defined.

The intrinsic distance (see Section 3.2.4) between two points in a simple polygon
is the length of a shortest arc that connects the points and is contained in the polygon.
It is not hard to see that this shortest arc is polygonal and that the polygon is a metric
space under intrinsic distance. The intrinsic diameter of the polygon is the maximum
intrinsic distance between any two of its points. It is not hard to see that this diameter
is the intrinsic distance between two vertices of the polygon. Analogous definitions
can be given for a simple polyhedron.

1. ρ is assumed to be a digitization of a smooth arc γ; the tangential line segment at a point on γ is approximated
by a DSS that is a subset of a digitized supporting line of a subsequence of ρ.
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LetMθ be the union of the cells in a simple 1-curve in [C2,≤] (see Section 7.2.2).
ϑMθ can be partitioned into two curves γ1 and γ2 that are the frontiers of two isothetic
polygons P1 and P2 such that P1 ⊂ P ◦2 . The length of Mθ is defined as the length of
the minimum-length curve in Mθ that encircles γ1 (see Figure 10.4, left). Similarly,
let Mθ be the union of all of the cells in a simple 1-arc in [C2,≤]. The length of Mθ is
defined as its intrinsic diameter (see Figure 10.4, right). It is not hard to prove that
Mθ is a DSS iff its intrinsic diameter is defined by a straight line segment.

Similarly, let Mθ ⊂ R
3 be the union of all of the cells in a simple 2-arc or

2-curve in [C3,≤]. If Mθ is a simple 2-curve, its length is the length of a minimum-
length curve that is contained in Mθ and is not contractible into a single point in Mθ

(see Figure 10.5, left). If Mθ is a simple 2-arc, its length is its intrinsic dia-
meter (see Figure 10.5, right), and Mθ is a DSS iff its intrinsic diameter is defined
by a straight line segment. Mθ is called planar iff the centers of all of its cells are
coplanar. It can be shown that the intrinsic diameter of a nonplanar simple 2-arc is
defined by a unique polygonal arc. For a givenMθ, these MLP-based length estimates
are uniquely defined, but they may depend on the value of θ.

FIGURE 10.4 The length of a simple 1-curve (left) and of a simple 1-arc (right) in the
2D grid cell model [1005].

FIGURE 10.5 The length of a simple 2-curve (left) and of a simple 2-arc (right) in the
3D grid cell model [1005].
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n1 n0
n2

FIGURE 10.6 An 8-path in the grid cell model, and three normals at a cell.

10.1.5 Tangent-based estimation

Arc length estimates can also be based on estimated tangents; see Equations 8.1 and
8.18 for the 2D and 3D cases. Figure 10.6 shows an example. An 8-path is traced along,
for example, the “upper” alternating sequence of 0-cells and 1-cells of its grid cell
representation. For each 1-cell, we estimate normals n1 and n2 at its endpoint 0-cells,
using a DSS or MLP method to find straight line approximations to the 8-path on both
sides of the 1-cell. Let n0 be the unit normal to the 1-cell, and let n = (n1 + n2)/2.
We use 〈n,n0〉 = n · n0 as an approximation to ‖(ẋ, ẏ)‖. Evidently, such a tangent-
based length estimate depends on how the normals are estimated and combined. The
normals can also be used to estimate the curvature of the path at the 1-cell.

In this chapter, we will study estimates of the arc lengths or curvatures of 2D
digital arcs or curves, particularly with respect to their multigrid convergence; for
3D curves, see Chapter 11. Statistic properties of digital arcs and curves can also be
studied; see Section 1.2.11.

10.2 Definitions of 2D Arc Length Estimators

In this section, we define the methods of 2D arc length estimation that will be eval-
uated in the next section.

10.2.1 Local estimators

Local estimations were historically the first ones used for arc length estimation in pic-
ture analysis. These estimators were applied to digital curves defined by digitization
methods (i) or (ii) in Section 10.1.1.

Local estimators are based on shortest paths in a weighted adjacency grid of
pixels. The weights are chosen to approximate Euclidean distance; see the discussion
of chamfer metrics at the end of Section 3.2.3.
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To make arc length estimates as accurate as possible, it has been suggested that
statistic analysis be used to find weights that minimize the mean square error between
the estimated and true length of a straight line segment. This leads to the definition
of a best linear unbiased estimator (BLUE, for short) for straight line segments. One
such estimator [281] is as follows,

Echm(ρh,8(γ)) =
1
h
· (0·948 ·ni +1·343 ·nd) (10.1)

where ni is the number of isothetic steps and nd the number of diagonal steps in the
digital arc or curve. (The subscript “chm” refers to the chessboard metric d8.) Sim-
ilar estimators have been proposed in [104] for chamfer distances (e.g., coefficients
0·95509 and 1·33693 for isothetic and diagonal steps for chamfer distances using a
3× 3 neighborhood). Another local estimator [1115] is the cornercount estimator
(coc, for short), where nc is the number of odd-even transitions in the chain code of
the digital arc or curve:

Ecoc(ρh,8(γ)) =
1
h
· (0·980 ·ni +1·406 ·nd−0·091 ·nc) (10.2)

Algorithms for calculating these local estimators are straightforward: trace a digital
curve and locally update the estimator’s value.

10.2.2 DSS estimators

Section 9.6 reviewed algorithms for DSS recognition. These algorithms decide
whether a given sequence of grid points is a DSS; some of them also segment a
digital arc or curve into a sequence of maximum-length DSSs. A length estimator
EDSS is then defined by the length of the resulting polygon or polygonal arc. For
example, algorithm DR1995 (for 8-curves) defines the E8ss estimator, and algorithm
K1990 (for 4-curves) defines the E4ss estimator. Note that the segmentation into
DSSs is not uniquely defined; it depends on the method, the chosen starting point,
and the direction in which the arc or curve is traced.

[283] defined a most probable original (mpo) length estimation method for
DSSs that has superlinear convergence O(r−1·5); it is multigrid convergent for grid-
intersection digitization and for the class of all straight line segments γ. Let n be the
length of the DSS ρh,8(γ) = i(0), . . . , i(n−1), and let a/b be the best possible rational
estimate of its slope. (Formally, b is the length of the shortest period, which is the
smallest k ∈ {1, . . . ,n} such that k = n or i(m+k) = i(m) for 0≤m≤ n−k−1. a is
the height difference in one period; for example, if i(m)∈ {0,1} for all 0≤m≤ n−1,
then a= i(0)+ . . .+ i(q−1).) Then we have the following:

Empo(ρh,8(γ)) =
1
h
· (n
√

1+(a/b)2) (10.3)

In [283], this estimator was limited to single straight line segments, but it also defines
an 8-DSS–based arc length estimator 8mp: apply the 8-DSS segmentation algorithm
DR1995 and sum the mpo length estimates of the 8-DSSs.
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10.2.3 MLP estimators

In MLP-based length estimators, a simple 1-curve ρ is described by two isothetic
polygons γ1 and γ2 that are the frontiers of sets S1 and S2 such that S2 is contained
in the interior S◦

1
of S1 and ρ is contained in B = S1 \ S◦2 . Here γ is defined by

digitization method (iii) in Section 10.1.1, and S1 and S2 are J+
h (S) and J−h (S), with

the constraint that γ1 and γ2 are at Hausdorff distance 1 with respect to L∞. We find
an MLP that is contained inB and circumscribes γ2; theEmlp length estimate is then
the length of this (uniquely defined) MLP.

We will describe two MLP-based length estimators. The standard MLP esti-
mator Emlp defines B to be the difference set between the outer and inner Jordan
digitizations of S. The approximating-sausage estimator Eaps also involves a param-
eter δ (0< δ ≤ 0·5/h).

10.2.4 MLPs of simple 1-curves

We assume that γ1 and γ2 are traced in the positive orientation (i.e., counterclock-
wise in a righthand coordinate system). A vertex vi on γ1 or γ2 is called a convex
vertex if the frontier makes a positive turn at vi (i.e., D(vi−1,vi,vi+1)> 0 [see Equa-
tion 8.14]). Similarly, vi is called a concave vertex if the frontier makes a negative turn
(D(vi−1,vi,vi+1)< 0) and a collinear vertex if D(vi−1,vi,vi+1) = 0.

Our algorithm traces γ1 (or γ2), detects convex and concave vertices, puts their
coordinates into a list L, and marks them as convex or concave. For simplicity,
assume that the coordinates are integers. The coordinates of two successive vertices
with indices i and i+1 satisfy |xi+1−xi|+ |yi+1−yi| = 1.

It is easy to show that only convex vertices of the “inner” curve γ2 and only
concave vertices of the “outer” curve γ1 can be vertices of the MLP. There exists a
mapping from the set of all concave vertices of γ2 onto the set of all concave vertices
of γ1 such that each concave vertex of γ1 corresponds to at least one concave vertex
of γ2. See Figure 10.7 for an example. The numbers denote successive vertices in the
list L; 1 is a start vertex (i.e., an already known MLP vertex); 3 and 5 are successive
convex vertices on γ2; 2, 4, and 6 are successive concave vertices on γ1. Vertex 7 is
not between the negative (black line) and positive (white line) sides of sector (6,1,5);
therefore 5 is the next MLP vertex and is a new start vertex.

The algorithm starts by putting all of the vertices of γ2 into L. We then re-
place each concave vertex of γ2 in L with its corresponding concave vertex of γ1 by
modifying its coordinates by ±1, where the sign depends on the orientations of the
incident edges. L now contains all of the vertices that will form the MLP. Note that
the vertices in L are still in the original vertex order on γ2.

Suppose we already know that vertex vi of L is an MLP vertex. Then vj (j > i)
can be an MLP vertex only if all convex vertices v+

k such that i < k < j lie on the
positive side of (vi,vj) or are collinear with it (i.e., D(vi,v

+
k ,vj) ≥ 0). Similarly, all

concave vertices v−l such that i < l < j must lie on the negative side of (vi,vj) or be
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FIGURE 10.7 Finding the next MLP vertex [555].

collinear with it. (Otherwise (vi,vj) would cross either γ1 or γ2, which is not allowed
to happen.) Suppose a convex vertex v+ and a concave vertex v− both satisfy these
conditions. When we consider a vertex v as a candidate MLP vertex, the following
situations can occur:

1. v lies on the positive side of (vi,v
+) (i.e., D(vi,v

+,v)≥ 0);

2. v lies on the negative side of (vi,v
+) or is collinear with it and also lies on the

positive side of (vi,v
−) or is collinear with it; or

3. v lies on the negative side of (vi,v
−).

In case (1), v+ becomes the next MLP vertex. In case (2), v becomes a candidate for
the MLP and must replace either v+ or v− depending on the sign of v. In case (3), v−
becomes the next MLP vertex. This is also correct in the trivial case where v+, v−, or
both coincide with vi. Thus we can start with a vertex v1 that is known to be an MLP
vertex (e.g., the uppermost-leftmost vertex of γ2); set v+ and v− equal to v1; and
then test all subsequent vertices as just described. Whenever the next MLP vertex
is detected, it becomes a new start vertex.

The algorithm is given in Algorithm 10.1; it also provides a length estimate L.
If we are given a simply connected 4-component in the grid point model, the

4-path through all of the 8-border points of S defines the inner frontier γ2. We can
expand γ2 into an outer frontier γ1 at Hausdorff distance 1 from γ2 (with respect to
L∞) and use γ1 and γ2 as inputs for the MLP algorithm. Figure 10.8 shows that the
algorithm can handle “narrow concavities.” The resulting MLP intersects all of the
invalid edges of S.

Figure 10.8 also illustrates how the algorithm proceeds. The top left shows an
example of the set between γ1 and γ2. The top right shows the original sequence
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1. Initialize list L= (v1, . . . ,vn) as described in the text; it contains all of the

vertices on γ2 except the concave vertices, which are replaced by concave

vertices on γ1. Each vi in L is labeled by the sign of D(vi−1,vi,vi+1).
2. Let k := 1, a := 1, b := 1 and i := 2. Let L := 0 and p1 := v1.

//v1 is the first MLP vertex//
3. If i > n+1, stop.
4. If i≤ n, then j := i; else j := 1. //go back to v1//

5. If D(pk,vb,vj)> 0, then //vj lies on the positive side//
{k := k+1, pk := vb, i := b, a := b, and L := L+de(pk−1,pk)};
else
a) If D(pk,va,vj)≥ 0, then //vj is in the sector//;

if vj has a positive label, then b := j, else a := j;
else //vj lies on the negative side//

b) {k := k+1, pk := va, i := a, b := a, and L := L+de(pk−1,pk)}
6. Go to Step 3.

ALGORITHM 10.1 MLP calculation and length estimation.

B

B

B

A

FIGURE 10.8 Successive steps of the MLP algorithm. In this example, γ1 and γ2 cross
one another at A, and different segments of γ1 coincide at the three Bs [555].
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of 8-border points as a dark curve (γ2); the bottom left shows the curve that con-
nects all convex vertices on γ2 and concave vertices on γ1 in the order tested in the
algorithm; and the bottom right shows the resulting MLP. The algorithm has linear
time complexity.

10.2.5 The approximating sausage approach

Let the h-frontier of S be represented by Π = 〈v0,v1, . . . ,vn−1〉where the vertices are
in clockwise order and the interior of S lies to the right. We define the forward shift
f(vi) of vi as the point on the edge (vi,vi+1) at distance δ from vi, and the backward
shift b(vi) of vi as the point on the edge (vi−1,vi) at distance δ from vi.

To generate the approximating sausage “around” Π, for each edge (vi,vi+1),
we define the line segment (vi,f(vi+1)) that joins vi to the forward shift of vi+1; this
is referred to as the forward approximating segment and is denoted by Lf (vi). The
backward approximating segment (vi, b(vi−1)) is defined similarly and denoted by
Lb(vi). We now have three sets of edges: the original edges of the h-frontier and
the forward and backward approximating segments. Using these edges, we define a
connected region Aδ

h(S) that is homeomorphic to an annulus as follows:
Given a polygonal circuitΠ that describes anh-frontier in clockwise orientation,

by reversing Π, we obtain a polygonal circuit Π−1 in counterclockwise orientation.
In the initialization step of our approximation procedure, we consider Π and Π−1 as
the external and internal bounding polygons of a polygon ΠB that is homeomorphic
to the annulus. This initial polygon ΠB has area 0, and its points coincide with those
of ϑh(S).

We now “move” the external polygon Π “away” from Gh(S) and the internal
polygon Π−1 “into” Gh(S), as described below. (The Hausdorff distance between
Π and Π−1 is nonzero when the sets are not identical.) This process expands ΠB

step by step into a final polygon that contains ϑh(S), and such that the Hausdorff
distance between Π and Π−1 is always less than or equal to 1/h. For this purpose,
we add forward and backward approximating segments to Π and Π−1 to increase the
area of ΠB .

In the “moving” process, for any forward or backward approximating segment
Lf (vi), or Lb(vi), we first remove the part lying in the interior of the current polygon
ΠB and update ΠB by adding the remaining part of the segment as a new frontier
edge. The orientation of this edge is chosen so that the interior of ΠB lies to the
right of it. The resulting polygon Πδ

B is referred to as the approximating sausage of
the h-frontier and is denoted by Aδ

h(S) (see Figure 10.9, left, for δ = 1/2). Note that
the width of the approximating sausage depends on δ. An aps approximation of the
frontier of S is a shortest closed curve γδ

h(S) that lies entirely in the interior ofAδ
h(S)

and encircles the internal frontier of Aδ
h(S) (see Figure 10.9, right). It follows that

γδ
h(S) is uniquely defined and is a polygonal curve defined by finitely many straight

line segments. Note that γδ
h(S) depends on the choice of δ; we have used δ = 0·5/h

in our experiments.
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FIGURE 10.9 Left: construction of the approximating sausage. Right: resulting aps
curve [50].

10.2.6 Tangent-based estimators

We can use a tangent vector integration process to estimate the length of a curve; see
Equation 8.1. Let ‖(ẋ, ẏ)‖ : [a,b]→ R

2 be the length of the tangent vector associated
with γ(t). Then the following can be approximated by using discrete estimates of the
products ‖(ẋ, ẏ)‖ dt:

l(γ) =
∫ b

a

‖(ẋ, ẏ)‖ dt (10.4)

To estimate the normals n1 and n2 (see Figures 10.6 and 10.10), we regard the
0-cell as the center point p of a maximum-length DSS of the 8-curve that is obtained
by tracing one frontier of the digitized (in the grid cell model) curve γ. A centered
maximum-length DSS always has even length. The estimates can also be based on
4-DSSs that approximate the 4-curve of the chosen frontier. Figure 10.10 shows a
DSS approximation on the left and a 4-DSS approximation on the right.

The DSS (or 4-DSS) approximates the tangent line to γ, and the normal is
perpendicular to this line. This method can make use of any DSS definition and
recognition algorithm. Straightforward application of a linear online DSS recogni-
tion algorithm starting at p and proceeding alternatingly in both directions along the
curve leads to an O(n2) solution, where n is the number of pixels on the curve.

An optimization method proposed in [323] allows us to compute all of the
discrete tangents in linear time by using the discrete tangent computed at each vertex
to initialize the discrete tangent at the next vertex; on average, this requires only a
constant number of changes. We will use DSS approximation of the outer frontiers
of simple 0-curves. The discrete version of Equation 10.4 is as follows, where S is the
set of all pixels in digh(γ):

Etan(digh(γ)) =
∑

p∈S

n(p) ·n0(p) (10.5)
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p p

p p

FIGURE 10.10 Left column: DSS centered at p. Right column: 4-DSS centered at
p. Upper row: estimation of n1; both estimated tangential lines, and hence both
estimated normals, are identical. Lower row: estimation of n2; different estimated
tangential lines result in different estimated normals, depending on how the estimator
is defined.

For each 1-cell c in the alternating sequence of 0-cells and 1-cells along the chosen
frontier, we calculate n(c) and n0(c).

10.3 Evaluation of 2D Arc Length Estimators

This section presents both experimental and theoretic comparisons of the 2D arc
length estimators that were described in Section 10.2.

10.3.1 Online and offline algorithms and time complexity

The notions of online, offline, and linear time apply to estimators of all four classes;
we describe them here for DSS estimators (see Section 9.6). An offline DSS algo-
rithm takes an entire arc or curve (defined by a finite word u ∈ A�) as input and
decides whether it is a DSS. An online DSS algorithm reads successive chain codes
i(0), i(1), . . . ; for each n, it decides whether i(0), i(1), . . . , i(n) is a DSS; if not, it ini-
tializes a new DSS with i(n−1)i(n). After a maximum-length DSS has been found,
its length estimate (usually the Euclidean distance between its end vertices) is added
to the length estimate of the arc or curve. An offline algorithm is linear iff it runs
in O(n) time (i.e., it performs at most O(|u|) basic computation steps for any input
word u ∈A�). An online algorithm is linear iff it performs on the average a constant
number of operations for each chain code symbol.
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FIGURE 10.11 Outer Jordan digitization of a straight line segment in grids of varying
resolution.

10.3.2 Multigrid convergence theorems

We apply the general definition of multigrid convergence (Definition 2.10) to the
problem of estimating the lengthL(γ) of an arc or curve γ. Assume that the estimate
E is defined for all curves γ in a given class (e.g., the class of all simple curves in
the Euclidean plane) and for all digitizations digh(γ) where h > 0. E is multigrid
convergent to L with respect to digitization model digh iff E(digh(γ)) converges to
L(γ) as h→∞ for any curve γ in the class of interest. More formally, we have the
following:

|E(digh(γ))−L(γ)| ≤ κ(h) (10.6)

where limh→∞κ(h) = 0; the speed of convergence is O(1/κ(h)).
In general, we expect that an increase in grid resolution will result in an increase

in accuracy. Suppose the digitization of a straight line segment consists of all cells that
have nonempty intersections with the segment (i.e., we use outer Jordan digitization;
see Figure 10.11). If the grid resolution is h > 0, the Hausdorff distance between the
segment and the frontier of its outer Jordan digitization is

√
2 ·1/h. Hence the frontier

converges to the segment with respect to the Hausdorff metric generated by the
Euclidean metric. However, the perimeter of the union of the cells remains constant
as h increases; this shows that this perimeter cannot be used for length estimation.

The local estimators chm and coc of the lengths of digitized arcs or curves (see
Section 10.3) are not multigrid convergent. No proof has yet been published that local
estimators cannot achieve multigrid convergence for “sufficiently complex” input
data (e.g., not just for isothetic rectangles).2 Given an algorithm for constructing a
DSS approximation of the h-frontier ϑh(S) of a simply connected digital set Gh(S),
we define εDSS/h as the maximum Hausdorff distance between ϑh(S) and γh:

de(ϑh(S),γh)≤ εDSS

h
(10.7)

2. In a presentation at Dagstuhl/Wadern in April 2002, M. Tajine showed that local estimators are not multigrid
convergent in some situations. In [1042], it is shown that any local length estimator is not multigrid convergent

for almost any line segments in R
2.
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Theorem 10.1 Let S be a convex h-compact polygonal set in R
2. Then there

exists a grid resolution h0 such that, for all h ≥ h0, any DSS approximation of
the h-frontier ϑh(S) is a connected polygon with perimeterPh that satisfies the
following inequality:

|L(ϑ(S))−Ph| ≤ 2π
h

(
εDSS(h)+

1√
2

)
(10.8)

(This theorem is from [560]; for a proof, see Section 10.3.3.) The value of h0 depends
on the given set. If εDSS(h) = 1/h, it follows from Equation 10.8 that the upper error
bound for DSS approximations is as follows3:

2π
h2

+
2π

h ·√2
≈ 4·5

h
if h is large (h 1) (10.9)

In [883], a DSS is assumed to be a finite 8-path. When we use cell complexes, it is
appropriate to consider a finite 4-path to be a DSS iff its main diagonal width is less

than
√

2; see [20, 597, 848].
Both of the MLP-based arc length estimators described in Section 10.2 (mlp

and aps) are known to be multigrid convergent for convex Jordan curves γ.

Theorem 10.2 Let S be a bounded h-compact convex polygonal set. Then there
exists a grid resolution h0 such that, for all h ≥ h0, any aps approximation of
the h-frontier ϑh(S) (0< δ ≤ 0·5/h) is a connected polygon, for example, with
perimeter Ph and the following:

|L(ϑS)−Ph| ≤ (4
√

2+8∗0·0234)/h≈ 5·844/h (10.10)

There are several convergence theorems for MLP approximations in [1005].
The perimeter of such an approximation is a convergent estimator of the perimeter
of a bounded convex smooth or polygonal set in the Euclidean plane. The follow-
ing theorem is basically from [1005]; it specifies the asymptotic constant for mlp
perimeter estimates.

Theorem 10.3 Let γ be a convex planar curve that is contained in a simple 1-
curve ρ in [C2,≤] for grid resolution h≥ 1. Then the MLP approximation of ρ
is a connected polygonal curve of length Ph that satisfies the following:

Ph ≤ L(γ)< Ph +
8
h

(10.11)

3. Let κ(h) = 2π/h2 + 2π/h ·√2; then κ(h)≈ π
√

2/h as h→∞.
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From Theorems 10.1, 10.2, and 10.3, we see that the DSS upper error bound
4·5/h is smaller than the aps upper bound 5·844/h, which is in turn smaller than the
mlp upper bound 8/h . However, this does not imply anything about the relative
size of these errors. The determination of optimum error bounds remains an open
problem.

Theorem 10.4 Let γ be a simple C(2) curve with bounded curvature. Then both
the estimated discrete tangent direction and the tangent-based length estimate
Etan(digh(γ)) are multigrid convergent.

The speed of convergence and the maximum error bound for these estimates have
not yet been determined.

10.3.3 Proof of Theorem 10.1

To prove Theorem 10.1, we use two lemmas from integral geometry [958].

Lemma 10.1 If a convex planar polygonal set S is contained in a convex planar
set C, the perimeter of S is at most equal to the perimeter of C.

We recall that an ε-sausage of a curveγ (as originally discussed by H. Minkowski
[732]; see Figure 7.2) is the set of all points p such that de({p},γ)≤ ε.

Lemma 10.2 The length of the outer frontier of the ε-sausage of the frontier of
a convex planar polygon S is P(S)+2πε, where P(S) is the perimeter of S.

We now prove Theorem 10.1. We assume that S is h-compact for h ≥ h0, so
Gh(S) is connected, and the DSS approximation of ϑh(S) is a single (connected)
polygonal curve. We will prove that there exists a constant h1 ≥ 1 such that the
following is true for all h≥ h1:

de(ϑS,ϑh(S))≤ 1
h ·√2

(10.12)

Suppose this Hausdorff distance was greater than (h ·
√

2)−1. Then there would exist
either (A) at least one point p on ϑh(S) with a minimum Euclidean distance to ϑS
that is greater than (h ·

√
2)−1 or (B) at least one point q on ϑS with a minimum

Euclidean distance to ϑh(S) that is greater than (h ·
√

2)−1.

In case (A), the circle with center p and radius (h ·
√

2)−1 would not contain any
point ofϑS; hence this circle would be either (A1) disjoint fromS or (A2) completely
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inside of S. Let p be on the frontier of a grid square with midpoint gh
ij . The grid point

gh
ij is inside the circle. In case (A1), it follows that gh

ij cannot be in S (i.e., gh
ij is not

in Gh(S)). It follows that p cannot be on ϑh(S), which contradicts our assumption.
In case (A2), p is on an h-edge incident with two h-squares with midpoints that are
both in the circle and thus in S; hence, in this case, too, p cannot be on ϑh(S). Thus
case (A) is impossible.

In case (B), because S is h-compact for h≥ h0, the distance between q and the
nearest grid point can become arbitrarily small as h→∞, while Gh(S) still remains
connected. Thus, in case (B), we must increase h so that h ≥ h1 ≥ h0 for some
h1, which represents the situation in which the minimum Euclidean distance from
q ∈ ϑS to ϑh(S) is less than or equal to (h ·√2)−1. Only a finite number of vertices
on the frontier of S can require such increases in h0. This concludes the proof of
Equation 10.12.

Equations 10.12 and 10.7 and the triangle inequality for Hausdorff distance
imply the following:

de(ϑS,γh)≤ εDSS

h
+

1

h ·
√

2

Let ε= εDSS/h + 1/(h ·
√

2). Then the perimeter of S and the length of γh differ by
at most 2πε. To show this, let γh be the frontier of a convex (polygonal) set C so that
the following is true:

de(ϑS,ϑC)≤ ε (10.13)

We will show that the following is true, which will complete the proof of the theorem:

|P(S)−P(C)| ≤ 2πε (10.14)

The frontier ϑC lies in the ε-sausage of the frontier ϑS. Let ϑεS be the outer
frontier of the ε-sausage of ϑS. By Lemma 10.1, we have the following:

P(C)≤ |ϑεS|
By Lemma 10.2, we have the following:

|ϑεS|= P(S)+2πε

Hence, the following is true:

P(C)≤ P(S)+2πε (10.15)

ϑS lies in the ε-sausage of ϑC, because Hausdorff distance is symmetric. Let ϑεC be
the outer frontier of the ε-sausage of ϑC. By Lemma 10.1, we have the following:

P(S)≤ |ϑεC|
By Lemma 10.2, we have the following:

|ϑεC|= P(C)+2πε
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Hence, the following is true:

P(S)−2πε≤ P(C) (10.16)

From Equations 10.15 and 10.16, we have the following,

P(S)−2πε≤ P(C)≤ P(S)+2πε

which proves Equation 10.14 and thus the theorem.

10.3.4 Experimental evaluation

Comparative evaluations of length estimators should investigate their accuracy and
stability both on convex and nonconvex curves. In the experiments reported in [206],
we used the test curves shown in Figure 10.12 digitized on grids of sizes between
30×30 and 1000×1000 using any of the three digitization methods in Section 10.1.1.

Two performance measures were used: (i) the relative error (in percent) be-
tween the estimated and true curve length; and (ii) for the DSS and MLP methods,
a tradeoff measure defined as the product of the relative error and the number of
generated segments (the efficiency of convergence).

In the plots in Figure 10.13, convergence is evident for all of the estimators.
However, for estimators chm and coc, the convergence is to a false value! The errors
are calculated for each curve, combined into a mean error for each grid size, and then
the plots are generated by taking sliding means over 30 grid sizes. We show both
linear and logarithmic plots of the errors. 8mp slightly overestimates the length as
compared with 8ss.

The tradeoff measure is plotted in Figure 10.14 for the DSS and MLP estimators.
Here, too, the errors are calculated for each curve and combined into a mean error
for a given grid size, and the plots are generated by taking sliding means over 30 grid
sizes.

As an additional test, a square of fixed size was rotated in a grid of resolution
128. Figure 10.15 shows its estimated perimeter as a function of rotation angle.
Except for chm and coc, the estimates are relatively orientation-independent.

Figure 10.16 shows the runtimes of the DSS and MLP estimators as com-
pared with local estimators. Obviously, the local estimators are fastest. MLP as
implemented in [555] (as described in Section 10.2.3) is the fastest global estimator,
but 4ss and 8ss come close to it. The aps estimator has not yet been optimized;

FIGURE 10.12 Test curves [555].
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FIGURE 10.13 Multigrid convergence of length estimators: plots of sliding means of
the relative errors (above); logarithmic plots (below) [206].

faster implementations may be possible. Theoretically, the tan estimator has a lin-
ear asymptotic runtime implementation [323], but the estimator that was tested had
quadratic runtime; optimization is needed here, too.

These experiments show that the local estimators are not multigrid conver-
gent even for our simple test data set. For the five global estimators, we obtained
experimental confirmations of known theoretic convergence results.

Interestingly, the runtimes of the polygonal DSS and MLP estimators were only
slightly greater than those of the local estimators; hence the use of local estimators
is not justified by a runtime argument. The choice of a global estimator may depend
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FIGURE 10.14 Trade off plots for the DSS and MLP estimators [206].

FIGURE 10.15 Relative errors for a rotating square [206].

on the available software. Studies involving more extensive test data might be useful
in the selection of the most efficient estimator for a given application.

All of the tested estimators have linear online complexity. Of all of the possible
MOP extensions of the DSS and MLP estimators we have reported only on 8mp. Our
theoretic studies answered (in most cases) the following questions:
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FIGURE 10.16 Runtimes of the DSS- and MLP-based estimators on an Ultra 10 Sparc
workstation [206].

TABLE 10.1 Tested arc length estimators [206].

Method Multigrid Discrete Unique References 3D extension

8ss Yes Yes No [203] [256]
8mp Yes Yes No - [256]+[283]
4ss Yes Yes No - [592]
mlp Yes Yes Yes [148] [739, 1000]
aps Yes No No - [49, 50]
tan Yes Yes Yes - [305], [206]
local No Possibly Yes [481] [104, 281]

multigrid convergence: Is the estimator multigrid convergent at least for convex
curves? (If so, we are also interested in its convergence speed.)

discrete: Does the core of the estimation algorithm deal only with integers?

unique: Is the result independent of initialization (starting point, tracing orientation,
and so forth)?

3D extension: Can the estimator be extended to digital curves in 3D space?

Table 10.1 provides a summary of the answers to these questions. Convergence speed
is known to be linear for 8ss, 4ss, mlp and aps; see Theorems 10.1, 10.2, 10.3, and 10.4.
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10.4 The Curvature of a Planar Digital Curve

In this section, we discuss methods of estimating the curvature of a planar curve
and detecting “corners” (high-curvature pixels) on such curves. Let ρ= 〈p1, . . . ,pm〉
be an α-curve (usually an 8-curve) in Z

2. Let pi = (xi,yi), where i = 1, . . . ,m, and
let 1 ≤ k ≤ m. For each pixel pi on ρ, we define a forward vector fi,k = pi− pi+k

and a backward vector bi,k = pi−pi−k, where the indices are modulo m. Let fi,k =
(x+

i,k,y
+
i,k) and bi,k = (x−i,k,y

−
i,k).

10.4.1 Corner detectors

Curvature analysis is often oriented toward detecting high-curvature pixels (“cor-
ners”). We first review two early methods that detect such pixels without calculating
curvature estimates.

Algorithm RJ1973

This algorithm [910] detects a corner at pi based on analysis of the cosines ci,k of the
angles between the forward vector fi,k and the backward vector bi,k; ci,k is called
the k-cosine angle measure. Let 0 < a < 1 (e.g., a= 0·05) and k0 = �am�. We start at
k= k0 and decrement k as long as ci,k increases. Suppose this occurs at k= ki so that
ci,ki ≥ ci,ki−1. In a subsequence of ρ of length ki centered at pi

a corner is detected at pi iff ci,ki > ci,kj for all j �= i such that |i− j| ≤ ki/2
(modulo m).

Note that the algorithm depends on only one parameter a. Because it does not use
a constant initial value k0, it is adaptive to the length of the 8-curve and is therefore
global.

Algorithm RW1975

This algorithm [924] uses averaged cosine values given here:

ci,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
k+2

k∑

l=k/2

ci,l if k is even

2
k+3

k∑

l=(k−1)/2

ci,l if k is odd

Otherwise, it follows algorithm RJ1973.

The k-cosine angle measure is an example of a significance measure defined in a
sliding interval of width 2k0 +1 and evaluated in a reduced interval of width k0 +1.
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The parameter k0 depends on the number m of points on the given digital curve.
The sliding interval defines a region of support (ROS) for a detected corner, which
is normally considered to be at the center of its ROS. Evaluation of the measure is
limited to a subset of the ROS. In the aforementioned examples, the size �am� of the
ROS is uniformly determined (i.e., it is the same at every point of the curve).

[703] reviews more than 100 corner detection and curvature estimation algo-
rithms for 2D digital curves. Curvature estimators (C1) will be reviewed in the next
subsection. Other approaches are based on the following:

(C2) Estimation of curve properties in a uniformly determined ROS defined by in-
put parameters. Examples of relevant properties are (C2.1) angles between
forward and backward vectors (see above); (C2.2) approximation errors
(e.g., defined by distances between arcs and chords [see Figure 10.17]); and
(C2.3) directional changes between forward and backward ROSs.

(C3) Estimation of curve properties in an individual determined ROS.

In the following paragraphs, we give a few examples of such approaches.
[251] uses approach (C2.1) at various scales to polygonally approximate the

curve at different levels of detail. [257] defines multiscale curvature based on minima
and maxima of the k-cosine at different scales, where k varies with the scale. In [194],
corners are locations at which a triangle of specified size and angle can be inscribed
in the curve.

Two of the corner detectors proposed in [932] are based on approach (C2.2),
specifically on distances between arcs and chords (see Figure 10.17). In [327], points
of the curve are classified into the categories “on smooth interval,” “on noisy inter-
val,” and “corner” by analyzing deviations of arcs of the curve from their chords.
A more efficient implementation of this method was presented in [815]. Arc-chord
distance is combined with Gaussian scale-space techniques in [407].

As an example of approach (C2.3), [295] defines a curvature chain ci = mod8(si−
si−1 +11)−3 where the sis are chain codes. This curvature chain is “smoothed” by
convolution with a filter. [46] uses comparisons of forward and backward chain code
histograms based on a correlation coefficient measure. Chain code histograms on a
sliding arc are used in [47].

p = pi

pi–k
pi+k

d

FIGURE 10.17 The arc-chord distance measure is defined by the distance d between a
point p on the curve and a symmetric chord defined by a parameter k.
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Other approaches based on curve properties include analysis of the chord
lengths between pairs of points k steps apart along the curve [603] or of the num-
ber of DSSs centered at a point of the curve [586]. Corners can also be defined by
local maxima of a measure of local symmetry [782]. [1065] describes a corner detec-
tion method based on eigenvalues of covariance matrices of neighborhoods of curve
points.

As an example of approach (C3), studies of the visual perception of shapes
[618] motivated [879] to assign individually sized neighborhoods to border points
of convex regions to detect “dominant points.” [837] gives an algorithm for the
calculation of backward and forward vectors and also allows asymmetric ROSs at a
point. The backward and forward vectors point to pi−k and pi+l, respectively, where
k and l are determined by studying the angular changes that take place when moving
away from pi along the curve. A (k, l)-cosine measure is used to detect corners;
see [838] for further studies along these lines. For a combination of multiscale and
individually sized ROSs, see [770].

Finally, we mention two examples of other approaches (C4). In [455], chain
codes are transformed into differential chain codes ci = si− si−1. The maximum
lengths of nonzero sequences in the differential code — and sums of consecutive
nonzero differential codes (starting with pair sums and generalizing to group sums)
— are used to detect “critical points.” See [32] for other applications of differential
codes. [421] derives a hierarchical, polygonal approximation to a curve by detecting
candidate “dominant points” and then iteratively removing “least significant points”
until a stable polygonal approximation is reached.

10.4.2 Curvature estimators

Curvature can be estimated from (C1.1) the change in the slope angle of the tangent
line (e.g., relative to the x-axis); (C1.2) derivatives along the curve; or (C1.3) the
radius of the osculating circle (circle of curvature); see Definition 8.1, Equation 8.9,
and Equation 8.11, respectively.

Algorithm FD1977

This algorithm [346] (in category (C1.1)) estimates changes in the slope angles θi of
the tangent lines at points pi. Let the following be the angle estimate based solely
on backward vectors of “length” k:

θi,k =

⎧
⎨

⎩

tan−1(y−i,kx
−
i,k) if |x−i,k| ≥ |y−i,k|

cot−1(x−i,ky
−
i,k) otherwise

Let the following be the centered difference,

δi,k = θi+1,k−θi−1,k
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which is “accumulated” by the following using ∆ = tan−1(1/(k−1)):

Ei,k = ln t1 · ln t2 ·
i+k∑

j=i

δj,k

Let the following also be true:

t1 = max{t : ∀s(1≤ s≤ t→−∆≤ δi−s,k ≤∆)}
t2 = max{t : ∀s(1≤ s≤ t→−∆≤ δi+k+s,k ≤∆)}

These are the maximum lengths of the arcs preceding pi and following pi+k in which
the differences δj,k remain close to zero (in an interval [−∆,+∆]) and which define
the “legs” of a corner.

A corner is detected at pi iff Ei,k > T and the previous corner is at a distance
of at least k from pi on ρ.

Note that this procedure depends on a parameter k (e.g., k = �am� as in algorithm
RJ1973) and on a thresholdT . Because t in the definition of t1 and t2 can be arbitrarily
large, this is a global method.

Algorithm BT1987

This algorithm [84] modifies algorithm FD1977 as follows: t1 and t2 are upper-
bounded by �bm� (0 < b < 1), and the curvature estimates Ei,k are calculated and
averaged over a range of values of k (kL ≤ k ≤ kU ):

Ei =
1

kU −kL +1

kU∑

k=kL

Ei,k

This method involves four parameters: kL, kU , b, and the threshold T . Because the
upper bound is �bm�, it is a global method.

Algorithm HK2003

This algorithm [434], which is also in category (C1.1), estimates changes in the slope
angles of tangents. It calculates a maximum-length 8-DSS pi−bpi of the following
Euclidean length

lb =
(
(xi−b−xi)2 +(yi−b−yi)2

)−1/2

that goes “backward” from pi on ρ and a maximum-length 8-DSS pipi+f of the
following length

lf =
(
(xi+f −xi)2 +(yi+f −yi)2

)−1/2

that goes “forward” from pi on ρ. It then calculates the following angles,

θb = tan−1

( |xi−b−xi|
|yi−b−yi|

)
and θf = tan−1

( |xi+f −xi|
|yi+f −yi|

)
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the mean θi = θb/2+θf/2, and the angular differences δ1 = |θf −θi| and δ2 = |θb−θi|.
Finally, the curvature estimate at pi is as follows:

δ1
2lf

+
δ2
2lb

Algorithm M2003

[736] is an early example of an algorithm in category (C1.2). More recently, [703]
assumes that the given 8-curve 〈p1, . . . ,pm〉, where pj = (xj ,yj) for 1 ≤ j ≤ m, is
sampled along a parameterized curve γ(t) = (x(t),y(t)) where t∈ [0,m]. At point pi,
we assume that γ(0) = γ(m) = pi and γ(j) = pi+j for 1≤ j ≤m−1. Functions x(t)
and y(t) are locally interpolated at pi by the following second-order polynomials,

x(t) = a0 +a1t+a2t
2

y(t) = b0 + b1t+ b2t
2

and curvature is calculated using Equation 8.9. We have x(0) = xi, x(1) = xi−k, and
x(2) = xi+k with integer parameter k ≥ 1; this is analogous for y(t). The curvature
at pi is then defined by the following:

Ei =
2(a1b2− b1a2)
(a2

1 + b21)1·5

Algorithm CMT2001

This algorithm [208], which is in category (C1.3), involves approximation of the
radius of the osculating circle. At each point pi, we calculate a maximum-length DSS
centered atpi. This DSS is used as an approximate segment of the tangent atpi, and its
length li corresponds to the radius of the osculating circle. The algorithm calculates
an inner radius Ii = �(li−1/2)2−1/4� and an outer radiusOi = �(l+1/2)2−1/4� and
returns 2/(Ii +Oi) as an estimate of the radius of curvature at pi.

10.4.3 Experimental evaluation

[661] contains an experimental comparison of several curvature estimation meth-
ods (see Sections 10.4.1 and 10.4.2) that were published before 1990 as well as
some other local methods (see the references in Section 10.6). The results obtained
from algorithm BT1987 were described as being “in best correspondence to human
perception.”

We illustrate comparative evaluations for only two algorithms, CMT2001 and
HK2003. The curvature of a circle of radius R is κ = 1/R. Figures 10.18 and 10.19
show the error |1/R− κ̃| averaged over all pixels on 8-curves that are the borders
of Gauss digitizations of disks x2 + y2 = r2 or x2 + y2 = r2 + r (r = 100, . . . ,1000).
The plots are sliding means, which eliminate “digitization noise” by symmetrically
averaging 19 values before and 19 values after the current value r.
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FIGURE 10.18 Left: sliding means of errors in the interval [0, . . . ,0·01] for algorithms
CMT2001 (upper curve) and HK2003 (lower curve) for the digitized disk x2 +y2 =
r2 + r. Right: sliding means of errors in the interval [0 . . .0·02] for x2 + y2 = r2 and
x2 + y2 = r2 + r; the upper pair of curves are for CMT2001 and the lower pair for
HK2003. In both cases, the (larger!) disk x2 +y2 = r2 + r produces smaller errors.
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FIGURE 10.19 Sliding means of errors for algorithm HK2003 (lower curve) for the
diskx2 +y2 = r2 digitized at grid resolutionsh= 100, . . . ,1000, as compared with local
restrictions of the algorithm in which the length of the approximating line segments
is limited to 5 (upper curve) or 7 pixels. The curves intersect between r = 100 and
r = 101 and between r = 203 and r = 204.
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Figure 10.18 shows total errors for algorithms CMT2001 and HK2003, on the
left for the digitized disk x2 +y2 = r2 +r and on the right also for the disk x2 +y2 = r2.
In the latter case, the digital disk has small “peaks” on its border due to the fact that
its radius is an integer. These “unsmooth” situations slightly increase the error for
both algorithms.

Figure 10.19 shows how the errors behave if the unlimited-length DSS approx-
imation in HK2003 is replaced by backward bi,k and forward vectors fi,k of constant
length (5 and 7 in the figure). The errors are smaller than for the global method up
to about r = 100 for k = 5 and up to about r = 200 for k = 7.

[703] contains an extensive experimental comparison of corner detectors and
curvature estimation methods; it demonstrates good performance of algorithm
M2003 as compared with 28 other methods. We illustrate the experimental compar-
ison in [703] by giving results obtained by five methods on two 8-curves (4-borders
of 4-regions); Figure 10.20 shows these 8-curves.

Figure 10.21 shows corner or curvature values for the symmetric curve (which
is of length 222) calculated by methods RJ1973 (with a= 0·1), FD1977 (with k = 9),
BT1987 (with kL = 9, kU = 14, and b= 0.1), M2003 (with k = 10), and HK2003.

RJ1973 produces a “plateau” between border points 115 and 124. The original
algorithm would label all of these points as being corners. In the resulting segmen-
tation, which is shown in Figure 10.22 on the upper left, only the midpoint of this
“plateau” is taken as a corner.

FD1977 reproduces the curve’s symmetry in the calculated values Ei,k. The
original algorithm maps these into asymmetric corner positions; see the segmenta-
tion shown in Figure 10.22, which uses k = 9. The following modification would
produce perfectly symmetric corners: select pi as a corner iff Ei,k > Ej,k for all j
such that |i− j| ≤ k.

A maximum of 14 corners was used for BT1987. No corners were detected by
FD1977 at any of pixels 63 through 93 or 146 through 176.
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FIGURE 10.20 A symmetric 8-curve (left) and an asymmetric 8-curve (right) that
were used in comparisons of corner detectors (using only the grid resolution shown
in the figure).
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FIGURE 10.21 Corner or curvature values measured by five methods. The parameters
used are specified in the figure. The x-coordinate gives border point numbers as
shown in Figure 10.20 for the symmetric curve.
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FIGURE 10.22 Resulting segmentations for the symmetric curve.
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FIGURE 10.23 Resulting segmentations for the asymmetric curve.
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FIGURE 10.24 Corner or curvature values measured by five methods. The parameters
used are specified in the figure. The x-coordinate gives border point numbers as
shown in Figure 10.20 for the asymmetric curve.
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Threshold 0.08 was used for corner detection in M2003. This algorithm also de-
tects subsequences of corners that are “nearly collinear”; see the three corners on the
left and on the right in Figure 10.22. Elimination of corners that are nearly collinear
with the preceding and following corners would eliminate this type of redundancy.

Method HK2003 does not require any specification of parameters, but it de-
pends on the orientation in which the border is traversed. The curvature values are
not symmetric because a maximum-length DSS from pi to pj is not necessarily a
maximum-length DSS from pj to pi. At each pi, a “backward interval” and a “for-
ward interval” are defined by backward and forward DSSs. A corner is detected iff
the curvature at pi is at least equal to the curvatures at every pj in pis backward and
forward intervals.

Figure 10.24 shows corner or curvature values for the asymmetric curve in
Figure 10.20 (which has length 223) calculated by the same five methods. The result-
ing segmentations are shown in Figure 10.23.

10.5 Exercises

1. The Archimedes-Hui constant of a length estimation algorithm is the minimum
grid resolution h0 such that the algorithm initially estimates π within the error
interval defined by Equation 1.6 when a circular region centered at the origin is
digitized in a grid with edge length 1/h. Note that the estimates “oscillate,” so
later estimates may be outside of this interval. Using a sliding mean is critical
because the behavior of the errors is uncertain. Can you give a “better” definition
of such a constant? Calculate the constants (using the above definition or an
improved definition) for DSS and MLP length estimation methods.

2. Consider the inner and outer Jordan digitizations of a bounded connected planar
set S and the MLP contained in the difference set of the two digitizations and cir-
cumscribing the inner digitization. Identify cases in which the grid-intersection
digitizations of this MLP and of the frontier of S are (are not) the same.

3. In cases A and B in Figure 10.8, two border vertices are at distance 1 or 2 in
the grid but at distance greater than 2 on the border 4-curve. Prove that the
Algorithm 10.1 produces a grid polygon that circumscribes the inner polygon,
even in cases A and B.

4. If two grid cells that share an edge e in a 2D multivalued picture P have values
u and v, we say that e has strength |u−v|. The sum of the strengths of all of the
grid edges in P is called the total frontier strength of P . Prove that, if P is binary,
its total frontier strength is equal to the sum of the lengths (in grid edge units)
of all of the frontier of P along which 0s meet 1s.

5. Implement algorithm M2003 and at least one other curvature estimation algori-
thm of your choice, and evaluate their performance as was done in Section 10.4.3.
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6. Let ρ be a 4-path with pixels p1, . . . ,pn that are all distinct. At each pixel pi

(1< i < n), the path is either straight or makes a right or left turn, depending on
whether the determinant D(pi−1,pi,pi+1) is zero, positive, or negative. In these
cases, we say that the turn of ρ at pi is 0, π/2, or−π/2, respectively; θi is the turn
of ρ at pi. If p1 is a 4-neighbor of pn (so that the path defines a closed curve), we
can also define its turn at pn (modulo n). Prove that the total turn

∑n
i=1 θi of a

closed curve is 2π.

10.6 Commented Bibliography

The length-related sections in this chapter review material presented in [50, 51, 149,
206, 543, 555, 560, 1005, 1042]. [604] discusses local and global methods from the
viewpoint of parallel computation. [928] compares 23 algorithms for polygonal ap-
proximation of 8-curves.

For length estimators based on chamfer metrics, see [104, 281, 293, 826, 1093].
Estimator chm was proposed in [281] and estimator coc in [1115].

DSS algorithms are based on characterizations of digital lines using (see Chap-
ter 9) syntactic properties [451, 1137], arithmetic properties defining tangential lines
[256], or properties of feasible regions in the (dual) parameter space [283, 584] or for
linear programming methods such as the Fourier-Motzkin algorithm [341]. Linear
offline and online algorithms for DSS recognition are discussed in Chapter 9.

The general problem of decomposing a digital curve into a sequence of DSSs,
which includes DSS recognition as a subproblem, is discussed in, for example, [256,
283, 555, 592]. The implementation of DR1995 used in the experiments in [206]
follows [256]. The implementation of K1990, which was originally defined in [592],
is described in [555]. The multigrid convergence of DSS-based length estimators is
studied in [203, 560, 597] for frontiers of bounded convex sets.

For the minimum-perimeter polygon, its relation to the relative convex hull,
and its application to perimeter estimation of digitized sets, see [739, 1000]. Relative
convex hulls (which, in the case of inner and outer polygons, are MLPs) have been
studied in computational geometry and robotics. The MLP algorithm tested here is
the one reported in [555]. See [657] for an alternative algorithm and [973] for an
application of MLPs to characterizing “star-shapedness.” For the approximating-
sausage (aps) approach, see [49, 50]. The algorithm tested here for this method was
provided by the authors of [49, 50]. Both MLP-based length estimators are multigrid
convergent [49, 50, 1002] for convex curves.

For the perimeter of a fuzzy set, see [909].
Gauss digitizations of convex polygons S are analyzed in [597] with respect to

the effects of small interior angles on Gh(S). Theorem 10.1 was proved in [560];
the proof is based to a large extent on material in [597]. Lemmas 10.1 and 10.2
correspond to statements in [958]; they were proved independently in [597].

The tradeoff measure of efficiency of convergence was proposed in [1005] and
was used in [555]. The test data (see Figure 10.12) were proposed in [555]. In future
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comparisons, stereologic methods [1079] of length or total curvature estimation could
also be included.

[661] is a survey of corner detectors and curvature estimators covering the
methods from Section 10.4 published before 1990 as well as algorithms from [190,
715], which are characterized in [661] as being very noise-sensitive, and a weighted
k-curvature corner detector from [932], which requires many weight assignments.
[207, 1131] also contain review sections on curvature estimators. [1164] evaluates
several detectors of “critical points.” [703] gives a comprehensive review of corner
detectors (“dominant point detectors”) and curvature estimators. Approaches to
corner detection were discussed in Section 10.4.1; we give a few additional references
in the following.

[1131] proposes a curvature estimator based on the variation of the angles
between fitted lines and an axis, using optimization in a k× k window of constant
size. For a modification that uses a purely discrete line fitting process, see [1096]; this
“centered tangential DSS” method was modified in [207] (see algorithm CMT2001).
A linear-time algorithm for calculating centered tangential DSSs is given in [323].
Theorem 10.4 was proved in [208]. The normal vector-based method was proposed
in [305]. Discrete tangents to a digital curve are discussed in [1096]. [462] studies
principal normals of 8-curves in the context of shape deformation and defines the
digital curvature flow that occurs when the 8-curve changes its shape.

Digital curves can be transformed into smooth curves in Euclidean space (e.g.,
using B-splines), and their curvature can then be calculated using numeric meth-
ods [396]; this approach deserves more attention (see algorithm M2003). [90] uses
quadratic Bezier approximations through “key pixels” for border representation.

Estimation of the osculating circle is the basic principle in CMT2001 [208]. See
also [397] and [950] for methods that estimate radii of osculating circles.

[71, 174] estimate the curvature at pi by the angle between pi−k, pi, and pi+k

divided by de(pi−k,pi)+de(pi+k,pi). Optimization of distances between smoothed
curve data and Euclidean circles was proposed in [1131]. [407] accumulates the
distance from a pixel pi on an 8-curve to a chord specified by moving endpoints.

For curvature estimation based on dual Voronoi diagram construction, see
[448]. Other methods of polygonal approximation (i.e., detection of “critical points”)
of 8-curves are based on genetic algorithms [588], on principles of perceptual orga-
nization [445], and on the Haar transform [252].

Section 10.4.3 reviews multigrid convergence studies of HK2003 and CMT2001
by S. Hermann; algorithm CMT2001 was provided by D. Coeurjolly, and it also
reviews curvature estimation and corner detection experiments by M. Marji using
five different methods. Method HK2003 was not covered in [703].
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3D Straightness and Planarity

This chapter discusses digital straightness in 3D space, thereby generalizing the
DSS- and MLP-based concepts, models, and algorithms that were studied in
Chapters 9 and 10. It also discusses digital planarity in the 3D grid adjacency
and incidence models, including relationships with other disciplines. Algorithms
for recognizing digital planar segments are briefly reviewed, and one algorithm
for partitioning a digital surface into such segments is discussed in detail.

11.1 3D Straightness

A digital straight line (DSL) in Z
3 can be defined by 3D grid-plane intersection

digitization, arithmetic geometry, or outer 3D Jordan digitization of a straight line
γ ⊂ R

3. It can be treated in 3D grid adjacency models or in the 3D grid incidence
model, which is based on 0-, 1-, 2-, and 3-cells (see Section 11.1.4).

11.1.1 Grid-plane intersection digitization

Using the approach in Section 2.3.5, the 3D grid-plane intersection digitization of γ
in C

(3)
3

is dig+
σ (γ) where the following is true:

Πσ = {(x1,x2,x3) : ∃i(1≤ i≤ 3∧xi = 0)∧ max
1≤i≤3

|xi| ≤ 1
2}

γ can intersect a grid plane in such a way that up to four grid points are closest to the
intersection point. As is the case in 2D grid-intersection digitization, we exclude such
cases by selecting one of these grid points using some decision rule. The resulting 3D
DSL is the doubly infinite sequence . . . , q−1, q0, q1, . . . of center points (grid points in

Z
3) of the 3-cells in dig+

σ (γ).
A (26-) DSL segment (3D DSS or 26-DSS) is a finite subsequence of a 3D DSL.

Evidently, a 3D DSS is a simple 26-arc. A rational 3D DSL is the digitization of a
rational straight line γ = {(βx +αxt,βy +αyt,βz +αzt) : t∈R}; here β = (βx,βy,βz)∈
R

3 can be arbitrary, but the slopes αx, αy, and αz must be rational.

375
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FIGURE 11.1 Segmentations of a 26-arc (left) and a 26-curve (right) into maximum-
length 26-DSSs (ending at black voxels), together with their projections into the
(x= 0)-, (y = 0)-, and (z = 0)-planes [203].

The conditions for 2D straightness discussed in Chapter 9 can be extended to
3D. For example, S ⊆ Z

3 has the chord property, iff for any p,q ∈ S, every point on
the straight line segment pq ⊂ R

3 is at L∞-distance < 1 from some point of S. (We
recall that the Minkowski metric L∞ coincides with d26 on Z

3.) It can be shown [511]
that a simple 26-arc is a 3D DSS iff it has the chord property. In [511], the following
theorem is also proved:

Theorem 11.1 A simple 26-arc is a 26-DSS iff two of its projections onto the
(x= 0)-, (y = 0)-, and (z = 0)-planes are 8-DSSs.

Either of these projections may be a single grid point; the third projection may not
even be a simple 8-arc. Figure 11.1 illustrates projections of 26-DSSs.

Theorem 11.1 provides a straightforward method of recognizing 26-DSSs and,
therefore, of segmenting a 26-arc into a sequence of maximum-length 26-DSSs. We
project the given 26-arc onto the three planes and apply 8-DSS recognition to the
projections; we continue as long as 8-DSS recognition is successful for at least two
of the projections.

11.1.2 Arithmetic geometry

3D DSSs are defined in arithmetic geometry by linear Diophantine inequalities; see
Section 9.2. A 3D digital line is characterized by relatively prime integers a, b, and
c (where 0≤ c≤ b≤ a) that correspond to the coordinates x, y, and z in that order.
For other orders of a, b, and c, we can permute the coordinates.
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Definition 11.1 G ⊂ Z
3 is a 3D arithmetic line defined by integers a, b, c, µ1,

µ2, ω1, and ω2 iff the following is true:

G= {(x,y,z) ∈ Z
3 : µ1 ≤ cx−az < µ1 +ω1 ∧ µ2 ≤ bx−ay < µ2 +ω2}

The parameters µ1 and µ2 are called the lower bounds of G, and the parameters ω1

and ω2 define its arithmetic thickness.
Let G be a 3D arithmetic line defined by a,b,c,µ1,µ2,ω1,ω2 ∈ Z where 0≤ c <

b < a. Then the following are true:

if a+ c≤ ω1 and a+ b≤ ω2, G is 6-connected; (11.1)

if a+ c≤ ω1 and a≤ ω2 < a+ b

or a+ b≤ ω2 and a≤ ω1 < a+ c, G is 18-connected; (11.2)

if a≤ ω1 < a+ c and a≤ ω2 < a+ b, G is 26-connected; (11.3)

if ω1 < a or ω2 < a, G is 26-disconnected. (11.4)

G is called a 3D naive line iff ω1 = ω2 = max{|a|, |b|, |c|} = a. When c = 0, G is a
(2D) naive line, as in Chapter 9. If c > 0, in accordance with Equation 11.4, G is
26-connected. c ≤ b ≤ a corresponds to the following parameterization of G, using
parameter x only:

z = �cx−µ1

a
	 and y = �bx−µ2

a
	

Evidently, a 3D naive line is an unbounded simple 26-arc. It is provided in [203]
that the following is true:

Theorem 11.2 Any rational 3D digital line defined by grid-plane intersection
digitization is a 3D naive line and vice versa.

This theorem and Theorem 11.1 imply the following:

Corollary 11.1 A simple 26-arc is a 3D naive line iff two of its projections onto
the (x= 0)-, (y = 0)-, and (z = 0)-planes are DSSs iff two of these projections
are (2D) naive lines.

11.1.3 A linear online 3D DSS segmentation algorithm

Corollary 11.1 justifies the following 3D DSS segmentation algorithm, which uses the
(C2.1a) approach that was defined in Chapter 9 (Theorem 9.4) and that was originally
published in [256].
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We consider a projection of the given 26-curve into one of the (x= 0)-, (y= 0)-,
or (z = 0)-planes. Without loss of generality, assume an 8-curve in the (z = 0)-plane;
this allows us to suppress the z-coordinate. The grid points (x,y) on a DSS must
satisfy the following condition,

D : µ≤ ax− by < µ+max{|a|, |b|}

where a and b are relatively prime integers and µ is an integer. We describe the
calculation of a, b, and µ.

Algorithm DR1995

The initial grid point q1 of a new 8-DSS can be chosen as the origin. It is sufficient
to implement the algorithm for the first octant (i.e., slope in [0,1)); other cases can
be mapped into this case by reflection. At q1 = (0,0), we start with condition D1 :
0 ≤ −y < 1 (i.e., a = 0, b = 1, and µ = 0). We assume that the given sequence of
grid points involves moves in at most three directions: (1,0), (1,1), or (1,-1); thus we
proceed in the x-direction in the first octant.

The points qi = (ai, bi), where 1 ≤ i ≤ n, form an 8-DSS or a segment of a
naive line iff (see Theorem 9.4) there are relatively prime integers a and b with a < b
(recall that we are assuming the first octant) and an integer ν such that all n points
are between or on a lower supporting line ax− by = µ and an upper supporting line
ax− by = µ+max{|a|, |b|}−1 = µ+ b−1 (note again that we are in the first octant).
For a new point qn+1 ∈A8(qn), wherexn+1 >xn, we have three cases: qn+1 is between
or on these two lines (i.e., no update is needed) or it is (“just”) above the upper or
(“just”) below the lower supporting line.

[253, 256] give simple decision and updating criteria for these cases. Let u1,u2
and l1, l2 be the points on the upper and lower supporting line, respectively, where
index 1 denotes the point qi (1 ≤ i ≤ n) with the smallest x-coordinate and index 2
denotes the point with the largest x-coordinate (compare points StartN, EndN and

1. Let r = axn+1− byn+1 be the remainder of the new point qn+1.
2. If µ≤ r < µ+b, then u2 = qn+1 (if r= µ) or l2 = qn+1 (if r= µ+b−1), and

stop; otherwise, go to Step 3.
3. If r= µ−1, then l1 = l2, u2 = qn+1, a= |yn+1−u12|, b= |xn+1−u11| (where
u1 = (u11,u12)), µ= axn+1− byn+1, and stop; otherwise, go to Step 4.

4. If r= µ+b, then u1 = u2, l2 = qn+1, a= |yn+1− l12|, b= |xn+1− l11| (where
l1 = (l11, l12)), µ = axn+1− byn+1− b+ 1 (or µ = au21− bu22), and stop;
otherwise, go to Step 5.

5. The new point does not form an 8-DSS with the previousn points; initialize
a new 8-DSS at qn.

ALGORITHM 11.1 Algorithm DR1995 for the first octant; max{|a|, |b|}= b.
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FIGURE 11.2 An 8-DSS with p1 = (1,2),p2 = (2,3), . . . ,p11 = (11,7).

StartP, EndP in Figure 9.7). Let r= axn+1−byn+1 be the remainder of point qn+1 with
respect to the slope a/b of the given naive line segment {q1, . . . , qn} ⊂Da,b,µ,−b.

Theorem 11.3 If µ ≤ r < µ+max{|a|, |b|}, then qn+1 ∈Da,b,µ,max{|a|,|b|}. If r =
µ− 1, then {q1, . . . , qn, qn+1} is a segment of a naive line with a slope that is
defined by vector u1qn+1. If r = µ+ max{|a|, |b|}, then {q1, . . . , qn, qn+1} is a
segment of a naive line with a slope that is defined by vector l1qn+1. If r < µ−1
or r > µ+max{|a|, |b|}, then {q1, . . . , qn, qn+1} is not a segment of a naive line.

The theorem translates into an 8-DSS algorithm, which is shown in Algorithm 11.1.
Figure 11.2 shows a sequence qi = pi− p1 where, in the first octant, p1 = (1,2)

and i= 1, . . . ,11. q1 and q2 satisfy condition D2 : 0≤ x−y < 1 with µ= 0; the upper
supporting lines are both y = x. q1, q2, and q3 satisfy condition D3 : −1≤ x−2y < 1;
here, the lower supporting line is 2y = x, and µ=−1 is defined by q2. At q6 = (5,2),
we have condition D6 : −4 ≤ 2x− 5y < 1; µ = −4, a = 2, and b = 5, and the upper
supporting line is defined by q4. At q10, we still have a naive line segment q1, . . . , q10
with l1 = q1, l2 = q6, u1 = q4, and u2 = q9. The remainder r at q11 is −5 (i.e., we have
the second case in Theorem 11.3). The new slope is defined by vector u1q11 = (7,3),
and {q1, . . . , q11} is a segment of the naive lineD11 : −5≤ 3x−7y < 2. We now have
l1 = l2 = q6, u1 = q4, and u2 = q11.

Figure 11.3 shows a circle and an ellipse in general 3D positions (in the grid cell
model) and their DSS segmentations.

Suppose we successfully apply a DSS recognition algorithm in two of the co-
ordinate planes, for example, by obtaining supporting lines in the (y = 0)-plane with
normal ny = (y1,y2) and in the (z = 0)-plane with normal nz = (z1,z2); then these two
8-DSSs are projections of a 26-DSS that has normal n = (y2z2,y2z1,y1z2). Note that,
if (y1,y2) and (z1,z2) are 2D grid points with relatively prime integer coordinates, the
coordinates of n need not be relatively prime.

Figure 11.4 illustrates the linear run time of the 3D DSS segmentation algorithm
and shows two successful 2D DSS segmentations for each segment in 3D space.
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FIGURE 11.3 Examples of DSS segmentations; the windows (gray) are magnified to
show details. The curves do not lie in planes parallel to the (x = 0)-, (y = 0)-, or
(z = 0)-plane. Left: a circle. Right: an ellipse [203].
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FIGURE 11.4 Run time (in ms) of the 3D DSS segmentation procedure on a Sun Ultra
SparcStation [203] for a digitized circle in 3D space; see the left side of Figure 11.3.

11.1.4 MLPs of simple 2-curves

In this section, we consider DSLs in the 3D incidence grid. The outer 3D Jordan
digitization of a straight line γ ⊂ R

3 is a finite set of 3-cells. We also use grid vertices,
edges, and faces in the following discussion. We assume that γ is not incident with
any grid vertex; it follows that the DSL is a 2-arc in the 3D grid cell model.
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FIGURE 11.5 Curves complete in a tube [546].

A 2-curve in C
3 can be represented as an alternating sequence ρ= (f0, c0,f1, c1,

. . . ,fn, cn) of faces fi and cubes ci (0 ≤ i ≤ n) such that fi and fi+1 are sides of ci
and fn+1 = f0. A 2-arc ξ is a 2-connected subsequence of 3-cells starting at a face fi

and ending at a face fj 
= fi. Evidently, ξ is a DSL (with respect to outer 3D Jordan
digitization) iff there is a straight line segment in R

3 that has endpoints in fi and fj

and that is contained in the union of the 3-cells of ξ, so fi is visible from fj (and vice
versa) in ξ.

The 3D DSL segmentation problem is defined as follows: starting at one 3-cell
of a 2-curve ρ, segment the 2-curve into consecutive maximum-length 2-arcs that are
DSSs, where the endvoxel of each DSS is the startvoxel of the next DSS. In the rest of
this section, we discuss how to solve this problem by calculating an MLP “within ρ.”

We assume from now on that ρ is simple. This is equivalent to assuming that
n≥ 4, and, for any two cubes ci and ck in ρ such that |i−k| ≥ 2 (mod n+1), if ci∩ck 
=
∅, then either |i−k|= 2 (mod n+1) and ci∩ ck is an edge or |i−k|= 3 (mod n+1)
and ci∩ ck is a vertex.

The union Mρ of all of the cubes in ρ is called the tube of ρ; it is a compact
polyhedron and is homeomorphic to a torus if ρ is simple.

A simple 2-curve is called complete in Mρ iff it has a nonempty intersection
with any cube of ρ. A nonplanar simple 2-curve in R

3 determines exactly one MLP
that is complete and contained in its tube. For planar simple 2-curves, the MLP is
not uniquely determined, but such curves can be treated like 1-curves in [C2,≤].

There is no straightforward way to extend 2D MLP algorithms to 3D. One
reason is that the vertices of 2D MLPs are vertices of the given polygons, whereas
a 3D MLP can have vertices with irrational coordinates, even if it is contained in a
tube that has only grid point vertices.

Let ρ be a simple 2-curve, and let Π = 〈p0,p1, ...,pm〉 (where p0 = pm) be a
polygon that is complete and contained in Mρ.

Lemma 11.1 If Π = 〈p0,p1, ...,pm〉 is a polygon that is complete and contained
in the tube of a simple 2-curve Mθ, then m ≥ 3. Two line segments cannot be
complete in the tube of any simple 2-curve.

Proof Ifm≤ 2, Π is contained in a straight line segment; this is impossible, because
a simple 2-curve is homeomorphic to a torus. m= 3 (a triangle) is possible (e.g.,
for the simple 2-curve shown in Figure 11.5), but, in this minimal case, no side
of the triangle can be contained in one of the cubes. �
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The curves on the left and right in Figure 11.5 are not contractible into single points
in Mρ, but the curve in the middle is contractible.

A simple curve γ passes through a face f iff there exist t1, t2, and T such that
{γ(t) : t1 ≤ t ≤ t2} ⊆ f , γ(t1− ε) /∈ f and γ(t2 + ε) /∈ f for all ε such that 0 < ε ≤ T .
During a traversal of γ, we enter a cube c at γ(t1) ∈ c if γ(t1− ε) /∈ c, and we leave c
at γ(t2) ∈ c if γ(t2 + ε) /∈ c for all ε such that 0 < ε ≤ T . A traversal is defined by a
starting vertex p0 of γ and a direction.

Let Cρ = (c0, c1, ..., cn) be the sequence of cubes of ρ in the order in which they
are entered during curve traversal. If a polygon Π is complete and contained in Mρ,
Cρ contains all of the cubes of ρ and no other cubes.

Lemma 11.2 If Π is an MLP of a simple 2-curve ρ, Cρ contains each cube of ρ
just once.

Proof Suppose Π enters the same cube c of ρ twice, for example, first at q1 and
then at q2. q1 and q2 may be on the same face of c (see Figure 11.5, left and
right) or on different faces of c (see Figure 11.5, middle).

Suppose first that both q1 and q2 are on the face f common to cubes c and c′.
Suppose the number of times Π passes through f is odd. We insert q1 and q2
into Π as new vertices that split it into two polygonal chains Π1 = 〈q2, ..., q1〉 and
Π2 = 〈q1, ..., q2〉, which have a union of Π. The lengths of Π1 and Π2 exceed the
length of the straight line segment q1q2. Without loss of generality, let Π1 be
the chain that does not pass through f ; thus Π1 is complete in Mρ. Because c
is convex, it contains the straight line segment q1q2. Replace Π2 with q1q2 (i.e.,
replace Π withQ= (q1, q2, ..., q1)). Q is still complete and contained in Mρ, but
it is shorter than Π, which contradicts the assumption that Π is an MLP of ρ.

Now suppose the number of passes of Π through f is even. Suppose Π enters
c at q1, then passes through f and enters c′ at r1, then passes through f again
and enters c at q2, then passes through f again and enters c′ at r2. (Π may
make an even number of other passes through f before it returns to q1.) We
insert q1, r1, q2, and r2 into Π as new vertices that split it into four polygonal
chains Π1 = (q1, ..., r1), Π2 = (r1, ..., q2), Π3 = (q2, ..., r2), and Π4 = (r2, ..., q1) with
a union of Π. It follows that the following is true,

CΠ1 ⊆ CΠ3 ∨CΠ3 ⊆ CΠ1

and analogously for Π2 and Π4. Without loss of generality, let CΠ1
⊆ CΠ3

. We
replace Π1 with the straight line segment q1r1; that segment is in f , and the
length of Π1 exceeds the length of q1r1. Thus the resulting polygonal curve is
still complete and contained in Mρ, but, it is shorter than Π, which contradicts
the assumption that Π is an MLP of ρ.
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Next we consider the case where q1 and q2 are on different faces of c, for
example, q1 on f1 and q2 on f2. Because q2 is a point of reentry into c, there
must be a point qex on f2 where we leave c before reentering it at q2. If there is
another reentry point on f2, we are back to the first case. Hence, we can assume
that Π leaves c once and enters c once. Let f2 be a face of c′ 
= c. If Π does
not intersect the second face of c′ that is contained in ρ, we replace (qex, ..., q2)
(which is contained in c′ but not in f2) with the shorter straight line segment
qexq2, which is contained in f2 and thus in c′. The resulting polygon would be
shorter than Π and still complete and contained in ρ, which is a contradiction.
It follows that Π must leave c′ through its second face, which is contained in
ρ. When we trace around ρ, we arrive at the cube c′′ 
= c, which is incident
with f1; we leave c′′ (and enter c) at a point that may be the same as q1; and
we enter c′′ again through f1. Thus Π contains two polygonal subsequences
that are both complete and contained in ρ; this contradicts the shortest-length
assumption. �

Let Π = 〈p0,p1, ...,pm〉 be a polygon contained in a tube Mρ. A polygon Q is
called an Mρ-transform of Π iff Q can be obtained from Π by a finite number of
steps, each of which is a replacement of a triple a,b,c of vertices by a polygonal arc
a,b1, ..., bk, c contained in the same set of cubes of ρ as a,b,c. (k= 0 means deletion of
b; k = 1 means a move of b within Mρ; and k ≥ 2 means replacement of two straight
line segments with a sequence of k+1 straight line segments that are all contained
in Mρ.)

Lemma 11.3 Let Π be a polygon that is complete and contained in the tube
Mρ of a simple 2-curve ρ such that Cρ has no repetitions of cubes. Then any
Mρ-transform of Π is also complete and contained in Mρ.

Proof By definition of theMρ-transform, it is contained inMρ. Because Cρ has no
repetitions of cubes, Π tracesMρ cell by cell. From Lemma 11.1, we know that Π
has at least three vertices (i.e., at least three line segments) and thatm≥ 3 (two
line segments cannot be complete in ρ; i.e., at least one cube is not intersected
by the two line segments). Thus a replacement of the two line segments within
the same set of cells of ρ cannot transform Π into a curve contractible in Mρ;
hence the curve remains complete in Mρ. �

An edge contained in a tube Mρ is called critical iff the edge is the intersection
of three cubes contained in ρ. Figure 11.6 illustrates critical edges of two 2-curves;
only the left one is simple.
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FIGURE 11.6 Critical edges of two curves [546].

Note that simple 2-curves have edges that are contained in at most three cubes. For
example, the curve consisting of four cubes only (an edge is contained in four cubes
in this case) was excluded by the constraint n≥ 4.

Theorem 11.4 Let ρ be a simple 2-curve. The vertices of a shortest simple poly-
gon that is complete and contained in the tube Mρ must be located on critical
edges.

Proof We consider both planar and nonplanar simple 2-curves ρ (i.e., the MLP
may not be uniquely defined).

Let Π = 〈p0,p1, ...,pm〉 be a shortest simple polygon that is complete and con-
tained in Mρ, where p0 = pm and m ≥ 3. Without loss of generality, we con-
sider the subsequence (p0,p1,p2) of Π and show that p1 is on a critical edge. By
Lemma 11.2, Cρ has no repetitions; thus we can apply Lemma 11.3 to Π and
Mρ.

We can exclude the case in which p1 is collinear with p0 and p2, because such
a p1 would not be a vertex. Three noncollinear points p0, p1, and p2 define a
triangular region�(p0,p1,p2) in a plane E in R

3. The following discussion deals
with geometric configurations in E . Frontier points are points on the frontier
ϑMρ.

First, we ask whether p1 can be moved toward p0p2 in �(p0,p1,p2) so that the
resulting polygonal arc (p0, ...,pnew, ...,p2) is still contained inMρ. This would be
anMρ-transform of Π, and the resulting curve would be complete and contained
in Mρ. If the intersection of an ε-neighborhood of p1 with �(p0,p1,p2) were
in Mρ for some ε0, the resulting curve would be shorter, which is impossible;
hence, for any ε > 0, at least one frontier point q in an ε-neighborhood of
p1 must be on one of the line segments p0p1 or p1p2, so p1 itself is a frontier
point.
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FIGURE 11.7 Neighborhood of p1 (left). Intersection with an uncritical edge (right)
[546].

A neighborhood of p1 is illustrated in Figure 11.7 (left). The angular sector α
represents the region not in Mρ. Because α is bounded by an interior angle of
�(p0,p1,p2), we have α < π.

A frontier point can be in a face or on an edge. Suppose first that p1 is in a face
f . Either E and f intersect in a straight line segment or f is contained in E .
Intersecting in a straight line segment would contradict the fact that α < π in
the ε0-neighborhood of p1, and f ⊂ E would allow p1 to move toward p0p2 in
�(p0,p1,p2), which contradicts our MLP assumption.

There are three possibilities for an edge contained inMρ. We call it uncritical if
it is in only one cube contained in ρ; ineffective if it is in exactly two such cubes;
and critical (as previously defined) if it is in three such cubes. p1 cannot be on
an ineffective edge, and it cannot be on a critical or an uncritical edge, because
this corresponds to it being within a face, as discussed before. p1 also cannot
be on an uncritical edge or a critical edge.

Figure 11.7 (right) illustrates an intersection q in E with an uncritical edge that
is not coplanar with E . The angular sector α > π (the region not in Mρ in an
ε-neighborhood of q) does not allow p1 to be such a point. If the uncritical
edge were in E , α would be equal to π, which is also impossible for p1. Thus
only one option remains: p1 must be on a critical edge; indeed, α < π for such
an edge. �

Note that this theorem also applies to planar simple 1-curves in [C2,≤]. It
follows that MLP vertices on such a 1-curve can only be convex vertices of the inner
frontier or concave vertices of the outer frontier, because these are the only vertices
incident with three squares of the 1-curve.

11.1.5 The rubber band algorithm

This algorithm, which is from [148], is based on the following physical model. Suppose
a rubber band passes through the tube Mρ. If it can move freely, it will contract to
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TABLE 11.1 Calculated points on edges [149].

Critical edge 1 2/3 4 5 6/7 8 9 10 11 12/13

First run a b c d e f g h i j
Second run a b D D e D D h i j

the MLP, which is complete and contained in Mρ, assuming it is smooth enough to
slide over the critical edges of the tube.

The algorithm consists of two subprocesses. The first is an initialization process
that defines a simple polygonal curve Π0 that is complete and contained in Mρ and
such that CΠ0

contains each cube of ρ just once (see Lemma 11.2). The second
is an iterative process (a Mρ-transform; see Lemma 11.3) in which each iteration
transforms Πt into Πt+1 (t≥ 0) such that l(Πt)≥ l(Πt+1). Thus the resulting polygon
is also complete and contained in ρ.

The following are three methods of initializing the polygon. Init I: The vertices
of the initial polygon are at the centers of the cubes that constitute the 2-curve. Init
II: The vertices are at the midpoints of critical edges. Init III: The initial polygon
connects only vertices that are endpoints of consecutive critical edges.

For Init III, we scan the curve until we find a pair (e0,e1) of consecutive critical
edges that are not parallel or (if parallel) that are not in the same grid layer. (Fig-
ure 11.6 (right) shows a nonsimple 2-curve; searching for a pair of noncoplanar edges
would be insufficient in this case.) For such a pair (e0,e1), we choose vertices (p0,p1),
where p0 bounds e0 and p1 bounds e1 such that the line segment p0p1 has minimum
length; note that (p0,p1) is not always uniquely defined. This is the first line segment
of the initial polygon Π0.

Suppose pi−1pi is the last line segment on the Π0 specified so far, where pi

bounds ei. Then there is a unique vertex pi+1 on the next critical edge ei+1 such that
pipi+1 has minimum length. (Length zero is possible if pi+1 = pi; in this case, we
skip pi+1, which means that we do not increase i.) Note that this pipi+1 will always
be included in the tube, because the centers of all cubes between two consecutive
critical edges are collinear. The process stops when we connect pn (on en) with
p0. (Note that a minimum-distance criterion for this final step might prefer a line
segment between pn and the second vertex bounding e0 [i.e., not p0]). Table 11.1

a

b

c

d

e

f
g

hi

j

FIGURE 11.8 Curve initializations (Init III; “clockwise”) [149].
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FIGURE 11.9 If the initialization starts below on the left, the final step of the initial-
ization process would prefer the second vertex of the first edge [149].

shows the list of vertices for the curve on the left in Figures 11.6 and 11.8. The first
row lists all of the critical edges shown in Figure 11.6. The second row contains the
vertices of the initial polygon shown in Figure 11.8 (initialization = first iteration of
the algorithm). Vertex b is on edge 2 and also on edge 3, so there is only one column
(2/3) for these edges.

Initialization methods Init I through Init III construct polygons Π0 that are
always complete and contained in the given tube. Note that traversals in opposite
directions or that start at different critical edges may lead to different initial polygons
if Init III is used. For example, a “counterclockwise” traversal of the curve shown
in Figure 11.6 (left) starting at edge 1 selects edges 11 and 10 as the first pair of
consecutive critical edges; the resulting “counterclockwise” polygon differs from the
one shown in Figure 11.8. Figure 11.9 shows a curve for which the final step does not
return to the starting vertex.

The results of Init III are shown in Figure 11.8. The curve on the right is already
an MLP for this nonsimple 2-curve. For a planar curve, the process may fail to find
the first pair of critical edges; in this case, a 2D algorithm can be used to calculate
the MLP.

In the iteration process, we move pointers (addressing three consecutive ver-
tices of the polygonal curve found so far) around the curve until a complete iteration
leads only to an improvement that is below a given threshold τ (i.e., l(Πt)− τ <
l(Πt+1)). We cannot wait until there is no change at all, because this may never hap-
pen. In all of the experiments reported in [149], the algorithm terminated quickly
for a reasonable value of τ .

Let Πt = (p0,p1, ...,pm) be a polygon with three pointers addressing the vertices
at positions i−1, i, and i+1. Three cases can occur that define specificMρ-transforms.

(O1) pi can be deleted iff pi−1pi+1 is a line segment within the tube. Triple
(pi−1,pi,pi+1) is then replaced by (pi−1,pi+1), and we continue with vertices pi−1,
pi+1, and pi+2 .

(O2) The closed triangular region �(pi−1pipi+1) intersects more than just the
three critical edges of pi−1, pi, and pi+1 (see Figure 11.10) (i.e., simple deletion of pi
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p
1

p
0

p
2

FIGURE 11.10 Intersection points with edges [149].

would not be sufficient). This situation is handled by constructing a convex arc (the
shortest curve that surrounds a given finite set of planar points is a convex polygon
[155]) and replacing pi with the sequence of vertices q1, . . . ,qk between pi−1 and pi+1
on this arc iff the sequence of line segments pi−1q1, . . . , qkpi+1 lies inside the tube.
Because the vertices are ordered, we can use a linear-time convex hull algorithm.
Barycentric coordinates with basis {pi−1,pi,pi+1} can be used to decide which of the
intersection points are inside the triangle.1 In this case, we continue with a triple of
vertices that starts with qk.

(O3) pi can be moved on its critical edge to a position pnew that minimizes the
total length of pi−1pnew and pnewpi+1. An O(1) algorithm for this move is given
below. (pi−1,pi,pi+1) is then replaced by (pi−1,pnew,pi+1), and we continue with the
triple pnew,pi+1,pi+2.

In situation (O3), suppose pi lies on critical edge e and is not collinear with
pi−1pi+1. Let le be the line containing e. We first find the point popt ∈ le such that
the following is true,

|popt−pi−1|+ |pi+1−popt|= min
p∈le

L(p)

and where we also have the following:

L(p) = (|p−pi−1|+ |pi+1−p|)
If popt lies on the closed critical edge e, we simply replace pi with popt; if not, we
replace pi with the vertex bounding e that lies closest to popt.

The following is a slightly simpler method of finding popt than the one described
in [148]. Without loss of generality assume that le is parallel to the x-axis, where ye

and ze are constants:

le = {(t,ye,ze)T |t ∈ R}
If xi−1 = xi+1, we take popt = (xi−1,ye,ze)T . Otherwise, the following

∂L

∂x
(popt) = 0

leads to a quadratic equation in xopt, where αi = (ye−yi)2 +(ze−zi)2:

(αi+1−αi−1)x2
opt +2(αi−1xi+1−αi+1xi−1)xopt +αi+1x

2
i−1−αi−1x

2
i+1 = 0

1. In the majority of cases, we found that k = 1 (i.e., pi is replaced by q1).
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FIGURE 11.11 Two examples of initial polygons (dashed) and MLPs (solid). Critical
edges are shown as short line segments. The rest of the tube is not shown [149].

Table 11.1 shows that the second run starts with the polygonal curve Π1 =
〈a,b,c,d,e,f,g,h, i, j〉. For triple a,b,c, none of (O1) through (O3) leads to a better
location of b. For triple b,c,d, we use (O1) to delete c (symbol ‘D’). Triple b,d,e then
leads to the deletion of d, and so on, and finally triple j,a,b does not delete or move
a. In the following run, nothing changes.

The process stops if an entire cycle does not lead to a “significant modification”
as defined by a threshold τ .2 Experiments in [149] used τs between l(Πt) ·10

−5
and

l(Πt) ·10
−7

. In Figure 11.11, the initial polygon Π0 is dashed, and the solid line is the
final polygon. The short line segments are the critical edges of the tube.

We conclude this section by giving an estimate of the complexity of the rubber-
band algorithm as a function of the number n of cubes of ρ.

The algorithm completes each run inO(n) time. A move of pi on a critical edge
requires constant time. In the experiments, τ was set to l(Π0) ·10

−6
; this ensured that

the measured time complexity was O(n) (i.e., the number of runs did not depend
on n).

Figure 11.12 shows the time needed for the algorithm to stop as a function of
the number of cubes n and the number of critical edges. The test set contained 70
randomly generated simple 2-curves. In Figure 11.12 (left), each error bar shows the
mean convergence time and its standard deviation for a set of 10 digital curves.

The algorithm is iterative. Because l(Πt+1)< l(Πt) (if they are equal, the algo-
rithm stops) and there is a lower bound on the length l(Πt) of the MLP, the algorithm
converges. However, it is not certain to what polygon it converges. Lemmas 11.2
and 11.3 give a partial answer: it always converges to a polygon that is complete and
contained in Mρ.

The algorithm provides a method of polygonal approximation and length mea-
surement of simple 2-curves that has run time O(n). The method has been success-
fully used for a wider class of curves, including cases such as the curve on the right in

2. We distinguish between elementary iteration steps (O1), (O2), or (O3) and cycles, which consist of sequences
of iteration steps that go completely around Mρ.



390 Chapter 11 3D Straightness and Planarity

50

40

30

T
im

e

T
im

e

20

10

0
50 100 150 50 100 150

n # of critical edges
200

50

40

30

20

10

0
0

FIGURE 11.12 Central Process Utility (CPU) time in seconds as a function of the
number n of 3-cells (left) and the number of critical edges (right) [149].

Figure 11.6 in which each cube in ρ has exactly two bounding faces in ρ. This simpler
definition also allows for the simpler generation of test examples.

It would be desirable to prove that the time complexity of the algorithm is
always O(n) and that it always converges to the MLP. Both of these statements can
be conjectured from the experiments: the number of cycles was independent of the
resolution of the 2-curve, and the minima found by the algorithm were independent
of the initialization method.

11.2 Digital Planes in 3D Adjacency Grids

A plane in E
3 that has a z-coefficient that is not 0 is defined by an expression of the

following form, where α1,α2,β ∈ R:

Γ(α1,α2,β) = {(x,y,z) ∈ R
3 : z = α1x+α2y+β}

The symmetry of the grid allows us to assume 0 ≤ α1 ≤ 1 and 0 ≤ α2 ≤ 1 in the rest
of this chapter; we also assume 0≤ β < 1 for convenience, using an argument similar
to that for DSLs.

A digital plane can be obtained from a plane in E
3 by outer 3D Jordan digi-

tization, 3D grid-line intersection digitization (using the grid points nearest to the
intersections of the plane with grid lines; compare the 3D grid-plane intersection
digitization in Section 11.1.1), or simply by applying the floor or ceiling function to
the coordinates of the points in Γ(α1,α2,β).

11.2.1 3D grid-line intersection digitization

If we use 3D grid-line intersection digitization, under the above assumptions about
α1,α2,β, we need to consider only grid lines parallel to the z-axis.
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Let Γ(α1,α2,β) intersect the vertical grid line (x = m,y = n) at pm,n where
m,n ≥ 0. Then the grid point closest to pm,n is (m,n,Im,n) where the following
is true:

Iα1,α2,β = {(m,n,Im,n) :m,n≥ 0∧ Im,n = �α1m+α2n+β+0.5	}
If there are two closest grid points, we choose the lower one. The set Iα1,α2,β uniquely
determines both the slopes α1 and α2 and the intercept β if α1 or α2 is irrational. If
both α1 and α2 are rational, Iα1,α2,β uniquely determines α1 and α2 but determines
β only up to an interval. This can be proved by a straightforward generalization of
the proof of Theorem 9.2.

In analogy with the chain codes in Chapter 9, we define step codes, starting with
iα1,α2,β(0,0) = I0,0 ∈ {0,1}:

iα1,α2,β(0,n+1) = I0,n+1− I0,n =
{

0 if I0,n+1 = I0,n

1 if I0,n+1 = I0,n +1
for n≥ 0

iα1,α2,β(m+1,0) = Im+1,0− Im+1,0 =
{

0 if Im+1,0 = Im,0

1 if Im+1,0 = Im,0 +1
form≥ 0

In addition to these “initial values,” we define column-wise step codes:

i
(c)
α1,α2,β(m,n+1) = Im,n+1− Im,n =

{
0 if Im,n+1 = Im,n

1 if Im,n+1 = Im,n +1
form≥ 1

We also define row-wise step codes:

i
(r)
α1,α2,β(m+1,n) = Im+1,n− Im,n =

{
0 if Im+1,n = Im,n

1 if Im+1,n = Im,n +1
for n≥ 1

The values in the 0th row and 0th column are used in both the column-wise and row-
wise step codes; see Figure 11.13. The assumptions 0 ≤ α1 ≤ 1 and 0≤ α2 ≤ 1 guar-
antee that codes 0 and 1 are sufficient. It follows that i(c)α1,α2,β(m,n) = i

(r)
α2,α1,β(m,n)

where m,n≥ 0. On the basis of the additional assumption α1 ≤ α2, we will use only
row-wise step codes in the sequel, and we will omit the superscript (r).

Definition 11.2 i+α1,α2,β = {(m,n,iα1,α2,β(m,n)) :m,n ≥ 0} is a digital plane

quadrant (in the grid point model) with slopes α1 and α2 and intercept β.

If we do not require m and n to be nonnegative integers, we obtain digital planes
iα1,α2,β . For D ⊆ R

2, let iDα1,α2,β = {(m,n,iα1,α2,β(m,n)) : (m,n) ∈D∩Z
2}. If α1 or

α2 is irrational, we speak about irrational digital planes and otherwise about rational
digital planes.
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.  .  .  .  .  .  .  .  .  .  .
0 0 0 0 0 0 0 0 0 0 0 ...
0 1 0 1 0 1 0 1 0 1 0 ...
1 0 1 0 1 0 1 0 1 0 1 ...
0 0 0 0 0 0 0 0 0 0 0 ...
0 1 0 1 0 1 0 1 0 1 0 ...
1 0 1 0 1 0 1 0 1 0 1 ...
0 0 0 0 0 0 0 0 0 0 0 ...
0 1 0 1 0 1 0 1 0 1 0 ...
1 0 1 0 1 0 1 0 1 0 1 ...
0 0 0 0 0 0 0 0 0 0 0 ...
0 1 0 1 0 1 0 1 0 1 0 ...

.  .  .  .  .  .  .  .  .  .  .
0 1 0 1 0 1 0 1 0 1 0 ...
0 1 0 1 0 1 0 1 0 1 0 ...
1 0 1 0 1 0 1 0 1 0 1 ...
0 1 0 1 0 1 0 1 0 1 0 ...
0 1 0 1 0 1 0 1 0 1 0 ...
1 0 1 0 1 0 1 0 1 0 1 ...
0 1 0 1 0 1 0 1 0 1 0 ...
0 1 0 1 0 1 0 1 0 1 0 ...
1 0 1 0 1 0 1 0 1 0 1 ...
0 1 0 1 0 1 0 1 0 1 0 ...
0 1 0 1 0 1 0 1 0 1 0 ...

.  .  .  .  .  .  .  .  .  .  .
3 4 4 5 5 6 6 7 7 8 8 ...
3 4 4 5 5 6 6 7 7 8 8 ...
3 3 4 4 5 5 6 6 7 7 8 ...
2 3 3 4 4 5 5 6 6 7 7 ...
2 3 3 4 4 5 5 6 6 7 7 ...
2 2 3 3 4 4 5 5 6 6 7 ...
1 2 2 3 3 4 4 5 5 6 6 ...
1 2 2 3 3 4 4 5 5 6 6 ...
1 1 2 2 3 3 4 4 5 5 6 ...
0 1 1 2 2 3 3 4 4 5 5 ...
0 1 1 2 2 3 3 4 4 5 5 ...

y

x x x

y y

FIGURE 11.13 Left: I 1
2 ,

1
3 ,0

(m,n). Middle: i(r)
1
2 ,

1
3 ,0

(m,n). Right: i(c)1
2 ,

1
3 ,0

(m,n) [131].

Analogously to the translation-equivalence of rational DSLSs with the same
slope α [675], we have translation-equivalence of rational digital planes with the
same slopes α1 and α2 [134]. This implies that the intercepts β do not influence
translation-invariant properties of rational digital straight lines; we can therefore
study translation-equivalence classes iα1,α2

of rational digital planes.

Using Definition 7.5 of digital surfaces (and digital surface patches) in adjacency
grids, we have the following:

Theorem 11.5 A digital plane is an unbounded digital surface.

Proof Let p = (i, j,k) be a point of digital plane Iα1,α2,β , and consider Iα1,α2,β ∩
{(x,y,z) ∈ S : x = i}. Let p′ = (i, j− 1,k′) and p′′ = (i, j+ 1,k′′) be the only
two points of Iα1,α2,β on the vertical lines x = i and y = j− 1 and x = i and
y = j+1, respectively. Because α1 ≤ α2, we have 0≤ |k−k′|, |k−k′′| ≤ 1; thus
(j−1,k′) and (j+1,k′′) are the only two points, defined by p and x= i, which
are 8-adjacent to (j,k), and they are not mutually 8-adjacent. Similarly, p and
y = j define only two 8-adjacent points in Iα1,α2,β ∩{(x,y,z)∈ S : y = j}, which
are not mutually 8-adjacent. In Iα1,α2,β∩{(x,y,z)∈ S : z = k}, p and z = k may
define more than two 8-adjacent points, but (i, j,k−1) and (i, j,k+ 1) are not
both in Iα1,α2,β , because p= (i, j,k) is the only point of Iα1,α2,β on the vertical

grid line x= i, y = j. Thus Iα1,α2,β is a digital surface. �

Corollary 11.2 Let D⊂ Z
2 be a 4-region; then iDα1,α2,β is a digital surface patch.

Such a patch is called a digital plane segment (DPS), which is defined in the grid point
model with respect to grid-line intersection digitization.
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11.2.2 Self-similarity

Definition 11.3 S ⊆ Z
3 is said to have the chordal triangle property iff, for any

p1,p2,p3 ∈ S, every point on the triangle p1p2p3 ⊂ R
3 is atL∞-distance< 1 from

some point of S.

Obviously, a simple digital surface that satisfies the chordal property cannot be
bounded.

Theorem 11.6 A simple digital surface is a digital plane iff it has the chordal
triangle property.

This theorem is from [513], where it is also shown that, for a bounded digital plane
segment, the chordal triangle property is neither necessary nor sufficient. Additional
conditions (defined by distances to two lines) that characterize digital planarity are
discussed by C. Ronse in [867, 871]. These papers study the use of Helly-type theo-
rems (see Helly’s First Theorem and the Transversal Theorem in Section 1.2.8) for
approximating affine functions. Like the proof of Theorem 9.7 regarding the digiti-
zation of straight lines, these theorems can also be used to characterize digitizations
of planes in R

3.
For any p= (px,py,pz)∈ Z

3, let p
z=0

= (px,py,0) be the projection of p into the

xy-plane.

Definition 11.4 S⊆Z
3 is called even iff its projection into thexy-plane{(x,y,0) :

(x,y) ∈ Z
2} is one-to-one and, for every quadruple (p,q,r,s) of points in S such

that pz=0− qz=0 = rz=0−sz=0, we have |(pz− qz)− (rz−sz)| ≤ 1.

Defining evenness with respect to the xy-plane is consistent with our previous as-
sumptions about digital planes. By requiring a one-to-one mapping into thexy-plane,
we consider only unbounded sets S ⊆ Z

3 as being even. The following theorem does
not make use of the assumption α1 ≤ α2 about a digital plane.

Theorem 11.7 S ⊆ Z
3 is a digital plane iff it is even.

11.2.3 Supporting and separating planes

A supporting plane of S ⊆ Z
3 divides R

3 into two (closed) halfspaces such that S is
completely contained in one of them.

Theorem 11.8 S ⊆ Z
3 is a digital plane iff it has a supporting plane Γ such that

the L∞-Hausdorff distance between S and Γ is < 1.
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In [513], it was claimed that if S ⊆ Z
3 is a (finite) digital plane segment, the points

of S are at L∞-Hausdorff distance < 1 from at least one plane incident with one of
the faces of the convex hull of S; thus one of these planes is a supporting plane in
the sense of Theorem 11.8. However, [253] gave a counterexample: if D = [0,6]×
[0,7], the L∞-Hausdorff distance between iD

5/29,9/29,1/2
and any plane incident with one

of the faces of the convex hull of iD
5/29,9/29,1/2

is greater than 1.

Let S ⊂ Z
3, and let Sz+1 = {(x,y,z+1) : (x,y,z)∈ S}. A plane Γ⊂R

3 separates
the sets S1,S2 ⊂ Z

3 iff S1 and S2 are in opposite open halfspaces defined by Γ.

Theorem 11.9 A finite set S ⊂ Z
3 is a subset of a digital plane iff there exists a

plane that separates S from Sz+1.

11.2.4 Arithmetic planes

Arithmetic geometry as suggested by S. Forchhammer in [332] and developed by
J.-P. Reveillès in [848] provides a uniform approach to the study of digitized hyper-
planes in n dimensions. We discuss here only the 3D case. Let a, b, and c be relatively
prime integers, and let µ and ω be integers.

Definition 11.5 Da,b,c,µ,ω = {(i, j,k) ∈ Z
3 : µ≤ ai+bj+ck < µ+ω} is called

an arithmetic plane with normal n = (a,b,c)T , approximate intercept µ, and arith-
metic thickness ω.

Arithmetic planes are a generalization of arithmetic linesDa,b,µ,ω = {(i, j)∈ Z
2 : µ≤

ai+ bj < µ+ω}. From Theorem 9.4, we know that naive lines (ω = max{|a|, |b|})
are the same as rational DSSs and that standard lines (ω = |a|+ |b|) are the same
as rational 4-DSSs. If ω = max{|a|, |b|, |c|}, the arithmetic plane Da,b,c,µ,ω is called a
naive digital plane; if ω = |a|+ |b|+ |c|, it is called a standard plane.

Theorem 11.10 Every digital plane with rational slopes is a naive plane and vice
versa.

In other words, for any digital plane iα1,α2,β with rational α1 and α2, there exist
relatively prime integers a, b, and c and an integer µ such that iα1,α2,β =
Da,b,c,µ,max{|a|,|b|,|c|}. In addition, for any Da,b,c,µ,max{|a|,|b|,|c|}, there exist rational
slopes α1 and α2 and an intercept β such that Da,b,c,µ,max{|a|,|b|,|c|} = iα1,α2,β .

Now assume 0< a≤ b≤ c, and consider digitizations of Euclidean planes that
are incident with the origin (e.g., by assuming µ = 0). If Da,b,c,0,ω is a naive plane,
each voxel (x,y,z) ∈Da,b,c,0,c projects into exactly one pixel (x,y) in the xy-plane.
From the assumption 0<a≤ b≤ c, it follows that there is at least one voxel (x,y,z)∈
Da,b,c,0,ω for every (x,y) ∈ Z

2. The height map Ha,b,c,ω is defined on Z
2 by assigning

the maximum value z to (x,y) such that (x,y,z) ∈Da,b,c,0,ω .
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0 0 –1–1–2–2 –2 –3–3–3 –4–4–5–5
0 0 0 –1–1–2 –2 –2–3–3 –3–4–4–5
1 0 0 0 –1–1 –1 –2–2 –3–3–3–4–4
1 1 0 0 0 –1 –1 –1–2–2 –3–3–3–4
2 1 1 1 0 0 –1 –1–1 –2–2–2–3–3
2 2 1 1 1 0 0 –1–1–1 –2–2–2–3
3 2 2 1 1 1 0 0 0 –1–1–2–2–2
3 3 2 2 1 1 1 0 0 0 –1–1–2–2
3 3 3 2 2 2 1 1 0 0 0 –1–1–1
4 3 3 3 2 2 2 1 1 0 0 0 –1–1

–1–2–2–2–3–3 –3 –4–4–5 –5–5–6–6
–1–1–1–2–2–3 –3 –3–4–4 –4–5–5–6
0 0 –1–1–2–2 –2 –3–3 –3–4–4–5–5
0 0 0 –1–1–1 –2 –2–3–3 –3–4–4–4
1 1 0 0 0 –1–1 –2–2 –2–3–3–3–4
2 1 1 0 0 0 –1 –1–1–2 –2–3–3–3
2 2 1 1 1 0 0 0 –1–1–2–2–2–3
3 2 2 2 1 1 0 0 0 –1–1–1–2–2
3 3 3 2 2 1 1 1 0 0 0 –1–1–2
4 3 3 3 2 2 2 1 1 0 0 0 –1–1

FIGURE 11.14 Height maps: D6,7,16,0,16 on the left; D6,9,16,0,16 on the right [134].
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FIGURE 11.15 Remainder maps for the naive planes shown in Figure 11.14 [134].

Figure 11.14 illustrates two height maps of naive planes Da,b,c,0,c. Let
La,b,c(z0) = {(x,y) ∈ Z

2 : (x,y,z0) ∈ Da,b,c,0,c} where z0 ∈ Z. Then La,b,c(z0) is an
arithmetic line D(a,b,µ,ω) with µ = −cz0 and ω = c. D(a,b,µ,ω) is standard if
c= a+b, “thicker than standard” if c> a+b, and “thinner than standard” but “thicker
than naive” if c < a+ b. The arithmetic lines La,b,c(z0) with z0 ∈ Z partition Z

2 into
equivalence classes that are all translation equivalent3 iff a and b are relatively prime
[134]. Figure 11.14 shows height maps for a case in which a and b are relatively prime
(left) and a case in which they are not relatively prime (right).

0 < a ≤ b ≤ c implies that the projections L(x)
a,b,c(x0) = {(y,z) ∈ Z

2 : (x0,y,z) ∈
Da,b,c,0,c} and L(y)

a,b,c(y0) = {(x,z) ∈ Z
2 : (x,y0,z) ∈Da,b,c,0,c} (where x0,y0 ∈ Z) are

naive lines with approximate intercepts µ = −ax0 and µ = −by0, respectively. The
arithmetic lines L(x)

a,b,c(x0), where x0 ∈ Z, partition Z
2 into translation-equivalent

equivalence classes. The same is true for the arithmetic lines L(y)
a,b,c(y0) for y0 ∈ Z;

see [253, 255].
Naive planes can also be represented by arrays of remainders [253]. Let

(x,y,z) ∈ Da,b,c,0,c. We assign value ax+ by+ cz to grid point (x,y) (i.e., its re-
mainder modulo c). This results in a remainder map Ra,b,c. Figure 11.15 shows two
examples. On the left, we have a= 6 and b= 7 (i.e., the integers are relatively prime,
which results in remainders in the entire range 0, . . . ,15 for c= 16). On the right, we

3. A,B ⊂Z
n are translation equivalent iff there is a translation vector t ∈Z

n such that A = t⊕B.
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have a= 6 and b= 9 (i.e., the remainders in each equivalence class of the depth map
are all equal modulo gcd(6,9) = 3).

Proposition 11.1 Ra,b,c =Rc−a,b,c =Ra,c−b,c =Rc−a,c−b,c (0< a≤ b≤ c).

This is called the Symmetry Lemma in [134], which defines a special type of
symmetry between naive planes Da,b,c,0,c, Dc−a,b,c,0,c, Da,c−b,c,0,c, and Dc−a,c−b,c,0,c.
If a or b is larger than c/2, the Symmetry Lemma allows us to consider without loss
of generality symmetric naive planes Da,c−b,c,0,c or Dc−a,c−b,c,0,c for which the first
two parameters do not exceed c/2.

11.2.5 Periodicity

A position (i, j) in an array X = (X(i, j))0≤i,0≤j is defined by a row i and a column
j; X(i, j) is the element of X at position (i, j). The elements of X are letters in an
alphabetA. We continue to assume 0≤ α1,α2 ≤ 1; hence, in a digital plane quadrant,
we have A= {0,1}.

Let S ⊆ Z
2
+ = {(i, j) ∈ Z

2 : i, j ≥ 0}. The restriction X[S] of X to positions in S
is called a factor of X on S.

Definition 11.6 A vector v in Z
2 is called a symmetry vector for X and S iff

X(i, j) = X(v + (i, j)) for all (i, j) ∈ S such that v + (i, j) ∈ S. v is called a
periodicity vector or a period for X and S iff, for any integer k, the vector kv is
a symmetry vector for S.

An infinite arrayX on Z
2
+ is called 2D-periodic iff there are two linearly independent

vectors u and v in Z
2 such that w = iu + jv is a period for X for any (i, j) ∈ Z

2 and
w ∈ Z

2
+. X is called 1D-periodic iff all periods of X are parallel vectors.

LetX be a 2D-periodic infinite array on Z
2
+. The set of symmetry vectors ofX

defines (by additive closure) a subgrid Λ of Z
2. Any basis of Λ is a basis of X .

We say that an infinite array X on Z
2
+ is tiled by a (finite) rectangular factor W

if X is a pairwise disjoint repetition of W . Evidently, any 2D-periodic array on Z
2
+

can be tiled.

Theorem 11.11 Any rational digital plane quadrant is 2D-periodic. Any irra-
tional digital plane quadrant is either 1D-periodic or aperiodic.

Any basis of a rational digital plane quadrant defines a lattice with cells that
are parallelograms. Let ax+ by+ cz = d be a rational plane in which a, b, c, and d
are integers and a, b, and c are relatively prime.
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Theorem 11.12 The lattice cells of all bases of a rational digital plane quadrant
have constant area max{|a|, |b|, |c|}.

Let X be an array on Z
2
+. An m×n S ⊂ Z

2
+ defines an m×n-factor of X . Any

rectangular factor of an irrational digital plane is also a factor of a rational plane.
Let PX(m,n) be the number of m×n-factors of X . For example, PX(0,0) = 1

for anyX , andPX(1,1) is the number of distinct letters inX . (In our case,A= {0,1}.)
PX generalizes the complexity function P (w,n) defined in Chapter 9.

An array X on Z
2
+ is called Sturmian iff it is an infinite array of an irrational

digital plane where both slopes, α1 and α2, are irrational numbers. The height h(W )
of an m×n array W is the number of 1s in W . If V and W are of the same size,
δ(V,W ) = |h(V )−h(W )| is called their balance. A set of arrays X of identical size
is called balanced iff δ(V,W ) ≤ 1 for all pairs V,W of the arrays. An infinite array
X on Z

2
+ is called array!balanced iff its set of m×n-factors is balanced. An array X

on Z
2
+ is called eventually periodic iff there exist integers k and l such that the array

(X(i, j))k≤i,l≤j (which is a suffix of X) is periodic.

Theorem 11.13 Let X be a digital plane quadrant. If PX(m,n)≤mn for some
m,n≥ 0, X has at least one periodicity vector.

In summary, a digital plane quadrant is 2D-periodic iff it is rational iff PX is
bounded; it is Sturmian iff it is irrational and not 1D-periodic.

11.2.6 Connectivity of arithmetic planes

An arithmetic line becomes 8-disconnected iff ω <max{|a|, |b|}. Similarly, an arith-
metic plane Da,b,c,µ,ω no longer has grid points on all of the vertical grid lines iff
ω <max{|a|, |b|, |c|}.

A standard arithmetic plane is 26-separating and gapfree; it has no 6-, 18-,
or 26-gaps. A naive arithmetic plane is 6-separating but not necessarily 18- or 26-
separating; it can have 18- or 26-gaps. Note that, if S is not α-connected, any of its
subsets is α-separating in S.

Theorem 11.14 Let Da,b,c,µ,ω be an analytic plane with 0≤ a≤ b≤ c and 0≤ µ.
If ω < c, the plane has 6-gaps; if c≤ ω < b+c, it has 18-gaps and is 6-separating
in Z

3; if b+ c ≤ ω < a+ b+ c, it has 26-gaps and is 18-separating in Z
3; and if

a+ b+ c≤ ω, it is 26-gapfree.

In Chapter 9, we formulated equivalences between 8-gap-freeness and 4-connected-
ness (4-gap-freeness and 8-connectedness) for arithmetic lines; this cannot be done
for arithmetic planes. Connectivity is a translation-invariant property. Without loss
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FIGURE 11.16 Height map of the naive plane D5,7,11,0,11. The 8-connected set of
pixels (shown in gray) is a projection of a 26-disconnected set of voxels of this plane
[134].

of generality, we consider grid-line intersection digitizations of rational planes ax+
by+ cz = 0 that are incident with the origin. Let Da,b,c,ω be the corresponding
arithmetic plane with thickness ω ∈ Z+ where a,b,c ∈ Z and gcd(a,b,c) = 1. In the
case of a naive plane (ω = max{|a|, |b|, |c|}), we simply write Da,b,c.

Definition 11.7 Ωα(a,b,c) = max{ω : Da,b,c,0,ω is α-disconnected} is called
the α-connectivity number of the class of all arithmetic planesDa,b,c,0,ω such that
ω ∈ Z+ where α ∈ {6,18,26} and a,b,c ∈ Z.

ω= Ωα(a,b,c)+1 is the smallest integer such thatDa,b,c,0,ω isα-connected. Evidently,
α ≥ β (α,β ∈ {6,18,26}) implies Ωα(a,b,c) ≤ Ωβ(a,b,c). Naive planes are always
26-connected (i.e., Ω26(a,b,c)≤max{|a|, |b|, |c|}), and standard planes are always 6-
connected (i.e., Ω6(a,b,c)≤ |a|+ |b|+ |c|). Connectivity numbers remain unchanged
when a, b, and c are permuted (e.g., Ωα(a,b,c) = Ωα(b,c,a)).

Exercise 7 in Section 11.5 defines “jumps” and shows that they exist in naive
planes if c < a+ b. Figure 11.16 illustrates such a naive plane in which 8-connected
sets of pixels in the height map may be projections of 26-disconnected sets of voxels
in the plane. The Symmetry Lemma (Proposition 11.1) allows us to transform such
naive planes into symmetric (in the sense of the Lemma) naive planes for which
c < a+ b is no longer true. This implies the following:

Proposition 11.2 Ω26(a,b,c) = Ω26(c− a,b,c) = Ω26(a,c− b,c) = Ω26(c− a,c−
b,c) if a, b, and c are relatively prime integers such that 0< a≤ b≤ c.
A graceful plane is a naive plane for which c= a+b; see [133]. Proposition 11.2

and Exercise 12 in Section 11.5 imply that Ω26(a,b,a+ b) = b−1. The main result in
[134] is as follows:

Theorem 11.15 Let a, b, and c be relatively prime integers such that c ≥ a+ 2b
and a > 0. Then Ω26(a,b,c) = c−a− b+gcd(a,b)−1.
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This theorem, combined with Proposition 11.2, allows us to derive other solutions,
such as the following:

Ω26(a,b,c) = b−a+gcd(a,c− b)−1 if c < 2b−a
Ω26(a,b,c) = b+a− c+gcd(c− b,c−a)−1 if c < a+ b/2
Ω26(a,b,c) ≥ c−a− b+gcd(a,b)−1 if c < a+2b and a 
= b

Theorem 11.16 If a+ b < c < a+2b, then a−1≤ Ω26(a,b,c)≤ b−1.

A more instructive understanding of the the plane connectivity issue can be
obtained by generating remainder maps Ma,b,c for thicknesses ω in the range from
0 to c. The patterns in Figure 11.17 visualize the pixels that belong to M11,19,35 for
ω = 1, 2, 6, 7, 11, 12, 13, 20, and 35. We have Ω26(11,19,35) = 12. By varying the
parameters a, b, c, and ω, we can calculate a family of patterns, some of which have
interesting (local or recursive) configurations. Studying their properties might be of
interest for studying tilings of the plane.

11.3 Digital Planes in the 3D Incidence Grid

A cellular digital plane can be defined by considering a digital plane (or naive plane)
in the grid cell model. It can also be defined by outer Jordan digitization of a plane Γ
in the grid cell model. However, if Γ passes through a grid vertex or contains a grid
edge, outer Jordan digitization produces “locally thicker” cellular planes.

The frontier of a cellular digital plane consists of two “parallel layers” of frontier
faces that define an upper and a lower digital frontier plane in the incidence grid C3;
they are analogous to the lower and upper digital rays or lines defined in Chapter 9.

Each 0-cell of a 3-cell c is incident with three 2-cells of c. The normals to these
2-cells form a tripod, and there are eight different tripods. All of the face normals of
any upper or lower digital frontier plane belong to one tripod.

Definition 11.8 S ⊂ C
(2)
3

is called a digital plane of 2-cells in the incidence
grid iff it is an upper or lower digital frontier plane defined by a cellular digital
plane.

A finite 1-connected subset of a digital plane of 2-cells is called a digital plane
segment (DPS) in the 3D incidence grid.

In the plane (see Theorem 9.5), a 4-path is a 4-DSS iff it is contained between
or on a pair of supporting lines with a main diagonal distance of less than

√
2. Let G

be a finite 1-connected set of faces of grid cubes. Let the faces be contained between
or on a pair of parallel planes. The main diagonal v = (±1,±1,±1) of a pair of parallel
planes is the diagonal direction (one of the eight possible directed diagonals in the
3D grid with length ‖v‖ =

√
3) that has the greatest dot product (inner product),
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FIGURE 11.17 Remainder maps M11,19,35 for (from top left to bottom) ω = 1, 2, 6, 7,
11, 12, 13, 20, and 35. (Courtesy of Valentin Brimkov, SUNY Fredonia.)

with the outward pointing normal n to the planes. If there is more than one such
direction, we can choose one of them arbitrarily. The distance between the planes in
the main diagonal direction is called their main diagonal distance.

Proposition 11.3 A finite 1-connected set of frontier faces of a set of 3-cells is a
DPS iff all of the face normals belong to one tripod and the faces are contained
between or on a pair of parallel planes with a main diagonal distance of less
than

√
3.
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FIGURE 11.18 A DPS; the main diagonal distance between the two parallel planes is
less than

√
3.

In other words, a DPS in the incidence grid can be assumed to be a 1-connected
set of 2-cells in the frontier of a 6-region of voxels. If considered together with its
incident 0- and 1-cells, it is a 2D Euclidean cell complex. A simply connected DPS
consists of faces that have a union that is homeomorphic to the unit disk (i.e., it is a
1- simply connected set of 2-cells). Figure 11.18 shows a DPS; n is its normal, and v
is the vector in the main diagonal direction.

If we are given the frontier of the projection of the DPS onto one of the two
parallel planes, it is possible to reconstruct the DPS in 3D space (up to a translation
in the normal direction to the planes).

Let v be the vector of length
√

3 in main diagonal direction, and let n be an
outward pointing normal to the pair of parallel planes. Let p be a grid vertex incident
with the DPS, and let v ·p = dp be the equation of a plane incident with p that has
normal v. In accordance with Proposition 11.3, the vertices p of the grid faces of a
DPS must satisfy the following:

0≤ n ·p−dp < n ·v (11.5)

Let n = (a,b,c). The scalars a, b, and c can have different signs, but, because n
and v must point in the same direction “modulo a directed diagonal,” we can assume
without loss of generality that a,b,c > 0. Equation 11.5 then becomes the following:

0≤ ax+ by+ cz−dp < a+ b+ c (11.6)

Hence, a DPS in the grid-cell model is equivalent (by mapping vertices into grid
points) to a finite 6-connected set of grid points in a standard digital plane (see
Definition 11.5) for which ν = dp and ω = a+ b+ c.

In addition to checking the tripod condition (which is easy), DPS recognition
(in the grid cell model) can be performed by answering the following question: Given
n vertices {p1,p2, . . . ,pn}, does each pi such that di = v ·pi satisfy Equation 11.5? Or,
to put it another way, do we have the following?

0≤ n ·pi−di < n ·v for i= 1, . . . ,n (11.7)
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11.4 DPS Recognition and Generation

Theorem 11.9 was used in [1028] to suggest a DPS recognition algorithm based on
convex hull separability. The recognition of DPSs in grid-adjacency models (i.e.,
DPSs regarded as subsets of Z

3) is also discussed in [1089] (using the characterization
by evenness given previously), [549] (using least-square optimization), and [157, 716,
823, 1100] (using linear programming). [255] discusses the use of arithmetic “limits.”
ax+ by+ cz = µ and ax+ by+ cz = µ+ω are called the lower and upper supporting
planes of an arithmetic plane; a test for the existence of these planes provides another
method of designing algorithms for DPS recognition. Supporting planes are called
leaning planes in arithmetic geometry.

[341] suggests a method of recognizing DPSs in the incidence grid based on
conversion of Equation 11.5 into a system of linear inequalities by eliminating the
dps:

n ·pi−n ·pj < n ·v for i, j = 1, . . . ,n (11.8)

This system of n2 inequalities can be solved in various ways. [341, 340] uses the
Fourier-Motzkin algorithm. We can also use Fukuda’s cdd algorithm4 for solving
systems of linear inequalities by successive intersection of halfspaces defined by the
inequalities.

11.4.1 An incremental DPS algorithm

We will next describe an incremental algorithm [550]. Typical timing results for these
three algorithms are shown in Figure 11.19 for a polyhedrized digital ellipsoid at grid
resolutions ranging from 10 to 100.

Algorithm KS2001

Π is called a supporting plane of a finite set of faces if the faces are all in one of the
closed halfspaces defined by Π and their diagonal distances to Π are all less than√

3. If the set of faces has n≥ 4 vertices, Π must be incident with three noncollinear
vertices, and all the other vertices must lie on or on one side of Π. A set of faces can
have more than one supporting plane.

The incremental algorithm repeatedly updates a list of supporting planes; if
this list is empty, the set of points is not a DPS. The updating step is as follows:
if we have n ≥ 0 points, we add an (n+ 1)st point iff the list of supporting planes
remains nonempty. To test this, we first check the new point against each of the
listed supporting planes to see if it is on the same side of the plane as the other points
and within the allowed diagonal distance. We delete the plane from the list if these
conditions are not satisfied. We then construct new supporting planes by combining
the new point with pairs of existing points. A new supporting plane is added to the

4. http://www.cs.mcgill.ca/˜fukuda/soft/cdd home/cdd.html
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FIGURE 11.19 Running times of three DPS recognition algorithms on a PIII 450
running Linux. (Laurent Papier provided the Fourier-Motzkin program.)

list if all n+1 points satisfy the conditions. The set of points is accepted as a DPS iff
the final list of planes is not empty. The updating step is time-efficient, because we
can restrict the tests to points that have extreme positions in any of the eight diagonal
directions.

A surface consists of edge-connected faces. These faces can be represented by a
face graph that has nodes that are the faces and in which each node has four pointers
to its edge-adjacent faces. The face graph can be constructed using, for example, the
Artzy-Herman surface tracing algorithm.

We can perform a breadth-first search of the face graph to agglomerate the
faces into DPSs. This process is implemented using two queues. The first is called
a seeds queue; it contains all of the faces found by the search that do not belong to
any yet recognized DPS. A face is inserted into the seeds queue if it cannot be added
to the current DPS. The next DPS starts from a face chosen from the seeds queue;
the choice of this face determines how the DPS “grows.” The second queue is used
to maintain the breadth-first search. “Growing a DPS” looks like propagating a
“circular wave” on the surface from a center at the original seed face.

We try to add an adjacent face to the current DPS by testing each vertex of
the face that is not yet on the DPS. If all four vertices pass the test, the face is added
to the DPS and deleted from the seeds queue (if it was on that queue). Otherwise,
we insert the face into the seeds queue and try another adjacent face. If no more
adjacent faces can be added, we start a new DPS from a face on the seeds queue.

A list of the frontier vertices of each DPS is maintained during the agglomera-
tion process, not only to simplify the tests for whether a new vertex can be added but
also to maintain the topologic equivalence of the DPS to a unit disk. This ensures
that the frontier always remains a simple polygon so that the algorithm constructs
only simply connected DPSs. (This condition can be removed, if desired.)

Figure 11.20 illustrates results of the agglomeration process for a digitized
sphere and for an ellipsoid with semiaxes 20, 16, and 12. Faces that have the same
gray level belong to the same DPS. The numbers of faces of the digital surfaces of
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FIGURE 11.20 Agglomeration into DPSs of the faces of a sphere and an ellipsoid
(with a grid resolution of h= 40).

FIGURE 11.21 A polyhedrized sphere and ellipsoid.

the sphere and ellipsoid are 7584 and 4744, respectively. The numbers of DPSs are
285 and 197; the average sizes of these DPSs are 27 and 24 (faces).

To complete the polyhedrization process we take all of the face vertices that are
incident with at least three of the DPSs as the vertices of the polyhedron. Figure 11.21
shows the final polyhedra for the sphere and ellipsoid. Note that these polyhedra
are not simple; their surfaces are not hole-free.

Restricting the depth of the breadth-first search changes the polyhedrization
from global to local and results in “more uniform” polyhedra. Figure 11.22 shows
results when the depth is restricted to 7. The number of small DPSs is reduced, and
the sizes of the DPSs are more evenly distributed. The numbers of DPSs are 282 and
180, and their average sizes are 27 and 26; note that these are nearly the same as in
the unrestricted case.
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FIGURE 11.22 The polyhedrized sphere and ellipsoid when the breadth-first search
depth is restricted to 7.

11.4.2 DPS generation algorithms

Consider the task of obtaining a gap-free digitization of the surface of a simple
polyhedron “face-by-face.” If every polygonal patch on the surface of the polyhedron
is approximated (digitized) individually (!) by a naive plane, gaps may result “near
the edges” of the polyhedron.

A method from [62] for solving this problem is based on reducing the 3D prob-
lem to a 2D one by projecting the polygonal patches onto suitable coordinate planes,
digitizing the resulting 2D polygons (in the thinnest way possible, in the terminol-
ogy of arithmetic geometry), and then finally calculating the 3D digital polygons as
subsets of naive planes.

Another method [135] approximates every 3D polygon by a digital polygon,
again in the thinnest way possible, and approximating the edges of the polygons by
3D DSSs. The resulting digitization is “optimally thin” in the sense that removing
any voxel from the digital surface produces a gap. A third method [133] is based
on using graceful planes and lines, respectively, to approximate the surface polygons
and their edges. The algorithms in the cited references run in times that are linear in
the number of generated surface voxels.

11.5 Exercises

1. Prove statements 11.1 through 11.4.

2. If the projections of a 26-DSS are an 8-DSS with normal (x1,x2) in the (x= 0)-
plane and an 8-DSS with normal (y1,y2) in the (y = 0)-plane, what is the normal
of the 26-DSS?
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3. Generate the following circles γ(t) in R
3, where Rx and Rz are 3×3 matrices of

rotations around the x- and z-axes, respectively:

γ(t) =Rx(η1)Rz(η2)Rx(η3)

⎛

⎝
r · cos t
r · sin t

0

⎞

⎠ where 0≤ t < 2π

The angles η1, η2, and η3 and the radius r are randomly chosen from uniform
distributions in [0,2π) and [0·5,1], respectively. Perform grid-plane intersection
digitization of each generated circle using varying grid sizes (e.g., between 1003

and 10003). Implement 3D DSS segmentation and 3D MLP approximation, and
compare their run times.

4. (Open problem) Is there a simple 2-curve such that none of the vertices of its
3D MLP is a grid vertex (i.e., none of these vertices is an endpoint of a critical
edge)?

5. Give an example of a 2-curve with a 3D MLP that has at least one vertex that
has an irrational coordinate.

6. A straight line in 3D space can be represented as the intersection of two planes
aix+ biy+ cic+ d1 = 0 (i = 1,2). Give an example in which the intersection
of two digital planes (i.e., two naive planes) obtained by grid-line intersection
digitization of two distinct planes is 26-disconnected.

7. Two voxels p = (i, j,k) and q = (i+ 1, j + 1,k+ 2) in the grid cell model (see
the following figure) define a jump. Show that a naive plane Da,b,c,µ,c (where
c= max{a,b,c}) has a jump iff c < a+ b.

p

q

8. There are four possible factors of size 2×2 of a digital plane quadrant for which
0≤ α1,α2 ≤ 1, and α1 ≤ α2. Which pairs of these factors can be contained in the
same rational digital plane quadrant?

9. Prove that a rational digital plane quadrant has at most mn distinct factors of
size m×n.

10. Implement algorithm KS2001 and test it on digitized ellipsoids with varying semi-
axes 0 < a,b,c≤ 1 for different grid resolutions, for example, h= 100, . . . ,1000.
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Study the impact of different search strategies and search depth thresholds on
the run time and on the resulting DPS segmentation.

11. Design a DPS approximation algorithm along the following lines: incrementally
calculate the 3D convex hull of a set of grid points to which one 6-connected
grid point is added at a time, and incrementally update the minimum width of
the convex hull as long as the minimum width is below a predefined threshold
(e.g.,

√
3 or larger, allowing for “minor variations”).

12. Prove that the connectivity number Ω26 satisfies (i) Ω26(a,a,a) = 0, (ii) Ω26

(0, b,c) = c − 1, (iii) Ω26(a,b,b) = b − 1, (iv) Ω26(a,a,c) = c − a − 1, and
(v) Ω26(a,b,2b) = b−1, where a, b, and c are relatively prime integers such that
0< a≤ b≤ c.

11.6 Commented Bibliography

For reviews of 3D straight lines, see [210] (in computer graphics) and [480] (in 3D
picture analysis).

Theorem 11.1 is from [511]; for a generalization to straight lines in Z
n, see [540].

The digitization of hyperplanes in arbitrary dimensions is discussed in [540].
[325] defines 3D DSSs in arithmetic geometry using Diophantine inequalities.

A more specific definition is given in [203] for the purpose of deriving an efficient
3D DSS recognition algorithm. Sections 11.1.2 and 11.1.3 review parts of [203]. The-
orem 11.3 is proved in [253]; see also [256].

Algorithm DR1995 is used in [203] to recognize 26-DSSs (see Section 11.1) and
to estimate the lengths of 3D curves; see Chapter 12 for estimation results.

A brief description of the iterative 3D MLP algorithm and some preliminary
experimental results were presented in [148]. The difficulty of the subject is illus-
trated by the fact that the Euclidean shortest path problem (given a finite collection
of polyhedral obstacles in 3D space and a source and a target point, find a shortest
obstacle-avoiding path from source to target) is known to be NP-hard [162]. How-
ever, there are polynomial-time algorithms for the approximate Euclidean shortest
path problem; see [198]. The convergence behavior of the algorithm in [148] is not
yet known; it may converge to the exact 3D MLP, or it may approximate it up to some
error. Experiments performed so far suggest that the algorithm always converges to
the correct 3D MLP, and time measurements support the hypothesis that its runtime
behavior is asymptotically linear in the number of input 3-cells, even if a very small
threshold is used for termination.

[171] describes an algorithm for estimating 3D straight lines based on projec-
tions onto a plane.

Row- and column-wise step codes of digital planes were introduced in [129].
For the recognition of digital planes, see [519]; for the recognition of digital naive
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planes, see [1099, 1100]. For the approximation of linear and affine functions, see
[866, 871]. For arithmetic straight lines and planes, see [341].

Theorems 11.5 and 11.6 are from [513]. Definition 11.3 is from [517]. Evenness
of digital arcs was studied in [454] and generalized in [1088] to evenness of sets in
Z

n. Theorem 11.7 is proved in [1088].
For the definition of supporting planes and Theorem 11.8, see [513]. Theo-

rem 11.9 is from [1028], where it is proved for digitized hyperplanes of any dimen-
sion.

An arithmetic representation of digital planes was introduced in [332]. For a
study of digitized hyperplanes of arbitrary dimension based on pairs of Diophan-
tine inequalities, see [23]. Definition 11.5 and Theorem 11.10 are from [848]. For
Theorem 11.14, see [23], which actually discusses the general n-dimensional case:

Theorem 11.17 LetP =P (b,a1,a2, . . . ,an,ω) = {x∈ Z
n : 0≤ b+∑n

i=1 aixi <ω}
be a digital hyperplane, where b≥ 0, ai≥ 0 for all iandai≤ ai+1 for 1≤ i≤n−1.
Then, if ω < an, the digital hyperplane has (n− 1)-gaps. For 0 < k < n, if∑n

i=k+1 ai ≤ ω <
∑n

i=k ai, the digital hyperplane has (k− 1)-gaps and is k-
separating. If ω ≥∑n

i=1 ai, the digital hyperplane is gapfree.

This theorem answers the question about the maximal thickness ω for which α-gaps
appear. Analytic definitions of digital hyperplanes can also be based on real parame-
ters b,a1, . . . ,an; this allows us to characterize digital planes that have irrational slopes
(compare Theorem 11.10) with arithmetic planes defined by at least one irrational
parameter.

In [129], V.E. Brimkov extended periodicity studies in the theory of words
(Chapter 9) to 2D words based on [18, 351]. Section 11.2.5 briefly reviews his work.
[849] proves that PX(m,n) ≤mn if X is a rational digital plane quadrant (see Ex-
ercise 9). Section 11.2.6 reviews [134]. This report also gives an algorithm for com-
puting Ω26(a,b,c), which has a runtime (measured in arithmetic operations) that is
O(a logb).

The incremental algorithm KS2001 in Section 11.4, including its derivation
and experimental results, was published in [550]. See also [796] for polyhedrization
algorithms.

Exercise 3 describes an experiment reported in [149]. For Exercise 6, see
[62, 255]. Exercise 7 is from [133]. For Exercise 12, see [134].
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3D Arc Length, Surface Area,
and Curvature

Length and curvature estimation for arcs in 2D spaces were treated in Chapter 10.
This chapter begins by discussing length, curvature, and torsion estimation for
arcs in 3D spaces. It then discusses how the area or curvature of a surface can
be estimated using either polyhedrization of the surface or estimation of the
surface normal. Estimation methods can be classified as local or global; such a
classification can also be used in other contexts. Estimators can be evaluated
in terms of their multigrid convergence and their computational complexity.
Local methods are fast, but their accuracy is limited. Global methods are more
complex, but they can potentially provide accurate estimates.

12.1 3D Arcs

This section discusses estimation of arc length, curvature, and torsion for 3D arcs
from their grid-plane intersection or outer Jordan digitizations. Grid-plane methods
use 3D chain code representations or DSS approximation; Jordan methods use MLP
approximations (see Chapter 11).

12.1.1 Arc length estimation

Grid-plane intersection digitization of a curve or arc γ(t) in R
3 using a grid of

resolution h > 0 results in a 26-curve ρh,26(γ) of grid points in Z
3
h generated by

incrementing t. This 26-curve has the following length:

Lssl(ρh,26(γ)) =
1
h
·
(
n1 +

√
2n2 +

√
3n3

)
(12.1)

Here n1 counts isothetic steps of length 1, n2 counts diagonal steps of length
√

2, and
n3 counts diagonal steps of length

√
3. This sum of step lengths Lssl is a local length

estimator for γ.

409
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Statistic analysis of step distributions was used in [523] to design an unbiased
length estimator based on step counts. Minimization of the rms error (the square
root of the mean squared error) led to the following estimator:

Erms(ρh,26(γ)) =
1
h
· (0·9016 ·n1 +1·289 ·n2 +1·615 ·n3) (12.2)

Comparison of this local length estimator with the two global length estimators de-
scribed below is analogous to comparison ofEchm (see Section 10.2.1) withE8ss and
Emlp in the planar case. Erms is advantageous for grid resolutions of up to about 200
for digitized curves of diameter 1; see Exercise 1 in Section 12.4.
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The linear online 3D DSS segmentation algorithm DR1995 (see Section 11.1.3)
provides a global length estimator Edss: the length of the polygonal arc or curve
where vertices are the endpoints of the resulting DSSs. [203] proves multigrid con-
vergence of Edss to the true length for a class of 3D curves when grid-plane inter-
section digitization is used. Speed of convergence and maximum error bounds for
Edss have not yet been determined, but experimental studies indicate linear con-
vergence speed; see Figure 12.1. [203] illustrates the linear decrease of the relative
error in the case of a digitized ellipse. A DSS segmentation depends on the choice
of starting point; this creates some variations in the length estimates. The upper plot
in Figure 12.1 shows 95% confidence intervals (vertical bars) for all possible DSS
segmentations of the digital circle.

Another global length estimator,Erba, is provided by applying the rubber band
algorithm of Section 11.1.5 to the outer Jordan digitization of γ. This algorithm
approximates the minimum-length polygonal arc or polygon inscribed in γ. The
length of this polygonal arc is the Erba estimate of the length of γ. This estimate
depends on the initialization method used in the rubber band algorithm and on the
threshold τ .

[149] reports on experiments using the threshold τ = L(Π0) ·10−6 for all three
initialization methods discussed in Section 11.1.5. The experiments used outer Jordan
digitizations of circles in R3 as defined in Exercise 3 in Chapter 11. In each experi-
ment (for each initialization method), the lengths of 25 digitized randomly generated
circles were estimated relative to the true circumference π. Figure 12.2 (left) shows
the resulting estimates of π. The error bars are centered at the medians of the esti-
mated lengths of the 25 circles; the lengths of the bars are twice the variance of the
estimates. Figure 12.2 (right) shows the differences in the estimated lengths when the
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TABLE 12.1 Means of the numbers of cycles of the rubber band algorithm that
were needed to achieve the threshold for different resolutions and initialization
methods.

Grid resolution

100 200 300 400 500

Init I 9·20 9·60 9·64 9·12 9·15
Init II 8·92 9·08 8·92 8·12 8·85
Init III 7·96 8·56 8·80 8·68 8·85

Grid resolution

600 700 800 900 1000

Init I 9·30 9·32 8·50 8·86 8·85
Init II 8·48 8·40 10·00 8·32 8·28
Init III 8·61 8·64 8·50 8·73 8·57

three initialization methods were used. These differences are on the order of 10
−4

;
this indicates convergence of the algorithm to a global minimum. The experiments
also showed differences on the order of 10

−4
in the positions of the vertices of the

approximated MLP.
The average numbers of iteration cycles of the rubber band algorithm in the

experiments are shown in Table 12.1 and Figure 12.3. Only a small gain results from
applying an initialization method that is more sophisticated than just placing the
vertices at grid points (i.e., centers of 3-cells) or at midpoints of critical edges. The
results also show that the number of cycles needed until the threshold was reached
did not depend on the grid resolution or on the type of curve that was digitized.

The rubber band algorithm hadO(n) runtime for a class of 2-curves ρ in which
each cube in ρ has exactly two bounding faces in ρ (see Figure 11.6, right). Test
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examples of such curves are very simple to generate. However, two questions re-
mained unanswered in [149]: Is the time complexity of the algorithm always O(n)?
Does the resulting polygon always converge to the MLP?

12.1.2 Estimation of curvature and torsion

Many of the methods of estimating the curvature of a digitized planar curve can be
adapted to curvature estimation for digitized curves in R

3. Curvature can then be
used to estimate torsion; see Section 8.2.

One way to estimate the curvature and torsion of a 26-curve ρ = 〈p0, . . . ,pn〉
is as follows: the symmetric maximum-length DSS pi−kpi+k (e.g., in the direction
from pi−k to pi+k, where the subscripts are added modulo n+1) centered at pi is an
approximation ti to the tangent vector at pi. The changes in direction between ti and
its predecessor ti−1 and successor ti+1 are approximations to ṫi, and the magnitude of
ti is an estimate of the curvature κi of ρ at pi. ni = ṫi/κi approximates the principal
normal at pi, and bi = ti × ni approximates the binormal. The magnitude of ḃi

approximates the torsion τi of ρ at ρi.
Such approximations can also be obtained using two maximum-length DSSs

that begin and end at pi; see algorithm HK2003 in Section 10.4.2 for curvature esti-
mation of digitized planar curves. Estimates of the derivative ṫi or ḃi can be based
on weighted sums of local differences.

As an example, consider the circular helix γ(t) = (acos t,asin t,bt) shown in
Figure 12.4. Its curvature and torsion are as follows:

κ(t) =
a

a2 + b2
and τ(t) =

±b
a2 + b2

.

The torsion is positive if the helix is turning counterclockwise (as seen from above)
and negative if it is turning clockwise. Values estimated by the methods described
above can be compared with these true values.

2

2π

z

a

b

FIGURE 12.4 A circular helix of diameter 2a and vertical spacing 2πb.
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12.2 Surface Area Estimation

In this section, we consider digital surfaces defined by sets of voxels in an adjacency
grid or by frontier faces of sets of voxels in an incidence grid.

12.2.1 Local methods

Let ϑh(S) be the frontier of a solid S. We can use local methods such as marching
cubes to approximate ϑh(S) by a set of polygonal faces. The sum of the areas of
these faces is an estimate of the surface area of S.

A marching cubes algorithm produces a set of triangles that form an isosurface
of S. Let pi = (xi,yi,zi) where 1≤ i≤ 3. Then the triangle p1p2p3 has the following
area,

1
2 | �p1p2× �p1p3|= 1

2

(
(a2b3−a3b2)2 +(a3b1−a1b3)2 +(a1b2−a2b1)2

)1/2

where (a1,a2,a3) = �p1p2 = (x2 − x1,y2 − y1,z2 − z1) and (b1, b2, b3) = �p1p3 = (x3 −
x1,y3 − y1,z3 − z1). Figure 12.5 shows a triangle for which p1 = (0,0,0.5), p2 =
(0.5,0,1), and p3 = (0,0.5,1), so a = (0.5,0,0.5), b = (0,0.5,0.5), a×b = (−0.25,−0.25,

0.25), and the area of the triangle is 1
8

√
3. The sum of the areas of the triangles is a

surface area estimate. Evidently, this estimate depends on the threshold T used to
compare the voxel values and on how the vertices of the triangles are chosen (at edge
midpoints or based on differences between T and the voxel values; see Section 8.4.2).

LetEMCU(S) be the sum of the areas of the triangles generated by the marching
cubes algorithm that uses the 23-case look-up table of [1126], where the vertices of
the triangles are at the midpoints of the grid edges. Because local length estimators
such as Echm and Ecoc (see Chapter 10) do not provide multigrid convergence to
the correct length, it is not surprising that EMCU(S) also fails to provide multigrid
convergence to the correct surface area.

The accuracy of surface area (and curvature) estimates can be improved by
replacing the linear approximation used in marching cubes algorithms with quadratic
or cubic approximations of 2× 2× 2 voxel configurations. The size of the voxel

0

.5

1

z

y

x

FIGURE 12.5 Example of a triangle in a polyhedrization produced by a marching
cubes algorithm.
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configurations can also be expanded to m×m×m (m≥ 2). Note that the radius of
the ball of influence of the marching cubes algorithm is R0 = m

2

√
3.

Surface area estimates can be compared with the surface area A(S) of the
isothetic polyhedral surface S. For grid constant 1, this is simply the number of
frontier faces in S.

It is of theoretic interest to study worstcase deviations in the surface area esti-
mates of digitizations of simple solids Θ. We calculate the Gauss digitization Gh(Θ)
for different rotational orientations of Θ in a 3D grid of resolution h > 1. Let Sh be
the digital surface of Θ in one of these orientations. Figure 12.6 shows, at the top, the
behavior of surface area A(Sh) when Θ is a cube and, at the bottom, the behavior
of the estimated values EMCU(Sh) when Θ is a cube, sphere, or cylinder. The figure
shows “obvious” convergence (as h→∞) in all cases. The (estimated) surface area
values depend on the rotational orientation of the cube. The deviation d is 0 for a
isothetic cube; there are only minor deviations due to the corners of the cube. For
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FIGURE 12.7 The digitization of a rectangular surface patch with slope (45
◦
,45
◦
,0
◦
)

is a regular staircase for any grid resolution h. The surface area of this staircase is
constant and is different from that of the original patch.

a cube that makes angles of 45
◦

with the x-, y-, and z-axes, d is as great as 85% for
A(Sn) and is about 9·5% for EMCU. The sphere also produces a deviation of about
9%.

The “staircase” example in Figure 12.7 illustrates the “repeated self-similarity”
of the digital surface of a regular solid. The isosurface produced by a marching cubes
algorithm for a digitized sphere shows similar patterns of repeated self-similarity.

Differences between isothetic (after digitization) and original surface areas are
analyzed in [643]. For a planar surface patch, the estimated surface area may be as
much as

√
3 times the true value; its deviation from the true value does not depend

on the grid resolution h but only on the position and orientation of the patch. If the
patch has normal (1,1,1) and passes through a grid point, its estimated surface area
is
√

3 · s. The value 0·85 reported above for the digitized cube that makes angles of
45
◦

with the x-, y-, and z-axes would decrease toward
√

3−1 = 0·7320508 for larger
values of h.

These results hold for any local polyhedrization technique; the deviation be-
tween the estimated surface area and the true value depends on position and orien-
tation and not on grid resolution h. The deviation is lower if the number of normal
vectors to the surface is greater; for example, it is lower for the triangular patches in
an isosurface produced by a marching cubes algorithm as compared with the case of
an isothetic cube [550], which has only six normals.

12.2.2 RCH methods

Let J−h (Θ) and J+
h (Θ) be the inner and outer Jordan digitizations of a solid Θ in a grid

of resolution h, and suppose J−h (Θ) is simply 6-connected. The relative convex hull
(RCH) of J−h (Θ) with respect to J+

h (Θ) is a polyhedron ΠRCH
h (Θ) that is contained

in J+
h (Θ) and contains J−h (Θ) (see Figure 12.8). The surface area of this polyhedron

is an estimate of the surface area of Θ.

Theorem 12.1 The surface area of ΠRCH
h (Θ) is a multigrid-convergent estimator

for the surface area of a solid Θ that has a smooth surface ϑΘ.
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FIGURE 12.8 Left: inner polyhedron. Middle: convex hull. Right: convex hull
relative to the outer polyhedron [1005].

There is no uniquely defined polyhedron of minimum surface area that is con-
tained in J+

h (Θ) and contains J−h (Θ). The introduction of additional vertices that
are not at grid vertex positions allows the surface area be reduced (see Exercise 2
Section 12.4). The MLP and the RCH are the same in 2D, but the minimum area
surface and the RCH are not the same in 3D.

Inner and outer polyhedral surfaces for a given digital surface S can be defined
in different ways. (i) We can let S be the frontier of the inner polyhedron, and we
can obtain the frontier of the outer polyhedron by Minkowski addition of a cube
[−1,+1]3. (ii) We can obtain the frontiers of the inner and outer polyhedra by
Minkowski subtraction and addition of a cube [−0·5,+0·5]3. Method (i) was used in
the experiments reported subsequently.

The efficient computation of RCHs for isothetic grid polyhedra is still an open
problem.

The RCH is the same as the convex hull if the inner and outer polyhedra
are the inner and outer Jordan digitizations of a convex set Θ, such as an ellipsoid
(see Section 8.3.3). An ellipsoid is defined by a triple a,b,c of radii and a rotational
orientation. The Gauss digitization of the ellipsoid at resolution h> 1, where the unit
of length is the largest radius of the ellipsoid, defines a digital surface Sh. Figure 12.9
shows examples of the convex hull Ce(Sh).

The surface area of an approximating convex polyhedron defines an estima-
tor ECH. The planar patches of this polyhedron are not limited in size; hence,

FIGURE 12.9 Examples of the convex hull of a rotated and Gauss-digitized ellipsoid.



418 Chapter 12 3D Arc Length, Surface Area, and Curvature

0

0.1

0.2

0.3

0.4

0.5

20 40 60 80 100

Grid resolution

D
ev

ia
tio

n 
fr

om
 tr

ue
 v

al
ue

20*6*12
20*10*12
20*16*16
20*16*12
20*16*2

FIGURE 12.10 Relative errors in the surface area estimates ECH for ellipsoids of
different sizes rotated by 45

◦
around the z- and y-axes.

this estimator is global. Figure 12.10 shows examples of relative deviations in ECH

that “obviously” go to zero.
Convex-hull–based surface area estimates ECH of digitized ellipsoids have rel-

ative errors lower than 1% for grid resolutions close to h= 50, but marching-cubes–
based estimatesEMCU have relative errors higher than 2% [550]. Figure 12.11 shows
relative errors for four grid resolutions. The convergence to the true value is slightly
slower for ellipsoids that have greater surface curvature (e.g., smaller minimum
radius).

12.2.3 NOR methods

Surface area can be calculated by the integration of surface normals (see
Equation 8.25) or surface gradients (see Equation 8.24). Normals and gradients can
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FIGURE 12.11 The relative errors in ECH for ellipsoids of sizes 20× 20× a (a =
1,2, . . .,20) digitized at grid resolutions h= 10,30,50,100 show that the convergence
is slightly faster if the ellipsoid is more spheric and thus has lower curvature.
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be estimated for digital surfaces by calculating tangents or tangent planes. Note that
a normal is orthogonal to a tangent plane and has one of two possible directions.

We generalize the method reported in Section 10.1.5 from length estimation
to surface area estimation. Let n0(f) be the unit normal to a frontier face f of a
digital surface S, and let n(f) be an estimated normal for f . n(f) can be estimated
using an approximating plane estimated by a global method (see Section 8.4.3). Care
must be taken that n(f) always points “outward” relative to the interior of S. The
discretization of Equation 8.25 leads to the following estimate:

ENOR(S) =
∑

f∈S

〈n0(f),n(f)〉 (12.3)

Let Θ be a solid that has a smooth (C(1)) surface ϑΘ. Let digh be a digitization
that maps Θ into a subset digh(Θ) of C

(3)
3,h

, and let Θh be the union of the 3-cells in

digh(Θ). The vertices of Θh converge to ϑΘ as h→∞. We expect that the estimated
normals to ϑ(Θh) should also converge to normals of ϑΘ, but this depends on how
the normals are estimated and on the “microstructure” of the surface.

Theorem 12.2 Let Θ be a solid that has a smooth surface. The surface area
estimates ENOR(ϑ(Θh)) are multigrid convergent to the area Aϑ(Θ) iff the
estimated normals on ϑ(Θh) converge to the normals of ϑ(Θ).

The following normal estimation algorithm [204, 331] ensures this convergence:

1. Calculate a 3D distance transform (see Section 3.4.2) for all voxels in Θh. ([204]
suggests the use of a chamfer metric because of its simplicity; for chamfer
metrics, see Section 3.2.3.)

2. Calculate a gradient map of the 3D distance map using differences in a 3×3×3
neighborhood to approximate the spatial derivatives. In particular, calculate
gradient vectors at all of the frontier vertices or faces of Θh.

3. For each frontier vertex or face, estimate a normal by taking the mean of
selected gradient vectors in a spheric neighborhood in the frontier complex.
Use the following selection criteria:

(a) Gradients with directions that differ from that of the mean by more than
an a priori threshold (“outliers”) are excluded. This threshold defines the
“smallest details” that are taken into account.

(b) The spheric neighborhood must remain symmetric around the estimated
normal.

Note that the selection criteria depend on the mean normal direction, so the algorithm
is iterative. The initial value is the gradient at the voxel. The selective averaging
process is repeated for a fixed number of iterations or until the results at successive
iterations differ by less than a threshold.
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This estimation procedure converges to the normal field on ϑ(Θ) if Θ has a
smooth surface, the radius of the spheric neighborhood is O(

√
h), and the iterative

averaging process converges [204]. Figure 12.12 shows experimental comparisons
between ENOR, ECH , and EMCU for digitized spheres and right circular cylinders
(height = 2· radius +1). The estimates are also compared with theoretic results of
normal vector integration for the digitized spheres.

Calculating gradients at all voxel positions and performing iterations in (large)
spheric neighborhoods is not computationally efficient. As an alternative, an algo-
rithm for estimating tangents to digital curves [1096] can be used to estimate tangents
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to curves that are cross-sections (e.g., in the x-, y-, and x+y-directions) of a surface.
These tangents can also be used to estimate surface curvature (see Section 12.3).

12.2.4 DPS methods

A DPS-based surface area estimator is based on a partition of the given digital surface
S into a finite set of DPSs. We assume that the surface is defined by frontier faces
in the incidence grid. Two DPSs in the partition cannot share a 2-cell but can share
0- or 1-cells on their frontiers. The union of the 2-cells in the DPSs is the set of all
2-cells in S.

A DPS is a finite 1-connected set of 2-cells in C3 that have a union G that is
contained between or on two parallel planes Γ1 and Γ2; see Figure 11.18. A projection
of a DPSG in the normal direction to Γ1 and Γ2 is a polygonal region of Γ1. The area
aG of this region can be calculated using Equation 8.15. The sum of the aGs defines
an estimate EDPS(S) of A(S). The experiments reported in this section are based
on an implementation of algorithm KS2001 (see Section 11.4.1), which defines the
estimator EDPS .

Figure 12.13 compares the true surface area of an ellipsoid to its DPS-estimated
surface area for three rotational orientations. The search depth was restricted to 10.
For these ellipsoids, the ECH and EMCU estimates have relative errors of 3·22% and
10·80% for h= 100, whereas the relative error of theEDPS estimate is less than 0·8%.
All three estimates show a good tendency to converge as h→∞.

UnlikeECH,EDPS is applicable to nonconvex objects. Interestingly, the relative
error in the estimated surface area is smaller for nonconvex objects. Figure 12.14
shows (on the left) half of an ellipsoid that has an inner tangential ellipsoidal hole.
EDPS surface area estimates for this nonconvex solid in three rotational orientations
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FIGURE 12.13 Relative errors inEDPS surface area estimates for an ellipsoid in three
rotational orientations and for grid resolutions from h= 10 to h= 150.
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FIGURE 12.14 Left: A nonconvex solid. Right: relative errors of EDPS surface area
estimates for this solid in three rotational orientations.

are shown on the right. (In this experiment, the DPSs were not required to be simply
connected.)

Because the DPS estimator involves several processes (search, possibly with
restricted depth, and selection of first and subsequent “seed vertices”), it would be
difficult to prove theorems about its convergence behavior.

12.3 Surface Curvature Estimation

Curvature estimation is often based on polyhedrization. A local method might esti-
mate curvature using differences in the orientations of frontier faces that are incident
with a vertex p of S. A global method might search S to find a maximum-size planar
polygon (in a plane Γp) that approximates S “around” p; changes in the orientation
of Γp between adjacent vertices of S then provide estimates of curvature. Alterna-
tively, it might integrate the (oriented) difference between Γp and S; see Figure 8.4
for the 2D case.

Equation 8.25 also provides a method of estimating surface area based on
surface normals. Thus, estimating planes Γp around vertices p of a surface allows
us to estimate both curvature and surface area; see Section 12.2.3.

Estimation of the curvature of S at a point p is less computationally complex if
it is based on estimates of the curvature along a few curves that pass through p and are
contained in S; this allows us to apply the curvature estimation methods for curves
that were discussed in Chapter 10. The values of these curvatures can be used to
estimate the coefficients of the Hessian (see the end of Section 8.3.5); the eigenvalues
of the Hessian provide estimates of the mean, principal, and Gaussian curvature
of S.
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FIGURE 12.15 Curvature estimation errors for circles (lower curve) and spheres (up-
per curve) [434]. Sliding means were not used (e.g., the upper curve shows mean
errors in the mean curvature estimates for all of the frontier faces of the sphere).

Curvature estimates of S at p in a few directions (e.g., the positive x- and
y-directions) can also be used to calculate a mean value; this is not theoretically
justified (see the discussion in Section 8.3.5), but it provides a simple and efficient
method of detecting points of high curvature. We illustrate this approach by using
algorithm HK2003 (see Section 10.4.2) for surface curvature estimation [434].

Algorithm HK2003a

This algorithm allows us to estimate curvature along (planar) 8-curves. We apply it
to 8-paths of frontier vertices obtained by “slicing” the digital spheres by (x = i)-,
(y = j)-, or (z = k)-planes (i, j,k ∈ Z). Each frontier face is cut by exactly two
of these planes; this gives us two 8-paths that pass through the face. Suppose the
(x = i)-plane passes through the center point p of the face. The resulting tangent
tx at p is (0,cosθ,sinθ), where θ is the mean angle θi defined in algorithm HK2003.
Analogously, a cut by a (y = j)-plane results in ty = (cosθ,0,sinθ), and a cut by a
(z = k)-plane results in tz = (cosθ,sinθ,0).

Without loss of generality, assume that cuts by (x= i)- and (y = j)-planes were
used, which leads to curvature estimatesκx and κy . A 90

◦
rotation of the tangent vec-

tors tx and ty (e.g., in the positive direction, because below we are interested in angles
between normals) produces the (estimated) principal normals of the two 8-paths at p.
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For example, ty = (cosθ,0,sinθ) produces ny = (−sinθ,0,cosθ). The cross product
of tx and ty is an estimated unit normal np of the estimated tangent plane Πp. We
can then compute the normal curvatures κη1

and κη2 of the two 8-paths (η = 0 cor-
responds to one of the principal curvatures λ1 or λ2 at p; the angles η1 and η2 remain
unknown in general) using Meusnier’s theorem (see Section 8.3.5):

κη1 = κx cos(np,nx) and κη2 = κy cos(np,ny)

The mean of κη1
and κη2 is used as an estimate of the mean curvature and based on

the assumption that η1 and η2 differ by about 90
◦
.

Figure 12.15 compares curvature estimation errors for planar curves (applying
algorithm HK2003 to circles x2 +y2 ≤ r2 +r) with curvature estimation errors (using
the method described here) for spheres x2 + y2 + z2 ≤ r2 + r (r = 1, . . . ,100). The
digital circles and spheres were obtained by Gauss digitization of disks and balls. A
sliding mean was not used; the curves show exact values. The error decreases faster
in the 2D case. The 8-paths used in the 3D case were digitizations of circles of radius
≤
√
r2 + r. Smaller circles yield larger errors in the 2D case.
Curvature measurement can also make use of a statistic approach that was

invented by physicists [72, 147]. To estimate the mean curvature at a point p of
the surface of a solid, measure the volume of the intersection of the solid with a
small sphere centered about p. There is a relation between that volume and an
approximation to the mean curvature. The approach [99, 800] also works in 2D for
estimating the curvature of the frontier of a planar set.

12.4 Exercises

1. Perform a comparative accuracy analysis (estimated length vs true length as
a function of grid resolution) for the two programs for the global estimators
implemented in Exercise 3 in Section 11.5.

2. What is the outer Jordan digitization of γh(t) = (t,h2 cos(t/h)) in Z
2
h, where t∈R

and h > 0?

3. The line through the points (x1,y1,z1) and (x2,y2,z2) has the following equations:

x−x1

x2−x1
=

y−y1
y2−y1 =

z−z1
z2−z1

What are the projections of this line into the (x = 0)-, (y = 0)-, and (z = 0)-
planes? (Use the standard form z = axy+ bx, z = ayx+ by , and y = azx+ bz .)
Design a random line generator based on the random generation of (some of)
the parameters ax, . . . , bz .
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4. Give an example of a solid Θ (in some rotational orientation) for which the
estimation of surface area by adding the areas of the frontier faces of Gn(Θ)
results in values that converge to

√
3 ·A(S) as h→∞.

5. The figure below shows the inner Jordan digitization I of a solid. Let its outer
Jordan digitization O be identical to the Minkowski sum of I and [−1,+1]3 (one
layer shown by dashed cubes). Find a minimum-area polyhedral surface that is
contained in O \ I◦ and that has exactly two vertices on each of the bold edges
of the “tower”: one on the top (a grid vertex) and one somewhere below on the
edge. (Hint: Two vertices are shown on one of the bold edges.)

6. LetC(S) be the convex hull ofS, and letCB(S) be theB-convex hull ofS, where
S ⊆B ⊂ R

3 (see Definition 1.4; replace R
2 with R

3). Prove that (i) S ⊆CB(S)⊆
B∩C(S); (ii) S =CB(S) iff S isB-convex; and (iii)CB(S) =C(S) iffC(S)⊆B.

7. Prove that, if B and S are simple polyhedra and S ⊆ B ⊂ R
3, then CB(S) is a

simply connected polyhedron.

8. Suppose we approximate the normal at each convex corner of a digital surface
by the mean of the three vectors of the tripod. Show that this method does not
result in convergence of the normals (see Theorem 12.2).

9. Replace the breadth-first strategy in the incremental DPS recognition algorithm
with a depth-first strategy. Discuss how this affects the “shapes” of the resulting
DPSs when the input surface is a digital sphere.

10. Perform curvature estimation experiments (generalizing those illustrated in Fig-
ure 12.15) for ellipsoids with varying radii a, b, and c, and include “very flat”
ellipsoids. (Use algorithm HK2003a or another 3D curvature estimation algo-
rithm of your choice.)
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12.5 Commented Bibliography

Length estimation for simple digital curves in 3D adjacency grids based on weighted
local moves is also treated in [16, 481, 522]. The weights were optimized using the
BLUE approach, as discussed in Chapter 10 for the 2D case.

[203] proved a multigrid convergence theorem for the estimator Edss speci-
fied by algorithm DR1995. For a generalization of the global estimator Empo (see
Equation 10.3) to lines in R

3, see [177].
The problem of defining multigrid convergent methods of surface area mea-

surement has been studied for more than 100 years; see, for example, [695]. For
combinatorial surfaces, see [339, 849].

The areas of the isosurfaces generated by local polyhedrization techniques (see
Section 8.6) have behavior similar to those in the marching cubes case shown at the
bottom of Figure 12.6. The use of local tilings for surface area estimation is studied in
[55]. Global polyhedrization techniques (see Section 8.6) are potential candidates for
multigrid convergent surface area estimators. Theorem 12.1 is from the unpublished
manuscript [1004]. [1154] describes approximative calculation of MLPs: the frontier
of a 6-region is “sliced” in the x- or y-direction, and a triangulation of the surface is
created by connecting vertices of adjacent 2D MLPs of the resulting curves.

Normal-based surface area calculation is discussed in [294, 330]. Discrete in-
tegration of vector fields (see Section 12.2.3) was proposed in [641, 643], thereby
generalizing the tangent method of arc length estimation [305] to surface area esti-
mation. For multigrid convergence results for this method (including Theorem 12.2),
see [204]; for an earlier version of the normal estimator, see [331]. For a review of
normal estimation, see [1144]; for weighted averaging of normals of frontier faces,
see [185, 797]. Normals of “2D slices” of 3D surfaces were used in [643, 1048].

Curvature estimation is discussed in [145, 330] for digital surfaces, and in [56,
713, 714, 1091] for curved 2D manifolds. For curvature estimation in the frontier
grid (incidence grid), see [642]. Algorithm HK2003a is from [434]. Exercise 2 is an
example from [203].
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Hulls and Diagrams

The convex hull of a set can be regarded as a “domain of influence” of the set.
Similarly, the Voronoi diagram of a set of points defines “domains of influence”
of the points. This chapter discusses hulls and diagrams in Euclidean space or
in a grid, with emphasis on 2D. We discuss definitions of digital convexity and
digital Voronoi diagrams and give algorithms based on adjacency grid models.
We also discuss “domains of influence” in pictures.

13.1 Hulls

Let S be a class of subsets of a set S. A function H that takes sets in S into sets in S
is called a hull operator iff it has the following properties:

H1: M ⊆H(M) for all M ∈ S.

H2: M1 ⊆M2 implies H(M1)⊆H(M2) for all M1,M2 ∈ S.

H3: H(H(M))⊆H(M) for all M ∈ S.

H1 and H3 imply thatH(H(M)) =H(M) (i.e.,H is an idempotent operator). A hull
operator is also called a closure operator in algebra. The identity operator I(M) =M
and the topologic closure are examples of hull operators. In the following examples,
S is Euclidean space R

n.

1) Let S = ℘(S) be the class of all subsets of S. M ⊆ S is called convex if, for any
distinct p,q ∈M , the straight line segment pq is contained inM . It is easy to see
that any intersection of convex subsets of S is convex. The intersection C(M)
of all of the convex subsets of S that contain M is called the convex hull of M .
It is not hard to show that C is a hull operator.

2) Let S be the class of all bounded subsets of S. For any M ∈ S, let De(M) be
a disk of smallest radius (defined by metric de) that contains M . Such a disk
is not necessarily uniquely defined, but the smallest radius is uniquely defined,
because the radius is a continuous function on the compact set defined by the

427
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p2
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FIGURE 13.1 Left: De({p1,p2,p3}) is not contained in De({p1, . . . ,p4}). Right:

R({q1, . . . , q4}) is not contained in R({q1, . . . , q6}).

closed convex hull of the set. It is not hard to see that De satisfies H1 and H3
but not H2 (see Figure 13.1). Such an operator is called a pseudohull. Similar
remarks apply to the operator R for which R(M) is the rectangle of smallest
area that containsM . (Note thatR(M) may also not be unique, for example, if
M is a disk; to make it unique, we can also require that one of its sides make the
smallest possible angle with the positive x-axis. As in the previous argument
for the radius, the smallest area is also uniquely defined.) It can be shown that
these operators also satisfy the following:

H4: M1 ⊆M2 impliesA(H(M1))≤A(H(M2)) for all setsM1,M2 ∈ S whereA(S)
is the area of S.

Note that this axiom also implies that H(M) is measurable for M ∈ S. An op-
erator that satisfies H1, H3, and H4 is called a near-hull. H2 implies H4 for
any family S of sets S such that H(S) is always measurable.

3) Let S be the class of all finite subsets of S that contain at least two points. For
anyM ∈ S and any p ∈M , letDM

e (p) be a disk of smallest radius centered at p
that contains another point q of M . Let Ee(M) =

⋃
p∈M DM

e (p). It is not hard
to show that Ee is a near-hull. Figure 13.2 (left) shows (in gray) the Ee-hull of
a set of grid points (the filled dots). Figure 13.2 (right) shows theE4-hull of the
same set of points defined using d4 “disks” (diamonds centered at the points).

FIGURE 13.2 Left: the Ee-hull of the set of dark grid points using Euclidean disks.
Right: the E4-hull of the same set of grid points using city block “disks.”
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dp q

d

FIGURE 13.3 Reduction of diameter from d to d
√

3/2.

H.W.E. Jung [485] analyzed balls Be(M) with smallest radius in R
n (i.e., the

generalization of disks of smallest radius to n dimensions [n≥ 2]). He showed that,
if M ⊂ R

n is finite and has diameter d, the radius of Be(M) is upper bounded by the
following:

d

√
n

2(n+1)

An example for n= 2 is shown in Figure 13.3. A disk of radius d centered at any of
the points of M must contain M . Let p,q ∈M be two points such that de(p,q) = d.
Draw two disks of radius d centered at p and q. BecauseM lies in each disk, it lies in
their intersection, which is shaded in the figure. The bold circle contains the shaded

region and has radius d
√

3/2≈ 0·866 ·d. Jung’s theorem shows that this bound can
be reduced to d

√
3/3 ≈ 0·577 ·d. Jung’s upper bound is the best possible; there are

finite sets M ⊂ R2 for which De(M) has exactly this radius. The radius of De(M)
also has the trivial lower bound d/2.

13.1.1 Convex hull computation in the Euclidean plane

Let Π be a simple polygon in the Euclidean plane together with its interior, and let
〈p1, . . . ,pn〉 (n≥ 3) be the vertices of Π. It is not hard to show (see Section 1.2.9) that
the convex hull of Π is a polygon and has m ≤ n vertices. In this section, we show
how to compute the vertices q1, . . . , qm of C(Π).

We use the determinant D(p,q,r) (see Equation 8.14) to classify triples of suc-
cessive vertices p,q,r of Π as negative if p,q,r is a right turn; zero if p, q, and r are
collinear; and positive if p,q,r is a left turn. Figure 13.4 shows an example of a
left turn for which D(p,q,r) = 15. In convex hull algorithms, we use the notation
D(p,q,r) = L and D(p,q,r) =R for left and right turns.

We use a stack for the vertices of C(Π). At a given step of a convex hull
algorithm, the stack contains, for example, q0, q1, . . . , qt so that its depth is t+1. The
operation PUSH(p) means that t becomes t+ 1 and p becomes the last element of
the stack. The operation POP means that t becomes t−1 by removal of qt from the
stack. p← p+1 denotes a move to the next vertex of Π.

We assume that p1 is known to be a vertex ofC(Π); for example, we can choose
p1 to be the uppermost of the leftmost vertices of Π. Sklansky’s algorithm [999] for
calculating C(Π) is shown in Algorithm 13.1. This algorithm has computation time
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FIGURE 13.4 A right-handed xy-coordinate system and a left turn.

linear in the number of vertices of Π. It is correct provided that the frontier of Π
is completely visible from the outside (i.e., through any point q on the frontier of Π
there is a ray that intersects Π only at q). Step 4 of Graham’s Scan (see Algorithm 1.1)
also assumes that the simple polygon is completely visible from the outside.

Figure 13.5 shows an example of a simple polygon that is not completely visible
from the outside. Sklansky’s algorithm fails for this polygon. The algorithm starts
at p1 and proceeds correctly up to p5 but cannot deal properly with p6. (A concavity

in Π is the closure of a connected component of C(Π)\Π. It is not hard to see that
a concavity of a polygon is a polygon. An edge of a concavity closes the concavity
iff it is not an edge of Π. When the tracing of the frontier of Π goes from p6 to p7, it
crosses p2p5, which is an edge that closes a concavity in Π.)

One way to correct the behavior of Sklansky’s algorithm is to continue tracing
the frontier (doing nothing to the stack) until p2p5 is crossed again, and then resume
with the algorithm until another concavity is found. An algorithm that uses this
strategy is shown in Algorithm 13.2. Here we use the Boolean variable flag to
indicate whether the vertex tracing is outside a concavity (flag = 0) or inside a
concavity (flag = 1). p� denotes the vertex immediately preceding p on Π. This
algorithm has linear time complexity.

The situation is more complex if the input is not an ordered sequence of vertices
of a simple polygon but rather a set of n points in the plane. In this situation, the
worst-case time complexity of any convex hull algorithm is Ω(n logn). In fact, there
exist optimal algorithms that have a worst-case complexity of O(n logn); Graham’s
Scan (Section 1.2.9) is such an algorithm.

1. Let q0 and q1 be the first two vertices of Π, and let t := 1. Let p be the next
vertex (p3) of Π.

2. If p= q0, stop.

3. As long as t > 0 and D(qt−1, qt,p) �=R, POP.

4. PUSH(p), p← p+1, and go to Step 2.

ALGORITHM 13.1 Sklansky’s algorithm for calculating the convex hull of a “visible”
simple polygon.
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FIGURE 13.5 A simple polygon with a frontier that is not completely visible from the
outside.

Evidently, the convex hull of a set of n points is a polygon that can have as
many as n vertices. It can be shown [847] that the expected number of vertices of the
convex hull of a set of n points is 2r

3 log2n+O(r) if the n points are independently
and uniformly distributed in a bounded convex r-gon; it is O(n1/3) if they are inde-
pendently and uniformly distributed in a bounded, simply connected set that has a
smooth frontier; and it is O(

√
logn) if their distribution is Gaussian.

13.1.2 Convex hull computation in the (2D) grid

Knowing that the vertices of a simple polygon have integer coordinates (i.e., that it is
a grid polygon) results in no asymptotic time benefit for convex hull computation, but
methods of convex hull computation exist that are applicable only to grid polygons.
For example, the leftmost (downward) and rightmost (upward) 1s in each row of
Figure 13.6 can be used as an input sequence for Sklansky’s algorithm; they form a

1. Let q0 and q1 be the first two vertices of Π, and let t := 1. Let p be the next

vertex of Π. Set flag to 0.

2. If p = q0 or p = q1, POP as long as t > 0 and D(qt−1, qt,p) �= R, and stop;

otherwise, go to Step 3.

3. If flag = 0,
a) As long as t > 0 and D(qt−1, qt,p) �=R, POP.
b) If t= 0 or D(p�, qt,p) =R, PUSH(p); otherwise, set flag to 1 and go to

Step 5. // The vertex sequence encounters a concavity.//
4. Otherwise,

a) p← p+1 until D(qt−1, qt,p) = L.
b) Set flag to 0 and POP until t= 0 or D(qt−1, qt,p) =R.
c) PUSH(p).

5. p← p+1, and go to Step 2.

ALGORITHM 13.2 A convex hull algorithm for arbitrary simple polygons.
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p

FIGURE 13.6 An 8-connected set in which we first identify extreme pixels in each
row (pixel p is extreme in both directions) and then apply Sklansky’s convex hull
algorithm.

polygon that is completely visible from the outside. Note that this polygon may not
be simple (see pixel p).

This algorithm can be applied even if the set of 1s is 8-disconnected. Let xmax,
xmin, ymax, and ymin be (estimates of) the greatest and least coordinates of all the 1s.
(Exact values of these quantities can be calculated in time linear in the number of 4-
border pixels of a region by adding four counters to the border tracing algorithm; see
Algorithm 4.3.) We have to scan m= ymax−ymin +1 rows of pixels each of length
up to n= xmax−xmin +1 to identify the leftmost and rightmost 1s in each row; this
takes O(mn) time. We then apply Sklansky’s algorithm to the sequence of leftmost
(downward) and rightmost (upward) 1s; this takesO(max{m,n}) time, which is less
than O(mn), so the asymptotic upper time bound is O(mn). On the other hand, if
we take all of the 1s in the rectangle as unsorted points and use an optimum-time
convex hull algorithm (e.g., Graham’s Scan), we obtain an asymptotic upper time
bound of O(mn logmn), because there may be up to mn 1s in the rectangle. This
shows that the optimal-time bound for unrestricted input may not be optimal when
the input consists only of grid points.

A convex hull that is a grid polygon and that is contained in the grid Gm+1,m+1

can have only a limited number of vertices. Conversely, let e(m) be the maximum
number of grid vertices. Let m = s(n) be the minimal side length of a square with
vertices that are grid points and that contains a convex grid polygon that has n
vertices. It can be shown that the following is true:

s(n) =m implies e(m)≥ n and e(m) = n implies s(n)≤m (13.1)

Figure 13.7 shows that e(7) = 13, e(8) = 14, and e(9) = 16; s(13) = 7, s(14) = 8,
s(15) = 9, and s(16) = 9. These examples also show that, in convex hulls that have
maximal number of vertices, the edges tend to be defined by pairs (a,b) of relatively
prime integers, where a and b are the increments in the x and y directions. For
example, for n = 8, we have the edges (0,1), (1,1), (2,1), (1,0), (2,−1), (1,−2),
(0,−1), (−1,−2), (−1,−1), (−1,0), (−2,1), (−1,1), and (−1,2), which constitute a
traversal around the convex hull.
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FIGURE 13.7 Three examples of maximal numbers of vertices on a convex hull [1110].
Left: m= 7. Middle: m= 8. Right: m= 9.

In the following discussion, we use Euler’s totient function φ; φ(t) is the number
of natural numbers r ≤ t that are relatively prime to t. For example, φ(10) = 4
(r = 1,3,7,9). Note that φ(1) = 1.

We now describe a method of constructing convex hulls that have at most t
vertices. Sort all of the pairs (a,b) of relatively prime integers such that a+ b ≤ t in
decreasing order of the slope of the line segment defined by (a,b) starting at (0,1) and
ending at (t−1,1). There are

∑t
j=1φ(j) pairs (a,b) in this sequence. The polygonal

arc defined by this sequence is a quadrant of the convex hull. The example m= 9 in
Figure 13.7 illustrates this construction for t= 3. The resulting convex grid polygon
has nt = e(mt) = 4 ·∑t

j=1φ(j) vertices and is contained in a square with vertices that
are grid points and that has side length mt = s(nt) =

∑t
j=1 j ·φ(j). Based on this

discussion, we have the following:

Proposition 13.1 There exist strictly monotonically increasing sequences of nat-
ural numbers {mt} and {nt}(t= 1,2,3, . . .) such that the following is true:

mt = s(nt) =
t∑

j=1

j ·φ(j) and nt = e(mt) = 4 ·
t∑

j=1

φ(j)

In number theory, it is known [991] that, for sufficiently large t, e(mt)/t2 ≈
12/π2 ≈ 1·2159, s(nt)/t3 ≈ 2/π2 = 0·2026, and s(nt)/e(mt)3/2 ≈ π/12 ·31/2 ≈ 0·1511.
Table 13.1 illustrates the speed of convergence of these approximations. Because s
and e are monotonically increasing functions (see Exercise 2 in Section 13.4), we can
conclude that s(n) ∈ O(n3/2) and e(m) ∈ O(m2/3). More precisely, it can be shown
that the following is true:

Theorem 13.1 e(m) = 12

(2π)2/3m
2/3 + O(m1/3 logm) and s(n) = 2π

12
3/2
n3/2 +

O(n logn).

Table 13.1 shows that e and s intersect between t= 37 and t= 48.
The exponent 2/3 in the estimate of e(m) also occurs in the estimation of the

maximal number of grid points on a convex Jordan curve. I.V. Jarnik showed in 1925
[475] that a convex Jordan curve of length l is incident with at most
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TABLE 13.1 Values of s(nt), e(mt), and related quotients [1110].

t s(nt) e(mt)
e(mt)

t 2

s(nt)

t 3

s(nt)

e(mt)
3/2

1 1 4 4·0000 1·0000 0·1250
2 3 8 2·0000 0·3750 0·1326
3 9 16 1·7778 0·3333 0·1406
4 17 24 1·5000 0·2656 0·1446
5 37 40 1·6000 0·2960 0·1463
6 49 48 1·3333 0·2269 0·1473
7 91 72 1·4694 0·2653 0·1490
8 123 88 1·3750 0·2402 0·1490
9 177 112 1·3827 0·2428 0·1493

10 217 128 1·2800 0·2170 0·1498
20 1745 512 1·2800 0·2181 0·1506
30 5601 1112 1·2356 0·2074 0·1510
40 13,111 1960 1·2250 0·2049 0·1511
50 26,021 3096 1·2384 0·2082 0·1511
60 44,231 4408 1·2344 0·2048 0·1511
70 69,821 5976 1·2196 0·2036 0·1511
80 105,389 7864 1·2287 0·2058 0·1511
90 149,301 9920 1·2247 0·2048 0·1511

100 203,085 12,176 1·2176 0·2031 0·1512
110 273,901 14,864 1·2284 0·2058 0·1511
120 351,177 17,544 1·2183 0·2032 0·1511
130 447,393 20,616 1·2199 0·2036 0·1511
140 561,941 24,000 1·2245 0·2048 0·1511
150 686,733 27,432 1·2192 0·2035 0·1511
160 833,935 31,224 1·2107 0·2036 0·1511
170 1,003,303 35,320 1·2221 0·2042 0·1511

3
(2π)1/3

l2/3 + O(l1/3)

grid points and that the first term is the best possible upper bound (i.e., there exist
curves that achieve this upper bound).

13.1.3 Near-hull computation in the Euclidean plane

In this section, we discuss algorithms for computing the rectangle R(M) with the
smallest possible area that contains a finite set of points or a simple polygon M in
the Euclidean plane. It can be shown [347] that the following is true:
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FIGURE 13.8 Vertex v1 moves to the next position and triggers a move of pointer v2;
v3 and v4 need not move.

Proposition 13.2 A side of R(M) is incident with an edge of C(M).

On the basis of this, we can compute R(M) as follows. Let v1 be the first vertex of
C(M). Examine the vertices in sequence until the first vertex v2 (not on the first
edge) is found such that a line l through v2 parallel to the first edge does not intersect
the interior of C(M); see Figure 13.8 (left). Choose vertices v3 between v1 and v2
and v4 between v2 and v1 that define a circumscribing rectangle of M . After this
initialization step, move v1 to successive vertices of C(M) and move pointers v2, v3,
and v4 (if necessary) so that the four vertices continue to define a circumscribing
rectangle. Figure 13.8 (right) illustrates a move of v1. Compare the areas of the
resulting rectangles, and choose the smallest one.

Let n be the number of vertices of C(M). The initialization step takes O(n)
computation time; each of the vertices v1, . . . ,v4 moves into at most n positions,
and each move takes constant time. Hence the algorithm is linear in the number
of vertices on the convex hull (if the initial calculation of C(M) is not taken into
account).

Let S be the class of subsets of E
2 with frontiers that are Jordan curves so that

they are homeomorphic to the unit disk. It can be shown that any M ∈ S has a
circumscribing square (i.e., a square with all four edges intersectingM in at least one
point). Let Q(M) be the circumscribing square that has smallest area; we can make
Q(M) unique by minimizing the angle that one of its sides makes with the positive
x-axis. As was the case in Section 13.1, Q(M) defines a near-hull.

Proposition 13.3 Any plane Jordan curve γ has a circumscribing square (i.e.,
a square that contains γ, with all four sides having a nonempty intersection
with γ).

Proof Let l be a line that does not intersect γ and l′ a line parallel to l (e.g., with
slope θ) such that γ is in the stripe between l and l′. Move both lines toward
γ by parallel translation until they intersect γ for the first time. The resulting
lines are lines of support of γ. Similarly, construct two other lines of support
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l*

l

that are orthogonal to l. These four lines of support define a circumscribing
rectangle of γ. Let the side lengths of this rectangle be a(l) and b(l). If we
perform this construction for lines l with slopes between θ and θ+ π/2, we
obtain circumscribing rectangles with side lengths that change from (a(l), b(l))
to (b(l),a(l)) so that, during the rotation, a(l)− b(l) changes sign. Evidently,
a(l)− b(l) is a continuous function of θ.1 Hence a(l)− b(l) must be zero for
some slope between θ and θ+π/2 so that the circumscribing rectangle for this
slope is a square. �

13.2 2D Digital Convexity

Digitally convex sets were defined in Section 2.3.4 with respect to a digitization
model. This section assumes the 2D grid point model (i.e., digitizations are subsets
of Z

2). A digitization by dilation is an outer σ-digitization using domains of influence
Πσ(q), where Πσ contains the origin. For example, Gauss, outer Jordan, and grid-
intersection digitization are digitizations by dilation. For any digitization by dilation,
a finite S ⊂ Z

2 is digitally convex iff S is the digitization of its Euclidean convex hull
C(S).

The Gauss digitization G(S) of a convex set S ⊆ R
2 may not be 8-connected

(see Exercise 1 in Section 2.5), but its cross digitization (defined in Section 2.3.5 by
generalizing grid intersection digitization to arbitrary planar sets) must be simply
8-connected (see Exercise 4 in Section 2.5). In this section, we use cross digitization
in the 8-adjacency grid. A set ∅ �= S ⊆ Z

2 will be called digitally convex (with respect
to cross digitization) iff there exists a convex set M ⊆ R

2 such that S = digcross(M).

13.2.1 Digital convex hulls

Evidently, any digital straight line (DSL) or straight line segment (DSS) is digitally
convex. Moreover, a finite irreducible 8-arc is digitally convex iff it is an (8-)DSS.

1. Let f : R→R be continuous on [a,b] (a < b); let x1,x2 ∈ [a,b] be such that f(x1) > 0 and f(x2) < 0. Then

f(x0) = 0 for some x0 ∈ [a,b].
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Theorem 13.2 A finite setM ⊆ Z
2 is digitally convex iff any one of the following

is true:

1. M satisfies the chord property.

2. For all p,q ∈M , at least one DSS that has p and q as endpixels is contained
in M .

3. For all p,q,r ∈M , all of the grid points in the (closed) triangle pqr are inM .

4. Any grid point on the (real) line segment between two grid points of M is
also in M .

5. Let [M ] be the union of the grid cells that have centers in M . For any two
grid points p and q in M , let Mpq be the region surrounded by the frontier
of [M ] and the real line segment pq; then any grid point in Mpq is in M .

There exist infinite sets M ⊆ Z
2 that satisfy the chord property but that are not

digitally convex. For example, let H be a halfplane defined by a straight line γ with
irrational slope, and let M be the cross digitization of M . If p ∈M is 4-adjacent to
two 4-border pixels of M , M ∪{p} still satisfies the chord property.

The Euclidean convex hull C(M) of any M ⊆ Z
2 is a convex polygon with

vertices that are all 4-border pixels of M . If M is simply 8-connected, 4-border
tracing visits all of the 4-border pixels of M in sequence; see the border tracing
algorithm in Section 4.3.4. The vertices of C(M) partition this sequence into finite
or (at most two) infinite subsequences that start and end at successive vertices of
C(M). These subsequences will be called border segments of M .

Theorem 13.3 An 8-connected M ⊆ Z
2 is digitally convex iff G(C(M))⊆M . If

M �= ∅ and M �= Z
2, M is digitally convex iff every border segment of M is a

DSS.

This leads to a convexity test for finite sets M of grid points. Calculate C(M), and
test whether each border segment of M is a DSS.

S is called a digitally convex completion ofM iffS containsM and is digitally con-
vex, and S \U is not digitally convex for any U ⊆ S \M . For example, letM = {p,q};
then any 8-DSS that contains p and q is an 8-connected digitally convex completion
of M . G(C(M)) is a digitally convex completion of M and is 8-connected if M is
8-connected. There may also exist grid points p that are not in G(C(M)) but such
that G(C(M))∪{p} is digitally convex.

Proposition 13.4 IfM ⊆ Z
2 is 8-connected, it has a unique digitally convex com-

pletion.

Definition 13.1 The digitally convex completion of an 8-connectedM ⊆ Z
2 is

called the digital 8-convex hull of M and is denoted by C8(M).
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Proposition 13.5 LetM ⊆ Z
2 be 8-connected, and let S ⊆ Z

2 be digitally convex.
The following statements are equivalent:

1. S = C8(M).

2. M ⊆ S, and, if M ⊆ U where U ⊆ Z
2 is digitally convex, then S ⊆ U .

3. S =
⋂{U : M ⊆ U ⊆ Z

2 ∧ U is digitally convex}.

Using Proposition 13.5 and Theorem 13.3, we can prove the following:

Proposition 13.6 If M ⊆ Z
2 is 8-connected, C8(M) =G(C(M)).

It follows that the border of C8(M) can be calculated in O(n) time where n is the
cardinality of the border of M .

13.2.2 Row and column convexity

S ⊆ Z
2 is called row-convex (column-convex) iff each row (column) of the grid contains

at most one run of pixels of S. Let M ⊆ E
2 be convex, and let G(M) be nonempty

and 4-connected. It is not hard to see that G(M) is row- and column-convex. It can
be shown [530] that the number b(n) of row-convex (or column-convex) n-ominoes
satisfies the following:

lim
n→∞b(n)1/n = a where 3·20< a < 3·21 (13.2)

(See Equation 2.4 for the number of all n-ominoes.) It can further be shown [69]
that the number c(n) of row-column–convex n-ominoes satisfies the following:

lim
n→∞c(n) = b ·an where b= 2·6756 . . . and a= 2·3091 . . . (13.3)

A staircase is a 4-arc that has x- and y-coordinates that are monotonically
nonincreasing or nondecreasing. The 8-border of a row-column–convex 4-connected
set can be partitioned into at most four staircases; see Figure 13.9 for an example.
We see from Figure 13.9 (left) that such a set is not necessarily digitally convex.

FIGURE 13.9 Left: a row-column–convex 4-connected set. Right: the 8-border of
the set can be partitioned into four staircases.



13.3 Diagrams 439

13.2.3 Fuzzy digital convexity

Let the values of the pixels in a picture P be in the range [0,1] so that P defines a
fuzzy subset µ of the grid (see Section 1.2.10). P is called µ-convex iff, for all pixels
p,q, there exists a DSS with endpixels p and q such that µ(t)≥min(µ(p),µ(q)) for all
pixels on the DSS.

P is called µ-(8-)connected (see Section 13.3.3) iff, for all pixels p,q, there exists
an (8-)path ρ from p to q such that µ(t) ≥ min(µ(p),µ(q)) for all pixels on ρ. Thus
µ-convexity can be regarded as a special case of µ-connectedness in which ρ is re-
quired to be a DSS.

In Proposition 13.11, we will see that P is µ-connected iff all of its level sets are
connected. Similarly, by Theorem 13.2, we have the following:

Proposition 13.7 P is µ-convex iff all of its level sets are digitally convex.

13.3 Diagrams

Diagrams are defined in metric spaces for countable sets S of “simple” geometric
objects such as points, line segments, polygons, polyhedra, and so on. One type of
diagram divides the metric space into cells such that each element ofS is contained in
exactly one cell. Another type connects some pairs of elements ofS by line segments.

Let S = {p1, . . . ,pn} be a set of points in the Euclidean plane E
2. The Voronoi

cell2 of pi ∈ S (i= 1, . . . ,n) is the closure of its zone of influence, which is the set of all
points in E2 that are closer (with respect to metric de) to pi than to any other point
of S:

Ve(pi) = {q : q ∈ E
2 ∧ de(q,pi)≤ de(q,pj) for j = 1, . . . ,n} (13.4)

Euclidean distance was used in this definition [1101], but Voronoi cells can be defined
in any metric space. (The closure of the zone of influence of pi is not necessarily
identical to Ve(pi) if de is replaced by another metric on R

2, such as a chamfer metric.)

Definition 13.2 The Voronoi diagram of S is the union of the frontiers of the
Voronoi cells Ve(p1), . . . ,Ve(pn).

The Voronoi diagram is called the skeleton by influence zones (SKIZ) in math-
ematic morphology. pi and pk are called Voronoi neighbors iff Ve(pi) and Ve(pk)
share an edge (i.e., have more than a single point in common). Distinct Voronoi

2. This is named after the Ukrainian mathematician G.F. Voronoi (1868–1908). An n-dimensional generalization
was studied by the German mathematician J.P.G.L. Dirichlet (1805–1859) [273]. The U.S. officer A.H. Thiessen
also used such polygonal cells in the discussion of meteorologic data; see, for example, [1050]. Voronoi cells are
therefore also called Thiessen polygons and are the 2D case of Dirichlet polyhedra or Dirichlet cells.
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FIGURE 13.10 Two sets of points that are not circle-free.

neighbors are called Voronoi adjacent. The dual Voronoi diagram is obtained by
joining the pairs of Voronoi adjacent points with straight line segments. It can be
shown that the bounded faces in a dual Voronoi diagram are all triangles iffS is circle-
free: whenever more than three points of S lie on a circle, another point of S lies
inside of the circle. (Figure 13.10 shows two examples of sets that are not circle-free.)
If S is circle-free, its dual Voronoi diagram is called its Delaunay triangulation [259]3;
Figure 13.11 shows an example. A dual Voronoi diagram that has edges added to
complete a triangulation if S is not circle-free is called a Delaunay diagram.

Voronoi and Delaunay diagrams are well-known examples of diagrams in E
2.

The Voronoi diagram has a straightforward generalization to E
n. The set S can be a

family of pairwise disjoint simply connected bounded sets rather than a set of points.
Let S be a finite set of points in E

n. A nearest neighbor diagram of S is defined
by the set of (undirected) line segments pq such that p is a nearest neighbor of q in
S or vice versa. (In such a diagram, each p ∈ S is joined by a line segment to only
one of its nearest neighbors.) A minimum spanning tree diagram is a tree with nodes
that are the points of S and with edges that have minimum total length. Note that
these diagrams are not necessarily unique; the same is true for Delaunay diagrams
of non–circle-free sets.

Proposition 13.8 Any nearest neighbor diagram of S ⊂ E
2 is a subdiagram of

a minimum spanning tree diagram of S, which is in turn a subdiagram of a
Delaunay diagram of S.

13.3.1 Diagram computation in the Euclidean plane

Let S = {p1, . . . ,pn} be a set of points in the Euclidean plane. The Voronoi cells of
the points of S are convex. The Voronoi cell Ve(p) is bounded iff p is in the interior
of the convex hull C(S). The frontier of an unbounded Voronoi cell consists of at
most two straight lines or rays and finitely many straight line segments. A bounded
Voronoi cell is a simple polygon. The line segments, rays, or lines on the frontier of a

3. This is named after the Russian mathematician B.N. Delaunay (also called Delone; 1890–1980).
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FIGURE 13.11 A Voronoi diagram (dashed) and the corresponding Delaunay trian-
gulation (bold).

Voronoi cell are contained in the perpendicular bisectors of pairs of points p,q ∈ S;
see Figure 13.12.

The construction of Voronoi diagrams and Delaunay triangulations are dual
processes; either diagram can be derived from the other. We will describe a simple
Delaunay diagram construction algorithm that has asymptotic time complexityO(n2)
and a small asymptotic constant; it supports time-efficient constructions for (about)
n ≤ 1000. For larger sets of points, it is preferable to use optimized algorithms
that run in O(n logn) time. The worst-case time complexity of Delaunay diagram
construction has lower bound Ω(n logn). If the set of points is not circle-free, the
algorithm chooses one of the possible diagrams.

FIGURE 13.12 The Voronoi diagram is composed of (segments or rays of) perpen-
dicular bisectors. Five “construction steps” for one of the cells are shown; the final
Voronoi diagram is at the lower right.
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FIGURE 13.13 Points p, q, and r define a circle of radius R.

According to Proposition 13.8, a Delaunay diagram is a subdiagram of a nearest
neighbor diagram. Given a finite set S of points, we pick a point p in S and search in
S for one of the nearest neighbors q of p. We start the construction with pq, which is
an edge of one of the Delaunay triangles.

In Figure 13.13, we have the following, where A is the area of triangle pqr:

cosη =
a2 + b2− c2

2ab
and R=

abc

4A

The points of S are all collinear, for example, on line l, iff A= 0 for all r ∈ S \{p,q};
in this case, the Delaunay diagram connects the points along l in sorted order. From
now on, we assume that the points of S are not all collinear.

Points p, q, and r of S form a Delaunay triangle if 4 the following is maximal
for r among all points of S \{p,q}:

R · cosη =
c(a2 + b2− c2)

8 ·A
Because c is constant for a given p and q, we need only maximize (a2 + b2− c2)/A.
We recall that A= 1

2
|D(p,q,r)| where D is the determinant; see Equation 8.14. This

gives us the following test for identifying a third point of a Delaunay triangle:

Let r ∈ S \{p,q} be the first point for which D(p,q,r) �= 0. If D(p,q,r)> 0, we
identify third points (throughout the procedure) by maximizing as follows:

K(p,q,r) :=
a2 + b2− c2
D(p,q,r)

If D(p,q,r)< 0, we identify third points by minimizing K(p,q,r).

The sign of D(p,q,r) also tells us whether the ordered triple (p,q,r) describes a left
turn or a right turn. The oriented straight line segment from p to q defines two
halfplanes; r is in the left (right) halfplane iff (p,q,r) is a left turn (right turn). pq
can also be incident with a second Delaunay triangle that has a third point r′ that
is in the right (left) halfplane. This is why we put oriented line segments (vectors)

4. Not “iff,” the line containing p and q defines two halfplanes, and there can be a Delaunay triangle in each of the
halfplanes. The maximization can be performed for each halfplane.
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1. Choose p ∈ S, and find a q ∈ S that is a nearest neighbor of p. Choose a
point t∈S \{p,q}; depending on the sign ofD(p,q, t), we use maximization
or minimization in this run of the algorithm (see text).

2. Find a third point r ∈ S \{p,q} that maximizes (minimizes) K(p,q,r). Put
the vectors 	qp, 	pr, and 	rq on a list.

3. As long as the list is not empty, go to Step 4; otherwise, stop.
4. Take 	pq off of the list. Set flag := 0, set pointer ThirdPoint := VOID, and set
K :=−∞ (for maximization) or∞ (for minimization).

5. For all r ∈ S \{p,q} (go to Step 6 when finished):
a) If K ≤K(p,q,r) for maximization or K ≥K(p,q,r) for minimization,

go to Step 5.c.
b) Set flag := 1, K :=K(p,q,r), and ThirdPoint := r.
c) Go back to Step 5 for the next point r ∈ S \{p,q}.

6. If flag = 0, go to Step 3. Otherwise, let r := ThirdPoint.
//A new Delaunay triangle (p,q,r) has been detected; take appropriate
action.//
a) If 	pr is on the list, delete it; otherwise, put 	pr on the list.
b) If 	rq is on the list, delete it; otherwise, put 	rq on the list.

7. Go to Step 3.

ALGORITHM 13.3 Delaunay diagram algorithm.

rather than line segments on the list in the algorithm; if we arrive at the same vector
a second time, we delete it from the list. The algorithm is given in Algorithm 13.3,
and Figure 13.14 shows three examples of Delaunay triangulations.

13.3.2 Diagram computation in the digital plane

If S contains only grid points, only integer arithmetic is needed for Algorithm 13.3.
Let G(p,q,r) = a2 + b2 − c2. When we use maximization, the test K(p,q,r1) <
K(p,q,r2)? can be replaced with G(p,q,r1) ·D(p,q,r2) < G(p,q,r2) ·D(p,q,r1)? at
the cost of using two variables G and D instead of K.

Sets of grid points are often not circle-free; Figure 13.15 (left) shows an exam-
ple. However, the Delaunay diagram algorithm (Algorithm 13.3) always produces
a triangulation if the points in S are not all collinear. By keeping track of points
with equal (maximal or minimal) values ofK in Steps 5.a and 5.b, we can also detect
points that are incident with more than three Voronoi cells.

In the grid, we are typically interested only in assigning grid points to Voronoi
cells or Delaunay triangles. The Euclidean metric was used in Equation 13.4; the
resulting Voronoi diagram is called the de-Voronoi diagram; see Figure 13.15, (right).
If we use a grid metric dα instead of de in Equation 13.4, we obtain a dα-Voronoi
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FIGURE 13.14 Three examples of Delaunay triangulations. The union of the Delau-
nay triangles is the convex hull of the set of points.

diagram. Figure 13.16 shows d4- and d8-Voronoi diagrams for the set of points used
in Figure 13.15.

dα-Voronoi diagrams can be constructed as follows. Initially, we give each point
of S a different Voronoi cell label. In each run of the algorithm, we label all of the grid
points q that have not yet been labeled but that areα-adjacent to already labeled grid
points. If q is α-adjacent only to points that have the same label, give q that label; if q
is adjacent to points that have different labels, q is a Voronoi diagram point. Continue
this process for as long as unlabeled grid points remain.

For a chamfer metric, the Voronoi diagram can be computed using the Rosenfeld-
Pfaltz two-pass distance transform algorithm.

FIGURE 13.15 Left: Voronoi diagram for a set of grid points. The result of the
Delaunay diagram algorithm depends on the order in which the points of S are
visited, because S is not circle-free (see the Voronoi point that is incident with four
Voronoi cells). Right: digital representation of the diagram; grid points on the
frontiers of Voronoi cells are black.
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FIGURE 13.16 Left: d4-Voronoi diagram. Right: d8-Voronoi diagram.

13.3.3 Diagrams in pictures

Let A be an adjacency relation on a grid Gm,n. An A-path is a sequence of pixels
ρ = (p0, . . . ,ph) such that pi is A-adjacent to p

i−1
(0 < i ≤ h). Let {S1, . . . ,Sh} be a

set of disjoint subsets of Gm,n. A-paths can be used to define “domains of influence”
D(Si) of the Sis in various ways. For example, we can say that p belongs to D(Si) iff
the length of a shortest path from p to Si is less than the length of a shortest A-path
from p to any other Sj (i.e., if p’s “A-distance” to Si is less than its A-distance to any
other Sj). If we use this definition, D(Si) is the Voronoi cell of Si with respect to
A-distance. (We will usually drop the A in what follows.)

If P is a picture defined on Gm,n, we can restrict the class of allowable paths or
assign weights to paths using the values of the pixels on the paths. For example:

a) We can define the value-weighted length of a path ρ as the sum of the values
of the pixels of ρ. The value-weighted Voronoi cell of Si then consists of pixels
that have a value-weighted distance to Si (see Section 3.4) that is less than their
value-weighted distance to any other Sj .

b) We can call ρ allowable iff its pixels all have values greater (or less) than some
threshold t. This leads to a Voronoi cell concept based on intrinsic A-distance
in the set of pixels that have values that are greater (or less) than t.

c) We can define the slope-weighted length of ρ as the sum of the differences (or
absolute differences) of the values of successive pairs of pixels of ρ. (We can
think of “steep” paths as taking longer to “climb.”)

d) We can call ρ allowable if its pixel differences all have values greater (or less)
than some threshold t. Of particular interest are monotonic paths in which the
differences are all nonnegative or all nonpositive.

In the remainder of this section, we will consider only domains of influence defined
by monotonic paths, and we will assume that A=A4 or A8.
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A maximal (4- or 8-) connected set Π of pixels that has values in P that are con-
stant will be called a plateau5; the constant value will be denoted by P (Π). Evidently,
every pixel p belongs to exactly one plateau, which we denote with Π(p).

Two plateaus Π and Π′ are called (4- or 8-) adjacent if some pixel of Π is adjacent
to some pixel of Π′. Evidently, if Π and Π′ are adjacent, we must have P (Π) �= P (Π′).
Π is called a top (bottom) if its value is higher (lower) than that of any plateau adjacent
to it. A top is also called a peak or summit and a bottom is also called a pit or sink.

A path ρ= (p0, . . . ,pn) is called nondescending ifP (pi)≥P (pi−1) and nonascend-
ing if P (pi)≤ P (pi−1) for all 1≤ i≤ n.

Proposition 13.9 For any pixel p, there exists a nondescending (nonascending)
path (p0, . . . ,pn) such that p= p0, q = pn, and q is a pixel of a top (bottom).

In the following paragraphs, we assume that the pixel values in P are in the
range [0,1]. As we saw in Section 1.2.10, such a picture defines a fuzzy subset µ of
Gm,n.

We define the strength σ(ρ) of a path ρ = (p0, . . . ,pn) as min0≤i≤nµ(pi). We
define the connectedness c(p,q) of pixels p and q as maxρσ(ρ), where the max is
taken over all paths ρ= (p0, . . . ,pn) such that p0 = p and pn = q. Evidently, c(p,q)≤
min(µ(p),µ(q)). We say that p and q are µ-connected iff c(p,q) = min(µ(p),µ(q)). We
say that a set S of pixels is µ-connected iff any two pixels of S are µ-connected; in
particular, we say that P is µ-connected iff any two pixels of Gm,n are µ-connected.

Proposition 13.10 Letpand q be two pixels ofP , and letλ(p,q) = min(µ(p),µ(q)).
Let µλ(p,q) be the λ(p,q)-level set of P (see Section 1.2.10). Then p and q are
µ-connected iff p and q are connected in µλ(p,q).

Proof Evidently, p and q are in µλ(p,q), and there is a path between them in that
set iff there is a path ρ= (p0, . . . ,pk) between them such that µ(pi)≥ λ(p,q) =
min(µ(p),µ(q)) for all pi on ρ. �

Proposition 13.11 P is µ-connected iff µλ is connected for all 0≤ λ≤ 1.

Proof p and q are inµλ iffλ≤min(µ(p),µ(q)); hence every p and q areµ-connected
iff every µλ is connected. �

Proposition 13.12 For any 0≤ λ≤ 1, any component C of µλ contains a top.

5. This terminology is suggested by regarding the picture as defining an isothetic surface in which the value of
a pixel defines the height of the surface above the pixel. Plateaus are (4- or 8-) components of P -equivalence
classes.
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Proof According to Proposition 13.9, from any pixel ofC, there is a nondescending
path ρ to a top Π, and all of the pixels of ρ and Π must be in C. �

Proposition 13.13 If P has a unique top, it is µ-connected.

Proof If P were not µ-connected, according to Proposition 13.11, some µλ would
not be connected. Thus µλ would have at least two components C and D.
According to Proposition 13.12, each of these components would contain a
top, and these tops could not be the same. �

We now prove the converse: if P is µ-connected, it must have a unique top.
Suppose P had two tops Π and Π′. Let Π0, . . . ,Πn be a sequence of plateaus such
that Π0 = Π,Πn = Π′, and Πi is adjacent to Πi−1 (1≤ i≤ n). Choose such a sequence
for which min(µ(Πi)) = v is as large as possible and the value v is taken on as few
times as possible. Let P (Πj) = v; then, evidently, 0< j < n and µ(Πj−1),µ(Πj+1) are
greater than v. Let Πj−1 and Πj+1 be in µw where w > v. Because Π is µ-connected,
µw must be connected, according to Proposition 13.11. Hence the sequence of Πs
can be diverted around Πj through plateaus higher than v; the diverted sequence
either has a minimum value higher than v or takes on the value v fewer times, which
is a contradiction. We have thus proved the following:

Theorem 13.4 P is µ-connected iff it has a unique top.

Evidently, µ-connectedness is reflexive and symmetric but not transitive. For
example, let P consist of three pixels p, q, and r such that µ(q) < min(µ(p),µ(r));
then p and q, and q and r are µ-connected, but p and r are not µ-connected. Thus, we
cannot partition P into “µ-components.” However, we will now show that the sets
of pixels that are µ-connected to a given top have partition-like properties.

Let Π be a top, and let [Π] be the set of pixels that are µ-connected to pixels of
Π. If Π′ is another top, [Π] and [Π′] can overlap; indeed, in the three-pixel example
in the preceding paragraph, {p} and {r} are tops, and q belongs to both [{p}] and
[{r}]. However, we will now see that [Π] and Π′ must be disjoint.

Proposition 13.14 Let p /∈Π be µ-connected to a pixel of Π; then µ(p)< µ(Π).

Proof Suppose µ(p)≥ µ(Π). If p were µ-connected to a pixel q of Π, there would
be a path ρ = (p0, . . . ,ph) such that p0 = p,pn = q, and µ(pi) ≥min(µ(p),µ(q))
for all 0≤ i≤ h. Because µ(p)≥ µ(Π) = µ(q), we would thus have µ(pi)≥ µ(Π)
for all i. However, because Π is a top, the pixel just preceding Π on the path
must have a value of less than µ(Π), which is a contradiction. �
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Theorem 13.5 If Π and Π′ are distinct tops, [Π] and Π′ must be disjoint.

Proof Suppose Π′ and [Π] were not disjoint; then some pixel p of Π′ would be µ-
connected to some pixel q of Π, so there would exist a path ρ = (p0, . . . ,pn)
such that p = p0, q = pn, and µ(pi) ≥ min(µ(p),µ(q)) for all i. Because Π′
and Π are distinct tops, they must be disjoint; thus p /∈ Π. Hence, according
to Proposition 13.14, µ(p) < µ(Π), so min(µ(p),µ(q)) = µ(p). However, be-
cause Π and Π′ are distinct tops, they cannot be adjacent, and the first pixel
on ρ that is not in Π′ must have a value of less than µ(Π′) = µ(p), which is a
contradiction. �

Theorem 13.6 p and q are µ-connected iff there exists a top Π such that p and q
are both in [Π].

Proof If p and q are both in [Π], then µ(p) and µ(q) are both≤ µ(Π), according to
Proposition 13.4. Hence there is a pathρ fromp to a pixelp′ of Π such that, for all
pixels ton ρ, we haveµ(t)≥min(µ(p),µ(Π)) =µ(p), and there is a path ρ′ from q
to a pixel q′ of Π such that, for all pixels ton ρ′, we haveµ(t)≥min(µ(q),µ(Π)) =
µ(q). Also, because Π is connected, there is a path ρ∗ from p′ to q′ such that,
for all pixels t on ρ∗, we have µ(t) = µ(Π)≥min(µ(p),µ(q)). Combining these
paths yields a path from p to q on which µ ≥ min(µ(p),µ(q)) so that p and
q are µ-connected. Conversely, let p and q be µ-connected; let, for example,
µ(p)≤ µ(q); and let ρ be a nondescending path from q to some pixel q′ of a top Π
(see Proposition 13.9). For all pixels t on ρ, we haveµ(t)≥ µ(q)≥ µ(p); because
p and q are µ-connected, there is a path ρ′ between them such that, for all pixels
t on ρ′, we have µ(t)≥min(µ(p),µ(q)) = µ(p). Hence there is a path ρ′ρ from
p to q′ such that, for all pixels t on ρ′ρ, we have µ(t)≥ µ(p) = min(µ(p),µ(q′))
so that p ∈ [Π]. �

Thus the µ-connected sets ofP can be regarded as “domains of influence” of the tops
of P .

We now return to the viewpoint from which we regard the pixel values as
representing surface heights, and we no longer assume that they are in the range
[0,1]. We say that p is directly upstream from q and q directly downstream from p iff
P (p) > P (q) and Π(p) is adjacent to Π(q). Evidently, if Π(p) is a top, no q can be
directly upstream from p, and, if Π(p) is a bottom, no q can be directly downstream
from p. We say that p is upstream from q and q is downstream from p if there exists a
sequence of pixels (p0,p1, . . . ,pn) such that p= p0, q = pn, and pi is directly upstream
from pi+1(0≤ i < n). We can also apply the terms (directly) upstream and downstream
to the plateaus themselves.6

6. This terminology too is motivated by regarding P (p) as the height of a surface above p. If we pour water on
the surface at the point above p, it will flow to the point above q iff either q ∈Π(p) or q is downstream from p.
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Evidently, no pixel can be upstream from a top or downstream from a bottom.
On the other hand, according to Proposition 13.9, every pixel either belongs to a
top or is downstream from a top, and every pixel either belongs to a bottom or is
upstream from a bottom. Note that a pixel may be downstream from more than one
top or upstream from more than one bottom. If P is downstream from only one top
Π, we say that it belongs to the runoff of Π; if it is upstream from only one bottom
Π, we say that it belongs to the watershed (sometimes called the catchment basin) of
Π. Let G be the directed graph with nodes that are the plateaus of P and in which
(Π,Π′) is a directed edge ofG iff Π′ is directly downstream from Π. If Π∗ is a bottom,
p is in the watershed of Π∗ iff the plateau containing p is connected to Π∗ in G.

The watersheds of a picture can be identified by assigning a label to each bottom
and propagating that label to all of the plateaus that are upstream from that bottom.
A pixel p is in the watershed of a bottom Π∗ if Π(p) receives only the label of Π∗. A
simple picture with pixel values 0, . . . ,4 and the watershed of one of its bottoms (the
singleton 0 in the last row) are shown in Figure 13.17. The runoffs of a picture can
be identified analogously by assigning labels to the tops.

In our discussion of runoffs and watersheds, we have ignored the rate at which
the surface elevation changes. If q is adjacent to p and P (q)<P (p), the rate at which
water flows from p to q depends on how much smaller P (q) is than P (p). If p is in
the watershed of a bottom Π, there are paths of steepest descent from p to Π. If the
edges of G are weighted by their slopes and Π is in the watershed of Π∗, we can find
strongest paths from Π to Π∗ (i.e., paths along which the rate of flow of water from
Π to Π∗ is maximal).

A plateau (or pixel) that is upstream from more than one bottom is said to
belong to a divide of a surface, because the water that flows from such a plateau
is “divided”: it does not all flow to the same bottom. Pixels that lie on the ridges
of a surface are usually divide pixels, because the water that flows down the two
sides of the ridge usually reaches two or more bottoms. Similarly, pixels that lie in
ravines are usually downstream from more than one top, because the water flowing
into a ravine from its two sides usually comes from two or more tops. A divide pixel
(or plateau) that is directly upstream from pixels (or plateaus) that belong to two
different watersheds belongs to the divide line (sometimes called a watershed line)
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FIGURE 13.17 A watershed: Left, middle: a picture with pixel values 0, . . . ,4. Right:
the watershed of the 0 in the last row.
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between the two watersheds. If water flowed upward from the bottoms, water from
different bottoms would meet at divide lines. Thus there is an analogy between
a divide line and a medial axis (see Section 3.4.4) at which the grassfire from the
boundary of a set meets itself; however, note that a “divide line” can be very thick,
because its pixels can belong to arbitrarily large plateaus. Divide lines that are
(usually) not more than two pixels thick can be obtained by using a “viscous” water
flow that has a rate that depends on both distance and elevation difference.

13.4 Exercises

1. A shape is a simply connected measurable compact set in the Euclidean plane.
For any M ⊆ E

2, let S(M) be the smallest shape that is similar to a given shape
and that contains M . Which of the properties H1 through H4 are satisfied by
the operator S?

2. Let S be the class of all compact subsets of the plane, let M ⊆ S, and let I(M)
be the isothetic rectangle of smallest area that contains M . Prove that I is a hull
operator.

3. Give algorithms for constructing the smallest circumscribing square or disk of
a finite set of points of Z

2. (Hint: It is simpler to construct an approximate
solution.)

4. Let M ⊂ R
2 be finite, let d be its diameter, and let its smallest circumscribing

rectangle R(M) have sides of lengths a and b. Find lower and upper bounds for
a and b in terms of d.

5. Give examples that show that properties H1, H2, and H3 are independent (e.g.,
a class S and a mapping H that satisfy H1 but not H2 and not H3).

6. Let Π0 be a simple polygon. We recall (see Section 13.1.1) that a (first order)
concavity in Π0 is the closure of a connected component ofC(Π0)\Π0. Evidently,
Π0 is convex iff it has no first-order concavities. Define a kth-order concavity
(k = 2,3, . . .) in Π0 as a concavity in a (k−1)st-order concavity in Π0. Prove the
following:

a) For any k, kth-order concavities in Π0 are simple polygons with vertices that
are vertices of Π0.

b) If k is odd, kth-order concavities in Π are subsets of C(Π0)\Π0; if k is even,
kth-order concavities in Π0 are subsets of Π0.

c) If Π0 has n vertices, it cannot have kth-order concavities for k > n. Can you
give a better bound on k?
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7. Design an algorithm for constructing the convex hull of a finite set S of points
in the Euclidean plane using the following strategy. Identify in S the up to eight
points that are extreme in the x-, y-, (x+ y)-, and (x− y)-directions. Points of
S in the interior of the octagon defined by these eight points cannot be on the
frontier of the convex hull. The remaining points of S — in addition to the eight
points — must lie in eight triangles outside of the octagon. Construct the frontier
of the convex hull using only these remaining points.

8. Let e(m) and s(n) be the functions defined in Section 13.1.2. Prove that e(m)≤
2m+2 form≥ 1; s(n)≥ n

2
−1 forn≥ 3; and s and e are monotonically increasing

functions.

9. Show that an 8-disconnected set M can have more than one digitally convex
completion.

10. Let dig be a digitization function that maps Euclidean line segments pq ⊂ R
2

(p,q ∈ Z
2) into 8-regions dig(p,q)⊂ Z

2 such that p,q ∈dig(p,q). dig is called close
iff, for all r ∈dig(p,q), there is a point v ∈ pq such that d8(r,v) < 1, and, for all
v ∈ pq, there is a grid point r ∈dig(p,q) such that d8(r,v)< 1. dig is called convex
iff, for all r,s ∈dig(p,q), we have dig(r,s) ⊆dig(p,q) for all p,q ∈ Z

2. Show that
closeness and convexity are mutually exclusive properties of dig.

11. Let M be a finite set of points in R
2. If a convex hull edge pq does not intersect

“its” Voronoi diagram edge V (p)∩V (q), replace pq with two new edges, one of
which joins p at the point where the “old” edge pq crosses the frontier of V (p).
Continue this process until there is no further change. This process “shrinks”
the original convex hull C(M) into a polygon G(M); see Figure 13.18 (left).

(i) Show that G is a pseudohull; it is called the Gabriel pseudohull of M .

(ii) Give an algorithm for calculating the Gabriel pseudohull.

η

hη(M)

FIGURE 13.18 Left: the bold polygonal line is the frontier of the Gabriel pseudohull;
see Figure 13.11 for the Voronoi and Delaunay diagrams. Right: the 8-hull (bold)
and 8-approximation (dashed).
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12. Let M ⊂ R
2 be finite. The frontier of the 8-approximation of M is defined by

the cyclic sequence of points p = (x,y) ∈M that maximize x, x+ y, y, −x+ y,
−x, −x− y, −y, and x− y, in that order; see Figure 13.18 (right). The 8-hull is
defined by intersecting the eight halfplanes defined by tangent lines in directions
η = i2π/8 (i= 0, . . . ,7) that contain M .

(i) Which of the properties H1 through H4 are satisfied by the 8-approximation
and the 8-hull?

(ii) Implement the 8-approximation and the 8-hull, generatehpoints in a square,
and compare the mean difference between the areas of their 8-approxi-
mation, their 8-hull, and their convex hull (e.g., calculated on the basis of
Graham’s algorithm) for h= 100, . . . ,1000.

13. Let η ∈ [0,2π) be a direction, let p ∈ Z
2, and let γη(p) be the oriented straight

line through p= (x0,y0) in direction η+π/2 if η �= 0 and η �= π:

γη(p) = {(x,y) : y = ax+ b∧a= tan(η+π/2)∧ b= y0−ax0}
Let it otherwise be as follows:

γη(p) = {(x,y) : x= x0}

Let M ⊂ Z
2 be finite. p ∈M is an extreme point of M in direction η (notation:

p ∈ Xη(M)) iff M is contained in the closed halfplane hη(M) to the right of
γη(p). Let dir(n) = {i2π/n : i= 0, . . . ,n−1} be a set of n directions, and let the
following be true:

Hn(M) =
⋂

η∈dir(n)

hη(M) and An(M) = C

⎛

⎝
⋃

η∈dir(n)

Xη(M)

⎞

⎠

Hn(M) is the n-hull of M (see Exercise 12 for n = 8), and An(M) is the n-
approximation of M .

(i) Extend the experiments of Exercise 12 by comparing the area of the n-hull
and n-approximation with the area of the convex hull for n= 4, . . . ,64.

(ii) Let f(n) be the largest integer m such that, for all finite sets M ⊂ Z
2 such

that max{|x1−x2|, |y1−y2| : (x1,y1),(x2,y2)∈M}≤m, then-approximation
An(M) is always equal to the convex hull C(M). For example, f(1) = 0,
f(2) = f(3) = 1, and f(4) = 2. Give lower and upper bounds on f(n) when
n is a multiple of 4.

14. Show that a set S ⊆ Z
2 is digitally convex iff there is a supporting (real) line

through every point of its 4-border. (Note: Supporting lines of a planar set have
the set on one side of them.)
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For a discussion of hulls, pseudohulls, and near-hulls, see [535], which also discusses
the Gabriel pseudohull [1062] (see Exercise 10) and the 8-hull [537] (see Exercise 11).
The case n= 2 of Jung’s upper bound for the radius of the smallest disk that contains
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2 is also proved in [830]. Relative convex hulls (see Section 1.2.9)
define hulls of “inner sets” with respect to a fixed “outer set.” In the context of
this chapter, relative convex hulls have applications to analyzing convexity in the
grid cell model; see [508]. “Approximate convexity” based on concepts of geometric
probability and shape analysis is proposed in [420]. [973] discusses digital “star-
shapedness.”

Sklansky’s algorithm was published in [999]. The correct convex hull algorithm
for simple polygons (Algorithm 13.1) appeared in [539], thereby correcting an erro-
neous algorithm in [451]. See the literature about computational geometry (e.g.,
the textbooks [97, 823] or Chapter 19 [by R. Seidel] in [371]) for other 2D and 3D
convex hull algorithms (for simple polygons, finite sets of points, simple polyhedra,
and so on). The algorithm sketched in Exercise 6 has linear expected time assuming
a uniform distribution of the points in a rectangle [265]. [302] gives expected values
of the areas and diameters of the convex hulls of sets of n points.

See [451] for convex hull computation for sets of grid points and [180, 865]
for the computation of digital convex hulls. The discussion of maximal numbers
of vertices of convex grid polygons in Section 13.1.2 and Exercise 7 follows [1110],
which also contains empiric formulas for estimating the functions e and s. See also
[465] for asymptotic estimates of e and s. Theorem 13.1 is from [5].

[449] contains a review of digital convexity (see Section 13.2). See [1165] for
number-theoretic studies of digital convex polygons. The results in this section are
from [348, 451, 510, 515, 516, 854, 911, 952, 998, 999]. See [508, 518] for convexity
in the grid cell model. [473] and [1157] discuss fuzzy convexity, and [906] discusses
convexity on graphs.

[902] discusses measures of concavity. For more about convex digital regions
of specific shapes, see [333, 765] (squares) and [276, 328, 512, 606] (disks). See [905]
about fuzzy orthoconvexity and rectangles and [906] about fuzzy triangles.

The Delaunay diagram algorithm in Algorithm 13.3 (including the “integer
arithmetic only” optimization for sets of grid points) was published in [453]. For
a review of Voronoi and Delaunay diagram algorithms (Dirichlet cell algorithms
in the general case) and related geometric properties, see Chapter 20 (by S. For-
tune) in [371]. For performance analysis of Voronoi tessellation algorithms, see [819].
For Proposition 13.8, see [1062].

An algorithm for Euclidean Dirichlet labeling on Z
n (n≥ 2), assuming a finite

set of grid points as input, is given in [373]. The algorithm is based on space-filling
curves in Z

n; it generalizes examples given in Section 1.1.3 for Z
2.

[588] applies dual Voronoi diagrams to the recognition of circular arcs. [119] ap-
proximates the skeleton of a set S ⊂ R

2 from the Voronoi diagram of points sampled
along the frontier of S. [217] studies topologic connectedness in the plane defined by
Voronoi cells. For other references regarding Voronoi diagrams, see [8, 38, 310, 385].
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For fuzzy connectedness in 2D pictures, see [891, 897]. For classic references
about monotonicity-based segmentation of surfaces, see [167, 710]. For watershed
segmentation, see [83, 87, 727, 735, 824, 1098]. For Exercise 2 (smallest circumscribing
disk), see [1120]. Exercise 9 is from [683], and Exercise 12 follows [537].
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Transformations

Subfields of geometry are sometimes defined by systems of axioms and some-
times by groups of transformations under which certain geometric properties
remain invariant. This chapter describes the transformation-based approach and
presents a set of axioms for digital geometry. It discusses transformation groups
and symmetries, neighborhood-preserving transformations, applying transfor-
mations to pictures, magnification and demagnification, and digital tomography.

14.1 Geometries

A wide variety of geometries have been developed, motivated by a wide variety
of applications: Euclidean (Thales of Miletus, Hippocrates of Chios, the secret
society of the Pythagoreans, Euclid, Archimedes); analytic (Descartes, also known
as Cartesius); perspective (Alberti, da Vinci, della Francesca, Dürer); projective
(Desargues, Pascal); descriptive (Monge); non-Euclidean, such as elliptic and hyper-
bolic (Lobachevsky, Bólyai, Riemann); and combinatorial (Helly, Borsuk, Erdõs).

The Norwegian mathematician S. Lie and the German mathematician F. Klein
formulated a classification system for all of the geometries known at their time:

Geometric properties of objects are those which are invariant with respect to
a specified group of transformations.

This classification scheme is known as the 1872 Erlangener Programm of F. Klein.
Let B be a base set and G a group of transformations defined on B. The theory of
invariants with respect to B and G, which studies quantities that can be measured
in B that have values that are invariant under the transformations in G, defines a
geometry in which a nonempty family of subsets (“objects” or “figures”) F ⊆ ℘(B)
is specified as the class of objects of interest. We assume that these objects and
the quantities (“properties”) that are measured for them are in fact of practical or
theoretic interest.

For example, B might be the 3D Euclidean space E
3 = [R3,de] defined by the

manifold R
3 of triples of real numbers and the Euclidean metric de; F might be

the family of all bounded polyhedra; and G might be the group of (i) all similarity
455
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transformations, (ii) all affine transformations, or (iii) all projective transformations
of B into the Euclidean plane. This defines three different geometries of polyhedra
in the sense of the Erlangener Programm.

The study of invariants also requires some relationship among the elements of
B (i.e., B must have a structure defined by a metric [see Chapter 3] or a topology [see
Chapter 6]). For example, for the invariance of cross-ratios in projective geometry,
we make use of the Euclidean metric; for the invariance of simple connectedness, we
usually make use of the Euclidean topology.

If at least one of B, G, orF is finite or discrete, the geometry is called a discrete
geometry. A setA⊆B is called discrete in B iff any p∈B has a neighborhoodU(p)⊆B
such that U(p)∩A is finite. For example, any set of grid points is discrete in R

n. A
family of sets G ⊆ ℘(B) is discrete in B iff any p∈B has a neighborhoodU(p)⊆B that
has nonempty intersections with only a finite number of the sets in G. For example,
any set of cells of a Euclidean complex (see Section 6.4.2) is discrete in R

n.
Digital geometry, using either the grid point or grid cell model, is a discrete

geometry. The structure in the base set B of a discrete geometry is specified by (at
least) a system of algebraic neighborhoodsU(p)⊆B for all p∈B, whereU is reflexive,
symmetric, and nontransitive. An element q is a proper neighbor of p (adjacent to
p) iff q ∈ U(p) and p �= q. Adjacency structures [S,A] (see Chapter 4) allow us to
introduce such neighborhoods; q ∈ U(p) iff p= q or q ∈A(p).

Packings, tessellations, polyhedra, and Euclidean complexes all involve discrete
families of sets in Euclidean space. Geometry on graphs and finite geometries are
other examples of discrete geometries. Some of them can be regarded as generaliza-
tions of digital geometry if their base set B has an adjacency grid or incidence grid
(or cell complex) as an interpretation (i.e., as a model in the sense of logic).

14.2 Axiomatic Digital Geometry

Many geometries can be defined by systems of axioms. Eukleides (also known as
Euclid; see Section 1.2.2) also formulated in 13 books an axiom system for the ge-
ometry known today as Euclidean geometry. Such a system should be complete,
nonredundant, and consistent [384].1 This book has introduced theories based on
axioms (e.g., the theory of oriented adjacency graphs based on properties A1 through
A4). Consistency is ensured by the existence of nontrivial models.

At the end of the 19th century, there were still many open problems related to
the axiomatic foundations of geometries. Poincaré, Pasch, and Hilbert were among
those who studied such problems. At the end of the 19th century, mathematicians
recognized that Euclid’s axiom system was incomplete. For example, Euclid did not
define precise concepts of “between,” “inside,” or “outside”; his reasoning about
these concepts was based on pictures. In 1899, D. Hilbert [436] proposed a modified

1. A set of axioms is consistent iff it is impossible to deduce a contradiction from it; it is nonredundant iff none
of the axioms can be deduced from the others; and it is complete iff it can be used to prove or disprove every
proposition.
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axiom system for Euclidean geometry that removed some of these defects. His work
and the work of H.G. Forder [334] formalized Euclidean geometry and proved the
consistency of its axioms.

Removing redundancy from a set of axioms system is not critical (in principle),
but constructing a complete and consistent set of axioms is. K. Gödel [363] proved
that no set of axioms can be both consistent and complete (Gödel’s Incompleteness
Theorem). It follows that a consistent set of axioms cannot be complete.

The following axiomatic definition of digital geometry (based on an adaptation
of a subset of Hilbert’s axiom system) was presented in a 1989 habilitation thesis
[449] by A. Hübler.

Let B be a set of points and G ⊆ ℘(B) a nonempty set of lines. We begin with
two incidence axioms:

G1: For any two distinct points p,q ∈ B, exactly one line in G contains p and q.

G2: For any line γ ∈ G, there exist pairwise distinct points p,q,r ∈ B such that
p ∈ γ and q ∈ γ but r /∈ γ.

According to axiom G2, there are at least three points in B. Using axiom G1, it then
follows that there are at least three pairwise distinct lines in G. It also follows that any
two distinct lines can have at most one point in common. (As we saw in Figure 7.11,
“crossings” of lines that have no common point are also possible.)

Let ‖ be a relation of parallelism on G that satisfies the following:

G3: ‖ is an equivalence relation on G, and, for any line γ ∈ G and any point p ∈B,
there is exactly one line γ′ such that p ∈ γ′ and γ ‖ γ′.

The equivalence relation ‖ defines equivalence classes in G that are called directions.
Let γ(p,q) be the line uniquely defined by points p and q (see axiom G1). A

one-to-one mapping Φ from B onto B is called a translation on B iff it is either the
identity mapping I or it has the following three properties:

1. Φ(γ) = {Φ(p) : p ∈ γ}‖γ for all lines γ.

2. Φ(p) �= p for all p ∈ B.

3. {γ(p,Φ(p)) : p ∈ B} is a direction.

The following axiom guarantees that there are translations that are different from I :

G4: For any two distinct points p,q ∈ B, there is a translation Φ such that
Φ(p) = q.

From this and the previous axioms, it follows that there is exactly one translation Φ
such that Φ(p) = q.

Proposition 14.1 Two distinct lines γ1 and γ2 are parallel iff there is a translation
Φ1 �= I such that Φ1(γ1) = γ1 and Φ1(γ2) = γ2, iff there is a translation Φ2 �= I
such that Φ2(γ1) = γ2.

Let T be the set of all translations on B.
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Theorem 14.1 T is a commutative group under the operation of composition
and has I as its identity element.

A translation Φ �= I is called cyclic iff there is an integer n > 0 such that Φn(p) = p
for all p ∈ B. A translation is cyclic iff Φn(p) = p for some n > 0 and some p ∈ B.
The smallest such integer is called the cycle of Φ. [449] shows that, if there exists a
cyclic translation with cycle m> 0, all translations in T that are different from I are
also cyclic with the same cycle m, and m is a prime number. [449] provided models
of axioms G1 through G4 with cyclic translations, for finite or countable infinite sets
of points B. Nonparallel lines need not intersect.

Next we introduce axioms of order. Let< and>be two opposite total orders on
a line γ (i.e., for all p,q ∈ γ, we have p < q iff q > p). Let [γ,<] and [γ,>] denote these

oriented lines. Let B ⊆ B
3

be the betweenness relation on B for any three pairwise
distinct points p,q,r on [γ,<]:

B(p,q,r) iff p < q < r or r < q < p

G5: For any oriented line [γ,<] and any point p∈ γ, there exist points q,r ∈ γ such
that B(q,p,r).

(Possibly this axiom already excludes models with cyclic translations; see the state-
ment following G7.) It follows that any line contains (countably) infinitely many
points. Axioms G1 through G5 no longer have finite models.

The following axiom excludes nondiscrete models such as Euclidean geometry:

G6: For any two points p,q ∈ γ, there are only finitely many points r such that
B(p,r,q).

This requires lines to be countable and isomorphic (with respect to the order) to
[Z,<]. Oriented lines can be identified with ordered point sequences {pi}i∈Z.

G7: Let γ1, γ2, and γ3 be three pairwise distinct parallel lines. Let γ and γ′ be
two lines that intersect γ1,γ2, and γ3, and let {pi}= γ ∩γi and {p′i}= γ′ ∩γi

(i= 1,2,3). Then B(p1,p2,p3) iff B(p′
1
,p′

2
,p′

3
).

This axiom implies that B(p,q,r) implies B(Φ(p),Φ(q),Φ(r)) for any translation Φ.
It also follows [449] that a model of axioms G1 through G7 cannot have a cyclic
translation.

For any line γ and any point p∈ γ, there is a translation Φ such that γ = {Φi(p) :
i ∈ Z}. Such a translation Φ is called a generator of γ. If Φ is a generator of γ, so is
Φ−1. Any line γ has exactly two generators, and two lines are parallel iff they have
the same generators.

A translation Φ is called atomic iff there is no translation Ψ such that Φ = Ψn

and n �= 1. A translation is atomic iff it is a generator of a line.
S ⊆ B is called complete with respect to B iff, for all p,q ∈ S and all r ∈ B,

B(p,r,q) implies r ∈ S. S ⊆ B is called convex iff it is complete (with respect
to B). The intersection of any (finite or infinite) family of convex sets is convex.
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The convex hull C(S) of S ⊆ B is the smallest (with respect to set inclusion) convex
set that contains S. It follows that the following is true for all S ⊆ B:

C(S) =
⋂
{A :A⊆ B∧A is convex}

Any line is convex. A line segment is a finite complete subset S of a line that
contains at least two points. An infinite complete proper subset of a line is called a
ray. The points of any line segment can be ordered (e.g., (p1, . . . ,pk)); p1 and pk are
called the endpoints of the segment.

Let p ∈B, and let Φ,Ψ ∈ T be two translations in different directions. Gp,Φ,Ψ =
{ΦiΨk(p) : i,k ∈ Z} is called the 2D grid defined by p, Φ, and Ψ. The triple p,Φ,Ψ
defines a coordinate system on Gp,Φ,Ψ. Any 2D grid is isomorphic to the grid Z

2 (i.e.,
they differ by a one-to-one mapping that is betweenness-invariant). Thus, all 2D
grids are isomorphic to each other.

A basis of a set T of translations is a set B ⊆ T such that any translation in T is
a finite composition of translations in B. The dimension!of a set of translations of T
is the smallest cardinality of any basis of T.

Let γ1, γ2, and γ3 be pairwise distinct parallel lines. We define B(γ1,γ2,γ3)
(i.e., γ2 is between γ1 and γ3) iff there is a translation Φ such that γ2 = Φi(γ1) and
γ3 = Φk(γ1) for some natural numbers i and k such that i < k.

G8: For any two parallel lines γ1 and γ2, only a finite number of lines γ satisfy
B(γ1,γ,γ2).

Every 2D grid satisfies axiom G8. Models of axioms G1 through G8 are called digital
grid geometries. Axiom G6 can be deduced from axioms G1 through G5 and G7 and
G8. (We can also possibly deduce G8 from G1 through G7.) There are models
of this axiom system in orthogonal grids Z

n that have any dimension n > 0 [228];
hence the system is consistent. The axioms also allow us to define other geometric
concepts such as planes, halfplanes, and coplanarity. They do not allow us to define
the topologic concepts of adjacency sets or neighborhoods, but the order relations
on lines determine adjacencies between their points.

Theorem 14.2 Every digital grid geometry is uniquely determined by a set B of
points and a set T of translations.

14.3 Transformation Groups and Symmetries

The study of symmetry has a long history in the arts, architecture, crystallography,
and mathematics. H. Weyl wrote the following in [1122]:

“Symmetry, as widely or as narrowly as you may define its meaning, is an idea
by which man through the ages has tried to comprehend and create order,
beauty, and perfection.”



460 Chapter 14 Transformations

C

F

A B

ED

FIGURE 14.1 Symmetry examples in the Euclidean plane.

Symmetries are defined with respect to geometric transformations. A symmetry
operation maps a set into itself. PolygonA in Figure 14.1 is reflection-symmetric with
respect to the vertical axis, but it is not rotation-symmetric. Polygon B is rotation-
symmetric (in multiples of 36

◦
) but not reflection-symmetric. Polygon F is neither

rotation- nor reflection-symmetric. Polygons C, D, and E are both reflection- and
rotation-symmetric, with varying numbers of axes and rotation angles.

Any planar set is symmetric with respect to the identity. Let us denote geo-
metric transformations with capital letters (e.g., I for the identity and R for a coun-
terclockwise rotation by 90

◦
). We have R4 = I, and R has period 4, because 4 is the

smallest power of R that is equal to I. I is the only transformation that has period
1. We can also consider inverses of transformations; the inverse R−1 = R3 satisfies
RR−1 = I. A nonempty set G of transformations is a group iff, for any transforma-
tions U,V ∈ G, we have UV ∈ G and U−1 ∈ G. The cardinality of a group (which
may be finite or infinite) is called its order. For example, {I,R,R2,R3} is a group of
order 4. The set of all symmetry operations on a set S is a group, which is called the
symmetry group of S. Two groups are said to be isomorphic iff there is a one-to-one
mapping f between them that preserves the group operations: For all U,V , we have
f(UV ) = f(U)f(V ) and f(U−1)f(V )−1. In the sequel, we regard isomorphic groups
as being identical.

Polygon F in Figure 14.1 has the trivial symmetry group that contains only the
identity I. A symmetry group that contains a translation must also contain all integer
multiples of that translation. It follows that a bounded set cannot be translation-
symmetric.

The group-theoretic approach to symmetry arose at the end of the 19th century.
The classifications of symmetry groups in the Euclidean plane and in the Euclidean
3D space2 are well-known. We review the planar case. A discrete symmetry group
in the plane may contain the following:

2. Parallel publications in 1891 by E.S. Fedorov [317], a director of mines in the Ural region, and A. Schönflies
[966], a professor at Göttingen University, classified all 230 symmetry groups of crystal in 3D space. Their results
were in close agreement, and Schönflies granted Fedorov priority for the discovery [153].
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(i) no translations, and either of the following:

(i.1) no reflections (these are the circle groups Cn generated by a rotation
about an angle 2π/n for some n ≥ 2; see polygon B in Figure 14.1 for
n= 10); or

(i.2) at least one reflection (these are the dihedral groups Dn generated by
reflection about an axis through the origin at an angle of 2π/n for some
n≥ 2; see polygonsA,C,D, andE in Figure 14.1 for n= 2, n= 6, n= 5,
and n= 4);

(ii) translations, but only in one direction; or

(iii) translations in more than one direction.

The symmetry group of a bounded set is either a circle group Cn or a dihedral group
Dn. The group Dn contains n rotations and n reflections. Translation-symmetric
(unbounded) sets are periodic in one or several directions (cases (ii) and (iii) above,
see [221]). (A picture can be regarded as a “finite window” of an unbounded periodic
set.) Case (ii) contains only seven groups, which are called the frieze groups. Case
(iii) contains 17 groups, called the wallpaper groups, which were fully classified in
[318]. Drawings by the Dutch artist M.C. Escher3 illustrate at least 16 of the 17
wallpaper groups.

[486] proposes using naive lines (DSLs) to define reflections in the digital plane.
The line of reflectionγ0 = {(x,y)∈Z

2 : 0≤ ax−by < b}where 0<a≤ bpasses through
the origin and has slope a/b. γ0 defines a direction (i.e., an equivalence class Γ of
lines in the sense of Section 14.2). Γ consists of all of the following lines:

γi = {(x,y) ∈ Z
2 : ib≤ ax− by < (i+1)b} (i ∈ Z)

The direction Γ⊥ perpendicular to Γ is defined by slope b/−a and consists of all of
the following lines:

γ⊥k = {(x,y) ∈ Z
2 : kb≤ bx+ay < (k+1)b} (k ∈ Z)

Any direction defines a partition of Z
2 into parallel DSLs. A grid point p= (x,y)∈ Z

2

determines the following values,

i= �bx+ay

b


and

k = �ax− by
b


which identify the line γ⊥k such that p ∈ γ⊥k is at 8-distance i from γ0 “along γ⊥k ”.
p is in one of the two digital halfplanes defined by γ0. We reflect p in γ0, mapping p
into the opposite digital halfplane; the reflected p is also on γ⊥k and also at
8-distance i from γ0. Reflection in γ0 defines a one-to-one mapping on the grid

3. See the picture gallery “Symmetry” at http://www.mcescher.com/.
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points of Z
2. Note that this is not simply a mapping of a point with “γ-coordinates”

(i,k) into a point with γ-coordinates (−i,k).
These mappings are digital analogs of reflections in the Euclidean plane. A

DSL is digitally symmetric with respect to reflection in itself, but it is not necessarily
a symmetric set in the Euclidean plane. Translations defined by vectors �op are also
one-to-one mappings of Z

2 into itself. In the case of rotations, however, we can
only deal with rotations by multiples of 90

◦
; this greatly limits the study of digital

rotational symmetry.

14.4 Neighborhood-Preserving Transformations

In this section, we discuss transformations f that take Z
2 into Z

2. We define a con-
cept of “continuity” for such an f and show that f is continuous iff it preserves
4-connectedness. We also show that f is continuous and one-to-one iff it is a trans-
lation (possibly combined with a reflection or with a rotation by a multiple of 90

◦
).

Let d be a metric on Z
2 that has the following properties:

a) p �= q implies d(p,q)≥ 1.

b) d(p,q) = 1 iff p and q are 4-adjacent.

Note that d4 and de have these properties but that d8 does not.

Let f be a function from Z
2 into Z

2. We call f d-continuous at p if, for all ε≥ 1,
there exists a δ ≥ 1 such that d(p,q) ≤ δ implies d(f(p),f(q)) ≤ ε. Note that this
definition is analogous to the familiar epsilon-delta definition of continuity in the
Euclidean plane, because d > 0 is equivalent to d≥ 1.

Proposition 14.2 f is d-continuous at p iff d(p,q)≤ 1 implies d(f(p),f(q))≤ 1.

Proof If f is d-continuous at p, let ε = 1; then there exists a δ ≥ 1 such that
d(p,q) ≤ δ implies d(f(p)f(q)) ≤ 1, and, in particular, this must be true for
δ= 1. Conversely, if d(p,q)≤ 1 implies d(f(p),f(q))≤ 1, then d(p,q) = 1 implies
d(f(p),f(q))≤ 1≤ ε for any ε≥ 1, so f is d-continuous at p with δ = 1. �

Note that, if f is d-continuous at every pixel in a set S ⊆ Z
2, it is “uniformly”

d-continuous on S. We will drop the phrase “at p” from now on.

Proposition 14.3 f is d-continuous iff it takes 4-connected sets of pixels into
4-connected sets of pixels.
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Proof If f preserves 4-connectedness and d(p,q)≤ 1, the set {p,q} is 4-connected;
hence the set{f(p),f(q)}must be 4-connected, sod(f(p),f(q))≤ 1. This proves
that f is d-continuous by Proposition 14.2. Conversely, let f be d-continuous,
let S be a 4-connected set of pixels, and let f(p),f(q) be any two pixels in f(S).
Because S is 4-connected, there exists a 4-path p0,p1, . . . ,pn from p = p0 to
q = pn in S, so d(pi,pi+1) = 1 for all 0≤ i < n. According to Proposition 14.2,
this implies d(f(pi),f(pi+1))≤ 1 for all 0≤ i < n; hence f(p0),f(p1), . . . ,f(pn),
omitting repetitions if necessary, is a 4-path in f(S) from f(p) to f(q) so that
f(S) is 4-connected. �

Proposition 14.4 If d(f(p),f(q)) ≤ d(p,q) for all p and q, f is d-continuous. If
d= d4, the converse is also true.

Proof The first part is an easy consequence of Proposition 14.2. Conversely, let
f be d4-continuous, and let d4(p,q) = a; then there exists a 4-path p0,p1, . . . ,pd

of length a from p= p0 to q = pd. Because d4(pi,pi+1) = 1, by Proposition 14.2,
we have d4(f(pi),f(pi+1))≤ 1; hence, by the triangle inequality and induction,
we have d4(f(p),f(q))≤ a= d4(p,q). �

f(x,y) = (x+ y,0) is an example of a de-continuous function for which we have
de(f(p),f(q))> de(p,q). In the Euclidean plane, the property of f used in Proposi-
tion 14.4 is called a Lipschitz condition; it implies continuity but not conversely.

If f is d-continuous and one-to-one and q is a 4-neighbor of p, f(q) must be a
4-neighbor of f(p). Moreover, if q1 and q2 are consecutive 4-neighbors of p (i.e., they
have a common 4-neighbor [a diagonal neighbor of p]), f(q1) and f(q2) must also be
consecutive. It is not hard to show that one of the following must be true:

a) The neighbors of p are mapped into the corresponding neighbors of f(p).

b) The neighbors are mapped into their reflections in a vertical, horizontal, or
diagonal line (through p).

c) The neighbors are mapped into their rotations (around p) by±90
◦

or (±)180
◦
.

Moreover, if any of these conditions are true for some p, it is not hard to show that
it must be true for every p. Thus we have the following:

Theorem 14.3 If f is d-continuous and one-to-one, it must be a translation, pos-
sibly combined with a symmetry of the square.

(A symmetry of the square is a vertical, horizontal, or diagonal reflection or a rotation
by ±90

◦
or (±)180

◦
.)
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14.5 Applying Transformations to Pictures

In this section, we discuss how to apply a geometric transformation of the plane to
a picture in such a way as to ensure that the result of the transformation is also a
picture.

A geometric transformation of the plane is defined by a pair of equations of
the following form, which specify the new coordinates of each point as functions of
the old coordinates:

x′ = h1(x,y) y′ = h2(x,y) (14.1)

If we want to apply such a transformation to a picture, we must deal with the fact
that, even if (x,y) are integers, (x′,y′) may not be integers. In this section, we discuss
how to apply a geometric transformation to a picture in such a way that the result of
the transformation is still a picture.

A naive approach to applying the geometric transformation of Equation 14.1
to a picture P would be as follows. For each pixel of P (e.g., at location (x,y)),
compute its new coordinates (x′,y′) using Equation 14.1; round these coordinates
to the nearest integers [x′], [y′]; and construct a new picture P ′ in which the pixel at
location ([x′], [y′]) has value P (x,y). Unfortunately, this naive approach would lead
to unacceptable results; it would assign no values to some pixels of P ′ and more than
one value to other pixels. To see this, consider a simple example in which we apply
a 45

◦
counterclockwise rotation to the 3×3 picture P that has pixel values that are

shown in Figure 14.2. This rotation takes (x,y) into the point that has the following
coordinates:

x′ = (x−y)
√

2/2 y′ = (x+y)
√

2/2

Let the center of rotation and the origin be at the pixel that has value g; then the new
coordinates of the nine pixels and their rounded values are as shown in Table 14.1.
Thus the pixels at locations (−1, 1) and (1,1) each get two values (a and d,h and i),
and the pixel at location (0,2) gets no value, even though it is surrounded by pixels
that do get values. Schematically, the new picture looks like Figure 14.3.

Evidently, the rounded 45
◦

rotation is not a one-to-one correspondence of the
grid with itself. For example, when we apply it to a DSS consisting of five diagonally
consecutive pixels, we obtain five pixels that lie on a horizontal (or vertical) line,
where they occupy an interval of length 5

√
2≈ 7; thus the five original pixels rotate

a b c

d e f

g h i

a b c

d e f

g h i

FIGURE 14.2 A 3×3 picture P .



14.5 Applying Transformations to Pictures 465

TABLE 14.1 Rotated coordinates of the nine pixels of P when the naive
approach is used.

Pixel Original New Rounded new
of P coordinates coordinates coordinates
a (0,2) (−√2,

√
2) (−1, 1)

b (1,2) (−√2/2,3
√

2/2) (−1, 2)
c (2,2) (0,2

√
2) (0,3)

d (0,1) (−√2/2,
√

2/2) (−1, 1)
e (1,1) (0,

√
2) (0,1)

f (2,1) (
√

2/2,3
√

2/2) (1, 2)
g (0,0) (0,0) (0,0)
h (1,0) (

√
2/2,
√

2/2) (1, 1)
i (2,0) (

√
2,
√

2) (1, 1)

a,d

b

c

e

f

g

-

h,i

FIGURE 14.3 The result of rotating P by 45◦ using the naive approach.

into five out of seven horizontally consecutive pixels. Two of these seven pixels will
have no values assigned to them, so the rotated line segment will have gaps. Con-
versely, when we rotate a horizontal DSS consisting of seven horizontally consecutive
pixels, the rotated pixels occupy an interval of length ≈ 5

√
2 on a diagonal; thus the

values of the seven original pixels must be assigned to five pixels, so two of these
pixels will have more than one value assigned to them.

We can avoid these difficulties by using the inverse of the transformation in
Equation 14.1 to map each pixel in the new picture (e.g., with coordinates (x′,y′)),
into a (real) point (x,y) in the plane that contains the original picture P . (We are
assuming that the transformation in Equation 14.1 is invertible.) Let the inverse of
the transformation in Equation 14.1 be as follows:

x=H1(x′,y′) , y =H2(x′,y′) (14.2)

It specifies the old coordinates of a point as functions of the point’s new coordinates.
Equation 14.2 maps (x′,y′) into a point (x′′,y′′) in the plane of the old picture P .

We assign a value to the pixel of the new picture at location (x′,y′) by inter-
polating between the values of the pixels of P that lie near (x′′,y′′). Alternative
methods of performing this interpolation will be discussed shortly; for the moment,
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TABLE 14.2 Inverse-transformed coordinates of the pixels in P ′.

Pixel Inverse transformed Closest
of P ′ coordinates pixel of P Value
(0,0) (0,0) (0,0) g

(0,1) (
√

2/2,
√

2/2) (1,1) e

(0,2) (
√

2,
√

2) (1,1) e

(0,3) (3
√

2/2,3
√

2/2) (2,2) c

(1,1) (
√

2,0) (1,0) h

(1,2) (3
√

2/2,
√

2/2) (2,1) f

(−1,1) (0,
√

2) (0,1) d

(−1,2) (
√

2/2,3
√

2/2) (1,2) b

d

b

c

e

f

g

e

h

FIGURE 14.4 The result of rotating P by 45◦ using nearest-neighbor interpolation.

we will use nearest-neighbor (sometimes called zero-order) interpolation, in which
(x′,y′) is given the value of the pixel of P that lies closest to (x′′,y′′).

When we use the inverse transformation and nearest-neighbor interpolation,
our rotation example works as follows. The inverse transformation is a clockwise
45
◦

rotation that takes (x′,y′) into the point that has the following coordinates:

x= (y′+x′)
√

2/2, y = (y′ −x′)
√

2/2

When we apply this transformation, the nearest-neighbor values for the pixels of P ′
are as shown in Table 14.2. Note that the same value is assigned to more than one
pixel (both (0,1) and (0,2) get e), and some of the values (a and i) are not assigned
to any pixel; however, every pixel in P ′ gets a unique value, as shown in Figure 14.4.

As we see from Figure 14.4, the rotated picture is no longer an upright square; it
is approximately a 45

◦
rotated square. In general, if we want to display a geometrically

transformed picture on a finite square grid, we may have to leave parts of that grid
(such as its corners) blank, or we may have to discard the values of parts of the
original picture. If the transformation is not continuous, the transformed picture
may not even be connected!

We now consider alternative methods of performing the interpolation. The
simplest such method is bilinear interpolation, which is defined as follows. Let
the integer parts �x′′,�y′′ of x′′ and y′′ be i and j so that (x′′,y′′) is surrounded
by the four grid points having coordinates that are shown in Figure 14.5. Let the
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α

β

(x'',y'')

(i,j+1) (i+1,j+1)

(i+1,j)(i,j)

FIGURE 14.5 A point and its four surrounding grid points.

TABLE 14.3 Bilinear interpolation of the pixel values of P .

Pixel Inverse α,β Values of Interpolated value
location transformed (rounded to one surrounding (rounded to one
in P ′ coordinates decimal place) pixels in P decimal place)
(0,0) (0,0) 0,0 g g

(0,1) (
√

2/2,
√

2/2) 0·7, 0·7 d,e,g,h 0·1g + 0·2(d+h) + 0·5e

(0,2) (
√

2,
√

2) 0·4, 0·4 b,c,e,f 0·4e + 0·2(b+f) + 0·2c

(0,3) (3
√

2/2,3
√

2/2) 0·1, 0·1 c, -, -, - 0·8c

(1,1) (
√

2,0) 0·4, 0 h,i 0·6h + 0·4i

(1,2) (3
√

2/2,
√

2/2) 0·1, 0·7 f,i, -, - 0·3i + 0·6f

(−1,1) (0,
√

2) 0, 0·4 d,a 0·6d + 0·4a

(−1,2) (
√

2/2,3
√

2/2) 0·7, 0·1 a,b, -, - 0·3a + 0·6b

fractional parts of x′′ and y′′ be α = x′′ − �x′′ and β = y′′ − �y′′; thus 0 ≤ α,β < 1.
Then the value that we assign to the pixel at location (x′,y′) is as follows:

(1−α)(1−β)P (i, j)+(1−α)βP (i, j+1)+α(1−β)P (i+1, j)+αβP (i+1, j+1)

Note that, if x′′ is an integer (i.e., α = 0), (x′′,y′′) is on the line segment between
pixels (i, j) and (i, j+ 1), and a value is assigned to (x′,y′) by linear interpolation
between their values: (1−β)P (i, j)+βP (i, j+ 1). Similarly, if y′′ is an integer, we
have β = 0; here (x′′,y′′) is collinear with (i, j) and (i+ 1, j), and (x′,y′) gets value
(1−α)P (i, j)+αP (i+1, j). Finally, if x′′ and y′′ are both integers, we have α= β = 0
and (x′′,y′′) = (i, j) so that (x′,y′) gets value P (i, j), as would be expected.

To illustrate this method, we again consider our rotation example. Here the
values to be assigned to the pixels of the new picture are determined as shown
in Table 14.3. All nine of the original values now contribute to the values of the
new pixels, although two of them (a and i) do not make the largest contribution to
the value of any pixel, and e makes the largest contribution to the values of two
different pixels. No values get entirely discarded, but only one of the old values (g)
is preserved exactly, and the other values are blurred or attenuated. Note that the
inverse transforms of (0,3), (1,2), and (−1, 2) lie slightly outside of the old 3×3 grid,
so some of the pixels that surround their preimages (x′′,y′′) are “blank” (indicated
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FIGURE 14.6 3× magnification of P using nearest-neighbor interpolation.

in Table 14.3 by hyphens). When computing the values for the pixels at (0,3), (1,2),
and (−1, 2), we have treated the blanks as having value 0.

Higher-order interpolation schemes can also be used; these generally yield
better-appearing results. For example, we can use bicubic spline interpolation, in
which the pixel values are approximated by a linear combination of products of
cubic polynomials ΣΣcijgi(x)gj(y). The coefficients of these polynomials can be
chosen so that the approximation is an exact fit to the values at the pixel locations.
The details will not be given here.

The preferred interpolation scheme depends on the nature of the transforma-
tion and on the type of picture that is being transformed. For example, if P is a
binary picture that has only values 0 and 1 (representing black and white), we might
prefer to use nearest-neighbor interpolation, because the higher-order interpolation
methods introduce intermediate values, which may be of no interest. As another ex-
ample, suppose we are magnifying a picture using a transformation of the following
form, where k� 1:

x′ = kx y′ = ky

Nearest-neighbor interpolation would assign the same values to large blocks of pixels
in the magnified picture (e.g., magnification of our 3× 3 picture using k = 3 would
give the 9× 9 array shown in Figure 14.6); this blocky appearance would usually
be objectionable. If we use bilinear interpolation, the pixel values of the magnified
picture would be as shown (in part) in Figure 14.7; thus the picture would have a
smoother appearance. A real picture that has been magnified by a factor of 10 using
nearest-neighbor, bilinear, and bicubic interpolation is shown in Figure 14.8; note
that very little improvement is obtained by using bicubic interpolation.

Conversely, if we demagnify a picture (i.e., k� 1) using low-order interpolation,
the pixel values in the demagnified picture depend only on a few of the old pixel values
in the vicinities of the preimages of the new pixels; many of the old pixel values will
have no influence on the demagnified picture. If we do not want to discard these old
values completely, we should use an interpolation scheme in which the pixels in a large
neighborhood of the preimage of a new pixel contribute to the value of that pixel.
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0.4g+ 0.2d+ 0.2h+ 0.1e
...

...

...

...

0.3g + 0.7d

0.7g + 0.3d

g 0.7g + 0.3h 0.3g + 0.7h

FIGURE 14.7 3× magnification of a portion of P using bilinear interpolation.

FIGURE 14.8 10× magnification of part of a picture using (left) nearest-neighbor
interpolation, (middle) bilinear interpolation, (right) bicubic interpolation.

Interpolation may be necessary even if the geometric transformation is a trans-
lation x′ = x+α,y′ = y+β. If the translation is by an integer amount, no interpola-
tion is needed; otherwise, bilinear interpolation is appropriate. Interpolation is also
unnecessary when a picture is rotated around a grid point by a multiple of 90

◦
or

reflected in a grid line; linear interpolation is appropriate when a picture is reflected
in a (non-grid) horizontal or vertical line.

When we use nearest-neighbor interpolation, a geometric transformation takes
binary pictures into binary pictures but may not preserve geometric properties of the
pictures. For example, we saw in Figure 14.4 that the result of rotating the nine-pixel
picture by 45

◦
had only eight pixels; thus the rotation did not preserve area. Sim-

ilarly, 45
◦

rotation of a five-pixel diagonal DSS yields a seven-pixel horizontal or
vertical DSS (and vice versa). Moreover, the horizontal or vertical segment is 4-
connected, but the diagonal segment is only 8-connected; thus the rotation does not
even preserve topology. Evidently, translation does preserve geometric properties,
and magnification or demagnification evidently does not preserve area. Magnifi-
cation preserves topology (a magnified connected or disconnected set is evidently
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FIGURE 14.9 Conversion of a distorted grid of lines (left) into an undistorted grid
(right) using a piecewise linear geometric transformation (from [784]).

still connected or disconnected), but demagnification apparently cannot preserve
disconnectedness, because distant pixels may become neighbors.

A general geometric transformation of the plane can be approximated by, for
example, linear transformations that are defined on small pieces of the plane. For
example, we can divide the plane into small squares and use a linear transformation
on each square; this maps the square into a quadrilateral. If the transformations of
adjacent squares agree at the common vertices of the squares, these quadrilaterals
will “fit together” to tessellate the plane. An historic example of a piecewise linear
geometric transformation that converts a distorted grid of lines into an undistorted
grid is shown in Figure 14.9.

14.6 Magnification and Demagnification

As we saw in Section 14.5, magnification of a picture P by an integer factor k �= 1
replaces each pixel p of P with a k×k block of pixels. We can think of the new pixels
(in the grid cell model) as having the same size as the original pixels; this implies that
the height and width of the new picture are k times those of the original picture and
that the area of the new picture is k2 times that of the original picture. Alternatively,
we can think of the new picture as being obtained by subdividing each pixel of the
original picture into a k×k block of “mini-pixels,” each of which has height and width
1/k and area 1/k2 (if the original pixels were of unit size). k-fold magnification using
this alternative approach is equivalent to redigitizing P on a grid of resolution k (see
Chapter 2) and using nearest-neighbor interpolation.

In the grid cell model, a (nonextremal) 0-cell is contained in four 1-cells and
four 2-cells; a 1-cell contains two 0-cells and (if it is nonextremal) is contained in
two 2-cells; and a 2-cell contains four 0-cells and four 1-cells. When we perform
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k-fold magnification, a magnified 1-cell contains (k+ 1) 0-cells and k unit 1-cells; a
magnified 2-cell contains (k+1)2 0-cells, 2k(k+1) unit 1-cells, and k2 unit 2-cells.

If we use outer Jordan digitization (in the grid cell model), an α-arc ρ in P is
a sequence of cells p0,p1, . . . ,pn such that pi is α-adjacent to pi−1(1≤ i≤ n). k-fold
magnification converts ρ into a sequence of k× k blocks of cells p0,p1, . . . ,pn such
that pi is α-adjacent to pi−1(1≤ i≤ n); we can think of the magnified ρ as a “thick”
arc. If we use grid-intersection digitization, ρ is a sequence of grid points. The vector
vi = pi−1pi is either an isothetic unit vector or a diagonal vector of length

√
2. Let

vi make angle 45i◦ with the positive x-axis; then vi can be represented by the chain
code i ∈ {0, . . . ,7}, and ρ can be represented by a chain code sequence i0, i1, . . . in. It
is not hard to see that the k-fold magnification of ρ has the chain code ik

0
, ik

1
, . . . ikn,

where ik denotes k-fold repetition of i [342].
Demagnifying a picture cannot preserve all of its pixel values, but it provides a

“summary” of the picture that may be useful for many purposes. Even when a picture
is substantially demagnified, its gross structure usually remains quite recognizable;
the demagnified picture is a “miniature” (sometimes called a “thumbnail”) of the
original. Figure 14.10 shows three pictures and the results of demagnifying them by
a factor of 8. The demagnified pictures are also shown remagnified (by factors of
slightly less than 8, using nearest-neighbor interpolation) to illustrate the information
that is still available after eightfold demagnification.

Different degrees of demagnification may be useful for different purposes, de-
pending on what information about the original picture needs to be preserved. It
may therefore be desirable to use a set of demagnifications (e.g., by powers of 2)
so that any desired demagnification is approximated by one of them. Figure 14.11
shows demagnifications of a 512×512 picture by successive powers of 2 (from 2 to
512).

If the size of the original picture (in pixels) is 2
n×2

n
, its demagnifications by

powers of 2 have sizes 2
n−1×2

n−1
,2

n−2×2
n−2

, and so on. The total number of pixels
in all of these demagnified pictures is less than the following (i.e., less than 1

3
more

than in the original picture):

22n(1+
1
4

+
1
16

+ · · ·) = 22n ·11
3

This succession of demagnified versions of a picture can be thought of as a “pyramid”
of pictures; note that this pyramid “tapers” exponentially rather than linearly.

From a picture of size 2
n×2

n
, we can construct an n+1-level pyramid in which

level k is a picture of size 2
k×2

k
(0≤ k ≤ n). In this pyramid, the value of a pixel p

on any level k < n is the average of the values of a 2×2 block of pixels on level k+1.
The value of the single pixel on level 0 is the average of the values of all of the pixels
of the original picture, the values of the four pixels on level 1 are the averages of the
values of the pixels in the four quadrants of the original picture, and so on.

We can construct a rooted tree of degree 4 in which the pixel on level 0 is the
root and each pixel p on any level k < n is linked to its four “children” (a 2× 2
block of pixels) on level k+ 1. The leaves of this tree are the pixels of the full-size
picture at the base of the pyramid. Using this pyramid structure, we can explore the
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FIGURE 14.10 Three examples of 8× demagnification and slightly less than
8× remagnification.
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FIGURE 14.11 Demagnification of a 512× 512 picture (of J.B. Listing) by factors of
2, 4, 8, 16, 32, 64, 128, 256, and 512.

FIGURE 14.12 A three-level pyramid.

picture at any given scale by moving between adjacent pixels on a given level, and we
can explore it in (discrete) scale-space by moving between parents and children on
consecutive levels. The structure of a three-level pyramid is shown in Figure 14.12.

Demagnification of a picture is not a translation-invariant operation; the results
depend on the positions of the blocks of pixels that are represented by single pixels in
the demagnified picture. For example, consider the one-dimensional binary picture
with the following pixel values:

. . . ,1,1,1,1,0,0,0,0, . . .
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Suppose we demagnify this picture by a factor of 2 so that the pixels at locations x
and x+1 (x= . . . ,−2,0,2,4, . . .) are represented by a single pixel. If the coordinate
of the rightmost 1 is odd, the demagnification yields . . . ,1,1,0,0, . . . ; however, if
this coordinate is even, the demagnification yields . . .1,1, 1

2
,0,0, . . . . As an extreme

example, consider the following picture:

. . . ,1,1,0,0,1,1,0,0,1,1, . . .

If the righthand 1s have odd coordinates, demagnification by a factor of 2 yields
. . . ,1,0,1,0,1, . . . ; if they have even coordinates, it yields . . . , 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, . . . .

The position-dependence of the effects of demagnification can be reduced by
smoothing the picture before demagnifying it. Smoothing is accomplished by replac-
ing the value of each pixel with a weighted average of the values of the pixel and
some of its neighbors. If the pixel at coordinate x in a one-dimensional picture has
value P (x) the weighted averaging gives it the following new value:

P (x) = Σm
k=−mwkP (x+k)

(This is a weighted average of the values of an odd number of pixels; averaging neigh-
borhoods of even sizes can also be used.) The weights should satisfy the following
conditions:

(1) Σm
k=−mwk = 1: This ensures that the weighting process does not result in an

increase or decrease in the average value of the pixels. To further ensure
that each pixel of P contributes the same total weight to each pixel of P ,
we require that the sums of the ws in even-numbered and odd-numbered
positions both be 1

2
.

(2) w−k = wk for all 1≤ k ≤m: The weights are symmetric.

(3) wk ≥ w′k for all 0 ≤ k < k′ ≤ m: The center weight is the highest, and the
weights decrease as they get farther from the center.

For m= 2, there are five weights; because they are symmetric, we can denote them
by γ,β,α,β,γ where γ ≤ β ≤ α. Condition (1) implies that α+2β+2γ = 1 and β = 1

4
,

so γ = 1
4
− α

2
. Condition (3) requires that α≥ 1

4
, so γ ≤ 1

8
. If we require the weights

to be nonnegative, we must have α≤ 1
2
, but we are still free to choose α in the range

[ 1
4
, 1

2
]. In our extreme example,

. . . ,1,0,1,0,1,0,1, . . .

if we smooth using weights for which β = 1
4

and γ = 1
4
− α

2
, the value of the smoothed

picture at the 1s is α+( 1
2
−α) = 1

2
, and its value at the 0s is 2β = 1

2
; thus the smoothed

picture is constant, so its demagnification is no longer position-dependent. In 2D, it
is usual to require that the weights wjk be separable (i.e., wjk = wjwk).



14.7 Digital Tomography 475

14.7 Digital Tomography

Section 1.2.11 defined digital tomography in very general terms. To be more specific,
assume (see Section 14.2) a digital geometry on Z

n (n≥ 2) and a set T of translations
on Z

n (e.g., translations in isothetic directions).

Let D = {γ(1), . . . ,γ(m)} (m≥ 1) be a set of pairwise nonparallel (see Proposi-
tion 14.1) lines in Z

n. Each line is uniquely determined by a grid point p ∈ Z
n and a

generator Φ ∈ T.
Let Γi be the set of lines in Z

n that are parallel to γ(i) (1 ≤ i ≤ m). The
equivalence class Γi is a direction in the set of all lines. Z

n and T satisfy axiom
G8 (i.e., we can enumerate the lines in Γi = {γ(i)

j : j ∈ Z}, where γ(i) = γ
(i)
k for some

k ∈ Z).

Definition 14.1 Let S ⊂ Z
n be finite, let j ∈ Z, and let Pi(j) = card

(
S∩γ(i)

j

)
.

Pi is called the projection of S in direction Γi.

Figure 14.13 shows an example in which n = 2 and T is the set of translations
along the x- or y-axis. For a finite set S, we have nonzero projections Pi(j) only
in finite intervals of j-values. Let I1× . . .× Im be the smallest cuboidal subset of
Z

n that covers all of the nonzero projections. The reconstruction problem in digital
tomography is as follows: given a set P = (P1, . . . ,Pm) of projections in specified
directions, find a finite set S ⊂ Z

n (n > 2) that has the given projections.
The reconstruction problem for the set shown in Figure 14.13 has a unique

solution; the corresponding system of linear equations (which identifies each pixel in
I1× . . .× Im with a variable xk ∈ {0,1}), where k = 1, . . . ,16, has only one solution.

A possible method of solving the reconstruction problem of digital tomography
is to apply algorithms of computed tomography (CT) [215] (e.g., algorithms based
on Fourier transforms [implementing the inverse Radon transform] or iterative re-
construction algorithms). However, these algorithms calculate real values at pixel
positions. The algebraic reconstruction technique (ART) of [372] can be modified to

3

3

1

1

2 3 2 1

x1 + x2  + x3 + x4  = 3

x5 + x6  + x7  + x8  = 3

x9 + x10 + x11 + x12 = 1

x13 + x14 + x15 + x16 = 1

x1 + x5 + x9  + x13 = 2

x2 + x6 + x10 + x14 = 3

x3 + x7 + x11 + x15 = 2

x4 + x8 + x12 + x16 = 1

FIGURE 14.13 Left: two projections of a column-convex polyomino. Middle and
right: corresponding system of linear equations.
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yield a binary solution [423, 170]. Linear programming provides other alternatives
(simplex method, interior point methods); see [381].

We conclude this section by discussing the reconstruction of a binary picture
(matrix) from two projections, as illustrated in Figure 14.13. The input P = {R,S}
is a pair of projections in the row and column directions. In Figure 14.13, we have
R = (3,3,1,1) and S = (2,3,2,1). Two vectors R = (r1, . . . , rm) and S = (s1, . . . ,sn)
are compatible iff they contain only nonnegative integers ri ≤ n (i = 1, . . . ,m) and
sj ≤m, (j = 1, . . . ,n) and the sum of the ris equals the sum of the sjs.

The solvability of a reconstruction problem defined by a pair of compatible
vectors {R,S} is characterized by the following theorem, independently discovered
by H.J. Ryser [934] and D. Gale [350] in 1957. We permute the vector S into S′ =
(s′

1
, . . . ,s′n) such that s′

1
≥ s′

2
≥ . . .s′n. We define an m×n matrix A in which row i

consists of ri 1s followed by n− ri 0s. Let S = (s̄1, . . . , s̄n) be the projection vector
of A in the column direction.

Theorem 14.4 The reconstruction problem forR= (r1, . . . , rm) and S = (s1, . . . ,

sn) has at least one solution (a binary picture of size n×m) iff the following is
true:

n∑

i=k

s′i ≥
n∑

i=k

s̄i for 2≤ k ≤ n

The case k = 1 is already covered by the compatibility of the vectorsR and S. In our
example, we have S′ = (3,2,2,1) and S = (4,2,2,0), where 5≥ 4 for k = 2, 3≥ 2 for
k = 3, and 1≥ 0 for k = 4.

A switching component of a binary picture is a 2× 2 block of pixels of the fol-
lowing form:

[
1 0
0 1

]
or
[

0 1
1 0

]

If a picture has a switching component, it is evidently not uniquely reconstructible
from its row and column projections. In [934], Ryser proved the following:

Theorem 14.5 A binary picture is uniquely reconstructible from its row and
column projections iff it has no switching component; if P1 and P2 are two
solutions, P1 is transformable into P2 by a finite number of swaps of switching
components.

Note that additional knowledge about the given binary picture (e.g., that it contains
only one row-convex, column-convex, or convex polyomino) may allow a unique
reconstruction that would not otherwise be possible.
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14.8 Exercises

1. The set of all geometric transformations of the plane is closed under composi-
tion of functions; if f : (x′ = h1(x,y), y′ = h2(x,y)) and g : (x′ = k1(x,y), y′ =
k2(x,y)) are geometric transformations, then g ◦ f (x′′ = k1(h1(x,y), h2(x,y)),
y′′ = k2(h1(x,y), h2(x,y))) is also a geometric transformation. Composition of
functions is associative (i.e., for all f,g,h, we have (f ◦ g) ◦h = f ◦ (g ◦h)). The
identity transformation i : (x′ = x, y′ = y) is an identity element for the compo-
sition of geometric transformations (i.e., for all f , we have i◦f = f ◦ i= f). g is
called an inverse of f if g ◦ f = f ◦ g = i. A set G of geometric transformations
of the plane is called a group if G contains i and any f ∈G has an inverse in G.
Prove that the following sets of transformations are groups:

(1) {i}
(2) {i,rx},{i,ry}, and {i,ro} where rx, ry , and ro are the reflections in the

x-axis, the y-axis, and the origin

(3) {i,rx, ry, r1, r2} where r1 and r2 are the reflections in the two diagonals

(4) {i,rπ} where rπ is the rotation around the origin by 180
◦

(5) {i,rπ/2, r−π/2, rπ} where rπ/2 and r−π/2 are the rotations around the
origin by ±90

◦

(6) {i,rπ/2, r−π/2, rπ, rx, ry, r1, r2}

(7) All of the rotations around the origin

(8) All of the translations

(9) All of the scale changes

(10) All of the rigid motions

(11) All of the affine transformations

2. Prove that a rotation by angle θ around the origin (0,0) is defined by the following
pair of equations:

x′ = xcosθ+ysinθ; y′ =−xsinθ+ycosθ

3. The reflections in the x-axis, the y-axis, and the origin are defined (respectively)
by the following pairs of equations:

x=−x, y′ = y; x′ = x, y′ =−y; x′ =−x, y′ =−y
Prove that these reflections are not the same as rotations through any angle
around the origin.
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4. Write the equations for reflection in a line L through the origin that makes
angle θ with the x-axis using the fact that this reflection can be accomplished by
rotating L (through angle −θ) until it coincides with the x-axis, then reflecting
in the x-axis, and then rotating back through angle θ.

5. An affine transformation is defined by the following equations, where a1b2 �= a2b1:

x′ = a1x+ b1y+ c1; y′ = a2x+ b2y+ c2

Prove that translations, rotations, reflections, and scale changes (magnifications
or demagnifications) are all affine transformations.

6. Characterize affine transformations that consist of a translation followed by a
rotation (or vice versa). Such a transformation is called a rigid motion. Two
pictures that differ by a rigid motion are called congruent. (Note that most rigid
motions do not take pixels into pixels. Thus mapping a picture into a picture
by a rigid motion requires interpolation; the pixel values in two pictures that
differ by a rigid motion may not be the same.) Two pictures that differ by a rigid
motion followed by a scale change (or vice versa) are called similar.

7. A shear is a transformation defined by the equations x′ = x+ay, y′ = y or x′ = x,
y′ = y+ax; thus a shear takes pixels into pixels iff a is an integer. Prove that a
shear cannot be d-continuous unless it is the identity (a= 0).

8. Let R be a bounded region of the plane, and let f be a d-continuous function
from Z

2 into Z
2 that takes pixels in R into pixels in R. Prove that there must

exist a pixel p in R such that d8(p,f(p))≤ 1.

9. Show that the converse of Proposition 14.4 is not always true for de.

10. Generalize the results of Section 14.4 to 3D.

11. The group of one-to-one geometric transformations of picturesP defined on Gn,n

(n≥ 3) consists of eight transformations: the identity id; the vertical, horizontal
and diagonal reflections ver, hor, and dia; the 90

◦
, 180

◦
, and 270

◦
(clockwise) rota-

tions rot, rot2, and rot3; and a transformation mir defined by mir(P ) = rot(hor(P ))
that satisfies mir(P ) = ver(rot(P )) = dia(ver(hor(P ))). Construct a table of all
compositions op1(op2(P )) of pairs of these transformations, and show that this
table proves that these transformations form a group.

12. In the 3D grid cell model, a nonextremal 0-cell is contained in six 1-cells, 12
2-cells, and eight 3-cells; a 1-cell contains two 0-cells and (if it is nonextremal)
is contained in four 2-cells and four 3-cells; a 2-cell contains four 0-cells and
four 1-cells and is contained in two 3-cells; and a 3-cell contains eight 0-cells, 12
1-cells, and six 2-cells. How many 0-cells, unit 1-cells, unit 2-cells, and unit 3-cells
are contained in a k-fold magnified 3-cell?
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14.9 Commented Bibliography

The introductory remarks about the history of geometry follow [544]. Geometry is
one of the best axiomatized disciplines in mathematics [334, 384]. For definitions of
discrete geometry, see [96, 319, 394]. The conferences on “Discrete Geometry for
Computer Imagery,” of which [111] was the first held outside France, actually focus
on digital geometry.

The habilitation [449] of A. Hübler, which unfortunately has remained unpub-
lished except for some small notes such as [450], contains valuable contributions to
the definition and analysis of the translation group T of digital geometry and the
axiomatic foundations of digital geometry on the regular orthogonal grid in R

n. See
also the essay [1009] about the axiomatic foundations of convexity and linearity.
Hübler’s axiomatic theory was recently studied in [228].

Symmetry groups in geometry are discussed, for example, in [221, 704, 1008,
1122]. Digital symmetry, as discussed in Section 14.3, is further detailed in [486];
see also [863]. For accumulator space-based symmetry analysis of “noisy” planar
polygons, see [463]. [267] discusses symmetry analysis in pyramidal picture repre-
sentations.

For Exercise 11, see [533], which also studied the cardinalities of families of
geometric transformations defined on Gn,n (n≥ 2), including magnifications, demag-
nifications, shifts, and cyclic shifts, as well as the cardinalities of (see the definition in
Section 17.7) families of local operations of order k≥ 1. For geometric constructions
in the digital plane, see [1090].

d-continuous functions on Z
2 were introduced in [903]. For “continuous” func-

tions on nonbinary pictures, see [766]. For digital versions of homeomorphism, re-
traction, and homotopy, see [114]. A “calculus” for d-continuous functions is dis-
cussed in [767].

Methods of applying geometric transformations to pictures were discussed in
[477] and were used for the geometric correction of pictures in [784]. For another
method of digital rotation, see [21].

For magnification by an integer factor, see [1107]. [524] proves that Hough
transforms based on real spaces are superior (with respect to the size of the accumu-
lator array) to “digital Hough transforms.”

The pyramid data structure was introduced in [1045]. For a collection of papers
about multiresolution picture representation and processing, see [899]. For methods
of smoothing a picture prior to reducing its resolution, see [154]. Uses of pyramids in
picture analysis and computer vision are discussed in [479]. A pyramid is a discrete
version of a scale-space in which scale varies continuously; see [652].

In the pyramids described in Section 14.6, the value of each pixel on level k is
the average of a 2×2 block of pixels on level k+1. More generally, we can construct
pyramids in which each pixel value on level k is a weighted average of a block of pixel
values on level k+1, where the blocks can overlap and can be of any desired size (or
shape). Still more generally, for any graph G, we can construct a pyramid of graphs
G0,G1, . . . ,Gn in which Gn =G, each node of Gk (k < n) is linked to the nodes of a
subgraph of Gk+1, and every node of Gk+1 belongs to one of these subgraphs. [551]
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discusses repeated derivation of region-adjacency graphs, layer by layer, starting with
a general adjacency graph. If values are associated with the nodes of G, we can give
each node p of each Gk a value that is a function of the values of the nodes of the
subgraph of Gk+1 to which p is linked. We can also identify each node of Gk with
a “representative” node of Gk+1 (i.e., we can regard Gk as being obtained by the
“reduction” of Gk+1). For a recent review of such general methods of constructing
pyramids and the uses of such pyramids in picture analysis, see [478]. Pyramidal
approaches are also closely related to multiscale representations of shapes. [70]
discusses representations of borders of regions at different scales in terms of DSSs,
circular arcs, corners, and points that delimit the arcs.

Section 14.7 reviews parts of Chapter 1 (by A. Kuba and G.T. Herman) of [431],
which is a collection of papers about discrete (particularly, digital) tomography; see
also [380]. Theorem 14.4 is from [350, 934]. The proof of this theorem involves an
algorithm that constructs a solution inO (n(m+logn)) time. For the reconstruction
of pictures from multiple projections (a combinatorial subject), see [58, 60, 141, 142,
261, 353, 354, 355]. The reconstruction of isothetic polygons from labeled (convex
or concave) vertices is discussed in [629].
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Morphologic Operations

Mathematic morphology deals with operations that replace the value of a pixel
p with the max or min of the values of a set of neighbors of p. This chapter
introduces dilation and erosion operations as well as combinations of such op-
erations known as hit-and-miss transforms and opening and closing operations.
It illustrates how such operations can be used to simplify a picture (e.g., to remove
“noise” from it) or to decompose or “segment” it into parts.

The primary subject of this chapter is the study of operations on a picture that replace
the value of each pixel pwith the maximum (or the minimum) of the values of a set of
neighbors of p. (Such operations were briefly introduced in Section 1.2.12 and were
also used in Sections 4.1 and 12.2.3.) If the picture is binary (its pixel values are all 0s
and 1s), such a “local maximum” operation has the effect of “dilating” the 1s; p’s value
becomes (or remains) 1 if any of its neighbors (that belong to the specified set) had
value 1. Similarly, a local minimum operation has the effect of dilating the 0s. Note
that dilating the 1s is equivalent to “eroding” the 0s, and dilating the 0s is equivalent
to eroding the 1s. Evidently, dilation is quite different from magnification (which
“expands” both the 1s and the 0s), and erosion is quite different from demagnification
(which “contracts” both the 1s and the 0s.)

Dilation and erosion (and the other operations discussed in this chapter) are
defined for multivalued pictures, but they have simple geometric interpretations
when they are applied to binary pictures. These operations are therefore usually
called morphologic operations; morphology is the study of form and pattern (i.e., of
geometric properties of binary pictures). We will define the concepts in this chapter
only for 2D pictures, but they generalize straightforwardly to higher dimensions.

15.1 Dilation

Let σ be a nonempty set of pixels at locations specified relative to an origin o. For any
pixel p, the σ-neighborhood σ(p) of p is the set of pixels that coincide with the pixels of
σwhen they are translated so that o coincides with p. Evidently, σ(p) = {p+s : s∈ σ}

481
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R H V N8

FIGURE 15.1 Four structuring elements; the origin is shaded.

where + denotes coordinate-wise addition ((x,y)+(u,v) = (x+u,y+v)). Note that
o is not necessarily in σ, so p may not be in its own σ-neighborhood. We will assume
from now on that σ is finite. In mathematic morphology (the standard name for the
subject of this chapter), σ is usually called a structuring element.

Definition 15.1 Let P (p) be the value of the pixel p in the picture P . The
σ-dilation P (σ) of P is the picture in which the following is true:

P (σ)(p) = maxq∈σ(p)P (q)

If o ∈ σ, we have p ∈ σ(p) so that maxq∈σ(p)P (q) ≥ P (p). Thus, if o ∈ σ, we have
P (σ) ≥ P at every pixel p; however, this is not true if o /∈ σ.

If P is a binary picture, P (σ) is evidently also a binary picture. Moreover,
P (σ)(p) = 1 iff P (q) = 1 for some pixel q of σ(p). Let 〈P 〉 denote the set of pixels
of P that have value 1; then 〈P (σ)〉 = {p : σ(p)∩ 〈P 〉 �= ∅}. Using the notation of
set-theoretic mathematic morphology (see Section 1.2.12), we have 〈P (σ)〉= 〈P 〉⊕σ.

Evidently, if σ = {o}, we have P (σ) = P ; in general, if σ is a single pixel in some
location (x,y) relative to o, then P (σ) is the result of translating P by (−x,−y). The
term “dilation” is more appropriate if σ is a set of two or more pixels that contains o.
For example (see Figure 15.1), if σ = R consists of the pixels in locations (0,0) (the
location of o) and (0,1),P (σ) is obtained by “smearing” the values of P toward the
left; the value of p in P (σ) is the max of the values of p and its righthand neighbor.
Similarly, if σ =H consists of o and its two horizontal neighbors, P (σ) is obtained by
“smearing” the values of P to the right and left; if σ = V consists of o and its two
vertical neighbors, P (σ) is obtained by “smearing” P up and down; and if σ = N8

is the 8-neighborhood of o (the set consisting of o and its horizontal, vertical, and
diagonal neighbors), P (σ) is obtained by “smearing” P horizontally, vertically, and
diagonally. Note that, in these last three cases, σ is symmetric about o.

The results of dilating some simple binary pictures (1s = black, 0s = white)1

using the four σs in Figure 15.1 are shown in Figure 15.2. Analogous results for a
picture of some text (in which dark pixels have high values) are shown in Figure 15.3.

1. When displaying a picture, high pixel values are usually represented by light shades of gray so that 0 corresponds
to black and Gmax to white. Using this convention, the 0s in a binary picture should be black and the 1s should be
white. However, it is also common to regard the 1s in a binary picture as “object” pixels and the 0s as “background”
pixels, and, in many situations (e.g., a picture of a document page), the “objects” (characters) are black and the
“background” is white. In this chapter (and sometimes in the following chapters), dark pixels in a multivalued
picture have high pixel values, and the 1s and 0s in a binary picture represent black and white pixels, respectively.
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FIGURE 15.2 Dilations of a set of binary pictures (shown in the left column) using
the four structuring elements shown in Figure 15.1. Note that “object” pixels (which
have value 1) are displayed as black. The pixels added by the dilations are shown in
gray.

FIGURE 15.3 Dilation of a picture of some text using the same four structuring ele-
ments. Note that, in this example, dark pixels have high values, so dilation makes
the characters thicker.

15.2 Erosion

Definition 15.2 The σ-erosion P(σ) of P is the picture in which the following
is true:

P(σ)(p) = minq∈σ(p)P (q)

If o ∈ σ, we have p ∈ σ(p), so minq∈σ(p)P (q)≤ P (p) (i.e., P(σ) ≤ P ).
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FIGURE 15.4 Erosions of the same set of binary pictures as shown in Figure 15.2 using
the same four structuring elements. Note that “object” pixels (value 1) are displayed
as black. The pixels deleted by the erosions are shown in light gray.

FIGURE 15.5 Erosion of the text picture (the same one as was used in Figure 15.3)
using the same four structuring elements. Note that dark pixels have high values.

If P is a binary picture, so is P(σ). Moreover, P(σ)(p) = 1 iff P (q) = 1 for every
pixel q of σ(p); in other words, 〈P(σ)〉= {p : σ(p)⊆ 〈P 〉} and 〈P(σ)〉= 〈P 〉�σ in the
notation of Section 1.2.12.

Evidently, if σ is a single pixel in location (x,y),P(σ) is the same as P (σ) (i.e., it
is the result of translating P by (−x,−y)). The term “erosion” is more appropriate
if σ is a set of two or more pixels that contains o.

The results of eroding the binary pictures shown in Figure 15.2 using the four
structuring elements in Figure 15.1 are shown in Figure 15.4, and the results of erod-
ing the text picture of Figure 15.3 using these structuring elements are shown in
Figure 15.5. Note that, in these pictures, dark pixels have high values (in the binary
pictures, object pixels have value 1), so erosion removes object pixels.
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Dilations and erosions commute with monotonic transformations of the pixel
values of a picture P . Indeed, let P ∗ be a picture obtained from P by applying
a monotonic function f to the pixel values of P so that, for any pixel p, we have
P ∗(p) = f(P (p)). p has value maxq∈σ(p)P (q) in P (σ) and value maxq∈σ(p)P

∗(q) =
maxq∈σ(p)f(P (q)) in P ∗(σ). Because f is monotonic, both maxima are taken on at
the same pixel(s) q; hence, the second maximum is f of the first maximum. Thus,
dilating a picture and then applying a monotonic transformation to its pixel values
gives the same result as applying the monotonic transformations and then dilating
the picture; this is similar for erosion.

15.3 Combining Dilations and Erosions

In this section, we discuss two methods of combining dilations and erosions:

a) hit-and-miss transforms, which dilate and erode a picture using disjoint struc-
turing elements; and

b) opening and closing operations, which erode a picture and then dilate it (or vice
versa) using the same structuring element (which we assume to be symmetric
and to contain o).

15.3.1 Hit-and-miss transforms and templates

Let P be a binary picture and let σ and τ be two structuring elements. We have seen
that P(σ)(p) = 1 iff P = 1 at every pixel of σ(p). Similarly, P (τ)(p) = 1 iff P = 1 (i.e.,
P = 0) at every pixel of τ(p).

Definition 15.3 min(P(σ),P (τ)) is called the hit-and-miss transform of P by the
pair of structuring elements (σ,τ).

Hit-and-miss transforms can be used to identify pixels ofP with neighborhoods
that have 1s in specified locations (defined by σ) and 0s in specified locations (defined
by τ). For example, if σ = {(0,0)} and τ = {(0,1)}, then p= 1 in min(P(σ),P (τ)) iff,
in P , we have p = 1 and q = 0 where q is the upper neighbor of p. Evidently, if σ
and τ intersect, min(P(σ),P (τ)) must be identically zero, because we can never have
both P(σ)(p) = 1 and P (τ)(p) = 1; hence, we can assume that σ and τ are disjoint.
We can think of σ and τ as defining a “template” in which the pixels of σ are 1s and
the pixels of τ are 0s; evidently, we have min(P(σ)(p),P (τ)(p)) = 1 iff the neighbor-
hood of p “matches” this template. Mathematic morphologists also use the notation
〈P 〉 ∗ (σ,τ) for the hit-and-miss transform (〈P 〉�σ)∩ (〈P 〉� τ) of 〈P 〉. It follows
that 〈P 〉 ∗ (σ,τ) = (〈P 〉�σ)\ (〈P 〉� τ).

If P is multivalued, a hit-and-miss transform can be used to identify pixels with
σ-neighbors that have high values and with τ -neighbors that have low values. Let P
be the picture in which P (p) =Gmax−P (p) for all p; then min(P(σ),P (τ)) has a high
value iff the σ-neighbors of p have high values and its τ -neighbors have low values.
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In Section 15.5, we will give examples of the use of binary hit-and-miss transforms to
detect local features in a picture. Unlike dilation, erosion, opening, and closing, the
hit-and-miss transform is uniquely defined for binary pictures only. See [874, 1012]
for alternative definitions of hit-and-miss transforms for multivalued pictures. [1012]
applies structuring elements (σ,τ) to different “layers” (binary pictures defined by
thresholds) of a multivalued picture.

15.3.2 Opening and closing

Let σ be a structuring element that is not necessarily symmetric. (We recall that it is
symmetric iff σ = σ, where σ denotes the mirror set.)

Definition 15.4 Dilating a picture P by σ and then eroding it by σ (i.e., con-
structing the picture (P (σ))(σ)) is called σ-closing. Similarly, eroding P by σ
and then dilating it by σ (i.e., constructing (P(σ))(σ)) is called σ-opening.

For binary pictures, opening by σ transforms 〈P 〉 into the union of all translates
of σ that are contained in 〈P 〉. Closing of 〈P 〉 by σ is the same as opening 〈P 〉 by σ.

Proposition 15.1 (P (σ))(σ) ≥ P and (P(σ))(σ) ≤ P .

Proof We prove the inequality for opening; the proof for closing is similar. Eroding
〈P 〉 by σ and then dilating by σ gives the following:

(P(σ))(σ)(p) = max{P(σ)(q) : q ∈ σ(p)}= max{min{P (r) : r ∈ σ(q)} : q ∈ σ(p)}
For every q in σ(p), p is in σ(q), so min{P (r) : r ∈ σ(q)} is ≤ P (p), and, be-
cause this is true for all such q, its maximum over q ∈ σ(p) is ≤ P (p). Hence,
P(σ))(σ)(p)≤ P (p). �

If P is a binary picture, we recall that 〈P (σ)〉 is the union of σ(p) for all p ∈ 〈P 〉,
and 〈P(σ)〉 is the set of all p such thatσ(p)⊆ 〈P 〉. It follows that 〈(P(σ))(σ)〉 is the union
of the σ(p)s that are contained in 〈P 〉. The result of σ-closing a binary picture can
be characterized similarly. In Sections 15.4 and 15.6, we will show how opening and
closing operations can be used to simplify or “segment” a (not necessarily binary)
picture.

15.4 Simplification

In this section, we will show how opening and closing operations can be used to
“simplify” or “smooth” a picture by eliminating minor irregularities in its pixel
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FIGURE 15.6 Removing “salt-and-pepper” noise by opening and closing. From left
to right: original picture (note that dark pixels have high values); picture with noise;
closing with N8; opening with N8.

values—in particular, by eliminating small (more precisely, thin) groups of high-
valued pixels from a region of low-valued pixels or vice versa. Such irregularities
may result if random changes are made in the pixel values.2 In a smooth region of a
picture (i.e., a region in which the values of adjacent pixels are the same or differ only
slightly; see Section 14.4), random changes will produce many pixels with values that
differ significantly from those of their neighbors, because the changes are unlikely
to have the same effect on the pixel and its neighbors. Similarly, along an edge in
a picture (a smooth locus of large changes in pixel values; e.g., when a high-valued
region is adjacent to a low-valued region along a smooth frontier), random changes
of pixel values from high to low and vice versa will produce irregularities in the edge.

A picture is said to contain salt-and-pepper noise if low-valued pixels occasion-
ally occur in regions of high-valued pixels and vice versa. (Recall that, in this chapter,
low values are light and high values are dark.) “Salt” can be eliminated by dilating
the picture and “pepper” by eroding it, provided we use a structuring element σ such
that the exceptional pixels always have nonexceptional σ-neighbors. However, dila-
tion enlarges dark regions and erosion shrinks them (and vice versa for light regions),
so dilation or erosion distorts the picture. We will now show how to eliminate salt
or pepper but avoid enlarging the dark or light regions by eroding and then dilating
(i.e., opening) or dilating and then eroding (i.e., closing).

Figure 15.6 shows, on the left, a picture P that contains a dark object on a light
background. The values of some of the pixels of P have been complemented (i.e.,
value w has been occasionally replaced byGmax−w); this results in salt-and-pepper
noise. Closing P (using the structuring elementN8; see Figure 15.1, right) eliminates
the “salt” but does not enlarge the object; similarly, opening P using N8 eliminates
the “pepper” but does not shrink the object. These effects are also illustrated in
Figure 15.7 for a larger (binary) picture; note that clusters of noise pixels are often
not eliminated.

2. In picture processing, undesired fluctuations in pixel values are referred to as noise. The engineers who de-
veloped video communication systems borrowed this “acoustic” terminology from audio communications, where
fluctuations in a signal may result in unpleasant sounds. Elimination of such fluctuations is called noise cleaning
or noise removal.
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FIGURE 15.7 Left: noisy binary pictureP ; note that black pixels have value 1. Center:
result of closing P using N8. Right: result of opening P using N8.

Opening eliminates not only isolated high-valued pixels but also “thin” sets of
high-valued pixels, and closing eliminates not only isolated low-valued pixels but also
“thin” sets of low-valued pixels. Specifically, we call a set S of pixels σ-thin if every
pixel of S has σ-neighbors in the complement S of S. If S consists of light pixels and
S of dark pixels and S is σ-thin, σ-erosion eliminates all of the light pixels that were
in S. Subsequent σ-dilation cannot replace these light pixels, because the pixels of
S are all dark; hence, σ-opening eliminates S. Similarly, if S consists of dark pixels
and S of light pixels and S is σ-thin, σ-closing eliminates S. Thus, opening or closing
should not be applied to a picture if it contains thin light or dark regions such as lines
or curves that are significant (i.e., that are not merely “noise”).

To illustrate how opening eliminates thin sets of high-valued pixels, let P be a
binary picture and let σ be N8. Suppose 〈P 〉= U ∪V where U is a square of size of
at least 3×3 and V is a rectangle of width 2 so that V isN8-thin. 〈(P(σ))(σ)〉 contains
U , because every pixel of U is contained in a 3× 3 square that is contained in 〈P 〉;
however, it does not contain any pixel of V , because no pixel of V is contained in a
3×3 square that is contained in 〈P 〉. On the left side of Figure 15.8, the top picture is
P ; in the middle picture, the pixels of 〈P(N8)

〉 are black, and the remaining pixels of
〈P 〉 are light gray; in the bottom picture, the pixels of 〈(P(N8)

)(N8)〉 are black or dark
gray. We see that N8-opening of P eliminates V but leaves U intact. A less trivial
example is shown on the right side of Figure 15.8. We see that the “thick” parts of the
object have survived but the thin parts have been eliminated; as a result, the shapes
of the surviving thick parts have been simplified.

Similarly, closing adjoins to 〈P 〉 thin parts of the complement of 〈P 〉. For
example, let 〈P 〉=U−V , whereU is a square andV a rectangle withinU of sizes as in
the preceding paragraph, as illustrated on the left of Figure 15.9. Then 〈(P (N8))(N8)

〉
contains V , because every pixel of V is contained in a 3× 3 square that is centered
at a pixel of U −V . A less trivial example is shown on the right of Figure 15.9.

In these examples, the thin regions are N8-thin (i.e., they are not more than
two pixels thick). In general, “thin” regions can be arbitrarily thick, but they can be
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FIGURE 15.8 Two examples of how opening can be used to eliminate thin parts of an
object. Note that object pixels are black. In the second row, pixels of 〈P(σ)〉 are black,
and the remaining pixels of 〈P 〉 are light gray. In the third row, pixels of 〈(P(σ))(σ)〉
are black or dark gray.
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FIGURE 15.9 Two examples of how closing can be used to eliminate thin parts of the
complement of an object: (top) P ; (bottom) (P (σ))(σ). Note that object pixels are
black.

eliminated from or adjoined to a set by performing an opening (or closing) operation
that uses a sufficiently large structuring element; see Section 15.6. The pictures in
these examples are binary, but the same methods can be applied to multivalued
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pictures to eliminate thin parts of dark (or light) objects or to adjoin to them thin
parts of their background.

15.5 Segmentation

This section discusses ways of defining distinctive sets of pixels in a picture. Partition-
ing a picture into distinctive subsets is called segmentation. We briefly describe some
basic methods of segmentation, with emphasis on their relationship to morphologic
operations. Segmentation is treated extensively in books about picture processing
and computer vision (e.g., segmentation of a picture into “watersheds” was discussed
in Section 13.3.3).

15.5.1 Thresholding

If a subset S of the pixels in a picture P has values that differ significantly from
those of (most of) the other pixels of P , we call S distinctive. For example, if the
pixels of S have significantly higher values than the other pixels, we can choose a
threshold t such that pixels with values of t or greater (almost all) belong to S. We
can then define a binary picture Pt in which Pt(p) = 1 iff P (p) ≥ t. This process of
converting a multivalued picture into a binary picture by comparing its pixel values to
a threshold is called thresholding. Some simple examples of thresholding are shown
in Figure 15.10.

Evidently, thresholding a picture P is a monotonic transformation of the pixel
values of P . It follows (see Section 15.2) that dilations and erosions commute with
thresholding. Thus, dilating or eroding a picture and then thresholding it has the
same effect as thresholding the picture and then dilating or eroding the resulting bi-
nary picture. Similarly, because opening is erosion followed by dilation and closing is

FIGURE 15.10 Original picture (as seen in Figure 15.6) and results of thresholding it
using thresholds 115, 204, and 232 (from left to right).
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dilation followed by erosion, these operations also commute with monotonic trans-
formations of the pixel values and, in particular, with thresholding; thus, opening
or closing a picture and then thresholding it has the same effect as thresholding the
picture and then opening or closing the resulting binary picture.

More generally, a picture can be segmented using two (or more) thresholds
[l,h] (0 ≤ l < h ≤ Gmax); all pixels with values u that are between l and h are kept,
and all those with values that are< l or>h are rejected. See [557] for other methods
of binarizing multivalued pictures.

15.5.2 Local features

A pixel p of P is said to belong to a local feature in P if the neighbors of p have a
distinctive pattern of values. For example, p (e.g., at (x,y)) lies on a vertical edge if
a set of its neighbors on the right (e.g., (x+1,y+1),(x+1,y), and (x+1,y−1)) has
high values and a set of its neighbors on the left (e.g., (x− 1,y+ 1),(x− 1,y), and
(x−1,y−1)) has low values, or vice versa. Similarly, the pixel at (x,y) lies on a vertical
line if the pixels at (x,y+ 1),(x,y), and (x,y−1) have high values and the pixels at
(x− 1,y+ 1),(x− 1,y),(x− 1,y− 1),(x+ 1,y+ 1),(x+ 1,y), and (x+ 1,y− 1) have
low values or vice versa. Edges and lines in other directions are defined analogously.
“Spots” are pixels with values that are higher (or lower) than those of all of their
adjacent pixels.

Pixels that belong to local features can be identified using hit-and-miss trans-
forms. For example, pixels that lie on a vertical edge in a binary picture P can
be identified by eroding P using σ = {(1,1),(1,0),(1,−1)} and dilating P using
σ= {(−1,1),(−1,0),(−1,−1)} (or vice versa) and taking the min of the results. Even
if P is not binary, the value of this min will be high at p iff p lies on a vertical edge.
Examples of the use of hit-or-miss transforms to identify spots and “notches” in
horizontal lines are shown in Figure 15.11.

15.5.3 Texture

The texture of a region in a picture can be characterized by the presence of many
pixels that belong to local features of particular types. For example, the texture
is “spotted” if the region contains many spots, “busy” if it contains many edges,
“striped” if it contains many lines, and “directional” if the edges or lines all have
similar directions.

In general, when such hit-and-miss transforms are applied to a picture, regions
of the picture that contained many occurrences of specific local features will contain
many high-valued pixels. In Section 15.6, we will describe a method of finding regions
of a picture that contain many high-valued pixels.

Texture is discussed extensively in books about picture analysis and computer
vision. In this book, we do not discuss signal-theoretic, statistic, or perceptual ap-
proaches to texture characterization.
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hit misshit miss

FIGURE 15.11 Detection of local features using hit-and-miss transforms. Upper row:
two binary pictures containing “pepper” noise (left) and “notched” horizontal lines
(right). Bottom row: results of applying hit-and-miss transforms using the structuring
elements shown on the left of the pictures.

15.6 Decomposition

The segmentation methods described in Section 15.5 used individual pixel values
or local patterns of pixel values to identify distinctive pixels. In this section, we de-
scribe methods of segmenting a picture into parts that are characterized by geometric
properties. These methods make use of morphologic operations in which the struc-
turing elements can be of arbitrary size. To distinguish these methods from segmen-
tation methods based on individual or local pixel values, we call them decomposition
methods.

Let σh be the structuring element that consists of the pixels that have distances
from the origin (using any desired metric) that are at most h > 0. For example, if
we use the metric d8,σ1 is N8. Note that σh is symmetric and contains o. We will
abbreviate σh by h in superscripts and subscripts (e.g., the σh-dilation of P will be
denoted by P (h)).

15.6.1 Clusters

We first show how to use closing to “fuse” a cluster of high-valued pixels (i.e., a
large number of such pixels in a region R made up of other pixels that have low
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FIGURE 15.12 The use of closing to fuse a cluster: (top) P ; (bottom) (P (1))(1). Note
that cluster pixels are black.

values) so that, after the closing, all of the pixels of R have high values. The basic
idea is that, if the pixels in the cluster are at distances less than 2h from each other,
the sets of low-valued pixels between the cluster pixels are σh-thin. As we saw in
Section 15.4, closing can be used to adjoin to a setS thin parts of the complement ofS.
Hence, closing can be used to adjoin to the cluster pixels the thin sets of low-valued
pixels between the cluster pixels so that all of the pixels of R are adjoined to the
cluster.

Figure 15.12 shows simple examples of how eliminating thin parts of 〈P 〉 can
be used to fuse a cluster of dark pixels of 〈P 〉. If S is a cluster, any pixel of S that is
“surrounded” by pixels of S belongs to a thin part of the complement S. The closing
adjoins these thin parts to S and thus fuses S into a solid region. The picture in
this example is binary, but the example generalizes straightforwardly to multivalued
pictures and to sparser clusters (i.e., those that use larger structuring elements).

15.6.2 Elongated object parts

Closing with structuring elements of different sizes can be used to segment a picture
into clusters (of high-valued pixels on a low-valued background) that have different
densities. Similarly, opening with structuring elements of different sizes can be used
to eliminate thin high-valued regions that have different thicknesses.

Figure 15.13 shows a binary pictureP that contains sets of 1s that have different
thicknesses and the results of opening P using the structuring elements σ1,σ2, and
σ4. (These structuring elements are squares of sizes 3× 3,5× 5, and 9× 9; they
are the sets of pixels with d8-distances from o that are ≤ 1,≤ 2, and ≤ 4. Such
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FIGURE 15.13 An example of how opening can be used to detect and eliminate sets of
object pixels that have various thicknesses. Note that object pixels are black. Upper
left: original object. Remaining pictures: results of opening using square structuring
elements of sizes 3×3, 5×5, and 9×9.

a sequence of openings by balls of increasing diameter is called a granulometry in
mathematic morphology [706, 969].) The σ1-opening eliminates the thinnest sets of
1s; the σ2-opening eliminates thicker sets of 1s; and the σ4-opening eliminates all but
the thickest sets of 1s. Another example is shown in Figure 15.14; here, the sets of
high-valued pixels do not have constant thicknesses, but they can be almost entirely
eliminated by opening using a structuring element of the appropriate size.

Opening using structuring elements of increasing sizes can be used to identify
elongated sets of high-valued pixels in a picture. Let P be a binary picture, and let
〈P 〉h be the set of 1s of P that remain after opening 〈P 〉 using an h×h structuring
element. Thus, 〈P 〉h consists of “h-thick” parts of 〈P 〉 (i.e., parts of which every pixel
is contained in an h×h square that is contained in 〈P 〉). This fact can be used to
identify elongated parts of 〈P 〉 that have thickness of at most h. Suppose we call an
h×k rectangle “elongated” if k ≥ 3h. Then a connected component of 〈P 〉− 〈P 〉h
that contains at least 3h2 pixels must have been an elongated part of 〈P 〉 having
a thickness of less than h. For example, the sets of pixels in Figure 15.13 that are
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FIGURE 15.14 Opening of a thresholded aerial picture (upper left) using structuring
elements of different sizes.

eliminated by σi-opening (i= 1,2,4) have 819, 2829, and 9681 pixels, respectively, so
they are all elongated. Similarly, in Figure 15.14, the sets of pixels that are eliminated
by σi-opening (i = 1,2,3) have 7824, 10,020, and 14,042 pixels, respectively, and so
are all elongated.

An alternative method of detecting elongated sets is to use the union of open-
ings by elongated structuring elements in all (main) directions.

15.6.3 Distance transforms and medial axes

We conclude this section by showing how morphologic operations can be used to
compute distance transforms (see Section 3.4.2) and medial axes (see Section 3.4).

Proposition 15.2 Let P be a binary picture, let P(0) = P , and let P(i+1) be the
result of eroding P(i) (i = 0,1, . . . ,D−1) using the structuring element H ∪V
or N8 (see Figure 15.1), where D is the diameter of P . Then ΣD

i=0
P(i) is the
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distance transform of P ; usingH∪V gives the d4 transform, and usingN8 gives
the d8 transform.

Proposition 15.3 Let P(i) be as in Proposition 15.2, and let P(i)∗ be the result
of redilating P(i) (once) using the same structuring element that was used in
the erosions. Thus P(i)∗ is an opening of P(i−1) so that, in accordance with
Proposition 15.1, P(i)∗ ⊆ P(i−1). Then

⋃D
i=1(P(i−1) \Pi∗) =M(P ).

Note that this method of constructing the medial axis can also be applied to multi-
valued pictures.

15.7 Exercises

1. If σ = {(x1,y1), . . . ,(xn,yn)}, prove that P (σ) is the max of the translates of P by
(−x1,−y1), . . . ,(−xn,−yn).

2. Let H = {(−1,0),(0,0),(1,0)} and V = {(0,−1),(0,0),(0,1)}, and let E = N8

consist of (0,0) and its eight horizontal, vertical, and diagonal neighbors. Prove
the following:

P (E) = (P (H))(V ) = (P (V ))(H)

3. Let σ denote the reflection of σ in the origin (i.e., {(−x,−y) : (x,y) ∈ σ}). If σ
is symmetric, we have σ = σ. If P is a binary picture, prove that 〈P (σ)〉 is the
union of σ(p) for all p ∈ 〈P 〉.

4. If σ = {(x1,y1), . . . ,(xn,yn)}, prove that P(σ) is the min of the translates of P by
(−x1,−y1), . . . ,(−xk,−yk).

5. Let P be a binary picture, and let P be the complement of P so that P has 0s
where P has 1s and vice versa. Prove that, for any structuring element σ, we
have the following:

P (σ) = P (σ) and P(σ) = P
(σ)

6. Generalize the concepts in this chapter to 3D pictures.

15.8 Commented Bibliography

The theoretic study of morphologic operations was initiated nearly 50 years ago
[392] in connection with the problem of estimating the sizes of objects. For the
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origins of “mathematic morphology,” see [708]. Early work on morphologic analysis
of micrographs is described in [744], where dilation and erosion are called “plating”
and “etching,” and only simple symmetric structuring elements are used. See also
Section 1.2.12 for historic references.

Systematic treatments of morphologic operations can be found in [417, 706, 969,
1012] (see also Chapter 9 in [370] and [418, 874]). For local minimum and maximum
operations, see also [762]. The method of computing the distance transform and
the medial axis described in Propositions 15.2 and 15.3 is described in [749]; for the
multivalued case, see [808].
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C H A P T E R 16

Deformations

In this chapter, we discuss operations that “deform” a picture to derive new
pictures from it while preserving geometric properties of the original picture,
particularly topologic properties. We emphasize deformations of 2D binary pic-
tures, but we also briefly discuss deformations of 3D and multivalued pictures.

16.1 Topology-Preserving Deformations and Simple Pixels

In this section, we assume that P is a 2D binary picture. We will usually use
8-adjacency for the 1s and 4-adjacency for the 0s, and we will assume that the set
〈P 〉 of 1s is finite, but our results also hold (with appropriate modifications) under
the opposite assumptions. The 3D case will be discussed in Section 16.6 and the
multivalued case in Section 16.7.

We have seen (see Section 4.2.2) that the (8,4) region-adjacency graph of a
binary picture is a tree. If we take the infinite background component B of 0s as the
root of this tree, then the region corresponding to any node of the tree surrounds the
regions corresponding to the children of that node, and the leaves of the tree corre-
spond to simply connected regions. Two binary pictures are topologically equivalent
(isotopic) iff there is an isomorphism f between their rooted region-adjacency trees
such that T is a child of S iff f(T ) is a child of f(S) (see Proposition 6.4).

LetA8(p)be the set of pixels that are 8-adjacent top, and letN8(p) =A8(p)∪{p}.
Evidently, p is (4- or 8-) adjacent to a (4- or 8-) componentS of 〈P 〉 or 〈P 〉 iff it is (4- or
8-) adjacent to S∩A8(p). It is easily verified that at most four 4- or 8-components can
intersect A8(p). These components are all 8-adjacent to p, and they are 4-adjacent
to p iff they contain a 4-neighbor of p.

Definition 16.1 A pixel p is called (8,4) simple iff it is 8-adjacent to exactly
one 8-component of 1s in A8(p) and 4-adjacent to exactly one 4-component of
0s in A8(p).

Some examples of simple and nonsimple pixels are shown in Figure 16.1.
If we use the grid cell model, we can give a criterion for the simplicity of p in

terms of the attachment set of the grid square p. If p∈ 〈P 〉, we define the P -attachment
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FIGURE 16.1 Examples of (upper row) simple pixels and (lower row) nonsimple
pixels in the (8,4)-adjacency grid; p and the *s can be either 0 or 1.

set pP as the union of intersections of the frontier ϑp (see Definition 5.11) with the
frontier of some other pixel q of 〈P 〉; in other words, pP =

⋃
q∈〈P 〉,q �=p(ϑp∩ϑq). It

can be shown that p is (8,4)-simple iff pP is a connected proper subset of ϑp.

Theorem 16.1 Changing the value of a simple pixel of a picture P from 1 to 0 or
from 0 to 1 results in a picture P ′ that is topologically equivalent to P .

Proof We make use of Proposition 6.4, in which topologic equivalence (isotopy of
geometric representations in the grid cell model) is characterized by isomorphy
of rooted region-adjacency graphs. Let p be 8-adjacent to the 8-component C
of 〈P 〉 and 4-adjacent to the 4-component D of 〈P 〉. If p= 1, let C∗ = C ∪{p},
and, if p = 0, let D∗ = D∪{p}. It follows that C∗ is 4-adjacent to D and that
C is 8-adjacent to D∗; in the latter case, if a black and a white component are
8-adjacent, then they must also be 4-adjacent, because, for any pair of diagonally
adjacent black or white pixels, the two “intermediate” 4-adjacent pixels must
be either black or white. Hence each of them is either in the black or the white
component, so C∗ and D (C and D∗) are 4-adjacent.

If we change p from 1 to 0 (or vice versa), C∗ and D become C and D∗
(or vice versa); all other components of 〈P 〉 and 〈P 〉 remain the same and
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FIGURE 16.2 Attachment sets for the examples shown in Figure 16.1.
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adjacency relationships between pairs of components remain the same
(with C∗, D replacing C, D∗ or vice versa). Thus, the components of P ′ are in
one-to-one correspondence with those ofP , and this correspondence preserves
adjacency. Hence the region-adjacency graphs of P and P ′ are isomorphic,
and this isomorphism evidently preserves (parent, child) relationships in the
rooted trees. �

Definition 16.2 Two pictures differ by a simple deformation (for brevity, SD)
iff each of them can be obtained from the other by repeatedly changing simple
pixels from 1 to 0 (or vice versa).

According to Theorem 16.1, SD is topology-preserving. It is easily verified that,
when the value of a simple pixel is changed, the pixel remains simple; hence, SD is
reversible. In the grid cell model, the geometric representations of two binary pic-
tures (before and after removing a simple pixel) are isotopic; “squeezing” the simple
pixel (a square) into its frontier is a continuous deformation from one representation
to the other.

In the next two sections, we will discuss “one-way” SD processes that change
simple 1s to 0s (but not vice versa). Such processes are used to “shrink” or “thin”
components of 1s. In this section, we will establish some important properties of
general (“two-way”) SD processes. Specifically, we will show that SD can be used to
magnify a binary picture or to translate it, and we will prove (see [916]) that, if two
pictures are topologically equivalent, they differ by SD.

Let the portion of P that contains 1s have n rows that we number 1, . . . ,n,
starting from the bottom row; the row of 0s below the bottom row is numbered 0.
Each column of P consists of alternating runs (maximal sequences) of 1s (if any)
and 0s; a run with its uppermost pixel in row i will be denoted by ri. (Note that
there may be several ris for a given i.) Let h(n)≥ h(n−1)≥ . . .≥ h(1)≥ h(0) be a
monotonically nonincreasing sequence of nonnegative integers. We will dilate each
ri upward by the amount h(i). A run ri will be dilated upward only after the runs
rj (for all j > i) have been dilated upward. For each i, the runs ri of 0s will all be
dilated first (in any order), and then the runs ri of 1s will be dilated (in any order).
(If we were using 4-adjacency for the 0s and 8-adjacency for the 1s, we would dilate
the 1s before the 0s.) Note that when the run (e.g., rk) just below ri is (later) dilated
upward, ri is re-eroded (shortened, from the bottom). We will show in the following
paragraphs that any such sequence of upward dilations involves only changes in the
values of simple pixels.

There are no runs rn of 0s, because vertical runs of 0s that intersect the top row
extend infinitely far into the background component B. Thus the dilation process
begins by dilating each run rn of 1s upward (into B) by the amount h(n). Let t be
the top pixel of any such run; then the pixel p just above t (see Figure 16.3) is in
B, and so is its upper neighbor x. If u = 0 or u = 1 and u’s run has not yet been
dilated, we have q = y = 0; if u = 1 and u’s run has already been dilated, we have
q = 1; this is also similar for v, r, and z. In any case, p is simple; it is 4-adjacent to



502 Chapter 16 Deformations

y x

r

z

q

t vu

p

FIGURE 16.3 p is the pixel above the top pixel t of a run (see text).

only one 4-component of 1s (the component containing t) and 8-adjacent to only one
8-component of 0s (the component containing x). If we change p from 0 to 1 and
replace t with p and p with x, the same argument shows that x is simple, and so on.
Hence the upward dilation of rn by h(n) involves only changes of simple 0s to 1s.

The argument is similar (but slightly more complicated) regarding the runs ri
for i < n. We first consider the runs of 0s. Let ri be a run of 0s that is about to be
dilated (by h(i)), and let P ∗ be the picture just before dilation of ri. (We can assume
that h(i) > 0; otherwise no dilation is needed.) Let t be the uppermost pixel of ri.
The run of 1s in P just above t has its uppermost pixel in a row higher than i; hence,
it has already been dilated by at least h(i+1) so there are more than h(i) 1s above t
in P ∗. Let u be t’s west neighbor in P (as in Figure 16.3). If u is not the uppermost
pixel of its run in P , that run has already been dilated by at least h(i+ 1) (or is an
infinite run of 0s and needs no dilation); hence, in P ∗, there are more than h(i) pixels
above u that have the same value as u. If u = 1 is the uppermost pixel of its run in
P , that run has not yet been dilated, but u’s north neighbor x in P belongs to a run
of 0s in P that has already been dilated by at least h(i+ 1), so there are more than
h(i) 0s above u in P ∗. Finally, if u= 0 is the uppermost pixel of its run in P , that run
may or may not have been dilated yet. If it has not, the run of 1s above it in P has
already been dilated by at least h(i+ 1), so there are more than h(i) 1s above u in
P ∗; however, if the run of 0s whose uppermost pixel in P being u has already been
dilated, there are exactly h(i) 0s above u in P ∗. Similar remarks apply to v (and y).
Thus the pixel values in P ∗ in the columns containing u and v are constant for at
least h(i) rows above t’s row. Moreover, if q or r is 1 in P ∗, there are more than h(i)
1s above u or v in P ∗. It follows easily from this that p is 4-adjacent to exactly one
4-component of 1s (which contains the pixel x above p; this is because t is 0 and, if q
or r is 1, so is y or z, so q or r is 4-connected to x), and p is 8-adjacent to exactly one
8-component of 0s (which contains the pixel t; this is because, if y or z is 0, so is q or
r, so y or z is 8-connected to t). Hence p is simple. If h(i) > 1, when we change p
from 1 to 0, the pixel above it is still a 1, and it is still simple for the same reason; this
continues to be true for at least h(i) pixels above t. Thus, the run of 0s that has as its
top pixel t can be dilated upward by at least the amount h(i) by repeatedly changing
simple 1s to 0s.

A similar argument applies to the runs ri of 1s. Here the run of 0s inP beginning
just above t has already been dilated by at least h(i+1), so there are more than h(i)
0s above t in P ∗. The case in which u is not the uppermost pixel of its run in P is the
same as in the previous paragraph. If u = 0 is the uppermost pixel of its run in P ,
that run has already been dilated by h(i). If u = 1 is the uppermost pixel of its run
in P , that run too may have already been dilated by h(i), and, if it has not, the run
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of 0s above it has already been dilated by at least h(i+1). Similar remarks apply to
v (and y). Thus, for at least h(i) rows above t, the pixel values in P ∗ in the columns
containing u and v are constant. It follows easily that p can be 8-adjacent to only
one 8-component of 0s (if u or v = 0, q or r must also be 0, so u or v is in the same
8-component of 0s as x) and can be 4-adjacent to only one 4-component of 1s (if q or
r = 1, u or v must also be 1, so q or r is in the same 4-component of 1s as t); thus, p is
simple. If h(i)> 1, when we change p from 0 to 1, the same argument holds, with q,
r replacing u, v and y, z replacing q, r, and this continues to be true for at least h(i)
pixels above t. Thus, the run that has as its top pixel t can be dilated upward by at
least the amount h(i) by repeatedly changing simple 0s to 1s.

We can now prove the following:

Theorem 16.2 SD can be used to magnify a picture by any integer factor.

Proof We first use SD to dilate the vertical runs upward as described in the pre-
vious paragraphs using h(i) =m · i. Let ri be a run with its uppermost pixel in
row i and with its lowest pixel in row k+ 1 ≤ i so that the length of ri is i−k.
Evidently, none of the dilations affect ri except the dilation of ri bym · i and the
dilation of the run rk below ri by m ·k. The first dilation lengthens ri by m · i,
and the second dilation shortens ri by m · k. Thus, the length of ri becomes
(i− k) +mi−mk = (i− k) + (i− k)m = (i− k)(m+ 1), so the length of ri is
magnified by the factor m+1. Horizontal magnification is then achieved in an
exactly analogous way using dilations of horizontal runs. �

Proposition 16.1 A picture can be translated horizontally or vertically by one
step using SD.

Proof We give the proof for upward translation; the proofs for the other three
directions are exactly analogous. P ′ is the upward translation of P by one
step iff, for all (x,y), the value of P ′ at (x,y) is the same as the value of P at
(x,y− 1). We again use SD to dilate the vertical runs upward using h(i) = 1
for i= n,n−1, . . . ,1,0. Let r be a run with its top pixel in row i and its bottom
pixel in row k+1. When the process reaches row i, r is dilated upward by one
pixel; when the process reaches row k, r is eroded from below by one pixel.
The process does not affect r at any other stage, so its net effect is to translate
r upward by one pixel. �

Proposition 16.2 A picture can be translated in a diagonal direction by one step
using SD.
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Proof A one-step diagonal translation can be achieved by a one-step horizontal
translation followed by a one-step vertical translation (or vice versa). �

Theorem 16.3 A picture can be translated along any 4-path or 8-path using SD.

Proof The required translation consists of a sequence of one-step translations in
isothetic or diagonal directions. �

Note that translation “along an 8-path” includes one-step horizontal or vertical trans-
lations that “complete” the 8-path into a 4-path.

According to Theorem 16.1, if two pictures differ by SD, they are topologically
equivalent. We can now prove the converse:

Theorem 16.4 If two pictures are topologically equivalent, they differ by SD.

Proof Let the adjacency graph of the pictures be a rooted tree of height h; we
recall that the root node corresponds with the infinite background component
B of 0s. The children of the root correspond with components of 1s, which we
call “top components.” Note that each top component C corresponds with the
root of a subtree of height at most h− 1. We will now show how SD can be
used to move the top components of any binary picture (together with all of the
components that they surround) far apart from one another and to put each of
them into a standard form.

Let C be a top component. Because C is adjacent to B, there is an 8-path ρ
from some pixel ofC to a distant pixel ofB; all but the first pixel of ρ is inB. We
can assume that ρ is a shortest such path; thus, ρ does not touch or cross itself
and is evidently simply connected. According to Theorem 16.2, we can use SD
to magnify the picture by an integer factor t > 2h+1. This expands each pixel
into a t× t square; thus, ρ becomes a succession of such squares of 0s that either
share a side or touch at a corner. Suppose two successive squares H and K of
0s touch at a corner; then two squares M and N (of 1s or 0s) also share that
corner. We can thus, use SD to dilate H downward by any amount less than t.
Suitable dilations of this kind, together with the magnification, convert ρ into
a “thick 4-path” P ∗ of 0s of thickness of at least 2h+1. Evidently, if ρ is simply
connected, so is P ∗. Because the far end of ρ (hence, of P ∗) is distant from all
of the components of the picture other thanB, we can assume that the last part
of ρ (and P ∗) is straight, because once it gets far enough away from the other
components, it need not bend to avoid them.

We now use SD to dilate C so as to create a simply 4-connected protrusion
P of 1s of thickness 2h− 1 interior to P ∗. To do this, we use SD to create a
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4-path of 1s that extends along the midline of P ∗ by repeatedly changing 0s to
1s just beyond the endpoint of the path. We then thicken this path by creating
another path alongside it (on each side) that is still interior to P ∗; this can be
done by repeatedly changing corner 0s to 1s. This process can be repeated until
the desired thickness is reached, with P remaining interior to P ∗. Note that,
because the last part of P ∗ is straight, so is the last part of P .

Let D be a hole in C. Because C is 4-connected, the magnification guarantees
that there is a thick 4-path Q∗ of 1s from D to the beginning of P . We now use
SD to dilate D so as to create a 4-connected protrusion Q of thickness 2h−3
interior to Q∗. When Q∗ reaches the beginning of P , Q continues along P and
fills the interior of P with 0s.

Let E be an island in D (a component of 1s adjacent to and surrounded by
D). Because D is 8-connected, the magnification (and subsequent dilations)
guarantees that there is a thick 4-pathR∗ of 0s fromE to the beginning ofQ. We
now use SD to dilate E so as to create a 4-connected protrusion R of thickness
2h−5 interior to R∗. When R∗ reaches the beginning of Q, R continues along
Q and fills the interior of Q with 1s.

This process continues, using SD to create a nested collection of protrusions
from C,D,E, . . . that correspond to successively lower nodes of C’s subtree.
Because the height of this subtree is at most h−1, even when we reach a leaf
node of C’s subtree, there is still room for its protrusion in the nest. Because
the component L that corresponds with the leaf node is simply connected (see
Exercise 2 in Section 16.8), it and its protrusion can then be eroded down to
the last row (or column) of pixels in the straight part of the protrusion so that
it becomes a horizontal or vertical straight line segment.

If the parentK of L has other children, we can do the same thing to them; each
protrusion stops eroding just before it reaches the place where the previous
protrusion stopped, so the eroded protrusions remain nonadjacent. After the
children have been eroded down to line segments in this way, there are no
longer any holes inK, except far away along its protrusion. We can then erode
K (see Exercise 3 in Section 16.8) until it is near the end of the straight part
of its protrusion. We erode K until just before the point to which its children
were eroded. This converts it into a hollow rectangle that just surrounds the
line segments that resulted from the erosions of the children.

This process continues. When all of the children in the subtree of a region H
have been eroded, H itself is eroded. Its siblings are dilated to create protru-
sions, the children of the siblings are dilated to create nested protrusions, and
so on until leaves are reached; these can then be eroded. This process continues
until C itself has been eroded.

The result of the entire process is a concatenation of nests of hollow rectangles
or line segments; each rectangle surrounds the rectangles or segments obtained
from its children and is adjacent to the rectangles or segments obtained from
its siblings. The sequence in which this concatenation is created depends on the
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order in which we process the children of each component; however, if two Cs
have isomorphic subtrees, there exist processing orders for the Cs that result
in congruent concatenations.

Using this process, we can transform each top component C to a canonic form
(a concatenation of nests) that depends only on C’s subtree and that is located
far away from the other top components (or from their canonic forms). If two
pictures P and P ′ are topologically equivalent, they can give rise to the same
set of canonic forms. SD can then be used (see Theorem 16.3) to translate
the canonic forms; because they are far apart, they have room to translate.
Hence SD can be used to rearrange the canonic forms obtained from P so that
they occupy the same relative positions as the canonic forms obtained from
P ′. By reversing the process that was used to create P ′’s canonic form, we can
then reconstruct P ′. Thus SD can be used to transform P to a canonic form,
rearrange that form (if necessary), and transform it into P ′. �

16.2 Shrinking

We saw in Section16.1 that changing the value of a simple pixel from 1 to 0 is topology-
preserving. It is known that, if a simply connected component of 〈P 〉 contains at least
two pixels, it contains at least two simple pixels (Exercise 2 in Section 16.8). It follows
that, if we repeatedly change the values of simple pixels from 1 to 0 until no further
change is possible, every simply connected component of 〈P 〉 shrinks to a single
pixel. Note that, at every step of this shrinking process, the components remain
simply connected.

Algorithms can also be defined that shrink simply connected components of
〈P 〉 to single pixels more rapidly by repeatedly changing the values of many simple
pixels from 1 to 0 simultaneously (“in parallel”) while preserving topology. Note
that, if we changed the values of all simple pixels from 1 to 0 simultaneously, topology
would sometimes not be preserved; for example, if 〈P 〉 is a 2× 2 block of 1s, all of
its pixels are simple, so changing their values from 1 to 0 destroys a component of
1s. To preserve topology while shrinking in parallel, it is necessary to be selective
about which pixels have their values changed from 1 to 0. The following are some
examples of algorithms that perform selective parallel shrinking. (In this section, we
use 4-adjacency for 1s and 8-adjacency for 0s.)

a) Repeatedly change the values of all pixels p from 1 to 0 if they satisfy both
of the following conditions (where (x,y) are the coordinates of p and where
“(i, j) = 0” means “the pixel with the coordinates (i, j) has value 0”):

(1) p is simple and (x,y−1) = 0, or (x,y+1) = (x+1,y) = (x−1,y) = 0, but
(x,y−1) = 1.
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FIGURE 16.4 Left: picture (1s = black, 0s = white). Right: result of applying algorithm
(a). The number in each cell is the step at which the value of that pixel is changed
from 1 to 0.

(2) p’s neighborhood is neither
0 0

0 p 1 0
0 0

nor

0
0 1 0 .
0 p 0

0

An example of shrinking using this algorithm is shown in Figure 16.4.

b) A variant of algorithm (a) alternates between two criteria for changing pixels
from 1 to 0: At odd-numbered steps, it uses criterion (1); at even-numbered
steps, it changes all pixels p from 1 to 0 if they are simple and either (x,y−1) =
(x−1,y) = 0 or (x,y+ 1) = (x+ 1,y) = 0. An algorithm that uses alternating
criteria for changing 1s to 0s is called a subiteration algorithm. The application
of this algorithm to the same picture is shown in Figure 16.5.

c) Another type of algorithm is based on partitioning the pixels of P into “sub-
fields”; for example, the evenness or oddness of the x- and y-coordinates of
a pixel define four subfields (both odd, both even, x odd and y even, or vice
versa). The algorithm operates on one subfield at a time; at each iteration, it
changes simple pixels from 1 to 0 iff they belong to one of the subfields. Note
that two 8-adjacent pixels cannot belong to the same subfield; hence, topology
preservation is assured, even if all of the simple pixels in a subfield are changed

9 68 4 2

10 11 10 9

8 7 7 7 7

7 5 5 5 5

6 3 3 3 3

8

7

5

3

7

5 1 1 1 1 1

3

1

6

3

1

5

6

3

1

4

5

3

1

3

4

3

1

2

2

3

1

3

2

1

1

1

4

3

1

5

3

1

6

3

1

5

4

4

3

2

1

3

2

1

1 1 1 1

FIGURE 16.5 Picture and result of applying algorithm (b) The notation is the same
as in Figure 16.4.
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FIGURE 16.6 Picture and result of applying approach (c). The top row and left column
have odd coordinates.

from 1 to 0 simultaneously. The application of this approach to the same pic-
ture is shown in Figure 16.6. (It is also common to use two “checkerboard”
subfields, which are defined by the parity of x+y.)

In general, simultaneously changing the values of a set S of pixels of 〈P 〉 from
1 to 0 preserves topology iff the pixels of S can be arranged in a sequence p1,p2, . . .

such that, if the values of the pis are successively changed from 1 to 0, pi is simple
just before its value is changed. Let A be a shrinking algorithm that consists of a
sequence of iterations Aj . We call a pixel p Aj-simple if p satisfies the conditions
used inAj for changing the value of a pixel from 1 to 0. The following result is from
[872]:

Proposition 16.3 A preserves topology if, for every j, the following are true:

a) Every Aj-simple 1 is simple.

b8) For every pair of 8-adjacent Aj-simple 1s, each of the 1s in the pair remains
Aj-simple when the value of the other 1 in the pair is changed to 0.

If we use 8-adjacency for 〈P 〉 and 4-adjacency for 〈P 〉, thenA preserves topol-
ogy if, for every j, the following are true:

a) Every Aj-simple 1 is simple.

b4) For every pair of 4-adjacent Aj-simple 1s, each of the 1s in the pair remains
Aj-simple when the value of the other 1 in the pair is changed to 0.

c) In any set of mutually 8-adjacent 1s, at least one of them is not Aj-simple.

[75] introduced “P-simple pixels,” which allow a necessary and sufficient character-
ization of topology preservation.

Many topology-preserving shrinking algorithms have been defined. Most of
them are used for thinning (see Section 16.3) (i.e., they are designed not only to
preserve topology but also to have no effect on “thin” subsets of 〈P 〉). (However,
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a few paragraphs below, “thinning” and “skeletonization” are used synonymously.
Section 16.3 deals particularly with skeletonization, which is a class of locally defined
topology-preserving shrinking methods that preserves arcs [881].) Most of these
algorithms are of the subiteration type, a few are of the subfield type, and some are
even “fully parallel.”

The shrinking algorithms described so far are capable of shrinking simply con-
nected components of 〈P 〉 to single pixels; however, because these algorithms can
change only simple 1s to 0s, they cannot shrink non–simply connected components
to single pixels. (A connected component that has a hole will shrink into a simple
closed curve.) For example, no pixel of a simple curve C is simple; hence, if C is a
component of 〈P 〉, an algorithm that changes only simple 1s to 0s has no effect onC.

We conclude this section by describing an algorithm that shrinks every com-
ponent of 〈P 〉 or 〈P 〉, except for the background component, to a single pixel. The
algorithm also removes single-pixel components (note that this violates topology
preservation) so that these components cannot interfere with the shrinking of com-
ponents that surround them. The following version of this algorithm assumes that
we use 4-adjacency for 〈P 〉 and 8-adjacency for 〈P 〉. Let p and its east, south, and
southeast neighbors have the following values, where z, u, v, and w are 0 or 1:

w

u

v

z

Then p becomes (or remains) 1 iff z+u= 2, z+v = 2, or u+v+w = 3. An example
of the operation of this algorithm is shown in Figure 16.7; some of its properties are
described in Exercises 3 and 4 in Section 16.8.

16.3 Thinning

In this section, we discuss algorithms that shrink each component K of 〈P 〉 into
a connected skeleton S: a union of arcs or curves that are centrally located in K.
(If we use 4- (8-)adjacency for 〈P 〉, these are 4- (8-)arcs and 4- (8-)curves. Most
thinning algorithms use 8-adjacency for 〈P 〉, because this yields thinner skeletons.1)
If K consists of elongated parts, there will ideally be an arc or curve of S centrally
located in each of these parts, as illustrated schematically in Figure 16.8. A process
that shrinks K into a skeleton is called thinning or skeletonization. We require that
the process be topology-preserving; S must be connected, and, if H is a hole in K,
there must be a unique hole H ′ in S that contains H (H ′ is the region surrounded
by a closed curve that is contained in S). However, we require more than just
topology preservation [868]; “drilling a hole” at one place and connecting the hole

1. For example, when we use 8-adjacency for 〈P 〉, the skeleton of a diagonally oriented rectangle is a diagonal
line segment; however, when we use 4-adjacency, the skeleton is a diagonal staircase.
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FIGURE 16.7 Sixteen steps in the operation of an algorithm that shrinks every (non-
background) component to an isolated pixel (starting with the picture on the upper
left). Gray squares show black pixels that are removed at that step.

to a complementary component in another place may preserve topology, but it does
not correspond to our idea of “adequate shape representation.”

Because S must be centrally located in K, the pixels of S must be as far away
as possible from the complement K of K. This implies that (most of) these pixels
belong to the medial axis of K (see Section 3.4.4). In particular, if A is an arc (a
“branch”) of S contained in an elongated partL ofK, an endpoint ofAmust be near
the border of L at a point where the border has high curvature (see Section 10.4).

The geometric requirement of a centrally located skeleton can also be specified
in topologic terms; the inclusion relations between the components of a skeleton S
and the components of the given set K and between the holes of S and the holes
of K must both be bijections (one-to-one and onto). In other words, a component
cannot split or disappear, and a hole cannot be newly created or merged with another
complementary component. [868] shows that this topologic constraint is equivalent
to a skeletonization process defined by a sequence of removals of simple pixels.
To ensure topology preservation and these two bijections, most thinning algorithms
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FIGURE 16.8 Schematic illustration of the desired result of thinning. A connected
object (gray) that has a hole and protrusions; its skeleton (dotted) has a loop that
surrounds the hole and branches that are centrally located in the protrusions.

operate by removing simple pixels from K by changing their values from 1 to 0.
As we saw in Section 16.2, topology preservation and these two bijections can be
guaranteed, even if sets of simple pixels are removed simultaneously. To ensure that
the skeleton is centrally located, a thinning algorithm that removes simple pixels
from K must remove them from all sides of K. (A pixel p at location (x,y) is called
a north border pixel if (x,y+ 1) has value 0; a south border pixel if (x,y− 1) has
value 0; an east border pixel if (x+ 1,y) has value 0; and a west border pixel if
(x−1,y) has value 0.) We cannot remove simple pixels from all sides of K at once;
as we saw in Section 16.2, this would completely destroy Ks that are only two pixels
thick. However, we can remove them from one side at a time, and we can obtain a
centrally located skeleton by removing them from opposite sides alternatingly (e.g.,
successively removing sets of simple pixels that are north, east, south, west, north,
and so on border pixels). Four subiterations can be reduced to two by removing
both north and east pixels in one subiteration and both south and west pixels in the
second.

It should be pointed out that central location of the skeleton can be achieved
only approximately. For example, the skeleton of an upright rectangle R of height
2 and length n cannot lie exactly on the midline of R, because the midline passes
midway between two rows of pixels. In general, if K has even width and S is thin
(i.e., has unit width), then either the position of S must be biased (it must lie on one
side of the midline ofK), or S must zigzag from one side of the midline to the other.
Zigzags in skeletons of sets of even width are especially relevant in algorithms that
use subfields. Algorithms that use directional subiterations do not create zigzags.

A thinning algorithm must have no effect on parts ofK that are already thin. To
ensure this, we must not remove a simple pixel fromK if it might be an arc endpoint.
We regard a pixel p of a 4-connected set K as an arc endpoint if it is 4-adjacent to
exactly one pixel q of K; in order to allow an endpoint of a diagonal staircase to be
an arc endpoint, we also allow one diagonal neighbor of p that is 4-adjacent to q to
be in K. Thus we call p an arc endpoint if only one 4-component of 1s in A8(p) is
4-adjacent to p and this component has either one or two pixels. Note that, when
this type of local definition of an arc endpoint is used, minor irregularities on the
border of K may qualify as arc endpoints, so S may have noisy “spurs.” Less noisy
results can be obtained by estimating the curvature of the border ofK and regarding
a simple pixel p (which evidently must be a border pixel) as an arc endpoint only if
the curvature of the border at p is sufficiently high.
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FIGURE 16.9 This set of gray pixels has no simple pixels except for arc endpoints, but
it is not entirely thin, because it has an interior pixel (black).

It should be pointed out that, even if S has no simple pixels except for arc
endpoints, it can still have interior pixels, so it may not be entirely thin. An 8-
connected example of this situation is shown in Figure 16.9.

An example of thinning by successively removing simple north, south, east,
west, north, and so on border pixels [881] that are not arc endpoints is shown in Fig-
ure 16.10. This algorithm determines whether to remove a pixel p at a given iteration
by examining N8(p) only. Algorithms can be defined that require fewer iterations
but that apply different tests to theN8(p)s at alternating iterations or examine larger
neighborhoods of the ps. Algorithms based on subfields (see Section 16.2) can also
be defined. Another type of thinning algorithm removes border pixels of K that are
visited only once when tracing the border and that are not adjacent to interior pixels
of K.

Definition 16.3 A maximal subset A of a skeleton S that is an arc and such
that no non-endpoint of A is adjacent to any pixel of S \A is called a branch
of S.

It is not hard to see that S can be decomposed into a set of curves and branches
( junctions can be decomposed into branches); note that the endpoints of a branch
can be adjacent to curve points or to endpoints of other branches. (In the S shown
in Figure 16.9, the interior pixel is a singleton branch.) If a branch endpoint has only
one neighbor in S, it is called an end; if it has more than two neighbors in S, it is
called a junction; otherwise, it is called normal.
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FIGURE 16.10 A (4-,8-) skeleton. The number in each cell is the step at which that 1
was changed to 0. The black pixels are 1s that were never changed; they belong to
the skeleton.
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In general, the parts of K that give rise to branches of S will not all be equally
significant. One way to evaluate the significance of a branch A is to examine the
values of the distance transform of K (see Section 3.4.2) at the pixels of A. If the
values are high, A must have arisen from a thick elongated part of K; if the values
decrease as an endpoint of A is approached, A must have arisen from a tapering
part of K; if they increase as the endpoint is approached, A must have arisen from a
bulbous part of K; and so on. Criteria based on the distance values can be defined
for pruning (eliminating or shortening) branches of S so as to retain only branches
that should arise from perceptually significant parts of K.

16.4 Deformations of Curves

We recall (see Definition 7.7) that a simple (4-,8-) curve C (from now on we omit
“simple”) is a finite nonempty (4-,8-) connected set of pixels, each of which has
exactly two (4-,8-) neighbors inC. Figure 16.11 shows some examples in the grid cell
model (where we should use the terms 1-curve and 0-curve). We usually assume that
a 4-curve has at least eight pixels and an 8-curve has at least four pixels, but it will be
convenient in this section to regard a (4-,8-) isolated pixel as a trivial (4-,8-) curve.

We could say that two (4-,8-) curves C and D differ by a local deformation iff
every pixel of C is a neighbor of a pixel of D (and vice versa). (If C and D are 4-(8-)
curves, “neighbor” means 8-(4-) neighbor.) We could also say thatD is a deformation
of C (or vice versa) iff there exists a sequence of (4-,8-) curves C0,C1, . . . ,Cn such
that C0 = C1,Cn = D, and Ci and Ci−1 differ by a local deformation (1 ≤ i ≤ n).
Unfortunately, these definitions are not restrictive enough. Let C be a subset of a
connected set S in the Euclidean plane that has a hole H . If C surrounds (does
not surround) H and C is continuously deformed while remaining a subset of S, the
deformed C still surrounds (does not surround) H . Hence, if C surrounds H and D
does not, they cannot be continuous deformations “in S” (i.e., isotopic with respect
to the topologic space defined by base set S) of one another. On the other hand,
Figure 16.12 shows two 4-curves (8-curves) C and D such that C surrounds the pixel
p but D does not, and C and D differ by a local deformation. Because p could be a
one-pixel hole, the examples in Figure 16.12 show that two (4-,8-) curves can differ
by a deformation even if one of them surrounds a hole and the other does not; this
can be true even if the hole is large (see Figure 16.13).

FIGURE 16.11 Left: two 4-curves. Right: an 8-curve.
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FIGURE 16.13 C andD differ by a local deformation, but a large hole (the ps) is inside
of C and outside of D. (The cs and ds are as in Figure 16.12.)

A better way to define deformations of a (4-,8-) curve C is to make use of the
fact (see Section 7.3.2) that, ifC is nontrivial, its complementC consists of two (8-,4-)
componentsCI andCO (the “inside” and “outside” ofC). As we saw in Section 7.3.2,
C (8-,4-) separates CI from CO; it (8-,4-) surrounds CI (but surrounds no pixel of
CO) and is (8-,4-) surrounded by CO; every pixel of C is (8-,4-) adjacent to both CI

and CO. (The prefixes 4- and 8- will usually be omitted in what follows.)

Definition 16.4 We say that two curves C and D differ by a strong local de-
formation if CI and DO are disjoint and CO and DI are disjoint.

Proposition 16.4 If C and D differ by a strong local deformation, they differ by
a local deformation.

Proof Because the definition of a (strong) local deformation is symmetric in C
and D, we need to prove only one side of the conclusion (e.g., that any pixel
of C coincides with or is adjacent to a pixel of D). Let p be a pixel of C that is
not on D; then p is either in DI or DO (e.g., the former). Let q be a neighbor



16.4 Deformations of Curves 515

of p that lies in CO. BecauseD separatesDI fromDO, q cannot be inDO, and,
because DI and CO are disjoint, q cannot be in DI . Hence q must be on D so
that p is adjacent to a pixel of D. A symmetric argument shows that, if p is in
DO, it must be adjacent to a pixel of D. �

Note that the pairs of curves in Figures 16.12 and 16.13 do not differ by a strong
local deformation; they violate the first part of the definition. We say that C and D
differ by a strong deformation if there exists a sequence of curvesC0,C1, . . . ,Cn such
thatC0 =C,Cn =D, andCi andCi−1 differ by a strong local deformation (1≤ i≤ n).

We will now study the topology preservation properties of strong (local) de-
formations. We assume that the curves (C,D,. . .) are subsets of a connected set T
and that the deformations take place “in T .” We will usually assume that T is 4-
connected and that the curves are 4-curves; it can be shown that similar results hold
in the 8-case.

Proposition 16.5 Let H be a hole in T . C and D cannot differ by a strong local
deformation in T if C surrounds H but D does not.

Proof If C surrounds H , H must be contained in CI , and if D does not surround
H , H must be contained in DO; however, if C and D differ by a strong local
deformation, CI and DO must be disjoint. �

Corollary 16.1 C andD cannot differ by a strong deformation inT ifC surrounds
H but D does not.

Proof Let Cj (1≤ j ≤ n) be the first Ci that does not surround H ; then Cj−1 and
Cj violate Proposition 16.5. �

Proposition 16.6 If neitherC norD surrounds a hole in T , they differ by a strong
deformation in T .

Proof Clearly any two trivial (one-pixel) “curves” C, D ⊆ T differ by a strong
deformation. Indeed, because T is connected, we can define a sequence of one-
pixel translations (which are evidently strong local deformations) that move C
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FIGURE 16.14 Examples of strong local deformations in the neighborhoods of simple
pixels. Left: 4-curves. Right: 8-curves.

through T until it becomes D. To complete the proof, we will show that there
exists a sequence of strong local deformations that “shrinks” C (or D) into a
trivial curve.

It is well known (Exercise 2 in Section 16.8) that, if CI is simply connected and
has more than one pixel, it has at least two simple pixels. It can be verified that
C can be modified in the neighborhood of a simple p to create a C ′ such that
(a) C ′ passes through p; (b) C ′I is contained in CI ; and (c) C and C ′ differ by a
strong local deformation. Several examples of this are shown in Figure 16.14.
From (a) and (b), it follows that C ′I has strictly fewer pixels than CI ; hence,
repeating this process eventually results in a C∗ such that C∗I consists of only
one pixel. Such aC∗ (see Figure 16.11) is the smallest possible nontrivial curve.
Evidently such a C∗ differs from the trivial curve (which coincides with C∗I ) by
a strong local deformation. Thus we can construct a sequence of strong local
deformations that shrinks C (or D) into a trivial curve, and we can reverse the
latter sequence to expand a trivial curve into D. �

From Corollary 16.1 and the proof of Proposition 16.6, we have the following:

Theorem 16.5 C differs from a trivial curve by a strong deformation in T iff it
does not surround a hole in T .

Our main goal in the remainder of this section is to prove that, if C andD both
surround a single hole H in T , they differ by a strong deformation in T . To do this,
we first need the following:

Lemma 16.1 Let W be any finite 4-connected set of pixels, and let W ∗ be the
dilation of W (see Section 15.1) using structuring element N8; then any border
of W ∗ is a 4-curve.
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FIGURE 16.15 Neighborhoods of a border pixel.

Proof Let E be a border of T ∗ (e.g., its Z-border), and let q be any pixel of E.
We will show that q can have only two 4-neighbors that are on E; hence, E is a
4-curve (see Exercise 5 in Section 7.6).

Let p and r be the predecessor and successor of q when we traverse the border
E (see Algorithm 4.3). Then p and r are 4-adjacent to q, so the neighborhood
of q looks like one of the patterns in Figure 16.15 or their rotations by multiples
of 90

◦
, where the 0s are in Z. We must show that no pixel of E other than p or

r can be 4-adjacent to q.

The case on the left is immediate, because the other two 4-neighbors of q are 0s.
In the case in the middle, suppose the south neighbor q′ of q is a border pixel of
W ∗; then q′ is not inW (because the pixels ofW are interior pixels ofW ∗), and
some neighbor z of q′ other than p, q, or r is 0. p and r are in W ∗ but not in W ;
hence, they have 8-neighbors p′ and r′ that are inW . Letρbe a shortest 4-path in
W from any such p′ to any such r′. Because ρ is shortest, nonconsecutive pixels
of ρ cannot be the same and cannot be 4-adjacent, and ρ is not 4-adjacent to p
or r, except possibly at its endpoints; also, ρ cannot be 4-adjacent to q, because
the 4-neighbors of q are not inW . Hence we can complete ρ into a 4-curve κ in
W ∗ by adjoining to it p, q, r, and, if necessary, common 4-neighbors of p and p′
and r and r′ inW ∗. The column of pixels that contains q crosses κ (at q); hence,
(as in Section 7.3.2), κ separates q′ from q’s north neighbor and (because κ is a
4-curve) z and q′ are in the same 8-component of the complement of κ. Hence
z and q’s north neighbor are in different 8-components of the complement of
W ∗, so q′ is on a different border of W ∗ than q is.

The proof in the case on the right in Figure 16.5 is similar; there are several
subcases, depending on whether the east or north neighbor q′ of q is a border
pixel of W ∗. Here the row or column of pixels that contains q may not cross
κ, but a nearly horizontal or nearly vertical digital straight line (see Chapter 9)
must cross κ. For example, if q′ is the east neighbor of q, we can use the nearly
horizontal line that consists of the part of q’s row to the right of q (including q
itself) and the part of r’s row to the left of r (including r itself). Evidently, p
and r′ are on opposite sides of this line, so the line crosses κ. Further details of
the proof in this case will not be given here. �

Proposition 16.7 Let D and C be curves such that C surrounds D and there are
no 0s “between” D and C (i.e., no holes in DO ∩CI); then D and C differ by a
strong deformation in T .
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Proof If every pixel of C is on D, we evidently have D = C, and we are done. If
some pixel p ofC is not onD, it is inDO. BecauseD separatesDO fromDI , the
neighbors of p cannot be inDI . ThusC can be locally diverted around p through
neighbors of p that are in CI but not in DI (so that these neighbors cannot be
0s). If this diversion C ′ is still a curve (see below), it is evidently a strong
local deformation of C. Moreover, C ′ still surrounds D, and the intersection
of C ′ ∪C ′I with DO has a smaller area than the intersection of C ∪CI with DO.
Thus, repeating this process eventually gives us aC(n) such that the intersection
of C(n)∪C(n)

I with DO is empty, which implies that C(n) =D.

Let p be a pixel of C ∩DO such that C cannot be diverted around p into CI

while remaining a curve. Then p must have an 8-neighbor r that is on C (or
4-adjacent to a pixel q of C) such that r or q (respectively) is not close to p
in the traversal of C (i.e., is at least three steps away from p). Suppose first
that r is on C; then it cannot be a 4-neighbor of p, and, because r is not close
to p along C, the common 4-neighbors of p and r cannot be on C. Let r′ be
one of these common 4-neighbors. r′ must be inside C, and it must be on or
outside of D, because D cannot pass between p and r; hence, r′ cannot be 0.
It is not hard to see that at most one of the arcs pr and rp of C (e.g., pr) can
be 4-adjacent to r′ at a pixel of C that is not close to p or r along C, and, if
there are two such pixels u and v, they must be two steps apart along pr. In
any case, the arc pr (or the arcs pu and ur or pv and vr) together with r′ and
the arc rp together with r′ must be curves. Evidently, D cannot pass between p
and r; hence, one of these curves must still surround D, and there are neither
0s nor pixels of D in the interior(s) of the other(s). By induction on the length
of C, the curve that surrounds D can be diverted as in the previous paragraph,
and the other curve(s) can be eliminated entirely by a sequence of strong local
deformations using the methods described earlier in this section for curves that
do not surround holes.

The argument is similar if r is not on C but is 4-adjacent to a pixel q of C. Here
r may be a 4-neighbor of p; in this case, each of the arcs pq and qp of C can be
4-adjacent to r at pixels other than their endpoints p and q. However, this can
happen at most at two pixels (e.g., u and v). The subarcs of C between p and q
and these pixels (e.g., pu, uv, vq), together with r, must be curves, one of which
surrounds D. Finally, if r is an 8-neighbor of p, one or both of their common
4-neighbors (r1 and r2) may be consecutive to p onC; in any case, because r has
only one other 4-neighbor (in addition to r1, r2, and q), only one of the arcs pq
(or r1q) or qp (or qr2) can be 4-adjacent to r at a nonendpoint (e.g., u), and the
subarcs between the pixels at which they are adjacent (together with r) must
be curves, one of which surrounds D. �

The proof of Proposition 16.7 says nothing about possible 0s in DI ; it is valid even if
D (and therefore C) surrounds many holes.

We can now prove the following:
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Theorem 16.6 If C and D both surround a single hole H in T , they differ by a
strong deformation in T .

Proof We will show in the next paragraph that, for any hole H in T , there is a
“smallest” curve DH that surrounds H (i.e., if C is any curve that surrounds
H , then DH is contained in C ∪CI). (It should be pointed out that there need
not exist a curve that surrounds only a given hole H . For example, if H has a
narrow-necked concavity, there can be another hole K surrounded by 1s that
are inside the concavity, and any curve that surrounds H must also surround
K.) According to Proposition 16.7, C and DH differ by a strong deformation,
and so do D and DH , which implies this Theorem.

To see that there is a “smallest” curve surrounding any H , note first that the
set of 1s adjacent to the outer border of H (the outer “coborder” of H) is not
necessarily a curve, because if H has a narrow concavity, this set of 1s may
intersect or touch itself. However, according to Lemma 16.1, if we dilate H
using N8, the outer border of the resulting set H∗ is a curve. This outer border
consists entirely of 1s of the original picture prior to the dilation. It surrounds
H∗ and hence, surroundsH . Moreover, if C is any curve that surroundsH , H∗
is contained in C∪CI . Hence the outer border of H∗ is the smallest curve that
surrounds H . �

Proposition 16.8 If C and D surround the same set of holes in T and there are
no holes outside of either of them, they differ by a strong deformation in T .

Proof If the outer border of T is a curve (call it E), it surrounds both C and D,
and, because there are no holes outside of C and D, there are no 0s between
either of them andE. Thus, by the proof of Proposition 16.7, C andD differ by
strong deformations fromE and hence, from each other. If the outer border of
T is not a curve, we can proceed as follows. Temporarily change the 0s in the
holes of T to 1s; call the result T (1). Erode T (1) using N8; call the result T (2).

Dilate T (2) using N8; call the result T (3). Because T (3) is a closing of T (1), it is

contained in T (1) and contains all of the original hole pixels, but it has none of
them on its border, so we can change the hole pixels back to 0s; call this final
result T ∗. Any curve C in S must still be contained in T ∗, because the interior
of C must have survived the erosion, so C must be contained in the redilation.
Note that T ∗ is not necessarily connected, but (except for the holes that were
in T ) its components must be simply connected. Because C is connected, it
must be contained in some component W of T ∗, and any holes surrounded by
C must also be surrounded byW . Thus, ifC andD both surround the same set
of holes, they must be contained in the same W . However, because W is the
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FIGURE 16.16 C and D both surround holes u and v, and hole q is outside of both
of them, but they do not differ by a strong deformation. (The cs and ds are as in
Figure 16.12.)

result of a dilation, its outer border is a curve (see Lemma 16.1), and this curve
E surrounds both C and D. �

According to Theorems 16.5 and 16.6, ifC andD surround no holes or surround
the same (one) hole, they differ by a strong deformation in T , even if there are other
holes outside of them. On the other hand, if C and D both surround the same
two holes and there is another hole outside of them, they may not differ by a strong
deformation, as we see from the example in Figure 16.16. (Note that, in this example,
any curveE that surrounds bothC andD also surrounds q; thus,E does not surround
the same set of holes that C and D do.) To see that C and D in Figure 16.16 cannot
differ by a strong deformation, let C∗ = C ∪CI and D∗ = D ∪DI , and note that
C∗ ∪D∗ has a hole that contains a 0 (the pixel q). If C and D differed by a strong
deformation, there would exist a sequence of strong local deformations that would
make C and D coincide, thus, eliminating the hole. However, 0s cannot cross the
hole’s coborder, because it consists of 1s that belong toC andD; hence, no sequence
of strong local deformations can eliminate the hole.

16.5 Interchangeable Pairs of Pixels

In this section, we discuss local deformations that preserve the topology of a binary
picture P and that also preserve the number of 1s in the picture. A pair of adjacent
pixels p and q of P is called interchangeable if p and q have opposite values (i.e., p= 1
and q = 0, or vice versa) and interchanging their values preserves the topology of P .
Evidently, repeatedly interchanging pairs of interchangeable pixels deforms P while
preserving both its topology and its area (its number of 1s). For concreteness, we
will use 4-adjacency for 1s and 8-adjacency for 0s, but, because interchangeability is
a symmetric concept, our results also hold under the opposite assumptions.
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Proposition 16.9 Two adjacent pixels p= 1 and q = 0 are interchangeable if the
following conditions are true, where M8(p) =N8(p)∪{q} (i.e., with q changed
to 1) and M8(q) =N8(q)∪{p} (i.e., with p changed to 0):

a) Each 4-component of 1s in N8(p) that is 4-adjacent to p is 4-adjacent to ex-
actly one 4-component of 1s inM8(q) that is 4-adjacent to q (and vice versa).

b) Each 8-component of 0s in N8(q) is 8-adjacent to exactly one 8-component
of 0s in M8(p) (and vice versa).

Proof If p is 4-adjacent to no 4-component of 1s in N8(p), q can be adjacent to no
4-component of 1s in M8(q) (and vice versa); hence p before the interchange
and q after the interchange are 4-isolated 1s, and interchanging them shifts a
singleton 4-component of 1s, but neither destroys nor creates one.

Otherwise, p is 4-adjacent in N8(p) to the same set of 4-components of 1s that
q is 4-adjacent to in M8(q); hence, the interchange deletes p from each of these
components and adds q to it. Thus the interchange does not split a 4-component
of 1s, does not merge two such 4-components, and does not change the number
of pixels in any such component.

If there are no 0s inM8(p), there are none inN8(q), and vice versa; thus, q before
the interchange and p after the interchange are 8-isolated 0s, and interchanging
them shifts a singleton 8-component of 0s, but neither destroys nor creates one.

Otherwise, q is 8-adjacent to the same set of 8-components of 0s inN8(q) that p is
8-adjacent to inM8(p); hence, the interchange deletes q from each of these com-
ponents and adds p to it. Thus the interchange does not split an 8-component
of 0s, does not merge two such 8-components, and does not change the number
of pixels in any such component. �

The local conditions in Proposition 16.9 are sufficient but not necessary for
interchangeability. Indeed, it is not possible to formulate necessary conditions for
the interchangeability of p and q using any neighborhood of p and q of bounded
size. (By the neighborhood of p of size n, we mean the set of pixels with chessboard
distances from p that are at most n.) We show this by constructing two pictures P1
and P2 in which p and q have the same neighborhood of any given size n, but p and q
are interchangeable in P1 but not in P2. For example, consider the following sets of
pixels, where N > n:

S1 = {(0,±j) : 0≤ j ≤N}
S2 = {(i,±N) : −N ≤ i≤ 0}
S3 = {(−N,±j) : 0≤ j ≤N}
S4 = {(i,−1) : 2≤ i≤N}
S5 = {(i,−N) : 0≤ i≤N}
S6 = {(N,j) : −N ≤ j ≤ 0}
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Let P1 be the picture in which all of these pixels are 1s, and let P2 be the picture
in which all of them are 1s except for those in S2. Interchanging (0,0) with (−1,1)
in P1 creates a curve (consisting of S4,S5,S6, and the lower half of S1) and breaks
open another curve (consisting of S1,S2, and S3), so that both before and after the
interchange, P1 has one component of 1s with one hole. On the other hand, in P2,
this interchange breaks the 1s into two components and creates a hole that did not
previously exist. We have thus, proved the following:

Proposition 16.10 For anyn, there exist two pictures containing a pair of adjacent
opposite-valued pixels p and q having neighborhoods of sizen that are the same
in both pictures but that are interchangeable in one picture and not in the other.

A picture P may have no interchangeable pairs of pixels. For example, if 〈P 〉
is a 3×3 hollow square, it is easily seen that none of the 1s of 〈P 〉 is interchangeable
with any of its adjacent 0s. Even a simply connected component of 〈P 〉may not have
any 1s that are interchangeable with any of their adjacent 0s. For example, let 〈P 〉
be a singleton 1 surrounded by a 5×5 hollow square of 1s:

1 0
1
1

0 1
0

1 1

0 0
0
0

1
0

1 1

1
1 1 1 1 1

1
1
1

The central 1 is not interchangeable with any of its adjacent 0s, because interchanging
them reduces the number of components of 1s from two to one. However, we will
now show that, if 〈P 〉 itself is simply connected, it has at least one interchangeable 1.

Theorem 16.7 If 〈P 〉 is simply connected, at least one pixel of 〈P 〉 is interchange-
able with one of its adjacent 0s.

Proof Let (x,y) be the coordinates of the uppermost of the rightmost pixels of 〈P 〉.
If (x,y− 1) = 1 and (x− 1,y) = 0 or (x− 1,y) = (x,y− 1) = (x− 1,y− 1) = 1,
(x,y) can be interchanged with (x+1,y− 1). If (x,y− 1) = (x− 1,y) = 1 and
(x−1,y−1) = 0, (x,y) can be interchanged with (x−1,y−1), unless doing so
would create a hole. Now, if (x−2,y) = 0, (x−1,y) can be interchanged with
(x,y+1) and if (x,y−2) = 0, then (x,y−1) can be interchanged with (x+1,y).
Hence, we can assume that (x−2,y) = (x,y−2) = 1. Suppose there exists a 0
(call it z) that is not 8-connected to B (the background component of 0s) after
the interchange of (x,y) with (x− 1,y− 1); then, before the interchange, any
8-path from z to B must have passed through (x−1,y−1). An 8-path ρ of 0s
through (x−1,y−1) cannot pass through (x−2,y),(x−1,y),(x,y),(x,y−1), or
(x,y−2), because they are all 1s; hence, the pixels of ρ preceding and following
(x−1,y−1) must be two of (x−2,y−1),(x−2,y−2), and (x−1,y−2) (not
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necessarily distinct). Because these three pixels are all 8-neighbors of each
other, π can be shortened to go directly from the predecessor of (x−1,y−1)
to its successor; hence, even after the interchange, z is still 8-connected to B,
which is a contradiction.

Thus there exists a pixel of 〈P 〉 that is interchangeable with one of its adjacent
0s unless (x− 1,y) = 1 and (x,y− 1) = 0. If (x− 1,y+ 1) = 1,(x,y) would be
interchangeable with (x,y+ 1); hence, (x− 1,y+ 1) = 0. We can then inter-
change (x,y) with (x−1,y+1), unless doing so would create a hole. One way
this could happen is if (x− 2,y+ 1) = 1 and (x− 2,y) = 0; we must then have
(x− 1,y− 1) = 1 (otherwise, (x,y) and (x− 1,y) would not be connected to
the other 1s). Then (x,y) is interchangeable with (x,y− 1), unless this would
create a hole, and this can happen only when (x,y− 2) = (x,y− 3) = 1 and
(x−1,y−2) = 0, so (x,y−2) can be interchanged with (x+1,y−3). The other
way a hole can be created is if (x− 1,y+ 2) = 1, so the uppermost pixel in
column (x−1) is at height z > y+1.

We can repeat the argument in these two paragraphs with (x−1,z) replacing
(x,y) to show that some pixel of 〈P 〉 is interchangeable with one of its adjacent
0s, unless the uppermost pixel in column (x−2) is at heightw> z+1, and so on.
However, because 〈P 〉 is finite, this argument cannot be repeated indefinitely;
hence, the theorem must be true. �

Corollary 16.2 Let S be a simply connected component of 1s in P , let N∗(S) be
the set of 0s that are adjacent to pixels of S, and suppose S is “isolated” in the
sense that any pixel of 〈P 〉 that is adjacent to a 0 of N∗(S) must be in S. Then
at least one pixel of S is interchangeable with one of its adjacent 0s.

Two pictures P andQ will be called directly IP-equivalent if P has an interchangeable
pair of pixels p and q such thatQ is obtained from P by interchanging p and q. P and
Q will be called IP-equivalent if P = Q or if there exist pictures P0,P1, . . . ,Pn such
that P0 = P , Pn =Q, and Pk is directly IP-equivalent to Pk−1 (1≤ k ≤ n).

If P and Q are IP-equivalent, they must have the same topology and the same
number of 1s. The converse is not true in general; there exist pictures that have
the same topology and the same number of 1s but that are not IP-equivalent. For
example, if the pixels of 〈P 〉 belong to k nonadjacent 3×3 hollow squares, P has no
interchangeable pixels; hence, no two such P s are IP-equivalent, even though they
have the same topology (k components of 1s and k holes) and the same number 8k
of 1s. In the remainder of this section, we will show that the converse is true for
pictures with sets of 1s that are simply connected.

Let S be a set of 1s that are on rows 1, . . . ,n of a binary picture (numbered from
top to bottom), and let Sk be the subset of S in rows 1, . . . ,k. We call S k-singular if
the horizontal runs (maximal sequences) of 1s in Sk are all singletons. Evidently, if
S is k-singular for some k > 0, the 4-components of Sk are all vertical line segments
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(“towers”). If S is 4-connected and k-singular for some 0< k < n, the southernmost
pixel of each of these towers must be on row k, and its south neighbor must be 1; if
S is 4-connected and n-singular, S itself must be a tower. If S is 4-connected and
(n−1)-singular, the nth row of S must have a single run r of 1s and the southernmost
pixel of each 4-component of Sn−1 must be 4-adjacent to r.

Lemma 16.2 Let S be 4-connected and k-singular, and let r be a run of 1s on row
k+1. Then S is IP-equivalent to a k-singular S′ such that at most one tower T
in S′k is 4-adjacent to r, and we can make T adjacent to any desired pixel of r.
Moreover, S′ is the same as S on rows k+1, . . . ,n.

Proof If no tower in Sk is 4-adjacent to r, there is nothing to do. Suppose two or
more towers in Sk are 4-adjacent to r. Let U and V be two consecutive such
towers; suppose without loss of generality that U is west of V and that V is at
least as tall as U . Because S is k-singular, U and V cannot be 4-adjacent.

IfU andV are more than two pixels apart, they can be merged into a single tower
as follows. Interchange the top pixel of U with its southeast neighbor, “slide”
it down U (by repeated interchanges with its south neighbor) until it reaches
r, slide it along r (by repeated interchanges with its east neighbor) until it
reaches V, slide it up V (by repeated interchanges with its north neighbor) until
it reaches the top of V, and, finally, make it the top pixel of V by interchanging
it with its northeast neighbor. Note that, because S is 4-connected and k-
singular, there can be no 1s in Sk between or aboveU and V so there is nothing
to interfere with these interchanges. Repeat this process for the new top pixel
of U ; keep repeating it until all of the pixels of U have been transferred to the
top of V .

If U and V are two pixels apart, we begin by interchanging the top pixel of U
with its east neighbor, which makes it 4-adjacent to V. We then slide it up V
and make it the top pixel of V, and we repeat the process. In either case, the
process eliminates one of the towers in Sk that was 4-adjacent to r. We can do
this repeatedly until only one such tower T is left.

Finally, T can be moved so that it is 4-adjacent to any desired pixel of r. For
example, to move T eastward, we interchange its top pixel with its southeast
neighbor, slide it down T until it reaches r, and slide it eastward along r until
it reaches the desired position, where it is now a tower T ′ of height 1. We can
then repeatedly transfer all of the pixels of T to the top of T ′ by proceeding as
above. �

Lemma 16.3 Let S be 4-connected and k-singular where 0≤ k < n−1 is as large
as possible. Then S is IP-equivalent to a k-singular S′ that has horizontal runs



16.5 Interchangeable Pairs of Pixels 525

on rows k+1 and k+2 that satisfy the following:

1) A run r on row k+ 1 cannot have length 2. If r is a singleton, it must be
4-adjacent to a run on row k+ 2. If r has length ≥3, its endpoints must be
4-adjacent to endpoints of runs on row k+ 2, and its interior points can be
adjacent only to singletons on row k+2.

2) A run s on row k+ 2 can have any length and need not be 4-adjacent to
any run on row k+ 1. It can be 4-adjacent to any number of singletons
on row k+ 1, and its endpoints can also be 4-adjacent to the endpoints of
non-singleton runs on row k+1.

Proof Let r be a run of 1s on row k+1. According to Lemma 16.2, we can assume
that at most one tower T in Sk is 4-adjacent to r.

a) If r is 4-adjacent to no runs of 1s on row k+2, we must have k+1 = n. As
pointed out earlier, in this case, r must be the only run of 1s on row n.

b) If r is 4-adjacent to one run s of 1s on row k+2, according to Lemma 16.2,
we can assume that T is 4-adjacent to a pixel p of r that is 4-adjacent to s.
If r is not a singleton, we can move all of its pixels (other than p) to the
top of T . (If p is not the leftmost pixel q of r, we interchange q with its
northeast neighbor, then slide it along r by repeated interchanges with its
east neighbor until it reaches T , then slide it up T by repeated interchanges
with its north neighbor until it reaches the top of T and becomes the new
top pixel of T . We repeat this process for all of the pixels of r to the left of
p and analogously for all of the pixels of r to the right of p.) This converts
S into a k-singular S ′ that is the same as S below row k+ 1 and in which r
and T have been converted into a single tower in Sk+1 4-adjacent to s. Thus
we can assume from now on that r is 4-adjacent to m> 1 runs s1, . . . ,sm of
1s on row k+2. If there is a tower T in Sk that is 4-adjacent to r, we can
make T 4-adjacent to a pixel of r that is strictly between two of the sis, as
in Lemma 16.2.

c) If two or more pixels of r are 4-adjacent to s1, the pixels of r to the left of the
rightmost pixel q of s1 can similarly be moved along r until they reach q and
can then be used to build a tower in Sk+1 that is 4-adjacent to q; this is done
similarly for sm, with “rightmost” replaced by “leftmost.” These towers can
then be moved to the top of T , as in Lemma 16.2.

d) If s = si is three or more pixels long, any pixel p of r that is 4-adjacent
to a nonendpoint of s can be interchanged with its northeast or northwest
neighbor (e.g., the former if p is west of T and the latter if p is east of T ).
This creates a height-2 tower W that extends upward from s and breaks r
into two runs r′ and r′′, each of which overlaps s; in fact, s is sm relative to
r′ and s1 relative to r′′. Note that both W and T are 4-adjacent to either r′

or r′′, so W can be moved to the top of T . According to condition (c), the
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pixels of r′ that are 4-adjacent to s can then be converted into a towerU that
extends upward from the leftmost pixel of s; similarly, the pixels of r′′ that
are 4-adjacent to s can be converted into a tower V that extends upward
from the rightmost pixel of s. Finally, U or V (depending on whether T is
4-adjacent to r′ or r′′) can be moved to the top of T .

e) Let s = si be two pixels long, and suppose there is only one 0 (call it z)
between si and si−1 on row k+ 2. According to condition (c), we can also
assume that 1< i <m, so r also overlaps si−1.

Suppose interchanging z with one of the 1s of r created a hole H . Because
z was not originally in a hole, there must have been an 8-path through z
from H to the background. Because z’s east and west neighbors are 1s, this
8-path must have come to z from its southwest neighbor and gone from z
to its southeast neighbor (or vice versa), and the south neighbor t of z must
have been 1. However, subsequently interchanging t with z cannot create a
hole and cannot disconnect S, because t must have been 4-connected to S
through its south neighbor. This interchange merges si with si−1 and creates
a new run s∗ of 1s on row k+2 that overlaps r in at least four pixels; we can
now proceed as in (d).

Thus, we can assume that interchanging z with one of the 1s of r (e.g., the
northeast neighbor of z) does not create a hole. This interchange merges
si with si−1 to create a new run s∗ of 1s on row k+ 2 and splits r into two
runs r′ and r′′. Note that r′ now overlaps s∗ in two or more pixels; however,
s∗ is sm relative to r′, so we can proceed as described in (c). Similarly, if r′′
overlaps s∗ in two or more pixels, we can proceed as in (c), because s∗ is s1

relative to r′′.

f) The argument is similar if there is only one 0 between si and si+1 on row
k+2. Hence, there remains only the case where s= si is two pixels long and
there are two or more 0s between si and si−1 and between si and si+1. As in
(e), we can assume that r overlaps si−1 and si+1; thus, the neighborhood of
si looks like the following, where a. . .h are 1s of r; q and u are the pixels of
s; p is the rightmost pixel of si−1; v is the leftmost pixel of si+1; and w.. .x,
y . . .z are 0s:

. . . a b . . . c d e f . . . g h . . .
. . . p w . . . x q u y . . . z v . . .

Suppose interchanging d with x does not create a hole. This interchange
breaks r into two runs r′ and r′′, where s is sm relative to r′ and s1 relative
to r′′, so we can proceed as in (c); this can also be done in a similar manner
if interchanging e with y does not create a hole.

Suppose interchanging d with x creates a hole. It is not hard to see that the
south neighbor of x must be 1 and the south neighbor of q must be 0. If the
west neighbor of d (formerly x) is in the hole created when d is interchanged
with x, we can instead interchange c with x; it is easily seen that this does
not create a hole, so we can again proceed as in (c).
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Similarly, suppose interchanging e with y creates a hole; then the south
neighbor of y must be 1 and the south neighbor of u must be 0. If the east
neighbor of e (formerly y) is in the hole that is created when e is interchanged
with y, we can instead interchange f with y; it is easily seen that this does
not create a hole, so we can again proceed as in (c).

The only remaining possibility is that the south neighbor of q is in the hole
H created when d is interchanged with x and the west neighbor of x is not in
a hole; in addition, the south neighbor of u is in the hole K created when e
is interchanged with y and the east neighbor of y is not in a hole. Evidently,
however, the east neighbor of y has to be in H and the west neighbor of x
has to be in K, so this situation is impossible.

If r has length 2, it can be 4-adjacent to at most one run s of 1s on row k+ 2.
Evidently, one of the pixels of r can be moved to the top of the other one to
create a height-2 tower extending upward from s; alternatively, if there is a
tower T extending upward from one of the pixels of r, the other pixel of r can
be moved to the top of T so that T now extends upward from s. Similarly,
according to the condition (b), any r that overlaps only one s can be converted
into a tower that extends upward from s; according to the condition (c), the
overlaps of r with s1 and sm can be reduced to one pixel; and according to the
conditions (d), (e), and (f), if any si (1< i <m) is not a singleton, r can be split
into pieces, each of which overlaps si only at an endpoint. As we have seen, if
this process creates more than one tower that extends upward from a given r
or s, they can be merged into a single tower. �

Lemma 16.4 If S′ is as in Lemma 16.3, it is IP-equivalent to a (k+1)-singular S′′.

Proof Let r be a run of 1s on row k+1 of S′. If r is not a singleton, the first and last
pixels of r have south neighbors that are last (first) pixels of runs of 1s on row
k+ 2, and some of the interior pixels of r may also have south neighbors that
are singleton 1s on row k+2. Let the pixels of r with south neighbors that are
1s be r1, . . . , rm; note that r1 and rm are the first and last pixels of r and that ri
and ri+1 are nonconsecutive pixels of r (1≤ i <m). We will show that S′ is IP-
equivalent to anS′′ in which all of the pixels of r (except rm) have been changed
to 0s and the runs of 1s on the rows above row k+1 are still all singletons. Doing
this for every non-singleton r on row k+ 1 converts S′ into an S′′ in which all
of the runs of 1s on row k+1 are also singletons, so that S′′ is (k+1)-singular.

If there is a tower T that extends upward from one of the pixels of r, we first
move it (if necessary) so that it extends upward from rm. Let s1, . . . ,sm be
the south neighbors of r1, . . . , rm; let p and q be any two successive pixels of r,
and let s and t be the south neighbors of p and q. We will now show that the
successive pixels of r (from left to right) (except for rm) can be moved either
to row k+ 2 or to the top of T and that, when pixels r1, . . . ,p of r have been
moved, pixels s1, . . . , t on row k+2 are all 1s.
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For any i (1≤ i < m), consider the subrun ri, . . . ,u,v of r (where v is the west
neighbor of ri+1), and let p be successively ri, . . . ,u. After all of these ps have
been moved as described below, ri, . . . ,u have become 0s and si, . . . ,si+1 are all
1s. We can then interchange v with its northeast neighbor (the north neighbor
of ri+1) and move it to the top of T ; this completes the moving process for the
subrun (call it r′).

Suppose the pixels of r′ to the west of p have already been moved; thus, the
neighborhood of p looks like the following, where z = 0:

z

1

1

p

Suppose interchanging pwith z does not create a hole. Because this interchange
evidently does not disconnect S, we can move p by simply interchanging it
with z.

Suppose interchanging p with z does create a hole; then the neighborhood of p
must look like one of the following:

z

1

x

1

1

1 00

z

1

0

1

1or

1 10

p p

In the first case, there is a 4-path of 1s joining z’s west neighbor to z’s south
neighbor such that, if z is changed to 1, the resulting 4-curve separates z’s
southwest and southeast neighbors. In the second case, there is a 4-path of 1s
joining z’s west neighbor to z’s south and southeast neighbors such that, if z is
changed to 1, the resulting 4-curve separates z’s east and southwest neighbors.

In the first case, we interchange z with its south neighbor. This interchange
does not disconnect S and does not create a hole. We can then move p to the
top of T .

In the second case, let the neighborhood of p be as shown in Figure 16.17. If
y = 1, we can interchange z with its south neighbor and proceed as we did in
the first case. If y = 0, there are two possibilities:

a) The 4-path from z’s south neighbor to its west neighbor passes through
w. In this subcase, we can interchange z with its southeast neighbor and
proceed as we did in the first case. Evidently, when we interchange z
with its southeast neighbor, the new z and its north and south neighbors
cannot be in a hole; if z’s southwest neighbor is in a hole, it is not hard to
see that, before the interchange, either y must have been in a hole or z
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FIGURE 16.17 Neighborhood of p in the second case.

(and its east and southwest neighbors) must have been in a hole, which
contradicts the fact that S is simply connected.

b) The 4-path from z’s south neighbor to its west neighbor passes through
x. In this subcase, we can interchange z’s south neighbor with its east
neighbor and then interchange p with z.

In summary, we can interchange z with p if this does not create a hole; if it does
create a hole, we can interchange z with one of its neighbors on row k+2 and
then move p to the top of T . In either case, we can do this successively for
p= ri, . . . ,u and then move v to the top of T ; this changes all of the 1s of r′ to
0s, and all of their south neighbors become 1s (note that si was already 1). We
can repeat this process for the subruns r1, . . . ;r2, . . . ; . . . ;rm−1, . . . ; this changes
all of the 1s of r (except for rm) to 0s, and all of their south neighbors become
1s. Thus the non-singleton run r of S′ has been replaced by the singleton rm;
when this is done for every r, the resulting S′′ is (k+1)-singular. �

Using Lemmas 16.3 and 16.4, we can prove the following:

Lemma 16.5 Let S be simply 4-connected; then S is IP-equivalent to a vertical
line segment.

Proof S is IP-equivalent to an S′ with it first two rows satisfying Lemma 16.3.
Hence, S is IP-equivalent to a 1-singular S′′, as in Lemma 16.4. We can then
apply Lemma 16.3 to rows 2 and 3 and then Lemma 16.4 to obtain a 2-singular
S′′. By repeating this process, we eventually obtain an (n−1)-singular S′′; this
S′′ has a single run on row n with a tower extending upward from it, so it is
evidently IP-equivalent to a vertical line segment. �

It is easy to see that a horizontal line segment is IP-equivalent to a vertical
line segment and that interchanges can be used to translate a horizontal line segment
vertically or a vertical line segment horizontally. Because interchanges are reversible,
we thus, finally have the following:
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Theorem 16.8 Let 〈P 〉 and 〈Q〉be simply 4-connected and have the same number
of pixels; then P and Q are IP-equivalent.

16.6 Deformations of 3D Pictures

In this section, P is a 3D binary picture. We will (as is usually done) use 26-
adjacency for 〈P 〉 and 6-adjacency for 〈P 〉 and assume that 〈P 〉 is finite. (Less
common assumptions are to use 6- for 〈P 〉 and 26- for 〈P 〉 or to use 18- instead
of 26-.) In what follows, A(p) = A26(p) is the set of voxels that are 26-adjacent to p,
and N(p) =N26(p) =A26(p)∪{p}.

Definition 16.5 A voxel p ∈ 〈P 〉 (p ∈ 〈P 〉) is simple iff it can be removed (in
the cell model) from 〈P 〉 (〈P 〉) by a continuous deformation.

Changing the value of a simple voxel p from 1 to 0 (or vice versa) results in a picture
that is topologically equivalent to P . However, changing the value of a nonsimple
voxel may also make no changes in the topology of P . As explained in [747], it can
remove one tunnel and introduce another one. For example, let P be a “mug with
a handle.” If we remove one end of the handle where it joins the mug, we lose the
tunnel defined by the handle, but at the same time we may create a new tunnel by
drilling a hole into the mug; however, topology is preserved by this operation. Note
that the voxel that is removed cannot be a simple voxel.

In 2D, p is (8,4)-simple iff p is 8-adjacent to exactly one 8-component of 〈P 〉∩
A8(p) and 4-adjacent to exactly one 4-component of 〈P 〉∩ A8(p); indeed, we used
this as the definition of simplicity in Section 16.1. We might think that, in 3D
(analogously), p is (26,6)-simple iff it is 26-adjacent to exactly one 26-component
of 〈P 〉∩A26(p) and 6-adjacent to exactly one 6-component of 〈P 〉∩A26(p); however,
this is not true, because changing the value of such a p from 1 to 0 or vice versa might
create or destroy a tunnel, as illustrated in Figure 16.18.

If we use the grid point model, the following are two criteria for 3D simplicity
[747]; see [77, 78] for other characterizations.

p

FIGURE 16.18 A nonsimple voxel p in a (26,6) picture; changing p from 1 to 0 creates
a tunnel.
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a) p is 26-adjacent to exactly one 26-component of 〈P 〉∩A26(p) and 6-adjacent to
exactly one 6-component of 〈P 〉∩A26(p), and changing the value of p from 1
to 0 (or vice versa) does not change the Euler characteristic of N(p).

b) p is 26-adjacent to exactly one 26-component of 〈P 〉∩A26(p) and is 6-adjacent
to 〈P 〉∩A26(p), and any two voxels of 〈P 〉 that are 6-adjacent to p are joined
by a 6-path that consists of voxels of 〈P 〉 that are 18-adjacent to p.

If we use the grid cell model as described in Section 16.1, criteria for simplicity
can be formulated in terms of the P -attachment set of p. As in 2D, we define the
P -attachment set pP as follows:

⋃

q∈〈P 〉,q �=p

(ϑp∩ϑq)

It can be shown that p is simple iff both pP and ϑp−pP are nonempty and connected.
Topology is preserved by any sequence of changes of the values of simple voxels

from 1 to 0 or vice versa, provided the voxels are simple just before their values are
changed; simultaneously changing the values of a set of voxels from 1 to 0 (or vice
versa) preserves topology iff the voxels in the set can be arranged in such a sequence.
Let A be an algorithm that consists of a sequence of iterations Aj at each of which
the voxels that satisfy certain conditions have their values simultaneously changed
from 1 to 0; the voxels that satisfy these conditions will be called Aj-simple. The
following [568] is a 3D generalization of Proposition 16.3:

Proposition 16.11 A preserves topology if, for every j, the following conditions
are true:

a) Every Aj-simple 1 is simple.

b) For every set of two or more Aj-simple 1s that is contained in a 1× 2× 2
block of voxels, each 1 in the set remains Aj-simple when the values of the
other 1s in the set are changed to 0.

c) In any set of mutually 26-adjacent 1s at least one of them is not Aj-simple.

In a 3D picture, an elongated part E of a component of 〈P 〉 can be plate-like
(i.e., a thick surface with frontiers) or stick-like (i.e., a thick arc or curve). The goal
of 3D thinning is to shrink each such E into a union of arcs, curves, or surfaces (with
frontiers) that are centrally located in E. A 3D thinning algorithm must preserve
topology and must not remove voxels that could be either endpoints of arcs or “rim
points” of surfaces with frontiers. We can define an arc endpoint as a voxel of 〈P 〉
that is adjacent to exactly one other voxel of 〈P 〉 (compare with Section 16.3) and a
rim point as a voxel of 〈P 〉 that has at least one pair of 6-neighbors in 〈P 〉 on opposite
sides of it. Many 3D thinning algorithms have been defined; we will not discuss them
here except to say that a few are “fully parallel” and a few are of the subfield type,
but most are of the subiteration type.
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16.7 Deformations of Multivalued Pictures

In this section, we return to the 2D case, but we drop the assumption that P is
binary. As we saw in Section 1.2.10, if we divide the values of the pixels in P by
Gmax, the quotients are in the range [0,1], so P defines a fuzzy subset µ of the grid.
A transformation that takes such a P into another such picture can be regarded as
a deformation of µ. In this section, we study deformations of µ that preserve its
connectedness properties (see [218]).

We saw in Section 13.3.3 that a picture P is µ-connected iff its level sets are
all connected. This suggests calling a transformation of P topology-preserving if it
preserves the topology of every level set of P . In what follows, we will denote
the λ-level set of P by Pλ, and we will use 4-connectedness for every 〈Pλ〉 and
8-connectedness for every 〈Pλ〉. Let P be the picture with the membership function
1−µ. Evidently, the level sets of P are the complements of the level sets of P . For
any pixel p, we abbreviate Pµ(p) by Pp.

A pixel p is called P -destructible if it is simple in Pp and P -constructible if it is
simple inP p. We state the following proposition for destructible pixels; the analogous
proposition about constructible pixels is obtained by replacingP withP and reversing
the inequality relations. LetA8(p)be the 8-adjacency set ofp; letN8(p) =A8(P )∪{p};
let L(p) = {q : q ∈ A8(p) ∧ P (q) < P (p)}; let m = min{P (q) : q ∈ L(p)}; and let
M = max{P (q) : q ∈ L(p)}.

Proposition 16.12 If p is destructible and P (p) is reduced to less than m, the
topology of some level set of P is not preserved; if it is reduced to M , the
topology of every level set of P is preserved.

Proof Let P (p) be reduced to a value <m, and call the resulting picture P ′; then
the topology of P ′m is different from that of Pm, because P ′m has a new 1-pixel
hole at p. If P (p) is reduced to M , there is no change in any Pλ for λ≤M and
no change in any Pλ for λ > P (p). Pλ does change when λ= P (p), but because
p is destructible, the topology of Pλ does not change. �

Corollary 16.3 Let l = max{P (q) : q ∈ P ∧ P (q) < P (p)} be the highest pixel
value less than P (p) in P ; then, if P (p) is reduced to l, the topology of every
level set of P is preserved.

Pixels can be classified in many ways on the basis of their neighbors’ rela-
tive values; the following is one such classification. Let c+(p) be the number of
4-components of pixels in N8(p) with values that are >P (p), and let c′+(p) be the
number of such 4-components with values that are ≥P (p). Similarly, let c−(p) be
the number of 8-components of pixels in N8(p) with values that are <P (p), and let
c′−(p) be the number of such 8-components with values that are ≤P (p). Thus, P is
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destructible iff c′+(p) = c′−(p) = 1 and constructible iff c+(p) = c−(p) = 1. In terms of
these numbers, we can also define the following classes of pixels:

1) p is a peak if c′+(p) = 0.

2) p is minimal if c−(p) = 0; otherwise, p is an upper pixel.

3) p is k-divergent if c−(p) = k > 1.

4) p is a pit if c′−(p) = 0.

5) p is maximal if c+(p) = 0; otherwise, p is a lower pixel.

6) p is k-convergent if c+(p) = k > 1.

7) p is an interior pixel if it is both maximal and minimal.

8) p is a side pixel if it is both constructible and destructible.

9) p is a saddle pixel if it is both convergent and divergent.

In terms of these definitions, it can be shown [218] that any p is of exactly one
of the following types:

a) a peak;

b) a pit;

c) an interior pixel;

d) a minimal constructible pixel;

e) a maximal destructible pixel;

f) a minimal convergent pixel;

g) a maximal divergent pixel;

h) a side pixel;

i) a destructible convergent pixel;

j) a constructible divergent pixel; or

k) a saddle pixel.

These concepts can be used to define algorithms for thinning multivalued pic-
tures. Such an algorithm should preserve the topology of the level sets of the picture
and should also preserve “ridge endpoints” (the fuzzy generalization of arc end-
points). We call p a ridge endpoint if one pixel or two 4-adjacent pixels inN8(p) have
value P (p) and of all the other pixels in N8(p) have lower values. If the values of p’s
8-neighbors are as follows (so that p has value e),

a b c

fd

h ig

e
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we call p a diagonal ridge point if a and e are both greater than d and b, c and e are
both greater than b and f , i and e are both greater than f and h, or g and e are both
greater than h and d. We call p a vertical ridge point if b, e, and h are all greater than
d and f , and we call it a horizontal ridge point if d, e, and f are all greater than b and
h.

It can be shown that, if phas greater value than at least one of its 8-neighbors but
it is not a peak or a ridge point, topology is preserved if P (p) is reduced to the lowest
of the values of p’s 4-neighbors. This allows for the faster reduction of pixel values
than does the reduction method in Proposition 16.12 or Corollary 16.3. Subiteration
algorithms can be defined for thinning nonbinary pictures based on these reduction
methods.

16.8 Exercises

1. Let the neighborhood of p be as follows:

p3 p2 p1

p4 p0

p5 p6 p7

p

The cyclic sequence p0, . . . ,p7 (modulo 8) is a succession of runs of 1s and runs of
0s. “Reduce” this succession by omitting any of p1,p3,p5, or p7 that is a singleton
0. Prove that p is simple iff the reduced sequence consists of one run of 1s and
one run of 0s. Let [1150] the following be true, where vi is the value of pi (0 or 1)
and the subscripts are modulo 8:

nc(p) =
∑

i=0,2,4,6

(vi−vivi+1vi+2)

Prove that p is simple iff nc(p) = 1. (If we use 8-adjacency for 1s, we must
exchange the roles of 1s and 0s in this definition; the adjusted formula for nc(p)
is obtained by replacing each vi with its Boolean complement [i.e., with not(vi)].)

2. Let C be a finite simply connected component of 〈P 〉 that contains at least two
pixels. Prove that C contains at least two simple pixels.

3. Let C be a component of 〈P 〉 and C ′ a subset of C. We say that C is simply
connected relative to C ′ if, whenever p and q are separated by C, they are also
separated byC ′. Prove that, ifC ′ is a nonempty connected subset ofC that does
not contain the border of C and C is simply connected relative to C ′, then there
is a simple pixel in the border of C that is not in C ′.

4. A binary picture P is called well composed if any component of either the 1s or
the 0s of P is a 4-connected 8-component. Prove that P is well composed iff it
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contains no 2×2 block of pixels in which two diagonally adjacent pixels are 1s and
the other two are 0s. Prove that any binary picture can be made well composed
by a simple deformation. (Hint: Magnify the picture [see Theorem 16.2]; if it
contains blocks of 1s that touch at their corners, change these corners to 0s.)

5. For any set of pixels S of P , let S1 be the set of 1s that are either in S or imme-
diately above or to the left of pixels of S after the shrinking process described
at the end of Section 16.2 is applied to P , and let S0 be the set of such 0s. Prove
that, if C is a non-singleton 4-component of 1s, then C1 is a 4-component of 1s,
and, if D is a non-singleton 8-component of 0s, then D0 is an 8-component of
0s; moreover, if C is 4-adjacent to D, then C1 is 4-adjacent to D0. Thus, this
shrinking process is topology-preserving, except for singleton components.

6. Prove that, when the shrinking process described at the end of Section 16.2 is
applied repeatedly to P , any componentC of 〈P 〉 shrinks to a single 1 located at
(xc,yc), where xc and yc are the highest x-coordinate and lowest y-coordinate of
any pixel of C. Prove also that the number of steps required for this to happen
is the largest city block distance of any pixel of C from (xc,yc).
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939, 940]. For the attachment set characterization of simple pixels or voxels and



536 Chapter 16 Deformations

for changing their values “in parallel,” see [568]. Algorithms for 3D thinning are
described in [76, 79, 110, 369, 395, 482, 662, 676, 677, 678, 679, 680, 681, 682, 750, 793,
794, 795, 827, 941, 1039, 1066].

Deformations of digital curves are discussed in [919]; see also [691]. Inter-
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tible and constructible pixels in multivalued pictures, see [27, 218]; for their ap-
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Picture Properties and Spatial
Relations

A function that takes pictures into numbers is called a picture property; a func-
tion that takes k-tuples (e.g., pairs) of pictures into numbers is called a relation
among (or between) pictures. This chapter defines classes of picture properties,
such as predicates, local properties,1 linear properties, and invariant properties.
Particular attention is given to the study of moments, which are an important
class of linear properties.

A property of a binary picture P can be regarded as a property of the set
of 1s 〈P 〉 of P (e.g., as a property of an “object”). Many topologic and metric
properties of objects were studied in earlier chapters. In this chapter, we briefly
discuss some important topologic and metric relations between pairs of objects.

17.1 Properties

17.1.1 Predicates

A function that takes pictures into {0,1} can be regarded as a proposition that is
either true or false (a predicate) for a given picture, where the value of the function is
1 iff the proposition is true. An example of a predicate that is defined for an arbitrary
picture P is “has constant value”; this predicate is true iff all of the pixels of P have
the same value. Many useful predicates can be defined for binary pictures P that are
true iff 〈P 〉 has some geometric property. Examples are “is connected”, “is convex”,
“is circular”, and so on. Predicates can also be defined for special types of binary
pictures; examples are “is straight” (if 〈P 〉 is an arc) and “is knotted” (if 〈P 〉 is a curve).

1. See also Definition 8.7.

537
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FIGURE 17.1 Are the two exits of this maze connected by a 4-path of white pixels?

Predicates can have very complex definitions. Even if P is binary, there are
2

mn
possible pictures on anm×n grid, and F(P ) can be true for any subset of these

pictures, so it may be very complicated to determine whether F(P ) is true or false.
For more about the complexity of predicates, see [733] and Exercise 2 in Section 17.6.
Figure 17.1 illustrates complexity by a popular example; in this maze, the set of black
pixels is 4-connected iff there is no 4-path of white pixels between the two “exits.”

17.1.2 Local properties

From now on, we will assume that a picture property is a function F that takes
pictures into real numbers. It is convenient to consider properties F of pictures that
are defined on a finite grid Gm,n ⊆ Z

2 and that have pixel values that belong to a fixed
finite set of real numbers (not necessarily nonnegative). We will assume that F is
translation-invariant (i.e., for any picture P , F(P ) depends only on the (m,n)-tuple
of pixel values ofP ; it does not depend on the position of Gm,n in Z

2). We will usually
assume that P is extended from Gm,n to all of Z

2 by assigning a special value (often
0) to every pixel in Z

2 \Gm,n.
The value of F depends only on the pixel values in the nonempty finite subset

Gm,n of Z
2. The smallest such subset σ (more fully, σF ) is called the set of support of

F ; thus the value of F for any picture P depends only on a “σ-tuple” of values of
pixels of P . F is called a local property if the diameter of σ is constant, so it does
not depend on m and n and therefore remains small even if m and n are very large.
A property that is not local is called global. σF is a uniquely defined subset of Gm,n.
For example, the property “is there a 3×3 square on which the picture has a constant
value” is not local.

Letobe a pixel in a known position relative toσ (compare this with Section 15.1);
we will usually assume that o is one of the pixels of σ. For any pixel p, let σ(p) be the
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result of translatingσ so o coincides withp; thusσ(o) =σ. Eachp thus defines a “trans-
late” Fp of F that has a set of support that is σ(p), so its value depends on the pixel
values in σ(p) in the same way that the value of F depends on the pixel values in σ.

We usually speak about the family of properties Fp as though it were a single
property F that has a value “at” each pixel p. For example, let the set of support F
be the single pixel σ = {o}; then, for any picture P and any pixel p, the value of Fp

depends only on P (p) (i.e., the value of F “at p” is some function of P (p)). Such an
F is sometimes called a “point property.” Similarly, let the set of support of F be
N8(o). Then, for any picture P and any pixel p, the value ofF “at p” depends only on
the pixel values in N8(p), so F is a “neighborhood property.” A family of properties
Fp (for p ∈ Gm,n) is called local iff it is defined by a local property F . Evidently,
point properties and neighborhood properties are local properties. For example, the
family of properties “is there a 3× 3 square centered at pixel p on which P has a
constant value” is local.

We call a picture property semilocal if its value depends only on the values
of some local property at every pixel p. For example, the area A(P ) is computed
by counting the number of ps that have value 1. As a less trivial example (see
Exercise 6 in Section 6.5), the Euler characteristic of P can be computed by counting
the numbers of certain types of 2× 2 pixel patterns in P . (Figure 17.2 shows the
locations of some of these patterns in a simple image.) Relatively simple binary
pictures (see the picture on the cover of [733]) allow us to show that neither the
number of connected components of a binary picture nor its number of holes are
semilocal properties.

F(P ) may depend only on the set of values of the pixels of P but not on which
pixels have these values. Examples of such properties are statistics of the values of
the pixels of P : for example, their mean, standard deviation, median, range, min, or
max. Because a local property has a value at each pixel of P , we can also compute
statistics of the values of local properties of P ; such properties are sometimes called

n1 = 11 n3 = 9 nD = 3

FIGURE 17.2 The black squares in the three pictures on the right are the locations
of the upper left corners of the 2× 2 blocks of pixels in the picture on the left that
contain exactly one black pixel, three black pixels, and two diagonally adjacent black
pixels. The number of black squares is shown below each of the three pictures on
the right; for the notation, see Exercise 6 in Section 6.5.
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FIGURE 17.3 The addition of two pictures (left and middle), resulting in the picture
on the right.

textural properties of P . Local properties and textural properties are studied in books
about digital picture analysis (e.g., [911]).

17.1.3 Linear properties

A picture property F is called linear if, for all pictures P and Q (defined on a given
finite grid) and all real constants a and b, we have F(aP + bQ) = aF(P )+ bF(Q),
where addition and scalar multiplication are performed pixel-wise (i.e., for all p in
the grid, we haveF(aP )(p) = aF(P )(p) andF(P +Q)(p) =F(P )(p)+F(Q)(p) [see
Figure 17.3]). In what follows, we assume that pixel values can be either positive or
negative. We will now prove that, for any linear property F (defined for pictures on
a given finite grid G), there exists a “template” HF such that, for any such picture P ,
F(P ) is the sum of the pixel-wise product of HF and P .

Theorem 17.1 For any linear picture property F , there exists a picture HF such
that F(P ) =

∑
pHF (p)P (p) for all pictures P , where the sum is taken over

the grid.

Proof For every pixel p ∈ Gm,n, let δp be the “unit picture” that has value 1 at
p and value 0 elsewhere. Evidently, any picture P is the sum over all p ∈ Gm,n

of P (p) · δp. Define HF by HF (p) = F(δp) for p ∈ Gm,n; then the linearity of F
implies that F(P ) is the sum over all p ∈ G(m,n) of P (p) ·HF (p). �

This theorem is a discrete version of the representation theorem in functional
analysis,2 which states that any linear functional Ag in the space L2(Ω) of (complex-
valued) measurable functions can be represented in the form Ag = 〈g,f〉, where the
generating function f is uniquely defined by the functionalA. (TheL2 scalar product

2. This was independently discovered by both M. Fréchet and F. Riesz; see [855].
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〈f,g〉 is defined by the integration of f(x)g�(x) on the measurable set Ω.) Note that
the proof of Theorem 17.1 is much simpler than the proof in the L2 space.

17.2 Moments

A variety of useful linear properties are obtained by using HF s that are digital ver-
sions of standard mathematic functions. In this section, we discuss moment properties
in whichHF is a monomial xiyj . We treat the 2D case, but our definitions and results
extend straightforwardly to higher dimensions.

17.2.1 Moments of pictures

Let P (x,y) be the value of the pixel of P at location (x,y). The (digital) (i, j) moment
of P is as follows:

mij(P ) =
∑

x,y

xiyjP (x,y)

The order of mij(P ) is i+ j. For example, consider the 3× 3 picture P with the
following pixel values and where the origin of the (x,y) coordinate system is at the
(center of the) pixel in the lower left-hand corner.

2 1 1

3 1 0

3 2 1

y

x

The first few moments of P are as listed in Table 17.1.
Moments can be given a physical interpretation by regarding the value of a

pixel as its “mass” (i.e., regarding P as being composed of a set of point masses
located at the grid points). Under this interpretation, m00(P ) is the total mass of P
(the sum of all of its pixel values) andm02(P ) andm20(P ) are the moments of inertia
of P around the x- and y-axes. The moment of inertia of P around the origin is as
follows:

m0(P ) =
m−1∑

x=0

n−1∑

y=0

(x2 +y2)P (x,y) =m02(P )+m20(P )

If we substitute −x for x in the definition, of mij , we obtain the following:

m−1∑

x=0

n−1∑

y=0

(−x)iyjP (−x,y) = (−1)i
∑

x,y

xiyjP (−x,y)
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TABLE 17.1 The first few moments of the 3×3 picture shown in the text.

i j mij

0 0 14
1 0 8
0 1 12
2 0 12
1 1 7
0 2 20

Hence, if P is symmetric around the y-axis (i.e., P (−x,y) = P (x,y) for all x,y),
we have mij(P ) = (−1)imij(P ), so that, if i is odd, mij(P ) must be 0. Similarly,
mij(P ) = 0 if P is symmetric around the x-axis and j is odd, and mij(P ) = 0 if P is
symmetric around the origin (i.e., P (−x,−y) = P (x,y) for all x,y) and i+ j is odd.
Moments for which i, j, or i+j is odd can thus be regarded as measures of asymmetry
about the y-axis, the x-axis, or the origin.

The centroid or center of gravity of P is the point with coordinates (x,y) where
x = m10/m00 and y = m01/m00. Thus, the centroid of the 3× 3 picture shown on
p. 541 has coordinates ( 4

7
, 6

7
). If we use a coordinate system that has its origin o′ at

the centroid, moments of P computed with respect to this system are called central
moments and are denoted by mij(P ). Evidently, m00 =m00, and it is easily verified
that m10 =m01 = 0 for any P .

The line through (u,v) that has slope tanθ is (x−u) sin θ = (y− v) cos θ. The
moment of inertia of P around this line is as follows:

m−1∑

x=0

n−1∑

y=0

[(x−u) sin θ+(y−v) cos θ]2P (x,y)

If we differentiate this expression with respect to u or v and set the result equal to 0,
we get the following,

m−1∑

x=0

n−1∑

y=0

[(x−u) sin θ+(y−v) cos θ]P (x,y) = 0

so that the following is also true:

m10 sin θ−m01 cos θ+m00(v cos θ−u sin θ) = 0

Dividing by m00 gives (x−u) sin θ− (y− v) cos θ = 0; hence the minimum value of
the moment of inertia must be as follows:

m−1∑

x=0

n−1∑

y=0

[(x−x) sin θ− (y−y) cos θ]2P (x,y)
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This is the moment of inertia around the line of slope θ through (x,y) . Thus the line
around which the moment of inertia is smallest passes through the centroid; this line is
called the principal axis of P . To find the slope of the principal axis, take the origin at
the centroid; then the moment of inertia ofP around the line y= x tan θ is as follows:

m−1∑

x=0

n−1∑

y=0

(x sin θ−y cos θ)2P (x,y) =m20 sin2 θ−m11 sinθ cosθ+m02 cos2 θ

Differentiating this with respect to θ and equating to zero gives the following:

2m20 sinθ cosθ−2m11(cos2 θ− sin2 θ)−2m02 cosθ sinθ = 0

This can also be stated as follows:

m20 sin 2θ−2m11 cos 2θ−m02 sin 2θ = 0

This results in the following:

tan2θ = 2m11/(m20−m02)

17.2.2 Moments of sets

The (real) (i, j) moment of a bounded measurable subset S of the plane is defined
by the following, where i, j ≥ 0 are integers and the order ofMij(S) is i+ j:

Mij(S) =
∫

S

∫
xiyj dx dy

LetGh(S) be the Gauss digitization of S in Z
2
h. We are interested in estimating

Mij(S) by the following (digital) moment, where h > 0 is the grid resolution:

mij(S) =
1

hi+j+2

∑

(u,v)∈Gh(S)

uivj

For h = 1, this is the same as the definition given in Section 17.2.1, because P = 1
if (u,v) ∈ G(S) and P = 0 otherwise. In what follows, we assume that S has been
magnified to h ·S, and we use Gauss digitization in the grid with h= 1.

In particular, the areaA(S) (i.e., its momentM00(S) of order 0) is estimated by
the number of grid points in G(S) (i.e., by m00(S)). Similarly, the following centroid

(M10(S)
M00(S)

,
M01(S)
M00(S)

)

is estimated by the following:
(
m10(S)
m00(S)

,
m01(S)
m00(S)

)
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The orientation of S is the slope of its axis of least second moment. This is the line
from which the integral of the squares of the distances to the points ofS is a minimum.
This integral is as follows,

F (S,ϕ,ρ) =
∫

S

∫
d2

p(x,y,ϕ,ρ)dx dy

where dp(x,y,ϕ,ρ) is the perpendicular distance from (x,y) to the following line:

xcosϕ−y sinϕ= ρ

The orientation of S is the value of ϕ for which F (S,ϕ,ρ) takes its minimum; we
estimate it by replacing integration and the set S by summation and G(S). For
a unique minimum to exist, S should have a “main orientation" (i.e., M20(S) �=
M02(S)). Finally, the elongatedness Θ(S) of S in direction ϕ is defined as the ratio
of the maximum and minimum values of F (S,ϕ,ρ).

17.2.3 Estimation of moments of sets

In this section, we give worst-case error bounds when digital moments are used as
estimates of real moments (and related properties) of subsets S of the plane. From
now on, we assume that S is convex and that its frontier consists of a finite number
of C(3) (“3-smooth”) arcs (i.e., arcs that have continuous derivatives up to order 3).

Theorem 17.2 If S is a convex planar set with a frontier that consists of a finite
number of C(3) arcs, Mij(S) can be estimated by h−(i+j+2) ·mij(h ·S) for all
i, j ≥ 0 within an error ofO(h−1), where h is the grid resolution; this error term
is the best possible.

For the proof of this theorem, see [560]. We now give an example showing that this
upper bound is the best possible.

Let S be the unit square with vertices (0,0),(1,0),(1,1),(0,1); then we have the
following:

Mij(S) =
1

(i+1)(j+1)

For a given grid resolution h (so that there are h grid points per unit length), the
square Sh that has the following vertices

(0,0), (1+
1
2h
,0), (1+

1
2h
,1+

1
2h

), (0,1+
1
2h

)

has the same Gauss digitization as S (i.e., G(S) = G(Sh)); however, the difference
Mij(S)−Mij(Sh) is as follows:
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∫ 1

0

xi dx
∫ 1+ 1

2h

1

yj dy+
∫ 1+ 1

2h

1

xi dx
∫ 1+ 1

2h

0

yj dy =
i+ j+2

2(i+1)(j+1)
· 1
h

+O (h−2
)

Thus, for any grid resolution h, there exists a real square Sh such that the Gauss
digitization ofh ·Sh is the same as the Gauss digitization ofh ·S, but the real moments
Mij(Sh) differ from digital moments Mij(S) by the following, so error O(h−1) is
the best possible:

i+ j+2
2(i+1)(j+1)

· 1
h

+O (h−2
)

If none of the arcs in the frontier of S is straight, application of Theorem 2.4
leads to a lower upper bound on the error:

Theorem 17.3 If S is a bounded planar 3-smooth convex set, Mij(S) can be
estimated by h−(i+j+2) ·mij(h ·S) for all i, j ≥ 0 within an error of the following:

O
(
(logh)

47
22 ·h− 15

11

)
≈O (h−1·3636...

)

In this theorem, the integers i and j are fixed before changing the resolution h. For
example, it is not possible to have i = j = h2, because this would imply i, j →∞ if
h→∞.

The next theorem shows how accurate estimation of the following “basic
difference”

|M00(h ·S)−h2 ·A(S)|
within error O(κ(h)) can be used to improve error bounds for the following higher-
order estimates for an n-smooth S:

|Mij(S)−h−(i+j+2) ·mij(h ·S)|

Let Cκ(h) be a nonempty family of planar sets such that the following are true:

(i) |m00(h ·S)−h2 ·A(S)|=O (κ(h)) for all S ∈ Cκ(h).

(ii) If S ∈ Cκ(h), any isometric transformation of S also ∈ Cκ(h). (A geomet-
ric transformation f is called isometric if, for any points p and q, we have
de(f(p),f(q)) = de(p,q).)

(iii) Any set that can be constructed by taking finite numbers of unions, intersec-
tions, and set differences of sets from Cκ(h) also belongs to Cκ(h).

Let C0 be the smallest such family of planar sets that contains all n-smooth convex
bounded sets and that is closed under finite numbers of intersections, unions, and set
differences. Let κ(h) be such that C0 is contained in Cκ(h).
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Theorem 17.4 LetS be a planar 3-smooth convex set. Then Mij(S) can be esti-
mated by h−(i+j+2) ·mij(h ·S) within an error ofO

(
κ(h) ·h−2

)
for all integers

i, j ≥ 0.

The area, centroid coordinates, orientation, and elongatedness of a set S can
all be estimated within worst-case errors of the following (where ε > 0),

O
(
h−(

15
11 −ε)

)

using the following estimates:

(1) 1

h2
·m00 (h ·S) for A(S)

(2)
1
h ·m10(h·S)

m00(h·S) and
1
h ·m01(h·S)

m00(h·S) for
M10(S)

M00(S) and
M01(S)

M00(S)

(3)
2·m11(h·S)

m20(h·S)−m02(h·S) for tan 2ϕ

(4)
t1(h·S)+

√
t2(h·S)

t1(h·S)−
√

t2(h·S)
for Θ(h ·S)

where the following are given:

t1(h ·S) = m20(h ·S)+m02(h ·S)
t2(h ·S) = 4 · (m11(h ·S))2 +(m20(h ·S)−m02(h ·S))2

17.3 Experimental Evaluation of Moment Estimates

We use four types of sets to experimentally evaluate error bounds on moment esti-
mates. The sets were chosen to allow for the calculation of real moments and to have
a variety of shapes.

17.3.1 Square

Our first example is a centered set (i.e., a set with its centroid at the origin). For
such a set S, the momentsMij(S) are zero for odd values of i if S is symmetric with
respect to the x-axis and zero for odd values of j if S is symmetric with respect to
the y-axis.

Let S(a) be a 2a× 2a isothetic square centered at the origin; see Figure 17.4
(left). Then we have the following for i, j ≥ 0:

Mij(S(a)) =
∫ +a

−a

∫ +a

−a

xiyj dx dy =
(1− (−1)i+1)(1− (−1)j+1)

(i+1)(j+1)
·ai+j+2
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FIGURE 17.4 A centered square and circle.
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FIGURE 17.5 Relative errors in the estimated zero-order moment of a centered
square.

It follows that M00(S(a)) = 4a2, M01(S(a)) = M10(S(a)) = M11(S(a)) = 0,

M02(S(a)) =M20(S(a)) = (4/3)a4, and so on. As mentioned in Section 17.2.1,
Mij(S(a)) = 0 when i or j is odd. The following difference varies between−(4a+1)
and (4a+1) when a is in an open interval between two successive (positive) integers:

M00(S(a))−m00(S(a)) = a2 ·M00(S(1))−m0,0(S(a))

For arbitrary i, j ≥ 0, the following is in the interval [0,g(a)] where g(a) =O(ai+j+1);
see Theorem 17.4:

κ(a) = |Mij(S(a))−mij(S(a))|= |ai+j+2 ·Mij(S(1))−mij(S(a))|

Figure 17.5 shows a plot of κ(a) for i= j = 0.
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17.3.2 Disk

We first consider the quarter disk A shown in Figure 17.4 (right) and the moments
M

0j
(A) where j = 2t−1≤ 0 is odd. In this case, the integration is simple:

M0j(A) =
∫ h

0

⎛

⎝
∫ √h2−x2

0

yj dy

⎞

⎠ dx=
1

j+1

h∫

0

(
h2−x2

)t dx

Here are two examples:

M01(A) =
1
2

h∫

0

(
h2−x2

)
dx=

1
3
h3

M03(A) =
1
2

h∫

0

(
h2−x2

)2
dx =

4
15
h5

These values for A can then be used to calculate the values for B, C, and D (see
Figure 17.4). For j odd, we have M0j(B) =M0j(A) and M0j(C) =M0j(D) =
−M0j(A). It follows that, for the half-disk A∪B, we haveM01(A∪B) = (2/3)h3

andM03(A∪B) = (8/15)h5. By symmetry, we haveM0j(A∪D) = 0 for the half-disk
A∪D if j is odd andM0j(S) = 0 for the full disk S =A∪B∪C ∪D if j is odd.

The difference between the zero-order discrete moment and the zero-order
moment (i.e., the area) of a centered disk (or a disk with its center at a grid point)
that has radius h is at most the following; see [460]:

O
(
h

131
208

)

It can be shown [562] that the following differences

|Mi0(C1)−mi0(C1)| and |M0i(C1)−m0i(C1)|
are at most

O(hi+ 131
208 )

for a disk C1 that has radius h and center (a,b) where the integers a and b are at least
h. An analogous theoretic result for the general difference |Mij(C1)−mij(C1)| is
not yet known. However, experiments in [562] compared the error term with the
following:

h−
285
208 = h

131
208 ·h−2

The exact values of the real moments of the disk (x−1)2 +(y−1)2 ≤ 1 are as follows
(rounded to six digits):

M01(S) = 3.141592 M02(S) = 3.926991
M11(S) = 3.141592 M12(S) = 3.926991
M23(S) = 6.675884 M24(S) = 9.866564
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TABLE 17.2 Errors in approximatingMij(S) by h−(i+j+2) ·mij(h ·S) for
different grid resolutions h, where S is the disk (x−1)2 +(y−1)2 ≤ 1.

i j h Mij(S)− mij(h ·S)

hi+j+2
h
− 285

208

10 −0.018407 0.042639
50 +0.003992 0.004699

1
100 – 0.000007 0.001818
500 +0.000200 0.000200

0
10 – 0.033609 0.042639
50 +0.005779 0.004699

2
100 – 0.000062 0.001818
500 +0.000298 0.000200

10 – 0.028407 0.042639

50 +0.003592 0.004699
1

100 – 0.000107 0.001818
500 +0.000196 0.000200

1
10 – 0.043609 0.042639
50 +0.005379 0.004699

2
100 – 0.000162 0.001818
500 +0.000294 0.000200

10 – 0.129811 0.042639
50 +0.009904 0.004699

3
100 – 0.001224 0.001818
500 +0.000608 0.000200

2
10 – 0.225556 0.042639
50 +0.016346 0.004699

4
100 – 0.002193 0.001818
500 +0.001014 0.000200

In Table 17.2, these exact values are compared with the discrete moments cal-
culated for the Gauss-digitized disk.

17.3.3 Isometric quartic frontier segments

We next consider a shape that is more complex than a disk and defined by four
equal-length (“isometric”) quartic frontier segments; see Figure 17.6. This shape is
the compact region with a frontier that consists of four segments of the algebraic
curve γ of order 4:

γ :
(
y− 1

2

)2

=
(

1
2
−
√

1−|2x−1|−
∣∣
∣∣x−

1
2

∣∣∣∣

)2
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FIGURE 17.6 An isometric quartic frontier in the unit square.

This curve is of number-theoretic interest for at least two reasons:
(1) The function e(m) (see Theorem 13.1) is equal to the following for m≤ 0:

12
3
√

4π2
·m 2

3 +O(m
1
3 · logm)

It was calculated by analyzing maximal “circular” convex grid polygons Pm such as
those shown in Figure 13.7 for m = 7,8,9. It can be shown [1166] that these Pms
converge to γ with respect to the Hausdorff metric de:

lim
m→∞de(

1
m
·Pm, γ) = 0

(2) The grid polygons Pm are examples of Zm-lattice polygons that have width and
height m. It can be shown [57, 1092] that, as m→∞ , almost all convex Zm-lattice
polygons (scaled by factor m−1 so that they lie in the unit square [0,1]2) are “very
close” (in the Hausdorff metric sense) to γ. The related central limit theorem is
proved in [993].

Some numeric estimates of moments of S are given in Table 17.3. The exact
values of the real moments of S are as follows (rounded to six digits):

M00(S) = 0.833333 M01(S) = 0.416667

M11(S) = 0.208333 M12(S) = 0.131845

M23(S) = 0.057726 M24(S) = 0.043308
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TABLE 17.3 Errors in approximating Mij(S) by h−(i+j+2) ·mij(h · S) for
different grid resolutions h. The bounded setS is bounded by four equal-length
segments of the curve γ.

i j h Mij(S)− mij(h ·S)

hi+j+2
h−

15
11

1 +0.833333 1
2 – 0.416666 0.388601

0
100 +0.001633 0.001873
100 π +0.000138 0.000393

0
1 +0.416666 1
5 +0.096666 0.111393

1
30 π +0.000132 0.002031

300 +0.000394 0.000418

2 – 0.104167 0.388601
e +0.043449 0.255729

1
70 +0.001139 0.003047

350 +0.000086 0.000339
1

5 +0.035845 0.111393
10 +0.004295 0.004328

2
121 +0.000266 0.001444
400 +0.000071 0.000282

7 +0.008997 0.070403
14.5 – 0.001638 0.026080

3
93.3 – 0.000170 0.002059

444 +0.000047 0.000245
2

12 +0.004634 0.033758
27 +0.001788 0.011172

4
121.22 – 0.000148 0.001411
500 +0.000018 0.000208

17.3.4 Parameterized quartic frontier segments

Finally, consider a more general class of parameterized sets defined by four arcs of
the quartic curve y2 ≤ (mx2−m)2; see Figure 17.7. This curve too was chosen for
number-theoretic reasons.

We recall that the following is at most O(h), even in cases where straight seg-
ments are allowed on the frontier of S:

κ(h) = |M00(h ·S)−m00(h ·S)|
κ(h) can be smaller than this under additional assumptions about the frontier of S;
see, for example, Theorem 2.4. Furthermore [598], if we express κ(h) in the form
O(hα), the statement |M00(h · S)−m00(h · S)| = O(hα) is false for α < 0.5. The
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FIGURE 17.7 Four quartic frontier segments for which m= 2.

quartic arc y =
√
x where x ∈ [1,h] is an example of an arc that has a length of order

of magnitude h and that passes through exactly �h0.5� grid points.
Tables 17.4 and 17.5 give numeric examples in which m= 1 and m= 4, where

the sets translated by the vectors �(2,2) and �(5,2), respectively, contain only points
with positive coordinates. The exact values of the real moments in the case m = 1
are as follows (rounded to seven significant figures)

m0,0(S) = 2.666667 m0,1(S) = 5.333333
m1,1(S) = 10.66667 m1,2(S) = 22.55238
m2,3(S) = 104.6349 m2,4(S) = 240.5445

The exact values of the real moments in the case m = 4 are as follows (rounded to
seven significant figures):

M00(S) = 10.66667 M01(S) = 53.33333
M11(S) = 106.6667 M12(S) = 611.3523
M23(S) = 8005.587 M24(S) = 53289.62

The values in both tables are given for the same values of h to illustrate two things:

1) The effect of the sizes of the real moments that are to be estimated: As can
be seen from Table 17.5, if these moments have relatively large values, the
required precision is not achieved for small values of h as it was in the previous
examples; higher resolutions h have to be used. It is more appropriate to use
the relative error in such situations. If we use the usual definition of relative
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TABLE 17.4 Errors in approximating Mij(S) by h−(i+j+2) ·mij(h · S) for
different grid resolutions h, where S is the bounded region that has a frontier
that consists of four segments of the quartic curve (y−2)2 = ((x−2)2−1)2.

i j h Mij(S)− mij(h ·S)

hi+j+2
h
− 15

11

10 – 0.023333 0.043287
100 – 0.000233 0.001873

0
200 +0.000841 0.000728
800 +0.000190 0.000109

0
20 +0.002833 0.016821
80 +0.010520 0.002540

1
160 +0.004505 0.000987
320 +0.000175 0.000383

30 +0.031111 0.009677
90 +0.000148 0.002163

1
270 +0.001700 0.000483
540 +0.001467 0.000187

1
25 – 0.150651 0.012408
75 +0.011268 0.002773

2
225 – 0.002367 0.000620
450 – 0.000591 0.000240

40 +0.530125 0.006536
160 +0.108207 0.000987

3
320 +0.042065 0.000383
640 +0.016145 0.000149

2
50 +0.517891 0.004821

200 +0.104890 0.000728
4

400 +0.038664 0.000282
1000 +0.014139 0.000081

error and Theorem 17.4 is applied to regions that have no straight segments on
their frontiers, then we have the following:

∣∣∣∣
mij(h ·S)
Mij(h ·S)

−1
∣∣∣∣=
|mij(h ·S)−Mij(h ·S)|

hi+j+2 ·Mij(S)
=O

(
1

h
15
11−ε ·Mij(S)

)

2) The effect of the elongation of the region: For example, m= 5 gives a greater
elongation than m = 2. No theoretic results on this subject have yet been
obtained, but it seems that an increase in elongation leads to an increase in
worst-case error.

It might also be of interest to calculate errors in moment estimates for values of m
such that both m and h go to infinity (e.g., m= logh, m=

√
h, m= h2).



554 Chapter 17 Picture Properties and Spatial Relations

TABLE 17.5 Errors in approximating Mij(S) by h−(i+j+2) ·mi,j(h ·S) for
different grid resolutions h, where S is the bounded region whose frontier
consists of four segments of the quartic curve (y−5)2 = (4(x−2)2−4)2.

i j h Mij(S)− mij(h ·S)

hi+j+2
h
− 15

11

10 – 0.023333 0.043287
100 – 0.003833 0.001873

0
200 – 0.000958 0.000728
800 +0.000215 0.000109

0
20 – 0.079166 0.016821
80 +0.020052 0.002540

1
160 +0.014388 0.000987
320 +0.006722 0.000383

30 +0.012222 0.009677
90 +0.003703 0.002163

1
270 +0.005898 0.000483
540 +0.004355 0.000187

1
25 – 0.940180 0.012408
75 +0.102672 0.002773

2
225 – 0.015434 0.000620
450 – 0.020359 0.000240

40 – 4.711709 0.006536
160 +3.055033 0.000987

3
320 +1.433887 0.000383
640 +0.609743 0.000149

2
50 – 65.552138 0.004821
200 – 8.304786 0.000728

4
400 – 0.389115 0.000282
1000 +0.331766 0.000081

17.4 Operations on Pictures and Invariant Properties

Let P be the set of pictures P defined on a given grid, and let Φ be a function from
P into itself. Φ is called a pixel-wise operation (or a “point operation”) if the value of
(Φ(P ))(p) depends only on the value of P (p). It is called a local operation if the value
of (Φ(P ))(p) depends only on the values of a set of P (q)s such that p is one of the qs
and maxq(de(p,q)) is constant so that it does not depend on the size of the picture.
It is called a geometric operation if there exists a function g from the grid into itself
such that the value of (Φ(P ))(p) depends only on the values of a set of P (q)s such
that maxq((g(p), q)) is constant and so does not depend on the size of the picture.
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Pixelwise and local operations are studied in books about digital picture processing.
For more about geometric operations see Chapter 14.

A picture property F is called invariant under Φ if F(Φ(P )) = F(P ) for all
P ∈ P. For example, let Φ be the linear pixel-wise operation that takes P (p) into
aP (p)+ b . A ratio of differences of pixel values (e.g., P (p)−P (q)

P (s)−P (t) ), is invariant under
Φ, because the following is true:

[aP (p)+ b]− [aP (q)+ b]
[aP (s)+ b]− [aP (t)+ b]

=
a[P (p)−P (q)]
a[P (s)−P (t)]

=
P (p)−P (q)
P (s)−P (t)

The set of values of the pixels of P is invariant under any one-to-one mapping
of P into itself; in particular, it is invariant under any one-to-one geometric trans-
formation of P (see Section 14.4). It follows that any F(P ) that depends only on
the set of values of P (e.g., any statistic property such as m00) is invariant under any
one-to-one Φ. Evidently, m20(P ) is invariant under reflection of P in the y-axis; this
is similar for m02(P ) and the x-axis; and m0(P ) is invariant under reflection of P in
the origin or under any one-to-one rotation of P around the origin.

Properties that are invariant under various types of (real) geometric transfor-
mations are studied in various branches of geometry (see Section 14.1); however,
because most geometric transformations do not take pictures into pictures (see Sec-
tion 14.5), properties that are invariant under real geometric transformations are at
best “approximately invariant” when the transformations are applied to pictures.

17.5 Spatial Relations

Properties of binary pictures can be regarded as properties of the sets of 1s in the
pictures (e.g., as properties of [not necessarily connected] “objects”). Relative values
of properties of pictures define relations between pictures, and this is similar for re-
lations between objects. In this section, we briefly discuss two types of “spatial” (i.e.,
geometric) relations between objects: relations of relative position and topologic
relations.

17.5.1 Relations of relative position

Quantitative relations of relative position between single pixels can be defined by
fuzzy subsets of the grid. For example, if p = (x,y), the degree of membership of
q = (u,v) in “above p” can be defined by a fuzzy subset µa(p) such that µa(p)(x,v) = 1
for all v > y; µa(p)(u,v) decreases monotonically as |u−x| increases; andµa(p)(u,v) =
0 for v < y. Similarly, “near p” can be defined by a fuzzy subset µn(p) such that
µn(p)(x,y) = 1 and µn(p)(u,v) decreases monotonically as d((u,v),(x,y)) increases.
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FIGURE 17.8 The difficulty of defining “to the left of”: in which of these cases is the
black object to the left of the gray object?

It is much harder to define relations of relative position between sets of pixels.
To see this, consider Figure 17.8, which illustrates the difficulty of defining “to the left
of.” LetA be the black object andB the gray object. If we require that every pixel of
A be to the left of every pixel ofB, we exclude all but the two upper cases; however,
excluding the lower left case seems unreasonable. If we require only that every pixel
of A be to the left of some pixel of B, we include all but the case on the lower right;
however, including the case on the middle right seems unreasonable. If we require
that A’s centroid be to the left of B’s centroid, we include all but the case on the
middle right; however, including the case on the lower right seems unreasonable.
One proposed definition requires that two conditions be satisfied: A’s centroid must
be to the left of B’s leftmost pixel and A’s rightmost pixel must be to the left of B’s
rightmost pixel. This definition excludes the two middle cases and the lower right
case, which is defensible. Another possibility is to require that every pixel of A be
to the left of some pixel of B and every pixel of B be to the right of some pixel of
A. This excludes all but the two upper cases; it includes the lower left case if the
rightmost pixel ofA is removed. Note that this definition implies that the “to the left
of” relation is transitive, and its inverse is “to the right of.” The relation would also
be reflexive if we required that every pixel ofA be to the left of or in the same column
as some pixel of B and that every pixel of B be to the right of or in the same column
as some pixel of A. However, a purely coordinate-based definition of this type may
not be adequate in all cases; judgments about “to the left of” can be influenced by
the interpretation of the picture as a projection of a 3D scene or by the recognition
of A and B as familiar objects.

17.5.2 Topologic relations

We recall that any adjacency relation on a grid defines an adjacency relation between
disjoint subsets of the grid: S and T are called α-adjacent iff some pixel of S is
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α-adjacent to some pixel of T . For any such adjacency relation, we can also define
quantitative measures of degree of adjacency (e.g., in terms of what fraction of the
pixels of S are adjacent to pixels of T or vice versa); see Exercise 5.

We have also seen that an adjacency relation defines separation relations be-
tween disjoint subsets of the grid. LetU,V , andW be sets of pixels such thatU and V
are disjoint. We say thatW α-separatesU from V iff any α-path from a pixel ofU to a
pixel of V must contain a pixel ofW . More generally, let µ, ν, and ω be fuzzy subsets
of a picture. We say that ω α-separates µ from ν iff, on any α-path ρ = (p0, . . . ,pn),
there exists a pixel pi (1≤ i < n) such that ω(pi)≥max(µ(p0),ν(pn)).

Surroundedness is a special case of separateness; in a binary picture, we say
that S surrounds U if it separates U from the infinite background component B of
the picture. Quantitative measures of degree of surroundedness can also be defined.
For example, let U = {p}, and let W not contain p. The following are two ways of
measuring the degree to which W surrounds p in a 2D picture:

a) Evidently, W separates U from B if it separates U from the border ϑB of B,
which is finite; let ϑB consist of n pixels. For each b ∈ ϑB, let pb be a digital
straight line segment with endpixels p and b. If m of the n pbs intersect W , we
say that the degree of v-surroundedness (“visibility surroundedness”) of p byW
is m/n.

b) We define the degree of τ -surroundedness (“turn surroundedness”) of p by
W as min(τ(ρ)), where τ(ρ) is the total turn of ρ (see Chapter 10, Exercise 6)
and the min is taken over all 4-paths ρ from p to ϑB that do not intersect
W . If no such ρ exists (i.e., if W 4-surrounds {p}), we say that the degree of
τ -surroundedness of p by W is infinite.

In a 3D picture under (α,α′)-adjacency, if the Euler characteristic of a set W
is equal to the number of α-components of W minus the number of α′-components
of W , W is called tunnel-free. Let W and Z be α-connected sets, each of which is
contained in the background component of the other (so they are disjoint). It can
be shown that W is tunnel-free iff Z is tunnel-free. Let W ∗ be a tunnel-free set that
contains W . We say that W and Z are linked if any such W ∗ intersects Z. It can be
shown that this implies that W and Z are not tunnel-free.

A (simple) 3D curve can be knotted, and a set of pairwise disjoint 3D curves can
be linked [768]. A curve can therefore be called a knot, and a finite union of pairwise
disjoint curves can be called a link. A knot or link is called polygonal if the curves
are (real) polygons, and it is called digital if they are isothetic grid polygons. Two
knots or links are called (knot-theoretically) isomorphic iff there exists an orientation-
preserving homeomorphism that maps one of them onto the other. A knot is called
unknotted if it is isomorphic to a simple planar polygonal curve.

Two simple polygonsQ andQ′ are said to differ by an elementary deformation if
there exist three points p, q, and r such thatQ intersects the planar triangular region
pqr in the line segment pr; Q′ intersects pqr in the line segments pq and qr; and Q
and Q′ are otherwise identical. It can be shown that two polygonal knots or links
are isomorphic iff they differ by a finite sequence of elementary deformations. A
similar definition can be given for digital knots or links using deformations that take
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three sides of a rectangle into the fourth side. (Note that this is not the same as the
elementary deformations of digital curves in Section 16.4.)

The parallel projection Lθ of a polygonal link L in direction θ (onto a plane
perpendicular to θ) is the union of a connected set of straight line segments. We call
Lθ regular if the following are true:

a) For all but finitely many points p of Lθ, the preimage of p is a single point of L.

b) Each of the exceptional points has a preimage that is an interior point of exactly
two polygon sides of L.

It is not hard to see that, for any polygonal link L, there exist directions θ for which
Lθ is regular. An exceptional point p in a regular projection of L is called a crossing
point. The two preimages of p on L have different coordinates with respect to a
coordinate axis in direction θ. These two preimages lie on two polygon sides of L;
the side with a preimage that has a higher (lower) coordinate is said to cross over
(under) the other side. It is easy to show that, if some regular projection of a knot K
never crosses itself, K must be unknotted.

If, in some regular projection of a linkL, some knotK crosses only over or under
the other knots (or does not cross them at all),K cannot be linked to the other knots.
It can be shown thatW is not tunnel-free iff there exist a simpleα-curveK contained
in W and a simple α′-curve K ′ contained in W such that K and K ′ are linked.

17.6 Exercises

1. Let P1, . . . ,Pn be distinct pictures defined on a given grid. Prove that there exist
pixels p1, . . . ,pn−1 such that, for any 1 ≤ i �= j ≤ n, we cannot have Pi(p1) =
Pj(p1), . . . ,Pi(pn−1) = Pj(pn−1).

2. Let P be a binary picture defined on an k-pixel grid. LetF be a predicate on this
class of pictures, and let Φ be a Boolean function of k variables such that F(P )
is true iff Φ(P ) = 1; such a Φ is called a Boolean expression for F . The length of
the shortest Boolean expression for F is called the length of F . Let F1(F+

1
) be

the predicate that is true iff exactly (at least) one pixel of P has value 1. Prove
that the length of F+

1
is k and that the length of F1 cannot be a linear function

of k but is at most k2.

3. Prove that, if P is symmetric around the line y = x (i.e., f(x,y) = f(y,x) for all
x,y), then mij(P ) =mji(P ) for all i, j.

4. Prove that the principal axis is in the direction of the eigenvector of the following
matrix, which corresponds to its larger eigenvalue:

(
m20 m11

m11 m02

)
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5. Let S be a nonempty finite 4-connected subset of Z
2, and let T be a subset of Z

2

that is disjoint from S. Let ∂TS be the set of pixels of S that are 4-adjacent to
pixels of T ; note that, if T = S = Z

2 \S, ∂TS = ∂S is the border of S. Define the
degree of adjacency of S to T as follows:

aT (S) =
card(∂TS)
card(∂S)

Evidently, 0≤ aT (S)≤ 1. For what proper subsetsT of Z
2 do we have aT (S) = 1?

If T is nonempty, finite, and 4-connected, how is aS(T ) related to aT (S)?

17.7 Commented Bibliography

Properties for which the cardinality or the diameter of σ does not depend on the
picture size are studied in [733] and [533, 534].

Exercise 1 is based on [360] and Exercise 2 on [439]. Theorem 17.1 was first
applied to digital pictures in [880].

Moments were introduced into picture analysis in [446]; see also [362] and [15].
For elongatedness Θ(S), see [468, 1113]. (For an “intrinsic” definition of elongated-
ness, see Section 15.6.2.) For the approximation of real moments by digital moments,
see [558, 559, 560, 1113]. [561] gives the upper bound example that follows Theo-
rem 17.2. Section 17.3 reviews [562]. For other types of moments, see [980].

For invariants in geometry, see [559, 560]. For the difficulty of defining “to
the left of,” see [1127]. For measures of degree of adjacency or surroundedness, see
[913]. For digital knots and links, see [338, 768].
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List of Algorithms

2D borders, boundaries, or frontiers

• border tracing, 142

• boundary approximation (“marching squares”), 000–000

• frontier tracing (frontier grid, incidence grid), 187

3D boundaries or frontiers

• frontier tracing (FILL algorithm), 191

• frontier tracing (Artzy-Herman algorithm), 300–301

• boundary approximation (marching cubes), 301–302

adjacency and connectedness

• FILL for component labeling (adjacency grid), 53

• Rosenfeld-Pfaltz component labeling, 54

• local adjacency (incidence grid), 182

• ordered adjacency procedure (multilevel pictures), 183

• switch adjacency (multilevel pictures), 39, 249

2D convex hulls

• Graham scan (set of points), 25

• Sklansky algorithm (“visible” simple polygon), 430

• simple polygon, 429

• set of grid points, 428

561
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minimum-length polygons

• 2D MLP calculation, 344–345

• approximating-sausage algorithm, 351

• 3D MLP approximation (rubber-band algorithm), 385–390

2D curve representation and analysis

• directional encoding, 71

• vertex chain code, 72–75

• local and global length estimation, 302–304

• tangent-based length estimation, 346, 352–353

• corner detection, 363–364

• curvature estimation, 364–366

3D curve analysis

• local and global length estimation, 409–413

• estimation of curvature and torsion, 413

diagrams

• 2D Delaunay (Voronoi) diagrams, 440–443

• watersheds, 449–450

distance

• Hausdorff metric, 86

• two-pass distance transform (chamfer metric), 94–95

• Danielsson distance transform (Euclidean metric), 109

DSS generation and recognition

• Bresenham’s algorithm (DSS generation), 63

• 8-DSS based on syntactic characterization (CHW1982a), 329–331

• 4-DSS for frontier in incidence grid (K1990), 334–336

• 3D DSS recognition, 379

• 8-DSS based on arithmetic geometry (DR1995), 378
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DPS recognition

• incremental algorithm (KS2001), 402–404

• convex-hull based algorithm, 407

graphs

• FILL (connected components), 120

• Dijkstra algorithm (shortest path), 128

• border cycle in an oriented adjacency graph, 142

region analysis (2D)

• medial axis transform, 111–112, 495–496

• discrete integration (area of isothetic polygon), 279–280

• circumscribing rectangle of smallest area, 428–429

region analysis (3D)

• local surface area estimation, 414

• surface area estimation based on normal integration, 418–419

• surface area estimation based on DPS recognition, 421

• mean curvature estimation (HK2003a), 423–424

geometric transformations

• value interpolation, 466–477

• magnification, 58, 468, 470–471

• demagnification, 471, 473–474

morphologic operations

• dilation, 481–483

• erosion, 483–485

• opening and closing, 486

• hit-and-miss transforms, 485–486

• fusing of clusters, 492–493
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• detection of (intrinsically) elongated object parts, 493–494

• distance transforms and medial axes, 495–496

deformations

• shrinking, 506–509

• thinning (skeletonization), 509–513

• deformation of curves, 532–534

• thinning of multivalued pictures, 533



List of Symbols

Pictures

c,b cells in a grid
F(P ) feature of a picture P
Gmax maximal picture value (maximal gray level)
G,Gm,n,Gl,m,n grid (the medium on which digital pictures reside)
P,P (p),P (i, j) picture, picture value at pixel p= (i, j)
〈P 〉 set of object pixels (value 1) in binary picture P
p,q,r,s, t points, locations (grid points or cells in the grid)
Π plateau
ρ path or cycle in a subset of a grid
σ structuring element
u,v,w picture values, words (e.g., chain codes)
x,y,z picture coordinates

Digitizations

Gh(S) Gauss digitization of set S
J−h (S),J+

h (S) inner and outer Jordan digitizations of set S
κ(h) speed of convergence
h grid resolution
θ grid constant, θ = 1/h
ρh(γ) digitized grid-intersection sequence for arc or curve γ
Rh(γ) grid-intersection digitization of arc or curve γ

565



566 List of Symbols

Digital spaces

A, Aα adjacency relation
α metavariable for type of adjacency
δM , δαM border of set M for adjacency relation Aα

dα metric in grid point model
d4 Manhattan or city block distance
d8 chessboard distance
∂α metric in grid cell model
e radius of a neighborhood
Γ, Γα connectedness relation for adjacency relation A or Aα

M∇, M∇α inner set of set M for adjacency relation A or Aα

N , Nα smallest nontrivial neighborhood in grid point model
η, ηα smallest nontrivial neighborhood in grid cell model

General mathematic symbols

a,b,c real numbers
a, b, . . . vectors
A,B,C sets, polygons
A, B, . . . matrices
A(S) area of set S
α,β,η,ψ,φ angles, fractional parts of real numbers
C(n)(S) set of functions that are n-times continuously

differentiable on S
Cn set of all m-cells (m≤ n)
d distance
de Euclidean distance
E

2,E3 Euclidean plane [R2,de], Euclidean space [R3,de]
f,g functions
γ curve or arc in Euclidean space
h,i,j,k, l,m,n integers, picture coordinates
κ(p) curvature at point p
L(γ) = ‖γ‖ length of curve γ
λ real number, eigenvalue of matrix
Lm Minkowski metric, m= 1,2, ...,∞
L,M subsets of set S or of grid G

N the set of all natural numbers {0,1,2, . . .}
π polygonal curve, perimeter of unit circle
Π polygonal region
P(S) perimeter of set S
R relation
R the set of all real numbers
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σ,θ,ϑ permutations
S,T sets
V(S) volume of set S
x,y,z rectangular Cartesian coordinates
Z the set of all integers

Set theory

∅ empty set
℘(S) power set of S
℘fin(S) class of all finite subsets of S
card(M) cardinality of set M
ℵ0 cardinality of N

M complementary set S \M of M ⊆ S
M1∆M2 symmetric difference (M1 \M2)∪ (M2 \M1)

Integer arithmetic and asymptotics

�a� largest integer smaller than or equal to a
[a ] nearest integer to a if uniquely defined, �a� otherwise
a� smallest integer larger than or equal to a
f1(n)≈ f2(n) approximate equality between f1(n) and f2(n)
a≈ b approximate equality |a− b|< 1 between a,b ∈ R

g(n) =O(f(n)) |g(n)| ≤ c|f(n)| for all n≥m, some c > 0, and some m≥ 0
g(n) = Ω(f(n)) |g(n)| ≥ c|f(n)| for all n≥m, some c > 0, and some m≥ 0

Topology in metric spaces

ε radius of a neighborhood
ϑM frontier of M defined by ε-neighborhoods
M◦ interior M \ϑM of M
M• closure M ∪ϑM of M
Uε(p) ε-neighborhood of p

Combinatorial topology

α0,α1,α2 numbers of vertices, edges, and faces
β0,βi number of components, Betti numbers (i≥ 0)
χ Euler characteristic
ξ, ξ(p) orientation, local circular order
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List of Axioms and Properties

A1-A3 adjacency graph, 120
A4 adjacency graph (orientation), 136
C1-C2 abstract complex, 217
D1-D3 digital topology (grid cell model), 192
D1-D3 digital topology (grid point model), 193
E1-E2 Euclidean complex, 214
G1-G8 axiomatic digital geometry, 450–452
H1-H4 hull and near-hull, 419–420
I1-I8 incidence pseudograph, 158–160
M1-M5 metric, 12–13
M4-M5 metric, 79
N1-N3 norm, 78
N2* norm, 79
T1-T3 topology, 188
V0-V8 vector space. 18
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18-, 42

26-, 42
α-, 42
edge-, 261
i-, 160
k-, 48
P-, 40
(σ, α)-, 40
strongly edge-, 265
switch, 40
vertex, 265
Voronoi, 122

algorithm
linear time off-line, 353
linear time on-line, 353
off-line DSS, 328
on-line DSS, 328

angle
slope, 273

angular value, 80
approximation

8-, 451
theory, 21

arc, 127
irreducible 8-, 311
polygonal, 13
simple, 234
simple, in the grid cell topology, 240

arc length, 271
area, 67, 269, 276
array

1D periodic, 396
2D periodic, 396
eventually periodic, 397
Sturmian, 397
tiled, 396

645
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axiom system, 456
axioms

of incidence, 457
axis

principal, 543

B

background
closed, 169
open, 169

balanced, 397
infinite word, 324-325
set of words, 323
set of arrays, 397

basic segment
of an infinite word, 312

basis, 223
countable, 195
of a set of translations, 459
of a topological space, 195
of a topology, 85
of an array, 396

Betti number, 224, 226
border, 123, 165

α-, 123
border cycle

inner, 148
outer, 143

border point, 259
boundary, 144, 168
branch point, 234
branching index, 234
Bresenham’s algorithm, 63
bridge

in a graph, 131
Buffon’s needle problem, 28

C

catchment basin, 449
Cavalieri’s principle, 296
cell

0-, 36, 175, 216
1-, 37, 216
2-, 36
3-, 36
convex, 219
Dirichlet, 439

i-, 175
n-, 101
Voronoi, 122, 439

cells
adjacent, 48

center
of a graph, 131

chain
code, 61, 309, 471
frontier, 168
i-, 168

chord property, 316
compact, 318

chordal triangle property, 393
chromatic number, 134
circle

digital, 72
unit, 87

circuit, 13, 127
class cardinality, 173
Clifford algebra, 18
closed set, 188
closing, 30, 124, 486
closure, 85, 167, 194
coborder, 125
code

syntactic, of a DSS, 329
cogeodetic

α-, 104
completion

digitally-convex, 437
in an incidence pseudograph, 162

complex
abstract, 222
Euclidean, 224
geometric, 216
one-dimensional geometric, 216
surface, 217
two-dimensional geometric, 217

complexity
of a word, 322

component, 9, 47, 120, 163, 194
α-, 120
background, 47, 245
border, 123
complementary, 120
complementary α-, 120
inner, 123
of a graph, 19, 127
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regular, of a curve, 235
tunnel-free, 557

computer graphics, 1
concavity, 450
congruence class, 50
connected

α-, 120
connectedness

degree of, 21
connectivity, 217, 257

of a triangulation, 256
continuity, 209
continuum, 232

one-dimensional, 232
one-dimensional at a point, 232

contraction, 134
of a path into a single point, 214

convergence, 113
multigrid, 35, 70
of words, 323
speed of, 23, 71

coordinate system, 459
Cartesian, 11

core, 161
coset, 225
count

boundary, 176
incidence, 172

cover, 144
cross product, 282
crossing number

of a graph, 133
cube

unit, 87
curvature, 281

Gaussian, 291, 293
mean, 293
multiscale, 363

curvature chain, 363
curve, 233

0-, 513
1-, 513
3-smooth, 69
C(2)-regular, 271
elementary, 216, 234
elementary, in the grid cell topology, 240
Hilbert, 8
in the grid cell topology, 237
Jordan, 231

Peano, 8, 232
rectifiable, 65
simple, 234
simple α-, 243
smooth Jordan, 273
smooth space, 281
Urysohn-Menger, 233

cut node, 131
cycle, 134, 137

atomic, 140
border, 140
i-, 169
of a translation, 458

D

d-continuous at p, 462
dart, 151
decomposition, 492
decomposition vertex, 236
deficit

isoperimetric, 28
degree

of a node, 126
of adjacency, 557, 559
of closeness, 92
of connectedness, 21
of surroundedness, 557

Delaunay triangulation, 440
deMorgan’s rules, 196
Descartes, 34
Descartes-Euler polyhedron theorem,

133, 218
determinant, 277
deviation

relative, 58
diagonal

main, 315, 399
diagram

dα-Voronoi, 443-444
Delaunay, 440
dual Voronoi, 440
in a metric space, 439
nearest neighbor, 441
Voronoi, 440

diameter
intrinsic, 344
of a graph, 129
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difference
Minkowski, 29
symmetric, 88
digital plane, 391
irrational, 391
quadrant, 391
rational, 391
segment, 391

digital ray
irrational, 311
rational, 311

digital topology, 21
digitization, 1, 56

by dilation, 436
Gauss, 56
grid-intersection, 60
inner Jordan, 59
outer Jordan, 59

digraph, 118
Dijkstra’s algorithm, 128
dilation, 30, 124
dimension, 18, 459

in an adjacency structure, 206
index, 160, 223
of a triangulation, 222

direction, 457
of a simple arc, 255

disk
centered, 69
digital, 64
unit, 89

distance
between two points, 77
extrinsic α-, 98
hexagonal, 93
in a graph, 127
intrinsic, 344
intrinsic α-, 98
main diagonal, 400
value-weighted, 105
weighted, 94

distance field, 99
distance function, 12
divide, 449
divide line

of a surface, 449
domain of influence, 65
downstream, 448
DPS, 392, 399

DSL property, 319
DSS, 315
DSS property, 320
DSS-based length estimator, 343

E

eccentricity, 129
edge, 13, 19, 118

assigned to a cycle, 141
directed, 118
directed invalid, 141
in a picture, 487
undirected invalid, 141

eigenvalue, 293
element

structuring, 482
ellipsoid

surface area, 288
embedding, 150

combinatorial, 135
encoding

directional, 61
end node, 130
endpixel, 46
endpoint, 95, 234

of a line segment, 459
endvoxel, 46
equivalence

topological, 211, 215
Erlangener Programm, 455
erosion, 30, 124
error

estimation, 22
Euler characteristic, 137, 173, 216
Euler’s formula, 133
Euler’s totient function, 433
even set of 3D grid points, 393
exterior

unbounded, 217

F

face
external, 134
internal, 134
of a planar graph, 133

factor
of a word, 311
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right special, of an infinite word, 323
family of sets

discrete, 456
Farey series, 326
feature

local, 491
Fibonacci word, 323
filling, 51
first fundamental form, 286
forest, 131
Frenet formulae, 275
Frenet frame, 273

3D, 282
frontier, 85, 194

in a triangulation, 255
L-, 232
point, 85
smooth, 64
tracing algorithm, 189

function
characteristic, 27
signum, 93

fundamental group, 214

G

gap, 264
gapfree, 264

β-, 264
Gauss map, 290
Gaussian image, 291
genus, 21, 256
geodesic, 95, 127
geometry, 13, 455

affine, 14
analytical, 455
combinatorial, 455
computational, 25
descriptive, 455
digital, 33, 35
digital grid, 459
discrete, 456
elliptic, 455
Euclidean, 14, 455
hyperbolic, 455
integral, 29
non-Euclidean, 455
perspective, 455
projective, 16, 455

similarity, 14
gluing

of surfaces, 256
good pair, 246
gradient, 285
Graham’s Scan, 25
graph, 19, 118

bipartite, 131
complete, 131
complete bipartite, 132
directed, 118
Eulerian, 129
geometric dual, 135
Hamiltonian, 130
isomorphic, 132
k-strong, 131
planar, 133
Platonic, 266
self-dual, 135
underlying, 118
weighted, 127

graph metric, 127
graph theory, 19
grid, ii, 1, 2

2D, 459
hexagonal, 30, 140
orthogonal, 140
regular, 30
triangular, 30, 140

grid cell model, 37
topology, 201

grid constant, 12
grid cube, 36
grid edge, 2, 36
grid line, 37, 38
grid model, 37
grid plane, 38
grid point, 2, 30, 35
grid point model, 37
grid resolution, 38
grid square, 2, 36
grid vertex, 2, 35
group, 477

factor, 226
free cyclic, 215
frieze, 461
fundamental, 214
homology, 226
wallpaper, 461
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H

handle, 252
height

of a word, 323
of an array, 397

Hessian matrix, 294
hole, 143

8-, 246
closed, 169
improper, 143
open, 169
proper, 143

homeomorphism, 209
homomorphism, 225
homotopy, 214, 215
hull, 427

8-, 452
convex, 427, 459
digital 8-convex, 437
Gabriel pseudo-, 451
near-, 428
pseudo-, 428

I

image analysis, 1
in-degree

of a node, 127
in-faces, 301
incidence, 159

grid cell, 45
in a graph, 118
model
n-, 160
of a cell in an abstract complex, 222
relation, 159
structure, 159

inequality
isoperimetric, 28
Minkowski, 77
Schwarz, 78

inner point, 259
integrability condition, 292
integrable, 296
integral point

of a ray, 312
integration

discrete column-wise, 279

intercept
approximate, 394
of digital ray, 310

interior, 85, 194
interpolation

bicubic spline, 468
bilinear, 467
nearest-neighbor, 466
zero-order, 466

interval
closed, 194
open, 194

invariance
topological, 211

involution, 152
isometry

local, 292
isomorphism, 39
isomorphy, 39
isoperimetric deficit, 28
isosurface, 301

J

Jacobian matrix, 277
Jordan-Veblen curve theorem, 236

K

Klein bottle, 222
knot

digital, 557

L

labelling, 53
Lagrange estimate, 272
layer, 301

in a tree, 131
leaf

of a tree, 131
length, 346

of a path, 125
of a word, 311
value-weighted, 105

length estimate
tangent-based, 346

length estimator
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approximating sausage, 349
BLUE, 347
corner count, 348

letter
in a word, 311
nonsingular, 318
singular, 318

level
in a tree, 131

limit point, 113
line, 457

arithmetic, 313
naive, 313
oriented, 458
standard, 313

line segment, 459
lines

of support, 436
supporting, 313

linguistic technique
for DSS recognition, 328

Lipschitz condition, 463
Listing band, 255
loop, 118

M

magnification, 58
manifold

hole-free n-, 251
Jordan, 258
n-, 251

map
combinatorial, 151
n-dimensional combinatorial, 152

mapping
continuous, 209

marching cubes algorithm, 301
matching theorem, 172
mathematical morphology, 30
metric, 12

binary, 84
chessboard, 90
city block, 90
Euclidean, 13, 77
forest, 113
Hausdorff, 86
Manhattan, 90
Minkowski, 79

regular integer-valued, 82
metrics

topologically equivalent, 85
Minkowski difference, 29

sum, 29
MLP, 343

approximating sausage, 351
MLP-based length estimates, 345
module

unitary, 82
moment, 537

(i, j), 543
morphism, 314

nonerasing, 314
morphology

mathematical, 29, 481
motion

rigid, 478
multigraph, 118

N

needle problem
Buffon’s, 28

n-gon, 253
neighbor

proper, 456
Voronoi, 440

neighborhood, 9, 44, 118
algebraic, 456
cyclic, in a triangulation, 254
e-, 91
ε-, 85, 86
smallest, 91
topological, 194

node, 19, 118
border, 123, 165
central, 129
connectivity, 131
i-, 160
initial, 118
inner, 122, 165
invalid, 168
isolated, 130
marginal, 160
principal, 160
terminal, 118
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nodes
connected, 19, 119, 127
merging of two, 134

noise, 487
cleaning, 487
removal, 487
salt-and-pepper, 487

n-omino, 50
norm, 78

Minkowski, 79
semi-, 79

normal, 286, 394

O

omino
n-, 50

open set, 188
opening, 30, 124, 486
operation

local, 106
orbit, 153
order

local circular, 137
of a group, 461
partial, 195
reduced local circular, 140

ordered adjacency procedure, 183
orientation, 137, 269, 544

coherent, 255
of a triangle, 255

origin
of a coordinate system, 11

out-degree
of a node, 125

out-faces, 301

P

P-equivalence class, 40
P-equivalent, 40
parabola

digital, 64
parameterization

regular, 270, 282
patch

isometric, 291
Monge, 283
planar surface, 283

path, 9, 19, 46, 119, 125
α-, 95, 103, 120
Eulerian, 129
Hamiltonian, 129
homotopic, 214
initiation of a, 136
monotonic, 446
of sets, 222
parameterized, 214
polygonal, 222
shortest, 127
total weight of a, 125
zero-homotopic, 214

pendant edge, 130
perimeter, 67
period, 396

of a finite word, 312
of an infinite word, 312

periodic, 311
periodicity, 312
approximate, 339
Pick’s formula, 279
picture, 1

1D, 2
2D, 2
3D, 2
binary, 4
digital, 1
multivalued, 4
resolution, 5
well-composed binary, 534

picture analysis, 1
picture size, 6
pictures

congruent, 478
similar, 478

pixel, 1, 2
simple, 499

pixels
connected, 47

plane
arithmetic, 394
cellular digital, 399
digital, 13, 399
Euclidean, 13
graceful, 398
naive, 394
projective, 222
separating, 394
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standard digital, 394
supporting, 393, 402
tangent, 290

plane segment
digital, 399

plateau, 446
point

bifurcation, 251
branch, 234
concave, 274
convex, 274
elliptic, 292
frontier, of a surface, 252
hyperbolic, 292
interior, of a surface, 252
of inflection, 274
parabolic, 292
planar, 292
regular, 228
singular, 234, 270, 281

points
connected, 19

polygon
digitization, of a DSS, 331
grid, 23
isothetic, 23
minimum-length, 343
regular, 23
simple, 13
simple grid, 148
weak digitization, 333

polyhedron, 20, 216, 221
grid, 23
isothetic, 23

polyomino, 50
chiral, 50
fixed, 50
free, 50

poset, 195
position

in an array, 396
prefix

in a word, 312
principal normal, 282
product

cross, 282
of two paths, 214
scalar, 79
vector, 282

weak scalar, 80
projection, 475
property

global, 538
local, 538
semilocal, 539
topological invariant, 211

pseudograph, 118
incidence, 161
monotonic incidence, 161

pyramid, 471

R

radius
α-, 108
of a graph, 129
of torsion, 282

ravine
of a surface, 449

ray, 459
digital, 310
lower digital, 312
upper digital, 312

rectangle
circumscribing, 436

reduction operation, 319
region, 20, 121, 169

α-, 123
planar, 276
smooth, 487

region adjacency graph, 125
region detection, 51
regions

homeomorphic, 211
relation

adjacency, 118
bounded-by, 222
connectedness, 9
incidence, 14, 159
irreflexive, 117
parallelism, 457
reflexive, 117
symmetric, 117

representation
geometric, 2D incidence grid, 45
geometric, 3D incidence grid, 46

resolution
geometric, 15
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ridge
of a surface, 449

root
of a tree, 131

run
in a binary picture, 9
in a word, 318

S

scalar, 18
scan

Hilbert, 8
of a grid, 6
Peano, 8

Schönflies-Brouwer theorem, 236
segment

digital 4-straight line, 314
digital straight line, 314

segmentation, 490
separation, 142

α-, 264
set

adjacent, 125
α-inner, 123
bounded, 12, 85
closed, 85, 166, 194
column-convex, 438
compact, 85
complete, 163
complete, in the grid point topology, 200
connected, 9
continuously connected, 31
convex, 23, 427, 458
digitally convex, 64, 436
discrete, 456
fuzzy, 27
inner, 123, 165
λ-level, 27
open, 85, 166, 194
polygonally connected, 31
row-convex, 438
simply-connected, 21, 214
topologically connected, 194
totally disconnected, 206

sets
incident, 14, 44

shape, 269
shape factor, 28

shortest path problem, 128
side

improper, 219
k-, 219

signature
of a spirograph, 326

significance measure, 362
similarity relation, 40
simple

pixel, 508
voxel, 530, 531

simplex, 216
skeleton, 509

linear, 215
skeleton climbing

adaptive, 306
skeletonization, 509
Sklansky’s algorithm, 429
slope

atomic, 321
of a digital ray, 309
of a word, 323

solid
Platonic, 130

space
Aleksandroy, 194
digital, 13, 33
Euclidean, 13
Hausdorff, 195
homeomorphic, 209
isotopic, 212
Kolmogorov, 195
locally compact, 251
metric, 12
n-dimensional Euclidean, 77
T0-, 195
T1-, 195
T2-, 195
topological, 194
unbounded metric, 83
vector, 18

speed, 269
sphere

Gaussian, 290
open n-, 244
unit, 87

splitting formula, 321
square

digital, 64
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unit, 87
star, 201
step codes, 391
stereology, 30, 287
straight line

cellular, 310
digital, 64, 310

straight line segment
cellular, 310
digital, 62, 64

strip
Listing, 255
Möbius, 255

structure
adjacency, 118
incidence, 159

Sturmian
array, 397
word, 322, 323

subgraph, 119
subgraphs

disjoint, 119
subspace

topological, 194
substitution, 313
substructure, 140
subword, 311
suffix

in a word, 312
of an array, 397

sum
Minkowski, 29

supporting lines, 315
surface, 252

α-, 258
digital, 258
hole-free, 251
hole-free simple 26, 258
Jordan, 252
nonorientable, 255
orientable, 255
simple 26, 258
simple hole-free, 252
simple, with r contours, 252
strong, 267
with frontiers, 252

surface normal, 290
surface patch

digital, 258

surface pixel, 265
switch adjacency, 40

T

thickness
arithmetic, 394

Thiessen polygons, 439
thin

set of pixels, 488
thinning, 509

3D, 531
threshold, 490
thresholding, 490
Thue-Morse word, 323
tiling, 253

regular, 253
time complexity, 25
topology, 20, 85, 193

alternating, 198, 202
degenerate, 194
digital, 22, 198, 199
Euclidean, 85, 194
grid cell, 202
grid point, 198
induced, 194
inherited, 194
point-set, 193
poset, 195

torsion, 282
total border strength, 372
total turn, 373
transform

hit-and-miss, 485
transformation

affine, 478
identity, 477
isometric, 545

translation, 457
atomic, 459
cyclic, 458

tree, 131
minimum spanning, 446
rooted, 131
simple 2-, 187

triangle, 132
oriented, 255
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triangulation, 221
by ear clipping, 306
of a 2-manifold, 252
pure 2D, 222
strongly connected 2D, 222

tripod
of a 3-cell, 399

tube, 381

U

upstream, 448

V

vector, 18
binormal, 282
periodicity, 396
symmetry, 396
tangent, 290
unit normal, 273
unit tangent, 273

vector product, 282
vector space, 17

finite-dimensional, 18
vectors

orthogonal, 80
vertex, 13

concave, 280

convex, 280
decomposition, 236

volume, 295
Voronoi adjacent, 440
Voronoi cell, 122
voxel, 1, 2

orientable surface, 258
simple, 530, 531
surface, 258

voxels
connected, 47

W

watershed, 449
watershed line, 449
weight

of an edge, 127
width, 315

arithmetical, 313
word, 311

aperiodic, 312
empty, 311
eventually periodic, 312
infinite, 312
mechanical, 324
reducible, 318
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